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Subject Definition and Objectives

1.1 Introduction

When an electrical signal is sent to an oscilloscope its waveform is observed in the
time domain; that is, the screen shows the signal amplitude at each instant in time.
If the same signal is applied to a hi-fi amplifier, the resulting sound is a mix of
harmonic frequencies that constitute a complete musical chord. The electrical signal,
therefore, can be described either by time-domain or frequency-domain information.
This book describes the relationships between these two domains in the power system
environment, the causes and effects of waveform distortion and the techniques currently
available for their measurement, modelling and control.

Reducing voltage and current waveform distortion to acceptable levels has been a
problem in power system design from the early days of alternating current. The recent
growing concern results from the increasing use of power electronic devices and of
waveform-sensitive load equipment.

The utilisation of electrical energy is relying more on the supply of power with
controllable frequencies and voltages, while its generation and transmission take place
at nominally constant levels. The discrepancy, therefore, requires some form of power
conditioning or conversion, normally implemented by power electronic circuitry that
distorts the voltage and current waveforms.

The behaviour of circuits undergoing frequent topological changes that distort the
waveforms can not be described by the traditional single-frequency phasor theory.
In these cases the steady state results from a periodic succession of transient states
that require dynamic simulation. However, on the assumption of reasonable periods of
steady-state behaviour, the voltage and current waveforms comply with the require-
ments permitting Fourier analysis [1], and can, therefore, be expressed in terms of
harmonic components. A harmonic is defined as the content of the function whose
frequency is an integer multiple of the system fundamental frequency.

1.2 The Mechanism of Harmonic Generation

Electricity generation is normally produced at constant frequencies of 50 Hz or 60 Hz
and the generators’ e.m.f. can be considered practically sinusoidal. However, when
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a source of sinusoidal voltage is applied to a nonlinear device or load, the resulting
current is not perfectly sinusoidal. In the presence of system impedance this current
causes a non-sinusoidal voltage drop and, therefore, produces voltage distortion at the
load terminals, i.e. the latter contains harmonics.

To provide an intuitive view of this phenomenon let us consider the circuit of
Figure 1.1, where generator G feeds a purely resistive load Rl through a line with
impedance (Rs + jX s) and a static converter.

The generator supplies power (Pg1) to the point of common coupling (PCC) of
the load with other consumers. Figure 1.1(a) shows that most of this power (Pl1) is
transferred to the load, while a relatively small part of it (Pc1) is converted to power at
different frequencies in the static converter. Besides, there is some additional power loss
(Ps1) at the fundamental frequency in the resistance of the transmission and generation
system (Rs1).

Figure 1.1(b) illustrates the harmonic power flow. As the internal voltage of the
generator has been assumed perfectly sinusoidal, the generator only supplies power
at the fundamental frequency and, therefore, the generator’s e.m.f. is short-circuited
in this diagram, i.e. the a.c. line and generator are represented by their harmonic
impedances (Rsh + jX sh ) and (Rgh + jX gh), respectively. In this diagram the static
converter appears as a source of harmonic currents. A small proportion of fundamental
power (Pc1) is transformed into harmonic power: some of this power (Psh + Pgh ) is
consumed in the system (Rsh ) and generator (Rgh ) resistances and the rest (Plh) in
the load.

Thus the total power loss consists of the fundamental frequency component (Ps1)
and the harmonic power caused by the presence of the converter (Psh + Pgh + Plh ).
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Figure 1.1 (a) Power flow at the fundamental frequency; (b) harmonic power flow
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Figure 1.2 Basic circuit to explain the conversion mechanism

For a more rigorous interpretation of the conversion mechanism, let us consider the
case of Figure 1.2, where v is a source of sinusoidal voltage and E the constant e.m.f.
of a battery with negligible internal resistance.

The thyristor turns ON at ωt = α and OFF at ωt = β and its voltage drop during
conduction is neglected.

Figure 1.3(a), (b) and (c) display respectively the source voltage, the voltage across
the thyristor and the load voltage, while Figure 1.3(d) displays the current waveform.

The load voltage VA can be replaced by the three components shown in Figure 1.4,
derived from the Fourier transformation, i.e.

VA = VA1 + VAh + VA0 (1.1)

where

VA1 = √
2VA1 sin(ωt + θ1) (1.2)

is the fundamental component,

VAh =
n∑

h=2

√
2VAh sin(hωt + θh) (1.3)

is the harmonic content, and

VA0 = 1

T

∫ T

0
VA dt = Vdc (1.4)

is the d.c. component.
Equally, the current can be replaced by the following three components:

i1 = √
2I1 sin(ωt + ξ1) (1.5)

ih =
n∑

h=2

√
2Ih sin(hωt + ξh) (1.6)
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Figure 1.3 Waveforms of the circuit of Figure 1.2: (a) voltage source; (b) voltage across the
thyristor; (c) load voltage; (d) current
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Figure 1.4 Load voltage components of the circuit of Figure 1.2
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I0 = Vdc − E

R
(1.7)

Next let us consider the energy aspects.
The active power generated by the source is

PG = V1I1cosξ1 (1.8)

and the power supplied to the load

PA = PA1 + PAh + PA0 (1.9)

where

PA1 = VA1I1cos(θ1 − ξ1) = I 2
1 R (1.10)

is the power supplied to the fundamental component,

PAh =
n∑

h=2

VAhIh cos(θh − ξh) =
n∑

h=2

I 2
hR (1.11)

is the power supplied to the harmonics, and

PA0 = VdcI0 = EI0 + I 2
0 R (1.12)

is the d.c. power.
Therefore the thyristor behaves like an energy converter, i.e. the ideal voltage source

combines with the fundamental component of the current waveform to generate the
total power PG.

As the thyristor losses have been ignored PG = PA and the following relation-
ship applies:

PG = PA = I 2R + EI 0 (1.13)

where

I =
√√√√I 2

0 + I 2
1 +

n∑
h=2

I 2
h

is the current root mean square (r.m.s.) value

1.3 Definitions and Standards

Power system harmonics are defined as sinusoidal voltage and currents at frequencies
that are integer multiples of the main generated (or fundamental) frequency. They
constitute the major distorting components of the mains voltage and load current
waveforms. However, the increasing content of power system inter-harmonics, i.e.
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distorting components at frequencies that are not integer multiples of the fundamental,
has prompted a need to give them greater attention.

Most countries have in the past developed their own harmonic standards or recom-
mendations, to suit local conditions. However, with the growth of global trade, the
need for equipment manufactured in one country to comply with standards in another
has prompted concerted effort in formulating international standards on harmonics and
inter-harmonics.

The rationale is to maintain a globally acceptable electromagnetic environment that
co-ordinates the setting of emission and immunity limits. This is achieved using ref-
erence levels of electromagnetic disturbance, referred to as compatibility levels. The
latter are recognised as the levels of severity which can exist in the relevant envi-
ronment; therefore all equipment intended to operate in that environment is required
to have immunity at least at that level of disturbance and, thus, a margin appropri-
ate to the equipment concerned is normally provided between the compatibility and
immunity levels.

In determining the appropriate emission limits, the concept of planning level is
also used. This is a locally specific level of disturbance adopted as a reference for
the setting of emission limits from large installations in order to co-ordinate those
limits with the limits adopted for equipment intended to be connected to the power
system. Again, the planning level is generally lower than the compatibility level by a
specific margin that takes into account the structure and electrical characteristics of the
local supply network. This margin is necessary to make allowance for possible system
resonance and for an upward drift in the levels on the network due to future loads that
may be connected where there is no consent required. Such loads include computers
and other home and office electronic equipment that contain switched-mode power
supplies. In addition there is uncertainty about the impedance of the supply systems
and the customers’ equipment at harmonic frequencies.

The relationship between the various levels defined above is illustrated in Figure 1.5.
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Figure 1.5 Relation between compatibility, immunity, planning and emission levels
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1.3.1 Factors Influencing the Development of Standards

The development of harmonic standards is centred around the following issues:

• description and characterisation of the phenomenon;

• major sources of harmonic problems;

• impact on other equipment and on the power system;

• mathematical description of the phenomenon using indices or statistical analysis to
provide a quantitative assessment of its significance;

• measurement techniques and guidelines;

• emission limits for different types and classes of equipment;

• immunity or tolerance level of different types of equipment;

• testing methods and procedures for compliance with the limits;

• mitigation guidelines.

The standards themselves may be either system standards, connection standards or,
more usually, some combination of the two. In a system standard the emphasis is on
the levels of harmonics that can be tolerated in the system, with little or no reference
within the body of the standard to the source of harmonics. Details of the harmonic
sources, and their likely influence on system harmonic content, are usually given as
associated material in appendices.

The limits may be expressed as absolute levels of current or voltage, which may not
be exceeded, or as incremental limits allowing small changes to the harmonic source
with limited consideration of system effects. The former approach usually permits
the connection of certain types and ratings of distorting loads (e.g. converters) to the
system without reference to existing harmonic levels. With higher converter ratings the
existing harmonic content needs to be established prior to connection, and the proposed
additional harmonic source considered in relation to these levels, in order to determine
if the limits are likely to be exceeded.

The application of absolute harmonic current limits for individual consumers would
seem to provide equal rights for all consumers, large or small. However, this may be
considered an unfair distribution by a large consumer connected to a PCC together
with a number of small consumers, as it takes no account of their share of the total
load. If, instead, the limit is expressed in a way which takes account of the consumer’s
share of the total load, then this may well be seen as overly restrictive, particularly if
a large consumer has little or no disturbing load.

If the limits are expressed in terms of the levels of harmonic voltage at the PCC,
then consumers connected to a strong PCC may well benefit relative to a consumer
connected to a weak PCC. The adoption of harmonic voltage limits may also mean
that, where existing levels are high, new consumers may be forced to install expensive
additional circuitry before, connection is permitted. This latter situation constitutes the
‘first come, first served’ approach.

In considering the type and nature of the limits to be adopted, the different problems
presented by the various types of load must be taken into account; the two extremes are
groups of small distributed disturbing loads (normally domestic) and large industrial
loads. An industrial consumer may also have a number of individual components of
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plant, each capable of generating significant harmonic content. Such a consumer is
faced with the double problem of ensuring that no harmonic-induced effects occur
within its own system, and maintaining the levels at the PCC within the prescribed
limits. Experience shows that in many instances where high harmonic levels exist at
points within the consumer’s own network, these levels do not necessarily penetrate
to the external system.

The way in which the harmonics from a number of sources interact on the power
system is governed by the random nature of such sources and the variation of their
distribution throughout the system, both physically and with time. The random nature
of the sources can be accounted for by introducing a diversity factor. This changes
the actual ratings of the disturbing loads into an effective rating, which is then used in
assessing its relationship with the standard.

1.3.2 Existing Harmonic Standards

The organisation widely recognised as the curator of electric power quality standards is
the IEC (International Electrotechnical Commission or Commission Electrotechnique
Internationale), based in Geneva. The IEC has defined a series of standards, called
Electromagnetic Compatibility (EMC) Standards, to deal with power quality issues. The
IEC 61000 series [2] includes harmonics and inter-harmonics as one of the conducted
low-frequency electromagnetic phenomena. A widespread alternative to the IEC series
is the IEEE 519–1992 document [3], which provides guidelines on harmonics.

There are also standards dealing with specific equipment under the influence of
harmonic distortion, such as those of references [4–7], and their relevance will be
discussed in Chapter 4.

While the international standards are used as a basis for global co-ordination, individ-
ual countries make their own adjustments to accommodate various national priorities.
These are normally motivated by the special characteristics of their power system con-
figuration and load management (e.g. the use of ripple control in some countries).
Consider as an illustration the power systems of the UK and New Zealand. In the UK
a highly interconnected power system with distributed generation serves a large num-
ber of load centres, always relatively close to the points of generation. This contrasts
with the New Zealand situation, where remote generation centres provide supply to a
few, widely separated, major load centres and a large number of scattered small loads.
The resulting long transmission lines and comparatively low fault levels increase the
vulnerability of the system to harmonic penetration. These factors, taken together with
the extensive use made of ripple control, present very different problems than those
encountered in the UK to their respective standards committees.

The European Union, through the Electromagnetic Compatibility Directive, has
sought to ensure the removal of technical barriers to trade by requiring equipment
to operate satisfactorily in its specified electromagnetic environment, and by protect-
ing the public electricity distribution from disturbances emitted by equipment through
limiting these emissions. Engineering recommendation ER G5/4 came into force in the
UK in March 2001 to ensure that the objectives of the Directive are met for harmonic
disturbances. In the revised recommendation planning levels for individual harmonics
and for total harmonic distortion (THD) are given for all system voltages from 400 V
to 400 kV.
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It must also be recognised that no standard relating to system harmonic content can be
regarded as permanent, but rather as the current interpretation of system requirements,
taking into account the state of monitoring and modelling techniques. As understanding
improves through the application of improved measurements and analytical techniques,
so must the standards change.

The IEC 61000 Series This section provides a concise description of the documents
of the IEC series, which provide internationally accepted information for the control
of power system harmonic (and inter-harmonic) distortion. Specific details of their
content will be used as needed in the following chapters.

IEC 61000 1-4 Provides the rationale for limiting power frequency conducted har-
monic and inter-harmonic current emissions from equipment in the frequency range up
to 9 kHz. Relevant background for this document can be found in Chapters 2 and 3.

IEC 61000 2-1 Outlines the major sources of harmonics in three categories of equip-
ment: power system equipment, industrial loads and residential loads.

The increasing use of HVd.c. converters and FACTS devices has become the main
source of harmonic distortion originating in the transmission system. Static power
converters and electric arc furnaces are the main contributors in the industrial category,
and appliances powered by rectifiers with smoothing capacitors (mostly PCs and TV
receivers) the main distorting components in the residential category.

IEC 61000 2-2 Contains a section on the compatibility levels of the harmonic and
inter-harmonic voltage distortion in public low-voltage power industry systems.

IEC 61000 2-4 Provides harmonic and inter-harmonic compatibility levels for indus-
trial plant. It also describes the main effects of inter-harmonics, a subject discussed in
Chapter 3.

IEC 61000 2-12 Similarly to 61000 2-4, this document deals with compatibility levels
for low-frequency conducted disturbances, in this case relating to medium voltage
power supply systems. It also covers the subject of injected signals such as those used
in ripple control.

IEC 61000 3-2 and 3-4 Contain limits for harmonic current emissions by equipment
with input currents of 16 A and below per phase. It also specifies the measurement
circuit, supply source and testing conditions as well as the requirements for the instru-
mentation.

IEC 61000 3-6 First, indicates the capability levels for harmonic voltages in low-
and medium-voltage networks as well as planning levels for MV, HV and EHV power
systems. It then makes an assessment of emission limits for distorting loads in MV
and HV power systems.
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IEC 61000 3-12 Provides limits for the harmonic currents produced by equipment
connected to low-voltage systems with input currents equal to and below 75 A per
phase and subject to restricted connection.

IEC 61000 4-7 This is perhaps the most important document of the series, covering
the subject of testing and measurement techniques. It is a general guide on harmonic and
inter-harmonic measurements and instrumentation for power systems and equipment
connected thereto. The application of this document is discussed in Chapter 5.

IEC 61000 4-13 This is also a document on testing and measurement techniques with
reference to harmonics and inter-harmonics, including mains signalling at a.c. power
ports as well as low-frequency immunity tests.

IEEE 519-1992 [3] Document IEEE 519-1992 identifies the major sources of har-
monics in power systems. The harmonic sources described in this standard include
power converters, arc furnaces, static VAR compensators, inverters of dispersed gener-
ation, electronic phase control of power, cycloconverters, switch mode power supplies
and pulse-width modulated (PWM) drives. The document illustrates the typical dis-
torted wave shapes, the harmonic order numbers and the level of each harmonic
component in the distortion caused by these devices. It also describes how the sys-
tem may respond to the presence of harmonics. The discussion on responses comprise
parallel resonance, series resonance and the effect of system loading on the magnitude
of these resonances. Based on typical characteristics of low-voltage distribution sys-
tems, industrial systems and transmission systems, this document discusses the general
response of these systems to harmonic distortion.

The effects of harmonic distortion on the operation of various devices or loads are
also included in the standard. These devices comprise motors and generators, transform-
ers, power cables, capacitors, electronic equipment, metering equipment, switchgear,
relays and static power converters. Interference to the telephone networks as a result of
harmonic distortion in the power systems is discussed with reference to the C-message
weighting system created jointly by Bell Telephone Systems and Edison Electric
Institute (described in Chapter 4). The standard outlines several possible methods of
reducing the amount of telephone interference caused by harmonic distortion in the
power system.

This standard also describes the analysis methods and measurement requirements
for assessing the levels of harmonic distortion in the power system. It summarises
the methods for the calculation of harmonic currents, system frequency responses and
modelling of various power system components for the analysis of harmonic prop-
agation. The section on measurements highlights their importance and lists various
harmonic monitors that are currently available. It describes the accuracy and selec-
tivity (the ability to distinguish one harmonic component from others) requirements
on these monitors; it also describes the averaging or snap-shot techniques that can be
used to ‘smooth-out’ the rapidly fluctuating harmonic components and thus reduce the
overall data bandwidth and storage requirements.

The standard describes methods for designing reactive compensation for systems
with harmonic distortion. Various types of reactive compensation schemes are dis-
cussed, indicating that some of the equipment, such as TCR and TSC, are themselves
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sources of harmonic distortion. It also outlines the various techniques for reducing the
amount of harmonic current penetrating into the a.c. systems. Recommended practices
are suggested to both individual consumers and utilities for controlling the harmonic
distortion to tolerable levels. This standard concludes with recommendations for eval-
uating new harmonic sources by measurements and detailed modelling and simulation
studies. It provides several examples to illustrate how these recommendations can be
implemented effectively in practical systems.

Notching, the distortion caused on the line voltage waveform by the commutation
process between valves in some power electronic devices, is described in detail. The
document analyses the converter commutation phenomenon and describes the notch
depth and duration with respect to the system impedance and load current. Limits
are outlined in terms of the notch depth, THD of supply voltage and notch area for
different supply systems.

1.3.3 General Harmonic Indices

The most common harmonic index, which relates to the voltage waveform, is the
THD, which is defined as the root mean square (r.m.s.) of the harmonics expressed as
a percentage of the fundamental component, i.e.

THD =

√√√√ N∑
n=2

V 2
n

V1

where Vn is the single frequency r.m.s. voltage at harmonic n, N is the maximum
harmonic order to be considered and V1 is the fundamental line to neutral r.m.s. voltage.

For most applications, it is sufficient to consider the harmonic range from the 2nd
to the 25th, but most standards specify up to the 50th.

Current distortion levels can also be characterised by a THD value but it can be
misleading when the fundamental load current is low. A high THD value for input
current may not be of significant concern if the load is light, since the magnitude of
the harmonic current is low, even though its relative distortion to the fundamental
frequency is high. To avoid such ambiguity a total demand distortion (TDD) factor is
used instead, defined as:

TDD =

√√√√ N∑
n=2

I 2
n

IR

This factor is similar to THD except that the distortion is expressed as a percentage
of some rated or maximum load current magnitude, rather than as a percentage of the
fundamental current. Since electrical power supply systems are designed to withstand
the rated or maximum load current, the impact of current distortion on the system will
be more realistic if the assessment is based on the designed values, rather than on a
reference that fluctuates with the load levels.
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Consider as an example the case of a three-phase purely resistive load of 50 kW
rating supplied directly from a 50 Hz three-phase 415 V (phase-to-phase) bus. At the
time of measuring, the load was consuming 41.5 kW and the voltage waveform con-
tained 11 V of negative-sequence fifth harmonic and 8 V of positive-sequence seventh
harmonic. Assuming that the load resistance varies with the square root of the har-
monic order h, the following steps are used to calculate the THD and TDD indices at
the point of connection:

Load resistance values:

R1 = V 2
1

P1
= (415/

√
3)2

(41 500/3)
= 4.15 �

R5 = R1

√
h = 4.15

√
5

R7 = R1

√
h = 4.15

√
7

Load current components:

Ir = 50

415
√

3
= 69.56 A

I1 = (V1/
√

3)

R1
= (415/

√
3)

4.15
= 57.735 A

I5 = (V5/
√

3)

R5
= (11/

√
3)

(4.15
√

5)
= 0.6844 A

I7 = (V7/
√

3)

R7
= (8/

√
3)

(4.15
√

7)
= 0.4207 A

THDv =
√

(V 2
5 + V 2

7)

V1
=

√
(112 + 82)

415
= 0.03276

THDi =
√

(I 2
5 + I 2

7)

I1
=

√
(0.68438)2 + (0.42066)2

57.735
= 0.01391

TDDi =
√

(I 2
5 + I 2

7)

Ir

=
√

(0.68438)2 + (0.42066)2

69.56
= 0.01155

An important question left out of present standards is how to apply the indices to
three-phase systems. It is, of course, possible to calculate the indices in each phase
individually and apply the limits to the highest. Alternatively, some type of averaging
could be carried out. This matter is discussed further in Chapter 4 with reference to
telephone interference.

1.4 Relevance of the Topic

Perhaps the most noticeable consequence of power system harmonics is the degra-
dation of telephone communications caused by induced harmonic noise. There are,
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however, more disastrous effects, such as the maloperation of important control and
protection equipment and the overloading of power plant. Very often the presence of
harmonics is only detected following an expensive casualty (like the destruction of
power factor correction capacitors). Normally these components have to be replaced,
and the equipment protected by filters, at the customer’s expense.

In recent times there have been considerable developments in industrial processes
that rely on controlled rectification for their operation, and therefore generate harmonic
currents. The design of such equipment often assumes the existence of a symmetrical
voltage source free of harmonic distortion, a situation that only occurs in the absence
of other harmonic sources or when the supply system is very strong (i.e. of negligible
impedance). Consequently, the smaller industrial users of electricity are being subjected
to increasing operating difficulties as a result of the harmonic interaction of their own
control equipment with the power supply.

With open electricity markets, the number of players will increase considerably.
The competitive electricity trade should not degrade the level of security, for which
the requirements of clients are likely to be more stringent. A general power quality
standard, although difficult to define, must be guaranteed by the system operator. How-
ever, power quality can raise complicated problems that require detailed information
and technical skills to find adequate solutions.

Although interruptions and voltage dips can, to a certain extent, be mastered by
the system operator, harmonic voltage fluctuations cannot, since they are generally
customers’ emissions. It is not clear, then, who should take the risk of ensuring spec-
ified levels of harmonic distortion. The obvious thing to do is to put standards on
emission limits, but the question is to decide who will control the users’ voltage dis-
turbance emissions and who will charge them for this. An innovative approach is for
the distribution companies to be responsible for supplying electricity to any user with
defined disturbances levels, with a system of penalisation or compensation if these
levels are exceeded.

Utilities are likely to accept different levels of compromise between security and
cost, and the consequence of this difference is that the party with stricter standards
might be left to solve its neighbours’ ‘problems’. In practice, the party with relaxed
standards will rely on others for the provision of support services. If it is not pos-
sible to harmonise the power quality standards between the interconnected utilities,
proper commercial arrangements will be needed to reflect the consequences of these
differences. While it may seem obvious that hardware and software systems should be
installed to monitor performance and delivery of agreed service provision, in reality
these are not always available.

Power quality awareness in general, and waveform distortion in particular, is likely
to increase with deregulation as the competitive environment will try to drive to the
limit the use of existing facilities and networks with as little expenditure as possible.
The risk of harmonic resonances and their effect on shunt capacitor destruction is well
documented. However, some of the negative consequences of this approach may not be
immediately obvious, particularly the effect of harmonics on equipment overloading.
For instance, the life of a transformer will be considerably reduced by the extra current
loading imposed by harmonics. Thus there is a need to adapt existing recommenda-
tions, put in place appropriate commercial arrangements and, most of all, monitor their
implementation more rigorously than in the past.
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In pre-deregulation days, the allocation of responsibilities to maintain adequate
standards, largely determined by the supply companies, given the inadequate simula-
tion and monitoring tools available, could not be technically challenged effectively.
Deregulation will encourage the use of advanced simulation and assessment tools
for the customer to make informed decisions when dealing with the power supply
companies.

