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Chapter 1
Introduction

1.1 Recent Evolutions in System Modeling and Impact
on Software Simulation

Architecture simulation by virtual prototypes is a fundamental design and vali-
dation tool of system architects. It consists in replicating an architecture in soft-
ware in order to validate its functional behavior, to evaluate its performance, to
explore architecture design options, or to enable early software development and
non-intrusive debugging. In this book, we highlight some of the most recent devel-
opments in architecture software simulation. This book is motivated by multiple and
drastic evolutions in architecture, technology, application domains, and manufactur-
ing, all happening at the same time, and which greatly challenge the development
of architecture simulation or virtual platforms.

The first fundamental evolution lies in the application domains. For sev-
eral decades, the architecture domain was rather neatly partitioned into high-
performance computing architectures (from workstations to supercomputers) and
embedded architectures (mobile devices, custom devices, etc.). However, embed-
ded architectures have been pulled toward greater functionality and performance
(e.g., smartphones, 3G and 4G wireless communication, set-top boxes), while, at the
same time, stringent low-power requirements and the appeal of a new broad market
has attracted high-performance architecture manufacturers toward embedded tech-
niques and domains. As these two domains converge, they bring together archi-
tecture design practices, and especially software simulation practices, which are
very different. In the high-performance domain, simulation has been traditionally
focused on complex architecture exploration, which privileges slow cycle-accurate
modeling, while in the embedded domain, simulation has been focused on hard-
ware/software co-design of system-on-chip, which privileges fast and approximate
transaction-level modeling. As a result of the merger of the high-performance and
embedded domains, each domain must now borrow from the other in order to tackle
changing architectures.

Architecture is where lays the second evolution. For several decades, high-
performance architectures were mostly fast and complex single-core architectures,
while embedded architectures were mostly simple, slow and low-power, single-core,
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2 Introduction

multi-core, or system-on-chip (cores and accelerators) architectures. Multi-cores
are now mainstream in high-performance architectures (from a few cores in Intel
processors to several hundreds in Nvidia GPGPUs), and embedded cores are now
becoming increasingly complex (such as the superscalar 1 GHz ARM Cortex A9,
with support for cache coherence). As a result, software simulation must now effi-
ciently tackle several tens, possibly several hundreds of IP blocks, corresponding to
either homogeneous or heterogeneous cores, and accelerators, a challenge, particu-
larly in terms of simulation speed.

Beyond more complex architectures, software simulation is now used to model
entire devices or platforms. The progressive transition from hardware prototyping to
software prototyping is the third evolution, which takes place in system design. For
a broad range of products involving electronic systems, engineers are shifting away
from cumbersome hardware prototyping, which requires to physically assemble a
prototype of the final product, to software prototyping where the product is almost
entirely simulated in software. Virtual prototyping speeds up the design process and
facilitates the exploration of alternative components, including cases where they are
not yet available. It is used for domains as diverse as telecommunications infrastruc-
ture, onboard car computers, and data centers. The need to tackle full devices and
platforms brings new software design and productivity challenges for simulation.

Increasingly large and diverse target systems, coupled with the complexity of
underlying multi-core architectures, call for more high-level software simulation
approaches, as mentioned before. However, at the same time, technology-related
metrics and constraints (power, temperature, area, clock domains, etc.) now have a
dominant impact on architecture design and require precise circuit-level modeling
techniques. This fourth evolution, and the tension between low-level and high-level
modeling needs, is forcing to develop fast modeling techniques capable of capturing
key technological trends.

Finally, a few words on terminology. The domain of software simulation is multi-
faceted. The term software simulation often covers many different notions, and some
clarifications are necessary before the reader goes through the different chapters.

1.1.1 Abstraction Level

Software simulation denotes the high-level transactional-level modeling used in vir-
tual prototyping, as well as cycle-level modeling used in micro-architecture explo-
ration, or even the Verilog gate-level description of architectures for FPGA proto-
typing. In gate-level modeling, the individual logic gates and state elements (latches,
SRAMs) are described; in cycle-level modeling, all operations are described at the
granularity of a clock cycle and often of individual bits; in transaction-level model-
ing, it is assumed that what happens within a core or accelerator has little influence
on the whole system behavior except for the memory transactions (hence the term)
or the communications among cores and accelerators.
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1.1.2 Simulator, Functional Simulator, Detailed Simulator

Several terms are often indifferently used to denote the same notion. A functional
simulator only simulates the program instructions, updates processor registers, and
performs ALU operations, but it does not provide any performance information. A
performance, detailed or cycle-level, simulator often complements a functional sim-
ulator, and it provides performance information (usually time expressed in number
of clock cycles, but also power consumption, and other metrics).

1.1.3 Full-System Simulator

A full-system simulator often covers two notions simultaneously: (1) the modeling
of the full hardware system, not just the processor but also peripherals, etc., (2) the
modeling of the full software system, not only a user application but also the full
operating system.

1.2 Book Overview

The book is arranged in 19 chapters distributed into four parts, each part correspond-
ing to one of the aforementioned evolutions.

Part I details several recent approaches to system modeling, how they can be used
for system exploration, and their impact on simulator construction; these approaches
range from single-core exploration to multi-core simulation, virtual device prototyp-
ing, and data center modeling. In Chapter 2, researchers from Synopsys present sev-
eral years of experience in the development of a virtual prototyping platform geared
toward embedded devices. In Chapter 3, researchers from Virtutech present a virtual
prototyping approach which ranges from parallel systems to embedded devices. In
Chapter 4, researchers from HP Labs show how to model full-scale data centers
efficiently and reliably. In Chapter 5, we show how to use modular simulators to
explore multi-core and system architectures, and the corresponding software design
issues are studied in detail. In Chapter 6, we show how modular simulation can even
be used to tackle the multiplicity of single-core architecture design options.

Part II covers key existing approaches for fast simulation. Many and fairly dif-
ferent concepts have been proposed to tackle the simulation speed challenge. As
of now, it is not yet clear which approach(es) will prevail, and it may well happen
that the simulator designer will end up combining several such methods together. In
Chapter 7, we present a hardware-assisted simulation method (based on FPGAs) for
fast and accurate simulation. Parallel simulation, where the simulator is parallelized
and leverages existing multi-core hosts, is presented in Chapter 8. In Chapter 9, a fast
simulation method based on dynamic binary translation is presented; it is shown to
serve both early software development and architecture exploration. In Chapters 10
and 11, two approaches at sampling are presented. Sampling allows to use a detailed
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(and slow) simulator for only a fraction of the application execution and still obtain
precise performance modeling for the full application; the approaches differ in the
way samples are chosen. To a lesser extent, sampling techniques with specific goals
and characteristics are also discussed in Chapters 4 and 8. In Chapters 12 and 13, two
techniques based on statistical simulation are presented. The technique presented
in Chapter 12 by Acumem is focused on modeling cache memories and relies on
sparse but low-overhead run-time information collection. The technique presented
in Chapter 13 shows that it is possible to precisely characterize the performance
behavior of an application using traces of only a fraction of the size of the full
application trace.

Part III of this book is devoted to more hardware-related simulation issues aris-
ing from current and future chip integration technologies. Chapter 14 focuses on
the power, area, and latency modeling of memory subsystems. Chapter 15 empha-
sizes the need for temperature-aware chip design and discusses the corresponding
methods for accurate thermal modeling. Last but not least, Chapter 16 shows how
a technology-aware design space exploration methodology that directly takes into
account key technology metrics like component power, area, and performance can
be applied to quickly arrive at optimized MPSoC design points for given applica-
tions.

Finally, Part IV emphasizes practical simulation issues and approaches largely
rooted in various embedded system application domains. Chapter 17 provides
insights into modeling, simulation, and validation technologies at one of the most
successful embedded RISC core vendors. The perspectives from another popular
processor IP provider are discussed in Chapter 18. It highlights challenges encoun-
tered in customizable processor design and simulation as well as system integration
by means of contemporary electronic system level design technologies. Chapter 19
focuses on wireless baseband processing and presents the key simulation problems
and solution approaches in this particular domain. It exemplifies how a mix of
hardware- and software-based validation can help to combat the huge simulation
times required for DSP algorithm optimization and validation. Chapter 20 finally
presents another simulation technology to efficiently guide MPSoC design space
exploration. The proposed trace-driven approach provides high simulation speed
and reasonable accuracy for early software performance estimation at the same time.
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System Simulation and Exploration



Chapter 2
The Life Cycle of a Virtual Platform

Kevin Smart

Abstract A virtual platform is a fully functional software model of a complete
system, typically used for software development in the absence of hardware, or prior
to hardware being available. In this chapter we describe how virtual platforms are
created and deployed, providing a case study on how virtual platforms are used for
USB software development and verification at Synopsys.

2.1 Creation

What is a virtual platform? A virtual platform is a fully functional software model
of a complete system, typically used for software development in the absence of
hardware, or prior to hardware being available. It is complete in that it models not
only System-on-Chip (SoC) devices but also board components, user interfaces, and
real-world I/O too. To be suitable for productive software development it needs to
be fast, booting operating systems in seconds, and accurate enough such that code
developed using standard tools on the virtual platform will run unmodified on real
hardware. As it is a software program it can provide unsurpassed visibility into
internal events, provides a deterministic solution for multicore debugging, and is
very easy to deploy (Fig. 2.1).

I have personally contributed to and managed the development of over sixty
commercial virtual platforms throughout the past few years at Virtio and Synopsys.
In this chapter I would like to provide you with some insight into how they are
developed and what they are used for. Throughout this chapter, I will add further
detail, italicized, with respect to the USB case study that is summarized in the final
section.

K. Smart (B)
Synopsys (Northern Europe) Ltd, Alba Centre, Alba Campus, Livingston EH54 7EG, Scotland
e-mail: ksmart@synopsys.com
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8 K. Smart

Fig. 2.1 A virtual platform

2.1.1 TLM-2.0. Abstraction and Design Choices

First some further background. A virtual platform is typically constructed of several
transaction-level models (TLMs). TLMs are an abstraction, a higher level represen-
tation of hardware behavior, focusing on discrete events such as register reads/writes
and information passing such as clock frequency notification, rather than bus signals
and clock transitions (Fig. 2.2). Through this abstraction, focusing on only the infor-
mation software can access or cares about, it is possible to meet the performance and
software binary compatibility goals, with the additional benefit of reducing model
development time. And reduced model development time is important to provide

Fig. 2.2 Hardware abstraction
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software developers with earlier access to the virtual platform and ultimately prod-
uct schedule improvement.

In June 2008 at DAC the SystemCTM transaction-level modeling standard, TLM-
2.0 was ratified [1]. This has enabled easier interoperability of transaction-level
models from different vendors by standardizing the interfaces of memory-mapped
busses, moving virtual platforms from the early adopters’ proprietary solutions to
the broad mainstream. Synopsys played a leading role in the development of this
standard, donating much of the technology.

Fig. 2.3 Loosely timed synchronization

TLM-2.0 defines two coding styles: loosely timed or LT and approximately
timed or AT. LT is suited to virtual platforms intended for software development
and employs techniques such as direct memory interfacing (fast memory access
via pointer dereferencing) and temporal decoupling (scheduling each core to run a
batch of operations in a quantum period before yielding control, Fig. 2.3) to achieve
performance typically in the tens of millions of instructions per second (MIPS).
This is suitable for booting complex software such as embedded operating systems
in seconds while achieving the goal of software binary compatibility, i.e., software
developed on the virtual platform should run unmodified on target hardware. Often
instruction set simulators that cache blocks of translated instructions, rather than
repeatedly interpreting, are employed to maximize performance.

However, where additional timing accuracy is required, typically for soft-
ware performance estimation and architectural analysis use cases, the AT style is
employed. This supports non-blocking overlapping transactions to more accurately
model hardware behavior such as bus contention and prioritization of multiple mas-
ters, but at a price, reducing performance by perhaps an order of magnitude, due to
increased synchronization within the SystemC kernel, and subsequent increase of
model development and validation times, due to greater complexity (Fig. 2.4).

A single model can support both LT and AT modes. There are techniques such
as booting software in LT mode and then switching to AT mode at a particular
breakpoint, or simulation save and restore: the resumption of execution from a saved
state that can alleviate some of the performance issues for software development and
validation.

But there is always a performance/accuracy/development time trade off. Virtual
platforms typically do not contain many cycle-accurate models of complex com-
ponents because of the performance impact. And these models can take so long
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Fig. 2.4 Approximately timed synchronization

to develop and validate that the benefits of early virtual platform availability for
pre-silicon software development are lost.

However, if RTL is available there are techniques such as automated RTL to
SystemC model conversion, RTL co-simulation, or FPGA co-emulation that can be
employed to eliminate the overhead of manually creating a cycle-accurate model,
and in the FPGA instance, can result in hardware acceleration. We will look at some
applications of these later.

So in terms of abstraction level the choice really boils down to the end users’
requirements, concerning performance of the simulation, acceptable accuracy to
address their use cases and the desired availability schedule.

In the case of our modeling of USB cores for software development, the loosely
timed LT abstraction was selected.

2.1.2 Capability Including Real-World I/O

After the abstraction level of a transaction-level model is chosen, decisions need to
be taken on the model’s interface requirements. A master component or an initiator,
like a processor core, will probably have a TLM-2.0 compatible interface, generat-
ing external memory transactions. Similarly a slave peripheral, or target, will have
a TLM-2.0 interface to receive transactions.

It is recommended that a component has a clock frequency input so that it can
receive its operating frequency, typically in Hertz. This permits the model to alter
its behavior if the clock is disabled or the frequency is changed.

And sometimes if power estimation support is required a voltage input and the
means to notify calculated power will be added.

At the time of writing there is no standardization of these and other simple
sideband signals such as interrupt outputs and DMA requests or more complex
connectivity such as I2C or USB. It is hoped that this will change soon, to pro-
mote easier interoperability of different vendors’ models, reducing the number of
interface adapters required.

With the interfaces defined, our attention can focus on how model functionality
may be realized. One of the advantages of running on a PC is that its facilities can
be leveraged to implement the support of physical interfaces. This “real-world I/O”
capability extends to USB host control, serial ports, ethernet, audio input/output,
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camera, firewire, SIM cards, etc. Other capabilities not always physically supported
by a PC such as USB device mode support, MMC/SD/SDIO, HDMI, and SATA are
implemented virtually and referred to as “virtual I/O.” For instance, an MMC/SD
card model receives commands via a transaction interface from its controller, inter-
prets these, and stores data persistently to a file. Tools on the PC can be used to
transfer data to and from the card’s file system and a button on a cockpit window
pressed to virtually insert or remove the card.

The initial development of USB real-world and virtual I/O support was effort
intensive, especially on Windows where an appropriate low-level API was not
available. We had to acquire specialized Windows USB stack and device driver
knowledge to implement a suitable interface, a somewhat rare commodity at the
time. In total probably over a staff year was invested in this development. The sub-
sequent implementation of this support on Linux was much more straightforward.
Third-party model developers can now benefit from the investment that was made
in these interfaces by using the model authoring kits that are available within the
DesignWareTM System-Level Library [3].

Major benefits of a virtual platform over hardware include the ease of config-
uration and analysis capabilities. Most transaction-level models will include con-
figuration parameters to, for instance, enable tracing, alter timing, or even support
different hardware revisions. Often the platform configuration and control is script-
able facilitating use within an automated regression test environment.

Users expect virtual platforms to support the software debuggers they are familiar
with, but a virtual platform can provide increased hardware insight to aid software
debugging, for instance, by tracing interrupt or DMA requests, cache behavior, clock
frequencies, pin multiplexing, and power states.

Unfortunately as with sideband signals, there is no current ratified standard for
configuration, control, and analysis, but in February 2009, the OSCI configuration
control and inspection (CCI) working group was established [2]. This group will
define standards for SystemC that complement TLM-2.0 and allow models from
different suppliers to be fully exploited in any compatible SystemC environment.

2.1.3 Development Process and Tools

Figure 2.5 describes the model development flow employed by Synopsys.
The top half of the diagram indicates the component model development flow,

and the lower portion, platform development and model integration.
The starting point is the specification for the component, “Component Speci-

fication” at the top of the diagram. For a loosely timed TLM, a programmer’s
specification describing signals, memory-map, registers, and their functionality is
usually sufficient to create a model. For an approximately timed TLM, additional
architectural and timing information may be required to implement greater timing
accuracy, but the starting point is still the same, entering register details. For this we
use Component Creator, which is part of the Innovator tools suite [3].
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Fig. 2.5 Model development flow

If SPIRIT IP-XACT XML [4] definitions are available we can use these to auto-
mate the creation of an initial C++ or SystemC register “stub” model, HTML
component documentation, and embedded software-driven verification tests (“Test
Harness Code”). A stub model implements register decoding, default register val-
ues, and read/write permissions of register bit-fields, but does not implement the
functionality behind the registers.



2 The Life Cycle of a Virtual Platform 13

For the USB virtual platform we stubbed out the components not required by the
Linux kernel and the applications we were intending to use.

If IP-XACT or other standard register definitions are not available, the model
developer must enter them using Component Creator. As this is a manual process,
the creation of test harness code should be carried out independently; otherwise
any errors in the register implementation would be repeated in verification tests and
perhaps not caught until much later.

Automated implementation of model functionality (“Implement Comp. Func-
tionality”) is currently the elusive Holy Grail or Nirvana of electronic system-level
design. Although there may be some reuse of existing libraries, the task is currently
one of traditional manually intensive software development. We have found this to
be best suited to software engineers who have some prior electronics or embedded
systems knowledge as they typically understand the requirements of the end user and
of modeling efficiently at higher levels of abstraction, whereas hardware engineers
may initially approach the problem at too low a level, until their mindsets become
reconditioned! For a loosely timed model, the task involves reviewing the compo-
nent’s specification, identifying the functionality that will be visible to software, or
impact other components, and implementing that functionality in C++ or SystemC.

In many cases the loosely timed model may be generated first and, if required,
additional timing detail added to yield an approximately timed model. In some
cases, for instance, with a bus interconnect, the loosely timed model may be very
abstract, containing no registers, and developed quickly, whereas a more timing
accurate model could implement arbitration and prioritization, reflecting contention
and other latencies, taking much longer to develop and validate.

In both cases an iterative approach is adopted; the model is integrated into a
unit test platform (VPTEST) and embedded software tests written (“Develop Unit
Tests”) to exercise model functionality as it is added. An approach which we also
employ is test-driven development whereby the tests are written first, based on the
specifications, and then model functionality implemented, ensuring those tests pass.

With USB controller modeling, test-driven development has proven to be very
effective at reducing the number of issues found during integration testing. Here
the CppUnit [5] test framework is used to execute developed tests as model func-
tionality is implemented and later as part of regression testing, identifying issues
immediately.

Since there may not be full visibility of model functionality, such as signal states,
from the software interface, typically BFMs (bus functional models) are employed
to perform automated stimulus generation and response capture.

With a model implemented and unit tested, integration testing begins (“Basic
Integration Testing”). This testing concentrates on the model’s interaction with other
components, for instance, interrupt and DMA controllers and displays.

In parallel with individual model development, the main virtual platform is estab-
lished, with reference to the modeled system’s top-level functional specification
(“System Specification”), using Synopsys’ Innovator (“start ‘new platform”’). The
platform is constructed from the integration of existing library components from,
for instance, the DesignWare System-Level Library and newly developed ones
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(“Component Libraries”). In both cases, component’s unit tests are integrated into
the platform’s embedded software tests, which specify the platform-specific mem-
ory, IRQ, and DMA request mapping (“Plug ‘Unit Tests’ into Test Framework”).
Once integrated, additional platform-specific system tests may be developed, to
ensure a group of components within a subsystem, or those that implement a specific
software use case, interoperate correctly. An example would be software configur-
ing a camera sensor via I2C, programming a camera controller to DMA frames to
memory, and instructing the display controller to display them on an LCD.

With the base platform established it is then added to an automated build machine
that builds the latest code and runs the embedded software tests as part of its regres-
sion testing.

An incremental approach is applied to the implementation of the virtual platform
model content. To provide most benefit to customers the release content and delivery
is aligned with customer software development schedules. I will describe this in
more detail in the next section.

It is essential to employ good project management and source code config-
uration practices to ensure that releases are made in a timely fashion and any
changes or reprioritization, which will happen especially with pre-silicon develop-
ment, is tracked and accommodated. Collaborative project management tools such
as Microsoft Project Server have proven to be very effective at keeping development
staff informed of project changes.

2.2 Deployment

With a virtual platform developed we can now look at its usage.

2.2.1 Pre-RTL and Pre-silicon Software Development

The majority of virtual platforms developed by Synopsys have been used for pre-
RTL or pre-silicon software development spanning everything from low-level ROM
code through operating systems base porting to end-user applications.

Typically the initial release of the virtual platform is aligned with ROM code
requirements. Since this code eventually resides within the SoC it is important
to start its development early and ensure that it is correct first time, to avoid
costly silicon re-spins. To this end, and to reduce risk, RTL co-simulation and
FPGA prototyping may be used for additional verification. With this approach
it is feasible to achieve same-day integration of software developed pre-silicon,
on the first silicon samples. Here the process is to develop code on the virtual
platform, prior to RTL, and once RTL becomes available verify the developed
code on an RTL simulator, such as Synopsys’ VCS [6], and for better perfor-
mance FPGA boards. If discrepancies are found between RTL and virtual platform
an analysis is performed to determine the root cause. This is useful because it



2 The Life Cycle of a Virtual Platform 15

may indicate that the reference specifications are inaccurate or ambiguous; there
are issues with the RTL; or the virtual platform is incorrect. Obviously it is
highly desirable and more cost-effective to discover errors at source, as early as
possible.

Subsequent virtual platform releases add functionality required for OS base port-
ing and multimedia driver development with the model deployed to a larger num-
ber of software developers, where features such as virtual and real-world I/O are
fully utilized. For instance, Linux software developers can share a common file
system via NFS over ethernet, develop USB drivers that communicate with physical
devices, test HD video output via HDMI, etc. One other advantage that the virtual
platforms have is the ability to provide feedback to software developers on possible
programming violations, flagging up warnings if incorrect programming sequences
are detected. Another advantage is that they can provide full-system simulation,
modeling, for instance, pin multiplexing (the routing of SoC internal signals to
external pins), and clock gating; features which tend not to be supported on FPGA
prototypes.

Once initial software has been developed on the virtual platform, the combina-
tion can be used as an early marketing tool to potential customers, even providing
a mockup of an intended device’s look and feel via the virtual platform’s cock-
pit window. Furthermore the virtual platform plus base software, such as ported
embedded operating systems, can be deployed to the customer’s customers: the
independent software vendors and such like, to allow them to also jump-start their
software development, further accelerating software content availability and product
differentiation.

Even when hardware becomes available, the virtual platform still has a role
to play. Hardware prototypes may be in short supply, difficult to configure, or
unreliable, whereas a software virtual prototype is more easily deployed, available
in greater numbers, provides deterministic results, and offers analysis capabilities
hardware simply cannot match.

2.2.2 Co-simulation

Co-simulation is where the virtual platform is integrated with an HDL simulator
such as Synopsys’ VCS, which supports cycle-accurate RTL simulation.

Co-simulation may be used in the following scenarios:

1. RTL equivalence checking: to verify correctness of a TLM against existing RTL,
to improve user confidence in the accuracy of the TLM

2. RTL testbench development: use a TLM to jump-start the testbench infrastructure
and test cases development, allowing the verification environment and tests to be
developed and debugged much faster

3. Software verification: to verify software, which was developed on a TLM, against
RTL when it becomes available, to ensure functional correctness
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4. RTL integration: to reduce TLM development effort where an IP title is particu-
larly complex or full information is not available

Let us examine all four of these use cases.

2.2.2.1 RTL Equivalence Checking

In some development flows the TLM may have been developed independently of
the RTL and may not be considered the golden reference because of its higher level
of abstraction.

The TLM may be inserted into the RTL testbench and then test cases/scenarios
executed and compared against the results from RTL. As the TLM is at a higher
level of abstraction, adaptors may be required to convert testbench pin-level signals
into transactions compatible with the TLM.

Alternatively if a layered testbench architecture is adopted, such as advocated
by the Synopsys Verification Methodology Manual (VMM) [7], where there are
scenario, functional, and command layers, transactions can be exchanged at the
functional layer. Because of the higher level of abstraction at this layer they are
typically easier to map to TLM interfaces.

In a software-driven verification approach, self-checking software is executed
on a device under test (DUT), and bus functional models (BFMs) are used to
provide stimuli/response to DUT signals, often under the control of a script.
Rather than swapping out the DUT for the TLM and writing adaptors to con-
vert pin-level BFM signals to TLM transactions, it is in some cases simpler
just to model the testbench infrastructure itself as compatible TLMs. Because
the BFMs are themselves abstracted, they can be designed to use the same
transaction-level interfaces as the transaction-level models they interface with,
implementing script commands operating at the functional rather than signal
level.

In all cases, with the TLM instantiated in the testbench environment, the existing
tests can be run against the model, discrepancies identified and eliminated on an
iterative basis, leading to a more accurate TLM that software developers can have
confidence in.

2.2.2.2 RTL Testbench Development

This is very similar to the previous use case where a TLM is interfaced with the
functional layer of a VMM layered testbench. The goal this time is to use the TLM
to develop tests before the RTL implementation of the design is available. However,
due to the TLM’s abstraction it may not be possible to test all functionality, for
instance, low-level signaling, so additional tests will probably have to be written for
the RTL. But still, the TLM will allow the majority of the testbench infrastructure
and test cases to be developed much earlier than traditionally possible.
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2.2.2.3 Software Verification

In this scenario, software such as a device driver that has been developed for a
particular peripheral component, for instance, a USB OTG IP, is tested against the
RTL when it becomes available. The majority of the virtual platform remains the
same, retaining a CPU subsystem which supports the fast booting and execution of
an embedded OS, but the TLM that implements the target component is swapped
out for RTL.

Transactors are used to map TLM-2.0 transactions to, for instance, AMBA
AHB/APB/AXI bus signals, and also side-band signals such as reset inputs and
interrupt request outputs, as required by the RTL. Figure 2.6 shows how RTL of
an interrupt controller is interfaced to a SystemC virtual platform. Read and write
transactions destined for the interrupt controller’s address range are converted into
APB pin-level signals by the transactor. In essence, if you refer back to Fig. 2.2,
we are now converting from the functional level to and from the signal level. For

Fig. 2.6 Co-simulation for software verification
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complex interfaces, such as AXI, transactors, due to their cycle-accurate nature, can
be complex and time consuming to implement and verify, so reuse is extremely
desirable.

It may be difficult to realize physical connectivity within the HDL simulator
(and this is where the co-emulation approach, described later, has an advantage).
Options include using another transactor to map interfaces at the signal level back
to transactions, which are then handled by the virtual platform; using bus functional
models or verification IP compatible with the interface; or another instance of the
IP as RTL, also under software control, to exercise the connection.

Running the software against the RTL may identify issues with the software or
RTL/TLM compatibility that require investigation. Testing RTL with software sce-
narios, even if already verified using an RTL testbench, can increase confidence in
the system, due to increased coverage.

This is the approach used by the Synopsys USB software team to verify software
created using the TLM, when RTL becomes available.

2.2.2.4 RTL Integration

There may be situations where users of a virtual platform are required to develop
driver software for a complex new IP block, such as a graphics controller or video
codec, where an existing TLM is not available, and it is not feasible to wait for a
model to be developed, due to project time pressure. Or it may be that insufficient
specification detail is available for a TLM to be created. If RTL is available, one
option is to instantiate it within an HDL simulator. As with the software verification
use case, above, transactors are required to translate virtual platform transactions
into RTL signals and vice versa.

An alternative solution, which does not require an HDL simulator, could be to
use a C/SystemC model that has been generated automatically from the RTL, using
third-party tools. The advantage is that it can be integrated directly into the virtual
platform and an HDL simulator is not required, but as the C model is essentially
at the same abstraction level as RTL (pin-level cycle accurate), transactors are still
necessary, and the model may require explicit clocking to operate.

With both approaches virtual platform performance will suffer if the RTL is reg-
ularly accessed by software, due to the latencies introduced fulfilling transactions.
However, in other cases, where the RTL is accessed infrequently, it may be possible
to introduce clock optimization mechanisms, to effectively idle the RTL by stopping
its clock source during periods of inactivity, assuming that this does not introduce
any unwanted side effects.

Benchmarks have shown SystemC models generated from RTL to be at least 20x
slower than abstract hand-coded models. An example of this would be a video codec
rendering a 1080p frame in 2 h, compared to 6 min with a TLM. In our USB co-
simulation application, described in the case study, software running on the virtual
platform with USB OTG TLM was measured to be 30x faster than with the RTL
running on an HDL simulator.
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The next section describes another option to improve performance, using co-
emulation.

2.2.3 Co-emulation

This is where a virtual platform is connected to an emulator or rapid prototyping
system, such as Synopsys’ FPGA-based CHIPit [8], rather than an HDL simulator.
The prototyping system can instantiate synthesizable RTL with the advantages of
near-hardware performance and real-time I/O interfacing, albeit with potentially less
debug visibility than with an HDL simulator. Typically a transaction-based interface
such as the Standard Co-Emulation Modeling Interface (SCE-MI) [9] is employed to
connect the two environments together, with normally a processor-based subsystem
or SoC model residing on the virtual platform (software side) and a peripheral or
component subsystem in FPGA (hardware side). Synthesizable transactors will be
required on the hardware side to convert transactions passed across the SCE-MI
interface to signals and vice versa.

Although version 2 of SCE-MI offers improved performance over version 1, due
to its transaction-oriented, rather than event-oriented nature, the physical interface
used, e.g., PCI may offer high bandwidth but with relatively high latencies. This
means it is more efficient to use fewer larger size transactions than many smaller
size transactions. Such constraints should be considered when partitioning the sys-
tem for maximum performance. For instance, it may be necessary to introduce local
caching on the virtual platform side to amalgamate and increase the average size of
transactions passed across the interface. Also if the FPGA instantiated subsystem,
such as a display controller, requires frequent access to memory, it may be more effi-
cient to place that memory also on the hardware side, and implement some caching
mechanism on the software side, if the software will also access it frequently.

Ironically the latencies introduced by co-emulation integration can assist with
software performance optimization. By reducing the number of transactions
between virtual platform and RTL we can achieve noticeable performance improve-
ment. It can soon become apparent, by analyzing transaction traces, where redun-
dant register accesses are being performed, an example of which might be the
repeated reading of interrupt mask registers in the interrupt handler, when caching
the last written value would suffice.

In the USB OTG example shown in Fig. 2.7, we were able to reduce modprobe
and mount times over 5x, by reducing the number of SCE-MI transactions or maxi-
mizing their size.

One of the drawbacks of this hybrid environment is that, depending upon the
instantiated RTL, it may not be possible to keep the time synchronized on both
sides, or pause the hardware side at a software debugger breakpoint. This can lead
to debug issues due to non-deterministic behavior. The FPGA prototyping environ-
ment may also be constrained in terms of how much trace it can capture to assist
with debug. However, overall, the co-emulation approach with an FPGA prototyping
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Fig. 2.7 Integration with an FPGA prototype

environment offers better performance for software development than co-simulation
with an HDL simulator.

In benchmarks we observed a 12x performance increase with USB OTG RTL
instantiated in FPGA rather than an HDL simulator. We would expect to see higher
performance gains for more data intensive cores such as codecs.

2.2.4 Regression Testing

As a virtual platform is a software solution it lends itself to easier automation. For
instance, scripting support can be used to change the software image loaded or even
the version of SoC modeled. You can now imagine the scenario whereby several
embedded operating systems are booted on a model of the latest SoC and regression
tested on a still-in-circulation older version. Even changing the version of software
loaded into flash on hardware could take several minutes, whereas the virtual plat-
form can be updated from files almost instantaneously.

The embedded software may support back-door test interfaces, for instance, via
UART serial connections, which are used in hardware testing. These can be sup-
ported virtually. Furthermore as the user interface of the virtual platform, including
keypad, LCD, and touch screen, is realized as a GUI on the host PC, scripting or
traditional software GUI testing tools could be used to automate the user interaction
with the platform, extending test coverage beyond what is easily achievable with
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hardware. So regression testing using virtual platforms has a role to play even when
hardware is available.

The same approach can be used in regression testing of RTL, with TLMs
swapped out for RTL, as described in the software verification use case
(Section 2.2.2.3).

2.3 Evolution

We have seen how virtual platform models are created and deployed. At some point
a model may become redundant and no longer supported if the IP it is based on
becomes obsolete.

However, the life cycle continues; models from a previous platform may be
updated and used as the basis of a derivative or next-generation architecture. If a
model does not continue to exist in its present form, some of its generic capability
may be extracted to form reusable libraries, employed in new designs.

In the next section we will see the life cycle in action, with reference to USB
model development.

2.4 Case Study

2.4.1 SuperSpeed USB 3.0 Linux Driver Development
and Verification

First some background. Synopsys provides USB cores and other silicon-verified
Intellectual Property as part of its DesignWare R© IP offering [10]. Some of these
titles are available as SystemC transaction-level models in the DesignWare System-
Level Library, after originally being created to enable pre-RTL software develop-
ment by internal software teams and their partners.

This approach was successfully initially deployed for USB 2.0 OTG software
development. At that time the USB team was using ARM920T SoC-based FPGA
development boards for Linux driver development. It made sense for us to model
that target with sufficient SoC functionality such that Linux images, intended for
the hardware board, would run unmodified on the virtual platform.

We created a loosely timed virtual platform based around our existing fast
ARM920T instruction set simulator, to ensure that Linux would boot within
seconds. Core functionality modeled included interrupt controller, timers, DMA,
UARTs, clock and power management, I/O ports, LCD/touch screen, LAN con-
troller and memories, including NAND flash. The functionality that was not required
for our use case was stubbed, accelerating development; basic register models were
created for I2C, SD, SPI, I2S, and similarly for the SoC USB host and device
controllers, since we would be replacing the SoC’s USB capability with our own
DesignWare USBOTG model.
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In all cases the available SoC user’s manual and FPGA developer’s board manual
were sufficiently detailed to create the required models. The standard established
development process, as described earlier (Fig. 2.5), was followed, creating ini-
tial models, embedded test code and component documentation using Component
Creator, adding functionality and unit testing, integrating into the ARM920T base
platform using Innovator and system testing.

Finally with the required functionality implemented, the boot loader, Linux ker-
nel and file system were loaded into the platform via its configuration script, the
platform debugged, and then handed over to the USB software team as a packaged
installer.

The LAN controller model leveraged our real-world I/O capability allowing NFS
network mounted file system support for convenience. And the USBOTG model, the
target for driver software development, supported real-world and virtual I/O capa-
bility, allowing the virtual platform to conveniently control physical USB devices,
such as a memory stick, or appear as a device plugged into the PC (Fig. 2.8).

Fig. 2.8 USB virtual and real-world I/O

This capability has enabled the USB software team to develop and test their
driver updates for several IP revisions prior to the RTL becoming available, acceler-
ating software support for new USB 2.0 standards such as Link Power Management
(LPM) and High-Speed Inter-Chip (HSIC).

In addition we created a co-simulation variant of the platform, on a Linux host,
with VCS, to allow the developed drivers to be tested against the RTL, when it
became available. This consisted of essentially two platforms, each running embed-
ded Linux, one operating in host mode, the other in device mode, and interfacing to
the USBOTG RTL via transactors. The RTL instances were connected back-to-back
at their PHY interfaces for data exchange. Pre-RTL developed drivers and applica-
tions could then be tested against the RTL, increasing confidence.

The other option available to the USB team is to instantiate the RTL on a CHIPit
rapid prototyping system, retaining the rest of the system as a virtual platform (see
Fig. 2.7 above). The advantage over VCS co-simulation is that the USB PHY inter-
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face can be physically tested and the system offers higher performance for extended
testing, while still retaining the debug and visibility benefits of the virtual platform.

A similar approach was deployed with USB 3.0 IP software development. We
initially created a USB 3.0 Device model, also featuring virtual I/O support, and
instantiated it in the ARM920T-based SoC platform. This was used by the software
team for the creation of the initial driver, with the first version of the driver avail-
able within 4 weeks. The USB team, however, decided to move from standalone
ARM based development boards to plug-in PCI express-based FPGA cards. This
unfortunately meant that the developed drivers required modification to support both
the AMBA and the PCI interfaces. This was further exasperated when validating
the USB 3.0 host model. As this model was compliant with Intel’s extensible host
controller interface (xHCI) specification, the Intel-developed Linux driver would be
used, rather than Synopsys developing one, and this driver required a later kernel
version, not easily ported to the ARM920T-based platform. It was finally concluded
that it would be more efficient to develop and use an x86-based virtual platform
rather than maintaining multiple driver and kernel versions.

Since PCs supporting USB 3.0 were not generally available at the time of the
initial USB 3.0 modeling, the virtual and real-world I/O support was only capable of
supporting USB 3.0 devices in USB 2.0 mode. To circumvent this we created a back-
to-back platform similar to the co-simulation arrangement, which connected the
USB 3.0 host xHCI model to the USB 3.0 device model via a transaction interface.
This enabled initial testing of USB 3.0 functionality beyond that offered by the I/O
support.

In general the software teams using virtual platforms have managed to implement
and test new functionality several weeks or months in advance of FPGA prototype
availability. Virtual platforms are found to be more reliable than hardware boards,
easier to use and deploy to internal and external software developers. Once hardware
is available the software bring-up time is significantly reduced, due to the majority
of issues having been addressed on the virtual platform, with perhaps only hardware-
related timing issues left to resolve.

2.5 Conclusion

In this chapter we have defined what a virtual platform is and how it can be cre-
ated and deployed, ending with a practical example of usage and benefits to USB
software teams. We detailed how Synopsys develops virtual platforms and how they
can be used for software development and verification, significantly reducing time
to market.

It has been exciting, over the past decade, witnessing virtual platforms cross the
chasm from early pioneers’ adoption to mainstream deployment, where significant
time and cost benefits are being realized. The future will probably bring increased
automation and accelerated development at all levels of abstraction. One thing is
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certain; there still remain significant challenges ahead to realize the full potential of
electronic system-level design!
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this possible.

References

1. OSCI TLM-2.0 Language Reference Manual, http://www.systemc.org/downloads/standards/.
Accessed 13 Feb (2010).

2. Configuration, Control & Inspection Working Group (CCIWG), http://www.systemc.org/
apps/group_public/workgroup.php?wg_abbrev=cciwg. Accessed 13 Feb (2010).

3. Synopsys Virtual Platforms, http://www.synopsys.com/Tools/SLD/VirtualPrototyping.
Accessed 13 Feb (2010).

4. The SPIRIT Consortium IP-XACT Releases, http://www.spiritconsortium.org/tech/docs.
Accessed 13 Feb (2010).

5. CppUnit C++ Unit Testing Framework, http://sourceforge.net/apps/mediawiki/cppunit/
index.php?title=Main_Page. Accessed 13 Feb (2010).

6. Synopsys Verification, http://www.synopsys.com/Tools/Verification. Accessed 13 Feb
(2010).

7. Verification Methodology Manual for SystemVerilog, http://vmm-sv.org/. Accessed 13 Feb
(2010).

8. Synopsys FPGA Implementation, http://www.synopsys.com/Tools/Implementation/
FPGAImplementation. Accessed 13 Feb (2010).

9. Standard Co-Emulation Modeling Interface (SCE-MI) Reference Manual, Version 2.0, http://
www.eda.org/itc/scemi200.pdf. Accessed 13 Feb (2010).

10. Synopsys DesignWare Interface and Standards IP, http://www.synopsys.com/IP/InterfaceIP.
Accessed 13 Feb (2010).



Chapter 3
Full-System Simulation from Embedded
to High-Performance Systems

Jakob Engblom, Daniel Aarno, and Bengt Werner

Abstract This chapter describes use cases for and benefits of full-system simula-
tion, based on more than a decade of commercial use of the Simics simulator. Simics
has been used to simulate a wide range of systems, from simple single-processor
embedded boards to multiprocessor servers and heterogeneous telecom clusters,
leading to an emphasis on scalability and flexibility. The most important features
and implementation techniques for a high-performance full-system simulator will
be described and the techniques to achieve high simulation performance will be
discussed in detail. As the ability to efficiently model systems is critical for a
full-system simulator, tools and best practices for creating such models will be
described. It will be shown how full-system simulation plays a significant role in
the development of complex electronic systems, from system definition through
development to deployment.

3.1 Introduction

Over the past decade, full-system simulation (FSS), also known as virtual plat-
form technology, has proven to be a very useful tool for the development of
computer-based systems of all kinds, including small deeply embedded systems,
telecom infrastructure, servers, and high-performance computing solutions. FSS
indicates that the simulation of the hardware is complete enough to run the real
target software stack and fast enough to be useful for software developers. In a
full-system simulator, there are models of processors, memories, peripheral devices,
buses, networks, and other interconnects; and the software cannot tell the difference
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from a physical system. The systems being simulated are called target systems and
the computer used to run the simulation is referred to as the host.

Virtutech Simics [1] is a full-system simulator which has been in commercial use
since 1998. This chapter provides an overview of how real-world usage has shaped
the Simics product. The main users of Simics are software and systems developers,
and their main problem is how to develop complex systems involving both hardware
and software.

The target systems simulated with Simics range from single-processor aerospace
boards to large shared-memory multiprocessor servers and rack-based telecom and
datacom systems containing thousands of processors across hundreds of boards.
The systems are heterogeneous, containing processors with different word lengths,
endiannesses, and clock frequencies. For example, there can be 64-bit Power Archi-
tecture processors running control software, with 8-bit microcontrollers managing
a rack backplane, mixed with data-plane boards containing dozens of 32-bit VLIW
DSPs [2]. The systems are typically built from standard commercial chips along
with some custom FPGAs or ASICs.

Most target systems are networked. There can be networks of distinct systems
and networks internal to a system (such as VME or Ethernet-based rack backplanes).
Multiple networks and multiple levels of networks are common.

The target system is dynamic. During simulation (just like when using the phys-
ical machines modeled), users can add and remove boards, bring new processors
online, reconfigure network topologies, introduce faults, or plug and unplug hot-
pluggable hardware. The software will perceive these events like it would on phys-
ical hardware, allowing users to test and develop all aspects of the software stack,
including automatic configuration, load balancing, fault detection, and recovery.

Simulation runs can cover many hours or days of target time and involve multiple
loads of software and reboots of all or part of the system. Even a simple task such as
booting Linux and loading a small test program on an eight-processor SoC can take
over 30 billion instructions (this was measured on an early version of Freescale’s
P4080). Profiling and instrumentation runs can take tens of billions of instructions
[3, 4].

Full-system simulation is used in several ways during the product life cycle. It
helps to define systems, by providing an executable model of the hardware interface
and hardware setup. FSS supports hardware and software architecture work, and
it validates that the hardware can be efficiently used from the software stack [4].
FSS is used to develop system software, including debug and test. The software
development schedule can be decoupled from the availability of hardware when
using FSS and it improves software development productivity by providing a better
environment than hardware. When systems are in deployment, FSS is used instead
of physical systems for tasks like sales demonstrations, end-user training, and target
system configuration.

Section 3.2 describes the particular features that we have found useful for soft-
ware and systems developers. Achieving high simulation speed is critical for a full-
system simulator and is addressed in more detail in Section 3.3. Finally, Section 3.4
discusses how to build target system models.
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3.2 Important Features of a Full-System Simulator

The feature set of Simics has been developed and adjusted for almost 20 years in
order to meet the needs of system developers (the first code in what was to become
Simics was written in 1991). This section discusses the most important features of
Simics and why they were important enough to be incorporated in the product.

3.2.1 Modular Design and Binary Distribution

Simics is modular; each device model, processor, or other Simics model or feature
is shipped in its own self-contained dynamically loaded object file (as shown at
the bottom of Fig. 3.1). This fine-grained structure makes it possible to supply the
exact set of models and features needed for any specific user. The object file and its
associated command files are referred to as a Simics module.

Simics models can be distributed as binary-only modules, with no need to supply
source code to the users. Binary distribution simplifies the installation for end users,
as they do not have to compile any code or set up build environments. It also offers
protection of intellectual property when different companies exchange models.

Simics modularity enables short rebuild times for large systems, as only the mod-
ules which are actually changed have to be recompiled. The rest of the simulation is
unaffected, and each Simics module can be updated and upgraded independently.

Fig. 3.1 Simics architecture
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The modularization of Simics is achieved by the same mechanisms used to imple-
ment transaction-level modeling (see Section 3.3.2). A Simics model exposes an
arbitrary set of interfaces to other models in other modules, and objects can call any
model interface in any module. Interfaces are used between device models to model
hardware communication paths and to implement other simulator functionality and
information flows, such as getting the current cycle count of a processor or finding
the address of a variable from the debug module. Unlike SystemC, multiple objects
may call the same interface and bindings are not made at compile time. Some inter-
faces are unidirectional, but bidirectional interfaces are common (for example, a
network and a network device sending packets to and from the device). Bidirec-
tional interfaces are simply implemented as two complementary interfaces, one in
each direction.

Interfaces are implemented in C, as structs containing a set of function point-
ers. Each interface has a globally unique name within the current simulation. Each
class of Simics objects registers the interfaces that it exports with the Simics kernel
(when the module containing the class is loaded into the simulation). To call an
interface in an object, the simulation kernel is queried for a pointer to the interface
of a given name, for some object in the simulation. Since interfaces are implemented
in C, the pointer to the receiving object is the first parameter in all interface calls.
Essentially, this implements run-time binding between simulation modules, in a way
similar to what the Java and Microsoft .net virtual machines allow.

Simics uses the C-level ABI and host operating system dynamic loading facili-
ties. The C++ ABI varies between compiler versions and compiler vendors and is
thus not usable in the interface between modules, even though C++ can be used
internally in modules. Virtutech provides bindings to write Simics modules using
DML (see Section 3.4.1), Python, C, C++, and SystemC, but users can actually use
any language they like as long as they can link to C code. For example, a complete
JVM has been integrated into Simics, running modules written in Java [3].

3.2.2 Simulation State Checkpointing

Simics checkpointing is the ability to save the complete state of a simulation to
disk and later bring the saved state back and continue the simulation without any
logical interruption from the perspective of the modeled hardware and especially the
target software. Checkpoints contain the state of both the hardware and the software,
which is implicit in the hardware state. In our experience, checkpointing needs to
support the following operations:

• Storing the simulation state to disk.
• Restoring the simulation state on the same host into the same simulation binary.
• Restoring on a different host machine, possibly belonging to another user or

organization, where different can mean a machine with a different word length,
endianness, operating system, and installed software base.
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• Restoring into an updated version of the same simulation model, for example,
with bug fixes or expanded functionality.

• Restoring into a completely different simulation model that uses the same archi-
tectural state. For example, a detailed clock-cycle-driven model.

Checkpointing can be used to support work-flow optimization, such as a “nightly
boot” setup where target system configurations are booted as part of a nightly build
and checkpoints saved. During the workday, software developers simply pick up
checkpoints of the relevant target states, with no need to boot the target machines
themselves.

Another important use of checkpointing is to package bugs and communicate
them between testing and engineering, between companies, and across the world.
With a deterministic simulator and checkpoint attached to the bug report, reproduc-
ing a bug is trivial.

Checkpointing, as it is known today, first appeared in full-system simulators in
the mid-1990s [5]. The primary use case at that time was to change the level of
abstraction, from a fast functional model to a detailed model, using the fast model
to position a workload at an interesting point. This technique is still in use today,
supporting both computer architecture research and detailed software performance
analysis [1, 6–8].

The key implementation mechanism for checkpointing in Simics is the attribute
system. Each object in a simulation has a set of attributes. Each attribute has a name
that identifies it and a type and two primary interface functions: get() to read the
value and set() to change the value. The type of an attribute is built from primitive
types such as integer, floating point, and string, combined into lists or lists of lists.
An attribute can accept several different types as the input to set(). Attributes also
provide user-readable documentation about their purpose. The complete state of the
system is captured in its attributes.

3.2.3 Dynamic Configuration and Reconfiguration

A Simics simulation can be reconfigured and extended at any point during a simula-
tion. New modules can be loaded and new hardware models and Simics extensions
added. All connections can be changed from scripts and the Simics command line
at will. This dynamic nature of a system is necessary to support system-level devel-
opment work and to support the dynamic nature of the target systems discussed in
the introduction.

Configuration flexibility also goes beyond what is physically possible. For exam-
ple, it is possible to start from a checkpoint of a booted and configured system, add
custom hardware models, and load device drivers for the new hardware on the target
system [4].

Reconfiguration can also be used to implement fault injection and to test the tar-
get software response to faults in the hardware. Typical examples include suddenly
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removing boards in a rack, stopping a processor, or replacing a device with a faulty
variant generating corrupted instead of proper data. Like in checkpointing, the
attribute system is the key implementation mechanism for dynamic configuration
in Simics.

3.2.4 Repeatability and Reversibility

Simics has been designed from the bottom-up to be a repeatable, deterministic sim-
ulator, with the same exact simulation semantics regardless of the host. As long
as asynchronous input to the simulator is being recorded, any simulation run can be
repeated precisely on any host at any time. Note that determinism does not mean that
the simulation always runs the same target software in the same way. If the timing
of any input or any part of the initial state changes, the simulation will execute
differently.

Determinism does not prevent a user from exploring variations in target software
behavior [4, 6]. However, the user remains in control and can repeat any simulation
run where the variations triggered some interesting behavior.

Based on repeatability, Simics also implements reverse execution and reverse
debugging, where the user can go back into the history of the system execution.
Reverse execution was incorporated in Simics 3.0, launched in March of 2005,
which makes it the first usable reverse execution implementation. This is a powerful
tool for software debugging, especially for intermittent and timing-dependent bugs
which are difficult to reproduce on hardware using classic iterative debugging. Note
that Simics reverse execution applies to a complete target systems, possibly con-
taining many processors, boards, and multiple operating system instances. Network
traffic, hardware accesses, and everything else going on in the system are reversed,
not just a single user-level process as is targeted by most current reverse execution
approaches such as gdb 7.0.

Reverse execution is implemented by a combination of checkpointing and deter-
ministic re-simulation. To go back in time, Simics restores the system state from a
checkpoint and then re-executes the simulation forward to the desired point in time.
The checkpoints used for reverse execution are stored in host memory and not on
disk, in order to provide usable performance. Since memory and disk images only
need to store the changes between two checkpoints, checkpoints can be kept fairly
small. There are also algorithms that intelligently select when to checkpoint and
to cull checkpoints in order to keep the memory usage within limits. Note that each
checkpoint saves the entire instant state of all objects in the simulation, like a normal
Simics checkpoint.

Implementing reverse execution requires more than checkpointing and determin-
ism, however. To achieve useful performance, Simics does not create a new simu-
lation from scratch each time the simulation is reversed. Rather, Simics models are
written to accept a reset of their state at any point in time, within the same simulation
object instance. Normally, this is simple to achieve for user-provided device models,
especially for models written using DML (see Section 3.4.1).
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A key enabler for determinism, checkpointing, and reverse execution is that
Simics simulation models do not normally use resources outside the simulator –
notice that the target machine is internal to Simics in Fig. 3.1. Hardware models
live in a completely virtual world and do not open files on the host or drive user
interaction directly. All external interaction is handled by the Simics kernel and spe-
cial infrastructure modules for text consoles, graphical consoles, and network links.
Such models are normally provided by Virtutech, handling all the tricky corner cases
that are caused by reversibility and providing a sensible user experience. In the case
that the outside world needs to be connected to a model, Simics provides a recorder
mechanism that can reliably replay asynchronous input under reverse execution.

Reverse debugging and checkpointing have proven to be addictive. Once a user
has used them, they never want to be without them again!

3.2.5 Scripting

Simics can be scripted using the Python programming language, as well as using
the Simics built-in command-line interpreter (CLI). The CLI offers an accessible
way to perform common tasks, while Python offers the ability to write programs
to accomplish arbitrarily complex tasks. Scripts can hook into events in the simula-
tion, such as printouts on serial consoles, network packets being sent, breakpoints
being hit, interrupts firing in the target hardware, and task switches done by target
operating systems.

Scripts in Simics can contain multiple threads, so-called script branches, which
allow simple scripting of parallel flows in the simulation, such as code running on
different machines in a network. There are barriers and FIFOs available to coordi-
nate the script branches.

Scripting is always available via the Simics command line, and users can work
interactively with Simics and later collect sequences of commands into script files,
similar to what is typically done with Unix shells.

3.2.6 Visibility

A simulator offers visibility into all parts of the target system. Compared to phys-
ical hardware, nothing is hidden inside opaque devices or on the internal buses of
SoCs. As virtual time can be stopped, it allows arbitrary complex queries to be
performed without affecting the simulated system. Simics offers several ways to
access, and manipulate, the state of a target system. There is access to the static
state of registers and memory, and Simics device models expose the state of all their
programming registers using Simics attributes – see Fig. 3.2 for an example of how
this information is presented.

In addition to access to the static state of a system, Simics provides callback
hooks to access the flow of transactions in a system. User modules implement
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Fig. 3.2 Simics device register viewer

callback functions and register them to get called when transactions occur. For
example, memory bus transactions can be intercepted and network packet transmis-
sions monitored. The hap mechanism offers notifications when events trigger inside
of modules, such as processors getting exceptions and changing between kernel
mode and user mode. Haps also provide hooks for changes in the simulation envi-
ronment, such as the simulation being started or stopped or new simulation objects
created. The user can also define new haps, for example, to react to interesting events
in a device.

One problem that has to be solved is to know when to trace events in the target
system. In a system with multiple processors and many hardware devices, running
multitasking operating systems, there is so much going on that tracing everything
will overwhelm the user and fill up disk space at a rapid pace. The solution to this
problem is to determine points in the software load where tracing should be started
and stopped. These points can then be identified in a number of ways. One simple
solution is to use magic instructions. A magic instruction is an instruction which is
a no-op on the physical hardware, but which the simulator considers special. When
such an instruction is executed, user modules get a callback. In most cases, using
magic instructions does require modifying and recompiling the source code of the
target program.

Magic instructions have also been used to prototype special instructions or hard-
ware accelerators, by reading out and modifying the processor state in the magic
instruction callback.

As discussed in Section 3.2.8, you can also use debug features to detect inter-
esting points in the code, using breakpoints and hooks for task switches to follow a
particular program’s execution.
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3.2.7 Extensibility

Simics was designed from the start as an open and general simulation platform,
where any user can extend the simulator in arbitrary ways. This does not only
include modeling new hardware devices or processors, but also add new simula-
tor features and instrumentation modules. The Simics API provides users with full
access to the system state and the configuration of the simulation. Using the Simics
API and the interfaces presented by simulation models, Simics functionality can be
arbitrarily extended without source code access to any part of the simulator.

The Simics API has been used to implement some custom features that really
exploit the visibility offered by the simulator. For example, Wright et al. describe
an implementation of an introspection system that traces the execution of a Sun
HotSpot JVM while running under Solaris on a Simics UltraSPARC target. This
framework unintrusively inspects target memory and interprets its contents using
Java programs running in a JVM embedded into a Simics module, reusing instru-
mentation code that is also used on live HotSpot runs [3].

The most common extension to Simics are custom hardware models, from pro-
cessors and device models, to boards and racks and networks. This is covered in
Section 3.4.

3.2.8 Software Abstraction

Like physical hardware, Simics simulations work at the level of machine instruc-
tions, processor registers, and memory locations. However, many users are inter-
ested in programs, source code, and OS-level processes. To bridge this gap, Simics
provides features that map from the machine state to software abstractions.

Symbolic debugging provides a mapping from locations in memory to functions
and variables in the executing program. Debugging is used interactively by a user,
as well as from scripts and user extension modules to automatically trace, profile,
and debug target code. Figure 3.3 shows an example of this in action.

Operating System awareness allows Simics to investigate the state of the target
system and resolve the current set of executing threads and processes. OS awareness
modules need to be customized for each operating system and involve knowing
the layout of operating system task structures in memory and how they are linked
together. The detailed offsets in the structures can usually be determined using
heuristics at run time. At the time of writing, Simics has OS support for Linux,
VxWorks, OSE, and QNX. OS awareness provides scripts and extension hooks
to detect when programs and processes are executed, terminated, or switched in
and out.

Using these mechanisms, scripts can for example be created to detect deadlock
by inspecting a concurrent software load as it is running by detecting accesses to
shared variables. To give another example, a commercial OS vendor wrote a module
which intercepted all writes to an operating system log function to create a log trace



34 J. Engblom et al.

Fig. 3.3 Simics visibility and software abstractions

in the simulator, independent of whether the target system ever got to a state where
the trace could be read. Albertsson describes a Simics-based system that automat-
ically creates the information necessary to debug across all layers of the software
stack [9].

3.2.9 Connectivity

A simulator used for system development and software development is not really a
stand-alone tool. To get maximum value from a simulator, users need to integrate
it with other tools. One way to do this is to provide a real network facility which
connects simulated machines to the physical network. As illustrated in Fig. 3.6, this
has been used to drive traffic into virtual networks from physical test equipment,
as well as to provide Internet access to the target machines. It can also be used to
connect a virtual platform to a piece of physical hardware to perform hardware-
in-the-loop testing or to connect a debug agent running on a virtual machine to a
debugger running on the same host.

To help write external tools that interact with simulated targets, Simics also pro-
vides a time server feature that lets external tools synchronize with the time of the
virtual world. This makes it possible to set test timeouts in terms of virtual time
rather than wall clock time, providing more precision and reliability.

Simics also provides interfaces to connect directly to various debuggers such as
GDB, including reverse execution as implemented in GDB version 7, Wind River
Workbench, and Freescale CodeWarrior.
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3.3 Achieving High Simulation Speed

Achieving high simulation speed is critical to enable users to run the workloads they
need. The simulator performance is expected to be comparable to hardware speed
even if both the simulated system and its workload are very large. Key aspects that
need to be addressed when building a fast simulator are as follows: deciding on the
right level of timing abstraction, using a transaction-based modeling methodology
of hardware devices, creating fast processor models, using temporal decoupling, and
multi-threading the simulation. Simics is optimized for running software as quickly
as possible with a simple machine timing model, while allowing detailed timing to
be added when needed.

3.3.1 Simics Timing Abstraction

The native Simics level of timing abstraction is software timing (ST). In ST, the
large-scale timing of the system is modeled: time progresses as instructions are
being executed. Normally, all memory accesses complete in zero time. Devices
can post timed events to model software-visible event timing like timer expiry
or delays to completion interrupts. This level of timing abstraction is used by
software-oriented simulation solutions like Simics, Qemu, IBM CECsim [10], IBM
Mambo [8], and SimOS [5].

On the hardware-oriented side of simulation, the SystemC TLM-2.0 library [11]
defines two other levels of abstraction, loosely timed (LT) and approximately timed
(AT). Unlike ST, LT allows all calls to a device model to be blocking in the SystemC
sense, which means that the called function might call wait(), thus requiring the
simulation kernel to deal with threading. This does carry a performance cost. It also
allows for timing annotations on operations, which make writing really fast proces-
sor simulators more complicated as time management has to take timing annotations
into account. A threaded execution model also makes checkpointing much more
difficult, as state is stored on the execution stack [12, 13].

AT is designed to model hardware buses with effects such as arbitration, con-
tention, and split requests and response phases. This allows for detailed simulation
of hardware performance, but carries a high cost in simulation speed, since much
more function calls and code needs to execute for each data unit transferred and
simulation time executed. In particular, to correctly account for contention to shared
resources, AT cannot really use temporal decoupling (see Section 3.3.3).

The usefulness of ST is proven by the success of several pre-silicon software
ports using the ST level of abstraction. IBM’s CECsim system has been used to
speed the development of new zSeries servers [10, 14]. Simics was used to port
Windows, Linux, and NetBSD to the AMD 64-bit x86 architecture in 2001. In 2008,
Freescale announced the QorIQ P4080 processor, and the Simics model of the chip
was used to port operating systems like Linux, VxWorks, OSE, and Integrity to the
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chip long before silicon was available. Once physical hardware arrived, operating
systems were up and running within a matter of days.

In addition to supporting the ST level of abstraction, Simics supports adding
timing details through timing models attached to memory maps, leading to a timing
model roughly similar to SystemC TLM-2.0 LT.

Simics can also be used in a hybrid mode where detailed clock-cycle (CC)-level
models are mixed with ST-level models. The ST models are used to boot operating
systems and position workloads, and the simulation is switched over to CC models
using checkpoints. In addition, parts of the target system can be simulated using
ST models even in CC mode, avoiding the need to create CC models for some
hardware. Essentially, the resulting combined solution lets users zoom in on perfor-
mance details when and where they need to without compromising on the ability to
run large workloads [2, 7].

A secondary benefit of modeling at the ST level is that models are easier to reuse.
For example, a standard x86 PC contains an i8259 interrupt controller. Over time,
the hardware implementation of the i8259 has changed from being a discrete chip
to a part of a south bridge and then onto an integrated processor SoC. Regardless
of these implementation changes, the exact same Simics model has been used all
along.

3.3.2 Pervasive Transaction-Level Modeling

Simics applies transaction-level modeling (TLM) throughout a target system. In
TLM, each interaction with a device, for example, a write to or read from the
registers of the devices by a processor, is a single simulation step: the device is
presented with a request, computes the reply, and returns it in a single function call.
Essentially, communication is reduced to function calls between simulation models
without involving the simulation kernel. Examples of transactions commonly found
in Simics models are memory operations, network packet transmissions, interrupts,
and DMA block transfers. The goal is to always perform as much work as possible
in each simulation step.

Device models in Simics are designed as mainly passive reactive units. There
is no concept of a thread in a Simics device model and the use of events is
kept to a minimum. Transactions hitting a device model are instead executed
synchronously: the device model computes the result of the transaction, updates
its stored state, and then returns. This enhances locality of execution and avoids
the cost of maintaining an execution queue and local stack context for each
model. It also removes the complexities of parallel programming and locking from
device modeling. An important property of this modeling style is that devices
store their state in an explicit heap-allocated data structure, which simplifies both
multi-threading of the simulation and the implementation of checkpointing (see
Section 3.2.2).
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As part of the TLM infrastructure, Simics uses a memory map representation of
the bus hierarchy of a system. The model contains the processor-visible memory
map for each processor in the system and directly routes memory transactions to the
right target. If desired, a bus hierarchy can be modeled by chaining extra memory
maps and attaching timing models to them.

Networks in Simics are abstracted to complete packets sent between machines.
There is no model of the detailed bit-level protocols and encodings used in a phys-
ical network. The size of a packet depends on the nature of the network and how
often packets are transmitted. In Ethernet, packets can be up to 64 kB, while serial
lines usually transmit single bytes at a time, due to their low data rates. Network
simulations usually have no knowledge of the meaning of the packets, apart from
the parts related to hardware addressing schemes like the Ethernet MAC address.
The software on the simulated target systems interacts with a model of a network
interface device, programming it just like a physical network interface.

3.3.3 Temporal Decoupling

Temporal decoupling is a standard technique for improving the performance of a
simulation containing multiple concurrent units. Rather than switching between the
units at each step of the simulation, such as a clock cycle, each unit is allowed to
run for a certain amount of virtual time, its time quantum, before switching to the
next unit. Temporal decoupling has been in use for at least 40 years in computer
simulation [15] and is a crucial part of all fast simulators today [11, 16].

In Simics, temporal decoupling is performed between “clocks,” typically, a pro-
cessor executing code, even though it can be other objects in rare circumstances,
and each object in the simulation gets its time from one of the clocks. This means
that events between an object and its clock are precisely timed, while events from
one clock’s set of objects to another clock’s set will see the effects of temporal
decoupling.

Experience shows that using a fairly large time quantum is critical to achiev-
ing really high simulation speeds. Figure 3.4 shows some measurements of the
effect of temporal decoupling. The line “Single P4080” shows the performance of
a multi-threaded compute-intense program running on all eight cores of a Freescale
QorIQ P4080 SoC. Performance increases by a factor of 100 from a time quantum
of 10 cycles to a time quantum of 100k cycles, after which it stabilizes. From 1000
to 10,000 cycles, performance is doubled.

As far as the software is concerned, temporal decoupling usually does not affect
functionality. It does have a small effect on how the target executes, as communica-
tion between cores will sometimes get a larger delay than on physical hardware –
but the effect is normally not adverse. In our experience, the optimal time quantum
for running a shared-memory multiprocessor system tends to be 10k cycles, and
between machines connected with networks it can be 100k cycles to 1M cycles. Note
that it is possible to selectively reduce the time quantum if needed. For example,
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Fig. 3.4 Temporal decoupling and simulation performance

we have seen Simics users position a workload at a suspected fine-grained race
condition, switch to a shorter time quantum, and run tests without the potential
interference of a long time quantum.

When using a simulator to study detailed performance characteristics of a target
system, in particular for caches, shared memory, and other shared resources, tem-
poral decoupling should not be used. It will give a false picture of the contention, as
each processor, or other active component, will see itself as alone in the system for
its entire time slice. A good rule of thumb is that the time quantum needs to be less
than the shortest time in which contention can occur. Most computer architecture
researchers tend to set the time quantum to a single or a few cycles, as that does
provide the most realistic simulation results.

3.3.4 Fast Processor Simulation

Working at a software-timing level of abstraction with TLM and temporal decou-
pling, several techniques can be applied to speed up the execution of code in the
processors of the target system.

Just-in-time compilation of the target instruction set to the host instruction set
is a standard technique used in all fast full-system simulators and virtual platforms
(see, for example, Chapters 2, 4, 8, and 17 in this book). As the target processors
execute target code, the simulator collects execution statistics and compiles target
code that is executed repeatedly to native code. At best, this lets a simulator execute
more than one target instruction per host clock cycle (we have measured speeds of
5000 target MIPS for a PowerPC target running on a 3000 MHz x86 laptop, on a
simple integer code benchmark). In more typical cases, speeds of hundreds of MIPS
can be achieved on workloads that involve operating system activity and device
accesses.

Host virtualization extensions can also be used to provide native speed for targets
that have the same architecture as the host. Simics uses this on x86 hosts with x86
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targets to achieve a simulation speed close to that offered by pure virtualization
solutions like VMWare, Xen, and KVM.

Hypersimulation makes the processor skip through idle time in a single simula-
tion step, rather than go through it cycle by cycle. For example, if an x86 processor
executes the HALT instruction it will not do anything until the next interrupt. Since
Simics knows when the interrupt will happen, time is advanced immediately. This
is possible because of the isolation of models from the outside world, as shown in
Fig. 3.1). Hypersimulation can have simulations run at hundreds of billions of target
cycles per second. Hypersimulation can also be applied to any known code pat-
tern indicating idleness or intentional delays. For example, the Power Architecture
bndz 0 instruction, which simply loops until the special COUNT register is zero, can
be fast-forwarded by Simics.

Hypersimulation is particularly beneficial when executing simulations containing
many processors and machines. In practice, most parallel workloads will tend to
only load some subset of the system processors at any one time. With hypersimula-
tion, the simulator will spend its time simulating only the active parts of the system,
with the inactive parts consuming a very small amount of resources. Figure 3.4
shows an example of the effect of hypersimulation. A second, idle, P4080 was
added and the same computation benchmark was ran again. The line “Two P4080,
second machine idle” shows the result. Even though twice as many processor cores
are being simulated, the simulation is almost as fast as with just a single P4080,
provided that a sufficiently large time quantum is used. The line “Overhead of idle
machine” shows how the overhead of the idle machine depends on the time quantum
length.

3.3.5 Multi-threading the Simulation

With multi-core processors being the norm in server and desktop computers, it is
necessary to use multiple host processor cores to speed up the simulation. Simics has
supported multi-threading within a simulation process since Simics 4.0 (launched
in the Spring of 2008). Before that, Simics used teams of separate Simics pro-
cesses to utilize multiple clusters of host machines to simulate networks [1]. In
all cases, Simics maintains determinism, repeatability, and fully defined simulation
semantics.

In practice, multi-threading is applied to networks of target machines, as the net-
work links offer convenient points to separate a simulation into parallel components.
It is significantly harder to get any benefit from parallelizing the simulation of tightly
connected models like processors sharing memory, as the ratio of computation to
synchronization is not as favorable.

Fully defined simulation semantics for parallel simulations is implemented by
setting precise propagation delays for data and decoupling the sending and receiving
of transactions. For example, if machine A sends an Ethernet packet to machine B at
time t, machine B will see it at some point t+d, where d is the defined propagation
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delay for that network. The simulation infrastructure makes sure that all threads
are synchronized at least as often as d, achieving determinism and repeatability
regardless of the actual execution order of the host threads used (or the number
of host threads used).

The benefit of multi-threading and distributed simulation heavily depends on
the particular latency settings between the target machines and the load balance
on the target systems. The progress of the simulation overall is bounded by the
target machine that takes the most time to simulate (usually the most loaded tar-
get machine). Figure 3.4 shows the efficiency of multi-threading for a small two-
machine network. Note how the line “Two P4080, multi-threaded Simics” closely
tracks the line “Single P4080,” indicating that multi-threading effectively removes
any overhead from adding a second machine. Simics users have used clusters con-
taining tens of host processors to speed up the simulation of large target systems
with good effect.

3.4 System Modeling

Getting a target system model in place is key to getting the benefits from simulation.
In our experience, this is best achieved by an iterative process. For a new system, the
starting point tends to be a small core system sufficient to boot an operating system
or start some other initial software load. Over time, models are added to cover more
of the target system and more of its use cases. The modeling process tends to follow
the boot order of the target system.

For modeling, a target system can be partitioned into processors, interconnects
(in particular, networks), devices, and memories. Processors, interconnects, and
memories tend to be highly reusable across target systems. The same holds for some
common devices like timers and interrupt controllers. However, almost every new
system contains some new and unique device models. Thus, device modeling tends
to be the main effort when modeling a new target system.

The devices, processors, memories, and interconnects are then combined into a
hierarchical structure that is called components in Simics terminology. As illus-
trated in Fig. 3.5, Simics components describe processor clusters, SoCs, mem-
ories, boards, racks, and other aggregates in a system. They are implemented
as Python code, affording users flexibility in describing recurring and dynamic
structures. Components often have parameters like the number of processor cores,
sizes of memories, and clock frequencies. At the top level, systems are created
by Simics CLI scripts that call component creation functions and connect the
components.

Simics models are generally created from the same documentation used by soft-
ware developers, as that provides the best description of what a piece of hardware
does. Models are also best created by software developers, not hardware developers,
as hardware developers in general tend to add too many details to models, making
them slower as well as less reusable. Separating the task of creating a model from
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Fig. 3.5 Hierarchical components for an example system

the hardware design process via documentation also has clear benefits to the system
development process and the final system quality. It forces documentation to be
created and subjects the documentation to a detailed review as a result of building
executable models from the documentation.

3.4.1 Device Modeling

To speed up device modeling, Virtutech has created the DML tool, which essentially
wraps snippets of C code inside a language designed to make it easy to express
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device register maps and other common hardware constructs. DML takes the view
that modeling is programming and tries to make the code required to describe a
device model as short as possible.

