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Series Preface

WILEY SERIES IN MATERIALS FOR ELECTRONIC AND
OPTOELECTRONIC APPLICATIONS

This book series is devoted to the rapidly developing class of materials used for electronic
and optoelectronic applications. It is designed to provide much-needed information on the
fundamental scientific principles of these materials, together with how these are employed
in technological applications. The books are aimed at postgraduate students, researchers
and technologists, engaged in research, development and the study of materials in elec-
tronics and photonics, and industrial scientists developing new materials, devices and
circuits for the electronic, optoelectronic and communications industries.

The development of new electronic and optoelectronic materials depends not only on
materials engineering at a practical level, but also on a clear understanding of the proper-
ties of materials, and the fundamental science behind these properties. It is the properties
of a material that eventually determine its usefulness in an application. The series there-
fore also includes such topics as electrical conduction in solids, optical properties, thermal
properties, etc., all with applications and examples of materials in electronics and opto-
electronics. The characterization of materials is also covered within the series in as much
as it is impossible to develop new materials without the proper characterization of their
structure and properties. Structure–property relationships have always been fundamentally
and intrinsically important to materials science and engineering.

Materials science is well known for being one of the most interdisciplinary sciences. It
is the interdisciplinary aspect of materials science that has led to many exciting discover-
ies, new materials and new applications. It is not unusual to find scientists with a chemical
engineering background working on materials projects with applications in electronics. In
selecting titles for the series, we have tried to maintain the interdisciplinary aspect of the
field, and hence its excitement to researchers in this field.

Peter Capper
Safa Kasap

Arthur Willoughby





Preface

Almost all the semiconductors of practical interest are the group-IV, III–V and II–VI
semiconductors and the range of technical applications of such semiconductors is
extremely wide. All such semiconductor devices can be characterized to a greater or
lesser degree. Many scientific papers, review papers, book chapters and specialized books
exist that discuss the various semiconductor properties, but no one has integrated such
topics on the group-IV, III–V and II–VI semiconductors into one volume.

The purpose of this book is twofold: (i) to discuss key properties of the group-IV,
III–V and II–VI semiconductors; and (ii) to systemize these properties from a solid-
state physics aspect. The bulk of the text is devoted to the comprehensive description of
the lattice structural, thermal, elastic, lattice dynamic, electronic energy-band structural,
optical and carrier transport properties of these semiconductors. Some corrective effects
and related properties, such as piezoelectric, elasto-optic and electro-optic properties, have
also been discussed.

The book contains convenient tables summarizing the various material parameters and
the definitions of important semiconductor properties. The book also contains graphs in
order to make the information more quantitative and intuitive. I felt that these have not
been adequately covered in existing books.

The book is intended not only for semiconductor device engineers, but also physicists
and physical chemists, and particularly students specializing in the fields of semiconductor
synthesis, crystal growth, semiconductor device physics and technology.

SADAO ADACHI
Gunma, Japan
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1.1 IONICITY

1.1.1 Definition

All tetrahedrally coordinated ANB8-N semiconductors can be treated within the frame-
work of a simple model. The success of this approach requires a careful choice of
parameters entering in the model. The most important of these is the ionicity of the
bond [1.1].

The ionicity of a bond can be defined as the fraction f α
i of ionic or heteropolar

character in the bond compared with the fraction f α
h of covalent or homopolar character.

By definition, these fractions satisfy the relation

f α
i + f α

h = 1 (1.1)

In an elemental semiconductor such as Si, we must have f α
h = 1 and f α

i = 0. In con-
trast, we shall find that some alkali halides (NaCl, KCl, etc.) are more than 90% ionic.

Properties of Group-IV, III–V and II–VI Semiconductors Sadao Adachi
 2005 John Wiley & Sons, Ltd ISBN: 0-470-09032-4



2 PROPERTIES OF GROUP-IV, III–V AND II–VI SEMICONDUCTORS

(a) Phillips ionicity

Phillips studied the connection between the chemical bonding properties of the ANB8-N

family of crystals and their electronic energy-band structures [1.1]. His concept evolves
from a molecular picture in terms of bonding and antibonding states separated by an
energy gap Eg. His ionicity scale fi is defined in terms of average quantities such as the
homopolar Eh and heteropolar parts C of the complex energy gap Eg associated with the
A–B bond in the crystal

Eg = Eh + iC (1.2)

Ionicity is then introduced via the relation

fi = C2

E2
g

= C2

E2
h + C2

(1.3)

Some numerical examples of Eg (fi) are: Eg = 4.70 + i0 (fi = 0) for Si; Eg = 4.32 +
i2.90 (fi = 0.310) for GaAs; Eg = 4.29 + i5.60 (fi = 0.630) for ZnSe, where Eg are
in eV.

(b) Pauling ionicity

Pauling based his definition of ionicity scale f P
i not on the total energy of the bond, but on

empirical heats of formation [1.2]. Denote the power of an atom A to attract electrons to
itself by a dimensionless number called its electronegativity XA. The Coulomb interaction
between the ionic charge left behind and the valence charge transferred is proportional
to (XA − XB)2, and this is the origin of the extra ionic energy (i.e., f P

i ). By definition
f P

i never exceeds one, and as XA − XB becomes large f P
i tends to one. Moreover, the

ionicity of an A–B bond should be the same as ionicity of a B–A bond. Pauling then
defined ionicity of a single bond

f P
i = 1 − exp

(
− (XA − XB)2

4

)
(1.4)

(c) Harrison ionicity

In Harrison’s model [1.3], the ionicity parameter f H
i can be given in terms of two of the

parameters of the electronic structure, by

f H
i = V3√

V 2
2 + V 2

3

(1.5)

Here, V2 is half the splitting between bonding and antibonding states; V3 is half the
energy change in transferring an electron from anion to cation. This parameter f H

i can be
defined as the excess number of electrons placed on the anion from each bond, called the
polarity. Thus, each anion in a tetrahedral structure contains a charge of Z∗ = 4f H

i − ∆Z,



STRUCTURAL PROPERTIES 3

Table 1.1 Phillips (fi), Pauling (f P
i ) and Harrison ionicities (f H

i ) for a number of group-IV, III–V
and II–VI semiconductors

System Material fi f P
i f H

i System Material fi f P
i f H

i

IV Diamond 0 0 0 II–VI MgO 0.841 0.88
Si 0 0 0 MgS 0.786
Ge 0 0 0 MgSe 0.790
Sn 0 0 0 MgTe 0.554
SiC 0.177 0.11 0.35 ZnO 0.616 0.80 0.69

ZnS 0.623 0.59 0.69
III–V BN 0.221 0.42 0.43 ZnSe 0.630 0.57 0.70

BP 0.032 ZnTe 0.609 0.53 0.68
BAs 0.044 CdS 0.685 0.59 0.74
AlN 0.449 0.56 0.57 CdSe 0.699 0.58 0.74
AlP 0.307 0.25 0.47 CdTe 0.717 0.52 0.76
AlAs 0.274 0.27 0.44 HgS 0.790
AlSb 0.250 0.26 0.56 HgSe 0.680
GaN 0.500 0.55 0.61 HgTe 0.650 0.78
GaP 0.327 0.27 0.48
GaAs 0.310 0.26 0.47
GaSb 0.261 0.26 0.43
InN 0.578
InP 0.421 0.26 0.55
InAs 0.357 0.26 0.51
InSb 0.321 0.25 0.48

where ∆Z is the difference in valence from 4 (∆Z = 1 for nitrogen, 2 for oxygen, etc.).
Similarly, then, each bond provides an electronic dipole moment of P = γf H

i (−ed ),
where d is vector distance from cation to anion and γ is a scale parameter to take into
account local fields and charge symmetries; a value of

√
2 gave a good fit to experiment.

1.1.2 Ionicity value

Table 1.1 summarizes the values of Phillips (fi) [1.1], Pauling (f P
i ) [1.2] and Harrison

ionicities (f H
i ) [1.3] for a number of group-IV, III–V and II–VI semiconductors. We also

show in Figure 1.1 Phillips ionicity fi versus (a) Pauling (f P
i ) and (b) Harrison ionicities

(f H
i ) for these semiconductors.

1.2 ELEMENTAL ISOTOPIC ABUNDANCE AND MOLECULAR
WEIGHT

1.2.1 Elemental isotopic abundance

There are a great many semiconductor materials. We list in Table 1.2 the elements which
form at least one tetrahedrally coordinated ANB8-N semiconductor, together with their
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Figure 1.1 Phillips ionicity fi versus (a) Pauling (f P
i ) and (b) Harrison ionicities (f H

i ) for some
group-IV, III–V and II–VI semiconductors. The solid lines in (a) and (b) indicate the relations of
fi = f P

i and fi = f H
i , respectively

natural isotopic abundance in percent [1.4]. Table 1.3 also lists the standard atomic weight
for some group IV, III, V, II and VI elements [1.4].

1.2.2 Molecular weight

The molecular weight M for an ANB8-N semiconductor (N �= 4) can be simply given
by the sum of the atomic weights of atoms A and B. For an elemental semiconductor
(N = 4), it is given by the atomic weight of the element atom A = B. Tables 1.4 and 1.5
list the values of M for a number of group-IV, III–V and II–VI semiconductors with
cubic and hexagonal (rhombohedral) structures, respectively.

1.3 CRYSTAL STRUCTURE AND SPACE GROUP

1.3.1 Crystal structure

(a) Diamond, zinc-blende and wurtzite structures

The atoms of certain elements are held together in the solid by strongly covalent bonds
at tetrahedral angles of 109.5◦. Each atom has four nearest neighbors and twelve next
nearest neighbors, which is a consequence of each atom sharing one of its outer electrons
with each of four neighbors. The typical structure so formed is that of diamond, as shown
in Figure 1.2(a). The space lattice is face-centered cubic with pairs of atoms at (0, 0, 0)
and (1/4, 1/4, 1/4) forming a pattern unit.

The atomic orbitals that are used to form hybridized bonding orbitals are usually not
the same ones that are occupied in the ground state of the atom. For example, in silicon the
ground valence configuration of the atom is 3s23p2, whereas the hybridized configuration
appropriate for the diamond-type crystal structure is 3s13p3 (tetrahedral coordination).
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Table 1.2 Natural isotopic abundance in percent for some group IV, III, V, II and VI elements

Group Isotope Natural
abundance (%)

Group Isotope Natural
abundance (%)

IV 12C 98.90 IV 112Sn 0.97
13C 1.10 114Sn 0.65
28Si 92.23 115Sn 0.34
29Si 4.67 116Sn 14.53
30Si 3.10 117Sn 7.68
70Ge 21.23 118Sn 24.23
72Ge 27.66 119Sn 8.59
73Ge 7.73 120Sn 32.59
74Ge 35.94 122Sn 4.63
76Ge 7.44 124Sn 5.79

III 10B 19.9 V 14N 99.634
11B 80.1 15N 0.366
27Al 100 31P 100
69Ga 60.108 75As 100
71Ga 39.892 121Sb 57.36

113In 4.3 123Sb 42.64
115In 95.7

II 24Mg 78.99 VI 16O 99.762
25Mg 10.00 17O 0.038
26Mg 11.01 32S 95.02
64Zn 48.6 33S 0.75
66Zn 27.9 34S 4.21
67Zn 4.1 36S 0.02
68Zn 18.8 74Se 0.89
70Zn 0.6 76Se 9.36

106Cd 1.25 77Se 7.63
108Cd 0.89 78Se 23.78
110Cd 12.49 80Se 49.61
111Cd 12.80 82Se 8.73
112Cd 24.13 120Te 0.096
113Cd 12.22 122Te 2.603
114Cd 28.73 123Te 0.908
116Cd 7.49 124Te 4.816
196Hg 0.15 125Te 7.139
198Hg 9.97 126Te 18.95
199Hg 16.87 128Te 31.69
200Hg 23.10 130Te 33.80
201Hg 13.18
202Hg 29.86
204Hg 6.87
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Table 1.3 Standard atomic weight for some group IV, III, V, II and VI elements. Numbers in
parentheses give the uncertainty in the last digit of the stated values

Group Symbol Atomic weight Group Symbol Atomic weight

IV C 12.0107(8)
Si 28.0855(3)
Ge 72.61(2)
Sn 118.710(7)

III B 10.811(7) V N 14.00674(7)
Al 26.981538(2) P 30.973761(2)
Ga 69.723(1) As 74.921560(2)
In 114.818(3) Sb 121.760(1)

II Mg 24.3050(6) VI O 15.9994(3)
Zn 65.39(2) S 32.066(6)
Cd 112.411(8) Se 78.96(3)
Hg 200.59(2) Te 127.60(3)

The diamond cubic lattice is a consequence of the carbon valency of four. We can
expect to find the same structure in compounds where one atom has more than four
electrons and the other the same number less than four, so that a total of four valency
electrons to each atom is maintained. If the compound is of the form of AB, this structure
can be produced in two ways. The first is the cubic, zinc-blende structure as shown in
Figure 1.2(b), with four A (Ga) and four B (As) atoms per conventional unit cell.

The second method by which a structure is formed where each atom of one kind is
surrounded by four of another is shown in Figure 1.2(c). This is the hexagonal CdS (w-
CdS or β-CdS) or wurtzite lattice, which differs only from the zinc-blende structure in
the stacking sequence of the sulfur layers. Ideally, the wurtzite structure has the axial
ratio c/a = (8/3)1/2 = 1.633 (hexagonal close-packed structure). Most III–V semicon-
ductors crystallize in the zinc-blende structure, however, many II–VI and some III–V
semiconductors crystallize in the wurtzite structure.

In III–V compounds, group III atoms have three electrons with an s2p1-configuration
outside a core of closed shells and group V atoms five electrons in a s2p3-configuration.
The III and V atoms have, therefore, an average of four valence electrons per atom
available for bonding. We might then expect that the covalent bonds are formed between
tetrahedral s1p3-hybrid orbitals, e.g., for GaAs:

Ga(4s24p1) + As(4s24p3) → Ga(4s14p3)− + As(4s14p3)+ (1.6)

For such a covalent bonding each V atom donates an electron to a III atom, so that V+
and III− ions are formed, each with four valence electrons.

An ionic bond is due to Coulomb attraction between the excess positive and negative
charges on ions formed by transfer of electrons from the metallic to the nonmetallic atom
in the scheme:

Ga(4s24p1) + As(4s24p3) → Ga(4s04p0)+3 + As(4s24p6)−3 (1.7)
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Table 1.4 Molecular weight M , lattice constant a and crystal density
g for a number of cubic group-IV, III–V and II–VI semiconductors at
300 K

System Material M (amu) a (Å) g (g/cm3)

IV Diamond 12.0107 3.5670 3.5156
Si 28.0855 5.4310 2.3291
Ge 72.61 5.6579 5.3256
α-Sn 118.710 6.4892 5.7710
3C-SiC 40.0962 4.3596 3.2142

III–V c-BN 24.818 3.6155 3.4880
BP 41.785 4.5383 2.9693
BAs 85.733 4.777 5.224
c-AlN 40.98828 4.38 3.24
AlP 57.955299 5.4635 2.3604
AlAs 101.903098 5.66139 3.73016
AlSb 148.742 6.1355 4.2775
β-GaN 83.730 4.52 6.02
GaP 100.696 5.4508 4.1299
GaAs 144.645 5.65330 5.31749
GaSb 191.483 6.09593 5.61461
InP 145.792 5.8690 4.7902
InAs 189.740 6.0583 5.6678
InSb 236.578 6.47937 5.77677

II–VI MgO 40.3044 4.203 3.606
β-MgS 56.371 5.62 2.11
β-MgSe 103.27 5.91 3.32
β-MgTe 151.91 6.42 3.81
β-ZnS 97.46 5.4102 4.0879
ZnSe 144.35 5.6692 5.2621
ZnTe 192.99 6.009 5.908
c-CdS 144.477 5.825 4.855
c-CdSe 191.37 6.077 5.664
CdTe 240.01 6.481 5.856
β-HgS 232.66 5.8514 7.7135
HgSe 279.55 6.084 8.245
HgTe 328.19 6.4603 8.0849

The bonds in most III–V or II–VI semiconductors are not adequately described by any
of these extreme types, but have characteristics intermediate to those usually associated
with the terms covalent (Equation (1.6)) and ionic (Equation (1.7)).

(b) Hexagonal and rhombohedral structures

It is well known that silicon carbide (SiC) is a semiconductor crystallizing in a large
number of polytypes [1.5]. The various types of SiC differ one from another only by the
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Table 1.5 Molecular weight M , lattice constants a and c and crystal density g

for a number of hexagonal and rhombohedral group-IV, III–V and II–VI semicon-
ductors at 300 K

System Material M (amu) Lattice constant (Å) g (g/cm3)

a c

IV 6H-SiC 40.0962 3.0806 15.1173 3.2153
15R-SiC 40.0962 3.079 37.78

(α = 13◦54.5′)

III–V h-BN 24.818 2.5040 6.6612 2.2787
w-AlN 40.98828 3.112 4.982 3.258
α-GaN 83.730 3.1896 5.1855 6.0865
InN 128.825 3.548 5.760 6.813

II–VI ZnO 81.39 3.2495 5.2069 5.6768
α-ZnS 97.46 3.8226 6.2605 4.0855
w-CdS 144.477 4.1367 6.7161 4.8208
w-CdSe 191.37 4.2999 7.0109 5.6615

(a)

(b) (d)

(c)

a

Si

a

Cd

S

c

As

Ga

Mg

O

Figure 1.2 Some important crystal lattice structures. (a) diamond lattice (Si); (b) zinc-blende
lattice (GaAs); (c) wurtzite lattice (w-CdS); and (d) rocksalt lattice (MgO)
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order in which successive planes of Si (or C) atoms are stacked along the c axis; one
polytype is cubic (3C-SiC) while the remainder, including two of the more frequently
occurring forms, 6H and 15R, possess uniaxial symmetry. Note that in the polytype
name, the integer refers to the number of Si (C) layers in the unit cell, and C, H and
R indicate cubic, hexagonal and rhombohedral (trigonal) symmetry, respectively. Of all
the polytypes, 6H is by far the most commonly occurring modification in commercial
SiC. The next most common types are 15R and 4H, respectively. Silicon carbide can also
crystallize in the wurtzite structure (2H-SiC).

Figure 1.3 shows the stacking sequences in 3C-SiC, 2H-SiC and 6H-SiC [1.6]. In
the zinc-blende (3C) structure, the sequence involves three layers which are repeated
periodically (ABC ABC . . .). All the Si–C bond lengths are the same, and the angles are
exactly tetrahedral (109.5◦). In the wurtzite (2H) structure, only two layers are repeated
(AB AB . . .). The Si–C bond length along the stacking direction is not equal to that which
is approximately perpendicular to it, and the angles are not exactly tetrahedral. In the 6H
polytype, the basic sequence involves six layers (ABCACB ABCACB . . .). Similarly,
in the 15R polytype the basic sequence involves fifteen layers (ABCACBCABACABCB
. . .). The II–VI semiconductor, α-HgS, can also crystallize in the rhombohedral (red
cinnabar) structure.

(c) Rocksalt structure

The II–VI compound MgO crystallizes in the rocksalt (NaCl) structure. The rocksalt struc-
ture shown in Figure 1.2(d) is typical of ionic bonding. The Bravais lattice is face-centered

A

B

2H

A A A

B

C

A

C

B

6H

B

C

B

4H

B

C

3C

Figure 1.3 Three-dimensional perspective view of the 2H-SiC, 3C-SiC, 4H-SiC and 6H-SiC poly-
types. The characteristic chain structures are represented by the heavy solid lines in the (1120) plane.
The stacking sequences AB (2H), ABC (3C), ABCB (4H) and ABCACB (6H) are also indicated.
[From P. Käckell, B. Wenzien, and F. Bechstedt, Phys. Rev. B 50, 17037 (1994), reproduced by
permission from the American Physical Society]
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cubic with the unit cell of atomic pattern consisting of one Mg and one O ion separated
by one-half the body diagonal of the cube. Since each ion has six nearest neighbors of
the opposite kind, the coordination number is six.

We summarize in Table 1.6 the crystal classes for easily or normally grown: (a) group-
IV, (b) III–V and (c) II–VI binaries. Table 1.7 also lists the crystal structure for a number
of group-IV, III–V and II–VI semiconductors.

1.3.2 Space group

A self-consistent arrangement of symmetry elements in a crystal lattice is known as a
space group. The operation of any element of the group must have the pattern of symmetry
elements unaltered. By inspection of the 230 space groups, or from first principles, there
are just 32 different point groups. Crystals are, therefore, divided into 32 crystal classes
according to the point-group symmetry they possess. In Table 1.7, we list the space (point)
group for a number of group-IV, III–V and II–VI semiconductors.

Table 1.6 Summary of easily or normally grown crystal
structure for: (a) group-IV; (b) III–V and; (c) II–VI semi-
conductors. d = diamond; zb = zinc-blende; h = hexagonal
(wurtzite); rh = rhombohedral (trigonal); rs = rocksalt;
or = orthorhombic

(a)

IV/IV Si C

Si d zb, h, rh
C zb, h, rh d

(b)

III/V N P As Sb

B zb, h zb zb
Al h zb zb zb
Ga h zb zb zb
In h zb zb zb

(c)

II/VI O S Se Te

Mg rs rs zb h
Zn h zb, h zb zb
Cd rs h h zb
Hg rh, or rh, zb zb zb
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Table 1.7 Crystal structure, space group (point group) and lattice constants a and c (T = 300 K)
for a number of group-IV, III–V and II–VI semiconductors. d = diamond; zb = zinc-blende; h =
hexagonal; rh = rhombohedral; w = wurtzite; rs = rocksalt

System Material Crystal structure Space group a (Å) c (Å)

IV Diamond d Fd3m (Oh) 3.5670
Si d Fd3m (Oh) 5.4310
Ge d Fd3m (Oh) 5.6579
α-Sn d Fd3m (Oh) 6.4892
3C-SiC zb F43m(Td ) 4.3596
6H-SiC h P 63mc (C6v) 3.0806 15.1173
15R-SiC rh R3m (C3v) 3.079 37.78

(α = 13◦54.5′)

III–V c-BN zb F43m(Td ) 3.6155
h-BN h P 63/mmc (D6h) 2.5040 6.6612
BP zb F43m(Td ) 4.5383
BAs zb F43m(Td ) 4.777
w-AlN w P 63mc (C6v) 3.112 4.982
c-AlN zb F43m(Td ) 4.38
AlP zb F43m(Td ) 5.4635
AlAs zb F43m(Td ) 5.66139
AlSb zb F43m(Td ) 6.1355
α-GaN w P 63mc (C6v) 3.1896 5.1855
β-GaN zb F43m(Td ) 4.52
GaP zb F43m(Td ) 5.4508
GaAs zb F43m(Td ) 5.65330
GaSb zb F43m(Td ) 6.09593
InN w P 63mc (C6v) 3.548 5.760
InP zb F43m(Td ) 5.8690
InAs zb F43m(Td ) 6.0583
InSb zb F43m(Td ) 6.47937

II–VI MgO rs Fm3m(Oh) 4.203
β-MgS zb F43m(Td ) 5.62
β-MgSe zb F43m(Td ) 5.91
β-MgTe zb F43m(Td ) 6.42
ZnO w P 63mc (C6v) 3.2495 5.2069
α-ZnS w P 63mc (C6v) 3.8226 6.2605
β-ZnS zb F43m(Td ) 5.4102
ZnSe zb F43m(Td ) 5.6692
ZnTe zb F43m(Td ) 6.009
c-CdS zb F43m(Td ) 5.825
w-CdS w P 63mc (C6v) 4.1367 6.7161
c-CdSe zb F43m(Td ) 6.077
w-CdSe w P 63mc (C6v) 4.2999 7.0109
CdTe zb F43m(Td ) 6.481
β-HgS zb F43m(Td ) 5.8514
HgSe zb F43m(Td ) 6.084
HgTe zb F43m(Td ) 6.4603
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1.4 LATTICE CONSTANT AND RELATED PARAMETERS

1.4.1 Lattice constant

(a) Room-temperature value

The lattice in the zinc-blende and rocksalt crystals can be defined by the one length
parameter a. In hexagonal crystals, the lattice can be defined by the two length parameters,
a and c. In rhombohedral crystals, the lattice can also be defined by the two length
parameters, a and c, plus one angle parameter α. We have listed in Tables 1.4, 1.5 and 1.7
the lattice constants for a number of group-IV, III–V and II–VI semiconductors at T =
300 K. Figure 1.4 also plots the lattice constant a versus molecular weight M = MA + MB

for ANB8-N semiconductors. From this plot, we can obtain the relation between a and M

(a in Å; M in amu)
a = 0.579 + 1.04 ln M (1.8)

(b) Near-neighbor distance

There is a significant structural difference between the bond distance in the zinc-blende
and wurtzite structures of binary compounds ANB8-N . The zinc-blende structure has only
one type of first-neighbor distance

d(A − B) =
√

3

4
a (four bonds) (1.9)

50 100 500
2

3

4

5

6

7

8

M (amu)

a
(Å

)

α-GaN

InN
GaPAlP

GaAs

AlAs

InP

InAs
GaSb

AlSb

InSb

ZnO

β-HgS
α-ZnS

ZnSe

ZnTe

w-CdS

w-CdSe

HgSe
HgTe

CdTe

Si

Group-IV
III-V
II-VI

Ge

C

α-Sn

3C-SiC

c-BN

h-BN
BP BAs

w-AlN
MgO

β-MgS

β-MgSe

β-MgTe

Figure 1.4 Lattice constant a versus molecular weight M for a number of group-IV, III–V
and II–VI semiconductors. For hexagonal semiconductors, an effective lattice constant aeff =
(
√

3a2c)1/3 is plotted instead of a. The solid line represents the least-squares fit with a = 0.579 +
1.04 ln M (a in Å; M in amu)
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Yet, the wurtzite structure has two types of first-neighbor anion–cation bond distances

d(A–B1) = ua (one bond) (1.10a)

d(A–B2) =
√

1

3
+

(
1

2
− u

)2 ( c

a

)2
a (three bonds) (1.10b)

where u denotes the cell internal structural parameter. In the case of an ideal tetragonal
ratio c/a = (8/3)1/2 = 1.633 and an ideal cell internal parameter u = 3/8, it follows from
Equation (1.10) that d(A–B1) = d(A–B2).

In the case of the rocksalt structure, there is only one type of first-neighbor anion–cation
bond distance

d(A–B) = a

2
(six bonds) (1.11)

(c) External perturbation effect

The lattice constant is dependent to a great extent on both temperature and pressure.
The temperature dependence of the lattice constant is explained by the thermal expansion
coefficient. The lattice constant is related to the pressure by Murnaghan equation of state.
It is also noted that the lattice constant is influenced by the crystalline perfection (i.e.,
stoichiometry, impurities, dislocations and surface damage). A well-known example is
the dilation, or expansion, of the GaAs lattice induced by Te doping. Increase in the
GaAs lattice constant of ∼0.01% has been reported at Te concentrations of ∼1019 cm−3

(see [1.7]).

1.4.2 Molecular and crystal densities

Molecular density dM is given by

dM = 8

a3
(1.12)

for the diamond-type semiconductors,

dM = 4

a3
(1.13)

for the zinc-blende-type and rocksalt-type semiconductors and

dM = 4

a3
eff

(1.14)

for the hexagonal (wurtzite) semiconductors, where aeff is an effective cubic lattice con-
stant defined by

aeff = (
√

3a2c)1/3 (1.15)
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The X-ray crystal density g can be simply written, in terms of dM, as

g = MdM

NA
(1.16)

where M is the molecular weight and NA = 6.022 × 1023 mol−1 is the Avogadro constant.
We have listed in Tables 1.4 and 1.5 the values of g for a number of group-IV, III–V
and II–VI semiconductors with cubic and hexagonal structures, respectively.

1.5 STRUCTURAL PHASE TRANSITIONS

It is known that at high pressure the group-IV elemental semiconductors show metallic
transitions in a sequence from cubic (diamond)→tetragonal (β-Sn)→simple hexagonal→
hexagonal close packed. Similarly, the III–V and II–VI semiconductors exhibit a variety
of the crystal structures at high pressures. In Table 1.6, we have summarized the crystal
classes for easily or normally grown group-IV, III–V and II–VI binary semiconductors.

The electrical resistivity of semiconductors is known to drop discontinuously by sev-
eral orders of magnitude at the transition pressures; therefore the phase transitions have
been studied chiefly by electrical measurements. There have also been some attempts
to determine the crystalline structures of the high-pressure polymorphs of semiconduc-
tors by various techniques, such as X-ray diffraction, optical microscopy and Raman
scattering [1.8].

It is interesting to note the correlations between the ambient properties and high-
pressure behavior. Chelikowsky [1.9] discussed empirical scales for transition pressures
as a function of ionicity and bond length. By fixing his scaling parameters by experiment
and theory, it becomes possible to determine the transition pressures for the zinc-blende
to β-Sn structure and for the zinc-blende to rocksalt transition.

Table 1.8 Transition pressure to the first phase PT for some group-IV, III–V and
II–VI semiconductors

System Material PT (GPa) System Material PT (GPa)

IV Si 12 II–VI ZnO 8.0–10
Ge 12 α-ZnS 10.7–11.4

β-ZnS 14.7–17.4
III–V w-AlN 14–22.9 ZnSe 11.8–14.6

AlP 9.5–17.0 ZnTe 7 –9.5
AlAs 7–14.2 w-CdS 1.75–3
AlSb 5.3–12.5 w-CdSe 2.13–2.9
α-GaN 37–53.6 CdTe 3.53
GaP 21.5 HgSe 0.7–0.75
GaAs 16.6–17.3 HgTe 1.4
GaSb 6.2–7.0
InN 12.1–23.0
InP 10.8
InAs 7
InSb 2.2
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Figure 1.5 Transition pressure to the first phase PT versus lattice constant a for some group-
IV, III–V and II–VI semiconductors. For hexagonal semiconductors, an effective lattice constant
aeff = (

√
3a2c)1/3 is plotted instead of a. The solid line represents the least-squares fit with PT =

76.2–11.5a (a in Å; PT in GPa)

We list in Table 1.8 the transition pressure to the first phase PT observed for some
group-IV, III–V and II–VI semiconductors. Figure 1.5 also plots PT versus lattice con-
stant a for these semiconductors. The solid line represents the least-squares fit with the
relation (a in Å; PT in GPa)

PT = 76.2 − 11.5a (1.17)

We summarize in Table 1.9 the sequence of the structural phase transitions for a number
of group-IV, III–V and II–VI semiconductors observed at high pressures.

1.6 CLEAVAGE

1.6.1 Cleavage plane

The cleavage properties of a crystal are strongly related to the atomic arrangement and
corresponding electron density map. The principles that determine a plane of cleavage
are as follows:

1. The number of ‘bonds’ (nearest neighbors) to be separated per unit area of the plane
is a minimum, as compared with all other crystal planes.

2. The plane is electrically neutral, with alternate arrays of positive and negative structure
elements which permit the two separating surface layers to assume repelling positions
when shifted with respect to each other.
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Table 1.9 Sequence of the structural phase transitions observed for a number of group-
IV, III–V and II–VI semiconductors at high pressures. bcc = body-centered cubic; bct =
body-centered tetragonal; cin = cinnabar; d = diamond; dCsCl = distorted CsCl; dhc = double
hexagonal close-packed; fcc = face-centered cubic; h = hexagonal; hcp = hexagonal close-packed;
or = orthorhombic; rh = rhombohedral; rs = rocksalt (NaCl); sh = simple (primitive) hexagonal;
w = wurtzite; zb = zinc-blende

System Material Crystal structure (normal pressure→high pressure)

IV Diamond d→no phase transition up to experimentally available pressure
Si d→ β-Sn→or (Imma)→sh→or (Cmca)→hcp→fcc
Ge d→ β-Sn→or (Imma)→sh→dhc (d→ β-Sn→or (Imma)→sh→or (Cmca)→hcp)
α-Sn d→(β-Sn)→bcc
3C-SiC zb→rs
6H-SiC h→rs
15R-SiC rh→no phase transition up to 150 GPa

III–V c-BN zb→no phase transition up to 115 GPa
h-BN h→?
BP zb→no phase transition up to 68 GPa
BAs zb→?
w-AlN w→rs
c-AlN zb→?
AlP zb→ β-Sn/h (NiAs)
AlAs zb→h (NiAs)
AlSb zb→ β-Sn/rs/or→unknown
α-GaN w→rs
β-GaN zb→?
GaP zb→ β-Sn
GaAs zb→or (Pmm2)/or (Cmcm)→or (Imm2)→sh
GaSb zb→ β-Sn/or (Imma)→sh→unknown
InN w→rs
InP zb→rs→ β-Sn/or (Cmcm)
InAs zb→rs→ β-Sn/or (Cmcm)
InSb zb→ β-Sn (?)→or (Immm)→or (super-Cmcm)→(?)→bcc (?)

II–VI MgO rs→no phase transition up to 227 GPa
β-MgS zb→?
β-MgSe zb→?
β-MgTe zb→?
ZnO wz→rs
α-ZnS wz→zb→rs
β-ZnS zb→rs→or (Cmcm)
ZnSe zb→rs→sh
ZnTe zb→cin→or (Cmcm)
c-CdS zb→wz (high temperature)
w-CdS wz→rs→or (Pmmn)
c-CdSe zb→wz (high temperature)
w-CdSe wz→rs
CdTe zb→cin→rs→or (Cmcm)
β-HgS zb→cin
HgSe zb→cin→rs→bct
HgTe zb→cin→rs→or (Cmcm)→dCsCl
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Figure 1.6 represents schematic views of the atomic rearrangement in the direction
along the (110), (111) and (100) planes of the zinc-blende lattice (GaAs). This arrange-
ment is the same as for the diamond lattice, except that the two different kinds of atom
occupy alternate positions in the lattice. Table 1.10 summarizes the crystallographic plane
most readily cleaved for the diamond, zinc-blende, wurtzite and rocksalt structures.

In diamond-type crystals, such as diamond and Si, cleavage occurs along (111) surface
planes. This is because the (111) surface atoms are only singly bonded to the oppo-
site surface, but the (100) surface atoms are doubly bonded to the opposite surface (see
Figure 1.6). The (110) surface atoms are also singly bonded to the opposite surface, but
the plane spacing is shorter than that of the (111) planes. It is more difficult to separate
the planes of shorter spacing.

√3d/2

(a)

d

As

Ga

(b)

d/√3

(c)

Figure 1.6 Schematic views of the atomic arrangement in the direction along the (110) (a), (111)
(b) and (100) planes (c) of GaAs. Note that this arrangement is the same as the diamond lattice,
except that the two different kinds of atom (Ga, As) occupy alternate positions in the lattice. The
principal cleavage in the zinc-blende crystals is in a plane parallel to (110) (a), and that in the
diamond-type crystals is in a plane parallel to (111) (b)

Table 1.10 Crystallographic plane most readily
cleaved for various crystal structures

Crystal structure Cleavage plane

Diamond (111)
Zinc-blende (110)
Wurtzite (1120), (1010)
Rocksalt (100)
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In the case of zinc-blende-type lattice, we must take into account the effects of sur-
face polarity and electron density distribution. The zinc-blende-type lattice has two types
of (111) surface polarities, (111)A and (111)B, and hence there will be an electrostatic
attraction between these different planes. Such an attractive force will make it difficult to
separate along the (111) planes. However, the (110) surfaces are composed of equal num-
bers of A and B atoms, so there will be no overall electrostatic force between the planes.
Wolff and Broder [1.10] have investigated the bonding character and microcleavage in
materials with tetrahedral coordination. They found that the (110) plane is the principal
cleavage plane in III–V compounds. They also found microcleavages in GaAs in (hhk )
planes (h � k). The microcleavage is revealed by the observation of light figure patterns
from cleavage pits produced by grinding or abrading the surface.

The surface energy Eγ is defined by energy per unit surface area necessary to sep-
arate a crystal along a given plane. Berding et al. [1.11] have calculated the cleavage
energies Eγ for Si, GaAs, CdTe and HgTe. Their results give an ordering of Eγ(Si)>
Eγ(GaAs)> Eγ(CdTe)> Eγ(HgTe) for the experimentally observed cleavage planes; i.e.,
for the cleavage on (111) in Si and (110) in GaAs, CdTe and HgTe. This ordering is what
one would expect based on simple bond-length and bond-density arguments. A simple
estimate of the cleavage energy can be made by multiplying the number of bonds broken
per unit area on the cleavage surfaces by the energy per bond. Thus, although for a given
bond-length, the bond-density on the (110) surface (on which GaAs cleaves) is higher
than on the (111) surface (on which Si cleaves), the shorter bond-length and the larger
bond-strength of Si compared with GaAs combine to produce a larger cleavage energy in
Si. In turn, both the shorter bond-length and the larger bond-strength of GaAs compared
with HgTe and CdTe result in a larger cleavage energy in GaAs. Finally, the weaker
HgTe bond, compared with CdTe, and their nearly equal bond lengths predict a smaller
cleavage energy in HgTe.

It has been shown experimentally [1.12] that the (112) cleavage planes can be obtained,
as the secondary cleavage plane, in the twinned regions between the (110) cleavage sur-
faces of the matrix grains in CdTe. Like the (111) surfaces, the (112) surfaces in the
zinc-blende crystals have surface polarity. The electrostatic attraction in highly ionic II–VI
compounds should contribute considerably to the cleavage energy for the (112) surfaces.
This consideration predicts that the (112) surfaces may be more easily cleaved in III–V
compounds than in II–VI compounds.

On the basis of the above-mentioned principle, it is possible to verify the (1120) (and/or
(1010)) and (100) planes as the most readily cleaved planes for the wurtzite (hexagonal)
and rocksalt structures, respectively.

1.6.2 Surface energy

(a) Theoretical value

In an attempt to explain the ‘easy’ cleavage of solids, various methods have been employed
to calculate the energies required to cleavage a crystal parallel to a particular plane. The
cleavage energy was assumed equal to twice the surface energy of that plane. In this
approximate method, the surface energy is calculated as the number of bonds cut per
unit area multiplied by the thermodynamic energy of each bond, irrespective of whether
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Table 1.11 Theoretical surface (cleavage) energy for some planes of cubic
group-IV, III–V and II–VI semiconductors (J/m2)

System Material (100) (110) (111) (1 1 1)

IV Diamond 9.2 6.5 5.3
Si 1.99 1.41 1.15
Ge 0.88–1.00
α-Sn 0.662
3C-SiC 1.908–4.65 2.330 1.767 0.7184

III–V c-BN 4.53 4.02 3.07
BP 2.38 1.64 1.93
BAs 2.06 1.39 1.88
c-AlN 2.12 2.30 1.12
AlP 1.37 1.19 0.956
AlAs 1.21 1.01 0.935
AlSb 1.050 0.814 0.945
GaP 1.38 1.24 0.95
GaAs 1.06 1.00 1.05
GaSb 0.995 0.803 0.900
InP 1.08 1.09 0.80
InAs 1.015 0.980 0.728
InSb 0.814 0.738 0.690

II–VI β-ZnS 1.225 1.15 0.85
ZnSe 0.98 0.885 0.75
ZnTe 0.96 0.808 0.84
c-CdS 1.06 1.07 0.69
c-CdSe 0.94 0.91 0.88
CdTe 0.85 0.18 0.58
β-HgS 1.13 1.00 0.73
HgTe 0.05 0.12 0.09

Table 1.12 Theoretical surface (cleavage) energy
for some planes of hexagonal group-IV and II–VI
semiconductors (J/m2)

System Material (0001) (0001)

IV 6H-SiC 1.80a 0.75a

II–VI ZnO 1.95 0.96
α-ZnS 1.30 0.96

a4H-SiC value
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Table 1.13 Cleavage plane and experimental surface energy for some group-IV, III–V and II–VI
semiconductors. The experimental data are taken from various sources

System Material Crystal structure Cleavage plane Surface energy (J/m2)

IV Si Diamond (111) 1.14–1.240
Ge Diamond (111) 1.060

III–V GaP Zinc-blende (110) 1.96
GaAs Zinc-blende (110) 0.86

II–VI MgO Rocksalt (100) 1.2

the ‘cut’ is at an angle to the bonding direction. We summarize in Tables 1.11 and 1.12
the theoretical surface energies for some cubic and hexagonal semiconductors, respec-
tively [1.11, 1.13–1.17].

Berding et al. [1.11] have presented a method for the calculation of the surface energy
Eγ for Si based on a tight-binding Green’s function approach, and obtained that Eγ for
the (111) surface is considerably smaller than those for the (100) and (110) surfaces. The
same conclusion has also been obtained by Hesketh et al. [1.14]

(b) Experimental value

There is a dearth of experimental measurements of surface energy. This is because many
difficulties are associated with measuring it; especially when indirect methods are used.
Since the surface energy can be defined as the work that is required to separate a crystal
into two parts along a plane, cleavage is a particularly direct way of measuring it [1.18].
We list in Table 1.13 the experimentally determined surface energies for some group-IV,
III–V and II–VI semiconductors.
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2.1 MELTING POINT AND RELATED PARAMETERS

2.1.1 Phase diagram

Phase diagrams in semiconducting compound growth serve primarily as a guide to the
solution compositions which will yield the desired solid layer, although they are also nec-
essary for the interpretation of growth kinetic data. Many important differences between
the properties of compounds prepared by different methods, such as vapor phase epitaxy,
melt-grown or liquid phase epitaxy, are due to stoichiometric differences.

Figure 2.1 shows the theoretical and experimental pressure (p)–temperature (T ) phase
diagrams for Si, Ge and GaSb [2.1]. It is seen that these semiconductors show a β-
Sn phase at high pressures and a metallic liquid phase at high temperatures. It is well
established that the slope of the liquid–β-Sn solid-phase boundary is positive for the
ANB8-N semiconductors, so that the liquid is less dense than the high-pressure solid at
the same pressure. It is also well established that the slope of the liquid–diamond (or
zinc-blende) phase boundary is negative for these semiconductors, so that the liquid is
denser than the semiconductor at the same pressure.

2.1.2 Melting point

The melting point is one of the most essential thermophysical parameters. We list in
Table 2.1 the melting point Tm measured for some group-IV, III–V and II–VI semicon-
ductors at normal pressure. The accurate measurement of temperature is not easy above
1000◦C. This may lead to a large error in measuring Tm. Figure 2.2 also plots the melting

Properties of Group-IV, III–V and II–VI Semiconductors Sadao Adachi
 2005 John Wiley & Sons, Ltd ISBN: 0-470-09032-4
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Figure 2.1 Theoretical and experimental pressure (p)–temperature (T ) phase diagram for Si, Ge
and GaSb. [From J. A. Van Vechten, Phys. Rev. B 7, 1479 (1973), reproduced by permission from
the American Physical Society]

point Tm versus lattice constant a for some group-IV, III–V and II–VI semiconductors.
For hexagonal semiconductors, an effective lattice constant aeff = (

√
3a2c)1/3 is plotted

instead of a. The solid line represents the least-squares fit with the relation (a in Å; Tm

in K)

Tm = 7159 − 957a (2.1)

We can see from Figure 2.2 that the high melting point reflects low atomic mass and thus
short interatomic bond-length.

A Lindemann relation [2.2]

d ln Tm

d ln g
= 2

(
γ − 1

3

)
(2.2)

can be used to obtain the pressure dependence of the melting point Tm, where g is the
density and γ is the thermal Grüneisen parameter. The effect of pressure on the melting
point Tm can also be easily calculated from the Clausius–Clapeyron equation, which
shows that [2.3]

dTm

dp
= Tm

Vl − Vs

H
(2.3)

where Vl,s = A/dl,s (A = atomic weight; dl,s = density of liquid or solid at Tm; H = latent
heat of fusion). We summarize in Table 2.2 the pressure coefficient of the melting point
dTm/dp determined experimentally for some group-IV, III–V and II–VI semiconductors.
It is found that only MgO gives positive value in dTm/dp [2.2].
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Table 2.1 Melting point Tm, specific heat Cp and Debye tem-
perature θD for some group-IV, III–V and II–VI semiconductors.
Cp and θD are at 300 K

System Material Tm (K) Cp (J/g K) θD (K)

IV Diamond 4100a 0.5148 1870
Si 1687 0.713 643
Ge 1210.4 0.3295b 348b

α-Sn 0.278c 238c

3C-SiC 2810 0.677d 1122
6H-SiC 2810 0.58 1126
15R-SiC 2810

III–V c-BN >3246 0.643 1613
h-BN 0.805 323
BP >3300 0.75 1025e

BAs 2300 0.408 800
w-AlN 3487 0.728 988
AlP 2823 0.727 687
AlAs 1740 0.424 450
AlSb 1338 0.326b 370b

α-GaN 2791 0.42 821
GaP 1730 0.313 493f

GaAs 1513 0.327 370
GaSb 991 0.344b 240b

InN 2146 2.274 674
InP 1335 0.322 420b

InAs 1210 0.352 280b

InSb 797 0.350b 161b

II–VI MgO 3250 0.928 745
β-MgS 2783g

β-MgSe ∼1560
β-MgTe >1300
ZnO 1975 0.497 416
α-ZnS 2196 351
β-ZnS 2196 0.486 440
ZnSe 1793 0.360 340
ZnTe 1568 0.258 260
c-CdS 1748
w-CdS 1748 0.3280 310
c-CdSe 1531
w-CdSe 1531 0.281 135
CdTe 1365 0.211 44h

β-HgS 1723
HgSe 1072 0.355 242
HgTe 943 0.162

a At p = 12.5 GPa
bAt T = 273 K
cAt T = 100 K
d Cv value
eAt T = 320 K
f t T = 150 K
g Theoretical
h At T = 290 K
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Figure 2.2 Melting point Tm versus lattice constant a for some group-IV, III–V and II–VI semi-
conductors. For hexagonal semiconductors, an effective lattice constant aeff = (

√
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instead of a. The solid line represents the least-squares fit with Tm = 7159 − 957a (a in Å; Tm
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Table 2.2 Pressure coefficient dTm/dp determined experimentally for some group-IV, III–V and
II–VI semiconductors

System Material dTm/dp (◦C/kbar) System Material dTm/dp (◦C/kbar)

IV Si −5.8 II–VI MgO +3.6
Ge −3.8

III–V AlSb −6.9
GaAs −3.4
GaSb −5.8
InP −3.4
InAs −4.3
InSb −10

2.2 SPECIFIC HEAT

Many practical uses of semiconductors demand knowledge of their thermal properties
over a wide range of temperatures. A major step forward in our knowledge concerns
the thermal energy content of a solid. This leads us to one of the most essential thermal
properties, the specific heat or heat capacity of a solid [2.4]. Note that the specific heat
or heat capacity is a scalar quantity (i.e., zero-rank tensor).
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The specific heat at constant pressure, Cp is given by [2.4]

Cp =
(

∆Q

∆T

)
p

(2.4)

where ∆Q is the heat input and ∆T is the corresponding change in temperature. In order
to obtain the specific heat at constant volume Cv, which is the quantity usually resulting
from theoretical calculations, one can use the following equation:

Cp − Cv ∼ 9α2
thV T

Co
(2.5)

where αth is the linear thermal expansion coefficient, V is the volume of the crystal and
Co is the isothermal compressibility.

There have been many experimental data on the specific heat of crystalline semicon-
ductors over a wide range of temperatures. We have listed in Table 2.1 the specific heat
Cp measured at T = 300 K for a number of group-IV, III–V and II–VI semiconductors.
Figure 2.3 also shows the experimental specific heat Cp as a function of temperature T

for synthetic diamond [2.5, 2.6], GaAs [2.7] and CdTe [2.8–2.10]. It is easily understood
from Figure 2.3 that Cp is strongly dependent on temperature T . At very low T , Cp

(Cv) is proportional to T 3 which is known as Debye’s T 3 law (see Section 2.3). In the
limit T → ∞, Cp (Cv) approaches 3R (where R is the gas constant); this is Dulong and
Petit’s law.
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Figure 2.3 Specific heat Cp (at constant pressure) versus temperature T for synthetic diamond,
GaAs and CdTe. The experimental data are taken for synthetic diamond from Atake et al. [2.5] and
Victor [2.6], for GaAs from Blakemore [2.7] and for CdTe from Birch [2.8], Malkova et al. [2.9]
and Gambino et al. [2.10]. The solid line shows the validity of Debye’s T 3 law (Cp ∝ T 3)
for diamond
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2.3 DEBYE TEMPERATURE

The Debye temperature θD is a useful parameter in solid-state problems because of its
inherent relationship to lattice vibration. The temperature θD can be used in characterizing
the excitation of phonons and to describe various lattice thermal phenomena [2.4]. The θD

values of many materials are known very precisely from low-temperature measurements
of the specific heat. Some materials have, however, not been investigated as yet in detail,
especially those where it has not been possible to prepare large pure crystals.

The Debye model for lattice vibrational energy results in the relation [2.4]

Cp ∼ Cv = 3RF(θD/T ) (2.6)

where F (θD/T ) is the Debye function defined by

F(θD/T ) = (T /θD)3
∫ θD/T

0

3x4ex

(ex − 1)2
dx (2.7)

In the low-temperature limit (T � θD, θD/T → ∞), F (θD/T ) is approximated as
(4/5)π4(T /θD)3; then Cp ∼ (12/5)π4R(T /θD)3 (i.e., Debye’s T 3 law; see Figure 2.3). In
the high-temperature limit (T � θD, θD/T � 1), on the other hand, F (θD/T ) approaches
unity; then Cp ∼ 3R (Dulong and Petit’s law).

We have listed in Table 2.1 the Debye temperature θD at T = 300 K for a number of
group-IV, III–V and II–VI semiconductors. Figure 2.4 also plots the Debye temperature
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Figure 2.4 Debye temperature θD (T = 300 K) versus lattice constant a for some group-IV,
III–V and II–VI semiconductors. For hexagonal semiconductors, an effective lattice constant
aeff = (

√
3a2c)1/3 is plotted instead of a. The solid line represents the least-squares fit with ln

θD = 10.53 − 0.834a (a in Å; θD in K)
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θD versus lattice constant a for some group-IV, III–V and II–VI semiconductors. The
solid line in Figure 2.4 represents the least-squares fit with the relation (a in Å; θD in K)

ln θD = 10.53 − 0.834a (2.8)

It is understood from Figure 2.4 that the high Debye temperature reflects low atomic mass
and thus short interatomic bond-length in ANB8-N semiconductors.

We plot in Figure 2.5 the Debye temperature θD as a function of temperature for
Ge [2.11], InP [2.11] and CdTe [2.12, 2.13]. The θD value is found to be strongly depen-
dent on temperature T .

Marcus and Kennedy [2.14] investigated the relation between the elastic constant and
Debye temperature θD at T = 0 K in the Debye approximation. Steigmeier [2.15] has
shown, using the Marcus–Kennedy formula, that it would be possible to estimate unknown
Debye temperatures from simple material parameters such as the atomic mass and lattice
constant. This consideration is based on the observation of Keyes [2.16] that the elastic
constants of group-IV, III–V and II–VI semiconductors depend only on functions of their
corresponding lattice constants. The formula derived by Steigmeier is given by

θD(0) = 4.19 × 10−8

√
a3M

√
C11

C0
f (r1, r2) (2.9)

where a is the lattice constant, M is the mean mass, r1 = (C11 − C12)/C11, r2 = C44/C11,
C0 is the reduced elastic constant of Keyes and f (r1, r2) is an angular average over
the reciprocal sound velocities in k space. Based on this formula and from numerical
parameters of a and Cij , we can estimate the Debye temperature θD at T = 0 K for
AlAs to be 413 K [2.17]. Table 2.3 lists the Debye temperature in the low-temperature
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Figure 2.5 Debye temperature θD versus temperature T for Ge, InP and CdTe. The experi-
mental data are taken for Ge and InP from Piesbergen [2.11] and for CdTe from Bagot et al.
(T � 50 K) [2.12] and Demidenko (T > 50 K) [2.13]
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Table 2.3 Debye temperature in the low-temperature limit θD(0) for some group-
IV, III–V and II–VI semiconductors

System Material θD(0) (K) System Material θD(0) (K)

IV Diamond 2220 II–VI MgO 946
Si 652 β-ZnS 340
Ge 374 ZnSe 275
α-Sn 233 ZnTe 228
3C-SiC 1080 w-CdS 265

CdTe 158
III–V c-BN 1987 β-HgS 178

BP 985 HgSe 157
AlP 588 HgTe 145
AlAs 417
AlSb 292
GaP 457
GaAs 344
GaSb 266
InP 321
InAs 255
InSb 205

limit θD(0) for some group-IV, III–V and II–VI semiconductors reported by Siethoff and
Ahlborn [2.18].

2.4 THERMAL EXPANSION COEFFICIENT

If the temperature of a crystal is changed, the resulting deformation may be specified
by the strain tensor [e]. The thermal expansion coefficient is a second-rank symmetric
tensor relating the temperature T (scalar quantity) and the second-rank strain tensor [e]
by [2.19]

[e] = [α]T (2.10)

We have then, instead of Equation (2.10)

eij = αijT (2.11)

The thermal expansion phenomena of a crystal can thus be characterized by the magni-
tudes and directions of the three principal expansion coefficients. These magnitudes and
directions must always conform to any restrictions imposed by crystal symmetry. The
thermal deformation ellipsoid is a sphere in the cubic system and a spheroid of revolu-
tion in the hexagonal and rhombohedral systems. Table 2.4 summarizes the non-vanishing
tensor components for these crystal systems.

The linear expansion coefficient αth is known to be proportional to the specific heat
Cv (Grüneisen’s rule) [2.20]

αth = 1

a

(
∂a

∂T

)
p

= γCvCo

3 V
(2.12)
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Table 2.4 Form of the thermal expansion coefficient tensor for semiconductors of
certain symmetry classes

Symmetry class Material Tensor form

Cubic Si, 3C-SiC, GaAs, MgO, ZnSe, etc.




αxx 0 0

0 αxx 0

0 0 αxx




Hexagonal 4H-SiC, h-BN, α-GaN, w-CdS, etc.




αxx 0 0

0 αxx 0

0 0 αzz




Rhombohedral 15R-SiC

Table 2.5 Thermal expansion coefficient αth and thermal conductivity K

for some cubic group-IV, III–V and II–VI semiconductors at 300 K

System Material αth (10−6 K−1) K (W/cm K)

IV Diamond 1.05 22
Si 2.616 1.56
Ge 5.75 0.6
α-Sn 5.25a

3C-SiC 2.77 3.4b

III–V c-BN 1.15 ∼13c

BP 2.94 3.5
AlP 0.9
AlAs 4.28 0.91
AlSb 4.2d 0.57
GaP 4.89 0.77
GaAs 6.03 0.45
GaSb 6.35 0.36
InP 4.56 0.68
InAs ∼5.0 0.3
InSb 5.04 0.165 − 0.185

II–VI MgO 10.5 0.52
β-ZnS 6.71 0.27
ZnSe 7.8 0.19
ZnTe 8.33 0.18
CdTe 4.67c 0.075
β-HgS 4.3 (T = 484 − 621 K)

HgSe 1.41 0.001 − 0.035
HgTe 4.70 0.0238

aAt T = 220 K
bAt T = 290 K
cEstimated
d At T = 280 K
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where γ is the averaged Grüneisen parameter, Co is the isothermal compressibility and V

is the volume of the crystal. The thermal expansion coefficient depends markedly on the
temperature and is positive for most crystals. It is usually determined by measuring the
temperature dependence of the lattice constant. We list in Tables 2.5 and 2.6 the thermal
expansion coefficient αth at T = 300 K for some cubic and hexagonal semiconductors,
respectively.

It is known that ANB8-N semiconductors show an ‘unusual’ negative thermal expan-
sion below about T = 100 K. Figure 2.6 shows, as an example, the negative thermal
expansion observed at low temperatures in ZnTe and HgTe [2.21, 2.22]. Figure 2.7 also
shows the thermal expansion coefficient αth versus temperature for ZnO both in the ⊥ c

and ||c directions [2.23, 2.24]. It is seen from Figures 2.6 and 2.7 that αth decreases from
its positive value on cooling, passing through zero for T � 120 K. Biernacki and Schef-
fler [2.25] performed density-functional-theory calculations of thermodynamic potentials
to study the temperature dependence of αth. Their result showed excellent agreement
with published experimental data of Si. They concluded that the origin of the negative
expansion effect is traced back to the entropy contribution of the Gibbs free energy.

The αth values shown in Figures 2.6 and 2.7 are strongly dependent on temperature.
The temperature variation of αth can be expressed by a semi-empirical quasi-harmonic
model. We present in Table 2.7 the resulting functional form and parameter values for
GaP [2.26].

Table 2.6 Thermal expansion coefficient αth and thermal conduc-
tivity K for some hexagonal group-IV, III–V and II–VI semicon-
ductors at 300 K

System Material αth (10−6 K−1) K (W/cm K)

αa αc

IV 6H-SiC 4.2a 4.7a 4.9b , 3.30c

III–V h-BN −2.75 38.0 3.9b

w-AlN 3.042 2.227 3.19b

α-GaN 5.0 4.5 1.95b

InN 3.830 2.751 0.45d

II–VI ZnO 4.31 2.49 0.54c

α-ZnS 6.54 4.59 0.17c,e

w-CdS 4.30 2.77 0.20c,f

w-CdSe 4.13 2.76 ∼0.09

aAt T = 700 K
bHeat flow parallel to the basal plane
cHeat flow perpendicular to the basal plane
d Ceramics
eNote that the α-ZnS crystal used in the experiment may be faulted;
therefore, the value for α-ZnS is much smaller than that for β-ZnS
(Table 2.5)
f At T = 283 K
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Figure 2.6 Thermal expansion coefficient αth versus temperature T for ZnTe and HgTe. The
experimental data are taken from Collins et al. [2.21] and Novikova and Abrikosov [2.22]
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Figure 2.7 Thermal expansion coefficient αth versus temperature T for ZnO. The experimental
data are taken from Ibach (solid and open circles) [2.23] and Iwanaga et al. (solid and open tri-
angles) [2.24]. [From S. Adachi, Handbook on Physical Properties of Semiconductors Volume 3:
II–VI Compound Semiconductors (Kluwer Academic, Boston, 2004), reproduced by permission
from Kluwer Academic Publishers]

2.5 THERMAL CONDUCTIVITY AND DIFFUSIVITY

2.5.1 Thermal conductivity

Thermal conductivity K , or thermal resistivity K−1, is a quantity given by a second-rank
symmetric tensor. Table 2.8 shows the non-vanishing tensor components for the cubic,
hexagonal and rhombohedral systems. The thermal conductivity results essentially from
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Table 2.7 Temperature variation of the linear ther-
mal expansion coefficient αth for GaP expressed
using a semi-empirical quasi-harmonic model

αth(T ) =
n∑

i=1

Xi

(θi/T )2 exp(θi/T )

[exp(θi/T ) − 1]2

i Xi (10−7 K−1) θi (K)

1 −3.272 30
2 11.12 200
3 51.82 600
4 −1.125 1552.5

interactions between phonons and from the scattering of phonons by crystalline imperfec-
tions. Knowledge of the thermal conductivity of semiconductors forms an important part
in the design of power-dissipating devices, such as diodes, transistors and optoelectronic
devices. Numerical K values are also necessary in calculating the figure of merit for ther-
moelectronic devices (e.g., Peltier devices). A useful description of the theoretical and
practical aspects of the thermal conductivity in semiconductors is given by Steigmeier
and Kudman [2.27], Holland [2.28], Maycock [2.29], Bhandari and Rowe [2.30] and Sri-
vastava [2.31], who review some of the works done on semiconductors, including some
of the III–V binaries and their alloys.

An exact calculation of lattice thermal conductivity for semiconductors is possible in
principle, but the lack of knowledge of various parameters and the difficulty of obtaining
exact solutions of phonon–phonon interactions are formidable barriers to progress. Exper-
imental evaluation of K for undoped (or low-doped) semiconductors has been carried out
by many authors. We have summarized in Tables 2.5 and 2.6 the experimental K values
at T = 300 K for some cubic and hexagonal semiconductors, respectively. Note that the
α-ZnS crystal used in the experiment may be faulted; therefore, the value for α-ZnS listed
in Table 2.6 is much smaller than that for β-ZnS in Table 2.5 (see [2.32]).

Table 2.8 Form of the thermal conductivity tensor for semiconductors of certain
symmetry classes

Symmetry class Material Tensor form

Cubic Si, 3C-SiC, GaAs, MgO, ZnSe, etc.




Kxx 0 0

0 Kxx 0

0 0 Kxx




Hexagonal 4H-SiC, h-BN, α-GaN, w-CdS, etc.




Kxx 0 0

0 Kxx 0

0 0 Kzz




Rhombohedral 15R-SiC
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Figure 2.8 plots the K value at T = 300 K versus scaling parameter Maθ3
D for some

group-IV, III–V and II–VI semiconductors, where M is the average mass of an atom
in the crystal, a is the lattice constant and θD is the Debye temperature. The solid line
represents the least-squares fit with the relation (Maθ3

D in amu cm K3; K in W/cm K)

K = 1.17 × 10−3(Maθ3
D)1.15 (2.13)

Figure 2.9 shows the thermal conductivity K at T = 300 K plotted versus Phillips
ionicity fi for some cubic group-IV, III–V and II–VI semiconductors. The Debye–Waller
factors of atoms in compounds of ANB8-N family in order of Phillips ionicity have been
studied by Yoshiasa et al. [2.33] using extended X-ray absorption fine structure (EXAFS)
and diffraction methods. They observed a divergent curve toward fi = 0.785 in the mean-
square displacement of the tetrahedrally coordinated covalent materials, which indicates
the behavior of lattice instability. The elastic properties and lattice distortion parameters in
the covalently bonded tetrahedral compounds are reported to show a systematic tendency
toward lattice instability as the ionicity increases. The lattice thermal conductivity should
be correlated to Phillips ionicity instability via the lattice instability or anharmonicity in
the mean-square displacement. The solid line in Figure 2.9 represents the least-squares fit
with the relation (K in W/cm K)

ln K = 1.08 − 4.42fi (2.14)
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Figure 2.8 Thermal conductivity K at 300 K versus scaling parameter Maθ3
D for some cubic

group-IV, III–V and II–VI semiconductors. The solid line represents the least-squares fit with
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Figure 2.10 Thermal conductivity K versus temperature T for GaSb. The open and solid circles
are taken from Steigmeier and Kudman [2.27] and Holland [2.34], respectively. The heavy and light
solid lines represent the calculated results of K = AT n with A = 0.0014 W/cm K4.7 and n = 3.7
and A = 700 W/cmK−0.35 and n = −1.35, respectively. [From S. Adachi, Handbook on Physi-
cal Properties of Semiconductors Volume 2: III–V Compound Semiconductors (Kluwer Academic,
Boston, 2004), reproduced by permission from Kluwer Academic Publishers]
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In most semiconductors, we experimentally observe that the thermal conductivity of a
pure single crystal is zero at T = 0 K and rises approximately exponentially to a maximum
near 10 K, falls somewhat faster than T −1, and then varies approximately as T −1 to
the melting temperature. Figure 2.10 shows the experimental K value as a function of
temperature T for GaSb [2.27, 2.34]. The theoretical lines in Figure 2.10 are obtained
from the power law

K(T ) = AT n (2.15)

The heavy and light solid lines are calculated with A = 0.0014 W/cm K4.7 and n = 3.7
and A = 700 W/cm K0.35 and n = −1.35, respectively. It can be seen that Equation (2.15)
successfully explains the experimental K values in the low-temperature (T � 5 K) and
high-temperature ranges (T � 50 K) (see also for GaAs in Figure 2.11, below). We

Table 2.9 Empirical equation for the lattice thermal conductivity K as a func-
tion of temperature T for some group-IV, III–V and II–VI semiconductors (K
in W/cm K; T in K)

K(T ) = AT n

System Material A n T (K)

IV Diamond 43500 −1.30 100 � T � 1000
Si 8300 −1.50 30 � T � 800
Ge 780 −1.26 30 � T � 1000
3C-SiC 5300 −1.30 120 � T � 300
4H-SiC 10500 −1.40 150 � T � 300 (⊥ c)
6H-SiC 22000 −1.48 70 � T � 1700 (⊥ c)

III–V h-BN 280 −0.75 200 � T � 300
BP 32000 −1.60 130 � T � 300
w-AlN 25000 −1.56 100 � T � 1800 (||c)
AlSb 1950 −1.42 300 � T � 945
α-GaN 80000 −1.90 120 � T � 320 (||c)
GaP 1650 −1.35 60 � T � 535
GaAs 750 −1.28 150 � T � 1500
GaSb 700 −1.35 50 � T � 920
InP 2200 −1.42 20 � T � 800
InAs 4500 −1.73 20 � T � 300
InSb 1450 −1.60 20 � T � 300

II–VI MgO 250 −1.08 100 � T � 1000
ZnO 260 −1.08 25 � T � 240 (⊥ c)
ZnO 420 −1.08 30 � T � 190 (||c)
β-ZnS 470 −1.31 50 � T � 300
ZnSe 500 −1.40 40 � T � 575
ZnTe 320 −1.31 40 � T � 300
w-CdS 300 −1.30 70 � T � 280 (⊥ c, ||c)
CdTe 230 −1.43 25 � T � 300
HgTe 550 −1.82 20 � T � 220
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summarize in Table 2.9 the A and n values determined for some group-IV, III–V and
II–VI semiconductors in the high-temperature (T � 20 K) range.

In doped semiconductors, the total thermal conductivity can be generally given by
the sum of the lattice (Kl) and electronic contributions (Ke). In a metal, the elec-
tronic thermal conductivity Ke and electrical conductivity σ are related by the Wiede-
mann–Frantz–Lorenz law

Ke = LσT (2.16)

where L is the Lorentz number. In a semiconductor, a more complicated relationship
exists between Ke and σ [2.28].

It has been found [2.28] that the n-type impurities (Te) in GaAs do not cause as large a
decrease in low-temperature (T <100 K) thermal conductivity as do comparable amounts
of the p-type impurities (Zn, Cd and Mn). At high temperatures (T � 300 K) an increase
in the free-electron concentration caused a decrease in thermal conductivity. This was
attributed to scattering of phonons by electrons.

It is also important to point out that when large numbers of foreign atoms are added
to the host lattice, as in alloying, the thermal conductivity decreases significantly. For
example, a factor of eight reduction in thermal conductivity of InxGa1−xAs for x ∼ 0.5,
as compared to GaAs, has been reported [2.35].
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Figure 2.11 Thermal conductivity K and diffusivity D versus temperature T for GaAs. The
experimental data are taken from Adachi [2.36]. The solid line represents the calculated result
of K = AT n with A = 750 W/cm K−0.28 and n = −1.28. [From S. Adachi, Handbook on Physi-
cal Properties of Semiconductors Volume 2: III–V Compound Semiconductors (Kluwer Academic,
Boston, 2004), reproduced by permission from Kluwer Academic Publishers]
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2.5.2 Thermal diffusivity

The thermal diffusivity D can be evaluated from the thermal conductivity K by means
of the definition

D = K

Cpg
(2.17)

where Cp and g represent the specific heat at constant pressure and crystal density, respec-
tively.

Figure 2.11 plots the temperature dependence of K and D for GaAs [2.36]. The K

value for GaAs shows a maximum at T ∼ 10 K, while the thermal diffusivity D gradually
decreases with increasing temperature. The D value at the melting point of GaAs (T ∼
1500 K) is estimated to be about 0.03 cm2/s.
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3.1 ELASTIC CONSTANT

3.1.1 General remarks

The macroscopic theory of the elastic properties of solids has been described in detail
in tensor notation by Nye [3.1]. The elastic stiffness [C] and compliance tensors [S] are
defined by the generalized Hooke’s law

[X] = [C][e] (3.1a)

[e] = [S][X] (3.1b)

where [X] and [e] are, respectively, the elastic stress and strain tensors having the six
components. The stiffness and compliance tensors [C] and [S] are second-order fourth-
rank ones having symmetric 6 × 6 components. We show in Table 3.1 the tensor forms
of [C] and [S] for the cubic, hexagonal and rhombohedral systems.

It is evident from Equation (3.1) that the stiffness tensor [C] can be connected recip-
rocally with the compliance tensor [S]

[C] = [S]−1 (3.2)

Properties of Group-IV, III–V and II–VI Semiconductors Sadao Adachi
 2005 John Wiley & Sons, Ltd ISBN: 0-470-09032-4
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Table 3.1 Form of the second-order elastic stiffness (compliance) tensor [C] ([S]) for semicon-
ductors of certain symmetry classes

Symmetry class Material Tensor form

Cubic Si, 3C-SiC, GaAs, MgO,
ZnSe, etc.




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




Hexagonal 4H-SiC, h-BN, α-GaN,
w-CdS, etc.




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66




C66 = 1/2(C11 − C12)

Rhombohedral 15R-SiC




C11 C12 C13 C14 0 0
C12 C11 C13 −C14 0 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 0
0 0 0 0 C44 C14

0 0 0 0 C14 C66




C66 = 1/2(C11 − C12)

Explicit equations for the stiffness constant Cij in terms of Sij are listed in Table 3.2 and
vice versa in Table 3.3, where m and n in Cmn (Smn) represent ij and kl, respectively,
according to the rules xx → 1, yy → 2, zz → 3, yz → 4, zx → 5 and xy → 6.

3.1.2 Room-temperature value

Adiabatic elastic constants can be determined most accurately from ultrasound velocity
measurements. The difference between the adiabatic and isothermal elastic compliance
constants can be given by [3.1]

SS
ijkl − ST

ijkl = −αijαkl

(
T

Cp

)
(3.3)

where αmn represents the thermal expansion coefficient and Cp is the heat capacity at
constant pressure. Since crystals usually have positive coefficients of thermal expansion
and since Cp is positive, the right-hand side of Equation (3.3) is usually negative. The
adiabatic compliances are, thus, smaller than the isothermal ones. However, the differences
are small in most semiconductors. Therefore, no special attention has been given in the
present work.
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Table 3.2 Relations between the elastic stiffness Cij and compliance constants Sij

for semiconductors of certain symmetry classes

Cubic (Si, GaAs, MgO, ZnSe, etc.)

C11 = S11 + S12

(S11 − S12)(S11 + 2S12)

C12 = −S12

(S11 − S12)(S11 + 2S12)

C44 = 1

S44

Hexagonal (4H-SiC, h-BN, α-GaN, w-CdS, etc.)

C11 = S11S33 − S2
13

S(S11 − S12)

C12 = S2
13 − S12S33

S(S11 − S12)

C13 = −S13

S

C33 = S11 + S12

S

C44 = 1

S44
, where S = S33(S11 + S12) − 2S2

13

Rhombohedral (15R-SiC)

C11 + C12 = S33

S

C11 − C12 = S44

S′

C13 = −S13

S

C14 = −S14

S′

C33 = S11 + S12

S

C44 = S11 − S12

S′ , where S = S33(S11 + S12) − 2S2
13 and S′ = S44(S11 − S12) − 2S2

14

The elastic constants can be determined from measurements of ultrasound velocities,
Brillouin scattering, neutron scattering, diffuse X-ray reflection, etc. We summarize
in Table 3.4 the experimental Cij and Sij values for a number of cubic group-
IV, III–V and II–VI semiconductors at T = 300 K. The Cij and Sij values for a
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Table 3.3 Relations between the elastic compliance Sij and stiffness constants Cij for
semiconductors of certain symmetry classes

Cubic (Si, GaAs, MgO, ZnSe, etc.)

S11 = C11 + C12

(C11 − C12)(C11 + 2C12)

S12 = −C12

(C11 − C12)(C11 + 2C12)

S44 = 1

C44

Hexagonal (4H-SiC, h-BN, α-GaN, w-CdS, etc.)

S11 = C11C33 − C2
13

C(C11 − C12)

S12 = C2
13 − C12C33

C(C11 − C12)

S13 = −C13

C

S33 = C11 + C12

C

S44 = 1

C44
, where C = C33(C11 + C12) − 2C2

13

Rhombohedral (15R-SiC)

S11 = 1

2

C ′C33 + CC44

C ′C

S12 = 1

2

C ′C33 − CC44

C ′C

S13 = −C13

C

S14 = −C14

C ′

S33 = C11 + C12

C

S44 = C11 − C12

C ′ , where C = C33(C11 + C12) − 2C2
13 and C ′ = C44(C11 − C12) − 2C2

14

number of hexagonal group-IV, III–V and II–VI semiconductors are summarized in
Tables 3.5 and 3.6, respectively.

Based on a bond-orbital model, it is possible to write the quantities C11, C12 and
C12/C11 by [3.2]

C11 = Bu(1 + α2
c ) (3.4)
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Table 3.4 Elastic stiffness Cij and compliance constants Sij for a number of cubic group-IV,
III–V and II–VI semiconductors at 300 K

System Material Cij (1011 dyn/cm2) Sij (10−12 cm2/dyn)

C11 C12 C44 S11 S12 S44

IV Diamond 107.9 12.4 57.8 0.0949 −0.00978 0.1730
Si 16.564 6.394 7.951 0.7691 −0.2142 1.2577
Ge 12.870 4.770 6.670 0.9718 −0.2628 1.499
α-Sn 6.90a 2.93a 3.62a 1.94a −0.578a 2.76a

3C-SiC 39.0 14.2 25.6 0.318 −0.085 0.391

III–V c-BN 82.0 19.0 48.0 0.134 −0.025 0.208
BP 31.5 10 16 0.37 −0.09 1.00
BAs 27.9b 12.0b 11.3b 0.484b −0.145b 0.885b

c-AlN 31.5b 15.0b 18.5b 0.458b −0.148b 0.541b

AlP 15.0b 6.42b 6.11b 0.897b −0.269b 1.64b

AlAs 11.93 5.72 5.72 1.216 −0.394 1.748
AlSb 8.769 4.341 4.076 1.697 −0.5618 2.453
β-GaN 29.1b 14.8b 15.8b 0.523b −0.176b 0.633b

GaP 14.050 6.203 7.033 0.9756 −0.2988 1.422
GaAs 11.88 5.38 5.94 1.173 −0.366 1.684
GaSb 8.838 4.027 4.320 1.583 −0.4955 2.315
InP 10.22 5.73 4.42 1.639 −0.589 2.26
InAs 8.329 4.526 3.959 1.945 −0.6847 2.526
InSb 6.608 3.531 3.027 2.410 −0.8395 3.304

II–VI MgO 29.4 9.3 15.5 0.401 −0.096 0.647
β-MgS 8.88b 5.53b 3.87b 2.16b −0.83b 2.58b

β-MgSe 7.58b 4.86b 3.17b 2.64b −1.03b 3.15b

β-MgTe 5.28b 3.66b 1.93b 4.38b −1.79b 5.18b

β-ZnS 10.2 6.46 4.46 1.95 −0.76 2.25
ZnSe 8.57 5.07 4.05 2.09 −0.78 2.47
ZnTe 7.15 4.08 3.11 2.39 −0.85 3.25
c-CdS 7.70 5.39 2.36 3.07 −1.26 4.24
c-CdSe 6.67 4.63 2.23 3.48 −1.42 4.48
CdTe 5.35 3.69 2.02 4.27 −1.74 4.95
β-HgS 8.13 6.22 2.64 3.65 −1.58 3.79
HgSe 6.08 4.46 2.23 4.34 −1.84 4.49
HgTe 5.32 3.68 2.08 4.33 −1.77 4.80

aObtained from an analysis of the phonon dispersion curves at 90 K
bCalculated or estimated

C12 = Bu

(
2 − α2

c

2

)
(3.5)

C12

C11
= 2 − α2

c

2 + 2α2
c

(3.6)

where Bu is the bulk modulus and αc is the covalency defined, using Phillips ionicity fi,
by fi = 1 − α2

c .
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Table 3.5 Elastic stiffness constant Cij for a number of hexagonal group-IV, III–V and II–VI
semiconductors at 300 K (in 1011 dyn/cm2)

System Material C11 C12 C13 C33 C44 C66
a

IV 6H-SiC 50.1 11.1 5.2 55.3 16.3 19.5

III–V h-BN 52.0 43.1 37.0 42.4 6.5 4.5
w-AlN 41.0 14.0 10.0 39.0 12.0 13.5
α-GaN 37.3 14.1 8.0 38.7 9.4 11.6
InN 19.0 10.4 12.1 18.2 0.99 4.3

II–VI ZnO 20.9 12.0 10.4 21.8 4.41 4.45
α-ZnS 12.2 5.8 4.2 13.8 2.87 3.2
w-CdS 8.65 5.40 4.73 9.44 1.50 1.63
w-CdSe 7.41 4.52 3.9 8.43 1.34 1.45

aC66 = 1/2(C11 − C12)

Table 3.6 Elastic compliance constant Sij for a number of hexagonal group-IV, III–V and II–VI
semiconductors at 300 K (in 10−12 cm2/dyn)

System Material S11 S12 S13 S33 S44 S66
a

IV 6H-SiC 0.211 −0.045 −0.016 0.184 0.614 0.512

III–V h-BN 0.726 −0.398 −0.286 0.735 1.54 2.25
w-AlN 0.285 −0.085 −0.051 0.283 0.833 0.740
α-GaN 0.320 −0.112 −0.043 0.276 1.06 0.864
InN 0.957 −0.206 −0.499 1.21 10.1 2.33

II–VI ZnO 0.782 −0.345 −0.210 0.664 2.24 2.254
α-ZnS 1.10 −0.45 −0.20 0.86 3.48 3.10
w-CdS 2.08 −1.00 −0.54 1.60 6.66 6.16
w-CdSe 2.32 −1.12 −0.55 1.69 7.47 6.88

aS66 = 2(S11 − S12)

We plot in Figure 3.1 the ratio of the elastic stiffness constants C12/C11 versus
(a) Phillips ionicity fi and (b) covalency αc for some cubic group-IV, III–V and II–VI
semiconductors. The solid line in Figure 3.1(a) shows the least-squares fit with the relation

C12

C11
= 0.469fi + 0.313 (3.7)

while that in Figure 3.1(b) represents the ratio given by Equation (3.6). We can see that
the plots for diamond (C), c-BN and MgO deviate markedly from the curves in Figure 3.1.

Keyes [3.3] found that the elastic constants of some group-IV, III–V and II–VI semi-
conductors are functions of their lattice constants only. He defined from a dimensional
analysis an elastic constant C0 = e2/d4, where e is the electronic charge and d is the
distance between nearest-neighbor atoms in the unit cell. The elastic constants, reduced
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Figure 3.1 Ratio of the elastic stiffness constants C12/C11 versus: (a) Phillips ionicity fi; and
(b) covalency αc for some cubic group-IV, III–V and II–VI semiconductors. The solid line
in (a) shows the least-squares fit with C12/C11 = 0.469fi + 0.313 and that in (b) represents the
theoretical curve of Equation (3.6)

by the quantity C0, have nearly the same values among the III–V compounds. This fact
can be used to obtain the elastic constants of other materials [3.4].

In a similar vein, Adachi [3.5] has used a relation between the elastic constants of
various III–V compounds and their lattice constants to predict values for AlAs. We plot
in Figure 3.2 the elastic stiffness constants, C11, C12 and C44, versus lattice constant a

for some cubic group-IV, III–V and II–VI semiconductors. The solid lines in Figure 3.2
represent the least-squares fit from the relation

ln Cij = Aij ln a + Bij (3.8)

The Aij and Bij values determined from the fits in Figure 3.2 are summarized in Table 3.7.
Figure 3.3 shows the plots of Cij versus a for some cubic II–VI semiconductors. The

solid lines represent the least-squares fit with the relation

Cij = Dija + Eij (3.9)
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III–V and II–VI semiconductors. The solid lines represent the least-squares fits with: (a) ln C11 =
−4.59 ln a + 10.33; (b) ln C12 = −2.54 ln a + 6.07; and (c) ln C44 = −5.20 ln a + 10.59 (a in Å;
Cij in 1010 Pa), respectively

The fitted Dij and Eij values are listed in Table 3.7. It is understood from Figure 3.3 that
Equation (3.9) accurately represents the relation between Cij and a. The Cij values for
β-MgS, β-MgSe and β-MgTe listed in Table 3.4 are obtained from Equation (3.9). The
same plots, but for a number of hexagonal group-IV, III–V and II–VI semiconductors,
are shown in Figure 3.4.

3.1.3 External perturbation effect

(a) Temperature effect

We plot in Figure 3.5 the elastic stiffness constant Cij as a function of temperature T

for GaSb. The experimental data are taken from Lin and Wong [3.6]. It is seen that the
elastic constant Cij for GaSb shows a small temperature variation for T up to ∼50 K and
gradually decreases with further increase of T . At T � 150 K, the temperature variation
is found to be almost linear.
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Table 3.7 Parameter values describing the relationship between Cij

and a

ln Cij = Aij ln a + Bij (a in Å; Cij in 1010 Pa)a

Cij Aij Bij

C11 −4.59 10.33
C12 −2.54 6.07
C44 −5.20 10.59

Cij = Dija + Eij (a in Å; Cij in 1010 Pa)b

Cij Dij Eij

C11 −45.0 341.5
C12 −23.4 186.8
C44 −24.3 175.1

aFitted from some cubic group-IV, III–V and II–VI semiconductors
bFitted from some cubic II–VI semiconductors only
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ductors. The solid lines represent the least-squares fits with: (a) C11 = −45.0a + 341.5; (b) C12 =
−23.4a + 186.8; and (c) C44 = −24.3a + 175.1 (a in Å; Cij in 1010 Pa), respectively. The elastic
stiffness constants for β-MgS, β-MgSe and β-MgTe can be determined from these simple relations
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Figure 3.4 Elastic stiffness constant Cij versus an effective lattice constant aeff = (
√

3a2c)1/3 for
a number of hexagonal group-IV, III–V and II–VI semiconductors

The solid lines in Figure 3.5 represent the fit using an expression

Cij (T ) = Cij (0) − αT 2

T + β
(3.10)

where Cij (0) is the T = 0 K value, α is in dyn/cm2 per Kelvin and β is a quantity
proportional to the Debye temperature (in Kelvin). Note that Equation (3.10) is widely
known as the Varshni equation, used for explaining the temperature dependence of the
band-gap energy [3.7].

Table 3.8 summarizes the temperature coefficient of the elastic stiffness constants
dCij /dT for some cubic group-IV, III–V and II–VI semiconductors at T = 300 K. The
coefficients for some hexagonal semiconductors are shown in Table 3.9. We can see in
Tables 3.8 and 3.9 that the temperature coefficient dCij /dT is negative for many semi-
conductors.

(b) Pressure effect

The pressure coefficient dCij /dp as normally measured from ultrasound velocities is
mixed quantity, and refers to the variation of the adiabatic stiffness with pressure at
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Figure 3.5 Temperature dependence of the elastic stiffness constants Cij for GaSb. The experi-
mental data are taken from Lin and Wong [3.6]. The solid lines represent the fitted results using
Cij (T ) = Cij (0) − [αT 2/(T + β)] with C11(0) = 9.09 × 1011 dyn/cm2, α = 1.7 × 10−3 dyn/cm2 K
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S. Adachi, Handbook on Physical Properties of Semiconductors Volume 2: III–V Compound Semi-
conductors (Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic
Publishers]

constant temperature, i.e., (∂CS
ij /∂p)T , where S denotes constant entropy. The adiabatic

and isothermal pressure coefficients can also be given by (∂CS
ij /∂p)S and (∂CT

ij /∂p)T ,
respectively. Note that the pressure coefficient is a dimensionless quantity.

If the third-order elastic constants are known, the pressure coefficients can be cal-
culated from unidirectional as well as hydrostatic stress data. In the great majority of
cases, the Cij –p relationship is effectively linear, but some experiments show a nonlinear
relationship [3.8].

We list in Table 3.8 the pressure coefficient of the elastic stiffness constants dCij /dp

for some cubic group-IV, III–V and II–VI semiconductors at T = 300 K. The coefficients
for some hexagonal semiconductors are also listed in Table 3.10. We can see that dCij /dp

is positive for all cubic semiconductors except for dC44/dp of HgSe and HgTe, but for
hexagonal semiconductors all dC44/dp values listed in Table 3.10 are negative.