The competitive electricity market has made utilities more conscious of the need
to satisfy their customers’ needs and not simply to supply them with electricity.
For instance, Electricité de France conducts surveys to analyse customers’ expec-
tations.

The new environment provides a considerable challenge that will force the utilities
to ensure that individual customer’s needs are met. This implies developing comple-
mentary services taking into account the customer’s specific requirements.

The lack of enforceable harmonic standards in the past did not encourage the use of
expensive monitoring, testing and software tools. The development of such tools has
accelerated with the acceptance of more stringent standards. Deregulation is leading
to more transparent considerations of power quality issues and to a more contestable
environment, where the independent parties can be adequately represented. In this
environment, information about harmonics itself has become a valuable commodity,
giving rise to profitable consulting services. This presents an important problem for
the system operators, that of maintaining power quality when the parties are reluctant
to provide all the necessary information.

In the competitive environment, waveform distortion can be jeopardised by excessive
confidentiality. To allow the interconnected network to maintain adequate harmonic
levels at low cost, this must be given priority over confidentiality. To ensure this
policy, it is essential that the system operator obtains information and makes it gen-
erally available to all market participants. Determining limits on harmonic levels is
a difficult exercise. Current knowledge is still insufficient to ascertain the extent
to which any given power system can sustain a particular level of harmonics and
remain viable in terms of the functions that the system has to perform. Two major
impediments to such understanding are the ability to make accurate measurements
(discussed in Chapter 5) and the state of computer simulation (discussed in Chapters 7
and 8).

It is relatively easy, though expensive, to keep the harmonic contribution of large
nonlinear plant components such as HVd.c. converters under control, normally by the
connection of passive filters. The situation is less straightforward in power distribution
systems, where the exact location and/or operating characteristics of the dispersed
loads are not well defined. Moreover, the harmonic distortion levels of distribution
systems appear to be increasing at a consistent rate. A report [8] on extensive field tests
carried out in several New England Power Service Co. distribution feeders indicated
an increase in THD of the order of 0.1% per year, with the fifth harmonic causing
the greatest concern. There is a need for more global planning for the limitation of
harmonic distortion in distribution systems.

Concern for waveform distortion must be shared by all the parties involved in order
to establish the right balance between exercising control by distortion and keeping
distortion under control. Early co-ordination between the interested parties is essential
to achieve acceptable economic solutions.
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2

Harmonic Analysis

2.1 Introduction

The voltage and current waveforms at points of connection of nonlinear devices can
either be obtained from appropriate transducers or calculated for a given operating
condition, from knowledge of the devices’ nonlinear characteristics. In 1822 J.B.J.
Fourier [1] postulated that any continuous function repetitive in an interval T can be
represented by the summation of a d.c. component, a fundamental sinusoidal component
and a series of higher-order sinusoidal components (called harmonics) at frequencies
which are integer multiples of the fundamental frequency.

Harmonic analysis is then the process of calculating the magnitudes and phases of
the fundamental and higher-order harmonics of the periodic waveform. The resulting
series, known as the Fourier series, establishes a relationship between a time-domain
function and that function in the frequency domain.

The Fourier series of a general periodic waveform is derived in the first part of this
chapter and its characteristics discussed with reference to simple waveforms.

More generally, the Fourier transform and its inverse are used to map any func-
tion in the interval from −∞ to ∞, in either the time or frequency domain. The
Fourier series therefore represents the special case of the Fourier transform applied to
a periodic signal.

In practice, data is often available in the form of a sampled time function, represented
by a time series of amplitudes, separated by fixed time intervals of limited duration.
When dealing with such data, a modification of the Fourier transform, the discrete
Fourier transform (DFT), is used. The implementation of the DFT by means of the
so-called Fast Fourier transform (FFT) forms the basis of most modern spectral and
harmonic analysis systems.

The voltage and current waveforms captured from the power system, however, may
contain transient or time-varying components. Even stationary signals when viewed
from limited data (due to finite sampling) will introduce errors in the frequency spec-
trum of the signal. A variety of techniques have been developed to derive the frequency
spectrum under those conditions. The chapter ends with a brief review of these alter-
native techniques.

Power System Harmonics, Second Edition J. Arrillaga, N.R. Watson
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85129-5



18 HARMONIC ANALYSIS

2.2 Fourier Series and Coefficients [2,3]

The Fourier series of a periodic function x(t) has the expression

x(t) = a0 +
∞∑

n=1

(
an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

))
(2.1)

This constitutes a frequency-domain representation of the periodic function.
In this expression a0 is the average value of the function x(t), while an and bn,

the coefficients of the series, are the rectangular components of the nth harmonic. The
corresponding nth harmonic vector is

An
� φn = an + jbn (2.2)

with magnitude

An =
√

a2
n + b2

n

and phase angle

φn = tan−1

(
bn

an

)

For a given function x(t), the constant coefficient, a0, can be derived by integrating
both sides of equation (2.1) from −T /2 to T /2 (over a period T ):

∫ T/2

−T/2
x(t)dt =

∫ T/2

−T/2

[
a0 +

∞∑
n=1

an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

)]
dt (2.3)

The Fourier series of the right-hand side can be integrated term by term, giving

∫ T/2

−T/2
x(t)dt = a0

∫ T/2

−T/2
dt +

∞∑
n=1

[
an

∫ T/2

−T/2
cos

(
2πnt

T

)
dt

+ bn

∫ T/2

−T/2
sin

(
2πnt

T

)
dt

]
(2.4)

The first term on the right-hand side equals Ta0, while the other integrals are zero.
Hence, the constant coefficient of the Fourier series is given by

a0 = 1/T

∫ T/2

−T/2
x(t) dt (2.5)

which is the area under the curve of x(t) from −T /2 to T /2, divided by the period of
the waveform, T .



FOURIER SERIES AND COEFFICIENTS 19

The an coefficients can be determined by multiplying equation (2.1) by cos(2πmt /T ),
where m is any fixed positive integer, and integrating between −T /2 and T /2, as
previously:

∫ T/2

−T/2
x(t) cos

(
2πmt

T

)
dt =

∫ T/2

−T/2

[
a0 +

∞∑
n=1

[
an cos

(
2πnt

T

)

+ bn sin

(
2πnt

T

)]]
cos

(
2πmt

T

)
dt

= a0

∫ T/2

−T/2
cos

(
2πmt

T

)
dt +

∞∑
n=1

[
an

∫ T/2

−T/2
cos

(
2πnt

T

)

× cos

(
2πmt

T

)
dt

+ bn

∫ T/2

−T/2
sin

(
2πnt

T

)
cos

(
2πmt

T

)
dt

]
(2.6)

The first term on the right-hand side is zero, as are all the terms in bn since
sin(2πnt /T ) and cos(2πmt /T ) are orthogonal functions for all n and m.

Similarly, the terms in an are zero, being orthogonal, unless m = n. In this case,
equation (2.6) becomes

∫ T/2

−T/2
x(t) cos

(
2πmt

T

)
dt = an

∫ T/2

−T/2
cos

(
2πnt

T

)
dt

= an

2

∫ T/2

−T/2
cos

(
4πnt

T

)
dt + an

2

∫ T/2

−T/2
dt (2.7)

The first term on the right-hand side is zero while the second term equals anT /2. Hence,
the coefficients an can be obtained from

an = 2

T

∫ T/2

−T/2
x(t) cos

(
2πnt

T

)
dt for n = 1 → ∞ (2.8)

To determine the coefficients bn, equation (2.1) is multiplied by sin(2πmt /T ) and, by
a similar argument to the above,

bn = 2

T

∫ T/2

−T/2
x(t) sin

(
2πnt

T

)
dt for n = 1 → ∞ (2.9)

It should be noted that because of the periodicity of the integrands in
equations (2.5), (2.8) and (2.9), the interval of integration can be taken more generally
as t and t + T .

If the function x(t) is piecewise continuous (i.e. has a finite number of vertical
jumps) in the interval of integration, the integrals exist and Fourier coefficients can be
calculated for this function.
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Equations (2.5), (2.8) and (2.9) are often expressed in terms of the angular frequency
as follows:

a0 = 1

2π

∫ π

−π

x(ωt) d(ωt) (2.10)

an = 1

π

∫ π

−π

x(ωt) cos(nωt) d(ωt) (2.11)

bn = 1

π

∫ π

−π

x(ωt) sin(nωt) d(ωt) (2.12)

so that

x(t) = a0 +
∞∑

n=1

[an cos(nωt) + bn sin(nωt)] (2.13)

2.3 Simplifications Resulting From Waveform
Symmetry [2,3]

Equations (2.5), (2.8) and (2.9), the general formulas for the Fourier coefficients, can
be represented as the sum of two separate integrals:

an = 2

T

∫ T/2

0
x(t) cos

(
2πnt

T

)
dt + 2

T

∫ 0

−T/2
x(t) cos

(
2πnt

T

)
dt (2.14)

bn = 2

T

∫ T/2

0
x(t) sin

(
2πnt

T

)
dt + 2

T

∫ 0

−T/2
x(t) sin

(
2πnt

T

)
dt (2.15)

Replacing t by −t in the second integral of equation (2.14), and changing the limits
produces

an = 2

T

∫ T/2

0
x(t) cos

(
2πnt

T

)
dt + 2

T

∫ 0

+T/2
x(−t) cos

(−2πnt

T

)
d(−t)

= 2

T

∫ T/2

0
[x(t) + x(−t)] cos

(
2πnt

T

)
dt (2.16)

Similarly,

bn = 2

T

∫ T/2

0
[x(t) − x(−t)] sin

(
2πnt

T

)
dt (2.17)

Odd Symmetry The waveform has odd symmetry if x(t) = −x(−t). Then the an

terms become zero for all n, while

bn = 4

T

∫ T/2

0
x(t) sin

(
2πnt

T

)
dt (2.18)
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The Fourier series for an odd function will, therefore, contain only sine terms.

Even Symmetry The waveform has even symmetry if x(t) = x(−t). In this case
bn = 0 for all n and

an = 4

T

∫ T/2

0
x(t) cos

(
2πnt

T

)
dt (2.19)

The Fourier series for an even function will, therefore, contain only cosine terms.
Certain waveforms may be odd or even depending on the time reference position

selected. For instance, the square wave of Figure 2.1, drawn as an odd function, can
be transformed into an even function by shifting the origin (vertical axis) by T /2.

Halfwave Symmetry A function x(t) has halfwave symmetry if

x(t) = −x(t + T /2) (2.20)

i.e. the shape of the waveform over a period t + T /2 to t + T is the negative of the
shape of the waveform over the period t to t + T /2. Consequently, the square wave
function of Figure 2.1 has halfwave symmetry.

Using equation (2.8) and replacing (t) by (t + T /2) in the interval (−T /2,0)

an = 2

T

∫ T/2

0
x(t) cos

(
2πnt

T

)
dt + 2

T

∫ 0+T/2

−T/2+T/2
x(t + T /2) cos

(
2πn(t + T /2)

T

)
dt

= 2

T

∫ T/2

0
x(t)

[
cos

(
2πnt

T

)
− cos

(
2πnt

T
+ nπ

)]
dt (2.21)

since by definition x(t) = −x(t + T /2).

x(t)

t

k

−k

−t
−T/2 T/2

Figure 2.1 Square wave function
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If n is an odd integer then

cos

(
2πnt

T
+ nπ

)
= − cos

(
2πnt

T

)

and

an = 4

T

∫ T/2

0
x(t) cos

(
2πnt

T

)
dt (2.22)

However, if n is an even integer then

cos

(
2πnt

T
+ nπ

)
= cos

(
2πnt

T

)

and

an = 0.

Similarly,

bn = 4

T

∫ T/2

0
x(t) sin

(
2πnt

T

)
dt for n odd

= 0 for n even (2.23)

Thus, waveforms which have halfwave symmetry contain only odd order harmonics.
The square wave of Figure 2.1 is an odd function with halfwave symmetry. Conse-

quently, only the bn coefficients and odd harmonics will exist. The expression for the
coefficients taking into account these conditions is

bn = 8

T

∫ T/4

0
x(t) sin

(
2πnt

T

)
dt (2.24)

which can be represented by a line spectrum of amplitudes inversely proportional to
the harmonic order, as shown in Figure 2.2.

F (f)

4 k / p

(4 k / p)

(4 k / p)

1
3
1
5

0 f1 3f1 5f1 7f1 9f1 11f1
f

Figure 2.2 Line spectrum representation of a square wave
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2.4 Complex Form of the Fourier Series

The representation of the frequency components as rotating vectors in the complex
plane gives a geometrical interpretation of the relationship between waveforms in the
time and frequency domains.

A uniformly rotating vector A/2ejφ(X(fn)) has a constant magnitude A/2, and a
phase angle φ, which is time varying according to

φ = 2πf T + θ (2.25)

where θ is the initial phase angle when t = 0.
A second vector A/2e−jφ (X(−fn)) with magnitude A/2 and phase angle −φ will

rotate in the opposite direction to A/2e+jφ (X(fn)). This negative rate of change of
phase angle can be considered as a negative frequency.

The sum of the two vectors will always lie along the real axis, the magnitude
oscillating between A and −A according to

A

2
ejφ + A

2
e−jφ = A cos φ (2.26)

Thus, each harmonic component of a real valued signal can be represented by two
half-amplitude contra-rotating vectors as shown in Figure 2.3, such that

X(fn) = X∗(−fn) (2.27)

where X∗(−fn) is the complex conjugate of X(−fn).

A/2

Maximum
amplitude

Instantaneous
amplitude

(A)

q
−q

3
3

Re

Im

Figure 2.3 Contra-rotating vector pair producing a varying amplitude (pulsating) vector
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The sine and cosine terms of equations (2.11) and (2.12) may, therefore, be solved
into positive- and negative-frequency terms using the trigonometric identities

cos(nωt) = ejnωt + e−jnωt

2
(2.28)

sin(nωt) = ejnωt − e−jnωt

2j
(2.28a)

Substituting into equation (2.13) and simplifying yields

x(t) =
∑

cnejnωt (2.29)

where

cn = 1
2 (an − jbn), n > 0

c−n = cn

c0 = a0

The cn terms can also be obtained by complex integration:

cn = 1

π

∫ π

−π

x(ωt)e−jnωt d(ωt) (2.30)

c0 = 1

2π

∫ π

−π

x(ωt) d(ωt) (2.31)

If the time domain signal x(t) contains a component rotating at a single frequency
nf, then multiplication by the unit vector e−j2πnft , which rotates at a frequency −nf ,
annuls the rotation of the component, such that the integration over a complete period
has a finite value. All components at other frequencies will continue to rotate after
multiplication by e−j2πnft , and will thus integrate to zero.

The Fourier series is most generally used to approximate a periodic function by
truncation of the series. In this case, the truncated Fourier series is the best trigonometric
series expression of the function, in the sense that it minimises the square error between
the function and the truncated series. The number of terms required depends upon the
magnitude of repeated derivatives of the function to be approximated. Repeatedly
differentiating equation (2.30) by parts, it can readily be shown that

cn = 1

2π

1

nm+1

∫ π

−π

f (m+1)(ωt) d(ωt) (2.32)

Consequently, the Fourier series for repeatedly differentiated functions will converge
faster than that for functions with low-order discontinuous derivatives.

The complex Fourier series expansion is compatible with the FFT, the method of
choice for converting time-domain data samples into a Nyquist rate-limited frequency
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spectrum. The trigonometric Fourier expression can also be written as a series of
phase-shifted sine terms by substituting

an cos nωt + bn sin nωt = dn sin(nωt + ψn) (2.33)

into equation (2.13), where

dn =
√

a2
n + b2

n

ψn = tan−1 bn

an

(2.34)

Finally, the phase-shifted sine terms can be represented as peak value phasors
by setting

�n = dnejψn (2.35)

so that

dn sin(nωt + ψn) = I {�nejnωt }
= |�n| sin(nωt + � �n) (2.36)

The harmonic phasor Fourier series is, therefore,

f (t) =
∞∑

n=0

I {�nejnωt } (2.37)

which does not contain negative-frequency components. Note that the d.c. term becomes

�0 = a0

2
ejπ/2

= j
a0

2
(2.38)

In practice, the upper limit of the summation is set to nh, the highest harmonic order
of interest.

2.5 Convolution of Harmonic Phasors

Viewing a continuous function through a sampling period of interval T seconds is
equivalent to multiplying the signal in the time domain by a rectangular pulse of
length T (Figure 2.4). This corresponds to the convolution in the frequency domain of
their respective frequency spectra.

In general, the point-by-point multiplication of two time-domain waveforms is ex-
pressed in the harmonic domain by a discrete convolution of their Fourier series. When
two harmonic phasors of different frequencies are convolved, the results are harmonic
phasors at sum and difference harmonics. This is best explained by multiplying the
corresponding sinusoids using the trigonometric identity for the product of sine waves,
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Signal

Time window

Product of time window and signal

Figure 2.4 Influence of viewing a continuous function through a rectangular time window

and then converting back to phasor form. Given two phasors, Ak and Bm, of harmonic
orders k and m, the trigonometric identity for their time-domain multiplication is:

|Ak| sin(kωt + � Ak)|Bm| sin(mωt + � Bm) = 1
2 |Ak| |Bm|[

sin
(
(k − m)ωt + � Ak − � Bm + π

2

)
− sin

(
(k + m)ωt + � Ak + � Bm + π

2

)]

(2.39)
Converting to phasor form:

Ak ⊗ Bm = 1
2 |Ak||Bm|

[
ej (� Ak−� Bm+π/2)|(k−m) − ej (� Ak−� Bm+π/2)|(k+m)

]

= 1
2

[
(|Ak|ej � Ak |Bm|e−j � Bmejπ/2)|(k−m) − (|Ak|ej � Ak |Bm|ej � Bmej+π/2)k+m

]

= 1
2j [(AkB

∗
m)k−m − (AkBm)k+m] (2.40)

If k is less than m, a negative harmonic can be avoided by conjugating the difference
term. This leads to the overall equation:

Ak ⊗ Bm =



1
2j (AkB

∗
m)(k−m) − 1

2j (AkBm)(k+m) if k ≥ m

1
2j (AkB

∗
m)

∗
(m−k)

− 1
2j (AkBm)(k+m) otherwise

(2.41)

The multiplication of two non-sinusoidal periodic waveforms leads to a discrete
convolution of their harmonic phasor Fourier series:

fa(t)fb(t) =
nh∑

k=0

|Ak| sin(kωt + � Ak)

nh∑
m=0

|Bk| sin(mωt + � Bm)

=
nh∑

k=0

nh∑
m=0

|Ak| sin(kωt + � Ak)|Bk| sin(mωt + � Bm) (2.42)
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Rewriting this in terms of phasors yields

FA ⊗ FB =
nh∑

k=0

nh∑
m=0

Ak ⊗ Bm (2.43)

Equation (2.43) generates harmonic phasors of order up to 2nh, due to the sum
terms. Substituting the equation for the convolution of two phasors, equation (2.41),
into (2.43) and solving for the lth order component yields

(A ⊗ B)l = 1
2j

[
nh∑

k=1

AkB
∗
k−l +

nh∑
k=1

(AkB
∗
k+l )

∗ −
nh∑

k=0

AkB
∗
l−k

]
, l > 0 (2.44)

(A ⊗ B)l = 1
2j

[
−A0B0 +

nh∑
k=0

AkB
∗
k

]
, l = 0 (2.45)

The convolution equations are non-analytic in the complex plane but are differen-
tiable by decomposing into two real valued components (typically rectangular).

If negative frequencies are retained, the convolution is just the multiplication of
two series:

fa(t)fb(t) =
nh∑

n=−nh

canejnωt

nh∑
l=−nh

cbl e
jlωt

=
nh∑

n=−nh

nh∑
l=−nh

cancbl e
j (l+n)ωt (2.46)

In practice, the discrete convolution can be evaluated faster using FFT methods.

2.6 The Fourier Transform [3,4]

Fourier analysis, when applied to a continuous, periodic signal in the time domain,
yields a series of discrete frequency components in the frequency domain.

By allowing the integration period to extend to infinity, the spacing between the har-
monic frequencies, ω, tends to zero and the Fourier coefficients, cn, of equation (2.30)
become a continuous function, such that

X(f ) =
∫ ∞

−∞
x(t)e−j2πf T dt (2.47)

The expression for the time domain function x(t), which is also continuous and of
infinite duration, in terms of X(f ) is then

x(t) =
∫ ∞

−∞
X(f )ej2πf T df (2.48)

X(f ) is known as the spectral density function of x(t).
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x(t)

−T/2 T/2

K

−t t

Figure 2.5 Rectangular function

Equations (2.47) and (2.48) form the Fourier transform pair. Equation (2.47) is re-
ferred to as the ‘forward transform’ and equation (2.48) as the ‘reverse’ or ‘inverse
transform’.

In general, X(f ) is complex and can be written as

X(f ) = Re X(f ) + j Im X(f ) (2.49)

The real part of X(f ) is obtained from

Re X(f ) = 1

2
[X(f ) + X(−f )] =

∫ ∞

−∞
x(t) cos 2πf t dt (2.50)

Similarly, for the imaginary part of X(f )

Im X(f ) = 1

2
j [X(f ) − X(−f )] = −

∫ ∞

−∞
x(t) sin 2πf T dt (2.51)

The amplitude spectrum of the frequency signal is obtained from

|X(f )| = [(Re X(f ))2 + (Im X(f ))2]
1
2 (2.52)

The phase spectrum is

φ(f ) = tan−1

[
Im X(f )

Re X(f )

]
(2.53)

Using equations (2.49) to (2.53), the inverse Fourier transform can be expressed in
terms of the magnitude and phase spectra components:

x(t) =
∞∫

−∞
|X(f )| cos[2πfT − φ(f )] df (2.54)

As an example, let us consider a rectangular function such as Figure 2.5, defined by

x(t) = K for |t | ≤ T /2

= 0 for |t | > T/2

i.e. the function is continuous over all t but is zero outside the limits (−T /2, T /2).
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KT

−f f
4/T3/T2/T1/T−1/T−2/T−3/T−4/T

sin (π f T)
X (f) = KT π f T

Figure 2.6 The sinc function, sin(πf T )/(πf T )

Its Fourier transform is

X(f ) =
∫ ∞

−∞
x(t)e−j2πf T dt

=
∫ T/2

−T/2
Ke−j2πfT dt

= −K

πf
· 1

2j
[e−jπf T − ejπf T ] (2.55)

and using the identity

sin φ = 1

2j
(ejφ − e−jφ)

yields the following expression for the Fourier transform:

X(f ) = K

πf
sin(πf T )

= KT

[
sin(πf T )

πf T

]
(2.56)

The term in brackets, known as the sinc function, is shown in Figure 2.6.
While the function is continuous, it has zero value at the points f = n/T for n =

±1, ±2, . . . and the side lobes decrease in magnitude as 1/T . This should be compared
to the Fourier series of a periodic square wave, which has discrete frequencies at odd
harmonics. The interval 1/T is the effective bandwidth of the signal.