Key features supported by DML include expressing register maps, bit fields in
registers, bit-endianness, byte-endianness, multiple register banks, simulator ker-
nel calls such as event posting, and the connections between cooperating device
models. Templates can be used to reuse arbitrarily complex constructions. DML
cuts down on repetitive coding and makes device model code easier to write and
maintain.

DML can also be used to wrap existing C and C++ models of algorithms and
core hardware functionality into a register map and Simics model, enabling their
use inside of a Simics virtual platform. DML separates declarations and definitions,
allowing reuse of artifacts from the hardware design by automatically converting
IP-XACT-like register descriptions to DML declarations.

3.4.2 Stubbing Simulation Components

One way to increase simulation performance and reduce the work needed to build a
system model is to replace parts of the target system with stubs or behavioral mod-
els. These behavioral models can be ASICs, boards, devices, entire sub-networks,
or anything else that can be isolated from the rest of the system via a well-defined
interface.

In complex target systems, consisting of multiple boards, it is common to replace
some boards with models that just reflect the behavior of the board at its interface
to the rest of the system. For example, when working on control plane software in
a telecom system, the data-plane boards that actually process traffic can be stubbed
out and replaced by simple models that simply acknowledge their existence and
tell the control plane that all is fine. If you consider that each data-plane board
can contain tens of processors, this can increase the speed of simulation by an
order of magnitude, as well as reducing the need to actually model the proces-
sors and their associated devices. Note that there are cases where data-plane boards
are modeled in more detail in order to test and validate the combined system soft-
ware stack. The appropriate configuration depends on the use case for a particular
simulation run.

Another example of simplifying a simulation to gain speed is in networking,
where you can replace a set of machines used to generate traffic toward a simulated
server with a traffic generator. In the most general case, Simics network simulations
are interfaced to complete network simulations for mobile phone networks or IP
networks. Figure 3.6 shows several of the options available with Simics, includ-
ing simple traffic generation, rest-of-network simulations, and virtual network test
equipment.
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Fig. 3.6 Network simulation with Simics

3.5 Summary

This chapter has described the different use cases and benefits of full-system sim-
ulation, as well as the technical challenges that must be overcome to realize the
benefits and apply simulation to the use cases. We have addressed the most impor-
tant fundamental technologies for full-system simulation, including high simula-
tion speed, modularity, binary distribution, dynamic configuration, checkpointing,
determinism, and reverse execution. Features such as scripting, OS awareness, state
inspection, and connections to the world outside of the simulation have also been
addressed. Overall, Simics cannot be seen as a set of independent technologies, but
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rather as an interconnected system that derives its full power from many mutually
reinforcing technologies and design choices.

Techniques for high-performance system simulation were discussed in detail.
We discussed basic techniques such as using transaction-based modeling, correctly
abstracting time, and temporal decoupling, as well as more advanced techniques
such as just-in-time compilation and multi-threading.

An important aspect of a simulator is the practicality of building system models.
Tools and best practices for creating such models with Simics were described and
ideas for how to make such modeling more efficient, in terms of both simulation
speed and development time, were presented.

It is clear that full-system simulation plays a significant role in the definition and
development of systems at different levels, ranging from single board OS bring up
to large system development and debug and test, through to product demonstrations
and training.
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Chapter 4
Toward the Datacenter: Scaling Simulation
Up and Out

Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, and Daniel Ortega

It was the best of times; it was the worst of times, Charles
Dickens, A Tale of Two Cities

Abstract The computing industry is changing rapidly, pushing strongly to
consolidation into large “cloud computing” datacenters. New power, availability,
and cost constraints require installations that are better optimized for their intended
use. The problem of right-sizing large datacenters requires tools that can char-
acterize both the target workloads and the hardware architecture space. Together
with the resurgence of variety in industry standard CPUs, driven by very ambitious
multi-core roadmaps, this is making the existing modeling techniques obsolete. In
this chapter we revisit the basic computer architecture simulation concepts toward
enabling fast and reliable datacenter simulation. Speed, full system, and modular-
ity are the fundamental characteristics of a datacenter-level simulator. Dynamically
trading off speed/accuracy, running an unmodified software stack, and leveraging
existing “component” simulators are some of the key aspects that should drive next
generation simulator’s design. As a case study, we introduce the COTSon simulation
infrastructure, a scalable full-system simulator developed by HP Labs and AMD,
targeting fast and accurate evaluation of current and future computing systems.

4.1 Computing Is Changing

There is general consensus that the computing industry is changing rapidly and both
technical and social reasons are at the foundations of this change.

The transition to multi-core, hardware hitting the power wall, and a new empha-
sis on data-centric computing of massive amounts of information are some of the
key disrupting trends. Growth in disk and memory capacity, solid-state storage, and
massive increases in network bandwidth complete the picture. Pundits point out that
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much of the science behind all this comes from long ago. Indeed, shared memory
parallel processing and distributed computing are at least four decades old. How-
ever, it is now that these technologies are becoming ubiquitous and the IT industry
is forced to put these ideas into practice, learning what works and what does not.

Social trends are also contributing to shape the computing world. Enterprises
are consolidating their IT infrastructure in warehouse-size datacenters; sometimes
their own, sometimes in the cloud. This is happening across the board: end users
no longer want to manage shrink-wrap software, SMEs concentrate their resources
on core business, and large enterprises farm out their peak workloads at minimum
capital expenditures. On the cloud providers’ side, cost-saving opportunities and
economy of scale are enabling new services and business models.

In this chapter we describe the impact of these trends to the world of mod-
eling tools. We believe that there are important opportunities and challenges for
simulation-based approaches. Better decision support data in sizing datacenter-level
workloads and their IT infrastructure can provide an important and quantifiable dif-
ferentiator. However, the problem of right-sizing large datacenters requires tools that
can characterize both the target workloads and the hardware architecture space. The
reappearance of variety in industry-standard CPUs driven by very ambitious multi-
core roadmaps, together with new workloads and metrics, is rapidly making the
existing modeling techniques obsolete and here we point to some of the important
directions that will differentiate the next generation of modeling tools.

4.1.1 The Resurgence of Hardware Diversification

Analysts [1] predict that over half of all datacenters will be redesigned and relo-
cated in the next 5 years to meet new power, growth, and availability constraints.
Long gone is the linear increase of single-thread performance of the uniprocessor
era [3] and as we enter the many-core and system-level integration era, hosts of
new processors variants are reaching the marketplace. The variability is today much
higher than in the past, even in industry-standard x86 processors. For example, inte-
grated memory controllers, multiple memory channels, graphics, networking, and
accelerators are some of the diversifying parameters.

Choosing the right CPUs for datacenter deployment has become a highly com-
plex task that needs to take into account a variety of metrics, such as performance,
cost, power, supply longevity, upgradability, and memory capacity. Cost and per-
formance differences even within the same ISA family are dramatic. In March
2009 [14], we could find a single-core 64-bit x86 at $18 (AMD Athlon XP 1500)
and a quad-core at $2,500 (Intel Xeon MP QC X7350). Given the performance,
throughput, computation vs. communication balance, cost, and power targets, one
may clearly be more appropriate than the other for a given workload. The huge
cost and performance difference opens up large opportunities for optimization even
within the same ISA family. All of this are coupled with an increasing chipset and
board complexity that make these systems extremely difficult to design, even to the
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extent of picking and choosing among the many available variants optimized for a
given use.

And, this is just the beginning. If we look at the foreseeable Moore’s law pro-
gression, it is easy to predict hundred of computing cores, homogeneous or hetero-
geneous, integrated in a single component. Additionally, many of these components
are gradually absorbing system-level functions such as network interfaces, graph-
ics, and device controllers. Accelerators for anything and everything are also being
proposed both for general purpose and for embedded computing.

Finally, the aggressive penetration of non-volatile memory technologies and
optical interconnects appearing at the horizon are radically disrupting the mem-
ory, networking, and storage hierarchy. This adds other levels of variability, which
depend heavily on application characteristics and cannot easily be predicted without
a detailed analysis.

4.1.2 Emerging Workloads

The datacenter applications are also evolving and introducing a variability that was
unseen in the past. Cloud computing, search and data mining, business intelligence
and analytics, user-generated services and mash-ups, sensor network data streams
are just a few examples of new applications that are gradually moving to the cloud
datacenter. Together with the evolution of traditional enterprise applications, such
as databases and business software, these new workloads highly increase the com-
plexity of understanding, monitoring, and optimizing what is running.

Many of these tasks cannot be characterized as being bound to just one resource,
such as the CPU or memory. They exhibit a wildly different behavior under vary-
ing configurations of storage, memory, CPU, and networking capabilities. On top
of this, many applications are expected to run inside virtual environments, ranging
from full virtual machines to simple hypervisors. Virtualization clearly offers impor-
tant benefits such as migration, isolation, consolidation, and hardware independence
for application developers and datacenter management. At the same time, virtual-
ization makes it harder to reason about guaranteed performance and the quality of
service (QoS) of the virtualized applications and introduces yet another degree of
freedom and complexity that requires careful modeling.

Traditionally, workloads have been characterized through representative bench-
marks. In the uniprocessor world, comparing alternatives was relatively simple,
albeit sometimes misleading. For multi-core and highly integrated systems, the com-
plexity of correlating benchmark performance to user-relevant metrics is quickly
exploding. For example, one known issue is the limited scalability of shared-
memory performance due to coherency traffic overhead. Understanding where that
moving boundary is for each combination of processor cores, interconnect and
memory is an unsolved challenge. When looking at workload consolidation in a
datacenter, additional complexities arise from the difficulty of predicting the QoS
impact of sharing resources. Linear methods that look at resources in isolation miss



50 E. Argollo et al.

interference and conflicts at the shared resources. This is where simulation can come
to the rescue.

4.1.3 New Metrics

Measuring traditional performance metrics has become much harder. In unipro-
cessor systems, CPU-bound applications could be characterized by their instruc-
tions per cycles (IPC) rate. In multiprocessor systems, only the wall-clock time of
an application is what truly defines performance. In transaction-based throughput-
oriented processing, the number of transactions per unit of time is what matters.
In all scenarios, measuring power consumption is also fundamental for a correct
energy management of the whole datacenter, to guide job allocation and dynamic
cooling.

If we look at cloud computing, the metrics are once again very different. User
experience driven by service-level agreements (SLAs) is what matters, together with
the total cost of ownership (TCO) of the computing infrastructure. Being able to
right-size the infrastructure to provide the best performance and TCO is what can
give cloud providers a competitive hedge, allowing them to offer better services at
a lower cost. As complex services migrate to the cloud, new opportunities open up,
and at the same time the pressure in better characterizing the important metrics of
existing and future systems grows. The first consequence on the analysis tools is
that a much larger timescale and portion of system execution have to be modeled
and characterized.

4.2 Simulation for the Datacenter

Navigating the space of hardware choices at a datacenter scale requires collecting
decision support data at various levels and that is where simulation can help. This
simulation style significantly differs from what is used in the computer-aided design
(CAD) world. CAD simulators must reflect the system under design as accurately
as possible and cannot afford to take any shortcut, such as improving speed through
sampling. Simulation for decision support only needs to produce approximate mea-
surements and speed and coverage are equally important as accuracy.

Historically, four different abstraction levels have been used to model future sys-
tems: extrapolating real-system measurements, analytical models, simulation, and
prototyping. Prototyping has lost much of its appeal for anyone but VLSI designers
because of the skyrocketing costs of designing and building integrated circuits, so
we do not cover it here. Extrapolating results is the most straightforward method of
evaluating some future directions. Unfortunately, in moments of great changes like
today, past trends are insufficient to correctly predict the behavior of next-generation
parts. Analytical models are very powerful, but they can only model the behavior
they know up front. We see an enormous opportunity for simulators, but several
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obstacles stand in the way, and much of the common wisdom about how to build
simulators needs to revisited.

4.2.1 Cycle Accuracy

Many architecture and microarchitecture simulators strive for a cycle-detailed
model of the underlying hardware, but are willing to tolerate several orders of
magnitude slowdown and a complex software development. With the exception of
microprocessor companies, cycle accuracy is rarely validated against real hardware.
In academic research, or where the goal is modeling future hardware, the focus
typically shifts to validating isolated differential improvements of the proposed tech-
niques.

We believe that cycle-detailed simulators are not always needed and in many
cases do not represent the best solution, once you take into account their engineering
cost and lack of simulation speed. Many foreseeable uses of simulation for large-
scale system modeling favor simpler and less accurate models, as long as they entail
faster speed or simpler configurability. This is especially true in the early exploration
stages, or for research in fields other than microarchitecture. Absolute accuracy can
be substituted with relative accuracy between simulations of different models, which
is sufficient for uses that primarily want to discover coarse-grain trends.

4.2.2 Full-System Simulation

Many simulators only capture user-level application execution (one application at a
time) and approximate the OS by modeling some aspects of the system calls. Access
to devices or other operating system functionalities is wildly simplified. Historically,
there have been valid reasons for this, such as engineering simplicity and the small
impact of system code in the uniprocessor era. However, as we move to large num-
bers of cores with shared structures and complex system interactions, accounting
for the real impact of system calls, OS scheduling, and accessing devices, memory,
or the network has become a necessity

While engineering complexity considerations are important for a development
from scratch, virtualization and fast emulation technologies are commonly available
today and can be leveraged to build powerful simulators. Adopting a system-level
approach is also the only way to deal with closed source, pre-built, and legacy appli-
cations, which is mandatory to target datacenter-scale consolidated workloads.

Finally, another advantage of a fast full-system simulator is the practical plat-
form usability. At functional speed (10x slower than native) users can interact with
the guest: log on, install software, or compile applications as if running on real
hardware.
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4.2.3 Profiled-Based Sampling

Sampling is the single largest contributor to simulation speed and coverage for
architecture simulation. As it was discussed in (Calder et al., 2010, this volume)
and (Falsafi, 2010, this volume), many different research studies have developed
very effective sampling techniques.

Unfortunately, some sampling proposals rely on previous offline characterization
of the application, and are not adequate for full-system modeling. When dealing
with large-scale, full-system, multiple-threads parallel systems, it becomes very
difficult to prove that the zones selected by the sampler are representative of the
system.

Complex systems change their functional behavior depending on timing. Oper-
ating systems use a fixed-time quantum to schedule processes and threads. Threads
in a multithreaded application exhibit different interleaving patterns depending on
the performance of each of the threads, which in some cases may produce different
functional behavior. Networking protocols, such as TCP, change their behavior in
presence of congestion or different observed latencies. Messaging libraries change
their policies and algorithms depending on the network performance. These are
just some examples of the many scenarios that show the fundamental limitations
of selecting good representative samples with an offline characterization.

Finally, while statistical sampling has been well studied for single-threaded appli-
cations, it is still in its infancy when it comes to modeling multithreaded and multi-
processor workloads. The area of sampling code with locks and how to identify the
“interesting” locks worth modeling in details is still an open research problem.

4.2.4 Simulation Speed

An important performance metric is the so-called self-relative slowdown, i.e., the
slowdown a program incurs when executed in the simulator vs. what it would take on
the target. Looking at the landscape of simulation approaches, from direct execution
to cycle-level interpretation, there are at least five orders of magnitude of difference
in performance (Topham et al., 2010, this volume). A typical cycle-detailed simula-
tor runs in the order of few hundreds of kIPS (thousands of simulated instructions
per second), which corresponds to a self-relative slowdown of over 10,000x (i.e.,
60s of simulated time in 160 h, about 1 week). On the other extreme, a fast emulator
using dynamic binary translation can reach a few 100 s of MIPS, translating to a
self-relative slowdown of around 10x (i.e., 60 s of simulation in 10 min).

When targeting datacenter-level complex workloads and hardware, the scale at
which important phenomena occur can easily be in the range of minutes. Hence,
simulation speed needs to be much closer to the 10x slowdown of dynamic binary
translation than the 10,000x of cycle-by-cycle simulators. To reach this target, a sim-
ulator must be designed from the beginning with speed in mind. By incorporating
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acceleration techniques such as sampling upfront, a simulator can ensure that speed
and accuracy can be traded off as based on user requirements.

Even the fastest execution-based simulation speed may not be sufficient to cover
the datacenter scale of thousands of machines, unless we can afford a second data-
center to run the distributed simulator itself. For this reason, several research groups
have proposed the use of analytical models using several different techniques, rang-
ing from simple linear models all the way to neural networks and machine learning
[10, 13]. By leveraging this work, a modeling infrastructure could entail a stack
of models at increasing accuracy and decreasing speed to be dynamically selected
based on target requirements and scale. While we believe this is important work, we
do not cover it in this chapter and we primarily focus on execution-based simulation.

4.3 Large-Scale Simulation Use Cases

A full-system scale-out simulator can be very important for microarchitecture
research, which is traditionally driven by user-level cycle-detailed simulators. Using
realistic workloads and looking at the impact of accessing devices open up a whole
new set of experiments. Studying the impact of non-volatile memory, 3D-stacked
memory, disaggregated memory across multiple nodes or heterogeneous accelera-
tors are all examples that require a full-system simulator.

A second important use is for architecture exploration. The evaluation of several
design alternatives is a key step in the early stages of every new product design.
Even where most components are industry standard, companies are continuously
looking for ways to add value and differentiate their products. A typical what-if
scenario involves little customization to a datacenter simulator but can highlight the
interesting trends that help decide the fate of a particular idea.

Pre-sale engineers are also potential users of a simulation tool, for right-sizing
deployments. While raw use of simulation is too detailed, simulation can be used
to run an off-line parametric sweep of the design space and collect characteriza-
tion data that can then be used through a simplified (spreadsheet-like) tool. A large
deployment usually involves bids from multiple vendors that need to match a par-
ticular level of performance and other metrics. It is the responsibility of the pre-sale
engineers to “right-size” the IT infrastructure starting from imprecise information,
often about components that do not exist yet. In the past, fewer hardware choices and
the limited range of well-characterized applications made the problem somewhat
tractable.

Today’s rapidly changing workloads and large hardware variety make the task
of mapping customers’ requirements on future hardware much more difficult. The
problem is to tread the fine line between overly optimistic predictions (risking of
being unable to deliver the promised performance), and overly pessimistic predic-
tions (risking of losing the bid). In this world, better modeling translates to lower
risks, increased margins, and more customer value loyalty.
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One additional important aspect of bidding for large deals is building proto-
types, especially in high-performance computing. The problem with prototypes is
that they are very expensive and become quickly obsolete. So, by using simulation
technology to virtualize the hardware under test, we can extend the useful life of a
prototype, thereby making better use of the capital expenditure.

Software Architects could also use a datacenter simulator. As systems become
highly parallel, applications need to be re-thought to explore parallelism opportuni-
ties, and analytical understanding of performance is also increasingly more difficult.
A simulator can help understand scalability issues and can be efficiently used to
balance trade-offs that cross architecture, system and programming boundaries. A
broader evaluation of alternatives provides guidelines to the application and system
architects, reduces risk, and helps make better use of the underlying IT infrastruc-
ture. Resilience is another challenge of programming at large scale that efficient
simulation tools can help. By using a simulated test bench, we can inject faults to
stress test the failure-resistant properties of the entire software system.

4.4 Case Study: The COTSon Simulation Infrastructure

COTSon is a simulator framework jointly developed by HP Labs and AMD [2].
Its goal is to provide fast and accurate evaluation of current and future computing
systems, covering the full software stack and complete hardware models. It tar-
gets cluster-level systems composed of hundreds of commodity multi-core nodes
and their associated devices connected through a standard communication network.
COTSon adopts a functional-directed philosophy, where fast functional emulators
and timing models cooperate to improve the simulation accuracy at a speed suffi-
cient to simulate the full stack of applications, middleware and OSs.

COTSon relies on concepts of reuse, robust interfaces, and a pervasive accuracy
vs. speed philosophy. We base functional emulation on established, fast and vali-
dated tools that support commodity operating systems and complex applications.
Through a robust interface between the functional and timing domain, we leverage
other existing work for individual components, such as disks or networks. We aban-
don the idea of always-on cycle-based simulation in favor of statistical sampling
approaches that continuously trade accuracy and speed based on user requirements.

4.4.1 Functional-Directed Simulation

Simulation can be decomposed into two complementary tasks: functional and
timing.

Functional simulation emulates the behavior of the target system, including com-
mon devices such as disks, video, or network interfaces and supports running an
OS and the full application stack above it. An emulator is normally only con-
cerned with functional correctness, so the notion of time is imprecise and often
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just a representation of the wall-clock time of the host. Some emulators, such as
SimOS [16] or QEMU [5], have evolved into virtual machines that are fast enough
to approach native execution.

Timing simulation is used to assess the performance of a system. It models the
operation latency of devices simulated by the functional simulator and assures that
events generated by these devices are simulated in a correct time ordering. Timing
simulations are approximations to their real counterparts, and the concept of accu-
racy of a timing simulation is needed to measure the fidelity of these simulators
with respect to existing systems. Absolute accuracy is not always strictly necessary
and in many cases it is not even desired, due to its high engineering cost. In many
situations, substituting absolute with relative accuracy between different timing sim-
ulations is enough for users to discover trends for the proposed techniques.

A defining characteristic of simulators is the control relationship between their
functional and timing components [12]. In timing-directed simulation (also called
execution-driven), the timing model is responsible for driving the functional simula-
tion. The execution-driven approach allows for higher simulation accuracy, since the
timing can impact the executed path. For example, the functional simulator fetches
and simulates instructions from the wrong path after a branch has been mispredicted
by the timing simulation. When the branch simulation determines a misprediction,
it redirects functional simulation on its correct path. Instructions from the wrong
path pollute caches and internal structures, as real hardware would do.

On the other end of the spectrum, functional-first (also called trace-driven) sim-
ulators let the functional simulation produce an open-loop trace of the executed
instructions that can later be replayed by a timing simulator. Some trace-driven
simulators pass them directly to the timing simulator for immediate consumption.
A trace-driven approach can only replay what was previously simulated. So, for
example, it cannot play the wrong execution path off a branch misprediction, since
the instructions trace only contains the correct execution paths. To correct for this,
timing models normally implement mechanisms to account for the mispredicted
execution of instructions, but in a less-accurate way.

Execution-driven simulators normally employ a tightly coupled interface, with
the timing model controlling the functional execution cycle by cycle. Conversely,
trace-driven simulators tend to use instrumentation libraries such as Atom [17] or
Pin [11], which can run natively in the host machine. Middle ground approaches
also exist, for example, Mauer et al. [12] propose a timing-first approach where the
timing simulator runs ahead and uses the functional simulator to check (and possibly
correct) execution state periodically. This approach clearly favors accuracy vs. speed
and was shown to be appropriate for moderately sized multiprocessors and simple
applications.

We claim that the speed, scalability and need to support complex benchmarks
require a new approach, which we call functional-directed, that combines the speed
of a fast emulator with the accuracy of an architectural simulator. Speed require-
ments mandate that functional simulation should be in the driver’s seat and, with
sufficient speed, we can capture larger applications and higher core counts. The
functional-directed approach is the foundation of the COTSon platform (Fig. 4.1)
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Fig. 4.1 COTSon positioning in the accuracy vs. speed space

that can address the need of many different kinds of users. Network research, usu-
ally employing captured or analytically generated traces, may generate better traces
or see the impact of their protocols and implementations under real applications
load. Researchers in storage, OS, microarchitecture, and cache hierarchies may also
benefit from the holistic approach that enables the analysis and optimizations of the
whole system while being exercised by full application workloads.

4.4.2 Accuracy vs. Speed Trade-offs

As we previously discussed, when dealing with large-scale modeling, simulation
speed is by far one of the most important aspects. Although independent experi-
ments may be run in parallel for independent configurations, sequential simulation
speed still fundamentally limits the coverage of each experiment.

COTSon is designed with simulation speed as a top priority and takes advan-
tage of the underlying virtual machine techniques in its functional simulation, e.g.,
just-in-time compiling and code caching. The functional simulation is handled by
the AMD’s SimNow simulator which has a typical slowdown of 10x with respect
to native execution (i.e, a simulation speed of hundreds of MIPS). Other virtual
machines such as VMware [15] or QEMU [5] have smaller slowdowns of around
1.25x, but a lower functional fidelity and limited range of supported system devices
make them less interesting for a full-system simulator.

Speed and accuracy are inversely related, and they cannot be optimized at the
same time; for example, sampling techniques trade instantaneous fidelity with a
coarse grain approximation at a macroscopic level. For datacenter-scale workloads,
the goal is to approximate with high confidence the total computing time of a par-
ticular application without having to model its specific detailed behavior at every
instant. To this effect, COTSon exposes knobs to change the accuracy vs. speed
trade-offs, and the CPU timing interfaces have built-in speed and sampling hooks.
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This enables skipping uninteresting parts of the code (such as initial loading) by
simulating them at lower accuracy. It also enables a fast initial benchmark char-
acterization followed by zoomed detailed simulations. All techniques in COTSon
follow this philosophy, allowing the user to select, both statically and dynamically,
the desired trade-off.

4.4.3 Timing Feedback

Traditional trace-driven timing simulation lacks a communication path from the
timing to the functional simulation, and the functional simulation is independent
of the timing simulation. In unithreaded microarchitecture research, this is normally
not a severe limiting factor. Unfortunately, more complex systems do change their
functional behavior depending on their performance as we previously discussed.
Having timing feedback – a communication path from the timing to the functional
simulator – is crucial for studying these kinds of situations.

COTSon combines a sample-based trace-driven approach with timing feedback
in the following way. The functional simulator runs for a given time interval and
produces a stream of events (similar to a trace) which the respective CPU timing
models process. At the end of the interval, each CPU model processes the trace and
computes an IPC value. The functional simulator is then instructed to run the fol-
lowing interval at full speed (i.e., not generating events) with that IPC. By selecting
different interval heuristics, the user can turn the accuracy vs. speed knob either way
and clearly this approach works very well with sampling, enabling the user to select
just those intervals which are considered representative.

4.4.4 COTSon’s Software Architecture

COTSon decouples functional and timing simulation through a clear interface so
that, for example, we can reuse existing functional emulators. Figure 4.2 shows
an overview of the software architecture. The emulator for each node is AMD’s
SimNow [4], a fast and configurable platform simulator for AMD’s family of pro-
cessors that uses state-of-the-art dynamic compilation and caching techniques. The
decoupled software architecture is highly modular and enables users to select differ-
ent timing models, depending on the experiment. Programming new timing models
for CPUs, network interfaces or disks is straightforward, as well as defining new
sampling strategies. This versatility is what makes COTSon a simulation platform.

Timing simulation is implemented through a double communication layer which
allows any device to export functional events and receive timing information. All
events are directed to their timing model, selected by the user. Each timing model
may describe which events it is interested in via a dynamic subscription mechanism.

Synchronous devices are the devices that immediately respond with timing
information for each received event, including disks and NICs. One example of
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Fig. 4.2 COTSon’s software architecture

synchronous communication is the simulation of a disk read. The IDE device in the
functional emulator is responsible for handling the read operation, finding out the
requested data and making it available to the functional simulator. The functional
simulator sends the read event with all the pertinent information to COTSon which
delivers it to a detailed disk timing model (such as disksim [7]). The latency com-
puted by the timing model is then used by the emulator to schedule the functional
interrupt that signals the completion of the read to the OS.

Synchronous simulation is unfortunately not viable for high-frequency events.
If each CPU instruction had to communicate individually with a timing model,
the simulation would grind to a halt. Virtual machines benefit extraordinarily from
caching the translations of the code they are simulating, and staying inside the code
cache for as long as possible. A synchronous approach implies leaving the code
cache and paying a context switch at every instruction. For this reason we introduced
the concept of asynchronous devices.

Asynchronous devices decouple the generation of events and the effect of timing
information. Instead of receiving a call per event, the emulator produces tokens
describing dynamic events into a buffer. The buffer is periodically parsed by
COTSon and delivered to the appropriate timing modules. At specific moments,
COTSon asks the timing modules for aggregate timing information (as IPC) and
feeds it back to each of the functional cores. The IPC is used by the emulator to
schedule the progress of instructions in each core for the next execution interval.
Whenever a new IPC value is produced, the scenario in which applications and OS
are being simulated changes and because the simulated system time evolves based
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on the output from the timing modules we achieve the coarse grain approximation
goal needed to model large-scale applications.

An additional complexity comes from the many situations in which the infor-
mation from the CPU timing modules has to be filtered and adapted before being
passed to the functional simulator. An example of this occurs with samples where
a core is mostly idle: the small number of instructions in that sample may not be
enough to get an accurate estimate of the IPC and feeding back the resulting IPC
significantly reduces simulation accuracy. The COTSon timing feedback interface
allows for correcting the functional IPC through a prediction phase that uses math-
ematical models (such as ARMA, auto-regressive moving-average [6]) borrowed
from the field of time-series forecasting.

4.4.5 Multi-core Instruction Interleaving

Functional emulators normally simulate multi-core architectures by sequentially
interleaving the execution of the different cores. Each core is allowed to run indepen-
dently for some maximum amount of time, called multiprocessor synchronization
quantum, which can be programmed. At the end of the synchronization quantum, all
the cores have reached the same point in simulated time and simulation can progress
to the next quantum.

As we described above, the simulation of each core generates a series of events
that are stored into asynchronous queues (one per core). This guarantees determin-
ism, but of course diverges from the sequence occurring in a real parallel execution.
In order to mimic an execution order that better approximates parallel hardware,
COTSon interleaves the entries of the individual queues based on how the CPU
timing models consider appropriate for their abstraction. The interleaving happens
before sending the instructions (and their memory accesses) to the timing models
and differs from what the emulator has previously executed. However, this dif-
ference only impacts the perceived performance of the application, which is then
handled through the coarse-grain timing feedback.

Unfortunately, some synchronization patterns, such as active waits through spin
locks, cannot be well captured by simple interleaving. For example, the functional
simulator may decide to spin five iterations before a lock is acquired, while the
timing simulator may determine that it should have iterated ten times because of
additional latencies caused by cache misses or branch mispredictions. While this
discrepancy can impact the accuracy of the simulation, we can reduce the error at the
expense of a lower simulation speed by shortening the multiprocessor synchroniza-
tion quantum. Another possibility consists of tagging all fine-grain high contention
synchronization mechanisms in the application code being analyzed. When these
tags arrive at the interleaver, COTSon can adjust the synchronization quantum to
simulate the pertinent instructions based on the timing information. Tagging syn-
chronization primitives requires modifying the guest OS (or application library),
but offers the highest-possible simulation accuracy.
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4.4.6 Dynamic Sampling

The goal of any sampling mechanism [18, ref-II-09-CALDER] is to identify and
simulate only the representative parts of an execution. In COTSon, when a sampler
is invoked, it is responsible for deciding what to do next and for how long. The
sampler instructs the emulator to enter one of four distinct phases: functional, simple
warming, detailed warming and simulation. In the functional phase, asynchronous
devices do not produce any kind of events, and run at full speed. In the simulation
phase the emulator is instructed to produce events and sends them to the timing mod-
els. In order to remove the non-sampling bias from the simulation, most samplers
require that the timing models be warmed up. COTSon understands two different
warming phases: simple warming is intended for warming the high-hysteresis ele-
ments, such as caches and branch target buffers; detailed warming is intended for
warming up both high-hysteresis elements and also low-hysteresis ones, such as
reorder buffers and renaming tables. Normally the sampler inserts one or several
warming phases before switching to simulation. The sampler may be controlled
from inside the functional system via the use of special backdoor connections to
the simulator. For example, users may annotate their applications to send finer-grain
phase selection information to the sampler.

In chapter [ref-II-09-CALDER] the fundamental benefits of sampling are amply
discussed. However, traditional sampling techniques like SMARTS work at their
best when the speed difference between sampled and non-sampled simulations
is relatively small. For the environment in which COTSon operates where the
functional emulator can over 1,000x faster than the timing simulation, a differ-
ent approach is required. For example, Amdahl’s law tells us that to get half the
maximum simulation speed we sample with a 1:1000 ratio, which is a much more
aggressive schedule than what statistical theory tells us. To reach this level of sam-
pling, we have to use application-specific knowledge, and that is where dynamic
sampling techniques come into play.

We observed that program phases are highly correlated to some of the high-level
metrics that are normally collected during functional emulation, such as code cache
misses and exceptions [9]. Intuitively, this makes sense if we consider that a new
program phase is likely to be triggered by new pieces of code being executed, or
by new data pages being traversed [ref-II-09-CALDER]. By monitoring these high-
level metrics, a dynamic sampler can automatically detect whether it should remain
in a functional phase (when the metrics are constant), or switch to a new detailed
simulation phase (when variations in metrics are observed). Figure 4.3 shows results
of dynamic sampling compared to SimPoint (with and without taking into account
offline profiling time) and SMARTS. By adjusting the sensitivity threshold of the
COTSon dynamic sampler we achieve different performance-accuracy data points.

4.4.7 Scale-Out Simulation

The foundation of any scale-out (clustered) architecture is its messaging infrastruc-
ture, i.e., the networking layer. COTSon supports NIC devices in the computing
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Fig. 4.3 Effects of dynamic sampling vs. fixed and profiled-based sampling

platforms as the key communication primitives that enable nodes to talk to one
another. The timing for a NIC device in each node is very simple: it merely deter-
mines how long a particular network packet takes to be processed by the hardware.
When a particular application needs to communicate using the network, it exe-
cutes some code that eventually reaches the NIC. This produces a NIC event that
reaches the NIC synchronous timing model. The response time from the timing
model is then used by the functional simulator to schedule the emission of the
packet into the world external to the node. The packets from all nodes get sent
to an external entity, called the network switch model (or mediator). Among the
functionalities of the switch model are those that route packets between two nodes,
or allow the packet to reach the external world through address translation. It also
offers a Dynamic Host Configuration Protocol (DHCP) for the virtual machines
and the redirection of ports from the host machine into the guest simulated sys-
tem.

To simulate a whole cluster, the control structure of COTSon instantiates several
node simulator instances, potentially distributed (i.e., parallelized) across different
host computers. Each of them is a stand-alone application which communicates with
the rest via the network switch model. To simulate network latencies, the switch
model relies on network timing models, which determine the total latency of each
packet based on its characteristics and the network topology. The latency is then
assigned to each packet and is used by the destination node simulator to schedule
the arrival of the packet.

The switch model is also responsible for the time synchronization of all the
node instances. Without synchronization, each of the simulated nodes would see
time advance at a different rate, something akin to having skewed system clocks
working at different frequencies in each node. This does not prevent most cluster
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applications from completing successfully, but it does prevent the simulator to
make accurate timing measurements. Our switch model controls the maximum skew
dynamically so that overall accuracy can be traded for simulation speed. Depending
on the density of network packets in an interval, the maximum skew can increase
or decrease, within a constrained range [9]. Figure 4.4 shows accuracy/speed pro-
files for two distributed applications, the NAS parallel suite and the NAMD molec-
ular dynamics program, under five different policies that manage the maximum
skew.

Fig. 4.4 Effects of adaptive quantum synchronization

4.5 Conclusions

The computing industry is changing rapidly and in very dramatic ways. Consoli-
dation is turning cloud datacenters into the “new computer” that hardware, system,
and software architects have to optimize. Unfortunately, the sheer number of vari-
ations that need to be explored makes the design and analysis of scale-out systems
intractable with traditional tools and modeling techniques.

In this chapter, we have discussed some of the directions in which we believe
computer simulation should evolve to cover the upcoming wave of new hardware,
workloads, and metrics that scale out to the datacenter level. We base our analysis on
what we learned in developing and using COTSon, a scalable full-system simulator
developed by HP Labs in collaboration with AMD.

Leveraging fast emulation/virtualization techniques and designing for speed, full
system, and modularity are the fundamental characteristics that we showed are
necessary to build a scalable simulator. Being able to dynamically trade-off speed
and accuracy, running unmodified applications and their entire software stack and
leveraging existing “component” simulators are the key motivations that should
drive the simulator design philosophy.
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Chapter 5
Modular ISA-Independent Full-System
Simulation

Gabriel Black, Nathan Binkert, Steven K. Reinhardt, and Ali Saidi

Abstract Research-oriented simulators require flexibility and configurability in
addition to good performance and reasonably accurate timing models. The M5 sim-
ulator addresses these needs by developing abstractions that promote modularity and
configurability without sacrificing performance. This design allows M5 to provide a
combination of capabilities—including multisystem simulation, full-system simula-
tion, and ISA independence—that is unique among open-source research simulation
environments. This chapter provides an overview of the key abstractions in M5.

5.1 Introduction

Computer architecture research places demands on simulators that are different from
those of product development. Researchers care about modeling performance, but
wish to explore large design spaces, often including unconventional designs. As
a result, they require reasonably accurate but highly flexible performance models
and are willing to trade some reduction in accuracy for increased flexibility and
higher simulation speeds. In contrast, the “virtual platforms” discussed in Chapter 1,
such as Virtutech Simics (see Chapter 2) and AMD’s SimNowTM[1], are typically
used for pre-silicon software development and thus focus on high-speed comprehen-
sive functional modeling rather than performance modeling. At the other extreme,
microprocessor product designers use very accurate performance models to eval-
uate detailed design trade-offs, but these simulators are relatively inflexible, being
closely tied to specific product designs, and are inherently slow due to their level of
detail.

M5, originally developed by the authors and others while at the University of
Michigan, addresses the needs of computer architecture researchers by providing
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a flexible, modular, open-source simulation environment. M5 grew out of a desire
to research novel system architectures for high-speed TCP/IP network I/O. This
goal dictated several requirements. First, because most of a system’s networking
code—protocol stacks and device drivers—is in the operating system kernel, we
needed the ability to simulate the execution of OS kernel code, known as full-system
simulation. Second, we needed an environment that could faithfully model network
interface controllers and other I/O devices, particularly their interaction with the
simulated system’s memory hierarchy. Third, we required the ability to model mul-
tiple networked systems in a deterministic fashion to capture both ends of a network
connection. No publicly available tool provided all these features, motivating us to
develop a new system to meet our needs.

Although network-oriented simulation drove M5’s unique functional require-
ments, we continued to use M5 for more conventional microarchitecture and
memory-system research. These disparate uses forced M5 to span a variety of
options: modeling full systems and stand-alone applications via system-call emu-
lation, single and multiple systems, uniprocessors and multiprocessors, simple and
detailed timing models, etc. Managing this scope of alternatives required us to
develop structures and interfaces that allowed users to flexibly compose a number
of different component models into a variety of configurations.

We strove to define these interfaces in a way that would not compromise M5’s
performance or accuracy. While M5’s performance is highly dependent on the
workload and system configuration being simulated, running M5 on a 3.2 GHz
system achieves 3–6 MIPS for basic functional simulation, 1–3 MIPS for a simple
in-order core model with atomic-mode cache hierarchy, and 200–400 KIPS for a
detailed out-of-order CPU model and timing-mode cache hierarchy. We have also
demonstrated M5’s accuracy by comparing its results against real systems running
networking benchmarks and found that M5 predicted achieved network bandwidth
within 15% in most cases [7].

M5’s modularity and flexibility, combined with its unrestrictive open-source
license, have made it a popular tool for architecture research at a number of institu-
tions in academia and in industry. In this chapter, we focus on the key abstractions
in M5 that contribute to its modular design:

• The SimObject class serves as a foundation for pervasive object orientation.
• Port objects, used to interface SimObjects within the memory system, allow flex-

ible and interchangeable composition of CPUs, caches, I/O devices, and buses.
• Python integration allows flexible configuration and control of simulation from a

scripting language, without giving up the performance of C++.
• The ISA definition system encapsulates the specifics of various instruction-

set architectures (ISAs), including instruction decoding and semantics, virtual
address translation, and other platform and OS dependencies. This subsystem
enables M5 to support multiple ISAs across multiple CPU models, even for
full-system simulation. M5 currently supports the Alpha, ARM, MIPS, POWER,
SPARC, and x86 ISAs, with some level of full-system support for Alpha, ARM,
SPARC, and x86.
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5.2 Object Orientation

Object-oriented design is a key contributor to M5’s modularity. The SimObject
C++ and Python base classes, from which all major component models derive,
provide uniform interfaces to users and convenient code reuse to developers. The
ability to construct configurations from independent, composable objects leads nat-
urally to advanced capabilities such as multicore and multisystem modeling.

5.2.1 SimObjects

All major simulation components in M5 are considered SimObjects and share com-
mon behaviors for configuration, initialization, statistics, and serialization (check-
pointing). SimObjects include models of concrete hardware components such as
processor cores, caches, interconnect elements, and devices, as well as more abstract
entities such as a workload and its associated process context for system-call
emulation.

Every SimObject is represented by two classes, one in Python and one in C++.
These classes derive from the SimObject base classes present in each language.
The Python class definition specifies the SimObject’s parameters and is used in
M5’s script-based configuration. The common Python base class provides uniform
mechanisms for instantiation, naming, and setting parameter values. The C++
class encompasses the SimObject’s state and remaining behavior, including the
performance-critical simulation model. The integration of the Python and C++
manifestations of a SimObject is covered in more detail in Section 5.4.

The configuration process assigns a unique name to each SimObject instance
based on its position in the configuration hierarchy (e.g., server.cpu0.icache).
These names are used in statistics, serialization, and debugging, in which numerous
instances of the same SimObject type must be distinguished.

The C++ SimObject base class provides uniform interfaces for common
SimObject operations in the form of virtual functions. These functions must be
defined by a SimObject to initialize itself, register its statistics, and serialize and
unserialize its state as necessary. The base class also maintains a list of all instan-
tiated SimObjects. Operations such as serializing simulation state consist primarily
of walking this list and calling serialize() on each SimObject.

Unlike many other simulation systems, M5 does not prescribe any specific
mechanisms for SimObjects to interact with virtual time. Each SimObject must
schedule events on the global event queue as needed to support its level of timing
detail. This flexibility allows different models to support different levels of detail
and to exploit model-specific knowledge to minimize the number of scheduled
events (an important factor in determining simulator performance). For example,
a CPU object typically schedules an event for each of its internal clock cycles, but
may decide not to schedule events when it is idle or stalled. Most other SimObjects
are more passive, being invoked indirectly when they receive messages from other
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components, then scheduling events only as needed to model delays in processing
those messages.

M5’s virtual time is maintained in integer ticks, independent of the clock rate
of any particular component. Each tick typically represents 1 ps, though an alter-
nate time unit can be specified. M5’s Python configuration infrastructure allows
SimObject parameters to be expressed in a variety of units such as nanoseconds or
gigahertz, which are automatically converted into ticks.

5.2.2 Multicore Systems

Given the encapsulation properties of object-oriented design, configuring a basic
multicore system in M5 is as simple as instantiating multiple instances of a proces-
sor core SimObject, then connecting these cores with main memory and devices via
a bus object. Introducing caches into the configuration requires a cache coherence
protocol (described in Section 5.3.4).

Because each core can be instantiated independently, heterogeneous multicore
systems (e.g., combinations of in-order and out-of-order cores) are also easily con-
structed. The ISA is a compile-time parameter for each CPU model and the current
build system supports just a single global ISA setting, so mixed ISA systems are
not presently feasible. However, only relatively modest changes would be needed to
enable multiple ISAs in the same simulation if desired.

5.2.3 Multisystem Simulation

As already mentioned, the ability to model multiple systems communicating via
TCP/IP was a key motivation in the design of M5. As with multicore simulation, this
capability is a natural consequence of encapsulation; the user merely instantiates
multiple independent sets of system components (cores, memories, devices, and
interconnect). A pair of systems (more specifically, the network interface devices
on those systems) can be connected by a common SimObject modeling an Ethernet
link.

Heterogeneity is particularly important in multisystem modeling, because a typi-
cal experiment will want to model a “system under test” in detail, while one or more
other load-generating systems need only be modeled in a relatively lightweight func-
tional mode. Additional simplifications can be achieved by exploiting the flexibility
of simulation. For example, a single client machine running at a simulated 20 GHz
clock rate with a one-cycle main memory latency can generate as much load on a
system under test as a large number of more realistic systems. Keeping all these
systems in a common timebase is very important to emulate TCP behavior properly
while maintaining deterministic simulations.
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5.3 Memory Modeling

The goal of the memory system in M5 is to provide a flexible interface for intercon-
necting memory components. These components, including interconnect, caches,
bridges, DRAM, programmed I/O devices, and DMA-capable I/O devices, all use
the same generic interface. This allows arbitrary objects to be connected, subject to
coherence requirements, without designing for each possible combination.

Unlike some simulators, M5 provides a unified functional and timing view of the
memory system (accounting for both time and data). This unified view allows for
the accurate modeling of timing-dependent operations as well as making it more
difficult for accesses to “cheat,” since an incorrectly timed access may also mean
incorrect data.

5.3.1 Ports and MemObjects

The flexibility of the M5 memory hierarchy is based on the ports interface and the
MemObjects that provide them. All objects in the memory system inherit from the
MemObject base class, which extends the SimObject class to provide a method to
access the object’s named ports.

At configuration time, pairs of ports on different MemObjects are connected
as directed by the user’s Python configuration script (described in Section 5.4).
A MemObject communicates with its connected neighbors by passing a message
structure to a send method on one of its ports; the message is passed to the corre-
sponding receive method on the connected peer port, which invokes the appropriate
method on the target MemObject to handle the message receipt. Through careful
design, our ports implementation enables arbitrary MemObject connections while
requiring only a single virtual function call per message. Port pairs always form a
symmetric bidirectional connection between their associated MemObjects.

Some MemObjects have multiple distinct ports; for example, caches have a CPU-
side port through which requests are accepted from CPUs or upstream caches, and
a memory-side port through which requests are sent to downstream caches or main
memory. These ports have distinct names, and messages received on these ports
call distinct methods on the cache MemObject. Other MemObjects, such as buses,
support multiple identical ports; in this situation, multiple connections to the same
port name result in independent instances of the same port object, organized in a
vector and distinguishable by index.

All messages communicated over ports are instances of the Packet class. A
packet carries the command, size, address, and (optionally) data for a memory
transaction. A packet also carries a pointer to a Request object, which contains
information about the origin of the transaction, such as the program counter of the
associated load or store instruction (if applicable). A complete memory transaction
is always associated with a single immutable request, but may involve multiple dif-
ferent packets. For example, the CPU may send a packet to the L1 cache requesting
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a write of a single byte, which may in turn generate a different packet from the L1
cache to the L2 cache requesting a read of an exclusive copy of a full cache block.

M5’s ports were inspired by ASIM’s ports [3] and are similar to the sockets
defined by the SystemC TLM-2.0 specification [6]. M5 ports differ from both of
these in that they are used only for communicating requests and responses between
arbitrary memory-system components, not arbitrary information between modules.
M5’s Packet class resembles TLM-2.0’s generic payload, so an M5 port could be
considered most similar to a TLM-2.0 socket that is constrained to communicate
only generic payload objects. Unlike TLM-2.0 generic payloads, we have extended
the Packet class to incorporate new features as we encounter new demands rather
than defining a powerful but complex extension mechanism. Another distinction
among these systems is that ASIM ports also model bandwidth and latency; M5
ports, like SystemC TLM-2.0 sockets, do not directly incorporate timing, but rely
on interconnect objects such as buses for modeling timing where appropriate.

5.3.2 Access Modes

The M5 memory system supports three modes of access: timing, atomic, and func-
tional. The same packet structure is used for all three; the sender chooses the
access mode by calling distinct send methods on its port object. Timing and atomic
accesses both simulate memory requests that occur in the modeled system, but pro-
vide different trade-offs between simulation accuracy and performance. Functional
accesses provide “back door” access to the memory system for simulator-specific
operations such as debugging and initialization.

Timing accesses are split transactions: a timing-mode send returns immediately,
and the corresponding response (if any) will arrive via an independent receive
method invocation at some future simulated time. This decoupling allows intercon-
nect and cache modules to model realistic timing, using multiple events as necessary
to model propagation delays and inter-packet contention. Of course, this realism
has a cost in simulation performance. Atomic requests provide increased perfor-
mance in exchange for decreased accuracy, such as in the fast-forwarding phase
of a sampled simulation, by propagating a request from the originator to the final
target in a sequence of nested calls, with the response (if any) transmitted back as
part of the function return sequence. The atomic path supports a latency estimate
achieved by summing component latencies along the path, but cannot account for
inter-packet contention. However, the transaction is processed significantly more
quickly because no additional events are scheduled. M5’s timing and atomic modes
correspond roughly to SystemC TLM-2.0’s non-blocking and blocking transport
interfaces, respectively [6].

To avoid complexity, component models such as caches are not required to
handle interactions between timing-mode and atomic-mode accesses. As a result,
all components in a simulated system must coordinate to use the same mode for
simulated accesses at a given point in time. The System class contains a flag that
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indicates the current system mode, which other components can query to deter-
mine the appropriate access mode. This mode can vary across time (e.g., between
fast-forwarding and detailed simulation phases) and among different systems in a
multisystem simulation (e.g., between a load-generating client and a server under
test, as described in Section 5.2.3).

Functional-mode accesses are required because memory system components
(including caches) maintain functional state. Thus the current value of a memory
location may exist only in the data storage of a simulated cache. For debugging and
other accesses not directly related to simulated program execution, it is necessary
to read and write memory locations regardless of their state in the cache hierarchy.
Functional accesses propagate throughout the system to obtain the latest value (on a
read) or update all cached copies (on a write). Functional accesses can be issued at
any point in the simulation, so they must interact properly with outstanding timing-
mode accesses.

5.3.3 I/O Devices

A unique feature of M5 is that I/O devices are treated as first-class memory objects.
The I/O devices inherit from the same base classes as other objects in the memory
system (e.g., caches) and communicate through the same data structures. Since the
interface through which I/O devices communicate is the same as any other object
(including the CPU), I/O devices are free to model arbitrarily complex timing and
can be attached on any level of the memory hierarchy (e.g., between the first- and
second-level caches).

Every platform has a combination of platform-specific memory mapped devices
(e.g., interrupt controllers, timers) and platform-independent devices (e.g., Ethernet
controllers, disk controllers). The platform-independent devices are normally much
more complex than a timer or interrupt controller and also tend to be connected
far away from the CPU on a peripheral bus such as PCI Express. Even though the
devices vary in complexity and where they are connected, devices inherit from the
same base classes. Devices that implement PCI inherit from a PCI base class that
handles setting up PCI configuration space based on the requirements of the specific
platform that is being simulated. By treating these devices as first-class memory
objects, they can be attached where appropriate. Thus, a local interrupt controller or
closely coupled NIC can be attached between the L1/L2 cache, while a serial port
may be attached on a slow bus several bridges away from the CPU.

Devices needed solely for the platform to boot (e.g., cache configuration regis-
ters) typically do not require much timing fidelity. In these cases the devices can
simply respond to memory requests without any timing of their own. On the other
hand, an Ethernet controller is sufficiently complex that it needs internal timing to
operate correctly. Here a state machine can be built that manages the scheduling of
events for the device and all the interactions that are required by the system and the
kernel.
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5.3.4 Cache Coherence

Because the memory system combines function and timing, a multicore system
with caches requires that the caches support a fully functional coherence protocol.
M5 cache objects implement a broadcast-based MOESI snooping protocol. This
protocol is complicated by the desire to support nearly arbitrary configurations con-
taining multiple levels of both shared and private caches. To solve the complex race
conditions created by multilevel bus hierarchies, M5 implements special “express”
snooping requests that allow a cache to query and invalidate upstream caches atom-
ically even when in timing mode. These requests provide timing similar to a cache
that maintains duplicate copies of upstream cache tags (as in, for example, Sun’s
Niagara [4]), without requiring the cache object to know the configuration of caches
above it.

Although M5’s coherence protocol is adequate for many purposes, it is neither
detailed nor flexible enough to support research into coherence protocols them-
selves. A previous attempt to decouple the coherence protocol from the cache
model introduced complexity without providing significant advantages and was
abandoned. Our current strategy for supporting coherence research (along with
more general memory-system interconnect topologies) is based on integrating the
Ruby memory-system simulator from the University of Wisconsin as described in
Section 5.6.1.

5.4 Python Integration

M5 derives significant power from tight integration of Python into the simulator.
While 85% of the simulator is written in C++, Python pervades all aspects of
its operation. As mentioned in Section 5.2.1, all SimObjects are reflected in both
Python and C++. The Python aspect provides initialization, configuration, and sim-
ulation control. The simulator begins executing Python code almost immediately on
start-up; the standard main() function is written in Python, and all command-line
processing and startup code is written in Python.

Initially, M5 was written almost entirely in C++. The configuration to simu-
late was specified via command-line arguments. This approach became unworkable
once we started making the simulator more object oriented and wanted to spec-
ify per-object parameters flexibly. We then switched to reading the configuration
from a user-provided .ini-format file. In this file, each section represented a single
SimObject. Object configurations were repetitive, so we added a special parame-
ter for inheriting values from another section; thus, for example, two CPUs could
share the same parameter values. For additional flexibility we started running the
.ini files through the C pre-processor before parsing them. This enabled the use of
#define and #ifdef to generate families of configurations from a single .ini file.

When the limitations of the C preprocessor became constraining, we started writ-
ing Python scripts to generate the .ini files directly. We developed a framework in
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which every C++ SimObject had a corresponding Python class that knew how to
generate the proper .ini section for that SimObject. The C preprocessor became
unnecessary, and Python class inheritance replaced the special .ini parameter. This
approach worked reasonably well, except that—since there was no explicit link-
age between the Python and C++ code—adding parameters to an object required
editing both Python and C++ in a coordinated fashion. Also, the C++ code did
not support parameter inheritance, so parameter changes could require tedious and
error-prone modification of multiple C++ classes.

To eliminate this redundancy, we extended the Python code to automatically
generate the C++ code for parameter handling in the C++ SimObjects from the
Python parameter descriptions. This step eliminated the manual maintenance of
redundant C++ code and added parameter inheritance to C++ in one fell swoop.
From there, it seemed obvious that generating and then parsing the intermediate
.ini file was not particularly useful, so we embedded the Python interpreter in M5,
allowing Python code to directly call C++ to create C++ SimObjects.

Once we embedded the Python interpreter, we found that we could leverage the
expressive power of Python to simplify other areas of M5, such as initiating and
restoring from checkpoints and controlling the main simulation loop. These addi-
tional features are supported by exposing C++ functions to Python using the open-
source Simplified Wrapper and Interface Generator (SWIG). Our current belief is
that only code that needs to be fast (e.g., run-time simulation models) should be
in C++, and nearly everything else should be in Python. There is still a consid-
erable amount of C++ code (85%) compared with Python (15%), but the ratio is
constantly shifting toward Python.

5.4.1 Scripting Simulations

Nearly all aspects of an M5 simulation are controlled via a user-supplied Python
script specified on the M5 command line. This script can use standard Python
libraries to extract settings from additional command-line arguments or environment
variables.

The bulk of a typical script is used to build the simulation configuration by con-
structing a tree of Python SimObject instances. In addition to directly instantiat-
ing the classes that correspond to C++ SimObjects, users can also subclass those
classes to provide specialized default parameter settings. For example, the user’s
script can create an L1Cache class that is derived from the built-in Cache class
but has a default size and associativity suitable for a first-level cache. Scripts can
also “clone” instances to generate sets of identical objects without defining a new
subclass.

Once the configuration tree has been defined in Python, the script invokes the
instantiate() method on the root of the tree, which recursively creates the C++
counterparts for each of the Python SimObjects. The Python object parameter values
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are passed to the C++ object constructors using structures auto-generated from the
parameters specified in the Python SimObject definition.

Once the C++ SimObjects have been created, control returns to the Python
script. The script can invoke the C++ event loop for a specified number of sim-
ulation ticks via the simulate() method. It can also save state to, or restore state
from, checkpoints stored on disk. A typical simulation script might have a loop that
repeatedly invokes simulate() and then saves state, providing regular periodic
checkpoints of simulation progress.

For a more detailed discussion and an example of a configuration script, see our
earlier paper [2].

5.4.2 Build System

Before we started seriously using Python in the simulator itself, we abandoned
GNU Make in favor of SCons, a build tool written entirely in Python. Our initial
motivation for making the switch to SCons was simply that our Makefile was
getting far too complicated. Our choice of SCons turned out to be a boon to the
Python integration effort. Because SCons build files are just Python scripts, we can
include the Python SimObject descriptions directly into our build files, simplifying
the auto-generation of C++ parameter-handling code.

Having Python at our disposal at both compile time and run time allows us to
extend M5’s modularity to static configuration. For example, adding a new SimOb-
ject to M5 requires only a simple build file that identifies the Python and C++ files
that contain the object’s parameter declarations and model implementation, then
including the directory containing that build file on the SCons command line.

5.5 ISA Independence

The majority of M5 is ISA independent, meaning it avoids making assumptions
about the semantics or implementation of the ISA it will be used to simulate. Sup-
port for a particular ISA is provided by other components which are layered on top
of this generic framework. This separation is a reflection of M5’s modular design
philosophy and has many of the same benefits. Separating out ISA support can be
difficult, though, partially because it may not be clear how to distill out the truly
ISA-dependent aspects of a system both conceptually and in an actual implemen-
tation. Also, once a particular ISA has been selected, it has to be able to work
efficiently with the rest of the simulator across a generic interface. M5 achieves
this using the architecture shown in Fig. 5.1.

At a high level, instruction behavior, instruction decoding, memory address trans-
lation, interrupt and fault handling, and some details of the simulated environment
are considered ISA dependent. The following sections discuss each of these areas
and the interfaces they use to interact with the rest of the simulator.
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Fig. 5.1 Separation of the simulator into ISA/platform-dependent and -independent components

5.5.1 Instruction Behavior

The central task of a CPU is to execute instructions, and the ISA is largely defined
by the set of instructions the CPU executes. Despite this close relationship, the CPU
models themselves need to be fundamentally ISA independent to avoid having to
implement the cross product of all ISAs and CPU types. To make that possible,
two generic interfaces are used: one that allows a CPU to manage and manipulate
instructions, and one that allows an instruction to interact with the CPU.

5.5.1.1 Static Instruction Objects

All instructions in M5 are represented by instances of StaticInst subclasses. Each
instance provides member variables and functions that either describe the instruction
in a standard format or manifest its behavior. These object’s contents must be the
same for equivalent instructions and cannot change after they are built. That allows
them to be cached and reused, saving construction overhead. This is an especially
effective technique since most execution time is spent in loops.

Each instruction object has an array of the register indices it accesses to allow
the CPU to track data dependencies. It also provides several flags to describe itself
and announce any special requirements. These specify, among other things, whether
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the instruction is integer or floating point, if it is serializing, or if it is a memory
reference.

Every instruction provides either one or several functions that implement its
behavior. For most instructions, this is simply the execute function. Memory
instructions may work differently, though, if they need to wait on memory. In those
cases, they provide initiateAcc and completeAcc functions which are called
before and after their access. All instructions implement a function that returns a
disassembled representation of themselves that can be used to trace execution.

For RISC ISAs, a single StaticInst can almost always realistically represent
the behavior of an instruction. For CISC ISAs like x86 and for some especially
complicated RISC instructions, microcode may be needed. In those cases, the main
StaticInst sets a flag declaring that it contains micro-ops. The CPU fetches these
micro-ops with an index called the micro-pc and processes them instead of the orig-
inal instruction.

5.5.1.2 Register Indexing

Register indices are used to select small, fast storage locations an instruction
accesses as it executes. Most simply, these act as an array, numbered consecutively
and accessed directly. In a real processor implementing a real ISA, however, the pro-
cess is significantly more complicated. There will likely be multiple independently
indexed register files, and there may be complicated rules that change which storage
location an index maps to over time. Even the existence of a unique storage location
might be an illusion provided by, for instance, register renaming.

To provide a consistent, ISA-independent framework to describe and manage
access to registers, these mechanisms can be restated in terms of “index spaces” and
transformations between them. An index space is like an address space, but refers
to register indices instead of memory addresses.

At a high level, an index space is implied by the instruction an index comes from
and how it is used. In integer addition, for example, an index likely refers to an index
space corresponding to the integer register file. There may be more than one index
space for integer registers, though, if mechanisms like register windows are used.
Each of these maps into a larger space, resolving aliases and unambiguously identi-
fying the storage location requested by the instruction. SPARC’s register windowing
semantics [8] are relatively complex but can still be described this way.

At this point, the CPU is responsible for providing the illusion that this canonical
index corresponds to a unique register. It is free to do that directly, or using register
renaming or any other technique. Using this system, the roles of the ISA and the
CPU model are clearly separated, allowing each to be implemented without being
restricted by the specifics of the other.

5.5.1.3 Execution Contexts

To emulate an instruction’s execution, a StaticInst object needs to access system
state, typically registers or memory locations. Exactly where that state is stored and



5 Modular ISA-Independent Full-System Simulation 77

how it is accessed depends on the implementation of the CPU model. For example,
a CPU model that uses register renaming will need to look up the physical register
that corresponds with a logical index. M5 abstracts away these details by passing
an “execution context object”, or ExecContext, to the StaticInst’s execute
method. The ExecContext defines a common interface for these operations, while
allowing different CPU models to customize their implementation.

The simplest CPU model in M5, appropriately called the SimpleCPU, executes
one instruction at a time and is not multithreaded. It maintains a single copy of
architectural state which it presents directly to an instruction, so the SimpleCPU
object itself is used as the ExecContext.

In more complicated models like our out-of-order CPU, called O3, each of the
many instructions in flight sees a different view of the state of one of the CPU’s sev-
eral threads. In those cases, an object more specific than the entire CPU is needed.
O3 uses instances of a class called DynInst to contain the execution state for each
dynamic instruction, including register remapping and any load/store ordering infor-
mation. These objects are used as the ExecContexts for those CPUs.

In addition to ExecContexts, other classes exist that also help generalize the
CPU models. ThreadContexts are very similar to ExecContexts but provide
access to callers from outside the CPU like system calls. ThreadState classes cen-
trally locate common state and allow sharing related declarations and code across
implementations.

5.5.2 Instruction Decoding

5.5.2.1 ISA Description

Each ISA defines a function that accepts a contextualized blob of instruction mem-
ory and produces a fully decoded StaticInst. Defining that function and the
potentially hundreds of classes that implement each different instruction is unfor-
tunately very tedious and error prone. To make the process more manageable, M5
provides a custom high-level ISA description language. The ISA author describes
what instructions exist, how they are encoded, and what they do in this concise
representation, then a parser uses that description to generate C++ code which is
compiled into M5.

The core element of the ISA description is the decoder specification, which looks
like the following:

1 decode OPCODE {
2 0: Integer::add({{ Ra = Rb + Rc; }});
3 1: Integer::div({{
4 if (Rc == 0)
5 return new DivideByZeroFault();
6 Ra = Rb / Rc;
7 }});
8 }
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In this example, the OPCODE bitfield (defined elsewhere) is used to switch
among several instructions. Semantics for each instruction are defined inside dou-
ble braces using a subset of C with minor extensions. The div instruction recog-
nizes and reports a fault condition using Fault objects, which are described in
Section 5.5.5. Decode blocks can contain other decode blocks to build up complex
decode structures.

To process an instruction definition, the parser passes the arguments from the
decode block (the C snippet and other optional flags) into a format function, in this
case one called Integer. This function, written in Python, handles related batches
of instructions. Much of the work is performed by a library of helper classes and
functions that parse the C snippet to generate source and destination operand lists,
set up default constructor code for the StaticInst subclass, etc. These instruction-
specific code segments are then substituted into a C++ code template (typically
specific to the format function), forming the final generated code.

The ISA description language also features let blocks, which are blobs of arbi-
trary Python code that are evaluated as they are parsed. These blobs can be used to
define potentially very sophisticated helper functions and specialized mechanisms
that can be used by other parts of the description. This feature is deceptively impor-
tant and is the source of much of the power of these descriptions, allowing them to
handle very complex ISAs like x86.

5.5.2.2 Predecoder

M5’s decoding infrastructure expects to be fed information about one instruction
at a time and to produce one instruction object at a time. For ISAs that force all
instructions to be the same size and to be aligned, all that is needed is to fetch the
appropriate amount of memory from the current PC and feed it into the decoding
mechanism. For ISAs like x86 in which instructions can vary from a one to a dozen
or more bytes long, that approach will not work. To address this problem, instruction
memory must pass through a predecoder, defined by the ISA, before it goes into the
normal decoder described above. The predecoder’s job is to accept a stream of bytes
of instruction memory and to produce a uniform, contextualized representation of
an instruction called an ExtMachInst. The instruction will not be decoded, but all
of its components will have been gathered and separated from the incoming stream
and put in a uniform container.

5.5.3 Microcode Assembler

In ISAs like SPARC or ARM in which macro-ops are very uncommon and relatively
simple, normal ISA description mechanisms are sufficient to build them. For ISAs
like x86 in which some instructions behave like small subroutines, a microcode
assembler has been developed that vastly simplifies defining them.

Like the ISA description parser itself, the microcode assembler is written in
Python and interprets a custom language that leverages Python syntax. Macro-ops
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are defined as top-level constructs and are composed of micro-ops. The micro-ops
are selected using a mnemonic and then a string of arguments in Python syntax. The
assembler looks up a Python class in a dictionary using the mnemonic and passes the
arguments to its constructor to create a representation of the micro-op. The macro-op
is an instance of a user-defined Python class, and the micro-ops are added to it one
at a time as they are encountered. The assembler can recognize directives mixed in
with the micro-ops, written as a period followed by a name and optional parameters.
The name is used to look up a function in another dictionary which is called with
the parameters. Macro-ops also support labels and control flow. Together, it looks
like the following:

1 def macroop exampleInst {
2 add r1, r2, r3
3 .useRegSize 2
4 end:
5 store r1, [r2, r3]
6 }

Here the second argument to the store takes advantage of the convenient simi-
larity between Python’s list syntax and traditional assembler memory address com-
putation syntax.

The assembler also has a dictionary that acts as the variable scope when microops
are constructed, directives are handled, etc. This allows defining arbitrary keywords
for use in the microcode without having to teach the assembler how to recognize
them. In the preceding example, the parameters r1, r2, etc. would be defined this
way. They might be strings naming the index of a register like “INTREG_R1”.

Once a macro-op object has been constructed, it is put in a dictionary keyed on
its name. In the main part of the ISA description, the object can be recalled and used
to fill in the portion of the decoder that goes with that instruction. The macro-op and
micro-op Python objects know how to instantiate themselves in C++, so they are
simply expanded where needed.

In addition to defining individual macro-ops, it is also possible to define a
microcode ROM. This is done by using def rom instead of def macroop and can
appear multiple times to continue appending to the same ROM object. This is to
allow portions of a macro-op to be put into the ROM near where the rest is defined.

5.5.4 Memory Address Translation

While the concept of virtual memory is almost universal among ISAs, each imple-
ments it slightly differently. To support these differences, each ISA is responsible for
implementing a translation lookaside buffer (TLB) object that performs instruction
level address translation.

TLBs focus on paging, however, which is sometimes a limitation. CPUs assume
the page offset of an address will be the same before and after translation. Because
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the size of a page is typically larger than any other size boundary an address might
need to be aligned against, translation is assumed not to change alignment. In ISAs
with different, less regular addressing mechanisms, like x86’s segmentation, those
assumptions may not hold. By carefully delegating each step of the process, how-
ever, even segmentation is supported in this way.

ISAs also handle TLB misses differently, usually in software, but sometimes in
hardware in line with the original access. To support those semantics, translation
can either complete immediately or finish later using a callback.

The idea of TLBs as translation caches with a collection of entries, a lookup
mechanism, replacement policies, etc., is substantially the same across ISAs. Unfor-
tunately, these ISA-independent elements are not yet separated from the translation
process, and so the entire TLB is considered ISA dependent. Ideally, future versions
of this system will pull those elements out into a common base TLB object.

5.5.5 Interrupts and Fault Handling

Faults are represented in M5 as instances of the ISA-independent Fault class.
Because the cause, classification, and effects of faults are very ISA dependent, spe-
cific faults (e.g., page faults) are represented as subclasses of Fault by the ISA.

The specific architectural effects of a fault are implemented by the invoke vir-
tual function, and the Fault subclasses are built into a class hierarchy so faults
that behave the same share the same invoke function through inheritance. Because
Faults are objects, they can also hold contextualizing information that affects their
behavior (e.g., the address that caused a page fault or TLB miss).

Fault object pointers are returned by functions performing tasks that might fault,
namely instruction execution and address translation. When appropriate, the CPU
invokes any resulting fault object on the current architectural state, transforming it
as defined by the ISA. Using this mechanism, the CPU is able to recognize faults
without having to understand their semantics.

Because interrupts and faults are very similar and because the Fault object
mechanism is very flexible, interrupts are just another type of Fault object in M5.
Unlike faults, however, there are usually complicated rules that describe when an
interrupt is recognized, how it gets from its source to a consuming CPU, and how
it can be sent as an inter-processor interrupt (IPI). All of these behaviors are imple-
mented by an Interrupts object defined by the ISA and instantiated as part of the
CPU. Interrupts are communicated to that object instead of the CPU itself, and the
CPU periodically polls it for an interrupt to service. Complicated systems like x86’s
xAPIC architecture can thus be emulated in detail without having to specialize the
CPU model itself.

5.5.6 Platforms and Processes

While the choice of ISA primarily affects the CPUs that execute its instructions, real
workloads expect certain properties from their environment that go beyond the ISA
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itself. For instance, in system-call emulation (SE) mode, the system calls available,
their numbering, and how arguments are passed to them are a function of the ISA
and OS being emulated. In full-system (FS) mode, the simulated OS code expects to
be able to interact with a hardware environment and interface typical for that ISA.

In SE mode, the program M5 is simulating is represented internally by an
instance of a Process class (a subclass of SimObject). Each supported ISA/OS
combination provides a custom subclass of Process to translate requests from
the simulated program into actions performed by M5. For example, a system call
instruction requests a specific system call by providing a numeric index into the
OS’s system call table. M5 uses the appropriate Process object to translate that
index into an internal function which will emulate that system call.

This abstraction also works in the opposite direction, allowing M5 to use a
generic interface to interact with the simulated program. For example, when a
real OS starts a process, it builds up an initial stack frame whose contents, lay-
out, and location vary among ISAs and OSs. Other in-memory structures like
Linux’s vsyscall page or SPARC’s register window spill and fill handlers might
also need to be installed. The Process class provides virtual functions for initial-
ization that are specialized by each subclass to handle these details. The Process
class also provides a standard interface to retrieve system call arguments, allow-
ing generic implementations of common system calls like close and write
despite differing register- or stack-based argument-passing conventions across
platforms.

Finally, Process objects provide a location for information about the current
state of execution. The base Process class holds generic information such as the
base and bounds of the process’s heap area and the mapping from the process’s file
descriptors to M5 file descriptors. Subclasses can extend this information in ISA- or
OS-dependent ways; for example, x86’s Process subclass stores the location and
size of the x86-specific global descriptor table (GDT) which is used by x86 Linux to
implement thread-local storage. Subclasses can also add ISA- or OS-specific mem-
ber functions; for example, SPARC’s Process subclass implements a function to
flush register window contents to memory.