3.2 THIRD-ORDER ELASTIC CONSTANT

Elastic constant–applied stress data allow the determination of the third-order elastic stiff-
ness constants. For the cubic point groups, O,Oh and Td , the third-order elastic tensor has
six independent components, C111, C112, C123, C144, C166 and C456 [3.9]. For the hexagonal
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Table 3.8 Temperature and pressure coefficients of the elastic stiffness constant Cij for some
cubic group-IV, III–V and II–VI semiconductors at 300 K

System Material dCij /dT (107 dyn/cm2 K) dCij /dp

C11 C12 C44 C11 C12 C44

IV Diamond −14.8 −7.07 −7.23 5.98 3.06 2.98
Si −15.6 −6.3 −6.6 4.33 4.19 0.80
Ge −13.0 −3.3 −9.0 5.03 4.31 1.41

III–V GaP −11.8 −5.25 −6.08 4.77 4.79 0.92
GaAs −13.9 −5.76 −7.01 4.63 4.42 1.10
GaSb −11.5 −6.3 −5.3 4.93 4.66 1.00
InP −14.0 −8.3 −4.0 4.17 4.80 0.36
InAs −18.6 −10.4 −9.9 4.52 4.92 0.41
InSb −14.8 −9.0 −3.7 4.748 4.974 0.533

II–VI MgO −58.5 +7.5 −12.6 9.38 1.94 1.15
β-ZnS −11.2 −7.8 −3.6
ZnSe −14.2 −9.58 −4.33 4.5 4.9 0.45
ZnTe −13.4 −8.28 −4.39 4.9 5.1 0.44
CdTe −10.7 −8.5 −1.9
HgSe −30 −27 −4.5 1.8 2.9 −0.56
HgTe −22 −16 −5.6 3.3 4.1 −0.12

Table 3.9 Temperature coefficient of the elastic stiffness constant Cij for some hexagonal semi-
conductors at 300 K

System Material dCij /dT (107 dyn/cm2 K)

C11 C12 C13 C33 C44 C66

II–VI ZnO −26 −3.1
α-ZnS −13.9 −7.7 −6.2 −15 −2.8
CdS −15 −11 −9.9 −16 −0.9
CdSe −16.4 −12.6 −17.7 −1.5 −1.9

Table 3.10 Pressure coefficient of the elastic stiffness constant Cij for some hexagonal semicon-
ductors at 300 K

System Material dCij /dp

C11 C12 C13 C33 C44 C66

II–VI ZnO 3.8 5.2 4.7 3.7 −0.53
α-ZnS 4.2 4.5 3.8 5.1 −0.083
CdS 3.08 5.24 4.73 3.25 −0.63
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Table 3.11 Third-order elastic constant Cijk for some cubic group-IV, III–V and II–VI semicon-
ductors (in 1012 dyn/cm2)

System Material C111 C112 C123 C144 C166 C456

IV Diamond −62.6 −22.6 1.12 −6.74 −28.6 −8.23
Si −8.34 −5.31 −0.02 −0.95 −2.96 −0.074
Ge −7.2 −3.8 −0.3 −0.1 −3.05 −0.45

III–V GaP −7.37 −4.74 −1.31 −1.07 −2.34 −0.62
GaAs −6.22 −3.87 −0.57 0.02 −2.69 0.39
GaSb −4.75 −3.08 −0.44 0.50 −2.16 −0.25
InP −8.6 −1.85 −5.1 −6.5 1.6 −0.042
InAs −5.18 −2.25 −2.39 −1.90 −0.18 −0.068
InSb −3.56 −2.66 −1.00 0.16 −1.39 −0.004

II–VI MgO −49.0 −0.95 −0.69 1.13 −6.59 1.47
ZnSe −8.27 −1.36 −5.11 2.22 −2.65 −2.78
ZnTe −7.07 −1.21 −4.12 1.83 −2.17 −2.29
c-CdS −2.5 −2.8 −1.9 0.3 −0.6 0.4
HgSe −2.12 −1.27 −0.91 −0.071 −0.43 0.006
HgTe −2.60 −1.70 −0.77 −0.17 −0.57 −0.01

Table 3.12 Third-order elastic constant Cijk of w-CdS

Modulus Value (1012 dyn/cm2) Modulus Value (1012 dyn/cm2)

C111 −4.59 C144 −0.27
C112 −2.07 C155 +0.09
C113 −1.82 C222 −3.55
C123 −2.35 C333 −3.27
C133 −3.06 C344 −0.69

point groups, C6v and D6h, the third-order elastic tensor has ten independent components,
C111, C112, C113, C123, C133, C144, C155, C222, C333 and C344. We list in Table 3.11 the
experimentally determined third-order elastic constant Cijk for some cubic semiconduc-
tors. For hexagonal semiconductors, only the data for w-CdS are available [3.9]. These
data are listed in Table 3.12.

3.3 YOUNG’S MODULUS, POISSON’S RATIO AND SIMILAR
PROPERTIES

3.3.1 Young’s modulus and Poisson’s ratio: cubic lattice

There is a considerable interest in the effect of mechanical stresses resulting from crystal
growth and device processing on the behavior and reliability of semiconductor devices.
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Precise computation of such stresses requires knowledge of Young’s modulus and Pois-
son’s ratio, in particular, for specific orientations within the crystallographic plane defining
the surface of the semiconductors.

Young’s modulus is defined as the ratio of elastic stress to strain. It is not isotropic, even
in cubic, zinc-blende-type crystals [3.10]. The modulus Y for an arbitrary crystallographic
direction m can be written as

Y −1 = S11 − 2

(
S11 − S12 − 1

2
S44

)
(m2

1m
2
2 + m2

2m
2
3 + m2

1m
2
3) (3.11)

where Sij are the elastic compliance constants and mi are the direction cosines for m.
Poisson’s ratio P is the ratio of the transverse contraction per unit dimension of a bar

of uniform cross-section to its elongation per unit length, when subjected a tensile stress.
The ratio P also varies with orientation. If a longitudinal stress in the direction m and the
transverse strain along orthogonal direction n is under consideration, then P is given by

P = −
S12 +

(
S11 − S12 − 1

2
S44

)
(m2

1n
2
1 + m2

2n
2
2 + m2

3n
2
3)
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S44
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2
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2
3)

(3.12)

The modulus Y for the direction of the cube axes 〈100〉 is readily given by Y =
1/S11. The ratio P , in this case, is written as P = −S12/S11. In Table 3.13, we list

Table 3.13 Functional expressions for Young’s modulus Y and Poisson’s ratio P within the
crystallographic planes (100), (110) and (111) in cubic lattice. S = S11 − S12 − (S44/2), m is the
direction for a longitudinal stress and n is the direction for a transverse strain (orthogonal to the
direction m)

Parameter Crystallographic plane Expression

Young’s modulus Y (100) plane
[001] direction 1/S11

[011] direction 1/(S11 − S/2)
(110) plane

[001] direction 1/S11

[111] direction 1/(S11 − 2S/3)
(111) plane 1/(S11 − S/2)

Poisson’s ratio P (100) plane
m = [010], n = [001] −S12/S11

m = [011], n = [011] −(S12 + S/2)/(S11 − S/2)

(110) plane
m = [001], n = [110] −S12/S11

m = [111], n = [112] −(S12 + S/3)/(S11 − 2S/3)

(111) plane −(S12 + S/6)/(S11 − S/2)
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the functional expressions for Y and P for directions within the three important (100),
(110) and (111) planes in cubic lattice. It should be noted that the Y and P are invariant
within the {111} plane. In Tables 3.14 and 3.15, we also list the numerical values of Y and
P for directions within the (100), (110) and (111) planes in a number of cubic group-IV,
III–V and II–VI semiconductors at T = 300 K.

Table 3.14 Young’s modulus Y within the crystallographic planes (100), (110) and (111) in a
number of cubic group-IV, III–V and II–VI semiconductors at 300 K (in 1012 dyn/cm2)

System Material (100) (110) (111)

[001] [011] [001] [111]

IV Diamond 10.53 11.65 10.53 12.08 11.65
Si 1.300 1.690 1.300 1.877 1.690
Ge 1.029 1.371 1.029 1.542 1.371
α-Sn 0.515 0.729 0.515 0.846 0.729
3C-SiC 3.14 4.63 3.14 5.50 4.63

III–V c-BN 7.46 9.39 7.46 10.3 9.39
BP 2.7 2.6 2.7 2.5 2.6
BAs 2.07 2.56 2.07 2.78 2.56
c-AlN 2.18 3.45 2.18 4.27 3.45
AlP 1.11 1.38 1.11 1.50 1.38
AlAs 0.822 1.179 0.822 1.379 1.179
AlSb 0.589 0.847 0.589 0.991 0.847
β-GaN 1.91 3.01 1.91 3.73 3.01
GaP 1.03 1.44 1.03 1.67 1.44
GaAs 0.853 1.213 0.853 1.412 1.213
GaSb 0.632 0.891 0.632 1.03 0.891
InP 0.610 0.917 0.610 1.10 0.917
InAs 0.514 0.793 0.514 0.967 0.793
InSb 0.415 0.621 0.415 0.744 0.621

II–VI MgO 2.49 3.18 2.49 3.51 3.18
β-MgS 0.463 0.763 0.463 0.973 0.763
β-MgSe 0.379 0.628 0.379 0.804 0.628
β-MgTe 0.228 0.386 0.228 0.502 0.386
β-ZnS 0.513 0.864 0.513 1.12 0.864
ZnSe 0.478 0.786 0.478 1.00 0.786
ZnTe 0.418 0.632 0.418 0.761 0.632
c-CdS 0.326 0.509 0.326 0.626 0.509
c-CdSe 0.287 0.465 0.287 0.586 0.465
CdTe 0.234 0.400 0.234 0.523 0.400
β-HgS 0.274 0.504 0.274 0.701 0.504
HgSe 0.230 0.422 0.230 0.583 0.422
HgTe 0.231 0.403 0.231 0.537 0.403
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Table 3.15 Poisson’s ratio P within the crystallographic planes (100), (110) and (111) in a num-
ber of cubic group-IV, III–V and II–VI semiconductors at 300 K

System Material (100) (110) (111)

m = [010]
n = [001]

m = [011]
n = [011]

m = [001]
n = [110]

m = [111]
n = [11 2]

IV Diamond 0.103 0.0079 0.103 0.045 0.079
Si 0.279 0.062 0.279 0.180 0.262
Ge 0.270 0.028 0.270 0.156 0.250
α-Sn 0.298 0.007 0.298 0.169 0.283
3C-SiC 0.267 −0.081 0.267 0.092 0.235

III–V c-BN 0.187 −0.024 0.187 0.069 0.149
BP 0.24 0.28 0.24 0.26 0.25
BAs 0.300 0.132 0.300 0.230 0.292
c-AlN 0.323 −0.068 0.323 0.154 0.317
AlP 0.300 0.133 0.300 0.231 0.292
AlAs 0.324 0.031 0.324 0.205 0.320
AlSb 0.331 0.039 0.331 0.216 0.330
β-GaN 0.337 −0.046 0.337 0.181 0.338
GaP 0.306 0.025 0.306 0.185 0.295
GaAs 0.312 0.021 0.312 0.189 0.303
GaSb 0.313 0.031 0.313 0.195 0.305
InP 0.359 0.037 0.359 0.246 0.373
InAs 0.352 0.001 0.352 0.222 0.362
InSb 0.348 0.025 0.348 0.228 0.356

II–VI MgO 0.239 0.029 0.239 0.134 0.213
β-MgS 0.383 −0.016 0.383 0.255 0.416
β-MgSe 0.390 −0.011 0.390 0.267 0.428
β-MgTe 0.409 −0.000 0.409 0.299 0.461
β-ZnS 0.390 −0.028 0.390 0.259 0.428
ZnSe 0.373 −0.030 0.373 0.235 0.399
ZnTe 0.356 0.027 0.356 0.237 0.367
c-CdS 0.410 0.079 0.410 0.328 0.454
c-CdSe 0.408 0.042 0.408 0.313 0.454
CdTe 0.407 −0.011 0.407 0.294 0.460
β-HgS 0.433 −0.044 0.433 0.328 0.517
HgSe 0.424 −0.054 0.424 0.308 0.499
HgTe 0.409 −0.032 0.409 0.288 0.465

3.3.2 Bulk modulus, shear modulus and similar properties: cubic
lattice

Bulk moduli of semiconductors are of physical interest and also of practical importance in
the interpretation of high-pressure experimental data. In semiconductor heterostructures,
different bulk moduli in the different layers give rise in hydrostatic pressure experiments
to large axial strains that can have a considerable effect on the result of experiments.
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Conversely, observation of such effects can provide an accurate method of measuring the
relative bulk moduli of the layers [3.11].

We summarize in Table 3.16 the functional expressions for the bulk modulus Bu, shear
modulus Cs, isotropy factor A, linear compressibility Co, Cauchy ratio Ca and Born ratio
Bo in cubic lattice. The numerical values for a number of cubic group-IV, III–V and
II–VI semiconductors at T = 300 K are also listed in Table 3.17.

Figure 3.6 shows a log–log plot of the bulk modulus Bu versus near-neighbor dis-
tance d(A–B) for some group-IV, III–V and II–VI semiconductors with (a) cubic and
(b) hexagonal and rhombohedral structures. The solid lines represent the least-squares fit

Table 3.16 Functional expressions for bulk mod-
ulus Bu, shear modulus Cs, isotropy factor A, linear
compressibility Co, Cauchy ratio Ca and Born ratio
Bo in a cubic lattice

Parameter Expression

Bulk modulus Bu (C11 + 2C12)/3
Shear modulus Cs (C11 − C12)/2
Isotropy factor A (C11 − C12)/(2C44)
Linear compressibility Co 1/(C11 + 2C12)
Cauchy ratio Ca C12/C44

Born ratio Bo
(C11 + C12)

2

4C44(C11 − C44)
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Figure 3.6 Bulk modulus Bu versus near-neighbor distance d(A–B) for some group-IV, III–V
and II–VI semiconductors with (a) cubic; and (b) hexagonal and rhombohedral structures. The
solid lines represent the least-squares fits with: (a) Bu = (4.05/d)3.98; and (b) Bu = (3.71/d)4.66 (d
in Å; Bu in 1011 dyn/cm2)
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Table 3.17 Bulk modulus Bu (1011 dyn/cm2), shear modulus Cs (1011 dyn/cm2), isotropy factor
A, linear compressibility Co (10−13 cm2/dyn), Cauchy ratio Ca and Born ratio Bo for a number of
cubic group-IV, III–V and II–VI semiconductors at 300 K

System Material Bu Cs A Co Ca Bo

IV Diamond 44.2 47.8 0.826 0.754 0.215 0.669
Si 9.784 5.085 0.640 3.407 0.804 0.924
Ge 7.47 4.05 0.607 4.46 0.715 0.975
α-Sn 4.25 1.99 0.548 7.84 0.809 1.07
3C-SiC 22.5 12.4 0.484 1.48 0.555 1.35

III–V c-BN 40.0 31.5 0.656 0.833 0.396 0.915
BP 17 11 0.67 1.9 0.63 0.88
Bas 17.3 7.95 0.704 1.93 1.06 0.859
c-AlN 20.5 8.25 0.446 1.63 0.811 1.32
AlP 9.28 4.29 0.702 3.59 1.05 0.860
AlAs 7.79 3.11 0.543 4.28 1.00 1.05
AlSb 5.82 2.21 0.543 5.73 1.07 1.04
β-GaN 19.6 7.15 0.453 1.70 0.937 1.25
GaP 8.82 3.92 0.558 3.78 0.882 1.04
GaAs 7.55 3.25 0.547 4.42 0.906 1.06
GaSb 5.63 2.41 0.557 5.92 0.932 1.04
InP 7.23 2.25 0.508 4.61 1.30 1.07
InAs 5.79 1.90 0.480 5.75 1.14 1.14
InSb 4.56 1.54 0.508 7.32 1.17 1.09

II–VI MgO 16.0 10.1 0.648 2.08 0.600 0.916
β-MgS 6.65 1.68 0.433 5.02 1.43 1.17
β-MgSe 5.77 1.36 0.429 5.78 1.53 1.16
β-MgTe 4.20 0.810 0.420 7.94 1.90 1.13
β-ZnS 7.71 1.87 0.419 4.33 1.45 1.19
ZnSe 6.24 1.75 0.432 5.34 1.25 1.20
ZnTe 5.10 1.54 0.494 6.53 1.31 1.09
c-CdS 6.16 1.16 0.489 5.41 2.28 1.04
c-CdSe 5.31 1.02 0.457 6.28 2.08 1.08
CdTe 4.24 0.830 0.411 7.86 1.83 1.15
β-HgS 6.86 0.955 0.362 4.86 2.36 1.15
HgSe 5.00 0.810 0.363 6.67 2.00 1.19
HgTe 4.23 0.820 0.394 7.89 1.77 1.18

with the relation (d in Å; Bu in 1011 dyn/cm2)

Bu =
(a

d

)b

(3.13)

where (a) a = 4.05 and b = 3.98 and (b) a = 3.71 and b = 4.66. It should be noted that
Gilman [3.12] related the slope of −4 to the relationship of electrostatic forces between
atomic particles and bond-distance, which should reflect in the same way for the elastic
moduli and bond-distance.



ELASTIC PROPERTIES 59

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

3C-SiC AlAs

AlSb

β-ZnS

HgSe

GaAs
GaSb

HgTe

InP
InAs

InSb

α-Sn

ZnSe

ZnTe c-CdS
c-CdSe

CdTe

Group-IV
III-V
II-VI

fi

A

C

Si

Ge

c-BNBP

GaP
MgO

β-HgS

Figure 3.7 Isotropy factor A versus Philips ionicity fi for some cubic group-IV, III–V and II–VI
semiconductors. The solid line represents the least-squares fit with A = 0.632 − 0.268fi

The plots of the isotropy factor A versus Phillips ionicity fi for some cubic group-IV,
III–V and II–VI semiconductors are shown in Figure 3.7. The solid line represents the
least-squares fit with

A = 0.632 − 0.268fi (3.14)

The A–fi relationship is found to be linear, although only the data for diamond (C) and
MgO deviate largely from the solid line. Note that A = 1.0 corresponds to a perfect
isotropic material.

The bulk modulus Bu can be defined, from a phenomenological aspect, by

Bu = −V
dp

dV
(3.15)

where V is the crystal volume. The lattice parameter a is dependent relatively largely
on the pressure p. The lattice compression in a cubic crystal is related to p with the
following Murnaghan equation of state

p = Bu

B ′
u

[(
a(0)

a(p)

)3B ′
u

− 1

]
(3.16)

where B ′
u is the pressure derivative of the bulk modulus, given by

B ′
u = dBu

dp
= 1

3

(
dC11

dp

)
+ 2

3

(
dC12

dp

)
(3.17)
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and a(0) and a(p) are the lattice parameters at pressures p = 0 and p �= 0, respectively.
The pressure derivative of the bulk modulus B ′

u can also be expressed, in terms of the
third-order elastic constants, as

B ′
u = dBu

dp
= −C111 + 6C112 + 2C123

9Bu
(3.18)

We list in Table 3.18 the B ′
u values for some cubic group-IV, III–V and II–VI semi-

conductors at T = 300 K. It is found that almost all semiconductors listed in Table 3.18
have a value of B ′

u ∼ 4.
Figure 3.8 shows the pressure dependence of the lattice parameter a for Si, GaAs and

ZnTe as calculated from Equation (3.16). The pressure-induced change in a for GaAs is
about −3.5% at 10 GPa.

3.3.3 Young’s modulus and Poisson’s ratio: hexagonal lattice

We summarize in Table 3.19 the functional expressions for Young’s modulus Y and
Poisson’s ratio P in the two major directions ⊥c and ||c of a hexagonal lattice. The
corresponding numerical data at T = 300 K are listed in Table 3.20.

Table 3.18 Pressure derivative of the bulk modulus B ′
u = dBu/dp for

some cubic group-IV, III–V and II–VI semiconductors at 300 K

System Material B ′
u System Material B ′

u

IV Diamond 4.03 II–VI MgO 4.0
Si 4.24 β-ZnS 4
Ge 4.55 ZnSe 4
α-Sn 4.6a ZnTe 4.7
3C-SiC 4.0 c-CdS 4.8a

c-CdSe 4.8a

III–V c-BN 4.0 CdTe 6.4
BP 3.51a β-HgS 5.0a

BAs 3.49a HgSe 2.53
c-AlN 3.3a HgTe 3.8
AlP 3.99a

AlSb 4.55
β-GaN 3.9a

GaP 4.5
GaAs 4.49
GaSb 4.78
InP 4.59
InAs 4.79
InSb 4.899

aCalculated or estimated
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Figure 3.8 Pressure dependence of the lattice parameter a for Si, GaAs and ZnTe as calculated
from the Murnaghan equation of state

Table 3.19 Functional expressions for Young’s
modulus Y and Poisson’s ratio P in a hexagonal
lattice. l: directional vector; Bu: bulk modulus

Parameter Direction Expression

Y c ⊥ l 1/S11

c || l 1/S33

P c ⊥ l , c || l
1

2

(
1 − Y

3Bu

)

3.3.4 Bulk modulus, shear modulus and similar properties: hexagonal
lattice

We summarize in Table 3.21 the functional expressions for the bulk modulus Bu and
linear compressibility Co in a hexagonal lattice. The corresponding Bu and Co values at
T = 300 K are listed in Table 3.22, together with those for dBu/dp.

It is possible to define the isothermal bulk modulus by

Bu = −V

(
∂p

∂V

)
= 2

9

(
C11 + C12 + 2C13 + C33

2

)
(3.19)

where V is the crystal volume.
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Table 3.20 Young’s modulus Y and Poisson’s ratio P for a number
of hexagonal group-IV, III–V and II–VI semiconductors at 300 K. l:
directional vector

System Material Y (1012 dyn/cm2) P

c ⊥ l c || l c ⊥ l c || l

IV 6H-SiC 4.73 5.44 0.143 0.090

III–V h-BN 1.38 1.36 0.44 0.44
w-AlN 3.50 3.54 0.22 0.21
α-GaN 3.13 3.62 0.23 0.19
InN 1.04 0.83 0.38 0.40

II–VI ZnO 1.28 1.51 0.35 −1.25
α-ZnS 0.91 1.16 0.30 0.24
w-CdS 0.481 0.625 0.37 0.33
w-CdSe 0.431 0.592 0.37 0.31

Table 3.21 Functional expressions for bulk
modulus Bu and linear compressibility Co in
a hexagonal lattice. l: directional vector

Parameter Expression

Bu
(C11 + C12)C33 − 2C2

13

C11 + C12 + 2C33 − 4C13

Co S11 + S12 + S13(c ⊥ l)
2S13 + S33(c || l)

The linear compressibility Co of a crystal is the relative decrease in length of a line
when the crystal is subjected to unit hydrostatic pressure. In general, it varies with direc-
tion. The expression for Co for the hexagonal and rhombohedral systems can be written
in matrix notation as

Co = (S11 + S12 + S13) − (S11 + S12 − S13 − S33)l2 (3.20)

where l is the unit directional vector (l2 = 0 for ⊥c; for l2 = 1 for ||c). Thus, the linear
compressibility in the uniaxial materials is rotationally symmetrical about the unique axis
c. Note that the linear compressibility in the cubic system is isotropic: a sphere of a cubic
crystal under hydrostatic pressure thus remains a sphere.

3.4 MICROHARDNESS

The hardness test has been used for a long time as a simple means of characterizing
the mechanical behavior of solids [3.13]. The interest in the hardness of semiconductors
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Table 3.22 Bulk modulus Bu, its pressure derivative Bu
′ = dBu/dp and linear compressibility Co

for a number of hexagonal group-IV, III–V and II–VI semiconductors at 300 K. l: directional
vector

System Material Bu (1011 dyn/cm2) B ′
u Co (10−13 cm2/dyn)

c ⊥ l c || l

IV 6H-SiC 22.1 2.9 1.50 1.53

III–V h-BN 40.6 5.6 0.42 1.63
w-AlN 21.0 5.7–6.3 1.49 1.80
α-GaN 19.2 3.2–4.5 1.65 1.90
InN 13.9 12.7 2.52 2.12

II–VI ZnO 14.4 3.6–9.4 2.27 2.44
α-ZnS 7.40 4 4.50 4.60
w-CdS 6.27 5.40 5.20
w-CdSe 5.31 6.50 5.90

stems principally from their use in many device applications. There are many indications
that dislocations induced during the fabrication of these devices subsequently have a very
damaging effect on their operational performance and degradation behavior [3.14].

The microhardness can be measured by several methods, among which Knoop and
Vickers indentations are most commonly used. In both methods, a diamond stylus is
pressed into the surface of the body by a given load and at a given loading rate. Upon
unloading, the size of the residual indentation mark in the surface is measured and related
to a characteristic hardness parameter denoted by H . In the Knoop method, the dia-
mond stylus has the shape of a rhombic pyramid with the major base diagonal 7.1 times
longer than the minor diagonal, whereas the Vickers stylus has a low-profile, square
pyramid [3.15].

We list in Table 3.23 Knoop microhardness H and bulk modulus Bu for a number of
cubic group-IV, III–V and II–VI semiconductors. The numerical H and Bu values for a
number of hexagonal semiconductors are listed in Table 3.24. Note that diamond is the
least compressible and hardest material known.

If the materials are isoelectronic, isostructural and have the same packing density (or
bond distance), we can expect certain correlations to exist between their cell volumes,
melting points, bulk moduli, microhardness, etc. We have already shown the existence
of such correlations about the structural phase transition (PT, Section 1.5), melting point
(Tm, Section 2.1), Debye temperature (θD, Section 2.3), elastic constant (Cij , Section 3.1)
and bulk modulus (Bu, Section 3.3) for ANB8-N semiconductors.

Let us plot in Figure 3.9 Knoop microhardness H versus inverse unit-cell volume
V −1 = a−3 for some group-IV, III–V and II–VI semiconductors. The solid line represents
the least-squares fit with the relation (V in Å3; H in GPa)

H = 3220

V
− 14.6 (3.21)
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Table 3.23 Knoop microhardness H and bulk modulus
Bu for a number of cubic group-IV, III–V and II–VI
semiconductors

System Material H (GPa) Bu (GPa)

IV Diamond 56–115 442
Si 2–16 97.84
Ge 9.92 74.70
α-Sn 2.6a 42.5
3C-SiC 26.70–28.15 248

III–V c-BN 34.3–73.0 400
BP 3.2 170
BAs 19.0 173a

c-AlN 205a

AlP 5.5 92.8a

AlAs 5.0 77.9
AlSb 4.0 58.2
β-GaN 196a

GaP 9.45 88.19
GaAs 7–7.5 75.5
GaSb 4.48–4.68 56.31
InP 3.93 72.3
InAs 3.74–3.8 57.94
InSb 2.25–2.93 45.57

II–VI MgO 4.0–9.3 160
β-MgS 66.5a

β-MgSe 57.7a

β-MgTe 42.0a

β-ZnS 1.78 77.1
ZnSe 1.37–1.83 62.4
ZnTe 0.6–0.9 51.0
c-CdS 61.6
c-CdSe 53.1
CdTe 0.45–0.60 42.4
β-HgS 68.6
HgSe 0.23 50.0
HgTe 0.23–0.37 42.3

aCalculated or estimated

We can recognize in Figure 3.9 the linear relationship between H and V −1. A linear
relationship between H and V (not V −1) has also been found for ABC2 ternary pnic-
tides [3.16].

It has been shown by Plendl et al. [3.17] that the microhardness H is directly propor-
tional to bulk modulus Bu. It has also been shown by Kumar et al. [3.18] that H and Bu

have the relation

H = aBu + b (3.22)
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Table 3.24 Knoop microhardness H and bulk modulus
Bu for a number of hexagonal group-IV, III–V and II–VI
semiconductors

System Material H (GPa) Bu (GPa)

IV 6H-SiC 21.30–27.55 221

III–V h-BN 14.6 406
w-AlN 12 210
α-GaN 10.2 192
InN 10 139

II–VI ZnO 4.0 144
α-ZnS 1.78 74.0
w-CdS 1.21–2.3 62.7
w-CdSe 0.90 53.1
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Figure 3.9 Knoop microhardness H versus inverse unit-cell volume 1/V = a−3 for some group-
IV, III–V and II–VI semiconductors. For hexagonal semiconductors, an effective lattice constant
aeff = (

√
3a2c)1/3 is used in the calculation of 1/V . The solid line represents the least-squares fit

with H = 3220/V − 14.6 (V in Å3; H in GPa)

where a and b are constants. The a and b values are determined to be 0.16 and −5.74 GPa
for III–V semiconductors and 0.034 and −0.78 GPa for II–VI semiconductors, respec-
tively (Bu in GPa). The solid and dashed lines in Figure 3.10(a) represent the calculated
results of Equation (3.22) with these a and b values. A semilogarithmic plot of Knoop
hardness H versus Bu for some cubic semiconductors is also shown in Figure 3.10(b).
The solid line represents the least-squares fit with the relation (Bu and H in GPa)

H = aBb
u (3.23)

where a and b are constants given by 0.0013 and 1.80, respectively.
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Figure 3.10 Knoop microhardness H versus bulk modulus Bu plotted: (a) linearly; and
(b) logarithmically for some cubic group-IV, III–V and II–VI semiconductors. In (a) the solid
and dashed lines are calculated from the relations of H = 0.16Bu − 5.74 and H = 0.034Bu − 0.78
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Figure 3.11 Knoop microhardness H versus bulk modulus Bu plotted: (a) linearly; and
(b) logarithmically for some hexagonal group-IV, III–V and II–VI semiconductors. The solid
lines represent the least-squares fits with: (a) H = 0.049Bu + 0.59; and (b) H = 0.0026B1.56
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respectively (Bu and H in GPa)
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Figure 3.11 presents Knoop microhardness H versus Bu data plotted (a) linearly
and (b) logarithmically for some hexagonal semiconductors. The solid lines in
Figures 3.11(a) and 3.11(b) show the calculated results of Equation (3.22) with a =
0.049 and b = 0.59 GPa and of Equation (3.23) with a = 0.0026 and b = 1.56 (Bu and H

in GPa), respectively. There is a general trend toward greater hardness H with increasing
Bu for both cubic (Figure 3.10) and hexagonal semiconductors (Figure 3.11).

We plot in Figure 3.12 Knoop microhardness as a function of Voigt averaged shear
modulus G for some cubic semiconductors. Here, G is defined by

G = 3C44 + C11 − C12

5
(3.24)

The solid line in Figure 3.12 represents the least-squares fit with the relation (G and H

in GPa)
H = 0.139G (3.25)

In general, the shear modulus G is slightly smaller than the value of C44 for cubic
semiconductors. It has been reported [3.19] that G is a better indicator of hardness than
Bu. We note, however, that H values of BP and MgO are much lower than what might
be expected from the general trend in Figure 3.12.

The Bu –d (bond-distance), PT (transition pressure to the first phase; see Section 1.5)–d

and H –Bu plots show that there is a simple relation between these quantities. We can
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Figure 3.12 Knoop microhardness H versus Voigt averaged shear modulus G for some cubic
group-IV, III–V and II–VI semiconductors. The Voigt parameter G can be defined by G = (3C44 +
C11 − C12)/5. The solid line represents the least-squares fit with H = 0.139G (G and H in GPa)
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least-squares fit with H = 0.41P 0.95
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thus, expect a simple relation between H and PT. It is found that the variation of H with
PT follows a relation of the form

H = aP b
T (3.26)

This is shown in Figure 3.13 in the form of a log–log plot of H against PT. The values
of a and b obtained by a least-squares fit to the data are 0.41 and 0.95 (PT and H in
GPa), respectively.

The Knoop hardness anisotropy is a well-known phenomenon [3.20] and has been
measured for many semiconductors [3.21]. The Knoop hardness number not only varies
both with the plane and direction of indentation, but also depends on the type of dopant.
For InP, S-doped crystals are the hardest among S-doped, Se-doped and Zn-doped crys-
tals [3.21, 3.22]. These crystals are all harder than undoped InP. On the other hand, the
addition of Sn apparently softens the InP lattice.

3.5 SOUND VELOCITY

If the crystal density g and elastic stiffness Cij of a solid is known, one can calculate
sound velocity v from the simple relation

v =
√

Cij

g
(3.27)
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If we neglect nonlinear terms in the equation of motion of cubic lattice, pure longitudinal
sound waves may propagate in the [100], [110] and [111] directions. Pure transverse waves
may propagate not only in these three major directions, but also in the crystallographic
directions [hkl ] (h = k; l arbitrary) and [hk0] (h and k arbitrary).

We list in Table 3.25 the functional forms for the sound velocity propagating along
the three major directions [100], [110] and [111] in cubic lattice. Table 3.26 also lists
the numerical values for the longitudinal (LA) and transverse (TA1 and TA2) sound
velocities propagating along the [100], [110] and [111] directions in a number of cubic
semiconductors at T = 300 K. The corresponding expressions and numerical values for
the case of hexagonal semiconductors are listed in Tables 3.27 and 3.28, respectively.

If we take into consideration the nonlinear term in cubic lattice, we find that pure trans-
verse modes do not exist. The transverse waves are always accompanied by a longitudinal
wave. Pure longitudinal modes, on the other hand, continue to exist for all three principal
directions [100], [110] and [111]. For these directions, the nonlinear wave equation can
be reduced to the form [3.23]

∂2u

∂t2
= 1

g

∂2u

∂t2

(
M2 + M3

∂u

∂x
+ higher-order terms

)
(3.28)

where u is the atomic displacement velocity. The constants M2 and M3 can be written in
terms of the second-order and third-order elastic coefficients K2 and K3

M2 = K2, M3 = K3 + 2K2 (3.29)

Table 3.25 Propagation direction, direction or plane of polarization, velocity
and mode of sounds in a cubic lattice. g = crystal density; LA = longitudinal
acoustic; TA1, TA2 = transverse acoustic

Propagation
direction

Direction or plane
of polarization

Velocity Mode

[100] [100]

√
C11

g
LA

(100)

√
C44

g
TA1, TA2

[110] [110]

√
C11 + C12 + 2C44

2g
LA

(110)

√
C11 − C12

2g
TA1

(001)

√
C44

g
TA2

[111] [111]

√
C11 + 2C12 + 4C44

3g
LA

(111)

√
C11 − C12 + C44

3g
TA1, TA2
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Table 3.26 Sound velocity propagating along the three major directions [100], [110] and [111] in
a number of cubic group-IV, III–V and II–VI semiconductors at 300 K (in 105 cm/s)

System Material [100] [110] [111]

LA TA1, TA2 LA TA1 TA2 LA TA1, TA2

IV Diamond 17.5 12.8 18.3 11.7 12.8 18.6 12.1
Si 8.43 5.84 9.13 4.67 5.84 9.36 5.09
Ge 4.92 3.54 5.39 2.76 3.54 5.54 3.04
α-Sn 3.46 2.51 3.85 1.86 2.51 3.97 2.09
3C-SiC 11.0 8.92 12.7 6.21 8.92 13.3 7.23

III–V c-BN 15.3 11.7 16.8 9.50 11.7 17.3 10.3
BP 10 7.3 11 6.0 7.3 11 6.5
BAs 7.31 4.65 7.73 3.90 4.65 7.87 4.17
c-AlN 9.86 7.56 11.4 5.05 7.56 11.8 6.00
AlP 7.97 5.09 8.44 4.26 5.09 8.59 4.56
AlAs 5.66 3.92 6.24 2.89 3.92 6.43 3.27
AlSb 4.53 3.09 4.99 2.28 3.09 5.13 2.57
β-GaN 6.95 5.12 7.92 3.45 5.12 8.22 4.08
GaP 5.83 4.13 6.45 3.08 4.13 6.64 3.47
GaAs 4.73 3.34 5.24 2.47 3.34 5.39 2.79
GaSb 3.97 2.77 4.38 2.07 2.77 4.50 2.33
InP 4.62 3.04 5.09 2.17 3.04 5.23 2.49
InAs 3.83 2.64 4.28 1.83 2.64 4.42 2.14
InSb 3.38 2.29 3.74 1.63 2.29 3.86 1.88

II–VI β-MgS 6.49 4.28 7.24 2.82 4.28 7.48 3.38
β-MgSe 4.78 3.09 5.32 2.02 3.09 5.49 2.43
β-MgTe 3.72 2.25 4.10 1.46 2.25 4.22 1.76
β-ZnS 5.00 3.30 5.59 2.14 3.30 5.78 2.59
ZnSe 4.04 2.77 4.55 1.82 2.77 4.70 2.19
ZnTe 3.48 2.29 3.84 1.61 2.29 3.96 1.87
c-CdS 3.98 2.20 4.28 1.54 2.20 4.38 1.79
c-CdSe 3.43 1.98 3.73 1.34 1.98 3.82 1.59
CdTe 3.02 1.86 3.34 1.19 1.86 3.44 1.45
β-HgS 3.25 1.85 3.57 1.11 1.85 3.67 1.40
HgSe 2.72 1.64 3.02 0.99 1.64 3.11 1.25
HgTe 2.57 1.60 2.85 1.01 1.60 2.94 1.24

The coefficients K2 and K3 are in turn related to the more familiar Cij and Cijk , and are
given by

K2 = C11, K3 = C111 (3.30)

for the [100] direction,

K2 = C11 + C12 + 2C44

2
(3.31a)

K3 = C111 + 3C112 + 12C166

4
(3.31b)
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Table 3.27 Functional expression for sound velocity propagating
parallel (a||c) and perpendicular to the c axis (a⊥c) in a hexagonal
lattice

a || c a⊥c

LA TA1, TA2 LA TA1 TA2

√
C33

g

√
C44

g

√
C11

g

√
C11 − C12

g

√
C44

g

Table 3.28 Sound velocity propagating parallel (a || c) and perpendicular to the c

axis (a⊥c) in a number of hexagonal group-IV, III–V and II–VI semiconductors
at 300 K (105 cm/s)

System Material a || c a⊥c

LA TA1, TA2 LA TA1 TA2

IV 6H-SiC 13.1 7.12 12.5 7.79 7.12

III–V h-BN 13.6 5.34 15.1 4.42 5.34
w-AlN 10.9 6.07 11.2 7.80 6.07
α-GaN 7.97 3.93 7.83 4.37 3.93
InN 5.17 1.21 5.28 2.51 1.21

II–VI ZnO 6.20 2.79 6.07 2.80 2.79
α-ZnS 5.81 2.65 5.47 2.80 2.65
w-CdS 4.43 1.76 4.24 1.84 1.76
w-CdSe 3.86 1.54 3.62 1.60 1.54

for the [110] direction and

K2 = C11 + 2C12 + 4C44

3
(3.32a)

K3 = C111 + 6C112 + 12C144 + 24C166 + 2C123 + 16C456

9
(3.32b)

for the [111] direction.
The nonlinearity parameter β is defined by

β = −3K2 + K3

K2
(3.33)

The amplitude of the generated acoustic second harmonic is proportional to this parame-
ter [3.23].
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4.1 PHONON DISPERSION RELATION

4.1.1 Brillouin zone

An electron in a crystal, under the influence of an external force, such as that due to
the electric field, acquires energy during its acceleration, but changes its energy and/or
momentum by various scattering mechanisms that come about because of lattice vibrations
or other carriers in its surrounding, as well as defects of the crystal lattice. The lattice
vibrations in crystals can be described in a framework that is analogous to the description
of electrons. The lattice vibronic and electronic states are best described in reciprocal space
or k space. The smallest unit cell in reciprocal space is called the first Brillouin zone.

Both the energy (E)–momentum (k) dispersion relations and the wavefunctions of the
electrons (and phonons) in the crystal are largely determined from the symmetry of the
periodic crystal potential in which the electrons move, and thus by the symmetry of the
crystal. The classification of electron states in a real crystal must, therefore, commence
with a symmetry analysis of the crystal.

Let us consider the values of k = |k | at which the discontinuities in energy E occur.
They occur whenever cos ka reaches its maximum value, that is, when cos ka = ±1
or k = nπ/a where a is the lattice period and n = 1, 2, 3 . . .. At these values of k a
small increase in electron momentum, that is, in k, will make the energy of the electron
jump discontinuously from the top of one allowed band to the bottom of the next. The
region between the values of k where the first energy discontinuity takes place is called
the first Brillouin zone. The region between the first and second values of k for which
discontinuities occur is called the second Brillouin zone, and so on.

Properties of Group-IV, III–V and II–VI Semiconductors Sadao Adachi
 2005 John Wiley & Sons, Ltd ISBN: 0-470-09032-4
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The symmetry of a crystal can be expressed by its space group, consisting of all
transformations which leave the crystal invariant. The unit cell of the reciprocal lattice
is the Brillouin zone. The reciprocal lattice is invariant under the same point group as
the corresponding real lattice. The groups of a wavevector k in the reciprocal lattice then
consist of all transformations which leave k invariant or transform it into an equivalent
wavevector k + Kj . The Hamiltonian for an electron in the periodic crystal potential
is also invariant for all transformations of the point group. In this way the symmetry is
transferred on to the Hamiltonian so that the irreducible representations of the point group
characterize the eigenvalues of the operator and give the degeneracy and symmetry of
the associated wavefunctions [4.1]. The character tables of all 32 point groups have been
given by Koster et al. [4.2].

(a) Face-centered cubic lattice

Figure 4.1 shows the first two Brillouin zones for the face-centered cubic lattice. As
shown in Figure 4.1(a), the first Brillouin zone for cubic semiconductors is a truncated
octahedron. It has fourteen plane faces; six square faces along the 〈100〉 directions and
eight hexagonal faces along the 〈111〉 directions. The coordinate axes of the Brillouin
zone are the wavevectors of the plane waves corresponding to the Bloch states (electrons)
or vibration modes (phonons). The points and directions of symmetry are usually referred
to by letters, as shown in Figure 4.1(a) [4.3]. The zone center is called the � point, the
directions 〈100〉, 〈110〉 and 〈111〉 are called, respectively, �, � and � directions and
their intersections with the zone boundaries are called, respectively, X, K and L points.
Since the real lattice in the diamond-type, zinc-blende-type and rocksalt-type crystals is
the face-centered cubic lattice, the Brillouin zone for materials with any of these crystal
structures is the same as that shown in Figure 4.1.

(b) Hexagonal lattice

The real lattice for the wurtzite structure is hexagonal. The spaces of the first two Brillouin
zones are shown in Figure 4.2. As seen in Figure 4.2, the first Brillouin zone for the

kz(a) (b)

kx

ky

L

W

X

K

Λ

Γ

Σ

∆

Figure 4.1 The first two Brillouin zones for the face-centered cubic lattice
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Figure 4.2 The first two Brillouin zones for the wurtzite lattice

wurtzite lattice is a hexagonal prism. The wurtzite unit cell contains twice the number
of the atoms of the zinc-blende cell, and hence the Brillouin zone has about half the
volume of that of the zinc-blende cell. To make the picture consistent with that for the
face-centered cubic lattice, it is usual to take a double Brillouin zone, obtained by putting
two wurtzite zones together in the 〈001〉 direction [4.1]. There is then a correspondence
between the vector �L in zinc-blende and the vector �A�′ in wurtzite. In the reduced
wurtzite zone �′ coincides with � and hence the L point in zinc-blende is equivalent to �

in wurtzite, i.e., the distance A�′ is folded into A�. The number of � states is thus double
that of zinc-blende. Half of the � states correspond directly to � states of zinc-blende;
the other half of the states corresponds to L states of zinc-blende.

(c) Rhombohedral lattice

The structure of 15R-SiC is described in terms of a rhombohedral lattice with fifteen
molecules in a unit cell; the space-group symbol being R3m − C5

3v . Figure 4.3 shows the
first Brillouin zone for the rhombohedral lattice. It should be noted that the Brillouin zone
for 15R-SiC is highly compressed parallel to the three-fold axis.

4.1.2 Phonon dispersion curve

(a) Cubic lattice

As shown in Figure 4.1, the first Brillouin zone in cubic semiconductors is a truncated
octahedron. Phonons, representing lattice vibrations occurring at a frequency ωq, have an
energy h̄ωq, where h̄ is the reduced Planck’s constant, and have a momentum h̄q . In the
primitive cell, if there are N different types of atoms either of differing mass or ordering
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Figure 4.3 The first Brillouin zone for the rhombohedral lattice (15R-SiC)

in space, 3N vibration modes will result. In general, three of these branches, namely the
acoustic branches, will disappear at the zone center �. The remaining 3N − 3 branches
will be optical branches. For cubic crystals, such as Si or GaAs, N = 2, and hence there
are three acoustic and three optical branches, each three comprising one longitudinal and
two transverse modes.

Research on the crystal dynamics of perfect lattices has aroused considerable interest
in many semiconductors. This development is the outcome of many experimental results,
particularly inelastic neutron scattering data for phonon dispersion curves. For example,
Waugh and Dolling [4.4] have made neutron scattering measurements on pure GaAs at
T = 296 K. We reproduce in Figure 4.4 the phonon frequency (ν)–reduced wavevector
(q) results for q along the principal symmetry directions [100] (�), [110] (�) and [111]
(�) of GaAs [4.5]. The various curves in Figure 4.4, some with solid lines and others
dotted, for ν(q) of the acoustic and optical phonon branches, represent the attempts
by Waugh and Dolling [4.4] to fit their data with two different versions of a dipole-
approximation force-constant model. The application of a four-parameter valence-force
model has also been used by Kane [4.6] to describe this experimental result correctly. The
dashed lines in Figure 4.4 in the region near q → 0, ν → 0 represent the initial slopes
of the acoustic modes as calculated from the sound velocities vi in Section 3.5 from the
relation

ωq,i (q) = vi |q | (4.1)

In contrast to the acoustic phonons, which have a large speed at small values of q,
the group velocity of optical phonons vanishes near the zone center so that they hardly
move. The same happens at the zone boundary for the acoustic as well as for the optical
phonons (see Figure 4.4).

Strauch and Dorner [4.7] have determined the phonon dispersion curves in GaAs at low
temperature (T = 12 K) for wavevectors along the six directions �–(�)–X–(�)–(�)–L–
X–(Z)–W–(Q)–L by high-precision inelastic neutron scattering. Their studied propaga-
tion directions are, thus, twice as many as had been studied by Waugh and Dolling [4.4].
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Figure 4.4 Dispersion curves for the acoustic and optical branch phonons in GaAs at 300 K. The
dashed lines have slopes for the various speeds of sound wave, as described in Section 3.5. [From
J. S. Blakemore, J. Appl. Phys. 53, R123 (1982), reproduced by permission from the American
Institute of Physics]

They also used various existing lattice dynamic models to reproduce the experimental data
and discussed the relative merits and drawbacks of these models.

When comparing the phonon dispersion curve of GaAs with that of Si, it becomes
apparent that, while the general shapes in the dispersion curves are similar between these
materials, there is one important difference. At q = 0(�) the transverse and longitudinal
optical branches are degenerate in Si, while ω(LO)>ω(TO) in GaAs (see Section 4.2).
It is found that the splitting of the LO (longitudinal optical) and TO (transverse optical)
branches for long wavelengths occurs in almost all crystals which are heteropolar or ionic.
The origin of this splitting is the electrostatic field created by the long-wavelength modes
of vibrations in such heteropolar crystals [4.8].

(b) Hexagonal lattice

We reproduce in Figure 4.5 the phonon frequency—reduced wavevector results for q
along the principal symmetry directions (T, �, �) of ZnO, predicted by a shell model
based on elastic constants and Raman spectrum by Hewat [4.9]. The dashed lines in the
region near q → 0, ν → 0(�) represent the initial slopes of the acoustic modes estimated
from the elastic constants (sound velocities).

The zinc-blende crystal lattice is cubic with two atoms per unit cell, whereas the
wurtzite lattice has a hexagonal structure with four atoms per unit cell. The Brillouin
zone in the zinc-blende lattice along the [111] direction is, therefore, twice as large as
that of the wurtzite lattice along the [0001] direction. Hence, we can derive the phonon
dispersion curves for the wurtzite structure by simply folding the curves for the zinc-blende
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Figure 4.5 Phonon dispersion curves along the principal symmetry directions of ZnO, predicted
by a shell model based on elastic constants and Raman spectrum. The dashed lines at region
near q → 0, ν → 0 (�) represent the initial slopes of the acoustic modes estimated from the
elastic constants. [From A. W. Hewat, Solid State Commun. 8, 187 (1970), reproduced by permission
from Elsevier]

structure [4.10], as can be understood from Figure 4.5. As a result, the two nonpolar
modes E2 in the wurtzite structure correspond to the TO(L) and TA(L) modes in the
zinc-blende structure and the two nonpolar B1 modes in the wurtzite structure correspond
to the LO (L) and LA (L) modes in the zinc-blende structure. We summarize in Table 4.1
such corresponding relations in phonon modes between the zinc-blende (diamond) and
wurtzite (hexagonal) structures.

As mentioned before, the wurtzite lattice has four atoms (two molecular units) in the
primitive cell which gives rise to twelve phonon branches (N = 4). At the center of the
Brillouin zone, the acoustic modes comprise the representations

1A1 + 1E1 (4.2)

Table 4.1 Corresponding relation in phonon modes
between the zinc-blende and wurtzite structures

Zinc-blende (diamond) Wurtzite (hexagonal)

TO (�)
1

3
[A1(TO) + 2E1(TO)]

LO (�)
1

3
[A1(LO) + 2E1(LO)]

TA (L) E2 low
TO (L) E2 high
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and the remaining nine optical modes the representations

1A1 + 2B1 + 1E1 + 2E2 (4.3)

Except the silent B1 modes all the other optical modes are Raman active, and the A1 and
E1 modes are IR active for incident radiation with the polarizations E || c and E ⊥ c,
respectively, c being the hexagonal axis of the crystal.

4.1.3 Phonon density of states

The properties of critical points and their consequences for the phonon dispersion curves
in crystals were first discussed by Van Hove [4.11] by making use of topological consid-
erations. The phonon density of states g(ν) increases greatly when ∇q(ν) → 0 (critical
points) for one of the various branches, and this happens predominantly when q for that
branch reaches a zone boundary.

The phonon density of states can be calculated in the same way as that for elec-
trons [4.12]. An expression for the phonon density of states g(ω) can be given by

g(ω) =
3N∑
i=1

1

h̄

d

dω

∫
d3q

(2π)3
δ[h̄ω − h̄ωq,i (q)] (4.4)

where h̄ω = hν and the number 3N in the summation corresponds to the total vibration
modes (3N = 6 for Si and GaAs). The dispersion relations for acoustic phonons near
q = 0 can be given by Equation (4.1). The dispersion relations for optical phonons are
written as

ωq,i (q) = ω0,i − ωi

2
q2 (4.5)

where ω0,i = ωi(q = 0). Inserting Equation (4.1) into Equation (4.4), we obtain
near q = 0

gac(ω) =
3∑

i=1

1

2π2h̄

ω2

v3
i

(4.6)

For the optical branch, the result is given by

gop(ω) =
3N−3∑
i=1

1

4π2

(
2

h̄ωi

)3/2 √
h̄ω0,i − h̄ω (4.7)

Thus, we can see that the energy dependence of the density of states of optical phonons
is similar to that of electrons at the top of the � valence band (k = 0).

Calculation of the phonon density of states g(ν) for GaAs has been made by Dolling
and Cowley [4.13] on the basis of detailed lattice dynamic models. Their model con-
struction was based on the inelastic neutron scattering data measured by Waugh and
Dolling [4.4], as provided in Figure 4.4. We reproduce in Figure 4.6 the phonon density
of states g(ν) reported by Dolling and Cowley [4.13]. The g(ν) curve shows a first max-
imum near 2 THz, associated with TA (transverse acoustic) modes. Shorter-wavelength
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Figure 4.6 Room-temperature phonon density of states for GaAs. [From G. Dolling and R. A.
Cowley, Proc. Phys. Soc. 88, 463 (1966), reproduced by permission from Institute of Physics
Publishing]

LA (longitudinal acoustic) modes give rise to a relatively smaller peak near 5.7 THz, and
the massive concentration of optical phonons near 8 THz produces the largest peak.

4.2 PHONON FREQUENCY

4.2.1 Room-temperature value

The phonon frequencies can be determined by using various measurement techniques,
such as neutron scattering, Raman scattering and infrared reflectivity. The first-order
Raman scattering measurements give information only about phonon states with q = 0
(i.e., long-wavelength phonons). This severe limitation can be overcome by using second-
order Raman spectra; two phonons with q1 + q2 ∼ 0 are then produced, and the complete
phonon spectrum may become accessible. In fact, the second-order GaAs Raman line
observed at 300 K [4.14] gives the 2TA(X) phonon frequency of 160.3 cm−1 which agrees
well with the neutron scattering TA(X) phonon data of 79 cm−1 [4.4]. Infrared reflectivity
measurements can also give information about phonon states both with q = 0 and q �= 0.

Measurements of phonon-assisted optical transitions at the fundamental absorption
edge of indirect-gap semiconductors can also give us information on the zone-boundary
phonon frequencies. Monemar [4.15] measured the photoluminescence excitation spectra
of AlAs and obtained the momentum-conserving phonon frequencies (X-point phonons) to
be TA(X) = 167 cm−1 (13.5 meV), LA(X) = 341 cm−1 (27.5 meV), TO(X) = 515 cm−1

(41.5 meV) and LO(X) = 620 cm−1 (50.0 meV). Onton and Chicotka [4.16] have
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also measured optical absorption spectra of AlAs at 6 K using the wavelength-
modulation technique. The data showed fine structure at the free-exciton energy. The
X-point phonon frequencies determined in this experiment are: TA(X) = 161 cm−1

(13.0 meV); LA(X) = 329 cm−1 (26.5 meV); TO(X) = 513 cm−1 (41.4 meV); and
LO(X) = 609 cm−1 (49.1 meV).

We summarize in Table 4.2 the long-wavelength optical phonon frequencies, h̄ωLO and
h̄ωTO, for some cubic group-IV, III–V and II–VI semiconductors at T = 300 K. Table 4.3
compiles those for some hexagonal III–V and II–VI semiconductors at T = 300 K. These
data are gathered from various sources.

Table 4.2 Long-wavelength optical phonon frequencies, h̄ωLO and h̄ωTO, for some cubic group-
IV, III–V and II–VI semiconductors at 300 K

System Material h̄ωLO h̄ωTO

THz meV cm−1 THz meV cm−1

IV Diamond 39.93 165.2 1332 39.93 165.2 1332
Si 15.57 64.38 519.2 15.57 64.38 519.2
Ge 9.02 37.3 301 9.02 37.3 301
α-Sn 6.00 24.8 200 6.00 24.8 200
3C-SiC 29.1 121 972 23.9 98.7 796

III–V c-BN 39.12 161.8 1305 31.619 130.78 1054.7
BP 24.85 102.8 828.9 24.0 99.1 799
c-AlN 19.5a 80.8a 652a 27.3 113a 909a

AlP 15.02 62.12 501.0 13.17 54.48 439.4
AlAs 12.1 49.8 402 10.8 44.6 360
AlSb 10.19 42.16 340.0 9.555 39.52 318.7
β-GaN 22.2 91.6 739 16.6 68.6 553
GaP 12.07 49.91 402.5 10.95 45.30 365.3
GaAs 8.54 35.3 285 8.00 33.1 267
GaSb 6.99 28.9 233 6.72 27.8 224
InP 10.38 42.95 346.4 9.129 37.76 304.5
InAs 7.237 29.93 241.4 6.584 27.23 219.6
InSb 5.717 23.65 190.7 5.387 22.28 179.7

II–VI MgO 21.7 89.9 725 12.0 49.7 401
β-MgS 12.7 52.7 425 9.80 40.5 327
β-MgSe 10.2 42.2 340 7.11 29.4 237
β-MgTe 8.75 36.2 292 7.05 29.1 235
β-ZnS 10.51 43.46 350.5 8.154 33.73 272.0
ZnSe 7.55 31.2 252 6.15 25.4 205
ZnTe 6.30 26.0 210 5.43 22.4 181
c-CdS 9.08a 37.6a 303a 7.11a 29.4a 237a

c-CdSe 6.33a 26.2a 211a 5.07a 21.0a 169a

CdTe 5.01 20.7 167 4.17 17.2 139
β-HgS 6.72 27.8 224 5.31 21.9 177
HgSe 5.22 21.6 174 3.96 16.4 132
HgTe 4.05 16.7 135 3.48 14.4 116

aCalculated or estimated
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Table 4.3 Long-wavelength optical phonon frequencies for some hexagonal III–V and II–VI
semiconductors at 300 K

System Material Phonon frequency (cm−1)

E2 low A1 (TO) E1 (TO) E2 high A1 (LO) E1 (LO)

III–V h-BN 49 770 1383 1367 778 1610
w-AlN 248 610 670 657 890 915
α-GaN 144 533 560 569 736 743
InN 87 457 490 475 588 582

II–VI ZnO 100 380 410 439 576 587
α-ZnS 65 270 273 281 350 350
w-CdS 41 233 239 255 301 304
w-CdSe 34 166 170 210 211

A simple linear chain model with a two-point basis, which would correspond to a
one-dimensional analogue of a cubic semiconductor in the form of ANB8-N , provides the
zone-center (q = 0) optical phonon frequency ωq [4.10]

ωq =
√

κA + κB

M
(4.8)

where M is the reduced mass of atoms A and B given by

M = MAMB

MA + MB
(4.9)

and κi is the spring constant of the lattice.
Table 4.4 lists the long-wavelength optical phonon frequency h̄ωLO, optical phonon fre-

quency difference ∆ωop = h̄ωLO − h̄ωTO, Phillips ionicity fi and reduced atomic mass M

for some group-IV, III–V and II–VI semiconductors. We can expect from Equation (4.8)
a relation between the optical phonon frequency ωq and an inverse atomic mass M−1. In
Figure 4.7, we plot the values of ωLO versus M−1 for some group-IV, III–V and II–VI
semiconductors. The solid line represents the least-squares fit with the relation (M in
amu; ωLO in cm−1)

ωLO = a

M
(4.10)

where a = 7.85 × 103 cm−1 amu. The general trend of a larger ωLO with decreasing M is
clearly seen in Figure 4.7. It is thus possible to suppose that (κA + κB) in Equation (4.8)
is proportional to M−1. As a result, ωq is proportional to M−1.

As can be understood from Table 4.4, the long-wavelength optical phonon frequency
difference ∆ωop = ωLO − ωTO is zero for covalent semiconductors (Si, Ge, etc.), but is
not zero for ionic semiconductors. We can, therefore, expect to find a relationship between
∆ωop and material ionicity fi. However, no clear relationship can be found between these
quantities, as demonstrated in Figure 4.8.
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Table 4.4 Long-wavelength optical phonon frequency h̄ωLO, optical phonon frequency difference
∆ωop = ωLO − ωTO, Phillips ionicity fi and reduced atomic mass M = MAMB/(MA + MB) for a
number of group-IV, III–V and II–VI semiconductors

System Material ωLO (cm−1) ∆ωop (cm−1) fi M (amu)

IV Diamond 1332 0 0 6.01
Si 519.2 0 0 14.04
Ge 301 0 0 36.31
α-Sn 200 0 0 59.36
3C-SiC 972 176 0.177 8.41
6H-SiC 965 167 0.177 8.41

III–V c-BN 1305 250 0.221 6.10
h-BN 1333a 154a 0.221 6.10
BP 828.9 30 0.032 8.01
BAs 0.044 9.45
w-AlN 907a 257a 0.449 9.22
c-AlN 907 257 0.449 9.22
AlP 501.0 61.6 0.307 14.42
AlAs 402 42 0.274 19.84
AlSb 340.0 21.3 0.250 22.09
α-GaN 741a 190a 0.500 11.66
β-GaN 739 186 0.500 11.66
GaP 402.5 37.2 0.327 21.45
GaAs 285 18 0.310 36.11
GaSb 233 9 0.261 44.34
InN 584 105 0.578 12.48
InP 346.4 41.9 0.421 24.39
InAs 241.4 21.8 0.357 45.34
InSb 190.7 11.0 0.321 59.09

II–VI MgO 725 324 0.841 9.65
β-MgS 425 98 0.786 13.83
β-MgSe 340 103 0.790 18.58
β-MgTe 292 57 0.554 20.42
ZnO 582a 182a 0.616 12.85
α-ZnS 350a 78a 0.623 21.52
β-ZnS 350.5 78.5 0.623 21.52
ZnSe 252 47 0.630 35.77
ZnTe 210 29 0.609 43.23
c-CdS 303 66 0.685 24.95
w-CdS 303a 66a 0.685 24.95
c-CdSe 211 42 0.699 46.38
w-CdSe 211a 42a 0.699 46.38
CdTe 167 28 0.717 59.76
β-HgS 224 47 0.790 27.65
HgSe 174 42 0.680 56.66
HgTe 135 19 0.650 77.99

aValues correspond to those for cubic approximation: LO(�)↔(1/3)[A1(LO)+2E1(LO)]; TO(�)
↔(1/3)[A1(TO)+2E1(TO)]
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Figure 4.8 Long-wavelength optical phonon frequency difference ∆ωop = ωLO − ωTO versus
Phillips ionicity fi for some group-IV, III–V and II–VI semiconductors

4.2.2 External perturbation effect

(a) Temperature effect

The phonon frequency is dependent both on temperature T and pressure p. The effect of
temperature on the phonon frequency measured by Raman scattering is due primarily to
the thermal expansion of the crystal lattice. The dependence of phonon frequency ν(q,T )
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with temperature T , in this case, can be written as

ν(q, T ) = ν0(q)

(
1 − α2

thaT

κLk

)
(4.11)

where ν0(q) is the phonon dispersion of the harmonic linear chain, a is the lattice constant,
αth is the linear thermal expansion coefficient, κL is the compressibility of the linear chain,
k is the Boltzmann constant and q is the phonon wavevector. This expression simply
predicts a linear decrease in the phonon frequency with increasing T .

We plot in Figure 4.9 the long-wavelength optical phonon frequencies, ωLO and ωTO,
versus temperature T for InP. The experimental data were measured by near-infrared
Raman spectroscopy at T = 80–290 K by Irmer et al. [4.17]. These authors also obtained
the phonon damping energies and found that they are mainly affected by decay processes
into acoustic phonons.

The optical phonon frequencies in Figure 4.9 show a small variation with T for T <

100 K and gradually decrease with increase of T . At T � 200 K, the temperature variation
is seen to be almost linear. The solid lines in Figure 4.9 represent the best-fit results for
an expression

ωij (T ) = ωij (0) − αT 2

T + β
(4.12)
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Figure 4.9 Temperature dependence of the long-wavelength optical phonon frequencies, ωLO

and ωTO, for InP. The experimental data are taken from Irmer et al. [4.17]. The solid lines
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Properties of Semiconductors Volume 2: III–V Compound Semiconductors (Kluwer Academic,
Boston, 2004), reproduced by permission from Kluwer Academic Publishers]
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where ωij (0) is the T = 0 K value, α is in cm−1 per Kelvin and β is a quantity proportional to
the Debye temperature (in Kelvin). Note that Equation (4.12) is widely known as the Varshni
equation used for explaining the temperature dependence of the band-gap energy [4.18].

(b) Pressure effect

The pressure dependence of the phonon frequency can be represented by the mode
Grüneisen parameter (see Section 4.3). Venkateswaran et al. [4.14] have measured the
hydrostatic pressure dependence of the acoustic [2TA(X) and 2A(K)] and optical phonons
[TO(�) and LO(�)] in GaAs and TO(�) and LO(�) phonons in AlAs at T = 300 K.
We reproduce in Figure 4.10 their experimental data [4.14]. We can see that the optical
phonon frequencies increase with increasing pressure p (i.e., showing positive Grüneisen
parameters) while the zone-boundary acoustic phonons 2TA(X) and 2A(K) soften under
compression. The softening of the TA(L) phonons has also been observed by Trommer
et al. [4.19].
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Venkateswaran, L. J. Cui, B. A. Weinstein, and F. A. Chambers, Phys. Rev. B 45, 9237 (1992),
reproduced by permission from the American Physical Society]
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The hydrostatic pressure dependence of the phonon frequencies can be usually
expressed as a quadratic equation

ωq(p) = ωq(0) + ap + bp2 (4.13)

where ωq(0) is the p = 0 value. The solid lines in Figure 4.10 represent the calculated
results of Equation (4.13). Note that the phonon frequencies also vary with the application
of uniaxial or biaxial stress, as we will see in Section 4.4.

4.3 MODE GRÜNEISEN PARAMETER

Anharmonic properties of solids are customarily described in terms of the Grüneisen
parameter γ . As a measure of the volume dependence of the phonon frequency νi(q) of
the ith mode, the mode Grüneisen parameter γi(q) is defined by

γi(q) = −d[ln νi(q)]

d[ln V ]
= − V

νi(q)

dνi(q)

dV
(4.14)

The mode Grüneisen parameters can thus be calculated from knowledge of the phonon
frequencies as a function of the crystal volume V . We summarize in Tables 4.5 and 4.6
the mode Grüneisen parameters for the long-wavelength (q = 0) phonons in some cubic
and hexagonal semiconductors, respectively.

Table 4.5 Mode Grüneisen parameter for the long-wavelength optical phonons in some cubic
group-IV, III–V and II–VI semiconductors

System Material TO LO System Material TO LO

IV Diamond 0.95 0.95 II–VI MgO 3.90 1.42
Si 0.96 0.96 β-ZnS 1.84 1.02
Ge 1.00 1.00 ZnSe 1.52 0.85
3C-SiC 1.084 1.019 ZnTe 1.58 1.10

III–V c-BN 1.5 1.2
CdTe 1.61 1.01

BP 1.3 1.12
c-AlN 1.14a 0.89a

AlP 1.49a

AlAs 1.05 0.93
AlSb 1.21 1.15
β-GaN 1.4 1.2
GaP 1.09 0.95
GaAs 1.11 0.97
GaSb 1.33 1.21
InP 1.52 1.19
InAs 1.21 1.06
InSb 1.41 1.17

aCalculated
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Table 4.6 Mode Grüneisen parameter for the long-wavelength phonons in some hexagonal III–V
and II–VI semiconductors

System Material E2 low A1 (TO) E1 (TO) E2 high A1 (LO) E1 (LO)

III–V w-AlN 0.10 1.51 1.41 1.58 0.93 1.06
α-GaN −0.4 1.47 1.41 1.50 1.20

II–VI ZnO −1.6 2.1 1.8 2.0 1.4
w-CdS 0.87 0.87

In principle, the specific heat at constant volume Cv is given by [4.8]

Cv =
∑
i,q

Ci(q) (4.15)

where Ci(q) is the heat capacity due to mode i at constant volume and temperature. The
volume thermal expansion coefficient β is also written as

β = Co

V

∑
i,q

γi(q)Ci(q) (4.16)

where γi(q) is the mode Grüneisen parameter and Co is the compressibility, assumed to be
independent of temperature T . The averaged Grüneisen parameter γ can, then, be defined
by

γ =
∑
i,q

γi(q)Ci(q)

∑
i,q

Ci(q)
(4.17)

Introducing Equations (4.15) and (4.17) into Equation (4.16), we obtain

β = Co

V
γCv (4.18)

This expression is the original Grüneisen relation. Grüneisen considered Co and γ to
be independent of temperature and concluded that the thermal expansion coefficient has
the same temperature dependence as the specific heat. Note that we defined β as the
volume thermal expansion coefficient. It is common to define the linear thermal expansion
coefficient αth by

αth = 1

L

(
∂L

∂T

)
p

= 1

3V

(
∂V

∂T

)
p

= β

3
(4.19)

Introducing Equation (4.19) into Equation (4.18), we obtain the expression of Grüneisen’s
rule presented in Section 2.4, (Equation (2.12)).

4.4 PHONON DEFORMATION POTENTIAL

4.4.1 Cubic lattice

As described in Section 4.2, the phonon frequency is strongly influenced by hydrostatic
pressure. The phonon frequency is also strongly influenced by uniaxial stress. Such a
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stress-induced frequency shift of phonons is essentially explained by the phonon defor-
mation potential (PDP). The PDP is an important anharmonicity parameter, useful in a
number of physical and technological applications. Detailed expressions for PDP and its
consequences for the first-order Raman shifts in semiconductors were first presented by
Cerdeira et al. [4.20].

The PDP is a component of a fourth-rank tensor Kij in suppressed notation. For a
zinc-blende-type crystal, there are only three independent components of the PDP tensor

K11 = K22 = K33 = Mp (4.20a)

K12 = K23 = K13 = Mq (4.20b)

K44 = K55 = K66 = Mr (4.20c)

where M is the reduced mass of the two atoms. According to Cerdeira et al. [4.20],
the long-wavelength optical phonon frequencies in the presence of strain eij obey the
following secular equation

∣∣∣∣∣∣
pexx + q(eyy + ezz) − λ 2rexy 2rexz

2rexy peyy + q(exx + ezz) − λ 2reyz

2rexz 2reyz pezz + q(exx + ezz) − λ

∣∣∣∣∣∣ = 0

(4.21)

where λ = Ω2 − ω2
i and Ω ∼ ωi + (λ/2ωi) is the strain-dependent phonon frequency

(ωi = phonon frequency without strain).
The strain eij and stress Xkl relation is now given by

eij =
∑
kl

SijklXkl (4.22)

where Sijkl is the elastic compliance component. This relation yields the nonzero strain
components

exx = eyy = ezz = (S11 + 2S12)
X

3
(4.23)

for the hydrostatic pressure,

exx = S11X (4.24a)

eyy = ezz = S12X (4.24b)

for the [100] uniaxial stress and

exx = eyy = ezz = S11 + 2S12

3
X (4.25a)

exy = eyz = ezx = S44

6
X (4.25b)

for the [111] uniaxial stress.
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Introducing Equations (4.23)–(4.25) into Equation (4.21), one obtains a shift of the
phonon frequency. For the hydrostatic stress, the shift of the phonon frequency is written
as

∆ΩH = X

6ωi

(p + 2q)(S11 + 2S12) (4.26)

For the [100] and [111] uniaxial stresses, the three-fold degeneracy of the q = 0 phonons
is split into a singlet Ωs with an eigenvector parallel to the stress and a doublet Ωd with
eigenvectors perpendicular to the stress, where Ωs and Ωd are given by

Ωs = ωi + ∆ΩH + 2

3
∆Ω (4.27a)

Ωd = ωi + ∆ΩH − 1

3
∆Ω (4.27b)

The splitting energy ∆Ω is also written as

∆Ω = Ωs − Ωd =




X

2ωi

(p − q)(S11 − S12) for [100] stress (4.28a)

X

2ωi

rS44 for [111] stress (4.28b)

The PDP could then be determined experimentally by measuring either a shift of the
phonon frequency for each mode (∆Ωs = ωi − Ωs or ∆Ωd = ωi − Ωd) or the splitting
energy ∆Ω . It is noted that the hydrostatic pressure component corresponds to the mode
Grüneisen parameter γi in the manner

γi = −p + 2q

6ωi

(4.29)

Under (100) coplanar stress X (i.e., the biaxial stress along the [010] and [001] direc-
tions is applied), the nonzero strain components in the layer are given by

exx = 2S12X, eyy = ezz = (S11 + S12)X (4.30)

The energy shift ∆ωLO for the allowed LO phonons is then given by

∆ωLO = ωLO(X = 0) − ωLO(X �= 0) = 2∆ΩH − 2

3
∆Ω (4.31)

where ∆ΩH and ∆Ω are given by Equations (4.26) and (4.28a), respectively. Typically,
for light scattering from a (100) surface (zinc-blende-type crystals), only the LO mode is
allowed and the TO mode is forbidden in the backscattering configuration. This coplanar
strain configuration is just the case where a large residual strain is usually induced in
lattice-mismatched superlattices and heterostructures grown on (100) substrates.

The dimensionless PDP Kij can be defined, using p, q and r , as

K11 = p

ω2
i

, K12 = q

ω2
i

, K44 = r

ω2
i

(4.32)
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Table 4.7 Long-wavelength PDP for some cubic group-IV, III–V and II–VI semiconductors

System Material TO phonon LO phonon

K11 K12 K44 K11 K12 K44

IV Diamond −2.81 −1.77 −1.9 −2.81 −1.77 −1.9
Si −1.51 −1.99 −0.61 −1.51 −1.99 −0.61
Ge −1.93 −2.39 −0.87 −1.93 −2.39 −0.87
3C-SiC −2.01 −2.31 −2.52 −1.95

III–V AlSb −2.1 −2.6 −0.7 −1.6 −2.6 −0.3
GaP −1.50 −2.10 −0.58 −1.48 −2.51 −0.50
GaAs −1.9 −2.2 −0.80 −1.4 −1.9 −0.54
GaSb −2.52 −2.74 −1.08 −2.29 −2.51 −1.08
InP −2.5 −3.2 −0.47 −1.6 −2.8 −0.18
InAs −2.05 −2.62 −0.76 −1.75 −2.32 −0.76
InSb −2.45 −3.04 −0.54 −1.72 −2.65 −0.22

II–VI β-ZnS −2.81 −4.11 −0.61 −1.23 −2.45 −0.30
ZnSe −1.97 −3.21 −0.43 −0.97 −2.21 −0.43
ZnTe −3.0 −3.6 −0.5 −1.8 −2.7 −0.2
CdTe −3.25 −3.20 −2.1 −1.08 −2.49 −4.54

We compile in Table 4.7 the dimensionless PDPs for the long-wavelength (q = 0) optical
phonons in some cubic group-IV, III–V and II–VI semiconductors.

4.4.2 Hexagonal lattice

The effect of stress on q = 0 phonons in wurtzite crystal has been studied by piezo-Raman
spectroscopy by Briggs and Ramdas [4.21]. The perturbation potential V can be given,
in the linear deformation potential theory, by

V =
∑
ij

Vij eij (4.33)

where eij is the component of the strain tensor and Vij is the deformation potential. For the
wurtzite crystal, the representation generated by Vij is Γ (V ) = 2A1 + E1 + E2. Hence,
the perturbation potential V can be grouped as follows

V = 1

2
(Vxx + Vyy)(exx + eyy) + Vzzezz + 2[(Vyzeyz) + (−Vzx)(−ezx)]

+ 1

2
[(Vxx − Vyy)(exx − eyy) + (−2Vxy)(−2exy)] (4.34)

In Equation (4.34), (Vxx + Vyy) and Vzz belong to A1, Vyz and −Vzx belong to E1 and
(Vxx − Vyy) and −2Vxy belong to E2 as understood from the basis functions appropriate
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Table 4.8 Long-wavelength PDP for some hexagonal III–V and II–VI semiconductors

System Material PDP (cm−1)

E2 low A1 (TO) E1 (TO) E2 high A1 (LO) E1 (LO)

III–V w-AlN a −930 −982 −1092 −643
b −904 −901 −965 −1157

α-GaN a 115 −630 −820 −850 −685 −776
b −80 −1290 −680 −920 −997 −704

InN a −735 −610
b −699 −857

II–VI w-CdS a ∼96 −526 −235 −404 −526 −235
b ∼104 −328 −330 −483 −328 −330
c 16 57 107 57

for the representations A1, E1 and E2 of point group C6v . Thus, under stress the energy
of a state belonging to A1 will shift by

1

2
〈A1|Vxx + Vyy |A1〉(exx + eyy) + 〈A1|Vzz|A1〉ezz

since the remaining terms vanish from the orthogonality theorem. The energy shift of the
A1 state can, then, be given by

∆ΩA1 = aA1(exx + eyy) + bA1ezz (4.35)

where aA1 = (1/2)〈A1|Vxx + Vyy |A1〉 and bA1 = 〈A1|Vzz|A1〉 represent the phonon defor-
mation potentials.

For the calculation of V for the doubly degenerate E1 and E2 modes, we need the
decomposition of the products of the basis functions of C6v . The resultant energy shifts
are given by

∆ΩE1 = aE1(exx + eyy) + bE1ezz ± cE1

√
(exx − eyy)

2 + 4e2
xy (4.36)

for the E1 mode, and similarly

∆ΩE2 = aE2(exx + eyy) + bE2ezz ± cE2

√
(exx − eyy)2 + 4e2

xy (4.37)

for the E2 mode. We summarize in Table 4.8 the PDPs a, b and c for the long-wavelength
(q = 0) optical phonons experimentally determined for some hexagonal III–V and II–VI
semiconductors.

REFERENCES

[4.1] D. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors
(Pergamon, Oxford, 1968).



LATTICE DYNAMIC PROPERTIES 93

[4.2] F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point
Groups (MIT Press, Cambridge, 1963).

[4.3] H. Jones, The Theory of Brillouin Zones and Electronic States in Crystals (North-Holland,
Amsterdam, 1975).

[4.4] J. L. T. Waugh and G. Dolling, Phys. Rev. 132, 2410 (1963).
[4.5] J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).
[4.6] E. O. Kane, Phys. Rev. B 31, 7865 (1985).
[4.7] D. Strauch and B. Dorner, J. Phys.: Condens. Matter 2, 1457 (1990).
[4.8] G. P. Srivastava, The Physics of Phonons (Adam Hilger, Bristol, 1990).
[4.9] A. W. Hewat, Solid State Commun. 8, 187 (1970).

[4.10] J. L. Birman, Phys. Rev. 115, 1493 (1959).
[4.11] L. Van Hove, Phys. Rev. 89, 1189 (1953).
[4.12] H. G. Grahn, Introduction to Semiconductor Physics (World Scientific, Singapore, 1999).
[4.13] G. Dolling and R. A. Cowley, Proc. Phys. Soc. 88, 463 (1966).
[4.14] U. D. Venkateswaran, L. J. Cui, B. A. Weinstein, and F. A. Chambers, Phys. Rev. B 45,

9237 (1992).
[4.15] B. Monemar, Phys. Rev. B 8, 5711 (1973).
[4.16] A. Onton and R. J. Chicotka, Phys. Rev. B 10, 591 (1974).
[4.17] G. Irmer, M. Wenzel, and J. Monecke, Phys. Status Solidi B 195, 85 (1996).
[4.18] Y. P. Varshni, Physica 34, 149 (1967).
[4.19] R. Trommer, H. Müller, M. Cardona, and P. Vogl, Phys. Rev. B 21, 4869 (1980).
[4.20] F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, Phys. Rev. B 5, 580 (1972).
[4.21] R. J. Briggs and A. K. Ramdas, Phys. Rev. B 13, 5518 (1976).





5 Collective Effects and Some

Response Characteristics

5.1 Piezoelectric and electromechanical constants 95
5.1.1 Piezoelectric constant 95
5.1.2 Electromechanical coupling constant 99
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5.1 PIEZOELECTRIC AND ELECTROMECHANICAL
CONSTANTS

5.1.1 Piezoelectric constant

(a) Piezoelectric stress constant

If a stress is applied to certain crystals, they develop an electric moment whose magnitude
is proportional to the applied stress. This is known as the direct piezoelectric effect [5.1].
A crystal with a center of symmetry cannot be piezoelectric. Thus, the diamond-type
crystals (Si, Ge, etc.) cannot be piezoelectric. The III–V compounds crystallizing in the
zinc-blende structure are the simplest crystals lacking a center of symmetry and, hence,
capable of exhibiting piezoelectric and related effects. The piezoelectric constants form a
third-rank tensor. We summarize in Table 5.1 the form of the piezoelectric stress tensor
[e] for the cubic, hexagonal and rhombohedral systems, where m and n in emn represent
m and ij, respectively, according to the rules x → 1, y → 2 and z → 3 (m); and xx → 1,
yy → 2, zz → 3, yz → 4, zx → 5 and xy → 6 (n) [5.1].

We list in Tables 5.2 and 5.3 the piezoelectric stress constant eij for some cubic and
hexagonal group-IV, III–V and II–VI semiconductors, respectively. If the III–V semi-
conductors were expanded in the 〈111〉 direction, the A-faces (metal-atom faces) became
negatively charged, in contrast to II–VI compounds, in which the equivalent faces became
positively charged. Arlt and Quadflieg [5.2] have proposed macroscopic origins of piezo-
electricity as being due to factors such as ionic polarization, strain-dependent ionicity and
electronic polarization.

Figure 5.1 shows a plot of the piezoelectric stress constant e14 versus Phillips ionicity
fi for some cubic III–V and II–VI semiconductors. This plot suggests that e14 passes
through zero at fi ∼ 0.5 while undergoing a reversal in sign (i.e., smaller fi values of
III–V compounds possess negative e14 values and larger fi values of II–VI compounds
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Table 5.1 Form of the piezoelectric stress tensor for semiconductors of certain symmetry classes

Symmetry class Material Tensor form

Cubic (Class Oh) Si, Ge, MgO, etc.


 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0




Showing no piezoelectric effect

Cubic (Class Td ) 3C-SiC, GaAs, ZnSe, etc.


 0 0 0 e14 0 0

0 0 0 0 e14 0
0 0 0 0 0 e14




Hexagonal (Class C6v) 2H-SiC, α-GaN, w-CdS, etc.


 0 0 0 0 e15 0

0 0 0 e15 0 0
e31 e31 e33 0 0 0




Hexagonal (Class D6h) h-BN


 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0




Showing no piezoelectric effect

Rhombohedral (Class C3v) 15R-SiC


 0 0 0 0 e15 −2e22

−e22 e22 0 e15 0 0
e31 e31 e33 0 0 0
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Figure 5.1 Plots of e14 versus Phillips ionicity fi for some cubic III–V and II–VI semiconductors.
The solid line represents the least-squares fit with e14 = 0.20 ln fi + 0.14 (e14 in C/m2)
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Table 5.2 Piezoelectric stress and strain constants, e14 and d14,
for some cubic group-IV, III–V and II–VI semiconductors

System Material e14 (C/m2) d14 (10−12 m/V)

IV Diamonda

Sia

Gea

α-Sna

3C-SiC −0.345b −1.35b

III–V c-BN −1.04b

BP −0.36b

c-AlN 1.13b 9.7b

AlP −0.06b

AlAs −0.23b −3.9b

AlSb 0.068 1.7
β-GaN 0.61b 6.4b

GaP 0.10 1.42
GaAs −0.16 −2.7
GaSb 0.126 2.92
InP −0.083 −1.80
InAs 0.045 1.14
InSb 0.071 2.4

II–VI MgOa

β-ZnS 0.147 3.18
ZnSe 0.049 1.10
ZnTe 0.028 0.91
CdTe 0.0335 1.68
β-HgS 0.14b 5.3b

HgSe 0.058b 2.6b

HgTe 0.029b 1.4b

aPrincipally showing no piezoelectricity
bEstimated or calculated

possess positive ones). Theoretical calculations [5.3–5.5] of e14 for GaAs yielded con-
siderably different values ranging from −0.11 to −0.18. Phillips and Van Vechten [5.6]
showed the reversal in sign of e14 on going from N = 1, 2 to N = 3 in tetrahedrally
coordinated ANB8-N crystals based on the lattice dynamic treatment with the addition
of the concept of their ionicity scale. Hübner [5.3] predicted e14 values for a number of
III–V, II–VI and I–VII compounds and found them to be in good numerical agreement
with experimental data including sign.

More recently, Gironcoli et al. [5.5] have presented an ab initio approach to piezoelec-
tricity in semiconductors. The piezoelectric tensor was given in their model by the stress
induced by a homogeneous electric field, and the perturbation was treated self-consistently
by linear response, thus avoiding both supercells and numerical differentiation. They cal-
culated nine III–V binary semiconductors (Al,Ga,In)(P,As,Sb) and found that, contrary to
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Table 5.3 Piezoelectric stress and strain constants eij and dij for some hexagonal group-IV, III–V
and II–VI semiconductors

System Material eij (C/m2) dij (10−12 m/V)

e15 e31 e33 d15 d31 d33

IV 6H-SiC −0.08 0.2

III–V h-BNa

w-AlN −0.48 −0.58 1.55 −4.07 −2.65 5.53
α-GaN −0.33b −0.55 1.12 3.1 −1.9 3.7
InN −0.41c 0.81c

II–VI ZnO −0.37 −0.62 0.96 −8.3 −5.12 12.3
α-ZnS −0.118 −0.238 0.265 −4.37 −2.14 3.66
w-CdS −0.183 −0.262 0.385 −11.91 −5.09 9.71
w-CdSe −0.138 −0.160 0.347 −10.51 −3.92 7.84

aPrincipally showing no piezoelectricity
bEstimated from cubic phase data
cCalculated

common belief, two III–V compounds AlP and InP have positive e14 values. This result
is in direct contrast to those obtained by Hübner [5.3] and Miura et al. [5.4].

The eij for the wurtzite crystals may be estimated from that of the zinc-blende-type
crystals (e14) [5.7]

e15 = e31 = − 1√
3
e14

e33 = 2√
3
e14

(5.1)

(b) Piezoelectric strain constant

The piezoelectric strain constant dij has the same tensor form as in Table 5.1. The constant
dij is connected reciprocally with the piezoelectric stress constant eik through

dij =
∑

k

eikSkj (5.2)

or, vice versa
eij =

∑
k

dikCkj (5.3)

where Skj (Ckj ) is the elastic compliance (stiffness) constant as discussed in Section 3.1.
In the case of zinc-blende crystals, the piezoelectric tensor [d] can be expressed by the
component d14 only

d14 = e14S44 (5.4)
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We have listed in Tables 5.2 and 5.3 the piezoelectric strain constant dij reported for some
cubic and hexagonal semiconductors, respectively.

5.1.2 Electromechanical coupling constant

It is known [5.8] that injected ultrasonic waves can be amplified in piezoelectric semi-
conductors by the application of a sufficiently high electric field because of the strong
interaction of ultrasonic waves with mobile electrons. Domains of intense acoustic flux,
showing a broad band of frequencies in the low-GHz range, can be generated in piezo-
electric semiconductors by acoustoelectric amplification of phonons from the thermal
equilibrium spectrum [5.9, 5.10]. The gain of such acoustoelectric interactions is explained
in terms of the material parameter K , called the electromechanical coupling constant [5.1,
5.11, 5.12]. Carrier mobilities in semiconductors are strongly affected by this coupling
constant. The parameter value is also necessary in calculating figures of merit for piezo-
electric transducer devices [5.13].