2.7 Sampled Time Functions [4,5]

With an increase in the digital processing of data, functions are often recorded by
samples in the time domain. Thus, the signal can be represented as in Figure 2.7,
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X(t)

−t t
t0 t12t1

Figure 2.7 Sampled time-domain function

X(f)

fs/2 fs/2
−f f

Figure 2.8 Frequency spectrum for discrete time-domain function

where fs = 1/t1 is the frequency of the sampling. In this case, the Fourier transform
of the signal is expressed as the summation of the discrete signal where each sample
is multiplied by e−j2π fnt1 :

X(f ) =
∞∑

n=−∞
x(nt1)e

−j2πf nt1 (2.57)

The frequency domain spectrum, shown in Figure 2.8, is periodic and continuous.
The inverse Fourier transform is thus

x(t) = 1/fs

∫ fs/2

−fs/2
X(f )ej2πf nt1 df (2.58)

2.8 Discrete Fourier Transform (DFT) [4,5]

In the case where the frequency domain spectrum is a sampled function, as well as
the time domain function, we obtain a Fourier transform pair made up of discrete
components:

X(fk) = 1/N

N−1∑
n=0

x(tn)e
−j2πkn/N (2.59)
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and

x(tn) =
N−1∑
k=0

X(fk)e
j2πkn/N (2.60)

Both the time domain function and the frequency domain spectrum are assumed
periodic as in Figure 2.9, with a total of N samples per period. It is in this discrete form
that the Fourier transform is most suited to numerical evaluation by digital computation.

Consider equation (2.59) rewritten as

X(fk) = 1/N

N−1∑
n=0

x(tn)W
kn (2.61)

where W = e−j2π/N .
Over all the frequency components, equation (2.61) becomes a matrix equation.

X(f0)

X(f1)

.

.

.

X(fk)

.

.

X(fN−1)

= 1/N

1 1 . . . 1 . . 1
1 W . . . Wk . . WN−1

. . . .

. . . .

. . . .

1 Wk . . . Wk2
. . Wk(N−1)

. . . . .

. . . . .

1 WN−1 . . . W(N−1)k . . W(N−1)2

·

x(t0)

x(t1)

.

.

.

x(tk)

.

.

x(tN−1)

(2.62)

x (t)

−t
−T T0−T/2 T/2

t

X(f)

−f
0fs/2fs fsfs/2

f

Figure 2.9 Discrete time- and frequency-domain function
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or in a condensed form

[X(fk)] = 1/N [W kn ][x(tn)] (2.63)

In these equations, [X(fk)] is a vector representing the N components of the function
in the frequency domain, while [x(tn)] is a vector representing the N samples of the
function in the time domain.

Calculation of the N frequency components from the N time samples, therefore,
requires a total of N2 complex multiplications to implement in the above form.

Each element in the matrix [W kn ] represents a unit vector with a clockwise rota-
tion of 2nπ/N (n = 0, 1, 2, . . ., (N − 1)) introduced between successive components.
Depending on the value of N , a number of these elements are the same.

For example, if N = 8 then

W = e−j2π/8

= cos
π

4
− j sin

π

4

As a consequence

W 0 = −W 4 = 1

W 1 = −W 5 = (1/
√

2 − j1/
√

2)

W 2 = −W 6 = −j

W 3 = −W 7 = −(1/
√

2 + j1/
√

2)

These can also be thought of as unit vectors rotated through ±0◦, ±45◦, ±90◦ and
±135◦, respectively.

Further, W 8 is a complete rotation and hence equal to 1. The value of the elements
of W kn for kn > 8 can thus be obtained by subtracting full rotations, to leave only a
fraction of a rotation, the values for which are shown above. For example, if k = 5
and n = 6, then kn = 30 and W 30 = W 3×8+6 = W 6 = j .

Thus, there are only four unique absolute values of W kn and the matrix [W kn], for
the case N = 8, becomes

1 1 1 1 1 1 1 1

1 W −j W 3 −1 −W j −W 3

1 −j −1 j 1 −j −1 j

1 W 3 j W −1 −W 3 −j −W

1 −1 1 −1 1 −1 1 −1

1 −W −j −W 3 −1 W j W 3

1 j −1 −j 1 j −1 −j

1 −W 3 j −W −1 W 3 −j W
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It can be observed that the d.c. component of the frequency spectrum, X(f0),
obtained by the algebraic addition of all the time domain samples, divided by the
number of samples, is the average value of all the samples.

Subsequent rows show that each time sample is weighted by a rotation dependent
on the row number. Thus, for X(f1) each successive time sample is rotated by 1/N of
a revolution; for X(f2) each sample is rotated by 2/N revolutions, and so on.

2.9 The Nyquist Frequency and Aliasing [4]

With regard to equation (2.62) for the DFT and the matrix [W kn ], it can be observed
that for the rows N /2 to N , the rotations applied to each time sample are the negative
of those in rows N /2 to 1. Frequency components above k = N /2 can be considered as
negative frequencies, since the unit vector is being rotated through increments greater
than π between successive components. In the example of N = 8, the elements of
row 3 are successively rotated through −π /2. The elements of row 7 are similarly
rotated through −3π /2, or in negative frequency form through π /2. More generally, a
rotation through

2π(N/2 + p)/N radians

for p = 1, 2, 3 . . . , (N/2 − 1) [with N even]

corresponds to a negative rotation of

−2π(N/2 − p)/N radians

Hence, −X(k) corresponds to X(N − k) for k = 1 to N /2 as shown by Figure 2.10.

+5π / 4

−3π / 4

Figure 2.10 Correspondence of positive and negative angles
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This is an interpretation of the sampling theorem, which states that the sampling
frequency must be at least twice the highest frequency contained in the original signal
for a correct transfer of information to the sampled system.

The frequency component at half the sampling frequency is referred to as the
Nyquist frequency.

The representation of frequencies above the Nyquist frequency as negative frequen-
cies means that if the sampling rate is less than twice the highest frequency present in
the sampled waveform, then these higher frequency components can mimic components
below the Nyquist frequency, introducing error into the analysis.

It is possible for high-frequency components to complete many revolutions between
samplings; however, since they are only sampled at discrete points in time, this infor-
mation is lost.

This misinterpretation of frequencies above the Nyquist frequency, as lower frequen-
cies, is called aliasing and is illustrated in Figure 2.11.

To prevent aliasing it is necessary to pass the time domain signal through a band-
limited low-pass filter, the ideal characteristic of which is shown in Figure 2.12, with
a cut-off frequency, fc, equal to the Nyquist frequency.

Sampling
interval

Sampling

(a)

(b)

(c)

t

t

t

Figure 2.11 The effect of aliasing: (a) x(t) = k; (b) x(t) = k cos 2 πnft. For (a) and
(b) both signals are interpreted as being d.c. In (c) the sampling can represent two different

signals with frequencies above and below the Nyquist or sampling rate
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X( f )

−f f
fc

1

Figure 2.12 Frequency domain characteristics of an ideal low-pass filter with cut-off
frequency fc

Thus, if sampling is undertaken on the filtered signal and the DFT applied, the
frequency spectrum has no aliasing effect and is an accurate representation of the
frequencies in the original signal that are below the Nyquist frequency. However,
information on those frequencies above the Nyquist frequency is lost due to the filter-
ing process.

2.10 Fast Fourier Transform (FFT) [4–7]

For large values of N , the computational time and cost of executing the N2 complex
multiplications of the DFT can become prohibitive.

Instead, a calculation procedure known as the FFT, which takes advantage of the
similarity of many of the elements in the matrix [W kn ], produces the same fre-
quency components using only N /2 log2N multiplications to execute the solution of
equation (2.63). Thus, for the case N = 1024 = 210, there is a saving in computation
time by a factor of over 200. This is achieved by factorising the [W kn ] matrix of
equation (2.63) into log2N individual or factor matrices such that there are only two
non-zero elements in each row of these matrices, one of which is always unity. Thus,
when multiplying by any factor matrix only N operations are required.

The reduction in the number of multiplications required, to (N /2)log2N , is obtained
by recognising that

WN/2 = −W 0

W(N+2)/2 = −W 1 etc.

To obtain the factor matrices, it is first necessary to re-order the rows of the full
matrix. If rows are denoted by a binary representation, then the re-ordering is by
bit reversal.

For the example where N = 8, row 5, represented as 100 in binary (row 1 is 000),
now becomes row 2, or 001 in binary. Thus, rows 2 and 5 are interchanged. Similarly,
rows 4 and 7, represented as 011 and 110, respectively, are also interchanged. Rows
1, 3, 6 and 8 have binary representations which are symmetrical with respect to bit
reversal and hence remain unchanged.
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The corresponding matrix is now

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 −j −1 j 1 −j −1 j

1 j −1 −j 1 j −1 −j

1 W −j W 3 −1 −W j −W 3

1 −W −j −W 3 −1 W j W 3

1 W 3 j W −1 −W 3 −j −W

1 −W 3 j −W −1 W 3 −j W

This new matrix can be separated into log28 (=3) factor matrices:

1 1

1 −1

1 −j

1 j

1 W

1 −W

1 W 3

1 −W 3

1 1

1 1

1 −1

1 −1

1 −j

1 −j

1 j

1 j
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1 1

1 1

1 1

1 1

1 −1

1 −1

1 −1

1 −1

As previously stated, each factor matrix has only two non-zero elements per row,
the first of which is unity.

The re-ordering of the [W kn ] matrix results in a frequency spectrum which is also
re-ordered. To obtain the natural order of frequencies, it is necessary to reverse the
previous bit reversal.

In practice, a mathematical algorithm implicitly giving factor matrix operations is
used for the solution of an FFT [8].

Using N = 2m, it is possible to represent n and k by m bit binary numbers such that:

n = nm−12m−1 + nm−22m−2 + · · · + 4n2 + 2n1 + n0 (2.64)

k = km−12m−1 + km−22m−2 + · · · + 4k2 + 2k1 + k0 (2.65)

where

ni = 0, 1 and ki = 0, 1

For N = 8:

n = 4n2 + 2n1 + n0

and

k = 4k2 + 2k1 + k0

where n2, n1, n0 and k2, k1, k0 are binary bits (n2, k2 most significant and n0, k0 least
significant).

Equation (2.61) can now be rewritten as:

X(k2, k1, k0) =
1∑

n2=0

1∑
n1=0

1∑
n0=0

1

N
x(n2, n1, n0)W (2.66)
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Defining n and k in this way enables the computation of equation (2.61) to be per-
formed in three independent stages computing in turn:

A1(k0, n1, n0) =
1∑

n2=0

1

N
x(n2, n1, n0)W

4k0n2 (2.67)

A2(k0, k1, n0) =
1∑

n1=0

A1(k0, n1, n0)W
2(k0+2k1)n1 (2.68)

A3(k0, k1, k2) =
1∑

n0=0

A2(k0, k1, n0)W
(k0+2k1+4k2)n0 (2.69)

From equation (2.69) it is seen that the A3 coefficients contain the required X(k)

coefficients but in reverse binary order:

Order of A3 in binary form is k0k1k2

Order of X(k) in binary form is k2k1k0

Hence
Binary Reversed

A3(3) = A3(011) = X(110) = X(6)

A3(4) = A3(100) = X(001) = X(1)

A3(5) = A3(101) = X(101) = X(5)

2.11 Window Functions [9]

In any practical measurement of a time domain signal, it is normal to limit the time
duration over which the signal is observed. This process is known as windowing and is
particularly useful for the measurement of non-stationary signals, which may be divided
into short segments of a quasi-stationary nature with an implied infinite periodicity.
Furthermore, in the digital analysis of waveforms, only a finite number of samples
of the signal is recorded on which a spectral analysis is made. Thus even stationary
signals are viewed from limited time data and this can introduce errors in the frequency
spectrum of the signal.

The effect of windowing can best be seen by defining a time domain function which
lies within finite time limits. Outside of these, the function is zero. The simplest window
function is the rectangular window of Figure 2.13(a). The frequency spectrum of this
function, obtained in Section 2.6, is also included.

The application of a window function has the effect of multiplying each point of
a time domain signal by the corresponding time point of the window function. Thus,
within a rectangular window, the signal is just itself, but outside of this the signal is
completely attenuated although a periodicity of the signal within the window is implied
outside the defined window. This time domain multiplication has its equivalent in the
frequency domain as the convolution of the spectra of the window function and the
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x( f )∗W( f )

x( f )
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−T/2 −T/2T/2 T/2

Figure 2.13 Infinite periodic function processed with a rectangular window function:
(a) rectangular window function and frequency spectrum; (b) periodic function x(t) = A cos(4

π t/T ) and frequency spectrum; (c) infinite periodic function viewed through a rectangular
time window

signal. This is illustrated for an infinite periodic function and a rectangular window
function in Figure 2.13(b) and (c). It can be observed that there is significant power in
the frequencies of the side lobes about the fundamental frequency, which is not present
in the infinite fundamental frequency waveform.

“In this sample case where the signal x(t) is of fundamental frequency f1 only, with
a sampled frequency spectrum, the spectral components of the function x(t). W(t) are
integer multiples of f1 and lie at the zero crossings of X(f ). Hence the only spectral
component which contributes is that being evaluated, i.e. the component at f1.”

However, it is highly likely that waveforms will be made up of many frequency
components, not necessarily integer multiples of the fundamental window frequency
f1. Consequently, discontinuities will exist between the function at the start and finish
of the window, which will introduce uncertainty in the identification of the periodic
components present, since Fourier analysis assumes periodicity of functions and con-
tinuity at the boundaries. The resulting error is known as spectral leakage and is the
non-periodic noise contributing to each of the periodic spectral components present.

As an illustration of spectral leakage with respect to a single-frequency periodic
waveform Fig. 14(a) shows the case where the time window is an exact multiple of
the waveform period, 14(b) the phase discontinuity for a worst case sample and 14(c)
when viewed as a discrete frequency spectrum. Besides the main frequency component
there are high side lobes and d.c.



40 HARMONIC ANALYSIS

x (t)

x (t)
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T ′
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t

Figure 2.14 Infinite periodic signal viewed during different duration time windows with
periodicity implied: (a) the time window is an exact multiple of the period of the waveform;

(b) the time window is a (2n + 1)/2 multiple of the period of the waveform; (c) case
(b) viewed as a discrete frequency spectrum

2.11.1 The Picket Fence

The combination of the DFT and window function produces a response equivalent to
filtering the time domain signal through a series of filters with centre frequencies at
integer multiples of 1/T , where T is the sampling period. The filter characteristic and
the associated leakage are determined by the particular window function chosen. The
resulting spectrum can therefore be considered as the true spectrum viewed through
a picket fence with only frequencies at points corresponding to the gaps in the fence
being visible.

When the signal being analysed is not one of these discrete, orthogonal frequencies,
then, because of the non-ideal nature of the DFT filter, it will be seen by more than one
such filter, but at a reduced level in each. The effect can be reduced by adding a number
of zeros, usually equivalent to the original record length, to the data to be analysed.
This is called zero padding. This effective increase in the sampling period T introduces
extra DFT filters at points between the original filters. The bandwidth of the individual
filters still depends upon the original sample period and is therefore unchanged.
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2.11.2 Spectral Leakage Reduction

The effect of spectral leakage can be reduced by changing the form of the window
function. In particular, if the magnitude of the window function is reduced towards
zero at the boundaries, any discontinuity in the original waveform is weighted to a
very small value and thus the signal is effectively continuous at the boundaries. This
implies a more periodic waveform, which has a more discrete frequency spectrum.

A number of window functions are shown in Figure 2.15, along with their Fourier
transforms, which give a measure of the attenuation of the side lobes that give rise to
spectral leakage.

2.11.3 Choice of Window Function

The objective in choosing a window to minimise spectral leakage is to obtain a
main-lobe width which is as narrow as possible, so that it only includes the spectral
component of interest, with minimal side-lobe levels to reduce the contribution from
interfering spectral components. These two specifications are interrelated for realis-
able windows and a compromise is made between main-lobe width compression and
side-lobe level reduction.

The rectangular window function, defined by

W(t) =
{

1 for −T /2 < t < T/2
0 otherwise

(2.70)

has a noise or effective bandwidth of 1/T , where T is the window length; the side-
lobe levels are large (−13 dB from the main lobe for the first side lobe), and their
rate of decay with frequency is slow (being 20 dB per decade). This means that when
evaluating the fundamental component of a signal, interfering spectral components
near to it will be weighted heavily, contributing greater interference to the fundamental
component than for the other windows illustrated in Figure 2.15.

However, as mentioned previously, there is one situation where the rectangular win-
dow ideally results in zero spectral leakage and high spectral resolution. This situation
occurs when the duration of the rectangular window is equal to an integer multiple of
the period of a periodic signal. When the rectangular window spans exactly one period,
the zeros in the spectrum of the window coincide with all the harmonics excepting
one. This results in no spectral leakage under ideal conditions. Consequently, spectrum
analysers often incorporate the rectangular window function facility for the analysis
of periodic waveforms, to which the duration of the window can be matched. This is
achieved through the use of a phase-locked loop. This frequency matching gives the
greatest resolution of the periodic frequency.

The triangular window, defined by

W(t) =
{

1 + 2t/T for −T /2 < t < 0
1 − 2t/T for 0 < t < −T /2
0 otherwise

(2.71)

is a simple modification of the rectangular window, where the amplitude of the mul-
tiplying window is reduced linearly to zero from the window centre. The reduction of
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Figure 2.15 Fourier transform pairs of common window functions (a) rectangular;
(b) triangular; (c) cosine squared (Hanning); (d) Hamming; (e) Gaussian; (f) Dolph-Chebyshev
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the side-lobe is readily seen in Figure 2.15(b), but this is at the expense of main-lobe
width and a consequent reduction in frequency resolution.

An international standard window function often incorporated into spectrum analy-
sers is the cosine-squared or Hanning window, defined by

W(t) = 1

2

(
1 − cos

2πt

T

)
for − T

2
< t <

T

2
(2.72)

and in which it is the power term that is cosine squared. This function is easily
generated from sinusoidal signals and in FFT analysers a table of cosine values can be
utilised for generating the window. The main lobe noise bandwidth is greater than that
for the rectangular window, being 1.5T ; however, the highest side lobe is at −32 dB
and the side-lobe fall-off rate is 60 dB per decade, thus reducing the effect of spectral
leakage. This is illustrated in Figure 2.16, where the Hanning window is compared to
the rectangular window for side-lobe level reduction.

By mounting the Hanning window on a small rectangular pedestal (but limiting the
maximum of the function to unity), the Hamming window is obtained. This is described
in its amplitude form as

W(t) = 0.54 − 0.46 cos
2πt

T
for −T

2
< t <

T

2
(2.73)

The second side lobe of the rectangular function coincides with the first side lobe of
the Hanning function, and since these are in opposite phase, they can be scaled to cancel
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Figure 2.16 Power spectrum versus log(frequency) for selected window functions. ( ),
Rectangular window; (- - - -), Hanning window; (- ·- ·- ·-), Hamming window
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each other. As a consequence, the highest side-lobe level is −42 dB (Figure 2.16). The
remaining side lobes are dominated by the rectangular function and have a fall-off rate
of 20 dB per decade. A slight improvement in main-lobe noise bandwidth (to 1.4/T )

is observed also.
The ideal window, which has a single main lobe and no side lobes, is in the form

of a Gaussian function:

W(t) = exp(−t2/2σ 2) (2.74)

The Gaussian function has the property of transforming, by the Fourier transform,
to another Gaussian function. On a decibel scale, its shape is that of an inverted
parabola, with a characteristic which becomes successively steeper. Theoretically, the
Gaussian function is defined between infinite time limits. For practical use, the function
is truncated at three times the half-amplitude width, which is 7.06 times the standard
deviation. As a consequence, side lobes are established in the power spectrum but these
are of the order of −44 dB down. The main-lobe noise bandwidth is wider than the
previous windows, being 1.9/T .

The final window, presented in Figure 2.15(f), is the Dolph-Chebyshev function, the
discrete form of which is defined as

W(t) = (−1)r cos[N cos−1[β cos(πr/N)]]

cosh[n cosh−1(β)]
for 0 < r < N − 1 (2.75)

where r is an integer, N is the number of discrete samples of the window function,

β = cosh

[
1

N
cosh−1(10α)

]

and the inverse hyperbolic cosine is defined by

cosh−1 x =
{
π/2 − tan−1[x/

√
(1 − x2)] for |x| < 1.0

1n[x + √
(x2 − 1)] for |x| > 1.0

This function provides the narrowest possible main-lobe width for a given specified
side-lobe level, which is constant on a decibel scale. The side-lobe levels are controlled
by the parameter in equation (2.75). With α = 4.0 the side lobes are at −80 dB (0.01%)
with respect to the main lobe.

2.11.4 Main-Lobe Width Reduction

In obtaining low side-lobe levels to reduce spectral leakage, in all the window func-
tions previously mentioned, there has been a sacrifice of main-lobe bandwidth. It is
possible that in harmonic analysis, when evaluating, for example, the fundamental of
a waveform, the resolution is such that the d.c. component and the second and third
harmonics are included within the main lobe. This causes considerable interference in
the individual harmonic evaluations and restricts the identification of spectral leakage
effects to higher order frequencies and noise, outside the main lobe.
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However, with the ability to change the side-lobe level with the Dolph-Chebyshev
window, an algorithm presents itself to effectively reduce the main-lobe bandwidth.

Consider the complex fundamental Fourier component of the waveform, multiplied
by the Dolph-Chebyshev window function, i.e. W(r) · x(r)Nr=1, obtained by the appli-
cation of the DFT (using the FFT technique):

X1 = W0C1 + W1C2 + W2C3 + W−2C−1 + W−3C−2 + W−4C−3 + W−1C0

+
N/2∑
n=3

WnCn+1 +
N/2−1∑
n=4

W−n+1C−n (2.76)

where W are the discrete window coefficients in the frequency domain and Cn = C−n

are the complex periodic Fourier coefficients of harmonic order n.
By pre-processing the waveform, the d.c. component can be removed, thereby elim-

inating C0 in equation (2.76). In addition, since the last two terms of this equation
include all the higher-order harmonics and noise, but are weighted with window coef-
ficients of the order of 0.01%, they can also be neglected. Equation (2.76) can therefore
be reduced to:

X1 = C1(W0 + W−2) + C2(W1 + W−3) + C3(W2 + W−4) (2.77)

Application of the DFT to the windowed discrete time-domain waveform yields a
value for X1. The window coefficients in the frequency domain are known by the defin-
ing equation (2.73) and hence only the three harmonic terms C1, C2, C3 are known.

The use of three windows, each with a different α parameter, and the application of
the DFT three times to the same waveform, produces three simultaneous equations of
the same form as equation (2.77). The solution of these leads directly to the values of
C1, C2 and C3, i.e. the fundamental component and second and third harmonics of the
original waveform.

As an illustration of the effectiveness of this algorithm, consider the function
defined by

x(t) = C1 cos(2πf1t + φ1) +
7∑

n=2

Cn cos(n2πf1 + φn) (2.78)

where C1 = 1.0 and Cn = 0.2 for n = 2 to 7, for which 32 samples were available.
With window filtering the error introduced by the higher harmonics in the identi-

fication of C1 was limited to 0.16%. However, when a non-periodic component of
frequency 5.65f1 and magnitude 0.2 was introduced into x(t), the error in identifying
C1 without window filtering was 2%. With the Dolph-Chebyshev window and using
α values of 3.2, 3.5 and 3.8, the error was reduced to 0.36%.

2.11.5 Application to Inter-Harmonic Analysis [10]

If frequencies not harmonically related to the sampling period are present or the
waveform is not periodic over the sampling interval, errors are encountered due to
spectral leakage.
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Section 2.11 has shown that the method normally used to minimise spectral leakage
and obtain accurate magnitude and frequency information involves the use of windows.
Windowing functions weight the waveform to be processed by the FFT in such a way
as to taper the ends of the sample to near zero.

Figure 2.17 illustrates a waveform containing the six steady-state frequency com-
ponents shown in Table 2.1. The resulting waveform is not periodic and appears even
asymmetric depending on the observation interval.

Applying the Hanning window to the waveform of Figure 2.17 produces the wave-
form shown in Figure 2.18 and spectrum shown in Figure 2.19.