In FS mode, M5 runs real OS code, which automatically takes care of all these
process-level issues. The OS itself expects certain interfaces and hardware, though,
so platform dependencies have not been eliminated, just pushed to a lower level.
M5’s device model and memory system are very modular and flexible, so providing
the hardware expected for a particular platform ideally involves just implementing
any missing devices and hooking everything up at the right address. The common-
ality of the PCI device model allows most of M5’s devices and device-configuration
infrastructure to be reused across platforms. The exact mechanisms used to access
devices can differ, though. In some cases, like Alpha and MIPS, devices are mapped
directly into memory. In others, like x86, there may be a separate I/O address space
accessed with dedicated I/O instructions. M5 defines a partition of the physical
address space for these I/O operations, supported by special features in the sim-
ulated x86 TLB. I/O instructions like IN and OUT are implemented as loads and
stores within this address range.



82 G. Black et al.

5.6 Future Directions

M5 is by no means a finished product. The simulator is constantly being enhanced
to support additional features and component models. An increasing number of
enhancements are being contributed by users outside the group of initial develop-
ers; for example, during the course of writing this chapter, someone unexpectedly
contributed an implementation of the POWER ISA. Two current projects that will
greatly enhance M5 are integration with the Ruby memory system simulator and
parallelization.

5.6.1 Ruby Integration

M5’s bus-based cache coherence protocol (Section 5.3.4) is adequate for a large
class of experiments. However, as users look to study on-chip networks, they will
need support for more sophisticated interconnects and coherence protocols. Instead
of trying to evolve our memory system to add these capabilities, we chose to lever-
age existing efforts by forming a joint project with the GEMS [5] simulator team.
GEMS was designed specifically for memory-system research and has a detailed
memory system model called Ruby. Ruby models caches, memories, and networks
and uses a domain-specific language called SLICC to specify coherence protocols.
As of this writing, the integration of Ruby and M5 is in its initial stages, with a
rough but working initial version available for limited use.

5.6.2 Parallelization

Although architecture research has increasingly focused on multicore systems, most
simulators are still single threaded. As the number of simulated cores increases,
so too does the time to complete a simulation of that system. We have begun
the process of parallelizing M5 to make use of multicore processors. Our first
steps include the ability to assign SimObjects to separate event queues, enabling
a transition from a single global event queue to multiple per-thread queues. Ini-
tially, we plan to simulate independent systems on different threads, a capabil-
ity we have already demonstrated in prototype form. Ultimately, we hope to
allow for the simulation of multiple cores within the same system on a multicore
processor.
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Chapter 6
Structural Simulation for Architecture
Exploration

David August, Veerle Desmet, Sylvain Girbal, Daniel Gracia Pérez,
and Olivier Temam

Abstract While processor architecture design is currently more an art than a
systematic process, growing complexity and more stringent time-to-market con-
straints are strong incentives for streamlining architecture design into a more sys-
tematic process. Methods have emerged for quickly scanning the large ranges of
hardware block parameters. But, at the moment, systematic exploration rarely goes
beyond such parametric design space exploration. We want to show that it is pos-
sible to move beyond parametric exploration to structural exploration, where dif-
ferent architecture blocks are automatically composed together, largely broadening
the scope of design space exploration. For that purpose, we introduce a simula-
tion environment, called UNISIM, which is geared toward interoperability. UNISIM
achieves this goal with a combination of modular software development, distributed
communication protocols, a set of simulator service APIs, architecture communi-
cations interfaces (ACIs), and an open library/repository for providing a consistent
set of simulator components. We illustrate the approach with the design exploration
of the on-chip memory subsystem of an embedded processor target. Besides design
space exploration, we also show that structural simulation can significantly ease the
process of fairly and quantitatively comparing research ideas and illustrate that point
with the comparison of state-of-the-art cache techniques. Finally, we disseminate the
whole approach for both facilitating design space exploration and the fair compar-
ison of research ideas through ArchExplorer, an atypical web-based infrastructure,
where researchers and engineers can contribute and evaluate architecture ideas.

6.1 Structural Simulation

Simulator development is a huge burden for architecture design groups because of
long coding time and the increasing complexity of architectures; homogeneous and
heterogeneous multi-cores only make matters worse. Structural simulation aims at
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improving simulator development productivity by breaking down architectures into
components roughly corresponding to hardware blocks and then allowing to reuse
components within or across research groups. We use the term “structural simula-
tion” rather than “modular simulation” (and “component” rather than “module”) in
order to highlight that the approach implies not only software modularity but also
a software breakdown which reflects the hardware blocks. We start by discussing
how structural simulation can facilitate simulator design; we survey several promi-
nent structural simulation environments and then we show, through the UNISIM
environment, how to further improve simulator interoperability.

6.1.1 Structural Simulation Environments

Low-level design languages like Verilog or VHDL are structural, but they are too
slow for rapid architecture prototyping or cycle-level simulation. Conversely, simu-
lators for rapid prototyping and cycle-level modeling are abstract models of archi-
tectures and typically suffer from two weaknesses as a consequence: the lack of
design constraints may breed insufficiently precise if not unrealistic simulator mod-
els, and these models may lack the inherent modularity of hardware blocks, which is
key for reuse, interoperability, and development productivity. Structural high-level
(cycle-level or higher) simulators aim at bridging the gap between Verilog/VHDL
and ad hoc high-level simulators.

One of the first instances of such a high-level structural simulation framework
is HASE [5], which dates back to 1995 and provides many of the functionalities of
modern structural simulation environments: structural design, hierarchical descrip-
tion of the architectures, and a discrete event engine, at the expense of simulation
speed. ASIM [10], developed at Intel, is a structural simulation framework which
implements port-based communication interfaces between components, a clean sep-
aration between instruction feeders (traces, emulators) and the performance model,
together with a set of tools. While ASIM was not publicly disseminated outside
Intel, it is considered as one of the first successful application of high-level struc-
tural simulation. SimFlex [13] is a public simulation environment based on ASIM
concepts and implementation, which extends ASIM with advanced functionalities
such as sampling and checkpointing. The LSE (Liberty Simulation Environment)
[31] is a structural simulation framework which aims at implementing a rigorous
communication interface between components in the form of a three-signal hand-
shaking protocol. This approach improves reuse by distributing control between
components at the level of component ports and helps implement an efficient com-
ponent wake-up strategy. MicroLib [24] proposes a similar handshaking protocol,
though it is based on the widely adopted SystemC simulation framework. Sys-
temC [23] is an open source C++ library for the structural development of com-
puter architectures (especially embedded architectures) proposed by the OSCI group
and now an IEEE standard. While SystemC provides only elementary support for
cycle-level communications, insufficient to ensure compatibility and reuse between
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components, it is geared toward multi-abstraction-level simulation, from cycle-level
to transaction-level modeling (TLM). SystemC has become an industry standard and
numerous commercial tools like the ARM RealView fast simulators [1], VaST [32],
or Virtutech Simics (see Chapter 3) propose SystemC interfaces.

Like SystemC and Virtutech, an increasing number of simulation environments
are expanding to system-level simulation in order to encompass the full hardware
system and to accommodate the operating system impact of multi-cores. Other
simulation infrastructures reflect that trend, such as the M5 full-system modular
simulation infrastructure, see Chapter 5, the GEMS [21] environment for exploring
cache coherence protocols, or even the HP COTSON infrastructure, see Chapter 4,
for exploring data centers.

6.1.2 UNISIM

UNISIM is designed to rationalize simulator development by making it possible and
efficient to distribute the overall effort over multiple research groups, even with-
out direct cooperation. The following four observations drive the development of
UNISIM:

1. Many existing simulators are monolithic or designed for a single architecture.
As a result, it is difficult to extract a micro-architecture component from the
simulator for reuse, sharing, or comparison.

2. The lack of interoperability among existing simulators hampers reuse, sharing,
and comparison of ideas and hinders the take-up of academic results by compa-
nies which cannot afford the effort to integrate multiple academic simulators.

3. The most popular and open structural simulation environment, SystemC, does
not impose strict enough design guidelines to ensure the interoperability of
components.

4. Due to the growing impact of technology on architecture design, simulators
require many more features than just performance evaluation: power and tem-
perature modeling and other technology constraints detailed in Chapter 14, sam-
pling for simulation speed, debugging support for parallel computing, etc. These
features are currently implemented in an ad hoc manner which makes them hard
to integrate in a vast array of simulators.

6.1.2.1 Control

While mapping hardware blocks to simulator components is both attractive and
intuitive, it can conflict with the objective of reusing simulator components. The
key difficulty is the reuse of control logic. Control is often implemented, or simply
represented, as centralized or only partially decentralized; a symptomatic example is
the DLX block diagram from the famous textbook [14], where control is centralized
into one block, see Fig. 6.4. While this implementation is structural, it is difficult to
reuse: any modification in any of the hardware blocks would require a modification



88 D. August et al.

of the control block. And while control logic may correspond to a small share of
transistors, it often corresponds to the largest share of simulator code. For instance, a
cache bank can account for many more transistors than the cache controller, but it is
just an array declaration in the simulator, while the cache controller can correspond
to several hundred simulator lines.

In order to address these conflicting decomposition/reuse objectives, UNISIM
uses a solution pioneered by LSE [31] and the MicroLib environment [24]. This
solution provides a customizable representation of control which lends itself well
to reuse and structural design. This control abstraction takes the form of a hand-
shaking mechanism between components: a component makes no assumption about
the other components beyond its incoming and outgoing signals. All control logic
corresponding to interactions with other components are embedded in these signals.
This approach has two key benefits: (1) by construction, it provides a distributed
simulator implementation of control, see Fig. 6.4 and (2) it defines a rigorous and
standardized interface between components, which, in turn, improves components’
interoperability.

6.1.2.2 Simulator Services

Beyond executing the code and measuring the number of cycles, simulators must
provide an increasing number of services. Technology issues are imposed to pre-
cisely evaluate delays, power, and temperature [28], among other metrics. Simula-
tor speed constraints may require to plug in sampling techniques [12, 27, 34], see
Chapters 10 and 11, and checkpointing techniques [33] for replaying or speeding
up executions. System and CMP simulators are complex to debug and thus require
non-trivial debugging support. While there exist tools for each functionality, they are
often implemented in an ad hoc manner, sometimes even embedded in a simulator,
and cannot be easily plugged to other simulators.

In order to both increase the functionality of simulators and provide a more effi-
cient way to leverage the work of different research groups, UNISIM implements
a set of Service APIs. These APIs are essentially standardized function calls; any
simulator component implementing these function calls automatically benefits from
the corresponding services. For instance, a cache component providing statistics on
its activity can get an evaluation of power consumption, provided a power model
is plugged into the engine. For instance, in Fig. 6.1 we show the components of a
full-system Mac simulator, each with ports for accessing a debugging API. Using
the debugging API, we could plug the standard ddd debugger into UNISIM. This
is the second benefit of the Service APIs approach: the services are plugged at the
engine level. Therefore, not only can any simulator benefit from a service as long as
it implements the corresponding API, but it is also easy to replace a service tool with
another, provided again that it is API compliant. For instance, two power models can
be easily compared on any simulator with that approach. For the aforementioned
ddd example, a small adapter (44 lines) must be developed to make a UNISIM
component gdb compliant.



6 Structural Simulation for Architecture Exploration 89

Fig. 6.1 Full-system PowerMac G3 simulator with debugging services

6.1.2.3 Simulator Interoperability

Not only is simulator functionality difficult to reuse and inter-operate, but the sim-
ulator implementations of different hardware blocks themselves can be difficult to
extract from a simulator and reuse in another one. For instance, most of the SystemC
simulators are not interoperable because of insufficiently clear communication and
development guidelines. Besides enforcing a stricter communication protocol, as
mentioned in Section 6.1.2.1, UNISIM takes three additional steps for achieving
interoperability.

Wrap and reuse. The first step consists in acknowledging that simulator devel-
opment is a huge effort, and any group which has invested several man-years on
a tool will not drop that effort easily. As a result, UNISIM is designed to cre-
ate heterogeneous simulators by wrapping existing simulators within a UNISIM
component, allowing existing simulators to interact with UNISIM components, or
even with other simulators. Besides the syntactic wrapping, an adapter must some-
times be developed to translate the simulator Model of Computation [8] into the
UNISIM/SystemC one, i.e., the method through which the different components or
parts of the simulator are called or woken up. In order to illustrate that this approach
is pragmatic, we have wrapped the full SimpleScalar simulator into a UNISIM
component, stripped it off its simple memory model, and connected it to another
UNISIM component which contains a detailed SDRAM component developed into
a third simulation environment. Only 50 source lines of SimpleScalar had to be
modified in order to break the pipeline loop, and the resulting simulator is only 2.5
times slower despite the more complex memory model and the wrapping.

Open repository. The second interoperability action is to build an open library
or repository providing a set of consistent and interoperable models and compo-
nents. The repository maintains information about inter-component compatibility
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and component history and allows users to easily locate components meeting their
needs, thus improving the reuse of components. Finally, this library is open, allow-
ing anyone to upload components, while retaining intellectual property rights to the
components and applying a license of the author’s choice. We show an application
of this open repository for design space exploration in Section 6.3.

Architecture Communications Interfaces. The third step is to ensure that archi-
tecture blocks are compatible at the hardware level; for that purpose, they should
agree on a set of input and output control and data signals. This set of signals forms a
communication interface which we term Architecture Communications Interfaces,
as an analogy to software-level APIs (Application Programming Interfaces). For
instance, a processor/memory interface, depicted in Fig. 6.2, enables to connect
processors with a large range of cache mechanisms and also to compose arbitrarily
deep cache hierarchies with interface-abiding cache, see Fig. 6.3.

address bi-directional, 32 bits
Memory request address.

data bi-directional, path width
Data for read and write requests.

size bi-directional, log2 (max(#bytes)) bits
Request size in bytes.

command processor → cache, 3 bits
proc./L1 Request type (read, write, evict,

prefetch).
L1/L2 Request type (read, write, evict,

prefetch, readx, flush).
proc./mem. Request type (read, write, evict,

prefetch, readx, flush).
cachable processor     cache,1bit

Whether or not the requested address is
cachable.

→

Fig. 6.2 Processor/memory interface

CPU DL1

IL1

BUS
L2

GHB
L3

DRAM
Memory

Fig. 6.3 Composing architectures

ACIs raise two main questions: (1) Do we need to design a new ACI for each new
hardware block variation? (2) Which hardware blocks, typically studied in architec-
ture research, are eligible for an ACI definition?

Extending ACIs to accommodate new mechanisms. For most data cache mech-
anisms, the innovations proposed are internal to the block and these innovations
have little or no impact on the interface with the processor and the memory in many,
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Fig. 6.4 Central versus distributed control

though not all, cases. Moreover, an ACI can be extended with the necessary signals,
without affecting backward compatibility.

Hardware blocks eligible for ACIs. It can also be argued that processor/memory
is a special form of interface, more clearly defined than for other hardware blocks
in the system.

Some hardware blocks, such as the commit stage of a superscalar processor,
effectively have a large set of connections with the rest of the architecture, which
change across architectures, and are thus difficult to consider in isolation. However,
there are quite a few hardware blocks considered as “domains” of computer archi-
tecture, which have good modularity properties, and for which it would be possible
to define an interface with the rest of the system. A non-exhaustive list of such
hardware blocks includes instruction caches, TLBs, prefetchers, branch predictors,
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interconnects (buses and network on chips) and network topology, main memory
(DRAMs, SRAMs, RDRAM, etc.), any co-processor in a heterogeneous multi-core,
cores themselves in multi-cores, and functional units.

6.2 Using Structural Simulation to Compare Architecture
Research Ideas

While novel architecture ideas can be appreciated purely for the new insight they
provide, empirical evaluation of architecture ideas through simulation has become,
rightfully or not, a fixture of any architecture research or development work. Novel
ideas are expected to bring some quantitative improvement over state-of-the-art
mechanism(s). Many domains of sciences, such as biology or physics, often request
that research articles provide the ability to reproduce experiments in order to con-
firm the researchers’ claims; sometimes, reproducing experiments is even part of the
reviewing process. However, reproducing architecture ideas of other researchers or
engineers, often based on articles, white papers, or on sparsely available, unmain-
tained, or incomplete tools, is a daunting task, and it is largely comprehensible
that reproducibility and systematic comparison has not become mainstream in our
domain. At the same time, the lack of interoperable simulators and the fact simula-
tors are usually not disclosed (even by academics) make it difficult, if not impossi-
ble, to fairly assess the benefit of research ideas.

In order to illustrate these points, and the potential benefit of designing simula-
tors in a structural and interoperable way, we made a comparison of 10 data cache
mechanisms over a 15-year period. We have collected research articles on data cache
architectures from the 2000–2004 editions of the main conferences (ISCA, MICRO,
ASPLOS, HPCA). We have implemented most of the mechanisms corresponding to
pure hardware optimizations (we have not tried to reverse-engineer software opti-
mizations). We have also implemented the older but widely referenced mechanisms
(Victim Cache, Tagged Prefetching, and Stride Prefetching). The different mecha-
nisms, a short description, and the corresponding reference are listed in Table 6.1.

We have implemented all cache techniques as independent components, plugged
into the popular superscalar simulator SimpleScalar 3.0d [2, 4] in order to illustrate
across-simulator interoperability at the same time; we refer the reader to [24] for the
exact simulator configuration in these experiments. We have compared the mecha-
nisms using the SPEC CPU2000 benchmark suite [30] and extracted traces using
SimPoint [12, 27], see Chapter 10.

6.2.1 Validating Re-implementations

The lack of publicly disclosed and interoperable simulators makes the task of com-
paring against prior art exceedingly difficult and time consuming. For several mech-
anisms, there was no easy way to do an IPC validation. The metric used in FVC
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Table 6.1 Target data cache optimizations

Acronym Mechanism Description

VC Victim Cache [19] (L1) A small fully associative cache for storing evicted
lines; limits the impact of conflict misses without
(or in addition to) using associativity

FVC Frequent Value Cache [37]
(L1)

A small additional cache that behaves like a victim
cache, except that it is just used for storing
frequently used values in a compressed form (as
indexes to a frequent values table). The technique
has also been applied, in other studies [35, 36], to
prefetching and energy reduction

TK Timekeeping [15] (L1) Determines when a cache line will no longer be
used, records replacement sequences, and uses
both information for a timely prefetch of the
replacement line

TKVC Timekeeping Victim
Cache [15] (L1)

Determines if a (victim) cache line will again be
used, and if so, decides to store it in the victim
cache

Markov Markov Prefetcher [18]
(L1)

Records the most probable sequence of addresses
and uses that information for target address
prediction

TP Tagged Prefetching [29]
(L2)

One of the very first prefetching techniques:
prefetches next cache line on a miss or on a hit on
a prefetched line

SP Stride Prefetching [3] (L2) An extension of tagged prefetching that detects the
access stride of load instructions and prefetches
accordingly

CDP Content-Directed Data
Prefetching [6] (L2)

A prefetch mechanism for pointer-based data
structures that attempts to determine if a fetched
line contains addresses and, if so, prefetches them
immediately

CDPSP CDP + SP (L2) A combination of CDP and SP as proposed in [6]
TCP Tag Correlating

Prefetching [16] (L2)
Records miss patterns and prefetches according to

the most likely miss pattern
DBCP Dead-Block Correlating

Prefetcher [20] (L1)
Same as TCP, but records also hits for a better

identification of the appropriate pattern
GHB Global History

Buffer [22] (L2)
Same as stride prefetching, but tolerates varying

strides within a stream

and Markov is miss ratio, so only a miss ratio-based validation was possible. VC,
Tag, and SP have been proposed several years ago, so the benchmarks and the pro-
cessor model differed significantly. CDP and CDPSP used an internal Intel sim-
ulator and their own benchmarks. For all the above mechanisms, the validation
consisted in ensuring that absolute performance values were in the same range,
and that trends were often similar (relative performance difference of architecture
parameters, among benchmarks, etc). For TK, TKVC, TCP, and DBCP, we used the
performance graphs provided in the articles for the validation.

Because one of the key points is to argue that research articles may not provide
sufficient information on experiments and methodology, we decided, on purpose,
not to contact the authors in a first step, in order to assess how much we could dig
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from the research articles only. Later on, we have either contacted the authors or
have been contacted by authors and tried to fix or further validate the implementa-
tion of their mechanisms.

For several of the mechanisms, some of the implementation details were miss-
ing in the article or the interaction between the mechanisms and other components
wash not sufficiently described, so we had to second-guess them. We illustrate
the potential impact of such omissions with TCP; the article properly describes
the mechanism, how addresses are predicted, but it gives few details on how and
when prefetch requests are sent to memory. Among the many different possibilities,
prefetch requests can be buffered in a queue until the bus is idle and a request can
be sent. Assuming this buffer effectively exists, a new parameter is the buffer size;
it can be either 1 or a large number, and the buffer size is a trade-off, since a too
short buffer size will result in the loss of many prefetch requests (they have to
be discarded) and a too large one may excessively delay some prefetch requests.
Figure 6.5 shows the performance difference for a 128-entry and a 1-entry buffer.
All possible cases are found: for some benchmarks like mgrid and applu, the perfor-
mance difference is tiny, while it is dramatic for art, lucas, and galgel. For instance,
the performance of lucas decreases (with a 128-buffer).

Fig. 6.5 Impact of second-guessing the authors’ choices

6.2.2 A Quantitative Comparison of Data Cache Techniques

How has data cache performance improved over years? Figure 6.6 shows the aver-
age IPC speedup over the 26 benchmarks for the different mechanisms with respect
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Fig. 6.6 Speedup of the different cache mechanisms, ranked by chronological order

to a standard cache of the same size. We find that the best mechanism is GHB (pub-
lished in 2004), an evolution of SP, an idea originally published in 1990, and which
is the second best performing mechanism, then followed by TK, proposed in 2002.
While which mechanism is the best very much depends on industrial applications
(e.g., cost and power in embedded processors versus performance and power in
general-purpose processors), it is still fair to say that the progress of data cache
research over the past 15 years has been all but regular.

A common simulation platform but also a common methodology is important.
As an example of the impact of methodology, we want to show the impact of

varying the benchmarks. Even picking different subsets of the same benchmark suite
can lead to radically different design decisions.

We have ranked the different mechanisms for every possible benchmark combi-
nation of the SPEC CPU2000 benchmark suite from 1 to 26 benchmarks (there are
26 SPEC benchmarks). First, we have observed that for any number of benchmarks
less than or equal to 23, i.e., the average IPC is computed over 23 benchmarks or
less, there is always more than one winner, i.e., it is always possible to find two
benchmark selections with different winners. In Fig. 6.7, we have indicated how
often a mechanism can be a winner for any number N of benchmarks from N = 1
to N = 26 (i.e., is there an N -benchmark selection where the mechanism is the
winner?). The table shows that, for any selection of 23 benchmarks or less, the
selection can lead to research articles with opposite conclusions as to which cache
mechanism performs best. Note that not using the full benchmark suite can also be
detrimental to the proposed mechanism. For instance, GHB performs better when
considering all 26 benchmarks rather than the benchmark selection considered in the
article. So not only architecture ideas should be compared on a common simulation
platform, but the comparison methodology should be precisely defined, lest wrong
conclusions are drawn. We refer the reader to [25] for a more detailed analysis and
comparison.
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Fig. 6.7 Which mechanism can be the winner with N benchmarks?

6.3 Structural, Open, and Continuous Design Space Exploration

The architect usually relies on a trial-and-error process where intuition and expe-
rience often drive the creation and selection of appropriate designs. However, as
architecture complexity increases, and thus the number of possible architecture
options similarly increases, it is no longer obvious that experience and intuition
are always the sole and best drivers for architecture design decisions. The cache
mechanisms comparison of Section 6.2.2 illustrates this concern by suggesting that
the progress of research may not always be regular over time, in large part because
our current methodology does not emphasize comparison of research results. There
is probably an architecture complexity tipping point where human insight would
be more productive if combined with systematic architecture design space explo-
ration. In order to address this issue we have combined structural simulation with
an atypical web-based permanent and open design space exploration framework into
ArchExplorer.

ArchExplorer mitigates the practical hurdles which prevent a researcher from
performing a broad exploration and fair comparison of architecture ideas, espe-
cially the time and complexity involved in reimplementing other researchers’ works.
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ArchExplorer can be summarized as a framework for an open and permanent explo-
ration of the architecture design space. Instead of requesting a researcher to find,
download, and run the simulators of competing mechanisms, we provide a remote
environment where the researcher can upload his/her own simulator and compare
the mechanism against all other existing and previously uploaded mechanisms. The
continuous exploration serves two purposes: allow to explore a huge design space
over a long period of time and progressively build over time a large database of
results that will further speed up any future comparison.

After uploading the mechanism, the whole exploration process is automatic:
from plugging the mechanism into an architecture target to retuning the compiler
for that target, statistically exploring the design space and publicly disseminating
exploration results.

We have implemented this whole process at archexplorer.org using several
of the data cache mechanisms mentioned in Section 6.2.2 plus a few others, for the
memory system of an embedded processor. Because the comparison is done not only
for a fixed processor baseline but by varying all possible architecture parameters and
components, it casts an even more accurate, and fairly different, light on data cache
research.

The overall methodology and approach is summarized in Fig. 6.8. In short, a
researcher adapts (wraps) his/her custom simulator to make it compatible with the
UNISIM environment described in Section 6.1.2.3, uploads the simulator together
with a specification of valid and potentially interesting parameter ranges, and the
mechanism is immediately added to the continuously explored design space. The
architecture design points are statistically selected/explored, and for each archi-
tecture design point, the compiler is automatically retuned for a truly meaningful
comparison with other architecture design points, and the benchmarks recompiled
accordingly. After the set of benchmarks has been simulated for this design point,
performance results are accumulated in the database, and the ranking of the mecha-
nisms is automatically updated and publicly disseminated on the web site.

Fig. 6.8 Overview of ArchExplorer

Our embedded processor target is IBM PowerPC405 [17], which is a simple
32-bit embedded RISC processor core including a 5-stage pipeline and 32 reg-
isters. The core has no floating-point unit. We consider a 70 nm version running
at the maximum frequency of 800 MHz (to date, the PowerPC405 has been taped
out at 90 nm with a maximum clock frequency of 667 MHz); the observed average
memory latency is 85 cycles over all benchmarks. We use seven of the data cache
mechanisms listed in Table 6.1 (VC, TKVC, TP, SP, CDP, CDPSP, GHB) plus a
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skewed associative cache [26] with acronym SKEW. The architecture design points
are compared using 11 MiBench [11] embedded benchmarks (bitcount, qsort,
susan_e, patricia, stringsearch, blowfish_d, blowfish_e, rijndael_d,
rijndael_e, adpcm_c, adpcm_d) and compiled using GCC.

6.3.1 Automatically Tuning the Compiler for the Architecture
Design Point

The potential impact of the compiler on architecture design decisions is often over-
looked. However, the performance benefits of compiler optimizations are similar,
sometimes even higher, than the performance benefits of architecture optimizations.
Consider, for instance, the impact of tuning the GCC compiler for PowerPC405 in
Fig. 6.9 over the -O3 optimization.
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Fig. 6.9 Speedup after tuning the compiler on the reference architecture

Usually, two architecture design points P1 and P2 are compared using bench-
marks compiled with a compiler tuned for the baseline architecture. In reality, pro-
grams will be run with a compiler tuned for the final architecture. So while P1
may perform better than P2 using the baseline-tuned compiler, that relative perfor-
mance could be reversed if the compiler is first tuned to each design point and the
benchmarks recompiled accordingly. In Fig. 6.10, we report the fraction of design
exploration decisions that are reversed when the compiler is tuned versus when the
compiler is not tuned.
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Fig. 6.10 Fraction of hardware design decisions reversed by software exploration

As a result, for each architecture design point, we first tune the compiler by sta-
tistically exploring combinations of compiler optimizations. While manual compiler
tuning is a tedious process, recent research in iterative compilation [7] has shown
that it is possible to automatically tune a compiler for a given architecture platform.

6.3.2 Statistical Exploration of the Design Space

One of the pitfalls of systematic exploration is the huge size of the design space.
Expanding design space exploration from parametric to structural exploration only
makes matters worse, e.g., 1024 design points in our example. As a result, it has
become standard practice to stochastically explore the design space [7]. Because we
do not just explore parameters, but compose architectures using various architecture
components, we resort to stochastic exploration akin to genetic programming. The
principle is that each design point corresponds to a large set of parameter values,
and each parameter can be considered as a gene. We in fact distinguish two gene
levels: genes describing components (nature and number, e.g., depth of a cache
hierarchy), and for each component/gene, the sub-genes describing components’
parameter values. The genetic mutations first occur at the component level (swap-
ping a component for another compatible one) and then at the parameter level. The
database stores all gene combinations tested so far and the corresponding results.

In spite of the sheer size of the design space, we can show that exploration con-
verges relatively quickly due to the many design points with similar performance.
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Fig. 6.11 Convergence speed of statistical exploration for different area size intervals (in mm2)

We illustrate this fast convergence in Fig. 6.11 for different chip area sizes. We refer
the reader to [9] for further details.

6.3.3 Combining Quantitative Comparison and Exploration

We now put to task the whole process of the exploration of a processor memory
subsystem. We want to compare the behavior of all aforementioned data cache
architectures for a large set of area budgets.

Data cache mechanisms versus tuned reference architecture. In Fig. 6.12, we
compare the performance achieved using standard data cache architectures against
the performance achieved using the data cache techniques of Table 6.1. In the for-
mer case, we only vary the typical processor parameters, hence the term parametric
exploration, and the curve represents the performance achieved for each design area
size. In the latter case, we vary the data cache structure and name this structural
exploration, and Fig. 6.12 distinguishes between the different cache mechanisms.
The performance bump of the parametric envelope, around an area ratio of 40,
denotes that, for the parameter ranges used below that area size, there always exists
a standard cache parametrization which outperforms a data cache hierarchy.

We find that all data cache mechanisms only moderately outperform the standard
data cache architecture, when it is duly explored, in terms of both performance and
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energy, see Fig. 6.13. While these conclusions are naturally dependent on the target
benchmarks and architectures, they paint a rather unexpected picture on the actual
benefits of sophisticated cache architectures.
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Best data cache mechanisms as a function of area budget. In the comparison of
Section 6.2.2, GHB was found to be the best cache mechanism. In Fig. 6.12, we
have varied the parameters of the reference architecture and the parameters specific
to each mechanism in order to assess the relative merits of these mechanisms over a
broad design space. While GHB still appears to outperform competing mechanisms
for certain area sizes, almost every other mechanism also emerges as the winner for
at least one area size. And in fact, there is no clearly dominant mechanism; the best
mechanism varies widely with the target area size. For instance, SKEW and CDPSP
perform better for large area budgets, TKVC works well for small budgets, and VC
performs well across the spectrum. Overall, the conclusions are quite different from
the conclusions of Section 6.2.2, which show that the design space must be broadly
explored to truly assess the relative quantitative merits of architecture mechanisms.

6.4 Conclusions

In this chapter, we have shown that the benefit of structural simulation is not only
improved simulation development productivity, or more rigorous simulator develop-
ment: it can also form the foundation for a design space exploration infrastructure
that can significantly improve the efficiency of architecture design in two ways. By
facilitating the quantitative assessment and comparison of architecture innovations
and by providing the means for an automated and systematic (albeit stochastic)
exploration of the design space. We have also suggested that an atypical “cloud-
based” approach can overcome the gruesome but key practical hurdles to the adop-
tion of structural simulation, comparison of architecture ideas, and broad design
space exploration.
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Chapter 7
Accelerating Simulation with FPGAs

Michael Pellauer, Michael Adler, Angshuman Parashar, and Joel Emer

Abstract This chapter presents an approach to accelerating processor simulation
using FPGAs. This is distinguished from traditional uses of FPGAs, and the
increased development effort from using FPGAs is discussed. Techniques are pre-
sented to efficiently control a highly distributed simulation on an FPGA. Time-
multiplexing the simulator is presented in order to simulate numerous virtual cores
while improving utilization of functional units.

7.1 Introduction

In order to influence the design of a real microprocessor, architects must gather data
from simulators that are accurate enough to convince their skeptical colleagues.
This precision comes at the cost of simulator performance. Industrial-grade sim-
ulators often run in the range of 10–100 kHz (simulated clock cycles per second)
[1]. Such low performance can limit the variety and length of benchmark runs, thus
further reducing confidence in architectural conclusions, especially for more radical
proposals.

Although parallelizing the simulator can help improve performance, the arrival
of multicore processors has actually exacerbated the problem. This is because of
three main factors. First, simulating four cores is at least four times the work of
simulating one core, but running the simulator on a four-core host machine does not
in practice result in a 4× speedup, due to communication overheads. Second, next-
generation multicores typically increase the number of cores, so that architects often
find themselves simulating six- or eight-core target machines on a four-core host.
Third, the on-chip interconnect network grows in complexity as the number of cores
increases, requiring the simulation of more complex topologies and communication
protocols.

Recently there has been a trend to use reconfigurable logic architectures as accel-
erators for computation. To facilitate this several companies have begun producing
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products that allow a field programmable gate array (FPGA) to be added to a
general-purpose computer via a fast link such as PCIe [2], Hypertransport [3], or
Intel Front-Side Bus [4]. As FPGAs can take advantage of the fine-grained par-
allelism available in a processor simulation, it is natural to explore whether such
products can help address the simulator performance problem. A simple back-of-
the-envelope calculation shows that an FPGA running at 100 MHz could take 10
FPGA cycles to simulate one target cycle and still achieve a simulation speed of
10 MIPS, a large improvement over software simulators. Contemporary efforts
to explore FPGA-accelerated processor simulation include Liberty [5], UT-FAST
[1, 6], ProtoFlex [7], RAMP Gold [8], and HAsim [9, 10]. Collaboration between
these groups is facilitated by the RAMP project [11].

Although FPGAs can improve simulator execution speed, the process of design-
ing a simulator on an FPGA is more complex than designing a simulator in software.
FPGAs are configured with hardware description languages and are not integrated
into most modern debugging environments. There is a danger that increased sim-
ulator development time will offset any benefit to execution time. No discussion
of FPGA-accelerated simulators is complete without presenting techniques that
address this problem. Additionally, FPGAs impose a space constraint: the simulator
must fit within the FPGA’s capacity. Thus to be successful a simulator that uses
FPGAs must

1. keep development time short enough so that architects remain ahead of the pro-
cessor design cycle;

2. model cycle-by-cycle behavior with the same accuracy as a software simulator,
while taking advantage of the fine-grained parallelism of an FPGA in order to
improve simulation speed:

3. fit on the host FPGA, while maintaining an acceptable level of detail and scaling
to support interesting experiments.

This chapter presents an approach to solving these problems. Section 7.2 dis-
cusses how using FPGAs for architectural simulation differs from traditional uses
such as circuit prototyping. Section 7.3 presents several techniques to reduce devel-
opment effort. Section 7.4 explores implementing the simulator in such a way as to
take advantage of the fine-grained parallelism offered by FPGA. Finally, Section 7.5
discusses time-multiplexing a simulator in order to achieve more efficient utilization
of an FPGA for multicore simulation.

7.2 FPGAs as Architectural Simulators

Traditionally FPGAs have occupied three positions in the circuit design flow. The
first is to distribute pre-configured FPGAs in place of a custom-fabricated chip. In
this case the register-transfer level (RTL) description of the circuit is designed with
FPGAs in mind; thus it can take advantage of FPGA-specific structures such as
Xilinx synchronous block RAM resources.
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The second use is circuit prototyping, where FPGAs are used to aid verification
before the costly step of fabrication. In this use the RTL was designed with ASICs in
mind and thus may contain circuit structures—such as multi-ported register files or
content-addressable memories—that are appropriate for ASICs, but result in ineffi-
cient FPGA configurations.

The third use is functional emulation, where a design is created which imple-
ments the functionality of the final system, but contains no information on the
expected timings of the various components. Usually the goal of such an emulator is
to produce a version which is functionally correct with minimal design effort. These
designs may use FPGA-specific structures and avoid FPGA-inefficient ones, as they
are under no burden to create a circuit related to the final ASIC.

Using an FPGA to aid in architectural simulation occupies something of a mid-
dle ground. A simulator helps the architect to make key architectural decisions via
exploration, thus it must combine the functionality of the system with some notion
of expected timings of its final components, but these timings may vary widely from
those of the FPGA substrate. Similarly, if the target is expected to be implemented
as an ASIC, then FPGA-inefficient structures should not be ruled out.

The key insight is that an FPGA-accelerated simulator must be able to cor-
rectly model the timing of all structures, but does not have to accomplish this
by directly configuring the FPGA into those structures. The FPGA is used only
as a general-purpose, programmable substrate that implements the model. This
allows the architectural simulator to simulate FPGA-inefficient structures using
FPGA-specific components, while pretending that their timings match their ASIC
counterparts.

To illustrate this, consider the example in Fig. 7.1. The architect wishes to sim-
ulate a target processor which contains a register file with two read ports and two
write ports (7.1A). Read values appear on the same target cycle as an address is
asserted. External logic guarantees that two writes to the same address are never
asserted on the same model clock cycle.

Directly configuring the FPGA into this structure would be space inefficient
because it cannot use built-in block RAM resources. Block RAM typically only has
two total ports and has different timing characteristics than the proposed register
file—read values appear on the next FPGA cycle after an address is asserted. Thus a
direct emulation would use individual registers and multiplexers (7.1B), which can
be quite expensive.

An FPGA-based simulator separates the FPGA clock from the simulated model
clock. Such a simulator could use a block RAM paired with a small finite state
machine (FSM) to model the target behavior (7.1C). In this scheme the current cycle
of the simulated target clock is tracked by a counter. The FSM ensures that the cycle
counter is not incremented until two reads and two writes have been performed.
Thus we are able to design a simulator with a high frequency and low area, at the
expense of now taking 3 FPGA cycles to simulate one model cycle.1

1 This is 3 instead of 4 because the simulator can perform the first write on the same FPGA cycle
as the second read to the synchronous block RAM.
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Fig. 7.1 Separating the model cycle from the FPGA cycle helps the simulator to take advantage of
synchronous block RAM

In order to reason about the performance of such simulators we introduce a new
term: FPGA-cycles-to-model-cycles ratio (FMR). FMR is similar to the micropro-
cessor performance metric cycles per instruction (CPI) in that one can observe the
FMR of a run, a region, or a particular class of instructions. The FMR of a simulator
combined with its FPGA clock rate gives simulation rate:

frequencysimulator = frequencyfpga

FMRoverall

This can be plugged into the traditional calculation for simulated instructions per
second (IPS):

IPSsimulator = frequencyfpga

CPImodel × FMRoverall

Finally, it is important to note one way in which FPGA simulators share the same
restriction as software simulators: they give little insight into the physical properties
of the target design. Because the RTL used to configure the FPGA into the simulator
makes many accommodations for FPGAs, its device utilization and critical path are
unlikely to give insight into those characteristics of the target design.2

2 There are scenarios in which the FPGA simulator characteristics may give some degree of insight
into the corresponding characteristics of the final design. However, this should not be one of the
assumptions when using an FPGA for architectural simulation.
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7.3 Addressing Development Effort

Unfortunately, developing an FPGA simulator can require significantly more effort
than a traditional software simulator. Accelerator FPGAs are configured using hard-
ware description languages and are currently not integrated into debugging environ-
ments. Additionally, there is no equivalent of software’s standard library infrastruc-
ture, which complicates printout-oriented debugging. Furthermore, the long running
times of FPGA synthesis and place-and-route tools can lengthen the compile–run–
debug loop.

Despite these obstacles, FPGA accelerator development does remain signifi-
cantly simpler than ASIC hardware description, for several reasons. First, FPGA
developers do not have to worry about physical circuit characteristics, such as par-
asitic capacitance, that complicate ASIC development. Second, the reconfigurable
nature of the FPGA means that it is easier to take an iterative approach to develop-
ment, rather than working toward a final irrevocable tapeout. Finally, because FPGA
accelerators are added to existing general-purpose computers, the capabilities of
the host computer can be used to aid in debugging and to perform functions too
complicated to implement on an FPGA.

Altogether, we find that the development effort can be made tractable with the
application of good software engineering techniques—modular interfaces, libraries
of reusable code, layering of functionality—along with a few specific considerations
which are described in this section.

7.3.1 High-Level Hardware Description Languages

Structural hardware description languages such as VHDL and Verilog give designers
precise control over their microarchitectures. However, this control often comes at
the cost of complex, low-level code that is unportable and difficult to maintain.

When using an FPGA as a simulator the architect is not describing a final product,
and thus does not need such exacting control. Thus high-level hardware description
languages such as Bluespec [12], HandelC [13], or SystemC [14] can be a good fit.3

The HAsim [9], UT-FAST [1], and ProtoFlex [7] FPGA simulators are all writ-
ten in Bluespec SystemVerilog. The benefits of Bluespec are similar to those for
using high-level languages in software development: raising the level of abstraction
improves code development time and reuse potential, while simultaneously elim-
inating many low-level bugs caused by incorrect block interfacing. Bluespec also
features a powerful static elaborator that allows the designer to write polymorphic
hardware modules which are instantiated at compile time with distinct types. This

3 It should be noted that high-level hardware description languages do not necessarily result
in worse FPGA utilization. There are cases where high-level knowledge exposes optimization
opportunities [20].
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brings many of the benefits of software languages’ high-level datatype systems into
hardware development.

7.3.2 Building a Virtual Platform

Development efforts can be further eased by adopting a standardized set of inter-
faces for the FPGA to talk to the outside world. This virtual platform provides a
set of virtualized device abstractions to FPGA developers, enabling them to focus
on implementing core functionality without spending time and energy debugging
low-level device drivers. Furthermore, most FPGA-based simulators are likely to
be hosted on hybrid compute platforms comprising one or more FPGAs and one or
more CPUs. Extending well-understood communication protocols such as remote
procedure call (RPC) and shared memory to the hybrid CPU/FPGA environment
makes the platform more approachable for sharing responsibilities between the
FPGA and the CPU.

Figure 7.2 illustrates the structure of the virtual platform implemented as part of
the HAsim simulator. The primary interfaces between the simulator and the plat-
form are a set of virtual devices and an RPC-like communication protocol called
remote request–response (RRR) that enables multiple distributed services on the
CPU and the FPGA to converse with each other [15]. The primary benefit of this
approach is portability—the virtual platform can be ported to a new physical FPGA
platform without altering the application. Only low-level device drivers must be
rewritten. Additionally, the virtual platform is general enough to apply to other
FPGA-accelerated applications beyond simulating processors.

Platform Interface

I/O Interface Logic

Physical Platform
(specific to

particular FPGAs)

Virtual Platform
(reusable across

all FPGAs)

I/O Interface Software

ChannelIO ChannelIO
Remote
Memory

Local
Memory

Remote Request/Response (RRR) Remote Request/Response (RRR)

Scratchpad Memory Streams

User Design
FPGA Software

User Application

Fig. 7.2 HAsim’s virtual platform

In addition to generalized interaction, it is useful to build a layer of specific
services on top of the virtual platform. Example services include communicating
command-line parameters from software, enabling print-outs and debugging state
dumps from hardware, and communicating dynamic assertion failures in hardware.
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Once this capability is in place, the problem becomes coordinating many distributed
modules on the FPGA interacting with the off-chip communication controller. A
methodology for abstracting on-FPGA communication details in a modular fashion
is presented in [10].

7.3.3 Interacting with a Software Simulator

With the virtual platform in place hardware/software interaction becomes a tool
which can significantly ease FPGA simulator development. Although any function-
ality can be partitioned on the FPGA or in software, it makes sense to take simulator
events which are rare but difficult to handle—such as system calls or page faults—
and handle them in software. Thus the common case should be simulating on the
FPGA, with occasional invocations of software.

HAsim uses the M5 full-system simulator (Chapter 5) as a software backer to
handle system calls and page faults. The modular nature of M5 allows HAsim to tie
directly into M5’s memory subsystem while ignoring its CPU timing models. When
the FPGA detects a system call it transfers the architectural state of the simulated
processor to HAsim’s software, which invokes M5. After the state is updated, it is
transmitted back to the FPGA, at which point simulation on the FPGA can resume.
The ProtoFlex project applied these principles to emulation [7]. They demonstrated
that if these events are rare enough the impact on performance can be minimized,
while still resulting in significant gains in development effort.

7.3.4 Timing-Directed Simulation

Timing-directed simulation is another technique for reducing simulator develop-
ment effort. In such a scheme the simulator is divided into separate functional
and timing partitions which interact in order to form a complete simulation. The
functional partition is responsible for correct ISA-level execution of the instruc-
tion stream. The timing partition, or timing model, is responsible for driving the
functional partition to simulate the cycle-by-cycle behavior of a particular microar-
chitecture. The functional partition handles responsibilities common to all architec-
tures, such as decoding instructions, updating simulator memory, or guaranteeing
that floating-point operations conform to standards. The timing partition is respon-
sible for the tasks of simulating a specific microarchitecture, such as deciding what
instruction to issue next, tracking branch mispredictions, and recording that floating-
point multiply instructions take 5 clock cycles to execute.

The functional partition might be complex to implement, optimize, and verify,
but once it is complete it can be reused across many different timing models. Addi-
tionally, the timing models themselves are significantly simpler to implement than
simulators written from scratch: they do not need to worry about ISA functional cor-
rectness, but only track microarchitecture-specific timing details. Often structures
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can be excluded from the timing model partially or completely, as their behavior is
handled by the functional partition. A common example of this is a timing model
of a cache, which need only track tags and status bits—it need not store the actual
instructions or data as these are not relevant to deciding whether a particular load
hits or misses.

Traditionally, simulators implement both partitions in software. The HAsim
FPGA simulator demonstrated that the functional partition could be implemented
on the FPGA. The HAsim microarchitecture defines eight operations (Fig. 7.3):
load a new in-flight instruction (getInstruction), test how that instruction
relates to other in-flight instructions (getDependencies), execute the operation
(getResults), perform memory side effects (doLoads, doStores), and finally
remove the instruction from being in-flight, possibly making its results visible
(commitResults, commitStores, rewind). Details of how timing models can use
these operations to simulate features like out-of-order issue and speculative execu-
tion are presented in [9].
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Fig. 7.3 Overview of the microarchitectural implementation of the HAsim simulator’s functional
partition

The UT-FAST simulator combines the hardware–software partitioning approach
with the partitioned simulator approach [1]. In the UT-FAST approach the functional
partition is a software emulator such as QEMU. It generates a trace of instruction
execution that is fed into a timing model on the FPGA. A key benefit of this scheme
is the ability to use an existing functional emulator to generate the trace. (Modifica-
tions are required to support rollback of the emulator when the timing model goes
down a different path from that of the generated trace.) For a detailed discussion of
this approach see [1, 6].

7.4 Fine-Grained Distributed Simulation

Section 7.2 demonstrated that separating the FPGA clock from the simulated model
clock can result in significant benefits. The problem becomes taking many such
modules—representing the various functions of a target processor—and composing
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them together in a manner that results in a consistent notion of model time. This
section examines how to construct a simulator while enabling the FPGA to take
advantage of the fine-grained parallelism available in the target design.

7.4.1 Unit-Delay Simulation

One straightforward way to coordinate distributed modules is to assign each module
n FPGA cycles to simulate one model cycle. This is unit-delay simulation, histori-
cally used in projects such as the Yorktown Simulation Engine [16]. Recall that the
register file in Fig. 7.1 had an FMR of 3. If this was the slowest module, then every
other module would have 3 cycles to finish simulation, and the overall FMR of the
simulator would be 3.

The advantage of the unit-delay scheme is that there is very low overhead. It
is straightforward to code and can result in good performance when n is low. The
disadvantage is that in practice there are processor events such as exceptions that
are rare, but take large numbers of FPGA cycles to simulate. Additionally, it can be
difficult to bind n if the simulator uses off-chip communication or to alter all of the
modules if n changes.

7.4.2 Dynamic Barrier Synchronization

An alternative is to have the FMR determined dynamically. This is dynamic barrier
synchronization, where the modules communicate to a central controller when they
are done simulating a model cycle. When all modules have finished, the controller
increments the model cycle counter and alerts all modules to proceed. The number
of FPGA cycles required for each model cycle is now the dynamic worst case, which
can result in a significant improvement in overall FMR compared to unit-delay
simulation.

The main problem with barrier synchronization is the scalability of signals to
and from the central controller, which can impose a large burden on the FPGA
place-and-route tools. When exploring this effect, it was observed that quadrupling
the number of modules in a system resulted in a 39% loss of clock speed due to
the controller alone [17]. Thus a dynamic barrier scheme is best suited to situations
where the distributed number of modules is small and the dynamic average FMR
is low.

7.4.3 Port-Based Modeling

Port-based modeling is a technique used in structural simulators such as Intel’s Asim
[18]. This section discusses port-based models and shows that their implementation
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on FPGAs can overcome the disadvantages of the above simulation techniques. For
a more thorough treatment of this subject see [17].

In a port-based model the simulator is decomposed into several modules as the
architect finds convenient. The modules themselves have no notion of model time—
conceptually we consider their operations to be infinitely fast. All communication
between modules must go through ports, which are essentially FIFOs of message
type t . The ports are statically annotated with a latency l. A message placed into
the port on model cycle n will emerge on cycle n + l. (Note that ports do not
represent queues in the target processor, which would be represented within the
modules themselves.) Ports of latency zero are allowed but may not be arranged
into “combinational loops”—a familiar restriction to hardware designers.4

A module now simulates a model cycle as follows:

1. Check all input ports for arriving messages.
2. Perform all local calculations and state updates.
3. Write any output messages to outgoing ports.

Figure 7.4 shows an example of modeling a target processor with ports. This is
a four-way superscalar processor, with four execution units of varying capabilities,
and thus can issue up to four instructions per cycle under ideal circumstances. To
support this the register file has seven read ports and four write ports (the jump unit
only requires one read port). When the target is recast as a port-based model the
system is partitioned into modules using the pipeline stages as a general guideline.
Pipeline registers are replaced by ports of latency 1, such as those connecting Fetch
and Decode. The instruction and data memories are represented as simple static
latencies, which is unrealistic but illustrative for this example.

The target ALU being considered uses a two-stage pipeline for the simple oper-
ations and a four-stage pipeline for the multiplier. Note that the simulator is not
necessarily implemented with pipeline stages at the same locations, but can instead
use any FPGA-optimized circuit, as the port ensures that the operation appears to
consume 4 model cycles. Divide operations are handled differently—in the target
they take a varying amount of time. Thus they cannot be represented by a static port
latency—the latency is fixed to 1, but operation completions must be modeled using
a higher-level communication protocol.

7.4.4 A-Ports: Implementing Port-Based Models on FPGAs

A sequential software simulation of a port-based model traditionally statically
schedules the modules so that each module is simulated once every model cycle,
based on a topological sort of the ports. (Such a sort is guaranteed to exist thanks

4 Sometimes port-based models contain “false” combinational loops between modules. In this
case, a module’s simulation loop must be loosened to correctly handle the false dependencies,
as presented in [21].
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to the “no combinational loops” restriction.) Barr et al. [19] showed that such a
simulator can be parallelized to run on a multicore host by cutting the graph at
pre-determined ports and distributing the resulting groups of modules to the various
host cores. This is because the large number of modules which are ready to simulate
in parallel can overwhelm today’s multicore hosts.

An FPGA is better able to take advantage of this fine-grained parallelism, so the
barrier can be removed and each module can make a local decision when to proceed
to the next model cycle. One way to accomplish this is to use customized FIFOs
called A-Ports (Fig. 7.5) [10, 17].5

recv_DATA

recv_EN

light

emptyfull

balanced

...

elems

heavy

send_EN

send_DATA

t + 1

l k+ element FIFO

> l
+1 -1

= l
< l

= l+ k = 0

Fig. 7.5 An A-Port is a FIFO that maintains a notion of utilization relative to its latency

In order to distribute the computation of model time, we restrict each module
so that it must write a value to every output port on every model cycle—ports may
not be conditionally written. Instead, the domain of every port’s message type is
extended to include a special NoMessage value, which represents the absence of a
message in the target design. Thus the complete distributed simulation loop is as
follows:

• When all incoming A-Ports are not empty, a module may begin computation.
Note that some of its inputs may be NoMessage, and that this is explicitly differ-
ent from an empty port.

• When computation is complete, the module must write all of its outgoing
A-Ports. It may write NoMessage or some other value, but must write all of them
exactly once.

• One message is consumed from each incoming A-Port and the loop repeats.

The net effect of this simulation loop is to allow every module in the system to
produce and consume data at any wall-clock rate, while still maintaining a local
notion of a model clock step. The current model cycle is simply how many times a
module has executed the simulation loop. As a consequence, the simulator can enter
a state where adjacent modules are concurrently simulating different model cycles.
This is called simulator slip. A producer may run into the future, pre-computing

5 The name A-Ports reflects that they are a generalization of ports in the Asim simulator.
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values as fast as long as output buffering is available. Similarly, a fast consumer can
drain its input buffers.

We say an A-Port of latency l is balanced when it contains exactly l messages.
When an A-Port contains more than l elements it is heavy, and similarly it is light
when it contains fewer than l elements. Observe the following:

• When an A-Port is balanced, the modules it connects are simulating the same
model cycle.

• When an A-Port is heavy, the producer module is simulating into the future rela-
tive to the receiving module.

• When an A-Port is light, the situation is reversed.

This slipping does not alter results of simulation, but it can improve simula-
tion rate over barrier synchronization, as demonstrated in Fig. 7.6. In this example,
instructions a and c take more FPGA time to simulate compared to b and d. Observe
that on FPGA cycle 6 module A is simulating model cycle 3, whereas module B is
simulating model cycle 2.
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Fig. 7.6 Demonstrating how an A-Port implementation can result in a performance improvement
over barrier synchronization

Obtaining a snapshot of relevant architectural state in the A-Ports scheme is com-
plicated by the fact that the modules may have slipped in time. A simple distributed
technique to re-synchronize slipped modules as well as an assessment of the perfor-
mance improvement granted by slip is presented in [17].
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7.5 Fine-Grained Time-Division Multiplexing

A common architectural experiment involves scaling the number of cores in a mul-
ticore configuration and observing the effect on performance. When creating an
FPGA-accelerated simulator, FPGA utilization can artificially constrain how far
these experiments can be scaled.

One technique that can aid models with scaling to more cores is to time-division
multiplex the simulator components. In this scheme the logic which implements the
target cores is not duplicated directly. Instead, a single physical implementation is
shared to simulate multiple virtual instances of the cores in the system, as shown in
Fig. 7.7.
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Fig. 7.7 Multiplexing a physical core between many virtual cores in order to simulate a multicore
processor

One straightforward way to perform multiplexing would be to have the physical
core simulate a given virtual instance until a slow event occurs, such as off-chip
communication, at which point the physical core could switch to simulating a differ-
ent virtual instance.6 Such a technique would save area with respect to duplication,
as the state of the virtual instances is duplicated, but the combinational logic is not.
However, this scheme would result in a significant reduction in simulation rate, as
only one virtual instance would be active in the simulator at a time. Furthermore, on
any given FPGA cycle there would likely be many idle modules in the system, as
faster modules wait for slower modules to finish. Lastly, this kind of multiplexing
may reduce the fidelity of simulation as the timings of interactions between the cores
become less precise.

By making the multiplexing decision on a finer granularity we can achieve bet-
ter performance by putting idle modules to work while simultaneously maintaining
precise fidelity.

6 This kind of multiplexing bears a resemblance to multi-threading in real microprocessors, but it is
important to distinguish that this is a simulator technique, not a technique in the target architecture.
The cores being multiplexed do not have to support multi-threading.
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7.5.1 Module-Based Multiplexing

One practical way to time-division multiplex a module is to have the physical imple-
mentation simulate each virtual instance in a round-robin fashion. In this scheme
local module state is duplicated, but the input and output ports between modules
are not. Instead, the ports themselves are initialized to contain the messages for
different virtual instances in a round-robin order (Fig. 7.8). The simulation loop for
each module becomes the following:

• When all incoming ports are not empty, they all contain messages of the same
virtual instance. The module may simulate the next model cycle for that instance.

• Any output messages it produces will be the output for that instance.
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Fig. 7.8 Round-robin multiplexing cycles between the virtual instances in a fixed order

The original port-based simulation scheme (Section 7.4.4) allowed adjacent mod-
ules to be simulating different module clock cycles. In the time-division multiplexed
scheme, adjacent modules may now also be simulating different virtual instances.
This helps keep modules busy, as they are more likely to have work in the queue if
an upstream module encounters a rare-but-slow event.

Performance in this scheme can be limited by the overly restrictive round-robin
ordering. One solution would be to allow a ready virtual instance to bypass an idle
one at the head of the queue, but so far this scheme has proven too expensive to
implement on an FPGA. We have found it to be more expensive than direct module
duplication.

7.5.2 Pipelining the Modules

A more practical approach to minimize idle virtual instances is to pipeline the
module implementation.7 Under ideal cases pipelining the simulator modules can
entirely eliminate the multiplexing performance penalty, achieving the performance
of the original duplicated modules.

7 Again, note that this refers to altering the implementation of the modules on the FPGA, not
altering the timing characteristics of the target circuit, which are preserved by the ports.



122 M. Pellauer et al.

To understand why, consider the situation in Fig. 7.9A. Module A is faster than
module B, which has an FMR of 4 (7.9B). Multiplexing the system 4 ways without
pipelining would decrease the overall FMR to 4 × 4 = 16 (7.9C). However, if
module B can be pipelined into four stages, then overall FMR can be reduced back
to the original 4 (7.9D). Note that the fourth stage of module B finishes each model
cycle for the first core on the same FPGA cycle as the original non-multiplexed
design.
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Fig. 7.9 Pipelining modules can offset the performance penalty from time-multiplexing

Of course, such a scheme will rarely be operating under ideal conditions, and
pipeline bubbles will be introduced. Such bubbles can be minimized if there are
always ready virtual instances waiting for simulation. Thus a key to achieving simu-
lator performance is keeping module pipeline depths less than or equal to the number
of virtual instances.

7.5.3 Modeling Interconnect Networks

The above multiplexing scheme only works because there is no communication
between the various virtual instances of the target multicore. The simulation of
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model cycle k for Core x is independent from cycle k for Core y. But of course
this is an oversimplification: the target cores can influence each other’s behavior
through the on-chip interconnect. Therefore the multiplexing of the interconnect
must be handled slightly differently than that of the cores themselves.

Figure 7.10 shows three standard interconnect topologies: a crossbar, a ring, and
a torus. Implementing time-multiplexed models of these systems is complicated by
the fact that the networks are not connected to n separate cores, but to one physical
implementation which is time-division multiplexed n ways, as shown in Fig. 7.11.
The networks are then simulated as follows:

1. Crossbar: The crossbar module simulates a model cycle by reading the port from
the core n times in sequence and then reading the incoming port from the mem-
ory controller once. It then chooses winners, writes the core response port n
times in sequence, and writes the memory controller response port (Fig. 7.11A).

2. Ring: Rather than duplicate the ring stops, we can multiplex them along with
the cores. Now there is only one physical ring stop implementation. We model
communication between the ring stops by connecting the physical output port
back in as the input (Fig. 7.11B). Note that when virtual instance 1 simulates a
model cycle the output it produces should be the input for the memory controller
on the next model cycle. Similarly the output of instance n should be the input for
instance n−1. We can accomplish this by inserting logic to do a small reordering
of the messages which pass through the port (Fig. 7.11C).

3. Torus: A torus with width w and height h acts as a two-dimensional version of
the ring. The West output port is connected to the East input port, and every wth
item is reordered w spots (Fig. 7.11D). The North output port is connected to the
South input port, and the last h items are reordered to the front (Fig. 7.11E).

This technique extends to bidirectional topologies by adding backward facing
ports which have different reorderings. Furthermore, topologies whose edges are
subsets of these graphs may be modeled by always sending a NoMessage value
along edges that do not exist. For example, the torus could simulate a mesh by
always populating the wraparound edges NoMessage.

Using this implementation technique the simulation of the interconnect network
can be overlapped with the simulation of the cores themselves, which can aid in scal-
ing. Interestingly, we have found that doubling the number of cores does not halve
simulator performance, as it would in a traditional sequential simulator. In fact, the
overall FMR per core goes down by roughly 40%. This is partially because adding
a more realistic on-chip network to the model means that cores spend more model
cycles starved, waiting for responses from the memory controller. As a consequence
the FPGA can simulate them faster, as pipeline bubbles are easy to simulate. This
inverse relationship between target IPC and simulation rate has often been noted in
software simulators.
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Fig. 7.11 Modeling the interconnects involves interacting with a time-division multiplexed core,
so the FPGA models do not resemble real interconnect topologies, and their usage characteristics
are nearly identical

7.6 Conclusion

Using FPGAs to accelerate architectural simulation represents a novel approach—
both to how FPGAs are used and to how simulators are constructed. Development
effort remains the major barrier to wider adoption, and ongoing efforts to reduce
implementation time are critical.

If reconfigurable logic platforms are able to show success in the processor-
simulation domain, then there is hope that they may prove to be of interest
as general-purpose computation accelerators. FPGAs have already proven them-
selves as ASIC-replacement computation engines. The community hopes that the
development of a standardized I/O framework and development infrastructure
would allow a wide audience to explore using them as integrated computation
accelerators.
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Chapter 8
Scalable Simulation for MPSoC Software
and Architectures

Rainer Leupers, Stefan Kraemer, Lei Gao, and Christoph Schumacher

Abstract Multi-processor systems-on-chip (MPSoCs) are gaining a lot of attraction
due to their good performance to power ratio. In order to cope with the complex-
ity of such systems, early availability of full system simulation is of high impor-
tance. The simulation time is increasing with the growing number of processors.
Therefore, scalable simulation techniques are required to mitigate this problem.
Two new concepts to increase the simulation speed are becoming popular. First,
raising the abstraction level increases simulation speed at the expense of a lower
simulation accuracy. Second, exploiting all available processor cores in today’s host
systems increases the simulation speed without sacrificing the accuracy. Depend-
ing on the individual use case, one technique alone or a mixture of both tech-
niques can be applied to create a fast simulation environment which is suitable
for design space exploration, software development, performance estimation, and
debugging.

8.1 Introduction

The increasing popularity of multi-processor systems-on-chip (MPSoC) in the
embedded domain poses big obstacles for system designers, software developers,
and simulation developers. This chapter focuses on the challenges imposed by this
trend on system simulation and the corresponding simulation techniques.

It is expected that the performance of a single core of a simulation host will
show only a limited growth within the next years, instead the total number of cores
will increase. However, even commercial state-of-the-art simulation engines are
not yet capable of exploiting multi-processor hardware efficiently. In order to cope
with the growing complexity of the simulated systems, new and scalable simulation
approaches are required.

Traditionally, simulations have been mainly modeled to reflect the needs of hard-
ware developers and system programmers. Use cases for simulators have been early
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design space exploration (DSE), performance evaluation, profiling, and testing.
However, the growing complexity of simulated systems also poses a big challenge
for the application developers. The early availability of a simulation environment
can help to manage the software development risk imposed by the complex and
sometimes even heterogeneous multi-processor structure of modern systems. There-
fore, system simulators that take the specific requirements of application software
developers into account are of great importance for a smooth software development
process. In contrast to hardware development, for software development it is pos-
sible to trade accuracy for simulation speed. Otherwise it would not be possible to
create fast software prototypes that are usable interactively.

Processor simulation constitutes the central building block of system simulation.
Therefore, a lot of research effort has been carried out in this field. Section 8.2
focuses on the automatic generation of a processor simulator based on a high-level
processor description language. Furthermore, statically and dynamically compiled
simulation techniques are presented in the context of generated processor simu-
lations. Section 8.3 describes how the simulation speed of a processor simulator
can be further improved by using a hybrid simulation approach. Especially com-
plete system simulation suffers from the simulation speed issue. Since the simula-
tion speed usually decreases approximately linearly with the number of simulated
processor cores, abstract simulation is applied to maintain reasonable simulation
performance.

In addition to the approaches mentioned above, the available parallelism in the
host system can be exploited to increase the simulation speed. However, paral-
lelizing system simulations is a complex task due to the limited coarse grained
parallelism directly exploitable. Section 8.4 gives a survey of the most important
approaches in parallelizing simulations.

A case study of a scalable multi-processor system and its impact on the simula-
tion environment is presented in Section 8.5.

8.2 Retargetable Instruction Set Simulation

Instruction set simulators (ISSs) are of utmost importance in both architecture and
software design. Nonetheless, it is a complex task to develop a high-quality simula-
tor that is correct, accurate, and fast; therefore, providing a retargetable implemen-
tation approach is of profound interest. This section first discusses the retargetable
simulator generation approach, then introduces a just-in-time cache compiled simu-
lation (JIT-CCS) technique that allows self-modifying code to be supported.

8.2.1 Retargetable Simulator Generation

The emergence of Architecture description languages (ADLs) drastically improves
the efficiency of describing a processor architecture and developing the toolkit
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thereof. LISA [21] is one of the most powerful ADLs available for description of
in-order pipelined architectures. A LISA model consists of descriptions of processor
resources and instructions. An excerpt of a LISA model that features a classic DLX
[9] style data path (line 4 of the figure) is shown in Fig. 8.1. The resources encom-
pass memories (line 2), registers (3), and pipeline registers (5). Coding (12) and
syntax (13) definitions are parts of the instruction description and so is the behavior
definition, which is divided into operations and distributed among the corresponding
pipeline stages (14, 24). These operations are triggered in order (17, 25), and the
pipeline registers are used to pass values between them (15, 24).

Fig. 8.1 Excerpt of a LISA model

Both interpretive and compiled simulators [2] can be generated from LISA mod-
els. As an example, the code of a compiled simulator generated from this LISA
model is presented in Fig. 8.2. Assuming the program is accessible a priori and is
not subject to change, each instruction can be pre-decoded to define the operations
that need to be executed. The results of decoding are stored in a two-dimensional
array (operations of Fig. 8.2), which consists of function pointers to operations.
Since the architecture features a pipelined data path, a separate program counter
(PC) is defined for each pipeline stage to denote the operation currently executing at
this pipeline stage. At run-time, these PCs are advanced in a pipelined way, except
for the first one – the FE_PC, which is assigned to the address of either the next
instruction or the branch destination if a branch is taken. Since only the PC of the
last pipeline stage (write back, aka WB) is visible to the programmers, the WB_PC is
an alias of the program counter of the programmers’ view.
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Fig. 8.2 Example of compiled simulation

In comparison with interpretive simulation, this approach moves the effort of
decoding to compile time as much as possible, so that the simulation speed can
be significantly improved. It assumes the program is not changeable at run-time;
therefore, it is known as statically compiled simulation. Experimental results show
that a speedup of more than three orders of magnitude compared to a commercial
interpretive simulator can be achieved [20].

8.2.2 Just-In-Time Cache Compiled Simulation

Statically compiled simulation assumes that the program memory is not subject to
change at run-time, which is normally reasonable for application simulation. How-
ever, operating systems often modify the program memory dynamically, hence they
cannot be supported by this technique.

A dynamically compiled simulation technique called just-in-time cache compiled
simulation is introduced to address this problem. As shown in Fig. 8.3, instead of
directly decoding the program memory, an instruction cache is created that is called
a JIT cache. The decoding is only applied to the instructions of this artificial cache,
as opposed to the statically compiled counterpart elaborated in Fig. 8.2, where the
entire program memory is decoded statically at compile time. In every cycle, the
simulator fetches a new instruction by accessing the program memory location indi-
cated by the FE_PC. The instruction is stored to the JIT cache, which is organized
in a direct mapped way, in order to provide unique resolution to cache locations in
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Fig. 8.3 Example of just-in-time cache compiled simulation

favor of quick access. The content of the cache is compared with the fetched instruc-
tion. If they are equal, the prior result of decoding can be used directly, otherwise,
the JIT simulation compiler has to be employed to perform the decoding.

It is also important to determine the size of the JIT cache. If it is too small, the
simulation compiler has to be invoked very frequently, which creates a significant
overhead. On the other hand, an excessively large cache will unnecessarily increase
the memory requirements of the simulator itself. For simulation of very large appli-
cations, an extra advantage of JIT-CCS is that the application does not have to be
decoded entirely; therefore, the decoding results put less pressure on the memory. As
presented in [2], a JIT-CCS system reaches a very close performance to a statically
compiled simulator with a JIT cache of modest size (of 8192 entries).

Note that although the JIT-CCS systems are still slower than binary translators
[Chapter 6], JIT-CCS technique has two important advantages. First, with JIT-CCS,
retargetable simulator generation can be supported with ease. Second, it can be used
to implement cycle-accurate simulators, which are important in hardware design
and verification.

8.3 Hybrid Simulation

Although compiled simulation techniques have improved the execution speed of
ISSs significantly, the speed is still limited compared to native execution of the
application on a PC. Many researches (e.g., [13, 28]) attempt to provide alternative
solutions by annotating timing information back to the application’s source code to
do performance estimation. As explained in Fig. 8.4, the application’s source code
is usually optimized and transformed to a low-level representation. Provided that
the cycle cost of each basic statement (see lowered code of Fig. 8.4) is given, the
timing of each basic block of the low-level representation can be estimated. After the
timing information has been annotated, the low-level representation can be compiled
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Fig. 8.4 Performance estimation using timing-annotated native execution

natively. During the course of execution, the performance of the application can be
assessed. This approach is also known as source-level performance estimation.

Even though the execution speed of this approach is extremely high, two lim-
itations are inevitable. First, because the entire course of a compiler backend that
encompasses code selection, register allocation, etc. is not taken into account, the
accuracy of performance estimation is limited, especially when dynamic delays
(such as that introduced by memory access through an interconnect) have a big
impact on the performance. Second, it cannot support applications that contain
assembly or include library functions with no source code available. To address
these issues, hybrid simulation is proposed, which allows employment of instruction
set simulators when simulating critical functions or functions without C source code
are available.

This section will first introduce a way to integrate timing-annotated native execu-
tion with instruction set simulation, then discuss an on-demand profiling paradigm
to use hybrid simulation.

8.3.1 Dynamic Execution Engine Switch of HySim

HySim [7] is a hybrid simulation framework featuring two simulation engines –
a fast but less accurate virtual simulator (VS)1 and an accurate but relatively slow
instruction set simulator. In the embedded domain, an application usually consists of
many C functions, some of which are executed many times. HySim allows each of
these function calls to be either executed using the VS or the ISS and the decisions
can be made separately.

The technical challenge HySim faces is that a shared execution context must be
maintained so that it can be accessed by the functions executed on both the VS
and the ISS. To address it, a novel transformation named C virtualization [7] is

1 Also known as virtual coprocessor in [7]
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introduced. Figure 8.5 shows an example of C virtualization and hybrid simulation.
The example application consists of three C functions. It is compiled and loaded
into the ISS, which contains resources visible to the programmer such as program
memory, data memory, and registers. The source code of the functions foo and
bar is transformed using the C virtualization approach. After transformation, all the
accesses via pointers and accesses of global variables are virtualized to accesses of
the ISS resources utilizing support functions. Additionally, stub functions are gen-
erated to support the execution engine switch. Since the output of C virtualization
is still C code, it can be directly compiled with a native compiler such as GCC.