The electromechanical coupling constant K is a crystal-direction-dependent dimen-
sionless quantity. The maximum coupling of transverse acoustic waves occurs along the
[110] direction in the zinc-blende crystals [5.11]. This is the reason why the majority
of experiments have been carried out with crystals cut in this direction [5.9, 5.10]. The
maximum coupling constant K[110] in this case is given by

K[110] = e14√
ε0ε

S
s CD

44

(5.5)

where e14 is the piezoelectric stress constant, ε0 is the dielectric permittivity of free space
(8.8542 × 10−12 F/m), εS

s is the static dielectric constant at constant strain and CD
44 is the

elastic stiffness constant at constant electric displacement. In Table 5.4, we present the
functional expressions for the electromechanical coupling constant K giving maximum
coupling in the zinc-blende (class Td ) and hexagonal lattices (class C6v) [5.13].

5.2 FRÖHLICH COUPLING CONSTANT

It is known that the coupling between the electrons and LO phonons cannot be neglected
in the study of transport and optical properties in polar semiconductors. A measure of the
interaction between the electrons and LO phonons can be represented by the well-known
Fröhlich coupling constant [5.14]

αF = 1

2

e2/
√

h̄/2mα
c ωLO

h̄ωLO

(
1

ε∞
− 1

εs

)
(5.6)

where e is the electron charge, mα
c is the electron effective mass (conductivity mass),

ωLO is the longitudinal optical (LO) phonon frequency and ε∞ and εs are, respectively,
the high-frequency and static dielectric constants. Using the effective mass values m�

c =
0.067m0 (GaAs) and 0.150m0 (AlAs), we obtain the values of αF for GaAs and AlAs to
be 0.068 and 0.126, respectively [5.15].
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Table 5.4 Functional expression for the electromechanical
coupling constant K giving a maximum coupling in the zinc-
blende and hexagonal lattices. Superscripts S and T mean
at constant strain and stress, respectively, and D and E at
constant electric displacement and field, respectively

Zinc-blende lattice (Class Td ; GaAs, ZnSe, etc.)

K[110] = e14√
ε0εS

s CD
44

Hexagonal lattice (Class C6v; 4H-SiC, α-GaN, w-CdS, etc.)

K15 = e15√
ε0ε

S
33C

D
44

K31 = d31√
ε0ε

T
33S

E
11

K33 = d33√
ε0ε

T
33S

E
33

Table 5.5 Fröhlich coupling constant αF and Phillips ionicity fi for some group-IV, III–V and
II–VI semiconductors

System Material αF fi System Material αF fi

IV Diamond a 0 II–VI ZnO 1.19 0.616
Si a 0 β-ZnS 0.63 0.623
Ge a 0 ZnSe 0.432 0.630
α-Sn a 0 ZnTe 0.332 0.609
3C-SiC 0.256 0.177 w-CdS 0.514 0.685

w-CdSe 0.46 0.699
III–V w-AlN 0.65 0.449 CdTe 0.35 0.717

AlAs 0.126 0.274
AlSb 0.023 0.250
α-GaN 0.48 0.500
GaP 0.201 0.327
GaAs 0.068 0.310
GaSb 0.025 0.261
InN 0.24 0.578
InP 0.15 0.421
InAs 0.0454 0.357
InSb 0.022 0.321

aPrincipally showing no Fröhlich coupling interaction



COLLECTIVE EFFECTS AND SOME RESPONSE CHARACTERISTICS 101

0 0.2 0.4 0.6 0.8 1.0

10–2

10–1

100

3C-SiC

w-AlN

AlAs

AlSb

α-GaN

GaP

GaAs

GaSb

InNInP

InAs

InSb

ZnO
β-ZnS

ZnSe
ZnTe

w-CdS
w-CdSe
CdTe

Group-IV
III-V
II-VI

fi

a
F

Figure 5.2 Fröhlich coupling constant αF versus Philips ionicity fi for some group-IV, III–V and
II–VI semiconductors. The solid line represents the least-squares fit with αF = 0.43 ln fi + 0.69

The Fröhlich coupling constant αF is strongly dependent on the ionic polarization of
the crystal, which is related to the static and high-frequency dielectric constants εs and
ε∞. We summarize in Table 5.5 the Fröhlich coupling constant αF and Phillips ionicity
fi for some group-IV, III–V and II–VI semiconductors. Figure 5.2 also shows the plots
of αF versus Phillips ionicity fi for ANB8-N semiconductors (N = 2–4). As clearly seen
in Figure 5.2, the Fröhlich coupling constant αF increases gradually with increasing fi.
This is the general trend of αF. The solid line in Figure 5.2 represents the least-squares
fit with the relation

αF = 0.43 ln fi + 0.69 (5.7)
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6.1 BASIC PROPERTIES

6.1.1 Energy-band structure

The wavefunction Ψ (r) of the electrons in a crystal lattice is expressed by the well-known
Bloch theorem

Ψ (r) = exp(ik · r)Uk(r) (6.1)

where the function Uk(r) has a period of the crystal lattice such that Uk(r) = Uk(r + T )

(here T is any vector of the Bravais lattice). The nearly free-electron approximation is a
good starting point for discussing the energy-band theory. It explains the origins of the
band gap and of the effective mass m∗ which is defined as the reciprocal of the curvature
of E (energy) versus k (wavevector) diagram. The functional dependence of E on k for
the various bands, En(k), is defined by the Schrödinger equation

HΨ (r) = p2

2m∗ + V (r) = EΨ (r) (6.2)
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where p2/2m∗ is the kinetic energy (p = −ih̄

∆

), V (r) is the potential energy and E is
the energy eigenvalue. Since the electrons in the crystal are influenced by the periodic
potential, the electron mass m∗ used in Equation (6.2) differs significantly from the free-
electron mass m0.

The reciprocal space, also called phase space, k space and momentum space, is a
convenient tool to describe the behavior of both vibrational states and electronic states.
The coordinate axes of the reciprocal lattice are the wavevectors of the plane waves
corresponding to the vibrational modes or the Bloch states. The Wigner–Seitz unit cell
in the reciprocal space is the first Brillouin zone that has already been illustrated in
Figures 4.1–4.3.

The characteristics of the electronic energy bands are usually indicated by plotting
the energy eigenvalues of the electrons for different values of k in the Brillouin zone.
The crystal potential is different in different directions because of the difference in the
atomic spacing; as a result, the value of E depends both on the magnitude and on the
direction of k. In the following, we review the characteristic features of the E–k diagrams
for crystals with three different crystal structures: Si (diamond), InP (zinc-blende) and
w-CdSe (wurtzite).

(a) Diamond-type semiconductor

In Figure 6.1, we show the relativistic energy-band structure of Si as calculated by Schmid
et al. [6.1] in the local-density approximation, but with the adjusting potentials included
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Figure 6.1 Electronic energy-band structure of Si along high-symmetry lines as calculated in
the local-density approximation, but with the adjusting potentials included self-consistently. The
electronic states are labeled using the notation for the representations of the double-group of the dia-
mond structure. The main interband transitions are indicated by vertical arrows. [From U. Schmid,
N. E. Christensen, and M. Cardona, Phys. Rev. B 41, 5919 (1990), reproduced by permission from
the American Physical Society]
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Table 6.1 Energies of the indi-
rect band gap (EX

g ) and critical
point (CP) in Si at 300 K. EX

g :
�+

8 →X5 transitions

EX
g , CP Energy (eV)

EX
g 1.12

E0
′ 3.281–3.5

E1 3.38
E0 4.06
E0 + ∆0 4.13
E2 4.27
E1

′ 5.32

self-consistently. The electronic states are labeled with the notation for the representations
of the double group of the diamond structure. The locations of several interband transitions
are indicated in Figure 6.1 by the vertical arrows. These are transitions, which may play
an important role in the analysis of optical spectra [6.2]. We also summarize in Table 6.1
the indirect band-gap (EX

g ) and critical-point energies observed in the optical spectra of
Si at T = 300 K [6.2].

The fundamental absorption edge of Si corresponds to indirect transitions from the highest
valence band at the � point to the lowest conduction band near X, i.e., �25′(�+

8 ) → X1(X5).
There is a clear difference in ordering of the first two conduction bands between Si and
Ge (α-Sn). In Si, the lowest-lying conduction band at �, �15, is p-like; however, in Ge and
α-Sn the s-like �2′ band is the lowest conduction band. A related effect is the decrease in
the optical gap of Si from ∼3.3 eV to identically zero is the semimetallic α-Sn.

As schematically shown in Figure 6.2(a), the spin–orbit interaction splits the �25′

valence band into �+
8 and �+

7 (double-group notation, splitting energy ∆0) and the �15

conduction band into �−
6 and �−

8 (splitting energy ∆0
′). The corresponding transitions at

or near k = 0 are, respectively, labeled E0 (�+
8 → �−

7 ), E0 + ∆0 (�+
7 → �−

7 ), E0
′ (�+

8 →
�−

6 ), E0
′ + ∆0

′ (�+
8 → �−

8 ), E0
′ + ∆0 (�+

7 → �−
6 , dipole forbidden) and E0

′ + ∆0
′ + ∆0

(�+
7 → �−

8 ).
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Figure 6.2 (a) Energy gaps at or near the � point in Si with and without considering the spin–orbit
interaction. Note that the E0

′ + ∆0 transitions are dipole forbidden; (b) energy gaps at or near the
L point in Si with and without considering the spin–orbit interaction
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As seen in Figure 6.2(b), the spin–orbit interaction splits the L3′ valence band into L−
4,5

and L−
6 and the L3 conduction band into L+

6 and L+
4,5. The corresponding transitions at or

near L (along the 〈111〉 direction (�) of the Brillouin zone) are, respectively, labeled E1

(L−
4,5 → L+

6 ), E1 + ∆1 (L−
6 → L+

6 ), E1
′ (L−

4,5 → L+
6 ) and E1

′ + ∆1
′ (L−

4,5 → L+
4,5). The

E2 transitions are also expected to occur along the 〈110〉 (�) or near X, i.e., X5 (X4) →
X5 (X1).

The spin–orbit splitting energies ∆0 and ∆0
′ of Si are very small and have not been

taken into consideration in the analysis of optical spectrum [6.2]. Similarly, the spin–orbit
splitting energies ∆1 and ∆1

′ of Si are extremely small and, thus, no clear observations
relating to them have been reported so far. It is also not easy to observe the E0/(E0 + ∆0)

edges of Si because of their exceedingly weak nature in this material [6.3].
The lowest direct band gap of Si is the E0

′ edge. The E1 transitions in Si are nearly
degenerate with the E0

′ transitions and, therefore, most attention had been given to these
complicated E1-edge structures (3.1–3.4 eV region). The edge labeled E1

′ is well sepa-
rated in energy from other critical points.

(b) Zinc-blende-type semiconductor

InP crystallizes in the zinc-blende structure. The electronic energy-band structure of
InP as calculated by an empirical nonlocal pseudopotential method by Chelikowsky and
Cohen [6.4] is reproduced in Figure 6.3. The electronic states are labeled with the notation
for the representations of the double-group of the zinc-blende structure. Several interband
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Figure 6.3 Electronic energy-band structure of InP as calculated by an empirical nonlocal pseu-
dopotential method. The electronic states are labeled using the notation for the representations of
the double-group of the zinc-blende structure. The main interband transitions are indicated by ver-
tical arrows. [From J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976), reproduced
by permission from the American Physical Society]
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Table 6.2 Energies of the criti-
cal point (CP) and indirect band
gap (EID

g ) in InP at 300 K.
EL

g : �8 →L6 transitions; EX
g :

�8 →X6 transitions

CP, EID
g Energy (eV)

E0 1.35
E0 + ∆0 1.45
EL

g 2.05

EX
g 2.21

E1 3.17
E1 + ∆1 3.29
E0

′ 4.70
E0

′ + ∆0
′ 4.79

E2 5.10
E2 + δ 5.69
E1

′ ∼6.5

transitions are included in Figure 6.3. Table 6.2 summarizes the critical-point and indirect
band-gap energies for InP at T = 300 K [6.5, 6.6].

The fundamental absorption edge of InP corresponds to direct transitions from the
highest valence band at the � point to the lowest conduction band at the � point (E0, �8 →
�6). Transitions at this edge are sometimes dominated by free excitons, a fact which is
particularly evident at low temperatures [6.7]. The excitonic transition energy is ∼5 meV
less than the E0 edge. The second lowest interband critical point, E0 + ∆0, corresponds
to transitions from the larger component of the spin–orbit split-off valence band to the
lowest conduction band at the � point (�7 → �6). In Figure 6.4(a), we show the energy
diagram indicating the spin–orbit splitting at or near the � point of the zinc-blende-type
semiconductors.

The E1 and E1 + ∆1 transitions in InP occur along the � lines (〈111〉 directions) or at
the L point of the Brillouin zone (Figure 6.4(b)). In the energy region from 4.7 to 5.7 eV
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E1+∆1
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′ E1

′+∆1
′

(a) (b)
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′+∆0E0′

E0′+∆0′
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L4,5

L6

L6

L4,5

L6

∆1
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∆1

Figure 6.4 (a) Energy gaps at or near the � point in InP with and without considering the
spin–orbit interaction. Note that the E0

′ + ∆0 transitions are dipole forbidden; (b) energy gaps
at or near the L point in InP with and without considering the spin–orbit interaction
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in InP, several critical points have been resolved [6.5, 6.6, 6.8]. The most prominent
ones have been assigned to transitions near the � point (E0

′ triplet). In the 5.1–5.7 eV
region, the E2 and E2 + δ transitions are expected to occur along the 〈110〉 (�) or near
X (X7 → X6 (E2), X7 → X7 (E2 + δ)). Note that the splitting energy δ at the X point is
zero in covalent, diamond-type semiconductors (Si, Ge, etc.).

(c) Wurtzite-type semiconductor

CdSe normally crystallizes in the wurtzite structure (w-CdSe). Figure 6.5 shows the elec-
tronic energy-band structure of w-CdSe as calculated in terms of a nearest-neighbor
empirical tight-binding theory by Kobayashi et al. [6.9]. The dashed lines show the results
derived from the semi-empirical pseudopotential method [6.10]. It should be noted that
in the calculations no account had been taken of spin–orbit interaction effects. Table 6.3
lists the critical-point energies of w-CdS at T = 300 K [6.11, 6.12].

Birman [6.13] discussed the relationship between the k = 0 conduction-band and
valence-band states of the wurtzite structure and the corresponding states of the zinc-
blende structure. As noted by him, the essential difference between the potential that an
electron experiences in an ideal wurtzite lattice and that in a zinc-blende lattice is the
relatively small difference in ‘crystal field’ due to sites beyond the next nearest neighbors.
The detailed differences in the energy bands then arise from the difference in the crystal
field and from the difference in the Brillouin zones. The conduction-band and valence-
band structures proposed for wurtzite at k = 0 (�) are illustrated in Figure 6.6. As seen in
Figure 6.6, the triplet states of zinc-blende (�15) correspond to a doublet (�5) and a singlet
(�1) of wurtzite. The �5 and �1 states are separated by ∆cr, the crystal-field splitting. In the
actual valence-band structure of a wurtzite crystal, the three valence bands illustrated in
Figures 6.6(d) and 6.6(e) can be thought of as arising from Figure 6.6(a) by the combined
effect of both spin–orbit and crystal-field perturbations, while the wavefunction for each
band may be written as a linear combination of px , py and pz and spin functions, provided
the interaction of the �7 levels with the conduction band is neglected. This result is known
as the quasi-cubic model [6.14].

Under the spin–orbit interaction, represented by the matrix element ∆so and that of the
crystal field represented by ∆cr, the differences in energy of the split-off valence bands
are given by [6.14]

EBA = E0B − E0A = ∆so + ∆cr

2
−

√(
∆so + ∆cr

2

)
− 2

3
∆so∆cr (6.3a)

ECA = E0C − E0A = ∆so + ∆cr

2
+

√(
∆so + ∆cr

2

)
− 2

3
∆so∆cr (6.3b)

The corresponding wavefunctions of the three valence bands are given by

|A〉 : S+ ↑ (6.4a)

|B〉 : αBS− ↑ +αCS0 ↓ (6.4b)

|C〉 : αCS− ↑ +αBS0 ↓ (6.4c)
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Figure 6.5 Electronic energy-band structure of w-CdSe as calculated with an empirical tight-
binding theory. In the calculation, no account had been taken of the spin–orbit interaction effects.
The dashed lines show the results derived from the semiempirical pseudopotential method by
Bergstresser and Cohen [6.10]. The locations of several interband transitions are also indicated by
the vertical arrows. These are transitions, which may play an important part in the analysis of
optical spectra. [From A. Kobayashi, O. F. Sankey, S. M. Volz, and J. D. Dow, Phys. Rev. B 28,
935 (1983), reproduced by permission from the American Physical Society]

where ↑ and ↓ represent spin-up and spin-down, respectively, and S+, S− and S0 are
functions defined by the p-like basis functions. The admixture coefficients αB and αC can
now be given by

αB =
[

1 + 1

2

(
2 − 3

∆so
EBA

)2
]−1/2

(6.5a)
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Table 6.3 Energies of the criti-
cal point (CP) in w-CdSe at 300 K

CP Energy (eV)

E ⊥ c E || c

E0A 1.732
E0B 1.761 1.761
E0C 2.161 2.161
E1A 4.10
E1B 4.55
E1C 4.85 4.78
E0

′ 5.6 6.0
E2

′ 7.6, 8.7a

E1
′ 9.5a

aFor unpolarized light
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Figure 6.6 Relationships between the valence-band splitting in the zinc-blende and wurtzite lat-
tices and between the irreducible representations of the bands at the � point (k = 0). (c) shows the
actual splitting found in the zinc-blende crystals, while (d) and (e) give that found in the wurtzite
crystals. (a)–(c) show the relationship of these splitting to simpler cases where spin–orbit and/or
crystal-field interaction vanish

αC =
[

1 + 1

2

(
2 − 3

∆so
ECA

)2
]−1/2

(6.5b)

with
α2

B + α2
C = 1 (6.6)

For w-CdSe, we obtain ∆so = 412.8 meV, ∆cr = 45.2 meV, αB = 0.620 and αC = 0.785
(Figure 6.6(d)), while those for ZnO are ∆so = −19 meV, ∆cr = 49 meV, αB = 0.988
and αC = 0.155 (Figure 6.6(e)).
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The corresponding momentum matrix (p-matrix) elements |〈c|p|v〉|2 between the p-like
valence and s-like conduction bands are given by

P0A(⊥)2 = P 2/2, P0B(⊥)2 = α2
BP 2/2, P0C(⊥)2 = α2

CP 2/2 (6.7a)

for the light polarization E ⊥ c (ordinary ray), and

P0A(||)2 = 0, P0B(||)2 = α2
CP 2, P0C(||)2 = α2

BP 2 (6.7b)

for the light polarization E || c (extraordinary ray).
The wurtzite-type crystals have a C6v point-group symmetry. At the center of the

Brillouin zone, the conduction band has �7 (s-like) symmetry and the A, B and C valence
bands have, respectively, �9, �7 and �7 (p-like) symmetries. The polarization vectors
E ⊥ c and E ||c of the point group C6v belong to �5 and �1 symmetries, respectively.
The direct products can now be given by

�9 → �7(A) : �9 × �7 = �5 + �6 (6.8a)

�7 → �7(B, C) : �7 × �7 = �1 + �2 + �5 (6.8b)

The direct product �7 × �7 then contains the representations for both E ⊥ c and E ||c, but
�9 × �7 contains only the representation for E ⊥ c. This means that for E ||c the optical
transition between the A valence and conduction bands is forbidden, while for E ⊥ c all
the optical transitions are possible, in agreement with those given by Equation (6.7).

The structures seen in w-CdSe in the energy region higher than E0α (α = A, B and
C; ∼1.7 eV) are labeled E1α (α = A, B and C; ∼4.1–4.9 eV). The original assignment
of these structures was made by Cardona [6.12]; they correspond to the E1 and E1 +
∆1 transitions of the zinc-blende-type materials, except for the existence of a strong
polarization effect related to the optical anisotropy of wurtzite. The E1A and E1B peaks
may be related to transitions along the � axis (�5 → �3) in the Brillouin zone which
are split by the spin–orbit interaction. These peaks are forbidden for E ||c (i.e., only the
E1C peak appears for E ||c polarization). The E1C structure may originate from transitions
at the U point in the Brillouin zone.

The E0
′ structure (∼6 eV) may originate from transitions at the M point in the Brillouin

zone [6.15]. Spectroscopic ellipsometry measurements revealed several additional peaks,
such as F1, E2, E1

′, C′ and D′, at energies higher than 7 eV [6.16]. These transitions
correspond to higher critical points and core excitons.

6.1.2 Electronic density of states

The electronic density of states can be calculated in the same way as that for phonons
(Section 4.1). An expression for the electron density of states g(E) per unit volume
(n = 3), area (n = 2) or length (n = 1) can be given by

g(E) = 2
d

dE

∫
dnk

(2π)n
δ[E − EC(k)] (6.9)



112 PROPERTIES OF GROUP-IV, III–V AND II–VI SEMICONDUCTORS

where n = 3, 2 or 1 depending on the dimension of the system. A factor two in Equa-
tion (6.9) accounts for spin-up and spin-down. Assuming a parabolic band with an
isotropic effective mass m∗, the energy of the conduction-band electrons is given by

EC(k) = EC0 + (h̄k)2

2m∗ (6.10)

where EC0 is the energy at the conduction-band minimum. The volume elements of k
space in Equation (6.9) can be replaced by d3k = 4πk2dk for n = 3, d2k = 2πk dk for
n = 2 and dk = dk for n = 1. The density of states can, then, be written as

g(E) = (2m∗)3/2

2π2h̄3

√
E − EC0H(E − EC0) (6.11)

for n = 3,

g(E) = m∗

πh̄2 H(E − EC0) (6.12)

for n = 2 and

g(E) = 1

πh̄

√
2m∗

E − EC0
H(E − EC0) (6.13)

for n = 1, where H(x) is the Heaviside function, defined by

H(x) =
{

0 for x < 0
1 for x > 0

(6.14)

Since the longitudinal effective masses at the L-conduction and X-conduction bands in
the zinc-blende-type semiconductors are much larger than their counterparts, these elec-
trons can be treated as those in the two dimensional state (n = 2). The two-dimensional
density of states has also been directly observed in field-effect transistors and quan-
tum wells. A one-dimensional system can be realized by a semiconductor quantum
wire and by a bulk semiconductor experiencing a magnetic field. The results given in
Equations (6.11)–(6.13) are valid for electrons near the conduction-band minimum. In
order to use these results for holes near the valence-band maximum, one has to replace
E − EC0 by EV0 − E, where EV0 is the energy at the valence-band maximum.

In Figure 6.7, we show the calculated band structure and Gaussian-broadened density
of states for Ge compared to experimental X-ray photoelectron spectroscopy (XPS)
and bremsstrahlung isochromat spectroscopy (BIS) results recorded with E = 1486.6 eV
[6.17]. The theoretical band structure and density of states were obtained with the
empirical pseudopotential method. The XPS usually supplies direct information about
the absolute energies of the valence-band states and less direct information about the
empty states. The development of k-resolved inverse-photoemission spectroscopy and the
application of BIS can give a broad overview of both occupied and empty states. As
seen in Figure 6.7, the conduction-band structure in the 2–5 eV region is reproduced by
band theory quite accurately. Chelikowsky et al. [6.17] investigated the density of states
not only for Ge, but also for GaAs and ZnSe. These materials have the same lattice
parameters and the same electronic configuration within the ion core. Hence, differences
in the electronic structure can be attributed to bonding changes. They found the great
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similarity in the conduction-band density of states for the series Ge to GaAs to ZnSe.
The main features of the conduction-band density of states are not changed by increasing
ionicity of the crystals. This is not true for the valence-band density of states, and there
is no real analog in the conduction bands for the antisymmetric gap in the valence bands.
The largest effect of increasing ionicity is to increase the band gaps from Ge to GaAs to
ZnSe, but not to change significantly the band dispersion.
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Figure 6.7 Calculated energy bands and Gaussian-broadened density of states for Ge compared
to experimental XPS and BIS results taken with E = 1486.6 eV. The XPS and BIS results are
normalized for visual clarity. [From J. R. Chelikowsky, T. J. Wagener, J. H. Weaver, and A. Jin,
Phys. Rev. B 40, 9644 (1989), reproduced by permission from the American Physical Society]
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6.2 E0-GAP REGION

6.2.1 Effective �-point hamiltonian

As mentioned in Section 6.1, the six valence bands (p-like �15) in a scalar-relativistic
representation of a zinc-blende semiconductor are all degenerate at point � (k = 0). Each
band has, in general, a different curvature so that they split near � (k 
= 0). The scalar
bands retain two-fold spin degeneracy, and they are symmetric in ±k due to time-reversal
symmetry. When spin–orbit effects are included, the two spin–orbit split-off hole states
(�7) drop in energy, opening a gap (∆0) to the �8 light-hole and heavy-hole bands. The ±k
symmetry is lost when the spin–orbit interaction is included. The four-fold-degenerate �8

states are split by small amounts and intermixed away from the � point, depending on the
direction of k for the states in question [6.18–6.20]. This splitting is linear to lowest order
in the distance |k | from the center of the Brillouin zone so that the extrema of the valence
bands are displaced. The spin–orbit split-off hole band (�7) is two-fold spin degenerate
at point �, and it splits as |k |3 to lowest order in all but the [111] and [100] directions
where it remains degenerate. The s-like �6 conduction band also splits as |k |3 for k in
the [110] direction. The spin–orbit splitting in zinc-blende-type semiconductors has been
investigated theoretically by several authors using various calculation techniques [6.20].
They have, however, not been usually observed experimentally because of the small size
of |k | and their small energies.

The effective Hamiltonians for the lowest two conduction bands and the highest six
valence bands at the � point in the zinc-blende-type semiconductors are, respectively,
written as [6.21]

H ZB
c = h̄2k2

2m�
e

+ a�
c (exx + eyy + ezz) (6.15)

and

H ZB
v = 1

3
∆so(L · σ ) − (γ1 + 4γ2)k

2 + 6γ2(L · k)2 − 6(γ2 − γ3)
∑
i,j

[Li, Lj ]kikj

+ (a + 2b)(exx + eyy + ezz) − 3b
∑

i

L2
i eii − √

3d
∑
i,j

[Li, Lj ]eij (6.16)

where m�
e is the electron effective mass, a�

c , a, b and d are Bir–Pikus deformation poten-
tials, eij is the strain-tensor component (i, j = x, y or z), ∆so = ∆0 is the spin–orbit
split-off energy, L and σ are the orbital and spin angular momentum operators, respec-
tively, [Li, Lj ] is defined by [Li, Lj ] = (LiLj + LjLi)/2 and γi (i = 1 − 3) are Luttinger
valence-band parameters.

The effective Hamiltonians for the lowest two conduction bands and the highest six
valence bands at the � point in the wurtzite-type semiconductors are, respectively, given
by [6.21]

H W
c = h̄2k2

z

2m
||
e

+ h̄2(k2
x + k2

y)

2m⊥
e

+ D1ezz + D2(exx + eyy) (6.17)
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and

H W
v = ∆1L

2
z + ∆2Lzσz + √

2∆3(L+σ− + L−σ+) + (A1 + A3L
2
z)k

2
z

+ (A2 + A4L
2
z)k

2
⊥ − A5(L

2
+k2

− + L2
−k2

+) − 2A6kz([Lz, L+]k− + [Lz, L−]k+)

+ iA7(L+k− − L−k+) + (C1 + C3L
2
z)ezz + (C2 + C4L

2
z)e⊥ − C5(L

2
+e− + L2

−e+)

− 2C6([Lz, L+]e−z + [Lz, L−]e+z) (6.18)

where m
||
e and m⊥

e are k-dependent electron effective masses, Di (i = 1, 2) and Ci

(i = 1–6) are Bir–Pikus deformation potentials, Ai (i = 1–6) are Luttinger valence-
band parameters and ∆1 and ∆2,3 correspond to the crystal-field and spin–orbit splitting
parameters in eV, respectively. L± = (Lx ± iLy)/

√
2, σ± = (σx ± iσy)/2, k2

⊥ = k2
x + k2

y ,
k± = kx ± iky , e⊥ = exx + eyy , e± = exx − eyy ± 2iexy and e±z = exz ± ieyz. Note that
in the quasi-cubic approximation, the energy parameters ∆1 –∆3 in the wurtzite structure
are related to the zinc-blende parameters ∆cr and ∆so in the manner

∆1 = ∆cr

3∆2 = 3∆3 = ∆so

(6.19)

6.2.2 Room-temperature value

There have been many experimental measurements of E0-gap and E0 + ∆0-gap ener-
gies of semiconductors over a wide range of temperatures. We list in Table 6.4 the
room-temperature E0 and E0 + ∆0 values for some cubic group-IV, III–V and II–VI
semiconductors. Table 6.5 also lists the lowest direct band-gap values E0α (α = A, B or
C) for some hexagonal semiconductors at T = 300 K. The InN value is reported to be
E0 = 1.89 eV [6.22]. Note, however, that very recent studies suggest evidence of the
narrow band-gap energy of ∼0.7–1.1 eV for this material [6.23–6.28].

We plot in Figure 6.8 the E0-gap energy versus lattice constant a for some group-IV,
III–V and II–VI semiconductors. The solid line represents the least-squares fit with the
relation (a in Å; E0 in eV)

E0 = 18.55 − 2.84a (6.20)

An increase in E0 with decreasing a can be understood from Figure 6.9 in which the
energy banding of allowed levels in tetrahedrally bonded group-IV semiconductors as a
result of the sp3 hybridization of electron orbitals is schematically shown, together with
their E0 versus a plots.

Figure 6.10 shows the lowest direct band-gap energy E0 plotted versus molecular
weight M for some group-IV, III–V and II–VI semiconductors. The solid line represents
the least-squares fit with the relation (M in amu; E0 in eV)

E0 = 20.51 − 3.72 ln M (6.21)

It has already been shown in Section 1.4 that the relation between the lattice constant a

and molecular weight M can be simply given by a = 0.579 + 1.04 ln M (M in amu; a in
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Table 6.4 E0-gap and E0 + ∆0-gap energies for some cubic group-
IV, III–V and II–VI semiconductors at 300 K

System Material E0 (eV) E0 + ∆0 (eV)

IV Diamond 15.3
Si 4.06 4.13
Ge 0.795 1.08
α-Sn −0.413a,b ∼0.4 (|�−c

7 − �+v
7 |)a

3C-SiC 7.4

III–V c-BN 7.9–11.40c

BP 5
BAs 1.45d

c-AlN 5.2
AlP 3.91e

AlAs 3.01 3.22
AlSb 2.27 2.94
β-GaN 3.231f 3.248 f

GaP 2.76 2.84
GaAs 1.43 1.76
GaSb 0.72 1.50
InP 1.35 1.46
InAs 0.359 0.726
InSb 0.17 1.04

II–VI MgO 7.8
β-MgS 4.45 4.52
β-MgSe 4.0 4.4
β-MgTe 3.4 4.35
β-ZnS 3.726 3.796
ZnSe 2.721 3.145
ZnTe 2.27 3.22
c-CdS 2.46 2.53
c-CdSe 1.675 2.07
CdTe 1.51 2.41
β-HgS −0.04c,g ∼0.03 (|�c

6 − �v
7 |)c

HgSe −0.08g ∼0.3 (|�c
6 − �v

7 |)
HgTe −0.15g ∼0.8 (|�c

6 − �v
7 |)

aAt T = 1.5 K
bThe sign is chosen positive for a normal band structure like that
of Ge
cCalculated or estimated
d Tentative assignment
eEstimated from AlxGa1−xP data
f Grown on MgO(100) substrate
g The sign is chosen positive for a normal band structure like that
of CdTe
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Table 6.5 E0α (α = A, B or C)-gap or its excitonic gap energy for some hexagonal group-IV,
III–V and II–VI semiconductors at 300 K

System Material E0A (eV) E0B (eV) E0C (eV)

IV 6H-SiC 5.14a

III–V w-AlN 6.2
α-GaN 3.420 3.428
InN 1.89 (0.7–1.1b)

II–VI ZnO 3.40 3.45 3.55
α-ZnS 3.75 3.78 3.87
w-CdS 2.501 2.516 2.579
w-CdSe 1.751 1.771 2.176

aCalculated
bNote that very recent studies for InN suggest an evidence of the narrow band-gap energy of
E0 ∼ 0.7–1.1 eV
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Figure 6.8 E0-gap energy versus lattice constant a for some group-IV, III–V and II–VI semi-
conductors at 300 K. For hexagonal semiconductors, an effective lattice constant aeff = (

√
3a2c)1/3

is plotted instead of a. The solid line represents the least-squares fit with E0 = 18.55 − 2.84a (a
in Å; E0 in eV)

Å). Introducing this equation into Equation (6.20), we obtain (M in amu; E0 in eV)

E0 = 16.91 − 2.95 ln M (6.22)

The dashed line in Figure 6.10 shows the calculated result of Equation (6.22).
We summarize in Table 6.6 the spin–orbit split-off ∆so and crystal-field splitting ener-

gies ∆cr for some group-IV, III–V and II–VI semiconductors. Note that these energies
may not vary so largely with temperature if one supposes the valence-band rigidity of such
semiconductors. In Figure 6.11, we plot the variation of ∆0 for some group-IV, III–V
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Figure 6.10 E0-gap energy at 300 K versus molecular weight M for some group-IV, III–V and
II–VI semiconductors. The solid line represents the least-squares fit with E0 = 20.51 − 3.72 ln M ,
while the dashed line represents the relation with E0 = 16.91 − 2.95 ln M (M in amu; E0 in eV)

and II–VI semiconductors with respect to the group IV, V and VI anions. The valence
and conduction bands of the III–V (II–VI) semiconductors can be well characterized by
electron orbital of the group V (VI) anions and group III (II) cations, respectively. It
is evident from Figure 6.11 that there is an increase in ∆0 with increase in the atomic
number of the anion atoms. It is also clear from Figure 6.11 that the common anion group
has nearly the same ∆0 value. It is noted that GaAs, AlAs and their alloy are the com-
mon anion group. We can, therefore, expect that if the bowing parameter is small, ∆0 in
AlxGa1−xAs alloy is nearly constant over the entire cation concentration (0 � x � 1.0).
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Table 6.6 Spin–orbit split-off and crystal-field splitting energies, ∆so (∆0) and ∆cr, for some
group-IV, III–V and II–VI semiconductors. Note that for wurtzite semiconductors the quasi-cubic
approximation (∆cr = ∆1; ∆so = 3∆2 = 3∆3) is assumed

System Material ∆so (meV) ∆cr (meV) System Material ∆so (meV) ∆cr (meV)

IV Diamond 6 II–VI MgO 22
Si 42.62 β-MgS 70a

Ge 295 β-MgSe 420a

α-Sn 800 β-MgTe 950a

3C-SiC 10 ZnO −3.5 (16b) 39.4 (43b)
6H-SiC 7.8 48.7 α-ZnS 92 55
15R-SiC 7.15 51 β-ZnS 70

ZnSe 424
III–V c-BN 21a ZnTe 950

w-AlN 16a −161a c-CdS ∼70
c-AlN 11–33a w-CdS 65 28
AlP 40a c-CdSe 410
AlAs 325 w-CdSe 420 40
AlSb 673 CdTe 900
α-GaN 15.5 15.2 β-HgS 70a

β-GaN 15 HgSe 400
GaP 85 HgTe 1000
GaAs 341
GaSb 780
InN 1a 41a

InP 114
InAs 367
InSb 870

aCalculated or estimated
bThese values promise an ordering of the three valence bands �v

9 − �v
7 − �v

7, which is the same as
that for w-CdS
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Figure 6.11 ∆0-gap energy plotted against anion atoms for some group-IV, III–V and II–VI
semiconductors
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6.2.3 External perturbation effect

(a) Temperature effect

Traditionally, temperature variation of the band-gap energy Eg is expressed in terms of
the Varshni formula [6.29]

Eg(T ) = Eg(0) − αT 2

T + β
(6.23)

where Eg(0) is the band-gap energy at T = 0 K, α is in electron volts per Kelvin and β

is closely related to the Debye temperature of the material (in Kelvin). The fitted results
using Equation (6.23) for the E0- and E0 + ∆0-gaps in GaAs are shown in Figure 6.12.
The experimental data are taken from Adachi [6.30].

Table 6.7 summarizes the Varshni parameters, E0(0), α and β, for the E0-gap energy
variation in some group-IV, III–V and II–VI semiconductors. Figure 6.13 also plots the
Varshni parameter β against Debye temperature θD for some of these semiconductors. No
clear correlation can be recognized in Figure 6.13 between β and θD.

Differentiating Equation (6.23) with respect to T , we obtain

∂Eg(T )

∂T
= −α

[
2T

T + β
− T 2

(T + β)2

]
(6.24)

If T � β, then Equation (6.24) becomes

∂Eg(T )

∂T
∼ −α (6.25)
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Figure 6.12 E0-gap and E0 + ∆0-gap energies versus temperature T for GaAs. The experimental
data are taken from Adachi [6.30]. The solid lines show the calculated results of Eg(T ) =
Eg(0) − [αT 2/(T + β)] with Eg(0) = 1.517 eV, α = 5.5 × 10−4 eV/K and β = 225 K (E0);
Eg(0) = 1.851 eV, α = 5.5 × 10−4 eV/K and β = 225 K (E0 + ∆0). [From S. Adachi, Handbook
on Physical Properties of Semiconductors Volume 2: III–V Compound Semiconductors (Kluwer
Academic, Boston, 2004), reproduced by permission from Kluwer Academic Publishers]
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Table 6.7 Empirical equation for the E0-gap energy variation with temperature T for some group-
IV, III–V and II–VI semiconductors

E0(T ) = E0(0) − αT 2

T + β

System Material E0(0) (eV) α (10−4 eV/K) β (K)

IV Ge 0.8893 6.842 398

III–V w-AlN 6.242a 7.2 500
α-GaN 3.484 (A)a 12.8 1190
α-GaN 3.490 (B)a 12.9 1280
α-GaN 3.512 (C)a 6.6 840
β-GaN 3.22a 5.61 700
GaP 2.864 6.20 190
GaAs 1.517 5.5 225
GaSb 0.809 5.3 234
InN 1.915 2.45 624
InP 1.422 4.5 335
InAs 0.417 3.07 191
InSb 0.235 2.7 106

II–VI ZnO 3.3772 (A)a 7.2 1077
α-ZnS 3.8652 (A)a 10 600
α-ZnS 3.8927 (B)a 10 600
β-ZnS 3.810 6.32 254
ZnSe 2.8071a 5.58 187
ZnTe 2.3832a 5.49 159
c-CdS 2.445a 3.451 208
w-CdS 2.579 (A) 4.7 230
w-CdS 2.599 (B) 4.8 230
w-CdS 2.659 (C) 5.1 230
c-CdSe 1.766 6.96 281
w-CdSe 1.8265 (A)a 17 1150
w-CdSe 1.8503 (B)a 17 1050
CdTe 1.600 5.0 180
HgSe −0.23 −6.0 16
HgTe −0.30 −6.0 10

aExcitonic gap

Viña et al. [6.31] proposed a new expression for the temperature dependence of the
band-gap energy by taking into account the Bose–Einstein occupation factor

Eg(T ) = EB − αB

(
1 + 2

eΘB/T − 1

)
(6.26)

where the parameter ΘB describes the mean frequency of the phonons involved and αB

is the strength of the electron–phonon interaction. This expression is more palatable than
Equation (6.23) from the theoretical point of view [6.31].
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Figure 6.13 β in Varshni expression for the E0-gap energy variation with temperature plotted
against Debye temperature θD (T = 300 K) for some III–V and II–VI direct band-gap
semiconductors

Differentiating Equation (6.26) with respect to T , we obtain

∂Eg(T )

∂T
= −2αB

ΘB

T 2

eΘB/T

(eΘB/T − 1)2
(6.27)

Equation (6.27) can yield the linear temperature coefficient of the band-gap energy at
optional temperature T .

More recently, Pässler [6.32, 6.33] proposed an analytical expression which takes into
account the band-gap shrinkage effect in accordance with general equations and parameter
relationships governing the electron–phonon interaction mechanism

Eg(T ) = Eg(0) − αpΘp

2

[
p

√
1 +

(
2T

Θp

)p

− 1

]
(6.28)

where αp plays the role of a T → ∞ limiting value of the band-gap shrinkage coefficient
−∂Eg(T )/∂T , Θp is approximately equal to the average phonon temperature and the
exponent p is closely related to the overall shape of the electron–phonon spectral function
in the given material.

Figure 6.14 shows the temperature dependence of the three-dimensional critical-
point E0α and excitonic-gap energies E0α(ex ) for ZnO determined by photoreflectance
measurements [6.34]. The dashed and solid lines represent the calculated results
of Equations (6.23) and (6.28), respectively. It is understood from Figure 6.14 that
Equations (6.23) and (6.28) show equally good agreement with the experimental data
in the measured temperature range T = 15–300 K.
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Differentiating Equation (6.28) with respect to T , one obtains

∂Eg(T )

∂T
= −αp

(
2T

Θp

)p−1 [
1 +

(
2T

Θp

)p](1−p)/p

(6.29)

It is well known that the temperature shift of the energy gap ∆Eg(T ) is arising from
the effects of thermal expansion (∆Eth) and electron–phonon interaction (∆Eph)

∆Eg(T ) = Eg(T ) − Eg(0) = −∆Eth(T ) − ∆Eph(T ) (6.30)

Practically, it is very difficult to separate these two components experimentally. How-
ever, it is possible to calculate the thermal expansion effect if the interband hydrostatic
deformation potential aH and the linear thermal expansion coefficient α are known [6.35,
6.36]

∆Eth(T ) = −3aH

∫ T

0
α(T ′)dT ′ (6.31)
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The electron–phonon interaction term ∆Eph can be given by the same form as the
second term of Equation (6.23) or (6.28)

∆Eph(T ) =




αT 2

T + β
(6.32a)

αpΘp

2

[
p

√
1 +

(
2T

Θp

)p

− 1

]
(6.32b)

Figure 6.15 shows the least-squares fit of the experimental ∆E0B(T ) values to Equa-
tion (6.30) for ZnO. The dashed and solid lines are calculated from Equations (6.32a)
and (6.32b), respectively. The corresponding numerically calculated ∆Eth(T ) values are
also plotted in Figure 6.15. It is understood from Figure 6.15 that the thermal expansion
effect accounts for only 7% of the observed temperature shift at T = 300 K.

(b) Pressure effect

The band-structure parameters, such as the band gaps and band masses, are dependent
both on temperature and pressure. Increasing hydrostatic pressure p usually increases the
band-gap energy Eg in the following manner

Eg(p) = Eg(0) + ap + bp2 (6.33)

Table 6.8 summarizes the hydrostatic pressure parameters, a and b, for the E0-gap energy
in some group-IV, III–V and II–VI semiconductors obtained at T = 300 K.

(c) Temperature and pressure coefficients

We summarize in Table 6.9 the experimentally determined temperature and pressure coef-
ficients of the E0-gap energy for some group-IV, III–V and II–VI semiconductors at
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Figure 6.15 Least-squares fit of the experimental ∆E0B(T ) values to Equation (6.30) for ZnO.
The dashed and solid lines are calculated from Equations (6.32a) and (6.32b), respectively. The
corresponding ∆Eth(T ) values are also calculated. The numerical parameters used in the calculation
are taken from Ozaki et al. [6.34]
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Table 6.8 Empirical equation for the E0-gap energy variation with pressure p for
some group-IV, III–V and II–VI semiconductors at 300 K

E0(p) = E0(0) + ap + bp2

System Material E0(0) (eV) a (10−2 eV/GPa) b (10−4 eV/GPa2)

IV Si 3.273a 10.08a 0.5a

Ge 0.795 12.1 −2
3C-SiC 6.27a 5.50a −29.7a

III–V w-AlN 6.05a 4.0a −3.2a

c-AlN 4.53a 4.2a −3.4a

AlSb 2.215a 10.6a −54a

α-GaN 3.4762 (A)b 4.27 −3.9
α-GaN 3.4813 (B)b 4.29 −3.9
α-GaN 3.498 (C)b 4.30 −4
β-GaN 3.302b 4.6 −6.7
GaP 2.76 9.7 −35
GaAs 1.427 11.5 −24.5
GaSb 0.72 13.8
InN 1.89 2.0
InP 1.35 8.2
InAs 0.359 11.4
InSb 0.17 16.0

II–VI ZnO 3.4410 (A)c 2.47 −2.8
ZnO 3.4434 (B)c 2.53 −2.8
ZnO 3.4817 (C)c 2.68 −2.8
α-ZnS 3.75 6.3
β-ZnS 3.666 6.35 −13.1
ZnSe 2.688 7.2 −15
ZnTe 2.29 10.3 −24
c-CdS 2.46 −0.7d

w-CdS 2.501 4.4
c-CdSe 1.675 −1.5e

w-CdSe 1.713 4.81 −19
CdTe 1.529 8.40 −39.6
HgSe −0.08 ∼0f

HgTe −0.15 −15.3

a Calculated
bAt T = 10 K
cAt T = 6 K
d At p > 6 GPa
eAt p > 3 GPa
f At p < 7.5 GPa

T = 300 K. Figure 6.16 also suggests a trend in dE0/dp versus Phillips ionicity fi for
some of these semiconductors. The solid line in Figure 6.16 represents the least-squares
fit with the relation (dE0/dp in 10−2 eV/GPa)

dE0

dp
= 20.6 − 27.3fi (6.34)
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Table 6.9 E0-gap energy and its temperature and pressure coefficients determined experimentally
at 300 K for some group-IV, III–V and II–VI semiconductors

System Material E0 (eV) dE0/dT (10−4 eV/K) dE0/dp (10−2 eV/GPa)

IV Ge 0.795 −4.0 12.1
α-Sn −0.413a ∼0b

III–V w-AlN 6.2 −5.5 4.9
AlAs 3.01 −5.1 10.5
AlSb 2.27 −3.5
α-GaN 3.420 −4.4 4.3
β-GaN 3.231 −2.8 3.0
GaP 2.76 −5.3 10.7
GaAs 1.43 −4.4 11.6
GaSb 0.72 −3.7 13.8
InN 1.89 −1.3 3.0
InP 1.35 −3.3 8.2
InAs 0.359 −4.2 11.4
InSb 0.17 −2.7 16.0

II–VI ZnO 3.40 −3.65 2.7
α-ZnS 3.75 −7.4 6.3
β-ZnS 3.726 −5.05 6.5
ZnSe 2.721 −4.7 7.5
ZnTe 2.27 −4.53 10.2
c-CdS 2.46 −0.7c

w-CdS 2.501 −4.45 4.4
c-CdSe 1.675 −5.3 −1.5d

w-CdSe 1.751 −3.63 5.0
CdTe 1.51 −3.5 7.9
HgSe −0.08 +7.4 ∼0e

HgTe −0.15 −1.15 ∼ +6.0 −15.3

aAt T = 1.5 K. The sign is chosen positive for a normal band structure like that of Ge
bAt T = 1.5–85 K
cAt p > 6 GPa
d At p > 3 GPa
eAt p < 7.5 GPa

6.2.4 Doping effect

It is well known that the electronic energy bands in heavily doped semiconductors are
shifted in energy, owing to the presence of the ionized dopant ions and related charge
carriers. Heavy doping of semiconductors causes a reduction of the fundamental band gap
and, for degenerate p-type material, a partial filling of the valence band at all temperatures.
Accurate knowledge of the shifts in the conduction-band and valence-band edges due to
heavy doping effects is crucial in modeling semiconductor devices that utilize heavily
doped layers.

Many-body effects, such as the electron–electron and electron–impurity interactions,
contribute most dominantly to the electronic energy-band changes. Besides a shift of
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the energy levels leading to band-gap narrowing, the electron–electron interactions also
weakly deform the density of states from its unperturbed distribution [6.37]. Apart from a
slight shrinking of the band gap, the electron–impurity scattering modifies the density of
states more significantly and causes states that tail into the forbidden gap [6.38]. Along
with these many-body effects, the random distribution of impurities merely distorts the
density of states by creating significant band tails.

We show schematically in Figure 6.17 the band structures for heavily doped (a) n-
type and (b) p-type semiconductors along with those for the undoped ones. Owing to the
Burstein–Moss effect [6.39], the ‘absorption’ band gap in heavily doped semiconductors
is larger than the band gap of the undoped material. As a result of the doping-induced
band gap narrowing, however, the band gap of the doped semiconductors is smaller than
that of the undoped material.

In n-Si and p-Si, the band-gap narrowing is negligible at low doping densities. How-
ever, in n-GaAs the narrowing becomes large, even at low doping densities. This is
because the electron effective mass in n-GaAs is much smaller than the electron and hole
effective masses in n-Si and p-Si. In fact, we show in Figures 6.18 and 6.19 the band-
gap shrinkage as a function of electron concentration in n-Si [6.40] and n-GaAs [6.41],
respectively. The solid line in Figure 6.19 represents the calculated result by Bennett and
Lowney [6.42]. We find that the shrinkage in n-Si is ∼5 meV at n ∼ 1 × 1018 cm−3,
which is much smaller than the value of ∼60 meV in n-GaAs at the same doping level.
It is noted, however, that the results for p-Si should be directly applicable to p-GaAs
because of the nearly equal hole effective masses. For example, we show in Figure 6.20
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semiconductors, together with those for the undoped ones (left-hand sides)
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Figure 6.18 Apparent band-gap narrowing versus donor concentration in n-Si. The experimental
data plotted are taken from various sources. [From J. del Alamo, S. Swirhun, and R. M. Swanson,
in Proc. Int. Electron Dev. Meeting (IEEE, USA, 1985), p. 290;  1985 IEEE]

the band-gap narrowing as a function of acceptor doping in p-Si as reported by Swirhun
et al. [6.43]. The solid line represents the fit by Slotboom and de Graaf [6.44]. The band-
gap shrinkage in p-Si is ∼40 meV at p ∼ 1 × 1018 cm−3, which is comparable to that
observed in p-GaAs at the same acceptor level [6.45].

The location of the Fermi level with respect to doping density has been reported for
many heavily doped semiconductors. For example, Jain et al. [6.46] presented experi-
mental values of the Fermi level in n-GaAs obtained by analyzing luminescence data
of several workers. Silberman et al. [6.47] used X-ray photoemission spectroscopy to
deduce the shift in the valence-band edge induced by carbon doping to a carrier density
of 1 × 1020 cm−3 based on a determination of the bulk binding energy of the Ga and
As core levels in GaAs. The penetration depth of the Fermi level into the valence band
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Figure 6.19 Band-gap shrinkage as a function of electron concentration Na for n-GaAs at 80 K
compared with calculation by Bennett and Lowney (solid line) [6.42]. [From H. Yao and A. Com-
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Figure 6.20 Apparent band-gap narrowing versus acceptor doping in p-Si. The experimental
data plotted are taken from various sources. The solid line represents the fit by Slotboom and de
Graaf [6.44]. [From S. E. Swirhun, Y.-H. Kwark, and R.M. Swanson, in Proc. Int. Electron Dev.
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was found to be 0.12 ± 0.05 eV at this degenerate carrier density. Wang et al. [6.48]
used photoluminescence excitation spectroscopy to study the optical absorption in heav-
ily carbon-doped GaAs. Since the Fermi level penetrates into the valence band in heavily
doped p-GaAs, only states with k 
= 0 are occupied by electrons. In the process of band-
to-band absorption, electrons could be excited either directly into states with k 
= 0 in the
conduction band or indirectly into states with k ∼ 0 at the bottom of the conduction band,
depending upon whether the k selection rule is required. If indirect absorption is signifi-
cant, then the onset energy in the photoluminescence excitation spectra should be equal to
Eg + EF (see Figure 6.17). In heavily doped GaAs, conservation of the crystal momen-
tum k is known to be no longer required in optical transitions because the scattering of
carriers by impurity ions and other free carriers can efficiently relax the extra momentum.
The locations of the Fermi level determined by this method were 0.08, 0.22 and 0.24 eV
below the top of the valence band in the samples doped to 6.2 × 1019, 1.6 × 1020 and
4.1 × 1020 cm−3, respectively [6.48]

6.3 HIGHER-LYING DIRECT GAP

6.3.1 Cubic semiconductor

(a) Room-temperature value

The E1 and E1 + ∆1 transitions in many cubic semiconductors take place along the �

direction or at the L point in the Brillouin zone. There is also an accumulation of the direct
band gaps in energies higher than E1 and E1 + ∆1. These correspond to E0

′, E2, E1
′, etc.

Table 6.10 lists the higher-lying direct band-gap energies, E1, E1 + ∆1, E0
′, E2 and E1

′,
for some cubic group-IV, III–V and II–VI semiconductors. Figure 6.21 plots the E1-gap
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Figure 6.21 E1-gap energy versus lattice constant a for some group-IV, III–V and II–VI semi-
conductors at 300 K. The solid line represents the least-squares fit with E1 = 23.8 − 3.41a (a in
Å; E1 in eV)
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Table 6.10 Higher-lying direct band-gap energy for some cubic group-IV, III–V and II–VI semi-
conductors at 300 K (in eV)

System Material E1 E1 + ∆1 E0
′ E2 E1

′

IV Diamond 14.0, 16.3 6.0–7.4 12.6
Si 3.360–3.7 3.281–3.5 4.270–4.5 5.32
Ge 2.11 2.31 2.99 4.39 5.80
α-Sn 1.25a 1.65a 2.25a 3.02a

3C-SiC 7.5 9.0 5.8

III–V BP 6.9 8.0
AlP 4.30b 5.14b 4.63b

AlAs 3.62–3.90 3.83–4.10 4.54–4.69 4.853, 4.89
AlSb 2.78–2.890 3.209–3.316 3.72–3.76 4.20–4.25 5.30
β-GaN 7.0 7.6
GaP 3.71 3.82 4.74 5.28 ∼6.7
GaAs 2.89–2.97 3.1–3.212 4.44–4.64 4.960–5.45 6.62–6.63
GaSb 2.05 2.50 3.27–3.85 4.08–4.20 ∼5.4
InP 3.17 3.29 4.70 5.10 ∼6.5
InAs 2.50 2.78 4.44 4.70 ∼6.4
InSb 1.80 2.30 3.90 ∼5.3

II–VI MgO 11.0 13.45 17.6
β-MgSe 5.84 6.21
β-MgTe 4.255 4.673 5.327 5.156
β-ZnS 5.8 7.0 9.2
ZnSe 4.79 5.08 8.1 6.6 8.9
ZnTe 3.59 4.17 4.92 5.30 ∼6.8
c-CdS 5.0 7.4 6.4, 6.9 8.3
c-CdSe 4.314 4.568 �6.5 ∼6.0
CdTe 3.36 3.95 4.80–5.34 4.96–5.56 6.4–6.76
β-HgS 3.54–5.76 6.43 8.95
HgSe 2.84 3.14 5.00–5.08 5.50–5.83 8.20–8.36
HgTe 2.11 2.75 4.1, 4.19 4.96, 5.0 7.50

aAt T = 278 K
bEstimated from AlxGa1−xP (0 � x � 0.52) data

energy versus lattice constant a for some group-IV, III–V and II–VI semiconductors.
The solid line represents the least-squares fit with the relation (a in Å; E1 in eV)

E1 = 23.8 − 3.41a (6.35)

Figure 6.22 shows the lowest direct band-gap energy E1 plotted versus molecular
weight M for some cubic group-IV, III–V and II–VI semiconductors. The solid line
represents the least-squares fit with the relation (M in amu; E1 in eV)

E1 = 22.8 − 3.79 ln M (6.36)

It has been shown in Section 1.4 that the relation between the lattice constant a and
molecular weight M can be simply given by a = 0.579 + 1.04 ln M (M in amu; a in Å).



132 PROPERTIES OF GROUP-IV, III–V AND II–VI SEMICONDUCTORS

10 50 100 500

–2

0

2

4

6

8

10

12

14

16

18

M (amu)

E
1

(e
V

)

Group-IV
III-V
II-VI

BP
c-CdSe

AlAs

AlSb

β-GaN

GaP

GaAs
GaSb

InP
InAs

InSb

MgO

β-MgSe β-MgTe

β-ZnS
ZnSe

ZnTe

c-CdS

CdTe
HgSe

HgTe

C

Si
Ge

3C-SiC

Figure 6.22 E1-gap energy at 300 K versus molecular weight M for some cubic group-IV,
III–V and II–VI semiconductors. The solid line represents the least-squares fit with E1 = 22.8 −
3.79 ln M , while the dashed line represents the relation with E1 = 21.8 − 3.55 ln M (M in amu;
E1 in eV)

Introducing this equation into Equation (6.35), one obtains (M in amu; E1 in eV)

E1 = 21.8 − 3.55 ln M (6.37)

The dashed line in Figure 6.22 shows the calculated result of Equation (6.37).
We summarize in Table 6.11 the spin–orbit split-off energies, ∆0 and ∆1, at the

E0/(E0 + ∆0) and E1/(E1 + ∆1) edges, respectively, and their ratio ∆0/∆1 for some

Table 6.11 Experimental spin–orbit split-off energies, ∆0 and ∆1, and their ratio ∆0/∆1 for some
cubic group-IV, III–V and II–VI semiconductors (∆0 and ∆1 in meV)

System Material ∆0 ∆1 ∆0/∆1 System Material ∆0 ∆1 ∆0/∆1

IV Diamond 6 II–VI β-ZnS 70 50a 1.40
Si 42.62 c-CdS 70
Ge 295 200 1.48 ZnSe 424 290 1.46
α-Sn 800 482 1.66 c-CdSe 410 254 1.61

HgSe 400 300 1.33
III–V β-GaN 15 ZnTe 950 580 1.64

GaP 85 55 1.55 CdTe 900 590 1.53
InP 114 140 0.81 HgTe 1000 640 1.56
AlAs 325 190 1.71
GaAs 341 222 1.54
InAs 367 267 1.37
AlSb 673 386 1.74
GaSb 780 460 1.70
InSb 870 500 1.74

aTheoretical
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cubic semiconductors. Note that the ∆0-gap and ∆1-gap energies may not vary so
greatly with temperature if one assumes the valence-band rigidity of the semiconductors.
Figure 6.23 also plots the variation of ∆1 for some cubic group-IV, III–V and II–VI
semiconductors with respect to the group IV, V and VI anions. The valence and conduction
bands of the III–V (II–VI) semiconductors can be well characterized by electron orbital
of the group V (VI) anion and group III (II) cation atoms, respectively. As clearly seen
in Figure 6.23, there is an increase in ∆1 with increasing atomic number of the anion
atoms. It is also evident that the common anion semiconductors have nearly the same ∆1

values, as similar to the case for ∆0 (Figure 6.11).
In the framework of the k · p method, the spin–orbit splitting ∆0 at the � point is

approximately 3/2 of the spin–orbit splitting ∆1 along the 〈111〉 direction [6.49]

∆0

∆1
∼ 3

2
(6.38)

In Figure 6.24, we plot the ratio of ∆0/∆1 against ∆0 for some cubic group-IV, III–V
and II–VI semiconductors. This figure suggests that all the semiconductors, except InP
(∆0/∆1 ∼ 0.81), obey the relation of Equation (6.38) well. An anomaly in InP can be
attributed to changes in weight coefficient when going from the � to the L point (〈111〉
direction) [6.50].

(b) External perturbation effect

As mentioned in Section 6.2, the temperature-induced change in the band-gap energy
can be commonly given in terms of the α and β coefficients of the Varshni formula.
Table 6.12 summarizes the Varshni parameters, Eg(0), α and β, for the E1-gap and E1 +
∆1-gap energies in some cubic group-IV, III–V and II–VI semiconductors. Figure 6.25
also shows, as an example, the fitted results of the E1-gap and E1 + ∆1-gap energies
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Figure 6.23 ∆1-gap energy plotted against anion atoms for some cubic group-IV, III–V and
II–VI semiconductors
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Table 6.12 Empirical equation for the E1-gap and E1 + ∆1-gap energy variation with temperature
T for some group-IV, III–V and II–VI semiconductors

Eg(T ) = Eg(0) − αT 2

T + β

System Material Eg Eg(0) (eV) α (10−4 eV/K) β (K)

IV Si E1 3.482 8.00 645
Ge E1 2.22 6.8 240
α-Sn E1 1.38 6 230

E1 + ∆1 1.853 7 270

III–V β-GaN E1 7.03 9.5 553
GaP E1 3.785 6.1 240
GaAs E1 3.044 6.7 188
GaSb E1 2.186 6.8 147

E1 + ∆1 2.621 6.7 176
InSb E1 2.00 6.84 132

E1 + ∆1 2.49 6.46 170

II–VI ZnTe E1 3.772 9.50 260
E1 + ∆1 4.345 8.80 260

CdTe E1 3.55 8.0 90
E1 + ∆1 4.08 6.0 120

HgSe E1 2.949 5.8 60
E1 + ∆1 3.219 5.8 60

versus temperature in CdTe using the Varshni formula. The experimental data are gathered
from various sources [6.51]. Figure 6.26 plots the Varshni parameter β against Debye
temperature θD for some group-IV, III–V and II–VI semiconductors. A weak correlation
can be seen in Figure 6.26 between β and θD.
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Table 6.13 summarizes the experimental temperature and hydrostatic pressure coef-
ficients of the higher-lying direct band-gap energies, E1, E0

′ and E2, for some cubic
group-IV, III–V and II–VI semiconductors determined at T = 300 K. We can see in
Table 6.13 that all the semiconductors listed here have negative temperature and positive
pressure coefficients of the higher-lying direct band gaps.
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Table 6.13 Temperature and pressure coefficients of the higher-lying direct band-gap energy for
some cubic group-IV, III–V and II–VI semiconductors at 300 K

System Material Eg dEg/dT (10−4 eV/K) dEg/dp (10−2 eV/GPa)

IV Diamond E0
′ −6.3

Si E1 −3.0 5.2
E0

′ −1.7 1
E2 −2.5 2.9

Ge E1 −4.3 7.5
E0

′ −1.4 1.4
E2 −2.8 5.6

α-Sn E1 −4.6
E0

′ −4.5
E2 −5.1

III–V AlSb E1 −4.7
β-GaN E1 −4.5

E2 −1.9
GaP E1 −3.4 5.8

E0
′ −3.2

E2 −3.4
GaAs E1 −5.4 7.2

E0
′ −3.0

E2 −3.6
GaSb E1 −5.7 7.35

E2 −5.5 6.08
InP E1 −5.6

E0
′ −1.9

InAs E1 −5.0 7.4
E2 −5.6

InSb E1 −5.0 8.5
E0

′ −4.6
E2 −5.5 5.8

II–VI β-ZnS E1 −5.1
E2 −3.0

ZnSe E1 −6.2
E2 −4.7

ZnTe E1 −4.2 8.3
E2 −6.1

c-CdSe E1 −5.9
E2 −3.6

CdTe E1 −7.2 6.0
E2 −3.6

HgSe E1 −4.6
HgTe E1 −5.5

E0
′ −6.66

E2 −6.97
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Table 6.14 Higher-lying direct band-gap energy for some hexagonal and rhombohedral group-IV,
III–V and II–VI semiconductors at 300 K (in eV)

System Material E1 E2 E3 E4 E5 E6 E7

IV 6H-SiC 4.07a 4.71a 5.54a

6H-SiC 3.85b 4.68b

15R-SiC 4.6c 5.5c 6.7c 7.1c 7.8c 8.3c 9.6c

III–V h-BN
w-AlN 7.76 8.79
α-GaN 6.9 8.0 9.3 10.5–11.5 12.2–13.4 13.9
InN 5.0 7.6 8.6

II–VI ZnO
α-ZnS 5.5a 5.74–5.80a 7.00–7.52a 9.43–9.61a

α-ZnS 5.6b 5.76–5.86b 6.98–7.56b 9.56–9.73b

w-CdS 4.98a,d 5.50a,e 6.1a,f 7.8a,g

w-CdS 5.48b,e 6.2b,f 7.8b,g

w-CdSe 4.10a,d 4.55a,e 4.85a,h 5.6a,f 7.6, 8.7g 9.5i

w-CdSe 4.78b,h 6.0b,f

aE ⊥ c
bE || c
cE ⊥ c (one of these gaps may occur at the � point, i.e., E0 gap)
dE1(A)
eE1(B)
fE0

′
gE2
hE1(C)
iE1

′

6.3.2 Hexagonal and rhombohedral semiconductors

Table 6.14 summarizes the higher-lying direct band-gap energies, E1, E2, E3, etc., for
some hexagonal and rhombohedral semiconductors at T = 300 K. It should be noted that
only the limited data are available on the external perturbation effects of the higher-lying
direct band-gap energies in such anisotropic semiconductors [6.15, 6.52].

6.4 LOWEST INDIRECT GAP

6.4.1 Room-temperature value

The electronic energy-band structure of semiconductors can be classified into two types:
direct band gap semiconductors (such as GaAs and ZnSe) in which the lowest conduction-
band minimum and the highest valence-band maximum are at the same wavevector in
the Brillouin zone; indirect band gap semiconductors (such as Si and GaP) in which the
extrema are at different wavevectors.

It is well known that not only the direct transitions at the direct band gap, but also
the indirect transitions at the indirect band gap influence the optical dispersion relations
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of semiconductors. The indirect transitions in indirect band-gap semiconductors take part
at energies below the onset of the direct transitions, and vice versa above the onset of
the direct transitions in direct band-gap semiconductors. Because the indirect transitions
are higher order in perturbation than the direct ones, their strength is very weak and
one can expect to observe them only in spectra below the direct threshold as a tail
of the direct absorption edge in indirect band-gap materials. Table 6.15 summarizes the
lowest and second lowest indirect band-gap energies in some group-IV, III–V and II–VI
semiconductors at T = 300 K.

6.4.2 External perturbation effect

(a) Temperature effect

We summarize in Table 6.16 the Varshni parameters, EID
g (0), α and β, for the lowest

indirect band-gap energy in some group-IV and III–V indirect band-gap semiconductors.

Table 6.15 Energies of the lowest and second-lowest indirect band gaps in some group-IV, III–V
and II–VI semiconductors at 300 K. LCBV = lowest conduction-band valley; ID = indirect band-
gap semiconductor; D = direct band-gap semiconductor

System Material Type (LCBV) Lowest indirect-gap
energy (eV)

2nd lowest indirect-gap
energy (eV)

IV Diamond ID (X or �) 5.50
Si ID (X) 1.12 2.0 (� → L)
Ge ID (L) 0.6657 0.852 (� → X)
α-Sn D (�) 0.092 (� → L)a

3C-SiC ID (X) 2.39 4.20 (� → L)
6H-SiC ID (L–M) 3.0
15R-SiC ID 2.9863b

III–V c-BN ID (X) 6.27
BP ID (X or L) 2.0
c-AlN D (�) or ID (X) 5.34 (� → X)
AlP ID (X) 2.48
AlAs ID (X) 2.15 2.37 (� → L)
AlSb ID (X or �) 1.615 2.211 (� → L)
GaP ID (X or �) 2.261 2.63 (� → L)
GaAs D (�) 1.72 (� → L) 1.91 (� → X)
GaSb D (�) 0.76 (� → L) 1.05 (� → X)
InP D (�) 2.05 (� → L) 2.21 (� → X)
InAs D (�) 1.07 (� → L) 1.37 (� → X)
InSb D (�) 0.93 (� → L) 1.63 (� → X)

II–VI ZnSe D (�) 3.4 (� → X) 3.8 (� → L)
ZnTe D (�) 3.05 (� → X)

aAt T = 4.2 K
bAt T = 2 K
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Table 6.16 Empirical equation for the lowest indirect band-gap energy variation with temperature
T determined experimentally for some group-IV and III–V indirect band-gap semiconductors

EID
g (T ) = EID

g (0) − αT 2

T + β

System Material Band gap EID
g (0) (eV) α (10−4 eV/K) β (K)

IV Diamond EX
g (or E�

g ) 5.4125 −1.979 −1437

Si EX
g 1.1692 4.9 655

Ge EL
g 0.7437 4.774 235

6H-SiC EL−M
g 3.024 −0.3055 −311

III–V AlAs EX
g 2.25 3.6 204

AlSb EX
g (or E�

g ) 1.687 4.97 213

GaP EX
g (or E�

g ) 2.3254 5.8 387
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Figure 6.27 Indirect band-gap energies, EX
g and EL

g , versus temperature T for GaP. The experi-
mental data are taken from various sources. The solid line shows the calculated result of EX

g (T ) =
EX

g (0) − [αT 2/(T + β)] with EX
g (0) = 2.3254 eV, α = 5.8 × 10−4 eV/K and β = 387 K. [From

S. Adachi, Handbook on Physical Properties of Semiconductors Volume 2: III–V Compound Semi-
conductors (Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic
Publishers]

Figure 6.27 also shows the fitted result of EX
g in GaP using the Varshni formula, together

with several experimental data of EL
g .

(b) Pressure effect

In Table 6.17, we list the hydrostatic pressure parameters, a and b, for the lowest indirect
band-gap energy in some group-IV and III–V indirect band-gap semiconductors at T =
300 K. It is noted that in many semiconductors the pressure coefficients of the E0-gap
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Table 6.17 Empirical equation for the lowest indirect band-gap energy variation with pressure p

for some group-IV and III–V semiconductors at 300 K

EID
g (p) = EID

g (0) + ap + bp2

System Material Band gap EID
g (0) (eV) a (10−2 eV/GPa) b (10−4 eV/GPa2)

IV Diamond EX
g (or E�

g ) 5.50 0.597

Si EX
g 1.110 −1.43

Ge EL
g 0.6657 4.8

3C-SiC EX
g 2.39 −0.34 10.6

6H-SiC EL−M
g 3.0 0.20

III–V c-BN EX
g 6.27 0.60

AlP EX
g 2.48 −1.6a

AlAs EX
g 2.15 −1.53

AlSb EX
g (or E�

g ) 1.610 −4.2 −1

GaP EX
g (or E�

g ) 2.25 −1.3

aCalculated

Table 6.18 Indirect band-gap energy and its temperature and pressure coefficients for some group-
IV and III–V indirect band-gap semiconductors at 300 K

System Material Band gap EID
g (eV) dEID

g /dT

(10−4 eV/K)
dEID

g /dp

(10−2 eV/GPa)

IV Diamond EX
g (or E�

g ) 5.50 −5.4 0.597

Si EX
g 1.12 −2.59 −1.43

Ge EL
g 0.6657 −4.0 4.8

3C-SiC EX
g 2.39 −5.8 −0.34

6H-SiC EL−M
g 3.0 −3.3 0.20

III–V c-BN EX
g 6.27 0.60

BP EX
g (or EL

g ) 2 −4.5

AlP EX
g 2.48 −5.8

AlAs EX
g 2.15 −4.0 −1.53

AlSb EX
g (or E�

g ) 1.615 −3.1 −1.6

GaP EX
g (or E�

g ) 2.261 −4.0 −1.3

and EL
g -gap energies are positive while that of the EX

g -gap energy is negative. As a
result, the �6 and L6 conduction minima will shift to high energies while the X6 minimum
shifts to low energy with increasing pressure. Since the �6 and X6 conduction minima
in a direct band-gap semiconductor will cross at any pressure, it becomes an indirect
band-gap semiconductor (see Section 6.6, below).
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Figure 6.28 Schematic diagram showing the �–X and �–L conduction-valley energy separations
∆E�X = ∆Eg(� − X) and ∆E�L = ∆Eg(� − L), respectively

Table 6.19 Conduction-valley energy separation ∆Eg for some cubic group-IV, III–V and II–VI
semiconductors. LCBV = lowest conduction-band valley; ID = indirect band-gap semiconductor;
D = direct band-gap semiconductor

System Material Type (LCBV) ∆Eg (eV)

|� − X(�)| |� − L| |X(�) − L|

IV Diamond ID (X or �) 1.52
Si ID (X) 2.22 1.3 0.9
Ge ID (L) 0.057 0.129 0.186
3C-SiC ID (X) 5.01 3.20 1.81

III–V c-BN ID 4.51a 1.40a 5.91a

BP ID (X or L) 3b 3b

AlP ID (X) 1.15
AlAs ID (X) 0.79 0.59 0.20
AlSb ID (X or �) 0.69 0.09 0.60
β-GaN D (�) 1.3a 2.7a 1.4a

GaP ID (X or �) 0.50 0.13 0.37
GaAs D (�) 0.47 0.28 0.19
GaSb D (�) 0.33 0.04 0.29
InP D (�) 0.96 0.86 0.10
InAs D (�) 1.82 1.10 0.72
InSb D (�) 1.45 0.75 0.70

II–VI MgO D (�)c 3.8a 2.9a

ZnSe D (�) ∼0.7 ∼1.1 ∼0.4
ZnTe D (�) ∼0.7

aCalculated
bEstimated
cTentative assignment
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(c) Temperature and pressure coefficients

Table 6.18 summarizes the experimental temperature and hydrostatic pressure coefficients
of the lowest indirect band-gap energy EID

g for some group-IV and III–V indirect band-gap
semiconductors at T = 300 K.

6.5 CONDUCTION-VALLEY ENERGY SEPARATION

The band structure of a semiconductor is schematically drawn in Figure 6.28 in which the
top of the valence band and the direct (�) and indirect minima (X and L) of the conduction
band are shown. It is known that major influences on carrier effective mass, mobility and
lifetime are the positions and shape of the conduction-band second minima most often
found at the L point in the Brillouin zone [6.53]. The effect of the conduction-band
satellite valleys is also illustrated by the Gunn effect [6.54]. Here, we list in Table 6.19
the conduction-valley energy separation ∆Eg for some cubic group-IV, III–V and II–VI
semiconductors.

6.6 DIRECT–INDIRECT-GAP TRANSITION PRESSURE

Since the sign of the pressure coefficients of E0 and EX
g is opposite in many semiconduc-

tors, a direct band-gap semiconductor sometimes changes to an indirect band-gap one at
any pressure. As an example, we show in Figure 6.29 the hydrostatic pressure dependence

0 2 4 6 8 10
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2.0

2.2

2.4

p (GPa)

E
g

(e
V

)

E0

Eg
X

Eg
L

GaAs

T = 300 K

Figure 6.29 E0, E
X
g and EL

g versus hydrostatic pressure p for GaAs at T = 300 K
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Table 6.20 Direct–indirect-gap transition pressure
for some III–V and II–VI semiconductors

System Material Transition pressure (GPa)

III–V GaAs 4.2 (�6 − X6)
GaSb 1.05 (�6 − L6)
InP 10.4 (�6 − X6)

II–VI β-ZnS a

ZnSe a

ZnTe ∼6.5 (�6 − X6)
CdTe a

a No direct–indirect-gap crossing occurs for pressures
up to the first structural phase transition

of the E0-gap, EX
g -gap and EL

g -gap energies for GaAs at T = 300 K. The solid lines are
calculated from the following expressions [6.30]

E0(p) = 1.427 + 1.15 × 10−1p − 2.45 × 10−3p2 (6.39a)

EX
g (p) = 1.91 − 2.6 × 10−2p + 4.7 × 10−4p2 (6.39b)

EL
g (p) = 1.72 + 5.5 × 10−2p (6.39c)

It is understood from Figure 6.29 that GaAs becomes an indirect band-gap semiconductor
at p ∼ 4 GPa. Note that this value is well below ∼17 GPa to the first structural phase
transition (see Section 1.5). It is also expected that an indirect–indirect (L6 –X6) crossing
occurs at ∼2.5 GPa.

The direct–indirect (�6 –X6) crossing in GaAs has been studied experimentally by
many authors [6.30]. These authors, except Yu and Welber [6.55], indicate that the �6 –X6

crossing occurs at ∼4 GPa. The value reported by Yu and Welber (∼3 GPa) is consid-
erably smaller than this. Kangarlu et al. [6.56] observed the L6 –X6 indirect–indirect
crossing at p = 2.5–3.0 GPa from photoluminescence measurements under hydrostatic
pressure. Our estimated L6 –X6 crossing pressure (∼2.5 GPa) is in reasonable agreement
with this value.

Table 6.20 summarizes the direct–indirect (�6 –X6) crossing pressures observed for
some III–V and II–VI semiconductors.

REFERENCES

[6.1] U. Schmid, N. E. Christensen, and M. Cardona, Phys. Rev. B 41, 5919 (1990).
[6.2] S. Adachi, Phys. Rev. B 38, 12966 (1988); J. Appl. Phys. 66, 3224 (1989).
[6.3] D. E. Aspnes and A. A. Studna, Solid State Commun. 11, 1375 (1972).
[6.4] J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).
[6.5] S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP,

InGaAs, and InGaAsP (Wiley-Interscience, New York, 1992).
[6.6] H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. 35, 5946 (1996).



144 PROPERTIES OF GROUP-IV, III–V AND II–VI SEMICONDUCTORS

[6.7] W. J. Turner, W. E. Reese, and G. D. Pettit, Phys. Rev. 136, A1467 (1964).
[6.8] P. Lautenschlager, M. Garriga, and M. Cardona, Phys. Rev. B 36, 4813 (1987).
[6.9] A. Kobayashi, O. F. Sankey, S. M. Volz, and J. D. Dow, Phys. Rev. B 28, 935 (1983).

[6.10] T. K. Bergstresser and M. L. Cohen, Phys. Rev. 164, 1069 (1967).
[6.11] S. Ninomiya and S. Adachi, J. Appl. Phys. 78, 4681 (1995).
[6.12] M. Cardona, Phys. Rev. 129, 1068 (1963).
[6.13] J. L. Birman, Phys. Rev. 115, 1493 (1959).
[6.14] D. G. Thomas and J. J. Hopfield, Phys. Rev. 116, 573 (1959); J. J. Hopfield, J. Phys. Chem.

Solids 15, 97 (1960).
[6.15] S. Logothetidis, M. Cardona, P. Lautenschlager, and M. Garriga, Phys. Rev. B 34, 2458

(1986).
[6.16] C. Janowitz, O. Günther, G. Jungk, R. L. Johnson, P. V. Santos, M. Cardona, W. Fas-

chinger, and H. Sitter, Phys. Rev. B 50, 2181 (1994).
[6.17] J. R. Chelikowsky, T. J. Wagener, J. H. Weaver, and A. Jin, Phys. Rev. B 40, 9644 (1989).
[6.18] R. H. Paramenter, Phys. Rev. 100, 573 (1955).
[6.19] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[6.20] M. P. Surh, M.-F. Li, and S. G. Louie, Phys. Rev. B 43, 4286 (1991).
[6.21] M. Suzuki and T. Uenoyama, in Properties, Processing and Applications of Gallium Nitride

and Related Semiconductors, EMIS Datareviews Series No. 23, edited by J. H. Edgar,
S. Strite, I. Akasaki, H. Amano, and C. Wetzel (INSPEC, London, 1999), p. 155.

[6.22] T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
[6.23] T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, and

S. Ohoya, J. Cryst. Growth 227–228, 481 (2001).
[6.24] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bech-

stedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul,
Phys. Status Solidi B 229, R1 (2002).

[6.25] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bech-
stedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold,
J. Graul, and E. E. Haller, Phys. Status Solidi B 230, R4 (2002).

[6.26] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y.
Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).

[6.27] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and
W. J. Schaff, Phys. Rev. B 66, 201403 (2002).

[6.28] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81,
1246 (2002).

[6.29] Y. P. Varshni, Physica 34, 149 (1967).
[6.30] S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties

(World Scientific, Singapore, 1994).
[6.31] L. Viña, S. Logothetidis, and M. Cardona, Phys. Rev. B 30, 1979 (1984).
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7.1 ELECTRON EFFECTIVE MASS: � VALLEY

7.1.1 General remarks

Since the carrier effective mass is strongly connected with carrier mobility, it is known
to be one of the most important device parameters. A way of displaying useful infor-
mation about the effective mass is to show the constant-energy surface near the band
edge in k space. We show in Figure 7.1 the constant-energy surfaces for electrons near
the (a) �, (b) X and (c) L valleys of diamond-type and zinc-blende-type semiconductors.
The constant-energy surface can now be defined by

E = h̄2k 2
x

2mx

+ h̄2k 2
y

2my

+ h̄2k 2
z

2mz

(7.1)

As seen in Figure 7.1(a), the �-valley electron has a spherical constant-energy surface at
the zone center, i.e., mx = my = mz.

There are six constant-energy ellipsoids along the principal diagonal [100] and
equivalent directions (Figure 7.1(b)) and eight ellipsoids along the 〈111〉 directions

Properties of Group-IV, III–V and II–VI Semiconductors Sadao Adachi
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(a) Γ valley (b) X valley (c) L valley

Figure 7.1 Constant-energy surfaces for electrons near the: (a) �; (b) X; and (c) L valleys of the
diamond-type and zinc-blende-type semiconductors

(Figure 7.1(c)). In such ellipsoidal constant-energy surfaces, Equation (7.1) can be written
as

E = h̄2k 2
t

mt
+ h̄2k 2

l

2ml
(7.2)

The two masses ml and mt in Equation (7.2) are called the longitudinal mass and
transverse mass, respectively, because ml (mz) is defined along the 〈111〉 axis (X valley)
and along the 〈100〉 axis (L valley), whereas mt (mx = my) is defined in a plane transverse
to the said axis. (The x and y axes have now been taken as the minor or transverse axes
of the ellipsoids.) The longitudinal effective mass ml is usually much larger than its
counterparts mt. The energy, thus, varies relatively slowly with respect to kl, but varies
relatively rapidly with kt.

The density-of-states mass mα
e for electrons in the conduction-band minima α = �, X

or L is given by
mα

e = N2/3m
2/3
tα m

1/3
lα (7.3)

where N is the number of equivalent α minima (N = 1 for the � minimum, N = 3 for
the X minima and N = 4 for the L minima). The density-of-states effective mass can be
used for density-of-states calculations.

The conductivity effective mass mα
c , which can be used for conductivity (mobility)

calculations, is obtained from the equation

mα
c = 3mtαmlα

mtα + 2mlα
(7.4)

Since mt� = ml� at the α = � minimum (�6) of cubic semiconductors, we have the
relation m�

e = m�
c . The electron effective mass can be measured by a variety of techniques,

such as the Shubnikov–de Haas effect, magnetophonon resonance, cyclotron resonance
and interband magnetooptical measurements [7.1].

In hexagonal semiconductors, the conduction-band electron has an ellipsoidal constant-
energy surface, not spherical, even at the zone center (�)

m⊥
e ≡ mx = my �= mz ≡ m||

e (7.5)

Thus, m�
e �= m�

c holds in such anisotropic semiconductors, but its difference is very small.



ENERGY-BAND STRUCTURE: EFFECTIVE MASSES 149

7.1.2 Numerical value

We list in Table 7.1 the zone-center electron effective mass m�
e for a number of cubic

group-IV, III–V and II–VI semiconductors, together with the corresponding lowest direct
band-gap energy E0. Figure 7.2 also plots m�

e versus E0 values for some of these semi-
conductors.

The k · p perturbation method is a powerful procedure for evaluating the conduction-
band effective mass parameters in the vicinity of certain important points in k space. The
simple five-level k · p theory of Hermann and Weisbuch [7.2] at k = 0 (�) in diamond-
type and zinc-blende-type semiconductors can be shown to lead to the electron effective-
mass ratio

m0

m�
e

= 1 + P 2

3

(
2

E0
+ 1

E0 + ∆0

)
− P ′2

3

(
2

E(�c
8) − E0

+ 1

E(�c
7) − E0

)
+ C (7.6)

where m0 is the free-electron mass, P is the momentum matrix element concerning the
p-like valence band with the s-like conduction band, P ′ is the momentum matrix element
connecting the s-like conduction band with next-higher-lying p-like conduction band and
C is a small correction for all higher-lying bands.