Even with the use of windowing functions, closely spaced inter-harmonic frequencies
are hard to determine due to the resolution of the FFT as determined by the original

Table 2.1 Frequency components of
example system

Frequency Magnitude

50 1.0
104 0.3
117 0.4
134 0.2
147 0.2
250 0.5

4

2

0

−2

−4
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.1

Figure 2.17 Waveform with harmonic and inter-harmonic components
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Figure 2.18 Result of Hanning window
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Figure 2.19 FFT spectrum of Figure 2.17
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Figure 2.20 Result of FFT analysis of Figure 2.19 with four-fold zero padding

sampling period, which is 8 cycles of 50 Hz in this case. The use of the zero padding
technique can result in a much more accurate determination of the actual inter-harmonic
frequency component magnitudes and frequencies. Figure 2.20 shows the results of
applying a four-fold zero padding before performing the FFT.

Note that the resolution has been improved enough to accurately determine the
magnitude and frequency of each component even though the sampled waveform was
not periodic and some of the inter-harmonic components are very close to each other.

2.12 Efficiency of FFT Algorithms

2.12.1 The Radix-2 FFT

The complex radix-2 [11] is the standard FFT version and is usually available in DSP
libraries. A number of alternative algorithms, such as the higher radix, mixed radix
and split radix, have been developed but the radix-2 is still widely used. It relies on
a decomposition of the set of N inputs into successively smaller sets on which the
DFT is computed until sets of length 2 remain. Figure 2.21 represents this approach,
which requires that the number of input points N is a power of two (N = 2v). The
decomposition in this way can then be performed v times.

Each of the 2-point DFTs consists of a butterfly computation as depicted in
Figure 2.22. It involves the two complex numbers a and b, where b is multiplied
by the complex phase factor and then the product is added and subtracted from a.
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Figure 2.21 Decomposition of an 8-point DFT into 2-point DFTs by the radix-2
FFT algorithm

a

b
−1

A = a + Wr
Nb

B = a − Wr
Nb

Wr
N

+

+

Figure 2.22 Butterfly computation with twiddle factor Wr
N

One butterfly hence requires one complex multiplication and two complex additions.
Each of the stages consists of N /2 butterflies. Thus to compute the radix-2 FFT, vN /2
butterflies are required. The total number of real operations is 5vN, consisting of 2vN
multiplications and 3vN additions.

2.12.2 Mixed-Radix FFT

The sampling rate of measurement equipment (and step-length for time-domain simula-
tion) is not often chosen to result in 2n sample points for one period of the fundamental
frequencies of 50 Hz or 60 Hz. With the increase in computer power, the mixed-radix
FFT is useful and practical for power system studies, giving flexibility in transform
data size and sampling rate, and eliminating the leakage problem that often occurs with
radix-2 FFT.

FFT algorithms are not limited to the radix-2 family of algorithm’s only. Refer-
ence [12] describes an improvement of these algorithms where radix-2 and radix-4
routines are mixed to produce a more efficient FFT. Single-radix FFTs such as the
radix-3 and the radix-5 require 3, 9, 27, 81, 243, . . . data points and 5, 25, 125,
625, . . . data points, respectively. Algorithms based on routines higher than radix-10
require too many points for efficient computation.

More flexibility in the selection of data size is therefore provided by the mixed-
radix FFT. For example, a 2000-point DFT can be achieved using a mixed-radix FFT
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Figure 2.23 12-point 2 × 3 × 2 FFT flow chart

to perform the DFT in 2 × 2 × 2 × 2 × 5 × 5 × 5 or 2 × 10 × 10 × 10. Single-radix
FFTs for radices 2, 3, 4, 5, 6, . . . can be stacked in any order to accommodate the
desired number of data points. Figure 2.23 gives a simple flow chart showing a 12-point
(2 × 3 × 2) FFT.

2.12.3 Real-Valued FFTs

FFT algorithms are designed to perform complex multiplications and additions but
the input sequence may be real. This can be exploited to compute the DFT of two
real-valued sequences of length N by one N -point FFT. This is based on the linearity
of the DFT and on the fact that the spectrum of a real-valued sequence has complex
conjugate symmetry, i.e.

X(k) = X∗(N − k), k = 1 . . .
N

2
− 1 (2.79)

while X(k) and X(N /2) are real. A complex-valued sequence x[n] defined by two
real-valued sequences x1[n] and x2[n] such that

x[n] = x1[n] + jx 2[n] (2.80)

has a DFT that, due to the linearity of the transform, may be expressed as

X(k) = X1(k) + jX 2(k) (2.81)

The DFTs of the original sequences are then given by

X1(k) = 1
2 [X(k) + X∗(N − k)]

X2(k) = 1
(2j)

[X(k) + X∗(N − k)] (2.82)

The extra amount of computation needed to recover the DFTs according to
equation (2.82) is small. Since X1(k) and X2(k) represent the DFTs of real sequences,
they must have complex conjugate symmetry (equation (2.79)) and only the values for
k = 0 . . . N /2 need to be computed. For k = 0 or k = N /2 the result will be real. Thus
for two length N real-valued sequences, the total number of computations amounts to
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Figure 2.24 Radix-2 FFT of length 16 with real inputs. Real values are indicated by x,
complex ones by o. The complex values connected by arcs are conjugates of each other. The

solid lines represent the butterflies that need to be computed. Reproduced from [13]

one N -point FFT plus 2N − 4 extra additions, which essentially means that the number
of operations compared to the standard FFT is halved by this technique.

An even more efficient technique [13] is based on the fact that complex conjugate
symmetry not only exists at the output of the FFT algorithm (coefficients X(k)) but also
at every stage. This is shown in Figure 2.24 for a 16-point FFT with real-valued inputs.
Thus the complex conjugate values need not be calculated (saving five butterflies in
Figure 2.24).

Although the concept can be applied to any kind of FFT algorithm, the split-radix
FFT algorithm is recommended because it requires fewer operations than a radix-2
FFT, a radix-4 FFT or any higher radix FFT. It is called ‘split-radix’ because an N -
point DFT is broken up into a length N /2 DFT over the inputs with even indices and
two length N /4 DFTs over the inputs with odd indices. This scheme is then iterated
through all stages of the transform. A corresponding real-valued inverse split-radix
FFT exists (in this case the outputs being real-valued).

The computational complexity of the real-valued split-radix FFT is reduced to:

#mul = 2
3vN − 19

9 N + 3 + (−1)v

9

#add = 4
3vN − 17

9 N + 3 − (−1)v

9
(2.83)

#total = 2vN − 4N + 6

where 2v = N .

2.12.4 Partial FFTs

FFT algorithms generally compute N frequency samples for a length N input sequence.
If only a narrow band of the spectrum is of interest, i.e. fewer than the N outputs are
needed, there are methods to reduce the complexity of the FFT accordingly.
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One way is to compute the desired DFT points directly using digital filters, which
resonate at the corresponding frequencies [14]. Another well-known technique is FFT
pruning [15] where the branches in the tree-like FFT flow graph (see Figure 2.24) that
lead to unwanted outputs are removed. Instead of a full set of N points, a smaller
subset of L points, which must occur in a sequence, can be calculated.

A more flexible and efficient method is transform decomposition (TD) [16], where
S output points, which need not be in a sequence, are computed by decomposing
the N -point DFT into Q P -point DFTs (N = PQ). Subsequently, each of the P -
point DFTs is computed and recombination (multiplication by the phase factors and
summation) leads to the desired S output points. This process is shown in the block
diagram of Figure 2.25 for an 8-point DFT. Any FFT algorithm may be used and
therefore the real-valued split-radix algorithm described in the previous section is the
best choice.

The overhead for the transform decomposition amounts to:

#mul = 4QS

#add = 4QS − 2S (2.84)

#total = 8QS − 2S

To obtain the total number of operations for the TD, the computations for the Q

length P split-radix have to be added. These follow from equation (2.83), RFFTs where
the operation counts of an N -point split-radix RFFT are given, and the total becomes:

#total = 2N [log2 P − 2 + (3 + 4S)/P ] − 2S (2.85)

Table 2.2 lists the number of operations required by each of the FFT algorithms
discussed in this section to compute the DFT for a number of inputs and outputs. The
savings achieved by the TD are more than 75%.

Input
mapping DFTs Recombination

x0[0] W0
8

W0
8

W5
8

W7
8
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8

W0
8
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x1[0]

x1[1] X(5)

x1[2]

x1[3]

X0[0]
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X1[0]

X1[1]

X1[2]
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x[5]

x[6]

x[7] X(7)
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DFT
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DFT

Figure 2.25 Transform decomposition of an 8-point DFT (Q = 2, P = 4). Only S = 3
output points are computed
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Table 2.2 Number of operations (real multiplications and additions) required for the DFT
computation by the discussed FFT algorithms. The last column indicates the savings of the

transform decomposition over a standard FFT

Number of DFTs Number of operations Reduction (%)

Inputs N Outputs S

(0–5 Hz)
Standard

FFT
Split-radix

RFFT
TD + split-radix

RFFT

512 9 23 040 7 174 4 302 81.3
1024 17 51 200 16 390 10 430 79.6
2048 33 112 640 36 870 24 734 78.0
4096 65 245 760 81 926 57 438 76.6
8192 129 532 480 180 230 131 038 75.4

2.13 Alternative Transforms

Traditionally, the Fourier transform has almost exclusively been used in power as
well as most other engineering fields, therefore this book concentrates on assessment
techniques based on Fourier analysis.

Three principal alternatives have been discussed at great length in recent literature
with reference to potential power system applications. These are the Walsh, Hartley
and Wavelets transforms.

As in the Fourier case, the Walsh transform [17] constitutes a set of orthogonal
functions. It is extremely simple conceptually, as it involves only square wave com-
ponents, but for accurate results it needs a large number of terms for the processing of
power system waveforms. Moreover, it does not benefit from the differential-to-phasor
transformation, and handling differentiation and integration, common operations in
power systems.

The Hartley transform [17], also using the orthogonal principle, is expressed as

F(v) = 1√
2π

∫ ∞

−∞
f (t) cas(vt) dt (2.86)

where

cas(vt) = cos(vt) + sin(vt)

and v is identical to the ω of Fourier, i.e. radians/second.
Moreover, its inverse, i.e.

f (t) = 1√
2π

∫ ∞

−∞
F(v) cas(vt) dt (2.87)

has exactly the same form, and this leads to simpler software. An important difference
between the Fourier and Hartley transforms is that the latter is all real and thus requires
only one half of the memory for storage (i.e. one real quantity as compared with one
complex quantity of Fourier’s). Also, the convolution operation requires only one real
multiplication as compared with four multiplications in the Fourier domain.
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However, the Fourier transform is widely spread throughout the power system field
and permits a very convenient assessment of magnitude and phase information. The
latter is not always required, however, and in such cases the efficiency of the Hart-
ley transform may be sufficiently attractive for it to be used as an alternative to the
traditional philosophy.

Owing to the interest generated in the potential applications of wavelets, this trans-
form is given special consideration in the next section.

2.13.1 The Wavelet Transform

The WT, originally derived to process seismic signals, provides a fast and effective
way of analysing non-stationary voltage and current waveforms. As in the Fourier case,
the Wavelet transform decomposes a signal into its frequency components. Unlike the
Fourier transform, the wavelet can tailor the frequency resolution, a useful property in
the characterisation of the source of a transient.

The ability of wavelets to focus on short time intervals for high-frequency compo-
nents and long intervals for low-frequency components improves the analysis of signals
with localised impulses and oscillations, particularly in the presence of a fundamental
and low-order harmonics.

A wavelet is the product of an oscillatory function and a decay function. A mother
wavelet is expressed as [18]

g(t) = e−αt2
ejωt (2.88)

An example of a mother wavelet is shown in Figure 2.26.
A variety of wavelets originating from a mother wavelet can be used to approximate

any given function. These wavelets are derived by scaling and shifting (in time) mother
wavelets as shown in Figure 2.27, and can be expressed as

g′(a, b, t) = 1√
a
g

(
t − b

a

)
(2.89)

Figure 2.26 A sample mother wavelet

Figure 2.27 A sample daughter wavelet
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The WT of a continuous signal x(t) is defined as

WT (a, b) = 1√
a

∫ ∞

−∞
f (t)g

(
t − b

a

)
dt (2.90)

The time extent of the wavelet g(t − b/a) is expanded or contracted in time depend-
ing on whether a > 1 or a < 1. A value of a > 1 (a < 1) expands (contracts) g(t) in
time and decreases (increases) the frequency of the oscillations in g(t − b/a). Hence,
as a is ranged over some interval, usually beginning with unity and increasing, the
input is analysed by an increasingly dilated function that is becoming less and less
focused in time.

The WT has a digitally implementable counterpart, the discrete wavelet transform
(DWT).

In DWT, the scale and translation variables are discretised but not the independent
variable of the original signal. It is to be noted that the two variables a and b are
continuous in the continuous transform. However, in the reconstruction process, the
independent variable will be broken down into small segments for ease of computer
implementations. A DWT gives a number of wavelet coefficients depending upon the
integer number of the discretisation step in scale and translation, denoted by m and n,
respectively. So any wavelet coefficient can be described by two integers, m and n.
If a0 and b0 are the segmentation step sizes for the scale and translation, respectively,
the scale and translation in terms of these parameters will be a = am

0 and b = nb0a
m
0 .

In terms of the new parameters a0, b0, m and n, equation (2.89) becomes

g′(m, n, t) = 1√
a0

m
g

(
t − nb0a0

m

a0
m

)
(2.91)

or

g′(m, n, t) = 1√
a0

m
g(ta0 − nb0) (2.92)

and the discrete wavelet coefficients are given by

DWT(m, n) =
∫ ∞

−∞
1√
a0

m
f (t)g(a0

−mt − nb0) dt (2.93)

Although the transformation is over continuous time, the wavelets representation
is discrete and the discrete wavelet coefficients represent the correlation between the
original signal and wavelets for different combinations of m and n.

The inverse DWT is given by

f (t) = K

∞∑
m=0

∞∑
n=0

Wgf (m, n)
1√
a0

m
g(a0

−mt − nb0) (2.94)

where K = (A + B)/2, and A and B are the frame bounds (maximum values of a

and b).
Wavelet analysis is normally implemented using multi-resolution signal decom-

position (MSD). High- and low-pass equivalent filters, h and g respectively, are
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h[n] 2↓ Scale 1

x[n]

…

h[n] 2↓ Scale 2

g[n] 2↓

h[n] 2↓ Scale 4

g[n] 2↓

g[n] 2↓

Figure 2.28 Multi-resolution signal decomposition implementation of wavelet analysis

formed from the analysing wavelet. The digital signal to be analysed is then decom-
posed (filtered) into smoothed and detailed versions at successive scales, as shown in
Figure 2.28, where (2↓) represents a down-sampling by half.

Scale 1 in Figure 2.28 contains information from the Nyquist frequency (half the
sampling frequency) to one quarter the sampling frequency; scale 2 contains informa-
tion from one quarter to one eighth of the sampling frequency, and so on.

Choice of Analysing Wavelets The decomposition can be halted at any scale, with
the final smoothed output containing the information of all of the remaining scales, i.e.
scales 8, 16, 32, . . . if it is halted at scale 4, one of the desirable properties of MSD.

The choice of mother wavelet is different for each problem at hand and can have a
significant effect on the results obtained. Orthogonal wavelets ensure that the signal can
be reconstructed from its transform coefficients [19]. Wavelets with symmetric filter
coefficients generate linear phase shift, and some wavelets have better time localisation
than others.

The wavelet family derived by Daubechies [20] covers the field of orthonormal
wavelets. This family is very large and includes members ranging from highly localised
to highly smooth. For short and fast transient disturbances, Daub4 and Daub6 wavelets
are the best choice, while for slow transient disturbances, Daub8 and Daub10 are
particularly good.

However, the selection of an appropriate mother wavelet without knowledge of the
types of transient disturbances (which is always the case) is a formidable task. A more
user-friendly solution [21] utilises one type of mother wavelet in the whole course of
detection and localisation for all types of disturbances.

In doing so, higher-scale signal decomposition is needed. At the lowest scale, i.e.
scale 1, the mother wavelet is most localised in time and oscillates most rapidly within
a very short period of time. As the wavelet goes to higher scales, the analysing wavelets
become less localised in time and oscillate less due to the dilation nature of the wavelet
transform analysis. As a result of higher-scale signal decomposition, fast and short
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transient disturbances will be detected at lower scales, whereas slow and long transient
disturbances will be detected at higher scales.

Example of Application [21] Figure 2.29(a) shows a sequence of voltage distur-
bances. To remove the noise present in the waveform, squared wavelet transform
coefficients (SWTC) are used at scales m = 1, 2, 3 and 4 (shown in Figure 2.29(b),
(c), (d) and (e), respectively); these are analysed using the Daub4 wavelet.

Figure 2.29(a) contains a very rapid oscillation disturbance (high frequency) before
time 30 ms, followed by a slow oscillation disturbance (low frequency) after time
30 ms. The SWTCs at scales 1, 2 and 3 catch these rapid oscillations, while scale 4
catches the slow oscillating disturbance which occurred after time 30 ms. Note that
the high SWTCs persist at the same temporal location over scales 1, 2 and 4.

It must be pointed out that the same technique can be used to detect other forms of
waveform distortion (like notches and harmonics) and other types of disturbance such
as momentary interruptions, sags and surges.

However, rigorous uniqueness search criteria must be developed for each disturbance
for the wavelet transform to be accepted as a reliable tool for the automatic classification
of power quality disturbances.

2.13.2 Automation of Disturbance Recognition

Some proposals are being made to automate the process of disturbance recogni-
tion [22,23] to improve the speed, reliability and ease of data collection and storage.
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Figure 2.30 Block diagram of the automatic disturbance recognition system

Such a scheme involves the three separate stages illustrated in Figure 2.30. These are
a pre-processing stage to extract the disturbance information from the generated power
signal, a main processing stage to carry out pattern recognition on the disturbance data,
and a post-processing stage to group the output data and form decisions on the possible
nature and cause of the disturbance.

The WT described in Section 2.13.1 is an obvious candidate to extract the distur-
bance information owing to its greater precision and speed over Fourier methods. A
collection of standard libraries of wavelets can be developed to fit specific types of
disturbance or transient.

Artificial neural networks can be used in the main processing stage to perform pattern
recognition. The neural network can be trained to classify the preliminary information
extracted in the pre-processing stage.

The most commonly used type of neural network for pattern recognition is the
multi-layered perceptron. These are constructed as shown in Figure 2.31 and are usu-
ally trained using the recursive error back-propagation algorithm or a modification
thereof [24].

The output of the network is

yk(p) = ϕk


∑

j

wkj (p) · yj (p)


 (2.95)
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Figure 2.31 (a) Multi-layered perceptron; (b) Configuration of an individual neuron
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Finally, fuzzy logic [25,26] is well suited in the post-processing stage to make deci-
sions on the disturbance category. It is simple and fast to compute.

Fuzzy rules must be derived in order to take the information provided by the neural
networks and produce a ‘belief’ in each disturbance category. These rules take the
form of IF . . . THEN relations based on human knowledge of the problem.

The output of the disturbance recognition system is produced as one or a list of
disturbance categories with an associated degree of belief. A list of disturbance cate-
gories with belief degree is necessary, as pattern recognition systems are inexact by
nature. The system should, however, produce high belief degrees only for disturbance
categories that are likely causes.

2.14 Discussion

The Fourier transform is still the most widely utilised signal processing tool in power
system harmonic analysis. For efficient computation its use has been enhanced by the
development of a variety of algorithms under the general heading of the Fast Fourier
transform. The development of effective windows, essential to the analysis of non-
stationary signals, as well as inter-harmonic information, is another important addition
to Fourier assessment.

The main alternatives to the Fourier transform under consideration in power system
analysis are the Walsh, Hartley and wavelets transforms. Although harmonic analysis
implies steady-state conditions, the information recorded from actual measurements is
not necessarily of that type and thus the wavelet approach, although initially designed
for the processing of transients, can also be used to extract harmonic content from
practical power system recordings.

Finally, with the greater availability of computing power it is possible to make more
extensive use of computer-demanding heuristic techniques, such as neural networks
and fuzzy logic, in the processing of power system signals, although at the point of
writing these are mainly confined to the technical literature.
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3

Harmonic Sources

3.1 Introduction

Prior to the appearance of power semiconductors, the main sources of waveform dis-
tortion were electric arc furnaces, the accumulated effect of fluorescent lamps, and to
a lesser extent electrical machines and transformers.

The increasing use of power electronic devices for the control of power apparatus
and systems has been the reason for the greater concern about waveform distortion in
recent times. A power electronic converter can be viewed as a matrix of static switches
that provides a flexible interconnection between input and output nodes of an electrical
power system. Through these switches power can be transferred between input and
output systems operating at the same or different frequencies (one or both of which
can be d.c.).

The most common power electronic aid is the single-phase rectifier, used to power
most modern office and domestic appliances. Although the individual ratings are always
small, their combined effect can be an important source of waveform distortion.

Because of their considerable power ratings, three-phase static power converters are
the main contributors to the harmonic problem. The terms rectification and inversion
are used for power transfers from a.c. to d.c. or d.c. to a.c., respectively and the
term conversion is used when the power electronic device has bi-directional power
transfer capability.

According to the relative position of the firing instant of the switches from one
cycle to the next on the steady state, four basically different power electronic control
principles are in common use:

(1) Constant phase-angle control produces consecutive valve firings equally spaced
with reference to their respective commutating voltages.

(2) Equidistant firing control produces consecutive firings at equal intervals of the
supply frequency.

(3) Modulated phase-angle control produces time-varying phase-modulated firings.

(4) Integral cycle control selects an integer number of complete cycles or half cycles
of the supply frequency.

Power System Harmonics, Second Edition J. Arrillaga, N.R. Watson
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85129-5
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The Fourier analysis as described in Chapter 2 is directly applicable to the phase-
angle controlled and equidistant-firing controlled waveforms, whereas modulated firing
and integral cycle controls require special analysis.

Inverter fed a.c. drives are normally supplied from the a.c. power system through
a line-commutated three-phase rectifier and thus their harmonic contribution to the
power network is covered under the various static converter categories. However, the
inverter side of the drive uses either pulse width modulation (PWM) and/or multi-level
configurations to reduce the harmonic content and, thus requires special consideration.

3.2 Transformer Magnetisation Nonlinearities

3.2.1 Normal Excitation Characteristics

At no-load the primary of a transformer is practically balanced by the back e.m.f.
because the effect of winding resistance and leakage reactance is negligible at low
currents. At any instant, therefore, the impressed voltage v1 for a sinusoidal supply is

v1 = −e1 = −Em sin ωt = N1
dφ

dt
(3.1)

From equation (3.1) the following expression is obtained for the main flux:

φ = −
∫

e1

N1
dt = Em

N1ω
cos ωt = φm cos ωt (3.2)

i.e. a sinusoidal primary voltage produces a sinusoidal flux at no-load. The primary cur-
rent, however, will not be purely sinusoidal, because the flux is not linearly proportional
to the magnetising current, as explained in the next section.

3.2.2 Determination of the Current Waveshape

In an ideal core without hysteresis loss the flux φ and the magnetising current needed
to produce it are related to each other by the magnetising curve of the steel used
in the laminations, as shown in Figure 3.1(a). In Figure 3.1(b), where φ represents
the sinusoidal flux needed to balance the primary voltage, the magnetising current
is plotted against time for each value of φ and the resulting waveform is far from
sinusoidal. However, when operating at or close to the nominal voltage, the transformer
magnetising current is only 1–2% of the rated current and presents no special problem.

When the hysteresis effect is included, as in the case of Figure 3.2, the non-sinusoidal
magnetising current wave is no longer symmetrical about its maximum value. In this
case the current corresponding to any point on the flux density wave of Figure 3.2(b)
is determined from Figure 3.2(a), the ascending portion of the hysteresis being used
for the ascending portion of the flux density wave.