Fig. 8.5 Example of C virtualization and hybrid simulation

When the example application is loaded, a breakpoint is set on each virtualized
function. The simulation begins with the main function, which passes the addresses
of a global variable g and a local variable t to the subroutine foo it calls. Once foo
is called, the breakpoint set at its beginning is hit; therefore, HySim can take over
the control to decide whether the execution should be launched at the ISS or the
VS. For the former case, the simulation simply continues. Suppose the execution of
foo is launched at the VS, the stub function Stub_foo is invoked ( 1©). According
to the calling conventions, this function prepares the incoming arguments for the
virtualized foo ( 2©). It also retrieves the return address of the ISS and saves it to a
local variable ( 3©), because it indicates where to continue the simulation once foo
returns. Afterward, function foo is called ( 4©), which can read and write both the
global variable g and the local variable t located at the data memory of the ISS
using support functions ( 5©). Note, that the data memory and the registers of the
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ISS, by this means, become a shared context of the ISS and the VS. After the execu-
tion of foo, the PC is overwritten with the saved return address and the simulation
continues at the ISS ( 6©).

Using the same approach, the call to bar can be handled. The function bar
accesses the global variable g directly. A global pointer (GlobalVariable_g) is
defined to support the virtualization, and the address of g at the ISS is assigned
to this pointer when the application is loaded. Using this pointer as a handle, bar
can access the memory at the ISS where g is located ( 7©). Similar to incoming
arguments, the return value of bar can be handled with a support function ( 8©).

Switching is not limited to the direction from the ISS to the VS. In a similar way,
switching of the opposite direction can also be supported.

8.3.2 On-Demand Profiling-Based Performance Estimation

Timing information can be analyzed from the source code and annotated to the
virtualized code to provide a rough performance estimation. However, since HySim
offers two execution modes, it is possible to efficiently utilize them to provide fast
simulation without sacrificing too much accuracy. Suppose a function has already
been simulated using the ISS, hence the timing information is known. If the function
is executed again with the same control path being taken, it can be executed with the
VS and the already known timing information can be used to advance the clock. In
other words, if each unique control path of a function is defined as a scenario, this
approach caches the timing information of the profiled scenarios.

Nevertheless, to realize on-demand profiling, one technical difficulty is that
the scenario of a function is only known after it has been executed, whereas this
information is needed before simulating it. To address this problem, HySim uses
a lightweight checkpointing-replay technique called CrossReplay [6]. Figure 8.6
shows the flowchart of CrossReplay. When a function is about to be simulated,
the VS is speculatively chosen as the execution engine. During the execution, a
lightweight checkpoint and a signature are generated. The signature can be anything
that indicates a scenario, e.g., a vector of executed basic blocks. After querying a
database, if a matching signature is found, it indicates that previously profiled timing
information can be utilized. Therefore, CrossReplay retrieves the timing information
from the database and advances cycles according to it. Conversely, if the query
does not provide a matching record, the function must be replayed on a dedicated
replay ISS by loading the lightweight checkpoint. After replaying, the profiled tim-
ing information is stored into the database, the clock is advanced, and the simulation
continues.

The speed of HySim heavily depends on the proportion of execution mapped
to the VS to that of the ISS. C virtualization and CrossReplay also create some
overhead to the native execution of the VS. As shown in a case study [6], with
negligible inaccuracy introduced, the simulation of a MPSoC can be sped up by 2–5
times compared to instruction set simulation.
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Fig. 8.6 Using CrossReplay for on-demand profiling

HySim is similar to sampling/statistical simulation [Chapters 11 and 13] in the
sense that both techniques improve simulation speed by partially applying detailed
simulation. However, the use cases of HySim and sampling/statistical simulation
are different. The former can be used for application development, whereas the
source code of applications is subject to change, since it does not need lengthy
preprocessing. The latter is more suitable for architecture design.

8.4 Parallel Simulation

When simulating a multi-core system, the user usually witnesses a superlinear
increase in simulation time with growing number of processing elements to simu-
late. The simulation host CPU must simulate more objects, and the overall efficiency
decreases since the simulation OS process memory working set also grows. There-
fore, there is more pressure on caches and memory interface of the simulation host.
The effect is also observed in [22], an important example of parallel simulation
approaches. Accordingly, opting for a parallelized simulation in order to prevent
simulation speed from deteriorating seems to be self-evident.

Paradoxically, although MPSoCs offer plenty of inherent parallelism, it is not
easily exploited in simulation. The main problem is to maintain the causality of
events [5]. To illustrate the problem, consider a system consisting of two CPUs
attached to a shared memory, as displayed in Fig. 8.7. To keep it simple, assume
that all memory accesses happen instantaneously, that the CPUs share a common
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Fig. 8.7 Causality problem: example system

clock, and that accesses to the same memory location do not happen at the same
time. The example uses processors to illustrate the causality problem, but it applies
to parallel simulation in general.

Traditional sequential simulation would advance time usually by alternatingly
stepping both CPUs. A straightforward strategy to simulate such a system in parallel
is to assign the simulation of each CPU to its own simulation host core and to let
the two host processors step their respective CPUs within a loop. Without special
means, it is certain that the local time of the processors will drift apart. Reasons for
this include preemption of either thread due to the host’s OS, different simulation
speeds or type of CPUs, or different instruction mixes on the simulated CPUs.

The result of such a parallel simulation is most likely to be different compared to
the traditional sequential simulation approach described above, if not functionally
wrong.

Imagine both cores of the example system increment a common counter in regu-
lar intervals of 100 cycles. In sequential simulation, both CPUs would then observe
an increment of one made by the other CPU every 100 cycles. This is not necessarily
the case with the simple parallel simulation scheme described above, where events
from the future can influence the past.

Say that at cycle 375 of CPU-B’s local time, its simulation thread gets pre-
empted. While the thread is suspended, CPU-A increments the counter three times
at its local times 400, 500, and 600. After CPU-B’s thread wakes up, CPU-B incre-
ments the common counter again at its cycle 450 and observes that it has seemingly
been incremented three times by CPU-A, although only 100 cycles have passed in
CPU-B’s local time frame. Causality is violated and the CPUs could observe any
positive number of increments during a single interval.

8.4.1 Synchronization Strategies

To cope with the causality problem, a number of synchronization algorithms for
parallel discrete event simulation (PDES) [5] have been suggested, which are often
categorized similar to the following [1]:

Oblivious parallel simulation strategies do not take into account to which stimuli
processes react. Therefore, all elements of a simulation have to be executed at every
time step, even if there is no direct need for execution. This kind of algorithm has
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been suggested for digital logic simulation given that communication and synchro-
nization overhead is the primary concern.

Synchronous strategies execute activity in the same order as sequential simula-
tion except if multiple parts of the simulation model are to be executed at exactly
the same time-stamp. In the latter case, execution is conducted in parallel. The result
can be guaranteed to match one of the sequential executions, if the modeling style
has the property that activity at a certain time cannot influence activity at exactly the
same time. VHDL, Verilog, and SystemC signals implement such a property using
delta-cycles.

Given the model in Fig. 8.7, this would mean that both cores would always be
stepped exactly one cycle, followed by a synchronization of the executing threads.
However, depending on the underlying hardware and the size of the model, lock-step
barrier synchronization can be very costly.

Conservative asynchronous algorithms try to improve the performance of par-
allel simulation over synchronous algorithms by exploiting knowledge of the time
it takes for individual parts to influence each other and thereby executing activity
earlier than the synchronous paradigm dictates.

The downside is that the necessary information regarding timing is usually not
readily available, which may cause a simulation engine to fall back to lock-step
synchronization as explained above.

Optimistic asynchronous algorithms try to carry the idea of the conservative
asynchronous algorithms even further. In case it is not known when parts of the
simulation will communicate, the simulation engine will try to predict if or assume
that there is no communication for a time. If it later turns out that the prediction
or guess was incorrect, the simulation is rolled back to the point of time where the
break in causality occurred.

Although this kind of algorithm provides the greatest possible potential for
speedup, it relies on correct predictions of communication behavior and the avail-
ability of an inexpensive rollback mechanism. Both features are difficult to imple-
ment in today’s production simulation environments for MPSoC.

Simulation without strict synchronization might also be an option, because per-
fect accuracy is not always required. For example in functional models that focus on
behavior, it may be tolerable that causality is violated. The parts of the simulation
that do require synchronization must still be carefully identified and implemented
(e.g., bus locking).

8.4.2 Further Reading

Issues with PDES are well known and are studied for many decades. References
[1, 4, 5, 12] explain the theoretical background. Accordingly, a number of simulators
have been implemented. In the beginning, simulators were targeted to a compara-
tively narrow range of target systems as [23]. What followed were many attempts to
widen the range of possible target systems and to deal with simulator construction in
a more abstract manner [16]. These insights were then applied to construct parallel
engines executing simulation languages like VHDL [15] or Liberty [22].
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Other approaches take measures beyond classical PDES, like augmenting the
simulation engine with knowledge about the OS software running on the simulated
platform [30] or executing different simulation time segments in parallel [8].

8.5 Case Study—Scalable MPSoC Simulation Environment

MPSoCs are becoming a viable alternative to the traditional monolithic processor
system implementations. Especially, heterogeneous MPSoCs are of great interest
because of their good performance to energy ratio.

Two major challenges can be foreseen for future CMOS technologies: first, the
minimization of the wire delay [3, 10] and second, the management of the constantly
increasing design complexity.

The tiled architectures approach [27] addresses these problems by combining a
high number of simple processing tiles into a computing system instead of designing
a single, monolithic processing architecture. The simplicity of the individual tiles
leads to the minimization of the wire delay problem and also helps to reduce the
design complexity. The inter-tile communication is realized by a distributed routing
fabric based on packet switching. These kinds of architectures are designed to be
highly scalable and therefore they are suitable for massively parallel applications.

In the following the tiled architecture developed in the context of the European
SHAPES project [17, 19, 24] is presented. The goal of this project is to design a
Teraflops board that can be used as building block for Petaflop-class systems. Due to
its flexibility and scalability the SHAPES architecture is intended to cover the entire
range from commodity market applications (4–8 tiles), classical signal processing
applications such as audio video processing, ultra-sound, and radar (2K tiles) up to
numerically demanding, massively parallel scientific simulations (32K tiles). Two
applications that fit this kind of architecture well have already been ported in the
course of this project: wave field synthesis (WFS) [25] and lattice quantum chromo
dynamics (LQCD) [29].

8.5.1 Overview of the SHAPES Platform

Figure 8.8 shows the overall structure of the SHAPES multi-tile platform. The main
hardware building block of this platform is a dual-core tile consisting of a general
purpose RISC processor and a VLIW DSP. Figure 8.9 depicts the schematic of such
a tile and its key components. An ARM926EJ-S serves as general purpose processor
for control dominated code, while a VLIW mAgic [18] processor is used for efficient
execution of the signal processing parts of an application.

All processing elements and the on-tile memory are interconnected using a multi-
layer AMBA bus for high throughput. Each RDT tile also provides a rich set of
peripherals which are connected via an AMBA peripheral bus (APB). Tiles with
different configurations, i.e., number of CPUs, number and type of peripherals and
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Fig. 8.8 Multi-Tile SHAPES platform

Fig. 8.9 Schematic of the RISC DSP tile (RDT)

memory size, can be obtained by stripping down the RDT tile. Up to eight tiles
can be combined into a single chip. These multi-tile chips can then be arranged
in a three-dimensional mesh topology (see Fig. 8.8). In case of a multi-tile chip a
network-on-chip (NoC) is used as on-chip interconnect. The inter-tile communica-
tion is realized by the distributed network processor (DNP) [17], which serves as a
generalized DMA controller.
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8.5.2 SHAPES Simulation Environment

Due to the high development effort and costs of hardware prototypes, system simula-
tions are becoming a viable alternative during the early design stages of the MPSoC
development. This is especially true for the multi-tile SHAPES platform. In order
to test different parameter configurations a virtual SHAPES platform (VSP) has
been developed. The key aspects of this simulation environment are presented in
the following.

For a scalable MPSoC platform, such as SHAPES, four main use cases of simu-
lation can be identified:

• Design space exploration: With the virtual SHAPES platform it is possible to
quickly evaluate different combinations of tiles. Hence, promising candidates for
a detailed analysis can be identified.

• Software development: Having a simulation platform at hand, it is possible to
start software development and optimization before the hardware is ready.

• Performance estimation: The possibility to collect detailed performance charac-
teristics for a given application, e.g., context switching overhead, allows the user
to optimize the task to processor mapping, to optimize the application itself, and
to optimize the interprocess communication.

• Debugging: The main advantage compared to debugging a software application
on a hardware board is the possibility to access virtually all hardware resources in
a non-intrusive fashion. This increased visibility is of big help for understanding
the hardware–software interaction in detail.

In general, the simulation speed plays a critical role for the usability of a simula-
tion environment. This is particularly true for complex architectures as the SHAPES
platform. The simulation speed of a platform is mainly determined by the abstrac-
tion level. Classical register transfer level (RTL) simulations provide very detailed
information about the simulated system. However, their low simulation speeds pro-
hibit efficient design space exploration and software development. Therefore, the
simulation level needs to be much higher than RTL. For the SHAPES platform two
levels of abstraction are considered: cycle accurate (CA) and instruction accurate
(IA). CA simulation has the advantage that the micro-architecture of the processor is
fully simulated, thus leading to a very accurate timing behavior. In contrast, IA sim-
ulation provides much higher simulation speed by neglecting the micro-architectural
features. Thus, CA simulation provides a higher accuracy while IA simulation per-
mits shorter design cycles. Depending on the use case the developer can choose
between both simulation modes in order to obtain the best balance between simula-
tion speed and accuracy.

The virtual SHAPES platform is modeled in SystemC using the Synopsys virtual
platform environment [26]. The ARM processor and the mAgic processor are mod-
eled as ISS at IA and CA levels. The ARM processor model includes a cache model
and is taken from the Synopsys IP library, whereas the floating point VLIW DSP is
modeled using the architecture description language LISA [11]. Building upon the
single tile simulator it is possible to automatically generate a multi-tile simulator
using a script-based generation approach. Based on input parameters like tile types,
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number of tiles, and type of interconnect, the multi-tile simulator is automatically
assembled and built.

The created simulation environment is an important tool for hardware-dependent
software developers due to its non-intrusive debugging capabilities. Moreover, the
simulation helps to identify good mappings of application tasks to processors and
allows collecting a variety of performance characteristics.

8.5.3 Advanced Simulation Techniques Applied in SHAPES

Using the presented VSP, the simulation time increases approximately linearly with
the number of tiles, because most of the simulation time is spent for processor sim-
ulation. ISS-based processor simulation techniques have been pushed to their limits
and not much speed up can be expected in the future. More advanced techniques,
e.g., binary translation [Chapter 9], can be applied to ameliorate the situation. How-
ever, in case of the complex VLIW DSP used in SHAPES, binary translation does
not pay off, because it relies on similarities between simulation host and target
which are not present for VLIW DSPs. Therefore, a hybrid simulation approach
(see Section 8.3) is selected. Based on the observation that the user requires detailed
simulation only for a fraction of the simulation time, it is possible to temporally
switch between a fast but inaccurate and a slow but detailed simulation. To further
reduce the number of simulation runs, checkpointing [14] can be applied to skip the
time consuming but repetitive booting of a simulated OS.

Figure 8.10 shows the speedups achieved with different hybrid simulation con-
figurations. The baseline of this measurement is the simulation of the SHAPES
platform utilizing only ISS-based processor simulation. For comparison reasons
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the speedup reachable with binary translation is also shown. Four different hybrid
simulations are used in this experiment. The first configuration utilizes the HySim
framework to switch between the VS and the ISS-based simulation. The second
configuration combines binary translation with the hybrid simulation. Configuration
three and four are identical to the first two configuration except that they make use
of the DMI interface to access the global memory.

Applying these kinds of advanced simulation techniques will ensure sufficiently
high simulation performance as required for software development on large-scale
simulators.

8.6 Conclusion

The emergence of MPSoCs has triggered a number of changes in the embedded
systems domain. Raising the number of processors in an MPSoC increases the sim-
ulation time and poses a big challenge for simulation developers. To mitigate this
problem new processor simulation techniques are required since the commonly used
ISS-based processor simulation has been pushed to its limits and not much improve-
ment can be expected from this technique. The simulation environment developed
for the SHAPES platform shows by using one of those techniques or a combination
of them it is possible to develop a sufficiently fast simulator for such a complex
platform. This will also scale with future SHAPES platforms with substantially
more cores than the current SHAPES platform simulation. It can be foreseen for
the near future that two techniques are gaining interest for simulation developers. It
can be expected that raising the abstraction level will be the simulation technique of
primary choice until a versatile parallel simulation environment will be available.

Acknowledgments We thank Pees, Braun, Nohl, Hoffmann, and all the people who have con-
tributed to the development of these techniques [2, 20].

References

1. Bailey, M., Briner, J., Chamberlain, R. Parallel logic simulation of VLSI systems. ACM
Comput Surv 26(3), 255–294, (1994).

2. Braun, G., Nohl, A., Hoffmann, A., et al. A universal technique for fast and flexible
instruction-set architecture simulation. Comp-Aid Des Inte Circuits Syst, IEEE Trans 23(12),
1625–1639, (2004).

3. Carloni, L.P., Sangiovanni-Vincentelli, A.L.: Coping with latency in SoC design. IEEE Micro
22(5), 24–35, Sep./Oct. (2002).

4. Chandy, K., and Misra, J.: Distributed simulation: A case study in design and verification of
distributed programs. Software Engineering, IEEE Trans SE-5(5), 440–452, Sept. (1979).

5. Fujimoto, R. Parallel discrete event simulation. Commun ACM 33(10), 30–53, (1990).
6. Gao, L., Karuri, K., Kraemer, S., et al.: Multiprocessor performance estimation using hybrid

simulation. In: DAC ’08: Proceedings of the 45th annual conference on Design automation,
pp. 325–330, New York, NY, USA, June, AMC (2008), Anaheim, CA.



8 Scalable Simulation for MPSoC Software and Architectures 143

7. Gao, L., Kraemer, S., Leupers, R., et al.: A fast and generic hybrid simulation approach using
C virtual machine. In: CASES ’07: Proceedings of the 2007 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, pp. 3–12, Salzburg, Austria
(2007) New York, NY, USA, Sept, ACM.

8. Girbal, S., Mouchard, G., Cohen, A., et al.: dist: a simple, reliable and scalable method to
significantly reduce processor architecture simulation time. In: SIGMETRICS ’03: Proceed-
ings of the 2003 ACM SIGMETRICS international conference on measurement and modeling
of computer systems, pp. 1–12, New York, NY, USA, 2003. ACM, (2003).

9. Hennessy, J.L., Patterson, D.A.: San Francisco, CA, USA, Computer architecture: A quanti-
tative approach. Morgan Kaufmann Publishers Inc., (2003).

10. Ho, R., Mai, K.W., Horowitz, M.A.: The future of wires. IEEE Trans Comp-Aid Des 89(4),
490–504, Apr (2001).

11. Hoffmann, A., Kogel, T., Nohl, A., Braun, G., Schliebusch, O., Wahlen, O., Wieferink, A.,
Meyr, H.: A novel methodology for the design of application-specific instruction-set pro-
cessors (ASIPs) using a machine description language. IEEE Trans Comp-Aid Des 20(11),
1338–1354, (2001).

12. Jefferson, D.: Virtual time. ACM Trans Program Lang Syst 7(3), 404–425 (1985).
13. Karuri, K., Faruque, M.A.A., Kraemer, S., et al.: Fine-grained application source code pro-

filing for ASIP design. In DAC ’05, pp. 329–334, New York, NY, USA, June, ACM, (2005)
Anaheim, CA.

14. Kraemer, S., Leupers, R., Petras, D., Philipp, T.: A checkpoint/restore framework for
SystemC-based virtual platforms. In System-on-Chip, 2009. SOC 2009. International Sym-
posium on, pp. 161–167, Tampere, Finland (2009) Piscataway, NJ, USA, Oct, IEEE Press.

15. Lungeanu D., Shi, C.: Parallel and distributed VHDL simulation. In: DATE ’00: Proceedings
of the conference on design, automation and test in Europe, pp. 658–662, New York, NY,
USA, 2000. ACM (2000).

16. Nicol, D., Heidelberger, P.: Parallel execution for serial simulators. ACM Trans Model Com-
put Simul 6(3), 210–242, (1996).

17. Paolucci, P.S., Jerraya, A.A., Leupers, R., Thiele, L., Vicini, P.: SHAPES: A tiled scal-
able software hardware architecture platform for embedded systems. In: Proceedings
of the International Conference on Hardware/Software Co-design and System Synthesis
(CODES+ISSS), pp. 167–172, Seoul, Korea (2006) New York, NY, USA, Oct, ACM.

18. Paolucci, P.S., Kajfasz, P., Bonnot, P., Candaele, B., Maufroid, D., Pastorelli, E., Ricciardi,
A., Fusella, Y., Guarino, E.: mAgic-FPU and MADE: A customizable VLIW core and the
modular VLIW processor architecture description environment. Comp Phys Communi 139(1),
132–143 (2001).

19. Paolucci, P.S.: The diopsis multiprocessor tile of SHAPES. In: 6th International Forum on
Application-Specific Multi-Processor SoC MPSOC’06, Colorado, USA, August (2006).

20. Pees, S., Hoffmann, A., Meyr, H.: Retargetable compiled simulation of embedded processors
using a machine description language. ACM Trans Des Autom Electron Syst 5(4), 815–834
(2000).

21. Pees, S., Hoffmann, A., Zivojnovic, V., et al.: LISA—machine description language for cycle-
accurate models of programmable DSP architectures. In: DAC ’99: Proceedings of the 36th
annual ACM/IEEE Design Automation Conference, pp. 933–938, New York, NY, USA, 1999
ACM (1999).

22. Penry, D., Fay, D., Hodgdon, D., et al.: Exploiting parallelism and structure to accelerate the
simulation of chip multi-processors. In HPCA, pp. 29–40 IEEE Computer Society, Austin,
TX Feb (2006).

23. Reinhardt, S., Hill, M., Larus, J., et al.: The wisconsin wind tunnel: virtual prototyping of
parallel computers. SIGMETRICS Perform Eval Rev 21(1), 48–60 (1993).

24. SHAPES – Scalable Software Hardware computing Architecture Platform for Embedded Sys-
tems. http://www.shapes-p.org.



144 R. Leupers et al.

25. Sporer, T., Beckinger, M., Franck, A., Bacivarov, I., Haid, W., Huang, K., Thiele, L., Paolucci,
P.S., Bazzana, P., Vicini, P., Ceng, J., Kraemer, S., Leupers, R.: SHAPES – a scalable par-
allel hw/sw architecture applied to wave field synthesis. In Proceedings of the AES 32nd
International Conference, pp. 175–187, Hillerød, Copenhagen, Denmark, September (2007).

26. Synopsys Inc. “Synopsys Virtual Platforms”, Mountain View, CA. 2010 http://www.
synopsys.com/Tools/SLD/VirtualPrototyping/

27. Taylor, M.B., Kim, J., Miller, J., Wentzlaff, D., et al. The raw microprocessor: A computa-
tional fabric for software circuits and general-purpose programs. IEEE Micro 22(2), 25–35
(2002).

28. Wang, Z,. Herkersdorf, A.: An efficient approach for system-level timing simulation of
compiler-optimized embedded software. In: DAC ’09, pp. 220–225, New York, NY, USA,
July (2009) ACM, San Franscisco, CA.

29. Wilson,. K.G.: Confinement of quarks. Phys Rev D 10(8), 2445–2459, Oct (1974).
30. Yi, Y., Kim, D., Ha, S. : Fast and accurate cosimulation of MPSoC using trace-driven virtual

synchronization. Comp-Aid Des Integ Circuits Syst, IEEE Trans, 26(12), 2186–2200 Dec.
(2007).



Chapter 9
Adaptive High-Speed Processor Simulation

Nigel Topham, Björn Franke, Daniel Jones, and Daniel Powell

Abstract Instruction set simulators are essential tools in all forms of
microprocessor design; simulators play a key role in activities ranging from ASIP
design-space exploration to hardware–software co-verification and software devel-
opment. Simulation speed is the primary concern when functional simulators are
used as CPU emulators for software development. Conversely, the ability to measure
performance is of critical importance during the exploratory phases of co-design,
whereas the ability to use a simulator as a golden reference model is important for
hardware–software co-verification. A key challenge is to provide the highest level
of performance, for the different observability and performance measuring demands
of each use-case. In this chapter, we describe an adaptive simulator designed to
meet these diverse requirements. Adaptation takes two forms: first, the simulator
has a high-speed JIT compilation capability allowing it to be extended dynamically
according to simulated program behavior; and second, it is able to learn how to
model the timing behavior of the target processor and thereby deliver approximate
performance figures with very low overhead. The simulator maintains a precise
model of the architectural state of the processor it simulates, enabling it to be used
also as a back-end target for a debugger, to assist in software development, as well as
providing a Golden Reference Model to a co-simulation environment. Through the
use of these performance-enhancing dynamic adaptations, the simulator is capable
of simulating an embedded system at speeds approaching, or even exceeding, real
time.

9.1 Introduction

This chapter discusses how various forms of adaptation in simulators can provide
fast, accurate, and observable modeling of a processor. Accuracy and observability
are also possible to achieve, by simulating at a low level, but such simulators are
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very slow. By compiling an instrumented version of the source code of a target
application to a host machine, it is possible to achieve higher speeds, due to the
elision of detailed modeling of low-level target features. Such compiled simulation
techniques can therefore be many orders of magnitude faster than low-level inter-
pretive simulators, although with reduced observability. A fundamental limitation
of compiled simulation is that it can be used only in situations where the applica-
tion code is available in source form, and does not change dynamically. Programs
which require an operating system, or which are shrink-wrapped, cannot benefit
from compiled simulation. The approach explored in this chapter is based on the
concept of dynamic binary translation (DBT). This approach begins with interpre-
tive simulation in order to obtain initial profile information. This is interspersed
with profile-guided just-in-time translation (JIT) of target code to host code, with
optional performance instrumentation, similar to the approach taken by many virtual
machine environments. The net result is an extremely high-speed simulator, capable
of adapting to the changing dynamic behavior of the application.

Our work focuses on how dynamic adaptation can provide simulators with impor-
tant advantages in speed and performance modeling. First, we show how extremely
high-functional simulation rates can be achieved through the use of DBT applied
at the basic block level through to entire pages of target binary. Our approach
effectively extends the simulator at run-time with dynamically loaded functions
corresponding to the translated regions of the target binary. Second, we show how
high-speed performance modeling can be achieved using statistical machine learn-
ing. In essence, the simulator learns and adapts an internal performance model
during phases of comparatively slow cycle-accurate simulation. This model then
provides very low-cost performance information during phases of high-speed func-
tional simulation.

The research reported in this chapter was carried out using the Edinburgh high-
speed simulator (EHS), developed in the Institute for Computing Systems Architec-
ture at Edinburgh University [1]. In the first half of this chapter, we explore how
EHS adapts through dynamic binary translation, and in the second half we look at
how machine learning can provide high-speed performance models.

9.2 Fast Simulation Through Dynamic Binary Translation

Interpretive simulation of an instruction set involves repeatedly decoding and emu-
lating the semantics of the target instruction set. Much of the work involved at
the interpretive level can be avoided completely by translating a sequence of tar-
get instructions into host instructions which perform equivalent transformations on
the target processor state. The most effective way to create such a host machine
sequence is to use dynamic binary translation within a simulation framework
that allows target code to be interpreted, when no translation exists, and which
then creates binary translations on-demand when hot regions of target code are
identified.
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In the context of EHS, a translation unit is a region of target code that is
translated to a single host function. These translated functions (TFs) are dynami-
cally linked into the simulator, extending the simulator binary. To create a set of
TFs, simulation time is partitioned into epochs, where each epoch is defined as
the interval between two successive calls to the binary translation process. Dur-
ing each epoch, new translation-units may be discovered; previously seen but not
yet translated translation-units may be re-interpreted; translated translation-units
may be discarded (e.g., due to self-modifying code); and translated units may be
executed. Throughout this process, the simulator continues profiling all interpreted
blocks. The end of each simulation epoch is reached when a predefined number
of interpreted basic blocks has been executed. Execution profiles for each physical
page are built up during the simulation epoch. This involves maintaining a count of
the number of times individual basic blocks have been interpreted and maintaining
a summary of this per page.

Translated functions are located with minimal overhead using the translation
cache (TC), a hash table of translated function pointers indexed by program counter.
If the current PC hits in the TC, its associated TF is executed by dereferencing the
associated function pointer. In addition to implementing the target code, all state
information for the simulated processor, including the PC value, is updated prior to
exiting the TF. This provides precise observability of target state at the boundaries
between any translation unit or interpreted block.

If the instruction address is not found in the TC, it is looked up in the translation
map (TM). This is a complete table of all translated units and is therefore slower to
access than the TC. Each TM entry contains the translated unit’s entry address and a
pointer to its TF. The TC is loaded from the TM rather like a level-1 cache is loaded
from a level-2 cache. Any block that is not present in the TM must be interpreted,
and in this case the appropriate profiling information is also gathered.

At the end of each simulation epoch, a profiling analysis phase is initiated prior
to binary translation. This scans the profiling structures for frequently executed
blocks. When larger translation units than a single basic block are being handled, as
discussed in Section 9.2.1, the scanning process will search for hot regions encom-
passing multiple basic blocks. The hot translation units are translated in batches,
comprising translation units from the same physical page. The grouping of trans-
lation units in this way enables all translations for a physical page to be easily
discarded if, for example, a target page is overwritten by self-modifying code or
if the page is reused by a different process.

Translation begins by converting each region to a C function which emulates each
target instruction by modifying the processor state according to the semantics of the
instruction. PC is updated at the end of the block or on encountering an exception.
Exceptions, such as a TLB miss, cause an immediate return from the TF to the
main simulation loop, where the exception is handled. Any pending interrupts are
detected at block boundaries, at which point control will again be transferred back
to the main simulation loop.

The C code for all translations in a given page is compiled to a single shared
library, using GCC, which is then loaded by the dynamic linker. Several such
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libraries may be loaded during each translation phase, and during loading the Trans-
lation Map is updated with information about each TF, ensuring a hit in the TM next
time that TF is encountered.

9.2.1 Identifying Larger Translation Units

Typically, in DBT simulators, the unit of translation is either the target instruction
or the basic block. It has been shown that increasing the size of the translation unit
delivers a significant increase in simulation rate [2]. The increase in performance
is due to two factors. First, large translation units (LTUs) offer greater scope to the
compiler for global optimizations across multiple blocks. Second, less time is spent
on the overhead of managing the outer simulation loop.

The EHS simulator supports three different types of LTU, in addition to the basic
block. An LTU in this context is a group of basic blocks connected by control-flow
arcs, which may have one or more entry and exit points. The different translation
modes incorporated into the EHS simulator include basic blocks (BB), a group of
basic blocks forming a set of strongly connected components (SCC), the set of
maximal control-flow graphs (CFG) identified during profiling, and all blocks from
within the same physical page (Page).

In contrast to other DBT simulators, the EHS simulator profiles the target pro-
gram’s execution in order to discover hot paths rather than to identify hot blocks,
some of which may be infrequently executed within a given page. The target pro-
gram is profiled, and the translation units are created on a per physical-page basis.
Figure 9.1 shows the different translation unit types and their entry points. Example

Fig. 9.1 Different types of translation unit. Each figure shows a target program CFG divided into
DBT mode translation units. Dotted lines indicate the separate translation units while thick-edged
circles show the possible entry points
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target program CFGs are shown, divided into separate translation units in accor-
dance with their DBT mode. The possible entry points into a translation unit varies
with DBT mode. However, entry is always to the address of the first instruction
within a basic block.

In BB mode, those basic blocks which are frequently executed at simulation time
are identified and scheduled for binary translation. For SCC mode, the block exe-
cution path is analyzed to discover SCCs and any attached linear regions. In CFG
mode, the block execution path is analyzed to discover hot CFGs. In Page mode,
the block execution path is analyzed to discover all hot CFGs within that page, after
which those CFGs are then translated as a single unit, creating a single TF.

9.2.2 Persistent Translations

In order to obtain highly efficient translations, the simulator invests a significant
effort in finding the most important regions of target code and optimizing their trans-
lation to host binary form. It therefore makes sense to re-use these translations from
one simulation run to the next, wherever possible. For this reason, the EHS simulator
supports persistent translation, in which a previous translation for a given hot region
will be re-used if the binary signature matches that of a previous invocation.

To observe the benefit of persistent translation, we examined where the sim-
ulation time was being spent. To a first approximation, the total simulation time
is divided between five main tasks: (1) the main simulation loop calls TFs and
interprets instructions; (2) the library loading function loads previously compiled
translations from the shared libraries; (3) the page CFG function adds interpreted
blocks to the page CFG; (4) the profile analysis function analyses page CFGs and
identifies hot translation units; and (5) the dynamic compilation function compiles
hot translation units and creates shared libraries. Figure 9.2 shows how much time
is spent performing each task for a typical benchmark. On the first run, 80–92%
of the time is spent compiling the hot translation-units, with the rest of the time
spent in the main simulation loop. On successive runs, which re-use translations
from earlier runs, almost 100% of the time is spent in the main simulation loop.
Time spent performing the other tasks is all but insignificant. This is the general
pattern observed for all benchmarks. Persistence is another form of adaptation, in
which the simulator becomes specialized for a particular application based on prior
translations that have been “learned” during previous runs.

9.2.3 The Performance of DBT

In this section, we present the results from simulating a subset of the EEMBC
benchmark suite on the EHS simulator. These results compare the relative perfor-
mance of the four DBT modes, as well as show the absolute achievable simulation
rates on a stated hardware platform. All benchmarks were compiled for the ARC
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Fig. 9.2 Bitmnp simulation tasks. This figure shows the percentage of total simulation time spent
performing each of the five main simulator tasks

700 architecture using gcc version 4.2.1 with -O2 optimization and linked against
uClibc. The EEMBC lite benchmarks were run for the default number of iterations,
and the simulator operated in user-level simulation mode so as to isolate the effects
of an underlying operating system.

The simulator itself was compiled, and the translated functions dynamically com-
piled, with gcc version 4.1.2 and -O3 optimization. All simulations were performed
on the workstation detailed in Table 9.1 running Fedora Core 7 under conditions of
minimal system load. The simulator was configured to use a simulation epoch of
1000 basic blocks and a low translation threshold to ensure that every translation
unit would be translated. The target memory had a physical page size of 8 KB.

Table 9.1 Host configuration

Model Dell OptiPlex

Processor 1× Intel Core 2 Duo 6700, 2660 MHz
Caches 32KB L1 I/D caches; 4 MB L2 unified cache
FSB frequency 1066 MHz
RAM 2 GB, 800 MHz, DDRII

Figure 9.3a shows the simulator’s functional execution rate for each of the four
DBT modes. Each benchmark was simulated twice, with each successive simulation
loading the translations available on completion of the previous run. Due to the
persistence of translations, no target instructions were interpreted on the second
simulation run. Figure 9.3b shows the relative increase in simulation speed obtained
by the three modes which identify larger translation units. Overall, the use of large
translation units yields a 63% speed improvement compared with translations based
on individual basic blocks. It is also clear that no single translation mode works
best for all benchmarks, indeed each mode is optimal over a different subset of the
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Fig. 9.3 Simulation speed results

benchmarks. This suggests the choice of translation mode is another area in which
adaptability can play a positive role.

9.2.4 Assessing the Advantages of DBT

The most significant advantage of DBT is its ability to work very effectively with
binary representations of target applications. This is in marked contrast with simula-
tors requiring access to C sources [3]. This allows the instructions at a given memory
location to change, as they would if code is paged-out when simulating a virtual
memory operating system or when self-modifying code is executed. The dynamic
insertion and removal of breakpoint instructions, when using a DBT simulator for
fast debugging of target code, represents another form of code modification which
the EHS is able to handle. Being oblivious of specific API or ABI requirements, a
DBT simulator will cope with literally any legal target code. The simulation speed
results presented in this section also indicate that DBT-based simulators are able to
achieve the highest levels of performance reported in the literature to date.
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9.3 Learning-Based Timing Models

There exist huge differences in simulation speed and accuracy between cycle-
accurate and instruction-accurate instruction set simulators (ISS). For example,
a performance gap of one to two orders of magnitude between Verilog RTL
and interpretive simulation and another factor of ten improvement over this for
compiled-code simulators is reported in [4]. RTL-to-C translation [5, 6] improves
the performance of cycle-accurate simulation, but it still does not match that
of instruction-accurate simulation. Cycle-accurate simulators typically operate at
20–100K instructions per second, compared with JIT-translating simulators such as
the one described earlier in this chapter which operate typically at several hundred
million instructions per second. At this higher speed, however, ISS are not able to
provide cycle counts, but only present the user with high-level statistical information
such as instruction counts and, possibly, certain micro-architectural events such as
the number of cache accesses or predicted branches.

To bridge the gap between instruction- and cycle-accurate simulations, we extend
a fast, instruction-accurate ISS with a machine learning based performance estima-
tor. Our goal is to fully automate the construction and use the performance model
while at the same time provide the user with a high-speed cycle-approximate simu-
lator.

Our approach to performance estimation is based on statistical regression where
training data is used to construct a performance model. Using high-level information
from a fast simulator, we apply the performance model to compute a performance
estimate for a new program (or program region). Under the assumption that per-
forming the additional computations needed for the performance model evaluation
is faster than cycle-accurate simulation, the resulting cycle-approximate simula-
tion will benefit from the higher speed of the instruction-accurate simulator while
providing the user with performance estimates close enough to the actual cycle
count.

Our performance prediction scheme relies on a hybrid simulator that can switch
between functional and cycle-accurate simulation modes at the boundaries between
instructions, basic blocks, or larger program regions. We exploit this feature for
the online construction of a performance model and allow for incremental model
updates if it turns out that workload patterns change over time and the model cannot
make further predictions with sufficient confidence. Performance is then estimated
and accumulated across whole program regions. While this scheme has much in
common with the sampling simulation methodology presented in chapter 10, it
improves on this in several ways. First, performance models are application-specific,
and past behavior of a program can be incorporated in the performance model
through incremental updates. Second, the training data sets can be carried forward
between simulation runs, and subsequent simulations can benefit from previously
tuned performance models.

Before we describe our performance estimation methodology in detail, we intro-
duce the background of statistical regression analysis and, in particular, multiple
linear regression.
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9.3.1 Statistical Regression

Regression analysis is a statistical method to examine the relationship between a
dependent variable y and n independent variables x = (x1, . . . , xN ). This relation-
ship is modeled as a function f with y = f (x). The function f chosen depends
considerably on the relationship between input vector x and output y. Many dif-
ferent forms of regression analysis exist to compute f , including many variants of
linear and non-linear relationships.

If the relationship between y and x is linear, we use the linear regression model
shown below, in which β = (β0, . . . , βN ) is a matrix of weights.

y = β0 +
N∑

i=1

βi xi (9.1)

The chosen input variables x may only represent a subset of the total factors
affecting y, and other “hidden” variables may be present. In this case, equation
above can only be an approximation of y. The difference between y and a predicted
ŷ is the error term ε = y − ŷ called the residual.

Given m training points (y1, x1,1, . . . , x1,N ) to (ym, xm,1, . . . , xm,N ), we can
extend our original design matrix (Eq. 9.1) and construct the following equation
system:

y1 = β0 + β1x1,1 + β2x1,2 + · · · + βN x1,N + ε1

... = ...

ym = β0 + β1xm,1 + β2xm,2 + · · · + βN xm,N + εm

These equations can be rewritten as y = Xβ + ε, where β represents the vector
of regression coefficients or the weights matrix and X the model matrix.

The parameters of the model β should be selected such that ε is minimized, i.e.,
the regression function produces predictions as close to the actual value as possible.
A common method of choosing these parameters is the least-squares method that
minimizes the sum of the squares of the prediction errors SSE:

SSE =
m∑

i=1

⎛

⎝yi − β0 −
N∑

j=1

β j xi, j

⎞

⎠
2

(9.2)

The computed values represent estimates of the regression coefficients β, thus the
calculation of a prediction ŷ at point x only involves the application of Eq. (9.1).
The weights matrix is then computed as β = (XT X)−1 XTy.

Unfortunately, this is an expensive operation (O(m3)) due to the calculation of
the inverse of the variance matrix XT X . Dependent upon the size of the training
data, this can severely hinder performance, especially if the weights matrix must be
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updated frequently due to newly added training points. A light-weight incremental
method with lower computational complexity is discussed in Section 9.3.2.

Unlike their analytical counterparts, statistical models are suitably adapted to
dealing with missing or noisy data and can provide additional information on the
“quality” of statistical estimations. We use this to compute confidence intervals to
describe the “reliability” of the estimations. How likely the interval is to contain the
predicted value is determined by the confidence level. Increasing the desired confi-
dence level will widen the confidence interval. For example, for linear regression,
the confidence interval for a given confidence level α can be obtained by

x β̂ ±
(

S
√

xT(XT X)−1x t (n − p; α

2
)
)

(9.3)

where x is the point to be estimated, β̂ the calculated parameter estimates, S the
estimated variance, and t (n − p; α

2 ) the value at α
2 of the cumulative distribution

function for the t-distribution.

9.3.2 On-Line Performance Model Construction and Incremental
Model Updates

Our online scheme for performance model construction [7] extends existing off-line
schemes such as [8] in several ways. The main difference is in the use of a hybrid
simulator that can switch between instruction- and cycle-accurate simulation modes
at any point in time. We exploit this feature to perform performance estimation at
a finer granularity, i.e., simulation epochs rather than the whole program, and to
continuously update the performance model with new training data if required.

The on-line method alternates phases of fast instruction-accurate and slower, but
detailed cycle-accurate simulation. During cycle-accurate simulation phases, a per-
formance model is constructed that is subsequently used for performance estimation
when the simulator operates in instruction-accurate mode. We employ a continuous
learning algorithm in an effort to ensure the accuracy of the predictions being made.
By allowing the training data to be updated when confidence decreases, each predic-
tion made will use the most recent and relevant training information. It also allows
predictions to be performed over a much smaller time slice ensuring that any error
that does occur affect only a smaller section of the code than the off-line method
presented in [8]. The combined learning and prediction within the same simulation
will also assist in customizing the training data for the current execution, further
reducing any error margins.

The diagram in Fig. 9.4 displays the operation of the simulator in continuous
learning mode. As shown in the diagram, the simulator initially begins in cycle-
accurate mode, with new training points being added to the predictor. Once enough
points have been collected such that the initial training matrix can be calculated,
the simulation remains in cycle-accurate mode performing cycle count predictions
once every time slice. At each prediction, the accuracy and confidence is checked.
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Fig. 9.4 The sequential operation of the instruction set simulator in continuous learning mode

If the prediction is too inaccurate, or the confidence interval of the prediction is too
high, then the last time slice is added to the training data and the prediction matrix
is updated.

Once the error and confidence interval drop below a pre-programed threshold,
the simulation switches to instruction-accurate mode and relies purely upon the
confidence interval of each prediction. This is monitored at every prediction, and
should it become too high the simulator will fall back into cycle-accurate mode in
one of two methods described in the next section. The simulator continues to run in
cycle-accurate mode updating the training data once per time slice and attempting
further predictions. Again, once the error ratio and the confidence of the prediction
drop below their thresholds, the simulator returns to instruction-accurate mode and
continues as above.

Once a prespecified number of confident predictions occur, the time slice over
which the predictions are made is increased in an attempt to gain a further perfor-
mance gain. Once the confidence interval widens too far, the time slice is reduced
again to allow training across a finer grain.

9.3.2.1 Incremental Linear Regression

The standard linear regression algorithm is not well suited for situations where
training data points are added incrementally. The calculation of the weights matrix
is a computationally expensive operation involving the inversion of a potentially
large matrix. This is to calculate the variance matrix for the training data. On occa-
sions when updates to the training matrix are necessary, this calculation involves the
recalculation of the weights matrix using the entire training data set. Alternatively,
research has been performed into an incremental version to calculate the weights
matrix [9].

The alternative linear regression algorithm still requires the initial calculation of
the weights matrix as before; however, it optimizes the process of adding new data
points, updating the weights matrix once it has been initially calculated. The pro-
cess involves initially updating the variance matrix (XT X)−1 of the data to include
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the new training points. The variance matrix will hereafter be referred to as A−1.
Computation of the updated variance matrix is optimized in two ways depending on
the number of training points added: one method for a single update to the matrix
that does not involve the calculation of the inverse of a matrix, and another method
for multiple training points added to the training set.

For a single added training point, the updated variance matrix Â−1 is calcu-
lated as

Â−1 = A−1 − A−1 X̂T X̂ A−1

1 + X̂ A−1 X̂T
(9.4)

with X̂ corresponding to the row of the newly added training point. Given A−1 has
already been calculated during the initial fitting of the weights matrix, there is no
requirement for recalculation, allowing for further optimization of this algorithm.

In the case of multiple samples being added to the training data, adding each
training point individually using Eq. (9.4) would result in more computation than
necessary, hence the alternative equation shown below can be used:

Â−1 = A−1 − A−1 X̂T(X̂ A−1 X̂T + 1)−1 X̂ A−1 (9.5)

This method still calculates the inverse of a matrix to update the variance matrix;
however, the size of the matrix being inverted (X̂ A−1 X̂T+1)−1 is much smaller and
less computationally expensive than if it were to be performed across the entire data
set. Once the updated variance matrix has been calculated, the weights matrix for
the regression function is updated to β̂ = β − Â−1 X̂T(X̂β − ŷ), where ŷ represents
the column vector of the output variable for the newly added training points. Future
predictions use the updated β̂ as the weights matrix for Eq. (9.1).

9.3.2.2 On-Line Feature Selection

The purpose of feature selection is to determine a subset of the most relevant features
of the training data. A number of possible feature selection methods are available
to help choose which features affect the cycle count the most. For a continuous
learning simulator, it is necessary to have an on-line feature selector as the relevant
features are likely to be different for each benchmark.

The calculation of relevant features is performed every time the training data is
updated, potentially requiring the recalculation of the training matrix. If the list of
relevant features does not change then the new training point can update the matrix
using the standard incremental linear regression, however; a, change in relevant fea-
tures requires a complete recalculation of the training matrix. For this reason, the
threshold for deciding which features are relevant must be set such that feature selec-
tion changes are infrequent, while ensuring that all of the relevant features are kept.
In addition to the stability of chosen feature sets, the feature selection algorithm is
required to be efficient as possible, because its repeated execution contributes to the
overall time for simulation. For these reasons, the sum of non-zero values within
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a feature is chosen, allowing for an easily determined threshold to be used. Sums
can be maintained between training updates, removing the need for repeated passes
through the data set.

9.3.2.3 Dealing with a Less Confident Prediction

When a less-confident prediction occurs that is below the threshold, the situation can
be handled by two distinct methods: a fast patch scheme or a conservative rollback
and replay scheme.

Patch. The simulator accepts a less-confident prediction, but falls back to cycle-
accurate mode and updates the training matrix based on the next few time
slices.

Rollback–replay. The simulator does not accept a less-confident prediction, and the
simulation is rolled back to a previously known state, i.e., just before the last
time slice began, and re-runs the simulation in cycle-accurate mode, updating
the training matrix as necessary.

The implementation of the rollback–replay scheme is based on the existing
checkpointing facility of the simulator that has been modified to store the simulation
state in memory rather than external storage. In addition, we have implemented a
copy-on-write mechanism to further reduce the runtime overhead associated with
the regular snapshots of the simulation state.

9.3.3 Prediction Accuracy

In this section, we discuss the accuracy of the performance estimation methodology
introduced in this chapter. Table 9.2 summarizes the seven benchmark suites that we
have used in our experiments, resulting in a total of 293 applications.

Table 9.2 Overview of the benchmark suites used in our experiments

Benchmark suite Description

DSPstone Small DSP kernels
UTDSP Small DSP kernels and applications
SWEET WCET Worst case execution time benchmarks
MediaBench Multimedia applications
EEMBC Automotive, consumer, digital, entertainment, networking,

office automation and telecom applications
Pointer-intensive benchmarks [10] Non-trivial pointer-intensive applications
StreamIt benchmarks Cryptography, software radio, audio processing

In our experiments, simulations were performed in sequence, with the ini-
tial baseline cycle-accurate simulation, followed by our new simulation method.
Figure 9.5 illustrates accuracy that can be expected from our statistical performance
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estimation scheme. Estimated cycle counts (for a time slice length of 100) are com-
pared to the actual, observed cycle counts, and both sets of values are plotted in
the scatter graph in Fig. 9.5a. For programs varying by several orders of magnitude
in total execution time, our scheme is highly accurate and the estimations come
close to the actual values as can be seen by proximity of data points near or on the
ideal straight line. In Fig. 9.5b the distribution of the estimation error is shown. The
vast majority of the estimations are centered closely around the 0% error mark, and
virtually all predictions fall into the ±2σ interval corresponding to an error margin
of <11%.

(a) Estimated vs. observed cycle counts (b) Distribution of the estimation error

Fig. 9.5 Accuracy of the estimated cycle counts (for an initial time slice length = 100)

Our performance estimation scheme displayed improvements of ≈50% speedup
with an mean average error of 2.36% and a maximum error of, at best, 19.97%.
Simulations proved that a shorter original time slice is effective at allowing shorter
benchmarks to receive the performance benefits without adversely affecting longer
benchmarks. They also proved that having a variable prediction time slice posed
additional performance benefits without severely affecting error margins; however,
this cannot increase too quickly, as this prevents the predictor from receiving ade-
quate training data and as such negates any performance benefits. There is also little
to no benefit in rerunning “less-confident” prediction blocks in cycle-accurate mode
to ensure accuracy.

Small applications with less than ≈106 instructions do not benefit from our
scheme as they spend their entire execution in cycle-accurate training mode. How-
ever, this is not critical as applications of this size are simulated within less than 1 s
even using the slowest available mode of simulation.

Sum of non-zero values feature selection and incremental linear regression have
low computational complexity and are very suitable for online or just-in-time per-
formance modeling. In fact, profiling of the extended simulator has revealed that
only 2–3% of the overall execution time are spent for updates of the performance
model and predictions and, hence, are making their contribution negligible.
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9.4 Conclusions

In this chapter, we have shown how dynamic adaptation, through a combination of
JIT binary translation and on-line learning of performance models, enables high-
speed cycle-approximate processor simulation. We have given an overview of how
these adaptation techniques are deployed in the Edinburgh high-speed simulator. We
leverage the precise state observability of EHS to provide a golden reference model
for SoC designs, now in working silicon, and the performance models enable rapid
design-space exploration for our next-generation SoC research.

The techniques described in this chapter can be extended to include storing the
prediction model between simulations. This would allow the simulator to start mak-
ing predictions from the start of execution and, hence, removing the initial train-
ing period. Furthermore, we are currently extending our performance estimation
methodology to work with the faster, but even more high-level JIT-compiled sim-
ulation mode offered by the simulator used in this chapter. At the same time, we
consider the inclusion of other metrics such as power, energy, and thermal distribu-
tion in our framework.
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Chapter 10
Representative Sampling Using SimPoint

Greg Hamerly, Erez Perelman, Timothy Sherwood, and Brad Calder

Abstract SimPoint is a technique used to pick what parts of the program’s exe-
cution to simulate in order to have a complete picture of execution. SimPoint uses
data clustering algorithms from machine learning to automatically find repetitive
(similar) patterns in a program’s execution, and it chooses one sample to repre-
sent each unique repetitive behavior. Each sample is then simulated and weighted
appropriately, and then together the results from these samples represent an accurate
picture of the complete execution of the program.

10.1 Introduction

Nearly all industry-standard benchmarks require the execution of a suite of pro-
grams. For example, the SPEC CPU2000 benchmark suite consists of 26 different
programs, requiring the execution of a combined total of approximately 6 trillion
instructions. Still worse, architecture researchers need to simulate each benchmark
over a variety of different architectural configurations and design options to find the
set of features that provide an appropriate trade-off between performance, complex-
ity, area, and power. The same program binary, with the exact same input, may be
run hundreds or thousands of times to examine how, for example, the effectiveness
of a given architecture changes with its cache size. Researchers need techniques
which can reduce the number of machine-months required to estimate the impact of
an architectural modification without introducing an unacceptable amount of error
or excessive simulator complexity. We present a method, distributed as a software
package called SimPoint, which can meet this need by uncovering and exploiting
the structured way in which individual programs change behavior over time.

A program’s behavior often changes as it executes. These changes are not ran-
dom, but rather are often structured as sequences of a small number of recurring
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behaviors, which we term phases. Identifying this repetitive and structured behavior
can be of great benefit, since it means we only need to sample each unique behav-
ior once to create a complete representation of the program’s execution. This is
the underlying philosophy of SimPoint [2, 5, 6, 10, 13, 14]. SimPoint intelligently
chooses a very small set of samples from an executed program called simulation
points that, when simulated and weighted appropriately, provide an accurate picture
of the complete execution of the program. Simulating in detail only these carefully
chosen simulation points can save hours of simulation time over a random sampling
of the program, while still providing the accuracy needed to make reliable decisions
based on the outcome of the cycle level simulation.

Before we developed SimPoint, architecture researchers would often simulate
SPEC programs for 300 million instructions from the start of execution, or fast
forward 1 billion instructions to try to get past the initialization part of the pro-
gram. These ad hoc techniques can result in very high error rates. In some of
the cases presented later in this chapter, errors as high as 3,736% have been
observed. In contrast, SimPoint achieves very low error rates (2% average error,
8% maximum error) and on average reduces simulation time by a factor of 1,500x,
compared to simply simulating the whole program. This approach is now widely
used both by researchers in the architecture community and by companies such
as Intel [9]. Since then, other sampling techniques have been proposed, such as
SMARTS, see Chapter 11, or dynamic sampling as implemented within COTSON,
see Chapter 4. This chapter describes the core ideas behind SimPoint, includ-
ing how repetitive phase behaviors can be automatically found in programs with
machine learning and how knowledge of these behaviors can improve simulation
methodology.

10.2 Methodology

While the techniques presented here have been shown to be effective across many
architectures and benchmark suites, to ground our discussion of the concepts we use
data from a real set of experiments. Specifically, we present data for the complete
set of SPEC CPU2000 programs for multiple inputs using the Alpha binaries from
the SimpleScalar website. All of the frequency vector profiles and simulation results
were gathered using SimpleScalar [3]. To generate our baseline results, we executed
all programs from start to completion using SimpleScalar, gathering the hardware
metrics of interest. The baseline microarchitecture model is detailed in Table 10.1.

To examine the accuracy of our approach we provide results in terms of cycles per
instruction (CPI) prediction error. CPI is a commonly used performance metric in
the architecture community because assuming the architecture changes proposed do
not effect the number of instructions committed, then CPI is proportional to execu-
tion time. The CPI prediction error is the percent difference between CPI predicted
using only simulation points chosen by SimPoint and the baseline (true) CPI of the
complete execution of the program.
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Table 10.1 Baseline simulation model
I Cache 16k 2-way set-associative, 32 byte blocks, 1 cycle latency

D Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle latency
L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 20 cycle latency
Main Memory 150 cycle latency
Branch Pred hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k bimodal predictor
O-O-O Issue out-of-order issue of up to 8 operations per cycle, 128 entry re-order

buffer
Mem Disambig load/store queue, loads may execute when all prior store addresses

are known
Registers 32 integer, 32 floating point
Func Units 8-integer ALU, 4-load/store units,

2-FP adders, 2-integer MULT/DIV,
2-FP MULT/DIV

Virtual Mem 8K byte pages, 30 cycle fixed TLB miss latency after earlier-issued
instructions complete

10.3 Defining Phase Behavior

Since phases are the way we describe recurring behaviors of a program executing
over time, we begin by describing phase analysis with a demonstration of the time-
varying behavior [12] of two programs from the SPEC 2000 benchmark suite, gcc
and gzip. To characterize the behavior of these programs we have simulated their
complete execution from start to finish. Each program executes many billions of
instructions, and gathering these results took several machine-months of simula-
tion time. The behavior of each program is shown in the top graphs of Figs. 10.1
and 10.2. The top graph in each figure shows how the CPI rate changes for these
two programs over time. Each point on the graph represents the average CPI taken
over a window (or interval) of 10 million executed instructions. These graphs show
that programs are fairly complex, changing behaviors frequently over the course of
their executions.

Note that not only do the behaviors of the programs change over time, they
change on the largest of timescales, and even at a large scale one can find repeating
behaviors. Programs may have stable behavior for billions of instructions and then
change suddenly. In addition to CPI, we have found for the SPEC 95 and 2000
programs that the behavior of all of the architecture metrics (branch prediction,
cache misses, etc.) tend to change in unison, though not necessarily in the same
direction [12, 14]. These corresponding changes are due to underlying changes in
program execution behaviors.

The fundamental methodology used in this work is the ability to automatically
identify these underlying program changes without relying on architectural metrics.
To ground our discussion in a common vocabulary, the following is a list of defini-
tions to describe program behavior and its automated classification.
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Fig. 10.1 These plots show the relationship between measured performance (CPI) and code usage
for the program gzip-graphic and SimPoint’s ability to capture phase information by only look-
ing at what code is being executed. The horizontal axis represents execution of the program over
time. Each plotted point represents one 10-million instruction interval. The top plot shows the CPI
for the executing program. The middle plot shows the code usage distance of each interval to the
average code usage of the entire program (using basic block vectors as explained in Section 10.4).
Lower distances indicate higher similarity. The bottom plot shows how SimPoint classifies each
interval into one of four phases. The phase transitions correspond to changes in the CPI in the top
graph, though SimPoint does not use metrics like CPI to classify intervals
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Fig. 10.2 These plots are analogous to Fig. 10.1, but for the benchmark gcc-166. This benchmark
exhibits more complicated behaviors than gzip-graphic, and hence SimPoint uses more phases
to represent its behavior
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• Interval—To perform our analysis we break a program’s execution up into non-
overlapping intervals of execution. An interval is a section of contiguous exe-
cution (a time slice) of a program’s execution. For example, the first 100 million
executed instructions would belong to the first interval, the next 100 million to the
second interval. In the work presented here all intervals are chosen to be the same
length, as measured in the number of instructions committed within an interval.
This is usually 1, 10, or 100 million instructions, as used in [10].

• Similarity—A similarity metric measures the similarity in behavior between two
intervals of a program’s execution and is specific to the representation of those
intervals.

• Phase—A set of intervals within a program’s execution that all have similar
behavior, regardless of temporal adjacency. A phase may be made up of intervals
which are disjoint in time; we would call this a phase with repeating behavior.
A “well-formed” phase should have intervals with similar behavior across vari-
ous architecture metrics (e.g., CPI, cache misses, branch misprediction). In this
chapter we consider the terms “cluster” and “phase” to be equivalent.

• Phase classification—Using machine learning to group intervals from a pro-
gram/input pair into phases (clusters) with similar behavior.

10.4 The Strong Correlation Between Code and Performance

In this section we describe how we identify phase behavior in an architecture-
independent fashion.

10.4.1 Using an Architecture-Independent Metric for Phase
Classification

To find program phases, we need a metric of similarity between different parts
of a program’s execution. In creating this metric it is advantageous to not rely
on hardware-based statistics such as cache miss rates or performance (i.e., CPI),
since using these would tie the phases to statistics that change depending on the
architecture configuration. If such statistics were used, the phases would need to be
re-analyzed every time there was a change to some architectural parameter (either
statically if the size of the cache changed or dynamically if some policy changes
adaptively). This is not acceptable, since our goal is to find a set of samples that
can be used across an architecture design space exploration, where many of these
parameters may change. To address this, we need a metric that is independent of
any particular hardware-based statistic, but still relates to the fundamental changes
in behavior like those shown in the top graphs of Figs. 10.1 and 10.2.

An effective way to design such a metric is to base it on the behavior of a pro-
gram in terms of the code that is executed over time. We have shown that there is
a very strong correlation [5] between the set of paths executed in a program and
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the time-varying architectural behavior observed. The intuition behind this is that
the executed code determines the behavior of the program. Thus it is possible to
find the phases in programs using only a metric related to how the code is being
exercised (i.e., both what code is touched and how often). The central idea behind
SimPoint is that it can find the phase behaviors (as illustrated in the top graphs of
Figs. 10.1 and 10.2) by examining only the frequency with which the code parts
(e.g., basic blocks) execute over time.

10.4.2 Basic Block Vector

The basic block vector (BBV) [13] is a structure designed to concisely capture
information about how a program is changing behavior over time. A basic block
is a section of code (i.e., a contiguous set of instructions) that executes from start to
finish with one entry and one exit. The metric we use for comparing two time inter-
vals in a program is based on the differences in the execution frequencies for each
basic block executed during those two intervals. The intuition behind this is that the
behavior of the program at a given time is directly related to the code it is executing
during that interval, and basic block vectors provide us with this information.

A program, when run for any interval of time, will execute each basic block
a certain number of times. This information provides a code signature for that
interval of execution and shows where the application is spending its time in the
code. Knowing the basic block distributions for two different intervals gives two
separate signatures which we can compare to find out how similar the intervals are.
If the signatures are similar, then the two intervals spend about the same amount
of time in the same code, and the performance of those two intervals should be
similar.

We represent a basic block vector as a one-dimensional array, with one element
in the array for each static basic block in the program. Each interval in an executed
program is represented by one BBV, and at the beginning of each interval, its cor-
responding BBV has all zeros. During each interval, we count the number of times
each basic block has been entered and record that number into the corresponding
element in the vector. This number is weighted by the number of instructions in the
basic block, since we want every individual instruction to have the same influence.
Therefore, each element in the array is the count of how many times its correspond-
ing basic block has been entered during an interval of execution, multiplied by the
number of instructions in that basic block. For example, if the 50th basic block has
two instructions and is executed 15 times in an interval, then bbv[50] = 30 for that
interval. At the end of an interval’s execution, we normalize the BBV to sum to 1.

We call the vectors used to guide phase analysis frequency vectors, of which
basic block vectors are one type. Frequency vectors can represent basic blocks,
branch edges, or any other type of program-related structure which provides a rep-
resentative summary of a program’s behavior for each interval of execution. We
recently examined frequency vector structures other than basic block vectors for
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the purpose of phase classification. We have looked at frequency vectors for data,
loops, procedures, register usage, instruction mix, and memory behavior [6]. We
found that using register usage vectors, which simply counts for a given interval the
number of times each register is defined and used, provides similar accuracy to using
basic block vectors. In addition, using only loop and procedure branch execution
frequencies performs almost as well as using the full basic block information. We
also found, for SPEC 2000 programs, that augmenting BBVs by including both
code and data access patterns into the vectors did not improve classification over
just using code [6].

10.4.3 Basic Block Vector Difference

In order to find patterns in a program we must first have some way of comparing
the similarity of two basic block vectors. The operation should take two basic block
vectors and return a single number corresponding to how similar (or different) they
are.

There are several ways of measuring the similarity of two vectors, such as taking
the dot product between the vectors, finding the Euclidean (2-norm) distance of
the connecting vector, or Manhattan (1-norm) distance of the connecting vector.
The Euclidean distance has been shown to be effective for comparing basic block
vectors once they have been subjected to random projection to reduce their dimen-
sionality [10, 14], and this is what we use for the SimPoint analysis. In later work
we show that the Manhattan distance, which can be more efficiently implemented
in hardware, can also be effective if an on-the-fly phase analysis (e.g., predicting
phases during computation), is desired [7, 15].

10.4.4 Correlation Between Code Signatures and Performance

For a detailed study showing that there is a strong correlation between executed
code and real performance, please see [5]. The top two graphs of Fig. 10.2 give
one illustration of this correlation by showing the time-varying CPI and BBV dis-
tance graphs next to each other for gcc-166. The top graph plots the CPI for each
interval executed showing how the program’s CPI varies over time. Similarly, the
BBV distance graph plots for each interval the Manhattan distance of the BBV
(code signature) for that interval from the whole program’s target vector. The whole
program’s target vector is a BBV that comes from viewing the whole program as
a single interval. The same information is also provided for gzip in the top two
graphs of Fig. 10.1. These graphs show that changes in CPI have corresponding
changes in code signatures, which is one indication of strong phase behavior for
these applications.

These graphs show a strong correlation between code changes and CPI changes
even for complex programs like gcc. The graphs for gzip show that phase behav-
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ior can be found even if the intervals’ CPIs have small variance. This brings up
an important point about classifying intervals based on code similarity rather than
based on similarity of CPI or some other hardware metric. Assume we have two
intervals with different code signatures but they have very similar CPIs because both
of their working sets fit completely in the cache. During a design space exploration
search, as the cache size changes, their CPIs may differ dramatically if one of them
no longer fits into the cache. This is why it is important to perform the phase analysis
by comparing the code signatures independent of the underlying architecture. We
have found that the BBV code signatures correctly identify differences like these,
which cannot be seen by looking at just the CPI.

10.5 Automatically Finding Phase Behavior

In this section we describe the algorithms used to automatically detect patterns using
the frequency vectors described in the previous section.

10.5.1 Using Clustering for Phase Classification

A primary goal of SimPoint is to have an automated way of extracting phase infor-
mation from programs. Data clustering algorithms have been shown to be very effec-
tive at breaking the complete execution of a program into phases that have similar
frequency vectors [14]. Because the frequency vectors correlate to the overall perfor-
mance of the program, grouping intervals based on their frequency vectors produces
phases that are similar not only in the distribution of program structures used but
also in every other architecture metric measured, including overall performance.

The goal of clustering is to divide a set of points into clusters such that points
within each cluster are similar to one another (by some metric), and points in differ-
ent clusters are different from one another. In this way, if we have a good metric to
compare intervals to one another, a “phase” is really just a “cluster” of intervals.

SimPoint uses k-means [8], an efficient and well-known clustering algorithm,
to split program intervals into phases. One drawback of the k-means algorithm is
that it requires the number of clusters k as an input to the algorithm, but we do not
know beforehand what value is appropriate. To address this, we run the algorithm
for several values of k and then use a penalized likelihood score to guide our final
choice for k. Our goal is to choose a clustering with a small number of clusters
which still models the program behavior well.

The following steps summarize the SimPoint phase clustering algorithm at a high
level.

1. Profile the program and divide its execution into contiguous intervals of fixed
or varying length. For each interval, collect a frequency vector tracking the pro-
gram’s use of some program structure (e.g., basic blocks, branch edges).
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2. Reduce the dimensionality of the frequency vector data to a much smaller num-
ber of dimensions using random linear projection.

3. Run k-means multiple times on the projected data with several values of k in the
range from 1 to K (a user-prescribed maximum number of phases). Each run pro-
duces a clustering, which is a partition of the data into k different phases/clusters.

4. Score each clustering with different k by the Bayesian information criterion
(BIC) [11]. A high BIC score indicates that the clustering is a good fit to the
data.

5. Choose the clustering with a small k such that its BIC score is nearly as good
as the best observed. The chosen clustering is the final grouping of intervals into
phases.

This algorithm has several important parameters: interval length, projected
dimension, the maximum number of clusters K , how the BIC is to be used to select
the best clustering, etc. Each must be tuned to create accurate and representative
simulation points using SimPoint.

10.5.1.1 Random Projection and Sampling of Intervals

Many clustering algorithms suffer from the so-called curse of dimensionality, which
refers to the fact that finding an optimal clustering becomes intractable as the num-
ber of dimensions increases. For basic block vectors, the number of dimensions is
the number of executed basic blocks in the program, which ranges from 2,756 to
102,038 for the SPEC benchmark suite, and could easily grow into the millions for
very large programs. We wish to reduce the number of dimensions k-means must
analyze, while preserving the structure of the data.

SimPoint uses random linear projection [4] to create a low-dimensional space
into which it projects the original basic block vectors. Consider a set of n basic
block vectors with d dimensions, represented as an n ×d matrix called X . To obtain
the projected version X ′ having d ′ dimensions, create a projection matrix P of size
d × d ′. Each entry in P is chosen uniformly randomly from [−1, 1]. Then calculate
X ′ = X × P using matrix multiplication. Dasgupta [4] shows that random linear
projection as a preprocessing step before clustering has several desirable theoretical
properties, including preserving the relative structure of the data. We found in earlier
work [14] that projecting to 15 dimensions is low enough to be computationally
tractable, but sufficiently high to discover the different phases of execution with
clustering. Figure 10.3 shows a projection of gzip down to two dimensions. The
projection clearly retains the program’s clustered structure, even when using such a
low-dimensional representation.

Some benchmark programs run for such a long time that the number of intervals
(i.e., basic block vectors) that SimPoint must analyze becomes prohibitively large.
In such cases, k-means may run too slowly or may not run at all due to mem-
ory restrictions. It is reasonable to randomly choose a sample of the intervals for
k-means to cluster, which speeds up the analysis tremendously. SimPoint has the
functionality to automatically choose a sample of a specified size, run k-means on
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Fig. 10.3 This plot shows a two-dimensional projection of the basic block vectors for the program
gzip, having 1038 total intervals, and clustered into three clusters with k-means. The lines show
divisions between these three primary clusters. Note that SimPoint normally operates in more than
two dimensions, but this illustrates the fact that that program behavior does form natural groups
that can be found through data clustering even at low dimensions

this sample of intervals, and then assign phase ids to and select simulation points
from the entire set of intervals (including those left out of the k-means sample).
This has been found to significantly reduce the running time of SimPoint, while still
maintaining its accuracy.

10.5.1.2 Bayesian Information Criterion

To compare the different clusterings formed for different k, we use the Bayesian
information criterion, or BIC [11], as a measure of the “goodness of fit” of a clus-
tering to a data set. The BIC is an approximation of the probability of the clustering,
given the data that has been clustered. Thus, the larger the BIC score, the higher the
probability that the clustering being scored is a “good fit” to the data being clustered.
The BIC formulation we use is appropriate for clustering with k-means; however,
other formulations of the BIC could also be used for other clustering models.

There are two parts of the BIC: the likelihood and the penalty. The likelihood is a
statistical measure of how well the clustering predicts the observed data. However,
the likelihood tends to increase without bound as more clusters are added. Therefore,
the second term is a penalty that offsets the likelihood growth based on the number
of clusters.

For a set of basic block vectors, SimPoint calculates the BIC score for each k-
means clustering, varying k from 1 to K . It then chooses the clustering that achieves
a BIC score that is close to the highest BIC score seen.
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10.5.2 Clusters and Phase Behavior

The bottom plots in Figs. 10.1 and 10.2 show the results of running our phase-
finding clustering algorithm on gzip and gcc. These results use an interval length
of 10 million instructions and the maximum number of phases (K ) is set to 10. The
horizontal axis corresponds to the execution of the program (in billions of instruc-
tions), and each interval is classified to belong to one of the clusters (labeled on the
vertical axis).