For all III–V compounds, P ′2 is considerably smaller than P 2. The energy denom-
inators in Equation (7.6) for the P ′2 term are also much larger than those for P 2. The
effective mass is thus strongly connected with the lowest direct gaps E0 and E0 + �0.
Assuming that E0 � �0 and m0/m�

e � 1, Equation (7.6) can be simply rewritten as

m0

m�
e

∼ P 2

E0
(7.7)
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Figure 7.2 Electron effective mass m�
e /m0 versus E0 for some cubic group-IV, III–V and II–VI

semiconductors. The solid line represents the least-squares fit with m�
e /m0 = 0.0505E0 (E0 in eV)
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Table 7.1 Electron effective mass m�
e and lowest direct band-gap energy E0

(T = 300 K) for some cubic group-IV, III–V and II–VI semiconductors

System Material m�
e /m0 E0 (eV)

IV Diamond 0.36–2.030a 15.3
Si 0.188a 4.06
Ge 0.038 0.795
α-Sn −0.058b −0.413 (T = 1.5 K)b

3C-SiC 0.449a 7.4

III–V c-BN 0.752a 7.9–11.40a

BP 0.150a

BAs 0.0499a 1.45
c-AlN 0.26a 5.2
AlP 0.220a 3.91c

AlAs 0.124 3.01
AlSb 0.14 2.27
β-GaN 0.15 3.231
GaP 0.114 2.76
GaAs 0.067 1.43
GaSb 0.039 0.72
InP 0.07927 1.35
InAs 0.024 0.359
InSb 0.013 0.17

II–VI MgO 0.35a 7.8
β-MgS 0.225a 4.45
β-MgSe 0.20a 4.0
β-MgTe 0.17a 3.4
β-ZnS 0.20 3.726
ZnSe 0.137 2.721
ZnTe 0.117 2.27
c-CdS 0.14a 2.46
c-CdSe 0.119 1.675
CdTe 0.090 1.51
β-HgS −0.006a,d −0.04a,d

HgSe −0.042a,d −0.08d

HgTe −0.028d −0.15d

a Calculated or estimated
bThe sign is chosen positive for a normal band structure like that of Ge.
cEstimated from AlxGa1−xP data
d The sign is chosen positive for a normal band structure like that of CdTe.

If one also assumes that P 2 is independent of material, m�
e is directly related to the

lowest direct band-gap energy E0. The relationship between m�
e and E0 given in Figure 7.2

m�
e

m0
= 0.0505E0 (7.8)

shows an excellent agreement with the theoretical prediction of Equation (7.7).
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Table 7.2 �-valley electron effective masses, m⊥
e , m

||
e and m�

e , and lowest direct band-gap energy
E0(T = 300 K) for some wurtzite III–V and II–VI semiconductors. m�

e = (m⊥2
e m

||
e)

1/3: density-
of-states effective mass

System Material m⊥
e /m0 m

||
e/m0 m�

e /m0 E0 (eV)

III–V w-AlN 0.29a 0.30a 0.29–0.45 (0.29a ) 6.2
α-GaN 0.21 0.22 0.21 3.420
InN 0.11 (0.07b) 1.89 (0.7–1.1b)

II–VI ZnO 0.234 3.40
α-ZnS 0.28 0.28 0.28 3.75
w-CdS 0.150 0.152 0.151 2.501
w-CdSe 0.127 0.122 0.125 1.751

aCalculated
bNote that very recent studies for InN suggest an evidence of the narrow band-gap energy E0 and
of the small m�

e value

Table 7.2 lists the zone-center electron effective masses m⊥
e ,m

||
e and m�

e for some
wurtzite III–V and II–VI semiconductors, together with their corresponding lowest direct
band-gap energy E0. Figure 7.3 also plots m�

e versus E0 values for these semiconductors.
The solid line represents the least-squares fit with the relation (E0 in eV)

m�
e

m0
= 0.0675E0 (7.9)

Note that the InN value is reported to be m�
e = 0.11m0 [7.3]; however, recent studies

suggest evidence of the narrow band-gap energy E0 (∼0.7–1.1 eV) and of the small m�
e

value of 0.07m0 for this material [7.4].

7.1.3 Polaron effect

Electron–LO-phonon coupling is known to modify the electron effective mass [7.5]. One
way to get information about the electron effective mass is a cyclotron resonance exper-
iment. It is noted that the cyclotron resonance experiment gives the polaron mass rather
than the ‘bare’ band mass. In order to deduce the true band mass from cyclotron measure-
ments, it is therefore necessary to correct for such a polaron enhancement. This correction
can be written, by means of Langreth formula, as [7.6]

m�
e =


 1 − 0.0008α2

F

1 −
(αF

6

)
+ 0.0034α2

F


m∗

ep (7.10)

where αF is the Fröhlich coupling constant (see Section 5.2) and m∗
ep is the cyclotron

(polaron) mass known from experiment. Typical value for this correction is a few percent
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Figure 7.3 Electron effective mass m�
e /m0 versus E0 for some wurtzite III–V and II–VI semi-

conductors. The solid line represents the least-squares fit with m�
e /m0 = 0.0675E0 (E0 in eV)

for the III–V semiconductors. The correction is, thus, less than the other experimental
uncertainties.

7.1.4 External perturbation and doping effects

(a) Temperature effect

The effect of temperature on the electron effective mass in semiconductors has been
studied by several authors (see, e.g., GaAs [7.1]). Figure 7.4 plots, as an example, the
electron mass m�

e as a function of temperature T for GaAs. The experimental data are
taken from Stradling and Wood [7.7]. These data were deduced from magnetophonon
resonance measurements on a high-purity n-GaAs sample. Small corrections were per-
formed for the polaron effect. It is understood from Figure 7.4 that m�

e decreases with
increasing T .

The temperature variation of m�
e can be simply assumed to be given by

m�
e (T ) = m�

e (0)
E0(T )

E0(0)
(7.11)

where m�
e (0) and E0(0) represent the mass and E0 values at T = 0 K, respectively. The

change in the effective mass with temperature can also be estimated by substituting the
change in the energy gap with temperature into the three-level k · p formula

m0

m�
e (T )

= 1 + P 2

3

(
2

E0(T )
+ 1

[E0 + ∆0(T )]

)
(7.12)

The E0(T ) and E0 + ∆0(T ) in Equations (7.11) and (7.12) can be given by the Varshni
equation (see Section 6.2).
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Figure 7.4 Electron effective mass m�
e as a function of temperature T for GaAs. The experimental

data (solid circles) are taken from Stradling and Wood [7.7]. The dashed and solid lines are obtained
from Equations (7.11) and (7.12), respectively

The dashed and solid lines in Figure 7.4 are calculated from Equations (7.11)
and (7.12), respectively. Here, we used the following numerical values: m�

e (0) =
0.0665m0; P 2 = 22.66 eV; and the Varshni parameters from Lautenschlager et al. [7.8].
It is seen that the expression (7.12) yields better agreement with the experimental data
than Equation (7.11).

(b) Pressure effect

The effect of hydrostatic pressure p on the electron effective mass in semiconductors has
been studied both theoretically and experimentally (see, e.g., GaAs [7.1]). We summarize
in Table 7.3 the change in the electron effective mass d ln m�

e /dp = (m�
e )−1(dm�

e /dp)

observed for some III–V and II–VI semiconductors. Figure 7.5 also shows the plots of
d ln m�

e /dp versus E0 for some of these semiconductors.

Table 7.3 Hydrostatic pressure coefficient
d ln m�

e /dp experimentally obtained for some
III–V and II–VI semiconductors

System Material
d ln m�

e

dp
(%/kbar)

III–V GaAs 0.72
InP 0.53
InAs 2.0
InSb 6.3

II–VI ZnSe 0.00
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Figure 7.5 Hydrostatic pressure change in the electron effective mass d ln m�
e /dp versus E0 for

some III–V semiconductors. The solid line represents the fit with d ln m�
e /dp = (0.85/E0)

1.05 with
E0 in eV and d ln m�

e /dp in %/kbar

Increasing p increases not only the band-gap energy, but also the band effective mass
through the relation (three-level k · p formula)

m0

m�
e (p)

= 1 + P 2

3

(
2

E0(p)
+ 1

[E0 + ∆0(p)]

)
(7.13)

The solid line in Figure 7.6 represents the calculated result of Equation (7.13) for GaAs
with P 2 = 22.66 eV and E0(p) taken from Besson et al. [7.9] (∆0 = 0.341 eV). The
dashed line provides the experimental linear pressure coefficient of 0.72%/kbar.

When uniaxial strain is applied to a cubic semiconductor, its conduction-band mass
m�

e becomes anisotropic [7.10, 7.11]. This anisotropy can be described in terms of the
ratio dm�

e||/dm�
e⊥, where m�

e|| is the mass corresponding to the conduction-band dispersion
for k in the direction of the shear axis, whereas m�

e⊥ is the mass for k perpendicular to
the shear axis. Christensen [7.10] obtained the trigonal strain coefficient of the mass ratio
for GaAs to be

d

dγ

[
m�

e||
m�

e⊥

]
〈111〉

∼ −8.0 (7.14)

where γ is a strain coefficient describing a change in the Bravais lattice point under strain.
The corresponding trigonal strain coefficient for the parallel mass m�

e|| is given by

[
1

m�
e||

d

dγ
(m�

e||)

]
〈111〉

∼ −9 ± 3 (7.15)
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Figure 7.6 Variation of the electron effective mass m�
e as a function of hydrostatic pressure p for

GaAs obtained from Equation (7.13). The dashed line corresponds to liner pressure coefficient of
0.72%/kbar determined experimentally

The tetragonal-strain coefficients obtained by Christensen [7.10] are also given by

d

dγ

[
m�

e||
m�

e⊥

]
〈100〉

∼ −0.9 (7.16)

and [
1

m�
e||

d

dγ
(m�

e||)

]
〈100〉

∼ −3.5 (7.17)

(c) Doping effect

In the case of an isotropic parabolic band, the mass at the �-conduction minimum can be
defined by

E = h̄2k2

2m�
e

(7.18)

However, for a nonparabolic band the band mass m∗
e is not identical to m�

e . This is due
to band nonparabolicity. The band nonparabolicity can be expressed in the form [7.12]

E = h̄2k2

2m�
e

− α

E0

(
h̄2k2

2m�
e

)2

(7.19)
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where E0 is the lowest direct band-gap energy. We neglected in the expression higher-
order terms in the wavenumber k. The conduction-band mass can now be defined by

m∗
e = h̄

(
d2E

dk2

)−1

∼ m�
e (n)

(
1 + 6

α

E0
E

)
(7.20)

where the approximation is obtained from Equation (7.19). For degenerate material, the
electron scattering occurs at the Fermi surface EF and m∗

e at EF enters into the carrier
transport equations.

Measurement techniques, such as Faraday rotation, Shubnikov–de Haas oscillation and
magnetophonon resonance, can provide information on an optical effective mass m∗

opt, but
not on the band mass m∗

e . The optical effective mass is now defined by

m∗
opt = h̄2k

(
dE

dk

)−1

∼ m�
e (n)

(
1 + 2

α

E0
E

)
(7.21)

Since the nonparabolicity of the band becomes significant as the Fermi level moves up
in the band, the electron effective mass in GaAs increases with doping level for carrier
concentrations larger than 1018 cm−3. The dependence of the electron mass on electron
concentration in GaAs has been reported by several authors. We show in Figure 7.7,
as an example, the optical mass m∗

opt at the Fermi energy EF as a function of electron
concentration n for GaAs as reported by Szmyd et al. [7.13]. The effective mass at the
bottom of the conduction band m�

e is also plotted by the solid circles. It is clear from
Figure 7.7 that both m�

e and m∗
opt increase with increasing electron concentration n.

The increase in m�
e with electron concentration n at 300 K is found empirically to

be [7.13]
m�

e (n)

m0
= 0.0635 + 2.06 × 10−22n + 1.16 × 10−40n2 (7.22)

where n is in cm−3. This increase in m�
e is considered to be due to the perturbation by

the donor atoms (but not by the free electrons). Szmyd et al. [7.13] also found that the
increase in m∗

e at 300 K, due to the band nonparabolicity and the increase in m�
e with

doping, can be fitted by (n in cm−3)

m∗
e(n)

∣∣∣
E=EF

= (0.0640 + 1.26 × 10−20n − 4.37 × 10−40n2)m0 (7.23)

Result of Equation (7.22) is shown in Figure 7.7 by the dashed line. The solid line also
indicates the calculated result of Equation (7.21) with α = 1.25.

The expression for a carrier concentration correction on the band mass at the Fermi
energy of GaAs has been proposed by Maude et al. [7.14]. Using their result and the
pressure coefficient of ∼0.7%/kbar, we obtain the variation of the band mass with electron
concentration n and pressure p at the Fermi energy EF as

m∗
e(n, p)

∣∣∣
E=EF

= 0.0665m0
1 + 7 × 10−3p kbar

1 − 3.9 × 10−15n2/3 cm2
(7.24)



ENERGY-BAND STRUCTURE: EFFECTIVE MASSES 157

0 2 4 6 8 10
0.05

0.06

0.07

0.08

0.09

0.10

0.11

me
Γ

m*
opt

GaAs

n (1018 cm–3)

m
op

t/
m

0,
m

eΓ /m
0

*

Figure 7.7 Electron optical mass m∗
opt at the Fermi energy EF as a function of electron concen-

tration n for GaAs. The effective mass m�
e at the bottom of the conduction band is also shown

by the solid circles. The solid line is calculated from Equation (7.21) with α = 1.25. The dashed
line is also calculated from Equation (7.22). [From D. M. Szmyd, P. Porro, A. Majerfeld, and S.
Lagomarsino, J. Appl. Phys. 68, 2367(1990), reproduced by permission from the American Institute
of Physics]

The expression for the energy-dependent effective mass in GaAs has also been proposed
by Chaudhuri and Bajaj [7.15]. It can be written as

m∗
e(E)

m0
= 0.0665 + 0.0436E + 0.236E2 − 0.147E3 (7.25)

where E is expressed in electron volts.
A value of nonparabolicity factor α = 0.83 was calculated by Vrehen [7.12] from the

three-level k · p analysis of GaAs. Recent calculations, which include higher bands [7.13],
yield values of α between 1.21 and 1.30.

Johnson et al. [7.16] have pointed out that the conduction-band structure of the com-
mon III–V semiconductors exhibits a nonparabolicity which is universal, to a good
approximation, when the dispersion is plotted in the natural units of effective Rydberg
energies and Bohr radii. This universality is a consequence of the scaling theory of
the simple effective-mass equation for the envelope function, as in the theory of shal-
low donors. They also showed [7.17] that the nonparabolicity of the conduction band is
approximately universal in direct band-gap GaAs under varying pressure and in direct
band-gap AlxGa1−xAs for various alloy compositions x. The predicted universality was
found to be a better approximation than the Kane’s three-level k · p approximation.

The conduction-band nonparabolicity and anisotropy in GaAs have been studied by
Hopkins et al. [7.18] by cyclotron resonance over a wide range of energies using the
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photoconductive detection technique. The band-edge mass found in their experiment
(0.0660m0) was lower than the often quoted value of 0.0665m0, but agreed with the
result of Sigg et al. [7.19].

7.2 ELECTRON EFFECTIVE MASS: SATELLITE VALLEY

7.2.1 Camel’s back structure

Figures 7.8(a) and 7.8(b) show the conduction-band structures near the zone boundary,
k = (2π/a)(1, 0, 0), for diamond-type and zinc-blende-type semiconductors, respectively.
For a diamond-type semiconductor, the two conduction bands intersect at the X point. This
degeneracy at the X point may be lifted by exposing the semiconductor to a large uniaxial
stress along appropriate crystallographic directions. This has been well investigated in
Si, where a shift of cyclotron resonance line versus stress [7.20] and a nonlinear stress
dependence of the indirect band-gap energy [7.21] have been found.

For a zinc-blende-type semiconductor, the X conduction-band degeneracy is crystal-
field split. The result is twofold: (i) the longitudinal effective mass increases while the
transverse effective masses are hardly modified; (ii) the shift of the conduction minimum
toward the Brillouin-zone boundary gives the so-called camel’s back structure [7.22].

The effective Hamiltonian for the conduction-band electrons in the zinc-blende-type
semiconductors can be given by [7.23]

H =

X1 X3
Ak2

⊥ + Bk2
|| − ∆

2
Pk||

Pk|| Ak2
⊥ + Bk2

|| + ∆

2


 (7.26)

where k|| and k⊥ are, respectively, the wavevectors along and perpendicular to the 〈100〉
direction, ∆ is the energy splitting, A = (h̄2/mt), B = (h̄2/2ml) and P is the band param-
eter representing the magnitude of k-linear term. Here, mt and ml should be distinguished
from those obtained on the basis of the ellipsoidal model of Equation (7.2).

–k0 k0

D0 D0

k<100>

E

X1

(a)

k<100>
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2D

km–km

DE

ml

m||
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Figure 7.8 Conduction-band structure near the Brillouin-zone boundary k = (2π/a)(1, 0, 0) for:
(a) diamond-type; and (b) zinc-blende-type semiconductors. The solid lines in (b) show the crystal-
field splitting and the resulting camel’s back structure
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A straightforward calculation of Equation (7.26) gives an energy of the X1 band [7.23]

E(k) = Ak2
⊥ + Bk2

|| −
√(

∆

2

)2

+ P 2k2
|| (7.27)

so that the k position of the conduction-band minimum on the 〈100〉 axis is given by

km =




P

2B

√
1 −

(
∆

∆0

)2

(∆ � ∆0)

0 (∆ � ∆0)

(7.28)

where

∆0 = P 2

B
(7.29)

For ∆ � ∆0, the conduction-band minima have a camel’s back structure with a camel’s
back height

∆E = ∆0

4

(
1 − ∆

∆0

)2

(7.30)

The apparent effective mass m|| at the minimum is then given by

m0

m||
= m0

ml

[
1 −

(
∆

∆0

)2
]

(7.31)

It should be noted that the apparent effective mass m|| at the minimum k|| = km may
become much larger than ml for the camel’s back structure.

7.2.2 Numerical value

We list in Table 7.4 the electron effective masses in the X (�) and L minima reported
for some cubic group-IV and III–V semiconductors. The X-valley and L-valley electron
density-of-states and conductivity masses for these semiconductors are listed in Table 7.5
(see definitions in Section 7.1).

7.3 HOLE EFFECTIVE MASS

7.3.1 Effective �-valence-band Hamiltonian and Luttinger parameter

In general, the effective Hamiltonian is derived from a k · p theory or from the theory
of invariants developed by Bir and Pikus. We have already presented in Section 6.2
the effective Hamiltonians for the conduction and valence bands in the zinc-blende and
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Table 7.4 Electron effective mass in the X (�) and L minima for some cubic
group-IV and III–V semiconductors

System Material X L

mtX/m0 mlX/m0 mtL/m0 mlL/m0

IV Diamond 0.36 1.4
Si 0.1905 0.9163 0.130a 1.418a

Ge 0.29 1.35 0.081 1.61
α-Sn 0.086a 0.89a 0.075a 1.478a

3C-SiC 0.25 0.67

III–V c-BN 0.23a 0.94a

BP 0.204a 1.125a

c-AlN 0.32a 0.52a

AlP 0.212a 3.67a

AlAs 0.19 1.1 0.15a 1.32a

AlSb 0.21 1.50 0.20a 1.82a

β-GaN 0.30a 0.58a

GaP 0.252 6.9 0.150a 1.184a

GaAs 0.23 1.3 0.0754 1.9
GaSb 0.33a 1.30a 0.085 1.4
InP 0.34a 1.26a 0.13a 1.64a

InAs 0.28a 1.32a 0.12a 3.57a

a Theoretical

wurtzite semiconductors. Let us rewrite those for the valence bands in the zinc-blende
and wurtzite semiconductors as follows

H ZB
v = 1

3
∆so(L · σ ) − (γ1 + 4γ2)k

2 + 6γ2(L · k)2 − 6(γ2 − γ3)
∑
i,j

[Li, Lj ]kikj

+ (a + 2b)(exx + eyy + ezz) − 3b
∑

i

L2
i eii − √

3d
∑
i,j

[Li, Lj ]eij (7.32)

and

H W
v = ∆1L

2
z + ∆2Lzσz + √

2∆3(L+σ− + L−σ+) + (A1 + A3L
2
z)k

2
z

+ (A2 + A4L
2
z)k

2
⊥ − A5(L

2
+k2

− + L2
−k2

+) − 2A6kz([Lz, L+]k− + [Lz, L−]k+)

+ iA7(L+k− − L−k+) + (C1 + C3L
2
z)ezz + (C2 + C4L

2
z)e⊥ − C5(L

2
+e− + L2

−e+)

− 2C6([Lz,L+]e−z + [Lz,L−]e+z) (7.33)

In Equation (7.32), ∆so = ∆0 is the spin–orbit split-off energy, L and σ are the orbital
and spin angular momentum operators, respectively, [Li , Lj ] is defined by [Li, Lj ] =
(LiLj + LjLi)/2, a, b and d are Bir–Pikus deformation potentials and eij is the strain
tensor component (i, j = x, y or z). γi (i = 1 − 3) are Luttinger valence-band param-
eters. In Equation (7.33), ∆1 and ∆2,3 correspond to the crystal-field and spin–orbit
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Table 7.5 Electron density-of-states mass mX,L
e and electron conductivity mass

mX,L
c in the X and L minima for some cubic group-IV and III–V semiconductors

System Material Density-of-states mass Conductivity mass

mX
e /m0 mL

e /m0 mX
c /m0 mL

c /m0

IV Diamond 1.18 0.48
Si 0.669 0.73 0.259 0.19
Ge 1.01 0.553 0.39 0.119
α-Sn 0.39a 0.51a 0.12a 0.11a

3C-SiC 0.72 0.32

III–V c-BN 0.76a 0.31a

BP 0.75a 0.28a

c-AlN 0.78a 0.37a

AlP 1.14a 0.31a

AlAs 0.71 0.78 0.26a 0.21a

AlSb 0.84 1.05a 0.29 0.28a

β-GaN 0.78a 0.36a

GaP 1.58 0.75a 0.37 0.21a

GaAs 0.85 0.56 0.32 0.11
GaSb 1.08a 0.54 0.44a 0.12
InP 1.09a 0.76a 0.45a 0.19a

InAs 0.98a 0.94a 0.38a 0.18a

aTheoretical

splitting parameters in eV, respectively, L± = (Lx ± iLy)/
√

2, σ± = (σx ± iσy)/2, k2⊥ =
k2
x + k2

y , k± = kx ± iky , Ci (i = 1 − 6) are Bir–Pikus deformation potentials, e⊥ = exx +
eyy, e± = exx − eyy ± 2iexy and e±z = exz ± ieyz. Ai (i = 1–6) are Luttinger valence-
band parameters. Note that in the quasi-cubic approximation, the Luttinger parameters in
Equations (7.32) and (7.33) have the relationships

A1 = −(γ1 + 4γ3)

A2 = −(γ1 − 2γ3)

A3 = 6γ3

A4 = −3γ3

A5 = −(γ2 + 2γ3)

A6 = −√
2(2γ2 + γ3)

(7.34)

and
A1 − A2 = −A3 = 2A4 = 4A5 − √

2A6

A7 = 0
(7.35)

Table 7.6 presents the relations between the Luttinger parameters γi and other common
sets of the valence-band reciprocal mass parameters [7.24–7.27] (see also [7.28]). For
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Table 7.6 Comparison of notations used for rep-
resenting the band curvatures in the valence band
of cubic semiconductors

Luttingera LK–DKKb Kanec

γ1 −A −r1/
√

3

γ2 −B/2 −r3/2
√

3

γ3

√
3B2 + C2/2

√
3 −r5/2

√
6

aJ. M. Luttinger, Phys. Rev. 102, 1030 (1956)
bJ. M. Luttinger and W. Kohn, Phys. Rev. 97, 869
(1955); G. Dresselhaus, A. F. Kip, and C. Kittel,
Phys. Rev. 98, 368 (1955)
cE. O. Kane, Phys. Rev. 178, 1368 (1969)

simplicity, we set h̄2/2m0 → 1. Note that the parameter C in the LK–DKK notation is
related to parameters in Table 7.6 by C2 = D2 − 3B2.

The heavy-hole and light-hole valence bands are anisotropic even in the diamond-type
and zinc-blende-type semiconductors. Figure 7.9 schematically shows the two-dimensional
and three-dimensional constant-energy surfaces for holes in the heavy-hole and light-hole
bands of diamond-type and zinc-blende-type semiconductors. As easily understood from
Figure 7.9, the anisotropy effect is most pronounced for the heavy-hole band, which has
a strongly directionally dependent effective mass, with a larger mass along the [111]
direction than along the [100] direction [7.29].

Hamiltonians for various directions can be readily derived by expressing Jx,y,z and
kx,y,z in terms of their projections in the new coordinate systems, chosen so that one axis
is along the chosen direction and the other two perpendicular to it. We summarize in
Table 7.7 the functional forms for the heavy-hole and light-hole masses, mHH and mLH,
expressed in terms of γi , along the [001], [110] and [111] directions in diamond-type and
zinc-blende-type semiconductors [7.30]. Table 7.8 also shows the functional expressions
for the density-of-states heavy-hole mass (m∗

HH), averaged light-hole mass (m∗
LH) and

spherically averaged heavy-hole (ms
HH) and light-hole masses (ms

LH).
The �7 spin–orbit split-off valence band has nearly the spherical constant-energy sur-

face at the center of the Brillouin zone (k = 0). The three-level k · p formula can provide
the spin–orbit split-off hole mass mSO

m0

mSO
= γ1 − P 2

3

(
1

E0
− 1

E0 − ∆0

)
(7.36)

where γ1 is the Luttinger parameter and P 2 is the squared momentum matrix ele-
ment. Introducing γ1 = 7.10, P 2 = 22.66 eV, E0 = 1.43 eV and E0 + ∆0 = 1.76 eV for
GaAs, we obtain mSO/m0 = 0.164, in excellent agreement with the experimental data
(mSO/m0 = 0.165, see below).

The wurtzite-type semiconductor has C6v point-group symmetry. At the center of the
Brillouin zone, the conduction band has �7 (s-like) symmetry and the A, B and C valence
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Figure 7.9 Two-dimensional (upper parts) and three-dimensional constant-energy surfaces (lower
parts) for holes in the heavy-hole and light-hole bands of the diamond-type and zinc-blende-type
semiconductors

Table 7.7 Functional expression for the heavy-hole
and light-hole effective band masses, mHH and mLH,
along the [001], [110] and [111] directions represented
by Luttinger valence-band parameters γi

Direction mHH/m0 mLH/m0

[001]
1

γ1 − 2γ2

1

γ1 + 2γ2

[110]
2

2γ1 − γ2 − 3γ3

2

2γ1 + γ2 + 3γ3

[111]
1

γ1 − 2γ3

1

γ1 + 2γ3

bands have, respectively, �9, �7 and �7 symmetries (p-like). We summarize in Table 7.9
functional forms for the hole effective masses in the A, B and C valence bands along (|| c)
and perpendicular to the c axis (⊥ c) expressed in terms of Ai (Luttinger valence-band
parameters) in wurtzite-type semiconductors.
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Table 7.8 Functional expression for the density-of-states
heavy-hole mass (m∗

HH), averaged light-hole mass (m∗
LH)

and spherically averaged heavy-hole (ms
HH) and light-hole

masses (ms
LH)

Mass Expression

m∗
HH/m0

(1 + 0.05γh + 0.0164γ 2
h )2/3

γ1 − γ

m∗
LH/m0

1

γ1 + γ

ms
HH/m0

1

γ1(1 − µ)

ms
LH/m0

1

γ1(1 + µ)

γ = (2γ 2
2 + 2γ 2

3 )1/2, γh = 6(γ 2
3 − γ 2

2 )

γ (γ1 − γ )
, µ = 6γ3 + 4γ2

5γ1

Table 7.9 Functional expression for the hole effective masses
in the A, B and C valence bands along (|| c) and perpendicular
to the c axis (⊥ c) in the wurtzite-type semiconductors

Expression

kz direction (|| c) kx − ky plane (⊥ c)

mA||
m0

= −1

A1 + A3

mA⊥
m0

= −1

A2 + A4

mB||
m0

= −1

A1 + A3E
0
7+

E0
7+ − E0

7−

mB⊥
m0

= −1

A2 + A4E
0
7+

E0
7+ − E0

7−
mC||
m0

= −1

A1 − A3E
0
7−

E0
7+ − E0

7−

mC⊥
m0

= −1

A2 − A4E
0
7−

E0
7+ − E0

7−

E0
7± = ∆1 − ∆2

2
±

√(
∆1 − ∆2

2

)2

+ 2∆2
3

7.3.2 Numerical value

(a) Cubic semiconductor

An accurate determination of the hole effective mass is important not only for the
interpretation of the optical and transport measurements in bulk semiconductors, but



ENERGY-BAND STRUCTURE: EFFECTIVE MASSES 165

also for the prediction of the electronic properties of low-dimensional semiconductor
structures. In Table 7.10, we summarize the reported γ values for some cubic semicon-
ductors. Figure 7.10 also plots γi versus lowest direct band-gap energy E0 for some cubic
group-IV, III–V and II–VI semiconductors. The solid lines in Figure 7.10 represent the
least-squares fit using the relation

ln γi = Ai ln E0 + Bi (7.37)

The Ai and Bi values determined here are summarized in Table 7.11. The values of γi for
β-MgS, β-MgSe, β-MgTe, c-CdS and c-CdSe in Table 7.10 have been estimated from
Equation (7.37).

Table 7.10 Luttinger valence-band parameter γi for some cubic group-IV,
III–V and II–VI semiconductors (in h̄2/2m0)

System Material γ1 γ2 γ3

IV Diamond 4.24 0.82 1.71
Si 4.285 0.339 1.446
Ge 13.38 4.24 5.69
α-Sn −15.0 −11.5 −8.6
3C-SiC 2.817 0.508 0.860

III–V c-BN 1.92a 0.02a 0.56a

c-AlN 1.73a 0.43a 0.65a

AlP 3.47a 0.06a 1.15a

AlAs 3.76a 0.90a 1.42a

AlSb 4.15a 1.01a 1.75a

β-GaN 2.84a 0.82a 1.12a

GaP 4.04 0.53 1.26
GaAs 7.10 2.02 2.91
GaSb 13.3 4.4 5.7
InP 5.33 1.57 2.11
InAs 20.4 8.3 9.1
InSb 36.3 16.1 17.2

II–VI β-MgS 2.62a 0.38a 0.91a

β-MgSe 2.84a 0.43a 1.00a

β-MgTe 3.21a 0.52a 1.15a

β-ZnS 1.77a 0.30a 0.62a

ZnSe 3.94 1.00 1.52
ZnTe 3.96 0.86 1.39
c-CdS 4.11a 0.77a 1.53a

c-CdSe 5.51a 1.24a 2.14a

CdTe 4.14 1.09 1.62
β-HgS −41.28a −21.00a −20.73a

HgSe −25.96a −13.69a −13.20a

HgTe −15.6 −9.6 −8.6

aCalculated or estimated
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Figure 7.10 Luttinger valence-band parameter γi (in h̄2/2m0) versus E0 for some cubic group-IV,
III–V and II–VI semiconductors. The solid lines represent the least-squares fit of Equation (7.37).
The Ai and Bi values determined here are listed in Table 7.11

Table 7.11 Parameter value describing the relation-
ship between γi and E0

lnγi = Ai + Bi ln E0 (E0 in eV; γi in h̄2/2m0)

γi Ai Bi

γ1 2.10 0.76
γ2 0.84 1.22
γ3 1.21 0.88

Table 7.12 lists the heavy-hole and light-hole effective band masses, mHH and mLH,
along the [001] and [111] directions for some cubic group-IV, III–V and II–VI semicon-
ductors. Table 7.13 also lists the density-of-states heavy-hole (m∗

HH), averaged light-hole
(m∗

LH) and spin–orbit split-off effective hole masses (mSO) in these semiconductors.
Figure 7.11 plots the �-valley electron effective mass m�

e versus averaged light-hole mass
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Table 7.12 Heavy-hole and light-hole effective band masses, mHH and mLH, along the
[001] and [111] directions for some cubic group-IV, III–V and II–VI semiconductors

System Material mHH/m0 mLH/m0

[001] [111] [001] [111]

IV Diamond 0.38 1.22 0.17 0.13
Si 0.277 0.718 0.202 0.139
Ge 0.204 0.500 0.0457 0.0404
α-Sn 0.125 0.46 −0.026a −0.031a

3C-SiC 0.56 0.91 0.26 0.22

III–V c-BN 0.53b 1.25b 0.51b 0.33b

BP 0.375b 0.926b 0.150b 0.108b

c-AlN 1.15b 2.33b 0.39b 0.33b

AlP 0.30b 0.85b 0.28b 0.17b

AlAs 0.51b 1.09b 0.18b 0.15b

AlSb 0.47b 1.54b 0.16b 0.13b

β-GaN 0.83b 1.67b 0.22b 0.20b

GaP 0.34 0.66 0.20 0.15
GaAs 0.33 0.78 0.090 0.077
GaSb 0.22 0.53 0.045 0.040
InP 0.46 0.90 0.12 0.11
InAs 0.26 0.45 0.027 0.026
InSb 0.24 0.53 0.015 0.014

II–VI MgO 1.60b 2.77b 0.35b 0.31b

β-MgS 0.54b 1.25b 0.30b 0.23b

β-MgSe 0.51b 1.19b 0.27b 0.21b

β-MgTe 0.46b 1.10b 0.24b 0.18b

β-ZnS 0.85b 1.9b 0.42b 0.33b

ZnSe 0.52 1.11 0.168 0.143
ZnTe 0.45 0.85 0.176 0.148
c-CdS 0.39b 0.95b 0.18b 0.14b

c-CdSe 0.33b 0.81b 0.13b 0.10b

CdTe 0.51 1.11 0.158 0.136
β-HgS 1.39b 5.56b −0.012b,c −0.012b,c

HgSe 0.70b 2.27b −0.019b,c −0.019b,c

HgTe 0.28 0.63 −0.029c −0.030c

a The sign is chosen positive for a normal band structure like that of Ge
bCalculated or estimated
cThe sign is chosen positive for a normal band structure like that of CdTe

m∗
LH for some cubic group-IV, III–V and II–VI semiconductors. It is easily understood

from Figure 7.11 that the simple relation m�
e ∼ m∗

LH holds for these semiconductors.

(b) Hexagonal and rhombohedral semiconductors

No detailed experimental data are available on the Luttinger parameters Ai of anisotropic
semiconductors. We list in Table 7.14 the theoretical Luttinger valence-band parameters
for some hexagonal and rhombohedral semiconductors.
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Table 7.13 Density-of-states heavy-hole (m∗
HH), averaged light-

hole (m∗
LH) and spin–orbit split-off effective hole masses (mSO) in

some cubic group-IV, III–V and II–VI semiconductors

System Material m∗
HH/m0 m∗

LH/m0 mSO/m0

IV Diamond 0.78 0.14 0.394a

Si 0.528 0.157 0.29
Ge 0.345 0.0427 0.095
α-Sn −0.029b 0.19 0.041
3C-SiC 0.76 0.24 0.51

III–V c-BN 0.99a 0.37a 0.52a

BAs 0.0800a 0.2220a

c-AlN 1.77a 0.35a 0.58a

AlP 0.63a 0.20a 0.29a

AlAs 0.81a 0.16a 0.30a

AlSb 0.9 0.13 0.317a

β-GaN 1.27a 0.21a 0.35a

GaP 0.52 0.17 0.34
GaAs 0.55 0.083 0.165
GaSb 0.37 0.043 0.12
InP 0.69 0.11 0.21
InAs 0.36 0.026 0.14
InSb 0.38 0.014 0.10

II–VI β-MgS 0.93a 0.25a 0.38a

β-MgSe 0.88a 0.23a 0.35a

β-MgTe 0.80a 0.20a 0.31a

β-ZnS 1.42a 0.36a 0.56a

ZnSe 0.82 0.154 0.24
ZnTe 0.67 0.159 0.25
c-CdS 0.68a 0.15a 0.24a

c-CdSe 0.57a 0.11a 0.18a

CdTe 0.82 0.145 0.24
β-HgS −0.012a,c 2.22a −0.013a,c

HgSe −0.019a,c 1.07a 0.031a

HgTe −0.030c 0.38 0.102a

aCalculated or estimated
bThe sign is chosen positive for a normal band structure like that
of Ge
cThe sign is chosen positive for a normal band structure like that
of CdTe

7.3.3 Polaron effect

The mass measured in cyclotron resonance experiments in polar semiconductors is the
polaron mass rather than the ‘bare’ band-edge mass given by theoretical calculations of
the band parameters γi . For αF � 1, Equation (7.10) can be successfully approximated by
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Table 7.14 Theoretically obtained Luttinger valence-band parameter Ai for some hexagonal and
rhombohedral group-IV, III–V and II–VI semiconductors

System Material A1 A2 A3 A4 A5 A6 |A7|

IV 6H-SiC −4.76 −0.590 4.14 −1.15 −1.50 −1.34 0.0119
15R-SiC −4.70 −0.55 4.07 −1.12 1.35 −0.94 0.012

III–V w-AlN −4.15 −0.39 3.76 −1.61 −1.76 −2.07 0.10
α-GaN −6.87 −0.68 6.27 −2.98 −3.05 −4.25 0.23
InN −9.15 −0.66 8.50 −4.52 −4.47 −5.74 0.33

II–VI ZnO −3.78 −0.44 3.45 −1.63 1.68 −2.23 0.025
α-ZnS −4.58 −0.53 4.14 −2.34 −2.34 −3.69
w-CdS −5.92 −0.70 5.37 −1.82 −1.82 −1.36
w-CdSe −10.2 −0.76 9.53 −3.2 −3.2 −2.31

m∗
h ∼ m∗

hp

1 −
(αF

6

) (7.38)

where m∗
h and m∗

hp are the bare and polaron masses, respectively. For the �-valley electrons
in GaAs, αF = 0.068 (see Section 5.2). Since αF is proportional to the square root of the
carrier effective mass, αF ∼ 0.2 (heavy holes) and ∼ 0.1 (light holes) for GaAs. Hence,
the bare hole mass in GaAs will be �5% larger than the polaron mass.



170 PROPERTIES OF GROUP-IV, III–V AND II–VI SEMICONDUCTORS

7.3.4 External perturbation and doping effects

(a) Temperature effect

Although the effect of temperature on the hole effective mass has been studied theoretically
by several authors, no experimental data have been reported up to now. As mentioned in
Section 7.1, the simplest way for correction of temperature dependence is to assume that
the hole mass varies in accord with the temperature shift of the lowest direct band-gap
energy E0. The hole effective mass variation with temperature T can, then, be written as

m∗
h(T ) = m∗

h(0)
E0(T )

E0(0)
(7.39)

where m∗
h(0) and E0(0) are the mass and E0 values at T = 0 K, respectively.

(b) Pressure effect

The effect of hydrostatic pressure on the hole effective mass in semiconductors has been
studied both theoretically and experimentally (see, e.g., GaAs [7.1]). No direct determi-
nation has, however, yet been made on the pressure dependence of the hole masses in
semiconductors. From a study of the pressure dependence of tunnel diode characteristics,
Alekseeva et al. [7.31] deduced d ln mHH/dp and d ln mLH/dp values to be −(0.9 ± 0.1)

and 0.74 ± 0.18 %/kbar, respectively. They also calculated values of d ln mHH/dp and
d ln mLH/dp from the valence-band parameters of the pseudopotential calculation. The
agreement of the calculated d ln mLH/dp value with experiment was found to be good;
but, the calculated d ln mHH/dp value was not so good.

Adams and Shantharama [7.32, 7.33] have measured the pressure dependence of the
hole mobility in GaAs from which they concluded that

d ln mHH

dp
= −(0.01 − 0.015) %/kbar (7.40)

Adams [7.33] concluded that the pressure dependence of the heavy-hole effective mass
is considerably less than that for the �-valley electrons expected from the k · p theory.

Based on k · p theory, we can expect the light-hole mass to vary with pressure by nearly
the same percentage as the electron effective mass. In fact, calculations by Unlu [7.34]
give d ln mLH/dp ∼ 0.8 %/kbar, which is almost equal to the �-valley electron value
(∼0.7 %/kbar). Note that the sign of the pressure coefficient of mHH is negative, meaning
that the effective mass mHH decreases with increasing hydrostatic pressure.

(c) Doping effect

As in the case of the electron effective mass (Section 7.1), the hole effective mass may
be influenced by the doping concentration of acceptor impurities or, in other words, by
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the free-hole concentration. A full k · p theory has been used to calculate the density-of-
states effective masses as a function of energy for holes in the heavy-hole (m∗

HH), light-
hole (m∗

LH) and spin–orbit split-off bands (mSO) in GaAs [7.35]. These results indicate
important nonparabolicities which should be taken into account in modeling the valence
band of GaAs. There has, however, been reported no detailed experimental data on the
carrier-concentration dependence of the hole effective mass in semiconductors.
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8.1 INTRAVALLEY DEFORMATION POTENTIAL: � POINT

8.1.1 Conduction band

A deformation potential (DP) is a quantity proportional to a matrix element of an operator
belonging to a crystal deformation between a final and initial electron (or hole) state. It
usually has the units of eV or eV/Å. The DP is called an intravalley DP if the wavevectors
of the final and initial states are within the same valley; otherwise it is called an intervalley
DP. Also, it is called an intraband DP if the band indices of the final and initial states are
the same; otherwise it is called an interband DP.

We have already presented in Section 6.2 the effective Hamiltonians for the conduc-
tion and valence bands in the zinc-blende-type and wurtzite-type semiconductors. Let us
rewrite those for the lowest conduction bands as follows

H ZB
c = h̄2k2

2m�
e

+ a�
c (exx + eyy + ezz) (8.1)

and

H W
c = h̄2k2

z

2m
||
e

+ h̄2(k2
x + k2

y)

2m⊥
e

+ D1ezz + D2(exx + eyy) (8.2)

where m�
e , m

||
e and m⊥

e are the electron effective masses, a�
c , D1 and D2 are Bir–Pikus

deformation potentials, and eij is the strain tensor component (i, j = x, y or z). Note that
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in the quasi-cubic approximation, we have the relation

a�
c = D1 = D2 (8.3)

In Figure 8.1, we schematically show the uniaxial stress (strain) effects on the electronic
energy-band structure near the � point in the zinc-blende-type semiconductors. Let us
consider the case of the scattering of electrons due to the strain caused by acoustic
waves, that is, the intravalley (acoustic) deformation potential scattering. If the strains
involved are small as in the usual case, the electronic energy shifts caused by them
may be described adequately with linear terms in the strain. By symmetry, for spherical
constant-energy surfaces and acoustic-mode scattering, one may write the shift of the �6

conduction-band minimum ∆E�
c as

∆E�
c = E�

1 (exx + eyy + ezz) (8.4)

where E�
1 is the so-called acoustic (intravalley) deformation potential. Equation (8.4) is

based on the fact that the matrix element of Equation (8.1) is practically equal to that
obtained by replacing H ZB

c by ∆E�
c [8.1]. The deformation potential E�

1 = a�
c can now
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Figure 8.1 A uniaxial stress (X|| [100]) effect on the electronic energy-band structure near the �

point in zinc-blende-type semiconductors
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be written, in a phenomenological form, as [8.2]

E�
1 = −Bu

dE�
c

dp
(8.5)

or, equivalently [8.3]

E�
1 = dE�

c

d ln V
(8.6)

where Bu is the bulk modulus (see Section 3.3), dE�
c /dp is the hydrostatic pressure

coefficient of the �6 conduction-band minimum and d ln V = dV/V is the fractional
volume change of the semiconductor.

We summarize in Table 8.1 the a�
c = E�

1 values for some cubic group-IV, III–V and
II–VI semiconductors. We also summarize in Table 8.2 the reported D1 and D2 values
for some wurtzite semiconductors. We can see that the signs of a�

c , D1 and D2 are all
negative for such semiconductors.

8.1.2 Valence band

The DPs for holes at the center of the Brillouin zone (k = 0) play an important role
in many physical phenomena. The lattice mobility of holes in III–V compounds, for

Table 8.1 �-conduction-band intravalley deformation potential, a�
c = E�

1 , for
some cubic group-IV, III–V and II–VI semiconductors

System Material a�
c (eV) System Material a�

c (eV)

IV Diamond −30.7a,b II–VI β-ZnS −4.09b

Si −15.3a,b ZnSe −4.17b

Ge −8.24a,b ZnTe −5.83b

α-Sn −13.7a,b c-CdS −27.1b

3C-SiC −7.50b c-CdSe −11.0b

CdTe −3.96b

III–V c-BN −36.5b HgTe −4.60b

BP −13.3b

c-AlN −11.7b

AlP −5.54b

AlAs −5.64b

AlSb −6.97b

β-GaN −21.3b

GaP −7.14b

GaAs −11.0
GaSb −9
InP −11.4
InAs −10.2
InSb −15

a�2′ -conduction band
bCalculated
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Table 8.2 �-conduction-band deformation potentials, D1 and
D2, for some wurtzite III–V semiconductors

System Material D1 (eV) D2 (eV)

III–V w-AlN −10.23a −9.65a

α-GaN −9.47a −7.17a

a Calculated

example, is limited primarily by acoustic and nonpolar optical phonon scattering. The
strengths of these scattering mechanisms are determined by the valence-band DPs, a, b

and d (Bir–Pikus notation).
We have already seen in Section 6.2 the effective Hamiltonians for the conduction and

valence bands in the zinc-blende-type and wurtzite-type semiconductors. Let us rewrite
those for the highest valence bands as follows

H ZB
v = 1

3
∆so(L · σ ) − (γ1 + 4γ2)k

2 + 6γ2(L · k)2 − 6(γ2 − γ3)
∑
i,j

[Li, Lj ]kikj

+ (a + 2b)(exx + eyy + ezz) − 3b
∑

i

L2
i eii − √

3d
∑
i,j

[Li, Lj ]eij (8.7)

and

H W
v = ∆1L

2
z + ∆2Lzσz + √

2∆3(L+σ− + L−σ+) + (A1 + A3L
2
z)k

2
z

+ (A2 + A4L
2
z)k

2
⊥ − A5(L

2
+k2

− + L2
−k2

+) − 2A6kz([Lz, L+]k− + [Lz, L−]k+)

+ iA7(L+k− − L−k+) + (C1 + C3L
2
z)ezz + (C2 + C4L

2
z)e⊥ − C5(L

2
+e− + L2

−e+)

− 2C6([Lz,L+]e−z + [Lz,L−]e+z) (8.8)

In Equation (8.7), ∆so = ∆0 is the spin–orbit split-off energy, L and σ are the orbital
and spin angular momentum operators, respectively, [Li , Lj ] is defined by [Li, Lj ] =
(LiLj + LjLi)/2, γi (i = 1–3) are Luttinger valence-band parameters and eij is the strain
tensor component (i, j = x, y or z); a, b and d are Bir–Pikus deformation potentials.
We summarize in Table 8.3 the relations between a, b, d and other common sets of the
DP parameters used in cubic semiconductors [8.4–8.6] (see also [8.7]). In Equation (8.8),
∆1 and ∆2,3 correspond to the crystal-field and spin–orbit split-off parameters in units
of eV, respectively, L± = (Lx ± iLy)/

√
2, σ± = (σx ± iσy)/2, k2

⊥ = k2
x + k2

y , k± = kx ±
iky , e⊥ = exx + eyy , e± = exx − eyy ± 2iexy , e±z = exz ± ieyz and Ai (i = 1–6) are Lut-
tinger valence-band parameters. Ci (i = 1–6) are Bir–Pikus deformation potentials. Note
that in the quasi-cubic approximation, the DPs in Equations (8.7) and (8.8) have the rela-
tionships

C1 = a + 2√
3
d

C2 = a − 1√
3
d
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Table 8.3 Comparison of notations popularly used for rep-
resenting the valence-band deformation potentials in cubic
semiconductors

Kleiner–Rotha Bir–Pikusb Kanec

−Dv
d −av −d1/

√
3

Du/3 −b/2 −d3/2
√

3
D′

u/3 −d/2
√

3 −d5/2
√

6

aW. H. Kleiner and L. Roth, Phys. Rev. Lett. 2, 234 (1959)
bG. L. Bir and G. E. Pikus, Symmetry and Strain-Induced
Effects in Semiconductors (Wiley, New York, 1974)
cE. O. Kane, Phys. Rev. 178, 1368 (1969)

C3 = −√
3d

C4 =
√

3

2
d (8.9)

C5 = 1

2
b + 1√

3
d

C6 = √
2b + 1√

6
d

and
C1 − C2 = −C3 = 2C4 = 4C5 − √

2C6 (8.10)

The application of a uniaxial stress X to a semiconductor produces a strain that reduces
the symmetry of the material and results in significant change in the energy bands, as
schematically shown in Figure 8.1. The remarkable effect of the compressive or tensile
uniaxial stress on the electronic energy-band structure is to split the heavy-hole (J = 3/2,
mj = ±3/2 in spherical notation) and light-hole (J = 3/2, mj = ±1/2) degeneracy at
the � point. If we introduce the following strain components

exx = S11X, eyy = ezz = S12X (8.11)

for the [100] uniaxial stress, or

exx = eyy = ezz = S11 + 2S12

3
X, eyz = ezx = exy = S44

6
X (8.12)

for the [111] uniaxial stress, into Equation (8.7), we obtain the changes in the band-gap
energies to first order in stress as [8.8]




∆(Ev1 − Ev2) = δE

∆(Ev2 − Ev3) = ∆0 − δE

2

(8.13)
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Table 8.4 �-valence-band deformation potentials, a, b and d ,
for some cubic group-IV, III–V and II–VI semiconductors

System Material a (eV) b (eV) d (eV)

IV Diamond −36.1a −11.1a

Si −5 −2.3 −5.3
Ge −5.2 −2.4 −4.8
α-Sn −3.3a −2.3 −4.1
3C-SiC 4.30a −2.20a −6.26a

III–V c-BN −7.3a −3.41a −3.75a

BP 4.2a −4.9a

BAs −4.5a

c-AlN −5.9a −1.7a −4.4a

AlP 3.15a −1.5a

AlAs −2.6a −2.3a

AlSb 1.38a −1.35 −4.3
β-GaN −13.33a −2.09a −1.75a

GaP 1.70a −1.7 −4.4
GaAs −0.85 −1.85 −5.1
GaSb 0.79a −2.4 −5.4
InP −0.6 −1.7 −4.3
InAs 1.00a −1.8 −3.6
InSb 0.36a −2.0 −5.4

II–VI β-MgSe −1.0a −1.27a

β-ZnS 2.31a −1.1 −4.4
ZnSe 1.65a −1.8 −5.0
ZnTe 0.79a −1.4 −4.4
c-CdS 0.92a −4.7
c-CdSe −8.9a −0.8
CdTe 0.55a −1.0 −4.4
β-HgS −1.24a

HgSe −1.16a

HgTe −0.13a −1.5 −8.0

aCalculated

where δE = 2b(S11 − S12)X for the [100] stress or δE = (d/
√

3)S44X for the [111] stress;
thus, the splitting energies are proportional to the shear DPs b or d .

The DPs a, b and d for some cubic, covalent and zinc-blende semiconductors are sum-
marized in Table 8.4. Figure 8.2 plots the experimental b, d and η = d/

√
3b values versus

Phillips ionicity fi for some of these semiconductors. Note that the quantity η is given by
the ratio of the splitting for a shear strain along [111] to the splitting for a shear strain of the
same magnitude along [100]. The solid lines in Figures 8.2(a), 8.2(b) and 8.2(c) represent
the least-squares fit with b = 1.73fi − 2.36, d = 0.42fi − 4.78 and η = 1.39fi + 1.11 (b
and d in eV), respectively. It is evident from Figure 8.2 that the shear DPs b, d and
η increase with increasing fi. Such a trend may be interpreted by a point-ion model
proposed by Gavini and Cardona [8.9].
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Figure 8.2 Plots of: (a) b; (b) d; (c) η = d/
√

3b determined experimentally versus Phillips ion-
icity fi for some cubic group-IV, III–V and II–VI semiconductors. The solid lines represent the
least-squares fit with: (a) b = 1.73fi − 2.36; (b) d = 0.42fi − 4.78; (c) η = 1.39fi + 1.11 (b and
d in eV), respectively

We show in Figure 8.3 the experimental or theoretical DP parameter b plotted against
lattice constant a for some cubic semiconductors. The general trend we can obtain from
this figure is that the semiconductor has larger negative b value as its lattice constant gets
smaller [8.10]. It is thus suspected, although not reported previously, that the DP will get
more negative as we apply hydrostatic pressure or the bath temperature is lowered since
the average lattice constant gets smaller in such conditions.

Table 8.5 lists the valence-band DP parameters Ci for some hexagonal semiconductors.
The conduction-band DP parameters Di in this table are defined in Equation (8.2).

8.1.3 E0 gap

The hydrostatic DP a for holes at the top of the valence band is smaller than that for the
�-conduction-band electrons a�

c . Hence, it is a good approximation to set the electron DP
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Figure 8.3 Experimental or theoretical DP parameter b plotted against lattic constant a for some
cubic group-IV, III–V and II–VI semiconductors. The solid line is a guide to the eye showing the
trend toward larger negative values of b with decreasing a

Table 8.5 �-valence-band deformation potential Ci for some hexagonal group-IV, III–V and
II–VI semiconductors (in eV)

System Material C1 D1 − C1 C2 D2 − C2 C3 C4 C5 C6

IV 6H-SiC −3.6 1.7 6.6 −3.0 |3.2|
III–V w-AlN −12.9a −8.4a 4.5a −2.2a −2.6a −4.1a

α-GaN −41.4 −3.1 −33.3 −11.2 8.2 −4.1 −4.7
InN −4.05a −6.67a 4.92a −1.79a

II–VI ZnO −3.90 −4.13 1.15 −1.22 −1.53 2.88
w-CdS −1.36 −2.28 1.54 −2.34 −1.20
w-CdSe −0.76 −3.7 4.0 −2.2 1.2 3.0

aCalculated

a�
c to the DP a�

0 of the corresponding gap, i.e., the E0 gap. The DP parameter a�
0 can be

determined relatively easily by measuring photoluminescence, reflectivity or absorption
under pressure.

By analogy with Equation (8.5), we can write a�
0 to as

a�
0 = −Bu

dE0

dp
(8.14)

or, equivalently

a�
0 = dE0

d ln V
(8.15)

where dE0/dp is the hydrostatic pressure coefficient of the E0-gap energy.
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Table 8.6 Hydrostatic deformation potential a�
0 for some cubic and hexagonal semiconductors

System Material a�
0 (eV) System Material a�

0 (eV)

IV Diamond −27a,b II–VI β-MgSe −4.2b

Si −11.84a,b ZnO −3.51(A)
Ge −9.8a ZnO −3.59(B)
α-Sn −7.04a,b ZnO −3.81(C)
3C-SiC −11.5b α-ZnS −4.7b

III–V BP −17.5b β-ZnS −5.2
w-AlN −10.3b ZnSe −5.1
c-AlN −9.5b ZnTe −5.3
AlP −9.52b c-CdS 0.43b

AlAs −8.93b w-CdS −2.9
AlSb −5.9 c-CdSe 0.80b

α-GaN −8.8 w-CdSe −2.3
β-GaN −9.0b CdTe −2.9
GaP −9.3 β-HgS −2.16b

GaAs −8.8 HgSe −2.15b

GaSb −8.3 HgTe −3.19b

InN −4.2b

InP −7.6
InAs −6.3
InSb −7.0

a�v
25′ − �c

2′ gap
bCalculated or estimated from Equation (8.14)

We summarize in Table 8.6 the hydrostatic DP a�
0 for some group-IV, III–V and II–VI

semiconductors. Since the signs of Bu and dE0/dp in Equation (8.14) are usually positive,
a�

0 has negative value in many semiconductors.

8.1.4 Optical phonon deformation potential

The phonons that usually dominate in the scattering probability are the long-wavelength
optical phonons. These phonons produce a short-range potential in the crystal that shifts
the electronic band states. In polar semiconductors such as GaAs, the phonons are also
accompanied by a long-range macroscopic electric field that produces additional scatter-
ing. The shifts of the electronic band states per unit ionic displacement associated with the
long-wavelength optical phonons are called the optical phonon deformation potential d0.

The DP parameter d0 is defined by the splitting of the �15 valence-band state produced,
in the absence of spin–orbit interaction, by a phonon along the [111] direction [8.11]

δE = d0
u

a
(8.16)

where δE is the shift of the singlet component of �15 polarized along [111], a is the
lattice constant and u is the change in the bond length in the [111] direction due to the
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displacement of the two sublattices. The DPs d and d0 are related linearly through the
internal strain parameter ζ [8.11]

d = d ′ − 1

4
ζd0 (8.17)

A direct measurement of ζ is, however, rather difficult since it requires the measurement
of the intensity of an X-ray reflection forbidden in the unstrained crystal.

The experimental deduction of d0 from either low-field transport or Raman data is quite
involved. Several theoretical calculations of d0 have been carried out by using various
methods [8.12]. We list in Table 8.7 the �-valence-band d0 values for some cubic and
hexagonal semiconductors. We also plot in Figure 8.4 the d0 value versus lattice constant
a for some group-IV, III–V and II–VI semiconductors. The solid line in Figure 8.4
represents the least-squares fit using the relation (a in Å; d0 in eV).

d0 = 123.2 − 15.2a (8.18)

Brey et al. [8.13] discussed the deformation potential d0 from an aspect of the sp3

bond order ρ, where ρ was obtained by projecting out the sp3 bonding and antibonding
components and subsequently integrating over k space. Intuitively, one can expect the
bond order ρ to be a measure of the covalent bond strength, and therefore that a large
value of ρ should correspond to a small internal strain, and vice versa. Indeed, it was

Table 8.7 Optical phonon deformation potential d0 at the �-valence band of
some cubic and hexagonal semiconductors

System Material d0 (eV) System Material d0 (eV)

IV Diamond 80 II–VI β-MgS 15.2a

Si 33 β-ZnS 18
Ge 36 ZnSe 20
α-Sn 31.6a ZnTe 29
3C-SiC 58.1 c-CdS 6.9a

c-CdSe 8.9a

III–V c-BN 54.0a w-CdSe 32
BP 35.8a CdTe 22
BAs 41.5a

c-AlN 19.4a

AlP 23.7a

AlAs 27a

AlSb 37
β-GaN 14.6a

GaP 39
GaAs 40
GaSb 32
InP 35
InAs 42
InSb 39

a Calculated
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Figure 8.4 Optical phonon deformation potential d0 versus lattice constant a for some group-IV,
III–V and II–VI semiconductors. For w-CdSe, an effective lattice constant aeff = (

√
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plotted instead of a. The solid line represents the least-squares fit with d0 = 123.2 − 15.2a (a in
Å; d0 in eV)

found that the internal strain parameter ζ in Equation (8.17) decreases with increasing
sp3 bond order, resulting in increase in d0.

8.2 INTRAVALLEY DEFORMATION POTENTIAL:
HIGH-SYMMETRY POINTS

8.2.1 L point

(a) Hydrostatic and shear deformation potentials: conduction band

There are eight equivalent [111] directions (L valley) and six equivalent [100] directions
(X valley). These conduction-band valleys all coincide at equilibrium, but can be split
by the application of stress in appropriate directions. We show in Figure 8.5 the uniaxial
stress effects on the conduction-band structure near the L point in the zinc-blende-type
semiconductors. The 〈111〉 uniaxial stress removes the degeneracy of equivalent valleys
which is not symmetrical to the direction of the applied stress, namely, it shifts the energy
of the valley whose symmetry axis is parallel to the stress direction (〈111〉; L(1) valley)
with respect to the energy of the equivalent valleys which are not parallel to the direction
of the applied stress (〈1 11〉, 〈111〉, and 〈11 1〉; L(3) valleys). The 〈001〉 stress does not
split the L valleys, but shifts the energy of all L valleys.

Following the notation of Herring and Vogt [8.14], the energy shift of valley α for a
homogeneous deformation described by the strain tensor ε can be expressed as [8.15]

∆Eα
c = (Ξα

d 1 + Ξα
u {a ia i}) : ε (8.19)
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Figure 8.5 Stress effects on the conduction-band structure near the L point in the zinc-blende-type
semiconductors for uniaxial stresses along (a) 〈111〉; (b) 〈001〉 directions

where 1 is the unit tensor, i is a unit vector parallel to the k vector of valley α and { }
denotes a dyadic product. The shift of the mean energy of the conduction-band extrema
is

∆Eα
c,av =

(
Ξα

d + 1

3
Ξα

u

)
1 : ε (8.20)

The hydrostatic DP, aα
c = (Ξα

d + 1/3Ξα
u ), is sometimes denoted as Eα

1 . The DP Ξα
u is

also denoted as Eα
2 .

The change in the L-valley energies with 〈111〉 stress can now be written as [8.16]

∆EL
c = (S11 + 2S12)X

(
ΞL

d + 1

3
ΞL

u

)
+




1

9
S44XΞL

u for L(3)

−1

3
S44XΞL

u for L(1)
(8.21)

where Sij is the elastic compliance constant. The first term in Equation (8.21) describes
the shift of the energy of all L valleys due to the dilatation of the crystal. The L(1) –L(3)

splitting is described by the second term in Equation (8.21).
As in the case of the �-conduction band, it is a reasonable approximation to set aL

c
(EL

1 ) equal to the DP for the indirect band-gap energy EL
g [8.17]. The DP aL

c can be
obtained from band-structure calculations under hydrostatic pressure or by measuring the
hydrostatic pressure dependence of the indirect band-gap energy EL

g .
We summarize in Table 8.8 the L-conduction-band DPs, E1 (EL

1 ) and E2 (EL
2 ), for

some cubic group-IV and III–V semiconductors.
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Table 8.8 Hydrostatic E1 and shear deformation potentials E2 for electrons at the L-conduction
band of some cubic group-IV and III–V semiconductors

System Material E1 (eV) E2 (eV) System Material E1 (eV) E2 (eV)

IV Si −3.1a 18.0a III–V c-BN 27.9a

Ge −3.8 15.9 c-AlN 25.5a

AlAs −4.2b

β-GaN 27.5a

GaAs −2 14.5
GaSb −3.2 17.5

aCalculated
bEstimated

(b) Optical phonon deformation potential

The optical DP parameter d0 is determined by the splitting of the �-valence-band states
produced by the long-wavelength optical phonons (�15 phonons). Similarly, the optical
DP d1o(c) can be determined by the shift of the L-conduction-band states produced by the
�15-phonon displacement, which is decomposed into the L1 and L3 representation of the
k-group C3v at the L point [8.18]. The L1 part of the phonon deformation causes a shift
of the L-conduction band. In transport studies of n-Ge, it is common [8.19] to introduce
a deformation potential D, which is related to d1o(c) by

D = d1o(c)

2a
(8.22)

where a is the lattice parameter.
As in the case of the L-conduction band, the L1 part of the �15-phonon deformation

causes a shift of the L-valence band by the optical DP d1o(v) (d1o(so)). In the approx-
imation that the strain dependence of the spin–orbit interaction is neglected, d1o(v) =
d1o(so) [8.18]. If the spin–orbit interaction is neglected altogether, the L3 part of the
phonon deformation splits the doubly degenerate valence-band edge. This splitting is
caused by the optical DP d3o. If the � point is approached from the [111] direction, the
DPs behave as [8.20]

d1o(c) → 0

d1o(v) → −d0 (8.23)

d3o → √
2d0

We summarize in Table 8.9 the optical phonon deformation potential values, d1o(c),
d1o(v) and d3o, at the L point of some cubic group-IV, III–V and II–VI semiconductors.
Some of these values were obtained experimentally (Ge, GaAs, GaSb, InSb and HgTe).
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Table 8.9 Optical phonon deformation potentials, d1o(c), d1o(v) and d3o, at the L point of some
cubic group-IV, III–V and II–VI semiconductors (in eV)

System Material d1o(c) d1o(v) d3o System Material d1o(c) d1o(v) d3o

IV Si −3.7a −20.8a 49.0a II–VI β-ZnS −22.4a 1.4a 22.1a

Ge −24.9a −13.6a 45 ZnSe −23.8a −2.1a 24.9a

α-Sn −22.4a −9.5a 38.1a ZnTe −21.5a −5.1a 27.9a

CdTe −27.5a −17.4a 42.5a

III–V c-BN −24.0a −14.6a 56.3a HgTe −19.9 14.7
c-AlN −12.1a −13.3a −16.7a

AlP −4.4a −18.2a 33.9a

AlAs −18.2a 35.0a

AlSb −15.5a −15.7a 35.6a

β-GaN −11.0a 0.4a −27.0a

GaP −20.8a −10.2a 41.3a

GaAs |17| 45
GaSb −24.7a −9.2a 60
InP −24.8a −14.1a 43.3a

InAs −33.0a −11.1a 40.3a

InSb −28.0a −10.2a 33

aCalculated

(c) Valence-band deformation potential

The valence bands at L are split in the absence of spin–orbit coupling by the 〈111〉 stress.
The splitting is now given, in Kane’s DP notation D [8.21], as [8.5]

∆EL
v = 4

√
2

3
D5

3eij (8.24)

where eij is the off-diagonal component of the 〈111〉 strain. Similarly, the 〈001〉 strain
splits the valence bands equally for all L valleys by [8.5]

∆EL
v = 2

√
2

3
D3

3

[
ezz − 1

2
(exx + eyy)

]
(8.25)

Note that the 〈001〉 strain does not split the 〈111〉 conduction-band valleys among
each other.

We list in Table 8.10 the valence-band DPs D5
3 and D3

3 determined experimentally for
some cubic group-IV, III–V and II–VI semiconductors.

(d) Hydrostatic and interband deformation potentials: E1 and E1 + ∆1 gaps

It is interest to know the effects of uniaxial stress and also of optical phonons (�15

phonons) on the E1 and E1 + ∆1 transitions. We show in Figure 8.6 the stress dependence
of the E1-gap and E1 + ∆1-gap energies in GaAs for stresses along (a) [001] and (b) [111]
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Table 8.10 Valence-band deformation potentials, D5
3 and D3

3 , at the L-valence bands of some
cubic group-IV, III–V and II–VI semiconductors determined experimentally

System Material D5
3 (eV) D3

3 (eV) System Material D5
3 (eV) D3

3 (eV)

IV Si 4.3 4.6 II–VI ZnSe −27 −17
Ge 3.7 −5.6 (E1) ZnTe −15 −29

−6.2 (E1 + ∆1)

III–V GaAs −6.4 −5.4
InP −12.9 −4.1
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Figure 8.6 Stress dependence of the E1-transition and E1 + ∆1-transition energies in GaAs for
uniaxial stresses along (a) [001]; (b) [111] directions with light polarized parallel and perpendic-
ular to the stress axes. [From M. Chandrasekhar and F. H. Pollak, Phys. Rev. B 15, 2127 (1977),
reproduced by permission from the American Physical Society]

directions measured by the Schottky barrier electroreflectance with light polarized parallel
and perpendicular to the stress axis at T = 77 K [8.22]. The data along [001] clearly
show the linear stress dependence of the center of gravity, nonlinear intraband effect and
polarization-dependent splitting of the E1 and E1 + ∆1 structures. These data enable us
to obtain the DP values of D1

1 and D3
3.

A uniaxial stress along the [111] direction preferentially selects out the [111] direction
(singlet), while making equal angles with the other three[1 11], [111], and [11 1] directions
(triplet) [8.5, 8.22]. This gives rise to an interband splitting between the singlet and triplet.
The data shown in Figure 8.6(b) enable to determine the DPs of D1

1 , D5
1 and D5

3 . The
hydrostatic DP D1

1 and interband DP D5
1 can be calculated from the splitting between the

singlet and E || X triplet. The existence of the interband splitting (D5
1) confirms that the
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Table 8.11 Hydrostatic D1
1 (= √

3aL
1 ) and interband deformation

potentials D5
1 for the E1 and E1 + ∆1 gaps of some cubic group-IV,

III–V and II–VI semiconductors determined experimentally

System Material D1
1 (eV) D5

1 (eV)

IV Si −9.0 9
Ge −8.7 12.2

III–V GaAs −8.3 12.0
GaSb −12.3 (E1) 7.4 (E1)

−17.7 (E1 + ∆1)
InP −9.2 20.4
InSb −7.4 (E1) −7.4 (E1)

−8.5 (E1 + ∆1) −6.5 (E1 + ∆1)

II–VI ZnSe −5.8 30
ZnTe −5.5 40

transitions are along the  directions. The DP parameters D1
1 and D5

1 are now connected
with the DPs of Herring and Vogt [8.14] through

D1
1 = √

3

(
Ξd + 1

3
Ξu

)

D5
1 = 1√

3
Ξu (8.26)

An overview of the different notations used has been given by Kane [8.5].
By analogy with Equations (8.5) and (8.14), it is possible to obtain the hydrostatic DP

aL
1 = D1

1/
√

3 of the E1 and E1 + ∆1 gaps from the corresponding hydrostatic pressure
dependence data. We show in Table 8.11 the hydrostatic DP D1

1 = √
3aL

1 and interband DP
D5

1 for the E1 and E1 + ∆1 gaps of some cubic group-IV, III–V and II–VI semiconductors
determined experimentally.

8.2.2 X point

(a) Hydrostatic and shear deformation potentials: conduction band

The DPs E1 = aX
c , Ξd and E2 = Ξu at the three X-conduction valleys can be defined

just as in the case of the L valleys. The conduction-band minima at X or along � are,
however, not affected by uniaxial strain along the [111] direction. Under compressive
uniaxial strain along [001], on the other hand, an X valley along [001] (X(1)) splits off
from the other two along [100] and [010] (X(2)) with a ratio of 2 : 1 with respect to
the average (i.e., the X(1) valley under compressive strain lies in energy lower than the
X(2) valleys).

We list in Table 8.12 the L-conduction-band DPs, E1 (EX
1 ) and E2 (EX

2 ), for some
cubic group-IV and III–V semiconductors.
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Table 8.12 Hydrostatic E1 and shear deformation potentials E2 for electrons at the X point of
some cubic group-IV and III–V semiconductors

System Material E1 (eV) E2 (eV) System Material E1 (eV) E2 (eV)

IV Si 2.9 8.6 III–V c-BN 17.9a

Ge 5.75a 9.75a c-AlN −5.5a 6.6a

AlP 1.81a 6.75a

AlAs 1.20 6.9
AlSb 5.4
β-GaN −6.8a 7.1a

GaP 2.7 6.3
GaAs 1.05b 6.5
GaSb 1.99a 6.46a

InP 1.85a 3.3a

InAs 1.59a 3.7a

InSb 1.56a 4.53a

aCalculated
bEstimated

Table 8.13 Hydrostatic D1
1 (= √

3aX
2 ) and inter-

band deformation potentials D3
1 for the E2 gap of

some cubic semiconductors

System Material D1
1 (eV) D3

1 (eV)

IV Si 2.6

III–V GaAs −5.9a −10.4a

aCalculated

(b) Hydrostatic and interband deformation potentials: E2 gap

We show in Table 8.13 the hydrostatic DPs at the E2 gap of Si and GaAs. The D1
1 = √

3aX
2

value for Si has been determined from piezobirefringence measurements in the opaque
region [8.23]. The E2 (X5 → X1) gap splits by a [001] strain in a manner somewhat
similar to the case of the E1 gap by [001] strain. The splitting of the [001] valley from
[100] and [010] can be given by the DP parameter D3

1 [8.5]. Values of D1
1 and D3

1 for
GaAs have been obtained by the empirical pseudopotential calculation [8.17, 8.24].

8.3 INTERVALLEY DEFORMATION POTENTIAL

8.3.1 General remarks

It is believed that the Gunn effect arises from a negative conductance mechanism in which
the electrons are transferred from a low-mass center valley (�) to a higher-lying large-mass
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satellite valley (L and/or X) such as exist in the conduction band of GaAs. The strength
of this type of electron-transfer mechanism can be represented by the coupling constant
Dij [8.19]. The coupling constant Dij is the so-called intervalley deformation potential
(in units of eV/cm), where i = j corresponds to the equivalent intervalley scattering and
i �= j to the nonequivalent one.

The matrix element for the intervalley scattering of a carrier |k〉 by absorption or
emission of a phonon |q, j 〉 is written as [8.19]

∣∣〈k ± q |H IV
ij |k〉∣∣ = D2

ij K 2h̄

2Vgωq

(
Nq + 1

2
+ δNq

2

)
(8.27)

where K is a reciprocal lattice vector, V is the volume of the unit cell, g is the crystal
density and Nq is the phonon occupation number given by

Nq = 1

eh̄ωq/kT − 1
(8.28)

The corresponding intervalley scattering time τij of carriers initially in a state with energy
E in the ith valley can be given by

τ−1
ij =

∑ D2
ij (m

(j)
x m

(j)
y m

(j)
z )1/2

√
2πh̄3gωq

[
Nq

√
E − ∆E(j) + h̄ωq+(Nq + 1)

√
E − ∆E(j) − h̄ωq

]

(8.29)

where m
(j)

i is the effective mass in the i direction (i = x, y or z) and ∆E(j) is the energy
of the valley the electron scatters into (j th valley).

As the Hamiltonian H IV
ij in Equation (8.27) has the symmetry of the phonon involved,

the transition is forbidden unless the representation belonging to the state |k ± q〉 is
contained in the product of the representations belonging to |q, j 〉 and |k〉 [8.25]. In a
zinc-blende semiconductor, the symmetries for the two lowest conduction-band states at
X are X1 (X6) and X3 (X7), with the anion at the origin. Usually X1 is the lower state,
with the exception of GaSb, where X3 seems to have lower energy [8.26]. The transverse
phonons, TA and TO, have X5 symmetry and do not contribute to the intervalley scattering
between � and X. The longitudinal acoustic (LA) and optical phonons (LO) have X1 and
X3 symmetry. If the anion is heavier than the cation, as in the case of AlAs, AlSb and
GaSb, then the X1 state (with the anion at rest) has higher energy (LO) than the X3

state (LA). In the reverse case (e.g., GaP, InP and InAs), the LA (LO) phonon has X1

(X3) symmetry. Note that for GaAs the Ga atom is lighter than the As atom (although
these two masses are very similar). However, recent analysis of phonon dispersion in
GaAs has suggested that the lighter Ga atom vibrates in the higher-frequency (LO) mode
(X3 representation); the As atom is at rest; then the other (LA) mode belongs to the X1

representation [8.27].
The symmetry for the lowest conduction-band state at L is L1 (L6). Both the LA and

LO phonons have L1 symmetry [8.27] and contribute to scattering processes at L. The
TA and TO phonons have L3 symmetry and, therefore, do not contribute to the intervalley
scattering between � and L. Similarly, since the transverse phonons have X5 symmetry,
they do not contribute to the scattering between � and X. The LA and LO phonons have
X1 and X3 symmetries, respectively, and thus they will contribute. Scattering between
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different equivalent L valleys (X valleys) is allowed for LO and LA phonons (X1 phonon).
All phonon modes are important for scattering from L1 state to an X1 state, whereas only
the transverse phonons can scatter to X3 [8.28, 8.29].

The selection rules for the intervalley scattering processes have been given by Bir-
man, Lax and Loudon [8.25]. The conditions for these selection rules to be valid are
usually not fulfilled, since energy conservation rules out scattering processes between
electrons exactly at high-symmetry points [8.17]. Nevertheless, it is generally assumed
that the matrix elements for the intervalley transitions are nearly independent of the
phonon wavevector. Therefore, the matrix elements can be integrated over all possible
final states in a spherical energy band, resulting in Conwell expression, Equation (8.29),
for the intervalley scattering time.

Table 8.14 Intervalley deformation potential Dij for electrons in some cubic group-IV, III–V and
II–VI semiconductors (in eV/Å)

System Material D�X
a D�L DLL DXX DLX

IV Diamond 8.0
Si 2.63 0.15–4.0 4.0
Ge 10.0 2.0 0.2–3.0 0.79–9.5 4.1

III–V AlP 5.0 5.0 0.3–1.0 8.1
AlAs 3.1 1.6–2.3 1.6 4.7 0.4–1.7
AlSb 1.3–4.9 2.3–3.4 0.5–0.6 9.5 0.8–3.7
GaP 0.8–1.1 0.7–1.1 0.6 3.0 0.4–1.6
GaAs 5.2–15 1.5–9.5 5 10 2.75–3.1
GaSb 2.5–4.5 2.7–2.8 0.6–1.2 6.0 1.0–2.2
InP 1.6 1.3–2.7 0.3–0.9 3.6 0.7–3.3
InAs 2.0–2.2 1.0–2.0 1.1 2.5 0.6–1.9
InSb 3.3–4.9 1.1–4.3 0.3–0.6 6.8 0.2–2.9

II–VI β-ZnS 1.10–1.89 2.18–4.13
ZnSe 0.72–1.37 2.17–2.71
ZnTe 1.17–1.43 3.19–3.31
CdTe 0.40–1.23 1.68–1.76

aD�X(1) and D�X(3)

Table 8.15 Intervalley deformation potential Dij for electrons in some
hexagonal group-IV and III–V semiconductors

System Material Dij (eV/Å)

Equivalent valley Nonequivalent valley

IV 6H-SiC 6–27

III–V w-AlN 10 10
α-GaN 5–10 10
InN 10 10
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Herbert [8.30] has pointed out that the intervalley deformation potential is not inde-
pendent of the phonon wavevector q. This effect has been studied in detail by Zollner
et al. [8.29, 8.31, 8.32]. They introduced the concept of effective intervalley deformation
potentials to account for the q-dependence under actual experimental conditions. This
q-dependence allows the TA phonons to contribute to the intervalley scattering processes
and causes an apparent temperature dependence of the intervalley deformation potentials
observed in the experiment.

8.3.2 Numerical value

There have been several theoretical calculations of the intervalley deformation potentials
for semiconductors. They are based on parameterized lattice dynamic models for
the phonon eigenvectors and empirical pseudopotential or tight-binding electron
wavefunctions. Estimates of the intervalley deformation potentials have also been achieved
from a number of different optical and electrical measurements. We summarize in
Tables 8.14 and 8.15 the intervalley deformation potential for some cubic and hexagonal
semiconductors, respectively. These data are obtained from various sources.
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9.1 ELECTRON AFFINITY

9.1.1 An overview

The electron affinity χe in a semiconductor is defined as the work required to remove an
electron from an energy level corresponding to the bottom of the conduction band to a
point corresponding to the vacuum level and situated just outside the material, beyond
the range of the image force. Because the definition of the electron affinity implies bulk
and surface effects, the problem of χe is a very intricate one.

For most semiconductors, an electron at the bottom of the conduction band is bound to
the material by a potential barrier of several volts. This barrier is the electron affinity and
is defined as a positive electron affinity. If χe becomes negative, that is, the vacuum level
lies below the conduction-band edge, any electron that is excited into the conduction band
has enough energy to leave the crystal. It means that an electron at the conduction-band
edge would not see a surface barrier and could be freely emitted into the vacuum. This
no-barrier electron emission has potential for cold-cathode device applications, such as
field emitters and flat-panel displays.

The effect of a negative electron affinity was recognized on hydrogen-terminated dia-
mond surfaces [9.1, 9.2]. More recently, some III–V nitrides have been shown to exhibit
a negative electron affinity [9.3]. This unusual character can be related in a general sense
to the similar bonding of all materials of the diamond, zinc-blende or wurtzite structures.
All of these structures exhibit sp3 bonding with four-fold coordination. Given the simi-
lar origin of the electronic states, then as the band-gap energy is increased it is natural

Properties of Group-IV, III–V and II–VI Semiconductors Sadao Adachi
 2005 John Wiley & Sons, Ltd ISBN: 0-470-09032-4
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to consider that the conduction-band edge will move closer to the vacuum level [9.4].
However, recent study on AlxGa1−xN(0001) suggested a decrease in the electron affin-
ity with increasing AlN composition x, but χe remained positive for all x [9.5]. In this
study, surface cleanness and stoichiometry were monitored with X-ray photoelectron spec-
troscopy. Oxygen was believed to be located on the bulk and the surface contamination
was estimated to be smaller than 3% of a monolayer.

9.1.2 Numerical value

We summarize in Table 9.1 the experimental electron affinity χe for some group-IV, III–V
and II–VI semiconductors. It should be noted that the electron affinity for diamond can
be controlled by desorption of hydrogen from an initially fully hydrogenated surface (i.e.,
negative χe surface) to positive values [9.6, 9.7]. The surface-orientation-dependent χe

values have also been reported for ZnO [9.8].
The conduction and valence bands of compound semiconductors can be well charac-

terized by electron orbitals of the cation and anion atoms, respectively. We have already
seen in Section 6.2 that there is an increase in the valence-band spin–orbit split-off energy
∆0 with increase in the atomic number of the anion atom. Let us plot in Figure 9.1 the
variation of χe for some group-IV, III–V and II–VI semiconductors with respect to the
group IV, III and II cations. It is understood from Figure 9.1 that there is an increase in
χe with increase in the atomic number of the cation atom.

Figure 9.2 plots the electron affinity χe versus lattice constant a for some group-IV,
III–V and II–VI semiconductors. The solid line in Figure 9.2 represents the least-squares

Table 9.1 Electron affinity χe for some group-IV, III–V and II–VI semiconductors

System Material χe (eV) System Material χe (eV)

IV Diamond −2.2 ∼ 0.8a II–VI MgO −2.5 (Negative value)
Si 4.05 ZnO 3.7 ∼ 4.60b

Ge 4.14 α-ZnS 3.9
3C-SiC 3.83 ZnSe 4.06
6H-SiC 3.34 ZnTe 3.68

w-CdS 4.5
III–V w-AlN −1.0 ∼ 3.2 w-CdSe 4.95

AlAs 3.5 CdTe 4.28
AlSb 3.65
α-GaN 3.3
GaP 3.75
GaAs 4.15
GaSb 4.21
InP 4.50
InAs 5.06
InSb 4.72

aχe value depends on a surface coverage of hydrogen
bDepending on surface orientation
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Figure 9.2 Electron affinity χe versus lattice constant a for some group-IV, III–V and II–VI
semiconductors. For hexagonal semiconductors, an effective lattice constant aeff = (

√
3a2c)1/3 is

plotted instead of a. The solid line represents the least-squares fit with χe = 1.67a − 5.63 (a in Å;
χe in eV)

fit with the relation (a in Å; χe in eV)

χe = 1.67a − 5.63 (9.1)

The electron affinities χe plotted as a function of the lowest direct band-gap energy E0

for some group-IV, III–V and II–VI semiconductors are shown in Figure 9.3. The solid



198 PROPERTIES OF GROUP-IV, III–V AND II–VI SEMICONDUCTORS

0 3 6 9 12 15 18
–4

–2

0

2

4

6

χ e
(e

V
)

E0 (eV)

C

3C-SiCSi

w-AlN

MgO

Group-IV
III-V
II-VI

Ge

Figure 9.3 Electron affinity χe versus E0-gap energy for some group-IV, III–V and II–VI semi-
conductors. For hexagonal semiconductors, an effective lattice constant aeff = (
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3a2c)1/3 is plotted

instead of a. The solid line represents the least-squares fit with χe = 4.94 − 0.43E0, while the
dashed line represents the relation with χe = 5.28 − 0.59E0 (E0 and χe in eV)

line represents the least-squares fit with the relation (E0 and χe in eV)

χe = 4.94 − 0.43E0 (9.2)

It has already been shown in Section 6.2 that the relation between the lowest direct band-
gap energy E0 and a can be simply written as E0 = 18.55 − 2.84a (a in Å; E0 in eV).
Introducing this expression into Equation (9.1), we obtain (E0 and χe in eV)

χe = 5.28 − 0.59E0 (9.3)

The dashed line in Figure 9.3 shows the calculated result of Equation (9.3).
The variation of χe with temperature of some cubic semiconductors has been discussed

theoretically by Soonckindt et al. [9.9]. They considered that

∂χe

∂T
= −∂Γ c

1

∂T
(9.4)

where Γ1
c is an energy of the �1 conduction-band edge.

9.2 SCHOTTKY BARRIER HEIGHT

9.2.1 An ideal Schottky–Mott contact

Most semiconductor devices are based on the use of barriers to control the motion of
electrons and/or holes in the semiconductor. The types of barrier predominantly used
in semiconductors are insulating layers, semiconductor–semiconductor junctions and
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metal–semiconductor junctions. One of the simplest and yet most basic questions which
immediately arises is, how do the bulk band structures of the two materials line up
relative to each other. For metals on semiconductors, the question is basic to the origin of
Schottky barriers. For semiconductor–semiconductor heterojunctions, the band alignments
determine the relative barriers for electrons and holes in quantum wells.

The choice of a metal for fabricating the Schottky barrier with a particular semicon-
ductor is determined by its electronic work function φM. For an n-type semiconductor, φM

should be greater, while for a p-type semiconductor, it should be less than the electron
affinity χe of the semiconductor. The barrier heights in such cases are written, respec-
tively, as

n-type: φn = φM − χe (9.5a)

p-type: φp = Eg − φM + χe (9.5b)

where Eg is the band-gap energy of the semiconductor. The maximum value of the barrier
height for an ideal Schottky–Mott contact is, thus, about equal to the band-gap energy of
the semiconductor: φn + φp = Eg.

We summarize in Table 9.2 the work function φM of some important metals used as the
Schottky contact [9.10]. In the literature, there are numerous experimental data on φM,
with a considerable variation among them. Michaelson [9.11] has analyzed these data
and has attempted to correlate them theoretically with the atomic electron negativity. The
metal φM values listed in Table 9.2 are taken from a tabulation by Frederikse [9.10].