The distortion illustrated in Figures 3.1 and 3.2 is mainly caused by zero-sequence
triplen harmonics and particularly the third. Thus, in order to maintain a reasonably
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Figure 3.1 Transformer magnetisation (without hysteresis): (a) magnetisation curve; (b) flux
and magnetisation current waveforms
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Figure 3.2 Transformer magnetisation (including hysteresis): (a) magnetisation curve;
(b) flux and magnetisation current waveforms

sinusoidal voltage supply, it is necessary to provide a path for the zero-sequence current
harmonics and this is normally achieved by the use of delta-connected windings.

With three-limb transformers the triplen harmonic m.m.f.s are all in phase and they
act in each limb in the same direction. Hence the path of triplen harmonic flux must
return through the air (or rather through the oil and transformer tank) and the higher
reluctance of such a path reduces the triplen harmonic flux to a very small value
(about 10% of that appearing in independent core phases). Thus, flux density and
e.m.f. waveforms remain sinusoidal under all conditions in this case. However, the
elimination of triplen harmonics in the delta-connected windings is only fully effective
when the voltages are perfectly balanced. The magnetising current harmonics often
rise to their maximum levels in the early hours of the morning, i.e. when the system
is lightly loaded and the voltage high.

3.2.3 Symmetrical Overexcitation

For economic reasons transformers are normally designed to make good use of the
magnetic properties of the core material. This means that a typical transformer using a
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good quality grain-oriented steel might be expected to run with a peak magnetic flux
density in the steady state of the order of 1.6–1.7 T. If a transformer running with this
peak operating magnetic flux density is subjected to a 30% rise in voltage, the core
material may be subjected to a magnetic flux density of, say, 1.9–2.0 T, which will
produce considerable saturation.

The problem of overvoltage saturation is particularly onerous in the case of trans-
formers connected to large rectifier plant following load rejection. It has been shown [1]
that the voltage at the converter terminals can reach a level of 1.43 per unit, thus driving
the converter transformer deep into saturation.

The symmetrical magnetising current associated with a single transformer core sat-
uration contains all the odd harmonics. If the fundamental component is ignored, and
if it is assumed that all triplen harmonics are absorbed in delta windings, then the
harmonics being generated are of orders 5, 7, 11, 13, 17, 19 . . ., i.e. those of orders
6k ± 1, where k is an integer. In conventional six-pulse rectifier schemes it is usual
to filter these harmonics from the a.c. busbars as they are exactly of the same order
as the theoretical harmonics produced by a six-pulse converter. If, however, a twelve-
pulse converter configuration is used, the theoretical harmonics are of orders 12k ± 1,
where k is an integer. In this case the fifth- and seventh-order harmonics produced
by a saturated converter transformer are not filtered and have to be absorbed by the
a.c. system.

The composition of the magnetising current versus the exciting voltage is typically
as shown in Figure 3.3.

3.2.4 Inrush Current Harmonics

If a transformer is switched off it can be left with a residual flux density in the core of
magnitude +Br or −Br (or under some circumstances zero). When the transformer is
re-energised the flux density illustrated in Figure 3.4 can reach peak levels of 2Bmax or
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Figure 3.5 Inrush current of a 5 MVA transformer: Br = 1.3 T, α = 0

Br + 2Bmax (almost three times the working flux). For a normally designed transformer
this can create peak flux densities of about 3.4 or 4.7 T, respectively [2]. When this is
compared to the saturation flux density levels of around 2.05 T to be expected from
symmetrical overexcitation, it can be seen that the transformer core will be driven to
extreme saturation levels and will thus produce excessive ampere-turns in the core.
This effect gives rise to magnetising currents of up to 5–10 per unit of the rating (as
compared to the normal values of a few percentage points). Such an inrush current is
shown in Figure 3.5.

The decrement of the inrush current with time is mainly a function of the primary
winding resistance. For the larger transformers this inrush can go on for many seconds
because of their relatively low resistance.

By way of illustration, the Fourier series of the waveshape of Figure 3.5 yields the
harmonic profile shown in Figure 3.6.

The harmonic content, shown as a percentage of the rated transformer current, varies
with time, and each harmonic has peaks and nulls.

3.2.5 D.C. Magnetisation

It has been shown in previous sections that a transformer excited by sinusoidal voltage
produces a symmetrical excitation current that contains only odd harmonics. If a linear
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Figure 3.7 (a) Excitation characteristic; (b) exciting current waveform

or a nonlinear load is connected to this transformer, the excitation current will again
contain only odd harmonics, provided that the load does not produce a direct component
of current.

Under magnetic imbalance, the shape of the magnetising characteristic and the excita-
tion current are different from those under no-load conditions. If the flux is unbalanced,
as shown in Figure 3.7(a), the core contains an average value of flux φdc and the a.c.
flux component is offset by a value equal to φdc. The existence of an average flux
implies that a direct component of excitation current is present in Figure 3.7(b).

Under such unbalanced conditions, the transformer excitation current contains both
odd and even harmonic components. The asymmetry can be caused by any load con-
nected to the secondary of the transformer, leading to a direct component of current,
in addition to the sinusoidal terms. The direct current may be a feature of the design,
as in a transformer feeding a half-wave rectifier, or may result from the unbalanced
operation of some particular piece of equipment, such as a three-phase converter with
unbalanced firing.

A similar effect can occur as a result of geomagnetically induced currents (GIC).
These are very low frequency currents (typically 0.001–0.1 Hz) and can reach levels as
high as 200 A. They enter the transformer windings by way of earthed star connections
and produce asymmetrical flux, causing half-cycle saturation.
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It has been shown [3] that the magnitude of the harmonic components of the excita-
tion current in the presence of direct current on the secondary side of the transformer
increases almost linearly with the direct current content. The linearity is better for the
lower-order harmonics.

Moreover, the harmonics generated by the transformer under d.c. magnetisation are
largely independent of the a.c. excitation. Therefore there appears to be no advantage
in designing a transformer to run ‘underfluxed’ in the presence of direct current. This
independence is most noticeable at low levels of the direct current and for the lower
harmonic orders.

3.3 Rotating Machine Harmonics

3.3.1 M.m.f. Distribution of A.C. Windings

Figure 3.8 shows the m.m.f. and flux distribution in one phase of a full-pitched
poly-phase winding with one slot per pole per phase on the assumption of a constant
air gap and in the absence of iron saturation.

Under such idealised conditions the air-gap m.m.f. is uniform and has a maximum
value (iN)/2, where i is a maximum instantaneous current per conductor and N is the
number of conductors per slot.

The frequency-domain representation of the rectangular m.m.f. space distribution of
Figure 3.8 is

F(x) = 2
√

2IN

π

{
sin

2πx

λ
+ 1

3
sin

(
3

2πx

λ

)
+ 1

5
sin

(
5

2πx

λ

)
+ · · ·

}
(3.3)

Thus, the rectangular m.m.f. distribution is reduced to a fundamental and har-
monic components. The amplitude of the nth harmonic is 1/n times the fundamental
pole pitch.

In general, for an alternating current of angular frequency ω = 2πf , equation (3.3)
becomes

F(x) = 2
√

2IN

π
sin(ωt)

∞∑
n=1

1

n
sin

(
n

2πx

λ

)
, for n odd (3.4)

where λ is the wavelength and I the r.m.s. value of the current.
However, in practice the windings are distributed along the surface with g slots per

pole per phase and the m.m.f.s of the g coils are displaced from each other in space.

x = 0

x
√2IN/2

l = 2p

Figure 3.8 M.m.f. and flux distribution of full-pitch winding with one slot per pole
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Figure 3.9 Determination of distribution factor

Moreover, the displacement angle is different for the various harmonics since their
pole pitches are different.

For an m-phase machine, the number of slots per pole is Q = mg and the electrical
angle between slots α = π/Q.

The distribution factor is

Kd = Resultant m.m.f.

Sum of m.m.f.s of individual coils
.

From the geometry of Figure 3.9,

kd = sin(gα/2)

g sin(α/2)
(3.5)

for the fundamental frequency, and

kdn = sin(ngα/2)

g sin(nα/2)
(3.6)

for the nth harmonic.
Hence the m.m.f. of one phase of a poly-phase winding is

F(x) = 2
√

2IN

π
g sin(ωt)

∞∑
n=1

kdn

n
sin

(
n

2πx

λ

)
, for n odd (3.7)

3.3.2 Three-Phase Winding

The phase windings of a three-phase machine are displaced by 2π /3 in space and the
currents by 2π /3 in time. The corresponding m.m.f.s are

F1(x) = 2
√

2IN

π
g sin ωt

{ ∞∑
n=1

kdn

n
sin

(
n

2πx

λ

)}
(3.8)
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(3.10)

The total m.m.f. is F(x) = F1(x) + F2(x) + F3(x), and its nth harmonic term is
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Putting in turn n = 1, 3, 5, etc.

F(x) = 3
√

2IN

π
g

{
(kd1) cos

(
2πx

λ
− ωt

)
+

(
kd5

5

)
cos

(
5 × 2πx

λ
+ ωt

)

+
(

kd7

7

)
cos

(
7 × 2πx

λ
− ωt

)
+ · · ·

}
(3.12)

It can be seen that the fundamental is a travelling wave moving in the positive
direction, triplen harmonics (3, 9, 15, etc.) are absent, the fifth harmonic is a wave
travelling in the negative direction, the seventh travels in the positive direction, etc.

3.3.3 Slot Harmonics

If the machine has mg slots per pole (as shown in Figure 3.10), the variation of
permeance in the air gap can be approximated by

A1 + A2 sin

(
2mg

2πx

λ

)
(3.13)

Since the fundamental m.m.f. varies as B sin(2πx/λ), the resultant flux density
variation is {

B sin
2πx

λ

} {
A1 + A2 sin

(
2mg

2πx

λ

)}
(3.14)
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Figure 3.10 Slot harmonics

which has a fundamental frequency component, i.e.

A1B sin

(
2πx

λ

)
(3.15)

and frequency components expressed as

A2B sin
2πx

λ
sin
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2mg

2πx

λ

)
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2
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cos
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2πx

λ
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)
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λ
(2mg+1)

)}

(3.16)
Therefore slotting gives rise to harmonics of orders 2mg ± 1.

3.3.4 Voltage Harmonics Produced by Synchronous Machines

If the magnetic flux of the field system is distributed perfectly sinusoidally around the
air gap, then the e.m.f. generated in each full-pitched armature coil is 2πf φ sin ωt

volts per turn. Here φ is the total flux per pole and the frequency f is related to speed
N (in revolutions per second) and pole pairs p by f = Np. However the flux is never
exactly distributed in this way, particularly in salient pole machines. A non-sinusoidal
field distribution can be expressed as a harmonic series:

F(x) = F1 sin

(
2πx

λ

)
+ F3 sin

(
3 × 2πx

λ

)
+ F5 sin

(
5 × 2πx

λ

)
+ · · · (3.17)

The machine can be considered to have 2p fundamental poles together with
6p, 10p, . . ., 2np harmonic poles, all individually sinusoidal and all generating e.m.f.s
in an associate winding. The winding e.m.f. can be expressed as a harmonic series:

E(t) = E1 sin ωt + E3 sin 3ωt + E5 sin 5ωt + · · · (3.18)
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The magnitudes of the harmonic e.m.f.s are determined by the harmonic fluxes,
the effective electrical phase spread of the winding, the coil span, and the method of
interphase connection.

For an integral slot winding with g slots per pole per phase and an electrical angle
α between slots, the distribution factor for the nth harmonic is

kdn = sin(ngα/2)

g sin(nα/2)
(3.19)

If the coils are chorded to cover (π ± θ) electrical radians, the flux linked is reduced
by cos(θ /2) and the e.m.f. is reduced in proportion. The effective chording angle for
harmonics of order n is nθ . Hence the general coil-span factor is

ksn = cos(nθ/2) (3.20)

By suitable choice of kd and ks many troublesome e.m.f. harmonics can be minimised
or even eliminated. The triplen harmonics in a three-phase machine are generally
eliminated by phase connection, and it is usual to select the coil span to reduce fifth
and seventh harmonics.

Standby generators with neutral require special consideration in this respect, as illus-
trated by the following example.

A standby generator had to be designed to supply a 250 kVA load consisting mainly
of fluorescent lighting appliances. A neutral current of 40 A was considered sufficient
for the generator design. However, in practice the machine generated 250 A of third-
harmonic zero sequence and had to be rewound with a two-thirds pitch (i.e. ks3 = cos
(3 × 60/2) = 0).

Slotting (the slots being on the stator) produces variation of permeance, which may be
represented as A2 sin[2mg(2πx/λ)]. The fundamental rotor m.m.f. can be represented
as a travelling wave F1 cos[(2πx/λ − ωt)]. The slot ripple component of flux density
is of the form

F1A2 sin

(
2mg

2πx

λ

)
cos

(
2πx

λ
− ωt

)
(3.21)

This can be resolved into two counter-rotating components, i.e.

F1A2

2

{
sin

[
(2mg + 1)

2πx

λ
− ωt

]
+ sin

[
(2mg − 1)

2πx

λ
+ ωt

]}
(3.22)

which are slow-moving multi-pole harmonics. Their wavelengths are λ/(2mg ± 1) and
the corresponding velocities are f λ/(2mg ± 1). As the number of waves passing any
point on the stator per second is (speed ÷ wavelength), obviously each component
induces an e.m.f. of fundamental frequency in the armature.

Relative to the rotor, however, these two waves have different velocities. The
rotor velocity being f λ, the waves travel at velocities f λ − [f λ/(2mg + 1)] and
f λ + [f λ/(2mg − 1)] with respect to the rotor. In any closed rotor circuit each of these
will generate currents of frequency 2mgf (by considering the ratio of speed to wave-
length) and these superimpose a time-varying m.m.f. at frequency 2mgf on the rotor
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fundamental m.m.f. This can be resolved into two counter-rotating components rela-
tive to the rotor, each travelling at high velocity 2mgf λ, and therefore at 2mgf λ ± f λ

relative to the stator. The resultant stator e.m.f.s have frequencies (2mg ± 1)f .
Slot harmonics can be minimised by skewing the stator core, displacing the centre

line of damper bars in successive pole faces, offsetting the pole shoes in successive
pairs of poles, shaping the pole shoes, and by the use of composite steel–bronze wedges
for the slots of turboalternators.

It can be shown that the distribution factor for slot harmonics is the same as for the
fundamental e.m.f.; it is not reduced by spreading the winding. Fractional instead of
integral slotting should be used.

3.3.5 Rotor Saliency Effects

In the extreme case of perfect saliency, the flux concentrates exclusively in the direct
axis of the rotor. If the stator current is of positive sequence, the field produced by this
current in the rotor is stationary, and only causes armature reaction at the fundamental
frequency. On the other hand, the flux produced by a negative sequence stator cur-
rent can be divided into two components rotating in opposite senses, which therefore
induce two e.m.f.s in the stator, one of them of negative sequence at the fundamental
frequency and the other of positive sequence at third harmonic. The latter, using the
same reasoning, will produce fifth-harmonic voltage and this in turn will create some
seventh harmonic, etc. This mechanism is illustrated in Figure 3.11 for the case of a
machine connected to an asymmetrical transmission line.

The above reasoning can be extended to the presence of harmonic currents in the
stator. If the stator contains a current of harmonic order h and positive sequence, the
rotor flux will include two opposite rotating fields of order (h − 1) that will induce a
positive sequence voltage of order h and a negative sequence voltage of order (h − 2).
Similarly the negative sequence current of order h will produce two opposite rotating
fields of order (h + 1) that will cause a negative sequence voltage of order h and
another positive sequence of order (h + 2). This effect is illustrated in Figure 3.12
with reference to the presence of seventh harmonic, of either positive or negative
sequence.

In practice, as the machine poles are not completely salient and the transmission
line is approximately symmetrical, the effect discussed above is not significant. Con-
sequently, when carrying out harmonic penetration studies, the salient pole effect is
normally neglected and the synchronous machine represented as a linear impedance.
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Figure 3.11 Mechanism of harmonic generation in a machine with salient poles
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Figure 3.12 Response of a salient-pole synchronous generator to the presence of a
harmonic current

However, in special cases when either the load is asymmetrical or the generator
feeds static converter equipment the machine can be an important source of har-
monic generation.

3.3.6 Voltage Harmonics Produced by Induction Motors

The speed of the synchronous rotating field of the stator of an induction motor is the
fundamental frequency times the wavelength, i.e. f1λ. For a slip s, the rotor speed is
thus f1λ(1 − s) and the frequency of the rotor currents sf1.

Time harmonics are produced by induction motors as a result of the harmonic content
of the m.m.f. distribution and are speed dependent.

A harmonic of order n in the rotor m.m.f. (i) has a wavelength λ/n; (ii) travels at
a speed ±(sf )λ/n with respect to the rotor; and (iii) travels at a speed f λ(1 − s) ±
(sf )λ/n with respect to the stator.

This harmonic induces an e.m.f. in the stator at a frequency equal to the ratio
speed ÷ wavelength, i.e.

f 1 = f λ(1 − s) ± (sf )(λ/n)

λ/n
= f {n − s(n ± 1)} (3.23)

the positive sign being taken when the harmonic rotor m.m.f. travels in the opposite
direction to the fundamental.

Harmonics can also occur as a result of electrical asymmetry. Consider an electrically
unbalanced rotor winding, the stator winding being balanced such that the supply
voltage produces a pure rotating field travelling at speed f λ. Slip frequency e.m.f.
is induced in the rotor but, since the rotor winding is unbalanced, both positive and
negative phase sequence currents will flow, giving fields in the forward and reverse
directions. These travel at speed ±sf λ with respect to the rotor, and therefore at
f λ(1 − s) ± sf λ with respect to the stator. The frequencies of stator e.m.f.s induced
by these fields are f and (1 − 2s)f , the latter being considered here as a harmonic
frequency. Interaction of harmonic and mains frequency currents results in beats at this
low frequency 2sf being registered on connected meters.
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Table 3.1 Typical harmonic currents produced by a wound-rotor induction motor

Frequency (Hz) Current as a percentage
of fundamental

Cause

20 3.0 Pole unbalance
40 2.4 Rotor phase unbalance
50 100.0 Fundamental mutual
80 2.3 Pole unbalance

220 2.9 5th and 7th harmonic
320 3.0 mutuals
490 0.3 11th and 13th harmonic
590 0.4 mutuals

Source: [4]

An idea of the relative magnitudes of the harmonic current produced by a wound-
rotor induction motor and their cause is given in Table 3.1 for a six-pole motor running
at a speed of 0.9 per unit.

3.4 Distortion Caused by Arcing Devices

The voltage-current characteristics of electric arcs are highly nonlinear. Following arc
ignition the voltage decreases due to the short-circuit current, the value of which is
only limited by the power system impedance.

The main harmonic sources in this category are the electric arc furnace, discharge-
type lighting with magnetic ballasts, and to a lesser extent arc welders.

3.4.1 Electric Arc Furnaces

The voltage-current characteristic of an arc furnace has a quasi-trapezoidal shape and
its magnitude is a function of the length of the arc. The current levels, limited mainly
by the furnace cables (and leads) and transformer, can reach values of over 60 kA.
Those impedances have a buffering effect on the supply voltage and thus the arcing
load appears as a relatively stable current harmonic source.

However, the stochastic voltage changes due to the sudden alterations of the arc
length produce a spread of frequencies, predominantly in the range 0.1–30 Hz [5] about
each of the harmonics present. This effect is more evident during the melting phase,
caused by continuous motion of the melting scrap and the interaction of electromagnetic
forces between the arcs.

During the refining part of the process the arc is better behaved, but there is still
some modulation of the arc length by waves on the surface of the molten metal.

Typical time-averaged frequency spectra of the melting and refining periods are
shown in Figure 3.13.

However, the levels of harmonic currents vary markedly with time, and are better
displayed in the form of probabilistic plots, such as that shown in Figure 3.14.

Three sets of averaged harmonic current levels obtained by different investigators
are listed in Table 3.2 as percentages of the fundamental.
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Table 3.2 Average harmonic levels from arc
furnaces expressed as percentages of the

fundamental

Order Level

[7] [5] [6]

2 3.2 4.1 4.5
3 4.0 4.5 4.7
4 1.1 1.8 2.8
5 3.2 2.1 4.5
6 0.6 Not given 1.7
7 1.3 1.0 1.6
8 0.4 1.0 1.1
9 0.5 0.6 1.0
10 >0.5 >0.5 >1.0

Note: [6] also found levels of 1% at the 22nd harmonic
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Figure 3.15 Fifth harmonic as a percentage of the fundamental with time [5]: (a) melting;
(b) refining

Finally, the time variation of the harmonic currents is exemplified by the records
shown in Figure 3.15 for the fifth harmonic, an important point being that the harmonic
current varies not only with time but also in respect to the fundamental component.

3.4.2 Discharge-Type Lighting

Luminous discharge lighting is highly nonlinear and gives rise to considerable
odd-ordered harmonic currents. This effect is clearly illustrated in Figure 3.16, which
shows the current waveform and harmonic spectrum of a high-efficiency lamp.

This effect is particularly important in the case of fluorescent lamps, given the large
concentration of this type of lighting. Additional magnetic ballasts are needed to limit
the current to within the capability of the fluorescent tube and stabilise the arc.

In a three-phase, four-wire load the triplen harmonics are basically additive in the
neutral, the third being the most dominant.

With reference to the basic fluorescent circuit of Figure 3.17, a set of voltage and
current oscillograms is displayed in Figure 3.18. These waveforms are shown with



DISTORTION CAUSED BY ARCING DEVICES 77

0.6

0.4

0.2

0

−0.2

−0.4

−0.6
0 2 4 6 8 10 12 14 16 18 20

Time (ms)

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 5 10 15 20 25 30 35 40 45 50

C
ur

re
nt

 (
A

)
C

ur
re

nt
 (

A
)

(a)

(b)

Figure 3.16 Current wave (a) and spectrum (b) of a high-efficiency discharge lamp

reference to the sinusoidal phase voltage supply. The voltage across the tube itself
(Figure 3.18(a)) clearly illustrates the nonlinearity. The waveform in Figure 3.18(b)
shows the phase current, and the waveform in Figure 3.18(c) the neutral current for
a case of three banks of three lamps connected in star. The latter consists almost
exclusively of third harmonic.

Lighting circuits often involve long distances and have very little load diversity. With
individual power factor correction capacitors, the complex LC circuit can approach a
condition of resonance at third harmonic. This effect has been illustrated by labora-
tory results in a balanced three-phase fluorescent lamp installation [8]. The results of
greatest interest refer to the effects of increasing the neutral reactance and isolating the
capacitor star point (see Figure 3.17). In the graph of Figure 3.19 the abscissa used is
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Figure 3.18 (a) Tube voltage; (b) phase current with capacitor, one lamp, 240 mA/division;
(c) neutral current, three banks of three lamps in star, 240 mA/division
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Figure 3.19 Characteristics of the fluorescent lighting test circuit. The nominal 150 Hz
voltage is the calculated product of the 150 Hz lamp current per phase and the circuit

zero-sequence impedance (150 Hz). ( ), Switch S closed (star point connected to neutral);
(- - - -), switch S open (star point floating)

the nominal third harmonic voltage, i.e. the product of the lamp third harmonic cur-
rent per phase and the corresponding circuit third harmonic zero-sequence impedance.
It can be seen that with the capacitor star point connected to the neutral, the third
harmonic neutral current can by far exceed the nominal value calculated by the con-
ventional method based on three times the nominal lamp current. With the star point
disconnected the neutral current is less than the nominal value.

The results demonstrated in the laboratory test were in fact a confirmation of actual
field test results taken on a 900 kVA fluorescent installation. In this case the full load
condition operated well above the resonant point; at about half load some neutral current
values exceeded the corresponding phase current values, and the voltage distortion at
some distribution boards exceeded 20%.