For gzip, the program’s execution is partitioned into four clusters. Looking at
the middle plot for comparison, the cluster behavior captured by our algorithm lines
up quite closely with the behavior of the program. Clusters 2 and 4 represent the
large sections of execution that are similar to one another. Cluster 3 captures the
smaller phase that lies in between these larger phases. Cluster 1 represents the phase
transitions between the three dominant phases. The intervals in cluster 1 are grouped
into the same phase because they execute a similar combination of code, which
happens to be part of the code behavior in either cluster 2 or 4 and part of code
executed in cluster 3. These transition points in cluster 1 also correspond to the
same intervals that have large spikes in CPI seen in the top graph (these spikes are
due to increased cache misses for those regions).

The bottom plot of Fig. 10.2 shows how gcc is partitioned into eight clusters.
Comparing this to the middle and top plots in the same figure, we see that even
the more complicated behavior of gcc is captured well by SimPoint. The dominant
behaviors in the top two graphs can be seen grouped together in phases 1, 3, 5, and 7.

10.6 Choosing Simulation Points from the Phase Classification

After the phase classification algorithm has done its job, intervals with similar code
usage will be grouped together into the same phases (clusters). Then from each
phase, SimPoint chooses one representative interval that will be simulated in detail
to represent the behavior of the whole phase. Therefore, by simulating only one
representative interval per phase, we can extrapolate and capture the behavior of the
entire program.

To choose a representative for a cluster, SimPoint picks the interval that is closest
(by Euclidean distance) to the cluster’s k-means center. The center can be viewed
as a pseudo-interval which behaves most like the average behavior of the entire
phase. Most likely there is no interval that exactly matches the center, so SimPoint
chooses the closest interval. The selected interval is called a simulation point for
that phase [10, 14]. We can then perform detailed simulation on the set of simulation
points.

As part of its output SimPoint also gives a weight for each simulation point. Each
weight is a fraction of the total number of instructions represented by the simulation
point’s cluster divided by the number of instructions in the program. The weight
for a phase represents the percentage of execution spent in that phase (cluster) and
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the percentage of execution the simulation point from that phase should represent
when estimating the overall program’s execution. With the weights and the detailed
simulation results of each simulation point, we can compute a weighted average for
the architecture metric of interest (CPI, cache miss rate, etc.) for the entire program’s
execution.

These simulation points are chosen once for a program/input combination
because they are chosen based only on how the code is executed and not based
on architecture metrics. Therefore, they only need to be calculated once for a
binary/input combination and can be used repeatedly across all of the runs for an
architecture design space exploration.

10.6.1 Simulation Time, K , and Interval Granularity

The number of simulation points that SimPoint chooses has a direct effect on
the simulation time that will be required for those points. The maximum number
of clusters, K, along with the interval length, represents the maximum amount
of simulation time that may be needed. When fixed length intervals are used,
(K × interval length) is a limit on the number of simulated instructions.

SimPoint allows users to trade-off simulation time with accuracy. Researchers in
architecture tend to want to keep simulation time to below a fixed number of instruc-
tions (e.g., 300 million) for a run. If this is a goal, we find that an interval length of
10 million instructions with K = 30 provides very good accuracy with reasonable
simulation time (220 million instructions on average) for SPEC programs. If even
more accuracy is desired, then decreasing the interval length to 1 million and setting
K = 300 performs well for the SPEC 2000 programs, as does setting K = √

n
(where n is the number of clustered intervals). Empirically we discovered that as
the interval granularity becomes finer, the number of phases discovered increases at
a sub-linear rate. The upper bound defined by this square-root heuristic works well
for the SPEC benchmarks.

The length of the interval chosen by users of SimPoint depends on their sim-
ulation infrastructure and how much they want to deal with warmup. Warmup is
the process of initializing the simulator’s state (caches, branch predictor, etc.) at
the start of a simulation point so that it is the same as if we simulated from the
beginning of the program to that point. For many programs, using a long interval
length (e.g., more than 100 million instructions) will make warmup unnecessary.
This is the approach used by Intel’s PinPoint for simulation [9]. They simulate
intervals of length 300–500 million instructions so they do not have to worry about
implementing warmup in their simulation infrastructure. With such long intervals
the architecture structures are warmed up sufficiently during the beginning of the
interval’s execution to provide accurate simulation results. In comparison, short
interval lengths can be used, but this requires having an approach for warming up
the architecture state. One way to do this is with an architecture checkpoint, which
stores the potential contents of the major architecture components at the start of
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the simulation point [1]. This can significantly reduce warmup time, since warmup
consists of just reading the checkpoint from a file and using it to initialize the archi-
tecture structures.

10.6.2 Accuracy of SimPoint

We now show the accuracy of using SimPoint for the complete SPEC 2000 bench-
mark suite and their reference inputs. Figure 10.4 shows the simulation accuracy
results using SimPoint (and prior methods) for the SPEC 2000 programs when com-
pared to the complete execution of the programs. For these results we use an interval
length of 100 million instructions and limit the number of simulation points to no
more than 10. With the above parameters SimPoint finds four phases for gzip, and
eight for gcc. As described above, one simulation point is chosen for each cluster,
so this means that a total of 400 million instructions were simulated for gzip. The
results show that this results in only a 4% error in performance estimation for gzip.
We measure the relative prediction error on a performance metric like CPI or IPC
for a benchmark as

Error = |True value − SimPoint estimate|
True value
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Fig. 10.4 Simulation accuracy for the SPEC 2000 benchmark suite when performing detailed
simulation for several hundred million instructions compared to simulating the entire execution
of the program. Results are shown for simulating from the start of the program’s execution, for
fast-forwarding 1 billion instructions before simulating, and for using SimPoint to choose at most
ten 100-million-instruction intervals to simulate. The results are shown as percent error of predicted
IPC, which is how much the estimated IPC using SimPoint is different from the complete execution
of the program. IPC is the inverse of CPI. The median and maximum results are for the complete
SPEC 2000 benchmarks
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For these results, we compare this estimated IPC using SimPoint to the baseline
IPC. IPC (instructions per cycle) is the inverse of CPI and often used instead of CPI
when describing performance. The baseline was gathered from spending months of
simulation time to simulate the entire execution of each SPEC program. The results
in Fig. 10.4 compare SimPoint to how architecture researchers used to choose where
to simulate before SimPoint. The first technique was to just simulate the first N mil-
lion instructions of a benchmark’s execution. The second technique was to blindly
skip the first billion instructions of execution to get past the initialization of the
program’s execution and then simulate for N million instructions. The results show
that simulating from the start of execution, for the exact same number of instruc-
tions as simulated with SimPoint, results in a median error of 58%. If instead, we
fast forwarded for 1 billion instructions and then simulate for the same number of
instructions as chosen by SimPoint, we see a median 23% IPC error. When using
SimPoint to create multiple simulation points we have a median IPC error of 2%.
Note that the maximum error seen for the prior techniques is significant for the
SPEC programs, but it is very reasonable (only 8%) for SimPoint.

Figure 10.5 shows the accuracy of SimPoint for all of the SPEC 2000 programs,
along with the number of simulation points chosen. These experiments use K = 30
and an interval size of 10 million instructions per interval. The results show that
SimPoint chose 22 simulation points on average.

Fig. 10.5 These plots show the CPI error and number of simulation points chosen by SimPoint on
the SPEC CPU 2000 suite of benchmarks
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In terms of CPI, SimPoint is able to achieve a 1.5% CPI error rate averaged across
all SPEC 2000 benchmarks, with a maximum error of around 6%. These results
require an average simulation time of about 220 million instructions per program.
These error rates are sufficiently low to make design decisions, and the simulation
time is small enough to do large-scale design space explorations.

10.6.3 Relative Error During Design Space Exploration

The absolute error of a program/input run on one hardware configuration is not as
important as tracking the changes in metrics across different architecture configura-
tions. There is a lot of discussion and research about getting lower simulation error
rates. But what often is not discussed is that a low error rate for a single configuration
is not as important as achieving the same relative error rates across the design space
search and having them all biased in the same direction.

We now examine how SimPoint tracks the relative change in hardware metrics
across several different architecture configurations. To examine the independence
of the simulation points from the underlying architecture, we used the simulation
points for the SimPoint algorithm with an interval length of 1 million instructions
and the maximum K set to 300. For the program/input runs examined, we performed
full program simulations while varying the memory hierarchy, and for every run we
used the same set of simulation points when calculating the SimPoint estimates. We
varied the configurations and the latencies of the L1 and L2 caches as described
by [10].

Figure 10.6 shows the results across 19 different architecture configurations for
gcc-166. The left y-axis represents the performance in instructions per cycle (IPC)
and the x-axis represents different memory configurations from the baseline archi-
tecture. The right y-axis shows the miss rates for the data cache and unified L2
cache, and the L2 miss rate is a local miss rate. For each metric, two lines are shown:
“True” for the true metric from the complete detailed simulation and the “SP” for
the estimated metric using our simulation points. For the results, the configurations
on the x-axis are sorted by the IPC of the full run.

This figure shows that the simulation points, which are chosen by only looking at
code usage, can be used across different architecture configurations to make accu-
rate architecture design trade-off decisions and comparisons. The simulation points
are able to track the relative changes in performance metrics between configurations.
This means we are able to make the same decision between two architectures, in
terms of which one is better, using SimPoint’s estimate instead of complete simu-
lation of the program. One interesting observation is that although the simulation
results from SimPoint have a bias in its predictions, this bias is consistent across
the different configurations for a given program/input. We observed this to be true
for both IPC and cache miss rates. We believe one reason for the direction of the
bias is that SimPoint chooses the most representative interval from each phase, and
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Fig. 10.6 This plot shows the true and estimated IPC and cache miss rates for 19 different archi-
tecture configurations for the program gcc. The left y-axis is for the IPC and the right y-axis is for
the cache miss rates for the L1 data cache and unified L2 cache. Results are shown for the complete
execution of the configuration and when using SimPoint

intervals that represent phase change boundaries are less likely to be fully repre-
sented across the chosen simulation points.

10.7 Summary

The main idea behind SimPoint is the realization that programs typically only
exhibit a few unique behaviors which are interleaved with one another through
time. By finding these behaviors and then determining the relative importance of
each one, we can maintain both a high level picture of the program’s execution and
at the same time quantify the cycle level interaction between the application and the
architecture.

The methods described in this chapter are distributed as part of SimPoint [10, 14].
SimPoint automates the process of picking simulation points using an off-line phase
classification algorithm based on k-means clustering, which significantly reduces
the amount of simulation time required. Selecting and simulating only a handful
of intelligently picked sections of the full program provide an accurate picture of
the complete execution of a program, which gives a highly accurate estimate of
performance. The SimPoint software can be downloaded at:

http://www.cse.ucsd.edu/users/calder/simpoint/
For the industry-standard SPEC programs, SimPoint has less than a 6% error

rate (2% on average) for the results in this chapter and is 1,500 times faster on
average than performing simulation for the complete program’s execution. Because
of this time savings and accuracy, our approach is currently used by architecture
researchers and industry companies (e.g., [9] at Intel) to guide their architecture
design exploration.
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Chapter 11
Statistical Sampling

Babak Falsafi

Abstract Cycle-accurate full-system multiprocessor simulation is impractical
because it is often six or more orders of magnitude slower than real hardware.
Statistical sampling of microarchitecture simulation reduces overall cycle-accurate
simulation for complete program runs by four orders of magnitude and allows for
embarrassingly parallel simulation of independent windows of cycle-accurate sim-
ulation. Unlike conventional schemes measuring a single or a few simulation win-
dows, statistical sampling aggregates results over hundreds of short measurements
to provide a rigorous confidence in estimates.

11.1 Introduction

Cycle-accurate simulation often takes four or more orders of magnitude slowdown
as compared to real hardware. Full-system simulation is up to a million times
slower than real hardware because it requires simulating many CPUs, peripherals,
and other system components that can slow down simulation by another factor of
10–100. Finally, multiprocessor simulation exacerbates this slowdown because it
often increases demand on simulation linearly with an increase in the number of
processors in the target system. This speed difference leads to intractable turnaround
times if simulating the complete execution of computer benchmarks, in particu-
lar, for full-system multiprocessor workloads. These benchmarks are often longer
than their uniprocessors counterparts to compensate for non-deterministic thread
scheduling and perturbation effects from the OS and I/O that can lead to significant
short-term performance variation.

Statistical sampling makes cycle-accurate full-system multiprocessor simulation
tractable. Application execution is often highly repetitive because of repetitive algo-
rithmic control flow resulting in homogeneity in application performance. Apply-
ing statistical sampling theory to cycle-accurate simulation enables exploiting this
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homogeneity to eliminate redundant measurement and minimizing the total amount
of cycle-accurate simulation.

Statistical sampling offers a key advantage over conventional approaches to mea-
surement using cycle-accurate simulation. Unlike conventional approaches perfor-
mance measurement through a single or a few long windows of cycle-accurate
simulation, [7], statistical sampling prescribes a large number of minimal windows
of simulation. Therefore, statistical sampling uses theory to determine the optimal
total length of cycle-accurate simulation given a confidence in performance esti-
mates, guaranteeing that the results are representative of the full application execu-
tion. Therefore, sampling is not only desirable from a turnaround perspective but
also from a measurement accuracy and confidence perspective.

Breaking down simulation into a large number of small measurements enables
a number of optimizations. Besides over ten-thousand fold reduction in total sim-
ulation turnaround, sampling allows for embarrassingly (e.g., >500-way) parallel
simulation because measurements often occur over distant windows of execution
and are as such independent. Such parallelism is “free,” and complementary to any
form of parallelism a given cycle-accurate simulator may exploit.

Moreover, randomized sampling allows for online and flexible throttling of sim-
ulation turnaround based on the desired error and confidence in measurement. With
sampling, researchers can prune the space at earlier design stages quicker with
higher error tolerance, tuning the error to lower thresholds at later design stages
at the cost of higher turnaround time.

Finally, variability in performance estimates is often higher within an applica-
tion’s execution on a given target platform than across platforms. “Matched-pair”
comparison is another statistical tool that optimizes simulation turnaround for a
speedup comparison between two designs. Such a study only requires simulating
enough windows of execution to capture the variability across the two designs,
reducing overall simulation turnaround by up to an order of magnitude.

Sampling simulation, however, in general poses two key challenges. In the fol-
lowing, we summarize these challenges. In this and in the next chapter, we pro-
vide solutions with varying trade-offs to these challenges. Sampling requires fine-
grain measurement of performance estimates (e.g., over windows of 1,000–100,000
instructions). Conventional performance metrics such as instructions per cycle
(IPC), while applicable when simulating uniprocessors, do not accurately gauge
forward progress in multiprocessor execution [2] due to synchronization in parallel
programs and spinning (e.g., processors that spin while waiting to acquire a lock
will exhibit high IPC while not actually contributing to an application’s progress in
execution).

Second, to avoid cycle-accurate simulation of the entire execution, sampling
requires that the machine state prior to each measurement corresponds accurately
to the target state as if the machine had seen the entire execution. The full potential
of accurate sampling lies in rapidly constructing correct initial state for the large
number of fine-grain performance measurements, which we call the bias problem.
Bias is inherently a difficult problem because the target state, in general, may be
timing dependent (e.g., asynchronous OS activity affecting the cache hierarchy or
non-determinism in a parallel program’s critical path due to synchronization).
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In this chapter, we will first present the theory behind sampling and our SMARTS

framework. Next, we present the challenges in sampling full-system multiprocessor
workloads. Then, we present a checkpoint-based approach to accelerate sampling.
Then, we present sampling optimization techniques. Finally, we present results of
applying to apply SMARTS to both user-level uniprocessor workload and full-system
multiprocessor workload simulation.

11.2 Statistical Sampling in SMARTS

We propose the sampling microarchitecture simulation (SMARTS) [14] framework
for simulation sampling. The field of inferential statistics offers well-defined pro-
cedures to quantify and to ensure the quality of sample-derived estimates. In this
section, we present the basic background on statistical sampling and how it applies
to simulation in the SMARTS framework.

Statistical sampling attempts to estimate a given cumulative property of a pop-
ulation by measuring only a sample, a subset of the population [12]. By exam-
ining an appropriately selected sample, one can infer the nature of the property
over the whole population in terms of total, mean, and proportion. The theory
of sampling is concerned with choosing a minimal but representative sample to
achieve a quantifiable accuracy and precision in the estimate. The theory does
not presume a normally distributed population. Our goal is to apply this theory
to (1) identify a minimal but representative sample from the population for cycle-
accurate simulation and (2) establish a confidence level for the error on sample
estimates.

Sampling can be defined in terms of the following parameters. The sample size,
n, is the number of measurements that will be taken, where each measurement in
our context corresponds to one continuous window of cycle-accurate simulation.
Sampling attempts at minimizing the variability in the measured performance metric
of interest (e.g., cycles per instruction.) The required sample size is proportional to
the square of the performance metric’s (x) coefficient of variation Vx , for example,
for 95% confidence (2.0 standard deviations) of ± 5% error:

n ≥
(

2.0

0.05
Vx

)2

. (11.1)

Each measurement is called a sampling unit. The sampling unit size, U , greatly
affects the selection of n. A larger U averages out short-term variation in perfor-
mance, reducing Vx , and therefore reducing n. There are, however, large-scale vari-
ations in performance which may result in diminishing returns in reducing Vx and
cannot be effectively captured with a larger U . Therefore, the best combination of
n and U can be determined with (1) knowledge of Vx , which we can obtain with
preliminary samples and (2) the strategy to reduce sampling bias (described below).
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11.3 Sampling Metrics

In SMARTS, the goal of sampling is to estimate a performance metric of interest
with a minimal amount of cycle-accurate simulation. In cycle-accurate simulation,
typically measured performance metrics are execution time in cycles or average
cycles per instruction (CPI). In general, the former can be derived from the latter
and a total instruction count. Therefore, when sampling one measures the coefficient
of variation in CPI, namely VCPI. Other metrics such as average energy/power or
vulnerability (used in reliability studies) can also be measured but estimating peak
or maximum values for a performance metric is challenging because sampling in
nature skips cycle-accurate simulation of the entire execution.

The required sample size to estimate CPI at a given confidence is directly propor-
tional to the square of the population’s coefficient of variation, n ∝ V 2

CPI. A bench-
mark with a small VCPI implies a greater opportunity for accelerated simulation
because fewer instructions from the benchmark need to be simulated with cycle-
accurate models. A benchmark’s instruction stream can be divided into a population
using different values of U . Figure 11.1 from [15] plots VCPI as a function of U on
an eight-way out-of-order superscalar processor with user-level uniprocessor SPEC
benchmarks. VCPI decreases with increasing U because short-term CPI variations
within a window of U instructions are hidden by averaging over the sampling unit.
The VCPI curves for all benchmarks share the same general shape, with a steep
negative slope for U less than 1,000, leveling off thereafter.

Fig. 11.1 Coefficient of variation of CPI for a simulated eight-way out-of-order superscalar pro-
cessor as a function of sampling unit size [15]

Unfortunately, aggregate CPI (or IPC) does not accurately measure forward
progress in multiprocessor workloads [2]. In multiprocessor benchmarks, contention
to enter a critical section often results in spinning. As such, while aggregate CPI
may be quite low (because spinning often proceeds at higher than average program
speeds), the actual forward progress on the critical path of execution has much
higher CPI. Therefore, in general, sampling parallel program execution while mea-
suring CPI requires spin or critical path prediction. In the next chapter, we present
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techniques to allow accurate measurement of forward progress for generalized par-
allel workloads.

In the specific case of transactional servers workloads, one often reports per-
formance in terms of transactions per second. Unfortunately, transactions are too
long for a simulator to execute, and their completion rate has a high coefficient of
variation. Figure 11.2 from [13] plots the coefficient of variation for transaction
throughput, VTRANSACTION, for several server benchmarks measured on a real four-
core multiprocessor system. Points on the plot correspond to sampling units of a
logarithmically increasing number of transactions (labeled every factor of 10), with
the mean time to complete those transactions indicated on the x-axis. Because trans-
action completions are bursty and transactions take seconds to execute, measuring
VTRANSACTION as a sampling parameter would require years of simulation time on
a full-system multiprocessor simulator.

Fig. 11.2 Coefficient of variation of transactions on a real four-processor system. Sample size is
quadratically related to coefficient of variation. For example, measurements of 10 transactions each
for OLTP (RAM) yield a VTRANSACTION of 0.7. Thus, from eq. (11.1) to achieve a 95% chance of
±5% error requires about 800 100-ms measurements [13]

Fortunately, Hankins et al. [8] made the observation that the amount of work a
database server performs to complete a transaction often does not vary greatly, and
the average time user-mode instructions take to complete is linearly proportional
to transaction throughput. We have found that this result applies across general-
ized transactional workloads from database to web servers. This relationship holds
because applications yield to the operating system when they are not making for-
ward progress (e.g., the OS idle loop or spin loops in OS locking primitives).

The linear relationship between user-instruction throughput and transaction
throughput allows us to sample user instructions per cycle (U-IPC) to assess trans-
action throughput. Sampling U-IPC is advantageous because the variance of U-
IPC is lower than that of transaction throughput at vastly smaller measurement
sizes. Thus, we can simulate shorter portions of the benchmarks for each mea-
surement while achieving the same confidence. Figure 11.3 plots the coefficient of
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Fig. 11.3 Coefficient of variation of user-level IPC (instructions per cycle) measured on a sim-
ulated 16-processor system. The sampling unit size for a particular VU-IPC is three orders of
magnitude smaller than for the same VTRANSACTION. Thus, sampling U-IPC requires 1,000 times
less than total simulation [13]

variation for U-IPC across a range of measurement sizes. Using U-IPC as the target
metric saves three orders of magnitude in simulation time versus using transaction
throughput.

11.4 Sampling Bias

Sampling bias refers to errors introduced into the individual measurements that
make up a sample (e.g., by the measurement methodology) and are not accounted
for by statistical confidence calculations.

The cause of bias in simulation sampling is inaccurate initial target state at the
beginning of a sampling unit. The target state in simulation includes both the archi-
tectural state (i.e., registers, memory, and I/O) and microarchitectural state (e.g.,
pipeline queues, cache hierarchies, and interconnection network). A bias-free sam-
ple requires that the target state at the start of a measurement corresponds that
generated if the entire execution were simulated using cycle-accurate simulation.
Sampling is only effective if one can rapidly reproduce this initial state to speed up
simulation in-between measurements while introducing only a small bias.

There are a number of common bias sources in simulation. The common archi-
tectural source of bias is in multiprocessor programs where synchronization creates
non-determinism in execution paths. Approximate target models in-between mea-
surements to accelerate simulation may perturb timing in critical sections of parallel
programs, thereby leading to diverse execution paths and entirely different sample
populations.

The most common cause of bias in microarchitectural state is the cold-start effect
of unwarmed structures, referred to as the warming problem. The simplest form
of simulation sampling would use instruction emulation to generate only architec-
tural (i.e., program) state in-between measurements to speed up simulation. Such
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sampling, for instance, would result in empty caches and incorrectly low per-
formance estimates and empty interconnect networks that produce overly opti-
mistic performance.

11.5 Architectural State Bias

Architectural state bias is the result of generating architectural (i.e., register, mem-
ory, and I/O) state while not modeling timing accurately. In this chapter, we present
results on user-level uniprocessor simulation sampling where such a bias does not
occur, and full-system multiprocessor simulation of commercial server workloads
which are highly tuned parallel workloads whose execution is not affected by the
speed of critical sections. Techniques to mitigate this source of bias for generalized
workloads are discussed in the subsequent chapter.

In multiprocessor benchmarks, instruction interleaving across processors varies
over multiple benchmark runs and can cause changes in the dynamic instruction
stream as races (e.g., for locks) resolve differently. On real platforms, designers
often account for such non-determinism by running a benchmark repetitively to
exercise multiple instruction interleavings. Simulation, however, is often determin-
istic and because of its prohibitively low speeds precludes execution over long win-
dows of (real) time. Therefore, simulating the execution of generalized multiproces-
sor benchmarks on target hardware to reach multiple interleavings is difficult.

Fortunately, most of today’s commercial multiprocessor server workloads con-
sist of throughput applications for which one can build instruction interleavings
efficiently. These include online transaction processing, decision support queries,
and web serving. These applications consist of long (or unbounded) sequences of
randomly arriving transactions, queries, or server requests (for simplicity, in the
rest of this chapter we will refer server requests as transactions). In these applica-
tions, transactions arrive randomly, so that a single run covers the range of possi-
ble instruction interleavings. Recent results indicate that one can draw a sample by
selecting measurement locations over a time window that has proven reliable on real
hardware (e.g., ∼30 s [1]). Figure 11.4 from [13] illustrates sampling a throughput
benchmark.

Fig. 11.4 Sampling a throughput application. Each sampling unit measures performance of a
random interleaving of transactions. The sample’s population is then defined as the runtime that
effectively covers all reachable transaction interleavings [13]
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11.6 Microarchitectural State Bias

Microarchitectural state bias arises from inaccuracies in the microarchitectural state
update (e.g., pipeline state, cache hierarchies, branch predictor and prefetcher tables,
and the interconnection network) in-between measurements.

The conventional approach to ameliorating microarchitectural state bias is to
“warm” the state through cycle-accurate simulation prior to each measurement. We
refer to this conventional approach as detailed warming. While detailed warming
is effective for structures that only have short-term history (e.g., pipeline queues or
network queues) whose warming requirements can be bounded, warming for gen-
eralized target state and across benchmarks is unbounded [15]. Unbounded detailed
warming, however, offsets two of the primary benefits from sampling, namely min-
imizing the required amount of cycle-accurate simulation and having a confidence
on the measured error.

There are a number of techniques in the literature to address warming and timing-
dependent updates to microarchitectural state including techniques to analytical
model timing and microarchitectural state updates in-between measurements all the
way to techniques to estimate dynamically the required amount of detailed warming.
In the following chapter, we will present dynamic techniques to bound warming. In
this chapter, we present the SMARTS approach to warming.

11.7 Warming in SMARTS

In SMARTS, we make the observation that microarchitectural state can be divided
into two groups: (1) short-history state belonging to components with a history and
warmup requirement (e.g., queues) and (2) long-history state which can be updated
with approximate models but whose warmup is in general unbounded. We propose
detailed warming for the first group with an analytically bounded window. For the
second group, we propose functional warming, that continuously warms microar-
chitectural state with very long history with approximate timing models that are
dramatically faster than cycle-accurate simulation (Fig. 11.5).

Fig. 11.5 Systematic sampling as performed in SMARTS. Two modes of simulation are used:
functional simulation and detailed simulation. The need for determined warmup for large struc-
tures, such as caches, is eliminated by performing continuous functional warming [15]
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A caveat to the functional warming approach is that it may not always be able to
accurately reproduce the correct microarchitectural state if correct warming requires
exact knowledge of detailed execution. Moreover, timing-dependant behavior (e.g.,
operating system scheduling activity) requires timer approximation. If functional
warming simulates instructions in order, it also may not accurately reflect the arti-
facts of out-of-order and speculative event ordering. Cain et al. [4] have suggested
that out-of-order and speculative ordering has minimal impact on CPI and other
performance metrics. Wunderlich et al. [15] corroborate these results and present
an analysis of the residual biases after functional warming. We believe functional
warming is the most cost-effective approach to achieve accurate CPI estimation with
simulation sampling.

11.8 Checkpointed Warming

Although functional warming enables accurate performance estimation, it limits
SMARTS’s speed, occupying more than 99% of simulation runtime. Functional
warming dominates simulation time because the entire benchmark’s execution must
be functionally simulated, even though only a tiny fraction of the execution is sim-
ulated using detailed microarchitecture timing models.

The second shortcoming of the original SMARTS framework is that functional
warming requires simulation time proportional to benchmark length rather than
sample size. As a result, the overall runtime of a SMARTS experiment remains
constant even when the measured sample size is reduced (e.g., by relaxing an experi-
ment’s statistical confidence requirements). Moreover, functional warming time will
increase with the advent new benchmark suites that lengthen benchmarks to scale
with hardware performance improvement.

We developed checkpointed warming [13] as an alternative to functional warm-
ing to reduce simulation turnaround time without sacrificing accuracy. In check-
pointed warming, a live-point stores the necessary data to reconstruct warm state
for a simulation sampling execution window. Although modern computer architec-
ture simulators frequently provide checkpoint creation and loading capabilities [11],
current checkpoint implementations: (1) do not provide complete microarchitectural
model state and (2) cannot scale to the required checkpoint library size (∼10,000
checkpoints per benchmark) because of multi-terabyte storage requirements.

The key challenge in checkpointed warming is generating “reusable” live-points
that allow for simulating a range of microarchitectural configurations of interest.
Because the majority of microarchitectural state can be reconstructed dynamically
with limited simulation, live-points must only handle the functionally warmed struc-
tures (e.g., branch predictors and caches). For these structures, researchers can
often place limits on the configurations of interest (e.g., through trace-based stud-
ies). Moreover, there are ways to store “super-set” information for caches [10]
and branch predictors [3] to allow for simulating multiple configurations with one
live-point.
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We also make the observation that checkpointed microarchitectural state can be
minimal because the state needed is that for a limited execution window in a sam-
pling unit and not the entire microarchitectural state up to an given execution point.
As such, live-points can reduce checkpoint storage by three orders of magnitude
over conventional checkpointing schemes.

Checkpointed warming, however, can remain a bottleneck in studies where
libraries are often not reusable and must be recreated. Chapter 4 targets techniques
to trade-off accuracy and confidence for accelerated warming. FPGA technologies
(e.g., ProtoFlex [5]) can also help reduce library generation time by orders of magni-
tude by implementing simple instrumentation (e.g., cache simulation) in hardware.

11.9 Sampling Optimizations

There are a number of ways in which turnaround can be optimized using check-
pointed sampling.

11.9.1 Parallel Simulation

Sampling using checkpoints leads to embarrassing parallel simulation. A typical
sample may have 500–1,000 measurements, each of which can proceed indepen-
dently. Each point can be simulated independently. Live-point independence allows
us to parallelize simulation over many host machines, reducing the overall latency
to obtain results.

11.9.2 Online Results

With live-points, each complete library forms an unbiased uniform sample of a
workload. Given such a library, a randomly selected subset within the library also
forms a uniform sample. Simulating live-points in a random order therefore allows
one to stop simulation after an arbitrary number of live-points for “online results”
while having simulated a valid uniform sample (Fig. 11.6). Similarly, one can use
this property to provide a continuous update of estimated results as points are pro-
cessed [9, 13].

11.9.3 Matched-Pair Sample Comparison

A typical computer architecture study involves comparing performance metrics of
one design against another (base) design. When comparing designs, designers often
need relative rather than absolute performance. Because changes in design under
consideration often do not lead to dramatic changes in performance, the variability
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Fig. 11.6 Online results example. Results converge toward their final values, and confidence
improves as more live-points are processed [13]

in performance during execution within a given design is often higher than the vari-
ability across designs.

Matched-pair sample comparison [6, 13] allows for exploiting this reduced vari-
ability in the performance metric. Figure 11.7 depicts how we can measure the
same points for both designs and build a confidence interval directly on the delta-
performance observed on each point. The reduced variability allows us to achieve
the same confidence on relative performance with a smaller sample than required
for absolute performance estimates.

Fig. 11.7 Matched-pair comparison example: performance data for the same sampling unit mea-
sured under two microarchitecture designs (left) and performance deltas for each sampling unit
(right). The lower variability of performance deltas reduces sample size by 3.5–150 times [13]

11.10 Sampling Speedup and Cost

We summarize our experiences using the SMARTS methodology to estimate per-
formance of both SPEC CPU2000 and commercial multiprocessor applications in
Table 11.1. Our experiments with SPEC CPU2000 are fully described in [15].
Our multiprocessor design experiments model a 16-way distributed-shared-memory
multiprocessor loosely based on the HP GS1280 and Compaq Piranha designs and
are fully described in [13]. Our commercial applications are scaled to use 10 GB
data sets.
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Table 11.1 Multiprocessor simulation sampling with Flexus

SPEC CPU
(TurboSmartSim)

OLTP
(DB2)

OLTP
(Oracle)

Web
(Apache)

Web
(Zues)

Runtime on real
hardware

1.5 h 30 s

Simulation time of
sampling

0.6 CPU years 10–20 CPU years

Sampling parameters
Performance metric Cydes/Instr. User- instructions/cycle
Detailed warming 2,000 instr. 100,000 cycles
Sampling unit size 1,000 instr. 50,000 cycles
Target confidence

interval
99.7% ± 3% 95% ± 5%

Absolute performance
estimate

Typical sample size 8816a 301 100 774 289
Simulation time 91 CPU sa 39 CPU h 25 CPU h 140 CPU h 58 CPU h
Live-point library size 12 GB 28 GB 4 GB 74 GB 19 GB

Typical relative
performance estimate

Typical sample size 3511 193 30 91 183
Simulation time 36 CPU sa 25 CPU h 7 CPU h 17 CPU h 37 CPU h
aPer reference input (mean). There are 45 reference inputs in SPEC CPU2000

Simulation without sampling is simply impractical, requiring CPU-years to pro-
vide accurate results with high confidence. In contrast, the SMARTS methodology
enables high confidence estimates of performance in minutes for SPEC CPU2000
and with only a few CPU-days for commercial applications. Matched-pair compari-
son further reduces turnaround time by up to a factor of seven for design comparison
experiments. By parallelizing simulations on a compute cluster, we can complete
even multiprocessor experiments in just a few hours.

Unfortunately, because in full-system simulation live-points are built on top of
a full-system functional emulator’s (i.e., Virtutech Simics’) checkpointing mecha-
nism, each live-point must include either a complete snapshot of system state or
delta images of memory and disk state from another live-point. As such, full-system
server simulation (for the commercial applications) uses checkpoints that take from
10 to 200 MB requiring a live-point library storage of as much as 74 GB. However,
even on real systems, commercial applications have high disk space requirements
(in excess of 25 GB for a 100 warehouse TPC-C installation). Live-point library
storage requirements are well within the capabilities of modern high-capacity disks.

11.11 Summary

Statistical sampling provides the key to fast and accurate performance evaluation
of computer systems through simulation. The SMARTS experimental methodol-
ogy provides an avenue to assess system performance with a minimal sample
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while providing rigorous statistical measures of confidence. Through its sample
design and live-points SMARTS enables simulation-based assessment of uniproces-
sor applications in minutes instead of weeks and throughput-based multiprocessor
applications in hours instead of years.
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Chapter 12
Efficient Cache Modeling with Sparse Data

Erik Hagersten, David Eklöv, and David Black-Schaffer

Abstract Obtaining good application performance requires tuning for effective use
of the cache hierarchy. However, most tools to analyze cache usage either gener-
ate architecture-specific results (e.g., hardware performance counters) or incur pro-
hibitively high overheads for real-world workloads (e.g., trace-based simulations).
This chapter reviews several recently introduced techniques that address these issues
to efficiently model cache systems and coherent memory hierarchies in an archi-
tecturally independent manner. The techniques utilize only sparse, architecturally
independent runtime information that can be collected with an overhead of 10–30%.
This information is then processed by statistical models to quickly predict cache
behavior across a range of architectures. With these approaches, accurate modeling
is possible from data sampled with rates as low as 1 in 106 memory accesses.

12.1 Introduction

This chapter introduces several techniques for low-overhead architecture-
independent analysis of programs to help rapidly identify the shortcomings of
the application’s usage of a given cache hierarchy. Such analysis is essential for
good performance on processors with high penalties for accessing off-chip memory,
which includes nearly all commercial processors today. In the case of multiproces-
sor systems, the situation is further complicated when multiple threads access the
same data and their interactions through the coherency protocol. In general such
optimization requires that the developer tunes the code for data locality and cache
usage. However, these properties are difficult to understand with existing tools and
hardware, which both complicates the program analysis and the final evaluation of
implemented optimizations. The techniques reviewed here provide insight into the
cache behavior of an application executing on real-world data in an architecturally
independent manner.
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12.2 Modeling Technology Requirements

While any technology must be both accurate and informative to be useful, the
requirements for this modeling technology to be successful are that it must be
portable and efficient. For the technology to be portable, it must be easily usable
across a range of commodity platforms. Efficiency requires that the technology has
a small enough impact on performance to enable the evaluation of real-world data
sets. Without either of these features, the usefulness of the technology for developer
optimization would be severely hampered.

The portability requirement has several direct implications. As commercial soft-
ware is rarely written and compiled to suit a single architecture implementation,
the same binary will be expected to execute on multiple generations of architec-
tures manufactured by several different companies, such as the x86 implementations
by Intel and AMD. Thus, this technology should be capable of modeling different
architectures based on information from a single run on a single architecture. This
implies further that the technology should not depend on hardware extensions that
are not widely available in order to attain reasonable efficiency. In addition to such
architecture independence, the technology should be as unobtrusive as possible,
preferably requiring no manual modification of the application for analysis.

Efficiency provides not only convenience but is critical for correctness. When
analyzing the behavior of the memory system it is of great importance that the
studied application runs a realistic data set, since a study based on a reduced data
set may lead to incorrect conclusions. We consider a slowdown of more than 100%,
e.g., requiring twice as much time to perform the analysis as running the application
natively, prohibitively high.

12.3 Choice of Overall Modeling Technique

To put these modeling techniques in perspective, it is worthwhile to compare them
to a range of existing approaches. The most traditional, and accurate, methods of
analyzing cache behavior are based on full address traces of the program. A full
address traces includes the address and type of all memory accesses performed by
the application (and possibly the system) during its execution. Such full address
traces can be run through cache simulators or analyzed directly to evaluate the
memory behavior of the application to any level of desired accuracy.

Full address traces are typically gathered by running the application in a simu-
lation environment, instrumenting the application and recording the trace at run-
time, or using hardware extensions to assist in the runtime capture of memory
accesses. Each of these approaches has significant efficiency or portability impli-
cations. Acquiring full application traces, whether through architectural simulation
[4], functional simulation [9], or instrumentation [8] incurs overheads well in excess
of the goals for the techniques presented here. To reduce this overhead, hardware
extensions have been proposed [11], but no standard has been adopted to make their
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use portable. Further, a full address trace, regardless of the efficiency with which
it is captured, is typically quite large for a program of any significant size. Storing
this information to disk, as well as post-processing it, therefore incurs a significant
overhead. Sampling techniques have been proposed to limit the simulation activity
to only study some subtraces (Chapter 11).

An alternative to capturing the full address trace of an application is to use exist-
ing hardware performance monitors to capture information during the execution of
an application [12]. While this method entails little performance overhead, the data
tends to be in the form of coarse statistics such as overall cache miss rates across all
processes. This aggregate data does not provide the insight or flexibility required to
model varying architectures.

Instead of capturing and analyzing the dynamic behavior of an application, one
can also statically analyze the program [6]. While this has the benefit of not impact-
ing runtime performance, it is inherently unable to capture data-dependent execution
patterns and must be conservative in its analysis of aliasing and data sharing.

The approach described in this chapter is a compromise between the accuracy of
a full address trace and the speed of hardware performance counters. At runtime,
a sparse sample of architecturally independent access information is collected. The
sparse sample data is then fed into a fast statistical model that analyzes the program’s
behavior on a range of different architectures. The combination of sparse sampling
and architecturally independent data results in an approach that is both efficient and
portable.

12.4 Sparse Reuse Distance Sampling

To achieve good performance, only sparse runtime information is collected while the
application is running. A sample rate determines what fraction of memory accesses
should be monitored on average, with the individual memory access to be monitored
selected randomly to achieve the target sample rate. For each monitored memory
access, the number of subsequent memory accesses is counted until the same data
unit is accessed again. The recorded data is the reuse distance between two accesses
to the same data unit, called a reuse pair. Typically, the size of the data unit to
monitor is the cache-line size of the architecture later to be modeled. Together
these sparse samples constitute an application fingerprint, which is a collection of
the sampled reuse pair information, recorded as the program executes. Berg et al.
showed good results with sample rates in the range of 10−6 in a study of SPEC CPU
2000 benchmarks [2].

There are two reasons why reuse distance is an attractive property to measure
at runtime. First, the measurement is architecturally independent and measures the
locality property of the binary without depending on the design choices of the cache
hierarchy of the host system. Second, this information can be captured with very
low overhead. As discussed in the appendix to this chapter, monitoring when a
piece of data will be touched again can be efficiently implemented with readily
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available watchpoint mechanisms, and counting the number of intervening mem-
ory accesses is cheaply implemented using ubiquitous hardware counters. For long-
running applications, capturing such sparse data results in a sampling overhead of
between 10 and 30%.

This process is illustrated in Fig. 12.1, which shows a stream of memory accesses
performed by an application running on the host computer. The application finger-
print consists of the memory reuse pairs highlighted in the figure. The first access
chosen to be monitored is access number 1, which references data unit A. The
sampler then has to count how many memory references occur until data unit A
is referenced again. If another memory reference (number 5) is selected to be mon-
itored, the sampler must now look for the next access to data unit B as well and
count its intervening memory accesses. The sampler saves the information about this
reuse pair in the application fingerprint. For this simple example the fingerprint will
contain the two reuse distances of length 5 and 3. For the basic modeling discussed
in the first part of this chapter, this is all the information needed. The commercial
tools by Acumem store even more information and metadata in the fingerprint to
allow for a more complete analysis.
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Fig. 12.1 The technology presented here uses online sampling of reuse distances to generate a
sparse application fingerprint at runtime. The fingerprint is then fed into a probabilistic cache
model along with the parameters of the target architecture

Note that the sparseness of collected information described here is more fine
grained than many other sampling techniques (Chapter 11), which require fairly
large contiguous traces to be collected.
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12.5 Probabilistic Cache Modeling and Sample Windows

The fingerprint of reuse distances captures architecturally independent locality
information at runtime with a low overhead. However, in order to interpret the
implications of the locality information when running on a target architecture, we
need to model the behavior of the application on the target architecture, as described
in the next few sections. This requires a transformation of sparse reuse information
into the miss ratio on the target architecture. This transformation is done by evalu-
ating a probabilistic cache model that uses the fingerprint of the application and the
architectural description of the target architecture to determine the resulting cache
miss ratio of the application on the target architecture. The target architecture is
described by basic parameters such as cache size, cache-line size, and replacement
strategy, and, for multiprocessor memory systems, the model takes into account
cache topology, cache sharing, and coherence activity.

Note that the probabilistic algorithm does not require any cache warming before
information can be gathered. While traditional time sampling must use long con-
tiguous subtraces to warm cache models and avoid cold misses, we can sample
reuse distances in many short bursts, called sample windows. Typically, a two-
level time-sampling scheme is used when capturing the fingerprint: first, an appro-
priate number of sample windows are scattered throughout the execution time,
either randomly or guided by phase detection, possibly using techniques simi-
lar to SMARTS (Chapter 11) or SimPoint (Chapter 10); second, time sampling
is used within each sample window to choose the memory references for which
reuse distances should be measured. Contrary to SMARTS and SimPoint, each
sample window only contains sparse samples and not contiguous subtraces. This
sample-based approach is based on the assumption that a subset of samples, cap-
tured closely in time, is most often from the same phase of the execution and will
therefore be representative of the overall behavior of that phase. With this assump-
tion, varying application phases are transparently handled by applying the statisti-
cal model to each sample window independently. However, in any given applica-
tion fingerprint there are likely to be some sample windows that cross application
phase boundaries, as seen in Fig. 12.2. These phase-crossing windows will produce
inaccurate estimates from the statistical model, but as long as the proportion of
such windows is small, the overall results will not suffer significantly. Our expe-
rience indicates that around 200 sample windows with 200 samples per window
are required to produce accurate results for complex applications. The number of
samples needed reflects the overall application complexity and not the execution
time.

This chapter describes three probabilistic models: the random replacement cache
model (StatCache), the LRU cache model (StatStack), and the coherent multiproces-
sor cache model (StatCacheMP). Each of these models use similar sparse fingerprint
information and related statistical models to provide efficient, accurate, and portable
application analysis in an architecturally independent manner.
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Fig. 12.2 The sample windows are spread throughout the application’s execution, which allows
different application phases to be handled transparently. As long as only a small number of win-
dows cross phase boundaries, as window 4 does here, the overall modeling will accurately reflect
the phase behavior of the application

12.6 StatCache: Modeling Random Replacement Caches

StatCache is a technique for estimating an application’s cache miss ratio for a fully
associative cache with a random replacement policy [1, 2]. Random replacement
caches lend themselves very naturally to probabilistic modeling. For example, con-
sider a cache with L cache lines, such as the one shown in Fig. 12.3. The likelihood
of a cache hit depends on the number of replacements performed since the accesses
data was last known to be in the cache. On a replacement, a cache line is randomly
selected for eviction. The likelihood that a given cache line is evicted is 1/L , and
the likelihood that it is not evicted is 1–1/L . After R replacements, the likelihood
that the cache line is still in the cache is (1–1/L)R . For a sampled reuse pair, we
know that the accessed data must be in the cache after the first access in the pair is
performed. Either the access is a hit, in which case data was already in the cache, or
it is a miss, in which case it is brought into the cache. The miss probability of the
second accesses in the pair can therefore be expressed as a function of the number
of replacements performed between the two accesses.

Miss probability after R replacements:

m(R) = 1 − (1 − 1/L)R
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Fig. 12.3 The likelihood of a hit in a fully associative random replacement cache with L cache
lines depends on the number of replacements performed since the last time the data was known to
be in the cache

Assuming for a while that the miss ratio M is constant in a sampling window
and known to us, we can estimate the number of replacements performed between
the two accesses in a reuse pair. If the reuse distance of a reuse pair is D, then the
number of replacements is R ≈ D • M . Using the miss probability equation above,
we can express the expected miss probability as function of reuse distance.

Expected miss probability:

m(D · M) = 1 − (1 − 1/L)D·M

The calculated probability of a cache miss for the samples captured in Fig. 12.1
is shown in Fig. 12.4. Memory reference 7 will miss with a probability of m(5 · M),
and memory reference 9 will miss by a probability of m(3 · M).
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... ...
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Fig. 12.4 Estimating the expected miss probability for each of the reuse pairs from Fig. 12.1 by
calculating the expected number of replacements using the overall miss ratio M
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If we capture N samples in a sample window, each with the reuse distance Di ,
we can express the expected total number of misses for these samples as the sum of
each sample’s expected miss probability. We can also calculate the expected number
of misses as the miss ratio for the window (M) multiplied by the number of samples
in the window (N ).

By equating these two ways of expressing the number of misses we obtain the
following equation with the miss ratio M as the sole unknown.

Cache model equation:

N∑

i=0

m(Di · M) = N · M

The above equation can be readily solved for the miss ratio (M) for each sample
window using numerical methods. Typically, it takes only a fraction of a second
to find solutions for all sample windows. The miss ratio for any cache size can
be computed using the same fingerprint by simply changing the value of L in the
expected miss probability expression and resolving the cache model equation. The
total miss ratio of an application as a function of cache size can then be calculated
by averaging the miss ratios of all windows.

The accuracy of the miss ratio computed by StatCache has been evaluated by
comparing the results of a traditional trace-driven cache simulator for many of the
applications in the SPEC CPU 2000 benchmark suite. Figure 12.5 shows the miss
ratio estimated by StatCache next to the miss ratio of the cache simulator for three of
the SPEC CPU 2000 applications. More comprehensive comparisons can be found
in the StatCache papers [1, 2].
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Fig. 12.5 Estimated miss ratios from StatCache compared to reference simulation results
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12.7 StatStack: Modeling LRU Replacement Caches

StatStack extends the StatCache model to estimate an application’s cache miss ratio
for a fully associative cache with an LRU replacement policy, while using the same
fingerprint input data. In the previous section it was shown that it is sufficient to
estimate the number of replacements between the two accesses in a reuse pair to
compute the miss probabilities for a random replacement cache. For LRU caches, we
are instead looking to estimate the number of unique data objects accessed between
the two accesses in a reuse pair, called the stack distance [10]. The stack distance
directly tells us if the second of the two accesses in a reuse pair results in a cache hit
for an LRU cache: if the stack distance is less than the size of the cache it is a hit,
otherwise it is a miss. However, when the fingerprint is collected, we only count the
number of memory accesses and not the number of unique data objects. The reuse
distances in the fingerprint therefore needs to be translated into stack distances to
model an LRU cache.

Figure 12.6 summarizes the overall strategy for translating reuse distances to
stack distances. In the figure, we see that the stack distances of the reuse pair
(Start=1, End=7) are 3, since there are 3 unique data objects (B, C, and D) accesses
between Start and End. Further, we note that the number of unique data objects is
equal to the number of reuse pairs whose first access is performed between Start
and End and whose second access is performed after End, which are (4,12), (5,9),
and (6,last).

A B A B
2. 3 4 5 6 8 9Start = 1 End = 7.

B C C D E C D…

Sampled Reuse Pair A-A

How many of the reuses 2-6 go beyond End? Answer: 3

How many unique data objects? Answer: 3

12 ...

A B A B
2. 3 4 5 6 8 9.

B C C D E C DB C C D E C D…

Sampled Reuse Pair A-A

How many of the reuses 2–6 go beyond End? Answer: 3

How many unique data objects? Answer: 3

12 ...

Fig. 12.6 The overall strategy estimating the expected stack distance based on sparse samples with
reuse distance information

This relation between stack and reuse distance holds for all reuse pairs. How-
ever, a sparse fingerprint does not contain enough reuse information for the above
method to be directly applicable. To cope with this lack of information we use an
approximation, which relies on the assumption of homogeneous behavior in the
sample windows and the representativeness of the fingerprints we collect. We use
the distribution of the reuse distances in the fingerprint for a given sample window
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to approximate the reuse behavior of all the memory accesses in the window. This
distribution allows us to estimate the likelihood that second access of a reuse pair
whose first access is between Start and End is performed after End. The resulting
likelihood indicates whether or not the access should be counted toward the number
of unique data objects accessed between Start and End, which is the desired stack
depth.

For example, in Fig. 12.6, the likelihood that the second access of the reuse
pair starting with access 4 is performed after End is equal to the fraction of reuse
pairs with a reuse distances greater than 7–4 = 3 in the reuse distance distribution.
Adding up these likelihoods for all reuse pairs starting between Start and End gives
us the expected stack distance of the reuse pair (Start, End), which can then be used
to compute whether the End access results in a cache miss.

Using the above method, we can compute the miss ratio of a sampling window as
follows: first, we use the fingerprint to estimate the distribution of reuse distances in
the window. Second, we use this distribution to estimate the expected stack distances
of all reuse pairs recorded for the window and build an expected stack distance
distribution. Finally, to compute the miss ratio for a given cache size, we use the
expected stack distance distribution to compute the fraction of reuse pairs with a
stack distance greater than or equal to the cache size.

The miss ratios estimated by StatStack have been compared with those of tra-
ditional trace-driven cache simulators for all the 28 benchmarks of the SPEC CPU
2006 suite and show remarkably good accuracy. Five such comparisons are shown
in Fig. 12.7. The full evaluation and a rigorous error and sensitivity analysis can be
found in [5].
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Fig. 12.7 Estimated miss ratios from StatStack compared to reference simulation results
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12.8 StatCache-MP: Modeling Multithreaded Cache Interaction

StatCache-MP has extended the techniques of StatCache to also model the coher-
ence activities for multiprocessors with coherent shared memory, such as SMP,
NUMA, or multicore processor systems [3]. StatCache-MP can differentiate
between many types of misses, such as read capacity misses, write capacity misses,
read cold misses, write cold misses, read coherence misses, and write coherence
misses. In this section we describe the extended sampling mechanism of Stat-
CacheMP as well as its simple way of modeling coherence activities for MSI coher-
ence protocol.

The probabilistic cache models described so far estimate cache behavior solely
for single-threaded execution. In order to also model the inter-thread coherence
activities and shared caches, the sparse information gathered in a fingerprint has
to be extended in two ways. First, we need to distinguish between read and write
accesses. This information can be extracted from the StatCache sample framework if
the sampler records the type, read or write, for both the first and the second access of
an access pair. Second, while measuring the reuse distance between the two accesses
of an access pair, an intervening write access from another thread to the same cache
line should be detected, as shown in Fig. 12.8. The identity of all threads with at least
one such intervening write access is recorded for each access pair in the fingerprint.
Cache misses caused by invalidation are counted as coherence misses only if the
cache line otherwise would have remained in the cache at the time of the next local
read or write access.
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Fig. 12.8 In StatCache-MP intervening write accesses from other threads are detected during a
reuse pair, and the identity of the intervening thread is recorded

As with the previously described probabilistic models, StatCacheMP can model
several different cache topologies based on a fingerprint collected from one execu-
tion. Like StatCache, different cache sizes and cache-line sizes may be modeled,
but StatCacheMP can also vary the degree of cache sharing in the cache hierarchy.
For example, no coherence activity will be recorded if the intervening Thread X
of Fig. 12.8 is modeled to share a cache with Thread 0. This is demonstrated in
Fig. 12.9, where miss ratios for the same parallel application are modeled for three
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Fig. 12.9 Results of StatCacheMP modeling several different cache topologies from a single appli-
cation fingerprint of Lu_NC from Splash2 running with 16 threads

different cache topologies using the same fingerprint. Most of the misses experi-
enced for a topology with private caches disappear when all threads are modeled to
share a cache.

For StatCacheMP, a change in the modeled architecture’s degree of cache sharing
requires a small alteration in the capacity miss equation for all the samples from
threads sharing a cache. Further details, including an explanation of how cold misses
are estimated, can be found in the StatCache-MP paper [3].

While allowing the efficient exploration of a huge design space, StatCache-MP
also introduces possible sources of error to the estimations. A different cache con-
figuration could result in an execution order with different coherence misses. This
source of error is similar to that of trace driven or functional simulation in that it
does not model contention or latency in the correct way and is effectively the result
of an architecturally dependent interleaving of the execution. However, we have not
found any major performance discrepancies due to this limitation.

StatCache-MP was evaluated using a trace-based evaluation methodology. First,
a full memory trace from multithreaded execution was collected. This trace was
used to drive the reference simulation and the same trace was sampled to produce
the information for a sparse fingerprint. StatCache-MP produces miss-curves similar
to Figs. 12.5 and 12.7 for all cache levels in the system, but can also distinguish
between several different miss types. Figures 12.10 and 12.11 show a comparison
between the reference simulation and the StatCache-MP model for eight applica-
tions and two different cache-line sizes. The overall miss ratio, as well as the classi-
fication into different miss categories, matches quite well between the two methods.

Note that the simple modeling of StatCache-MP only detects invalidation misses.
No upgrade misses are detected. While upgrade misses also could cause latency
for an application, especially for stronger memory models, their detection would
lead to a more complicated sampling model. Repeated upgrade misses to the same
cache line will also most likely appear in concert with invalidation misses, which
are detected by the model.
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Fig. 12.10 StatCache-MP results (left) and reference simulation output (right) for four nodes, each
with four cores sharing a 4 MB cache with 64 B cache lines. The different categories show very
similar results for both methods
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Fig. 12.11 StatCache-MP results (left) and reference simulation output (right) for 512 B cache
lines. It is interesting to note that some applications experience lower cold and capacity misses
with a large cache line (FFT), while the communication misses increase for others due to false
sharing (LU_NC)

12.9 Acumem: Tools for Code Optimization

The three approaches described in this chapter have been extended and refined by
Acumem to build a set of commercial tools targeting developers [7]. The technolo-
gies to model memory hierarchies and coherence protocols have been extended
with heuristics to identify performance problems commonly found in applications.
The Acumem tools list the performance problems on a per-instruction, per-loop, or
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per-application basis, along with their corresponding source code and performance
statistics. This technology has also been used to give profile-guided feedback to
compilers and dynamic binary optimization schemes.

As with the techniques discussed in this chapter, the Acumem sampler gathers
an application fingerprint at runtime on a host computer. The collected information
is sparse but contains significantly more information per sample, for more accurate
modeling and detection of performance problems. For example, call stack informa-
tion as well as some instruction sequences are stored in the fingerprint to enable
deeper analysis.

The Acumem tools collect fingerprints from single-threaded and multi-threaded
executions in a completely transparent manner. In fact, the fingerprint collector can
attach to an already running process with many threads, collect data for a while,
and then detach from the process, which will continue its execution undisturbed.
The sampling approach is also more sophisticated than that outlined for StatCache
or StatStack. The sample rate is dynamically adjusted with the number of samples
taken gradually decreasing as the execution progresses. At the same time, some
of the earlier captured fingerprint information is discarded for long-running appli-
cations to obtain a more representative set of samples. The application fingerprint
information is captured in a file that is typically a couple of megabytes, regardless
of the execution time.

The fingerprint collection is based on dynamic binary rewriting, which enables
the use of unmodified binaries in a language- and compiler-agnostic manner. Typ-
ically, long-running applications experience only a 10% execution overhead. In
between sample windows the original binary runs at full speed.

Acumem technology extends beyond modeling random caches, LRU caches, and
various topologies of coherent caches, to model hardware prefetching, cache effi-
ciency and communication efficiency. These techniques model how much of each

Fig. 12.12 Acumem’s tools pinpoint performance problems and provide intuitive feedback to
programmers
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cache line is actually used before eviction, called cache utilization, as well as the
fraction of the data of a write-back cache line that is dirty, called write-back uti-
lization. The StatCacheMP approach has also been refined to model upgrade misses
and measure the fraction of a communicated cache line that is actually used by a
consumer.

These features enable Acumem tools to provide much richer and more pre-
cise feedback to the programmer than the more limiting traditional hardware-
counter-based approach. The tools not only identify the exact operations that cause
misses in a cache system or those instructions that waste memory bandwidth but
also reveal the reason for the misses and suggest possible fixes. Acumem’s tools
can often estimate the fraction of cache misses and DRAM accesses removed by
each proposed fix, which is essential in determining if a fix is worth the effort
(Fig. 12.12).

12.10 Appendix: Example of Trap-Based Sampler
Implementation

The initial StatCache implementation was based on static code instrumentation
[1]. When sampling every 10,000th memory reference, this approach generated a
slowdown of 600%. This overhead motivated the development of the more efficient
sampling algorithm described in [2] and this appendix, which both samples fewer
memory references and enables the use of OS watchpoints. Combined these reduce
the sampling overhead to about 30%. While the sample information collected is
architecturally independent, the sampling implementation itself is of course highly
dependent of the ISA as well as the underlying architecture mechanisms of the
architecture and operating system.

As indicated earlier, sampling of reuse distance fingerprint information can be
implemented with the following three support mechanisms.

1. Sample selector. The sample selector randomly selects memory-reference
instructions and starts monitoring the cache-line-sized piece of data that is read
or written by that instruction.

2. Watchpoint mechanism. The watchpoint mechanism monitors the selected cache-
line-sized pieces of memory and informs the sampling runtime system when the
application accesses monitored memory.

3. Memory reference counter. The sampling runtime system uses the memory ref-
erence counter to calculate reuse distances.

The StatCache sampling approach is based on mechanisms available in nonpriv-
ileged mode execution in Solaris, but similar mechanisms are available in most
operating systems. The runtime system of the tool was built as a module that is
linked to the analyzed application, which requires relinking, but no changes to the
object code. The initial implementation did not consider library code, but the lack of
need to instrument code should make it feasible to also include the impact of such
code on cache behavior.
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Though sampling is easy in theory, the sample selector was the hardest to imple-
ment in practice. We found that the results were very sensitive to sample skew—
much more so than to, for example, errors in the measured reuse distance. To accu-
rately schedule sampling, the UltraSPARC data cache read operations counter was
used to gather samples. This register can generate interrupts on overflow and, there-
fore, by resetting it to a value of UINT32_MAX—sample_distance, it was possible
to stop the processor after an arbitrary number of load instructions. On overflow,
the process was sent a signal, caught by the runtime system. However, the overflow
traps of the counter were not very precise, which meant that the processor could
continue to execute instructions after the overflow occurred before stopping.

To address this, we set the counter to stop the processor a number of load instruc-
tions before the intended sample position. When the trap was taken, the data cache
load counter was read to determine how many instructions remain to execute before
the next sample. The runtime system then single-stepped through the code to reach
the sample point. Effective addresses were calculated by decoding the instructions
and reading the appropriate register values. Implementing single-stepping turned
out to be somewhat tricky, as the operating system had problems with such things as
handling execution watchpoints in the delay slot of branches with the annul flag set.

The Solaris operating system also provides the needed watchpoint system. It uses
the page protection system to catch loads and stores to certain memory locations.
This watchpoint system was used to set up watchpoints that trapped on the instruc-
tion that touched a selected cache-line-sized data object the next time.

A memory reference counter is needed to measure reuse distances. Solaris pro-
vided the per-process virtualized read-access counter DC_rd. The operating sys-
tem saved the values on context switches, while hardware gates made sure only
user-level read accesses were counted. Unfortunately, the UltraSPARC III used for
implementation was not able to count both load and store instructions simultane-
ously. Therefore we used the data load counter. The post-processing system would
then scale the reuse distances using the relative frequencies of dynamic load and
store instructions, which were recorded at run time from the samples.

Combined, these techniques enabled the implementation of a relatively unobtru-
sive, accurate, and low-overhead data reuse sampler. This sampling approach has
been further developed for the commercial tools provided by Acumem to enhance
the quality of the data collected, improve portability across different architectures,
and reduce the execution overhead.
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Chapter 13
Statistical Simulation

Lieven Eeckhout and Davy Genbrugge

Abstract The idea of statistical simulation is to measure a number of program exe-
cution characteristics from a real program execution through profiling, then gen-
erate a synthetic trace from it, and finally simulate that synthetic trace as a proxy
for the original program. The important benefit is that the synthetic trace is much
shorter compared to a real program trace. Current frameworks report simulation
speedups of up to four orders of magnitude compared to detailed simulation with
average (absolute) prediction errors in the order of a few percents. This beneficial
speed-accuracy trade-off makes statistical simulation a valuable tool in the computer
designer’s toolbox, especially for early-stage processor design space explorations.

13.1 Introduction and Motivation

Computer system design is an extremely time-consuming, complex process, and
simulation has become an essential part of the overall design activity. Simulation is
performed at many levels, from circuits to systems, and at different degrees of detail
as the design evolves. Consequently, the designer’s toolbox holds a number of eval-
uation tools, often used in combination, that have different complexity, accuracy,
and simulation speed properties.

For simulation at the microarchitecture level, detailed models of register transfer
activity are typically employed. These simulators track instructions and data on a
clock cycle basis and typically provide detailed models for features such as instruc-
tion issue mechanisms, caches, load/store queues, and branch predictors, as well
as their interactions. For input, microarchitecture simulators take sets of bench-
mark programs including both standard and company proprietary suites. These
benchmarks may each contain hundreds of billions or even trillions of dynamically
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executed instructions, and typical simulators run many orders of magnitude slower
than real processors. The result is a relatively long runtime for even a single
simulation.

However, processor simulation at such a high level of detail is not always appro-
priate nor is it called for. For example, early in the design process when the design
space is being explored and a high-level microarchitecture is being determined, too
much detail is unnecessary. When a processor microarchitecture is initially being
defined, a number of basic design decisions need to be made. These decisions
involve basic cycle time and instruction per cycle (IPC) trade-offs, cache and predic-
tor sizing trade-offs, and performance/power trade-offs. At this stage of the design
process, detailed microarchitecture simulations of specific benchmarks are not feasi-
ble for a number of reasons. For one, the detailed simulator, itself, takes considerable
time and effort to develop. Second, benchmarks restrict the studied application space
being evaluated to those specific programs. To study a fairly broad design space, the
number of simulation runs can be quite large. Finally, highly accurate performance
estimates are illusory, anyway, given the level of design detail that is actually known.

Similarly, for making system-level design decisions, where a processor (or sev-
eral processors) may be combined with many other components, a very detailed
simulation model is often unjustified and/or impractical. Even though the detailed
processor microarchitecture may be known, simulation complexity increases with
an increasing number of processors; also, larger benchmark programs are typically
required for studying system-level behavior.

In this chapter, we describe statistical simulation which can be used to over-
come many of the shortcomings of detailed simulation for those situations where
detailed modeling is impractical, or overly time consuming. Statistical simulation
measures a well-chosen set of characteristics during program execution, generates
a synthetic trace with those characteristics, and simulates the synthetic trace. If the
set of characteristics reflects the key properties of the program’s behavior, accurate
performance/power predictions can be made. The statistically generated synthetic
trace is several orders of magnitude smaller than the original program execution;
hence, simulation finishes very quickly. The goal of statistical simulation is to
reduce design space exploration time; it is not intended to replace detailed simu-
lation but to be a useful complement. Statistical simulation can be used to identify
a region of interest in a large design space that can, in turn, be further analyzed
through slower but more accurate and more detailed architectural simulations. In
addition, statistical simulation requires relatively little new tool development effort.
Finally, it provides a simple way of modeling superscalar processors as components
in large-scale systems where very high detail is not required or practical.

This chapter is organized as follows. We first discuss the general framework of
statistical simulation and make a distinction between statistical simulation applied
to single-core versus multi-core processor modeling. We also discuss possible appli-
cations for statistical simulation. Subsequently, we present some results to illustrate
accuracy and speed. The description in this chapter is tied to our own prior work
in this area; however, several other groups have made contributions in statistical
simulation and modeling, which we describe toward the end of the chapter.
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13.2 Statistical Simulation

13.2.1 Overview of the Paradigm

Statistical simulation consists of three steps as is shown in Fig. 13.1. In the first
step, a collection of execution characteristics is measured for a given computer
program—this is called statistical profiling. Subsequently, the obtained statistical
profile is used to generate a synthetic trace. Finally, this synthetic trace is simu-
lated on a trace-driven statistical simulator. We now discuss these three steps in
more detail and make a distinction between single-core and multi-core processor
modeling.

Fig. 13.1 Statistical simulation: framework overview

13.2.2 Statistical Simulation of Single-Core Processors

We start with discussing statistical simulation for single-core processors. This dis-
cussion is largely based on the work done by Eeckhout et al. [5].

13.2.2.1 Statistical Profiling

Statistical profiling characterizes the program execution at hand in a statistical way,
i.e., the various program characteristics of interest are modeled through distribu-
tions and probabilities. Statistical profiling can be done using specialized trace-
driven simulation (e.g., as an extension to a functional simulation) as well as
through instrumentation tools such as ATOM [25] or Pin [18]. This is done by
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running the (instrumented) program at hand with a given input; in other words,
the statistical profile captures both the program and its input. Collecting the profile
is done quickly compared to detailed cycle-level simulation. We make a distinction
between characteristics that are independent of versus dependent on the underlying
microarchitecture.

Microarchitecture-Independent Characteristics

The core structure of the statistical profile is the statistical flow graph (SFG) which
models the program’s control flow behavior as a Markov chain. Consider, for exam-
ple, the following basic block execution sequence AABAABCABC; Figure 13.2
shows the corresponding first-order SFG. Each node in the SFG represents a basic
block and its history. This is shown through the node labels A|A, B|A, A|B, etc.: A|B
means basic block A given that basic block B is its precedent in the execution. The
percentages at the edges represent the transition probabilities between the nodes.
For example, there is a 33.3 and 66.6% probability to execute basic block A and C,
respectively, after executing basic blocks AB.

Fig. 13.2 An example first-order statistical flow graph (SFG)

All other program execution characteristics that are included in the statistical
profile are collected for each node in the SFG. This implies that the same basic block
appearing multiple times in the SFG (with different histories) may have different
characteristics. This enables modeling path-dependent program behavior.

For each basic block associated with a node in the SFG we record the instruction
type for each instruction. We classify the instruction types in a number of instruction
classes according to their semantics, such as load, store, conditional branch, integer
ALU, multiply, floating-point ALU. For each instruction, we record the number of
input registers. For each input register we also record the dependency distance which
is the number of dynamically executed instructions between the production of a
register value (register write) and its consumption (register read). We only consider
read-after-write (RAW) dependencies since our focus is on out-of-order architec-
tures in which write-after-write (WAW) and write-after-read (WAR) dependencies
are dynamically removed through register renaming as long as enough physical reg-
isters are available. Although not done so far, this approach could be extended to also
include WAW and WAR dependencies to account for a limited number of physical
registers. Note that recording the dependency distance requires storing a distribution
since multiple dynamic executions of the same static instruction can result in differ-
ent dependency distances. In theory, this distribution could be very large due to large
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dependency distances. In practice though, we can limit this distribution because the
processor’s instruction window is limited anyway.

Note that the characteristics discussed so far are independent of any microarchi-
tecture-specific organization. In other words, these characteristics do not rely on
assumptions related to processor issue width, window size, number of ALUs,
instruction execution latencies, etc. They are therefore called microarchitecture-
independent characteristics.

Microarchitecture-Dependent Characteristics

In addition to the above characteristics we also measure a number of character-
istics that are related to locality events, such as cache hit/miss and branch pre-
dictability behavior. These characteristics are hard to model in a microarchitecture-
independent way (although recent efforts have made significant progress [2], see
also Chapter 12). Therefore a pragmatic approach is taken and characteristics for
specific branch predictors and specific cache configurations are computed through
specialized cache and branch predictor simulation. Note that although this approach
requires the simulation of the complete program execution for specific branch pre-
dictors and specific cache structures, this does not limit its applicability. Indeed, it
is well known that multiple cache configuration can be simulated in parallel using a
single-pass algorithm [11].

We collect the following three characteristics per branch: (i) the probability for
a taken branch, which will be used to limit the number of taken branches that are
fetched per clock cycle during synthetic trace simulation; (ii) the probability for a
fetch redirection, which corresponds to a branch target misprediction in conjunction
with a correct taken/not-taken prediction for conditional branches—this typically
results in (a) bubble(s) in the pipeline; and (iii) the probability for a branch mispre-
diction: a BTB miss for indirect branches and a taken/not-taken misprediction for
conditional branches.

The cache characteristics typically consist of the following probabilities: (i) the
L1 instruction cache miss rate, (ii) the L2 cache miss rate due to instructions, (iii)
the L1 data cache miss rate, (iv) the L2 cache miss rate due to data accesses only,
(v) the instruction translation lookaside buffer (I-TLB) miss rate, and (vi) the data
translation lookaside buffer (D-TLB) miss rate. Extending to additional levels of
caches and TLBs is trivial.

Accurate memory data flow modeling

In our previous work [9], we note that the memory data flow model as described
above, i.e., the way how the data cache behavior is modeled, is simplistic in at
least three significant ways. First, it assigns hits and misses to loads and stores
and does not model delayed hits. A delayed hit, i.e., a hit to an outstanding cache
line, is modeled as a cache hit although it should see the latency of the outstanding
cache line. Second, it does not model load bypassing and load forwarding, i.e., it
is assumed that loads never alias with preceding stores. Third, it does not model
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cache miss patterns or the number of instructions in the dynamic instruction stream
between misses. However, cache miss patterns have an important impact on the
available memory-level parallelism. Independent long-latency load misses that are
close enough to each other in the dynamic instruction stream to make it into the
reorder buffer together overlap their execution, thereby exposing memory-level par-
allelism (MLP). Given the significant impact of memory-level parallelism on over-
all performance, a performance model lacking adequate MLP modeling may yield
large performance prediction errors. Based on these observations, we proposed three
enhancements: (i) cache miss correlation, or measuring cache statistics conditionally
dependent on the global cache hit/miss history, for modeling cache miss patterns and
memory-level parallelism, (ii) cache line reuse distributions for modeling accesses
to outstanding cache lines, and (iii) through-memory read-after-write dependency
distributions for modeling load forwarding and bypassing. For more details, we refer
to [9].