In practice, it is difficult to have an ideal Schottky contact and to have simple rela-
tionships such as Equation (9.5). This is due to interface states originating from surface
states [9.12] or from metal-induced gap states [9.13] and/or due to interface chemical
reactions of metal and semiconductor atoms [9.14].

Figures 9.4–9.7 show the Schottky barrier height φn versus metal work function
φM observed for metal/n-4H-SiC (6H-SiC), metal/n-GaN (α-GaN), metal/n-GaAs and
metal/n-ZnO contacts, respectively. The solid lines indicate the least-squares fitts with

Table 9.2 Electronic work function φM for some important metals

Metal φM (eV) Metal φM (eV) Metal φM (eV)

Ag 4.63 Ga 4.32 Pd 5.41
Al 4.17 Hf 3.9 Pt 5.55
Au 5.38 Hg 4.475 Re 4.72
Ba 2.52 In 4.09 Rh 4.98
Be 4.98 Ir 5.46 Ru 4.71
Bi 4.34 K 2.29 Sb 4.63
Ca 2.87 Mg 3.66 Sm 2.7
Cd 4.08 Mn 4.1 Sn 4.42
Co 5.0 Mo 4.57 Ta 4.30
Cr 4.5 Nb 4.33 Tb 3.0
Cs 1.95 Ni 5.20 Ti 4.33
Cu 4.76 Os 5.93 W 4.61
Fe 4.74 Pb 4.25 Zn 3.63
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eV). [From S. Adachi, Handbook on Physical Properties of Semiconductors Volume 3: II–VI Com-
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the relation (φM and φn in eV)
φn = aφM + b (9.6)

The fitted a and b values for some group-IV, III–V and II–VI semiconductors are sum-
marized in Table 9.3. If we assume an ideal Schottky–Mott contact of Equation (9.5), we
obtain a = 1.0 and b = −χe (n-type).
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Table 9.3 Expression for the Schottky barrier heights
φn,p as a function of metal work function φM determined
from various contacts on some group-IV, III–V and
II–VI semiconductors. Note that a = 1.0 (−1.0) suggests
an ideal Schottky–Mott contact for an n-type (p-type)
semiconductor

φn,p = aφM + b

System Material Type a b (eV)

IV Si n 0.088 0.238
Si p −0.11 1.01
Ge n 0.410 0.006
3C-SiC n 0.31 −0.83
4H-SiC n 0.53 −1.11
6H-SiC n 0.28 −0.25

III–V β-GaN n 0.40 −1.05
GaP n 0.225 0.212
GaAs n 0.016 0.740
InP n −0.037 0.636

II–VI ZnO n 0.28 −0.82
α-ZnSa n 0.62 −1.43
ZnSe n 0.38 −0.64
ZnTe p −0.50 3.27
w-CdS n 0.24 −0.56
w-CdSe n 0.12 −0.14
CdTe n 0.084 0.278

aType of crystal structure (α- or β-ZnS) was ignored in
this work

The Schottky barrier height φp versus metal work function φM observed for metal/
p-ZnTe contacts is plotted in Figure 9.8. In a p-type semiconductor, an ideal Schot-
tky–Mott contact can be given, from Equation (9.5), by a = −1.0 and b = Eg + χe.

We can easily understand from Figures 9.4–9.8 and Table 9.3 that the actual Schottky
contacts deviate largely from ideal Schottky–Mott behavior. It has been demonstrated
that for GaAs the barrier heights are almost independent of the surface orientation of the
substrate and the preparation method of the surface [9.15–9.17]. The facts suggest that a
large density of states, including vacancies, antisites and even more complex defects such
as EL2, may exist at the metal/GaAs interface that are responsible for the Fermi level
pinning in GaAs [9.18, 9.19].

9.2.2 Case study: Au/semiconductor contact

The Au/semiconductor interface is undoubtedly one of the most studied systems for
all metal/semiconductor Schottky barriers. This interest stems largely from the impor-
tance of Au/semiconductor from a technological point of view. Gold is often used to
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Figure 9.9 Schottky barrier height φn + φp (Au metal) versus band-gap energy Eg for some
group-IV, III–V and II–VI semiconductors. The solid line provides the relation of φn + φp = Eg

metallize semiconductor structures as it serves as the gate electrode in field-effect transistor
(FET) devices and the rectifying contact in high-frequency Schottky diodes. Summarized
in Table 9.4 are the results of Au/semiconductor Schottky barrier heights obtained for
some n-type and p-type group-IV, III–V and II–VI semiconductors. Figure 9.9 plots
the Au-contact Schottky barrier height φn + φp versus band-gap energy Eg for various
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Table 9.4 Schottky barrier heights φn and φp between Au/n-type and Au/p-type semiconductors,
respectively, φn + φp and semiconductor band-gap energy Eg at 300 K

System Material φn (eV) φp (eV) φn + φp (eV) Eg (eV)

IV Diamond 1.13–2.0 5.50
Si 0.75–0.81 0.25–0.35 1.00–1.16 1.12
Ge 0.45–0.54 0.07 0.52–0.61 0.6657
3C-SiC 0.78–1.2 2.39
6H-SiC 1.14–1.50 3.0

III–V c-BN 3.1 6.27
h-BN 3.1 3.8–5.9
BP ∼1.4 1.8–1.9 ∼3.2–3.3 2
AlAs 1.08–1.82 2.15
AlSb 0.53–0.59 1.615
α-GaN 0.84–1.2 0.57 1.41–1.77 3.420
GaP 1.38 0.96 2.34 2.261
GaAs 0.92 0.50 1.42 1.43
GaSb 0.60–0.75 Ohmic 0.60–0.75 0.72
InP 0.41 0.86 1.27 1.35
InAs Ohmic 0.47 (T = 77 K) 0.47 0.359

(T = 77, 300 K)
InSb 0.14 Ohmic (T = 77 K) 0.14 0.17

II–VI ZnO 0.64–0.90 3.40
α-ZnS 2.0–2.19a 3.75
β-ZnS 2.0–2.19a 3.726
ZnSe 1.36–1.55 1.2 2.56–2.75 2.721
ZnTe 0.51–0.64 2.27
w-CdS 0.68–0.84 2.501
w-CdSe 0.49–0.7 1.751
CdTe 0.59–1.0 0.6 1.19–1.6 1.51

aType of crystal structure (α- or β-ZnS) was ignored in this work

semiconductors. The solid line in Figure 9.9 represents the relation of φn + φp = Eg from
Equation (9.5).

9.2.3 Surface reconstruction and external perturbation effect

(a) Surface reconstruction

The (001)GaAs surface has a number of reconstructions with widely varying structure
and composition. Cho and Dernier [9.20] and Wang [9.21] reported that the Schottky
barrier height depends on the particular reconstruction adopted by the GaAs surface prior
to Al deposition. However, detailed studies by Svensson et al. [9.22] and Barret and
Massies [9.23] and later work by Missous et al. [9.24] find no clear dependence of the
barrier height on surface reconstruction.
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In metal/n-Si contacts, the barrier heights of Na, Al, Ag and Pb on (7 × 7) reconstructed
surfaces were found to be by 80 meV smaller than the values of the corresponding (1 × 1)
unreconstructed interfaces [9.25]. This reduction was attributed to structure-induced inter-
face dipoles.

(b) Temperature effect

The temperature dependence of the Schottky barrier heights for metal/semiconductor con-
tacts has been studied by various authors. We show in Figure 9.10, as an example, the
barrier height φp versus temperature plots for an Al/p-InP Schottky diode reported by
Song et al. [9.26]. From this plot, we obtain dφp/dT ∼ −3.3 × 10−4 eV/K (solid line).
This value is found to be of the same order as the E0-gap value, dE0/dT , for InP (−3.3 ×
10−4 eV/K, see Section 6.2). A very similar dependence of dφp/dT ∼ −3.9 × 10−4 eV/K
has also been reported on Yb/p-InP contact [9.27].

For metal/n-GaAs contacts, the values of dφn/dT ranging from −2.3 × 10−4 to −4.7 ×
10−4 eV/K have been reported for Al, Au, Cu and Pt [9.28–9.30]. These values are of
about the same order as the E0-gap value of GaAs (−4.4 × 10−4 eV/K, Section 6.2); how-
ever, the barrier height φp for Al on p-GaAs [9.28] is found to be much less temperature
dependent than for n-GaAs, giving dφp/dT ∼ −1.6 × 10−4 eV/K.

For metal (silicide)/Si contacts, the published dφn/dT and dφp/dT data scatter largely
from nearly zero to −3.54 × 10−4 eV/K and from +1.49 × 10−4 to −1.26 × 10−4 eV/K,
respectively [9.31–9.40]. Note that the temperature variation of the lowest indirect band-
gap energy for Si is given by dEX

g /dT ∼ +4.9 × 10−4 eV/K (Section 6.4). We can thus
conclude that in the case for Si there is no strong correlation between dφn/dT (dφp/dT )
and dEX

g /dT .

(c) Pressure effect

The pressure coefficients of the Schottky barrier height for metal (silicide)/Si contacts
are dφn/dp = −(0.8 − 2.2) meV/kbar for n-Si and dφp/dp = −0.1 meV/kbar for p-Si
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Figure 9.10 Schottky barrier height φp versus temperature T for an Al/p-InP Schottky diode.
[From Y. P. Song, R. L. Van Meirhaeghe, W. H. Laflère, and F. Cardon, Solid-State Electron. 29,
633 (1986), reproduced by permission from Elsevier]
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[9.40], while the pressure coefficient of the lowest band-gap energy for Si is reported to
be dEX

g /dp ∼ −1.43 meV/kbar (Section 6.4).
The pressure dependence of the barrier height for GaAs has been studied by several

authors [9.41–9.44]. The linear pressure coefficients dφn/dp determined in these studies
are in the range 9.5–11 meV/kbar. These values are the same as that of the E0 gap of
GaAs (dE0/dp ∼ 11.6 meV/kbar, Section 6.2).

Shan et al. [9.41] have studied the pressure dependence of the barrier height at the
Pt/n-GaAs interface for hydrostatic pressures from 0 to 16.7 kbar. The pressure varia-
tion is found to follow an equation: φn(p) = 703 + 11p − 0.26p2 meV (p in kbar). The
linear pressure coefficient, 11 meV/kbar, is found to be almost the same as dE0/dp ∼
11.6 meV/kbar for GaAs. This value is also very close to the pressure coefficients of
the deep defect levels E3 and E4, which are located within the band gap and generated
by electron irradiation in GaAs at room temperature regardless of the crystal growth
method and sample doping. On the other hand, the EL2 defect energy level with p can be
expressed as ∆EL2(p) = 4.4p − 0.11p2 meV. From these facts, they concluded that the
amphoteric deep defects E2 and E3 play a major role in the Fermi level stabilization and
formation of Schottky barriers in GaAs, but the native defect EL2 does not perceptibly
do so [9.41].

The linear pressure coefficients dφn/dp determined for ZnO, w-CdS and w-CdSe are
11.6, ∼10 and 7.0 meV/kbar [9.45], respectively, which are considerably larger than the
corresponding dE0/dp values 2.7, 4.4 and 5.0 meV/kbar.

9.2.4 Breakdown voltage

The breakdown voltage VBR or breakdown field EBR is often used in calculating John-
son [9.46] and Keyes figures of merit [9.47]. These figures of merit are used when
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Figure 9.11 Breakdown field EBR versus band-gap energy Eg for some group-IV and III–V
semiconductors. The solid line represents the least-squares fit with EBR = 1.84Eg

2.40 (Eg in eV;
EBR in 105 V/cm)
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Table 9.5 Breakdown field EBR in some group-IV, III–V and II–VI semiconductors

System Material EBR (105 V/cm) System Material EBR (105 V/cm)

IV Diamond >200a II–VI ZnO 35b

Si 3 α-ZnS 44b

Ge 1 β-ZnS 43b

3C-SiC 12–40 ZnSe 20b

6H-SiC 24 ZnTe 13b

c-CdS 16b

III–V c-BN 100 w-CdS 17b

h-BN 100 c-CdSe 6.3b

BP 10b w-CdSe 7.1b

w-AlN 20–117 CdTe 4.9b

c-AlN 99b

AlP 16b

AlAs 12b

AlSb 5.8b

α-GaN 26–33
β-GaN 31b

GaP 10–13
GaAs 4
GaSb 0.5
InN 10
InP 4.5
InAs 0.4
InSb 0.01

aCVD-diamond
bEstimated from a linear relation between EBR and Eg (i.e., EBR = 1.84Eg

2.40)

comparisons are made among semiconductors to be used for electron-transport device
applications [9.48].

The breakdown voltage VBR in Schottky barriers and p–n junctions can be given
by [9.49]

VBR = 60

(
Eg

1.1

)3/2 (
N

1016

)−3/4

(9.7)

where Eg is the band-gap energy in eV, N is the carrier density in cm−3 and VBR is in V.
We summarize in Table 9.5 the breakdown field EBR in some group-IV, III–V and

II–VI semiconductors. Figure 9.11 also shows the EBR value plotted versus Eg for some
group-IV and III–V semiconductors. The solid line in Figure 9.11 represents the least-
squares fit with the relation (Eg in eV; EBR in 105 V/cm)

EBR = 1.84E2.40
g (9.8)

Some EBR values listed in Table 9.5 are estimated from Equation (9.8).
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10.1 SUMMARY OF OPTICAL DISPERSION RELATIONS

10.1.1 Dielectric permittivity

First, we consider the polarization, that is, the electric moment per unit volume or the
polarization charge per unit area taken perpendicular to the direction of polarization. The
relationship of the ith spatial component of the polarization is expressed in terms of the
dielectric field components by a power series of the form

Pi =
∑

j

χijEj +
∑
j,k

γijkEjEk + · · · (10.1)

Properties of Group-IV, III–V and II–VI Semiconductors Sadao Adachi
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212 PROPERTIES OF GROUP-IV, III–V AND II–VI SEMICONDUCTORS

With the advent of lasers, it is now quite common to observe nonlinear optical effects.
However, the concern here is only with linear optics, and only linear terms will be retained
in expressions such as Equation (10.1). The nonlinear optical properties of semiconductors
will be discussed in Section 11.5.

The vectors are now connected by the relation

D = ε0E + P (10.2)

where D and E are the electric displacement and field strength, respectively, and ε0 is
a scalar constant, the permittivity of a vacuum, with the numerical value 8.854 × 10−12

F/m. In many substances, the polarization is directly proportional to the field strength E,
and thus we write

P = ε0χE (10.3)

Hence
D = ε0(1 + χ)E (10.4)

where χ is known as the dielectric susceptibility.
The dielectric susceptibility χ is a symmetric second-rank tensor. We have then, instead

of Equation (10.4)
Di =

∑
j

ε0(δij + χij ) =
∑

j

ε0εij Ej (10.5)

where εij ≡ (δij + χij ) is the relative dielectric constant and δ is the Kronecker delta.
The dielectric or optical properties of a crystal may thus be characterized by the mag-
nitudes and directions of the three principal dielectric constants, dielectric permittiv-
ities or dielectric susceptibilities. These magnitudes and directions will, in principle,
depend on the frequency of the electric field, but they must always, of course, con-
form to any restrictions imposed by crystal symmetry [10.1]. Table 10.1 summarizes the
effect of crystal symmetry on dielectric properties represented by a symmetric second-
rank tensor.

Table 10.1 Effect of crystal symmetry on the dielectric and optical properties
represented by a second-order tensor

Symmetry class Material Tensor form

Cubic Si, 3C-SiC, GaAs, MgO, ZnSe, etc.



ε11 0 0

0 ε11 0

0 0 ε11




Hexagonal 4H-SiC, h-BN, α-GaN, w-CdS, etc.



ε11 0 0

0 ε11 0

0 0 ε33


Rhombohedral 15R-SiC
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10.1.2 Optical dispersion relation

A number of useful relations can be derived which link the real and imaginary parts of the
dielectric function and optical constants. These so-called optical dispersion relations and
sum rules have been extremely valuable in the analyzing and testing optical constant data.

The complex dielectric function

ε(E) = ε1(E) + iε2(E) (10.6)

can describe the optical properties of the medium at all photon energies, E = h̄ω = hν.
From the causality principle and the principle of superposition as applied to a linear
medium, the Kramers–Kronig relations linking ε1 and ε2 can be derived. These are [10.2]

ε1(E) = 1 + 2

π

∫ ∞

0

E′ε2(E
′)

E′2 − E2
dE′ (10.7a)

ε2(E) = −2E

π

∫ ∞

0

ε1(E
′)

E′2 − E2
dE′ (10.7b)

The Kramers–Kronig relations are of fundamental importance.
The complex refractive index n∗(E) can now be given by

n∗(E) = n(E) + ik(E) = ε(E)1/2 = [ε1(E) + iε2(E)]1/2 (10.8)

where n(E) is the ordinary (real) refractive index and k(E) is the extinction coefficient,
also called the attenuation index. The optical constants, n(E) and k(E), are real and pos-
itive numbers, and can be determined from optical measurements. From Equation (10.8),
it follows that

ε1 = n2 − k2 (10.9a)

ε2 = 2nk (10.9b)

and

n(E) =
√√

ε1(E)2 + ε2(E)2 + ε1(E)

2
(10.10a)

k(E) =
√√

ε1(E)2 + ε2(E)2 − ε1(E)

2
(10.10b)

The Kramers–Kronig relations can also link n(E) and k(E) in the manner

n(E) = 1 + 2

π

∫ ∞

0

E′k(E′)
E′2 − E2

dE′ (10.11a)

k(E) = −2E

π

∫ ∞

0

n(E′) − 1

E′2 − E2
dE′ (10.11b)
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The absorption coefficient α(E) depends not only on ε2(E), but also on both parts of
the dielectric function through k(E) as

α(E) = 4π

λ
k(E) (10.12)

where λ is the wavelength of light in vacuum.
The normal-incidence reflectivity R(E) can also be given by

R(E) = (n(E) − 1)2 + k(E)2

(n(E) + 1)2 + k(E)2
(10.13)

10.1.3 Optical sum rule

From the asymptotic behavior of ε(ω) at high frequencies

ε(ω → ∞) = 1 − ω2
p

ω2
(10.14)

together with the analyticity of ε(E) and ε(E)−1, one can obtain the following rela-
tions [10.3] ∫ ∞

0
ωε2(ω)dω = 1

2
πω2

p (10.15)

and ∫ ∞

0
ω Im ε(ω)−1dω = −1

2
πω2

p (10.16)

where ωp is the free-electron plasma frequency corresponding to the total electron density
of the system.

Equation (10.15) is closely related to the Thomas–Reiche–Kuhn sum rule for an atom
in an initial state i ∑

j

fij = Z (10.17)

where the number of electrons in the atomic system is Z and the sum over j includes
continuum states. Here, a dimensionless quantity fij is known as the oscillator strength
and is defined by

fij = 2me

h̄
ωij (Mij )

2 (10.18)

For a condensed rather than isolated atomic system, a sum rule analogous to Equa-
tion (10.17) takes the form ∫ ∞

0
f (ω)dω = N (10.19)

where N is the electron density in the condensed matter.
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Philipp and Ehrenreich [10.4] have shown that how these rules can be applied to the
valence electrons of a semiconductor such as Si in the absence of d bands. Since the
results given by Equation (10.16) for an infinite range of integration would involve a
plasma frequency characteristic simply of four electrons per atom each having the free-
electron mass, it is simplest to express the results of the integration over a finite range
to Em in terms of neff, an effective number of free electrons contributing to the optical
properties in this range [10.4]

neff = 8πmeε0

Ne2h2

∫ Em

0
Eε2(E)dE = 7.66 × 10−1 A

g

∫ Em

0
Eε2(E)dE (10.20)

where A is the atomic weight, g is the crystal density in kg/m3 and E is in eV.
Similarly, the effective dielectric constant, ε1(0)eff, produced by interband transitions

in this range may be written as

ε1(0)eff = 1 + 2

π

∫ Em

0

ε2(E)

E
dE (10.21)

where ε1(0)eff is an expression for the static or optical dielectric constant. The static
dielectric constant results if the infrared lattice absorption is taken into account in the
integration, and the optical dielectric constant is obtained otherwise.

We plot in Figure 10.1 the values of neff and ε1(0)eff versus Em for Si and GaAs. The
numerical ε2(E) data used in the calculation were taken from [10.5]. It should be noted
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Figure 10.1 (a) neff versus Em; (b) ε1(0)eff versus Em for Si and GaAs. The long-wavelength
dielectric constants are indicated by the dashed-line segments; ε∞ = εs = 11.6 for Si and ε∞ =
10.86 for GaAs
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that the neff curve for Si appears to saturate very nearly at a value of four electrons per
atom. By contrast, the curve for GaAs extends appreciably above four. The increase above
four is due to the d-band excitations (i.e., transitions between the filled d bands, lying
below the valence band, and empty conduction-band states). The d bands are absent in
Si, but not in GaAs.

From the tendency toward saturation for ε1(0)eff at photon energies below ∼5 eV
(Figure 10.1(b)), it is clear that strong interband transitions at critical points below this
energy are mainly responsible for the value of the long-wavelength dielectric constant.
The curves are also seen to saturate at values corresponding to the independently measured
long-wavelength dielectric constants, as indicated by the dashed-line segments.

10.1.4 Optical spectra

It is convenient to classify the optical spectrum of a crystalline semiconductor into several
photon energy regions based on their own optical transition mechanisms. Figure 10.2
represents a rough sketch of how the components ε1 and ε2 of ε(E) for a semiconductor
(GaAs) vary through the spectral range from 15 meV to a few tens of eV. Three spectral
regions are distinguished.

The first region is the so-called reststrahlen region. The reststrahlen region is the
region where the radiation field interacts with the fundamental lattice vibrations. Two
effects result: (1) absorption or emission of the electromagnetic wave due to the creation
or annihilation of lattice vibrations; and (2) scattering of the electromagnetic wave by the
lattice vibrational modes. Below the reststrahlen range in optical spectra, the real part
of the dielectric constant asymptotically approaches the static or low-frequency dielectric
constant εs. The optical constant connecting the reststrahlen–near-infrared range is called
the high-frequency or optical dielectric constant ε∞. The strong dispersion properties of
GaAs in this region are indicated crudely in Figure 10.2, where the S shape of dispersion

0.05 0.1 0.5 1 5 10

0

ε

E (eV)

+

–

Region I Region II Region III

Subregion

A B C

e1 (×5)

e2 (×5)

Figure 10.2 Symbolic representation of the real (ε1) and imaginary parts (ε2) of the complex
dielectric constant for a semiconductor (GaAs), from the ‘low-frequency’ regime well below the
reststrahlen region of the infrared, through to the highly absorbing visible and ultraviolet regions
of interband transitions
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of ε1 and the inverted V shape of absorption of ε2 have been popularly observed. It is
noted that in diamond-type semiconductors, such as Si and Ge, the fundamental vibration
has no dipole moment and is therefore infrared inactive.

The second region is the region where the material is considered to be primarily
transmitting (i.e., near or below the fundamental absorption edge). Appropriately doped
samples can show free-carrier, interconduction-band and intervalence-band absorptions
in this spectral region. Knowledge of the refractive indices and absorption coefficients
in this region is especially important in the design and analysis of various optical and
optoelectronic devices.

The third region is the strongly absorbing or opaque region. Various opportunities for
direct electron–hole pair creation ensure that dispersion and absorption are strong in this
region. According to Philipp and Ehrenreich [10.4], this region can be classified into
three subregions. The first subregion A is characterized by sharp structures associated
with valence-to-conduction band transitions at the critical points. The second subregion
B is marked by a rapid decrease in the reflectance which is reminiscent of the behavior
of certain metals in the ultraviolet region [10.6]. The function −Imε−1 describing the
energy loss of fast electrons traversing the material shows sharp peak in this subregion.
Sharp maxima in −Imε−1 have been frequently associated with the existence of plasma
oscillations [10.7]. In the third subregion C, the reflectance again rises, indicating the
onset of additional optical absorption. As mentioned before, this absorption is associated
with transitions between the filled d bands and empty conduction states. Because of the
absence of the d bands in Si, we cannot recognize subregion C in this material [10.4].

10.2 THE RESTSTRAHLEN REGION

10.2.1 Static and high-frequency dielectric constants

(a) Room-temperature value

Below the reststrahlen range in optical spectra, the real part of the dielectric constant
asymptotically approaches the static or low-frequency dielectric constant εs. The optical
constant connecting the reststrahlen–near-infrared range is called the high-frequency or
optical dielectric constant ε∞. The high-frequency dielectric constant is, thus, measured for
frequencies well above the long-wavelength longitudinal optical (LO) phonon frequency,
but below the fundamental absorption edge. The concept of the dielectric behavior of
solids is an old topic that is very important both from technological and scientific points
of view.

The dielectric constant εs can, in principle, be written as

εs = ε∞ + 4πNe∗2
T

ω2
TOM

(10.22)

where M is the reduced mass of the solid, N is the number of unit cells per unit volume,
e∗

T is the transverse dynamic effective charge and ωTO is the long-wavelength transverse
optical (TO) phonon frequency. The second term in Equation (10.22) is the lattice con-
tribution which arises because the LO mode in heteropolar semiconductors produces a
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macroscopic electric moment separating it in energy from the TO mode. The dielectric
constants εs and ε∞ are related to the long-wavelength TO and LO phonon frequencies
ωTO and ωLO by the Lyddane–Sachs–Teller relationship

εs

ε∞
=

(
ωLO

ωTO

)2

(10.23)

We summarize in Table 10.2 the static and high-frequency dielectric constants, εs

and ε∞, for some cubic semiconductors at T = 300 K. Table 10.3 also lists those for
hexagonal and rhombohedral semiconductors.

Table 10.2 Static and high-frequency dielectric constants, εs and ε∞, for some cubic group-IV,
III–V and II–VI semiconductors at 300 K and their temperature and pressure derivatives

System Material εs ε∞ dεs/dT

(10−3 K−1)
dε∞/dT

(10−3 K−1)
dεs/dp

(10−2 GPa−1)
dε∞/dp

(10−2 GPa−1)

IV Diamond 5.70000 — 0.0461 — −0.41 —
Si 11.6 — 0.93 — −3.4 —
Ge 16.00 — 2.2 — −36 —
α-Sn 23 —
3C-SiC 9.69 6.48 −2.02a −1.45a

III–V c-BN 6.80 4.46 −0.87a −0.48a

BP 11 10.2
c-AlN 8.16a 4.20 −6.51a 0.14a

AlP 9.6 7.4
AlAs 10.06 8.16
AlSb 11.21 9.88
β-GaN 9.40a 5.35a −6.9a 0.26a

GaP 11.0 8.8 1.27 0.67 −5.5 −12.0
GaAs 12.90 10.86 1.58 0.98 −23 −9
GaSb 15.5 14.2
InP 12.9 9.9 2.66
InAs 14.3 11.6
InSb 17.2 15.3

II–VI MgO 9.8 3.1 0.98 −17.9
β-MgSe 7.8 3.8
β-MgTe 7.0 4.5
β-ZnS 8.3 5.1 0.91 0.34 −9.0 −1.4
ZnSe 8.9 5.9 1.50 −13.6
ZnTe 9.4 6.9
c-CdS 9.8a 5.4a

c-CdSe 9.6a 6.2a

CdTe 10.4 7.1 2.34
β-HgS 18.2 11.36
HgSe 26 7.5
HgTe 21 7

aCalculated or estimated
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Table 10.3 Static and high-frequency dielectric constants, εs and ε∞,
for some hexagonal and rhombohedral group-IV, III–V and II–VI
semiconductors at 300 K

System Material E ⊥ c E || c
εs ε∞ εs ε∞

IV 6H-SiC 9.66 10.09 6.520 6.742
15R-SiC 9.66 10.09 6.520 6.742

III–V h-BN 7.04 4.95 5.09 4.10
w-AlN 8.3 4.4 8.9 4.8
α-GaN 9.6 5.4 10.6 5.4
InN 13.1a 8.4a 14.4a 8.4a

II–VI ZnO 7.8 3.7 8.75 3.75
α-ZnS 8.1 5.4 8.1 5.4
w-CdS 10.2 5.4 9.0 5.3
w-CdSe 9.29 6.20 10.16 6.30

aEstimated

Let us sketch the dielectric constants of a specific family of ANB8-N semiconductors
from a simplified point of view. Figures 10.3(a) and 10.3(b) plot the dielectric constants,
εs and ε∞, as a function of the lowest direct band-gap energy E0 for some cubic III–V
and II–VI semiconductors. It is seen that both εs and ε∞ decrease with increasing E0.
The solid lines in Figure 10.3 represent the least-squares fit with (a) εs = 18.52 − 3.08E0

and (b) ε∞ = 11.26 − 1.42E0, respectively.
Note that ε

1/2
∞ corresponds to the long-wavelength refractive index of the material.

We can, therefore, conclude that the smaller E0-gap material has a larger value of the
refractive index. If the refractive index in the active region of an injection laser is larger
than the index of the cladding layer on both sides, the effect is like that of a waveguiding
configuration, which confines radiation to the active region. This simple rule is known to
be very useful for the design of various optical waveguiding devices.

(b) External perturbation effect

We have summarized in Table 10.2 the temperature and pressure coefficients of the static
and high-frequency dielectric constants, εs and ε∞, for some cubic group-IV, III–V
and II–VI semiconductors. Most of those data are from Samara [10.8] who studied the
temperature and hydrostatic pressure effects of εs and ε∞ for some semiconductors, such
as Si, GaP, GaAs, β-ZnS and w-CdS.

Figure 10.4 shows, as an example, the temperature dependence of εs measured for
GaAs by Samara [10.8] using a radiofrequency capacitance technique at f = 100 kHz
at atmospheric pressure. Below T ∼ 150 K there was no clear frequency dependence,
but relatively strong frequency dependence was observed at higher temperatures. Samara
considered that this is associated with dipolar contributions becoming activated at higher
temperatures. The dielectric loss tanδ was also found to become frequency independent
at 100 kHz up to T ∼ 300 K.
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Figure 10.3 (a) Static εs; (b) high-frequency dielectric constants ε∞ versus lowest direct band-
gap energy E0 for some cubic III–V and II–VI semiconductors. The solid lines represent the
least-squares fit with (a) εs = 18.52 − 3.08E0 and (b) ε∞ = 11.26 − 1.42E0, respectively

As suggested by Samara [10.8], it is not likely that the quantities εs and ε∞ are truly
linearly dependent on temperature over any very wide T range. We shall, therefore, fit
the temperature dependence of such quantities by

εs,∞(T ) = εs,∞(0) + αT 2

β + T
(10.24)

where εs,∞(0) is the T = 0 K value, α is constant in inverse Kelvin and β is a quantity
proportional to the Debye temperature (in Kelvin). Note that this expression is popularly
known as the Varshni equation used for explaining the temperature dependence of the
band-gap energy [10.9]. The solid line in Figure 10.4 represents the calculated result of
Equation (10.24) with εs(0) = 12.69, α = 4.8 × 10−3 K−1 and β = 550 K.

We reproduce in Figures 10.5(a) and 10.5(b) the pressure effect on εs and ε∞ for GaAs
as measured by Samara [10.8] and Goñi et al. [10.10], respectively. It is understood that
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Figure 10.4 Temperature dependence of the static dielectric constant εs for GaAs at f = 100 kHz
and atmospheric pressure. The experimental data are taken from Samara [10.8]. The solid line
represents the calculated result of εs(T ) = εs(0) − [αT 2/(β + T )] with εs(0) = 12.69, α = 4.8 ×
10−3 K−1 and β = 550 K. [From S. Adachi, Handbook on Physical Properties of Semiconductors
Volume 2: III–V Compound Semiconductors (Kluwer Academic, Boston, 2004), reproduced by
permission from Kluwer Academic Publishers]
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Figure 10.5 (a) Hydrostatic pressure dependence of the static dielectric constant εs for GaAs at
T = 300 and 75.6 K. [From G. A. Samara, Phys. Rev. B 27, 3494 (1983), reproduced by permission
from the American Physical Society]; (b) hydrostatic pressure dependence of the high-frequency
dielectric constant ε∞ for GaAs at room temperature. [From A. R. Goñi, K. Syassen, K. Strössner,
and M. Cardona, Semicond. Sci. Technol. 4, 246 (1989), reproduced by permission from Institute
of Physics Publishing]
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both εs and ε∞ decrease almost linearly with increasing pressure p. Samara reported
logarithmic pressure derivatives for GaAs to be d(ln εs)/dp = −16.7 ± 0.3 (T = 75.6 K),
d(ln εs)/dp = −17.3 ± 0.3 (T = 300 K) and d(ln ε∞)/dp = −14.0 (T = 300 K) (all in
units of 10−3 GPa−1).

It has been found experimentally [10.11] that the pressure coefficient of the dielectric
constant εs (ε∞) for Ge can be expressed as

εs,∞(p) = εs,∞(0) + ap + bp2 (10.25)

with εs(0) = 15.94, a = −0.36 GPa−1 and b = 0.014 GPa−2. Theoretically, Theodorou
and Tsegas [10.12] reported the values of εs(0) = 10.57, a = −0.058 GPa−1 and b =
0 GPa−2 for Si, εs(0) = 13.92, a = −0.26 GPa−1 and b = 0.006 GPa−2 for Ge, ε∞(0) =
11.47, a = −0.093 GPa−1 and b = 0.003 GPa−2 for GaAs and ε∞(0) = 10.52, a =
−0.13 GPa−1 and b = 0.003 GPa−2 for InP. Note that εs = ε∞ for Si and Ge.

Wagner and Bechstedt [10.13] calculated εs and ε∞ values as a function of pressure
p for α-GaN, β-GaN, w-AlN and c-AlN. Their data show significant nonlinear behavior,
even for not too large pressures. According to Harrison’s bond-orbital model, the volume
dependence of ε∞ may be described by [10.13]

ε∞(V ) = 1 + (ε∞(V0) − 1)

(
V0

V

)5/3

{
1 + C

[(
V0

V

)4/3

− 1

]}3/2 (10.26)

with constant C given by

C = 1

2

[
Bu

ε∞(V0) − 1

(
−∂ε∞

∂p

)
p=0

+ 5

3

]
(10.27)

where Bu is the bulk modulus. The values of C are found to be 1.29 (⊥c, α-GaN), 1.30
(||c, α-GaN), 1.39 (β-GaN), 1.08 (⊥c, w-AlN), 1.05 (||c, w-AlN) and 1.07 (c-AlN).

10.2.2 Reststrahlen spectra

(a) Zinc-blende-type and rocksalt-type semiconductors

It should be noted that in homopolar semiconductors such as diamond, Si and Ge, the
fundamental vibration has no dipole moment and is infrared inactive. In heteropolar
crystals, as in GaAs, the first-order dipole moment gives rise to a very strong absorption
band associated with optical modes having an of essentially zero k vector (i.e., long-
wavelength optical phonons).

The complex dielectric permittivity ε(ω) in the long-wavelength limit can be generally
explained by a single harmonic oscillator model

ε(ω) = ε∞
(

1 + ω2
LO − ω2

TO

ω2
TO − ω2 − iωγ

)
(10.28)
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where γ is the phonon damping constant. This expression can be modified using the
Lyddane–Sachs–Teller relationship of Equation (10.23) as

ε(ω) = ε∞ + ω2
TO(εs − ε∞)

ω2
TO − ω2 − iωγ

(10.29)

The so-called reststrahlen parameters, such as εs, ε∞, ωTO, ωLO and γ , can be determined
from measurements of absorption, refractive index dispersion and reflection at normal and
oblique incidence.

We show in Figure 10.6(a) the spectral variation of ε(ω) = ε1(ω) + iε2(ω) for InP
obtained from numerical modeling of (Equation (10.29)) using the reststrahlen parameters
reported by Bairamov et al. [10.14] at room temperature (εs = 12.50, ε∞ = 9.71, ωTO =
303.7 cm−1, ωLO = 344.5 cm−1 and γ = 1.9 cm−1).

The imaginary part of Equation (10.28) can be modified as

ε2(ω) = Sω2
TOωγ

(ω2
TO − ω2)2 + ω2γ 2

(10.30)

with

S ≡ ε∞(ω2
LO − ω2

TO)

ω2
TO

(10.31)
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Figure 10.6 (a) Spectral variation of ε1(ω) and ε2(ω) for InP obtained from numerical modeling
of Equation (10.28) (Equation (10.29)) with the room-temperature reststrahlen parameters (εs =
12.50, ε∞ = 9.71, ωTO = 303.7 cm−1, ωLO = 344.5 cm−1 and γ = 1.9 cm−1). The corresponding
−Imε(ω)−1 spectrum is shown by the dashed line; (b) spectral variation of n(ω) and k(ω) for InP
as obtained from Equations (10.10a) and (10.10b), respectively
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Since the phonon frequency ωTO is usually much larger than γ , ε2(ω) has a significant
value only when ω is close to ωTO. For such values of ω, it is a good approxima-
tion to replace ω by ωTO everywhere in Equation (10.30), except in the factor ωTO − ω,
which gives

ε2(ω) = SωTOγ/4

(ωTO − ω)2 + (γ /2)2
(γ � ωTO) (10.32)

The ε2(ω) then reaches a maximum value SωTO/γ for frequency ω = ωTO (resonance
frequency) and drops to half that peak value for frequencies ω = ωTO ± γ /2.
Equation (10.32) is known as the Lorentzian line shape. The frequency region just above
ωTO is one in which ε1 is driven strongly negative, as shown in Figure 10.6(a). Note that
in homopolar semiconductors (Si, Ge, etc.), ωTO = ωLO then S = 0 (εs = ε∞).

From Equation (10.29), we obtain the relation

−Imε(ω)−1 = ε2(ω)

ε1(ω)2 + ε2(ω)2
= (ε−1∞ − ε−1

s )ω2
LOωγ

(ω2
LO − ω2)2 + ω2γ 2

(10.33)

which becomes for ω ∼ ωLO

−Imε(ω)−1 = (ε−1∞ − ε−1
s )ωLOγ

4(ωLO − ω)2 + γ 2
(10.34)

Hence, the maximum in −Imε(ω)−1 determines the phonon frequency ωLO, as demon-
strated in Figure 10.6(a).

The n(ω) and k(ω) curves obtained from Equations (10.10a) and (10.10b) for InP are
shown in Figure 10.6(b). The absorption coefficient α(ω) and normal-incidence reflectivity
R(ω) as calculated from Equations (10.12) and (10.13) are also shown in Figures 10.7(a)
and 10.7(b), respectively. Both n and k dispersion curves show a strong peak at the
resonance frequency ω = ωTO. The reflectivity R at ω close to ωLO is nearly zero and
R ∼ 1 at ωTO � ω � ωLO, as shown in Figure 10.7(b).

The optical properties at the reststrahlen region of semi-insulating crystals can be
adequately interpreted by the above-mentioned single harmonic oscillator model. If free
carriers (electrons) are present in the medium, we must take into account plasma contri-
bution to the dielectric permittivity. When the frequency of free-carrier plasma excitations
(plasmons) is close to the frequency of the LO phonons ωLO, the two excitations interact
via their macroscopic electric fields. The dielectric permittivity ε(ω) in such case is given
by (cf. Equation (10.28))

ε(ω) = ε∞

(
1 + ω2

LO − ω2
TO

ω2
TO − ω2 − iωγ

− ω2
p

ω(ω + iΓ )

)
(10.35)

where

ωp =
√

ne2

meε∞ε0
(10.36)
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Figure 10.7 Numerically calculated spectral dependence of: (a) α(ω); (b) R(ω) for InP using the
same set of reststrahlen parameters as in Figure 10.6

is the plasma frequency, Γ is the plasmon damping constant and n and me are, respec-
tively, the free-electron concentration and its effective mass (‘optical mass’). The frequen-
cies of the coupled plasmon–LO phonon modes are deduced in the limit of zero damping
as the roots of the equation ε(ω) = 0 and are written as

ω± = ω2
LO + ω2

p

2
±

√√√√(
ω2

LO + ω2
p

2

)2

− ω2
pω

2
TO (10.37)

As the damping values increase, however, this equation is no longer valid. The two
sharp dips in the reflectivity minima get smeared out and the coupled-mode frequencies
become complex.

In the case of multivalley semiconductors, we must take into account the effects of
multivalley nature of the conduction-band structure. A three-valley model is used to
account for the , L and X valleys in the conduction band of such semiconductors.
Considering the  minimum as the energy reference, the electron concentration in the 

valley and those in the L (X) valley relative to the  valley are given by [10.15]

n = 2

(
2πm

e kT

h2

)3/2

exp

(
−EF

kT

)
(10.38)

nL(X)

n

=
(

mL(X)
e

m
e

)3/2

exp

(
−∆EL(X)

kT

)
(10.39)

where EF is the Fermi energy and ∆EL (∆EX) is the energy difference between the
L-conduction (X-conduction) and -conduction minima. The total free-electron density
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can be given by n = n + nL + nX. Then, the plasmon term in Equation (10.35) can be
modified as follows

ω2
p

ω(ω + iΓ )
→ ω2

p

ω(ω + iΓ)
+ ω2

pL

ω(ω + iΓL)
+ ω2

pX

ω(ω + iΓX)
(10.40)

with

ωp =
√

ne2

m
e ε∞ε0

, ωpL =
√

nLe2

mL
e ε∞ε0

, ωpX =
√

nXe2

mX
e ε∞ε0

(10.41)

where m
e , mL

e and mX
e are the effective masses at the -conduction, L-conduction and

X-conduction bands, respectively.
In the case of p-type semiconductors, we must consider the contributions from the

heavy-hole and light-hole subbands with the hole effective masses m∗
HH and m∗

LH and
densities pHH and pLH, respectively. It should be noted, however, that the sum of these
contributions has the form similar to Equation (10.40).

Equation (10.35) has been used as the basis for sorting out plasmon–LO phonon effects
in a number of investigations [10.16–10.20]. Kukharskii [10.21], however, showed that
this expression oversimplifies the coupling of plasmons and phonons and can lead, prin-
cipally, to errors in deducing the damping constants γ and Γ . In Kukharskii’s model
(factorized form), ε(ω) is given by

ε(ω) = ε∞
(ω2 + iωΓ− − ω2−)(ω2 + iωΓ+ − ω2+)

ω(ω + iΓ )(ω2 + iωγ − ω2
TO)

(10.42)

In his model, two additional parameters are the damping constants Γ± of the coupled
plasmon–phonon modes. The plasmon and single-oscillator models are related to each
other through the equation

ω+ω− = ωpωTO (10.43)

Note that in contrast to most other III–V semiconductors which have an appreciable
ionic character, BP is very much covalent, as may be seen from its smaller Phillips
ionicity fi = 0.032 (Section 1.1). Wang et al. [10.22] tried to measure the reststrahlen
spectrum of BP and contributed their failure to the almost completely covalent character
of the material.

(b) Hexagonal semiconductor

At normal temperature and pressure GaN crystallizes in the wurtzite lattice with two
molecular units in the primitive cell, which gives rise to twelve phonon branches (N = 4).
At the center of the Brillouin zone (), the acoustic modes comprise the representations

1A1 + 1E1 (10.44)

and the remaining nine optical modes the representations

1A1 + 2B1 + 1E1 + 2E2 (10.45)
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Except the silent B1 modes all the other optical modes are Raman active, and the A1

and E1 modes are IR active for incident radiation with the polarizations E || c and E ⊥ c,
respectively, c being the hexagonal axis of the crystal.

In the uniaxial media, two different solutions of the wave equation exist, which describe
the ordinary (E ⊥ c) and extraordinary (E || c) rays [10.23]. Figure 10.8 shows the spec-
tral variations of ε1(ω) and ε2(ω) for α-GaN obtained from numerical modeling of
Equation (10.28) (Equation (10.29)). The parameter values used in the calculation are
as follows [10.24]: εs = 9.44 (10.43), ε∞ = 5.35 (5.35), ωTO = 560 cm−1 (530 cm−1),
ωLO = 744 cm−1 (740 cm−1) and γ = 6 cm−1 (7 cm−1) for E ⊥ c (E || c). The peaks
in the corresponding −Imε(ω)−1 curves occur at ωLO = 744 cm−1 for E ⊥ c and at
740 cm−1 for E || c.

The n(ω) and k(ω) curves obtained from Equations (10.10a) and (10.10b) for α-
GaN are shown in Figure 10.9. The absorption coefficient α(ω) and normal-incidence
reflectivity R(ω) as calculated from Equations (10.12) and (10.13) are also shown in
Figures 10.10(a) and 10.10(b), respectively. The variation of n and k is found to show
a strong peak at ω = ωTO. In the limit ω → 0 (∞), the refractive index n approaches a
value of ε

1/2
s (ε1/2

∞ ). It is also seen that R ∼ 0 at ω ∼ ωLO and R ∼ 1 at ωTO � ω � ωLO.

(c) External perturbation effect

It is noted that the phonon frequency usually decreases with increasing temperature (see
Section 4.2). The static and high-frequency dielectric constants are functions of temper-
ature T ; they usually increase with increasing T (see Table 10.2). The damping constant
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γ may also be strongly dependent on T , and will increase with increasing T . Similarly,
the zone-center optical phonon frequency usually increases with increasing hydrostatic
pressure p. The static and high-frequency dielectric constants decrease with increasing p

(Table 10.2). We can, therefore, easily expect that the optical spectra in the reststrahlen
region of semiconductors are dependent both on temperature and hydrostatic pressure.

10.2.3 Multiphonon optical absorption spectra

The lattice absorption bands in semiconductors have been investigated by a number of
investigators. In homopolar semiconductors such as diamond, Si and Ge, the fundamental
lattice vibration has no dipole moment and is, therefore, infrared inactive. Consequently,
the lattice absorption bands observed in such semiconductors are probably due to the
multiple-phonon processes, not due to the one-phonon process.
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For Si, the multiphonon processes occur predominantly in the spectral range between
500 and 1500 cm−1. We show in Figure 10.11, as an example, the absorption coefficient
plotted against wavenumber for Si measured at four different temperatures T = 5, 77, 300
and 412 K [10.25]. The most intense peak seen in Figure 10.11 is identified to as a sum-
mation band of TO and LO phonons (610 cm−1) and the second one to as a combination
of LO and TA (transverse acoustic) phonons (570 cm−1) or that of LO and LA (longi-
tudinal acoustic) phonons (740 cm−1) [10.25]. More recently, these multiphonon bands
have been identified to as TO(L) + TA(X) (610 cm−1), TO(X) + TA(L) (566 cm−1) and
2TA(X) + TO(X) (740 cm−1), respectively [10.26]. The 1040–1200 cm−1 spectral region
is largely obscured by the residual impurity (oxygen) band, but in the cases of the 5 and
77 K curves this band is observed to be fairly narrow. Pradhan et al. [10.26] identified the
1160 cm−1 peak band as a summation band of 2TO() + TA(L). Jichang et al. [10.27],
on the other hand, suggested from Fourier transform infrared measurements that the
1160 cm−1 band is due to interstitial oxygen.

The absorption coefficient just at the 610 cm−1 peak is ∼9 cm−1 (T = 300 K,
Figure 10.11). From this α value, we obtain the following imaginary optical constants:
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Figure 10.11 Lattice absorption in Si at four different temperatures. [From R. J. Collins and H.
Y. Fan, Phys. Rev. 93, 674 (1954), reproduced by permission from the American Physical Society]
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k ∼ 1 × 10−3 and ε2 ∼ 8 × 10−3. These values are too small to have a noticeable effect
on the real optical constants, ε1, n and R.

10.3 AT OR NEAR THE FUNDAMENTAL ABSORPTION EDGE

10.3.1 Free-exciton binding energy and related parameters

(a) Exciton states: direct exciton

Because the Coulomb interaction is always present between electrons and holes, excitonic
transitions play an important role in the fundamental optical process of semiconduc-
tors [10.28–10.30]. The exciton state can be expanded in terms of the Bloch functions
for a perfect periodic lattice. The Schrödinger equation for the exciton problem can be
written, in terms of the electron and hole coordinates re and rh, respectively, as

[
He

(
p + 1

2
P − pe

)
+ Hh

(
−p + 1

2
P − ph

)
− e2

ε0εs|r |
]

Φ = EΦ (10.46)

where p, P are the momenta conjugate to r, R; pe, ph are h̄ multiplied by ke, kh; and
εs is the static dielectric constant. R and r are the center-of-mass coordinate and relative
position, respectively, being given by

R = mere + mhrh

me + mh
(10.47a)

r = re − rh (10.47b)

The eigenvalue E and eigenfunction Φ can be found by solving Equation (10.46). The
exciton energy Eex of interest here is written as

Eex = E0 + E (10.48)

where E0 = Ec(k = 0) − Ev(k = 0) is the lowest direct band-gap energy at k = 0 ().
The two-particle wave equation (Equation (10.46)) can be expressed as a sum of two

separate terms if it is written in a coordinate system of the center-of-mass coordinate R
(translational part) and the electron–hole separation part r (rotational part). The transla-
tional part is written as

− h̄2

2M
∇2

RΦR(R) = EKΦR(R) (10.49)

which describes just the motion of a free particle with a mass

M = me + mh (10.50)

Equation (10.49) gives

EK = h̄2|K |2
2M

(10.51)
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and
ΦR(R) = eiK ·R (10.52)

where K = ke + kh.
The rotational part, on the other hand, is written as

[
− h̄2

2µ
∇2

r − e2

ε0εs|r |
]

φn(r) = Enφn(r) (10.53)

This equation is similar to that for the hydrogenic problem, but with the electron charge
replaced by e/

√
εs and the free-electron mass m0 replaced by the exciton reduced mass µ

1

µ
= 1

mo,e
+ 1

mo,h
(10.54)

where mo,e and mo,h are the optical electron and hole masses, respectively. The optical
masses can now be defined in terms of the longitudinal mass ml and the transverse mass,
mt, by

1

mo
= 1

3

(
1

ml
+ 2

mt

)
(10.55)

For holes at k = 0, one has to take the spherically averaged heavy-hole (HH) and light-
hole (LH) masses (Section 7.3)

1

mo,h
= 1

2

(
1

ms
HH

+ 1

ms
LH

)
(10.56)

The eigenvalue of Equation (10.53) can be given, by analogy with the hydrogenic
problem, as

En = −G3D

n2
, n = 1, 2, 3, . . . . . (10.57)

where G3D is the three-dimensional exciton binding (Rydberg) energy given by

G3D = µe4

2h̄2(ε0εs)2
= 13.6

µ/m0

ε2
s

eV (10.58)

The corresponding exciton Bohr radius a3D
B can be given by

a3D
B = h̄2ε0εs

µe2
= 0.53

εs

µ/m0
Å (10.59)

In obtaining Equations (10.58) and (10.59), we assumed that the relative dielectric
constant is equal to the static dielectric constant εs. This is because the exciton bind-
ing energy is usually smaller than the lattice vibrational (LO phonon) energy in many
semiconductors. If not so, we must use ε∞ instead of εs.

It is evident from Equation (10.53) that φn(r) is a hydrogenic wavefunction with sub-
stituted for m0 → µ and ε0 → ε0εs. Since φn(r) is a smooth function extending over a
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large region of the crystal, it is usually called the ‘envelope function.’ Because φn(r)
describes the rotational motion of the exciton, it is characterized by the three quantum
numbers n (principal), l (azimuthal) and m (magnetic). However, it is known that only
the s-rotational state (l = 0) is important for the optically created excitons. It is, therefore,
sufficient for our purpose to label the envelope function with only one quantum number n.

For the simple case of two spherical bands of masses me and mh, the envelope function
of the nth exciton state φn(0) can be given by

|φn(0)|2 = 1

n3

V0

π(a3D
B )3

≡ 1

n3
|φ1(0)|2 (10.60)

A series of the exciton lines can, then, be predicted at energies

En
ex = E0 + h̄2K 2

2M
− G3D

n2
(10.61)

with intensity falling as n−3 by Equation (10.60).
As the photon energy E approaches the absorption edge, the infinite number of lines

will overlap so that it may be considered as a continuum. In the true continuum where
E − E0 > 0, we obtain for the envelope function of the continuum state

|φk(0)|2 = παke
παk

Nsinh(παk)
= 2παk

N(1 − e−2παk )
(10.62)

with

αk =
∣∣∣∣ G3D

E − E0

∣∣∣∣
1/2

=
∣∣∣∣ G3D

(h̄2k 2/2µ)

∣∣∣∣
1/2

(10.63)

The continuum exciton state corresponds to positive energy solutions of the hydrogen-
like equation (10.53). The energy of this type of excitons may be written as

Ek
ex = E0 + h̄2K 2

2M
+ h̄2k 2

2µ
(10.64)

In the true continuum, the rotational energy is much larger than the Coulomb interaction
energy, and therefore the excitons behave like free particles with an effective mass µ.
Consequently, the three-dimensional exciton spectrum consists of a series of discrete
parabolic bands below E0 at K = 0, which merges into a continuum at higher energies,
as depicted in Figure 10.12.

(b) Exciton states: indirect exciton

Exact calculation of the exciton effect at the indirect band gap is quite complicated, and
it is convenient at this stage to make approximations and consider a more specific model.
Let us assume that the maximum in the valence band is at k = k1 and is nondegenerate,
the minimum in the conduction band at k = k2 and nondegenerate (see Figure 10.20,
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Figure 10.12 Schematic diagram showing the energy and absorption coefficient of Wannier–Mott
excitons (discrete and continuum excitons)

below). The envelope function φ(0) is also assumed to be independent of k. The resultant
indirect exciton state can be given by

EID
ex = EID

g − GID ∓ h̄ωq (10.65)

where EID
g is the indirect band-gap energy, GID is the indirect exciton binding energy and

h̄ωq is the energy of phonons involved in the indirect optical transitions. It should be noted
that the indirect exciton binding energy GID can be expressed by the same expression as
Equation (10.58) and the indirect exciton Bohr radius as Equation (10.59).

(c) Exciton binding energy and related parameters

In Table 10.4, we list the exciton binding energy G (G3D, GID), 1st-orbital (n = 1) Bohr
radius aB and exciton reduced mass µ determined experimentally or theoretically for some
group-IV, III–V and II–VI semiconductors. Figures 10.13 and 10.14 also plot G3D and
a3D

B versus E0 (lowest direct band-gap energy) values for these semiconductors. From
these plots, we obtain the relations (E0 in eV; G3D in meV)

G3D = 4.36E1.60
0 (10.66)

and (E0 in eV; a3D
B in Å)

a3D
B =

(
66.9

E0

)1.18

(10.67)

As we have already seen (Chapter 7), a larger band-gap energy E0 is correlated with a
larger effective mass. This promises that G3D increases, but a3D

B decreases, with increasing
E0, as clearly demonstrated in Figures 10.13 and 10.14.

As mentioned in Section 10.2, the values of εs in many semiconductors increase with
increasing temperature T . The electron and hole effective masses are also expected to
decrease with increasing T . We can, therefore, expect that the value of G decreases with
increasing T . In fact, the experimental data on GaAs support this consideration [10.31,
10.32].
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Table 10.4 Free-exciton parameters (G = binding energy; aB = 1st-orbital Bohr radius; µ =
reduced mass) at the fundamental absorption edge of some group-IV, III–V and II–VI
semiconductors. D = direct exciton; ID = indirect exciton

System Material G (meV) aB (Å) µ (m0) Remark

IV Diamond 80 16 0.191 ID
Si 14.7 42 0.145 ID
Ge 4.15 (±3/2) 108 0.079 ID

3.14 (±1/2) 143 0.059 ID
3C-SiC 26.7a 28a 0.184a ID
6H-SiC 60 12 0.424 ID

III–V AlAs 18 40 0.134 ID
13a 55a 0.097a D

AlSb 10 64 0.092 ID
1.44–1.45a ∼ 445a 0.013a D

α-GaN 24.0 (A) 31 0.164 D
22.8 (B) 33 0.156
24.5 (C) 31 0.168

β-GaN 24 32 0.156 D
GaP 22 29 0.201 ID

13 50 0.116 D
GaAs 3.6 155 0.044 D
GaSb 1.5 306 0.027 D
InP 4.8 120 0.055 D
InAs 1.0 494 0.016 D
InSb 0.4 1017 0.009 D

II–VI MgO 145 16 0.102 D
β-MgSe 57.3 33 0.061 D
ZnO 61 (A) 32 0.062 D

56 (B) 35 0.057
53 (C) 37 0.054

α-ZnS 40 (A, B,C) 27 0.128 D
β-ZnS 34 33 0.106 D
ZnSe 18.7 41 0.119 D
ZnTe 12.8 62 0.078 D
w-CdS 28 (A) 26 0.197 D

29 (B) 25 0.204
30 (C) 25 0.211

w-CdSe 15.7 (A) 48 0.106 D
16.7 (B) 45 0.112

CdTe 10.5 65 0.085 D

aCalculated

Goñi et al. [10.32] studied the hydrostatic pressure dependence of the E0-exciton bind-
ing energy in GaAs for pressures up to 9 GPa by analyzing the absorption curve in terms
of the Elliott model [10.28] of the exciton line. The experimental data showed an essen-
tially linear increase of G3D with respect to hydrostatic pressure. Actually, the simple
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hydrogen model predicts, to a first approximation, a linear pressure dependence of G3D

in GaAs [10.32]. The static dielectric constant εs of GaAs does not change appreciably
with pressure. Thus, the binding energy G3D is proportional to the exciton reduced mass
µ. Within the k · p theory, we have µ ∝ E0 and then G3D ∝ E0. Because E0 increases
almost linearly with p, we finally obtain the relation G3D ∝ p. Goñi et al. obtained the
following linear pressure coefficients for GaAs: d ln G3D/dp = 0.086 ± 0.003 GPa−1 at
T = 20 K; 0.080 ± 0.003 GPa−1 at 100 K; and 0.083 ± 0.003 GPa−1 at 200 K [10.32].
The pressure coefficient of G3D has also been reported for some II–VI semiconductors,
such as ZnO [10.33], β-ZnS [10.34], ZnSe [10.35] and ZnTe [10.36].
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(d) Spin-exchange interaction constant

The exciton Hamiltonian at the  point can be written as

H = H ZB(W)
c − H ZB(W)

v − G3D + Hexch (10.68)

where H ZB(W)
c and H ZB(W)

v are the effective Hamiltonians for the lowest two conduction
bands and the highest six valence bands in the zinc-blende-type (wurtzite-type) semicon-
ductors (see Section 6.2), respectively, G3D is the exciton binding energy and Hexch now
describes the electron–hole exchange interaction. The last term Hexch in Equation (10.68)
is given by

Hexch = 1

2
jσhσe (10.69)

where j is the spin-exchange interaction constant between the hole and electron spins
and σh and σe are the Pauli spin matrices of the holes and electrons, respectively. Note
that the operator σh operates on valence-hole spin functions, not on valence-electron
spin functions.

In Table 10.5, we list the spin-exchange interaction constant j reported for some III–V
and II–VI semiconductors. The data are gathered form various sources [10.37–10.40].
We can see that ZnO has the largest j value among these semiconductors. The oscillator
strength in ZnO is thus expected to be largely influenced by this effect. Gil [10.40]
has examined how the electron–hole exchange interaction influences the strain-induced
variation of the oscillator strengths in ZnO films. He has shown that the overall sets of
optical properties of ZnO films are in general compatible with the natural valence-band
ordering: 9 –7 –7.

10.3.2 Refractive index

(a) Theoretical dispersion model

Knowledge of the refractive index n of semiconductors in the region below or near
the fundamental absorption edge is of great importance in optoelectronic device design
and performance analysis. In the following, we review several calculation models of

Table 10.5 Spin-exchange interaction constant j for some III–V and II–VI
semiconductors

System Material j (meV) System Material j (meV)

III–V α-GaN 0.58 II–VI ZnO 4.73
GaP 0.6 β-ZnS 4.0
GaAs 0.25 ZnSe 1.0
GaSb �0.03 ZnTe 0.21
InP 0.04 w-CdS 2.5

w-CdSe 0.4
CdTe 0.045
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the refractive index dispersion in semiconductors at the transparent region. Since the
imaginary part of the dielectric function ε2 may be taken as zero in a transparent region,
we can successfully assume that

n(E) ∼ √
ε1(E) (10.70)

1. Sellmeier equation. The refractive-index dispersion can be simply given by the
first-order Sellmeier equation [10.41]

n(λ)2 = A + B

(
λ2

λ2 − C2

)
(10.71)

where λ is the light wavelength in vacuum. This expression is obtained based on an
empirical relation and is valid only over a limited spectral range.

2. Ketteler–Helmholtz formula. Another common expression for the refractive index
dispersion is the Ketteler–Helmholtz formula

n(E)2 = A + BE2

1 −
(

E

C

)2 (10.72)

where E < C. Not only Equation (10.71) but also Equation (10.72) has the appropriate
physical basis to represent n dispersion in the simplest manner throughout the transpar-
ent region.

3. Single oscillator model. A semiempirical single effective oscillator model has been
proposed by Wemple and DiDomenico [10.42] to analyze the n dispersion in more than
100 widely different solids and liquids. This model requires two parameters, Ep and Ed,
where the imaginary part of the dielectric constant ε2 of the material was assumed to be
a delta function at energy Ep and the strength of an effective oscillator at energy Ep was
defined to be πEd/2. Introducing these quantities into Equation (10.7a), we obtain

n(E)2 − 1 = EpEd

E2
p − E2

(10.73)

By replacing B ≡ Ed/Ep and C ≡ ch/Ep (c is the velocity of light and h is Planck’s
constant), we can find that Equations (10.71) and (10.73) agree with each other exactly.
The single-oscillator model gives reasonable results for photon energies well below the
lowest direct band-gap edge in semiconductors. We note, however, that this photon energy
region is not of immediate interest for semiconductor lasers.

4. Modified single oscillator model. Afromowitz [10.43] has proposed an improved
model for the variation of ε2 with photon energy by taking into account the lowest direct
band-gap (Eg) contribution

ε2(E) =
{

ηE4 Eg � E � Ef

0 elsewhere
(10.74)
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where the new parameters Ef and η can be determined by requiring that the corresponding
expression for n2 agrees with Equation (10.73) for E � Eg. The resulting expression for
n2 is

n(E)2 − 1 = Ed

Ep
+ EdE

2

E3
p

+ ηE4

π
ln

(
2E2

p − E2
g − E2

E2
g − E2

)
(10.75)

where

η = πEd

2E3
p(E

2
p − E2

g)
(10.76)

The parameters Ed, Ep and Eg appearing in Equations (10.75) and (10.76) are known for
many binary semiconductors and may be calculated for ternary and quaternary compounds
by using an interpolation scheme [10.43].

5. Pikhtin–Yas’kov formula. The Pikhtin–Yas’kov formula [10.44] is nearly the same
as a Drude form with the addition of another term representing a broadband electronic
contribution to n2

n(E)2 − 1 = A

π
ln

E2
1 − E2

E2
0 − E2

+
∑

i

Gi

E2
i − E2

(10.77)

The unique term arises from assuming that ε2(E) is constant for E0 � E � E1 and that
infinitely narrow resonances occur at Ei due to the lattice absorption bands. The formula
in Equation (10.77) is obtained by performing the Kramers–Kronig transformation on
this model.

6. Simplified interband transition model. The E0/(E0 + ∆0)-gap transitions contribute
strongly to the n dispersion, but not to its values. On the contrary, the higher-lying band-
gap contributions (E1, E1 + ∆1, E2, etc.) do not contribute to the wavelength dispersions
in the transparent region, but contribute to their absolute values. The n value in the
transparent region can, then, be simply expressed, using Equations (10.99), (10.116) and
(10.120) (see Section 10.3.3, below), as [10.45]

n(E)2 = A∗
[
f (χ∗

0 ) + 1

2

(
E0

E0 + ∆0

)3/2

f (χ∗
so)

]

+
∞∑

n=1

1

n3

F D

(En
ex)

2 − E2
+ F CEC1

ex

G3DE2
ln

E2
0

E2
0 − E2

+ B∗ (10.78)

with

f (χ∗
0 ) = χ∗−2

0 (2 −
√

1 + χ∗
0 −

√
1 − χ∗

0 ) (10.79a)

f (χ∗
so) = χ∗−2

so (2 − √
1 + χ∗

so − √
1 − χ∗

so) (10.79b)

A∗ = 4

3

(
3

2
µ0

)3/2

E
−3/2
0 P 2 (10.80a)



OPTICAL PROPERTIES 239

χ∗
0 = E

E0
(10.80b)

χ∗
so = E

E0 + ∆0
(10.80c)

where A∗ and F D (F C) represent the strength parameters of the E0/(E0 + ∆0)-gap one-
electron and excitonic transitions, respectively, and B∗ corresponds to the nondispersive
contribution arising from the higher-lying band gaps (E1, E1 + ∆1, E2, etc.). µ0 and P 2

in Equation (10.80a) are, respectively, the combined density-of-states mass and squared
momentum matrix element at the E0/(E0 + ∆0) edges.

The one-electron term in Equation (10.78) is obtained from a simplified model
of the interband transitions proposed by Korovin [10.46] and Cardona [10.47]. The
model has been applied to II–VI and III–V semiconductors, and the results exhibit
quite good agreement with the published experimental data for some II–VI [10.48]
and III–V binaries [10.45], AlxGa1−xAs ternary alloy [10.49] and In1−xGaxAsyP1−y

quaternary alloy [10.45]. The model has also been adopted to estimate the n dispersion in
AlxGa1−xAsySb1−y , GaxIn1−xAsySb1−y and InPxAsySb1−x−y quaternary systems lattice-
matched to GaSb and InAs [10.50].

Figure 10.15 shows, as an example, the experimental n dispersion for ZnTe fitted to
the Sellmeier equation, Equation (10.71). The experimental data are taken from [10.5].
The fitted parameter values are: A = 4.04, B = 3.22 and C2 = 0.149 µm2. As we can
see, the calculated n values are in good agreement with the experimental data.

0 0.5 1.0 1.5 2.0 2.5
2.6

2.7
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3.0

3.1

3.2

3.3

E (eV)

ZnTe

n

T = 300 K

Figure 10.15 Refractive-index dispersion in ZnTe. The experimental data are taken from
Adachi [10.5]. The solid line represents the calculated result of the Sellmeier equation, n(λ)2 =
A + Bλ2/(λ2 − C2), with A = 4.04, B = 3.22 and C2 = 0.149 µm2 (λ in µm). [From S. Adachi,
Handbook on Physical Properties of Semiconductors Volume 3: II–VI Compound Semiconductors
(Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic Publishers]
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(b) Long-wavelength n value: empirical formula

A relation between the refractive index and an accurately known physical parameter, if
available, would be useful in finding an acceptable n value of the unknown material
from this relation. The basic concept that higher band-gap material has a lower dielectric
constant ε1 can be derived from Moss’s rule [10.51], which states that energy levels are
inversely proportional to the square of the dielectric constant. Then, the band-gap energy
Eg (or E0) and refractive index n (∼ ε

1/2
1 ) satisfy the relation

n4Eg = const. (10.81)

As shown in Figure 10.16, the plots of n4(λ → ∞) = ε2
1(λ → ∞) = ε2∞ versus E0

for some group-IV, III–V and II–VI semiconductors support the dependence of
Equation (10.81) in a general way.

Double-heterojunction lasers are composed of a lower band-gap active layer sand-
wiched between higher band-gap cladding layers, and the refractive index of the active
layer has to be higher than that of the cladding layer. This is certainly the case for
GaAs/AlxGa1−xAs and In1−xGaxAsyP1−y /InP lasers. A number of published papers are,
therefore, based on the belief that higher band-gap materials necessarily have lower refrac-
tive indexes, so that the correct double-heterojunction structure automatically satisfies the
requirement for the refractive index.

If the refractive index in the active region of an injection laser is smaller than the
index of the cladding layer on both sides, the effect is like that of an antiwaveguide
configuration which does not confine radiation to the neighborhood of the active region.
This effect implies an optical loss in the waveguide, leading to an increase in the
threshold current. Toda [10.52] pointed out the existence of a number of inappropriate
double-heterostructures (i.e., antiwaveguiding material systems). Reference [10.50]
also deals with inappropriate laser structures of In1−xGaxAsySb1−y /GaSb(InAs) and
InPxAsySb1−x−y/GaSb(InAs).
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Figure 10.16 Relationship between n4(λ → ∞) versus E0 for some group-IV, III–V and II–VI
semiconductors at 300 K. The solid line represents the relation of Equation (10.81) with a constant
value of 140 eV
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(c) External perturbation effect

1. Temperature effect. The refractive index of a material is usually measured relative to
air (i.e., n/nair is the measured quantity). In order to determine the temperature variation
of n of the material, it is necessary to take into account the temperature variation of the
refractive index of the ambient air nair

d

dT

(
n

nair

)
= dn

dT
− n

dnair

dT
(10.82)

where dnair/dT is about 1 × 10−6 K−1. The second term in Equation (10.82) is, thus,
usually masked by the experimental uncertainty.

We now start from a simple one-gap model of ε1 given by the expression

ε1(E) = n(E)2 = 1 + A

E2
g − E2

(10.83)

where Eg is the average gap in the Penn model [10.53] and A is proportional to 1/V (V
is the atomic volume, here we shall assume the proportionality constant of this quantity
to be unity, namely A ∼ V −1). By replacing A → EpEd and Eg → Ep, we find that
Equation (10.83) agrees exactly with Equation (10.73). Equation (10.83) for E → 0 (n2 ∼
ε∞) leads to the following formula for the temperature derivative [10.54]

1

n

(
dn

dT

)
p

= 1

2

(
1 − 1

ε1

)[
−βth − 2βthV

Eg

(
∂Eg

∂V

)
T

− 2

Eg

(
∂Eg

∂T

)
V

]
(10.84)

where βth = V −1(∂V/∂T )p is the volume coefficient of thermal expansion (βth =
3αth in cubic crystals, where αth is the linear thermal expansion coefficient). Since
n−1(dn/dT ) is positive in many semiconductors (see Table 10.6), we can conclude
that in Equation (10.84) the ∂Eg/∂T (∂Eg/∂V ) term dominates the βth term. This is
because dEg/dT (∂Eg/∂V ) is negative while βth or αth is positive (ε1 > 1) for many
semiconductors. It is also recognized that the thermal expansion contribution is relatively
small, because αth is usually of the order of 10−6 K−1.

In Moss’s empirical relationship Equation (10.81), we assume that both a (≡ const.)
and Eg (E0) are temperature dependent. Then, we obtain

1

n

(
dn

dT

)
= 1

4

[
1

a

(
da

dT

)
− 1

Eg

(
dEg

dT

)]
(10.85)

If da/dT = 0, then Equation (10.85) follows

1

n

(
dn

dT

)
∼ − 1

4Eg

(
dEg

dT

)
(10.86)

Data on n−1(dn/dT ) are available for many semiconductors, as summarized in
Table 10.6. Usually, when T increases, Eg or E0 decreases, resulting in positive value
of n−1(dn/dT ). The temperature dependence of n for diamond is positive, but about
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Table 10.6 Temperature coefficient of the refractive index, n−1(dn/dT ), in the long-wavelength
limit for some group-IV, III–V and II–VI semiconductors

System Material
1

n

dn

dT
(10−5 K−1) System Material

1

n

dn

dT
(10−5 K−1)

IV Diamond 0.32 II–VI MgO 1.4
Si 4.0 β-ZnS 1.9
Ge 6.9 ZnSe 2.6
6H-SiC 1.1 ZnTe 6

w-CdS 4
III–V AlP 3.6 w-CdSe 4

AlAs 4.6 CdTe 4.4
AlSb 1.19a

α-GaN 2.6
GaP 3.7
GaAs 4.5
GaSb 8.2
InP 2.7
InAs 12
InSb 6.9

aCalculated

an order of magnitude smaller than those for other semiconductors. Note that the
lead salts exhibit properties, which are unusual, and possibly unique, relative to other
semiconductors. For example, they possess high dielectric constant, high mobility and a
narrow fundamental gap whose temperature coefficient is positive (not negative) [10.55].
As expected from Equation (10.86), the lead salts have negative valves of n−1(dn/dT ),
e.g., n−1(dn/dT ) = −2 × 10−4 K−1 for PbS [10.56]. Unfortunately, this equation gives
only the correct sign of the coefficient, but does not yield quantitative agreement with
experiment.

The temperature dependence of the refractive index dispersion near the fundamental
absorption edge of InP has been studied by Gini and Melchior [10.57] by means of an
integrated optical demultiplexer. The data suggested that the linear temperature coefficient
dn/dT increases as the photon energy approaches the lowest direct band-gap energy E0.
Similar photon energy dependence of the linear temperature coefficient dn/dT has been
found in various semiconductors, such as group-IV [10.58–10.61], III–V [10.59, 10.60,
10.62] and II–VI semiconductors [10.59, 10.63].

2. Pressure effect. Let us obtain theoretical expression for the pressure coefficient of the
refractive index in terms of the Penn model. Equation (10.83) for E → 0 and A ≡ V −1

leads to

1

n

(
dn

dp

)
T

= 1

2

(
1 − 1

ε1

)[
Co − 2

Eg

(
∂Eg

∂p

)
T

]

= 1

2

(
1 − 1

ε1

)[
−βth − 2βthV

Eg

(
∂Eg

∂V

)
T

] (
−Co

βth

)
(10.87)
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where Co = −V −1(∂V/∂p)T is the isothermal compressibility. If we assume for the
moment that in Equation (10.84) the (∂Eg/∂T )V term is negligible compared with the
other terms, then (

∂n

∂p

)
T

= −Co

βth

(
∂n

∂T

)
p

(10.88)

It should be noted, however, that this assumption is not substantial.
The pressure coefficient of the long-wavelength refractive index can be estimated from

the high-frequency dielectric constant data, dε∞/dp, using the relation

1

n

(
dn

dp

)
= 1

2n2

(
dε∞
dp

)
= 1

2ε∞

(
dε∞
dp

)
(10.89)

We have already listed the ε∞ and dε∞/dp values in Table 10.2. From this table, we obtain
n−1(dn/dp) = −6.8 × 10−3 GPa−1 (GaP), −4.1 × 10−3 GPa−1 (GaAs) and −1.4 × 10−3

GPa−1 (β-ZnS), respectively.
The pressure dependence of the refractive index near the lowest direct band-gap energy

E0 can be expressed as
dn

dp
= dn

dE0

dE0

dp
∼ − dn

dE

dE0

dp
(10.90)

Since the signs of dn/dE and dE0/dp are positive in most semiconductors, one can expect
that n decreases with increasing pressure p.

The refractive index dispersion as a function of pressure p has been measured on
some group-IV [10.11], III–V [10.11, 10.64] and II–VI semiconductors [10.65, 10.66].
As expected from Equation (10.90), these data showed a decrease in n with increasing
p. We show in Figure 10.17, as an example, the refractive index dispersion for GaP
measured at T = 300 K and at different pressures from p = 0.53 to 11.8 GPa [10.64].
The solid lines represent the theoretical dispersion curves.

3. Doping effect. The doping-induced change in the refractive index ∆n may be
explained by a sum of the three independent contributions

∆n = ∆nf + ∆n0g + ∆nhg (10.91)

where ∆nf is arising from free-carrier absorption (see Section 10.5, below), ∆n0g is a
contribution from the doping-induced change in the E0-gap parameters (energy, strength
and broadening), and ∆nhg is a contribution from the change in the higher-lying gap
parameters. Note that ∆nf and ∆nhg can be considered to be nondispersive in the E0

region. Therefore, the refractive index change ∆n caused by doping near the E0 region
is mainly governed by ∆n0g. At longer wavelengths, the free-carrier absorption has a
stronger effect on the infrared spectrum.

The doping-induced change in the refractive index has been studied experimentally for
some group-IV (Si [10.67], 6H-SiC [10.68]) and III–V semiconductors (GaAs [10.69],
GaSb [10.70], InP [10.71, 10.72], InAs [10.73], InSb [10.73]). All these data, except for
6H-SiC, showed an obvious decrease in n with increasing electron or hole concentration.
The data for 6H-SiC suggested that the n value slightly increases as the electron concen-
tration increases from 1.2 to 7.0 × 1018 cm−3 [10.68].
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Figure 10.17 Refractive-index dispersion for GaP at 300 K and at different pressures. The solid
lines represent the theoretical curves. [From K. Strössner, S. Ves, and M. Cardona, Phys. Rev. B
32, 6614 (1985), reproduced by permission from the American Physical Society]

10.3.3 Optical absorption at the fundamental absorption edge

(a) Critical point: definition

The optical constants in the interband transition region of semiconductors depend fun-
damentally on the electronic energy-band structure of the semiconductors. The relation
between the electronic energy-band structure and ε2(E) can now be given by [10.2]

ε2(E) = 4e2h̄2

πµ2E2

∫
dk |Pcv(k)|2δ(Ec(k) − Ev(k) − E) (10.92)

where µ is the combined density-of-states mass, the Dirac δ function represents the
spectral joint density of states between the valence-band Ev(k) and conduction-band states
Ec(k), differing by the energy E = h̄ω of the incident light, Pcv(k) is the momentum
matrix element between the valence-band and conduction-band states and the integration
is performed over the first Brillouin zone.

Equation (10.92) can be transformed into a surface integral

ε2(E) = 4e2h̄2

πµ2E2

∫
S

dS|Pcv(k)|2
|∇k(Ec − Ev)|Ec−Ev=E

(10.93)

where the integration goes over the equal-energy-difference surface in k space defined
by Ec − Ev = E. In most cases |Pcv(k)|2 can safely be assumed to be a slowly varying
function such that we can define

Jcv(E) =
∫

S

dS

|∇k(Ec − Ev)|Ec−Ev=E

(10.94)
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the joint density-of-states function measuring the product density of full and empty states
of equal energy difference. The ε2(E) can, then, be simply written as

ε2(E) = 4e2h̄2

πµ2E2
|Pcv(k)|2Jcv(E) (10.95)

The Jcv(E) shows strong variations as a function of E for those frequencies at which

∇k[Ec(k) − Ev(k)] = ∇kEc(k) − ∇kEv(k) = 0 (10.96)

for some value of k. These critical points defined by Equation (10.96) are of paramount
importance for the discussion of optical spectra.

The energy difference Ec − Ev can be expanded about a critical point of energy
Ec(kc) in a Taylor series [10.2]

Ec − Ev = Ec +
3∑

j=1

[
d2(Ec − Ev)

dk2
j

]
k=kc

(kj − kcj )
2 (10.97)

The linear term in the expansion is identically zero at a critical point because of
Equation (10.96) and in the parabolic approximation we retain only the quadratic term.
Inserting Equation (10.97) into Equation (10.94) and performing the integral, we obtain
the analytical behavior of the joint density-of-states function Jcv at the three-dimensional
critical points. According to different combinations of the sign of

aj =
[

d2(Ec − Ev)

dk2
j

]
k=kc

(10.98)

one has to distinguish between four types of critical points, M0 –M3. For example, an M0-
type critical point is realized by having all aj > 0. We list in Table 10.7 the analytical
behavior of Jcv(E) at the four types of critical points (three-dimensional critical points).
The different constants depend on the values of aj . We also list in Table 10.7 the energy
dependence of Jcv in the cases of two-dimensional and one-dimensional k spaces.

Figure 10.18 schematically shows the form of Jcv(E) for all these nine cases. It should
be noted that there is a characteristic line shape for each critical point. For example, one
finds a step function for the two-dimensional M0 (aj > 0) or two-dimensional M2-type
(aj < 0) and a logarithmic singularity for the two-dimensional M1 saddle point (a1 > 0,
a2 < 0) (see Figure 10.18(b)). Such a feature gives us a valuable tool for identifying the
structure in optical spectra which are experimentally observed.

(b) Free electron–hole pair transition

1. At the direct absorption edge. The lowest direct transitions in ANB8-N semiconductors
occur at the center of the Brillouin zone. These transitions are of the three-dimensional
M0 type (E0 and E0 + ∆0, see Table 10.7). Introducing the three-dimensional M0Jcv(E)
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Table 10.7 Joint density-of-states function Jcv(E) for different critical points (CPs)

Three-dimensional (3D)

Type of CP Notation a1 a2 a3 Jcv(E)

E < Ec E > Ec

Minimum M0 + + + 0 C0(E − Ec)
1/2

Saddle point M1 + + − C1 − C0
′(Ec − E)1/2 C1

Saddle point M2 + − − C2 C2 − C2
′(E − Ec)

1/2

Maximum M3 − − − C3(Ec − E)1/2 0

Two-dimensional (2D)

Type of CP Notation a1 a2 Jcv(E)

E < Ec E > Ec

Minimum M0 + + 0 B1

Saddle point M1 + − B1

π
(B2 − ln |Ec − E|) B1

π
(B2 − ln |Ec − E|)

Maximum M2 − − B1 0

One-dimensional (1D)

Type of CP Notation a1 Jcv(E)

E < Ec E > Ec

Minimum M0 + 0 A(E − Ec)
−1/2

Maximum M1 − A(Ec − E)−1/2 0

into Equation (10.95) and performing the Kramers–Kronig transformation, we obtain the
contribution of these transitions to ε(E)

ε(E) = AE
−3/2
0

[
f (χ0) + 1

2

(
E0

E0 + ∆0

)3/2

f (χso)

]
(10.99)

with

A = 4

3

(
3

2
µ0

)3/2

P 2 (10.100a)

χ0 = E + iΓ

E0
(10.100b)

χso = E + iΓ

E0 + ∆0
(10.100c)
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Figure 10.18 Joint density-of-states function Jcv(E) plotted against E for: (a) three-dimensional
critical points; (b) two-dimensional critical points; (c) one-dimensional critical points

where P 2 is the square of the momentum matrix element (∝ |Pcv(k)|2), Γ is the
broadening energy of the E0/(E0 + ∆0) transitions and f (χ) is a function defined by
Equation (10.79). For simplicity, we have assumed that the three (or six, accounting
for the spin states) valence bands have the same reduced mass µ0. It is noted that the
calculated ε2(E) (Imε(E)) spectrum of Equation (10.99) in the limit Γ → 0 eV produces
the well-known 1/2-power law

ε2(E) = A

E2

[√
E − E0H(χ0 − 1) + 1

2

√
E − E0 − ∆0H(χso − 1)

]
(10.101)

where H is the Heaviside function defined by Equation (6.14).
In cases where transitions are forbidden in dipole approximation, one can make use of

the k dependence of the matrix element and expand around the critical point at kc

Pcv(k) = Pcv(k0) +
3∑

j=1

(
∂Pcv(k)

∂kj

)
k=kc

(kj − kcj ) + · · · (10.102)

and keep only the linear term. We can, then, obtain for ‘forbidden’ direct transitions at
the three-dimensional M0 critical point [10.2]

ε2(E) ∝
∣∣∣∣∂Pcv(k)

∂|k |
∣∣∣∣
2 [

(E − E0)
3/2H(χ0 − 1) + 1

2
(E − E0 − ∆0)

3/2H(χso − 1)

]
(10.103)
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This result is to be contrasted with the square-root energy dependence found in
Equation (10.101) for the ‘allowed’ direct transitions. It is noted, however, that the
strength of ε2 is generally much lower for the ‘forbidden’ transitions since we have
only the contribution from the matrix element in first order in k.

Figure 10.19 schematically shows the line shapes of absorption coefficient α(E) for
(a) dipole-allowed and (b) dipole-forbidden transitions at the direct band gap (three-
dimensional M0 critical point (E0)), together with those for (c) dipole-allowed and
(d) dipole-forbidden transitions at the indirect band gap (EID

g , see below) and (e) impurity-
induced absorption band.

2. At the indirect absorption edge. Optical transitions between states which are not
vertical in an energy-band diagram are called indirect transitions. We show in Figure 10.20
an example of the energy-band diagram for an indirect band-gap semiconductor, where
the top of the valence band and the direct conduction-band and indirect conduction-band
minima are shown.

The theory of indirect optical absorption can be developed by considering the pertur-
bation Hamiltonian [10.74]

H = HeR + HeL (10.104)

where HeR represents the electron–radiation perturbation which is linear in both electron
and photon creation–annihilation operators and HeL is the electron–lattice perturbation
which is linear in the phonon creation–annihilation operator, but bilinear in the electron
creation-annihilation operator. The indirect optical transition can thus be expressed as
a second-order perturbation process. Using the results of second-order time-dependent
perturbation theory, we obtain transition probability per unit time for a process in which

(E-Eg
ID)3

(E-Eg
ID)2

E0 (Eg
ID)

(E-E0)3/2

(E-E0)1/2

d(Ei)

(a)

(b)

(c)

(d)

(e)

E

α

Figure 10.19 Line shapes of absorption coefficient α(E) for: (a) dipole-allowed; (b) dipole-
forbidden transitions at the direct band gap (three-dimensional M0 critical point (E0)), together
with those for (c) dipole-allowed; (d) dipole-forbidden transitions at the indirect band gap (EID

g )
and (e) impurity-induced absorption band
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Figure 10.20 Schematic diagram showing the indirect optical absorption process. VB: valence
band; DCB: direct conduction band; ICB: indirect conduction band

the valence electron is scattered to the conduction band (ICB) and a photon of energy
E and a phonon of momentum h̄q = h̄(k2 − k1) (and energy h̄ωq) are both absorbed
as follows

W = τ−1 ∝ D0nq · δ[Ec(k2) − Ev(k1) − E + h̄ωq] (10.105)

with

D0 =
∑

β

∣∣∣∣∣
∑

α

〈β|HeL|α〉〈α|HeR|0〉
Eα(k1) − Ev(k1) − E

∣∣∣∣∣
2

(10.106)

where nq is the Bose–Einstein phonon occupation number given by (Nq → nq in
Equation (8.28))

nq = 1

eh̄ωq/kT − 1
(10.107)

Ec and Ev represent the conduction-band and valence-band energies, respectively, |0〉 the
electronic ground (initial) state, |α〉 the intermediate state in the DCB with energy Eα,
|β〉 the final state in the ICB, 〈α|HeR|0〉 the momentum matrix element between the VB
and DCB extrema located near the  point and separated by E0(k1) and 〈β|HeL|α〉 is
the matrix element of the phonon-assisted transition from the DCB to ICB. The energy
denominator in Equation (10.106) is popularly assumed to be (Eα(k1) − Ev(k1) − E) ∼
(E0 − E) ∼ E0. The quantity D0 is also assumed to be independent of k.