Whenever possible, the design procedure recommended to avoid resonance is to try
to avoid individual lamp compensation, providing, instead, capacitor banks adjacent to
distribution boards connected either in star with floating neutral or in delta.

3.5 Single-Phase Rectification

3.5.1 D.C. Power Supplies

Many commercial and domestic appliances require direct current for their operation.
The single-phase diode bridge rectifier (Figure 3.20) has become a popular power
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Figure 3.20 Single-phase diode rectifier bridge and d.c. capacitor power source

source for these appliances because of its reduced cost and relatively low sensitivity
to supply voltage variations under normal operating conditions.

The circuit of Figure 3.20 produces a very narrow current pulse at every half-cycle
of the supply frequency, because the d.c. capacitor is recharged only when the supply
voltage exceeds the d.c. level (i.e. close to the peak of the voltage sine wave).

The Fourier series of the current pulse of Figure 3.20 has the expression:

In = 8αI

π

∞∑
n=1,3,5

cos nαπ

1 − n2α2π2
cos nωt (3.24)

where I is the impulse peak value and α = θ/T its duration as a proportion of the
fundamental wave.

Earlier technology used a transformation stage to control the required low voltage
levels and the transformer leakage inductance had a smoothing effect that resulted in
low harmonic current levels.

Instead, modern appliances use the switch-mode power supply concept, whereby the
input rectifier is directly connected to the a.c. source, as in Figure 3.20; however, in
this case the rectified voltage is converted back to a.c. at a very high frequency and then
rectified again. This process provides a very compact design and efficient operation,
tolerating large variations in input voltage. Personal computers and most office and
domestic appliances, as well as the electronic ballast of modern fluorescent lighting
systems, are now of this type. However, the lack of a.c. side inductance smoothing lets
the narrow current pulses pass directly into the a.c. system, thus increasing considerably
the current harmonic content. Particularly troublesome is the third harmonic, which
adds arithmetically in the neutral of the three-phase network.

The current harmonics calculated from equation (3.24) assume that the supply volt-
age is itself undistorted. In practice, however, the accumulation of current pulses, placed



SINGLE-PHASE RECTIFICATION 81

at the centre of the voltage waveform, flattens the voltage sine wave at the peak; the
flat top has the effect of widening the current pulses used to charge the capacitors, thus
reducing the harmonic current injections.

Typical examples of single-phase distorting appliances are TV receivers, personal
computers and microwave ovens.

TV Receivers Figure 3.21 shows the current waveform and its harmonic spectrum
(as a percentage of the fundamental component) of a 23′′ TV set obtained from a
harmonic analyser. The main harmonics are in order of magnitude the third, fifth,
seventh and ninth.

PC and Printer Figure 3.22 shows the harmonic spectrum generated by a combi-
nation of a personal computer and a printer. Again, the main component is the third
(72%), followed by the fifth (60%), seventh (40%) and ninth (22.6%).

To illustrate the cumulative effect of this type of load, imagine the case of a
high office block, which may have up to 1000 personal computers. If a 1000 kVA,
11 kV/440 V transformer supplies the building at say 0.95 power factor, the rated fun-
damental current will be 1248 A. From the spectrum of Figure 3.22, and assuming a

100%

1 10

(a)

(b)

Figure 3.21 (a) Current waveform and (b) harmonic spectrum generated by a 23′′ TV set
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Figure 3.22 Harmonic currents generated by a PC/printer combination

1 A fundamental current per PC, the main harmonic current components per phase will
be approximately:

I3 = (1000/3)(0.72) = 240 A

I5 = (1000/3)(0.6) = 200 A

I7 = (1000/3)(0.4) = 133 A

I9 = (1000/3)(0.226) = 75 A

The corresponding total demand distortion is:

TDD(%) = 100

√
(2402 + 2002 + 1332 + 752)

1248
= 28%

Moreover, the transformer neutral current will contain 720 A (3 × 240) of third
harmonic and 225 A (3 × 75) of ninth harmonic, i.e. practically the same rating as the
phase conductors!

Microwave Oven Figure 3.23 shows a recording of the current waveform and corre-
sponding spectrum generated by a domestic microwave appliance, which again consists
mainly of third, fifth and seventh harmonics.

3.5.2 Line-Commutated Railway Rectifiers

The application of single-phase rectification in hundreds of kilowatts is widespread in
the railway electrification industry. A typical configuration of the locomotive power
supply, shown in Figure 3.24, uses individual bridge control of two groups of two
bridge converters connected in series to a parallel connection of two d.c. locomotive
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motors. At the start, the back e.m.f. of the d.c. motors is zero, the supply d.c. voltage
is low and the delay angle large. Therefore during the initial accelerating period, with
maximum d.c. motor current, the bridge rectifier produces the worst harmonic currents
and operates with the lowest power factor. To alleviate the situation at low speeds, one
of the bridges is often bypassed and phase control exercised on the other. When the
speed builds up, and the second bridge operates on minimum delay, phase control is
exercised on the first bridge. The relevant waveforms are illustrated in Figure 3.25.
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Figure 3.25 Voltage and current waveforms of a double bridge individually
controlled converter
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Figure 3.26 Variation in harmonic currents with locomotive operation

An indication [9] of the wide variation in harmonic current magnitudes correspond-
ing to the waveform of Figure 3.25 is given in Figure 3.26.

3.6 Three-Phase Current-Source Conversion

A current-source converter is characterised by a very inductive d.c. side configuration
relative to the a.c. system side. This is achieved by means of a series smoothing reactor
on the d.c. side. As the a.c. system is predominantly inductive, some shunt capacitance
(normally in the form of tuned filters) must be connected to the a.c. side of the con-
verter. Under these conditions, the d.c. current is reasonably constant and the converter
acts as a source of harmonic voltage on the d.c. side and of harmonic current on the
a.c. side. The switches must block voltages of both polarities, but are only required to
conduct current in one direction. Thus, large converters have traditionally been of the
current-source type because of the availability of efficient highly rated thyristors.

Under perfectly symmetrical a.c. system conditions the resulting currents are exactly
the same in all phases.
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Figure 3.28 Trains of positive and negative pulses

The ideal p-phase one-way converter, illustrated in Figure 3.27, has zero a.c. system
impedance and infinite smoothing inductance. Under these conditions the phase currents
consists of periodic positive rectangular pulses of width w = 2π/p, repeating at the
supply frequency.

If in the analysis of the waveform of Figure 3.28, the origin is taken at the centre
of the pulse, F(ωt) is shown to be an ‘even’ function (i.e. f (x) = f (−x)) and the
Fourier series has only cosine terms. The relevant Fourier coefficients, with reference
to a 1 per unit-d.c. current, are

A0 = 1

2π

∫ w/2

−w/2
d(ωt) = w

2π
= 1

p
(3.25)

An = 1

π

∫ w/2

−w/2
cos(nωt) d(ωt) = 2

nπ
sin

(
nπ

p

)
(3.26)

The corresponding Fourier series for the positive current pulses is

Fp = 2

π

(
w

4
+ sin

(w

2

)
cos(ωt) + 1

2
sin

(
2w

2

)
cos(2ωt) + 1

3
sin

(
3w

2

)
cos(3ωt)

+ 1

4
sin

(
4w

2

)
cos(4ωt) + · · ·

)
(3.27)

An ideal p-phase, two-way converter producing positive and negative current pulses
is shown in Figure 3.29.
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Applying equations (3.25) and (3.26) to the negative group gives the following
Fourier series

Fn = 2

π

(
−w

4
+ sin

(w

2

)
cos(ωt) − 1

2
sin

(
2w

2

)
cos(2ωt) + 1

3
sin

(
3w

2

)
cos(3ωt)

− 1

4
sin

(
4w

2

)
cos(4ωt) + · · ·

)
(3.28)

The phase current of the two-way configuration consists of alternate positive and
negative pulses such that F(ωt + π) = −F(ωt). Its Fourier series is obtained by com-
bining equations (3.27) and (3.28)

F = Fp + Fn = 4

π

(
sin

(w

2

)
cos(ωt) + 1

3
sin

(
3w

2

)
cos(3ωt)

+ 1

5
sin

(
5w

2

)
cos(5ωt) + · · ·

)
(3.29)

in which the d.c. component and even-ordered harmonics have been eliminated.
For the square wave of Figure 3.30(a) w = π which on substituting into equation

(3.29) gives as the equation for the waveform in the frequency domain

F(t) = 4

π

(
cos(ωt) − 1

3
cos(3ωt) + 1

5
cos(5ωt) − 1

7
cos(7ωt) + · · ·

)
(3.30)

in which harmonics of order n = 1, 5, 9, etc. are of positive sequence and those of
order n = 3, 7, 11, etc. are of negative sequence.
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Figure 3.30 (a) Time-domain representation and (b) frequency-domain representation of a
square wave

The frequency-domain representation of the square wave harmonic amplitudes is
shown in Figure 3.30(b).

The time-domain waveforms can also be synthesised from the combination of the
time-domain representation of the individual harmonics. Figure 3.31 shows this syn-
thesis process for the square wave considered above. For clarity only the fundamental,
third and fifth harmonics have been shown and the complex waveform produced is
therefore not complete.

3.6.1 Basic (Six-Pulse) Configuration

Six-pulse rectification (and inversion) is obtained from three-phase two-way configu-
rations. Substituting w = 2π /3 in equation (3.29) and inserting the actual d.c. current
Id , the frequency domain representation of the a.c. current in phase a is

ia = 2
√

3

π
Id

(
cos(ωt) − 1

5
cos(5ωt) + 1

7
cos(7ωt) − 1

11
cos(11ωt)

+ 1

13
cos(13ωt) − 1

17
cos(17ωt) + 1

19
cos(19ωt) · · ·

)
(3.31)

The three-phase currents are shown in Figure 3.32(b), (c) and (d), respectively. Some
useful observations can now be made from equation (3.31):
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Figure 3.31 Waveform synthesis of a square wave

(1) The absence of triple harmonics.

(2) The presence of harmonics of orders 6k ± 1 for integer values of k.

(3) Those harmonics of orders 6k + 1 are of positive sequence and those harmonics
of orders 6k − 1 are of negative sequence. This statement may not be obvious.
Let us clarify it with reference to the fundamental, third (although not present in
the symmetrical case) and fifth harmonic current components.
The three-phase currents of the fundamental frequency are

R(1� 0)

Y (1� −120)

B(1� 120)

i.e. of positive-sequence rotation.
The three-phase currents of the third harmonic component (had it existed)
would be

R(1/3)� 0
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Figure 3.32 Six-pulse bridge waveforms: (a) phase to neutral voltages; (b)–(d) phase
currents on the converter side; (e) phase current on the system side with delta–star transformer

Y (1/3)� (−120×3) = (1/3)� 0

B(1/3)� (+120×3) = (1/3)� 0

i.e. of zero-sequence rotation (however, it will be shown later that when the
supply voltage is unbalanced, some positive-sequence third harmonic current will
be produced).
The three-phase currents of the fifth harmonic component are

R(1/5)� 0

Y (1/5)� (−120×5) = (1/5)� 120

B(1/5)� (+120×5) = (1/5)� −120

i.e. of negative-sequence rotation.

(4) The r.m.s. magnitude of the fundamental frequency is

I1 = (1/
√

2)(2
√

3/π)Id = (
√

6/π)Id (3.32)
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(5) The r.m.s. magnitude of the nth harmonic is

In = I1/n (3.33)

3.6.2 Effect of Transformer Connection

If either the primary or secondary three-phase windings of the converter transformer
are connected in delta, the a.c. side current waveforms consist of the instantaneous
differences between two rectangular secondary currents 120◦ apart as shown in
Figure 3.32(e).

The Fourier series of the waveform shown in Figure 3.32(e) can be easily obtained
from the general equation (3.29) by superimposing the results of two component pulses
of widths π and π /3, respectively.

Moreover, to maintain the same primary and secondary voltages as for the star–star
connection, a factor of

√
3 is introduced in the transformer ratio, and the current

waveform is as shown in Figure 3.33.
The resulting Fourier series for the current in phase a on the primary side is

ia = 2
√

3

π
Id

(
cos(ωt) + 1

5
cos(5ωt) − 1

7
cos(7ωt) − 1

11
cos(11ωt)

+ 1

13
cos(13ωt) + 1

17
cos(17ωt) − 1

19
cos(19ωt) · · ·

)
(3.34)

This series only differs from that of a star–star connected transformer by the sign
of harmonic orders 6k ± 1 for odd values of k, i.e. the 5th, 7th, 17th, 19th, etc.

3.6.3 Twelve-Pulse Related Harmonics

Twelve-pulse configurations consist of two six-pulse groups fed from two sets of three-
phase transformers in parallel, with their fundamental voltage equal and phase-shifted
by 30◦; a common 12-pulse configuration is shown in Figure 3.34.

Moreover, to maintain 12-pulse operation the two six-pulse groups must operate
with the same control angle and therefore the fundamental frequency currents on the
a.c. side of the two transformers are in phase with one another.

p/3

p/2 p/2−p p

1/√3

1/√3
Time

0

Figure 3.33 Time-domain representation of a six-pulse waveform with delta–star transformer
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The resultant a.c. current is given by the sum of the two Fourier series of the star–star
(equation (3.31)) and delta–star (equation (3.34)) transformers, i.e.

(ia)12 = 2

(
2
√

3

π

)
Id

(
cos(ωt) − 1

11
cos(11ωt) + 1

13
cos(13ωt)

− 1

23
cos(23ωt) + 1

25
cos(25ωt) · · ·

)
(3.35)

This series only contains harmonics of order 12k ± 1. The harmonic currents of
orders 6k ± 1 (with k odd), i.e. k = 5, 7, 17, 19, etc., circulate between the two
converter transformers but do not penetrate the a.c. network. The time-domain repre-
sentation of the 12-pulse waveform is shown in Figure 3.35(a) and the corresponding
frequency domain representation in Figure 3.35(b).

3.6.4 Higher-Pulse Configurations

In the last section, the use of two transformers with a 30◦ phase-shift has been shown to
produce 12-pulse operation. The addition of further appropriately shifted transformers
in parallel provides the basis for increasing pulse configurations.

For instance, 24-pulse operation is achieved by means of four transformers with 15◦

phase-shifts and 48-pulse operation requires eight transformers with 7.5◦ phase-shifts.
Although theoretically possible, pulse numbers above 48 are rarely justified due to the
practical levels of distortion found in the supply voltage waveforms, which can have
as much influence on the voltage crossings as the theoretical phase-shifts.

Similarly to the case of the 12-pulse connection, the alternative phase-shifts involved
in higher pulse configurations require the use of appropriate factors in the parallel
transformer ratios to achieve common fundamental frequency voltages on their primary
and secondary sides.

The theoretical harmonic currents are related to the pulse number (p) by the general
expression pk ± 1 and their magnitudes decrease in inverse proportion to the harmonic
order. Generally harmonics above the 49th can be neglected as their amplitude is
too small.
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Figure 3.35 (a) Time-domain representation of the 12-pulse phase current;
(b) frequency-domain representation of 12-pulse operation

3.6.5 Effect of Transformer and System Impedance

In practice the existence of reactance in the commutation circuit causes conduction
overlap of the incoming and outgoing phases.

As we have seen in previous sections, high-pulse configurations are combinations of
three-pulse groups, i.e. the commutation overlaps are those of the three-pulse groups
as shown by the broken lines in Figure 3.32.

The current waveform has now lost the even symmetry with respect to the centre of
the idealised rectangular pulse. Using as a reference the corresponding commutating
voltage (i.e. the zero-voltage crossing) and assuming a purely inductive commutation
circuit, the following expression defines the commutating current [10]

ic = E√
2Xc

(cos(α) − cos(ωt)) (3.36)

where Xc is the reactance (per phase) of the commutation circuit, which is largely
determined by the transformer leakage reactance.
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At the end of the commutation ic = Id and ωt = µ, and equation (3.36) becomes

Id = E√
2Xc

[cos(α) − cos(α + µ)] (3.37)

Dividing (3.36) by (3.37),

ic = Id

(
cos(α) − cos(ωt)

cos(α) − cos(α + µ)

)
(3.38)

and this expression applies for α < ωt < α + µ.
The rest of the positive current pulse is defined by

i = Id for α + µ < ωt < α + 2π/3 (3.39)

and

i = Id − Id

[
cos(α + 2π/3) − cos(ωt)

cos(α + 2π/3) − cos(α + 2π/3 + µ)

]

for α + 2π

3
< ωt < α + 2π

3
+ µ (3.40)

The negative current pulse still possesses half-wave symmetry and therefore only
odd-ordered harmonics are present. These can now be expressed in terms of the delay
(firing), and overlap angles and their magnitudes, related to the fundamental compo-
nents, are illustrated in Figures 3.36–3.39, for the 5th, 7th, 11th and 13th harmonics,
respectively [10].

In summary, the existence of system impedance is seen to reduce the harmonic
content of the current waveform, the effect being much more pronounced in the case
of uncontrolled rectification. With large firing angles the current pulses are practically
unaffected by a.c. system reactance.

To illustrate the use of these graphs let us consider the case of a six-pulse rectifier
connected via a 50 MVA Y–Y transformer of unity turns ratio to the 110 kV system. If
the rated d.c. current is 300 A, the transformer leakage reactance 10.73%, and assuming
that the maximum steady-state delay is α = 30◦, determine the levels of the first four
characteristic harmonic currents.

From Equation (3.37) the value of the commutation angle is:

µ = arccos

[
cos α −

√
2XcId

E

]
− α

where

Xc = xtXB = xt

(kV)2

MVA
= (10.73)(110 × 103)2/(50) = 25.9 �.
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Therefore,

µ = arccos

[
cos 30◦ −

√
2(25.9)(300)

110 × 103

]
− 30◦ = 10◦
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From Figures 3.36–3.39 the following harmonic currents as percentages of the fun-
damental component are obtained for α = 30◦ and µ = 10◦:

19.398%(5th), 13.4335%(7th), 7.772%(11th) and 6.1585%(13th)

and using equation (3.32)

I1 = (
√

6/π)Id = (
√

6/π)300 = 233.91 A

Finally, the harmonic currents are:

I5 = 45.37 A I7 = 31.27 A I11 = 19.08 A I13 = 14.03 A

3.6.6 Direct Voltage Harmonics

For the three-phase bridge configuration the orders of the harmonic voltages are n = 6k.
The corresponding d.c. voltage waveforms are illustrated in Figure 3.40.
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S2S6
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Figure 3.40 Six-pulse converter d.c. voltage waveforms: (a) at the positive terminal; (b) at
the negative terminal; (c) across the output terminals
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The repetition interval of the waveform shown in Figure 3.40(c) is π /3 and it contains
the following three different functions with reference to voltage crossing C1:

vd = √
2Vc cos

(
ωt + π

6

)
for 0 < ωt < α (3.41)

vd = √
2Vc cos

(
ωt + π

6

)
+ 1

2

√
2Vc sin(ωt) =

√
6

2
Vc cos(ωt)

for α < ωt < α + µ (3.42)

vd = √
2Vc cos

(
ωt − π

6

)
for α + µ < ωt <

π

3
(3.43)

where Vc is the (commutating) phase to phase r.m.s. voltage.
From equations (3.41), (3.42) and (3.43) the following expression is obtained for

the r.m.s. magnitudes of the harmonic voltages of the d.c. voltage waveform:

Vn = Vc0√
2(n2 − 1)

[
(n − 1)2 cos2

(
(n + 1)

µ

2

)
+ (n + 1)2 cos2

(
(n − 1)

µ

2

)

− 2(n − 1)(n + 1) cos
(
(n + 1)

µ

2

)
cos

(
(n − 1)

µ

2

)
cos(2α + µ)

] 1
2 (3.44)

Figures 3.41 and 3.42 illustrate the variation of the 6th and 12th harmonics as a
percentage of Vc0, the maximum average rectified voltage, which for the six-pulse
bridge converter is 3

√
2Vc/π . These curves and equations show some interesting facts.

Firstly, for α = 0 and µ = 0, equation (3.44) reduces to

Vn0 = √
2Vc0/(n

2 − 1) (3.45)

or
Vn0

Vc0
= √

2/(n2 − 1) ≈ √
2/n2 (3.46)

giving 4.04%, 0.99% and 0.44% for the 6th, 12th and 18th harmonics, respectively.
Generally, as α increases, harmonics increase as well, and for α = π /2 and µ = 0

Vn0

Vc0
= √

2n/(n2 − 1) ≈ √
2/n (3.47)

which produces n times the harmonics content corresponding to α = 0. This means
that the higher harmonics increase faster with α. Equation (3.47) is of some importance
as it represents the maximum proportion of harmonics in the system, particularly when
it is considered that at α = 90◦

µ is likely to be very small.
If the converter involves two bridges, one with a star–star or delta–delta trans-

former and the other with a delta–star or star–delta transformer, their respective
voltages will be 30◦ out of phase and so the harmonics will accordingly be out of
phase. Since 30◦ of mains frequency correspond to a half-cycle of the 6th harmonic,
this harmonic will be in phase opposition in the two bridges. Similarly for the 12th
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Figure 3.41 Variation of the sixth harmonic voltage in relation to angles of delay and overlap

harmonic, 30◦ corresponds to one cycle, giving harmonics in phase; for the 18th har-
monic, 30◦ corresponds to one and a half cycles, giving harmonics in opposition and
so on.

3.6.7 Imperfect D.C. Voltage Smoothing

Considering the limited inductance of the motor armature winding and the larger vari-
ation of firing angle, the constant d.c. current assumption of the large size converters
cannot be justified in the case of a d.c. drive.

The d.c. load must now be represented as an equivalent circuit which in its simplest
form includes resistance, inductance and back e.m.f. (as shown in Figure 3.43).
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R L

EVm sin wt

Figure 3.43 D.c. motor equivalent circuit

With sinusoidal supply voltage Vm sin ωt , the following equation applies:

Vm sin(ωt) = Ri + L

(
di

dt

)
+ E (3.48)
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and the load current has the form

i = Ke−Rt/L + Vm√
R2 + (ωL)2

sin(ωt − φ) − E

R
(3.49)

where

φ = tan−1(ωL/R)

and the constant K is derived from the particular initial conditions.
Under nominal loading the firing delay is kept low, but during motor start or light

load conditions the delay increases substantially and the current may even be discon-
tinuous. This extreme operating condition is illustrated in Figure 3.44 for a six-pulse
rectifier. Each phase consists of two positive and two negative current pulses, which
are derived from the general expression (3.49) by using the appropriate voltage phase
relationships with a common reference.

The current in phase R with reference to the instant when VRY is maximum in
Figure 3.44 has the following components:

(1) Over the range θ1 < ωt < θ2

i = Vm

R

(
cos(φ) cos(ωt−φ)− E

Vm

+
[

E

Vm

−cos(φ) cos(θ1−φ)

]
e(−R/ωL)(ωt−θ1)

)

(3.50)

(2) When θ3 < ωt < θ4 where θ3 = (θ1 + π/3),

i = Vm

R

(
cos(φ) cos

(
ωt − π

3
− φ

)
− E

Vm

+
[

E

Vm

− cos(φ) cos(θ1 − φ)

]
e(−R/ωL)(ωt−π/3−θ1)

)
(3.51)
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(a)

(b)
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wt = 0
q2 q3 q4

q5 q6 q7 q8

Figure 3.44 Discontinuous waveforms: (a) d.c. voltage; (b) a.c. current in phase R
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(3) When θ5 < ωt < θ6 where θ5 = (θ1 + π),

i = −Vm

R

(
cos(φ) cos(ωt − π − φ) − E

Vm

+
[

E

Vm

− cos(φ) cos(θ1 − φ)

]
e(−R/ωL)(ωt−π−θ1)

)
(3.52)

(4) When θ7 < ωt < θ8 where θ7 = (θ1 + 2π/3),

i = −Vm

R

(
cos(φ) cos

(
ωt − 2π

3
− φ

)
− E

Vm

+
[

E

Vm

− cos(φ) cos(θ1 − φ)

]
e(−R/ωL)(ωt−2π/3−θ1)

)
(3.53)

Application of Fourier analysis to these current pulses indicates that the fifth har-
monic can reach peak levels of up to three times those of the rectangular wave shape
with the same fundamental component.