13.2.2.2 Synthetic Trace Generation

The second step in the statistical simulation methodology is to generate a synthetic
trace from the statistical profile. The synthetic trace generator takes as input the
statistical profile and produces a synthetic trace that is fed into the statistical sim-
ulator. Synthetic trace generation uses random number generation for generating
a number in [0,1]; this random number is then used with the inverse cumulative
distribution function to determine a program characteristic. The synthetic trace is a
linear sequence of synthetic instructions. Each instruction has an instruction type, a
number of source operands, an inter-instruction dependency for each register input
(which denotes the producer for the given register dependence), I-cache miss info,
D-cache miss info (in case of a load), and branch miss info (in case of a branch).
The locality miss events are just labels in the synthetic trace describing whether the
load is an L1 D-cache hit, L2 hit, or L2 miss and whether the load generates a TLB
miss. Similar labels are assigned for the I-cache and branch miss events.

13.2.2.3 Synthetic Trace Simulation

The trace-driven simulation of the synthetic trace is very similar to the trace-driven
simulation of real program traces. However, the synthetic trace simulator needs to
model neither branch predictors nor caches—this is part of the trade-off that dra-
matically reduces development and simulation time. However, special actions are
needed during synthetic trace simulation for the following cases.

When a branch is mispredicted in an execution-driven simulator, instructions
from an incorrect path are fetched and executed. When the branch gets executed,
it is determined whether the branch was mispredicted. In case of a misprediction,
the instructions down the pipeline need to be squashed. A similar scenario is imple-
mented in the synthetic trace simulator: when a mispredicted branch is fetched, the
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pipeline is filled with instructions from the synthetic trace as if they were from
the incorrect path. When the branch gets executed, the synthetic instructions down
the pipeline are squashed and synthetic instructions are re-fetched (and now they are
considered from the correct path).

For a load, the latency will be determined by whether this load is an L1 D-cache
hit, an L1 D-cache miss, an L2 cache miss, or a D-TLB miss. For example, in case
of an L2 miss, the access latency to main memory is assigned.

In case of an I-cache miss, the fetch engine stops fetching for a number of cycles.
The number of cycles is determined by whether the instruction causes an L1 I-cache
miss, an L2 cache miss, or a D-TLB miss.

13.2.3 Statistical Simulation for Multi-core Processors

The approach to statistical simulation as described above models memory data
flow behavior through cache miss statistics, i.e., the statistical profile captures the
cache miss rates of the various levels in the cache hierarchy. Although this is
sufficient for the statistical simulation of single-core processors, it is inadequate
for modeling chip multiprocessors with shared resources in the memory hierar-
chy, such as shared L2 and/or L3 caches, shared off-chip bandwidth, intercon-
nection network, and main memory. Co-executing programs on a chip multipro-
cessor affect each other’s performance through conflicts in the shared resources,
and the level of interaction between co-executing programs is greatly affected
by the microarchitecture—the amount of interaction can be very different on one
microarchitecture compared to another. Hence, cache miss rates profiled from
single-threaded execution are unable to model conflict behavior in shared chip-
multiprocessor resources when co-executing multiple programs. We therefore need
a different approach for multi-core processors: we need to model memory access
behavior in the synthetic traces in a way that is independent of the memory hierar-
chy so that conflict behavior among co-executing programs can be derived during
multi-core simulation of the synthetic traces. We refer the interested reader to [10]
for an in-depth description; we now briefly summarize the key ideas in the following
sections.

13.2.3.1 Microarchitecture-Independent Statistical Profiling

To enable the simulation of shared caches in a multi-core processor, we add two
additional program characteristics in the statistical profile, namely the cache set
profile and the per-set LRU stack depth profile. For doing this, we assume a large
shared cache, i.e., the largest cache one may be potentially interested in during
design space exploration. The cache access patterns can then be derived for smaller
caches from the profile measured for the largest cache. When computing this profile,
we determine the cache set that is to be accessed in the largest cache of interest for
every memory reference. In addition, we also determine the LRU stack depth in the
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given set. The maximum LRU stack depth kept track of during profiling is a with
a being the associativity of the largest shared cache of interest. The cache set and
per-set LRU stack depth profile can be used to estimate cache miss rates for caches
that are smaller than the largest shared cache of interest. All accesses to an LRU
stack depth of at least a′ will be cache misses in an a′-way set-associative cache.
Likewise, all accesses to sets s and s + S/2 for a cache with S sets will result in
accesses to set s for a cache with S/2 sets.

When generating a synthetic trace we probabilistically generate a cache set and
LRU stack depth accessed for each memory reference based on the above profiles.
Simulating the synthetic trace on a CMP with a shared cache then requires that we
effectively simulate the shared cache(s). In statistical simulation of a single-core
processor on the other hand, caches do not need to be simulated since cache misses
are simply flagged as such in the synthetic trace. Statistical simulation of a multi-
core processor with a shared cache, on the other hand, requires that the caches are
simulated in order to model shared cache conflict behavior.

13.2.3.2 Modeling Time-Varying Program Behavior

A critical issue to the accuracy of statistical simulation for modeling multi-core pro-
cessor performance is that the synthetic trace has to capture the original program’s
time-varying phase behavior. The reason is that overall performance is affected by
the phase behavior of the co-executing programs: the relative progress of a program
is affected by the conflict behavior in the shared resources [26]. For example, extra
cache misses induced by cache sharing may slow down a program’s execution. This
one program running relatively slower may result in different program phases co-
executing with the other program(s), which, in turn, may result in different sharing
behavior and thus faster or slower relative progress.

To model the time-varying behavior we divide the entire program trace into a
number of instruction intervals; an instruction interval is a sequence of consecutive
instructions in the dynamic instruction stream. We then collect a statistical profile
per instruction interval and generate a synthetic mini-trace. Coalescing these mini-
traces yields the overall synthetic trace. The synthetic trace then captures the original
trace’s time-varying behavior.

13.2.3.3 Multi-threaded Workloads

So far, we were only concerned about multi-program workloads, i.e., workloads
that consist of multiple independent programs that co-execute. For multi-program
workloads, the only source of interaction is through the shared resources. Multi-
threaded workloads add another form of interaction, namely through synchroniza-
tion and cache coherence. Nussbaum and Smith [22] extend the uniprocessor sta-
tistical simulation method to multi-threaded programs running on shared-memory
multiprocessor (SMP) systems. To do so, they extended statistical simulation to
model synchronization and accesses to shared memory. Hughes and Li [13] more
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recently proposed the notion of a synchronized statistical flow graph to incorporate
inter-thread synchronization.

13.2.4 Applications

Statistical simulation has a number of potential applications.

• Design space exploration. An important application for statistical simulation
is processor design space exploration. Statistical simulation does not aim at
replacing detailed cycle-accurate simulation, primarily because it is less accurate
(e.g., it does not model cache accesses along mispredicted paths, it simulates an
abstract representation of a real workload). Rather, it aims at providing guidance
for decision making early in the design process. Fast decision making is impor-
tant to reduce the time to market when designing a new microprocessor.
A single statistical profile and a single synthetic trace can be used to explore
a very large part of the design space. The reason is that most of the character-
istics are microarchitecture-independent, and the microarchitecture parameters
that can be varied include processor width, pipeline depth, number of functional
units, buffer sizes, cache size, and associativity—these are the parameters one
is most likely interested in exploring in the early stages of the design. Only a
limited number of parameters require recomputing the statistical profile (and the
synthetic trace), e.g., cache line size, branch predictor.

• Program behavior characterization. Another interesting application for statistical
simulation is program characterization. When validating the statistical simulation
methodology in general and the characteristics included in the statistical pro-
file more in particular, it becomes clear which program characteristics must be
included in the profile for attaining good accuracy. That is, this validation process
distinguishes program characteristics that influence performance from those that
do not.

• Workload characterization. The statistical profile can be viewed of as an abstract
workload model. In other words, one can compare workloads by comparing their
respective statistical profiles. Moreover, one can explore the workload space by
varying the various characteristics in the statistical profile (which are hard to vary,
if possible, using real workloads) and relate these variations in program behavior
to variations in performance. This can lead to valuable insights—Oskin et al. [23]
provide such a case study.

• Large system evaluation. As discussed so far in this chapter, statistical simula-
tion addresses the time-consuming simulation problem of single-core and multi-
core processors. However, for larger systems containing several processors, such
as multi-chip servers, clusters of computers and datacenters, simulation time is
even a bigger problem. Statistical simulation may be an important and interesting
approach for such large systems.
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13.3 Evaluation

We now present some evaluation results for statistical simulation in terms of accu-
racy and simulation speed. We also illustrate the power of statistical simulation
through a case study from a practical research study.

13.3.1 Accuracy

Figure 13.3 shows IPC (instructions retired per clock cycles) as obtained through
detailed cycle-level simulation as well as through statistical simulation for an
aggressive superscalar out-of-order processor. The results are taken from [9]
and assume 10 billion instructions taken from the SPEC CPU2000 benchmarks.
The synthetic traces generated through statistical simulation count 1 million
instructions—a four-order of magnitude reduction in simulation time. These results
show that statistical simulation is accurate compared to detailed simulation with IPC
prediction errors varying between −2.4 and 3.8% (average absolute prediction error
of 1.6%).

Fig. 13.3 Accuracy for statistical simulation versus detailed simulation for a single-core processor

Figure 13.4 shows similar results for a multi-core processor executing a heteroge-
neous multi-program workload. The results are taken from [10] and consider four 8-
program workloads. The graphs show system throughput (STP) and average normal-
ized turnaround time (ANTT)1; STP is a higher-is-better metric and represents per-
formance from a system perspective (STP equals weighted speedup [24]), whereas
ANTT is a smaller-is-better metric quantifying performance from a user perspective
(ANTT is the reciprocal of the hmean metric [19]). The important observation here
is that statistical simulation is able to accurately track detailed simulation. The aver-
age prediction error is 4.9 and 5.6% for STP and ANTT, respectively. For example,

1STP is a system-oriented metric and ANTT is a user-oriented metric; see [8] for a detailed descrip-
tion on these multi-program performance metrics.
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(a) STP

(b) ANTT
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Fig. 13.4 Accuracy for statistical simulation versus detailed simulation in terms of STP and ANTT
for a multi-core processor with two, four, and eight cores

it shows that eight cores has a detrimental effect on turnaround time while only
marginally improving system throughput for the leftmost workload mix; this sug-
gests that conflict behavior in the shared resources (L2 cache, off-chip bandwidth,
and main memory) deteriorates per-program performance. For the other three work-
load mixes on the other hand, we observe significant benefits in system throughput
with only minor effects on job turnaround time.

13.3.2 Simulation Speed

Figure 13.5 shows the average (absolute) IPC prediction error as a function of the
length of the synthetic trace. For a single-program workload, the prediction error
stays almost flat, i.e., increasing the size of the synthetic trace beyond 1M instruc-
tions does not increase prediction accuracy. For multi-program workloads on the
other hand, the prediction accuracy is sensitive to the synthetic trace length, and sen-
sitivity increases with the number of programs in the multi-program workload. This
can be understood intuitively: the more programs there are in the multi-program
workloads, the longer it takes before the shared caches are warmed up and the
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Fig. 13.5 Evaluating simulation speed: average IPC prediction error as a function of synthetic
trace length

longer it takes before the conflict behavior is appropriately modeled between the co-
executing programs. The results in Fig. 13.5 demonstrate that 10M-instruction syn-
thetic traces yield accurate performance predictions, even for eight-core processors.

13.3.3 Case study: Design Space Exploration

For demonstrating the value of statistical simulation for exploring new architec-
ture paradigms, we now consider a case study in which we evaluate performance
of a multi-core processor in combination with 3D stacking [17]—this case study
is taken from [10]. We compare the performance of a four-core processor with a
16 MB L2 cache connected to off-chip DRAM memory through a 16-byte wide
memory bus against an eight-core processor with integrated on-chip DRAM mem-
ory (through 3D stacking) and no L2 cache and a 128-byte wide memory bus. We
assume a 150-cycle access time for external memory and a 125-cycle access time
for 3D-stacked memory. Figure 13.6 quantifies STP and ANTT for these two design
points for four different eight-benchmark mixes. The eight-core processor with 3D
stacked memory achieves substantially higher system throughput than the four-core
processor with the on-chip L2 cache. This increase in system throughput is offset by
a decrease in job turnaround time. The improvement in system throughput and the
reduction in turnaround time varies across workload mixes, and statistical simula-
tion can accurately track performance differences between both design alternatives.

13.4 Other Work in Statistical Simulation

Statistical simulation for modeling single-core processor performance has received
considerable interest over the past decade. Noonburg and Shen [20] model a pro-
gram execution as a Markov chain in which the states are determined by the microar-
chitecture and the transition probabilities by the program. Iyengar et al. [14] use a
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Fig. 13.6 Case study that considers a four-core processor with an on-chip L2 cache and off-chip
main memory versus an eight-core processor with 3D stacked memory and no L2 cache

statistical control flow graph to identify representative trace fragments; these trace
fragments are then coalesced to form a reduced program trace. The statistical sim-
ulation framework considered in this chapter is different in its setup: we generate
a synthetic trace based on a statistical profile. The initial models proposed along
this line were fairly simple [3, 6, 7]: the entire program characteristics in the statis-
tical profile are typically aggregate metrics, averaged across all instructions in the
program execution. Oskin et al. [23] propose the notion of a graph with transition
probabilities between the basic blocks while using aggregate statistics. Nussbaum
and Smith [21] correlate various program characteristics to the basic block size in
order to improve accuracy. Eeckhout et al. [5] propose the statistical flow graph
(SFG) which models the control flow in a statistical manner; the various program
characteristics are then correlated to the SFG. In our own prior work [9], we fur-
ther improve the overall accuracy of the statistical simulation framework through
accurate memory data flow modeling: we model cache miss correlation, store-load
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dependencies and delayed hits, and report an average IPC prediction error of 2.3%
for a wide superscalar out-of-order processor compared to detailed simulation.

Nussbaum and Smith [22] and Hughes and Li [13] extend the statistical simu-
lation paradigm toward multi-threaded programs. Cache behavior is still modeled
based on cache miss rates though; by consequence, they are unable to model shared
caches as observed in modern CMPs. In our own work [10], we model memory
data flow behavior in a microarchitecture-independent way and in addition we
model time-varying behavior which allows for modeling conflict behavior in shared
resources as seen in contemporary multi-core processors.

Recent work also focused on generating synthetic benchmarks rather than syn-
thetic traces. Hsieh and Pedram [12] generate a fully functional program from
a statistical profile. However, all the characteristics in the statistical profile are
microarchitecture-dependent, which makes this technique useless for microproces-
sor design space explorations. Bell and John [1] generate short synthetic bench-
marks using a collection of microarchitecture-independent and microarchitecture-
dependent characteristics similar to what is done in statistical simulation. Their
goal is performance model validation of high-level architectural simulation against
RTL-level cycle-accurate simulation using small but representative synthetic bench-
marks. Joshi et al. [15] generate synthetic benchmarks based on microarchitecture-
independent characteristics only and leverage that framework to automatically
generate stressmarks (i.e., synthetic programs that maximize power consumption,
temperature), see [16].

A couple other research efforts model cache performance in a statistical way.
Berg et al. [2] propose light-weight profiling to collect a memory reference reuse
distribution at low overhead and then estimate cache miss rates for random-replace-
ment caches. Chandra et al. [4] propose performance models to predict the impact of
cache sharing on co-scheduled programs. The output provided by the performance
model is an estimate of the number of extra cache misses for each thread due to
cache sharing. These statistical models are limited to predicting cache effects and
do not predict overall performance.

13.5 Summary

The chapter revisited the general concept of statistical simulation. Statistical simu-
lation yields a beneficial speed-accuracy trade-off: simulation speed is enhanced by
several orders of magnitude with limited impact on accuracy, which makes it a valu-
able tool for driving design space explorations during early stages of the processor
design cycle.

One promising avenue for future research in statistical simulation is to extend it
toward (very) large-scale systems such as clusters of computers, supercomputers,
datacenters. Simulating large computer systems is completely infeasible through
detailed cycle-accurate simulation; hence, higher level simulation models, such sta-
tistical simulation, may be a viable solution in that space. Another avenue for future
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work is to generate synthetic workloads that are ISA independent. In particular,
generating synthetic workloads in a high-level programming language (such as C)
would make them easily portable across systems and would even enable compiler
research next to architecture research.
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Impact of Silicon Technology



Chapter 14
Memory Modeling with CACTI

Naveen Muralimanohar, Jung Ho Ahn, and Norman P. Jouppi

Abstract Modern systems consist of a hierarchy of memory arrays made of differ-
ent storage elements such as SRAM, DRAM, FLASH, etc. The organization of a
memory array significantly impacts its delay, power, bandwidth, and area parame-
ters which in turn impacts overall system performance and cost. When evaluating
a new architecture or exploring new memory designs, it is crucial to get an early
estimate of memory access time and power for given input parameters. For stud-
ies related to memory hierarchy design, it is also necessary to optimize memory
arrays so that they meet specific delay, area, and power constraints. This chapter
presents an integrated analytical tool called CACTI that models power, delay, area,
and cycle time (bandwidth) of all the components in a modern memory system.
As all parameters are calculated based on the same technology and circuit param-
eters, they are mutually consistent, and the analytical models employed in CACTI
have been verified to be within 12% of high fidelity SPICE models. This chapter
explains the fundamental building blocks of memory arrays along with their analyt-
ical delay, power, and area models and details tradeoffs that exist when designing
them.

14.1 Introduction

In computer architecture and design, the classic performance equation is given by
the product of three terms,

CPUtime = InstructionCount × CyclesPerInstruction × ClockCycleTime

InstructionCount for a program is easy to obtain once there is a working com-
piler for an architecture. The public availability of cycle-accurate simulators allows
CyclesPerInstruction to be quantified with some effort, and most of the content of
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computer architecture courses involves ways to improve this term. Unfortunately it
is relatively difficult to get a definitive number for the clock cycle time of a proposed
machine organization or microarchitecture without actually performing a detailed
design. As the size and complexity of designs increase, the accurate modeling of the
clock cycle time of proposed design is becoming increasingly important.

Furthermore, note that the three performance equation terms are not independent
of each other. For example, a complex instruction set can decrease the instruction
count but have the side effect of increasing the cycles per instruction more than
enough to offset the advantage of decreased instruction path length. Similarly, many
changes to machine organization or microarchitecture can have very significant
impacts on clock cycle time. Thus studying only one term in isolation can paint
an incomplete picture and lead to dramatically suboptimal designs overall.

Along with performance, other considerations have recently become of key
importance. The power of computer systems has become a key limiter of not only
handheld platforms but also of servers in large datacenters. And the area of designs
is the most important factor in determining the fabrication cost of a chip. Ideally we
would like to be able to simultaneously and consistently quantify the clock cycle
time, power, and area of entire proposed designs.

Of the components of modern computer systems, memory is arguably the most
important. The area of modern chip multiprocessors is often dominated by the total
area of their caches. Memory certainly dominates the system when the silicon area
of the main memory is taken into account. Memory in modern computer systems
can range from register files, buffers, and various levels and types of caches to
main-memory DRAMs. By modeling all these memories accurately we can model a
significant portion of a proposed machine and quantitatively evaluate new architec-
tural ideas impacting the memory hierarchy. The CACTI tool has grown to support
modeling this entire range of memory hierarchy components over the past 15 years.

14.2 Application Space of CACTI

CACTI is a versatile tool capable of modeling any storage unit in memory hierar-
chy from small register files to large DRAM banks. The following sections present
modeling basics of CACTI and the feature set of the tool, starting with basic RAM
structures.

14.2.1 RAM

CACTI’s RAM model is a simple form of a memory array that models register files
or other on-chip buffers. Figure 14.1a shows the logical structure of a RAM orga-
nization. It consists of an array of static-random access memory (SRAM) cells with
a centralized decoder and logic circuits to store and retrieve data from cells. Each
memory cell is equipped with access transistors, which are controlled by the decoder



14 Memory Modeling with CACTI 231

(a) Logical organization of a RAM (b) Example physical organization of the array

Fig. 14.1 Logical and physical organization of the RAM

output and provide access to the cell to perform read or write operations. To reduce
the area overhead of the decoder, an output from the decoder typically activates an
entire row of cells connected using a wire known as a wordline. In a typical access,
an address request to the RAM is first provided as input to the decoder, which then
activates the appropriate wordline. The contents of an entire row of cells are placed
on bitlines, which are written to the cells for a write operation or delivered to the
output for a read operation. While the data placed on the bitlines can be used to
directly drive logic for small arrays, the access latency of such a model can be very
high even for moderately sized arrays due to large bitline capacitances. To reduce
the access time, sense amplifiers are employed to detect a small variation in bitline
signal and amplify them to the logic swing. The use of sense amplifiers also limits
the voltage swing in bitlines leading to energy savings.

However, the monolithic model shown in the Fig. 14.1a does not scale with the
array size. Due to low-swing signaling employed in bitlines and silicon area over-
head associated with repeaters, wordlines and bitlines cannot be repeated at regular
intervals, causing their delay to increase quadratically with the size of the array.
Furthermore, the throughput of a RAM is a function of wordline and bitline delay
and the bandwidth of a single array deteriorates quickly as the array size grows. To
reduce this quadratic delay impact, a large array is typically divided into multiple
sub-arrays employing hierarchical decoders. The first-level decoder (also referred to
as a pre-decoder, not shown in the figure) uses a subset of the address bits to identify
the appropriate sub-array. The second-level row decoder takes the remaining address
bits to activate the appropriate row of cells. The sub-arrays are connected through an
interconnect fabric to transfer addresses and data within the RAM. In order to reduce
design complexity, an interconnect with easily predictable timing characteristics is
essential. CACTI models a balanced H-tree network as shown in the Fig. 14.1b to
connect various sub-arrays. In addition to providing a uniform access time, an H-tree
also provide pipelined access without using complex switching circuits.

The number of sub-arrays in a RAM and the height and width of sub-arrays
play a key role in determining the power, area, and timing characteristics. For
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example, reducing the sub-array count would enable tighter packing of cells leading
to increased area efficiency (cell area over total area), but would result in increased
delay due to longer wordlines and bitlines. A large sub-array count would give better
delay characteristics but result in increased silicon area consumption. CACTI uses
three fundamental variables to define an array organization.

• NDWL—Number of column partitions in the array i.e., the number of segments
a single logical wordline is partitioned into.

• NDBL—Number of row partitions in the array i.e., the number of segments a
single logical bitline is partitioned into.

• NSPD—Number of sets stored in each row of a sub-array. For the given NDWL
and NDBL values, this decides the aspect ratio of the sub-array.

The tool takes in the following major parameters as input: size, block size (also
known as line size), number of ports, technology generation, and number of inde-
pendent banks (that do not share address and data lines). It then performs a detailed
design space exploration that considers variations of NDWL, NDBL, and NSPD
along with different circuit components with varying power/delay characteristics.
As output, it produces access and cycle time, leakage and dynamic power, and area
of the RAM organization that best matches area, delay, and power constraints input
to the tool.

14.2.2 Cache

A cache structure is similar to a RAM, but includes an additional tag array to deter-
mine a hit or miss status of a block. Depending on the delay model of cache and
the type of interconnect employed for address and data transfers, caches are classi-
fied into uniform cache access (UCA) and non-uniform cache access (NUCA). The
following sections discuss CACTI’s modeling of UCA and NUCA caches.

14.2.2.1 Uniform Cache Access

Figure 14.2 shows the logical structure of a uniform cache access (UCA) organiza-
tion. Similar to a RAM, the address request to the cache is first provided as input
to the decoder, which then activates a wordline in the data array and the tag array.
The contents of an entire row in both data and tag arrays are placed on the bitlines
and sent to sense amplifiers. The multiple tags read out of the tag array are then
compared against the input address to detect if one of the ways of the set contains
the requested data. The comparator logic drives the multiplexer that finally forward
at most one of the ways read out of the data array back to the controller. In practice,
the tag and data arrays are too large to be efficiently implemented as single large
structures. Hence, similar to a RAM, CACTI partitions each cache storage array
into sub-arrays to reduce wordline and bitline delays.

The energy to access the data array of a cache is typically greater than its tag
array. As cache size increases, the difference in access energy can be significant.
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Fig. 14.2 Logical organization of a cache

While accessing both tag and data array in parallel reduces the net access time of a
cache, such a design incurs high power overhead and is less efficient in situations
where the cache miss rate is high. To better match a cache design to its miss rate,
CACTI models three different accessing modes for UCA caches: sequential mode,
fast mode, and semi-parallel (or normal) mode. In the sequential mode, access to
the data array happens only after the tag array finishes its lookup and signals the
data array that the access is a hit. Moreover, only the data corresponding to the
matching tag is read out of the array. For cache misses, the tag array directly sends
the miss signal to the controller and the data array never gets accessed leading to
power savings. However, the sequential accessing can lead to increased access time
for hits. In the fast mode, both tag and data array accesses happen in parallel and
the entire set is read out of data array. After the tag match is over, on a hit, the
relevant block from the set is sent to the cache controller and the rest of the blocks
go unused. If the tag array signals a miss, then the entire set read out of the data
array gets wasted. This design trades off power to minimize access time. In a semi-
parallel access, similar to the fast mode, both tag and data array lookups happen in
parallel. However, unlike the fast mode, after the lookup, the data array waits for
the tag to send the hit signal and the block number before sending out the data.
On a hit, only the relevant block gets sent through the H-tree. In addition to the
basic input arguments discussed earlier, to model a cache, the tool also takes cache
associativity and access mode as input parameters and outputs both tag and data
array organization along with their power, delay, and area values.

14.2.2.2 NUCA

In a uniform cache access (UCA) model the access time of a cache is determined
by the delay to access the sub-array farthest from the cache controller. For large
caches, the disparity in access time between the closest and farthest sub-arrays can
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be very high. A more scalable approach is to replace the H-tree bus with a packet-
switched on-chip grid network as shown in Fig. 14.3. The latency for a bank is
determined by the delay to route the request and response between the bank that
contains the data and the cache controller [9]. Since the access time of such a cache
is a function of bank location, it is referred to as non-uniform cache access. CACTI
builds upon this model and adopts the following algorithm to identify the optimal
NUCA organization [11, 12].

Fig. 14.3 A NUCA cache with 16 banks

The tool first iterates over a number of bank organizations: the cache is parti-
tioned into 2N banks (where N varies from 1 to 12); for each N , the banks are
organized in a grid with 2M rows (where M varies from 0 to N ). For each bank orga-
nization, CACTI’s UCA model is employed to determine the optimal sub-array par-
titioning for the cache within each bank. Each bank is associated with a router. The
average delay for a cache access is computed by estimating the number of network
hops to each bank, the wire delay encountered on each hop, and the cache access
delay within each bank. The user has the flexibility to specify the router traversal
delay and the operating frequency of the network (which defaults to 5 GHz). How-
ever, based on the process technology and the router model, the tool will calculate
the maximum possible network frequency [14]. If the assumed frequency is greater
than the maximum possible value, the tool will downgrade the network frequency
to the maximum value.

In a NUCA cache, more partitions lead to smaller delays (and power) within
each bank, but greater delays (and power) on the network (because of the constant
overheads associated with each router and decoder). Hence, the above design space
exploration is required to estimate the cache partition that yields optimal delay or
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power. While modeling a NUCA cache for a multicore processor, the bandwidth of
a cache is another important factor and it is critical to have a sufficient number of
banks to meet the requirements of multiple cores. CACTI’s design space exploration
also includes the effect of contention in the network. This contention model itself
has two major components: router contention and bank contention. If the cache is
partitioned into many banks, there are more routers/links on the network and the
probability of two packets conflicting at a router decreases. Thus, a many-banked
cache is more capable of meeting the bandwidth demands of a many-core system.
Further, certain aspects of the cache access within a bank cannot be easily pipelined.
The longest such delay within the cache access (typically the bitline and sense-amp
delays) represents the cycle time of the bank—it is the minimum delay between suc-
cessive accesses to that bank. A many-banked cache has relatively small banks and
a relatively low cycle time, allowing it to support higher throughput and lower wait-
times once a request is delivered to the bank. Both of these two components (lower
contention at routers and lower contention at banks) tend to favor a many-banked
system. This aspect is also included in estimating the average access time for a given
cache configuration.

To improve the search space of the NUCA model, CACTI also explores differ-
ent router types and wire types for the links between adjacent routers. The wires
are modeled as low-swing differential wires as well as global wires with different
repeater configurations to yield many points in the power/delay/area spectrum. The
sizes of buffers and the number of virtual channels within a router have a major
influence on router power consumption as well as router contention under heavy
load. By varying the number of virtual channels per physical channel and the num-
ber of buffers per virtual channel, CACTI achieves different points on the router
power-delay trade-off curve.

The contention values for each considered NUCA cache organization are empiri-
cally estimated for typical workloads and incorporated into CACTI as lookup tables.
While modeling a NUCA cache, in addition to UCA parameters, the tool takes as
the parameters, number of cores and the position of the cache in the hierarchy (level
2 or level 3). These parameters are then used to estimate contention in the NUCA
network for various cache organizations.

14.2.3 Dynamic Random Access Memory (DRAM)

DRAM is a high-density memory technology with each cell consisting of just an
access transistor and a storage capacitor. CACTI models two different types of
DRAM memories: logic process-based DRAM (LP-DRAM) and traditional com-
modity DRAM. The key difference between them lies in the fabrication process
technology employed. Embedded DRAM is made using the same technology used
to manufacture SRAM or processor logic and has superior latency properties over
commodity DRAM. On the other hand, commodity DRAM is heavily optimized for
density and has better retention time (more charge per cell) compared to LP-DRAM.
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At the organization level, CACTI’s DRAM array model is similar to a RAM array.
However, the low area of DRAM cells (compared to SRAM) requires adjustments
to peripheral circuit components. Furthermore, unlike SRAM, DRAM loses its data
due to charge leakage and requires a mechanism to restore its content at regular
intervals. CACTI includes the following features to model DRAM memories.

14.2.3.1 Cell

The area of a typical commodity DRAM cell is 1/20th of an SRAM cell and 1/3rd
of an LP-DRAM cell. Hence, for a given die area, a DRAM array packs 7–20 times
more cells compared to an SRAM array. This not only makes a DRAM array denser
but also places additional constraints on peripheral circuits. For example, decoder
drivers and sense amplifiers employed for a DRAM array should be downsized to
match the cell area. This in turn increases the delay of wordlines and sensing logic.
CACTI’s design space exploration takes into account the effect of downsizing while
finding the optimal DRAM array organization.

14.2.3.2 Destructive Readouts and Writeback

After reading a DRAM cell, the cell loses its content due to charge redistribution
between the cell and the capacitive bitline, and there is a need for data to be writ-
ten back into the cell. In addition to this, after a writeback the bitlines need to be
restored to their precharged value. These writeback and restore operations increase
the random cycle time of a DRAM array. CACTI include these operations when
calculating delay and energy values.

14.2.3.3 Refresh

Even in the absence of any read or write operations, DRAM cells continue to leak
charge and requires periodic refreshing. The refresh period is a function of amount
of charge stored in a cell and varies between commodity DRAM and LP-DRAM.
This is because the LP-DRAM cells employ transistors with oxides that are much
thinner than those of commodity DRAM cells. CACTI considers the overhead of
refreshing while modeling DRAM power.

14.2.3.4 Operational Mode

While modeling DRAM using CACTI, a user is provided with an option to either
model it as a traditional main memory that follows JEDEC standard [8] (with models
for ACTIVATE, READ, WRITE, and PRECHARGE commands) or as a SRAM-
like model with just READ and WRITE commands. In the latter case, activate and
precharge operations happen along with a read or write without any explicit request
for them. CACTI automatically adjusts its timing and power calculations for an
array based on its access model.
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14.3 Modeling Access Timing, Area, and Power

CACTI models the delay, power, and area of eight major components of a cache:
decoder, wordline, bitline, sense-amp, comparator, multiplexer, output driver, and
inter-bank wires. To model NUCA caches, CACTI also models router components
such as arbiters, flipflops, and crossbars. These components are connected using
buffers and drivers. The sizing of transistors in various cache components and
drivers are calculated using the method of logical effort [18].

14.3.1 Delay

The delay of a logic or wire is governed by its RC time constant (where, R is
resistance, C is capacitance). To calculate the delay, a circuit is first transformed
into its equivalent RC tree. The resistance and capacitance values of gates and
wires are calculated from transistor sizes (estimated using logical effort) and ITRS
projections [7]. The time constant of a path in an RC tree is equal to the sum of the
delay through each segment, which in turn is defined as the product of resistance
and the downstream capacitance. For example, consider an interconnect fragment
shown in the Fig. 14.4 consisting of repeaters and a branch. Its equivalent RC tree
is shown in Fig. 14.5. The time constant of the path from input to output 1 is given
by

τ = R1(C1 + Cwire + C21 + C22) + RC

2
+ R(C21 + C22) + R2C22 (14.1)

Fig. 14.4 Interconnect fragment with a branch

In the above equation, R1 and C1 are the resistance and capacitance of the inverter
1. R2, C21, and C22 are the resistance, the input capacitance, and the output capac-
itance of the inverter 2. R and C correspond to the effective resistance and capac-
itance of the connecting wire segment. To include the effect of slow rising signals
at the input on delay, the timing model proposed by Horowitz is employed [6].
Equation (14.2) calculates the final delay of a circuit.

delayr = t f

√
[log

vth

Vdd
]2 + 2triseb(1 − vth

Vdd
)/t f (14.2)
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Fig. 14.5 RC tree of the fragment

where tf is the time constant of the tree, vth is the threshold voltage of the transistor,
trise is the rise time of the input signal, and b is the fraction of the input swing in
which the output changes.

14.3.2 Power

The energy consumed by a logic or wire is primarily due to charging and discharg-
ing of its parasitic capacitances. In addition to this, a small fraction of power gets
wasted due to leakage current in transistors. While the contribution of leakage to
the total power is typically small, for deep sub-micron technologies, leakage power
contribution can be significant [2]. CACTI models both dynamic and leakage power
of all the cache components. The dynamic energy consumed by a gate is given by

Edyn = 0.5 CV 2

The multiplicative factor of 0.5 in the equation assumes consecutive charging and
discharging cycles for each gate. Energy is consumed only during the charging cycle
of a gate when its output goes from zero to the operating voltage. C in the equation
refers to the parasitic capacitance (which includes gate and drain capacitances of
transistors) of the gate.

There are multiple sources of leakage current in a transistor: sub-threshold leak-
age, gate-induced drain current, current due to reverse biased pn junction, punch
through current, and gate tunneling current [1]. CACTI models the most dominant
component of leakage which is drain-to-source leakage. This component of leakage
in a gate depends on two factors: the state of a transistor (leakage current is fac-
tored in only when a transistor is in an off-state) and stacking level. This means,
in a complementary MOS gate, sub-threshold leakage is accounted either in pull-up
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transistors or in pull-down transistors. As leakage current in PMOS is different from
NMOS, CACTI considers the average of leakage due to pull-up and pull-down tran-
sistors. Another factor that affects the sub-threshold current is stacking of transis-
tors. For example, the leakage current in NMOS transistors stacked in a NAND gate
is less than the leakage current of a similarly sized NMOS in an inverter. CACTI uses
the model proposed by Narendra et al. [13] to determine the reduction in leakage
due to stacking. Leakage power of a transistor is given by

Pleak = Twidth IleakV × Sadj

where Twidth refers to the width of the transistor and Ileak is the leakage current for
a given technology. Sadj is the adjustment factor that models the effect of stacking
of transistors in a gate.

14.3.3 Area

The area of a memory structure is primarily dominated by the area of memory cells,
peripheral logic, and connecting wires. The area of a cell depends on the type of
the storage medium and the number of ports in an array. CACTI follows ITRS
projections to model area of a single ported cell. For multi-ported cells, the area
of additional access transistors required to support multiple ports are added to the
single-ported cell area.

To model area of peripheral circuits, complex logic is first decomposed into sim-
ple gates. CACTI assumes a standard cell layout for gates as shown in Fig. 14.6. For
a given process technology, the area of a standard cell can be determined by a set of
process-specific variables shown in Table 14.1. Logic gates with stacked transistors

Fig. 14.6 Standard cell layout template
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Table 14.1 Technology parameters required by the gate area model

Hn−diff Maximum height of n diffusion of a transistor
Hp−diff Maximum height of p diffusion of a transistor
Hgap−bet−same−diffs Minimum gap between diffusions of the same type
Hgap−bet−opp−diffs Minimum gap between n and p diffusions
Hpower−rail Height of VDD power rail
Wp Minimum width of poly
Sp−p Minimum poly-to-poly spacing
Wc Contact width
Sp−c Minimum poly-to-contact spacing

typically share a common diffusion and do not incur any area overhead due to metal
contacts. This is also true for large transistors that are folded to fit into the standard
cell template. CACTI’s area model considers the reduction in area due to folding or
stacking of transistors in a gate [19].

The contribution of wires to the total memory area depends on the type of the
wire employed for address/data interconnects. A plain wire (wires with no repeaters)
or unequalized differential low-swing wires can be laid on top of memory arrays and
do not require silicon area. However, wires with repeaters or equalization transis-
tors require silicon area and their contribution to the total area can be non-trivial.
CACTI’s wire area calculation is based on the width and spacing of wires from the
ITRS roadmap [7]. Sometimes employing very large repeaters or tristate buffers
make it impossible to lay wires with minimum standard spacing. For such wires,
CACTI calculates both repeater/buffer area and the area due to wire pitch and picks
the maximum of both to model interconnect area.

14.4 Usage

CACTI takes a list of parameters such as cache size, block size, associativity, and
technology from a user through a configuration file (cache.cfg) and outputs delay,
area, and power values of the specified configuration. The configuration file also
enables the user to describe the cache parameters in much greater detail. Some of
the other non-standard parameters that can be specified in the cache.cfg file include
the following:

• Number of read ports, write ports, and read–write ports in a cache
• Technology type (HP—high performance; LSTP—low standby power; LOP—

low operating power; LP-DRAM—embedded DRAM; COMM-DRAM—
commodity DRAM)

• Input/output bus width
• Operating temperature (which is used for calculating the cache leakage value)
• Custom tag size (that can be used to model special structures such as branch

target buffer, cache directory)
• Access mode (fast—low access time but power hungry; sequential—high access

time but low power; normal—less aggressive in terms of both power and delay)
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• Cache type (DRAM, SRAM, or a simple scratch RAM such as a register file
which does not need the tag array)

• NUCA bank count (by default CACTI calculates the optimal bank count value.
However, the user can force the tool to use a particular NUCA bank count value)

• Number of cores
• Cache level—L2 or L3 (core count and cache level are used to calculate the

contention values for a NUCA model)
• Design objective (weight and deviate parameters for NUCA and UCA)

CACTI is available for download from

http://www.hpl.hp.com/research/cacti/

14.5 Future Directions

Memory hierarchies are continuously evolving and it is highly likely that solid state
non-volatile memories will soon dominate the entire hierarchy in future systems.
Industry has already started embracing FLASH memories as an alternative to stor-
age disks [5]. Moreover, upcoming memory technologies such as Phase Change
Memories [4, 16] and Memristors [17] are becoming increasingly popular and there
has been a lot of work from both industry and academia that try to leverage these
technologies to improve system performance [3, 10, 15, 20]. To accelerate research
on upcoming technologies, future versions of CACTI will have functionalities to
support FLASH, PCRAM, and Memristor-based memories.

14.6 Summary

CACTI supports modeling the entire range of memory hierarchy components from
register files, buffers, and various types and levels of caches to main memory. By
modeling all these memories accurately we can model a significant portion of a
proposed machine and quantitatively evaluate new architectural ideas impacting the
memory hierarchy. CACTI’s analytical models have been validated to be within
12% of high fidelity SPICE models. Combined with cycle-accurate instruction-level
simulation, this can enable accurate overall system optimization, including the effect
of machine organization and microarchitecture trade-offs on cycle time, power, and
area.

Acknowledgments The authors would like to thank all the researchers that have contributed to
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Chapter 15
Thermal Modeling for Processors
and Systems-on-Chip

Kevin Skadron, Mircea Stan, and Wei Huang

Abstract Chip power density and consequently on-chip hot spot temperature have
been increasing steadily as a result of non-ideal technology scaling, leading to
severely thermally constrained designs. In this chapter, we review a chip- and
package-level thermal modeling and simulation approach, HotSpot, that is unique
because it is compact, correct by construction, flexible, and parameterized. HotSpot
is important for temperature-aware design, especially during early pre-RTL stages
of SoC and processor designs. Several case studies further illustrate the necessity of
thermal simulations and the usefulness of HotSpot.

15.1 Temperature-Aware Design

An unfortunate side effect of miniaturization and the continued scaling of CMOS
technology is a steady increase in power densities. The resulting difficulties in man-
aging temperature, especially local hot spots, have become one of the major chal-
lenges for designers. High temperatures have several detrimental effects on VLSI
systems such as microprocessors and systems-on-chip (SoC). First, the device car-
rier mobility is degraded at higher temperatures, resulting in slower devices. Second,
leakage power is escalated due to the exponential increase of sub-threshold current
with temperature. Third, the interconnect resistivity increases with temperature,
leading to more severe power grid I R drops and longer interconnect RC delays,
causing performance loss and complicating timing and noise analysis. Finally, ele-
vated temperatures accelerate interconnect and device aging, while package relia-
bility can be severely affected by local hot spots and higher temperature gradients.
For all these reasons, in order to fully account for the thermal effects, it is important
to model chip temperature in an accurate but also efficient way at all stages of the
design. In particular, it is crucial to take thermal effects into account as early as
possible in the design cycle, since early high-level thermal-aware design decisions
can significantly improve design efficiency and reduce design cost.
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Figure 15.1 shows a basic ASIC/SoC design flow adapted to become
temperature-aware. Temperature profiles are needed at both functional-block level
and standard-cell level during the design flow. Similar arguments also apply to
microprocessor design flows. From the flow it is clear that it is very important to be
able to estimate temperature at different granularities and at different design stages,
especially early in the design flow. The estimated temperatures can then be used
to perform power, performance, and reliability analyses, together with placement,
packaging design, etc. As a result, all the design decisions use temperature as a
guideline and the design is intrinsically thermally optimized and free from thermal
limitations. We call this type of design methodology temperature-aware design. The
idea of temperature-aware design is essential because the operating temperatures are
properly considered during the entire design flow instead of being determined only
after the fact and at the end of the design flow.

Fig. 15.1 An example of temperature-aware ASIC/SoC design flow [1]

It is important to recognize that power-aware design is insufficient for tempera-
ture management, because temperature also depends on the pattern of power dis-
sipation in space and time, packaging and cooling choices, and the behavior of
other system components. Furthermore, sometimes lower energy or low-power solu-
tions can actually lead to higher temperatures (e.g., solutions that have higher local
power densities), while a temperature-aware design can allow cheaper packages,
quieter fans, and higher reliability. Also, low-power techniques tend to conserve
power when activity is low, while thermal effects are a problem when activity is
high. Thermal management techniques must therefore be designed differently from
energy management techniques, even if they use some of the same underlying design
“knobs” to control power. In recent years, research on temperature-aware design in
the computer architecture and circuits communities has rapidly expanded, and more
often we see chip architects and circuit designers branching out to collaborate with
the design automation and thermal engineering communities.

15.2 Compact Thermal Modeling

The thermal model used to estimate temperatures is the key element for a
temperature-aware design methodology. Figure 15.2 shows how the thermal model
helps to close the loop for accurate power, performance, and reliability estimations.
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Fig. 15.2 Interactions among thermal model and power, performance, and reliability models [1]

For example, the power model first provides estimated power to the thermal model.
The thermal model in turn provides estimated temperatures to the power model, and
so on. After a few iterations, both power and temperature estimations converge; at
that point, temperature-aware power estimation is achieved. Similarly, temperature-
aware performance and reliability estimations can also be achieved.

Due to the huge computational requirements, it is almost impossible to model
temperature and analyze the thermal effects of a system together with the envi-
ronment in their full details. Using detailed numerical analysis methods, such as
finite-element models (FEM), is time-consuming and costly, hence appropriate to
model temperatures only in special cases. The best trade-offs are offered by com-
pact thermal models (CTMs) with reasonably accurate temperature predictions at
different levels, e.g., circuit level, die level, package level [2].

A top-down hierarchy of compact thermal models can help designers at differ-
ent levels of abstraction. As listed below, there are several desirable features that
increase the usefulness of such a compact thermal model at a particular level.

15.2.1 Correct by Construction

A fully by-construction and parameterized compact thermal model allows chip
designers and computer architects to explore new design alternatives and evalu-
ate different thermally related design trade-offs at their corresponding design levels
before the actual physical design becomes available. More importantly, with the aid
of the parameterized compact thermal models, designers at different design levels
can have more productive interactions and collaborations during early design stages.
This leads to early discovery and considerations of potential thermal hazards of
the system. True physical parameterization requires that the models be constructed
solely on design geometries and material properties.

15.2.2 Boundary-Condition Independence (BCI)

A crucial feature of compact thermal models is boundary-condition indepen-
dence (BCI). By achieving BCI, assumptions about the environment (e.g., ambient
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temperature) do not affect the construction of the actual model. Prior package-level
compact thermal models in [3, 4] achieve BCI by finding a thermal resistance net-
work with minimum overall error when used with different boundary conditions [4–
6]. At the chip and block level, we also need to find a way to construct a thermal
model that is BCI.

15.2.3 Analogy of Electrical and Thermal Phenomena

The compact model must be easy to construct. One possibility is to utilize a well-
known analogy of heat transfer and electrical phenomena, as shown in Table 15.1.
In this analogy, heat flow that passes through a thermal resistance is analogous
to electrical current; temperature difference is analogous to voltage. Similar to an
electrical capacitor that accumulates electrical charges, thermal capacitance defines
the capability of a structure to absorb heat. The rationale behind this analogy is
that electrical current and heat flow can be described by a similar set of differ-
ential equations (there is no thermal equivalent of electrical inductance though).
A compact thermal model is essentially a thermal RC circuit. Each node in the
circuit corresponds to a block at the desired level of granularity. The heat dis-
sipation of each block is modeled as a current source connected to the corre-
sponding node. Solving this thermal RC circuit gives the temperatures of each
node.

Table 15.1 Analogy of thermal and electrical quantities

Thermal quantity Unit Electrical quantity Unit

P , Heat flow, power W I , Current A
T , Temperature difference K V , Voltage V
Rth, Thermal resistance K/W R, Electrical resistance �

Cth, Thermal capacitance J/K C , Electrical capacitance F

15.2.4 Detailed Temperature Information

A compact thermal model should also provide thermal information at the desired
level of abstraction. For example, for package-level compact thermal models, pre-
vious studies [7, 8] have shown that the information of temperature distribution
across the package is required. Using only a single junction-to-case thermal resis-
tance leads to an inferior package design; instead, multiple nodes are needed on the
package surfaces. Similarly, a compact thermal model at the silicon level should
consist of enough nodes for detailed temperature distribution information across the
die. In addition, both static and transient temperatures need to be modeled.
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15.2.5 Granularity

A compact thermal model needs to match the spatial and temporal granularities to
the level of abstraction (lower granularities at higher levels, and higher granularities
at lower levels) in order to hide the details of the lower levels and make sure that
the compact thermal model itself is no more complex than necessary. Modeling at
finer granularity introduces unnecessary details and makes the computation slower.
For example, system-level package compact thermal models, such as the DELPHI
models [3, 4], hide the lower level details of the package structures, including the
die, the thermal attach, and the solder balls, mainly because these details are intellec-
tual properties of the vendors, but also because they would increase the complexity
of the model without significantly improving the simulation accuracy. Similarly, a
compact thermal model at the die level should hide the lower level details of the die,
such as the actual circuit structures and physical layout.

15.2.6 Pitfalls

In order to construct a reasonably accurate yet compact thermal model for processor
and SoC designs, there are several points worth considering:

• Aspect ratio. We found that a block with high aspect ratio cannot be modeled
as one node. This is because the heat spreading in one direction dominates the
other directions, resulting in a significantly non-uniform temperature distribution
within the block, and hence a single temperature is no longer representative to
the entire block. The solution is to divide the block into several sub-blocks with
aspect ratios close to unity [9]. This also applies in the depth dimension, i.e.,
if a block occupies a tiny chip area (e.g., 100 × 100 µm), whereas the chip is
700 µm thick, it is better to further divide the chip into multiple sub-layers or to
combine the tiny block with adjacent blocks to make the aspect ratio in the depth
dimension closer to unity.

• Package components. It is tempting to simplify the thermal package (including
thermal interface material (TIM), heat spreader, heat sink, and the secondary
heat transfer path) into only one or a few nodes and try to have a simple thermal
boundary condition for the silicon die. The result, however, may be inaccurate
and yield misleading silicon temperature estimations. The right thing to do is to
analyze the geometries and thermal properties of each package components and
understand their impact on the die temperature before simplifying them [10].

• Granularity. In most cases, it is not necessary to model temperature at granu-
larities that are so fine as to be computationally infeasible, such as nanometers
and nanoseconds. This is because, in time, the thermal time constants (millisec-
onds or more) are much longer than electrical time constants; and the lateral heat
spreading makes a small heat source (size less than a few hundred microns on
each side) relatively cool [11]. We show some analysis and examples related to
this issue in later sections of the chapter.
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15.3 The HotSpot Thermal Modeling Approach

In this section, we present a compact thermal modeling method, named HotSpot,
which takes a structured assembly approach of constructing a physical compact
thermal model by first modeling the silicon die and other packaging components
as a collection of simple 3D shapes, and then assembling them into more complex
compact thermal models according to the overall structure. This modeling approach
is fully parameterized and satisfies most of the above desirable features as shown
later in the chapter.

15.3.1 Overview

When constructing a compact thermal model with HotSpot, one needs to first iden-
tify the different layers of the design that are made of different materials. This
requires the designer have some prior detailed knowledge of the (intended) design
structure. These layers are then stacked on top of each other as shown in Fig. 15.3.
The layers can, for instance, represent heat sink, heat spreader, silicon substrate,
on-chip interconnect layer, C4 pads, ceramic packaging substrate, solder balls, etc.
Usually, the surface that generates heat is the surface of the silicon substrate layer.

Each layer is then divided into a number of blocks. For example, in Fig. 15.4c,
the silicon substrate layer can be divided according to architecture-level blocks
(only three blocks are shown for simplicity) or finer granularity, depending on what
the die-level design requires. For other layers that may require less detailed ther-
mal information, one can simply divide that layer as illustrated in Fig. 15.4a. The
center shaded part in a layer shown by Fig. 15.4a is the area covered by another
adjacent layer such as the one shown in Fig. 15.4c. This center part can have the
same number of nodes as its smaller neighbor layer or collapse those nodes into
a single node, depending on the accuracy and computation overhead requirements.
The remaining part at the periphery in Fig. 15.4a is then divided into four trape-
zoidal blocks, and each is assigned one thermal node. Each block in each layer has
a vertical (depth) thermal resistance and several lateral resistances, which model
vertical heat transfer to its neighbor layers and lateral heat spreading/constriction
within the layer itself, respectively. Figure 15.4b shows a side view of one block
with both the lateral and the vertical resistances. Vertical (depth) resistances can

Fig. 15.3 The stacked layers of different materials in the HotSpot modeling approach. Heat
generating surface and major heat transfer paths are also shown [12]
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(b)

(a) (c)

Fig. 15.4 (a) Area division of larger layers (top view). (b) Side view of one block with its lateral
and vertical (depth) thermal resistances. (c) A layer, for example, the silicon die, can be divided
into arbitrary number of blocks if detail thermal information is needed (top view) [13]

be calculated by Rvertical = t/(k·A), where t is the thickness of that layer, k is the
thermal conductivity of the material of that layer, and A is the cross-sectional area
of the block. Calculating lateral thermal resistances is not as straightforward as the
depth resistances. This is because of the complex nature of modeling heat spreading
and constriction. One can consider the lateral thermal resistance of one block as
the spreading/constriction thermal resistance of the other parts within a layer to that
specific block.

For layers that have surfaces interfacing with the ambient, i.e., the boundaries,
we assume that each surface has a constant heat transfer coefficient h. The corre-
sponding thermal resistance can then be calculated as Rconvection = 1/(h·A), where
A is the surface area. Strictly speaking, these convection thermal resistances are
not part of the compact thermal model, because they include the information of the
environment. If the environment changes, i.e., the boundary conditions change, the
value of these convection resistances also change. On the other hand, for a particular
design, the values of all the other thermal resistances shown in Fig. 15.4a–c should
not change if the compact thermal model is BCI.

The HotSpot modeling approach first described in [14] has been successfully
used in many academic as well as industry research activities.

15.3.2 Primary and Secondary Heat Transfer Paths

In HotSpot, we also consider lateral heat flow within a layer by adding lateral ther-
mal resistances to achieve greater accuracy of temperature estimation. Figure 15.5
shows a modern single-chip CBGA package [15]. Heat generated from the active
silicon device layer is conducted through the silicon die to the thermal interface
material, heat spreader, and heat sink and then convectively removed to the ambient.
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Fig. 15.5 Packaging components in a typical CBGA package, adapted from [15]

In addition to this primary heat transfer path, a secondary heat flow path exists due to
conduction through the interconnect layer, I/O pads, ceramic substrate, leads/balls
to the printed-circuit board. HotSpot models all these layers in both heat flow paths.
Although the primary path removes most heat (more than 90%) in advanced cooling
packages, the secondary path can also be essential in cooling solutions where forced
convection or heat sinks are not used, as in most low-power SoCs.

15.3.3 Functional Units Versus Regular Grids

Layers such as the silicon die, the interface material, and the center part of the heat
spreader can either be divided naturally according to functional unit shapes or be
divided into regular grid cells, depending on the needs of the designer. For example,
if a chip designer needs to estimate average temperatures for each functional block
a thermal model at the functional unit granularity is best in that case. However, for
a package designer, the temperature gradients across silicon die and other package
layers are important metrics to evaluate the reliability of the package. In this case, a
grid-like thermal model is more suitable, since it provides more detailed estimations
of maximum and minimum temperatures, whereas the functional block-level ther-
mal model does not. HotSpot offers a choice between a possibly irregular functional
unit partitioning and a regular grid of variable granularity.

15.3.4 Model Validation

We performed a number of validations for the HotSpot thermal model—with
detailed finite-element modeling software, thermal test chip [1], infrared thermal
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imaging [16], and actual on-chip temperature sensors [17]. We have also vali-
dated that the HotSpot thermal modeling approach is boundary-condition indepen-
dent [13].

15.4 Case Studies

In this section, we provide several brief case studies illustrating how to use a com-
pact thermal modeling approach such as HotSpot in various aspects of thermal anal-
ysis and temperature-aware design for processors and SoCs.

15.4.1 A SoC Thermal Analysis Example

To illustrate the importance of temperature-aware design early in the design process,
we show the thermal analysis together with the temperature-leakage closed loop for
a SoC design [9]. We use InCyte�, a commercial early design estimation tool1

to reconstruct an SoC design based on the published 180 nm design data in [18].
We use HotSpot 4.0 for the thermally self-consistent leakage analysis of this SoC
design.

We picked logic and memory modules similar to those in [18] from InCyte’s
incorporated IP libraries and came up with an early SoC design whose total power
was almost identical to data reported in [18]. InCyte also outputs a preliminary
floorplan for the design. Notice that InCyte estimates leakage power of each block
at a constant temperature. The estimated temperature map of this 180 nm design is
shown in Fig. 15.6.

Because InCyte does not yet include the temperature dependence of leakage,
whereas sub-threshold leakage is exponentially dependent on temperature, we
double-check to see whether the thermally self-consistent leakage power causes
thermal problems to this 180 nm SoC design. Using HotSpot and the simple leakage
model in [10] to iterate the temperature-leakage loop as shown in Fig. 15.7, after
convergence we find that the final total leakage is only a negligible 546 µW for this
design with the selected package. Therefore, the above temperature estimation is
quite accurate without considering the temperature-leakage loop.

However, if we re-design this SoC design in a 90 nm technology, there are two
design possibilities: (1) We can scale both the area and active power of each indi-
vidual blocks and thus maintain the same function and complexity. This means that
the total power of the entire design is also scaled accordingly, and the power density
remains roughly the same due to area scaling. Therefore, we can use a cheaper
thermal package for less overall power consumption and keep the chip below the
85◦C thermal constraint. (2) Since the ITRS [19] projects that the die size and
power remain the same, if not increase, across different technology nodes, we can

1http://www.chipestimate.com/
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Fig. 15.6 Estimated temperature map of an SoC design at 180 nm technology, based on data in [18]
and InCyte. Temperatures are in degree celsius [9]

Fig. 15.7 A thermal model closes the loop for leakage power calculation [10]

alternatively assume that the total active power and chip area remain the same as
those in the 180 nm design. Assuming a floorplan similar to that in 180 nm technol-
ogy, this is equivalent to adding more parallelism (such as more processing cores and
higher memory bandwidth) to the die and designing the chip for higher throughput
by burning more power. In this case, with the same thermal package, after iterat-
ing with the leakage-temperature loop, the hottest on-chip temperature exceeds the
thermal threshold and eventually causes thermal runaway! The reason is twofold: (1)
at 90 nm, a greater fraction of total power consumption is caused by leakage [19],
and (2) the sub-threshold leakage power’s dependency on temperature is stronger at
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90 nm than at 180 nm (using leakage model coefficients in [20, 21]). The results are
listed in Table 15.2.

Table 15.2 As technology scales, temperature dependence of sub-threshold leakage power
becomes more problematic. Without early-stage thermally optimized design flow, thermal runaway
can happen even for low-power SoC designs

Active power Avg. temp rise
Hottest temp
rise

Actual
leakage

Leakage error
at const temp

180 nm, orig.
design

1.7 W 30.77◦C 59.98◦C 546 µW 116%

90 nm,
scaled
power area

316 mW 6.19◦C 25.42◦C 24 mW 66%

90 nm, same
power area

1.7 W >35.08◦C Runaway >277 mW >680%

The above SoC design example shows that it is crucial to incorporate thermal
estimations (such as leakage-temperature dependence) early in the design process
in order to locate potential thermal hazards that are too costly to fix in later design
stages. At this early design stage, possible solutions to the SoC design at 90 nm
can be as follows: (1) circuit designers can choose IPs that have high-Vt transis-
tors and use reverse body-bias or sleep transistors for non-critical paths to reduce
leakage; (2) architects can consider using dynamic voltage and frequency scaling
(DVFS), migrating computation [20, 22], more parallelism, and temperature-aware
floorplanning techniques [23], etc., to reduce hot spot temperatures. Alternatively,
(3) package designers need to consider the possibility of adding a heatsink or a fan.
Trade-offs among portability, cost, performance, and temperature have to be made.

15.4.2 Exploring Design Choices with Parameterization in HotSpot

As mentioned before, HotSpot is parameterized in terms of geometries and material
properties of silicon, package components, and cooling solutions. Achieving full
parameterization of compact thermal models is important in many ways. It allows
designers at all design stages to freely explore all the possible thermally related
design spaces. For example, the heat spreader and heat sink are two important pack-
age components for high-performance VLSI designs. While a large heat spreader
and heat sink made from high thermal conductivity materials can reduce the tem-
perature of silicon die, they also significantly increase the total price of the system.
Therefore, exploring design trade-offs between hot spot temperatures and package
cost is crucial. With parameterized compact thermal models, this exploration can be
done easily and efficiently by simply sweeping the size of the heat spreader and heat
sink with different material properties to achieve the desired package design point.
On the other hand, building package prototypes or detailed thermal models greatly
slows the design process and increases the design cost.
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For illustration, we first present an example analysis to show the strength of using
parameterized compact thermal models to efficiently investigate the impact of ther-
mal interface material on across-silicon temperature differences. Figure 15.8 shows
the relationship between the thickness of the thermal interface material (TIM),
which glues the silicon die to the heat spreader. We plot the temperature readings
from a compact thermal model with 40 × 40 grid cells on silicon. This analysis is
based on an Alpha 21364-like floorplan shown in Fig. 15.9a. Average silicon die
temperature is also plotted in Fig. 15.8 for reference. The total heat generated from
the silicon surface is 40.2 W, the die size is 15.9 × 15.9 × 0.5mm, and the thermal
conductivity of the thermal interface material is 1.33 W/(m-K).

Fig. 15.8 The impact of thermal interface material (TIM) thickness to silicon die temperature
difference. Average silicon die temperature is also plotted as reference [10]

As can be observed from Fig. 15.8, although the TIM thickness does not have
an obvious impact on the average die temperature, thicker TIM results in poor heat
spreading which leads to large temperature differences across the die. Such large
temperature differences may be disastrous to circuit performance and die/package
reliability. Using a better heat sink will only lower the average silicon temperature
but will not help to reduce the temperature difference. From this analysis, which has
been easily performed by our parameterized model, we can reach the conclusion that
using as thin as possible a thermal interface material is one of the key opportuni-
ties for package designers to consider and more important than, for example, using
a larger heatsink. In some recent work [4, 24], the importance of measuring and
modeling thermal interface’s impacts on the entire package has been also discussed,
although not at the same silicon die level as the above example shows.

Another example of utilizing our parameterized compact thermal model is the
investigation of a dynamic thermal management technique (DTM) at the micro-
architecture level called migrating computation (MC) [22]. It is obvious that two
silicon-level functional units that run hot by themselves will tend to run even hot-
ter when adjacent. On the other hand, separating them will introduce additional
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communication latency that is incurred regardless of operating temperature. This
suggests the use of spare units located in cold areas of the chip, to which computa-
tion can migrate only when the primary units overheat. In this study, the floorplan
of the Alpha 21364 core is carefully changed to include an extra copy of integer
register file (see Fig. 15.9), which is usually the hottest spot on the silicon die for
this design. We also model the fact that accessing the secondary integer register file
entails extra power and extra access time due to the longer distance. With this new
floorplan, we can shift the workload back and forth between the two register files
when the one in use overheats, with a little performance overhead (11.2% slower).
The changes in silicon floorplan can be easily adapted into corresponding parame-
terized compact thermal models, and thus the temperatures of functional units can
be analyzed efficiently to investigate the usefulness of the migrating computation
DTM technique. By doing this, packaging complexity and cost can be significantly
reduced and still yield almost the same operating temperature and performance as
with much more expensive and complicated thermal package.
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Fig. 15.9 (a) Approximated floorplan of Alpha 21364 microprocessor. (b) Close-up look of the
21364 core, with only one register file on the top-right corner. (c) 21364 core with an extra copy
of register file at the top-left corner [14]

15.4.3 Other Examples of HotSpot Usage by the Temperature-
Aware Research Community

There are many other applications of the HotSpot thermal model. For example,
temperature-aware floorplanning for both 2D [23] and 3D chips [25]; temperature
considerations for reliability-aware design [21]; exploration of the thermal con-
straint on the design space for chip multiprocessor architectures [26, 27]; dynamic
thermal management at the architecture level [14]; on-chip temperature sensor
placement [28, 29]; temperature-aware high-level synthesis [30]; temperature-aware
supply voltage planning in SoC [31]; thermal-aware SoC test scheduling [32], etc.
We encourage interested readers to explore the plethora of research topics related to
temperature-aware design.
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15.5 Conclusion

In this chapter, we reviewed the important concept of temperature-aware design,
especially during early stages of SoC and processor designs. We then introduced
an accurate yet fast thermal modeling approach—HotSpot. HotSpot is unique and
useful because it is compact, correct by construction, flexible, and parameterized.
Since its introduction, HotSpot has been adopted and applied in many research areas
in processor, SoC, and package design.
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Chapter 16
Rapid Technology-Aware Design Space
Exploration for Embedded Heterogeneous
Multiprocessors

Marc Duranton, Jan Hoogerbrugge, Ghiath Al-kadi, Surendra Guntur,
and Andrei Terechko

Abstract Multicore architectures provide scalable performance with a hardware
design effort lower than for a single core processor with similar performance. This
chapter presents a design methodology and an embedded multicore architecture
focusing on boosting performance density and reducing the software design com-
plexity. The methodology is based on a predictive formula computing performance
of heterogeneous multicores, which allows drastic pruning of the design space for
few accurate simulations. Using this design space exploration methodology for high
definition and quad high definition H.264 video decoding, the resulting areas for
a multicore system in CMOS 45 nm are 2.5 and 8.6 mm2, respectively. These
results show that heterogeneous chip multiprocessors are cost-effective for embed-
ded applications.

16.1 Introduction

Emerging video, graphics, and modem applications demand always higher perfor-
mance from embedded systems but economics dictates a comparable or decreasing
cost, translated into a similar or lower silicon area. Due to the increasing diver-
sity of functions an embedded system should be able to perform, fixed hardware
solutions are more and more replaced by programmable solutions, pushing the flex-
ibility into software. To boost performance density, embedded chips often deploy
domain-specific multicore architectures where each core runs a relatively indepen-
dent application (e.g., audio decoding), requiring little synchronization and com-
munication with other cores. However, if a demanding application with sufficient
task-level parallelism (TLP), such as high definition (HD) H.264 video decoding,
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exceeds the compute power of a standalone core, this application should be split
into tasks and run on several cores in parallel.

Although general purpose and server processors have already adopted multicore
architectures, embedded chip multiprocessors (eCMP) still compete with function-
specific hardware accelerators in terms of performance density and energy effi-
ciency. Therefore, each core of the eCMP has to be optimized for the set of applica-
tions the system will have to process, and the global system should be supplemented
by “generic” coprocessors for tasks that are still inefficiently performed by the cores.
Of course, the specialization should not lead to a too much specialized eCMP; it
should be usable for one or several domains of application so that its development
cost will be shared by all use cases. On top of that, the widening design produc-
tivity gap encourages core replication in favor of designing each time a different
function-specific hardware.

The problem of architecting an efficient eCMP is highly complex and the number
of design choices to choose becomes huge. All parts are linked together and opti-
mizing, one element could lead to the loss of efficiency elsewhere: it is not enough to
make only local optimizations; global optimization is also required. Tools that allow
to navigate in the parameter space and to choose an optimum are key to the success
and to the short time to market. One approach for this design space exploration
(DSE) is to combine domain knowledge, analytical approximations, and execution-
driven simulations. Simulations should be fast, reliable for systems where a lot of
parameters are still variable. The rest of this chapter will describe a methodology
of DSE that combines different approaches to architect heterogeneous multicore
systems.

16.2 Characteristics of Embedded Multimedia Applications

The targeted multimedia applications for the considered eCMP include audio/video
codecs (H.264, for example), video enhancement applications, motion-compensated
frame rate conversion, and 3D graphics. Image resolution of video applications
tends to grow from standard definition (0.5 million pixels) to high definition
(2 million pixels) to quad high definition (8 million pixels) and even to super hi-
vision (32 million pixels). Data partitioning of a task-level parallel application,
also known as single-program multiple data [5], scales well with the growing video
resolution from standard definition to high definition to super high definition.

Many of these applications contain task-level parallelism (TLP) [3]. Modern
video codecs, as well as the frame rate conversion algorithms, feature tasks with
variable execution time and inter-task dependencies. For example, Fig. 16.1 shows
three video frames split in macroblocks of pixels (0,0), (0,1), (1,0), etc. Red arrows
denote dependencies between macroblocks in the H.264 deblocking filter. Mac-
roblock (1,2), for instance, depends on macroblocks (1,1) and (0,2). On the right
in Fig. 16.1 is presented an execution trace of the macroblocks, showing variable
execution time of macroblocks depending on the video content. The variation in
execution time of the tasks may reach an order of magnitude, for example, in the
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H.264 video decoder the PicturePrediction kernel’s execution time varies between
250 and 3500 cycles on a TriMedia VLIW [16]. Dynamic task scheduling enables
better load balancing in the context of variable execution time multimedia tasks [16]
and also simplifies (in-field) software extensibility and upgradeability. Fast and fair
synchronization between such tasks is key in achieving high performance.

2,42,32,2

4,44,34,2

3,43,33,2

1,41,31,2

2,42,32,2

4,44,34,2

3,43,33,2

1,41,31,2

2,42,32,22,12,0

4,44,34,24,14,0

3,43,33,23,13,0

1,41,31,21,11,0

0,40,30,20,10,0

Frame n-1

Frame n

Frame n-2

2,42,32,2

4,44,34,2

3,43,33,2

1,41,31,2

2,42,32,2

4,44,34,2

3,43,33,2

1,41,31,2

2,42,32,2

4,44,34,2

3,43,33,2

1,41,31,2

2,42,32,2

4,44,34,2

3,43,33,2

1,41,31,2

2,42,32,22,12,0

4,44,34,24,14,0

3,43,33,23,13,0

1,41,31,21,11,0

0,40,30,20,10,0

2,42,32,22,12,0

4,44,34,24,14,0

3,43,33,23,13,0

1,41,31,21,11,0

0,40,30,20,10,0

2,42,32,22,12,0

4,44,34,24,14,0

3,43,33,23,13,0

1,41,31,21,11,0

0,40,30,20,10,0

Core 0

Core 1

Core 2

Core 3

(0,0) (0,1) (0,2) (0,3) (0,4)

(1,0) (1,1)

(2,0)

(1,2)

(2,1)

(3,0)

Task execution in frame n
t

Fig. 16.1 Task-level parallelism in multimedia workloads

16.3 Architecture Constraints and a Proposed Architecture
Template

The template of the architecture of the proposed eCMP, called Ne-XVP for Nexperia
eXtreme Versatile Processor, is shown in Fig. 16.2. It is built around VLIW cores,
which together with a highly optimizing ANSI C/C++ compiler [9] efficiently
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Fig. 16.2 The heterogeneous multicore architecture
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exploit the instruction-level parallelism (ILP). The VLIW cores based on the TriMe-
dia TM327x processors [21] feature an ISA tuned for multimedia processing includ-
ing SIMD operations and super-operations with more than two source operands
and/or more than one destination operand. Moreover, the cores have advanced
instruction and data caches with prefetching and collapsed operations to efficiently
address the memory bottleneck without compromising ease of programmability.
A previous work [10] demonstrated that shared memory multicores enable perfor-
mance scalability with reasonable software design effort.

Hill [8] advocates that Amdahl’s law necessitates asymmetric multicores, where
one larger core combats the sequential bottleneck, whereas the remainder of sili-
con real-estate is covered with small efficient cores. Ne-XVP heterogeneous multi-
processor extends the asymmetric architecture with generic coprocessors speeding
up task and data management to improve utilization of the compute and memory
resources.

Data partitioning, dynamic task scheduling, and shared memory with hardware
synchronization primitives deliver good performance for complex multimedia appli-
cations while keeping the program design effort minimal. To support these program-
ming model choices, Ne-XVP features a set of hardware synchronization primitives
in the hardware synchronization unit and a cache-coherent shared memory using
a hardware coherence monitor. Moreover, different programming models are sup-
ported, e.g., the ACOTES programming model [1].