Considering the case of indirect optical transitions between spherical bands and sum-
ming over k1 and k2 of Equation (10.105) in the Brillouin zone, we obtain the following
expression for the imaginary part of the complex dielectric function ε2(E) [10.74]

ε2(E) =




D

E2
nq(E − EID

g + h̄ωq)
2 for E > EID

g − h̄ωq

0 for E < EID
g − h̄ωq

(10.108)

where D is the indirect transition strength parameter. The absorption of light, thus, begins
at E = EID

g − h̄ωq. Another contribution to the indirect optical transitions is due to the
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emission of a phonon and can be obtained by the same procedure, where the only differ-
ences from the previous case are the sign of the phonon energy h̄ωq and nq → (nq + 1).
Combining all these contributions, we obtain

ε2(E) = D

E2

(
nq + 1

2
∓ 1

2

)
(E − EID

g ± h̄ωq)
2H(1 − χg) (10.109)

with

χg = EID
g ∓ h̄ωq

E
(10.110)

The parabolic bands extending to infinite energies implied by Equation (10.109) should
be nonphysical. We, therefore, modify the model by taking into account a cutoff at energy
Ec. This modification gives

ε2(E) = D

E2

(
nq + 1

2
∓ 1

2

)
(E − EID

g ± h̄ωq)
2H(1 − χg)H(1 − χc) (10.111)

with

χc = E

Ec
(10.112)

Assuming h̄ωq → 0 eV and performing the Kramers–Kronig transformation, we finally
obtain

ε(E) = 2D

π
(2nq + 1)


− (EID

g )2

(E + iΓ )2
ln

(
Ec

EID
g

)
+ 1

2

(
1 + EID

g

E + iΓ

)2

ln
E + iΓ + Ec

E + iΓ + EID
g

+ 1

2

(
1 − EID

g

E + iΓ

)2

ln
E + iΓ − Ec

E + iΓ − EID
g


 (10.113)

Here, ε1(E) = Reε(E) and ε2(E) = Imε(E).
We see that the ‘allowed’ indirect transitions have the square energy dependence

expressed by Equation (10.108). In case where the indirect transitions are forbidden we
proceed as for direct transitions mentioned before. If the parameter D in Equation (10.111)
is replaced by its first derivative, again a factor to the first power in E comes in and we
obtain a cubic dependence on energy E

ε2(E) ∝
(

nq + 1

2
∓ 1

2

)
(E − EID

g ± h̄ωq)
3H(1 − χg)H(1 − χc) (10.114)

Summarizing the four possible cases of transitions we have the energy exponents 1/2 for
direct allowed, 3/2 for direct forbidden, 2 for indirect allowed and 3 for indirect forbidden
transitions (see Figure 10.19). Such behavior is often used to distinguish experimentally
between the different types.
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(c) Excitonic transition

1. Direct exciton. The contribution of the discrete excitons to ε2 can be given by [10.28]

ε2(E) = f D

E2

∞∑
n=1

1

n3
|φ1(0)|2δ(En

ex − E) (10.115)

where f D is the strength parameter proportional to the square of the momentum matrix
element. The Kramers–Kronig transformation of Equation (10.115) gives

ε1(E) =
∞∑

n=1

1

n3

F D

(En
ex)

2 − E2
(10.116)

where, for simplicity, we replaced F D = 2En
exf

D|φ1(0)|2/π . The contribution of the dis-
crete exciton series to ε(E) (ε1(E) = Reε(E), ε2(E) = Imε(E)) can be finally written as

ε(E) =
∞∑

n=1

1

n3

F D

[E0 − (G3D/n2)]2 − E2 − i2EΓ
(10.117)

where Γ is the exciton lifetime-broadening energy.
The contribution of the continuum excitons to ε2 can be given by [10.28]

ε2(E) = f C

E2

∑
k

|φk(0)|2δ(Ek
ex − E) (10.118)

where f C is the continuum exciton strength parameter.
Equation (10.118) is known to give a continuous exciton spectrum at E − E0 � 0 when

αk → ∞ [10.28]. For E − E0 � G3D where αk → 0, ε2(E) will become proportional to
(E − E0)

1/2, in agreement with the case neglecting the electron–hole interaction. If we
neglect the exponential in the denominator of Equation (10.62), i.e.,

παke
παk

N sinh(παk)
∼ 2παk (10.119)

the Kramers–Kronig transformation of Equation (10.118) gives

ε1(E) = F CEC1
ex

G3DE2
ln

E2
0

E2
0 − E2

(10.120)

where EC1
ex is the ground-state exciton energy (∼E0) and F C is the strength constant

having a similar physical meaning as F D in Equation (10.116). Finally, the contribution
of the continuum excitons to ε(E) (ε1(E) = Reε(E), ε2(E) = Imε(E)) can be given by

ε(E) = F CEC1
ex

G3D(E + iΓ )2
ln

E2
0

E2
0 − (E + iΓ )2

(10.121)
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In a case where transitions are forbidden in the sense of the dipole approximation,
Equation (10.60) can be modified as [10.28]

∣∣∣∣∂φn(0)

∂x

∣∣∣∣
2

= n2 − 1

n5

V0

3π(a3D
B )5

≡ n2 − 1

n5

∣∣∣∣∂φ1(0)

∂x

∣∣∣∣
2

(10.122)

where x is a quantity which is roughly the atomic radius. The corresponding ε2 can be
written as

ε2(E) = f D,F

E2

∞∑
n=1

n2 − 1

n5

∣∣∣∣∂φ1(0)

∂x

∣∣∣∣
2

δ(En
ex − E) (10.123)

A series of exciton lines, thus, occur at energies given by Equation (10.61), except that
the n = 1 line is now missing.

Similarly, in the true continuum we have an expression

∣∣∣∣∂φk(0)

∂x

∣∣∣∣
2

= παk(1 + α2
k )e

παkx2

3N sinh(παk)
(10.124)

The contribution of the forbidden continuum-exciton transitions to ε2 can, therefore, be
written as [10.28]

ε2(E) = f C,F

E2

∑
k

∣∣∣∣∂φk(0)

∂x

∣∣∣∣
2

δ(Ek
ex − E) (10.125)

Equation (10.125) gives continuous exciton absorption at E − E0 � 0 when αk →
∞ [10.28]. For E − E0 � G3D where αk → 0, ε2(E) will become proportional to
(E − E0)

3/2, in agreement with that neglected the electron–hole interaction, i.e.,
Equation (10.103).

2. Indirect exciton. Exact calculation of the exciton effect at the indirect absorption
edge is quite complicated, and it is convenient at this stage to make approximations
and consider a more specific model. Let us assume that the maximum in the valence
band is at k = k1 and is nondegenerate, the minimum in the conduction band at k = k2

and nondegenerate (see Figure 10.20). The envelope function φ(0) is also assumed to be
independent of k. The resultant ε2(E) formula can be given by [10.28]

ε2(E) = F IDD

E2

(
nq + 1

2
∓ 1

2

) √
E + GID − EID

g ± h̄ωqH(1 − χg)H(1 − χc) (10.126)

where GID represents the binding energy of the indirect exciton (see Table 10.4). Note that
the functional form of Equation (10.126) is almost the same as that of Equation (10.101).
Then, the Kramers–Kronig transformation of Equation (10.126) may give

ε(E) = F IDD

(
nq + 1

2
∓ 1

2

)
(EID

g − GID ∓ h̄ωq)
−3/2f (χ∓) (10.127)

with

χ∓ = E + iΓ

EID
g − GID

n2
∓ h̄ωq

(10.128)
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and f (χ) is a function defined by Equation (10.79). Here, ε1(E) = Reε(E) and ε2(E) =
Imε(E).

Beyond the series limit, i.e., E > EID
g ± h̄ωq, there is further absorption from the

continuum. When E − EID
g ± h̄ωq � GID, we obtain [10.28]

ε2(E) = F IDC

E2

(
nq + 1

2
∓ 1

2

)
(E − EID

g ± h̄ωq)
2H(1 − χg)H(1 − χc) (10.129)

Note that this expression has the same power dependence as that obtained from the one-
electron approximation, Equation (10.111). Thus, the Kramers–Kronig transformation of
Equation (10.129) gives the same result as Equation (10.113).

In a case where transitions are dipole forbidden, we obtain

ε2(E) = F IDD,F

E2

(
nq + 1

2
∓ 1

2

)
(E + GID − EID

g ± h̄ωq)
3/2H(1 − χg)H(1 − χc)

(10.130)

for the lower-energy series and

ε2(E) = F IDC,F

E2

(
nq + 1

2
∓ 1

2

)
(E − EID

g ± h̄ωq)
3H(1 − χg)H(1 − χc) (10.131)

for the continuum.

(d) Experimental

1. Temperature effect. We show in Figure 10.21 the optical absorption spectra of high-
quality GaAs measured by Sturge [10.31] over the photon energy range 0.6–2.75 eV
at four different temperatures, T = 21, 90, 186 and 294 K. The sample used in this
study was cut from a semi-insulating ingot of GaAs in which the carrier concentration
was less than 1010 cm−3. As can be seen in Figure 10.21, the saturated value of α at
high energies (just above the band edge) does not depend so largely on temperature
between T = 21 and 294 K (α ∼ (8.5–9.5) × 103 cm−1). At low temperatures, the main
absorption edge shows a sharp peak due to the formation of the discrete excitons (n = 1).
The step-like component seen in the true continuum region E > E0 suggests the presence
of continuum excitons in the optical transition processes. Sturge [10.31] also observed an
exponential broadening at the low-energy side of the absorption edge that is known as
the Urbach tail.

Figure 10.22 shows the low-temperature (T = 2, 77 and 145 K) absorption spectra
of AlAs at the fundamental absorption edge measured by Lorenz et al. [10.75]. At the
fundamental absorption edge, we can expect to see, at low absorption coefficients, a
structure due to free-exciton absorption assisted by various phonons. This structure should
be more clearly observed at low temperatures, as definitely seen in Figure 10.22. The
absorption line marked A in the T = 77 K data is a bound-exciton line of unknown origin,
but believed to be due to an isoelectronic impurity. This line has four relatively weak
phonon replicas at approximately 13, 27, 42 and 50 meV higher energy. If we assume
that line A is a zero-phonon process, then the five absorption thresholds correspond to
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Figure 10.21 Excitonic absorption observed in GaAs at four different temperatures. [From M. D.
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Figure 10.22 Optical absorption spectra at the indirect absorption edge of AlAs measured at 2,
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EX
g , EX

g + TA, EX
g + LA, EX

g + TO and EX
g + LO, where EX

g is the excitonic energy gap.
The four phonon-assisted components are expected for an indirect-gap material according
to the theory of Elliott [10.28].

2. Pressure effect. Figure 10.23 shows the hydrostatic pressure dependence of the
absorption spectra of a 1.7-µm-thick GaAs sample measured at T = 300 K by Goñi
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Figure 10.23 Optical absorption spectra of a 1.7-µm-thick sample of GaAs at 300 K at different
hydrostatic pressures from 2.2 to 15.7 GPa. The arrows indicate the position of the direct absorption
edge. [From A. R. Goñi, K. Strössner, K. Syassen, and M. Cardona, Phys. Rev. B 36, 1581 (1987),
reproduced by permission from the American Physical Society]

et al. [10.76]. The arrows correspond to the energies of the direct absorption edge as
defined by the kink in the absorption spectra. The energy of the kink was determined
from the corresponding edge in the first derivative with respect to the photon energy of
the transmission spectra. These authors observed the direct absorption edge followed by a
‘plateau’ at higher energies up to the structural phase transition pressure, ∼17 GPa. The
gradual broadening with pressure of the direct band-gap kink was attributed to the fact
that, with increasing pressure, the energy of the indirect gap EID

g (15 → X1) becomes
smaller than that of the direct gap E0.

Goñi et al. [10.32] also measured low-temperature exciton absorption spectra at the
lowest direct edge E0 of GaAs as a function of hydrostatic pressure up to 9 GPa. The mea-
sured spectra were analyzed in terms of Elliott’s model [10.28] by taking into account the
broadening of the exciton line. The exciton binding energy in GaAs was found to increase
linearly with pressure at a rate of d ln G3D/dp = 0.08–0.09 GPa−1. The exciton lifetime
became smaller for pressures above the –X conduction-band crossing (�4.2 GPa), a
fact which was attributed to phonon-assisted intervalley scattering.

Figure 10.24 shows the absorption spectra in the region close to the indirect absorption
edge of a 70-µm-thick AlSb sample measured at T = 300 K at hydrostatic pressures
p = 0.22–6.30 GPa by Strössner et al. [10.77]. The absorption curves show an overall
shift toward lower energies with increasing pressure p (dEX

g /dp < 0). The pressure shift
of α becomes smaller in the region well above the indirect band edge, no doubt a result
of the positive pressure coefficient of the lowest direct band gap E0 which modifies the
energy of the -intermediate state relevant for the indirect transitions.

3. Doping effect. Since optical absorption is determined by electron transition from a
filled state in the valence band to an empty state in the conduction band, the band tail will
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influence absorption differently in n-type and p-type semiconductors. For heavily doped
n-GaAs [10.78], for example, the lowest states in the conduction band are filled with free
electrons so that absorption takes an electron from the top of the filled valence band to
an empty state well up in the conduction band (see Figure 6.17). Hence, the absorption
curve shifts to higher energy as shown in Figure 10.25(a), called the Burstein–Moss
shift. For p-GaAs, the hole mass is large so that most of the holes are in the valence-band
tails. Therefore, absorption raises an electron from a filled state that is near or above the
parabolic valence-band edge to the conduction-band tail, and the absorption shifts to lower
energy as the band tails increase (Figure 10.25(b)). Lush et al. [10.79] also measured the
doping-dependent absorption coefficient in n-GaAs thin films (n ∼ 1.3 × 1017 –3.8 × 1018

cm−3) and found that the results show good qualitative agreement with Casey et al. [10.78]
and good quantitative agreement, except for the heavily doped samples. For n ∼ 3.8 ×
1018 cm−3, α was approximately four times larger than that reported by Casey et al.

10.3.4 Urbach tail

The absorption coefficient α(E, T ) near the fundamental absorption edge usually shows
a simple exponential energy dependence

α(E, T ) = α0 exp

(
E − Eg(T )

Eu(T )

)
(10.132)
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referred to as the Urbach tail [10.80], where Eg(T ) is the band-gap energy and Eu(T )

determines the width of the tail. The tail is generally attributed to disorder in the material
that leads to a tail in the valence and conduction bands. At low temperature, dopant impu-
rities as well as other structural imperfections introduce lattice disorder. At high tempera-
ture, the width of the tail is a direct measure of temperature-induced disorder and reflects
the thermal occupancy of phonon states in the Brillouin zone via the electron–phonon
interaction [10.81, 10.82]. We can, therefore, suspect that the Urbach parameter Eu(T )

has the same functional form as that of the critical-point linewidth broadening.
The Urbach parameter Eu(T ) can be written as [10.83]

Eu(T ) = S0

(
1 + X

2
+ 1

eθ/T − 1

)
(10.133)
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Figure 10.26 Urbach parameter Eu versus temperature T for undoped α-GaN grown on (0001)
sapphire substrate. The experimental data are taken from Chichibu et al. [10.85]. The solid line
represents the fit with Equation (10.133) with S0 = 12.6 meV, X = 0 and θ = 350 K

where X is a dimensionless parameter describing the contribution of ‘frozen-in’ structural
disorder, to the width of the Urbach edge. In a well-ordered crystal, X is considered to
be equal to zero.

The Urbach tail has been observed experimentally on some group-IV (Si [10.84]),
III–V (α-GaN [10.85], GaAs [10.86], InP [10.87], InAs [10.88], InSb [10.89]) and II–VI
semiconductors (α-ZnS [10.90], β-ZnS [10.90], w-CdS [10.91], CdTe [10.92]). In Fig-
ure 10.26, as an example, we show the Urbach parameter Eu –T data observed from
undoped α-GaN grown on (0001) sapphire substrate [10.85]. The solid line indicates the
calculated result of Equation (10.133) with S0 = 12.6 meV, X = 0 and θ = 350 K. It is
seen that the calculated curve shows good agreement with the experimental data. The
θ = 350 K determined here is much smaller than θD = 821 K, the Debye characteristic
temperature (see Section 2.3). This fact suggests that the dominant scattering process
in optical absorption of α-GaN is due to electron–acoustic phonon or exciton–acoustic
phonon interaction.

10.4 THE INTERBAND TRANSITION REGION

10.4.1 Model dielectric function

Let us present a calculation model for the complex dielectric function, namely, the model
dielectric function (MDF), which covers the optical response of semiconductors over
a wide range of photon energies. The model is based on the Kramers–Kronig trans-
formation and is strongly connected with the electronic energy-band structure of the
medium [10.2]. The model predicts distinct structures at energies of the critical points in
the Brillouin zone.

In the MDF, ε2(E) can be simply given from Equation (10.95) by

ε2(E) =
M∑

s=1

4e2h̄2

π(µs)2E2
|P s

cv(k)|2J s
cv(E) (10.134)
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where J s
cv (E) is the joint density-of-states function of the sth interband critical point.

As can be understood from Equation (10.134), the joint density-of-states function mainly
determines the interband contribution to ε2(E) and thus to the optical constants of solids.
Analytical behavior of J s

cv (E) at various types of critical point is well defined (Table 10.7).
The Kramers–Kronig relations ensure that ε1(E) can be calculated at each photon energy
if ε2(E) is known explicitly over the entire photon-energy range, and vice versa. In the
following, we summarize the MDF for the critical points of each energy gap [10.56].
Combining all these contributions, we can obtain the spectral dependence of ε(E) of
the material.

(a) Fundamental absorption edge

1. Direct absorption edge. The contributions of the E0 and E0 + ∆0 transitions to ε(E)
have already been discussed in Section 10.3.3. These results are

ε(E) = AE
−3/2
0

[
f (χ0) + 1

2

(
E0

E0 + ∆0

)3/2

f (χso)

]
(10.135)

for the free electron–hole pair transitions (Equation (10.99))

ε(E) =
∞∑

n=1

1

n3

F D

[E0 − (G3D/n2)]2 − E2 − i2EΓ
(10.136)

for the discrete-exciton transitions (Equation (10.117)) and

ε(E) = F CEC1
ex

G3D(E + iΓ )2
ln

E2
0

E2
0 − (E + iΓ )2

(10.137)

for the continuum-exciton transitions (Equation (10.121)).
2. Indirect absorption edge. The contribution of the indirect transitions to ε(E) has

already been presented in Section 10.3.3. The one-electron contribution of the indirect
transitions to ε(E) is written as (Equation (10.113))

ε(E) = 2D

π
(2nq + 1)


− (EID

g )2

(E + iΓ )2
ln

(
Ec

EID
g

)
+ 1

2

(
1 + EID

g

E + iΓ

)2

ln
E + iΓ + Ec

E + iΓ + EID
g

+ 1

2

(
1 − EID

g

E + iΓ

)2

ln
E + iΓ − Ec

E + iΓ − EID
g


 (10.138)

The contribution of the indirect-exciton transitions to ε(E) has also been presented in
Section 10.3.3(c).

(b) E1 and E1 + ∆1 transitions

The E1 and E1 + ∆1 transitions in the diamond-type and zinc-blende-type semiconductors
occur along the 〈111〉 direction or at the L point in the Brillouin zone. These transitions
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are of the three-dimensional M1 type. Since the M1 critical-point longitudinal effective
mass ml is much larger than its transverse counterparts, the mt values, one can treat
these critical points as two-dimensional minima, two-dimensional M0 (Figure 10.18). The
contribution to ε(E) of this type of two-dimensional minima can be written as

ε(E) = −B1χ
−2
1d ln(1 − χ−2

1d ) − B1sdχ
−2
1sd ln(1 − χ−2

1sd) (10.139)

with

χ1d = E + iΓ

E1
(10.140a)

χ1sd = E + iΓ

E1 + ∆1
(10.140b)

In the case of the three-dimensional M1 critical-point excitons (i.e., saddle-point or
hyperbolic excitons), the effective mass approximation equation is much more difficult to
solve. However, in the limit m−1

l → 0 the equation predicts a series of two-dimensional
Wannier-type excitons [10.93]

E2D
x1 = E1 − 4G2D

1

(2n − 1)2
(10.141a)

E2D
x∆ = E1 + ∆1 − 4G2D

1∆

(2n − 1)2
(10.141b)

where G2D
1 (G2D

1∆) is the two-dimensional exciton Rydberg energy. The contribution of
the two-dimensional excitons to ε(E) is written as

ε(E) =
∞∑

n=1

{
B1x

(2n − 1)3

[
1

(E1 − [4G2D
1 /(2n − 1)2])2 − E2 − i2EΓ

]

+ B2x

(2n − 1)3

[
1

(E1 + ∆1 − [4G2D
1∆/(2n − 1)2])2 − E2 − i2EΓ

]}
(10.142)

where B1x (B2x) is the exciton strength parameter proportional to the envelope function
of the two-dimensional excitons. The envelope function can now be given by

|φ2D
n (0)|2 = 16V0

π(a2D
B )3(2n − 1)3

(10.143)

where a2D
B is the two-dimensional exciton Bohr radius and V0 is the volume of the unit

cell. The two-dimensional effective mass approximation also gives the continuum part of
the exciton states [10.93]. One can, however, consider that the contribution to ε(E) of
this part may be similar to that of the one-electron approximation (Equation (10.139)).

(c) E0
′, E2 and E1

′ transitions

The more pronounced structure found in the diamond-type and zinc-blende-type semi-
conductors in the region of higher energy than E1 and E1 + ∆1 is labeled E2 or E0

′.
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The nature of the E2 (E0
′) transitions is more complicated. They do not correspond to a

single, well-defined critical point. If the E0
′ transitions occur at , then the critical point

should be of three-dimensional M0 (three-dimensional M1) type. However, the fit shows
that neither the three-dimensional M0 nor the three-dimensional M1 model represents the
peculiar line shapes of ε1 and ε2 in the E0

′ (E2) spectral region. The best fit is obtained
with a damped harmonic oscillator (DHO) model.

The DHO model now provides

ε(E) = C

(1 − χ2
2 ) − iχ2γ

(10.144)

with

χ2 = E

E2

(
or

E

E0
′

)
(10.145)

where C is the dimensionless strength parameter and γ is the dimensionless broadening
parameter. Note that in the limit γ → 0 the ε1 spectrum of the DHO is equivalent to the
classical Drude–Lorentz formula, namely

ε1(E) = C

1 − χ2
2

(10.146)

The DHO is regarded as of two-dimensional M1 type to a good approximation.
A many-particle effect at the E2-structure region of the semiconductor has been treated

with its detailed energy-band structure [10.94, 10.95]. Results have shown that the absorp-
tion at the E2 edge is markedly weakened, with no drastic change in its shape, by
introducing the excitonic interaction. This fact supports the hypothesis that the DHO
model is a good representation for the E2 transitions both with and without the presence
of the excitonic interaction.

The E2 structures in some III–V and II–VI semiconductors are well fitted by the DHO
model (Equation (10.144)). However, the structures in the group-IV semiconductors (Si,
Ge and α-Sn) could not be successfully fitted by the DHO alone. It is found that the
best result can be obtained with a mixture of the DHO and a two-dimensional maximum
(M2) [10.96, 10.97].

The contribution of the two-dimensional maximum to ε(E) can be given by

ε(E) = −Fχ−2
2m ln

1 − χ2
cl

1 − χ2
2m

(10.147)

with

χ2m = E + iΓ

E2
(10.148)

χcl = E + iΓ

Ecl
(10.149)

where F and Γ represent the strength and broadening parameters of the two-dimensional
M2 (E2) transitions, respectively, and Ecl is a low-energy cutoff assumed to be Ecl ∼ E1.
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(d) Plasma and d-band effects

The fundamental optical spectra of many semiconductors are dominated by strong inter-
band transitions observed in the range between the fundamental absorption edge and
about 10 eV. Further weak structure is observed around 10–20 eV due to the onset of the
real transitions from atomic d-band levels into the conduction band. Between these two
regions the optical spectra are characterized by a rapid, smooth decrease in the reflectiv-
ity or absorption which is similar to the behavior seen in certain metals in the ultraviolet
region [10.2]. In this so-called plasma region the valence electrons can behave like free
particles and take part in collective oscillations. The energy-loss curve −Imε−1 for ZnSe
illustrates this behavior well, as demonstrated in Figure 10.27(b). Because Si has no d

electrons, we cannot observe d-band transitions in the optical spectra of this material
(Figure 10.27(a)).

Optical properties in the plasma and d-band region of semiconductors have been exten-
sively discussed by Philipp and Ehrenreich [10.4], starting from the frequency-dependent
dielectric function obtained in the random-phase approximation. The simplest system is
represented when a single group of the valence bands |v〉 is well separated from the core
states. Then, at frequencies sufficiently high so that the oscillator strengths of transitions
from |v〉 to higher bands is exhausted, ε(E) can be described by the Drude model modified
by a damping term with the relaxation time τpv

ε(ω) = 1 − ω2
pv

(ω + iτ−1
pv )2

(10.150)

where the valence-electron plasma frequency ωpv is given by (Nv = the density of the
valence electrons)

ωpv =
√

Nve
2

meε∞ε0
(10.151)
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Figure 10.27 Spectral dependence of ε2(E) and energy-loss function −Imε(E)−1 for: (a) Si;
(b) ZnSe. The experimental data plotted are taken from Adachi [10.5]
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This situation is met with Si where no d-bands exist and the valence band lies approx-
imately 100 eV above the highest 2p core states (L2,3 shell). The optical constants of
Si above ∼6 eV can thus be described well by Equation (10.150) with a value of four
electrons per atom for Nv.

When d-bands are present, as in Ge and ZnSe, Equation (10.150) is modified by the
oscillator strength coupling between the valence and d-band electrons and can now be
written as

ε(ω) = (1 + δε0)

[
1 − Ω2

pv

(ω + iτ−1
pv )2

]
(10.152)

where the contribution of the d-band electrons to the static dielectric constant is described
by δε0 and Ωpv is an effective plasma frequency different from ωpv due to the influence of
the d-band electrons. The relaxation time τpv in Equation (10.150) or (10.152) lies in the
range 1.4–1.8 × 10−16 s for diamond-type and zinc-blende-type semiconductors [10.98].
This scattering time is several orders of magnitude smaller than that for lattice or impurity
scattering. It is thus considered that electron–electron scattering is the dominant scattering
mechanism in the plasma region. If the d-band and valence-electron plasma peaks are
well separated as in β-ZnS, we can take account of these contributions independently. In
this case, the DHO (Equation (10.144)) is a good representation for the contribution of
the d-band electrons to ε(E) [10.99].

10.4.2 Fundamental optical spectra

Determination of the optical constants above the first absorption edge becomes increas-
ingly difficult, since ε1 and ε2 or n and k can no longer be measured independently. The
majority of data on the optical constants above the fundamental absorption edge has been
derived from normal-incidence reflectivity measurements over a wide spectral range, and
the subsequent calculation of the phase shift by means of the Kramers–Kronig relations.
Spectroscopic ellipsometry has also been used as an advantageous technique to obtain the
fundamental optical spectra of solids. This technique is unquestionably more powerful
for a number of reasons. For example, both the real and imaginary parts of the complex
dielectric function ε = ε1 + iε2 or complex refractive index n∗ = n + ik can be obtained
directly on a wavelength-by-wavelength basis without having to resort to multiple mea-
surement or Kramers–Kronig analysis. In the following, we present the optical spectra at
and above the first absorption edges of Si, GaAs and w-CdS.

(a) Si

We show in Figures 10.28(a) and 10.28(b) the ε(E) = ε1(E) + iε2(E) and n∗(E) =
n(E) + ik(E) spectra for Si at T = 300 K, respectively. The solid lines represent the
MDF fits to the experimental data (open circles). The fitted MDF parameters are listed in
Table 10.8. The vertical arrows in Figure 10.28(a) indicate the positions of the E0

′, E1 and
E2 critical points. The corresponding α(E) and R(E) spectra are shown in Figure 10.29.
Here, we have made the assumption G2D

1 = 0 eV, since the detailed value is not yet well
known for Si. It should be noted that the experimental ε1 values are usually somewhat
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Figure 10.28 (a) Complex dielectric function ε(E) = ε2(E) + iε2(E); (b) complex refractive
index n∗(E) = n(E) + ik(E) for Si at 300 K. The experimental data are taken from the tabulation
by Adachi [10.5]. The solid lines represent the MDF-calculated results. The fitted MDF parameters
are listed in Table 10.8

Table 10.8 MDF critical-point parameter used in
the calculation of ε(E) for Si

Parameter Value Parameter Value

E1 (eV) 3.38 E0
′ (eV) 3.36

B1 5.22 C 0.30
B1x (eV2) 8.79 γ 0.12
Γ (eV) 0.08 E1

′ (eV) 5.3
E2 (eV) 4.27 C 0.3
C 2.96 γ 0.1
γ 0.10 ε1∞ 0.20
F 4.35
Γ (eV) 0.10

larger than those obtained from the MDF calculation. To improve the fit, therefore, we
include in the calculation an additional term ε1∞ in ε1. This term is assumed to be
nondispersive and may arise from other higher-lying interband transitions.

The fundamental absorption edge of Si corresponds to indirect transitions from the
highest valence band at the  point to the lowest conduction band near X, EX

g . The
lowest direct transitions in Si occur at or near the  point, E0

′. Because of the very weak
nature of the indirect absorption edge, its related structure cannot be clearly found in the
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Figure 10.29 Optical absorption α(E) and normal-incidence reflectivity R(E) for Si at 300 K.
The experimental data are taken from the tabulation by Adachi [10.5]. The solid lines represent the
MDF-calculated results

fundamental optical spectra of Figures 10.28 and 10.29. Note that by using the MDF, the
causality, linearity, reality, Kramers–Kronig requirements and compulsory properties of
ε(E) can be satisfied automatically.

(b) GaAs

The lowest direct transitions in GaAs occur at ∼1.4 (E0) and ∼1.7 eV (E0 + ∆0).
The indirect band-gap energies are at ∼1.7 (EL

g ) and ∼1.9 eV (EX
g ), respectively. The

two-dimensional one-electron and excitonic transitions occur at ∼2.9 (E1) and ∼3.1 eV
(E1 + ∆1). The E0

′ and E2 transitions are observed at ∼4.5 and ∼4.9 eV, respectively.
Figures 10.30(a) and 10.30(b) show the ε(E) = ε1(E) + iε2(E) and n∗(E) = n(E)+
ik(E) spectra for GaAs at T = 300 K, respectively. The positions of the various crit-
ical points, such as E0 and E1, are suggested in Figure 10.30(a) by the vertical arrows.
As for Si, we have made the assumption G2D

1 = G2D
1� = 0 eV for GaAs. The fitted MDF

parameters for GaAs are listed in Table 10.9. It is understood from Figure 10.30 that the
MDF explains the peculiar ε(E) and n∗(E) spectra observed in GaAs very well.

Figure 10.31 shows the experimental α(E) and R(E) spectra for GaAs, together with
those for the MDF results. The strongest peak in α occurs at ∼5 eV. This peak corresponds
to the E2 transitions. In R(E), the critical-point structures due to E0, E1, E1 + ∆1, E0

′ and
E2 can be clearly seen. An excellent agreement can be achieved between the experimental
and MDF-calculated spectra over the entire range of photon energies.

(c) w-CdS

CdS usually crystallizes in the wurtzite lattice. The material is thus optically anisotropic
(uniaxial). In the uniaxial media, two different solutions of the wave equation exist, which
describe the ordinary (E ⊥ c) and extraordinary rays (E || c). We show in Figures 10.32(a)
and 10.32(b) the ε(E) = ε1(E) + iε2(E) and n∗(E) = n(E) + ik(E) spectra for w-CdS
obtained at T = 300 K, respectively. Figures 10.33(a) and 10.33(b) also show the exper-
imental α(E) and R(E) spectra for w-CdS at T = 300 K, respectively.
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Figure 10.30 (a) Complex dielectric function ε(E) = ε2(E) + iε2(E); (b) complex refractive
index n∗(E) = n(E) + ik(E) for GaAs at 300 K. The experimental data are taken from the
tabulation by Adachi [10.5]. The solid lines represent the MDF-calculated results. The fitted MDF
parameters are listed in Table 10.9

Table 10.9 MDF critical-point parameter used in the
calculation of ε(E) for GaAs

Parameter Value Parameter Value

E0 (eV) 1.44 E0
′ (eV) 4.48

E0 + �0 (eV) 1.74 C 0.90
A (eV) 2.80 γ 0.10
Γ (eV) 0.025 E2 (eV) 4.85
E1 (eV) 2.91 C 1.77
E1 + �1 (eV) 3.14 γ (eV) 0.10
B1 4.00 ε1∞ 0.90
B2 2.00
B1x (eV2) 6.40
B2x (eV2) 3.45
Γ (eV) 0.12

The fundamental absorption edge of w-CdS corresponds to direct transitions at the
 point in the Brillouin zone. The combined effect of the spin–orbit and crystal-field
perturbations in the wurtzite lattice splits the 15 valence band into 9, 7 and 7 valence
bands. The absorption edge of w-CdS thus exhibits three excitonic structures which are
particularly sharp at low temperatures. The structures of 7 symmetry (E0B and E0C) can
be observed for both E ⊥ c and E || c, while that of 9 symmetry (E0A) can be observed
only for E ⊥ c.
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index n∗(E) = n(E) + ik(E) for w-CdS at 300 K. The experimental data are taken from the
tabulation by Adachi [10.5]

The E1A and E1B structures in w-CdS (∼4.8–5.5 eV) correspond to the E1 and E1 +
∆1 transitions in the zinc-blende-type semiconductors, except for the existence of a strong
polarization effect related to the optical anisotropy of wurtzite. For E || c, only the E1B

peak is seen, while the E1A and E1B peaks are seen for E ⊥ c. The E1A peak may be
related to transitions along the  → A direction of the Brillouin zone. The E1B structure
may originate from transitions along the U direction in the Brillouin zone. Note that
in w-CdSe the E1A peak splits into two peaks by the spin–orbit interaction [10.100].
The E0

′ structure may originate from transitions at or near the  point. Reflectivity
measurements revealed additional weak peaks, F1, E2, E1

′, etc., at energies higher than
7 eV [10.101].
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300 K. The experimental data are taken from the tabulation by Adachi [10.5]

10.4.3 External perturbation and doping effects

(a) Temperature effect

The effect of temperature leads not only to the shift of the critical-point energies, but
also on the broadening of the critical-point structure. We show in Figure 10.34 the tem-
perature dependence of the dielectric function ε(E) of GaAs measured from T = 22
to 753 K using spectroscopic ellipsometry in the 1.3–5.5 eV photon-energy range by
Lautenschlager et al. [10.102].

The main structures seen in Figure 10.34 are due to the E1, E1 + ∆1, E0
′ and E2

transitions which are clearly observed from 22 up to 753 K. Other weak transitions, such
as E0, E0 + ∆0 and some others in the 4.2–5.5 eV region, are observed only at lower
temperatures and are difficult to distinguish in Figure 10.34.

It has been found [10.103] that the sharp peaks appearing at the E1/(E1 + ∆1) edge
regions cannot be explained only by the one-electron approximation, Equation (10.139).
The two-dimensional-exciton term of Equation (10.142) improves the MDF fit very well.
We have already mentioned the temperature dependence of the E0/(E0 + ∆0) structures
of GaAs in Section 10.3.3.

(b) Pressure effect

The dependence on pressure of the complex dielectric functions of Ge and GaAs has been
studied theoretically by Alouani et al. [10.104] based on the band-structure calculation.
They calculated the band structures and optical matrix elements from the relativistic
self-consistent linear muffin-tin orbital scheme. All critical-point peaks in ε2(E) moved
toward higher energies as the pressure was increased. Since their origins in k space
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Figure 10.34 (a) Real; (b) imaginary parts of the complex dielectric function of GaAs measured
at T = 22 − 753 K. [From P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys.
Rev. B 35, 9174 (1987), reproduced by permission from the American Physical Society]

remain unchanged under hydrostatic pressure, the shifts of the peaks to higher energies
are considered to be due to the increase of the critical-point energies. To our knowledge,
however, no experimental data has been reported on the pressure dependence of the
optical constants in the interband transition regions of semiconductors, except at the first
absorption edge.

(c) Doping effect

It is well known that heavy doping with impurities influences considerably the physical
properties of semiconductors, in particular, transport and optical properties. At moderately
low doping levels, localized impurity states develop close to the band edges [10.105].
With increasing dopant concentration the localized states overlap, producing an impurity
band. This impurity band is separated from the host conduction or valence band by the
so-called Mott gap. At still higher dopant concentrations, the impurity and host bands
become mixed to build a new continuum, so that there is no longer a clear distinction
between band and impurity states. In this way the degenerate semiconductor resembles a
metal [10.105].
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The effects of doping on the fundamental absorption edge have been discussed in
Section 10.3.3. The main effects of doping on this edge are the formation of band tail
because of the random potential of the doped impurities, the Burstein–Moss shift due
to the filling of the conduction (valence) band by electrons (holes) and the shrinkage
of the band-gap by many-body effects where correlation as well as exchange plays an
important role.

The higher edges, above the first absorption one, have been less studied. Only opti-
cal techniques, such as reflectivity, electroreflectance, photoluminescence, spectroscopic
ellipsometry and resonant Raman scattering, have been used [10.105]. It should be noted
that at higher edges the exchange term plays only a small role due to the fact that carriers
are located in a small region of k space, different from the region where the transitions
occur. The Mott transition is also irrelevant to this problem [10.105].

Spectroscopic ellipsometry has been successfully used to study the effects of doping
for Si [10.106, 10.107], Ge [10.105] and GaAs [10.108]. All these studies revealed that
the ε(E) spectrum of heavily doped sample is very similar to that of the undoped material,
except that the E1 and E2 structures are broadened and shifted to lower energies. The
effects of heavy doping at lower photon energies can be described by the Drude model of
Equation (10.150) with lifetimes determined by scattering from lattice vibrations [10.106].

When comparing the results obtained for Si and Ge [10.105–10.107] with those for
GaAs [10.108], there appear some common features, but also some noticeable differences.
The common features concern the qualitatively similar dependence of ∆Ei (critical-
point energy shift) and ∆Γi (Lorentz broadening shift) on doping concentration and the
possibility of expressing both effects with the same semiempirical relations, namely,
∆Ei ∼ pα(nα) and ∆Γi ∼ pα(nα) [10.108]. The most significant difference is that in
GaAs the experimental values of both ∆Ei and ∆Γi differ considerably for n-type and
p-type samples. The ∆Ei and ∆Γi for n-type GaAs at n = 1 × 1019 cm−3 is found
to be about 3–4 times larger than those for p-type GaAs (p = 1 × 1019 cm−3). These
results have been compared with second-order perturbation calculations of the effects of
substitutional impurities on the energy-band structure of GaAs [10.108].

10.5 FREE-CARRIER ABSORPTION AND RELATED
PHENOMENA

10.5.1 Free-carrier absorption

Optical absorption can be divided into three separate processes of interest, which are
schematically shown in Figure 10.35. The direct or indirect transitions from the valence
to the conduction band give rise to the interband absorption contribution αVC. A normal
free-carrier absorption αFC is dependent on photon energy approximately as

αFC(E) ∝ Em (10.153)

where m is dependent on various intraband scattering processes, that is, m ∼ −2.5 limited
by polar optical phonons (αoph), m ∼ −1.5 limited by acoustic phonons (αaph) and m ∼
−3.5 limited by ionized-impurity scattering (αi) [10.2]. The final and initial states of the
electrons in these transitions lie within the same conduction band. The resulting free-carrier
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Figure 10.35 Band diagram of the optical absorption in a semiconductor: αVC, direct interband
transition from the valence to the conduction band; αCC, indirect interconduction-band transition;
αFC, free-carrier intraband transition

absorption is therefore called ‘intraband.’ The final process depicted in Figure 10.35 is an
interconduction-band absorption αCC (see Section 10.5.2). The αVC (αCC) takes place when
E � E0 (E � ∆ECC). The αFC becomes significant at longer wavelengths.

A free-carrier absorption process in Equation (10.153) is the annihilation of a photon
with the excitation of a carrier from a filled state below the Fermi energy EF to an
empty state above it. The energy and momentum have to be conserved in this process,
because of absorption or emission of polar optical phonons (αoph), acoustic phonons
(αaph) or via scattering with ionized impurities (αi). A review of theoretical studies of
the optical absorption in the free-carrier absorption region has been given by Haga and
Kimura [10.109] and Fan [10.110].

A free-carrier effect on the optical properties of simple metals can be described in
terms of the classical Drude theory [10.6]. We shall consider this theory since free car-
riers introduced into semiconductors by doping behave in many ways like those in the
simple metals. The main difference between the two is that the carrier concentration in
a semiconductor can be changed by doping. Since the doping concentration is typically
less than 1020 cm−3, the plasma frequencies of carriers in semiconductors are usually
in the infrared region (Equation (10.36)), whereas they are in the visible or ultraviolet
for metals.

The Drude model starts with an equation of motion for an electron of charge e and
mass me

me

(
d2x

dt2
+ Γ

dx

dt
+ ω2

0x

)
= eEf exp(iωt) (10.154)

with the damping constant Γ , the restoring force meω
2
0x and the field of an electromagnetic

wave Ef exp(iωt). This leads to the following dielectric constant [10.2]

ε(ω) = 1 +
(

Ne2

meε0

) (
1

ω2
0 − ω2 − iΓ ω

)
(10.155)
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where N is the number of free electrons per unit volume. Since there is no restoring force
for the free electrons, we rightly put ω0 → 0. Then, Equation (10.155) can be written as

ε(ω) = ε∞

(
1 − ω2

p

ω(ω + iΓ )

)
(10.156)

where we have used the relation between the plasma frequency ωp, which was screened
by the dielectric constant ε∞, and carrier concentration n (N ) of Equation (10.36). From
Equation (10.156), we obtain

ε1(ω) = ε∞

(
1 − ω2

p

ω2 + Γ 2

)
(10.157a)

ε2(ω) = ε∞ω2
pΓ

ω(ω2 + Γ 2)
(10.157b)

The imaginary part of the dielectric function ε2(E) is proportional to Γ ; hence, the
absorption coefficient is too. The reason for this is well known in metal optics [10.6].

From Equation (10.157b), we obtain

α(ω) = 4π

λ
k(ω) = ω

nc
ε2(ω) = ε∞ω2

pΓ

nc(ω2 + Γ 2)
(10.158)

where n is the refractive index and c is the speed of light. In the low-frequency limit,
this equation becomes

α(ω → 0) = ε∞ω2
p

ncΓ
= 4πNe2

ncmeΓ
(10.159)

On the other hand, the low-field conductivity for free carriers or for a simple band
structure can be written as

σ = Neµ = Ne2τ

me
(10.160)

where µ is the low-field mobility and τ is a phenomenological scattering time introduced
to account for the scattering of the carrier by phonons and impurities. Comparing α in
Equation (10.159) with σ in Equation (10.160), we obtain

α = 4πσ

nc
(10.161)

We can thus equate Γ to τ−1 and recognize a distant resemblance between the free-
carrier absorption and carrier transport properties. In fact, temperature dependence of
low-field mobility, which is limited by each scattering mechanism, shows nearly the
same temperature dependence as expected in the free-carrier absorption mechanisms.
Quantum-mechanical investigations [10.111] showed that Equation (10.161) is valid only
for photon energies which are small compared with the carrier energies (h̄ω < kT ).
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Figure 10.36 shows a typical example for the free-carrier absorption in n-InP measured
by Ballman et al. [10.112]. The experimental data indicate that an absorption minimum
exists at about 1.6 µm, in agreement with the results reported by others [10.113, 10.114].
At wavelengths λ > 1.6 µm, free-carrier absorption dominates in the spectra. The dashed
line in Figure 10.36 gives a slope that is limited by the ionized impurity scattering (m ∼
3.5). The power index m for a heavily doped sample (c) just corresponds to 3.5. It has
also been found [10.115] that for n-InP m increases with increasing n from about 2.0
(n ∼ 1 × 1016 cm−3) to about 3.5 (n ∼ 1 × 1018 cm−3). For wavelengths λ ∼ 1.3 µm,
the absorption coefficients are still proportional to the free-carrier concentration. This fact
may suggest the dominance of interconduction-band absorption in that spectral region
(see Section 10.5.2, below).

The infrared absorption spectra for p-InP are shown in Figure 10.37. They have been
measured by Casey and Carter [10.116] for λ from 1.0 to 3.4 µm for hole concentrations
from p = 3.1 × 1017 to 6.6 × 1018 cm−3 at T = 297 K. The spectrum taken for lightly
doped p-InP (p = 6.0 × 1016 cm−3) by Ballman et al. [10.112] is also shown by the
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Figure 10.36 Free-carrier absorption in n-InP. The electron concentrations are; (a) 3.3 × 1016

cm−3; (b) 4.0 × 1017 cm−3; (c) 8.8 × 1017 cm−3; (d) 5.0 × 1018 cm−3. The dashed line gives a
slope that is limited by ionized-impurity scattering. [From A. A. Ballman, A. M. Glass, R. E.
Nahory, and H. Brown, J. Cryst. Growth 62, 198 (1983), reproduced by permission from Elsevier]
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Figure 10.37 Infrared absorption spectra for p-InP at 297 K. The hole concentrations are:
(a) 3.1 × 1017 cm−3; (b) 8.6 × 1017 cm−3; (c) 1.9 × 1018 cm−3; (d) 5.3 × 1018 cm−3; (e) 6.6 × 1018

cm−3. [From H. C. Casey, Jr. and P. L. Carter, Appl. Phys. Lett. 44, 82 (1984), reproduced by
permission from the American Institute of Physics.] The spectrum taken for lightly doped p-InP
(p = 6.0 × 1016 cm−3) by Ballman et al. [10.112] is also plotted as the dashed line

dashed line. Similar to the case for n-type semiconductors, the absorption coefficient
increases as the hole concentration increases. The concentration variation of α can be
written as α = 14(p/1018 cm−3) cm−1 at λ = 1.3 µm and 20(p/1018 cm−3) cm−1 at λ =
1.5 µm [10.116]. Peaks observed at about 0.4 eV are due to intervalence-band absorption
(see Section 10.5.2).

10.5.2 Interconduction-band and intervalence-band absorption

(a) Interconduction-band absorption

The interconduction-band absorption mechanism is schematically shown in Figure 10.35.
A promising theoretical interpretation of the interconduction-band absorption was given by
Haga and Kimura [10.109]. Briefly, as a photon is absorbed by the crystal, an electron at
the bottom of the lowest conduction-band minimum makes a transition to an intermediate
state in a higher band at the same point in k space. Then, interacting with an imperfection
or with phonons, the electron is scattered to a lower-lying conduction-band minimum
(Figure 10.35). The transition mechanism can, thus, be expressed by a second-order per-
turbation process, as for the indirect optical transition mechanism.
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Actually, an optical transition between the lowest conduction band and a higher valley
not at the same point in k space is very complicated because of the large number of
virtual intermediate sates the transition involves. Haga and Kimura [10.109] introduced a
simplification into the theory by separating the transition into I -type and D-type processes,
depending on which type of intermediate is most important.

In the I -type process, the intermediate states are in other bands below and above either
the initial state or the final state, depending upon whether the electromagnetic interac-
tion is considered before or after the scattering interaction that supplies the necessary
change in wavenumber. The E dependence of this absorption results from a density-of-
states argument, yielding a fairly well-defined threshold for the onset of absorption and
a more slowly varying dependence of the transition probability on E [10.109, 10.114].
The interconduction-band absorption seen in Figure 10.36 for n-InP is a typical example
of the I -type process. This type of process has also been observed in n-GaAs [10.117].

In the D-type process the intermediate state is almost identical to the initial state, and
partially because of the energy denominators of ±E in these states the absorption incorpo-
rates a E−3 dependence. The D-type absorption yields a narrow and peaked band [10.109,
10.114].

Figure 10.38 shows the infrared absorption spectrum of n-GaP measured in the wave-
length range 1–10 µm by Wiley and DiDomenico [10.118]. The sample measured was
Te-doped with n ∼ 3 × 1017 cm−3. The absorption peaking at λ ∼ 3 µm is typical of
the D-type interconduction-band absorption. The background is due to the normal free-
carrier absorption. The D-type absorption has been observed not only in n-GaP, but also
in n-Si [10.119], n-AlSb [10.120] and n-GaSb [10.121].

(b) Intervalence-band absorption

The interband free-carrier absorption occurs not only in the n-type semiconductors but
also in p-type ones. In p-type semiconductors, the intervalence-band absorption originates
from direct transitions between different branches of the valence band at k = 0. The
absorption bands peaking at E ∼ 0.4 eV in Figure 10.37 are due to the intervalence-
band absorption.

We show schematically in Figure 10.39 possible types of the intervalence-band tran-
sitions in the zinc-blende-type semiconductors. We can expect from Figure 10.39 three
types of intervalence-band absorption: SO → HH; SO → LH; and LH → HH. The zinc-
blende-type semiconductor has a Td point-group symmetry. The heavy-hole (HH) and LH
(light-hole) bands have 8 symmetry, while the spin–orbit (SO) split-off band has 7

symmetry. The selection rules for the optical transitions between different branches of the
valence band can, then, be given by the direct products

SO → HH: 7 × 8 = 3 + 4 + 5 (10.162a)

SO → LH: 7 × 8 = 3 + 4 + 5 (10.162b)

LH → HH: 8 × 8 = 1 + 2 + 3 + 24 + 25 (10.162c)

The polarization vector E ⊥ (x, y, z) of the point group Td belongs to 5 symmetry.
All these products contain the representation of 5 symmetry, indicating that the dipole
transitions are possible.
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Figure 10.38 Infrared absorption spectrum of n-GaP measured in the wavelength range 1–10 µm.
The sample used was Te doped, with n ∼ 3 × 1017 cm−3. The absorption peaking at λ ∼ 3 µm is
typical of the D-type interconduction-band absorption. [From J. D. Wiley and M. DiDomenico, Jr.,
Phys. Rev. B 1, 1655 (1970), reproduced by permission from the American Physical Society]
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Figure 10.39 Schematic representation of the intervalence-band absorption in a p-type, zinc-
blende semiconductor
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As mentioned in Section 10.3.3, the joint density-of-states function Jαβ(E) measures
the product density of full and empty states of equal energy difference. This quantity
mainly determines the interband contribution to ε2(E) and, thus, to the optical constants
of semiconductors. According to the different combinations of the signs of hole masses,
we obtain [10.122]

JHH−SO(E) =
{

V0
√

E − ∆0 (E > ∆0)

0 (E < ∆0)
(10.163a)

JLH−SO(E) =
{

0 (E > ∆0)

V1
√

∆0 − E (E < ∆0)
(10.163b)

JHH−LH(E) = V2

√
E (10.163c)

The SO → LH transitions are generally not so important because of a low density of
states in the LH band and a very low hole occupancy of final states for transitions at the
band-gap energy ∆0. The larger density of states and hole occupancy in the HH band may
produce much greater absorption for the SO → HH transitions than for the SO → LH
transitions.

Intervalence-band absorption has been observed experimentally in various p-
type semiconductors, such as Ge [10.123], AlSb [10.124], GaAs [10.124–10.126],
GaSb [10.121], InP [10.116, 10.126], InAs [10.127] and InSb [10.128]. Figure 10.40
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Figure 10.40 Optical absorption spectra of p-GaAs (p ∼ 9.7 × 1016 cm−3) as a function of tem-
perature from 87 to 370 K. [From R. Braunstein, J. Phys. Chem. Solids 8, 280 (1959), reproduced
by permission from Elsevier]
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shows, as an example, the intervalence-band absorption observed in p-GaAs (p ∼
9.7 × 1016 cm−3) by Braunstein [10.125]. At T = 295 K, there is a band at 0.42 eV, a
partially resolved band at 0.31 eV and the onset of a band at 0.25 eV. As the temperature
is decreased, the bands sharpen and become slightly displaced from the room-temperature
positions. The band at 0.42 eV is attributed to transitions between the SO and HH bands;
the peak at 0.31 eV is attributed to transitions between the SO and LH bands. The onset
of the absorption band at 0.25 eV is also attributed to transitions between the LH and
HH bands.

10.5.3 Free-carrier-induced change in refractive index

From Equation (10.157a) and in the limit Γ → 0 cm−1, we obtain the free-carrier-induced
change in the refractive index ∆nf

∆nf = ∂n

∂N
∆N = − e2λ2∆N

8π2nε0c2me
(10.164)

where we have used n2 ∼ ε1 and 2n∆n ∼ ∆ε1. The above equation suggests that the
change in refractive index ∆nf is directly proportional to λ2, ∆N and n−1.

When both electrons and holes are present in a substance, as is usual for injection
lasers, the change ∆nf can be written, from Equation (10.164), as

∆nf = ∂n

∂N
∆N = − e2λ2

8π2nε0c
2

(
∆N

me
+ ∆P

mh

)
(10.165)

where ∆P is the change in the hole concentration.
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11.1 ELASTO-OPTIC EFFECT

11.1.1 Theoretical expression

Knowledge of the elasto-optic or photoelastic behavior plays an important role not only in
the design of elasto-optic devices, such as light modulators, deflectors and switches [11.1,
11.2], but also in the analysis of strain problems in semiconductor heteroepitaxy [11.3–
11.5]. The distribution of stress in heteroepitaxial layers is a subject of perennial interest
since internal stress arises normally in thin epitaxial films during their preparation by
heteroepitaxial growth.

It is noted that the photoelasticity is dependent on wavelength. There are several the-
oretical works dealing with the spectral dependence of photoelasticity [11.6–11.11]. The
application of an external uniaxial stress to a solid produces a change in its crystal sym-
metry that results in significant changes in its electronic and optical properties. Optically
isotropic semiconductors, such as Si and GaAs, then become birefringent under the action
of this stress.

Properties of Group-IV, III–V and II–VI Semiconductors Sadao Adachi
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The uniaxial stress effect can be expressed as

αpe = ∆εij

X
= −

∑
mn

εii εjj pijklSklmn (11.1)

where αpe is the linear photoelastic coefficient, εii (εjj ) is the component of the dielectric
tensor in the absence of the stress, pijkl is the component of the photoelastic tensor and
Sklmn is the component of the elastic compliance tensor; ∆εij is the change in the dielectric
constant parallel (||) and perpendicular (⊥) to the direction of the stress X:

∆εij = ε(||) − ε(⊥) = αpeX (11.2)

The photoelastic tensor is, in general, a complex fourth-rank tensor. We summarize in
Table 11.1 the form of the photoelastic tensor [p] for the cubic, hexagonal and rhombo-
hedral systems, where m and n in pmn represent ij and kl, respectively, according to the
rules xx → 1, yy → 2, zz → 3, yz → 4, zx → 5 and xy → 6 [11.12].

The photoelastic component pijkl can be defined by means of the inverse dielectric
constant as

∆

(
1

ε

)
ij

= − ∆εij

εii εjj
=

∑
kl

pijklekl (11.3)

Table 11.1 Form of the photoelastic tensor for semiconductors of certain symmetry classes

Symmetry class Material Tensor form

Cubic Si, 3C-SiC, GaAs, MgO, ZnSe, etc.




p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44




Hexagonal 4H-SiC, h-BN, α-GaN, w-CdS, etc.




p11 p12 p13 0 0 0
p12 p11 p13 0 0 0
p31 p31 p33 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p66




p66 = 1/2(p11 − p12)

Rhombohedral 15R-SiC




p11 p12 p13 p14 0 0
p12 p11 p13 −p14 0 0
p31 p31 p33 0 0 0
p41 −p41 0 p44 0 0
0 0 0 0 p44 p41

0 0 0 0 p14 p66




p66 = 1/2(p11 − p12)
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where ekl is the strain component that is connected with the stress through Equation (4.22).
The first-order change in the dielectric constant ∆ε is given by

∆ε =
∑

i

(
∂ε

∂Mi

∆Mi + ∂ε

∂Egi

∆Egi

)
(11.4)

where Mi and Egi are, respectively, the strength parameter and critical-point energy of the
ith transition (E0, E0 + ∆0, E1, E1 + ∆1, E0

′, etc.). Introducing the one-electron term in
Equation (10.78) (ε1(E) ∼ n(E)2) into Equation (11.4), we obtain the expression for the
photoelastic coefficient αpe in the transparent region of cubic semiconductors as [11.10]

αpe = C∗
{

−g(χ∗
0 ) + 4E0

∆0

[
f (χ∗

0 ) −
(

E0

E0 + ∆0

)3/2

f (χ∗
so)

]}
+ D∗ (11.5)

with

C∗ =




3

4
A∗b(S11 − S12)E

−1
0 for X = [100]√

3

8
A∗dS44E

−1
0 for X = [111]

(11.6)

g(χ∗
0 ) = χ∗−2

0

[
2 − (1 + χ∗

0 )−1/2 − (1 − χ∗
0 )−1/2

]
(11.7)

where b and d are the shear deformation potentials of the valence bands (Section 8.1)
and f (χ) and χ∗

0 (χ∗
so) are defined by Equations (10.79) and (10.80), respectively. In

Equation (11.5), the first term corresponds to the contributions from the E0 and E0 + ∆0

transitions and the second term D∗ corresponds to those from other, far-off critical points
in the band structure (E1, E1 + ∆1, E0

′, etc.). Like B∗ in Equation (10.78), the term D∗
in Equation (11.5) is assumed to be nondispersive. The first and second terms in the curly
bracket of Equation (11.5) come from the change in Eg and M with the applied stress,
respectively. It is noted that g(χ∗

0 ) shows a very sharp dispersion near the band edge, χ∗
0 ∼

1.0, compared with f (χ∗
0 ). The parameters C∗ and D∗ are treated as adjustable parameters

to fit experimental data. The photoelastic constants for hexagonal semiconductors can also
be expressed in essentially the same form as Equation (11.5) [11.13].

11.1.2 Experimental value

The photoelastic coefficient αpe or photoelastic constant pij can be determined from a
stress-induced birefringence (piezobirefringence) measurement. Piezobirefringence data
have been reported for a variety of semiconductors. These data are accurate especially in
the region below or near the fundamental absorption edge. This is because the measure-
ment employs transmission of light through the sample and is consequently limited to a
frequency range where the material is transparent.

Table 11.2 summarizes the pij values in the long-wavelength limit (E → 0 eV) for
some cubic group-IV, III–V and II–VI semiconductors. The same values, but for hexag-
onal semiconductors, are listed in Table 11.3. Figure 11.1 also plots the p11 − p12 and
p44 values in the long-wavelength limit versus lowest direct band-gap energy E0 for
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Table 11.2 Photoelastic constant pij in the long-wavelength limit (E → 0 eV) for some cubic
group-IV, III–V and II–VI semiconductors

System Material p11 − p12 p44 System Material p11 − p12 p44

IV Diamond −0.31 −0.17 II–VI MgO −0.257 −0.096
Si −0.111 −0.051 β-ZnS −0.08 −0.08
Ge −0.028 −0.073 ZnSe −0.08 −0.08
3C-SiC −0.160a −0.125a ZnTe −0.04 −0.03

CdTe −0.135 −0.057
III–V c-BN −0.174a −0.136a

c-AlN 0.011a 0.009a

AlSb −0.100 −0.067
β-GaN 0.018a 0.014a

GaP −0.112 −0.091
GaAs −0.060 −0.065
GaSb −0.033 −0.062
InP −0.03 −0.07
InAs 0.006 0.044
InSb 0.04 0.01

aEstimated

Table 11.3 Photoelastic constant pij in the long-wavelength limit (E → 0 eV) for some hexagonal
semiconductors

System Material p11 p12 p13 p31 p33 p44 p66

III–V w-AlN 0.020a 0.005a 0.004a 0.022a 0.007a 0.007a

α-GaN 0.031a 0.008a 0.006a 0.033a 0.010a 0.012a

II–VI ZnO |0.222| |0.099| −0.111 |0.088| −0.235 −0.0585
α-ZnS −0.115 0.017 0.025 0.0271 −0.13 −0.0627 −0.066
w-CdS −0.03 −0.08 −0.04

aEstimated

some cubic semiconductors. The solid lines in Figure 11.1 show the least-squares fit
with: (a) p11 − p12 = −0.046 − 0.071 ln E0; and (b) p44 = −0.042 − 0.034 ln E0 (E0 in
eV), respectively. Both p11 − p12 and p44 are found to decrease with increasing E0 from
positive values, passing through zero at E0 ∼ 0.3 − 0.5 eV, to negative values.

Materials whose lowest gap is direct, or with a direct band gap only slightly above
the indirect one (e.g., Ge), have a strong dispersion of the photoelastic coefficients in
the spectral region near this gap [11.6, 11.13]. In contrast, materials whose lowest gap is
indirect and far removed from a direct band gap, such as Si and GaP, have very weak
photoelastic dispersion near the indirect band-gap region [11.6, 11.14, 11.15]. Strong
resonant enhancement in the photoelastic coefficients near the direct band gap was first
observed in ZnO and CdS by Tell et al. [11.16].

The experimental dispersion of αpe with stress X ||[100] and X ||[111] for GaP, GaAs,
InP and InAs are shown in Figures 11.2 and 11.3. The experimental data are taken for
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Figure 11.1 Photoelastic constants: (a) p11 − p12; (b) p44 in the long-wavelength limit (E →
0 eV) versus E0 for some cubic group-IV, III–V and II–VI semiconductors. The solid lines
represent the least-squares fit with (a) p11 − p12 = −0.046 − 0.071 ln E0 and (b) p44 = −0.042 −
0.034 ln E0 (E0 in eV), respectively
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Figure 11.2 Dispersion of the photoelastic coefficient αpe with X ||[001] for GaP, GaAs, InP and
InAs. The solid lines represent the calculated results of Equation (11.5). The fitted C∗ and D∗
values are summarized in Table 11.4
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Figure 11.3 Dispersion of the photoelastic coefficient αpe with X ||[111] for GaP, GaAs, InP and
InAs. The solid lines represent the calculated results of Equation (11.5). The fitted C∗ and D∗
values are summarized in Table 11.4

Table 11.4 Dispersion parameters, C∗ and D∗, used for the calculation of pho-
toelastic coefficient αpe in Equation (11.5) for GaP, GaAs, InP and InAs

Material C∗ (10−11 cm2/dyn) D∗ (10−11 cm2/dyn)

X ||[100] X ||[111] X ||[100] X ||[111]

GaP −0.18 −0.06 1.73 1.92
GaAs −0.46 −0.21 2.22 2.12
InP −0.29 −0.36 1.39 2.60
InAs −2.58 −1.48 2.19 2.32

GaP and InP from [11.15], for GaAs from [11.6] and for InAs from [11.17]. The solid
lines represent the calculated results of Equation (11.5). The fitted C∗ and D∗ values are
listed in Table 11.4.

It is evident from Figures 11.2 and 11.3 that the theoretical and experimental αpe val-
ues agree quite well at photon energies close to E0. In the present model, the photoelastic
coefficient αpe is expressed as a sum of the dispersive contribution arising from the
lowest direct band-gap transitions (E0/(E0 + ∆0)) and nondispersive background contri-
bution (D∗) arising from the higher-gap transitions. These contributions are opposite in
sign to each other (see Table 11.4). We can, therefore, expect that αpe = 0 at which the
lowest direct band-gap contribution is exactly cancelled by the higher-gap contribution.
Note that the parameter C∗ is a strong function of E0, i.e., C∗ ∝ A∗E−1

0 ∝ E
−5/2
0 , see

Equation (11.6). This promises that a smaller E0-gap material has a larger E0-gap con-
tribution, |C∗|. The fact can be confirmed in Table 11.4. If a material has a smaller −C∗
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value (e.g., GaP, GaAs and InP), then the sign of the photoelastic coefficient is positive
for long wavelengths and negative when E → E0. On the other hand, material having
a larger −C∗ value (e.g., InAs and InSb) does not exhibit such a reversal in sign of
αpe [11.17].

Note that from Equation (11.1) we obtain

αpe(E) =
{ −ε1(E)2(p11 − p12)(S11 − S12) for X = [100]

−ε1(E)2p44S44 for X = [111]
(11.8)

By introducing numerical ε1(E) and Sij values into Equation (11.8), it is possible to obtain
the spectral dependence of p11 − p12 and p44.

Macroscopically, the Brillouin scattering cross-section is given by the square of the
photoelastic constants [11.18, 11.19]. By performing Brillouin scattering measurements,
the spectral dependence of pij has been successfully determined on such semiconductors
as GaP [11.20], GaAs [11.21], ZnO [11.8], β-ZnS [11.22], ZnSe [11.23], ZnTe [11.24],
w-CdS [11.25] and w-CdSe [11.26].

The linear photoelastic coefficient αpe can be obtained through the relation of Equation
(11.2). Increasing the stress X, however, usually increases the birefringence in the manner

∆εij = ε(||) − ε(⊥) = αpeX + βpeX
2 + · · · · · (11.9)

where βpe is the so-called quadratic photoelastic coefficient. The quadratic coefficient
βpe has been determined in several semiconductors, such as Ge [11.6], GaAs [11.6],
GaSb [11.17] and InAs [11.17].

The determination of the figure of merit M2 is the first step for use of materials as in
elasto-optic devices. It can be defined by

M2 = n6p2
ij

gv2
s

(11.10)

where n is the refractive index, pij is the photoelastic constant for the definite crystal-
lographic orientation, g is the crystal density and vs is the acoustic wave velocity. A
pulse technique has been demonstrated by Dixon and Cohen [11.27] for measuring M2

in optically transparent media with respect to a fused silica taken as a reference. This
method has been successfully applied to some important III–V semiconductors, GaAs
and InP [11.28, 11.29], and M2 values as high as 1200 times those of silica have been
obtained at near-resonance conditions, i.e., E → E0 [11.29].

In the visible–ultraviolet region, above the fundamental absorption edge, the elasto-
optic response in semiconductors can be determined quantitatively from stress-induced
optical measurements, such as piezoelectroreflectance [11.30], piezoreflectance [11.31]
and stress-induced Raman scattering [11.15, 11.32]. However, absolute values for the
elasto-optic tensor are not accurately known. More recently, Etchegoin et al. [11.33]
performed ellipsometric measurements of the linear optical response function of Ge
under uniaxial stress. These measurements allowed the experimental values to be directly
obtained of the complex component of the linear piezo-optical coefficients, P11, P12 and
P44, in the visible–ultraviolet region. The frequency-dependent components were obtained
in absolute units with no additional assumptions. This is the principal advantage of
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‘piezoellipsometry’ with respect to other stress-induced optical measurements. Here, the
linear piezo-optical coefficient Pijkl is defined by

∆εij (E) = Pijkl (E)Xkl (11.11)

where m and n in Pmn represent ij and kl, respectively, according to the rules xx → 1,
yy → 2, zz → 3, yz → 4, zx → 5 and xy → 6 [11.12].

Piezoellipsometry has also been used to determine the piezo-optical properties above
the direct band-gap energy E0 for Si [11.34], GaAs [11.35], InP [11.36], ZnSe [11.37]
and ZnTe [11.37]. Figure 11.4 shows, as an example, the spectral dependence of the
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Figure 11.4 Spectral dependence of the piezo-optical coefficients: (a) P11; (b) P12; (c) P44, as
determined at 300 K in the 1.5–5.5 eV range for InP. The real and imaginary parts of each com-
ponent are plotted by the solid and dotted lines, respectively, together with the imaginary parts of
the piezo-optical coefficients obtained from semi-empirical tight-binding (TB) calculation. [From
D. Rönnow, P. Santos, M. Cardona, E. Anastassakis, and M. Kuball, Phys. Rev. B 57, 4432 (1998),
reproduced by permission from the American Physical Society]
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piezo-optical coefficients, P11, P12 and P44, measured at T = 300 K in the 1.5–5.5 eV
range for InP [11.36]. The real and imaginary parts of each component are plotted in
Figure 11.4, together with the imaginary parts of the piezo-optical coefficients obtained
from semi-empirical tight-binding (TB) calculation. The structures seen at ∼3.2 and
4.7 eV correspond to the E1 and E0

′ (E2) critical points, respectively. The piezo-optical
coefficients P11 and P12 were determined from X ||[001], while P44 was obtained from
the difference between ε|| and ε⊥ measured with X ||[111]. Data up to 0.4 GPa were ana-
lyzed; at higher pressures, nonlinearities occurred, especially close to the critical points.
By performing numerical analysis of these data, the deformation potentials at the E1

and E1 + ∆1 edges were determined and compared with the results of band-structure
calculation.

11.2 LINEAR ELECTRO-OPTIC CONSTANT

11.2.1 Theoretical expression

It is of considerable interest to investigate the electro-optic effect in semiconductors. The
effect affords a convenient and widely used means of controlling the intensity and phase
of optical radiation in crystals. This property has been extensively explored and used
for a wide variety of optoelectronic devices [11.38]. Accurate values of the electro-optic
constant as a function of wavelength are especially important in the design and analysis of
such optoelectronic devices. It is also of scientific interest to obtain analytical expression
for the electro-optic effects in semiconductors.

There have been several theoretical works dealing with the spectral dependence of the
electro-optic effects [11.39–11.45]. DiDomenico and Wemple [11.39] proposed a micro-
scopic tensor theory of the electro-optic and nonlinear optical effects in ferroelectrics in
terms of energy-band diagrams. Garrett [11.40] presented a one-dimensional anharmonic
oscillator model to explain a number of nonlinear optical phenomena. Garrett’s model
has been extended by Sugie and Tada [11.41] to a three-dimensional oscillator model so
that it is applicable to materials with arbitrary crystal structures. The electro-optic effects
in the region close to the E0 edge have also been discussed by Adachi and Oe [11.42,
11.43] and Adachi [11.44] in terms of electric-field-induced modulation of electronic
energy-band structure. Hernandez-Cabrera et al. [11.45] have analyzed the linear electro-
optic effect theoretically by means of a microscopic simple model (tight-binding scheme)
without any fitting parameters.

In a lossless media, the electronic energy density can be written, using Equation (10.5), as

W = 1

2
E · D = 1

2ε0

(
D2

x

εx

+ D2
y

εy

+ D2
z

εz

)
= 1

2ε0

(
D2

x

n2
x

+ D2
y

n2
y

+ D2
z

n2
z

)
(11.12)

where the directions x, y and z are the principal dielectric axes. By substituting in
Equation (11.12) Wx 2 = ε0E

2
x/2, . . . , and Wx 2 = D2

x/2ε0, . . . , the following index
ellipsoids are obtained 


n2

xx
2 + n2

yy
2 + n2

zz
2 = 1

x2

n2
x

+ y2

n2
y

+ z2

n2
z

= 1
(11.13)
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Let us take the equation of the index ellipsoid in the presence of an electric field as(
1

n2

)
1

x2 +
(

1

n2

)
2

y2 +
(

1

n2

)
3

z2 + 2

(
1

n2

)
4

yz + 2

(
1

n2

)
5

zx + 2

(
1

n2

)
6

xy = 1

(11.14)

where we used the convention xx → 1, yy → 2, zz → 3, yz → 4, zx → 5 and xy → 6.
The linear electro-optic or Pockels effect refers to a change in the coefficients(

1

n2

)
i

i = 1, . . . , 6

to an applied electric field. The linear electro-optic effect can, then, be defined by

∆

(
1

n2

)
ij

= ∆

(
1

ε

)
ij

= rijkEk (11.15)

where rijk is the linear electro-optic constant, Ek is the applied electric field and the
indices i, j and k refer to the rectangular coordinate axes, x, y and z.

Table 11.5 summarizes the form of the linear electro-optic tensor [r] for the cubic,
hexagonal and rhombohedral systems, where m and n in rmn represent ij and n, respec-
tively, according to the rules xx → 1, yy → 2, zz → 3, yz → 4, zx → 5, xy → 6 (m)
and x → 1, y → 2, z → 3 (n) [11.12].

In order to describe the linear electro-optic effect rigorously, we must take into account
a possible piezoelectrically induced elasto-optic contribution to the impermeability change.
The electro-optic constant in this case can be written as

rT
ijk = rS

ijk + rP
ijk (11.16)

where rT
ijk is the free value determined at constant stress (e.g., by making a measurement at

low frequencies well below the acoustic resonance of the sample), rS
ijk is the clamped value

determined at constant strain (e.g., at high frequencies well above the acoustic resonance
of the sample) and rP

ijk is the elasto-optic contribution to the impermeability change.
The electro-optic tensor [r] is, in general, a complex third-rank tensor. Since the imag-

inary part of the dielectric constant may be taken as zero in the region near or below the
fundamental absorption edge, the tensor component rijk in this region can be regarded
as a real physical constant to a good approximation. Then, from Equation (11.15), we
can write

rijk = ∆

(
1

ε

)
ij

1

Ek

= − ∆εij

εii εjj Ek

(11.17)

The elasto-optic contribution rP
ijk is now written, for the zinc-blende family, as

rP
ijk =

∑
mn

pijmnSmnuvekmn =
∑
mn

pijmndkmn (11.18)

where pijmn is the photoelastic constant, Smnuv is the elastic compliance constant (Section 3.1)
and ekmn (dkmn ) is the piezoelectric stress (strain) constant (Section 5.1). Since pijmn is a
wavelength-dependent quantity, rP

ijk is spectrally dependent.
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Table 11.5 Form of the linear electro-optic tensor for semiconductors of certain symmetry classes

Symmetry class Material Tensor form

Cubic (Class Oh) Si, Ge, MgO, etc.




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0




Showing no linear electro-optic effect

Cubic (Class Td ) 3C-SiC, GaAs, ZnSe, etc.




0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r41




Hexagonal (Class C6v) 2H-SiC, α-GaN, w-CdS, etc.




0 0 r13

0 0 r13

0 0 r33

0 r42 0
r42 0 0
0 0 0




Hexagonal (Class D6h) h-BN




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0




Showing no linear electro-optic effect

Rhombohedral (Class C3v) 15R-SiC




0 −r22 r13

0 r22 r13

0 0 r33

0 r42 0
r42 0 0

−r22 0 0




Let us consider in the transparent region (ε ∼ ε1) of a zinc-blende-type semiconductor.
The quantity ∆ε1 required to calculate rS

ijk can be obtained by taking account of the
changes in the lowest direct band-gap parameters [11.42]

∆ε1 = ∂ε1

∂E0
∆E0 + ∂ε1

∂M
∆M + ∂2ε1

∂E2
0

(∆E0)
2 + ∂2ε1

∂M2
(∆M)2

+ ∂2ε1

∂E0∂M
(∆E0∆M) + · · · · · (11.19)
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where ∆E0 and ∆M are, respectively, changes in E0 and M (critical-point energy and
strength parameter) with the electric field E. The specific physical process considered
here is the linear electro-optic effect. We can thus neglect the higher-order derivative
terms in Equation (11.19). Then, Equation (11.19) can be reduced to

∆ε1 = ∂ε1

∂E0
∆E0 + ∂ε1

∂M
∆M (11.20)

The critical-point parameter changes ∆E0 and ∆M are now written in terms of the
first-order Stark-like effect as

∆E0 = a1E

∆M = b1E (11.21)

Introducing the one-electron term in Equation (10.78) (ε1(E) ∼ n(E)2) and Equation
(11.21) into Equation (11.20), we obtain the expression for the linear electro-optic constant
in the transparent region of a zinc-blende-type semiconductor as [11.42]

rS
41(E) = −

(
1

ε2
1

)[
A∗

(
1

2

)
E−1

0 a1g(χ∗
0 ) + b1f (χ∗

0 ) + F ′
]

(11.22)

where F ′ represents the strength of the higher-gap contribution (nondispersive) and
f (χ∗

0 ) and g(χ∗
0 ) are defined by Equations (10.79) and (11.7), respectively. In obtaining

Equation (11.22), we considered only the E0-gap contribution. This is based on the fact
that most zinc-blende semiconductors have small ∆0 gaps compared with their E0 values.
The E0 + ∆0-gap contribution can, therefore, be successfully included into that of the E0

gap. For some semiconductors, such as GaSb, InAs, InSb, ZnTe and CdTe, the E0 + ∆0-
gap energies are much larger than their E0-gap ones, and, therefore, their E0 + ∆0-gap
contribution can be rightly included into the higher-gap contribution, namely F ′.

It is noted that g(χ∗
0 ) shows a very sharp dispersion near E0 compared with f (χ∗

0 ).
Thus, the second term in the square bracket of Equation (11.22) can be included into
the nondispersive term F ′. The linear electro-optic constant rS

41 in the zinc-blende-type
semiconductors can be finally written as [11.42]

rS
41(E) = −

(
1

ε2
1

)
[E∗g(χ∗

0 ) + F ∗] (11.23)

with
E∗ = 1

2A∗E−1
0 a1 (11.24)

The parameters E∗ and F ∗ can be treated as adjustable parameters to fit the experimen-
tal data.

11.2.2 Experimental value

The linear electro-optic constants have been measured for a variety of semiconductors. We
list in Table 11.6 the electro-optic constant rS

41 in the long-wavelength limit (E → 0 eV)
determined experimentally for some cubic semiconductors. The electro-optic constants
rS

ijk for hexagonal semiconductors are also listed in Table 11.7.
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Table 11.6 Clamped value of the linear electro-optic constant rS
41 in the long-wavelength limit

(E → 0 eV) for some cubic group-IV, III–V and II–VI semiconductors

System Material rS
41 (pm/V) System Material rS

41 (pm/V)

IV Diamon a II–VI β-ZnS 1.4 (|rS
41|)

Si a ZnSe −2.2b

Ge a ZnTe 3.9 (|rT
41|)b

α-Sn a CdTe 4.1 (|rS
41|)

3C-SiC −2.7

III–V GaP −1.10 (λ = 1.153 µm)
GaAs −1.80 (λ = 10.6 µm)
InP −1.68 (λ = 1.50 µm)

aPrincipally showing no linear electro-optic effect
bFree value

Table 11.7 Clamped value of the linear electro-optic constant rS
ij in the long-

wavelength limit (E → 0 eV) for some hexagonal semiconductors (in pm/V)

System Material r13 r33 r42 Comment

III–V α-GaN 0.57 1.91 λ = 0.633 µm

II–VI ZnO 0.96 1.9 λ = 3.39 µm
α-ZnS 0.92 1.7 λ = 0.633, 3.39 µm
w-CdS 2.45a 2.75a λ = 10.6 µm
w-CdSe 1.8 4.3 λ = 3.39 µm

aFree value

In Figure 11.5, we plot the experimental rS
41 values for GaP [11.46], GaAs [11.47] and

InP [11.48] as a function of wavelength. The solid lines represent the calculated results of
Equation (11.23). The fitted strength parameters E∗ and F ∗ are listed in Table 11.8. The
InAs values are estimated from those of GaP, GaAs and InP (Bs) by the relation [11.49]

BInAs = BGaP + BGaAs − BInP (11.25)

It has been shown that rP
41 is much smaller than rS

41 in many cubic semiconductors,
hence rT

41 � rS
41 [11.42]. It is also concluded that the E0 gap can strongly contribute to

the dispersion of rT
41, especially for photon energies close to the E0 gap, but not to its

absolute value.

11.3 QUADRATIC ELECTRO-OPTIC CONSTANT

11.3.1 Theoretical expression

The effect linearly proportional to E is the linear electro-optic or Pockels effect and that
proportional to E2 is the so-called quadratic electro-optic or Kerr effect. As discussed in
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Figure 11.5 Dispersion of the linear electro-optic constant rS
41 determined experimentally for GaP,

GaAs and InP. The solid lines represent the calculated results of Equation (11.23). The fitted E∗
and F ∗ values are listed in Table 11.8. The dashed line shows the estimated dispersion for InAs

Table 11.8 Dispersion parameters, E∗ and F ∗, used
for the calculation of linear electro-optic constant rS

41 in
Equation (11.23) for GaP, GaAs, InP and InAs

Material E∗ (pm/V) F ∗ (pm/V)

GaP −83 17
GaAs −71 123
InP −42 91
InAs −30a 197a

aEstimated

Section 11.2, the linear electro-optic effect has been intensively investigated for various
semiconductors. However, a few studies have been done on the quadratic effects for
semiconductors.

There have been a very little theoretical work on the quadratic electro-optic effects for
semiconductors [11.43]. To explain the quadratic effect, we must expand the change in
the dielectric impermeability of Equation (11.15) to higher order

∆

(
1

ε

)
ij

= rijkEk + RijklEkEl + · · · · · (11.26)

where Rijkl is the quadratic electro-optic constant. In semiconductors with a center of
symmetry, such as Si and Ge, only the second-order term and higher even-order terms
can exist, and so one might expect that the effects are very small in moderate electric
fields. If a center of symmetry is lacking, as in the zinc-blende-type semiconductors, not
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only even-order, but also odd-order effects can exist. The effect given by the second-
order term and higher even-order terms, which can occur in all substances, is known as
the Kerr effect.

The quadratic electro-optic tensor is, in general, a complex fourth-rank tensor. We
summarize in Table 11.9 the form of the quadratic electro-optic tensor [R] for the cubic,
hexagonal and rhombohedral systems, where m and n in Rmn represent ij and kl, respec-
tively, according to the rules xx → 1, yy → 2, zz → 3, yz → 4, zx → 5 and xy → 6.
Since the imaginary part of the dielectric constant may be taken as zero in a transpar-
ent region of semiconductors, the quadratic electro-optic constant is regarded as a real
physical constant to a good approximation.

If we neglect higher-order terms than the second in the electric field, the Kerr coefficient
Rijkl in a zinc-blende family can be written as

Rijkl = ∆

(
1

ε

)
ij

1

EkEl

= − ∆εij

εii εjj EkEl

= − ∆ε1

ε2
1E

2
(11.27)

As in Equation (11.21), the band parameter changes are written in terms of the first-order
and second-order Stark-like effects as

∆E0 = a1E + a2E
2

∆M = b1E + b2E
2

(11.28)

Table 11.9 Form of the quadratic electro-optic tensor for semiconductors of certain symmetry
classes

Symmetry class Material Tensor form

Cubic Si, 3C-SiC, GaAs, MgO, ZnSe, etc.




R11 R12 R12 0 0 0
R12 R11 R12 0 0 0
R12 R12 R11 0 0 0
0 0 0 R44 0 0
0 0 0 0 R44 0
0 0 0 0 0 R44




Hexagonal 4H-SiC, h-BN, α-GaN, w-CdS, etc.




R11 R12 R13 0 0 0
R12 R11 R13 0 0 0
R31 R31 R33 0 0 0
0 0 0 R44 0 0
0 0 0 0 R44 0
0 0 0 0 0 R66




R66 = 1/2(R11 –R12)

Rhombohedral 15R-SiC




R11 R12 R13 R14 0 0
R12 R11 R13 −R14 0 0
R31 R31 R33 0 0 0
R41 −R41 0 R44 0 0
0 0 0 0 R44 2R41

0 0 0 0 R14 R66




R66 = 1/2(R11 –R12)
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The specific physical process considered here is the quadratic electro-optic effect. The
change ∆ε1 in Equation (11.27) can, thus, be written as

∆ε1 = ∂ε1

∂E0
(∆E0)s + ∂ε1

∂M
(∆M)s + ∂2ε1

∂E0∂M
(∆E0)f(∆M)f

+ ∂2ε1

∂E2
0

(∆E0)
2
f + ∂2ε1

∂M2
(∆M)2

f (11.29)

where the subscripts f and s, respectively, indicate the contributions from the first-order
and second-order Stark effects to the quadratic electro-optic constant.