When d.c. motors are designed specifically for use with thyristor converters their
armature inductance is often increased to avoid current discontinuities and the above
analysis can then be simplified considerably. An approximate method described by
Dobinson [11] derives the harmonic components of the a.c. current in terms of the
ripple ratio, i.e.

r = Ir

Id

(3.54)

where Ir is the alternating ripple of the direct current and Id is the mean direct current,
flowing in the motor armature circuit (Figure 3.45) at the relevant speed and load. The
method ignores the effect of the commutation reactance, which at large delay angles
is negligible.

With reference to Figure 3.45, a further approximation is made by assuming that
the ripple is part of a sine wave displaced by a value θ relative to the zero direct-
current level.

The information included in Figures 3.45(b) and (c) results in the following func-
tions:

f (θ) = 0 for 0 < θ < π/6 (3.55)

f (θ) = Id

[
7.46r sin

(
θ + π

6

)
− 7.13r + 1

]
for π/6 < θ < π/2 (3.56)

f (θ) = Id

[
7.46r sin

(
θ − π

6

)
− 7.13r + 1

]
for π/2 < θ < 5π/6 (3.57)

f (θ) = 0 for 5π/6 < θ < π (3.58)

Application of Fourier analysis yields the following expression for the fundamental:

I1 = Id(1.102 + 0.014r) (3.59)
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Figure 3.45 Converter output and input current waveforms: (a) armature current;
(b) thyristor current; a.c. current

Also, the magnitudes of the characteristic harmonics (expressed as a percentage of the
fundamental) are

In = 100

(
1

n
+ 6.46r

n − 1
− 7.13r

n

)
(−1)k for n = kp − 1 (3.60)

and

In = 100

(
1

n
+ 6.46r

n + 1
− 7.13r

n

)
(−1)k for n = kp + 1 (3.61)

These are plotted in Figure 3.46 as a function of r covering the whole range from
zero ripple (i.e. infinite inductance) to the limit case of continuous current (at r = 1.5).

Figure 3.46 shows that although the fifth harmonic increases substantially with output
current ripple, all the other harmonics reduce.
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3.6.8 Half-Controlled Rectification

Because of the cheapness of its design, the half-controlled version of the variable speed
d.c. drive has been popular in some countries. When operating at full load (i.e. with
zero firing delay) these controllers produce virtually the same harmonic currents as the
fully controlled converter and operate very efficiently.

However, under operating conditions requiring firing delays, the half-wave symmetry
of the current waveform is lost, as shown in Figure 3.47.

At low loads these controllers not only have a very poor power factor but introduce
severe waveform distortion, particularly at even harmonics. More often than not the
controllers and motors initially installed are larger than required to cope with future
expansion, and operation is then at a fraction of the full load. Under these conditions
the second harmonic component often reaches levels close to the fundamental current.

3.6.9 Uncharacteristic Harmonic and Inter-Harmonic Generation

The harmonic effects caused by imperfect system conditions encountered in practice
cannot be derived from the idealised models described in Section 3.6.

In general each of the main three parts of the system is always in error to a lesser
or greater extent:

(1) The a.c. system voltages are never perfectly balanced and undistorted, and the
system impedances, in particular the converter transformer, are not exactly equal
in the three phases.
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Figure 3.47 (a) Three-phase ‘half-controlled’ converter and (b) theoretical waveforms for
α = 60. Trace (i) shows the voltage of a ‘positive’ group at the d.c. terminal with respect to

the supply neutral ( ) and the voltage of a ‘negative’ group at the d.c. terminal with
respect to the supply neutral (- - - -). Trace (ii) shows the d.c. terminal voltage of the bridge.

Trace (iii) shows the supply voltage and current of phase A

(2) The d.c. current may be modulated from another converter station in the case of
a rectifier-inverter link.

(3) The firing angle control systems often given rise to substantial errors in their
implementation.

As a result the large static converters often produce harmonic orders and magnitudes
not predicted by the Fourier series of the idealised waveforms.

The uncertain nature of these ‘uncharacteristic’ harmonics makes it difficult to pre-
vent them at the design stage. Filters are not normally provided for uncharacteristic
harmonics and as a result their presence often causes more problems than the charac-
teristic harmonics.

By way of example, Table 3.3 shows the results of harmonic measurements during
back-to-back testing of the New Zealand d.c. converter station at Benmore. All the har-
monic voltages are unbalanced, particularly the third and ninth. The table also illustrates
the presence of all current harmonic orders, odd and even, with the uncharacteristic
orders causing higher voltage distortion than the characteristic ones. A realistic quanti-
tative analysis of the uncharacteristic harmonic components can only be achieved by a
complete three-phase computer model of the system behaviour with detailed represen-
tation of the converter controls. A mostly qualitative assessment of the main problem
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Table 3.3 Harmonic measurements during back-to-back
testing of the New Zealand high voltage d.c. converters

Harmonic 400 A d.c. (one-third full load) current;
phase-to-neutral voltages
at Benmore on 220 kV

Red
phase (%)

Yellow
phase (%)

Blue
phase (%)

1 100 100 100
2 0.5 0.7 1.0
3 2.9 0.3 1.0
4 0.6 0.3 0.4
5 0.25 0.15 0.25
6 0.25 0.30 0.35
7 0.15 0.15 0.1
8 0 0.05 0.1
9 0.05 0.05 0.15

10 0.05 0.05 0.05
11 0.1 0.15 0.1
12 0.15 0.05 0.15
13 0.05 0.05 0.05
14 0.05 0.05 0.05
15 0.15 0 0.2
16 0 0.1 0.15
17 0.3 0.3 0.3
18 0 0.05 0.1
19 0.3 0.3 0.7
20 – – –
21 – – –
22 0.2 0.2 0.5
23 0.4 0.2 0.3
24 0.2 0.2 0.15

areas and the sensitivity of the system to small deviations from the ideal conditions
are considered in this section.

Imperfect a.c. Source Deviations from the perfectly balanced sinusoidal supply can
be caused by (i) presence of negative sequence fundamental frequency in the commu-
tating voltage; (ii) harmonic voltage distortion of positive or negative sequence; and
(iii) asymmetries in the commutation reactances. In general an imperfect a.c. source
produces asymmetrical firing references and d.c. current modulation. The first prob-
lem can be eliminated by using equidistant firing control but the second problem
still remains. This effect, illustrated in Figure 3.48 for the case of an unrealistically
high level of fundamental voltages asymmetry, produces considerable second harmonic
content on the d.c. side and third harmonic on the a.c. side [12].

Under normal operating conditions the expected levels of asymmetry and distortion
are small and their effects can be approximated with reasonable accuracy.
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(a)

(b)

(c)

(d)

Figure 3.48 Sustained unbalanced voltages on a single converter bridge: (a) three-phase
voltages; (b) direct voltage; (c) direct current; (d) three-phase currents

With reference to unbalance conditions, a CIGRE working group [13] examined the
effect of different factors of asymmetry (one at the time) on an otherwise standard 12-
pulse converter. The a.c. system was assumed of negligible impedance (i.e. the terminal
voltage perfectly sinusoidal) and the d.c. current ripple was ignored. In practice, of
course, the result of unbalance is a combination of each effect, which may either
increase or decrease the harmonic content of the individual cases.

Five cases were considered, as follows:

(1) The voltage in one phase is reduced by 1% with respect to the other two.

(2) The transformer leakage reactances are 20% (for five of the phases) and 21% (for
the sixth phase).

(3) Different transformer reactances, i.e. 20% (for the star–star) and 21% (for the
star–delta).
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Table 3.4 Harmonic currents (in as a percentage of the fundamental) generated by different
types of unbalance

Unbalance type

Harmonic
order

(1) (2) (3) (4) (5)

1 100.00 100.00 100.00 100.00 100.00
2 0.0279
3 0.069 0.130 0.0268
4 0.0253
5 0.208 0.414 0.0666 0.0234
6 0.0213
7 0.0184 0.366 0.0516 0.0189
8 0.0163
9 0.043 0.0904 0.0136

10 0.0109

(4) Different transformer turns ratios, i.e. 100% (for the star–star) and 100.5% (for
the star–delta).

(5) The firing angles are 15◦ (for five valves) and 15.2◦ (for the remaining valve).

The effect of each of these cases on the first ten harmonic currents generated by
the converter are shown in Table 3.4. These results show that the effects of phase
reactance unbalance and firing angle unbalance are different for the two types of
converter transformer. These are more severe for the star–star transformer (i.e. in the
absence of a delta winding).

With reference to supply distortion, if a small positive- or negative-sequence signal
Vn (per unit of the normal fundamental voltage) is added to the otherwise ideal three-
phase supply of a 12-pulse converter configuration, the order and maximum level (Vk)
of uncharacteristic harmonic voltage at the rectified output come under one of the
following categories [14]:

Case 1: If n + k = 12p1 + 1 and n − k = 12p2 + 1, where p1 and p2 are any inte-
gers, then

Vk =




Vn

(
n
√

2

n2 − k2

)
if n2 > k2 (3.62)

Vn

(
k
√

2

k2 − n2

)
if k2 > n2 (3.63)

Case 2: If n + k = 12p1 + 1 but n − k �= 12p2 + 1, then

Vk = Vn

1√
2(n + k)

(3.64)
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Table 3.5 Resulting harmonic voltages for interfering
harmonics of orders −5 to +5

Interfering a.c. Harmonic voltage on d.c. side
voltage harmonic

order, n Order, k Amplitude, Vk/Vn

−1 2 0.707
+2 1 0.707
−2 3 0.707
+3 2 0.707
−3 4 0.707
−4 5 0.707
−5 6 0.707

Case 3: If n − k = 12p1 + 1 but n + k �= 12p2 + 1, then

Vk = Vn

1√
2(n − k)

(3.65)

Case 4: If n + k �= 12p1 + 1 and n − k �= 12p2 + 1, then

Vk = 0 (3.66)

A summary of all resulting harmonic voltages up to order 6 is given in Table 3.5
for interfering harmonics of orders −5 to +5. (There are also higher-order harmonics
in each case, not shown, of much lower amplitude.)

The tabulated Vk is expressed per unit of the maximum average d.c. voltage and Vn

per unit of the normal a.c. voltage.
The values given above are in practice applicable also to converters of higher pulse

number. Thus, while characteristic harmonics can be reduced by using high pulse
number, the uncharacteristic harmonics due to a.c. unbalance cannot.

It should be noted that the above is an approximation due to neglect of commutation
reactance but is generally sufficiently valid at low harmonic orders (below the fifth).

The cause of the imperfection may also be some asymmetry in the commutation
reactances, i.e.

Xa = X0(1 + ga)

Xb = X0(1 + gb)

Xc = X0(1 + gc)

where X0 is the mean reactance and each value of g can vary between ±g0.
In this case the maximum level of uncharacteristic a.c. harmonic currents In of order

n (in phase a) for the case of a six-pulse bridge occurs when

ga = 0, gb = ±g0, gc = ∓g0 for n = 3, 9, 15, etc.

or

ga = ±g0, gb = ∓g0, gc = 0 for n = 5, 7, 11, 13, etc.
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The maximum value of In neglecting changes of d.c. current and a.c. voltage is
obtained from the expression

In = I1g0

n(n2 − 1)idX0

√
3

× {n4[cos(α + µ) − cos α]2 + 2n3 sin(α) sin(nµ[cos(α + µ) − cos α])

+ n2[sin2(α) + sin2(α + µ) + 2 cos nµ(cos2 α − cos µ)

+ 2 cos(α)(cos(α + µ) − cos α)]

+ 2n cos(α) sin(nµ)(sin α + sin(α + µ)) + 2 cos2 α(1 − cos nµ)}1/2 (3.67)

for n = 3, 9, 15, etc., where I1 is the fundamental r.m.s. current, id is the d.c. current
per unit, X0 is the mean commutation reactance per unit, α is the firing angle and µ

is the overlap (or commutation) angle. For n = 5, 7, 11, 13, etc., the above expression
should be divided by 2.

Table 3.6 gives values for a typical case of X0 = 0.2 per unit, α = 15◦, g0 = 0.075.
Unequal commutation reactances also cause uncharacteristic voltages on the d.c.

side. The highest magnitude of these occurs when ga = 0, gb = +g0 and gc = −g0.
Only even harmonics occur, given by

Vn(max.) = idX0g0Vdio

2
√

6
(3.68)

where Vdio is the theoretical no-load d.c. voltage.
As an example for id = 1,X0 = 20% and g0 = 0.075, Vn(max.) is 0.31% of Vdio for

n = 2, 4, 8, 10, 14, 16, etc., independent of harmonic order or of firing angle.

D.c. Current Modulation [14] If we now assume a perfect three-phase supply and
equidistant firing, the addition of a small current harmonic component Ik of order k on
the d.c. side will generate a component In of different order but of the same sequence
on the a.c. side, the maximum level of which is given in Table 3.7.

The amplitude In is in multiples of I1Ik/Id , where I1 is the r.m.s. fundamental
current at the a.c. busbar, Ik is the r.m.s. interfering current on the d.c. side at order k

and Id is the d.c. current.

Table 3.6 Values for a typical case

n In (% of I1)

3 0.70
5 0.33
7 0.29
9 0.50

11 0.22
13 0.19
15 0.31
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Table 3.7 Maximum level of In

Harmonic order, k, of Harmonic current on a.c. side
modulating current on

d.c. side Order n Amplitude, In

1 0 0.707
+2 0.707

2 −1 0.707
+3 0.707

3 −2 0.707
4 −3 0.707

+5 0.707

Table 3.7 is independent of the prime cause of the d.c. current modulation. It is
again approximate, valid only at low frequencies, because the commutation reactance
has been neglected.

Control System Imperfections No general rules can be given in this case. By way
of example, Ainsworth [14] describes the effect of modulating the harmonic content of
the voltage applied to the oscillator of the d.c. current control system using the phase-
locked oscillator principle [15]. Assuming constant d.c. current and a.c. voltages, a
Vc modulating harmonic signal of order n (in per unit, referred to the normal steady-
state control voltage), causes d.c. voltage components of orders n1 = ±n ± 12p in a
12-pulse convertor, where p is any integer.

The magnitude (in per unit of the maximum average rectified voltage) of the d.c.
voltage modulation is

V = Vc sin(α0) cos(n1µ0/2)

n1
(3.69)

where α0 and µ0 are the mean firing and overlap angles, respectively.
The total a.c. current magnitude referred to one phase of one valve winding at

harmonic order n2 due to a similar excitation is

IA(n2) = IdVc · 2
√

3 sin(n2µ0/2)

n2(cos(α0) − cos(α0 + µ0))
(3.70)

for n2 = ±n± (1, 11, 13, . . .) only.

Firing Asymmetry A.c. system imperfections or firing errors result in pulse-width
deviations from the characteristic quasi-rectangular current waveform. Kimbark [16]
describes the effect of late and early firings with reference to a six-pulse bridge
converter.

If the positive current pulses start early by an angle ε and the negative ones start
late by the same angle, the non-conductive intervals are increased by 2ε. The even
symmetry, which eliminates the even-ordered harmonics, is now lost and the even
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harmonics for small overlap angles are given by the expression

In

I1
= 2 sin(nε)

2n cos(ε)
≈ ε (3.71)

For example, for ε = 1◦ the second and fourth harmonics are each approximately
1.74% of the fundamental current.

If the firings of the two valves connected to the same phase are late by ε then the
positive and negative current pulses of that phase are ε degrees shorter than the nor-
mal. Moreover, the current pulses of one of the remaining phases (the leading phase)
are increased by ε while those of the lagging phase remain unaltered. This produces
triplen harmonic currents. On the assumption of zero overlap angle the ratio of the
triplen harmonics (h = 3q) to the fundamental current are expressed by

In

I1
= sin(qπ ± 1.5qε)

3q sin(π/3 ± ε/2)
(3.72)

For small values of ε the approximate levels of third harmonic are given by

I3

I1
≈ 1.5qε

3q
√

3/2
= 0.577ε (3.73)

For example, for ε = 1◦, I3 = 1% of the fundamental.

3.6.10 Frequency Cross-Modulation in Line-Commutated
Converter Systems

The Modulation Process The harmonic transfers through the a.c.–d.c. converter are
best explained using modulation theory [17,18]. The voltage and current relationships
across the converter can be expressed as follows:

vd =
∑

Yψdcvψ (3.74)

id = Yψac · idc (3.75)

where Yψdc and Yψac are transfer functions for the voltages and current, respectively,
and ψ = 0◦, 120◦, 240◦ for the three phases.

This process is illustrated in Figure 3.49, which shows the modulated output cur-
rent on the a.c. side of the converter in response to a d.c. current that contains a
ripple frequency [19]. In the absence of commutation overlap, the transfer functions
are rectangular, as shown in Figure 3.49.

The simplified modulation process, explained above, can be extended to the more
realistic case where the commutation process is included. This extension, explained
further in Chapter 8, is necessary to derive accurate quantitative information from the
generalised table to be described in the following section.
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Figure 3.49 A.c. current modulation under ideal converter switching

Cross-Modulation Across an a.c.–d.c.–a.c. Link The frequency transfer relation-
ships in the cross-modulation process of a line-commutated 12-pulse a.c.–d.c.–a.c.
link have been collected together in Figure 3.50 [20]. The link can be an HVd.c. inter-
connection between two a.c. systems of frequencies f1 and f2 or the supply system
for a synchronous variable speed drive.

The ‘exciting’ harmonic sources are multiples, integers or non-integer, of the fre-
quency in system 1.

k1 is a current harmonic source, whereas k1 − 1 and k1 + 1 are voltage harmonic
sources.

The resulting harmonic orders in system 2 are related to the frequency of system 2.
The DC column refers to the d.c. side of the link; the AC1

+ and AC1
− columns rep-

resent the positive and negative sequences of system 1, and AC2
+ and AC2

− represent
the positive and negative sequences of system 2, respectively.

When the d.c. link interconnects separate power systems, either of the same nominal
(but in practice slightly different) frequency or different nominal frequencies, there
will be a wide range of harmonic and non-harmonic frequency transfers. These can be
divided into two groups:

(1) Frequencies at terminal 1 caused by the characteristic d.c. voltage harmonics
(12nf 2) and their consequential currents from terminal 2. These are represented
in the expression

fac1 = (12m ± 1)f1 ± 12nf2 (3.76)
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where m, n ε (0, 1, 2, 3. . .) which can have any frequency, including frequencies
below the fundamental.

The back-to-back frequency conversion schemes represent the worst condition
for non-integer harmonic frequencies. In this case, with small smoothing reactors
the d.c. side coupling is likely to be strong which means that the flow of harmon-
ically unrelated currents on the d.c. side can be large. In six-pulse operation such
schemes can produce considerable subharmonic content even under perfect a.c.
system conditions. However, 12-pulse converters do not produce subharmonic
content under symmetrical and undistorted a.c. system conditions. These will
produce inter-harmonic currents as defined by equation (3.76).

When the link interconnects two isolated a.c. systems of the same nominal
frequency but they differ by a small increment 
f0, then the characteristic har-
monics are different by 12n
f0. A d.c. side voltage at frequency 12n(f0 + 
f0)

is generated by one converter, and this will be modulated down again at the
other converter by a characteristic frequency in the thyristor switching pattern in
accordance with equation (3.76) i.e.

(12m ± 1)f0 ± 12n(f0 + 
f0)

which on the a.c. side, among other frequencies, includes (for m = n):

f0 ± 12n
f0

The latter will beat with the fundamental component at a frequency 12n
f0,
which at some values of n will allow flicker-inducing currents to flow.

(2) Frequencies caused in system 1 by unbalance or distortion in the supply voltage
of system 2. Negative sequence voltages at frequencies (k − 1)f2 produce the
following non-characteristic frequencies on the d.c. side:

fdc = (12n ± k)f2 (n = 0, 1, 2 . . .) (3.77)

Cross-modulation of these current components produces the following frequen-
cies in system 1

fac1 = (12m ± 1)f1 ± (12n ± k)f2. (3.78)

Let us first consider a frequency conversion scheme with a sinusoidal but
negative sequence unbalanced voltage in system 2, i.e. (k − 1) = 1 (and therefore
k = 2). Substituting m = n = 0 and k = 2 in equation (3.76) yields currents (and
therefore voltage) at frequencies

fac1 = ±f1 ± 2f2 (3.79)

One of these frequencies (f1 − 2f2) will beat with the fundamental frequency
voltage of system 1 at a frequency

f1 + (f1 − 2f2) = 2(f1 − f2) (3.80)
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which for a 50–60 Hz conversion scheme becomes 20 Hz. This is a flicker-
producing frequency. This same frequency will be referred to generator rotor
shaft torque at 20 Hz, which may excite mechanical resonances.

Again, this type of cross-modulation effect is most likely to happen in back-to-
back schemes due to the stronger coupling between the two converters, although
it is also possible with any HVd.c. scheme in the presence of a suitable resonance.

Now consider two a.c. systems of the same nominal (but slightly different)
frequency.

Substituting m = n = 0 and k = 2, for fundamental frequency f0 into
equation (3.78), a current and resultant voltage (through the a.c. system
impedance) of frequency

fac1 = ±f0 ± 2(f0 + 
f0) (3.81)

which leads to f0 ± 2
f0 is induced on the a.c. side. This will either beat with
the fundamental frequency f0 or produce generator/motor shaft torques at 2
f0.
This frequency is generally too low to produce flicker but may induce mechanical
oscillations.

Substituting m = n = 1 and k = 2 in equation (3.78) gives, among others, a
current (and thus voltage) at the frequency

(12 + 1)f0 − (12 + 2)(f0 − 
f )

and for f0 = 50 Hz and 
f = 1 Hz, the resulting a.c. current (and thus voltage)
in system 1 is:

13 × 50 − 14 × 49 = 36 Hz

This distorting voltage will, therefore, beat with the fundamental, producing 14 Hz
flicker. However, the subharmonic levels expected from this second-order effect
will normally be too small to be of consequence.

3.7 Three-Phase Voltage-Source Conversion

A voltage-source converter (VSC) is characterised by a predominantly capacitive d.c.
side and an inductive a.c. system. Under these conditions the d.c. voltage is well
defined, while the a.c. side currents are controlled by the converter modulation process.

The simplest VSC configuration is the six-pulse diode bridge with a large capacitor
across the output terminals. In this circuit the capacitor is charged every half-cycle of
the supply frequency by two short current pulses, typically as shown in Figure 3.51. The
corresponding harmonic content can reach levels of up to 90% (5th), 80% (7th), 75%
(11th) and 70% (13th). However, unlike the single-phase power supply rectifier, the
absence of neutral connection in the three-phase case eliminates the triplen harmonics.
The addition of an a.c. line choke provides a substantial reduction in the harmonic
current levels and is often used with adjustable speed drives (ASD) of the pulse width
modulation (PWM) type.
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Figure 3.51 Harmonic current waveform of a VSC converter
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Figure 3.52 A voltage-sourced rectifier inverter cascade

When the converter is required to alter the d.c. side capacitor voltage, the diodes
must be replaced by controlled rectifiers. Moreover, when bi-directional power flow
is designed for, the switches must block a unidirectional voltage but be capable of
conducting current in either direction.

This type of converter suits the a.c. motor drive because both the a.c. system and
motor load are predominantly inductive. A typical voltage-sourced rectifier/inverter
cascade is shown in Figure 3.52. Advances in the ratings of GTO and IGBT devices
is extending the application of the voltage-sourced conversion concept to very large
motor drives and even to light HVd.c. applications [21].