Although there are many known methods to improve silicon efficiency, the Ne-
XVP architecture template only uses those that do not compromise the advantages
of the multicore architectures, including high scalability, low design effort, and ease
of application software development. The evaluated methods are

1. (micro-)architectural downscaling;
2. heterogeneous multicore architectures;
3. multithreading;
4. hardware accelerators; and
5. conjoining.

A typical TriMedia TM3270 core with 128 KB data cache, which was dimen-
sioned for a standalone instantiation in a SoC, is not adequate for a multicore
architecture. Instead of keeping one large core, (micro-)architectural downscaling
of the core can improve the performance density of the final eCMP. To down-
scale the microarchitecture of a VLIW processor, cache sizes, internal buffering,
bypasses, etc., can be changed. On top of that, synthesizing for lower clock fre-
quency can help improve performance density without changing the instruction set
architecture.

Amdahl’s law, on the other hand, indicates that the sequential part can quickly
become the bottleneck for a multiprocessor. Furthermore, single-thread perfor-
mance is of high importance, because some functions cannot be parallelized due
to their sequential nature (e.g., context-adaptive binary arithmetic coding (CABAC)
[6]). Amdhal’s law and the single thread performance motivate for a heterogeneous
multicore architecture, where at least one core is more powerful than the others in



16 Rapid Technology-Aware DSE for Embedded Heterogeneous Multiprocessors 263

order to accelerate the sequential code, while the other more efficient cores tackle
the parallel workload. This is known as asymmetric multicores which are superior
to homogeneous multicore systems in terms of both performance density [8] and
energy efficiency [14].

The explorations are restricted to two types of cores—core1 and core2. More
cores type in the architecture would compromise ease of hardware design and veri-
fication. Moreover, Kumar [12] suggests that having beyond two types of cores does
not significantly contribute to higher performance density.

Hardware multithreading [20] refers to the idea of duplicating processor’s state
enabling quick context switches between several software threads. Multithreading
hides memory latency (by switching to another task when the current one is wait-
ing due to a cache miss), decreases operation latencies, improves code/data shar-
ing, and simplifies the pipeline bypasses and the register file [20]. Hoogerbrugge
[10] demonstrated a good potential of hardware multithreading for embedded video
applications, resulting in significant performance density boosts.

Hardware accelerators drastically improve silicon efficiency. There are three
types of accelerators: generic (e.g., like the hardware synchronization unit—HSU),
domain-specific, and function-specific. The hardware task scheduler (HTS) [2] and
the CoreManager [13] are examples of hardware task schedulers for video and
software-defined radio applications, respectively. In particular, it accelerates appli-
cations with a repetitive dependency pattern between n-dimensional tasks. Repet-
itive dependency patterns are found in H.264 video standard as well as in other
coding standards, e.g., the transform coefficient prediction in VC-1. Similar patterns
are also present in the motion estimation algorithms, which are widely used in video
post-processing such as motion-compensated frame rate up-conversion. The HTS
is part of the synchronization block of the Ne-XVP architecture in Fig. 16.2. The
architecture also supports traditional fixed-function accelerators. For example, the
CABAC speeds up highly sequential context-adaptive binary arithmetic coding of
the H.264 video compression standard, attached to core1 in Fig. 16.2.

Multiprocessors duplicate many resources, such as the instruction decode,
instruction cache, registers, and interrupt vectors. Although, it simplifies hardware
design, over-duplication decreases performance density. Conjoining [11] or resource
sharing has been investigated in several multiprocessor architectures. On top of
conjoining effects in a single multithreaded core, sharing of an instruction cache
among several cores [15] was also evaluated. The motivation for such sharing stems
from the fact that the applications are data-partitioned and cores often run the same
code. Figure 16.2 shows an instruction cache shared between two core2 cores. The
data sets of parallel tasks are often disjoint and, therefore, L1 data caches were not
shared to avoid cache thrashing effects. Furthermore, floating point units of the cores
can be shared at the expense of a performance drop on, for example, 3D graphics
applications. More details on the architecture can be found in [19].

As it can be guessed from the previous sections, the heterogeneous architecture
template has many parameters (e.g., the number of cores, core configurations, kind
of multithreading, and technology) and covers a huge design space. Finding the
adequate instantiation of the template for a given workload is obviously a challenge.
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This challenge is addressed by an advanced design space exploration methodology
based on performance calculation and simulation.

16.4 Dimensions and Parameter Space

In order to evaluate the performance density improvements from the presented archi-
tectural techniques for the targeted multimedia applications at the HD and QuadHD
resolutions, we defined the following design space:

1. number of “small” cores: [1..15];
2. how many cores share one instruction cache: [1,2,3,4];
3. number of VLIW issue slots: [1,2,3,4,5];
4. number of load/stores: [1, 2];
5. number of registers: [128, 96];
6. data cache size: [1K to 128K in powers of 2];
7. instruction cache size: [1K to 128K in powers of 2]; and
8. number of foreground threads and total number of threads: [(1,1), (1,2), (1,4),

(2,2), (2,4)].

Parameters from 3 to 8 relate to a single core. The minimum number of cores
in the DSE was two—one “big” core and one “small” core. The sharing factor for
the instruction caches equals to the number of small cores sharing one instruction
cache. The multithreading option enumerates pairs, composed of the number of
foreground threads and total number of threads. Details on multithreading types
used are explained in [10].

The variation of parameters for each core creates a population of 6,400 different
cores. Hence, there exist 40,953,600 core pairs (one “big” core and one “small”
core) to choose from. From these pairs, there are 1,105,747,200 heterogeneous mul-
ticores in the design space, assuming that the “small” cores can be instantiated multi-
ple times. Exhaustive simulations of this large design space require 2,303,640 years,
if each simulation takes 1 h and is executed on 20 machines in parallel (therefore
the importance for a fast simulator that can be executed in parallel). The main focus
of the DSE methodology is to quickly explore the large design space.

16.5 Design Space Exploration Methodology

16.5.1 Technology-Aware Design

During technology-aware design [17] a technology model feeds the architect with
the clock frequency, area, and power of processor architectures, enabling optimiza-
tion of execution time, performance density, and energy efficiency instead of tra-
ditional cycle counts. Due to the large number of design points the Ne-XVP DSE
flow requires a very quick lookup of area and clock frequencies of all hardware
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components, including cores, accelerators, and networks. Furthermore, the model
should be able to estimate how the architecture performs in future IC technol-
ogy nodes. To satisfy these requirements, the MoodOrgan [18] tool supporting an
advanced methodology for technology modeling was developed.

MoodOrgan provides two modes of operation:

1. characterization and
2. selection.

During the first phase, see Fig. 16.3, the architect creates a database of hardware
components for a given process technology. Once the database is created, the archi-
tect selects and configures components for the processor. The MoodOrgan tool then
can compute the delay, area, and power of the processor composed of the selected
and configured components. The selection phase, therefore, is fast and can be used
for design space explorations, web-portals to the model, etc.

component
database

component2
(parameters: 2,3)

component3
(parameters: 5,6)

component1
(parameters: 1,2)

CHARACTERIZATION SELECTION

Processor1:
component2 (par = 3),
component3 (par = 6)

Processor2 :
component1 (par = 1)

delay1
area1
power1

delay2
area2
power2

Fig. 16.3 The MoodOrgan methodology’s modes of operation

The MoodOrgan tool facilitates the creation of the component database, possibly
accompanied by RTL synthesis of components. Furthermore, the tool provides an
API to select components and assign values to their parameters. Once a processor
is composed of pre-characterized components (e.g., Processor1 composed of com-
ponent 2 and component 3 with parameters set to 3 and 6 in Fig. 16.3), the API
functions allow to compute delay, area, and power of the processor (e.g., delay1,
area1, and power1 in Fig. 16.3).

Hardware components are basic modeling elements out of which the architect
constructs a complete processor model. A hardware component can be any hardware
block, for example, a register file, an ALU, an SRAM memory, a cache controller,
a network, and a chip. Naturally, hardware components may have parameters, e.g.,
bit-width of the ALU.
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Each hardware component has three attributes—delay, area, and power in the
given process technology. The attributes can be omitted. For example, if a block
does not influence the clock frequency of the processor, its delay component can be
set to 0. The architect may choose from three views to describe a component:

1. analytical;
2. empirical; and
3. RTL.

The analytical view is convenient for describing new components, for which only
a rough estimate of physical properties can be captured in a simple formula. In the
case of the analytical view, the architect should provide functions for the delay, area,
and power of the component. For example, the delay, area, and power of an MMIO
unit can be captured in three formulas as a function of the number of registers:

Delay(registers) = 0. (1)
Area(registers) = 0.23 ∗ registers/32 (2)
Power(registers) = 0.012 ∗ registers/32 (3)
Delay is expressed in ns, area—in mm2, and power—in mW/MHz. The delay

of the MMIO component is 0, indicating that the architect does not expect it to be
limiting the clock frequency of the whole processor.

The view based on empirical data points is a good way of specifying laid out
components, fabricated IPs, and for which delay, area, and power are already avail-
able. An example of an empirical component is shown below for our hardware task
scheduler (Table 16.1).

Table 16.1 The hardware task scheduler—an empirical component

NCORES (parameter) Delay (ns) Area (mm2) Power (mW/MHz)

1 0 0.0318687 0.0342
2 0 0.0366746 0.0402
4 0 0.0477864 0.0522
8 0 0.0685097 0.0762

As soon as a component is developed, the existing analytical view can be replaced
with a more accurate RTL description. The specification of the component will then
include paths to RTL files and timing constraints. By this way the architect can grad-
ually improve accuracy of the processor model, keeping the model fully compatible
with the rest of the flow (simulator, compiler, web-based portal, etc.). Note that for
modeling physical properties of a component, the corresponding RTL does not have
to be fully verified. For the RTL component MoodOrgan will synthesize the RTL
and extract delay, area, and power during the characterization phase for all possible
parameter combinations.

As previously mentioned, the attributes of hardware components correspond to a
particular process technology node (e.g., TSMC 90 nm LP), in which the hardware
component was characterized. MoodOrgan incorporates delay, area, and power scal-
ing factors enabling the evaluation of hardware components in a different technol-
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ogy node (e.g., 32 nm). Matlab scripts from the PSYCHIC design flow description
language [4] were used to generate the scaling factors.

From our production experience, the scaling factors are different for gate-limited
components (e.g., ALUs), interconnect-limited components (e.g., register files), and
embedded SRAMs (e.g., caches). The methodology for generating the scaling fac-
tors involves layouting the functional units (for gate-limited scale factors) and the
register file (for interconnect-limited scale factors) of the TriMedia 3,270 processor
at 65 nm process technology. The resulting statistics such as the total number of
cells, number of rows, effective utilization factor, and the list of cells on the critical
path are used in conjunction with the PSYCHIC scripts to determine the delay, area,
and power for another process node. The ratios between the other node’s results and
the 65 nm results give the scale factors for the three component types (gate-limited,
interconnect-limited, and SRAMs).

16.5.2 Performance Computation

Essentially, Ne-XVP DSE methodology is built around the computation of hetero-
geneous eCMP system performances. Based on the computation, only a selected
subset of the eCMPs will be simulated to verify their computed performances. The
formula used for computation of the eCMP performances is shown below:

E = E seq + Epar

= Dbig N big
seq.cycles + N par

instr

N par
instr

Dbig N big
par.cycles

+ N par
instr

DsmallN small
par.cycles

speedup(Csmall, icsf )

,

(16.1)

E = Dbig N big
seq.cycles+

1
1

Dbig N big
par.cycles

+ 1

Dsmall N small
par.cycles

speedup(Csmall, icsf )
. (16.2)

Execution time E of the application is the sum of the execution time in the
sequential Eseq and in the parallel Epar parts of the application. The sequential
execution time equals to the product of the “big” core’s clock period Dbig and the
number of cycles of the “big” core used for running the sequential part.

The second term of the formula defines the execution time of the parallel code
running on both “big” core and several “small” cores. icsf stands for the instruc-
tion cache sharing factor and equals to the number of “small” cores sharing one
instruction cache. The speedup() function captures TLP limits of the application,
task creation overhead, and other multicore effects. One of the assumptions of this
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formula is, though, that the speed of the “big” core is independent of the speed of the
“small” cores, which slightly reduces the accuracy of our performance computation.
Terechko [19] gives further explanations on the formulas.

16.5.3 Design Space Exploration Flow

The cycle count spent in the sequential and parallel parts on the “big” core and
the “small” cores, as well as clock periods of the two core types, is required to
compute performance of the eCMP. Figure 16.4 presents the simplified DSE flow,
with the formula in the center of the figure. The phases “cycle counts of the cores,”
“multicore speedup() simulations,” and “delay, area, power of the cores” provide
to the formula step with the necessary ingredients to compute the performances
of all eCMPs in the design space. After that step, only few eCMPs having about
the real-time performance are selected for simulation to verify the predictions of
the formula. The smallest eCMP in silicon area reaching the real-time performance
according to the simulation is the final result of the DSE.

performance
formula

hetero
multicore

simulations

cycle counts
of the cores

multicore
speedup()
simulations

delay, area, power
of the cores

red
cyclespar

blue
cyclespar

blue
cyclesseqN N N ... , ,

),( icsfCspeedup red

dwswdwsw AreaAreaD D, , ,

Fig. 16.4 Design space exploration flow (simplified)

The “cycle counts of the cores” step simulates each core out of 6,400 with a
breakdown of the cycle counts in the sequential and parallel parts. Using the plot
from Fig. 16.5, this step selects cores from the Pareto curve (the thick black line)
for forming couples, because the cores below the Pareto curve perform worse at
the same area cost. The “small” cores do not run the sequential code. For them, a
similar graph to the one in Fig. 16.5 but excluding the time spent on the sequential
code is built. The cores from the two Pareto curves are used to create the final
eCMP. Note that the performance is measured in 1/s, which is computed using the
cycle counts from the xvpsim simulator and cycle periods from the MoodOrgan
technology model. MoodOrgan also provides area estimates of the cores.

The speedup curves for cores differ due to the limited TLP and ILP in the appli-
cation, as well as various requirements for data and instruction memories. Consider,
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Fig. 16.5 A population of cores (simplified)

for example, Fig. 16.6. The baseline in this figure is a 5 issue slot single-threaded
machine with 64 KB instruction and 64 KB data cache. 1slot core refers to the core
with baseline parameters, except for the single issue slot architecture. 1kdata$ is a
baseline core with a 1 KB data cache instead of 64 KB. Finally, several cores with
varying multithreading configurations multithreaded(1,2), multithreaded(2,2), mul-
tithreaded(2,4) are shown, which differ from the baseline in terms of foreground
and background threads counts. Figure 16.6 shows that speedups for multithreaded
cores quickly saturate due to limited TLP for the standard definition (SD) image.
More details on the technology modeling can be found in [18].

Finally, the performances of the heterogeneous eCMPs are computed using for-
mula (1). Figure 16.7 shows the calculated performances of various eCMPs in green
crosses. The blue crosses indicate the eCMPs selected for simulation. Note that only
a small fraction of the eCMPs (typically, much less than 1%) is selected for simula-
tion. The dimensions and the position of the selected region can be easily controlled,
allowing for probing and/or calibration of the formula. This way, the methodol-
ogy explores a wide range of possible eCMPs without exploding the exploration
time.

The described DSE flow allowed us to explore 1,105,747,200 design points by
simulating only about 0.0007% of them. The total simulation count of approxi-
mately 8,000 includes 6,400 for the “cycle counts of the cores,” about 1,200 simula-
tions for the “multicore speedup() simulations” phase, and, finally, 400 simulations
of the heterogeneous multicores in the neighborhood of the cross-over between the
calculated Pareto curve and the real-time performance.
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16.6 Use Case: DSE for the Ne-XVP Architecture

The hardware architecture modeled in the Ne-XVP simulator consists of an het-
erogeneous multicore, the hardware task scheduler, the task scheduling unit, the
hardware synchronization unit, and interconnect infrastructure. Note, that a particu-
lar instance of the architectural template may exclude certain hardware components.
For example, if the relevant set of applications requires no task scheduling acceler-
ation for irregular task graphs, then the task scheduling unit can be omitted.

Our multicore simulator structure shown in Fig. 16.8 is based on the production-
quality execution-driven simulator of the TriMedia cores. The simulator is extended
with instruction and data caches supporting various coherence protocols. Further
additions are a model of conflicts of the L2 cache, and an hardware task scheduler
and hardware synchronization units coprocessors. The multiple clock generators
enable different clock frequencies (obtained from the technology model) for each
core and memory.

Fig. 16.8 The Ne-XVP simulator internal organization



272 M. Duranton et al.

The limitations of the simulator environment are

1. missing instruction and data prefetch engines in the cache controllers, making
the results pessimistic;

2. the memory controller and an off-chip SDRAM are modeled by a fixed delay of
66 ns, which is representative for memory hierarchies of embedded ICs; and

3. the CABAC coprocessor and the related synchronization overhead are not
modeled.

The H.264 video decoder [10] is used as the main driver application for the
DSE. The H.264 software underwent rigorous manual optimizations for TriMedia,
including code restructuring and insertion of custom TriMedia operations (SIMD,
collapsed loads). The state-of-the-art TriMedia production compiler TCS version
5.1, featuring major ILP optimizations [9], is used to compile applications.

The following video sequences are used for H.264 video decoding:

• crowdrun_420_50.264 (Quad HD 3840 × 2160p, 48 frames, 25 fps) and
• tractor_1_50.264 (HD 1920 × 1080p, 48 frames, 25 fps).

The MoodOrgan technology tool [18] modeled physical properties of the cores,
hardware task scheduler, CABAC coprocessor, interconnect, etc. The scaling fac-
tors for SRAMs are derived using SRAM characteristics from fabricated chips
in various low-power technologies. For the current DSE, the scaling factors only
between the CMOS 90 nm and CMOS 65 nm were measured. They are used
to extrapolate characteristics of hardware components into CMOS 45 nm process
technology.

For HD decoding the best configuration found had two cores:

1. A “big” core with 32 KB data cache and 32 KB instruction cache, 96 registers, 4
issue slots, 1 load/store unit, and a subset static interleaved multithreading with
two foreground threads and two background threads. In CMOS 45 nm, the clock
frequency reaches 662 MHz and the area = 1.15 mm2.

2. One “small” core which has the same characteristics as the “big” core, so in this
case, the optimal architecture is actually homogeneous.

The total area of this multicore subsystem is 2.45 mm2 in CMOS 45 nm, includ-
ing the CABAC coprocessor, memory concentrator, cache to cache tunnels, and
coherence coprocessors. This solution is comparable in size with an NXP solution
based on a dedicated hardware accelerator.

Multithreading is especially advantageous for multicores with a few cores, where
the background threads compensate for the smaller instruction and data caches.
Note that the subset static interleaved form of multithreading proposed in [10] was
selected as the most efficient for this workload.

Figure 16.9 shows simulated eCMP performances and the real-time deadline for
H.264 video decoding at HD resolution. The eCMP in Fig. 16.9 varies in terms of
cache sizes, multithreading options, etc., which is not plotted.
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Fig. 16.9 Simulated multicores for H.264 HD decode

For Quad HD decoding the best configuration had eight cores:

1. The “big” core with a 64 KB data and 64 KB instruction cache, 96 registers, 5
issue slots, 1 load/stores, and the interleaved multithreading with two foreground
threads. In CMOS 45 nm the clock frequency reaches 616 MHz and the area is
1.4 mm2.

2. There are 7 “small” cores, each with a data cache of 32 KB, an instruction cache
of 64 KB shared among every 4 cores, 96 registers, 4 issue slots, 1 load/store unit,
and interleaved multithreading with two foreground threads. In CMOS 45 nm,
the clock frequency reaches 662 MHz and the area is 0.99 mm2.

The total area of this multicore subsystem is 8.6 mm2, including the CABAC
coprocessor, memory concentrator, cache to cache tunnels, and coherence coproces-
sors. Embedded SoC typically has a silicon real-estate in the order of 1 cm2, which
would be big enough to accommodate a multimedia eCMP subsystem of 8.6 mm2.

16.7 Conclusions

In order to reach the silicon efficiency of fixed-function hardware, embedded chip
multiprocessors need to be tuned to the application domain, and complemented with
the right set of accelerators. Design space exploration is required to define which
parameters of the architecture will lead to the best results. However, the space to
explore is gigantic, and fast simulations approaches together with a methodology
based on performance calculation are required. This chapter shows that using only
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0.0007% simulations of the total design point count, the described flow enables
exploration of huge multicore design spaces in a few weeks of simulation time.
Moreover, our integrated technology modeling enabled design decisions based on
relevant metrics such as silicon area and execution time.
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Chapter 17
IP Modeling and Verification

Emre Özer, Nathan Chong, and Krisztián Flautner

Abstract This chapter presents the infrastructure for modeling intellectual property
(IP). After a brief introduction to ARM IP and architecture, the modeling and simu-
lation strategies are presented for the RISC CPUs and system-on-chips (SoCs) based
on ARM IP. We will explain how the initial investigation of the processor architec-
ture and microarchitecture for performance and power is accomplished before the
real design phase. This will be followed by the discussion of different modeling
techniques used in the processor design stage such as RTL simulation, emulation,
and FPGA prototyping. Then, we will look into the system modeling/simulation
frameworks from programmer’s and system designer’s perspectives and discuss
their trade-offs. Finally, we will discuss the verification strategies for validating the
processor design from ad hoc test techniques, random coverage strategies, assertion-
based verification, and formal verification methods.

17.1 ARM IP and Architecture

ARM Ltd. is a UK-based semiconductor IP company offering processor, periph-
eral, and physical IP. The ARM 32-bit RISC CPU family is the most widely used
architecture in embedded systems. It is the architecture of choice for more than
80% of the high-performance embedded products in design today. When ARM
pioneered the concept of openly licensable IP for the development of 32-bit RISC
microprocessor-based SoCs in the early 1990s, it changed the dynamics of the semi-
conductor industry. By licensing, rather than manufacturing and selling its chip tech-
nology, the company established a new business model that has redefined the way
microprocessors are designed, produced, and sold. ARM powered microprocessors
are pervasive in the electronic products, driving key functions in a variety of appli-
cations in diverse markets, including automotive, consumer entertainment, imaging,
microcontrollers, networking, storage, medical, security, wireless, smartphones, and
most recently netbooks/smartbooks.
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ARM IP consists of three main categories: (1) processor IP, (2) fabric and periph-
eral IP, and (3) physical IP. Processor IP includes general-purpose RISC proces-
sors, secure cores, graphics, and video processors. The fabric and peripheral IP
includes the debug and trace units, AMBA interconnect, L2 cache controllers, mem-
ory controllers (DDR, LPDDR2), DMA engines, LCD and interrupt controllers,
general-purpose I/Os (GPIOs), and UARTs. The physical IP provides silicon-proven
IP for CMOS and SOI (silicon-on-insulator) processes such as memory and register
file compilers, logic, and interface libraries for different foundries and processes
including SOI.

The ARM architecture consists of different ISAs and architecture extensions such
as 32-bit ARM, 16-bit Thumb, 32-bit Thumb2 ISAs, Java acceleration (Jazelle),
security (TrustZone), SIMD (Neon), and floating point (VFP). The evolution of the
ARM architecture is shown in Fig. 17.1. The ARM Cortex processor core fam-
ily are the implementations of the most recent version of the ARM architecture,
namely ARM v7 [1]. ARM’s Cortex processors are classified into three distinct
categories. The first one is microcontroller class or M-class processor family that
includes Cortex M0 [2], M1, and M3 [3]. The M-class processor cores consume
very small amount of power in the range of microwatts. While Cortex M0 and
M3 are aimed at SoCs, Cortex M1 is specifically designed for implementations in
commercial FPGAs such as Actel, Altera, and Xilinx. The second category is the
embedded real-time processor family or R-class which includes Cortex R4. The
R-class also consumes relatively low power in the range of milliwatts with higher
performance delivery. The final category of the ARM processor family is the A-class
processor cores which include Cortex A5 [4], Cortex A8, multi-core Cortex A9, and
Osprey cores. Cortex A5, A8, and A9 cores are delivered as soft core IP while Osprey
core comes as a hard macro for 40nm technology capable of achieving 2 GHz clock
frequency [5].

ARMv4
ARMv5

ARMv6

ARMv7
A & R

ARMv7M

Fig. 17.1 ARM architecture evolution
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17.2 Processor IP Modeling

ARM processor simulation/modeling strategy consists of two stages: (1) modeling
for initial investigation and (2) modeling for design. Modeling for initial investiga-
tion involves modeling the underlying architecture and analyzing the performance of
the processor microarchitecture implementing the architecture. Modeling for design
requires simulating the microarchitecture at the logic or RTL level in order to do an
accurate performance and power analysis.

17.2.1 Initial Investigation Modeling

The main purpose for initial investigation is to implement instruction set simulator
(ISS) to model the architectural features and a performance modeling framework to
model the microarchitectural blocks. The ISS is necessary to model all the features
of the instruction sets, memory, and device behaviors as specified in the architecture
for which the microarchitecture of the processor core under design is implement-
ing. When designing the microarchitecture for a given architecture, there are certain
parameters that are unknown to the designers such as cache associativity, cache
line size, branch predictor type, size, pipeline depth, issue width. At the beginning
of the initial investigation, designers know only the performance, power, and area
(PPA) targets, which are, in general, driven by the market and customer require-
ments at which the processor is aiming. Performance, power, and area are defined by
clock frequency and IPC (instructions per cycle), mW/MHz, and millimeter square,
respectively. Given the PPA numbers, designers outline the processor microarchitec-
ture with expected pipeline depth and number of execution units. Once the outline
is shaped, designers are ready to model the microarchitecture to find answers to sev-
eral unknowns. The initial investigation of a processor core consists of two distinct
stages: instruction set simulator (ISS) and trace-based model (TBM).

17.2.1.1 Instruction Set Simulator

Instruction set simulation (ISS) is the first product-level simulator implemented for
each processor core product. It simulates the instruction set architecture (ISA) of the
processor without knowledge of timing. With every new architecture generation, the
ISS may need to be rewritten because of new instructions added to the architecture
specification and major changes in the architecture specification. Even within the
same architecture generation, the instruction sets of different processor cores may
differ (e.g. one supports Thumb ISA (instruction set architecture) and another sup-
ports Thumb2 ISA).

The ISS models are models in which only functional behavior of the processor
is modeled. They are not cycle accurate and therefore allow fast simulation speeds.
The ISS models at ARM use binary translation techniques in which ARM instruc-
tions are translated into the host machine instructions on the fly, and the translations
are cached to enable fast simulation of ARM code. The simulation speed of 100–500
MIPS can be achieved due to this fast binary translation.
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17.2.1.2 Trace-Based Modeling

We use a trace-based modeling (TBM) framework to model the performance of
the processor microarchitecture. The TBM framework is written using a general-
purpose programming language (normally C/C++). It is cycle-accurate, meaning
that it models each cycle in detail. Each pipeline stage, caches, FIFOs, prefetch
units, TLBs, branch prediction, and execution units (functional units) are modeled
in detail. It is one level of abstraction higher than the RTL model hiding imple-
mentation details but is sufficiently detailed to make the meaningful performance
analysis. In general, the TBM simulator can approach to 90–95% of the hardware
implementation or RTL simulation in terms of simulation accuracy.

Although power at the pipelines and execution units is not modeled explicitly
in the initial investigation stage, it is a first-order constraint from the initial design
to the final product. When tuning the microarchitectural parameters in the trace-
based modeling, the performance and power aspects are considered together. In
most cases, power is favored to performance. For instance, simple replacement
algorithms in caches (e.g., round-robin or random) are preferred over hardware-
intensive cache replacement schemes (e.g., LRU(least recently used)) due to power
concerns.

Power is modeled for the memory elements such as caches, scratchpads, and
register files in the initial investigation. ARM provides in-house memory compilers
including SRAM, register file, and ROM. Memory compilers provide configurable
environment for high-density and high-speed single and dual-ported SRAM and
register files. ARM memory compilers provide the user with a graphical user inter-
face or command line to configure the number of words, number of bits per word,
adding ECC (error correcting code), and enabling power gating and retention modes,
clock frequency, foundry (e.g., TSMC, Samsung, IBM), and technology node (e.g.,
65 nm, 40 nm). The output can be in the form of RTL, netlists, and data sheets with
schematics. The data sheets provide data on the generated memory such as physical
dimensions of the memory structure, read and write access time, and active and
standby power. The active and standby power numbers can be plugged into the TBM
model to estimate the power consumption of each memory structure. Thus, early
microarchitectural exploration on the configuration of scratchpads, caches, TLBs,
and the register file can be made for low power processor design.

The TBM does not model the OS (i.e., no OS booting) and therefore it is purely
an application level simulator. The frontend of the trace-driven simulation is the ISS,
which reads ELF binaries of applications, and spits out instruction traces to a pipe,
which are then consumed by the trace-based simulator on the fly. The flow diagram
of the TBM is shown in Fig. 17.2. The TBM also reads the power numbers (read
and write access and leakage power) obtained from the ARM memory compilers
regarding the memory elements in the microarchitecture. It can accurately estimate
the power consumption of the caches, TBM, scratchpads, and the register file as the
data on the number of accesses to these structures and the number of idle cycles
can be derived from the traces of the applications. Then, the TBM generates the
performance statistics of the overall processor microarchitecture and also the power
statistics on the memory elements.
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Fig. 17.2 Trace-based simulation framework

17.2.2 Processor Design Modeling

The TBM model in the initial investigation of the processor finalizes certain
microarchitectural parameters with constant depth and size. Once this stage is over,
the actual implementation and simulation can be performed. The design team uses
synthesizable RTL (Verilog) to simulate the behavior of the processor core. It is
important to note that there is no microarchitectural exploration done at the RTL
level.

17.2.2.1 RTL Simulation

Simulation is required at the RTL level design for maintaining the functional cor-
rectness of the design. The processor design consists of modules or blocks where a
module or block can be a pipeline stage or a group of pipeline stages. In general,
each block is designed by a small design and verification team. In parallel to design-
ing the block, the design team also creates testbench and test stimulus to verify the
functional correctness of the block. Once the individual design and verification of
the blocks are complete, the top-level simulation can commence.

The top-level design includes full integration of all modules and blocks, and the
design is simulated for functional correctness by using the architecture and microar-
chitecture validation tests and simple benchmarks. The simulation of the top-level
design requires a reference model to check whether the simulated RTL design gives
the expected output as shown in Fig. 17.3. Herein, the ISS model helps the design-
ers validate the processor core design in RTL. Both ISS and RTL models are fed
with the same input stimulus. Each model independently executes the given input
stimulus, the output of the models are then compared. In the case of a mismatch,
both models are revised to find out which model has the incorrect implementation
of the instruction under observation.



284 E. Özer et al.

Benchmarks

RTL Model ISS Model

Checker

Not Correct Correct

Simulation
Complete

Input Stimulus

Fig. 17.3 Processor design simulation

Once the RTL design is simulated and verified against the ISS reference model
using the architectural validation test benchmarks and other simple small applica-
tions, the design should be simulated with wider spectrum of applications (e.g.,
EEMBC [6] and SPEC2K [7]) running on the OS. Booting an OS and running real
applications in the RTL model are extremely slow, therefore alternative simulation
platforms are needed to simulate the processor design.

We use two different platforms to perform the fast RTL simulation of the pro-
cessor: hardware emulation and FPGA simulation. The hardware emulator gives a
middle ground between slow RTL simulation and fast FPGA simulation. It allows
for early prototyping of very large processor designs, which would otherwise require
partitioning the design to several FPGA platforms. It also provides better visibility
and observability of the testchip being developed. The RTL simulation offers the
full visibility of the processor design in terms of probing every signal at the cost of
slow simulation. On the other hand, the FPGA platform provides the least visibility
with the highest simulation speed. This is summarized in Fig. 17.4

Visibility

Speed

RTL Simulation

Emulation

FPGA

Fig. 17.4 Modeling methods: visibility versus simulation speed
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17.2.2.2 Hardware Emulation

Hardware emulation mimics the design written in RTL using programmable logic
in hardware specially designed for circuit emulation. Hardware emulation can be
several orders of magnitude faster than the RTL simulation as the emulator hardware
can perform simultaneous tasks. The emulator is useful for booting the OS and large
applications and verifies functionality, detects bugs early in the design, and also
allows concurrent development of hardware, software, and systems.

We use hardware emulators to emulate the processor core IPs. A hardware emula-
tor is a modular, custom processor-based, compiled code emulation system. Design
in RTL is compiled and allocated to an array of highly interconnected custom pro-
cessors. Hardware emulators can emulate systems with hundreds of millions of
gates and the emulation speed is in the range of MHz. Emulation can be done at
full system level meaning that the processor IP and peripherals (i.e., memory and
I/O) can be emulated. Alternatively, the peripherals in a separate logic board can be
connected to the emulator that emulates the processor core only.

17.2.2.3 FPGA Simulation

One widely used technique for early design simulation and validation is to prototype
the design on an FPGA. The growing density of FPGAs allows designers to map
large IP blocks to FPGAs. FPGA platforms enable designers to perform much faster
simulation than the RTL simulators and hardware emulators. We use FPGA boards
to verify the design of our processor IP cores. The contemporary FPGA boards have
the necessary support for DRAM and I/O to boot the OS (e.g., Linux) on the pro-
cessor core under development on the FPGAs. However, one of the main challenges
using FPGAs is to map a large processor IP design into a single FPGA. Even the
largest FPGA (e.g., Xilinx Virtex 5 or 6 series [8]) may not accommodate a large
processor design. In this case, the design can be partitioned into multiple FPGAs
boards. However, the challenge is that I/O interfaces required to glue the partitioned
designs are usually wider than the available I/O between the FPGA boards. Thus,
the designers are faced with other ad hoc solutions such as time-multiplexing the
I/O, which will increase the simulation time.

An early prototyping of the processor IP is done on FPGAs using in-house logic
tile boards (e.g., RealView Versatile LT-XC5VLX330 [9]). A logic tile contains
a Xilinx FPGA and provides an interface to stack more logic files to allow large
processor designs to be partitioned into multiple FPGAs. The logic tile has also
capability of being stacked on an emulation baseboard [10], which is another in-
house board that contains memory and I/O functionality. The emulation baseboard
provides a large amount of memory and peripherals and is also based on a large
FPGA that implements the bus, memory system, and peripherals controllers such
as flash memory, DDR SDRAM, AXI buses, serial ports, Ethernet, PCI interface,
LCD controller, and general-purpose I/Os. A system platform can be realized by
stacking the logic FPGA tile(s) to the emulation baseboard, which provides mini-
mal functionality to boot OS (e.g., ARM Embedded Linux, Windows CE) and run
applications on the processor core under development.
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Fig. 17.5 Early FPGA prototyping with ARM versatile boards

An example of an early FPGA prototyping is shown in Fig. 17.5. The processor
design is partitioned across several FPGAs each of which sits in a logic tile. Logic
tiles are stacked on top of each other to have a coherent view of the processor under
design. The stacked logic tiles can be stacked on the emulation baseboard seamlessly
to appear as a complete testchip where the emulation baseboard provides memory
and I/O functionality. LCD, keyboard, and mouse can be connected to the emulation
baseboard to have the complete view of a standalone computer. The emulation base-
board can also be connected to a LAN through Ethernet interface where multiple
users can run tests remotely.

17.2.2.4 Power Modeling

The accurate and reliable power modeling of the processor microarchitecture such
as pipeline stages, execution units, and memory elements are performed at the netlist
level after parasitics and load capacitance values are provided by layout extraction.
These capacitance values depend on the foundry and technology node in which
the standard cells are designed. Parasitics and load capacitance values along with
the transistor switching activity allow designers to analyze the dynamic and static
power consumption of their processor designs. The industry-proven power model
tools are employed to perform the accurate power simulation.

17.3 System IP Modeling

System IP modeling at ARM involves in modeling a system-on-chip (SoC) consist-
ing of an ARM CPU and other peripheral IP. Different IP blocks are put together to
create a SoC for mobile phones, smartbooks, or set-top boxes. A typical SoC based
on ARM CPU consists of the following IP blocks: a memory controller, scratchpad,
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AXI interconnect, DMAs, UARTs, and a debugger. Modeling at the system level
are essential to understand the bottlenecks in the system and identify IP blocks
that can be optimized to achieve the expected system performance/power/bandwidth
requirements. System simulation also enables the programmers to develop software
for systems before the hardware platform becomes available.

System IP modeling has two perspectives: system designer’s and programmer’s
views. The system should be able to provide detailed timing to analyze the bot-
tlenecks in the communication fabric, memory, and I/O units from SoC designer’s
point of view. In the programmer’s view, the system should be able to provide the
sufficient functionality to boot an OS, develop applications, and run them on the
system under development. In the programmer’s world, the accurate timing model
is not of primary concern. The programmer’s view model is essentially similar to
the virtual platform (Chapters 2 and 3).

17.3.1 System Designer’s View Models

System designer’s view (SDV) model provide a SoC modeling environment that can
model timing and interactions between the system components accurately. System
designer’s view system model is performed in the RTL world in which the ARM
components can be glued together in plug-and-play fashion to construct a model of
an SoC. The basic components are processors, L2 controllers and caches, the graph-
ics cores, dynamic and static memory controllers, bus fabrics, and I/O controllers.
Each component is written in RTL and contains all the implementations details. The
complete system can be simulated using RTL simulators, hardware emulators or
FPGAs and is capable of booting OSes (e.g., Linux/WinCE/Android/Ubuntu) and
run applications.

The SDV model differs from the programmer’s view model in several ways. It
is a cycle-accurate model that mimics memory and bus transactions very close to
the real hardware implementation. Because the SDV model is cycle accurate, it
is several orders of magnitude slower than the programmer’s view model. Thus,
it is to be used by the SoC designers rather than software developers. The SoC
designers use the SDV model to understand the bottlenecks in the memory and
I/O controllers such as memory bandwidth, memory and I/O latency, buffer sizes
and delays, collisions and arbitration issues in the bus fabric between the processor
cores and memory and I/O subsystems. It also allows system designers to analyze
the system power consumption. Very accurate activity traces are collected by run-
ning OS and applications for each IP component and fed into a system-level power
modeling tool, which has a power model for each IP block for a given technology
and operating conditions. Thus, the SDV model enables designers to carry out a
system-level performance and power analysis before taping out the testchip.

17.3.2 Programmer’s View Models

Programmer’s view (PV) models (also known as fast models) [11] provide virtual
platform models with simulation speeds of ranges between 100 and 500 MIPS. The
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PV models use dynamic binary translation techniques, similar to Chapter 9, to sim-
ulate systems in greater speeds. The PV model automatically generates the required
interfaces for both standalone and integrated platforms. It is accurate to the system
programmer’s view in the sense that software written for the underlying system will
generate the same results when run on hardware and on the PV model. However,
the PV model does not accurately model bus transactions in terms of timing since
simulation speed rather than timing accuracy is the primary goal. The PV model
also allows early software development, hardware/software co-design, and system
design exploration.

It comes with a graphical user interface (GUI) called System Canvas, which
enables the programmer to realize systems by using graphical representations of
components, ports, and connections between ports. System Canvas has a block dia-
gram editor for creating the graphical representation of a system, which allows very
fast modeling of systems consisting of several components. Examples of compo-
nents are cores, buses, I/Os, memories. Components can be added to a system from a
component database, and new components are defined by LISA+ code. The LISA+
language [12] is an enhanced version of LISA language that is used to describe the
instruction set architectures. With LISA+, components and systems can also be
described. The output of the PV model from System Canvas can run as a standalone
system or can be hooked to a larger system as a component. The diagram of how the
PV model works is shown in Fig. 17.6. The generated standalone system is capable
of running the application binaries as if it is the real hardware.

Component
Database

Create
New

Component
in LISA+

PV Model
Generator

Standalone
System

Component

Fig. 17.6 ARM programmer’s view modeling tool

17.4 Modeling for Verification

Modeling for processor core verification requires creating self-checking testbenches
that are self-contained and can be run on different models such as ISS, RTL simu-
lation, hardware emulators, and FPGAs. We classify the self-checking testbenches
into two categories: architectural validation suite (AVS) and device validation suite
(DVS). AVS checks compliance to the ARM architecture reference manual [13] such
as instructions set architecture (ISA), memory models, exceptions/interrupts, and
different execution modes. DVS checks the features of the processor core outside of
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the architecture specification such as scratchpad memories, caches, bus interfaces.
The validation strategy is to develop a large library of AVS and DVS that can be
reused across processor cores so that new processor core designs can build a valida-
tion package quickly by selecting the appropriate AVS and DVS. Most of the effort
for a new processor core goes to developing a DVS and sometimes altering AVS to
deal with any new architectural changes such the ISA type, architecture version, and
exception model.

17.4.1 Random Coverage Techniques

AVS and DVS are examples of directed test suites: each test is designed to exercise
a particular function of the design. We measure this metric in two main ways: cov-
erage of the (RTL) code and functional coverage of the design. RTL code coverage
can be derived from our simulation tools; however, functional coverage is a man-
ual process of defining the coverage points within the design and requires logging
within a testbench to determine which points have been hit by a given simulation.
Since directed tests are handcoded the rate that a design can be covered is a function
of how quickly tests can be generated [14].

The idea behind constrained-random testing is to randomly autogenerate tests
within certain constraints in order to increase the rate of design coverage. This is
generally done at the block or top level of our designs. At the block level as shown
in Fig. 17.7, this consists of placing the design in a testbench that can drive random
stimulus to the design. The difficulty with this approach is that the random stimulus
must be in some way “well behaved” so constraints are necessary to make sure this
is the case (for example, if a signal is one-hot a constraint must ensure that the
value is always one-hot although the exact value may be random). The testbench
keeps track of the input stimulus driven to the design in a scoreboard and corre-
lates this with output from the design. Errors can be flagged by monitors in the
testbench.
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Error
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Random

Input
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Generator

Fig. 17.7 Constrained-random testing for block-level designs
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Random instruction set testing is an example of constrained-random testing at
the top level. This is a tool that generates small, legal code sequences and checks
programmable-visible state. We either check on a cycle-by-cycle basis by compar-
ing the design against a golden model (such as an ISS) or at the end of the simula-
tion.

17.4.2 Assertion-Based Verification

Assertion-based verification leverages designers to add assertions in the RTL in
order to reduce the design verification time. Essentially, assertions are statements
inserted into the RTL code to ensure that the code conducts the intended behavior.
An assertion fails if illegal behavior is attempted. Assertions have been used in
the high-level programming languages like C and Java to allow programmers to
debug their code more efficiently. Similar to assertions in the high-level program-
ming languages, assertions in the hardware description languages allow the hard-
ware designers to verify their design more efficiently. Assertions increase observ-
ability in the design and controllability in terms of test coverage. The advantages
of assertion-based verification are five fold: (1) faster verification, (2) reduction in
the number of verification engineers, (3) high bug discovery rates, (4) reusability
from module to system-level verification in the same project and across different
projects, and (5) reducing the complexity of exhaustive formal verification. We use
OVL (Open Verification Library) [15] and SystemVerilog [16] for assertion-based
verification.

17.4.3 Formal Specification Models

The techniques above describe simulation-based verification: a scenario and stim-
ulus are provided to the design and expected results are checked at the end of the
simulation. We can vary the speed at which simulation is run using different targets
(RTL simulation, hardware emulation, FPGA, and silicon) but we always run into
the problem of state space explosion—an exhaustive walk over the state space of
our models is not a practical solution (consider a 32-bit multiplier: if we wish to
simulate every possible input then we face simulating 264 possible scenarios).

Model checking is a complementary approach to verification that allows us to
automatically and exhaustively check properties over a design. It works by building
a symbolic representation of the design (a transition system) and checking properties
using graph reachability. If a property passes then it holds exhaustively (over all
scenarios). If a property fails then a counter-example (a scenario violating the prop-
erty) is provided. Finally, a property may be inconclusive because the tool has not
managed to conclusively pass or fail the property. In this case we may be satisfied
with a bounded pass (the property holds for some number of cycles out of reset).
Merz give a good introduction to model checking [17].
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We use many different commercial tools, and our designers write properties (such
as interface specifications and invariants) at the block and system level. We also use
model checking as a tool for reasoning about specification models. The aim of a
specification model is to unambiguously capture a specification such as the instruc-
tion set, the memory ordering model, or the exception model. Specification models
differ from RTL designs (implementations) by virtue of the fact that they attempt to
describe all possible legal implementation behaviors. So properties that hold over
a specification model hold over all implementations (that correctly implement the
specification).

Specification models have a number of unique advantages over traditional mod-
els: (i) they are amenable to model checking, allowing valuable high-level properties
to be exhaustively proven; (ii) they exercise the specification in unusual ways which
can result in a better specification; (iii) they can aid understanding of a specification
since the model can be used as a what-if tool to explore different scenarios.

Our general strategy for modeling specification models is to use an atomic-
guarded-command-language style: the state of the system is modeled by a number
of data structures, and guarded commands are predicated state-to-state functions.
A guard is a condition for the command firing and the effect of the command is to
atomically update the state of some or all of the data structures. For example, a com-
mand for a cache-coherence model may model the issuing of a new read transaction
and the guard could be that there is buffer space within the interconnect to accept
the transaction. The state update as a result of this command would be the addition
of the new transaction to some data structure that keeps track of live transactions.

Nondeterminism is an important distinction between specification models and
implementation models. A specification describes desired behavior and does not
necessarily prescribe an implementation choice (although it may indicate a preferred
choice): it allows nondeterministic choice. In this sense, we see a specification as
defining a set of possible implementation choices and a particular implementation
is just one point in this set. Nondeterminism can be modeled in SystemVerilog using
a free variable (a variable that is never assigned to). In this case, the model checker
is free to assign to this variable as it wishes, and so we can model all possible
scenarios.

Recent work has concentrated on building refinement checkers [18]: embed-
ding the specification model as a dynamic checker within the RTL implementa-
tion environment in order to provide a link between the specification model and an
implementation.

17.5 Conclusion

In this chapter, we have presented the simulation, modeling, and verification strate-
gies and tools during the course of a processor IP design, system IP modeling, and
modeling for verification. We have discussed initial investigation for microarchitec-
ture exploration and different processor IP design modeling methods such as RTL
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simulation, hardware emulation, and FPGA prototyping. This was followed by the
system IP modeling views both from programmer’s and system designer’s perspec-
tives. Finally, we have presented the processor IP verification methodologies for
validating the processor IP from ad hoc test techniques, random coverage strategies,
assertions, and formal methods.
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Chapter 18
Configurable, Extensible Processor System
Simulation

Grant Martin, Nenad Nedeljkovic, and David Heine

Abstract This chapter discusses the challenges of creating an instruction set
simulator (ISS) and system modeling environment for configurable, extensible
processors. Processor generation technology is highly automated and is used by
designers to create application-specific instruction set processors (ASIPs) targeted
to specific application domains. The main challenges for creating an ISS lie in the
configurable and extensible nature of the processor, which is tailored by designers at
design time, not fixed in advance. Thus simulation models need to be created on the
fly when designers have configured a new version of the processor. They need to be
created automatically and offer good performance with a variety of use modes. In
addition, multiple speed-accuracy trade-offs are necessary to support these various
use modes, such as instruction-accurate, cycle-accurate, and pin-level. Furthermore,
these ISS models must themselves fit into system modeling and simulation environ-
ments, both generated along with the ASIP and commercial third party ESL/EDA
tools. Again, multiple use models and trade-offs in simulation scope, speed, and
accuracy must be supported. Standards to ease integration and model interoperabil-
ity in this area have arrived only recently and are just beginning to make life easier
for model providers.

18.1 Overview of Tensilica Processor and System Simulation
Modeling Technologies

The fundamental simulation technology used for design with Tensilica processors
is the instruction set simulator (ISS). Some of the history of developing the ISS is
described in [1]. Since the Tensilica Xtensa processor is a configurable, extensible
application-specific instruction set processor (ASIP) [5, 6], the ISS is not a static
simulation model as one might have for a fixed instruction set architecture (ISA)
processor. Nor is it completely created on the fly when a new configuration of the
processor is generated. Rather, as discussed in [1], we employ a hybrid strategy,
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where the ISS consists of a configuration-independent portion and a configuration-
dependent portion. These portions are made available in libraries—the independent
portion in libraries shipped as part of the tools; the dependent portions in libraries
created during processor generation and compilation of locally written instruction
extensions in the Tensilica Instruction Extension (TIE) language [7]. The Tensil-
ica ISS is available in two trade-offs of speed vs. accuracy: a cycle-accurate mode
and an instruction-accurate, fast-functional mode called TurboXim. The ISS can
run in either mode or switch dynamically between them depending on user choice,
which allows a hybrid statistical sampling mode to be supported. In addition, the ISS
can be run stand-alone from the command line, from the Xtensa Xplorer integrated
development environment (IDE), and with or without debugger attachment.

The ISS supports optional clients for profiling and performance analysis, pro-
cessor tracing, energy consumption analysis, memory leakage, and other analysis
functions.

The ISS is also provided within two system level modeling environments. The
first, XTMP, offers a C-based modeling library for single and multicore systems and
was created several years ago. The second, XTSC, is SystemC based and came out
3 years ago. Both allow all modes of the ISS to be used in simulation and support
its use in a system context. XTSC also offers a pin level access to the ISS. Finally,
these environments have been used to interface Tensilica processor simulators to
third party ESL system modeling and virtual prototype tools. The rest of this chapter
will give further details about all these capabilities.

Many of the techniques used in the Tensilica ISS and system modeling envi-
ronments are described generically in Chapter 8. In particular, the retargetable
simulator generation and just-in-time cached compiled simulation methods are
comparable.

18.2 The Instruction Set Simulator (ISS)

18.2.1 History and Design Choices in Developing ISS Models

When Tensilica started as a company, the ISS for a particular processor configu-
ration including new instructions defined in TIE was generated completely from
scratch and compiled each time as a new tool. This was later changed, so that the ISS
has a configuration-independent part and configuration-dependent ISS libraries that
are created during processor generation and within the TIE-compilation develop-
ment loop. There is a strong correlation between the ISS configuration-independent
and ISS configuration-dependent portions and the processor hardware structure.
That is, much of the processor hardware is described in TIE and the correspond-
ing Verilog processor description is generated by the TIE compiler. The rest of the
processor hardware is described in hand-coded Verilog.

The hand-coded-RTL part of the processor is used primarily for the processor’s
infrastructure including the instruction-fetch engine, local-memory interfaces, the
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load-store unit(s), cache-memory interfaces, write buffers, store buffers, and the
PIF (main bus) interface logic. Software models of these hardware components are
the configuration-independent core of the ISS. Although these are configuration-
independent, the processor hardware and the ISS are parameterized. For example,
parameters include the presence or absence of certain local-memory interfaces (for
instruction RAM, instruction ROM, data RAM, and data ROM) and their bit widths.
The configuration-dependent part of the ISS matches the TIE description that is
used to generate the rest of the processor hardware including the instruction seman-
tics (for the processor’s base ISA and all TIE instruction extensions), registers and
register files, other TIE states, and exception semantics.

The Xtensa ISS has a cycle-accurate mode that directly models the proces-
sor pipeline. ISS instruction processing consists of three steps: stall computation,
instruction issue, and instruction semantics for the activities occurring within each
pipeline stage. The stall computation models pipeline interlocks. The instruction-
issue step models the use of registers within each stage and sets up the computation
for the stall functions of subsequent instructions. The TIE compiler generates the
configuration-dependent parts of the ISS during the server-based configuration build
or within the local (client-side) TDK (TIE development kit) loop. The generated
xtensa params files provide additional configuration-specific parameters and the
core and configuration-specific parts are connected to create the full ISS. The ISS
uses function pointers and dynamically loaded libraries for efficiency.

Interfaces and signals provide communication between the core and the
configuration-dependent parts of the ISS. For example, when an instruction wishes
to load from memory, the ISS has an interface called mem data in that is called
via the semantic functions generated by the TIE compiler. This function, which
resides in the configuration-independent part of the ISS, then determines whether
the memory reference refers to local memory, to a cache, or if it needs to be sent
out via the processor interface to a system memory, based on the address mapping
defined in the processor’s configuration.

The ISS uses core signals to communicate between its configuration-dependent
TIE part and its hard-coded, configuration-independent part, which represents the
HDL-coded part of the processor. These core signals are used for special states,
such as the DBREAK state. DBREAK allows the ISS user to set a watch on vari-
ous memory locations so that a breakpoint occurs when the watched locations are
accessed.

Instruction extensions written in TIE are modeled in the configuration-dependent
part of the ISS; much of the fixed ISA is also written in TIE and is therefore modeled
in this portion of the ISS. Some instructions are partially modeled in TIE for instruc-
tion decoding but the semantics are left blank and are modeled by the hard-coded
ISS core. Special signals are used to signal execution of such instructions to the
ISS. For example, synchronization instructions (ISYNC, DSYNC, and ESYNC) or
cache-access operations such as dirty-line replacement tend to be hardwired in the
ISS using this communication mechanism because they are very tightly bound to the
processor infrastructure. As a consequence, users cannot provide their own cache
model.
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The Xtensa processor’s configurable nature combined with the dynamic nature
of the ISS results in some operational inefficiencies. For example, when an inter-
rupt or memory access occurs, the ISS must dynamically check the settings of var-
ious configuration parameters (in this example, the interrupt settings and the cache
parameters) to determine which part of the ISS logic to execute. Given a wide range
of configuration parameters, the ISS code must check a number of Boolean and
integer variables, resulting in a fair amount of branching code.

An optimized ISS for a fully fixed-ISA processor or a completely regenerated,
configuration-specific ISS would not have this overhead. However, Tensilica has
made a reasonable trade-off to create a flexible software system that matches and
complements the flexibility in the Xtensa processor architecture. Of course, many
fixed-ISA processors also have some variability that their ISSs must handle—for
example, checking cache parameters. In theory we could move more of the over-
head into the configuration-specific part of the ISS but this choice would make the
ISS harder to maintain and would increase the amount of time taken to build new
processor configurations. Although it is hard to estimate the cost of this overhead,
one reasonable estimate is that the cycle-accurate mode of the Xtensa ISS runs at
about half the speed that it would if it was fully regenerated for each new processor
configuration. We believe this represents a good engineering compromise between
speed and flexibility.

In contrast to the approach described in Chapter 17, Tensilica has emphasized
the automatic generation of ISS and system models very early in the investigation
phase for new micro-architectural features. Leaving the model generation until late
in the development process for a new release of the processor generator would be
inefficient and might cause unanticipated delay in the release process. Having this
as an integral part of the development process leads to higher quality more quickly.

18.2.2 The Instruction Set Simulator Cycle-Accurate
and Fast-Functional Modes

The Xtensa ISS has two major simulation modes. In the default cycle-accurate
mode, rather than executing one instruction at a time, the ISS directly simulates mul-
tiple instructions in the pipeline, cycle by cycle. As discussed above, the simulator
models most micro-architectural features of the Xtensa processor and maintains a
very high degree of cycle accuracy. In this mode, the ISS can be used as a reference
model for a detailed hardware simulation, thus serving as a verification tool.

Software developers always want more speed, so Tensilica expanded its ISS
capabilities by adding a fast, functional, instruction-accurate simulation capability
called TurboXim. This uses just-in-time compiled-code techniques to significantly
improve simulation speed. Of course, the speed improvement varies widely depend-
ing on target code and processor configuration but, as a rule of thumb, 40–80X speed
improvements or more have been seen on real applications. Because TurboXim per-
forms just-in-time host-based code generation and compilation for specific target
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code on a specific processor configuration, it knows exactly what code to generate
and avoids a lot of conditional processing. The instruction-accurate (as opposed
to cycle-accurate) TurboXim allows software and firmware developers to trade off
speed for accuracy. Although developers would prefer to have the speed while
retaining 100% cycle accuracy, this is not practical.

In the TurboXim mode, the ISS does not model micro-architectural details of the
Xtensa processor, but it does perform architecturally correct simulation of all Xtensa
instructions and exceptions. Thus cycles lost due to pipeline stalls and replays, mem-
ory delays, and branch penalties are not taken into account, and each instruction is
assumed to take a single cycle to complete. In addition, data and instruction cache
behavior is not modeled—in effect, TurboXim assumes an infinitely large cache
which always hits.

TurboXim reports the number of instructions executed but makes no attempt to
predict the actual executed cycles that the target code might use on the target pro-
cessor. It is possible to add the ability to predict cycle counts using table-lookup
functions in a kind of “cycle-approximate” mode and this feature remains a future
possibility. Meanwhile, it is possible to switch between cycle- and instruction-
accurate simulations dynamically during a simulation run. This ability enables a
kind of hybrid simulation where a sufficient amount of execution in cycle-accurate
mode can be used to predict the overall cycle count of the complete simulation.
Used in this manner, a hybrid simulation might run 99% in instruction-accurate
mode and only 1% in cycle-accurate mode. Of course, some combination of both
these methods would be possible. This hybrid simulation mode is similar to that
described in Chapter 9, and in Chapter 11.

TurboXim works for the ISS running in stand-alone and debugging mode and
also works for the ISS when executing within the system level modeling environ-
ments discussed later.

18.2.3 ISS Simulation Mode Switching

Because the ISS TurboXim mode and the cycle-accurate simulation mode are fully
interoperable, the ISS provides several mechanisms for switching between the two
modes. Statistical sampling is one of the most useful ones to allow the use of
cycle-accurate simulation to generate predictions of the time required to run a com-
plete application on a target processor configuration. Via a “sample” command that
defines a sampling ratio (indicating the ratio between the number of cycles run in
cycle-accurate mode and the number of cycles run in fast-functional mode) and a
sampling period length (indicating the number of cycles in the cycle-accurate mode
for each period spent), the user can control the sampling rate and precision.

In an experiment run using an MP3 decoder audio application on a Tensilica
330HiFi audio processor configuration [2], the use of statistical sampling provided
estimates of execution speed that had well under 1% error and at simulation speeds
that were 20× the speed of cycle-accurate simulation—within striking distance of a
pure TurboXim simulation (about 25% slower).
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There are a number of ways of controlling the switching between modes, includ-
ing during interactive simulation with a mode command, from the xt-gdb debugger
with a similar command, from within the Xtensa Xplorer integrated development
environment (IDE) with a command, and from within a target application using
special ISS simulation callbacks. This last method is especially useful if you want
to run in fast mode during simulation of system or application initialization and
bootup, and then switch to cycle-accurate mode for debugging, detailed profiling,
or other studies of application behavior and performance.

18.2.4 ISS Use Models

Users may want to do many different things with the ISS. We can classify three
major use models:

1. Software Development
2. Profiling
3. Debugging

For software development, the ISS can be invoked as a stand-alone program to sim-
ulate the execution of an application targeted for the Xtensa processor. This can
be done either from the command line, using the xt-run command, or from the
Xtensa Xplorer IDE, using the Run dialogue. When requested, the ISS provides
a performance summary output, which includes cycle counts for various events that
occurred during the simulated program execution, such as cache misses. The sim-
ulator can also generate execution traces, as well as target program profiling data,
which can be analyzed with the xt-gprof profiler or Xtensa Xplorer. Comparisons
of profiles from different Xtensa processor configurations can help users select an
optimal set of configuration options. Finally, users can debug an Xtensa target pro-
gram using either the GNU command-line debugger (xt-gdb) or the Xtensa Xplorer
debugger. By default, the debugger automatically runs the simulator to execute the
target program.

18.3 System Modeling Enviroments

As mentioned previously, the ISS is provided for use within two system simulation
environments: XTMP, which uses a proprietary C-based modeling API, and XTSC,
which is based on SystemC. These system simulation environments allow the easy
use of ISS models for one or more configurations of the Xtensa processor and permit
the creation of generic models that can be adapted to configuration characteristics
with little or no model source-code modification. This is supported by two mecha-
nisms: transaction level modeling (TLM) approaches that provide generic methods
for classes of processor interfaces, and introspection via a number of model-query
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methods that allow all the relevant configuration characteristics of a particular con-
figuration to be determined.

Examples of the TLM interfaces include TIE queue interfaces supported by stan-
dard methods that work for all queue sizes, local-memory interfaces with standard
access methods that work for all memory widths (these local-memory interfaces
are very similar to the system PIF memory interfaces), and TIE lookups, which
support a common set of access methods for all lookup instances. Examples of the
introspection routines include APIs that allow the simulator to determine configu-
ration parameters, the presence of all configured interfaces, and access methods for
the ports provided for these interfaces. When these configuration-specific interface
methods and ports are combined with a number of generic devices (such as memory
devices, connectors, routers, and arbiters), then system simulation models for mul-
ticore systems can be developed and also linked to third party models and system
simulation tools.

18.3.1 System Simulation Use Models

The system simulation use models include single-processor system level simula-
tion with models of various external devices, including memories and peripheral
blocks; multi-processor system level simulation where multiple Tensilica cores may
be mixed with third party processors and complex buses and hardware accelerators;
mixed system level and HDL level simulation, where the ISS model can be inter-
faced using pin-level transactors and interfaces to Verilog simulation of hardware
blocks; and virtual platform or virtual prototype simulation where a fixed system-
level model of an architected system can be provided to users for software devel-
opment and verification. In any of these cases, it may be useful at times to run the
system model in cycle-accurate mode, which the ISS supports, or in fast-functional
mode which the ISS supports via the TurboXim capability. See Chapter 2 for more
about the virtual platform concept.

All of these use models at the system level parallel the three use models of
the single ISS: software development and verification, profiling, and debugging.
Of course, at the system level, especially when there are multiple heterogeneous
processor cores, verification, profiling, and debugging are more complex than with
a single ISS. In addition, the system level models of peripherals, buses, hardware
accelerators and memories, and memory controllers can be very complex devices in
their own right.

18.3.2 XTMP

Several years ago, Tensilica created and released the XTMP modeling environment
to support users who wanted to model complex systems with one or more Tensilica
processor cores within them. XTMP provided a proprietary simulation kernel, built
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on top of a platform thread execution capability, the capability to instantiate Tensil-
ica core ISS models, and a basic library of components along with guidance and API
calls to allow a user to develop their own component models. The simulation kernel
in XTMP is offered in two forms on Linux platforms, using either quickthreads or
SystemC threads (quickthreads is faster as it has less overhead than the SystemC
simulation kernel). On Windows, XTMP uses Windows fibers. Components offered
in the XTMP environment include connector models (which operate like routers,
to direct transactions to appropriate memories and peripheral models), local and
system memory models, queues and lookups, and a set of examples showing how
to develop user memory-mapped models. XTMP uses a transaction-based modeling
style that preceded SystemC TLM1 (and thus TLM2) by several years.

XTMP is implemented in C++, but in order to make it available to the widest
possible user base, the API was provided using C interfaces. Users could choose
to use either C or C++ in implementing their system models. Most chose to use
straight C.

When the TurboXim fast-functional ISS capability became available, using it
within the XTMP environment (and the XTSC environment described later) was
important. Since in XTMP, ISS models need to interact with other system device
models such as memories and queue models, as well as other user-defined memory-
mapped devices, it was necessary to find mechanisms to match the inherent Tur-
boXim ISS speed with fast access to data stored in memory models or memory-
mapped registers in peripheral or other user-defined models.

Thus, in the TurboXim fast-functional mode, the core uses a fast-access protocol
to request fast access to memory and then uses that access to perform data transfers
to and from the memory. This allows it to read and write memory without yield-
ing control of the simulation. Built-in components implement the fast-access pro-
tocol with very efficient data transfer mechanisms. Memory-mapped user devices
by default use reasonably efficient peeks and pokes for instruction fetches and data
transfers, but can implement more efficient mechanisms as well. Three mechanisms
are available for fast access, ranging from debug-style peeks and pokes (slowest,
but still faster than sending request-response transactions over a simulated inter-
connect network); callback fast access, where registered read and write routines for
the device model can be invoked by the Turbo model for the ISS; and the fastest
mechanism, raw access, where a pointer to the memory is given to the simulator for
it to use directly for all reads and writes. The raw access is conceptually similar to
OSCI’s TLM2 DMI (direct memory interface). If no fast-access method is supported
by a device model, the XTMP transaction posts can still be used, although they are
the slowest to simulate.

A fast-functional core may optionally run in a relaxed simulation mode that
allows multiple instructions to execute without yielding simulation control. This
relaxed simulation mode has a different interleaving of events compared to a simu-
lation of cores in lock-step, but results in a functionally valid simulation for properly
synchronized systems. Some issues that arise in relaxed simulation mode but not in
lock-step simulation can occur in hardware as well. The relaxed simulation mode is
conceptually similar to OSCI TLM2’s quantum-based out-of-order simulation.
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When the cores are running in relaxed simulation mode, each core will perform
as much work as it can until it has executed for relaxedCycleLimit (a control param-
eter) cycles or is otherwise forced to yield. It then schedules itself to execute again
in the future based on the number of cycles that were simulated.

One problem that occurs in multicore systems is that incorrect synchronization
between the cores can cause timing-dependent system behavior. Data races become
a problem when different timings of events can cause incorrect system behavior.
Simulating cores out of order can significantly change the relative timing of events.
The different interleaving of events can expose latent system synchronization issues.
Some of these latent synchronization issues can be bugs that do not show up in a
lock-step simulation, but could show up in hardware. Others are issues that could
never show up in hardware.

Cores that simulate out of order may have a delayed response to external inputs.
The effect of setting an edge-triggered interrupt or the RunStall signal may be
delayed by an arbitrary number of cycles up to the relaxation limit. Level interrupts
should be held active for at least the number of cycles in the relaxation limit since a
core only samples the interrupts when it is scheduled to execute.

Some poll-based synchronization can slow down a relaxed simulation. For exam-
ple, in one form of poll-based synchronization the processor continually reads the
value from a local-memory address until it is modified by an external device. When
a core is allowed to execute out of order, it will continually read the same address
with the same value because no other device can execute until the core yields con-
trol. XTMP includes target code simulation APIs to help address this busy-waiting
performance issue.

Relaxed simulation should be used to verify the correct functionality of a system,
not its timing-dependent behaviors. Care must be taken to interpret the results of
relaxed simulations. Because one core can run for many instructions before yielding
control to other system devices, if a core is pushing data into an external queue
connected to a TIE output queue interface, it can easily fill the queue before it yields.
Likewise, if a core is popping data from an external queue connected to a TIE input
queue interface, it can empty the queue before it yields. Because of this behavior,
relaxed simulations should not be used to determine the optimal size of such a queue.

Simulations may switch dynamically between the TurboXim fast-functional
mode and the cycle-accurate mode. This allows the faster simulation mode to be
used to fast-forward simulation to a desired point before switching to cycle-accurate
mode to take profiling data. It also allows for sampled simulation where most sim-
ulation occurs in the faster simulation mode, but profiling data can be taken on a
regular basis while the system is simulating in cycle-accurate mode.

18.3.3 XTSC

After several years of user experience with XTMP, the industry began to move to
wider adoption of the OSCI SystemC language (standardized by the IEEE as 1666)
as a standard system modeling language. User and customer interest in Tensilica
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support for SystemC grew to the point where the company developed a SystemC
based modeling environment called XTSC.

XTSC went beyond XTMP’s earlier support of SystemC using the SystemC
simulation kernel to offer the needed threading capabilities. This earlier XTMP
capability made it a little easier to link XTMP and SystemC simulation, but was
quite limited and did not define equivalents to XTMP transactions in the SystemC
world.

In XTSC, a series of fundamental SystemC-based classes and methods are
defined to allow users to build native SystemC models incorporating the Tensilica
ISS models. These include the following:

1. The xtsc_core class that wraps an Xtensa ISS in a SystemC module
2. TLM interface classes using XTSC transaction types used for intermodule com-

munication. XTSC transactions include basic request and response transactions
and specialized ones for queues, lookups, etc.

3. A set of additional core classes that play a supporting role in XTSC
4. A set of non-member functions used to set up and control the simulation run or

perform various utility operations

XTSC offers a set of basic system/SoC modeling components, including mem-
ories, arbiters, routers, queue objects, lookup objects, general memory-mapped IO
devices, and wires.

XTSC also offers a set of testbench models to make it easier to test system models
built with various XTSC components. These include PIF (processor interface) mas-
ter and slave components, memory masters, queue and lookup producer/consumer
objects and drivers, wire sources, and sinks.

The xtsc_core class wraps an Xtensa Instruction Set Simulator in a SystemC
module. It includes methods to allow TLM port binding to all the local memory
ports, the Xtensa Local Memory Interface (XLMI) port, the processor interface
(PIF) port, all user-defined TIE interfaces, and certain system-level input and output
signals. The TIE interfaces include output queues, input queues, lookups, export
states, and import wires. The xtsc_core class also includes methods for loading the
core programs, loading simulation clients, stepping the core, probing the core state,
querying the core construction parameters, and setting up the core for debugger
control.

The XTSC TLM interface classes play the major role in defining the commu-
nication between Xtensa cores and various SOC component modules. An arbitrary
TLM module can be connected to an xtsc_core module only if it is using the XTSC
TLM interface classes.

The XTSC core library includes many non-member functions and macros,
such as:

1. Functions to configure simulation timing
2. Functions to initialize and finalize simulation
3. Functions and macros to configure and perform text logging



18 Configurable, Extensible Processor System Simulation 303

4. Utility functions to dump a byte array, perform string-to-variable conversion, and
safely copy and delete c-strings and arrays of c-strings

In late 2009, XTSC was extended to permit pin and signal-level integration of
the Tensilica ISS within Verilog simulaton environments. This is supported at two
levels: the first consists of adaptors or protocol converters that convert XTSC trans-
actions at the nominal TLM level into SystemC signals produced and consumed by
SystemC pin interfaces; the second level uses further converters to link SystemC
pins and signals to appropriate Verilog pins and signals. This capability is sup-
ported with the Verilog simulators offered by Cadence, Mentor, and Synopsys, and
its primary use model is to support ISS co-simulation with Verilog RTL and gate
level models where SystemC models may not be available for a complete system
simulation.

XTSC supports the same concepts of fast-functional simulation (TurboXim) as
XTMP, discussed above. This included relaxed (out of order) simulation and fast
access methods to model data using the same methods as in XTMP, but dealing
with XTSC transactions directly rather than XTMP transactions.

The XTSC transactions were created with an eye to OSCI SystemC TLM1 trans-
actions and were created before the availability of OSCI TLM2 proposals. Although
conceptually similar in many ways to TLM2, XTSC works in a TLM2 environment
by special PIF or memory to TLM2 transaction adaptors (conceptual zero-delay
bridges).

18.4 Third Party Integration

Before the availability of the SystemC-based XTSC system modeling environment,
it was difficult to integrate the Tensilica ISS into third party system level modeling
(ESL) tools. Most of them used proprietary modeling approaches based on C/C++,
or perhaps had begun the move to SystemC themselves. The concepts of transaction-
level modeling, of which XTMP was a relatively early user, were not universally
used in a consistent way in third party, commercial ESL tools—and are still not
consistent, although OSCI TLM2 has helped to standardize thinking and concepts.