Introducing the one-electron term in Equation (10.78) (ε1(E) ∼ n(E)2) and Equation
(11.28) into Equation (11.29), we finally obtain the expression for the quadratic electro-
optic constant in the transparent region of zinc-blende-type semiconductors as [11.43]

Rijkl (E) = −
(

1

ε2
1

)
[G∗h(χ∗

0 ) + H ∗] (11.30)

with

G∗ = − 1
4A∗E−2

0 a2
1 (11.31)

h(χ∗
0 ) = χ∗−2

0

[
2 − (1 + χ∗

0 )−3/2 − (1 − χ∗
0 )−3/2

]
(11.32)

where H ∗ represents the strength of the nondispersive term arising both from the E0-gap
and higher-gap contributions and χ∗

0 is defined by Equation (10.80). The parameters G∗
and H ∗ can be treated as adjustable parameters to fit the experimental data.

As in Equation (11.16), the quadratic electro-optic constant Rijkl can be given by a
sum of the two terms

RT
ijkl = RS

ijkl + RP
ijkl (11.33)

where RP
ijkl is the product of the photoelastic tensor pijkl and quadratic electrostrictive

tensor Qmnkl

RP
ijkl =

∑
pijklQmnkl (11.34)

It is usually assumed that RT
ijkl � RS

ijkl since the detailed values of Qmnkl are not well
known at present.

11.3.2 Experimental value

The quadratic electro-optic effect has been experimentally studied for several semiconduc-
tors [11.50–11.52]. Reinhart et al. [11.50] have observed a small quadratic electro-optic
effect in GaP. The quadratic electro-optic constant Rijkl of GaAs has been determined
by Faist and Reinhart [11.51] at λ = 1.09 and 1.15 µm and by Berseth et al. [11.52]
at λ = 1.32 and 1.52 µm. These authors used AlxGa1−xAs/GaAs double-heterostructure
waveguides. We list in Table 11.10 the values of R11 and R12 obtained by them. These
experimental results are plotted in Figure 11.6. A theoretical curve [11.53] using the
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Table 11.10 Quadratic electro-optic constant Rij for GaAs (in 10−21 m2/V2)

Wavelength (µm) Energy (eV) R11 R12

1.09 1.138 −29 ± 7 −24 ± 6
1.15 1.078 −20 ± 5 −18 ± 5
1.32 0.939 −9.3 ± 2.8 −5.1 ± 1.9
1.52 0.915 −3.2 ± 2.3 −5.1 ± 2.6
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Figure 11.6 Quadratic electro-optic constants, R11 and R12, as a function of wavelength for GaAs.
The experimental data are taken from Faist and Reinhart (solid symbols) [11.51] and from Berseth
et al. (open symbols) [11.52]. The solid line represents the calculated result of Alping and Col-
dren [11.53] based on the Kramers–Kronig transformation of the Franz–Keldysh effect. The dashed
line shows the calculated result of Equation (11.30)

Kramers–Kronig calculation of the Franz–Keldysh effect is shown in Figure 11.6 by
the solid line. As this calculation model does not accurately represent the energy-band
structure, it does not account for the difference between the transverse electric (TE) and
transverse magnetic (TM) modes. The quadratic electro-optic constant R11, corresponding
to the TM polarization, is believed to be larger than |R12| (TE polarization) because the
electroabsorption is slightly larger in heterostructures for the TM polarization [11.52].

The dashed line in Figure 11.6 shows the calculated dispersion curve of
Equation (11.30). It is clear that this curve well explains the experimental data.
The strength parameters determined here are as follows: G∗ = −4.0 × 10−19 m2/V2

and H ∗ = −2.0 × 10−18 m2/V2. It is also easily understood that the quadratic
electro-optic constant shows very strong dispersion compared with the linear electro-optic
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constants (Figure 11.5). Bach et al. [11.54] observed the quadratic electro-optic effect in
In1−xGaxAsyP1−y /InP double-heterostructure waveguides. They also found that the values
of the quadratic constant R11 –R12 vary greatly with photon energy.

11.4 FRANZ–KELDYSH EFFECT

11.4.1 Theoretical expression

The Franz–Keldysh effect is an electric-field-induced change in the complex dielectric
constant of a semiconductor, occurring at photon energies close to the intrinsic absorp-
tion edge. This effect has two parts, electroabsorption and electrorefraction, which are
respectively changes of the absorption coefficient and refractive index due to an applied
electric field.

The Franz–Keldysh electroabsorption coefficient is calculated from the expressions
derived by Tharmalingam [11.55] and Callaway [11.56]. A detailed theoretical treatment
on the basis of a one-electron band structure has been given by Aspnes [11.57]. For
a simple conduction-band minimum and valence-band maximum (three-dimensional M0

critical point) in the weak-field approximation at a photon energy h̄ω and a electric field
E, the absorption coefficient α (cm−1) can be given by [11.55–11.57]

α(ω, E) =
∑

j

AjE
1/3




∣∣∣∣∣
(

dAi(z)

dz

)
βj

∣∣∣∣∣
2

− βj |Ai(βj )|2

 (11.35)

with

Aj = 7.65 × 105 (2µj)
4/3

nh̄ω
(11.36a)

βj = 1.1 × 105 (E0 − h̄ω)(2µj )
1/3

E2/3
(11.36b)

where the sum in Equation (11.35) is over the light-hole and heavy-hole valence bands,
Ai (x) denotes the Airy function, µj is the combined density-of-states mass and n is the
refractive index. As E → 0 V/cm, Equation (11.35) goes over into the familiar expression
for the absorption due to direct allowed transitions

α(ω, 0) =
∑

j

Aj

π
3.3 × 102(2µj)

1/6
√

h̄ω − E0 (11.37)

that is, α(ω, 0) ∝ (h̄ω − E0)
1/2. The field-induced change in α is then given by

∆α(ω, E) = α(ω, E) − α(ω, 0).
Although the theoretical expressions due to Tharmalingam [11.55] and Callaway [11.56]

have been widely used in the past, it is now clear as a result of later work [11.58, 11.59] that
an expression due to Rees [11.60], which, rather than providing absolute values, relates the
absorption coefficient at two different fields, provides a better means of fitting the results.
The expression due to Rees is now given by

α(ω, E) = C

∫ ∞

−∞
α(ω − ω2, 0)Ai(−Cω2)dω2 (11.38)
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with

C =
(

32π2µ

h2e2E2

)1/3

(11.39)

where C depends only weakly on the material parameter via µ.
The contribution of the electroabsorption change to the real part of the refractive index

n can be calculated from the Kramers–Kronig relationship (electrorefraction)

∆n(ω, E) = ch̄

π

∫ ∞

0

∆α(ω, E)

(h̄ω′)2 − (h̄ω)2
d(h̄ω′) (11.40)

where c is the velocity of light in vacuum.

11.4.2 Experimental value

Franz–Keldysh electroabsorption has been observed experimentally in many semiconduc-
tors, such as Si [11.61], Ge [11.62], SiC [11.63], GaP [11.64], GaAs [11.59], InP [11.58],
InAs [11.65] and ZnSe [11.66]. We show in Figure 11.7, as an example, the experimental
data by Wight et al. for GaAs [11.59]. The experimental absorption coefficient is plotted
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Figure 11.7 Absorption edge of high-purity GaAs as a function of electric field E measured at
300 K. The solid lines represent the theoretical curves based on Rees’s electroabsorption (Franz–
Keldysh) expression. [From D. R. Wight, A. M. Keir, G. J. Pryce, J. C. H. Birbeck, J. M. Heaton,
R. J. Norcross, and P. J. Wright, IEE Proc.-J 135, 39 (1988), reproduced by permission from the
Institute of Electrical Engineers]
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for electric fields in the range E = 3.5 × 104 –4.0 × 105 V/cm. Since the applied electric
field is generally obtained by making measurements within a depletion region, one exper-
imental difficulty is that of ensuring a uniform field. As a result, the absorption coefficient
is often given as a function of voltage so that the results remain device specific. There are
exceptions, however, where the use of thick high-quality, low-doped (up to 1015 cm−3)
epitaxial layers has ensured a highly uniform field and low built-in field at zero applied
bias [11.67]. The epitaxial layer used for the measurements by Wight et al. (Figure 11.7)
was high resistivity and had a net electron concentration of ∼1 × 1015 cm−3. The solid
lines in Figure 11.7 represent the calculated results of Equation (11.38). The experimental
variation of the electroabsorption with wavelength is found to be in good agreement with
the calculated curves.

Direct measurements of the electrorefractive effect in GaAs have been performed
by Van Eck et al. [11.58] using a Mach–Zehnder interferometer. Average values of
∆n = 2 × 10−5 –6 × 10−5 were found for fields in the range 2.6 × 104 –5.2 × 104 V/cm
at photon energies 20–40 meV below the E0 edge.

11.5 NONLINEAR OPTICAL CONSTANT

11.5.1 Second-order nonlinear optical susceptibility

Historically, in 1961 Franken et al. discovered a second-harmonic generation in quartz
[11.68]. This was the onset of a new field, nonlinear optics, which has reached a high
level of maturity and has set the foundation of optics to various areas. Its formation in
terms of dielectric susceptibilities, however, provides the natural framework to formulate
the classical Pockels (Section 11.2) and Kerr effects (Section 11.3) as nonlinear optical
phenomena. Let us consider first the second-order nonlinear optical susceptibility for
various semiconductors.

The interaction between electromagnetic waves propagating inside a semiconductor
can be described by the following nonlinear polarization vector(

1

ε0

)
Pi = χ

(1)
ij Ej + χ

(2)

ijk EjEk + χ
(3)

ijklEjEkEl + · · · · · (11.41)

where χ(i) (i � 2) is the ith-order nonlinear susceptibility tensor of the crystal. The first
term on the right-hand side of Equation (11.41) represents the linear optics. The second-
order nonlinear susceptibility tensor gives rise to the phenomena of second-harmonic
generation, dc rectification, linear electro-optic or Pockels effect, parametric generation,
etc. (see Table 11.12).

We show in Table 11.11 the independent non-vanishing tensor elements of the second-
order nonlinear optical susceptibility χ

(2)

ijk for semiconductors of certain symmetry classes
[11.69]. Among crystals without inversion symmetry, those with the zinc-blende structure,
such as 3C-SiC, GaAs and ZnSe, have the simplest form of χ

(2)

ijk . They belong to the class

of Td (43m) cubic point group. Although there are many symmetry operations associated
with Td , only the 180◦ rotations about the three four-fold axes and mirror reflections
about the diagonal planes are needed to reduce the independent elements in χ

(2)

ijk . The

180◦ rotations make χ
(2)
iii = −χ

(2)
iii = 0, χ

(2)
iij = −χ

(2)
iij = 0 and χ

(2)
ijj = −χ

(2)
ijj = 0, where
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Table 11.11 Independent non-vanishing element of χ
(2)

ijk (−ω; ω1, ω2) for semiconductors of cer-
tain symmetry classes

Symmetry class Material Non-vanishing element

Cubic (Class Oh) Si, Ge, MgO, etc. Showing no second-order optical
nonlinearity (all 27 elements are zero)

Cubic (Class Td ) 3C-SiC, GaAs,
ZnSe, etc.

xyz = xzy = yxz = yzx = zxy = zyx

Hexagonal (Class C6v) 2H-SiC, α-GaN,
w-CdS, etc.

xzx = yzy , xxz = yyz , zxx = zyy , zzz

Hexagonal (Class D6h) h-BN Showing no second-order optical
nonlinearity (all 27 elements are zero)

Rhombohedral (Class C3v) 15R-SiC xzx = yzy , xxz = yyz , zxx = zyy , zzz
yyy = −yxx = −xxy = −xyx (mirror

plane perpendicular to x)

Source: Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984)

i, j and k refer to the three principal axes (x, y and z) of the crystals. The mirror
reflections lead to the invariance of χ

(2)

ijk (i �= j �= k) under permutation of the Cartesian

indices. Consequently, χ
(2)

ijk (i �= j �= k) is the only independent element in χ
(2)

ijk for the
zinc-blende crystals (Table 11.11).

One should write for the polarization at frequency ω in the presence of a static electric
field E as

Pi(ω, E) = Pi(ω, 0) + ε0δχij (ω)Ej (E)

= Pi(ω, 0) + ε0

{
2χ

(2)

ijk (−ω; 0, ω)Ek(0)

+ 3χ
(3)

ijkl (−ω; 0, 0, ω)Ek(0)El(0) + · · · · ·
}

Ej(E)

= Pi(ω, 0) − ε0εii (ω)εjj (ω){rijk Ek(0) + Rijkl Ek(0)El(0) + · · · · ·}Ej(E)

(11.42)
From Equation (11.42), we obtain

rijk = −2χ
(2)

ijk (−ω; 0, ω)

εii (ω)εjj (ω)
(11.43)

Rijkl = −3χ
(3)

ijkl (−ω; 0, 0, ω)

εii (ω)εjj (ω)
(11.44)

where rijk and Rijkl are, respectively, the linear and quadratic electro-optic constants.
It is understood from Equations (11.43) and (11.44) that the Pockels and Kerr electro-
optic effects correspond to the second-order and third-order nonlinear optical processes,
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Table 11.12 Susceptibilities and nonlinear optical processes in semiconductors

Susceptibility Nonlinear optical process

χ
(2)

ijk (−2ω; ω,ω) Second-harmonic generation

χ
(2)

ijk (−ω1 ∓ ω2; ω1, ±ω2) Parametric process

χ
(2)

ijk (−ω; 0, ω) Pockels electro-optic effect

χ
(2)

ijk (0; ω, −ω) Optical rectification

χ
(3)

ijkl (−3ω; ω,ω,ω) Third-harmonic generation

χ
(3)

ijkl (−ω1 ∓ ω2 ∓ ω3; ω1, ±ω2,±ω3) Frequency mixing

χ
(3)

ijkl (−ω; ω,ω,−ω) Optical Kerr effect

χ
(3)

ijkl (−ω; 0, 0,−ω) Kerr electro-optic effect

χ
(3)

ijkl (−2ω; 0, ω, ω) Electric-field-induce second-harmonic generation

respectively. Table 11.12 summarizes various nonlinear optical processes and their related
dielectric susceptibility expressions [11.38].

It is useful to introduce the d matrix for the description of the second-order nonlinear
part of the polarization vector as


P1

P2

P3


 =


 d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36







E2
1

E2
2

E2
3

2E2E3

2E3E1

2E1E2




(11.45)

where m and n in dmn of Equation (11.45) represent m and ij, respectively, according to the
rules x → 1, y → 2, z → 3 (m) and xx → 1, yy → 2, zz → 3, yz → 4, zx → 5, xy → 6
(n). Table 11.13 lists the tensor form of the d matrix for crystals of certain symmetry
classes. For a cubic Td class, the only non-vanishing components are d14 = d25 = d36 =
1/2χ

(2)

14 (−2ω; ω, ω), but for a crystal with lower symmetric properties, the number of the
non-vanishing components increases.

The nonlinear optical constants have been measured for a variety of semiconduc-
tors. We list in Table 11.14 the nonlinear optical constant χ

(2)

123(−2ω; ω, ω) in the long-
wavelength limit (E → 0 eV) for some cubic semiconductors. The nonlinear optical
constants χ

(2)

ijk (−2ω; ω, ω) for hexagonal semiconductors are listed in Table 11.15. Note
that 1 m/V = 3 × 104/4π esu (1 esu = 4π/(3 × 104) m/V).

The nonlinear optical constants χ
(2)

123(−2ω; ω, ω) plotted as a function of the lowest
direct band-gap energy E0 for some cubic III–V and II–VI semiconductors are shown in
Figure 11.8. The solid line represents the least-squares fit with the relation (E0 in eV; χ

in pm/V)

χ
(2)

123(−2ω; ω, ω) =
(

185

E0

)1.13

(11.46)
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Table 11.13 Form of the second-order nonlinear optical susceptibility tensor dij for semiconduc-
tors of certain symmetry classes

Symmetry class Material Tensor form

Cubic (Class Oh) Si, Ge, MgO, etc.


 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0




Showing no second-order optical nonlinearity

Cubic (Class Td ) 3C-SiC, GaAs,
ZnSe, etc.


 0 0 0 d14 0 0

0 0 0 0 d14 0
0 0 0 0 0 d14




Hexagonal (Class C6v) 2H-SiC, α-GaN,
w-CdS, etc.


 0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0




Hexagonal (Class D6h) h-BN


 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0




Showing no second-order optical nonlinearity

Rhombohedral (Class C3v) 5R-SiC


 0 0 0 0 d15 −d22

−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0




It is evident from Figure 11.8 that a smaller E0-gap material has a larger value of
χ

(2)

123(−2ω; ω, ω).
Various theoretical calculations have been established to describe the dispersion of the

nonlinear optical coefficients of crystals [11.70]. Most of them are founded on the calcu-
lation of the relevant matrix elements on the basis of the known electronic energy-band
structure. The simplest way to estimate the frequency dependence of the nonlinear optical
susceptibilities is the use of Miller’s parameter [11.71]. If the linear electro-optic constant
is defined in terms of polarization rather than electric field, the resulting coefficient

fijk = rijk

ε0(εk − 1)
(11.47)

varies over a much narrower range, for a variety of crystals, than rijk . The Miller delta is
a similar coefficient defined by

∆ijk = χ
(2)

ijk (−ω3; ω1, ω2)

2(εi(ω3) − 1)(εj (ω1) − 1)(εk(ω2) − 1)
= dijk (−ω3; ω1, ω2)

(εi(ω3) − 1)(εj (ω1) − 1)(εk(ω2) − 1)

(11.48)

Theoretically, the Miller delta is considered to be independent of frequency if the
system has a single anharmonic oscillator or a single resonance frequency, which may
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Table 11.14 Second-order χ
(2)
123(−2ω; ω,ω) and third-order nonlinear optical susceptibilities

χ
(3)

ijkl (−3ω; ω,ω,ω) in the long-wavelength limit (E → 0 eV) for some cubic group-IV, III–V
and II–VI semiconductors

System Material χ
(2)
123 (10−8 esu) χ

(3)
1111 (10−11 esu) χ

(3)
1212 (10−11 esu)

IV Diamond a 0.0184 0.00688
Si a 2.4 1.2
Ge a 10 5.2
α-Sn a

3C-SiC 14.5b 0.029b 0.014b

III–V c-BN 0.24–0.81b

AlP 9.6b 1.39b 0.92b

AlAs 15.3 0.97b 0.73b

AlSb 23.4 7.52b 5.54b

β-GaN 2.4–2.8b

GaP 33 2.10b 1.34b

GaAs 89 8.9 1.6
GaSb 250 3.4–187.2b 5.1–42.7b

InP 68.5 0.23–9.84b 0.6–5.69b

InAs 200 6.2–10 179b 3.0–966b

InSb 524 8 × 103, 109, 1011 0.79–1.47 × 104b

II–VI MgO 0.00294 0.00142
β-ZnS 14.6 0.20b 0.15b

ZnSe 37.4 1.2 1.2
ZnTe 44 2.87b 1.53b

c-CdS 7.4b 1.00b 0.57b

c-CdSe 23.7b 2.95b 1.52b

CdTe 28.2 5.41b 4.02b

aPrincipally showing no second-order nonlinear optical effect
bCalculated or estimated

Table 11.15 Second-order nonlinear optical susceptibility dij in the long-wavelength limit (E →
0 eV) for some hexagonal and rhombohedral semiconductors (in pm/V)

System Material d15 d31 d33 Comment

IV 6H-SiC −2 12 λ = 1.064 µm
15R-SiC −3.1 5.2 Calc.

III–V w-AlN �|0.26| −6.3 λ = 1.064 µm
α-GaN 8.0 8.2 −16.5 λ = 1.064 µm
InN 2.8 3.1 Calc.

II–VI ZnO 3.0 0.68 −7.16 λ = 1.064 µm
α-ZnS 21 −19 37
w-CdS 29 −26 44
w-CdSe 31 −18 36
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Figure 11.8 Experimental χ
(2)
123 versus E0 for some cubic III–V and II–VI semiconductors. The

solid line represents the least-squares fit with χ
(2)
123 = (185/E0)

1.13 (E0 in eV; χ
(2)
123 in pm/V)

not be a good approximation in actual materials. In fact, it has been shown experimen-
tally [11.72] that the Miller delta is barely constant over the wavelength range measured
for some dielectrics and semiconductors.

Wagner et al. [11.73] determined the absolute values of the second-harmonic-
generation coefficient |d14| for β-ZnS, ZnSe and ZnTe in the fundamental radiation
wavelength range from 520 to 1321 nm using various pulsed laser sources. They observed
a strong dispersion in |d14| above the E0-gap, showing a maximum at a second-harmonic
frequency close to the E1-gap. We reproduce in Figure 11.9 their results for ZnSe [11.73].
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Figure 11.9 Experimental dispersion of the second-harmonic-generation (SHG) coefficient |d14|
in ZnSe as a function of fundamental radiation wavelength. The solid line gives the theoretical
dispersion curve. [From H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, Phys. Rev. B
58, 10494 (1998), reproduced by permission from the American Physical Society]
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11.5.2 Third-order nonlinear optical susceptibility

The effects arising from the third-order nonlinear optical susceptibility are third-harmonic
generation, quadratic electro-optic or Kerr effect, two-photon absorption, stimulated light
scattering, etc. (see Table 11.12). Although there has been an upsurge of interest in the
enhancement of the higher-order nonlinear optical processes in low-dimensional semi-
conductor materials in recent years [11.74], the fundamental process in the bulk semi-
conductor itself cannot be completely understood. It should be noted that the third-order
nonlinear optical effect can be observed in almost all media. Table 11.16 lists the inde-
pendent non-vanishing tensor elements of the third-order nonlinear optical susceptibility
χ

(3)

ijkl for the more commonly encountered classes of media [11.69].
If the dispersion of χ(m) can be neglected, then the permutation symmetry

χ(m)∗(ω = ω1 + ω2 + · · · + ωm) = χ(m)(ω1 = −ω2 − · · · − ωm + ω)

= · · · · ·
= χ(m)(ωm = ω − ω1 − · · · − ωm−1) (11.49)

becomes independent of ω. Consequently, a symmetry relation now exists between differ-
ent elements of the same χ(m) tensor, that is, χ(m) remains unchanged when the Cartesian
indices are permutated. This is known as the Kleinman conjecture, with which the num-
ber of independent elements of χ(m) can be greatly reduced. The Kleinman conjecture
promises that, for cubic semiconductors, there are only two nonzero independent elements
in χ(3), namely, χ

(3)

1111 and χ
(3)

1122 = χ
(3)

1212 = χ
(3)

1221. It should be noted, however, that since

Table 11.16 Independent non-vanishing element of χ
(3)

ijkl (−ω; ω1, ω2, ω3) for semiconductors of
cubic and hexagonal symmetry classes

Symmetry class Material Non-vanishing element

Cubic (Classes Oh Si, Ge, 3C-SiC, GaAs, xxxx = yyyy = zzzz
and Td) MgO, ZnSe, etc. yyzz = zzyy = zzxx = xxzz = xxyy = yyxx

yzyz = zyzy = zxzx = xzxz = yxyx = xyxy
yzzy = zyyz = zxxz = xzzx = xyyx = yxxy

Hexagonal (Classes 2H-SiC, α-GaN, w-CdS, xxxx = yyyy = xxyy + xyyx + xyxy
C6v and D6h) h-BN, etc. zzzz

xxyy = yyxx
xyyx = yxxy
xyxy = yxyx
yyzz = xxzz
zzyy = zzxx
zyyz = zxxz
yzzy = xzzx
yzyz = xzxz
zyzy = zxzx

Source: Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984)
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all media are dispersive, the Kleinman conjecture is a good approximation only when all
frequencies involved are far from resonances such that the dispersion of χ(m) is relatively
unimportant.

For the third-harmonic generation coefficient χ
(3)

ijkl (−3ω; ω, ω, ω), there is only a single
frequency ω present, and so χ(3) will be symmetric in the last three indices. The number
of independent tensor elements in such case can be reduced from 4 to 2 for the cubic
class (χ(3)

1111 and χ
(3)

1212) and from 11 to 4 for the hexagonal class (χ(3)

1111, χ
(3)

3333, χ
(3)

1133 and
χ

(3)

3311).
The nonlinear optical constants have been experimentally determined for several semi-

conductors. Table 11.14 summarizes the values of χ
(3)

ijkl (−3ω; ω, ω, ω) in the long-wave-
length limit (E → 0 eV) for some cubic semiconductors. These values are listed in esu,
where 1 esu = 4π/(9 × 108) m2/V2 (1 m2/V2 = 9 × 108/4π esu).

11.5.3 Two-photon absorption

In a two-photon absorption process, two photons are simultaneously absorbed to excite a
material system. Being a higher-order process, its absorption coefficient is many orders
of magnitude smaller than that of a one-photon absorption. Using third-order optical
susceptibility tensor χ(3), the two-photon absorption coefficient β is described by

β = 24(2π)2ω

c2n2(ω)
Imχ

(3)

ijkl (−ω; ω, ω, −ω) (11.50)

where n(ω) is the refractive index of the light at frequency ω and the spatial indices i, j ,
k, l are determined by the sample symmetry and the incident light polarization, in such
a way that for a laser beam plane-polarized along the z axis of the sample, the relevant
quantity is Im χ(3)

zzzz .
The two-photon absorption is conceptually very simple and can be given by phe-

nomenologically
dI

dz
= −(α + βI)I (11.51)

where α is the linear absorption coefficient and the two-photon absorption coefficient β

can be calculated by second-order perturbation theory in terms of transition probability
W2 as

β = 4W2hν

I 2
(11.52)

with

W2 = 1

(2π)2h

∫ ∣∣∣∣∣∣∣∣

∑
i

〈Ψc|HeR|Ψi〉〈Ψi |HeR|Ψv〉

Ei − Ev − hν

∣∣∣∣∣∣∣∣

2

δ(Ec(k) − Ev(k) − 2hν) d3k (11.53)

where Ψ is the electron wavefunction, HeR is the electron–radiation interaction Hamilto-
nian and the indices c, v and i refer to the conduction band, valence band and intermediate
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state in the two-photon absorption process, respectively. Because of the summation over
all the intermediate states, it is very difficult to calculate Equation (11.53) exactly. Prac-
tically, these summations are taken over a limited number of intermediate states, which
are deemed to be dominant.

The scaling and nonlinear optical phenomena in semiconductors have been discussed by
Sheik-Bahae et al. [11.75]. A simple two-parabolic band model has been used to calculate
various nonlinear optical responses, such as the two-photon absorption coefficient, ac
Stark effect and Raman scattering cross-section. The two-photon absorption coefficient
β(ω) reported by these authors can be expressed as

β(ω) = K
√

Ep

n2
0E

3
g

F

(
h̄ω

Eg

)
(11.54)

where Ep is related to the Kane momentum parameter (∼21 eV for most direct band-gap
semiconductors) and K is a material-independent constant equal to 1940 when Ep and
Eg are in eV and β is in cm/GW. The function F(x) is dependent on the assumed band-
structure model and is a function only of the ratio of the photon energy to the band-gap
energy of the material, x = h̄ω/Eg. Sheik-Bahae et al. also obtained the nonlinear index of
refraction n2(ω) from the nonlinear absorption using a Kramers–Kronig transformation as

n2(ω) = K ′√Ep

n0E4
g

G

(
h̄ω

Eg

)
(11.55)
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Figure 11.10 Two-photon absorption coefficient β in ZnSe at room temperature. Symbols repre-
sent the measured values. Horizontal error bars account for the spread in the value of the ZnSe
energy gap. Lines show the predictions of different theoretical models. [From M. Dabbicco and M.
Brambilla, Solid State Commun. 114, 515 (2000), reproduced by permission from Elsevier]
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where K ′ = 9.4 × 10−9 when Ep and Eg are in eV, n2 is in esu, and the function G

is again dependent only on the ratio of the photon energy to the band-gap energy of
the material.

The two-photon absorption coefficient has been discussed both experimentally and
theoretically for some group-IV (Si [11.76]), III–V (α-GaN [11.77], GaP [11.78], GaAs
[11.76] and InSb [11.79]) and II–VI semiconductors (ZnO [11.80, 11.81], α-ZnS [11.82],
β-ZnS [11.83], ZnSe [11.84], ZnTe [11.85], w-CdS [11.83], w-CdSe [11.86] and CdTe
[11.87]). We show in Figure 11.10, as an example, the two-photon absorption spec-
trum measured for ZnSe at room temperature [11.84]. The Ti: sapphire laser used in this
study was tunable over the 700–980 nm (1.77–1.27 eV) spectral range, which scaled to
the ZnSe E0-gap energy ∼2.7 eV at room temperature. The theoretical plots shown in
Figure 11.10 are predicted by several models [11.75, 11.88, 11.89], including the two-
parabolic band model of Equation (11.54) by Sheik-Bahae et al. [11.75]. The experimental
data revealed an inflection point at hν/Eg ∼ 0.58, which may be originating from the
spin–orbit split-off valence band. It has been concluded that general scaling laws for
the calculation of the two-photon absorption coefficient provide a good estimate of the
strength of the absorption, but fail to account for details of the spectrum.
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12.1 LOW-FIELD MOBILITY: ELECTRONS

12.1.1 Electron scattering mechanism

Hall mobility is a popular parameter used to characterize the microscopic quality of semi-
conductors. An accurate comparison between experimental carrier mobility and theoretical
calculation is of great importance for the determination of a variety of fundamental mate-
rial parameters and carrier scattering mechanisms. There are various carrier scattering
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Table 12.1 Various possible electron scattering mechanisms in semiconductors

Optical
Phonon

Intervalley

Intravalley

Impurity

Carrier-carrier

Defect Space-charge

Alloy

Optical

Acoustic
Polar

Nonpolar
Piezoelectric

Deformation potential
Acoustic

Ionized

Neutral

mechanisms in semiconductors; Table 12.1 shows an outline of the possible mechanisms.
The effect of the individual scattering mechanisms on the total calculated electron mobility
can be visualized by Matthiessen’s rule

1

µe
TOT

=
∑

i

1

µe
i

(12.1)

Thus, the total mobility µe
TOT can be calculated from the scattering-limited mobilities

µe
i of each scattering mechanism. In the following, we present specific expressions for

µe
i associated with various scattering mechanisms in cubic semiconductors [12.1–12.5].

Table 12.2 summarizes the mass and temperature dependences of µe
i obtained from these

expressions.

Table 12.2 Temperature and mass dependences of the electron mobility for
different scattering mechanisms in semiconductors

Scattering process Temperature dependence Mass dependence

Intervalley −5/2
Polar optical −3/2
Nonpolar optical −3/2 (kT � h̄ωo) −5/2
Piezoelectric −1/2 −3/2
Deformation potential −3/2 −5/2
Ionized impurity 3/2 −1/2
Neutral impurity 0 0
Space-charge −1/2 −1/2
Alloy −1/2 −5/2
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(a) Intervalley scattering

In materials in which the conduction-band minimum is at the � point, the electrons, after
being scattered by the lattice, usually remain in the same valley. This kind of lattice
scattering is called intravalley scattering. In materials with the lowest conduction-band
minima in the 〈100〉 (X) or 〈111〉 (L) directions, the electrons may be scattered by the
phonons from one valley to another valley having its energy minimum at the nearly same
level. In such transitions, the wavevector of the electrons changes significantly, so that
only phonons with large wavevectors may cause such scattering and the corresponding
phonons are often referred to as intervalley phonons. It should be noted that the intervalley
phonons may be of either kind, optical or acoustic.

The intervalley scattering is important at low fields in materials with the lowest
conduction-band minimum at the X or L point. The intervalley scattering-limited mobility
from a k state in the i valley to a state in the j valley can be given by [12.6]

µe
iv = 8

√
π

3(m∗
j )

5/2

eh̄2g
√

kΞ√
3ND2

ij




√
T

Ξ
+ 2

3
+ ∆Eij

kT

eΞ/T − 1
+

√
T

Ξ
− 2

3
+ ∆Eij

kT

1 − eΞ/T




−1

for
T

Ξ
� 2

3
+ ∆Eij

kT
(12.2)

where g is the crystal density, Ξ is the intervalley (optical or acoustic) phonon tempera-
ture, N is the number of equivalent minima (N = 1 for the � minimum, N = 3 for the
X minima and N = 4 for the L minima), ∆Eij is the intervalley energy separation, m∗

j is
the electron effective mass in a single j minimum and Dij is the intervalley deformation
potential. The last term on the right-hand side is 0 for T /Ξ < (2/3 + ∆Eij /kT ). Note
that Equation (12.2) corresponds to the case i �= j (i.e., nonequivalent intervalley scat-
tering). In the case of equivalent intervalley scattering (i = j ), the equation is applicable
when N is changed to (N − 1) and ∆Eij = 0. It should also be noted that the interval-
ley scattering is usually treated, formally, in the same way as intravalley scattering by
nonpolar optical phonons with a deformation potential interaction (see Equation (12.6)).

(b) Polar optical scattering

Polar optical scattering occurs through the polarization produced by the optical vibrations
due to the ionic charges associated with the atoms forming the material. The displacement
of the neighboring atoms of opposite ionic charges results in dipole moments, the potential
associated with which scatters the electrons. The polar optical phonon scattering is often
the most important scattering mechanism, particularly in ionic semiconductors at liquid
nitrogen or higher temperatures.

The polar optical phonon scattering-limited mobility can be given by

µe
po = 29/2√πh̄2(kT )1/2(eTpo/T − 1)χ(Tpo/T )

3ekTpo(mα
c )3/2ε−1

0 (ε−1∞ − ε−1
s )

(12.3)
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where mα
c is the conductivity effective mass (α = �, X or L), ε∞ and εs are, respec-

tively, the high-frequency and static dielectric constants, Tpo is the polar optical phonon
temperature (kTpo = h̄ωLO) and χ(Tpo/T ) is a slowly varying function of T .

(c) Nonpolar optical scattering

The deformation of the crystal due to nonpolar optical phonons can produce a perturbing
potential proportional to the optical lattice strain. The strength of this interaction is known
to be very weak for electrons at the �-conduction-band and X-conduction-band minima.
It is, however, strong for minima along the 〈111〉 (L) directions. Since in most III–V and
II–VI semiconductors the lowest conduction-band minimum is at the � point, this type
of scattering is of less importance.

The nonpolar optical phonon scattering-limited mobility can be written, in approximate
forms, as

µe
npo = 2

√
2πgh̄4eω2

o

3D2
o(m

α
c )5/2(kT )3/2

, kT � h̄ωo (12.4a)

µe
npo =

√
2h̄ωoπgh̄4e

D2
o(m

α
c )5/2no

, kT � h̄ωo (12.4b)

where ωo is the nonpolar optical phonon frequency, no = 1/[exp(h̄ωo/kT )−1] and Do is
the nonpolar optical phonon deformation potential given in energy per unit strain.

(d) Piezoelectric scattering

The piezoelectric scattering is caused by acoustic phonons through the piezoelectric effect.
The piezoelectric effect can be observed in crystals lacking a center of symmetry, which
includes all compound semiconductors (but not diamond, Si and Ge). The piezoelectric
scattering is, thus, important in all compound semiconductors. It may also be stronger in
materials with the wurtzite structure than in materials with the sphalerite (zinc-blende)
structure due to the lower symmetry of the former structure.

The piezoelectric scattering-limited mobility can be given by

µe
pz = 16

√
2πε0εsh̄

2

3
√

kT eK2(mα
c )3/2

(12.5)

where K is the electromechanical coupling constant. Note that µe
pz ∝ T −1/2, so this mech-

anism tends to dominate at low temperatures.

(e) Deformation potential scattering

The scattering of the carriers through the deformation potential is called deformation
potential scattering. Due to the changes in the spacing of the lattice atoms, the conduction-
band and valence-band edges may vary from point to point. The potential so produced
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due to the deformation of the crystal is called the deformation potential, the magnitude
of which is evidently proportional to the strain produced by the lattice vibrations.

The deformation potential scattering-limited mobility is given by

µe
dp = 2

√
2πh̄4Cle

3E2
1(m

α
c )5/2(kT )3/2

(12.6)

where E1 is the acoustic deformation potential and Cl is the longitudinal elastic constant
defined by

Cl = 1
5 (3C11 + 2C12 + 4C44) (12.7)

(f) Ionized impurity scattering

Ionized impurities can scatter electrons through their screened Coulomb potential

∆V = Ze2

4πεsr
e−r/λD (12.8)

where Ze is the ionic charge (e = elementary charge) and λD is the Debye length. The
corresponding ionized impurity scattering-limited mobility can be given by

µe
ii = 128

√
2πε2

0ε
2
s (kT )3/2

NIZ2e3(mα
c )1/2 [ln(1 + y) − y/(1 + y)]

(12.9)

with

y = 24ε0εsm
α
c (kT )3/2

h̄2e2n
(12.10)

where NI and n are the ionized impurity and free-electron concentrations, respectively.

(g) Neutral impurity scattering

When an electron passes close to a neutral atom, momentum can be transferred through
a collision with a bound electron on the atom. The mobility in this case can be written as

µe
ni = e3mα

c

80πN0h̄
3ε0εs

(12.11)

where N0 is the concentration of the neutral impurity.

(h) Space-charge scattering

Weisberg [12.7] has discussed the mobility due to space-charge scattering which is
given by

µe
sc = 23/2e

3
√

πkT mα
c Nσsc

(12.12)
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where N is the impurity or defect concentration and σsc is the space-charge scattering
cross-section.

(i) Alloy scattering

In alloy semiconductors, the electrons see potential fluctuations as a result of the com-
position disorder. This kind of scattering, so-called alloy scattering is important in some
of the III–V ternaries and quaternaries. The alloy scattering-limited mobility in ternary
alloy can be given by

µe
al =

√
2πeh̄4Nal

3(mα
c )5/2(kT )1/2x(1 − x)(∆U)2

(12.13)

where Nal is the density of alloy sites, x and (1 − x) are the mole fractions of the binary
end compounds and ∆Ue is the alloy scattering potential.

(j) Carrier–carrier scattering

In a process where an electron is scattered by another electron, the total momentum of car-
rier gas is unchanged. Hence, carrier–carrier scattering alone has no significant influence
on the mobility. However, since it is always combined with other scattering processes, it
is sometimes quite important. For example, the dominating ionized impurity scattering-
limited mobility µe

ii in a nondegenerate semiconductor can be reduced to a value by a
factor of about 0.6. The changes for scattering by phonons are less pronounced. Evidently
the importance of the carrier–carrier scattering is only at high carrier concentrations, say,
n > 1018 cm−3.

12.1.2 Three-valley model

A three-valley model of the conduction band is used to account for the �, L and X
valleys of semiconductors. Considering the � minimum as the energy reference, the
electron concentration in the � minimum and those in the L and X minima relative to
the � minimum are given by

n� = 2

(
2πm�

e kT

h2

)3/2

exp

(
−EF

kT

)
(12.14a)

nL

n�

=
(

mL
e

m�
e

)3/2

exp

(
−∆E�L

kT

)
(12.14b)

nX

n�

=
(

mX
e

m�
e

)3/2

exp

(
−∆E�X

kT

)
(12.14c)
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where ∆E�L and ∆E�X are the energy separations between the �–L and �–X minima,
respectively (see Section 6.5). The total carrier density is given by

n = n� + nL + nX (12.15)

and the conductivity can be written as

σ = e
∑

α

nαµα (12.16)

where µα is the mobility in the αth valley.
The electron Hall mobility µH and electron Hall concentration nH are now given by

µH = µ�

1 + (nL/n�)(µL/µ�)2 + (nX/n�)(µX/µ�)2

1 + (nL/n�)(µL/µ�) + (nX/n�)(µX/µ�)
(12.17)

nH = n�

[1 + (nL/n�)(µL/µ�) + (nX/n�)(µX/µ�)]2

1 + (nL/n�)(µL/µ�)2 + (nX/n�)(µX/µ�)2
(12.18)

In a single-valley model, the Hall factor is usually assumed to be unity. This assumption
is very poor when many bands are involved. The Hall factor γ in the three-valley model
will be presented in Section 12.1.5.

12.1.3 Room-temperature value

The low-field electron Hall mobility µe has been measured for a variety of semiconductors.
We list in Table 12.3 the room-temperature (µ300K) and peak mobility values (µpeak)
for some cubic, hexagonal and rhombohedral semiconductors, together with their lowest
conduction-valley conductivity masses mα

c . The corresponding µ300K and µpeak versus mα
c

plots are shown in Figures 12.1(a) and 12.1(b), respectively. As expected from Table 12.2,
a smaller mα

c material may have a larger µ300K or µpeak value. This tendency can be clearly
recognized in Figure 12.1. The solid lines in Figures 12.1(a) and 12.1(b) represent the
least-squares fit with the relation (mα

c in m0; µ in cm2/V s)

µ300K =
(

32.1

mα
c

)1.26

(12.19a)

µpeak =
(

39.0

mα
c

)1.60

(12.19b)

Figure 12.2 plots the 300 K mobility µ300K versus lowest direct band-gap energy E0

for some direct band-gap semiconductors. The solid line shows the least-squares fit with
(E0 in eV; µ300K in cm2/V s)

ln µ300K = 10.3 − 1.41E0 (12.20)
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Table 12.3 300 K (µ300K) and peak Hall mobilities (µpeak) for electrons in some cubic, hexagonal
and rhombohedral semiconductors. The conductivity electron mass mα

c in the lowest conduction
band is also presented in the third column

System Material mα
c /m0 µ300K (cm2/V s) µpeak (cm2/V s)

IV Diamond 0.48 2800 9000 (T ∼ 80 K)
Si 0.259 1750a 500000 (T ∼ 8 K)a

Ge 0.119 2300 530000 (T ∼ 11 K)
α-Sn 0.029b 80800 (T = 4.2 K)
3C-SiC 0.32 980 3000 (T ∼ 66 K)
6H-SiC 375 10940 (T = 50 K)
15R-SiC 500 1700 (T ∼ 90 K)

III–V c-BN 0.31 4 (T = 900 K)
BP 0.28 190 190 (T = 300 K)
AlP 0.31 80 80 (T = 300 K)
AlAs 0.26 294 294 (T = 300 K)
AlSb 0.29 200 700 (T = 77 K)
α-GaN 0.21 1245 7400 (T ∼ 60 K)
β-GaN 0.15 760 11000 (T ∼ 50 K)
GaP 0.37 189 3100 (T ∼ 70 K)
GaAs 0.067 9340 400000 (T = 28 − 40 K)
GaSb 0.039 12040 12700 (T = 77 K)
InN 0.12 3100 5000 (T ∼ 150 K)
InP 0.07927 6460 400000 (T ∼ 45 K)
InAs 0.024 30000 170000 (T = 77 K)
InSb 0.013 77000 1100000 (T ∼ 50 K)

II–VI ZnO 0.234 226 2400 (T = 40 K)
α-ZnS 0.28 140 300 (T = 185 K)
β-ZnS 0.2 107
ZnSe 0.137 1500 13600 (T = 55.6 K)
ZnTe 0.117 600
c-CdS 0.14 70–85
w-CdS 0.151 390 70000 (T = 1.8 K)
w-CdSe 0.125 900 20000 (T ∼ 23 K)
CdTe 0.09 1050 100000 (T ∼ 30 K)
β-HgS 0.012b 230 580 (T ∼ 4.2 K)
HgSe 0.019b 22000 170000 (T ∼ 20 − 30 K)
HgTe 0.030b 26500 1400000 (T = 4.2 K)

aDrift (conductivity) mobility
bShowing negative band-gap (semimetalic) nature

Similarly, we plot in Figure 12.3 the 300 K mobility, µ300K, versus inverse �-valley
electron conductivity mass, 1/m�

e , for those semiconductors. The solid line in Figure 12.3
represents the least-squares fit with (m�

e in m0; µ300K in cm2/V s)

µ300K =
(

3.0

m�
e

)2.11

(12.21)
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III–V and II–VI semiconductors
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µ300K in cm2/V s)
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Figure 12.3 Electron Hall mobility at 300 K, µ300K, versus inverse �-valley electron conductivity
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e for some III–V and II–VI semiconductors. The solid line represents the least-squares
fit with µ300K = (3.0/m�

e )2.11 (m�
e in m0; µ300K in cm2/V s)

It is evident from Figures 12.2 and 12.3 that the �-valley electron mobility increases with
decreasing E0 or m�

e . We have already shown that the E0 energy increases proportionally
with increasing m�

e (Section 7.1.2).

12.1.4 External perturbation and doping effects

(a) Temperature effect

Figure 12.4 shows the electron Hall mobility µe versus temperature for relatively pure
n-type GaP, GaAs, InP and InAs. The data are taken for GaP from [12.8], for GaAs
from [12.9, 12.10], for InP from [12.11] and for InAs from [12.12]. Low-field transport
properties of III–V semiconductors have been studied in some detail. However, there
are still discrepancies in various values of the acoustic deformation potential E1. The
existence of ionized impurity scattering and carrier compensation problems makes analysis
very difficult.

The µe data for GaAs and InP in Figure 12.4 increase as the temperature increases,
showing a peak value at T ∼ 50 K, and then drastically decrease with further increase of
T . For T � 10 K, the mobility values approximately follow the relation µe ∝ T 3/2, i.e.,
ionized impurity scattering (see Table 12.2).

As clearly seen in Figure 12.4, the indirect band-gap material GaP has relatively a
lower mobility value than GaAs, InP and InAs. This is because of a relatively larger
conductivity mass in the satellite valley than in the central valley (�) for many semi-
conductors. The intervalley scattering also lowers the electron mobility in the indirect
band-gap materials. Toyama et al. [12.13] determined the intervalley deformation poten-
tial constant Dij of GaP to be 7 eV/Å from Hall measurements. Rode [12.3] obtained
a value of Dij = 12 eV/Å by fitting the Hall data of Casey et al. [12.14]. Fletcher and
Butcher [12.15] analyzed the µe data of Taylor et al. [12.16] and obtained Dij = 10 eV/Å.



CARRIER TRANSPORT PROPERTIES 325

100 101 102 103

102

103

104

105

106

T –1.7T –2.1

T –2.5

GaAs

GaP

InP

InAs

T (K)

m
 (c

m
2 /V

 s
)

T3/2

Figure 12.4 Electron Hall mobility µ versus temperature T for relatively pure n-type GaP, GaAs,
InP and InAs. The experimental data are gathered from various sources (see text)

Wiley and DiDomenico [12.17] also reported values of Dij = 8 eV/Å and E1 ∼ 10 eV
by analyzing their measured free-carrier absorption data of n-GaP.

The mobility data obtained from different experiments above 100 K in many semi-
conductors are essentially identical and may therefore be taken to represent the lattice
scattering-limited mobility. Stillman et al. [12.9] showed that the temperature dependence
of µe for GaAs can be explained by contributions of three scattering mechanisms: polar
phonon scattering, acoustic phonon (deformation potential) scattering and ionized impu-
rity scattering. We reproduce in Figure 12.5 their temperature variations of the electron
Hall mobility for three different samples [12.9]. At low temperatures below about 50 K,
the dominant scattering mechanism is ionized impurity scattering (µe ∝ T 3/2, see also
Figure 12.4). Above 70 K, the mobility is almost entirely limited to polar optical scatter-
ing. Lesser scattering processes, such as piezoelectric and carrier-carrier scattering, were
omitted in these analyses.

As seen in Figure 12.4, the lattice scattering-limited mobilities in III–V semiconductors
can be approximated by µe ∝ T −m with m ∼ 1.7–2.5. Similarly, we obtain m ∼ 1.7–2.3
for diamond [12.18], ∼2.2–2.4 for Si [12.19–12.21] and ∼1.6–2.5 for Ge [12.22–12.24].

(b) Pressure effect

The pressure dependence of the electron Hall mobility µe has been studied for various
semiconductors, such as Si [12.25], Ge [12.26], GaAs [12.27], GaSb [12.28], InP [12.27],
InAs [12.29, 12.30] and InSb [12.31]. All these data showed that µe decreases with
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Figure 12.5 Temperature variation of the electron Hall mobility µ measured at 5 kG for three
different n-GaAs samples. In the temperature range from 300 to 77 K, the mobility for sample (a)
is dominated by polar optical scattering. Samples (b) and (c) show increased effects of ionized-
impurity scattering. [From G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, J. Phys. Chem. Solids
31, 1199 (1970), reproduced by permission from Elsevier]

increasing pressure. This can be easily understood by distinguishing each scattering mech-
anism in the manner

d ln µe
i

dp
= 1

µe
i

dµe
i

dp
∝ s

dmα
c

dp
(12.22)

where s = −5/2 for µe
iv, −3/2 for µe

po, −1/2 for µe
ii, etc. (s � 0, see Table 12.2) and

dmα
c /dp is usually positive. Thus, we find that d ln µe

i /dp is negative, i.e., µe
i usually

decreases with increasing pressure p. The experimental d ln µe
i /dp, values reported are

of the order of 10−6 bar [12.25, 12.30].

(c) Doping effect

An analytical expression relating carrier mobility µ and carrier concentration n represents
an important tool for designing and analyzing semiconductor devices. Models by Arora
et al. [12.21], Klaassen [12.32], Caughey and Thomas [12.33], Mohammad et al. [12.34]
and Sotoodeh et al. [12.35] are examples of empirical mobility.

The low-field model used by Sotoodeh et al. [12.35] is expressed by

µ(T , n) = µmin +
µmax ×

(
300

T

)θ1

− µmin

1 +
(

n

nref × (T /300)θ2

)α (12.23)
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where µmax and nref values are at T = 300 K. All the fitting parameters in Equation (12.23)
are non-negative. This equation promises that at very low doping concentration µ(T ) satu-
rates at µmax(T ) and at high doping concentration at µmin(T ). nref(T ) = nref × (T /300)θ2

is the doping concentration at which mobility reduces to almost half of its maximum
value at low doping. At T = 300 K, Equation (12.23) agrees exactly with the empirical
expression proposed by Caughey and Thomas [12.33]

µ(n) = µmin + µmax − µmin

1 + (n/nref)
α

(12.24)

Data on µ versus electron concentration n are available for many semiconductors. We
summarize in Table 12.4 the fitted parameters, µmin, µmax, nref and α, in Equation (12.24)
obtained from analyzing the 300 K data for various group-IV, III–V and II–VI semicon-
ductors. Figures 12.6–12.8 show the fitted results using Equation (12.24) for Si, α-GaN
and ZnSe, respectively. The experimental data plotted in Figure 12.6 are taken from Bac-
carani and Ostoja [12.36] and Masetti et al. [12.37], and those in Figure 12.7 are obtained
from Mohammad et al. [12.38].

Table 12.4 Empirical expression for the carrier mobility µ in n-type semiconductors as a function
of free-electron concentration n at 300 K

µ = µmin + µmax − µmin

1 + (n/nref)α

System Material µmin (cm2/V s) µmax (cm2/V s) nref (cm−3) α

IV Si 100 1480 1.0 × 1017 0.80
Ge 0 4500 1.0 × 1017 0.45
3C-SiC 50 1550 1.5 × 1017 1.00
4H-SiC 0 1400 1.0 × 1017 0.50
6H-SiC 0 650 1.0 × 1018 0.60

III–V AlAs 10 400 5.46 × 1017 1.00
α-GaN 85 5300 1.0 × 1015 0.45
β-GaN 65 1350 1.0 × 1018 0.80
GaP 10 152 4.4 × 1018 0.80
GaAs 500 9400 6.0 × 1016 0.394
GaSb 0 9500 1.0 × 1017 0.60
InN 100 5400 1.0 × 1017 0.80
InP 0 5000 4.0 × 1017 0.45
InAs 1000 34000 1.1 × 1018 0.32
InSb 0 92000 3.0 × 1017 0.68

II–VI ZnO (j ⊥ c) 30 280 5.0 × 1017 0.50
ZnO (j ||c) 30 250 5.0 × 1017 0.50
α-ZnS 80 800 5.0 × 1017 0.60
β-ZnS 85 800 3.0 × 1014 0.50
ZnSe 30 1730 7.0 × 1016 0.55
ZnTe 0 1000 7.0 × 1018 1.5
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Figure 12.6 Electron Hall mobility µ versus electron concentration n in n-Si at 300 K. The
experimental data are taken from Baccarani and Ostoja (ž) [12.36] and Masetti et al. (Ž) [12.37].
The solid line represents the calculated result with µ = 100 + 1380/[1 + (n/1017)0.80], where n is
in cm−3 and µ is in cm2/V s. [From S. Adachi, Handbook on Physical Properties of Semiconductors
Volume 1: Group-IV Semiconductors (Kluwer Academic, Boston, 2004), reproduced by permission
from Kluwer Academic Publishers]
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Figure 12.7 Electron Hall mobility µ versus electron concentration n for n-type α-GaN at 300 K.
The experimental data are taken from Mohammad et al. [12.38]. The solid line represents the calcu-
lated result with µ = 85 + 5215/[1 + (n/1015)0.45], where n is in cm−3 and µ is in cm2/V s. [From
S. Adachi, Handbook on Physical Properties of Semiconductors Volume 2: III–V Compound Semi-
conductors (Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic
Publishers]

12.1.5 Hall factor

The Hall effect is the principal mean of characterizing the microscopic quality of semi-
conductors. The carrier concentration n can be determined from Hall coefficient RH by
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Figure 12.8 Electron Hall mobility µ versus electron concentration n in n-ZnSe at 300 K. The
experimental data are gathered from various sources. The solid line represents the calculated result
with µ = 30 + 1700/[1 + (n/7 × 1016)0.55], where n is in cm−3 and µ is in cm2/V s. [From S.
Adachi, Handbook on Physical Properties of Semiconductors Volume 3: II–VI Compound Semi-
conductors (Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic
Publishers]

the relation
n = γ

eRH
(12.25)

where e is the elementary charge and γ is a dimensionless parameter of order one called
the Hall factor or the Hall scattering factor. The Hall factor γ is dependent on both
the band structure and scattering mechanisms of the semiconductor, as well as on the
magnetic field.

The carrier concentration n can be used to determine the mobility from the definition

µc ≡ σ

ne
= σRH

γ
(12.26)

where σ is the conductivity. Since the γ value is not known precisely, it is often set
equal to one for convenience. Unfortunately, this assumption is exactly valid only for
degenerate semiconductors or when the magnetic field is high enough that the magnetic
motion dominates the scattering. This occurs when ωcτ � 1, where ωc = eH/m∗ is the
cyclotron frequency and τ = σm∗/ne2 is the carrier scattering time (H = magnetic field
strength; m∗ = effective carrier mass). It should be noted that the condition ωcτ � 1 is
unattainable for many practical situations. Because of this, a distinction is made between
two mobility definitions, µc and µH. The conductivity or drift mobility µc is defined by
Equation (12.26), while the Hall mobility is defined as

µH ≡ σRH (12.27)
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Thus, the Hall factor is given by the ratio

γ = µH

µc
= σRH

(σRH/γ )
(12.28)

The Hall mobility is the easiest to measure and is, therefore, widely determined exper-
imentally. On the other hand, the conductivity mobility is the easiest to calculate since
it contains only one component of the magnetoconductivity tensor in the direction of the
current, in contrast to the Hall mobility that contains both diagonal and non-diagonal
components of the magnetoconductivity tensor.

The temperature dependence of the Hall factor has been measured for many semicon-
ductors. We show in Figure 12.9, as an example, the Hall factor γ measured for electrons
and holes in high-purity n-type and p-type Ge [12.22]. The Hall factor γ for electrons
is nearly constant at ∼1.0. The factor γ for holes shows significant temperature depen-
dence. The electron mobility for 50 � T � 300 K was found to obey ∝ T −1.66 [12.22],
i.e., in reasonable agreement with the lattice scattering-limited mobility µ ∝ T −3/2. In
the region T > 100 K where γ for holes gradually increased with increasing T , the hole
mobility showed the temperature dependence of ∝ T −2.33, suggesting a complex scattering
mechanism of holes in p-Ge.

The Hall factor γ as a function of magnetic field B measured for 6H-SiC at 300 K
is shown in Figure 12.10 [12.39]. The magnetic field B was applied to the direction
parallel to the c axis of the sample. In Figure 12.10, γ is less than unity; however, it
approaches unity as B increases. The solid line represents the theoretical analysis based on
the anisotropic electron transport with an energy-independent scattering time developed
for the Hall coefficient in n-type Ge. The analysis suggested that the electron mass in 6H-
SiC along the c direction is 5.2 times larger than that in the transverse direction [12.39].
It is thus concluded that the Hall measurement can be utilized as a simple, but effective
method for determining the mass anisotropy parameter in SiC.
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Figure 12.9 Hall factor γ for electrons and holes in n-Ge and p-Ge as a function of temperature
T . [From F. J. Morin, Phys. Rev. 93, 62 (1954), reproduced by permission from the American
Physical Society]
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Figure 12.10 Hall factor γ as a function of magnetic field B measured for electrons in 6H-SiC at
300 K for (j ⊥ c, B ||c). The solid line represents the theoretical fit. [From G. D. Chen, J. Y. Lin,
and H. X. Jiang, Appl. Phys. Lett. 68, 1341 (1996), reproduced by permission from the American
Institute of Physics]

The Hall mobility in the three-valley model has been given in Section 12.1.2. The
conductivity mobility µc and Hall factor γ in that model can be, respectively, written as

µc = µ�

1 + (nL/n�)(µL/µ�) + (nX/n�)(µX/µ�)

1 + (nL/n�) + (nX/n�)
(12.29)

γ = [1 + (nL/n�) + (nX/n�)][1 + (nL/n�)(µL/µ�)2 + (nX/n�)(µX/µ�)2]

[1 + (nL/n�)(µL/µ�) + (nX/n�)(µX/µ�)]2
(12.30)

12.2 LOW-FIELD MOBILITY: HOLES

12.2.1 Hole scattering mechanism

The valence band of ANB8-N semiconductors consists of the three atomic p-like bands,
the light-hole (LH), heavy-hole (HH) and spin–orbit split-off (SO) bands. Hole transport
at the top of the valence band is, then, complicated by the following essential facts: (1) the
degeneracy of the valence band, the influence of the light holes and interband scattering
between the LH and HH bands; (2) the p-type symmetry of hole wavefunctions; and (3)
the warping of the HH band. A dominant role of polar optical scattering can also hardly
be expected on physical grounds because large values of the HH mass favor acoustic and
nonpolar optical deformation potential scattering.

The correct way of handling the degeneracy of valence bands is by solving a set of
coupled Boltzmann equations; the simplest model results from assuming that the HH and
LH bands are decoupled. The mobilities of the two bands are, then, simply additive and
it is easy to show that [12.40]

µeff = p1µ1 + p2µ2

p1 + p2
(12.31)
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where µeff is the effective or measured mobility and p1 and p2 are the average densities
of holes in the HH and LH bands (the total hole concentration is thus p = p1 + p2).
If the bands are assumed to be approximately spherical, then p1/p2 = (m1/m2)

3/2 =
(mHH/mLH)3/2 ≡ d3/2, where mHH and mLH are, respectively, the HH and LH masses.
Equation (12.31) can then be written as

µeff = (µ2/µ1) + d3/2

1 + d3/2
(12.32)

When µ1 and µ2 are calculated using the standard expressions for the mobilities, the
ratio µ2/µ1 can be reduced to a simple power of d , depending on the mass dependence
of the scattering mechanism under consideration. This approach yields

µh
ii = 1.5

(
d1/2 + d3/2

1 + d3/2

)
µe

ii (12.33a)

µh
po = 2Kµe

po (12.33b)

µh
sc =

(
d5/2 + d3

(1 + d3/2)2

)
µe

sc (12.33c)

µh
al =

(
d5/2 + d3

(1 + d3/2)2

)
µe

al (12.33d)

and

µh
ac,npo = 3.17 × 10−4 d5/2(1 + d1/2)

(1 + d3/2)2

gv−2

(mHH/m0)
5/2

S(θ, η, T )T −3/2

E2
ac,h

(12.33e)

where µe
ii, µe

po, µe
sc and µe

al are obtained from the equations for electrons, but substitut-
ing the HH effective mass mHH. The factor 1.5 in Equation (12.33a) and the factor 2
in Equation (12.33b) take into account the p-like symmetry of the hole wavefunctions
and K is a correction factor to take into account the contribution from the light holes,
shown graphically by Wiley [12.40]; µh

ac,npo is the hole mobility combined with acous-
tic scattering-limited and nonpolar optical scattering-limited mobilities. g is the crystal
density and v is an average sound velocity defined by

v =
√

Cl + 2Ct

3g
(12.34)

with

Cl = 1
5 (3C11 + 2C12 + 4C44) (12.35a)

Ct = 1
5 (C11 − C12 + 3C44) (12.35b)

where Cij are the elastic stiffness constants. Eac,h is the hole deformation potential
defined by

Eac,h =
√

β + 2

6β
Ξeff (12.36)
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with β = Cl/Ct. Ξeff in Equation (12.36) is now given by

Ξeff =
√

a2 + Cl

Ct

(
b2 + 1

2
d2

)
(12.37)

where a, b and d are the valence-band deformation potentials.
In Equation (12.33e), S is a strongly temperature-dependent function [12.40, 12.41],

θ is the characteristic temperature of the optical phonons and η = (Enpo/Eac,h)
2, where

Enpo is the phenomenological optical deformation potential which can be related to the
optical phonon deformation potential d0 by the expression

Enpo = M1 + M2

2
√

M1M2

√
Cl(β + 2)

2gω2
0a

2
0β

d0 (12.38)

M1 and M2 are the masses of the atoms in a unit cell, ω0 is the angular frequency
of zone-center longitudinal optical phonons and a0 is the lattice constant. Note that
the expression given by Equation (12.33e) differs from one given earlier by Wiley and
DiDomenico [12.41] by a factor (1 + d−3/2)−1, which was shown by Costato et al. [12.42]
to take interband scattering into account explicitly. Wiley [12.40] has shown that the val-
ues of Eac,h do not vary from material to material: 3.5 eV (GaAs, AlAs and GaP), 3.6 eV
(InP) and 3.2 eV (InAs).

12.2.2 Room-temperature value

We summarize in Table 12.5 the 300 K (µ300K) and peak Hall mobilities (µpeak) for holes
in some cubic and hexagonal semiconductors. Figure 12.11 also plots the µ300K and µpeak

values versus lowest direct band-gap energy E0 for these semiconductors. In contrast to
the electrons in Section 12.1.3, there appears to be no clear relationship between µ300K

(µpeak) and E0. This can be understood from the fact that the hole (HH) effective mass
differ not so largely by material to material.

12.2.3 External perturbation and doping effects

(a) Temperature effect

Figure 12.12 shows the temperature dependence of the hole Hall mobility µh for p-type
GaP, GaAs, InP and InAs. The experimental data are taken for GaP from [12.43], for GaAs
from [12.44, 12.45], for InP from [12.46] and for InAs from [12.47]. The samples used
in these studies had relatively high purity, except InAs. Because of its small band-gap,
E0 = 0.36 eV at 300 K, InAs becomes intrinsic at high temperatures. We must, therefore,
resort to rather heavy doping with acceptor dopants in order to obtain p-type InAs samples.
The data shown in Figure 12.12 were taken for a sample with p ∼ 2 × 1017 cm−3 at
T ∼ 150 K.

For InP, the empirical law µ ∝ T −2 is found to hold at T > 100 K; µ decreases
strongly at T < 40 K because of the onset of impurity conduction. The hole mobility in
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Table 12.5 300 K (µ300K) and peak Hall mobilities (µpeak) for holes in
some cubic and hexagonal semiconductors

System Material µ300K (cm2/V s) µpeak (cm2/V s)

IV Diamond 1500 6000 (T ∼ 110 K)
Si 450a 350000 (T = 6 K)a

Ge 2400 550000 (T ∼ 8 K)
α-Sn 25800 (T = 25 K)
3C-SiC ∼60 ∼80 (T ∼ 210 K)
6H-SiC 100 240 (T ∼ 150 K)

III–V BP 500 500 (T = 300 K)
w-AlN 14
AlP 450
AlAs 105 105 (T = 300 K)
AlSb 420 5000 (T ∼ 50 K)
α-GaN 370 500 (T ∼ 250 K)
β-GaN 350 1250 (T ∼ 120 K)
GaP 140 2050 (T ∼ 55 K)
GaAs 450 28000 (T ∼ 22 K)
GaSb 1624 13300 (T ∼ 25 K)
InP 180 3000 (T ∼ 60 K)
InAs 450 1200 (T ∼ 70 K)
InSb 1100 29000 (T ∼ 20 − 30 K)

II–VI β-ZnS 72
ZnSe 355 596 (T = 77 K)
ZnTe 100 6500 (T = 35 K)
w-CdS 48
w-CdSe 50
CdTe 104 1200 (T = 170 K)
HgTe 320 45000 (T ∼ 10 K)

aDrift (conductivity) mobility

GaAs rises as the temperature is lowered, obeying the law µ ∝ T −2 in the range 80 <

T < 200 K, and tends to reach a maximum µ ∼ 3 × 104 cm2/V s at 20 K. The mobility in
GaP also rises as the temperature is lowered, reaches a maximum µ ∼ 2 × 103 cm2/V s
and decreases dramatically with further decrease of T . The temperature dependence of
µ for InAs shows a T −2 power law for T > 250 K. Below 200 K, the ionized impurity
scattering dominates other scattering mechanisms.

Figure 12.13(a) shows the total and partial conductivity mobilities µc and experimen-
tal results in the phonon-limited regime of p-Si as a function of temperature [12.48].
The corresponding Hall mobility results are shown in Figure 12.13(b). The experimental
data in Figure 12.13(a) are taken from [12.49, 12.50] and those in Figure 12.13(b) are
from [12.49]. The conductivity and Hall mobilities were calculated without the relaxation-
time approximation form solutions of the full Boltzmann equation, with accurate HH, LH
and SO wavefunctions and valence-band dispersions. Only the optical phonon deforma-
tion potential d0 was adjusted to yield agreement with transport data at room temperature.
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Figure 12.11 (a) Hole Hall mobility at 300 K, µ300K; (b) hole Hall peak mobility, µpeak, versus
E0 for some group-IV, III–V and II–VI semiconductors
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Figure 12.12 Hole Hall mobility µ versus temperature T for p-type GaP, GaAs, InP and InAs.
The experimental data are gathered from various sources (see text)
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Figure 12.13 (a) Total and partial conductivity mobilities µc and experimental results in the
phonon-limited regime of p-Si as a function of temperature. Calculated curves: solid lines. Cir-
cles: sample 1202-H of Mitchel and Hemenger [12.49], NA = 6.57 × 1011 cm−3, ND = 3.96 ×
1011 cm−3. Squares: Ludwig and Watters [12.50], minority-carrier drift mobility on n-type samples
with resistivities between 19–180 � cm; (b) total and partial Hall mobilities µH and experimen-
tal results in the phonon-limited regime of p-Si as a function of temperature. Calculated curves:
solid lines. Circles: sample 1202-H of Mitchel and Hemenger [12.49], NA = 6.57 × 1011 cm−3,
ND = 3.96 × 1011 cm−3. [From F. Szmulowicz, Appl. Phys. Lett. 43, 485 (1983), reproduced by
permission from the American Institute of Physics]

As seen in Figure 12.13, the theoretical mobilities agree quite well with the experimental
data over the entire temperature range. The average slope in the 100–300 K region is
found to be about 2.4 in Figure 12.13(a) and 2.9 in Figure 12.13(b).

The Hall factor γ = µH/µc as a function of temperature T for p-Si obtained from
Figure 12.13 is plotted in Figure 12.14 [12.48]. The low-temperature region is found to
agree with the data of Mitchel and Hemenger [12.49] (�). The single point of Reid and
Willardson [12.51] at 77 K (�) makes it plausible that the γ factor continues to rise to
80 K. From the data of Long [12.52] (�) and Morin and Maita [12.53] (♦), it is apparent
that the γ factor should decrease and level out as predicted. The optical deformation
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Figure 12.14 Theoretical and experimental Hall factor γ as a function of temperature for p-
Si. Circles: sample 1202-H of Mitchel and Hemenger [12.49], NA = 6.57 × 1011 cm−3, ND =
3.96 × 1011 cm−3. Triangles: sample 1300-V of Mitchel and Hemenger [12.49], NA = 9.14 ×
1011 cm−3, ND = 3.33 × 1011 cm−3. Square: sample 8A of Reid and Willardson [12.51], NA –ND =
4 × 1012 cm−3. Inverted triangles: Long [12.52], NA –ND = 3.5 × 1014 cm−3. Diamonds: sample
127 of Morin and Maita [12.53], NA = 7 × 1014 cm−3, ND = 2.2 × 1014 cm−3. The d0 = 0 eV
curve represents the calculated pure acoustic phonon result. [From F. Szmulowicz, Appl. Phys.
Lett. 43, 485 (1983), reproduced by permission from the American Institute of Physics]

potential d0 determined from these fits is about 29 eV. This value is comparable to those
reported in [12.54, 12.55] (d0 ∼ 24.4–33.6 eV), but is much smaller than the value of
41.5 eV reported in [12.56].

(b) Pressure effect

The pressure dependence of the hole Hall mobility µh has been studied for GaAs [12.57],
InP [12.57] and InAs [12.30]. The hole Hall mobilities in GaAs and InP are observed to
increase with pressure at a rate of 0.31%/kbar and 0.18%/kbar, respectively, while the
mobility in InAs is decreased with pressure at ∼0.4%/kbar.

(c) Doping effect

Data on µ versus hole concentration p are available for many semiconductors. We sum-
marize in Table 12.6 the empirically fitted results using Equation (12.24) for the data of
group-IV, III–V and II–VI semiconductors at T = 300 K. Figures 12.15–12.17 represent
the fitted results of Equation (12.24) for Si, InSb and ZnTe, respectively. The experimen-
tal data in Figure 12.15 are taken from Masetti et al. [12.37] and Thurber et al. [12.58],
in Figure 12.16 from Wiley [12.40] and those in Figure 12.17 are gathered from various
sources.
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Table 12.6 Empirical expression for the carrier mobility µ in p-type semiconductors as a function
of free-hole concentration p at 300 K

µ = µmin + µmax − µmin

1 + (p/pref)α

System Material µmin (cm2/V s) µmax (cm2/V s) pref (cm−3) α

IV Diamond 0 5100 1.0 × 1014 0.66
Si 40 540 2.0 × 1017 0.53
Ge 0 2900 1.0 × 1017 0.45
4H-SiC 15.9 124 1.76 × 1019 0.34
6H-SiC 13 108 2.0 × 1019 0.40

III–V AlAs 10 200 3.84 × 1017 0.488
AlSb 0 600 6.0 × 1017 0.65
α-GaN 0 410 1.0 × 1018 0.75
β-GaN 0 455 5.0 × 1017 0.65
GaP 10 147 1.0 × 1018 0.85
GaAs 20 491.5 1.48 × 1017 0.38
GaSb 0 2300 1.0 × 1017 0.38
InP 10 170 4.87 × 1018 0.62
InAs 20 530 1.1 × 1017 0.46
InSb 50 800 4.0 × 1018 0.42

II–VI β-ZnS 0 120 5.0 × 1018 0.25
ZnSe 0 550 1.0 × 1017 0.38
ZnTe 0 120 1.0 × 1018 0.50
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Figure 12.15 Hole Hall mobility µ versus hole concentration p in p-Si at 300 K. The experi-
mental data are taken from Masetti et al. (Ž) [12.37] and Thurber et al. (ž) [12.58]. The solid line
represents the calculated result with µ = 40 + 500/[1 + (p/2 × 1017)0.53], where p is in cm−3 and
µ is in cm2/V s. [From S. Adachi, Handbook on Physical Properties of Semiconductors Volume
1: Group-IV Semiconductors (Kluwer Academic, Boston, 2004), reproduced by permission from
Kluwer Academic Publishers]
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Figure 12.16 Hole Hall mobility µ versus hole concentration p in p-InSb at 300 K. The exper-
imental data are taken from Wiley [12.40]. The solid line represents the calculated result with
µ = 50 + 750/[1 + (p/4 × 1018)0.42], where p is in cm−3 and µ is in cm2/V s. [From S. Adachi,
Handbook on Physical Properties of Semiconductors Volume 2: III–V Compound Semiconductors
(Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic Publishers]
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Figure 12.17 Hole Hall mobility µ versus hole concentration p in p-ZnTe at 300 K. The exper-
imental data are gathered from various sources. The solid line represents the calculated result with
µ = 120/[1 + (p/1018)0.50], where p is in cm−3 and µ is in cm2/V s. [From S. Adachi, Handbook
on Physical Properties of Semiconductors Volume 3: II–VI Compound Semiconductors (Kluwer
Academic, Boston, 2004), reproduced by permission from Kluwer Academic Publishers]

12.3 HIGH-FIELD TRANSPORT: ELECTRONS

12.3.1 Electron drift velocity–field characteristic

The carrier transport property in high electric fields is one of the most important parame-
ters in electron device design. Performance of high-speed and microwave semiconductor
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devices depends essentially on carrier velocity. It is thus very important to know the
carrier drift velocity as a function of electric field in a bulk semiconductor. It is, however,
very difficult to make a direct measurement of the drift velocity of electrons as a function
of electric field in some semiconductors. This is because in high-conductivity material,
the sample normally oscillates when the average field in the sample is above the threshold
value. This type of microwave oscillation, known as the Gunn effect [12.59], is caused by
the transfer of electrons from high-mobility valley to low-mobility valley in the conduc-
tion band of some III–V semiconductors. Principally, Gunn oscillation cannot be observed
in an indirect band-gap semiconductor. In lower-conductivity samples, the electric field
may become highly nonuniform within the sample, even if it does not oscillate.

Electron transport in a multivalley semiconductor depends in a detailed manner on the
numbers of carriers in the individual valley portions of the conduction band. We show in
Figure 12.18 an approximate band structure of GaAs. At low values of electric field the
electrons are dominantly in the � valley. As the field increases and polar optical phonon
scattering no longer effectively removes the excess carrier energy, a certain fraction of
electrons, with the assistance of phonons, transfers to the subsidiary L valley, of which
there are four equivalent valleys. The rate at which these electrons are transferred deter-
mines whether negative differential mobility will occur. At further increases in field the
electrons can also transfer to the next higher valley, the X valley, of which there are three
equivalent valleys. Transfer between any two valleys including equivalent valleys occurs.

We reproduce in Figure 12.19 the intervalley phonon scattering rate and impact ioniza-
tion probability in GaAs as a function of electron energy [12.60]. The solid and dashed
lines are obtained from a Monte Carlo simulation technique using the two sets of scat-
tering parameters. In the low energy range, the scattering rate is very well known (LO
phonon scattering) and proved by numerous experiments. We can see in Figure 12.19 that
the average time between scattering is of the order of 10−12 s for energies below 0.036 eV
(h̄ωLO), 10−13 s for energies between 0.036 and 0.3 eV and 10−14 s above 0.3 eV (∆E�L),
when scattering to higher-band minima becomes possible via the intervalley deformation
potential interaction.

--
--
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- - - -- - -
--

E

k

Γ XL

Conduction Band

Valence Band

Figure 12.18 Approximate band structure of GaAs. At low values of electric fields the electrons
are dominantly in the � valley. As the field increases, a certain fraction of electrons, with the
assistance of phonons, transfers to the subsidiary L valley. At further increase in field the electrons
can also transfer to the next higher valley X
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Figure 12.19 Phonon scattering rate and the impact ionization probability in GaAs as a function
of electron energy. The solid and dashed lines are obtained from a Monte Carlo calculation using
the two sets of scattering parameters. [From H. Shichijo and K. Hess, Phys. Rev. B 23, 4197 (1981),
reproduced by permission from the American Physical Society]

The optical phonon energy h̄ωLO in many semiconductors is comparable or larger than
thermal energy kT at room temperature and, as a result, the polar optical scattering must
include the inelastic nature in any quantitative theory. When the scattering mechanism is
elastic, e.g., impurity scattering, a relaxation time characterizing the rate at which momen-
tum decay can be defined. From relaxation time, one can calculate the perturbation of an
equilibrium electron distribution by a small electric field and, hence, electron mobility.
When the scattering is inelastic, no relaxation time exists exactly, although in certain
limits this approximation can be useful. The Boltzmann transport expression in which
the average rates of energy loss and momentum loss through collisions are balanced by
energy and momentum gain due to the electric field provides the following energy and
momentum balance equations [12.1]

〈
dε

dt

〉
E

+
∑

i

〈
dε

dt

〉
i

= 0 (12.39a)

〈
dp

dt

〉
E

+
∑

i

〈
dp

dt

〉
i

= 0 (12.39b)
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where the index i refers to the ith scattering mechanism and the subscript E refers to the
electric field.

Let us consider a simple case in which energy loss of electrons comes from only polar
optical scattering. This scattering is the most dominant mechanism near room temperature
in many semiconductors. For a Maxwell–Boltzmann distribution at electron temperature
Te, the average rates of change of carrier energy and momentum due to polar optical
interactions are readily found to be [12.1]

〈
dε

dt

〉
po

=
√

2kθpo

πm�
e

eEo
e(χ0−χe)−1

eχ0−1

√
χee

χe/2K0(χe/2) (12.40a)

〈
dp

dt

〉
po

=
√

2m�
e eEoNqvd

3
√

πkθpo
χ3/2

e eχe/2

× [(e(χ0−χe) + 1)K1(χe/2) + (e(χ0−χe) − 1)K0(χe/2)] (12.40b)

with

θpo = h̄ωLO

k
(12.41)

Eo = m�
e eωLO

h̄

(
1

ε∞
− 1

εs

)
(12.42)

In Equations (12.40)–(12.42), θpo and Eo are the Debye temperature and effective polar-
ization field of the LO phonons, respectively, χe = h̄ωLO/kTe, χ0 = h̄ωLO/kT0 with T0 the
lattice temperature, Nq = 1/[exp(χ0)−1], vd is the electron drift velocity in the electric
field E and K0 and K1 are modified Bessel functions of the second kind.

The equations for the changes in energy and momentum due to the applied electric
field E are given by 〈

dε

dt

〉
E

= evdE (12.43a)

〈
dp

dt

〉
E

= eE (12.43b)

Introducing Equations (12.40) and (12.43) into Equation (12.39), we obtain the elec-
tron mobility, µpo, limited by the polar optical scattering as

µpo(T0, E) =
(

m�
e χeE

2

3kθpo

(e(χ0−χe) + 1)K1(χe/2) + (e(χ0−χe) − 1)K0(χe/2)

(e(χ0−χe) − 1)K0(χe/2)

)−1/2

(12.44)

The electric field–electron temperature relation, E–Te, can also be given by(
E

Eo

)2

= 2

3π
N2

q χ2
e eχe(e(χ0−χe) − 1)K0(χe/2)

× [(e(χ0−χe) + 1)K1(χe/2) + (e(χ0−χe) − 1)K0(χe/2)] (12.45)
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Figure 12.20 Polar optical scattering-limited mobility µpo and electron temperature Te as a func-
tion of electric field E for GaAs at the lattice temperature of T0 = 300 K

Figure 12.20 shows the calculated results of the electron mobility µpo at the lattice
temperature of T0 = 300 K as a function of electric field E for GaAs. The corresponding
Te values are also plotted. The calculated mobility µpo decreases gradually with increasing
E; in contrast the electron temperature Te increases with increasing E. One can expect that
experimental mobility, if one measured, would decrease dramatically at fields higher than
∼ 103 V/cm because of the onset of nonequivalent intervalley scattering (�–L, �–X) at
this field region. Note that this type of scattering processes is not taken into consideration
in Figure 12.20.

In multivalley semiconductors at high electric fields, we must consider three sets of
equations: a carrier balance equation, a momentum balance equation and an energy balance
equation. Under uniform field condition these equations for two levels of transfer (e.g.,
� and L) represent particle, momentum and energy conservation [12.61]. For particle
conservation, we obtain

d(a1n1)

dt
= −a1n1Γ1 + a2n2Γ2 (12.46a)

d(a2n2)

dt
= a1n1Γ1 − a2n2Γ2 (12.46b)

In Equation (14.46), there are n1 electrons in each lower-energy valley and n2 in each
higher-energy valley. This equation indicates that there are a1n1 electrons scattered out,
distributed equally to the higher-energy valleys; and there are a2n2 electrons scattered
from the higher-energy valleys into the lower-energy valleys. The respective carrier scat-
tering rates are designated Γ1 and Γ2, respectively. For uniform fields and steady state,
a condition under which the velocity–field curve is generated, the following condition
holds: a1n1Γ1 = a2n2Γ2.

For momentum conservation, the second set of equations describes the rate of change
of momentum in the individual valleys under an applied field and scattering events. Under
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uniform fields and for the low-energy carriers this equation is given by [12.61]

d(n1p1)

dt
= −n1eE − n1p1Γ3 (12.47)

where the momentum is designated p1 = m1v1, Γ3 is the momentum scattering rate for
the low-energy carriers and E is the electric field vector. Under steady state conditions,
n1m1v1 = −(1/Γ3)n1eE . Similar equations can be written for the high-energy valley
carriers and also for holes.

For energy conservation, there are various forms in which the lower-energy valley and
higher-energy valley energy equations can be described. If we cast the energy equations
in terms of species 1 and species 2 electron temperatures T1 and T2, then [12.61]

d(a1n1T1)

dt
= m1v

2
1

3k
[a1n1(2Γ3 − Γ1) + a1n2Γ2] − a1n1T1Γ5 + a2n2T2Γ6 (12.48)

where Γ5 denotes energy relaxation within species 1 valley plus energy exchange with
species 2 valley and Γ6 denotes return energy between species 2 and 1 valleys. The
above analysis requires analytical calculations of the scattering rates. These are taken
from scattering integrals.

There have been a fair number of publications on the theoretical and experimental elec-
tron velocity–electric field curves, ve –E, of semiconductors. The ve –E curve is known
to be strongly dependent on both the material quality and temperature. This is because
the carrier drift mechanism is largely influenced by scattering processes in the material.
The ve –E curve is also dependent on the direction of the electric field. We reproduce
in Figure 12.21 the experimental electron velocity ve as a function of electric field E

obtained for high-purity n-type Si at temperatures between 8 and 300 K with the field
applied along the 〈100〉 and 〈111〉 directions [12.62]. The ve –E curves with the elec-
tric field applied along the 〈100〉, 〈110〉 and 〈111〉 directions at 8 K are also shown in
Figure 12.22 [12.62]. The time-of-flight technique was used in these experiments.

The main features found in Figures 12.21 and 12.22 are: (i) the anisotropy effect
increases with increasing temperature; (ii) the curves of the drift velocity along the 〈100〉
and 〈111〉 directions tend to join together at a value of the electric field increasing with
temperature, even though such a joining has not been reached at all temperatures con-
sidered; (iii) at highest electric field a region of drift velocity nearly independent of the
electric field is obtained; and (iv) a negative differential mobility region is found with
electric field E ||〈100〉 for T below 40 K. It is known that the anisotropy of the electron
drift velocity in Si is due to a repopulation of the ‘hot’ and ‘cold’ valleys at the minimum
of the conduction band [12.1]. The negative differential mobility observed for E ||〈100〉
is a limiting case of such repopulation effect.

We compare in Figure 12.23 the ve –E curves for Si (〈111〉), GaP, GaAs and InP at
T = 300 K. These curves are obtained by calculating empirical equations in [12.19] for
Si, in [12.63] for GaP and in [12.64] for GaAs and InP. The empirical equation used
in [12.19] and [12.63] can be simply written as

ve(E) = µE[
1 +

(
µE

vs

)β
]1/β

(12.49)
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Figure 12.21 Electron drift velocity ve as a function of electric field E applied parallel to:
(a) 〈100〉; (b) 〈111〉 crystallographic directions in high-purity n-type Si at temperatures between 8
and 300 K. [From C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, Phys.
Rev. B 12, 2265 (1975), reproduced by permission from the American Physical Society]

while that proposed in [12.64] is given by

ve(E) =
µ0E + (3vm − 2µ0EM)

(
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)(
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)3 (12.50)

It is easily recognized from Figure 12.23 that InP is very promising for high-frequency
transistors and high-speed logic applications. The extremely low electron velocities of Si
and GaP are due to the large electron effective masses in the lowest conduction band (X)
of these materials. The experimentally obtained saturation drift velocity in GaP is ∼1.25 ×
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Figure 12.22 Electron drift velocity ve as a function of electric field E applied parallel to the
〈100〉, 〈110〉 and 〈111〉 crystallographic directions in high-purity n-type Si at 8 K. [From C. Canali,
C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, Phys. Rev. B 12, 2265 (1975),
reproduced by permission from the American Physical Society]
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Figure 12.23 Electron drift velocity ve versus electric field E for Si, GaP, GaAs and InP. The
ve –E curves are taken for Si from Jacoboni et al. [12.19], for GaP from Johnson and Eknoyan
[12.63] and for GaAs and InP from Majumdart [12.64]

107 cm/s [12.63]. It has been found theoretically [12.65] that this value is sensitive only to
the phonon coupling constant. For α-GaN [12.66], the observed electron velocity at T =
300 K tended to saturate gradually with increasing E and reached a peak of 1.9 × 107 cm/s
at E ∼ 225 kV/cm. At fields higher than 250 kV/cm, an apparent slight decline in the
electron velocity was observed.
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12.3.2 Electron saturation drift velocity

(a) Temperature dependence

It is necessary to know the velocity–field curve in the higher-field regime in order
to predict the frequency limitations of transit time-limited microwave devices, such as
microwave transistors, IMPATTs (impact avalanche and transit time devices), transferred
electron devices and optical devices, such as avalanche photodiodes and phototransis-
tors. The electron velocity as a function of field in the higher-field regime has been
measured for various semiconductors. We reproduce in Figure 12.24, as an example, the
temperature-dependent electron velocity measured for GaAs [12.67]. The reason for the
saturation of the velocity at high fields can be explained in thermal equilibrium terms. At
low fields the electrons are in equilibrium with the lattice, and, on the average, they pick
up as much energy per collision as they lose. As the electron velocity approaches the
thermal velocity, the electrons, on the average, give more energy to the lattice than they
receive per collision and the velocity saturates. We can understand from Figure 12.24 that
the saturation velocity, obtained for an average electric field of about 100–200 kV/cm,
gradually decreases with increasing temperature.