However, when XTSC became available, the use of a common underlying Sys-
temC-based simulation infrastructure allowed easier integrations to occur—still of
course requiring significant effort to translate Tensilica transactions to and from
the commercial tool’s notion of transactions. Growing customer interest in using
system level modeling, especially for heterogeneous systems involving processors
from different suppliers (such as an ARM for control processing and one or more
Tensilica cores for dataplane processing), led to a growing demand for integrations
with third party ESL system modeling tools. Working with the commercial vendors
of these tools, and using either XTSC or XTMP as the integration environment, a
number of ISS/system modeling integrations have now been carried out. Although
most of them use the XTSC SystemC-based modeling API, some of them have used
XTMP because they themselves are not SystemC based and greater performance
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can be achieved in cycle-accurate simulation using the simpler XTMP interface and
simulation kernel (perhaps 2× faster).

Commercial vendors of ESL tools with announced integrations of the Tensilica
ISS and models include CoWare, Carbon Design Systems (with the SoC Designer
tool that started out in Rockwell Semiconductor/Conexant as Maxsim many years
ago, then a spinoff Axys, then part of ARM, and finally now part of Carbon), VaST,
Imperas, Virtutech, Synopsys (the old Virtio tools, now called Synopsys Innovator),
and Mirabilis.

Some of these commercial ESL tools work in both cycle-accurate and fast-
functional mode; some of them (such as Virtutech SIMICS) only in the fast-
functional mode. Since the Tensilica ISS supports both such modes, it is easy for
it to be used in either mode in a commercial ESL tool. The main issue in integration
has been to adapt the particular Tensilica TLM modeling style and syntax to the
commercial tool TLM styles, which differ from tool to tool. Since the semantics are
usually fairly similar, this has not proved to be too difficult, although sometimes our
approach and a commercial tool would have been built on quite different assump-
tions. For example, cycle-accurate simulation is an essential bedrock technology
for configurable and extensible processors, since the question of whether a loop
nest that an algorithm lives in for 95% of its cycles takes 30 cycles with particular
TIE-based extensions vs. 25 cycles is an extremely important issue. Many of the
commercial tools that support only a fast-functional mode are intended for software
functional verification, not detailed performance analysis, and this has led to some
speed-accuracy trade-offs in those tools that are a bit different than our models sup-
port. Nevertheless, the list of seven different commercial ESL tools above indicates
that ways to build a suitable and useful integration have been found in all cases.

18.5 Modeling Standards

Our work in developing XTSC and in building or working with third party ESL
tool providers on integration was greatly assisted by the existence of SystemC as
a standard system modeling language and reference (proof of concept) simulator.
However, OSCI has moved rather slowly in the past in evolving the standards or
in adding new capabilities. In particular, with some bursts of more rapid activity,
the TLM working group has moved disappointingly slowly in developing the TLM
concepts and a reference standard. When we developed XTSC, TLM1 had come
out from OSCI but although it was a useful marker against which we developed our
own capabilities, it was inadequate to reflect the full complexity of our interfaces
(or indeed, any real-world interfaces, especially those that had to operate in cycle-
accurate and fast-functional modes).

By the time we released XTSC and began to work with third party ESL ven-
dors on integrations, it would have been possible to take significant advantage of
OSCI’s TLM2 work, had it been available. However, it was not available, and
even when released in the summer of 2008, remains incomplete and inadequate
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or under-specified in several key aspects. Thus our XTSC is not currently TLM2-
compliant, although we are looking at adding such capabilities in the future. Even
when we add them, deficiencies in TLM2 mean that we must guard-band our use
of it and avoid or restrict its applicability to the full range of our configurations.
For example, it does not standardize bus locking for memory-mapped bus-style
interfaces, which means it is restricted when dealing with RCW (read-conditional-
write) transactions which require bus locking. This is despite the fact that all buses
of real interest on SoCs support some aspect of bus locking. It also has concepts
as discussed above such as direct memory interface (DMI) and out-of-order time
quantum-based simulation that are similar but not identical to concepts used in our
ISS and XTMP/XTSC environments. Again, this means that some use of TLM2 is
possible, but without a complete semantic mapping to our capabilities.

In general, useful industry standards in the EDA and ESL areas lag the most
advanced uses and when they finally come out, retrofitting their use into working
systems and integrations is costly and often of little benefit. In addition, OSCI, like
many standards bodies, is a pay-to-play organization that is not set up to solicit opin-
ion across the full range of the industry, including non-members, when developing
new standards. This means that it comes out with proposed standards that are weaker
than they would be if a wider range of input and influence was actively solicited.

18.6 Examples

Almost all of Tensilica’s customers have used the ISS in both cycle-accurate and
fast-functional mode as part of their configuration, extension, software development,
profiling, and debugging processes. This is a natural for any processor IP vendor.

A good number of customers have used the XTMP and XTSC modeling environ-
ments or the third party ESL tool integrations. Since the release of XTSC, its usage
has grown so that at this point well over half the customers who build system models
are using the XTSC version, usually integrated with their own SystemC models or
those provided by other suppliers. At least one quarter of SystemC-based system
modelers are using commercial ESL tools into which our ISS has been integrated.
This is especially true of the largest customers using the technology in many com-
plex SoC and system developments.

One example where we have used the technology internally is an audio reference
design that used two Tensilica processors: a 330 HiFi for audio decoding, and a
108mini for the control of the system, along with an AHB style bus, PIF2AHB
bridge, memories, both local and system, DMA controller, UART, DAC, and a GPIO
block. The system was fully designed in hardware and a reference XTSC model was
created for it as an example of how to build and use system models. This XTSC
model supported all the use cases discussed earlier for system models, albeit on a
relatively straightforward design.

In building the XTSC model, the bus interconnect fabric was modeled using
a combination of router and arbiter components. Queue models were used to
communicate with the 330 HiFi output queue and output decoded samples that
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would normally go through an audio DAC to a speaker were instead collected to
wavout files that could be played back. The rest of the system model closely fol-
lowed the real system implementation. It can be run both in cycle-accurate and fast-
functional mode and is a useful demonstration of building SystemC-based system
models.

A second example of a system model was for a 2- or 3-core video system,
388VDO, described in [4]. For this system an XTMP system model was created,
including the two processors (stream processor and pixel processor) configured with
special video instructions, and an optional general control processor that by default
was a Tensilica 330 HiFi. The model was developed to be run in either 2 core or 3
core mode in order to allow users to substitute a different control processor for the
Tensilica control processor if desired. In addition, other system components, such
as a hardware DMA engine, a bit transpose hardware block, a special interconnect
network, and DDR-style system memory controller, were modeled. All of these
models were written in XTMP and were developed to support both cycle-accurate
simulation and fast-functional TurboXim simulation.

In general, running real codecs on real video streams, either decoding or encod-
ing, the simulation model running in TurboXim mode was 20–30× faster than the
model running in cycle-accurate mode. This allowed the simulation model to be
used both for software codec development and verification on a functional level
and detailed codec optimization using the cycle-accurate mode and various kinds of
performance profiling.

We also supported codec porting to the 388VDO (VDO) system using a special
synthetic single-processor model that incorporated the TIE instruction extensions
for both the stream and pixel processor. The methodology followed was as follows,
all using the single-processor XTMP model and the multi-core model:

1. Compile and profile the codec on the single-core ISS model with realistic input
data. Assume a single access memory. Partition the profile by assigning functions
to one of the video cores. Since in 130 nm technology, a reasonable performance
target for video codecs is 200 MHz, aim to have the total amount of cycles per
core to be less than 180 Mcycles/s, in order to keep a reasonable margin.

2. Identify hot spots: The execution profile reports how many processor cycles
are spent in each function. Functions that are called frequently or require high
processing bandwidth are considered as hot spots and are good candidates for
acceleration by using the VDO-specific TIE instructions.

3. Instantiate VDO TIE intrinsics: VDO TIE instructions are available for use by
C/C++ programs through intrinsic functions. Modify the application to call
VDO TIE intrinsic functions in place of the software code that originally repre-
sented the hot spots of the application. The VDO TIE instructions from different
cores should not be mixed in the same function because these will be executing
on separate processors after multicore partitioning.

4. Verify TIE usage: After modifying the source code for TIE usage, compile and
simulate the application. Verify the results of the TIE-enabled application against
the results of the original source code. Profile the application again to check if
optimization goals are reached for hot spots.
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5. Implement DMA functionality with C functions. Verify TIE and DMA C code.
6. Compile and profile the codec on the single-core model with the DMA function-

ality now implemented with C functions. Assume a single access memory.
7. Partition functions for multicore. Completely separate the code destined for each

core by placing them in different functions. Ensure that the functions destined for
each core use only TIE instructions belonging to that core (i.e., Stream Processor
TIE instructions or Pixel Processor TIE instructions in the 388VDO). Aim to
have the total amount of cycles per core to be less than 180 Mcycles/s, to target
a 200 MHz frequency for the system with reasonable margin. If it meets the
performance, go to the following step; otherwise return to Step 2.

8. Data sharing for multicore: Each processor in the dual-core 388VDO Engine has
separate local instruction and data memories. The 388VDO uses shared external
system memory and a hardware DMA engine for data movement between cores.
Because the single-core virtual model does not contain a DMA engine, data
movement between the two cores can be simulated using memcopy functions.
Those functions can then be replaced by DMA control functions when the code
is ported to the VDO Engine.

9. Profile the multicore partition: Profile the application to make sure the cycle
counts for the functions that will be executing on different cores is balanced.
Note that the memcopy cycle counts may be removed since these functions will
be performed by the DMA controller of the VDO Engine. These profile results
will still be an approximation of the final performance since some overhead will
be introduced for synchronization and communication between the two cores
when the application is ported to the VDO Engine.

This proved to be an effective methodology for codec porting and was tested in
practice by a team at the University of Thessaly in Greece as reported in [3]. They
ported the AVS video decoder to the 388VDO using this methodology.

Many capabilities were added to the XTMP model of the 388VDO over time to
support higher level analysis of video codecs running on the system. This included
extensive gathering and analysis of statistics for memory accesses, cycle counts,
DMA usage, and other features, on both frame by frame and time interval basis.
Many additional experiments were run on different configurations of the DDR mem-
ory controller model to test architectural options. Early versions of the model were
used in defining the instruction extensions used in the stream and pixel processors
as well and to optimize their use.

Both the audio reference design and 388VDO demonstrated effective use of the
ISS and system modeling technology.

18.7 Conclusion

Design of complex systems and SoCs with configurable and extensible processors
demands a high level of support for both processor modeling and the use of those
processors within a system context. This chapter has outlined Tensilica’s approach
to generating such models in an automated fashion and in building system modeling
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environments that allow users to make realistic design trade-offs as well as cre-
ate, debug, and profile target code. Growth in system complexity will continue to
increase the demands for such simulation capability.

References

1. Augustine, S., Gauthier, M., Leibson, S., Macliesh, P., Martin, G., Maydan, D., Nedeljkovic,
N., Wilson, B.: Generation and use of an ASIP software tool chain. In: Ecker, W., Müller,
W., Dömer, R. (eds.): Hardware-Dependent Software: Principles and Practice, pp. 173–202.
Springer, Heidelberg (2009).

2. Bailey, B., Martin, G.: ESL Models and their Application: Electronic System Level Design and
Verification in Practice. Springer, Heidelberg (2010).

3. Bellas, N., Katsavounidis, I., Koziri, M., Zacharis, D.: Mapping the AVS video decoder on
a heterogeneous dual-core SIMD processor. In: Design Automation Conference User Track.
San Francisco, CA (2009). http://www.dac.com/46th/proceedings/slides/07U_2.pdf. Cited 21
September (2009).

4. Ezer, G., Moolenaar, D.: MPSOC flow for multiformat video decoder based on configurable
and extensible processors. In: GSPx Conference. Santa Clara, CA (2006).

5. Leibson, S.: Designing SOCs with Configured Cores: Unleashing the Tensilica Diamond
Cores Technology. Elsevier-Morgan Kaufmann, San Francisco, CA (2006).

6. Rowen, C., Leibson, S.: Engineering the Complex SOC: Fast, Flexible Design with Config-
urable Procesors. Prentice-Hall PTR, Upper Saddle River, NJ (2004).

7. Sanghavi, H., Andrews, N.: TIE: An ADL for designing application-specific instruction set
extensions. In: Mishra, P., Dutt, N. (eds.): Processor Description Languages. Elsevier-Morgan
Kaufmann, San Francisco, CA, pp. 183–216, (2008).



Chapter 19
Simulation Acceleration in Wireless Baseband
Processing

Timo Lehnigk-Emden, Matthias Alles, Torben Brack, and Norbert Wehn

Abstract The Monte Carlo method is state-of-the art to verify the performance
of wireless communication systems. Statistical simulations for various signal-to-
noise (SNR) operation points are mandatory. Bit error rates (BERs) of 10−9 or
even lower require the simulation of tens to hundreds of thousands of blocks
for a single SNR operating point. Therefore, system simulation in wireless base-
band processing is a challenging task. For example, analyzing the error floor in
DVB-S2 LDPC channel-decoding systems needs several weeks of simulation time
for one specific set of code parameters. Design validation of hardware archi-
tectures is challenging as well for the same reasons. We will present different
techniques for accelerating system simulation with emphasis on channel decod-
ing techniques by distributed software simulation, accelerated simulation using
the cell processor, and hardware-assisted acceleration using FPGAs. Moreover,
we will show how design validation of such systems can be accelerated by rapid
prototyping.

19.1 Motivation

19.1.1 Algorithms in Baseband Processing

Baseband receivers are an essential building block of all wireless communication
systems (see Fig. 19.1). They can be decomposed into two parts: the inner and outer
receiver [1]. The main task of the inner receiver is to acquire digital data from an
analog-digital converter (ADC) and transform the sampled channel data back into
symbols probably sent over the digital baseband. The outer receiver utilizes forward
error correction (FEC) to exploit added redundancy in these symbols to increase
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Fig. 19.1 Baseband receiver structure

overall communications performance. To carry out these tasks, both the inner and
outer modems have to rely on numerous algorithms with differing complexities, like

• Eigen value decomposition
• DDS (direct digital synthesis)
• Matrix–matrix and matrix-vector multiplications and additions
• Complex multiplications and additions
• CORDIC (coordinate rotation digital computer) algorithms
• FFT (fast Fourier transformation)
• FIR (finite impulse response) filtering
• MAP (maximum-a-posteriori) or ML (maximum likelihood) estimators

All these algorithms have different properties and requirements regarding their
implementation depending on their individual characteristics:

• Computational versus memory-intensive algorithms: A CORDIC algorithm
needs many computational steps depending on the required precision while not
utilizing much memory, while the DDS algorithm mostly relies on memory for
the large LUTs (look-up tables).

• DSP (digital signal processor) versus non-standard DSP algorithms: While
DSPs perform the FFT algorithm very efficiently, probabilistic algorithms are
normally not supported by standard DSP processing.

• Iterative approximation algorithms: A classical algorithm of this kind is the
Newton–Cotes algorithm for numerical integration, where a precision gain in the
result is achieved by each iteration. More complex iterative approximation algo-
rithms are used by modern channel decoders, e.g., LDPC decoders, for efficient
MAP processing.

• Complex interacting algorithms: Very often data produced by one algorithm has
to be used by another one and vice versa. In these cases, properties like mem-
ory bandwidth and complexity of the necessary control flow can become major
obstacles.
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With each new generation of wireless communication standards, the overall
computational complexity of the outer receiver grows. Peak data rates have risen
by a factor of 100 from 0.38 Mbit/s (3GPP/R99, WCDMA) in 1999 to 40 Mbit/s
(3GPP/R7, HSPA evolved) in 2007 [2] and continue to grow fast in the foreseeable
future. Especially the burden on the outer receivers has increased dramatically: up
to 10 GOPS (giga-operations per second) are currently required to process 3GPP
channel decoding alone [3]. For the fourth generation (long-term evolution—LTE)
the complexity is rising by a factor of 10–100 GOPS. The whole baseband process-
ing in LTE-A needs up to 2,000 GOPS at a data rate of 1 Gb/s [4]. The largest share
of this computational complexity lies in the channel decoder. Finding the optimal
hardware architecture is a key interest, but the design space for the receiver is quite
large.

19.1.2 Challenges on Design Validation and Verification

To fulfill the requirements on implementation and communications performance for
baseband receivers and to meet the evermore tightening time-to-market demands,
engineers have to focus on novel approaches. The goal of the design-space explo-
ration phase is to find the optimal trade-off of implementation cost versus com-
munications performance. Employing system-level optimizations bears the largest
potential. The fast validation of achievable system performance by extensive sim-
ulations and verification by rapid prototyping becomes mandatory. This need only
increases the urge for fast simulation platforms, as an analytical evaluation is largely
impossible in the face of non-bit-true transformations. Quantization, internal data
representation, and low-level algorithmical optimizations which sacrifice commu-
nications performance for lower implementation costs are good examples, as the
computational result of the decoder may be slightly different. Probabilistic methods
like Monte Carlo-based simulation are the established state-of-the-art for this kind
of statistical validation.

Here, not only the quality of the codes has to be evaluated but also the impact
of all the high-level and low-level transformations. The goal is to validate, whether
or not the system’s communications performance is still within the specified and
expected bounds. That necessitates not only the simulation of the bit error rate
(BER) after the decoder for various SNR operating points. It is also often neces-
sary to find out the error floor of a given implementation. Obviously, this requires
simulations of hundreds of thousands of blocks.

Verification is another issue that adds to the complexity of the simulation. Once
the receiver is prototyped, for example, in an FPGA platform, the verification of the
system’s functionality is the next step. The large set of service parameters of cur-
rent communication standards (different block lengths, interleavers, code rates, etc.)
makes this a challenging, high-dimensional problem. To verify the correctness of the
implementation and for the co-simulation of the prototype a significant number of
blocks has to be simulated for every possible parameter combination.
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The simulation of communication systems like baseband receivers to evaluate
their communications performance requires a complete model of a wireless trans-
mission system including a random bit data source, a noisy channel, and a data
sink for performance monitoring (see Fig. 19.2). In addition, the missing parts to a
complete transceiver, which can be simplified in many cases, have to be present to
form a complete transmission chain.

Source

Sink

Channel
Encoding

Digital
Modulator

Channel
decoding

Demodulator

Channel

Noise

Randomness
Randomness

Fig. 19.2 Wireless transmission system for channel coding

The problem with simulation becomes obvious if the algorithms are examined
more closely with respect to their software implementation: Many algorithms of a
typical inner receiver (e.g., FFT, matrix–matrix operations) can efficiently exploit
parallel processor architectures like SIMD (single-instruction multiple-data) and
DSP-like co-processors. This is perfect for simulation acceleration on an archi-
tectural or component level. On the other hand, most of the outer receiver algo-
rithms (e.g., MAP estimation) use non-standard DSP arithmetic. Also the large
internal bandwidth requirements and very high complexity of these algorithms
make software simulation difficult and time consuming on standard PC hard-
ware.

As an example, let us consider a complete DVB-S2 channel decoder [5] and its
analysis of its asymptotic error correction (error floor) capability for two different
points in the design space. DVB-S2 is the next-generation satellite-based digital
video standard employing low-density parity-check (LDPC) codes [6] with a code-
word size of up to 64,800 bits.

The simulation down to the required bit error rates of 10−9 and below requires
processing of tens to hundreds of thousands of blocks for a single SNR operat-
ing point. For one specific set of code and service parameters, the Monte Carlo
simulation results shown in Fig. 19.3 took several weeks to compute on a stan-
dard PC. Two different decoder architectures were compared concerning their com-
munications performance. In this case, acceleration on a system level by paral-
lelizing the task of simulation itself yields a large improvement in simulation
speed.
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Fig. 19.3 DVB-S2 error-floor simulation results [5]

Another example is the simulation of LTE turbo-decoder services: 4 weeks of
simulation time on four standard PCs working in parallel on different SNR points
were necessary to obtain the results required for communications performance eval-
uation. Considering only these two examples, the need for simulation acceleration
for efficient communications systems simulation becomes obvious.

Verification of an actual target hardware implementation against the specifying
software model is also a necessity. Without a fast software simulation environment,
it is impossible to obtain a sufficient amount of verification data to co-simulate with
the prototype implementation, making simulation acceleration indispensable for this
application.

19.1.3 The Simulation Space

The simulation space encompasses two major groups: software- and hardware-
accelerated simulation. Software-based simulation relies on software for stan-
dard PC hardware (including optimizations for SIMD, multi-core architectures,
and multithread-capable operating systems), distributed computing clusters, or
specialized accelerator platforms. Hardware-based simulation is mainly based
on dedicated FPGA implementations of the complete simulation framework
or the development of more flexible rapid prototyping platforms on FPGA
(Table 19.1).
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Table 19.1 The simulation space

Simulation space

Software Hardware

Standard PC simulation (including optimized
multi-core, SIMD, and SMT provisions)

Dedicated FPGA-based implementations

Distributed computing clusters (e.g., BOINC) Rapid prototyping platform
Specialized accelerator platforms (e.g., Cell, GPUs)

The following two chapters examine the simulation space with more detail and
with real-world examples.

19.2 Software Simulation

As mentioned before, there are various software platforms available for simulation
acceleration. There also exist different strategies to exploit these platforms depend-
ing on the actual simulation problem. The key factor to finding the ideal simulation
acceleration platform is matching the level(s) of parallelism it can efficiently support
with the level(s) of parallelism the simulation problem can natively provide. This is
what this chapter is about. It presents and analyzes different software platforms and
shows their respective strengths and weaknesses in the context of levels of par-
allelism. As already introduced in Section 19.1.2 , simulation of LDPC channel
decoding for BER and error floor analysis is used as an example throughout the
chapter.

19.2.1 Level of Parallelism

We distinguish three levels of parallelism in this chapter: data level, thread level,
and program level. These levels differ essentially in the provided abstraction of
processing tasks, the granularity (measure of task size and execution time) of tasks
that are processed in parallel, and the necessary interaction between tasks to solve
the simulation problem. Parallelization on different levels is not exclusive and can
be combined (Table 19.2).

Table 19.2 Levels of parallelism

Abstraction Granularity Interaction

Data level Low Fine High
Thread level Medium Medium Medium
Program level High Coarse Low



19 Simulation Acceleration in Wireless Baseband Processing 315

These properties lead to distinct requirements on the simulation platform and the
simulation problem itself. For example, high interaction usually demands for high
communication bandwidth, while parallelization by coarse-granular tasks benefits
most from higher processing power. Parallelization of a simulation problem on a low
abstraction level requires usually more knowledge and effort than any high-abstract
problem division.

19.2.1.1 Data-Level Parallelism

Data-level parallelism is characterized by small tasks that can be executed in very
limited time on a number of parallel processing elements. The high data dependen-
cies naturally occurring on this level and the resulting demand for high communi-
cation bandwidth can only be satisfied by non-scalar processing architectures like

• Superscalar architectures (multiple instruction pipelines) as used in most com-
modity CPUs to exploit ILP (instruction-level parallelism)

• Vector-oriented architectures as used in the supercomputer domain
• VLIW (very long instruction words) architectures as used in most DSPs and some

GPUs (operation-level parallelism)
• SIMD (single instruction, multiple data) architectures as used also in modern

commodity CPUs (e.g., SSE) and the IBM cell processor

The simulation example we evaluate consists of a transmission chain includ-
ing data generator, modulator, encoder, AWGN channel, DVB-S2 LDPC decoder,
demodulator, and data sink for BER evaluation (see also Section 19.1.2). The simu-
lation model is entirely written in ANSI-C.

As our primary simulation acceleration platform, we selected the IBM Cell pro-
cessor [7] as a native SIMD architecture. For comparison, we evaluated the simu-
lation model on a standard Intel Core 2 Duo CPU, with and without SSE2 SIMD
optimizations by native libraries and appropriate compilation options.

The cell processor architecture (Fig. 19.4) consists of a 64 bit SMT-capable Pow-
erPC processor element (PPE) for control purposes and up to eight so-called syn-
ergistic processors elements (SPE). A ring-based coherent element interconnection
bus (EIB) connects all SPEs including their integrated SIMD-ALUs and the PPE.
SPEs can directly access 256 KB of local SRAM; all transfers to the main memory
and between the SPEs have to be commenced by the local DMA controllers.

Because the cell processor employs a multi-core architecture, mapping of the
simulation chain to the cell processor actually involves not only the data level
but also the thread level discussed later in this chapter in Section 19.2.1.2. The
SMT-capability of the PPE is not utilized for this example. Our finally mapping for
evaluation is shown in Fig. 19.5:

• One SPE (SPE #1) is solely used for data generation, mapping, additive white
Gaussian noise (AWGN) channel, demapping, and BER evaluation (data sink).
Because of the limited internal memory bandwidth, DMA transfers between data
source, sink, and the LDPC decoder have to be minimized. It turns out, that the
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Fig. 19.4 The cell processor architecture
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Fig. 19.5 Mapping of the simulation chain to the cell processor

workload of this SPE is dominated by the calculation-intensive AWGN channel,
making this an ideal point of action for SIMD optimization.

• Five SPEs (SPE #2-#6) are used for the DVB-S2 LDPC decoding process itself.
Input and output buffers connected to SPE #1 are interleaved to allow for overlap-
ping computation and data transfer via DMA. On each SPE one LDPC decoding
program is running. The LDPC decoding algorithm provides various degrees of
freedom for effective utilization of the SIMD-ALU in these SPEs.

At first, we evaluate SIMD optimizations for the AWGN channel residing on SPE
#1 because of its limiting effect on the overall data generation throughput. Calcula-
tion of the values for AWGN channel model is done by the Box–Muller algorithm,
which transforms a uniform random number distribution to a Gaussian distribution
with the help of trigonometric and square root functions. Uniform random number
generation as well as processing of the Box–Muller algorithm is a very demanding
task for any general purpose ALU.
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Table 19.3 shows a throughput comparison of three different AWGN channel
implementations with single precision: while even a standard PC implementation
using a commodity CPU benefits significantly by SIMD optimizations, the cell pro-
cessor as a native SIMD system outperforms the standard CPU by another order of
magnitude.

Table 19.3 Simulation results for AWGN channel
Simulation results for AWGN channel

Implementation Architecture Speed

Standard C code Intel Core 2 Duo 2.2 GHz, 3GB RAM 0.5 Mbps
Optimized for SSE2 GNU scientific library 6 Mbps
Cell optimized using Monte Carlo library IBM Cell 3.2 GHz, 256 MB RAM 72 Mbps

To optimize the processing of the LDPC decoder algorithm (SPE #2-#6) we now
look onto different mapping strategies to exploit the SIMD-ALU of the SPEs effec-
tively. LDPC decoding is an iterative process that relies on the so-called message-
passing algorithm: a large number of messages representing probabilities or beliefs
are transferred between two types of computational nodes: variable nodes and check
nodes. The number of these nodes is determined by the codeword size and the
code rate (e.g., for the DVB-S2 rate 1/2 LDPC code 64,800 variable nodes and
32,400 check nodes are present). These computational nodes can be implemented
efficiently, but the message transfer of up to 226,800 messages per iteration is still a
very challenging task.

A Cell processor’s SPE instructions can operate only on the small local mem-
ory. Therefore, the DVB-S2 a priori codeword information has to be stored in the
larger main memory with significantly lower bandwidth. Each SPE can process four
single-precision float SIMD operations in parallel. These constraints given by the
SPE architecture allow for two basic mapping strategies:

1. Decoding of four different codewords in parallel on each SPE. In this configu-
ration, the LDPC decoding itself is done in a fully serial manner with one check
node per codeword being processed at once.

2. Parallelized decoding of one codeword on each SPE. This configuration uses a
partially parallel LDPC decoding approach where four check nodes per code-
word are processed at once with SIMD instructions.

The 128-bit SPE architecture relies strongly on correspondingly aligned data in
local and main memory for efficient read, process, and write operations. Because of
data misalignment emerging from the LDPC codeword generator, the first strategy
requires costly re-ordering of codeword data before processing can commence. This
strategy also suffers from a strong throughput limitation: decoding time in terms of
required iterations can vary for different codewords and consequently the achievable
throughput is limited by the maximum decoding time for four codeword.

The second strategy is not negatively affected by misalignment and varying
decoding times, and data read and write operations from main memory can be
streamed to the processing nodes even more efficiently by data pre-fetching.
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These features give the partially parallel decoding approach a significant advan-
tage over fully serial decoding. The low bandwidth to the main memory remains as
the main bottleneck. The results achieved for the complete simulation chain on the
cell processor including the SIMD-optimized AWGN channel and partially parallel
LDPC decoders are given in Section 19.2.2.

19.2.1.2 Thread-Level Parallelism

Parallelism on the thread level (sometimes also called process level) is situated
between data- and program-level parallelism in terms of abstraction, granularity, and
interaction (see Table 19.2). Thread-level parallelism can also be efficiently com-
bined with other levels of parallelism: Threads can contain data-level parallelism as
in the cell processor example in Section 19.2.1.1, and programs can contain many
threads or processes to exploit thread-level parallelism. Thread-level parallelism is
supported by numerous architectures:

• Any standard CPU architecture capable of running a multithreaded operating
system (e.g., WINDOWS or UNIX)

• Multiple-processor architectures (e.g., tightly coupled SMP systems with more
than one CPU per main board)

• Multi-core architectures as used in many current commodity CPUs (e.g., Intel
Core 2 Duo/Quad with more than one processor core per chip)

• SMT (simultaneous multithreading) or hardware multithreading architectures as
used in many current commodity CPUs (e.g., “hyperthreading”)

Multithreaded operating systems on a non-SMT single-core CPU cannot achieve
any performance gain compared to purely sequential processing. Multithread pro-
gramming can strongly decrease the programming effort by providing a higher
abstraction level. Presented with the illusion that each thread has exclusive access to
the CPU resources (temporal multithreading), the programmer can split up complex
tasks into simpler threads to reduce complexity.

Additionally, architectures capable of simultaneous or parallel multithreading
do offer a potential speed-up. SMT architectures like the Intel Pentium 4 provide
multiple register sets and caches to increase computation performance by utilizing
their (superscalar) ALU more efficiently. This approach exploits instruction-level
parallelism on the thread level and can lead to a proportional increase in processing
speed, but some applications do not benefit from hardware multithreading at all.
Multi-processor as well as multi-core architectures on the contrary have multiple
fully featured processors and ALUs for parallel thread processing which increases
calculation performance proportionally for most applications.

Using thread-level parallelism to increase performance for simulation accelera-
tion implicates some challenges with respect to synchronization and communication
bandwidth. Because of threads normally sharing resources, access to these resources
has to be synchronized to avoid data inconsistencies. There are numerous mecha-
nisms to achieve perfect synchronization, for example, by employing semaphores
or barriers, but all these mechanisms will in turn limit the overall speed-up. For
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our cell processor implementation of the DVB-S2 simulation chain (see Fig. 19.5)
thread synchronization across the decoding SPEs was mandatory for ordered access
to the main memory. In addition, the data generation and BER monitoring threads
on SPE #1 have to be synchronized to the decoding process.

The problem can be seen as a barrier synchronization problem, which limits
the achievable decoding throughput for the first mapping strategy. Another issue is
the required communication bandwidth. The medium of communication for threads
may involve shared memory (cell processors main memory) or network structures
(EIB between SPEs) or even both. In the presented simulation chain, the codeword
data generation on SPE #1 and codeword decoding on SPEs #2–#6 always require
storing and reading data from the main memory. The same holds for the BER mon-
itoring. Even during decoding the main memory has to be accessed a huge number
of times via the SPEs DMA engines because of the local memory being too small.
This makes the communication bandwidth the limiting factor.

19.2.1.3 Program-Level Parallelism

Program-level processing involves large tasks with relatively low communication
bandwidth requirements. As already stated in Section 19.2.2.2, tasks at the program
level itself can utilize thread-level parallelism. Architectures providing parallelism
at the program level include

• Processor clusters (e.g., loosely coupled multi-processor systems made from
commodity hardware, like a Beowulf cluster)

• Clusters of networked workstations (often referred as “COW”) using MPI (mes-
sage passing interface) or PVM (parallel virtual machine) for communication

• Grids of networked workstations using a special grid-computing software like
BOINC

As for the thread level, standard CPU architectures in conjunction with an ade-
quate multitasking operating system can bring program-level parallelism to the pro-
grammer, but do not provide any speed-up. Multi-processor architectures do not
only support thread-level parallelism as described in Section 19.2.2.2 but can also
run complete programs in parallel with proportional performance gain. However,
the focus of this section is on large-scale architectures that natively operate at the
program level.

Table 19.4 presents highly scalable architectures that can achieve massive speed-
ups: processor clusters were first introduced by supercomputers with dedicated pro-

Table 19.4 Architectures supporting program-level parallelism

Architectures supporting program-level parallelism

Architecture Max. # nodes Scalability Interaction

Processor cluster Small–large High Low
COW Large–huge Very high Very low
Grid Huge Nearly unlimited Rare
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cessing nodes setting up a loosely coupled homogeneous multi-processing system.
Nowadays so-called virtual supercomputers consisting of hundreds of networked
commodity processing nodes have taken over. Clusters of networked workstations,
or COWs, differ mainly in the utilized processor nodes: While processor clusters
offer one dedicated gateway to the whole system of identical nodes, a COW uses
standard desktop PCs including terminal and display for each node. In addition, the
network infrastructure of a COW consists of COTS (connection-oriented transport
service) instead of dedicated hardware, limiting the available communication band-
width. The largest scale systems for multiprogramming are computing grids, which
normally consist of widely dispersed heterogeneous workstations communicating
over inherently unreliable high-latency networks like the internet.

We selected a grid-computing approach for simulation acceleration and
employed the open-source BOINC (Berkeley open infrastructure for networked
computers) framework. It allows distributed computing on nearly any pre-existing
heterogeneous computer infrastructure and supports all major hardware platforms
and operating systems. BOINC relies on a client-server-model: the server divides
the large primary task into smaller subtasks and distributes them to the available
clients depending on current load and performance. The results from the clients are
then collected by the server and combined to the overall solution to the primary task.

The simulation model of the DVB-S2 communications chain (see Sec-
tion 19.2.1.1) was prepared to support program-level parallelism. Therefore, the
server must be able to generate independent tasks that can be processed by the
clients in adequate time. If the subtasks take very long to be processed especially
on slow clients, this would hinder effective load balancing and result in large data
loss if a client goes down. On the other hand, if the subtasks can be processed
very fast, the communication overhead would become the bottleneck. Assuming
small communications overhead and equally performing clients, the computational
performance can increase proportionally.

To accelerate our simulation, the complete communications chain including data
generation and BER monitoring has to run on every participating client. The sub-
tasks exchanged between server and clients consist, among other things, of the SNR
ranges, maximum number of iterations, and number of simulated blocks. The grid
was actually very small and incorporated 10 standard desktop PCs with dual-core
Intel CPUs. Section 19.2.2 presents the evaluation of our simulation chain per-
formed on this grid.

19.2.2 Comparison and Results

This section presents the results for simulation acceleration of the DVB-S2 commu-
nications chain introduced in Section 19.2.1.1. To summarize, the simulation chain
used for evaluation involves

• LDPC En-/decoder for DVB-S2 codewords, 64,800 codeword bits per block,
226,800 messages to exchange per iteration, code rate 1/2
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• Monte Carlo simulation: data generator and monitor, AWGN channel, on average
100,000 blocks per SNR point, 10 SNR points in total

Derived from these figures, on each evaluated platform 64.8 gigabit of binary data
were generated, encoded, decoded, and constantly monitored. Table 19.5 shows the
comparison of the different platforms. The simulation on the Intel Core 2 Duo CPU
with SSE2 optimization (see also Section 19.2.1.1) was most easy to set up, but took
nearly one day to complete the simulation. This result is also used as benchmark for
the other platforms. The cell processor simulation achieved a speed-up of only 2.4
times despite its high implementation effort. As discussed in Sections 19.2.1.1 and
19.2.1.2, the main bottleneck here was the unavoidable numerous DMA transfers
to the main memory. If LDPC codes with smaller codewords as employed in the
upcoming WiMAX or WIFI standards (<2,500 bit) will be used, this bottleneck
will likely cease to exist. The codewords then could be completely stored in the
local memories of the SPEs. The grid-computing approach using BOINC for simula-
tion acceleration (see Section 19.2.1.3) yielded excellent results: with 10 computers
containing 20 cores overall establishing the grid, the performance improved by a
factor of eight. The increase in speed was approximately proportional to the core
benchmark system with two cores. Providing nearly unlimited scalability with only
medium migration effort and low cost, the use of grid computing proves to be a very
effective way for large-scale simulation acceleration.

Table 19.5 Software simulation acceleration results
Software simulation acceleration results

INTEL SSE2 optimized
2 cores, 2.2 GHz

Cell processor 6
SPE cores

BOINC 10
computers 20 cores

Parallelism levels Data level Thread
level

Data level Thread
level

Data level Program level

Scalability No Minimal (up to 7) Nearly unlimited
Effort Low High Medium
Runtime 23 h 20 min 9 h 47 min 2 h 55 min
Throughput 0.772 Mbps 1.840 Mbps 6.172 Mbps
Improvement 1 × 2.4 × 8

19.3 Hardware-Accelerated Simulation

Hardware-accelerated simulation is normally based on dedicated implementations
on FPGAs.1 A more flexible approach is the use of a prototyping platform that can
also enhance the reuse of already implemented simulation support systems. This
becomes especially important if different communications systems have to be sim-
ulated in a short time period.

1 Chapter 7 presents how to use FPGAs for architectural simulations.
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19.3.1 Dedicated FPGA-based Simulation Accelerator

The application of a dedicated FPGA-based simulation accelerator is most conve-
nient if a hardware description of the communication system under evaluation is
already available. This is often the case if the communication system has later to
be implemented on a hardware target, like an FPGA or ASIC, for the development
of a product. In the case of the DVB-S2 LDPC decoder, the hardware description
consisted of a generic synthesizable VHDL model. As an alternative, a high-level
synthesis tool like Catapult [8] can be used to obtain a non-optimized hardware
model very efficiently. In our case study, the decoder architecture was designed to
process 90 check nodes and variable nodes in parallel. In comparison, the complete
cell processor implementation from Section 19.2.1.1 was able to process only 24
check nodes at the same time.

The original DVB-S2 LDPC hardware model naturally featured no provisions
for error rate simulation. Therefore, the random data generator, modulator, DVB-S2
LDPC encoder, AWGN channel, and BER monitor have to be implemented as a
synthesizable VHDL model, too. Depending on the complexity of these simulation
support systems, this can be a very demanding task (e.g., the implementation of a
more advanced channel model like Rayleigh). Furthermore, a user interface to con-
figure the DVB-S2 LDPC decoder simulation chain and to read out the simulation
results must be integrated.

Table 19.6 shows the simulation acceleration results compared to benchmark:
While only running at 135 MHz, the achieved speed-up was an impressive 117
times. Such performance gains are only obtainable by FPGA-based simulation
because of the very high bandwidth interfaces between simulation support sys-
tems and the design under evaluation. This makes speed the key advantage of this
acceleration approach. However, the very high implementation effort and the limited
flexibility may put high constraints on its range of use.

Table 19.6 Hardware simulation acceleration results
Hardware simulation acceleration results

INTEL SSE2 optimized2 cores,
2.2GHz

FPGA Xilinx Virtex-4 LX-100
135 MHz, P = 90

Scalability No Yes (up to 360)
Effort Low Very high
Runtime 23 h 20 min 12.1 min
Throughput 0.772 Mbps 90 Mbps
Improvement 1 × 117

19.3.2 Design Validation and Verification by Rapid Prototyping

In contrast to dedicated FPGA-based accelerators, a rapid prototyping platform
allows the developer to effectively validate and verify various designs without cre-
ating any specific provisions dedicated for simulation acceleration.
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Figure 19.6 shows the structure and an actual realization of such a platform [9].
All elements required for simulation, such as data generation and BER monitoring,
are implemented in software for maximum flexibility. To minimize the throughput
bottleneck of the software–hardware interface, the software runs on a hardwired
PowerPC440 inside the FPGA and is connected to the application under evaluation
by a processor local bus (PLB). Dedicated co-processors are implemented inside the
FPGA to perform time critical tasks like AWGN generation to improve simulation
speed further. User access can be implemented via any available standard interface
like RS232, USB, ethernet, or PCI-express. This access offers also connectivity for
evaluation tools like MATLAB and software-based simulation accelerators for ver-
ification purposes.

FPU

PS/2
Controller

DDR2
Controller

SysACE
Controller

DVI
Controller

UART

DVB-S2
Decoder

IBM
PPC440

Noise
Generator

Fig. 19.6 FPGA-based rapid prototyping platform

Disadvantages of such a prototyping platform are the high initial building effort
and the reduced speed-up compared to dedicated implementations.

A rapid prototyping platform also allows for effective and efficient verification.
Combined with an ideally accelerated software simulator, reference data can be co-
simulated using the FPGA implementation and an already validated software model.
A bit-accurate comparison of input and output data to the application under test, e.g.,
the DVB-S2 LDPC decoder, sufficiently substantiates the specified functionality of
the hardware realization.

19.4 Conclusion

Validation and verification of wireless communication systems become more and
more challenging because of increasing complexity and performance requirements.
Furthermore, the large design space of modern communication standards demands
an effective evaluation of an enormous number of combinations in limited time.
Monte Carlo simulations are the only way of effectively coping with these chal-
lenges. While a huge amount of simulations is required to validate the commu-
nications performance, simulation acceleration on system and architectural level
becomes mandatory.



324 T. Lehnigk-Emden et al.

Simulation acceleration can be achieved both software and hardware-based.
Software-based simulation acceleration is provided by state-of-the-art PC architec-
tures, specialized accelerator platforms like the SIMD-oriented multi-core cell pro-
cessor and distributed software simulation systems like the BOINC grid-computing
system. For hardware-based systems, dedicated FPGA-based accelerators as well as
rapid prototyping platforms can be efficiently applied.

Our evaluation presents the advantages and problems accompanying the different
platform and shows results using a DVB-S2 LDPC decoder simulation chain.
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Chapter 20
Trace-Driven Workload Simulation for MPSoC
Software Performance Estimation

Tsuyoshi Isshiki

Abstract In this chapter, we introduce a method for accurately estimating the cycle
counts of parameterized MPSoC architectures through workload simulation driven
by program execution traces. Program traces are encoded in the form of branch
bitstreams that capture the complete history of executed control flows, while the
workload model called the program trace graph is automatically generated by ana-
lyzing the application programs at compile time. A collection of these trace-driven
workload models that represent the behavior of processors in the MPSoC platform
are coordinated by the workload simulator kernel for simulating the timing behav-
iors of the workloads affected by the interaction of MPSoC components (processors,
busses, channels), thus achieving a cycle estimation accuracy of below 1% error
while exhibiting a considerable simulation speedup.

20.1 Introduction

Software performance estimation plays a crucial role in system-level optimization
of embedded systems not only for software performance tuning but also on the key
architectural decisions especially at the early development phases. Current state-
of-the-art embedded systems are rapidly adopting multiprocessor system-on-chips
(MPSoCs) where processors and devices interact in a complex manner, creating
a number of design challenges in software and architecture implementations for
satisfying the requirements of the target system.

Recent ESL (electronic system level) design methodologies and tools [1] are
aimed at enhancing the design productivity of these systems by providing a software
development platform before the details of the MPSoC architecture are fixed, and
facilitating the concurrent refinement of software and architecture implementations
through system simulations and performance analysis. In the previous chapters, we
have seen the latest techniques in improving the system simulation speed through
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abstract hardware models such as SystemC TLM2.0 (Chapter 2) and state-of-the-art
instruction-set simulator (ISS) technologies (Chapters 7–12), enabling a thorough
design verification environment of the entire system. Adoption of such currently
available design environment in the context of design space exploration during the
early design phase is also feasible, although this requires the designers to commit
sufficient resources into creating and maintaining the system simulation infrastruc-
tures (simulators, models, and tools) for this task. Simulation-driven design explo-
ration also requires that the software must be written, to a certain extent, correctly
and completely, including device drivers and OS (however, abstract they may be),
in order to drive the system-level MPSoC simulation models. During the course
of software and architectural refinements, a certain level of bug-insertion risk is
unavoidable that may require additional painstaking debugging efforts and design
iterations. Adding to the fact that the full-system simulation can still take a consid-
erable amount of time in the complex MPSoC cases, the amount of design space in
the exploration will be limited on the current ESL design tools.

In order to further speed up the embedded system simulation, a popular approach
is to apply source-level timing annotation of the target processor for generating
timing model during software execution [2–4]. Here, the timing information can
include both static timing (obtained at compile time) and dynamic timing (caches
and branch predictions) [3]. This approach is also applied to MPSoC modeling
where the impacts of interconnect architecture and memory subsystems can be eval-
uated in detail [5, 6].

Statistical workload models is another effective approach for design space explo-
ration which can cover a wide design space efficiently in a short amount of time,
revealing key tradeoffs among a wide spectrum of design choices. However, deriv-
ing a proper workload is highly application dependent, and these models usually
apply to data traffic but are difficult to generate accurate computation load mod-
els. Trace-path analysis method in [7] creates task-level timing models through
application-specific profiling (MPEG-4 encoding) and manual instrumentation to
achieve high cycle accuracy. At the MPSoC level, statistical workloads have been
used to model MPSoC subsystems such as bus traffic [8] and NOCs [9] or for certain
application domains such as networking [10].

In this chapter, we introduce a novel trace-driven workload model capable of pre-
cisely capturing data-dependent behavior of the application to achieve near-cycle-
accurate performance estimation [11]. Program execution trace of an application
on a given input data set is computed, through source-level instrumentation and
native code execution, prior to the trace-driven workload simulation and efficiently
encoded as branch bitstream. This branch bitstream is then used to steer the work-
load models in the form of program trace graphs generated for the target processor
inside our parameterized MPSoC performance estimation framework. Our frame-
work also includes automatic generation of accurate coarse-grain workloads directly
from the application source code by using the precise execution profile informa-
tion obtained from the same branch bitstream. These techniques are further com-
bined with our MPSoC application development framework called tightly coupled
thread model (TCT model) which provides a direct path from sequential programs
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to concurrent execution model by providing a simple programming model on the
C language and a compiler for automatically generating communication instruc-
tions between threads. Thread synchronization protocols are modeled in the pro-
gram trace graph representation that provides the interface between the workload
models of individual threads and the workload simulator kernel for modeling the
system-level interactions (buffered channel message passing) under the parameter-
ized MPSoC architecture model.

20.2 Trace-Driven Workload Model

This section focuses on the key concepts of our trace-driven workload model. The
first concept is the compact representation of the program execution trace using
the branch bitstream which is simply a sequence of branch condition bits of the
program execution. The second concept is the program trace graph that represents
the accurate computational workload of the application software.

20.2.1 Branch Bitstream for Program Trace Representation

Consider a program whose interprocedural control flow graph (interprocedural-CFG
or ICFG) is shown in Fig. 20.1. For clarity, branch operations are explicitly denoted
as bX as well as calls to function foo() which are separated from the basic blocks
(BBX). Branch edges are labeled as T (true) and F (false). A branch bitstream is

branch bitstream:

program execution trace
main-start

main-end

foo-end

foo-start

main-start

foo-start

foo-end

foo-start

foo-end

main-end

Fig. 20.1 Branch bitstream for program trace encoding
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generated by simply recording the branch outcome (true or false) with a single bit
in the order of program execution. On the program execution trace shown on the
right side of Fig. 20.1, its corresponding branch bitstream is 1011001. The first 1
indicates that b0 branched in the T path (which reaches the call foo()), the next
0 indicates that b2 inside foo branched in the F path (then returns to main), the
following 110 indicates that b1 branched in the T path twice and then finally to the
F path, the next 0 indicates that b0 branched in the F path (which reaches the second
call foo()), and the last 1 indicates that b2 inside foo branched in the T path (then
returns to main).

Although no information about the correspondence between the branch condition
bits and branch operations is provided, this simple branch bitstream is sufficient for
representing the complete program execution trace. Decoding the program trace
from the branch bitstream is done by simply traversing the ICFG and reading 1 bit
at a time upon reaching a branch operation to determine which branch path to tra-
verse. Function calls can be handled by maintaining the call stack during the graph
traversal. This capability of encoding the complete program trace further implies
that even the entire instruction trace can be completely reproduced from the branch
bitstream if the CFG accurately represents the control-flow structure of the actual
target binary code.

Generation of such branch bitstream is done by a simple source-level instrumen-
tation performed on the application source code using macro call at each branch
operation to record the branch condition bits to a file (Fig. 20.2). The instrumented
code is then compiled and executed on the host machine for fast native code exe-
cution. This instrumentation is immune from any code optimization during native
compilation since the instrumented code section includes global side-effects whose
execution order needs to be preserved, thus guaranteeing a correct order of branch
condition bit sequence. On the other hand, the decision of which branch operation to
instrument must be carried out in accordance to the actual binary code of the target
processor, since the structure of the program graph must reflect the target binary
code structure for precise performance estimation.

Fig. 20.2 Source-level instrumentation for branch bitstream generation

20.2.2 Program Trace Graph

For decoding the branch bitstreams more efficiently, we transform the ICFG in
Fig. 20.1 to a program trace graph (PTG) as shown in Fig. 20.3. PTG is derived
by degenerating the ICFG at the basic blocks while preserving the branch nodes and
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Fig. 20.3 Program trace graph (PTG)

call nodes. As illustrated in Fig. 20.3, PTG acts as a translator between the branch
bitstream and the program trace in the form of PTG-edge sequence.

A PTG-node represents function-start, function-end, branch, or call, where each
of these PTG-nodes corresponds to a location in the target binary code. A PTG-edge
carries attributes about the program execution information, including cycle count,
between the two PTG-nodes it connects to.

Accurate cycle count on the code segment represented by a PTG-edge is obtained
by the code generator backend for the target processor in our compiler framework
which is equipped with the full knowledge of its pipeline architecture to precisely
predict pipeline hazards. This timing annotation can also be accomplished with a
back-annotation tool framework as presented in [3]. Operations with data-dependent
latencies are pre-characterized through additional source-level instrumentation for
calculating the average latencies during the native code execution that are back-
annotated in the PTG-edge cycle counts. An example of such data-dependent latency
operation in our target processor is an integer division unit whose latency is deter-
mined by the difference in the number of significant bits between the two operands.

From the PTG-edge sequence (e0 e1 e7 e9 e2 e3 e3 e4 e5 e7 e8 e6) in Fig. 20.3, the
total program execution cycle count is calculated by accumulating the cycle count
on this PTG-edge sequence as

T = c(e0) + c(e1) + c(e7) + c(e9) + c(e2) + c(e3)

+ c(e3) + c(e4) + c(e5) + c(e7) + c(e8) + c(e6)
, (20.1)

where c(ei ) is the cycle count on PTG-edge ei . Another way of calculating the
total cycle count is by counting the occurrence of each edge ei in the PTG-edge
sequence (denoted as n(ei )) and accumulating the product of edge cycle count and
its occurrence:

T =
∑

c(ei ) · n(ei ). (20.2)
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PTG-edge attribute (cycle count) is a very fine-grain workload model of the code
segment that can be automatically and precisely calculated, and the process of trans-
lating the branch bitstream into PTG-edge sequence can be viewed as the workload
simulation on a given application and input stimulus.

20.3 Coarse-Grain Workload Generation Using Graph
Reduction Techniques

In this section, we give a simple graph reduction technique on the PTG for obtaining
a coarse-grain workload model that is precise in terms of average cycle counts. The
main purpose of this graph reduction technique is to reduce the size of the branch
bitstream which will further speed up the cycle estimation calculation. Here, it is
assumed that the branch bitstream obtained from the native execution is pre-scanned
to obtain the total occurrences n(ei ) on the entire PTG-edge sequence.

A single-entry single-exit (SESE) region is a distinct CFG substructure with
entry- and exit-edge pair [12]. SESE regions on the PTG can be defined in the same
manner as stated below:

• A PTG-SESE region R(ein, eout) is enclosed by its entry-edge ein and exit-edge
eout, where ein dominates eout, eout postdominates ein, and ein and eout are cycle-
equivalent [12].

• An interior edge set E(ein, eout) of PTG-SESE region R(ein, eout) is a set of PTG-
edges that are each dominated by ein and postdominated by eout. By convention,
an edge dominates and postdominates itself and thus E(ein, eout) contains both
ein and eout.

One issue arises when dealing with SESE regions on the PTG; that is, SESE
region’s entry-edge and exit-edge on the CFG may be eliminated in the PTG since
control-merge nodes are collapsed in the PTG, such as the case of if-else block’s
exit-edge inside function foo in Fig. 20.3. This issue is handled by simply restoring
these CFG control-merge nodes on the PTG as shown in Fig. 20.4b. In general, the
out-edge of function-start node and the in-edge of function-end node enclose the
outermost SESE region of a function.

foo-start

foo-end

e7

e8 e9

foo-start
e7

e8 e9

foo-end

e8'

foo-start

foo-end

e7'

(a) (b ) (c)

Fig. 20.4 PTG-SESE region reduction without call nodes
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Here, we will first consider the PTG-SESE regions which do not contain any call
nodes. What follows is that the precise average workload of such PTG-SESE region
R(ein, eout) can be calculated by accumulating the total workload of its interior edge
set E(ein, eout) and dividing it by the occurrence of its entry-edge ein:

c(R(ein, eout)) = 1

n(ein)

∑

ei ∈E(ein,eout)

c(ei ) · n(ei ). (20.3)

In Fig. 20.4b, the PTG-SESE region R(e7, e8
′) (covering the entire function foo)

can be replaced with a single PTG-edge e7
′, where c(e7

′) = (c(e7) · n(e7) + c(e8) ·
n(e8) + c(e9) · n(e9))/n(e7).

The average workload of non-recursive call nodes, on the other hand, can be
calculated in bottom-up fashion on the call graph, starting from the leaf functions
where equation 20.3 can be directly applied, and back-annotating the function’s
average workload at each of its call sites. Figure 20.5 illustrates this process on the
main’s PTG in Fig. 20.3, where the interprocedural edges to foo’s PTG are removed
and the out-edges of these call nodes are back-annotated with the average workload
of foo such that c(e2

′) = c(e7
′) + c(e2) and c(e6

′) = c(e7
′) + c(e6). Then, the

outermost PTG-SESE region R(e0, e6
′) can be reduced to a single PTG-edge e0

′
whose cycle count c(e0

′) can be calculated by eq. (20.3).
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Fig. 20.5 PTG-SESE region reduction with call nodes

The significance of eq. (20.3) is that this simple formulation is applicable to
any PTG-SESE region (without recursive calls) with arbitrary complex control
flow structures. Since every function contains at least one PTG-SESE region, this
also implies that the entire application program can always be reduced to a sin-
gle PTG-edge, given that there are no recursive calls and that the PTG-edge cycle
counts alone are sufficient for estimating the cycle count of the system. The latter
assumption holds true for single-processor systems without any dynamic timing
effects (such as caches) where the reduced PTG-edge contains the exact cycle count,
whereas for MPSoC systems, we need to additionally consider the issues of system
synchronization as discussed next.
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20.4 MPSoC Software Behavior Modeling

Let us now move our focus to modeling the software behavior on the MPSoC envi-
ronment, where various MPSoC components such as processors, busses, and chan-
nels affect the timing behavior of one another. While our PTG workload models
driven by branch bitstream maintain the processor simulation clocks, these work-
loads require additional coordination by the system simulator kernel for controlling
the workload execution which can be blocked during processor communications due
to bus conflicts and buffer conditions or activated when such blocking conditions are
resolved. In this section, we first address the MPSoC software execution model and
then describe how the execution model is incorporated in our PTG workload model.

20.4.1 Tightly Coupled Thread (TCT) Model for MPSoC
Application Development

The MPSoC application model employed in our simulation framework is based on
the tightly coupled thread model (TCT model) [13, 14] that allows a simple coding
style on the sequential C code for specifying “threads” without the need to spec-
ify any other parallelization directives, such as concurrency, synchronization, and
communication, since they are all implicit in the TCT model (Fig. 20.6). Thread
annotation on the C code is done by declaring thread scopes in the form:

Fig. 20.6 TCT programming model: (a) thread annotation on C program, (b) program partitioning,
and (c) hierarchical functional pipeline structure
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THREAD(name){ ... }

where any C statements (including function calls and even nested thread scopes) can
be included inside the thread-scope region as long as the thread scope forms a SESE
region. Thread annotations can be inserted manually or through the MAPS frame-
work [15] which assists the designer with rich program analysis capabilities to emit
the thread annotated code semi-automatically. The TCT compiler performs a com-
plete interprocedural dependence analysis to extract all data dependences between
threads (including globals and pointer dereferences) and inserts message-passing
instructions automatically (current TCT compiler assumes a fully distributed mem-
ory system without any shared-memory accesses). These tightly coupled threads
operate in a functional pipeline manner, achieving high degree of parallelism. Also,
the TCT compiler guarantees that the behavior of the parallelized code and the
original sequential code is identical where race condition and deadlocks are auto-
matically avoided. The TCT framework has been verified on a prototype MPSoC
silicon (TCT-MPSoC) consisting of a six-processor array block where each pro-
cessing element contains a dedicated communication module that executes the TCT
communication protocol through a full-crossbar interconnect [14].

20.4.2 Thread Program Trace Graph (T-PTG)

A thread program trace graph (T-PTG) corresponds to the PTG that is enclosed
by the SESE thread-scope region (Fig. 20.7). Each T-PTG is terminated by thread-
start and thread-end nodes instead of function-start and function-end nodes in the
normal PTG. In addition, three types of inter-processor communication instructions
generated by the TCT compiler also appear in the T-PTG:

T1-start 

T1-end 

CT: T2 

DT: x T2 

thread T1 

T2-start

T2-end

DS: x x

CT

data 
buffers 

thread T2 

Fig. 20.7 Thread program trace graph (T-PTG)

• Control token (CT) sends an activation token to the target thread
• Data transfer (DT) sends data to the target thread
• Data synchronization (DS) checks if the data is received
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Here, DT-node does not require a matching receives operation at the receiver
end, and thus the data transfer occurs asynchronously with the receiver thread state.
A finite-size buffer is allocated for individual data at the receiver, and the DT-node
stalls while the receiver buffer for that particular data is full, where as DS-node stalls
while the data buffer is empty. CT-node is modeled the same as DT-node in terms
of buffer model, where it too stalls if the receiver’s control token buffer is full. Data
buffers and control token buffers are consumed at thread-end node at the receiver
thread. Additionally, DT-nodes and CT-nodes are blocked if the receiver is occupied
by other transactions or if the bus is occupied.

Above CT, DT, and DS nodes along with thread-start and thread-end nodes
represent the software execution behavior that affect the states of MPSoC com-
ponents including workloads of other threads. These nodes are designated as a new
PTG-node class called PTG-sync-nodes that serve as anchor points for the simulator
kernel to update MPSoC states such as busses and data buffers and, if needed, adjust
its simulation clocks by inserting wait states on blocked events.

Consequently, these PTG-sync-nodes must not be removed during the PTG
reduction process, as this will alter the sequence of system-level synchronization
events. Therefore, we do not allow reductions to the PTG-SESE regions that contain
PTG-sync-nodes.

20.4.3 MPSoC Workload Simulator Kernel

Our MPSoC trace-driven workload simulator kernel consists of two major compo-
nents: thread workload simulator and global scheduler (Fig. 20.8). Thread work-
load simulator is responsible for updating the local processor clock by the method

T1-start

T1-end

CT: T2

DT: x T2

DS: y

b0

b1

foo()

foo-start

b2

foo-end

Thread workload
simulator 

…1001010…

local clock

Global scheduler

T2

T0

T4

T3 buffer clockbuffer clockbuffer clockbuffer clock

bus clockbus clockbus clockbus clock

T1

c(ei)

Fig. 20.8 MPSoC trace-driven workload simulator
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described in the previous section (translating the thread branch bitstream into PTG-
edge sequence and accumulating the edge cycles). Once activated, the thread work-
load simulator continues to increment its local processor clock until the gener-
ated PTG-edge sequence reaches a PTG-sync-node (CT, DT, DS, thread-start, and
thread-end nodes) which requires a strict time-ordered simulation by the global
scheduler. The global scheduler activates the thread trace simulator with the earliest
local clock by maintaining a queue of active threads. Mutually exclusive resources
(buses and data buffers) also maintain their own clocks to indicate their occupancy
status during simulation.

20.5 Trace-Driven MPSoC Workload Simulation Framework

Figure 20.9 illustrates the overall flow of our MPSoC trace-driven workload simula-
tion framework incorporating the methods explained in the previous sections. Below
summarizes the basic steps for generating the MPSoC trace-driven workload model
in conjunction with the TCT model.

Native Execution 

Instrumentation 

thread branch
bitstreams

Target MPSoC Architecture Model 

Program Threading 
(TCT Model) 

Branch Bitstream
Decomposition

sequential 
branch bitstream

T-CFG 

Branch Bitstream 
Generation 

Workload Model Generation 

Trace-driven Workload Model 
Trace-Driven Workload Simulator

reduced T-PTG
reduced thread

branch bitstreams

T-PTG Generation and Reduction 
Target Processor Model 

Application Partitioning

Application Program  

T-PTG Generation and Reduction T-PTG Generation and Reduction

Input Data 

Fig. 20.9 MPSoC trace-driven workload simulation framework

1. Branch bitstream generation is performed on the original sequential code, as
described previously, taking full advantage of the fast native code execution
speed. In addition, this initial phase is decoupled with the application partition-
ing, which is very attractive in the sense that a single branch bitstream can drive
multiple workload models derived from different application partitioning.

2. Application partitioning corresponds to the task of inserting the thread annota-
tion to the original sequential code. TCT compiler partitions the thread-annotated
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code with inter-processor communication instructions into separate CFGs for
each thread (T-CFG). At the same time, the sequential branch bitstream is
decomposed into separate thread branch bitstreams which is a straightforward
task of scanning the sequential branch bitstream and redirecting it into different
thread branch bitstream files according to the thread attribute on each branch
node.

3. Workload model generation is performed separately on each T-CFG to obtain
the T-PTG then undergoes the T-PTG reduction process, deriving the reduced
T-PTG along with the reduced thread branch bitstreams.

MPSoC architecture model in our simulation framework is configurable on
parameters explained below.

• Processor type: Currently supported processor model (TCT-PE) [18] is a simple
four-stage RISC with 32 registers and separate memory ports for instruction and
data.

• Thread-to-processor mapping: Each thread is statically allocated to one proces-
sor, where multiple threads can be allocated to each processor (this feature was
not part of the prototype TCT-MPSoC, where TCT-PE could only handle one
thread). The simulator kernel directly handles the context switching of threads
within the processors using non-preemptive scheduling where the parameterized
context switching overhead is also modeled.

• Bus topology: MPSoC interconnect is modeled as a parameterized multi-bus. At
each processor, its output port connects to a single bus and its input port connects
to all buses. This multi-bus model guarantees that any two processors have direct
connectivity, which allows us to model a relatively wide variety of bus topologies
from a single bus to a full crossbar.

20.6 Experimental Results

To validate the effectiveness of our proposed trace-driven workload simulation
method, we have conducted a series of experiments on single-processor model as
well as MPSoC models and compared them against the ISS for the TCT-PE. All
simulations were executed on 3.4 GHz Intel Xeon machine with 3.25 GB memory.

The TCT framework includes a cycle-accurate instruction-set simulator (ISS) for
the TCT-processor (TCT-PE). This ISS also has the capability to perform cycle-
accurate multiprocessor simulations on an arbitrary number of processors that are
connected by full-crossbar switch. For processor communication, data transfer setup
time is 2–6 cycles, and transfer rate is 4 bytes/cycle, and the parallel-ISS accurately
simulates all bus contentions due to simultaneous data transfer requests to the same
destination processor. As this parallel-ISS was initially developed for the prototype
TCT-MPSoC, this parallel-ISS cannot directly simulate the “multi-threaded” behav-
ior on the processor.
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20.6.1 Single-Processor Cycle Estimation

Table 20.1 shows the set of benchmarks used to evaluate the cycle estimation per-
formance for the single-processor model. Here, “# inst” is the number of TCT-PE
instructions in each program, “# cycles” is the total execution cycles, “ISS (s)” is the
ISS simulation time, “ISS (cycles/s)” is the ISS simulation speed, and “native (s)”
is the native execution time (all applications were compiled with Microsoft Visual
C++ 2003 with full optimization).

Table 20.1 Benchmark programs for single-processor cycle estimation

# inst # Cycles ISS (s) ISS (cycles/s) Native (s)

Prime500 k 100 629,940,586 13.328 47.26 M 0.083
String 273 900,232,697 31.266 28.79 M 0.172
Alphabet 113 716,650,704 25.328 28.29 M 0.193
JPEG 1,673 433,010,644 16.829 25.73 M 0.076

Table 20.2 shows our trace-driven workload simulator (TWS) performance with-
out PTG reduction. Here, “# PTG-edges” is the total number of PTG-edges, “#
branch bits” is the length of the branch bitstreams, “TWS (s)” is the TWS simu-
lation time, “TWS (cycles/s)” is the effective TWS simulation speed, and “TWS
speedup” is the speedup over ISS. Even without the PTG reduction, we can observe
the enormous speed advantage of our TWS over ISS, where the effective TWS sim-
ulation speed ranges from 1.7 to 3.0 billion cycles/s, while achieving absolute cycle
accuracy, that is, TWS cycle counts match exactly with the ISS cycle counts.

Table 20.2 Trace-driven workload simulator (TWS) performance (without PTG reduction)

# PTG- edges # Branch bits TWS (s) TWS (cycles/s) TWS speedup

Prime500 k 29 53.99 M 0.218 2,889 M 61.14
String 52 136.18 M 0.515 1,748 M 60.71
Alphabet 21 101.04 M 0.375 1,911 M 67.54
JPEG 336 27.48 M 0.141 3,071 M 119.35

Figure 20.10 shows the processing times inside the TWS workflow that are nor-
malized against the native execution time in Table 20.1. Here, “BB-gen” is the native
execution time of the applications instrumented with branch bitstream generation,
and “BB-gen+div” is the execution time with branch bitstream generation and inte-
ger division latency profiling. We can observe that the instrumentation overhead
for the branch bitstream generation is quite small, ranging from 1.40 to 2.25, and
even with the division latency profiling, the overhead increases only up to 2.75.
“BB-scan” is the processing time of enumerating the PTG-edge occurrences from
the generated branch bitstreams that is performed prior to the PTG reduction. As
explained in Section 20.3, each of these applications in this single-processor case
reduces to a single PTG-edge whose edge cycle match exactly with the ISS cycle
count.
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Fig. 20.10 Relative processing times against native execution

20.6.2 MPSoC Cycle Estimation

For evaluating the MPSoC cycle estimation performance, we have used the previous
two applications, “string” with 9 threads and “JPEG” with 19 threads as shown in
Table 20.3. Here, “# cycles” is the total execution cycles on the parallelized code,
“para-speedup” is the speedup ratio from the sequential code, and “para-ISS (s)”
is the parallel-ISS time for the parallelized code. As explained previously, current
parallel-ISS can only handle one thread per processor, therefore it models a 9-PE
MPSoC for “string” and a 19-PE MPSoC for “JPEG.”

Table 20.3 Benchmark programs for MPSoC cycle estimation

# Cycles Para-speedup Para-ISS (s)

String (9 threads) 118,581,455 7.59 51.281
JPEG (19 threads) 41,720,835 10.38 37.219

Table 20.4 shows the TWS simulation results for the target MPSoCs on the two
applications, with and without PTG reduction. Here, the architecture parameters are
set according to the prototype TCT-MPSoC. Unlike the single-processor cases, the
MPSoC estimated cycles do not match exactly with the parallel-ISS cycles, although
the estimation errors are well within 1%, primarily due to the simplistic communi-
cation model in our TWS which assumes a fixed setup time for all data transfers,
whereas a precise communication hand-shaking is modeled in the parallel-ISS. The
effects of the PTG reduction can be observed on the dramatic reductions in branch
bitstream length, while the total cycles tend to decrease slightly since the coarse-
grain workloads obtained by the PTG reduction have the effect of averaging out the
temporal fluctuations of the fine-grain workloads before PTG reduction.

Table 20.4 TWS simulation results with and without PTG reduction
# Branch bits Est. # cycles Est. error TWS (s) TWS speedup

String 136.18 M 118,893,200 0.263% 0.731 70.15
String (reduction) 41,946 118,562,675 0.016% 0.265 193.51
JPEG 27.48 M 41,745,317 0.059% 0.312 119.29
JPEG (reduction) 8,330 41,529,311 0.459% 0.156 238.58



20 Trace-Driven Workload Simulation for MPSoC Software Performance Estimation 339

40

45

50

55

3 4 5 6 7 8 9

buffer depth

M
ill

io
n 

C
yc

le
s

19-PE, full-crossbar, 4B/cycle
19-PE, full-crossbar, 2B/cycle
19-PE, single-bus, 4B/cycle
15-PE, full-crossbar, 4B/cycle
15-PE, full-crossbar, 2B/cycle
15-PE, single-bus, 4B/cycle

Fig. 20.11 TWS simulations on various MPSoC parameters (JPEG)

Figure 20.11 shows the simulation results on “JPEG” with PTG reduction
enabled under different MPSoC parameters. A 19-thread to 15-PE mapping was
derived by selecting six threads with low CPU utilization in the previous 19-PE
simulation and merging them into two groups (three threads in each group). In addi-
tion to these PE configurations (19-PE and 15-PE), other MPSoC parameters such as
bus topologies (full crossbar and single-bus), data transfer rates (4 bytes/cycle and
2 bytes/cycle), and buffer depth (3–9 data elements at each buffer) are altogether
swept on our TWS framework from the same set of coarse-grain workload models
and reduced branch bitstreams. The ability to quickly evaluate these MPSoC param-
eters (each only taking a fraction of a second) makes our TWS framework ideal for
MPSoC design exploration.

20.7 Conclusion

In this chapter, we have introduced an approach based on trace-driven workload
models for early software performance estimation of MPSoC architectures. The
combined techniques of program trace encoding using branch bitstreams, program
trace graph representation, and its reduction techniques for workload modeling of
various granularities, as well as the workload coordination scheme for modeling
processor communications can achieve considerable speedup in simulation time
while sustaining high cycle accuracy. A single sequential branch bitstream gener-
ated through code instrumentation and fast native-code execution can drive a variety
of workload models, each corresponding to different application partitioning and
different MPSoC architectures, thus establishing a practical MPSoC design explo-
ration framework. Due to its simplicity, this trace-driven workload model approach
for software performance estimation can be fairly easily extended to other proces-
sor types (given an appropriate cycle estimation technique of the target instruction
set) and MPSoC interconnect models. For more complex processor architectures
with out-of-order executions and caches, their timing characteristics can change
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dynamically, thus making our timing model generation at compile time less reli-
able. Various performance estimation techniques for these complex processor cases
have been addressed in Chapters 7–12. It will be interesting to see how these tech-
niques can be incorporated into the trace-driven workload to address wider proces-
sor classes for a more effective solution.
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