The temperature-dependent electron saturation velocity ve,sat(T ) can be simply written
as [12.68]

ve,sat(T ) = ve,sat(0) − KT (12.51)

where ve,sat(0) is the saturation velocity at the temperature T = 0 K. The ve,sat(0) and
K values for InP (In0.53Ga0.47As) are, respectively, ve,sat(0) = 1.0 × 107 cm/s (7.7 ×
106 cm/s) and K = 7 × 103 cm/s K (5 × 103 cm/s K). Allam and Pribetich [12.69] also
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Figure 12.24 Temperature-dependent electron drift velocity ve in GaAs measured for eight typical
samples. [From T. H. Windhorn, T. J. Roth, L. M. Zinkiewicz, O. L. Gaddy, and G. E. Stillman,
Appl. Phys. Lett. 40, 513 (1982), reproduced by permission from the American Institute of Physics]
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showed that the electron saturation velocity ve,sat(T ) in GaAs can be expressed as

ve,sat(T ) = ve,sat(T0)

(
K1 + K2

T

)
(12.52)

where vs,sat(T0) is the saturation velocity at the ambient temperature T0 = 300 K and
K1 and K2 are constants. They obtained vs,sat(T0) = 6.0 × 106 cm/s, K1 = 0.415 and
K2 = 175.4 K at T between 300 and 500 K. The vs,sat(T0) value is found to be nearly
the same as that of In0.53Ga0.47 As, but is lower than that of InP (∼8 × 106 cm/s).

More recently, Quay et al. [12.70] presented a model of the temperature-dependent
saturation velocity ve(h),sat(T ) for the electrons and holes. The expression derived by
these authors can be written as

ve(h),sat(T ) = ve(h)s300

(1 − A) + A(T /300)
(12.53)

The model is a two-parameter model, where the first parameter, ve(h)s300, represents the
saturation velocity at the lattice temperature TL = 300 K and the second parameter A

reflects the temperature dependence of the various material parameters involved in the
saturation velocity phenomenon. We summarize in Table 12.7 the values of ve(h)s300 and
A obtained by Quay et al. [12.70]. Table 12.8 also lists the experimentally determined
saturation velocity ve,sat in some hexagonal semiconductors [12.66, 12.71, 12.72].

(b) LO phonon scattering-limited electron saturation drift velocity

It is possible to estimate the electron saturation drift velocities in the �, L and X minima
of semiconductors. If we assume that a single high-energy phonon (a long-wavelength
LO phonon) dominates the energy relaxation, the expected saturation velocity ve,sat can
be written as [12.65]

vα
e,sat =

√
8h̄ωLO

3πmα
c

(12.54)

Table 12.7 ve(h)s300 and A used for the calculation of the temperature-dependent saturation velocity
in some group-IV and III–V semiconductors

ve(h),sat(T ) = ve(h)s300

(1 − A) + A(T/300)

System Material Electrons Holes

ves300 (107 cm/s) A vhs300 (107 cm/s) A

IV Si 1.02 0.74 0.72 0.37
Ge 0.70 0.45 0.63 0.39

III–V AlAs 0.85 0.45
GaAs 0.72 0.44 0.9 0.59
InP 0.68 0.31
InAs 0.9 0.43
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Table 12.8 Electron saturation drift velocity ve,sat in some hexagonal
semiconductors

System Material ve,sat (106 cm/s) Comment

IV 4H-SiC 22a T = 300 K, E ⊥ c

4H-SiC 8b T = 300 K, E ||c
4H-SiC 7.5b T = 460 K, E ||c
6H-SiC 19a T = 300 K, E ⊥ c

III–V α-GaN �19c T = 300 K, E ||c
a I. A. Khan and J. A. Cooper, Jr., IEEE Trans. Electron Dev. 47,
269 (2000)
bK. V. Vassilevski, K. Zekentes, A. V. Zorenko, and L. P. Romanov,
IEEE Electron Dev. Lett. 21, 485 (2000)
cM. Wraback, H. Shen, J. C. Carrano, T. Li, J. C. Campbell, M. J.
Schurman, and I. T. Ferguson, Appl. Phys. Lett. 76, 1155 (2000)

where mα
c is the conductivity effective mass in the α = �, L or X valley. If several

scattering mechanisms are present, then the expression is far more complicated, as can
be recognized from Equation (12.39).

We list in Table 12.9 the calculated vα
e,sat values for some cubic group-IV, III–V and

II–VI semiconductors. The calculated v�
e,sat value (∼3 × 107 cm/s) for GaAs is consider-

ably larger than the experimentally observed peak velocity ∼2 × 107 cm/s. However, the
X-valley value vX

e,sat is comparable to the experimental saturation velocity ∼ 1 × 107 cm/s.
We can, therefore, suppose that in GaAs the �-conduction electrons exhibit a peak veloc-
ity before reaching the phonon-limited saturation velocity (v�

e,sat) due to the onset of the
intervalley transfer processes, then the drift velocity is limited by the X-valley saturation
velocity vX

e,sat. Figure 12.25 plots the vα
e,sat value in the lowest conduction valley α = �,

X or L versus (mα
c )−1/2 for some cubic group-IV, III–V and II–VI semiconductors.

12.4 HIGH-FIELD TRANSPORT: HOLES

12.4.1 Hole drift velocity–field characteristic

High-field hole transport properties have been studied in many cases with a Monte Carlo
technique. We reproduce in Figure 12.26 the total hole scattering rate in GaAs and
Al0.45Ga0.55As as a function of carrier energy [12.73]. In the valence band, the predomi-
nant scattering mechanisms are polar optical and deformation potential scatterings—when
the effects of impurities can be ignored. In Figure 12.26, the total scattering rate includes
both intraband and interband scattering and impact ionization, but not the effects of
impurities. Impact ionization is treated as a scattering mechanism using the Keldysh
formulation.

The hole drift velocity–electric field curve vh –E has been determined experimentally
for several semiconductors, such as diamond [12.74], Si [12.75], Ge [12.76], GaAs
[12.77], ZnSe [12.78], w-CdS [12.79] and CdTe [12.80]. We reproduce in Figure 12.27
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Table 12.9 LO phonon scattering-limited electron saturation drift velocity vα
e,sat in the

α = �, X and L valleys for some cubic group-IV, III–V and II–VI semiconductors

System Material vα
e,sat (107 cm/s)

� X L

IV Diamond 2.3
Si 1.9
Ge 2.2
3C-SiC 2.37

III–V c-BN 2.6
BP 2.3
AlP 1.7
AlAs 2.2 1.7 2.3
AlSb 1.5
β-GaN 3.0
GaP 1.4
GaAs 2.9 1.3 2.2
GaSb 3.3 0.99 1.9
InP 2.8 1.2 1.8
InAs 4.3
InSb 5.2

II–VI β-MgS 1.9
β-MgSe 1.8
β-MgTe 1.8
β-ZnS 1.8
ZnSe 1.8
ZnTe 1.8
c-CdS 2.0
c-CdSe 1.8
CdTe 1.9

the vh –E curves for high-purity Si measured at temperatures 6–300 K with the applied
field E along the 〈100〉 and 〈111〉 directions using the time-of-flight technique [12.75].
The crystallographic direction dependence of the vh –E curve for high-purity Si
along the 〈100〉, 〈110〉 and 〈111〉 directions at 6, 77 and 300 K are also shown in
Figure 12.28 [12.75].

It is understood from Figures 12.27 and 12.28 that the ohmic region is reached for
T > 100 K; for T < 100 K, it is not reached even at the lowest electric field. It is also
evident that the hole drift velocity exhibits an anisotropic behavior with higher values
for vh in the 〈100〉 direction than in the 〈111〉 direction and with the lowest value in the
〈110〉 direction. This anisotropy is best evidenced by lowering the temperature T . At the
highest fields E ∼ 104, the anisotropy tends to saturate. An analysis using a single warped
heavy-hole band model and a Monte Carlo technique suggests that the anisotropy of the
hot hole transport can be explained as associated with warping of the valence band. The
essentially same anisotropy has also been observed in diamond [12.74], Si [12.75] and
Ge [12.76].
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Figure 12.27 Hole drift velocity vh as a function of electric field E applied parallel to: (a) 〈100〉;
(b) 〈111〉 crystallographic directions in high-purity p-type Si at temperatures between 6 and 300 K.
[From G. Ottaviani, L. Reggiani, C. Canali, F. Nava, and A. Alberigi-Quaranta, Phys. Rev. B 12,
3318 (1975), reproduced by permission from the American Physical Society]

Figure 12.29 shows the steady-state hole drift velocity in GaAs at T = 300 K for
electric field along the 〈100〉, 〈110〉 and 〈111〉 directions calculated with the Monte Carlo
technique [12.81]. The dashed line represents the experimental data for fields along the
〈100〉 direction. It is seen in Figure 12.29 that there is no significant anisotropy in the
calculated hole drift velocity through a large range of the electric fields. It is also found
that the hole drift velocity saturates at fields of about 100 kV/cm. The hole peak veloc-
ity observed is about 7 × 106 cm/s, which is considerably lower than the electron peak
velocity (∼2 × 107 cm/s).

12.4.2 Hole saturation drift velocity

We list in Table 12.10 the experimental values of vh,sat at T = 300 K for some cubic
group-IV and III–V semiconductors. The data are obtained from various sources. It is
found that vh,sat is about 1 × 107 cm/s for many semiconductors.
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Figure 12.28 Hole drift velocity vh as a function of electric field E applied parallel to the 〈100〉,
〈110〉 and 〈111〉 crystallographic directions in high-purity p-type Si at T = 6, 77 and 300 K. [From
G. Ottaviani, L. Reggiani, C. Canali, F. Nava, and A. Alberigi-Quaranta, Phys. Rev. B 12, 3318
(1975), reproduced by permission from the American Physical Society]

The temperature dependence of the hole saturation drift velocity vh,sat(T ) obtained by
Quay et al. [12.70] can be expressed as Equation (12.53). The values of vhs300 and A for
Si, Ge and GaAs have been listed in Table 12.8.

12.5 MINORITY-CARRIER TRANSPORT: ELECTRONS
IN P -TYPE MATERIALS

12.5.1 Minority-electron mobility

Majority-carrier transport in semiconductors has been the subject of intense theoreti-
cal and experimental work. However, minority-carrier transport has received much less
attention. Short minority-carrier lifetimes and high Joule heating rates have usually ham-
pered measurements of minority-carrier transport parameters. From a technological point
of view, however, a better understanding of minority-carrier transport is of paramount
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Figure 12.29 Steady-state hole drift velocity vh in GaAs at 300 K as a function of applied electric
field obtained from the Monte Carlo calculation. The dashed line represents the experimental data
for fields along the 〈100〉 direction. [From K. Brennan and K. Hess, Phys. Rev. B 29, 5581 (1984),
reproduced by permission from the American Physical Society]

Table 12.10 Hole saturation drift velocity vh,sat in some cubic group-IV and III–V semiconductors
at 300 K

System Material vh,sat (106 cm/s) System Material vh,sat (106 cm/s)

IV Diamond 11 III–V GaAs 9
Si 7.2 InP 7
Ge 6.3
3C-SiC 10

importance. Recent advances in analysis and design of heterojunction bipolar devices, for
example, suggest that an accurate knowledge of transit minority-carrier behavior in the
base region may lead to improved design. When this information is not available, the
assumption is frequently made that its parameter value is equal to the majority-carrier
value. This assumption is likely to be in considerable error, particularly for III–V direct
band-gap semiconductors, because of the large differences between the conduction-band
and valence-band densities of states and effective masses.

Measurements of the minority-electron mobility µ have been performed on several
semiconductors, such as Si [12.82], Ge [12.83], α-GaN [12.84] and GaAs [12.85–12.87].
In high-purity p-Si, µ is independent of the acceptor concentration NA and is essentially
identical to that of the majority electrons, as shown in Figure 12.30. At high doping levels,
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Figure 12.30 Minority-electron and majority-electron mobilities in Si as a function of impurity
concentration Ni at 300 K. The dashed line represents the minority-electron mobility given by
µ = 232 + 1180/[1 + (Ni/8 × 1016)0.90], while the solid line shows the majority-electron mobility
given by µ = 100 + 1380/[1 + (Ni/1017)0.80], where Ni is in cm−3 and µ is in cm2/V s. [From S.
Adachi, Handbook on Physical Properties of Semiconductors Volume 1: Group-IV Semiconductors
(Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic Publishers]

the minority-electron mobility decreases less strongly than the majority-electron mobility
and tends to saturate to a value about 2.5 times larger than the saturated majority value.
The minority-electron mobility µ as a function of NA obtained in p-Si at T = 300 K can
be expressed as [12.88]

µ = 232 + 1180

1 +
(

NA

8 × 1016

)0.90 (12.55)

where µ is in cm2/V s and NA is in cm−3.
Figure 12.31 shows the dependence of minority-electron mobility µ as a function of

acceptor doping concentration NA in p-GaAs at T = 300 K. The experimental data are
taken from Lowney and Bennett [12.85] and Kim et al. [12.86]. The solid line represents
the theoretical result obtained from Monte Carlo technique [12.89]. For comparison, the
majority-electron mobility versus donor concentration ND data are shown by the dashed
line. We can see from Figure 12.31 that the experimental mobility increases with accep-
tor concentrations above 1019 cm−3, as expected from the theoretical calculation. This
effect is explained by the reduction of plasmon scattering and carrier–carrier scatter-
ing (because of the Pauli exclusion principle) [12.85]. The minority-electron mobility in
p-type α-GaN epilayer on (0001) sapphire substrate has also been measured using a dif-
fusion time-of-flight technique by Guan et al. [12.84]. The mobility obtained by them is
0.12 cm2/V s (T = 300 K), which is by about three orders of magnitude smaller than the
majority-electron mobility owing to the higher concentration of Mg dopants in p-type
α-GaN.
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Figure 12.31 Dependence of the minority-electron mobility µ in p-GaAs as a function of acceptor
doping concentration NA. The experimental data are taken from Lowney and Bennett [12.85] and
Kim et al. [12.86]. The solid line represents the theoretical result obtained from Monte Carlo tech-
nique by Furuta and Tomizawa [12.89]. The majority-electron mobility versus donor concentration
ND data are also shown by the dashed line

12.5.2 Minority-electron drift velocity

The minority-electron drift velocity–field characteristics have been determined for sev-
eral p-type semiconductors, such as p-Si [12.90], p-Ge [12.91] and p-InSb [12.92]. We
reproduce in Figure 12.32 the results obtained by Morohashi et al. [12.90] using the
time-of-flight technique. For comparison, those on high-purity, high-resistivity n-Si are
shown by the solid lines [12.93]. In the ohmic region, these data agree with each other;
however, at low temperatures and/or high electric fields, they deviate slightly. The devi-
ation is considered to be due to the ambipolar nature of minority carriers under an
electric field [12.90]. In p-InSb, the ambipolar errors are found to be of the order of
10–15% [12.92]. The negative differential mobility has been observed in p-Ge only
along the 〈100〉 direction at the temperatures as high as 200 K [12.91].

12.5.3 Minority-electron lifetime and diffusion length

The minority-carrier lifetime τ in semiconductors can be determined by different methods,
such as photoconductivity, photoluminescence, electroluminescence decay and switching
of the current in diodes. A considerable scatter of the lifetime can be generally found in a
variety of semiconductors. This is probably due to the fact that some of the experiments
measure diffusion length L

L =
√

kT

e
τµ (12.56)

and assume mobility values µ. The electron diffusion length can now be computed
at any doping level by introducing the available experimental data of µ and τ into
Equation (12.56).
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Figure 12.32 Minority-electron drift velocity as a function of electric field in p-Si measured using
the time-of-flight technique at temperatures between 77 and 300 K. The solid lines represent those
on high-purity, high-resistivity n-Si by Canali et al. [12.93]. [From M. Morohashi, N. Sawaki, and
I. Akasaki, Jpn. J. Appl. Phys. 24, 661 (1985), reproduced by permission from the Institute of Pure
and Applied Physics]

It is known that the minority-carrier lifetime is dependent both on temperature T and
doping density p or n. An empirical expression for the minority-electron lifetime τ in p-Si
as a function of hole concentration p and temperature T obtained by Klaassen [12.32]
can be written as

τ−1 = (τ−1
0 + CSRHNt)(300/T )α + (CAugp

2)(T /300)β (12.57)

where τ0 = 2.50 ms is the intrinsic lifetime, CSRH = 3.00 × 10−13 cm3 s−1 is the
Shockley–Read–Hall coefficient, Nt is the total impurity concentration, CAug = 1.83 ×
10−31 cm6 s−1 is the Auger coefficient, α = 1.77 and β = 1.18.

We summarize in Table 12.11 the longest minority-electron lifetime τ and diffusion
length L determined for some group-IV, III–V and II–VI semiconductors at T = 300 K.
Figures 12.33 and 12.34 plot the minority-electron lifetime τ and diffusion length L

versus hole concentration p for p-GaAs available in the literature. The solid lines in
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Table 12.11 Longest minority-carrier lifetime τ and diffusion length L in some p-type and n-type
semiconductors at 300 K

System Material Electrons (p-type) Holes (n-type)

τ (µs) L (µm) τ (µs) L (µm)

IV Si 800 1000 1000 800
Ge �1000 �3000 �1000 �2000
4H-SiC 0.08 0.7 0.2
6H-SiC 11920a 1.8 8 0.68–1.46

III–V α-GaN 10−4 0.20 0.015 3.4
GaP ∼0.1 ∼7 ∼1 ∼20
GaAs ∼5 × 10−3b ∼10b ∼3 ∼50
InP 48 >20
InAs ∼3 ∼20 ∼0.03 ∼60
InSb 10−4d ∼1d 32–38d

II–VI ZnSe 0.07 1.20
ZnTe 13
w-CdS 0.004 0.41–0.46
w-CdSe 4.98
CdTe 1.6 5.0

aExtremely long lifetime is considered to be due to the effect of traps
bLow injection level
cHigh injection level
d At T ∼ 80 K

1015 1016 1017 1018 1019 1020 1021
10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

p (cm−3)

t
(s

)

p-GaAs

Figure 12.33 Minority-electron lifetime τ in p-GaAs at 300 K available in the literature. The solid
line represents the fitted result with τ = (1.3 × 109/p)0.90 (p in cm−3; τ in s). [From S. Adachi,
Handbook on Physical Properties of Semiconductors Volume 2: III–V Compound Semiconductors
(Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic Publishers]
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Figure 12.34 Minority-electron diffusion length L in p-GaAs at 300 K available in the literature.
The solid line represents the fitted result with L = (1.5 × 1019/p)0.63 (p in cm−3; L in µm). [From
S. Adachi, Handbook on Physical Properties of Semiconductors Volume 2: III–V Compound Semi-
conductors (Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic
Publishers]

Figures 12.33 and 12.34, respectively, represent the fitted results with

τ =
(

1.3 × 109

p

)0.90

(12.58)

L =
(

1.5 × 1019

p

)0.63

(12.59)

where τ is in s, L is in µm and p is in cm−3.

12.6 MINORITY-CARRIER TRANSPORT: HOLES
IN N-TYPE MATERIALS

12.6.1 Minority-hole mobility

Measurements of the minority-hole mobility have been performed for several semiconduc-
tors, such as Si [12.94], Ge [12.83] and GaAs [12.95, 12.96]. The minority-hole mobility
µ as a function of donor concentration ND obtained in n-Si at T = 300 K by Swirhun
et al. [12.97] can be expressed as

µ = 130 + 370

1 +
(

ND

8 × 1017

)1.25 (12.60)

where µ is in cm2/V s and ND is in cm−3. As shown in Figure 12.35, the minority-
hole mobility in high-purity n-Si is independent of donor doping ND. The minority-hole
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Figure 12.35 Minority-hole and majority-hole mobilities in Si as a function of impurity con-
centration Ni at 300 K. The dashed line represents the minority-hole mobility given by µ =
130 + 370/[1 + (Ni/8 × 1017)1.25], while the solid line shows the majority-hole mobility given
by µ = 40 + 500/[1 + (Ni/2 × 1017)0.53], where Ni is in cm−3 and µ is in cm2/V s. [From S.
Adachi, Handbook on Physical Properties of Semiconductors Volume 1: Group-IV Semiconductors
(Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic Publishers]

mobility in such high-purity n-Si is at around 500 cm2/V s, which is essentially identical
to the majority-hole mobility in p-Si. As the donor doping level increases, the minority-
hole mobility starts to decrease just as the majority-hole mobility does. However, the onset
of decay of µ in n-Si does not occur up to a donor doping level of ND ∼ 1 × 1017 cm−3,
while the drop of µ in p-Si is evident at an acceptor doping level of NA ∼ 1 × 1016 cm−3.

We show in Figure 12.36 the experimental minority-hole mobility as a function of
donor doping concentration ND in n-GaAs at T = 300 K. The experimental data are taken
from Casey et al. (ž) [12.95], Lovejoy et al. (Ž) [12.96], Chuang et al. (�) [12.98] and
from Slater et al. (�) [12.99]. The solid line represents the experimental majority-hole
mobilities. Lovejoy’s and Slater’s data show that the minority-hole mobility is always
larger than the majority-hole data. Contrarily, the data of Casey et al. and Chuang et al.
are much smaller than the majority-hole values. It should be noted that the theoretical
prediction of Lowney and Bennett [12.85] by phase-shift analysis agrees reasonably with
the experimental data of Casey et al.

The minority-hole mobilities in 6H-SiC and α-GaN can also be estimated to be in
the range 8–30 cm2/V s and ∼5 cm2/V s from minority-carrier lifetimes and diffusion
lengths obtained by Anikin et al. [12.100] and Bandić et al. [12.101], respectively.

12.6.2 Minority-hole lifetime and diffusion length

The minority-hole lifetime is dependent both on temperature T and majority-electron
concentration n. An empirical expression for the minority-hole lifetime τ in n-Si as a
function of n and T obtained by Klaassen [12.32] can be represented by the same form
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Figure 12.36 Minority-hole mobility µ as a function of donor doping concentration ND in n-GaAs
at 300 K. The experimental data are taken from Casey et al. (ž) [12.95], Lovejoy et al. (Ž) [12.96],
Chuang et al. (�) [12.98] and from Slater et al. (�) [12.99]. The solid line represents the majority-
hole mobility values. [From S. Adachi, Handbook on Physical Properties of Semiconductors Volume
2: III–V Compound Semiconductors (Kluwer Academic, Boston, 2004), reproduced by permission
from Kluwer Academic Publishers]
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Figure 12.37 Minority-hole lifetime τ in n-GaAs at 300 K available in the literature. The solid
line represents the fitted result with τ = (4.0 × 109/n)0.92 (n in cm−3; τ in s). [From S. Adachi,
Handbook on Physical Properties of Semiconductors Volume 2: III–V Compound Semiconductors
(Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic Publishers]

as in Equation (12.57). The fitting parameters determined are: τ0 = 2.50 ms, CSRH =
1.176 × 10−12 cm3 s−1, CAug = 2.78 × 10−31 cm6 s−1, α = 0.57 and β = 0.72.

We have already summarized in Table 12.11 the longest minority-hole lifetimes τ and
diffusion lengths L for some group-IV, III–V and II–VI semiconductors at T = 300 K.
Figures 12.37 and 12.38 plot the values of τ and L versus electron (donor) concentra-
tion n for n-GaAs available in the literature. The solid lines in Figures 12.37 and 12.38,
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Figure 12.38 Minority-hole diffusion length L in n-GaAs at 300 K available in the literature.
The solid line represents the fitted result with L = (2.0 × 1018/n)0.63 (n in cm−3; L in µm). [From
S. Adachi, Handbook on Physical Properties of Semiconductors Volume 2: III–V Compound Semi-
conductors (Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer Academic
Publishers]

respectively, indicate the fitted results with

τ =
(

4.0 × 109

n

)0.92

(12.61)

L =
(

2.0 × 1018

n

)0.63

(12.62)

where τ is in s, L is in µm and n is in cm−3.

12.7 IMPACT IONIZATION COEFFICIENT

12.7.1 Theoretical consideration

Impact ionization plays a crucial role in semiconductor devices, both as a basis for their
operation and as a factor limiting their performance [12.102]. Avalanche photodiodes
deliberately employ impact ionization to generate the carrier multiplication necessary for
their operation [12.103, 12.104]. Impact ionization by hot carriers in an electric field is
characterized by the ionization coefficients α for electrons and β for holes, which give
the number of secondary carriers (electron–hole pairs) created by an initial hot carrier
per centimeter of travel in an electric field E. By this definition, we obtain

α = 1

n

(
dn

dx

)
cm−1, β = 1

p

(
dp

dx

)
cm−1 (12.63)

where n and p are the electron and hole concentrations in cm−3, respectively.
We show in Figure 12.39 examples of possible impact ionization processes for the

electron-initiated and hole-initiated processes in a cubic semiconductor. The ionization
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Figure 12.39 Examples of the impact ionization transitions in a cubic semiconductor. The ion-
ization process initiated by a hot electron is shown by solid lines; it results in the transfer of an
electron from the heavy-hole band to the conduction band. The ionization process initiated by a
hot hole from the spin–orbit split-off band is shown by the dashed lines

threshold energy is the least energy of the initiating particle for which impact ionization
can occur, consistent with conservation of energy and momentum. It is evident from
Figure 12.39 that the threshold energy is at least as large as the band gap E0. The electronic
energy-band structure, thus, must allow the initiating particle to attain that energy.

Considering first the holes [12.105], one can see in Figure 12.39 that the conditions
for the hole-initiated impact ionizations are rather similar for directions along the three
symmetry axes 〈001〉 (�), 〈110〉 (�) and 〈111〉 (�)—a reflection of the nearly isotropic
nature of the spin–orbit split-off (SO) band in many cubic semiconductors. Although a
hot hole can always reach threshold in the direction of the electric field, holes must scatter
at least one to enter the SO band. This scattering tends to randomize the distribution of hot
carriers. Thus, we can expect that the orientation effect in the hole ionization coefficient
will be small.

The electron threshold states, on the other hand, may show a considerable variation with
orientation [12.105]. In the 〈111〉 direction (�), there is no threshold state for electron-
initiated impact ionization. In the 〈110〉 direction (�), the threshold state occurs near the
top of the conduction band. The threshold in the 〈001〉 direction (�) does not occur in
the principal conduction band, but is separated from this conduction band by a small gap.
Under a sufficiently high electric field, electrons can be expected to tunnel across this gap
to threshold.

The threshold energies and their position in the Brillouin zone are determined by the
following method, first proposed by Anderson and Crowell [12.106, 12.107]. Referring
to Figure 12.40, the condition for the threshold is as follows

∇kE1(k1) = ∇kE2(k2) = ∇kE3(k3) (12.64)

subject to conservation of energy

Ei(ki ) = E1(k1) + E2(k2) − E3(k3) (12.65)
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Figure 12.40 Impact-ionization transition in a schematic semiconductor band structure with fea-
tures similar to those for III–V semiconductors: (a) electron-initiated transition; (b) hole-initiated
transition

and conservation of crystal momentum

ki = k1 + k2 − k3 (12.66)

In the case of nearly parabolic bands, these equations may be used to solve explicitly for
the threshold energies Ei,e and Ei,h, and particle wavevectors in closed form [12.107]

Ei,e = E0

(
1 + me

mHH + me

)
(12.67)

ki =
√

E0

(
2me

h̄2

)(
1 + me

mHH + me

)
(12.68a)

k1 = k2 = ki

(
me

2mHH + me

)
(12.68b)

k3 = ki

(
mHH

2mHH + me

)
(12.68c)

for the electron-initiated ionization (Figure 12.40(a)) and

Ei,h = E0

(
1 + mSO(1 − ∆0/E0)

2mHH − mSO + me

)
(12.69)
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ki =
√

(E0 − ∆0)

(
2mSO

h̄2

)(
2mHH + me

2mHH − mSO + me

)
(12.70a)

k1 = k2 = ki

(
mHH

2mHH + me

)
(12.70b)

k3 = ki

(
me

2mHH + me

)
(12.70c)

for the hole-initiated ionization (Figure 12.40(b)). In Equations (12.67)–(12.70), me is the
electron effective mass and mHH and mSO are, respectively, the heavy-hole (HH) and SO
effective masses.

When me = mHH = mSO and ∆0 → 0 eV, both Ei,e and Ei,h are 3/2 the band-gap.
Thus, the well-known 3/2 band-gap rule [12.108] is a direct result of the application of
threshold criterion. The situation in real crystals is, however, considerably complicated.

12.7.2 Experimental value

(a) Electric-field dependence

According to Baraff’s theory [12.109], the ionization coefficient α or β is represented, as
a function of electric field E, as

α(E) or β(E) = A exp −
(

B

E

)m

(12.71)

where m = 1 for low electric field in the avalanche region and m = 2 for higher electric
field. We summarize in Table 12.12 the parameter values A and B for α and β with m = 1
determined experimentally for some group-IV [12.110–12.112], III–V [12.113, 12.114]
and II–VI semiconductors [12.115] at 300 K.

Most of the early works erroneously assumed that the ionization rates α and β are
equal. In 1974, Stillman et al. [12.116] showed that it is possible to achieve nearly pure
electron and hole initiations in GaAs Schottky barrier avalanche photodiodes. Measure-
ments of the multiplication characteristics of these devices indicated that α and β are
not equal and that α > β. Law and Lee [12.117] also used Schottky barrier devices to
measure the ionization coefficients and found that α > β in lightly doped diodes and
that β > α in heavily doped diodes. The use of Schottky barrier devices, however, still
introduced difficulties in accurately modeling the electron injection into the high-field
region because of the accompanying effects, such as barrier lowering, tunneling, etc. It
is, thus, preferable to make ionization coefficient measurements on p–n junction devices
where the injected carrier is more readily modeled. As in GaAs, α is usually larger than
β in Si [12.118] and GaSb [12.119]; while β > α in Ge [12.118], 4H-SiC [12.120], 6H-
SiC [12.120], InP [12.121] and InAs [12.122]; α ∼ β in GaP [12.123]. The β/α ratios
for Si and Ge are, respectively, 0.1–0.5 and 1.5–4 at E = 3.3 × 105 V/cm [12.118]. We
show in Figure 12.41, as an example, the electron (α) and hole ionization coefficients (β)
as a function of reciprocal electric field (1/E) for Si at 300 K.
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Table 12.12 Impact ionization parameters, A (106 cm−1) and B (106 V/cm), used to calculate
α(E) and β(E) for some semiconductors at 300 K

α(E) or β(E) = A exp −
(

B

E

)

System Material α (electrons) β (holes) Comment

A B A B

IV Sia 0.74 1.16 0.725 2.2
Geb 8.04 1.4 6.39 1.27 〈100〉 direction
Geb 2.72 1.1 1.72 0.937 〈111〉 direction
4H-SiCc 3.25 17.9
6H-SiCc 2.6 15

III–V GaAsd 11 2.2 5.5 2.2 〈100〉 direction
InPe 5.55 3.10 3.21 2.56 〈100〉 direction
InPe 5.36 3.12 2.03 2.34 〈110〉 direction

II–VI ZnSef 42 4.23 5.5 × 105 < E < 7 × 105 V/cm

aV. A. Kuz’min, N. N. Kryukova, A. S. Kyuregyan, T. T. Mnatsakanov, and V. B. Shuman, Sov.
Phys. Semicond. 9, 481 (1975)
bT. Mikawa, S. Kagawa, T. Kaneda, Y. Toyama, and O. Mikami, Appl. Phys. Lett. 37, 387 (1980)
cR. Raghunathan and B. J. Baliga, Solid-State Electron. 43, 199 (1999)
d H. Ando and H. Kanbe, Solid-State Electron. 24, 629 (1981)
eC. A. Armiento and S. H. Groves, Appl. Phys. Lett. 43, 198 (1983)
f R. Mach and W. Ludwig, Phys. Status Solidi A 23, 507 (1974)

(b) Temperature dependence

Temperature affects the electronic energy-band structure and can change in the impact
ionization coefficients α and β. Temperature dependence of the ionization coefficients
α(T ) and β(T ) has been studied experimentally for semiconductors, such as Si [12.124–
12.127], 4H-SiC [12.112], 6H-SiC [12.112, 12.128], GaAs [12.129, 12.130] and InP
[12.121]. These data suggest that increasing T decreases α and β. Figure 12.42 shows,
as an example, the ionization coefficients α and β for GaAs at 29◦ and 125◦C. The
experimental data are taken from Zheng et al. [12.130].

The data for Si obtained by Grant [12.125] can be expressed as

α(E, T ) or β(E, T ) = A exp −
(

B + CT

E

)
(12.72)

where A = 6.2 × 105 cm−1 (2.0 × 106 cm−1), B = 1.05 × 106 V/cm (1.95 × 106 V/cm)
and C = 1.3 × 103 V/cm deg (1.1 × 103 V/cm deg) for α (β), respectively, with T in ◦C.
Rang [12.126] reported an expression for the ionization coefficients α and β for Si given
by

α(E, T ) or β(E, T ) = A0[1 + A1(T − 300)] exp −
(

B0[1 + B1(T − 300)]

E

)
(12.73)
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Figure 12.41 Electron (α) and hole ionization coefficients (β) as a function of reciprocal electric
field (1/E) for Si at 300 K. The experimental data are taken from various sources. The solid
lines represent the calculated results with α = 7.0 × 105 exp −(1.26 × 106/E) cm−1 and β = 8.3 ×
105 exp −(2.10 × 106/E) cm−1 (E in V/cm), respectively. [From S. Adachi, Handbook on Physical
Properties of Semiconductors Volume 1: Group-IV Semiconductors (Kluwer Academic, Boston,
2004), reproduced by permission from Kluwer Academic Publishers]
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Figure 12.42 Ionization coefficients α and β for GaAs measured at 29◦ and 125◦C. The experi-
mental data are taken from Zheng et al. [12.130]. [From S. Adachi, Handbook on Physical Prop-
erties of Semiconductors Volume 2: III–V Compound Semiconductors (Kluwer Academic, Boston,
2004), reproduced by permission from Kluwer Academic Publishers]
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where A0 = 1.286 × 106 cm−1 (1.438 × 106 cm−1), A1 = 4.95 × 10−4 K−1 (5.05 × 10−4

K−1), B0 = 1.4 × 106 V/cm (2.02 × 106 V/cm) and B1 = 6.43 × 10−4 K−1 (6.21 × 10−4

K−1) for α (β), respectively, with T in K. The decreases in α and β with increasing T

can be attributed to phonon scattering.

(c) Crystallographic direction dependence

Not only lattice temperature, but also crystallographic orientation affects the electronic
energy-band structure and, thus, change in the impact ionization coefficients α and β. The
dependence of the crystallographic orientation on the impact ionization coefficients has
been studied experimentally on Si [12.127, 12.131], Ge [12.111], GaAs [12.105, 12.132,
12.133] and InP [12.114].

Figure 12.43 shows the impact ionization coefficients α and β measured in the three
principal directions 〈100〉, 〈110〉 and 〈111〉 of Si at T = 300 K. The ionization coefficients
α and β in Si are found to exhibit an anisotropic behavior with higher values in the 〈100〉
direction than in the 〈110〉 direction and with the lowest value in the 〈111〉 direction. In
Ge, Mikawa et al. [12.111] found that the coefficients are larger in the 〈111〉 direction
than in the 〈100〉 direction.

As mentioned in Section 12.7.1, the orientation effect in the hole ionization in a cubic
semiconductor (GaAs) is small and hence the similarity in β. The difference in α can
be explained by the ionization threshold energies varying in different crystallographic
directions. Armiento and Groves [12.114] have found that, unlike the reports for GaAs,
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Figure 12.43 Impact ionization coefficient for: (a) electrons; (b) holes in the 〈100〉, 〈110〉 and
〈111〉 directions for Si. The experimental data are taken from Lee et al. [12.127] and Lee [12.131].
[From S. Adachi, Handbook on Physical Properties of Semiconductors Volume 1: Group-IV
Semiconductors (Kluwer Academic, Boston, 2004), reproduced by permission from Kluwer
Academic Publishers]
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no significant orientation dependence of the impact ionization coefficients exists in InP.
Momentum randomizing collisions with phonons, which result in intervalley transfer of
energetic electrons, are believed to be the reason for the lack of anisotropy in the electron
impact ionization coefficient of InP.
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[12.39] G. D. Chen, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 68, 1341 (1996).
[12.40] J. D. Wiley, in Semiconductors and Semimetals, edited by R. K. Willardson and

A. C. Beer (Academic, New York, 1975), Vol. 10, p. 91.
[12.41] J. D. Wiley and M. DiDomenico, Jr., Phys. Rev. B 2, 427 (1970).
[12.42] M. Costato, G. Gagliani, C. Jacoboni, and L. Reggiani, J. Phys. Chem. Solids 35, 1605

(1974).
[12.43] H. C. Casey, Jr., F. Ermanis, and K. B. Wolfstirn, J. Appl. Phys. 41, 2945 (1969).
[12.44] K.-H. Zschauer, in Proc. 4th Inter. Symp. GaAs and Related Compounds, Boulder, 1972

(Institute of Physics, London, 1973), p. 3.
[12.45] A. L. Mears and R. A. Stradling, J. Phys. C: Solid State Phys. 4, L22 (1971).
[12.46] D. N. Nasledov, Y. G. Popov, N. V. Siukaev, and S. P. Starosel’tseva, Sov. Phys. Semi-

cond. 3, 387 (1969).
[12.47] O. G. Folberth, O. Madelung, and H. Weiss, Z. Naturf. 9a, 954 (1954).
[12.48] F. Szmulowicz, Appl. Phys. Lett. 43, 485 (1983).
[12.49] W. C. Mitchel and P. M. Hemenger, J. Appl. Phys. 53, 6880 (1982).
[12.50] G. W. Ludwig and R. L. Watters, Phys. Rev. 101, 1699 (1956).
[12.51] F. J. Reid and R. K. Willardson (unpublished); see, A. C. Beer, in Solid State Phys.,

edited by F. Seitz and D. Turnbull (Academic, New York, 1963), Vol. 4 (Suppl.), p. 209.
[12.52] D. Long, Phys. Rev. 107, 672 (1957).
[12.53] F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954).
[12.54] F. Cerdeira and M. Cardona, Phys. Rev. B 5, 1440 (1972).
[12.55] C. Jacoboni, G. Gagliani, L. Reggiani, and O. Turci, Solid-State Electron. 21, 315 (1978).
[12.56] M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234 (1996).
[12.57] A. R. Adams and L. G. Shantharama, Physica B 139&140, 419 (1986).
[12.58] W. R. Thurber, R. L. Mattis, Y. M. Liu and J. J. Filliben, J. Electrochem. Soc. 127, 2291

(1980).
[12.59] J. B. Gunn, Solid State Commun. 1, 88 (1963).
[12.60] H. Shichijo and K. Hess, Phys. Rev. B 23, 4197 (1981).
[12.61] H. L. Grubin, in Properties of Aluminium Gallium Arsenide, EMIS Datareviews Series

No. 7, edited by S. Adachi (INSPEC, London, 1993), p. 197.
[12.62] C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, Phys. Rev. B

12, 2265 (1975).
[12.63] R. H. Johnson and O. Eknoyan, J. Appl. Phys. 58, 1402 (1985).
[12.64] A. Majumdart, Solid-State Electron. 39, 1251 (1996).
[12.65] D. K. Ferry, Phys. Rev. B 12, 2361 (1975).
[12.66] M. Wraback, H. Shen, J. C. Carrano, T. Li, J. C. Campbell, M. J. Schurman, and

I. T. Ferguson, Appl. Phys. Lett. 76, 1155 (2000).
[12.67] T. H. Windhorn, T. J. Roth, L. M. Zinkiewicz, O. L. Gaddy, and G. E. Stillman, Appl.

Phys. Lett. 40, 513 (1982).
[12.68] S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs,

GaP, InGaAs, and InGaAsP (Wiley-Interscience, New York, 1992).
[12.69] R. Allam and J. Pribetich, Electron. Lett. 26, 688 (1990).
[12.70] R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr, Mater. Sci. Semicond. Proc.

3, 149 (2000).
[12.71] I. A. Khan and J. A. Cooper, Jr., IEEE Trans. Electron Dev. 47, 269 (2000).
[12.72] K. V. Vassilevski, K. Zekentes, A. V. Zorenko, and L. P. Romanov, IEEE Electron Dev.

Lett. 21, 485 (2000).
[12.73] K. Brennan and K. Hess, J. Appl. Phys. 59, 964 (1986).



CARRIER TRANSPORT PROPERTIES 371

[12.74] L. Reggiani, S. Bosi, C. Canali, F. Nava, and S. F. Kozlov, Phys. Rev. B 23, 3050 (1981).
[12.75] G. Ottaviani, L. Reggiani, C. Canali, F. Nava, and A. Alberigi-Quaranta, Phys. Rev. B

12, 3318 (1975).
[12.76] L. Reggiani, C. Canali, F. Nava, and G. Ottaviani, Phys. Rev. B 16, 2781 (1977).
[12.77] L. S. Holway, S. R. Steele, and M. G. Alderstein, in Proc. 7th Biennial Cornell Electrical

Engineering Conference (Cornell University Press, New York, 1979), p. 199.
[12.78] J. L. Heaton III, G. H. Hammond, and R. B. Goldner, Appl. Phys. Lett. 20, 333 (1972).
[12.79] P. G. Le Comber, W. E. Spear, and A. Weinmann, Brit. J. Appl. Phys. 17, 467 (1966).
[12.80] C. Canali, G. Ottaviani, M. Martini, and K. Zanio, Appl. Phys. Lett. 19, 51 (1971).
[12.81] K. Brennan and K. Hess, Phys. Rev. B 29, 5581 (1984).
[12.82] See, J. A. del Alamo, in Properties of Silicon, EMIS Datareviews Series No. 4 (INSPEC,

London, 1988), p. 145.
[12.83] T. P. McLean and E. G. S. Paige, J. Phys. Chem. Solids 18, 139 (1961).
[12.84] Z. P. Guan, J. Z. Li, G. Y. Zhang, S. X. Jin, and X. M. Ding, Semicond. Sci. Technol. 15,

51 (2000).
[12.85] J. R. Lowney and H. S. Bennett, J. Appl. Phys. 69, 7102 (1991).
[12.86] D. M. Kim, S. Lee, M. I. Nathan, A. Gopinath, F. Williamson, K. Beyzavi, and

A. Ghiasi, Appl. Phys. Lett. 62, 861 (1993).
[12.87] K. Beyzavi, K. Lee, D. M. Kim, M. I. Nathan, K. Wrenner, and S. L. Wright, Appl. Phys.

Lett. 58, 1268 (1991).
[12.88] S. E. Swirhun, Y.-H. Kwart, and R. M. Swanson, in Proc. Int. Electron Dev. Meeting,

Los Angeles, CA, USA, Dec. 1986 (IEEE, USA, 1986), p. 24.
[12.89] T. Furuta and M. Tomizawa, Appl. Phys. Lett. 56, 824 (1990).
[12.90] M. Morohashi, N. Sawaki, and I. Akasaki, Jpn. J. Appl. Phys. 24, 661 (1985).
[12.91] A. Neukermans and G. S. Kino, Phys. Rev. B 7, 2693 (1973).
[12.92] A. Neukermans and G. S. Kino, Phys. Rev. B 7, 2703 (1973).
[12.93] C. Canali, G. Ottaviani, and A. A. Quaranta, J. Phys. Chem. Solids 32, 1707 (1971).
[12.94] See, J. A. del Alamo, in Properties of Silicon, EMIS Datareviews Series No. 4 (INSPEC,

London, 1988), p. 162.
[12.95] H. C. Casey, Jr., B. I. Miller, and E. Pinkas, J. Appl. Phys. 44, 1281 (1973).
[12.96] M. L. Lovejoy, M. R. Melloch, M. S. Lundstrom, and R. K. Ahrenkiel, Appl. Phys. Lett.

61, 2683 (1992).
[12.97] S. E. Swirhun, J. A. del Alamo, and R. M. Swanson, IEEE Electron Dev. Lett. EDL-7,

168 (1986).
[12.98] H. L. Chuang, M. E. Klausmeier-Brown, M. R. Melloch, and M. S. Lundstrom, J. Appl.

Phys. 66, 273 (1989).
[12.99] D. B. Slater, Jr., P. M. Enquist, F. E. Najjar, M. Y. Chen, J. A. Hutchby, A. S. Morris,

and R. J. Trew, IEEE Electron Dev. Lett. 12, 54 (1991).
[12.100] M. M. Anikin, A. S. Zubrilov, A. A. Lebedev, A. P. Strel’chuk, and A. E. Cherenkov,

Sov. Phys. Semicond. 25, 289 (1991).
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absorption coefficients
free electron-hole pair transitions 248
Si, wavenumber and 229
spectral dependence in InP 225
Urbach tails 256–8

acoustic deformation potential. See intravalley
deformation potentials.

acoustic phonons
deformation potential scattering 318–19
dispersion relations 79
optical and 75–6
piezoelectric scattering 318

air, refractive index effects 241
Al/GaAs

hole scattering rates 351
interband transitions 239

Al/GaN electron affinity 196
AlAs

Fröhlich coupling constant 99
low-temperature absorption spectrum

253–4
phonon frequencies 80–1

alloy scattering 320
AlP, piezoelectric stress constant 97–8
AlSb, absorption spectra and pressure 255,

256
anion atomic number 119, 133
atomic mass

Debye temperature and 29
optical phonon frequency and 82, 83,

84
atomic weights 6
Au/semiconductor contact case study 202–4
avalanche photodiodes 347, 362, 365

band-gap energies
See also energy-band structure.
breakdown field and 206
exciton binding energies and 233–5
Schottky barrier height and 199, 203, 204

band-gap narrowing on doping 128–30
Baraff’s theory 365
barriers. See Schottky barriers.
β-Sn. See phase transitions.
birefringence

piezobirefringence 285
Bir–Pikus deformation potentials 114–15,

173
BIS (bremsstrahlung isochromat spectroscopy)

112, 113
Bloch functions 103, 230
Bohr radius and band-gap energies 235
Boltzmann equations 331
Born ratio 57, 58
Bose–Einstein occupation factor 121, 249
BP

covalency and reststrahlen effect 226
Knoop microhardness 67

breakdown voltage and Schottky barrier height
206–7

bremsstrahlung isochromat spectroscopy 112,
113

Brillouin scattering measurements 289
Brillouin zones 73–5

See also zone center.
energy-band structure and 104
energy-band transitions in CdSe 111
face-centered cubic structures 74
free electron-hole pair transitions 245
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Brillouin zones (continued )
hexagonal semiconductors 74–5
higher-lying direct band gaps 130
impact-ionization thresholds and 363
lowest indirect band gaps 137
rhombohedral semiconductors 75

bulk modulus 56–61, 62
hexagonal semiconductors 61–2, 63
Knoop microhardness and 63–7

Burstein–Moss effects 127, 256

camel’s back structures 158–9
carrier transport properties 315–69

See also electrons; holes.
carrier carrier scattering 320, 355
cation atomic number 196, 197
Cauchy ratio 57, 58
CdS

crystal structure of w- or β-CdS 6, 8
linear pressure coefficient for w-CdS 206
optical spectrum above the first absorption

edge 265–7
third-order elastic constant of w-CdS 53

CdSe
energy-band structure of w-CdSe 109, 111
linear pressure coefficient for w-CdSe 206

CdTe
band-gap temperature effects 135
cleavage energies 18
Debye temperature versus temperature 29
specific heat versus temperature 27

Clausius–Clapeyron equation 24
cleavage energy calculation 18–20
cleavage planes 15–8

experimental surface energies and 20
coefficient of expansion 30–3
See also linear thermal expansion coefficient;

volume thermal expansion coefficient.
cold-cathode devices 195
complex dielectric constant 300
complex dielectric function 213

w-CdS 267
GaAs 216, 266
indirect optical transitions 249
Si 264
temperature effects in GaAs 269

complex dielectric permitivity 222–3
complex refractive index 213

w-CdS 267
GaAs 266
Si 264

compliance. See elastic compliance.
conduction energy bands

conduction-valley energy separations 142
interconduction-band absorption 274–5

conduction-band deformation potentials
L-point hydrostatic and shear 183–4, 185
wurtzite crystal structure 176
X-point hydrostatic and interband 189
X-point hydrostatic and shear 188, 189

conduction-band degeneracy 158
conduction-band electrons

density of states 113
effective mass 112
three-valley model 320–1

conduction-band energies
See also electron affinity.

conduction-band Hamiltonian 114
deformation potentials and 173

conduction-band mass nonparabolicity 157
conduction-band structure and reststrahlen

spectra 225–6
conduction-band symmetry

wurtzite crystal structure 111
zinc-blende crystal structure 190

conduction-valley energy separations 141–2
conductivity effective mass 148
conductivity electron mass 161, 322, 323,

324
constant energy surfaces

cubic semiconductors 147, 148
deformation potentials and 174
hexagonal semiconductors 148
hole effective masses 162, 163

continuum exciton states 232, 251–2
covalency

crystal structure and 4
elastic stiffness and 46, 47
ionicity and 1
reststrahlen effect and 226

critical-point energies
energy-band structure of CdSe 110
energy-band structure of InP 107
ZnO 122–3

critical points
interband optical constants and 244–5
model dielectric function and 258
phonon dispersion and 79

crystal densities 14
cubic semiconductors 7
hexagonal and rhombohedral

semiconductors 8
sound velocity and 68, 69
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crystal-field splitting energies 108, 115,
117–18, 119

crystal structure 4–10
See also diamond; wurtzite; zinc-blende.
cleavage planes and 17, 18
diamond crystal structure 4, 8
easily or normally grown structures 10, 11
hexagonal and rhombohedral structures

7–9
high-pressure transitions 14–15, 16
lattice constants and 12
rocksalt structure 8, 9–10
space groups 10, 11

crystal symmetry
See also symmetry classes
effect on dielectric and optical properties

212
electron state classification and 73

crystallographic direction and impact ionization
368–9

crystallographic planes
Poisson’s ratio 53, 56
sound propagation and 70, 71

cubic semiconductors
cleavage energies, calculated 19
crystal densities 7
diamond crystal structure 4
face-centered cubic structures 9–10
face-centered cubic structures 74
lattice constants and molecular weights 7
phonon dispersion curves 75–7
thermal conductivity and Phillips ionicity

35, 36
thermal expansion coefficients 31
zinc-blende crystal structure 6

cyclotron resonance techniques
electron effective mass and 148, 151, 157
polaron mass and 168–9

d-band effects and model dielectric function
262–3

D-type transition processes 275
DP See deformation potentials.
damped harmonic oscillator model 261, 263
Debye function 28
Debye temperature 28–30

E0-gap energies and 120, 122
low-temperature limit 30
Marcus–Kennedy formula 29
tabulated 25
Varshi β parameter and 135

Debye’s T3 Law 27, 28
Debye–Waller factor 35
deformation potential scattering 318–19
deformation potentials

�-point intravalley deformation potential
173–183

high-symmetry-point intravalley deformation
potential 183–9

intervalley deformation potentials 189–192
density of states. See electron density of states;

phonon density of states; joint density of
states.

deposition and phase diagrams 23
DHO (damped harmonic oscillator) model

261, 263
diamond, synthetic, specific heat versus

temperature 27
diamond crystal structure 4, 8

See also cubic semiconductors.
cleavage planes 17
energy-band structure 104–6
molecular density 13

dielectric functions.
See also complex dielectric function;

high-frequency dielectric constant.
effective dielectric constant 215
static dielectric constant 217–20, 227–8,

235
dielectric permitivity 211–12

plasma contribution 224
single harmonic oscillator model 222–3

dielectric susceptibilities 212
nonlinear optics and 302, 304

diffusivity. See thermal diffusivity.
direct band-gap energies

dielectric constants and 220
hexagonal semiconductors 115, 117
linear electro-optic constant and 293
photoelastic coefficient dispersion and 286

direct–indirect-gap transition pressure 142–3
discrete excitonic transitions 251–2
dispersion models of refractive indexes

236–44
doped semiconductors

E0-gap energies 126–30
electron effective mass, � valley 155–8
Hall hole mobility 337–9
hole effective masses 170–1
interband transition region 269–70
Knoop microhardness 68
lattice constant of Te doped GaAs 13
low-field electron mobility 326–8
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doped semiconductors (continued )
majority- and minority-hole mobilities

359–60
minority-electron mobility 356
optical absorption 255–6
refractive index 243–4
thermal conductivity 38

double-heterojunction lasers 240
Drude model 262, 270, 271–2
Drude–Lorentz formula 261
Dulong and Petit’s Law 27, 28
E0-gap energies 114–30

cubic semiconductors 115, 116
doping effects 126–30
electron affinity and 198
electron deformation potential and

179–80
electron effective mass and 149, 150, 152
lattice constants and 115, 117, 118
molecular weights and 118
temperature and pressure coefficients

120–5, 127

E1-gap energies 130–7
hydrostatic and interband deformation

potentials 186–8
lattice constant and 130

effective dielectric constant 215
effective lattice constants. See lattice constants.
effective masses. See electron effective mass;

hole effective mass.
elastic compliance 41–4

See also elastic stiffness constant.
cubic semiconductors 45
hexagonal semiconductors 46

elastic constants 41–51
lattice constants and 29
third-order elastic constants 51–3, 60

elastic properties 41–71
bulk modulus and related properties

56–61, 62
elastic constants 41–51
microhardness 62–8
Poisson’s ratio 54–6
sound velocity 68–71
third-order elastic constants 51–3, 60
Young’s modulus and related properties

53–62
elastic stiffness constant 41–4

covalency and 46, 47
cubic semiconductors 45, 48–9, 52

hexagonal semiconductors 46, 52
lattice constant and 46–7, 48, 49
Phillips ionicity and 46, 47
piezoelectric constants and 98
pressure effects 50–1
sound velocity and 68
temperature effects 48–50

elasto-optic effect 283–91
experimental values 285–91
theoretical expression 283

elasto-optic devices 283, 289
electroabsorption coefficients See

Franz–Keldysh effect.
electromechanical coupling constant 99, 100
electron affinity 195–8

negative electron affinity 195
numerical values 196

electron concentration and mobility 327–8
electron conductivity mass 161, 322–4
electron conductivity mobility 329–30
electron density of states 111–13

conductivity masses and 161
doping effects 127
electron effective mass and 148
hole effective masses 164, 168, 171

electron diffusion length 356–9
electron drift mobility 329–30
electron drift velocity 339–46

electron saturation drift velocity 347–9,
351

electron effective mass, � valley 147–58
See also hole effective mass.
conduction-band electrons 112

doping effects 155–8
E0-gap energies and 149, 150, 152
optical effective mass 156
polaron effect 151–2
pressure effects 153–5
temperature effects 152–3

electron effective mass, satellite valley 158–9
electron mobility 316

See also low-field electron mobility.
electron drift mobility 329–30

electron saturation drift velocity 347–9, 351
electron scattering mechanisms 315–20

alloy scattering 320
carrier–carrier scattering 320
deformation potential scattering 318–19
GaAs at different temperatures 325, 326
intervalley electron scattering 317
ionized impurity scattering 319
neutral impurity scattering 319
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nonpolar optical phonon scattering 318
piezoelectric scattering 318
polar optical scattering 317–18, 341–2,

343
space-charge scattering 319–20
tabulated 316

electron temperature and electric field 343–4
electron transport devices 207
electronic energy density formula 291
electronic work function

electron affinity and 199
Schottky barrier height and 200, 201, 202

electron-initiated impact ionizations 362–7
impact ionization parameters 365

electron–phonon interactions 99, 122–124
Urbach tails and 257

electrorefractive effect 302
elements

atomic weights 6
isotopic abundances 3–4

ellipsometry
piezoellipsometry 289
spectroscopic ellipsometry 270

energy-gap values and Phillips ionicity 2
energy-band structure

See also band-gap energies; conduction
energy bands; E0-gap region; E1-gap
region; valence energy bands.

conduction-band effective Hamiltonian 114
conduction-valley energy separations

141–2
diamond crystal structure 104
direct–indirect-gap transition pressure

142–3
E0-gap region 114–30
E1-gap energies 130–7
effective masses 147–71
electron density of states 111–13
energy-band gaps 103–143
GaAs 340
heavily doped semiconductors 128
higher-lying direct band gaps 130–7
impact ionization and 363
lowest indirect gaps 137–42
optical absorption band diagram 271
stress effects 174, 177
valence band effective Hamiltonian 114
wurtzite crystal structure 108–11
zinc-blende crystal structure 106–8

entropy and negative thermal expansion 32
envelope functions 232
exciton binding energies 233–5

exciton states 230–6
indirect band-gap effects 232–3

excitonic transitions 251–3
excitonic-gap energies in ZnO 122–3
external perturbation effects. See pressure

effects; temperature effects.

face-centered cubic crystal structure 4, 9–10,
74

Faraday rotation 156
Fermi energy levels

doped semiconductors 128–30
GaAs 156–7, 202

FET (field-effect transistor) devices 203
figure of merit determinations 34, 99

breakdown voltage and 206–7
elasto-optic devices 289

first-neighbor distance. See near-neighbor
distance.

Franz–Keldysh effect 300–2
experimental value 301
Kramers–Kronig transformation 298–9
theoretical expression 300

free-carrier absorption 270–4
free-electron numbers and effective dielectric

constant 215–16
See also electron concentration.

free electron-hole pair transitions 245–50
free-carrier induced refractive index changes

278
free-exciton binding energies 230
Fröhlich coupling constant 99–101, 151
fundamental absorption edge 230–58

free-exciton parameters at 234
optical absorption 244–56
Urbach tails 256–8

GaAs
absorption coefficient 257
absorption edge as a function of electric

field 301
band-gap narrowing on doping 127, 129
cleavage planes and energies 17–18
complex dielectric function and temperature

269
conduction-band mass anisotropy 154, 157
direct–indirect-gap transition pressure

142–3
E0-gap energies and temperature 120
E1-gap stress dependency 187
effective mass 152, 153, 155
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GaAs (continued )
electron density of states 112–13
electron diffusion length 359
electron drift velocity 346, 347
electrorefractive effect 302
energy-band structure 340
exciton binding energies and pressure

234–5
excitonic absorption 254–5
Fermi levels 128–30
figures of merit 289
Fröhlich coupling constant 99
Gunn effect 189–90
Hall mobilities and temperature 324, 325,

333–4, 335
hole drift velocity 354
hole scattering rates 351
impact ionization temperature effects 367
lattice constant with Te doping 13
lattice parameter pressure dependence 61
linear electro-optic constant dispersion 296
minority-electron lifetime and hole

concentration 358
minority-hole diffusion length in n-GaAs

362
minority-hole lifetime and mobility in

n-GaAs 361
optical absorption 256, 277
optical spectrum above the first absorption

edge 265–6
phonon density of states 79–80
phonon dispersion curve 76–7
phonon frequencies 80–1, 86
phonon scattering rate and electron energy

341
photoelastic coefficient dispersion and 287,

288
piezoelectric stress constant 97
polar optical scattering and electric field

343
quadratic electro-optic constant 298–9
Schottky barrier height 201, 204, 205–6
specific heat versus temperature 27
spectral characteristics 216
static dielectric constant 221
thermal conductivity 38–39
zinc-blende crystal structure 6, 8

�-point. See Brillouin zone; zone center.
GaN

Hall mobility and electron concentration in
α-GaN 328

Schottky barrier height and metal work
function 200

spectral variations 226–8
Urbach parameter for α-GaN 258

GaP
electron drift velocity and electric field

346
electro-optic constants 296, 298
Hall mobilities and temperature 324, 325,

333–4, 335
indirect band-gap energies and temperature

139
infrared absorption spectrum of n-GaP 276
linear thermal expansion coefficient versus

temperature 34
photoelastic coefficient dispersion and 287,

288
refractive-index dispersion and pressure

244
GaSb

conduction-band symmetry anomaly 190
phase diagram for Ge, Si and 23, 24
thermal conductivity versus temperature

36, 37
Gaussian-broadened density of states 112,

113
Ge

Debye temperature versus temperature 29
dielectric constant pressure coefficients

222
electron density of states 112, 113
Hall scattering factor in n- and p-Ge 330
phase diagram for GaSb, Si and 23, 24

gold 202–4
Grüneisen parameters

mode Grüneisen parameter 86–8, 90
thermal Grüneisen parameter 24, 32

Grüneisen’s Rule 30, 32, 88
Gunn effect 189–90, 340

Hall hole mobility 333–7
p-Si 334, 336
hole concentration and 337–9
pressure effects 337

Hall mobility 315–31
conductivity electron mass and 322, 323,

324
lowest direct band-gap energy and 323
temperature effects 324–5
three-valley model 321
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Hall scattering factor 328–31
p-Si 336–7

hardness 62–8
Harrison ionicity 2–3
heat capacity. See specific heat.
heteroepitaxial growth 283
heterojunction bipolar devices 354
heteropolar crystals

See also ionicity.
infrared activity 222

hexagonal and rhombohedral semiconductors
8

higher-lying direct band-gap energies 137
hexagonal semiconductors

See also wurtzite.
Brillouin zones 74
cleavage energies, calculated 19
electromechanical coupling constant 100
hexagonal close-packed crystal structure 6,

8
phonon dispersion curves 77–9
thermal expansion coefficients 32

HgS, rhombohedral structure 9
HgTe

cleavage energies 18
thermal expansion coefficient versus

temperature 33
high-symmetry-point intravalley deformation

potential 183–9
higher-lying direct band-gap energies 130–7

hexagonal and rhombohedral
semiconductors 137

temperature and pressure coefficients 136
high-field electron transport 339–49

electron drift velocity 339–46
electron saturation drift velocity 347–8

high-field hole transport 349–53
hole drift velocity 349

high-frequency dielectric constant 217–20
pressure coefficient of refractive index and

243
temperature effects 227–8

hole conductivity mobility 334, 336
hole drift velocity and electric field and 352,

353
hole effective masses 159–71

doping effect 170–1
functional expressions and numerical values

164–5
hexagonal and rhombohedral

semiconductors 167
polaron effect 168–9

pressure effects 170
temperature effects 170

hole mobility, low field 331–9
hole saturation drift velocity 352–3, 354
hole scattering mechanisms 331–3, 349
hole-initiated impact ionizations 362–7
homopolar semiconductor spectra 228
Hooke’s law 41
hydrostatic deformation potentials 181,

183–4, 185, 188
hydrostatic pressure. See pressure effects.

I -type transition processes 275
ideal Schottky–Mott contacts 198–9, 201–2
impact ionization coefficients 362–9

electric field and 367
electric field dependence 365–6
experimental values 365–8
temperature effects 366–8
theoretical considerations 362–5

impact ionization parameters 366, 367
impact ionization potential, in GaAs 341
impact ionization transitions 363, 364
impurities. See doped semiconductors.
In/GaAs, In/GaAs/P, In/GaAs/Sb interband

transitions 239
InAs

Hall hole mobility and temperature 333–4,
335

Hall mobility temperature effects 324, 325
linear electro-optic constant dispersion 296
photoelastic coefficient dispersion and 287,

288
indirect band gaps

exciton states 232–3
Hall mobility and 324
lowest indirect band gaps 137–42
pressure effects 184
temperature and pressure coefficients 140

indirect excitonic transitions 252–3
indirect transitions

energy-band structure of InP 106–7
energy-band structure of Si 105
indirect optical transitions 248, 249

infrared absorption spectrum
n-GaP 276
p-InP 274
heteropolar crystals 222

injection lasers and refractive indices 219,
240, 278
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InN
E0-gap energies and 115, 118
zone-center effective mass 151

InP
Debye temperature versus temperature 29
doping and Knoop microhardness 68
electron drift velocity and electric field

346
electron-initiated impact ionization

coefficient 369
energy-band structure 106–8
figures of merit 289
free-carrier absorption in n-InP 273
Hall mobilities and temperature 324, 325,

333–4, 335
infrared absorption spectrum of p-InP 274
linear electro-optic constant dispersion 296
photoelastic coefficient dispersion and 287,

288
piezo-electric stress constant 97–8
piezooptical coefficients 290–1
potential applications 345
Schottky diodes based on 205
spectral absorption and reflectivity 225
spin–orbit splitting anomaly 133
temperature coefficient of refractive index

242
InP/As/Sb interband transitions 239
InSb, Hall hole mobility and hole

concentration 339
interband deformation potentials, E1-gap

energies 188
interband magnetooptical measurements 148
interband transitions 258–70

See also energy-band structure.
doping effect 269–70
energy-band structure of CdSe 109
energy-band structure of Si 104–5
fundamental optical spectra 263–8
model dielectric function 258–63
simplified interband transition model

238–9
temperature and pressure effects 268–9

interconduction-band absorption 274–5
internal strain parameter 182
intervalence-band absorption 275–8, 277
intervalley deformation potentials 189–92
intervalley electron scattering 317

scattering times 190, 191
intraband transitions 271
intravalley deformation potentials, � point

173–83

cubic semiconductor conduction bands 175
cubic semiconductor valence bands 178
hydrostatic deformation potentials 181
optical phonon deformation potential

181–3
intravalley deformation potentials, L point

183–8
valence-band deformation potentials 186,

187
intravalley deformation potentials, X point

188–9
ionicity 1–3

lattice instability and 35
phonon dispersion and 77
values 3, 4

ionization coefficients, impact ionization
362–9

ionized impurity scattering 319, 334
isothermal compressibility 27, 32
isotopic abundances 3–4, 5
isotropy factor 57, 58, 59

joint density-of-states function
critical points and 245, 246, 247, 259
intervalence-band absorption and 277

k · p perturbation method
effective mass and pressure 154
effective mass and temperature 152
hole effective masses 162, 171

k space See reciprocal space.
Kane momentum parameter 310
Kerr effect 295, 297, 302, 303–4
Ketteler–Helmholtz formula 237
Kleinman conjecture 308–9
Knoop microhardness 63–8

bulk modulus and 63–7
inverse unit-cell volume and 63–4, 65
transition pressures and 67–8

Kramers–Kronig relations 213, 301
Kramers–Kronig transformations

excitonic transitions 251, 252
Franz–Keldysh effect 298–9
free electron-hole pair transitions 246, 250
model dielectric function and 258
nonlinear refractive index 310

Kronecker delta 212

L-point intravalley deformation potentials
183–8

Langreth’s formula 151
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lasers and refractive indices 219, 240, 278
lattice absorption. See absorption coefficient.
lattice constants

crystal structure and 11, 12–13
cubic semiconductors 7
Debye temperature and 28–9
E0-gap energies and 115, 117, 118
E1-gap energies 130
elastic constants and 46–7, 48, 49
electron affinity and 196, 197
external dependencies 13
hexagonal and rhombohedral

semiconductors 8
melting points and 26
molecular weights and 115–17
optical phonon deformation potential and

183
shear deformation potential and 180
transition pressures and 15

lattice dynamic properties 73–92
mode Grüneisen parameter 87–8
phonon deformation potential 88–92
phonon dispersion relation 73–80
phonon frequencies 80–7

lattice imperfections and Urbach tails 257–8
lattice parameter pressure dependence 61
lattice thermal conductivity 34–5, 37
lattice vibrations

Debye temperature and 28
reststrahlen region and 216

lead salts 242
linear compressibility 57, 58

hexagonal and rhombohedral
semiconductors 61–2, 63

linear electro-optic constant 291–5
experimental value 294, 295
symmetry and 293
theoretical expression 291

linear thermal expansion coefficients
energy-gap calculations and 123
specific heat and 27, 30
temperature variation of, for GaP 34

LO phonon scattering 348, 350, 351
Lorentzian line shape 224
low-field electron mobility 315–31

See also Hall mobility.
doping effects 326–8
electron scattering mechanisms 315–20
Hall scattering factor 328–31
pressure effects 325–6
room-temperature values 321–4

temperature effects 324–5
three-valley model 320–1

low-field hole mobility 331–9
hole scattering mechanisms 331–3
room-temperature values 333, 334, 335

Luttinger parameters
wurtzite structures 160–1, 163,
zinc-blende structures 114–15, 160, 165,

166
hexagonal and rhombohedral

semiconductors 169
Lyddane–Sachs–Teller relationship 218, 223

Mach–Zehnder interferometry 302
magnetic field and Hall scattering 331
magnetophonon resonance techniques

effective mass doping effects and 156
electron effective mass and 148, 152

majority-electron mobilities 353, 355
Marcus–Kennedy formula 29
Matthiessen’s rule 316
MDF. See model dielectric function.
melting points 23–6

lattice constants and 26
tabulated 25

metals and Schottky barriers 199, 205
MgO

Knoop microhardness 67
rocksalt crystal structure 8, 9–10

microhardness 62–8
Miller’s parameter 305–7
minority-carrier transport

electrons in p-type materials 353–9
holes in n-type materials 359–62

minority-electron drift velocity 356–7
minority-electron lifetime 356–8
minority-electron mobility 353–6
minority-hole diffusion length 360–2
minority-hole lifetime 360–2
minority-hole mobility 359–60
model dielectric function 258–63

E1 and E1 + ∆1 transitions 259–60
critical-point parameters for GaAs 266
critical-point parameters for Si 264
fundamental absorption edge 259
higher-energy transitions 260–1
plasma and d-band effects 262–3

molecular density 13
molecular weights 4

cubic semiconductors 7
E0-gap energies and 118
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molecular weights (continued )
E1-gap energies and 132
hexagonal and rhombohedral

semiconductors 8
lattice constants and 12

momentum space. See reciprocal space.
Monte Carlo simulation 340–1, 349–51,

354–6
Moss’s rule 240–1
Mott gap 269–70
Murnaghan equation 59, 61

near-neighbor distance 12–13
bulk modulus and 57–8

negative electron affinity 195
negative thermal expansion 32
neutral impurity scattering 319
neutron scattering measurements

phonon density of states 79
phonon dispersion and 76
phonon frequencies 80

no barrier electron emission 195
nonlinear optical constants 302–11

experimental value 304, 306
form and symmetry class 305
second-harmonic-generation coefficient

307
second-order susceptibilities 302–7, 306
third-order susceptibilities 308–9
two-photon absorption 309–11

nonpolar optical phonon scattering 318
normal-incidence reflectivity 214

GaAs 267
Si 265
spectral dependence in InP 225
w-CdS 268

optical absorption
band diagram 271
w-CdS 268
doping effect 255–6
excitonic transitions 251–3
experimental work 253–6
free electron-hole pair transitions 245–50
at the fundamental absorption edge

244–56
GaAs 267
multiphonon absorption spectra 228–30
Si 265

optical dielectric constant 215

optical dispersion relations 79, 211–17
indirect band gaps and 137–8
optical dispersion relation 213–14
optical spectra 216–17
optical sum rule 214–16

optical phonon deformation potential
�-valance-band states 181–3
L-conduction-band states 185, 186

optical phonon frequencies 82, 83, 84
cubic semiconductors 81
frequency difference 82, 83, 84
hexagonal semiconductors 82
mode Grüneisen parameter 87, 88
pressure effects 86–7
strain effects 89
stress effects 90
temperature effects 85

optical phonon scattering 317–18, 341–2,
343

LO phonon scattering 348, 350, 351
valence-band deformation potentials and

176
optical properties 211–78

free-carrier absorption 270–4
fundamental absorption edge 230–58
interband transition region 258–70
interconduction-band absorption 274–5
intervalence-band absorption 275–78
optical dispersion relations 211–17
reststrahlen region 217–30

optical spectra 216–17
interband transitions and 105, 263–8

optical sum rule 214–16
optoelectronic devices 291
orbital configuration and crystal structure 4, 6

Pauling ionicity 2, 3
PDP. See phonon deformation potential.
Penn model, refractive index 241–2
performance and microhardness 63
phase diagrams 23, 24
phase space. See reciprocal space.
phase transitions 14–15, 16

See also transition pressure.
direct–indirect-gap transition pressure and

143
Phillips ionicity 2, 3

elastic stiffness and 46, 47
energy-gap pressure effects and 127
Fröhlich coupling constant and 100, 101
isotropy factor and 59
optical phonon frequency and 82, 83, 84
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piezoelectric stress constant and 95–7
shear deformation potential and 179
thermal conductivity and 35, 36

phonon deformation potential
cubic semiconductors 88–91
hexagonal semiconductors 910–12

phonon density of states 79–80
phonon dispersion relation 73–80

dispersion curves 75–9
phonon frequencies 80–7

reststrahlen spectra 224
phonon scattering

electron energy and, in GaAs 341
electron saturation drift velocity and 348,

350
LO phonon scattering 348, 350, 351

phonons
See also acoustic phonons; optical phonons.
acoustoelectric amplification 99
optical and acoustic 75–6
thermal conductivity and 33–4

photoelastic coefficient 285
dispersion factors 288
wavelength and 289

photoelastic constants 286, 287
See also elasto-optical effect.

photoluminescence excitation spectroscopy
129

photon energy and effective dielectric constant
215–16

photoreflectance measurements 122
piezo(electro)reflectance 289
piezobirefringence 285
piezoelectric scattering 318
piezoelectric strain constant 98–9

cubic semiconductors 97
hexagonal semiconductors 98
tensor form 96

piezoelectric stress constant 95–8
cubic semiconductors 97
hexagonal semiconductors 98
relationship to coupling constant 99
relationship to strain constant 98
tensor form 96

piezoellipsometry 290
piezo-optical coefficients 290–1
Pikhtin–Yas’kov formula 238
plasma effects, model dielectric function

262–3
plasmon scattering 355
Pockels effect 292, 295, 302, 303–4
point groups 10, 11, 74

Poisson’s ratio
cubic lattices 54–6
hexagonal semiconductors 60, 61, 62

polar optical phonon scattering 317–18,
341–2, 343

polarization
dielectric permitivity and 211
nonlinear polarization vector 302–3
sound propagation and 69

polaron effect 151–2, 168–9
polytypes, SiC crystals 7–9
power-dissipating devices 34
pressure coefficients 26

E0-gap energies 180
Ge dielectric constants 222
Schottky barrier height and 206

pressure effects
See also stress effects.
dielectric constants 220–2, 227–8, 235
direct–indirect-gap transition pressure

142–3
E0-gap energies 124–5
elastic stiffness 50–1
electron effective mass, � valley 153–5
exciton binding energies 234–5
Hall hole mobility 337
hole effective masses 170
hydrostatic deformation potentials 181,

183–4, 185, 188
indirect band gaps and 139–41
low-field electron mobility 325–6
optical absorption spectra 254–5
phase transitions and 14–15, 16
phonon frequencies and 86–87
refractive index 242–4
Schottky barrier height 205–6

propagation direction, sound 69, 70, 71

quadratic electro-optic constant 295–300
experimental value 298
symmetry class and 297
theoretical expression 295

quadratic photoelastic coefficient 289

Raman spectroscopy 80, 289
reciprocal lattice 74, 104
reciprocal space 73

See also Brillouin zones.
energy-band structure and 104

reduced atomic mass
optical phonon frequency and 82, 83
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reduced atomic mass (continued )
phonon deformation potential and 89

reduced exciton mass 235
refractive indices

complex refractive index 213
doping effect 243–4
E0-gap energies and 240
Franz–Keldysh effect and 301
free-carrier induced changes 278
injection lasers and 219, 240, 278
near the fundamental absorption edge

236–44
pressure effects 242–4
temperature effects 241–2

relaxation times, impurity scattering 341
reststrahlen spectra 217–30

hexagonal semiconductors 226–7
introduced 216
multiphonon optical absorption spectra

228–30
rocksalt crystal structure 222
zinc-blende crystal structure 222

rhombohedral semiconductors
See also hexagonal and rhombohedral

semiconductors.
α-HgS 9
Brillouin zones 75

rocksalt crystal structure 8, 9–10
molecular density and near-neighbor

distance 13
reststrahlen spectra 222

Rydberg energy 231, 260

satellite valley electron effective mass 158–9
scaling parameter, thermal conductivity 35
Schottky barrier devices 203, 365
Schottky barriers 198–207

Au/semiconductor case study 202–4
barrier height and metal work function

200, 201, 202
breakdown voltage 206–7
electroreflectance 187
ideal Schottky–Mott contacts 198–9,

201–2
surface reconstruction 204–5

Schrödinger equations 103, 230
second-harmonic generation coefficient 307
Sellmeier equation 237
shear modulus 57, 58, 67

hexagonal semiconductors 61–2
SHG. See second-harmonic generation

coefficient.

Shubnikov–de Haas effect 148, 156
Si

absorption coefficient and wavenumber
229

band-gap narrowing on doping 127, 128,
129

cleavage energies 18
diamond crystal structure 4, 8
electron drift velocity and electric field for

n-type Si 345, 346
energy-band structure 104
Hall hole mobility for p-Si 334, 336, 338
Hall mobility and electron concentration in

n-Si 328
hole drift velocity for p-Si 353
impact ionization coefficient anisotropy

368
lattice parameter pressure dependence 61
majority- and minority-hole mobilities 360
metal (silicide) contacts 205–6
minority-electron drift velocity in p-Si 357
minority-electron mobility in p-Si 355
optical spectrum above the first absorption

edge 263–5
phase diagram for Ge, GaSb and 23, 24
phonon dispersion curve 77
plasma effects 262

SiC
crystal polytypes 7–9
Hall factor and magnetic field 331
Schottky barrier height and metal work

function 200
simplified interband transition model 238–9
single oscillator models

dielectric permitivity 222–3, 224
refractive index 237–8

β-Sn. See phase transitions.
sound velocity 68–71
space groups 10, 11, 74
space-charge scattering 319–20
specific heats 26–7

linear expansion coefficient and 30
tabulated 25

spectral characteristics, GaAs 216
spectral variation, complex dielectric

permitivity 223
spectroscopic ellipsometry 270
sphalerite. See zinc-blende.
spin-exchange interaction constant 236
spin–orbit interactions

diamond crystal structure 105–6
E0-gap region 114–15
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wurtzite crystal structure 108–9
zinc-blende crystal structure 107

spin–orbit split-off energies
anion atomic number and 119
anion atomic number and 133
E0-gap energies and 117–18, 119
E1-gap energies and 132–3, 134
two-photon absorption 311

Stark-like effects 294, 297, 298
static dielectric constant 217–20

temperature and pressure effects 227–8,
235

stress effects
See also piezoelectric effects.
E1-gap energies 187
elasto-optic effect 284
epitaxial films 283
phonon deformation potential 88–92
zinc-blende energy-band structure 174, 177

stress-induced birefringence 285
structural properties 1–20

cleavage properties 15–20
crystal structure 4–10
ionicity 1–3
isotopic abundances 3–4, 5
lattice constants 12–13
molecular and crystal densities 13–14
molecular weights 4, 7
phase transitions 14–15, 16
space groups 10, 11

surface energies
cleavage energies and 18–20, 19
experimentally determined 20, 20

surface polarity and cleavage energy 18
surface reconstruction and Schottky barrier

height 204–5
symmetries

See also crystal structure.
effect on dielectric and optical properties

212
piezoelectric effects and 95, 96, 318
space groups and point groups 10, 11
wurtzite conduction and valence bands 111

symmetry classes
See also space groups.
elastic constant and 42, 43
linear electro-optic tensor form 293
photoelastic tensor form 284
quadratic electro-optic tensor form 297
second-order nonlinear optical susceptibility

tensor 305
thermal conductivity and 34

thermal expansion coefficient and 30–1
third-order nonlinear optical susceptibility

tensor 308

temperature coefficient of refractive index
242

temperature effects
dielectric constants 219–20, 227–8
E0-gap energies and 120–4
E1-gap energies and 133–4, 135
elastic stiffness 48–50
electron affinity 198
electron effective mass, � valley 152–3
electron saturation drift velocity 347–8
Hall hole mobility 335–7
Hall scattering factor 330
hole effective masses 170
hole saturation drift velocity 353
impact ionization coefficients 366–8
indirect band gaps and 138–9
low-field electron mobility 324–5
optical absorption spectra 253–4
phonon frequencies and 84–6
refractive index 241–2
Schottky barrier height 205
thermal expansion coefficients 32

thermal conductivity 33–9
symmetry classes and 34
temperature variation 36, 37
thermal expansion coefficient and 31

thermal deformation and symmetry 30–1
thermal diffusivity 39
thermal expansion coefficients 30–3

See also linear thermal expansion
coefficient.

volume thermal expansion coefficient 88
thermal properties 23–39

Debye temperature 28–30
melting points 23–6
specific heats 26–7
thermal conductivity 33–8
thermal diffusivity 39
thermal expansion coefficients 30–3

thermal resistivity. See thermal conductivity.
thermoelectronic devices 34
third-order elastic constants 51–3, 60
third-order nonlinear optical susceptibility

tensor 308
Thomas–Reich–Kuhn sum rule 214
three-valley model, electron mobility 320–1
transit time devices 347



386 INDEX

transition pressures 14, 15
direct–indirect-gap transition pressure 143
Knoop microhardness and 67–8

two-particle wave equations 230
two-photon absorption 309–11

ultrasound
amplification 99
measurements 42–3, 50

unit-cell volume and Knoop microhardness
63–4, 65

Urbach tails 256–8

valence energy bands
anisotropy 162
components 331
conduction band transitions 105
conduction-valley energy separations 142
degeneracy 331
electron density of states 113
intervalence-band absorption 275–8
splitting 110
symmetry 111

valence-band deformation potentials 175–9
hexagonal semiconductors 180
L-valence-band states 186, 187
notations 177

valence-band Hamiltonian 114
deformation potentials and 176

Varshni equations for temperature dependence
E0 band-gap energy 120, 121, 122, 220
elastic stiffness 50
electron effective mass 152–3
higher-lying direct band gaps 133, 135
indirect band gaps and 138–9
optical phonon frequency 85–6

Vickers indentation method 63
Voigt averaged sheer modulus 67
volume thermal expansion coefficient 88

Wiedemann–Franz–Lorenz law 38
Wigner–Seitz unit cell 104
wurtzite crystal structure 6, 8

See also hexagonal semiconductors.
conduction-band and valence-band

symmetries 162–3
E0-gap region 114–15
electron effective mass and E0-gap region

151
energy-band structure 108–11
molecular density 13

near-neighbor distance 13
phonon dispersion compared with

zinc-blende 77–8
SiC 9
valence-band splitting 110

X-point intravalley deformation potentials
188–9

XPS (X-ray photoelectron spectroscopy) 112,
113, 128, 196

X-ray crystal density 14

Young’s modulus 53–62
hexagonal semiconductors 60, 61, 62

zinc-blende crystal structure 6, 8
See also cubic semiconductors.
cleavage planes in 17, 18
conduction-band Hamiltonian 158
conduction-band symmetry 190
E0-gap region 114
elasto-optic contribution 292
electromechanical coupling constant 100
energy-band stress effects 174
energy-band structure 106–8
intervalence-band absorption 275, 276
linear electro-optic constant 294
molecular density 13
near-neighbor distance 12
nonlinear susceptibility 303
phonon deformation potential 89
phonon dispersion compared with wurtzite

77–8
piezoelectric effects 95
quadratic electro-optic constant 296, 298
reststrahlen spectra 222
valence-band splitting 110
valence-band Hamiltonian 160

ZnO
E0-gap energies and temperature 122, 123,

124
electron affinity 196
linear pressure coefficient 206
phonon dispersion curve 77, 78
Schottky barrier height and metal work

function 201
spin-exchange interaction constant 236
thermal expansion coefficient versus

temperature 32, 33
ZnS thermal conductivity 32, 34
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ZnSe
electron density of states 112–13
Hall mobility and electron concentration in

n-ZnSe 329
plasma and d-band spectral effects 262–3
second-harmonic-generation coefficient

307
two-photon absorption coefficient 310–11

ZnTe
Hall hole mobility and hole concentration in

p-ZnTe 339
lattice parameter pressure dependence 61

refractive-index dispersion 239
Schottky barrier height and metal work

function 203
thermal expansion coefficient versus

temperature 33
zone-center effective mass

cubic semiconductors 150
wurtzite crystal structure 151

zone-center � point 74–5
�-valley electron effective mass

147–58
intravalley deformation potential 173–83
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