3.7.1 Multi-Level VSC Configurations

Manufacturers are introducing high voltage drives rated above 200 kW using IGBT
technology. However the switching transients caused by the higher voltages impose
additional stresses on the motor windings. The multi-level solution has been developed
to generate high voltage waveforms using relatively low voltage switching devices.

A multi-level voltage-source converter can switch its output between multiple volt-
age levels within each cycle, thus creating a better voltage waveform for a particular
switching frequency, when compared to a conventional two-level inverter. Theoret-
ical phase output voltages for three- and five-level configurations are illustrated in
Figure 3.53.
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Figure 3.53 Phase output voltage waveforms for three- and five-level inverters. Source:
C. Newton, M. Sumner, ‘multi-level convertors: a real solution to medium/high-voltage

drives?’, Power Engineering Journal, February 1998, pp. 21–26
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Figure 3.54 Comparison of phase voltage spectra and THD for multi-level inverters. Source:
C. Newton, M. Sumner, ‘multi-level convertors: a real solution to medium/high-voltage

drives?’, Power Engineering Journal, February 1998, pp. 21–26

The reduced harmonic content achieved by the multi-level solution is further illus-
trated in Figure 3.54, where the phase output voltage spectrum of a five-level inverter
is compared with that of the standard two-level case. The figure also shows the voltage
THD calculated for two-, three-, five- and seven-level output waveforms.

The following d.c.–a.c. multi-level configurations have been identified:

(1) Multiple bridge configuration, using transformer or inductor summing arrange-
ments [22]. In this configuration the harmonic cancellation is achieved through
the phase displacement of the voltage waveforms of phase-shifted transformer
secondary windings.

(2) Multiple bridge using direct series connection [23]. This is a variation of the
previous case, its main difference being the elimination of the phase-shifting
transformers, i.e. it is directly connected to the a.c. side. Each phase consists
of series connected single-phase full bridges, each bridge requiring an isolated
d.c. bus.



INVERTER-FED A.C. DRIVES 119

(3) The multi-level diode clamped converter [24]. This alternative achieves the multi-
level waveforms by the series or parallel connection of switches within the
converter bridge itself.

(4) The multi-level flying capacitor converter [25]. In previous configurations each
phase leg consisted of a switch pair in parallel with a bus capacitor, and must be
always connected to either the positive or negative node of the capacitor. In this
alternative the switch pair/capacitor cell is isolated and inserted within a similar
cell. Thus this inner pair of switches/capacitors now ‘fly’ as the outer pair of
devices switch.

(5) The chain circuit converter [26]. This configuration consists of individually con-
trolled units, which can then be assembled to form the three-phase converter. It
provides modularity and ease of expansion.

(6) A d.c. voltage reinjection scheme [27]. Unlike the previous multi-level configura-
tions, where all the switches form part of the main conversion process, the pulse
increase is now achieved by separate switching circuitry at reduced current levels.

3.8 Inverter-Fed A.C. Drives

Although the thyristor-controlled d.c. drive still holds a large share of the market in
the large power rating group, the emphasis has shifted towards the use of inverters and
induction motors. This trend has been helped by substantial increases in the ratings of
the more controllable GTO thyristors and IGBT switching devices.

The basic three-phase inverter bridge commonly used for a.c. motor control is made
up of six controlled semiconductors, each having a feedback diode connected in inverse
parallel, as shown in Figure 3.55. The inverter can be of the voltage source (VSI) or
current source (CSI) types. The VSI requires a constant d.c. voltage input, which
is normally achieved with a large capacitor or LC filter, whereas the CSI needs a
constant current input, obtained by means of a series inductor in the d.c. link. CSI
drives have better speed characteristics but require a motor with leading power factor
(either synchronous or induction-type with capacitors); however, the use of turn-off
switching devices removes this restriction.

+

−

d.c. bus
input

1 3 5

264

A B
I II III IV V VI

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

N

C

Figure 3.55 Basic three-phase inverter and balanced motor load showing an elementary
switch-closing sequence
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The inverter bridge is normally supplied from a line-commutated controlled converter
and thus, the harmonic content injected into the a.c. power system is as described in
Section 3.6 (for the CSI drive) or Section 3.7 (for the VSI drive).

Motor Phase Voltage In the circuit of Figure 3.55 the inverter phase output voltage is
always at one of two distinct voltage levels. The floating neutral voltage with respect to
ground, expressed in terms of the inverter phase output voltage waveforms vA, vB, vC is

vN = 1

3
(vA + vB + vC) (3.82)

so that a typical motor phase voltage is

vAN = vA − vN = 1

3
(2vA − vB − vC) (3.83)

For a balanced linear, bilateral motor load impedance, the motor phase voltage of a
harmonic of order n can be expressed as

vAN (n) = 1

3
[2vA(n) − vB(n) − vC(n)]

= 1

3
[2vmn sin(nω1t) − vmn sin(n(ω1t + 2π/3)) − vmn sin(n(ω1t − 2π/3))]

= 2

3
vmn sin(nω1t)[1 − cos(2nπ/3)]

= 2

3
vA(n)[1 − cos(2nπ/3)] (3.84)

and similarly for phases B and C:

vBN (n) = 2

3
vB(n)[1 − cos(2nπ/3)] (3.85)

vCN (n) = 2

3
vC(n)[1 − cos(2nπ/3)] (3.86)

Moreover, for all the positive and negative sequence harmonics

cos(2nπ/3) = −1

2

so that

vAN (n) = vA(n), vBN (n) = vB(n), vCN (n) = vC(n) (3.87)

and in the balanced three-phase system, for the zero sequence harmonics,

cos(2nπ/3) = 1
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Figure 3.56 Basic six-step waveforms

so that

vAN (n) = vBN (n) = vCN (n) = 0 (3.88)

Thus, for the basic six-pulse voltage sourced inverter, the motor phase input voltage
is identical to that of the corresponding inverter phase output voltage, with the exception
that all inverter phase triplen harmonics have been eliminated. The effect of triplen
harmonic elimination is shown in Figure 3.56 for the inverter output voltage waveforms
resulting from the basic switch-closing sequence indicated in Figure 3.55. Since each
motor phase input waveform results from square inverter phase voltage waveforms,
the motor phase voltage in the frequency domain is

vp = 2

π
vBUS

∞∑
k=0

(
1

(6k + 1)
sin((6k + 1)ω1t) + 1

(6k + 5)
sin((6k + 5)ω1t)

)
(3.89)
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Magnetising Current and Flux The motor phase magnetising inductance, Lm, acts
as an integrating filter for the input voltage waveform, i.e.

ip = 1

Lm

∫ t

t0

vp dt (3.90)

Therefore for the nth harmonic phase voltage

vp(n) = 2

nπ
vBUS sin(nω1t) (3.91)

ip(n) = 2vBUS

nπLm

∫ t

t0

sin(nω1t) dt = 2vBUS

n2πω1Lm

cos(nω1t) (3.92)

and the magnetising current resulting from equation (3.89) is

ip = 2vBUS

πω1Lm

∞∑
k=0

[
1

(6k + 1)2
cos((6k + 1)ω1t) + 1

(6k + 5)2
cos((6k + 5)ω1t)

]

(3.93)

For a motor phase magnetising inductance of an equivalent N turns, the resultant
motor phase air gap flux phasor is

φp = 2vBUS

πω1N

∞∑
k=0

[
1

(6k + 1)2
cos((6k + 1)ω1t) + 1

(6k + 5)2
cos((6k + 5)ω1t)

]

(3.94)

The relative amplitudes of these motor phase harmonic quantities are summarised
in Table 3.8.

Voltage Control and its Effect on Harmonics The peak amplitude of the funda-
mental frequency voltage in equation (3.89) is

vp(1) = (2vBUS)/π

and from equation (3.94) the peak amplitude of the fundamental air gap flux phasor is

φp(1) = 1

ω1N

2vBUS

π
= vp(1)

ω1N
(3.95)

Table 3.8 Relative amplitudes of motor phase harmonics

Quantity Harmonic number, n

1 5 7 11 13 17 19 23 25

vp 1.000 0.200 0.143 0.091 0.077 0.059 0.053 0.043 0.040
ip 1.000 0.040 0.020 0.008 0.006 0.004 0.003 0.002 0.002
φp 1.000 0.040 0.020 0.008 0.006 0.003 0.003 0.002 0.002
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To maintain φp(1) constant when the fundamental frequency ω1 varies, it is evident
from equation (3.95) that vp(1) must be made a linear function of ω1.

Some high-power inverter-fed a.c. motor speed controllers employ a separate d.c.
chopper power supply in the d.c. bus to vary the voltage linearly with frequency. In
this case the inverter output voltage waveforms are always square waves, as shown
in Figure 3.56, and the air gap harmonic flux vectors have the relative amplitudes
indicated in Table 3.8.

An alternative to independent d.c. voltage control is the use of pulse width modula-
tion, discussed in the next section.

Pulse Width Modulation A popular drive configuration consists of a VSI operating
on the PWM concept in order to economise on power semiconductor switching stages.
The operating principle consists of chopping the basic inverter square wave output
voltage of Figure 3.56 in order to control the fundamental frequency voltages.

In its simplest form a saw-tooth wave [28] is used to modulate the chops, as shown
in Figure 3.57. The saw-tooth has a frequency which is a multiple of three times the
sine wave frequency, allowing symmetrical three-phase voltages to be generated from
a three-phase sine wave set and one saw-tooth waveform. This method controls line-
to-line voltage from zero to full voltage by increasing the magnitude of the saw-tooth
or a sine-wave signal, with little regard to the harmonics generated.

The most significant areas of voltage in the spectrum, apart from the fundamental,
occur at the carrier frequency (saw-tooth frequency) and its two sidebands, and to a
significant extent at each multiple of these frequencies in the spectrum. When the carrier
frequency is six times the fundamental, the triplen harmonics cancel in the system;
however, the phase waveforms of Figure 3.57 do not have half-wave symmetry, hence
even harmonics are present.

If the carrier frequency is a large multiple of the fundamental, the first large har-
monics encountered are high in the harmonic spectrum.

Single-phase bridge inverters can use either bipolar or unipolar PWM switching
schemes. With bipolar switching two legs of the bridge are synchronised so that either
+Vd or −Vd appears across the load. The harmonics in the inverter output voltage

0

0

+vd

−vd

Carrier wave

Sine wave
signal

Upper
thyristor
on

Lower
thyristor
on

Per phase output
voltage (with respect
to d.c. centre tap)

p

Figure 3.57 Principle of PWM
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Figure 3.58 Harmonic spectrum with bipolar switching

are sidebands centred around the switching frequency and its multiples, as shown in
Figure 3.58, the harmonic orders being given by:

• h = kmf ± n

where mf is the frequency modulation ratio, and k and n are integers.
For odd values of k, harmonics only exist for even values of n and vice versa.
With unipolar switching, each leg of the inverter is controlled independently so

that there are periods when both sides of the load are connected to the same d.c. rail,
resulting in zero output voltage. This has the effect of doubling the switching frequency
as now the harmonics present are given by:

• h = k2mf ± n.

The spectrum for the unipolar switching scheme is shown in Figure 3.59.

PWM with Selected Harmonic Elimination More efficient PWM techniques have
been developed to control the fundamental and harmonic voltages simultaneously
[29–32]. For this purpose the chops can be created at predetermined angles of the

1 mf

h

(2mf + 1)(2mf − 1)
2mf 3mf 4mf

1.0
0.8
0.6
0.4
0.2

0

(Harmonics of f1)

(V0)h
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Figure 3.59 Harmonic spectrum with unipolar switching
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Figure 3.61 Notch angle curves with voltage control and selected elimination (for 5th and
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square wave as shown in Figure 3.60. By way of example, Figure 3.61 illustrates the
case where the fifth and seventh harmonics are eliminated with the help of a look-up
table storing the angles required.

In the method of reference [32] the period is divided into six regions. If the second
and fifth regions of each phase waveform are filled with a train of pulses, or chops,
only these pulses appear in the line-to-line voltage.

Harmonic voltages occur at multiples of the carrier frequency (i.e. the chop number
per half-wave of the phase voltage (m) times six) with sidebands, given by L(6m ± 1),
where L = 1, 3, 5, 7.

Here also the carrier is a triplen harmonic and is cancelled out in a three-phase
system. Moreover, the phase waveforms have such symmetry that there are no even
harmonics. The higher m is, the higher up the spectrum the harmonic voltages occur.

The number of inverter switchings per second, F(2m + 1), limits the number of
chops allowable as fundamental frequency increases, e.g. for eight chops there are 17
on/off switchings per period.
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In order to keep harmonic orders high in the spectrum, the number of chops is
changed as fundamental frequency increases.

Further reduction of lower-order harmonics can be achieved by the use of complex
PWM control waveform strategies, at the cost of increasing the inverter switching rate.
For a given maximum inverter phase switching rate, the problem is to choose that PWM
control strategy which will achieve the desired linear variation of fundamental voltage
amplitude with frequency and reduce the effect of harmonic torques, or minimise the
harmonic power losses within the motor.

Generally, at any fundamental switching frequency, each chop per half cycle of
the inverter phase voltage waveform can eliminate one harmonic of the waveform or
reduce a group of harmonic amplitudes [29]. Thus for m chops per half cycle one chop
must be utilised to control the fundamental harmonic amplitude, so m − 1 degrees of
freedom remain. The m − 1 degrees of freedom may be utilised to eliminate completely
m − 1 specified low-order harmonics or to minimise motor power losses caused by a
specified range of harmonics within the motor.

At any fundamental frequency, elimination of the lower-order harmonics from the
phase waveforms will cause the portion of the r.m.s. which was provided by the elim-
inated harmonics to be spread over the remaining harmonic magnitudes. This occurs
because the total harmonic r.m.s. voltage cannot change. The effect of this shifting
motor performance needs to be determined, but the integrating filter characteristic of
the motor should be more effective in reducing the current harmonics at higher orders.

Multi-Stepped Converters Rather than increasing the frequency of the PWM pattern
to reduce the harmonic content of the output voltage, a multi-bridge configuration
with parallel connected units can be subjected to a phase-shifted carrier, as shown
in Figure 3.62. Considering n units, each carrier is shifted by T /n, where T is the
period of the fundamental reference wave. Thus the voltage harmonic components of
the individual units are shifted with respect to each other and can be designed to be
cancelled when the outputs of the various bridges are added. In the case illustrated in
Figure 3.62(b) the carrier to fundamental frequency ratio is 9 and thus the individual
bridges have harmonic orders around the 9th and multiples of it. However, the use of
four units produces the spectrum shown in Figure 3.62(e), where the lowest dominant
harmonic orders are in the region of the 36th.

3.9 Thyristor-Controlled Reactors

3.9.1 The Static VAR Compensator (SVC)

Static VAR compensators using thyristor-controlled reactors, such as shown in
Figure 3.63, are in common use in high-voltage transmission systems and some
industrial plant like electric arc furnaces. Their main purpose is to provide fast voltage
controllability and various other related effects such as flicker reduction, power factor
improvement, phase balancing and power system stability.

Figure 3.64 shows a typical three-phase SVC circuit connected in delta. The currents
in the three coils are delayed by almost 90◦ with respect to their corresponding voltages
because the resistive effect is not significant.
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As illustrated in Figure 3.65(a), under uninterrupted current conditions the current is
sinusoidal; however, the firing delays reduce the magnitude of the currents and distort
their waveforms.

The instantaneous current has the expression:

i = √
2

V

XL

(cos(α) + cos(ωt)) for α < ωt < α + σ
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Figure 3.63 A thyristor-controlled reactor
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Figure 3.64 Three-phase configuration of a TCR in parallel with a shunt capacitor bank

and

i = 0 for α + σ < ωt < α + π (3.96)

where V is the r.m.s. value of the supply voltage, XL = ωL is the coil reactance at
the fundamental frequency and α is the firing delay with respect to the correspond-
ing voltage.

The harmonic currents produced by the partial conduction are of odd orders, provided
that the firing delays are the same in the two back-to-back thyristor valves.

The r.m.s. value of the harmonic currents is given by the expression [33]:

In = 4V

πXL

[
sin((n + 1)α)

2(n + 1)
+ sin((n − 1)α)

2(n − 1)
− cos(α)

sin(nα)

n

]
for n = 3, 5, 7, . . .

(3.97)

Table 3.9 includes the maximum values of the first 37 harmonics as a percentage of
the fully conducting fundamental component, but the maximum values do not occur
for the same firing delays. Under perfectly symmetrical voltage conditions the values
in brackets (of triplen harmonics) are present in the individual phases but are kept
out of the line by the delta connection. However, in applications like the electric arc
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Figure 3.65 Current waveforms in the TCR of Figures 3.63 and 3.64

furnace, where the voltages are unbalanced due to the unstable arc periods, the third
harmonic currents also appear in the line currents.

3.9.2 Thyristor-Controlled Series Compensation (TCSC)

The TCSC consists of a capacitor bank and a thyristor-controlled inductor connected
in parallel as shown in Figure 3.66.

When the thyristor valve is triggered before the capacitor voltage crosses the zero
line the device is in the capacitive boost mode and a capacitor discharge current pulse
will circulate through the inductor, as shown in Figure 3.67.

When the thyristor is triggered after the capacitor voltage crosses the zero line
the device is in the inductive boost mode, giving rise to the waveforms shown in
Figure 3.68. As the capacitor provides a low impedance path for the harmonic fre-
quencies, very little current will pass to the transmission line, the main interest being
the harmonic voltages created at the terminals of the TCSC; these can be calculated
by representing the thyristor branch as a current source. Normally the TCSC operates
in the capacitive boost mode, under which condition only the lowest-order harmonics
will have any practical significance.
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Table 3.9 Maximum amplitude of the
current harmonics produced by the TCR

Harmonic order %

1 100
3 (13.78)
5 5.05
7 2.59
9 (1.57)

11 1.05
13 0.75
15 (0.57)
17 0.44
19 0.35
21 (0.29)
23 0.24
25 0.20
27 (0.17)
29 0.15
31 0.13

L

iV

iL iC
C

+VC
−

Figure 3.66 TCSC circuit

3.10 Modulated Phase Control

The main application of modulated phase control is the cycloconverter, which pro-
vides static power conversion from one frequency to another. The basic three-phase
cycloconverter, shown in Figure 3.69 feeding an induction motor, consists of a dual
configuration (A and B) of three pairs of six-pulse bridges connected in anti-parallel;
i+ and i− are the output currents, u+ and u− the output voltages, iR iY iB the stator
currents and uR uY uB the stator voltages. The mains and motor frequencies are f1

and f2, respectively.
The cycloconverter configuration is controlled through time-varying phase-modulated

firing pulses so that it produces an alternating, instead of a direct, output voltage per
phase as illustrated in Figure 3.70(a). The output current phase relationship and wave-
form (Figure 3.70(b)) depend on the load. The rectifier and inverter operating regions
for each converter are shown in Figure 3.70(c) and (d).
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Figure 3.69 Basic circuit diagram of a six-pulse cycloconverter-fed a.c. motor

Similar to the phase-controlled converter, the input current will in general con-
tain in-phase, quadrature and harmonic components. Practical cycloconverters operate
with negligible internal circulating current between the two converters and thus only
the circulating current-free mode of operation is of importance with regard to har-
monic assessment.

The output voltage waveform is formed by selected intervals of the three-phase
input voltage supply and the input current in each phase by selected intervals of the
output currents.

All practical converter configurations used for large power ratings are combinations
of the basic three-pulse group. Moreover, the harmonic content of these multipulse
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Figure 3.70 Theoretical waveforms for a six-pulse cycloconverter on half-maximum output
voltage (r = 0.5) with a displacement angle of 60◦ and one-sixth output frequency: (a) output

voltage; (b) output current; (c) A bridge operating mode; (d) B bridge operating mode

circuits can easily be derived from the basic harmonic series of the three-pulse phase-
controlled converter. The three-pulse waveform with arbitrary firing angle control
should therefore provide the most general case for harmonic analysis.

The conventional Fourier analysis (described in Chapter 2) is not practical for the
derivation of cycloconverter harmonic components since the frequency spectra of the
output voltage and input current waveforms are related to both the main input and
output frequencies; they produce ‘beat frequencies’ which are both the sums and dif-
ferences of multiples of both these frequencies. Classical Fourier analysis resolves a
periodic waveform into a fundamental component, the frequency of which is equal to
the fundamental repetition frequency of the wave, and a series of harmonic components,
which are multiples of the fundamental frequency. The cycloconverter waveforms, on
the other hand, contain frequencies which are not integer multiples of the main output
frequency. In fact, there may not even be a clearly defined fundamental output fre-
quency. Only when the output frequency is an exact submultiple of the product of the
input frequency and the converter pulse number, is each output cycle identical with
the next, i.e.

f0 = 3fi

k
(3.98)

where k is an integer.
A more general method is described in the next section, which provides the output

voltage and input current harmonic component in terms of each of the indepen-
dent variables.

3.10.1 The Switching Function Approach [34]

The general method is illustrated in Figure 3.71, where the effect of each thyristor
switching is derived independently and the overall output waveform is then expressed
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Figure 3.71 Derivation of voltage waveforms of the positive converter for quiescent
(α = 90◦) operation. From [34]

as the addition of all the wave segments generated by the individual thyristors. The
effect of each thyristor is expressed as the product of the appropriate input voltage
(or output current) waveform and a ‘switching function’, of unity and zero amplitudes
when the thyristor is ON and OFF, respectively.

By expressing the switching function as a phase-modulated harmonic series, a general
harmonic series can be derived for the output voltage (or input current) waveform in
terms of the independent variables.

The quiescent firing (90◦) is used as a reference for the modulated firings. The
quiescent firing produces zero voltage in both the positive and negative converters.

By way of illustration the quiescent voltage waveform of the positive converter,
shown in Figure 3.71, is given by

(vp)q = VN sin θi · F1

(
θi − π

2

)
+ VN sin

(
θi − 2π

3

)
· F2

(
θi − π

2

)

+ VN sin

(
θi + 2π

3

)
· F3

(
θi − π

2

)
. (3.99)

The modulated firing control provides a ‘to and fro’ phase modulation f (θ0) of the
individual firings with respect to the quiescent firing.

In general the value of f (θ0) will oscillate symmetrically to and from about zero,
at a repetition frequency equal to the selected output frequency. The limits of control
on either side of the quiescent point are then ±π/2. Thus the general expressions for
the switching function of the positive and negative converters are

F
(
θi − π

2
+ f (θ0)

)
and F

(
θi + π

2
− f (θ0)

)

since the phase modulation of the firing angles of the positive and negative converters
is equal but of opposite sign.
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Moreover, it has been shown [34] that the optimum output waveform, i.e. the mini-
mum r.m.s. distortion, is achieved when the firing angle modulating function is derived
by the ‘cosine wave crossing’ control. Under this type of control the phase of firing
of each thyristor is shifted with respect to the quiescent position by

f (θ0) = sin−1(r) sin(θ0), (3.100)

where r is the ratio of amplitude of wanted sinusoidal component of output voltage to
the maximum possible wanted component of output voltage, obtained with ‘full’ firing
angle modulation, with no commutation overlap.

3.10.2 Derivation of Input Current Harmonics

For the derivation of the input current waveform it is more convenient to use two
switching functions, i.e. the thyristor and the converter (i.e. the conducting half of the
dual converter) switching functions.

It is also necessary to make the following approximations: (i) the output current
is purely sinusoidal; and (ii) the source impedance (including transformer leakage) is
neglected. A single-phase output is illustrated in Figure 3.72, and the current in each
phase of the supply is given by

iA = I0 sin(θ0 + φ0) · F1

(
θi − π

2
+ f (θ0)

)
· Fp(θ0)

+ I0 sin(θ0 + φ0) · F1

(
θi + π

2
− f (θ0)

)
· FN(θ0) (3.101)

From conventional Fourier analysis F1, Fp and FN can be expressed in terms of the
following series:

F1

(
θi ∓ π

2
± f (θ0)

)
= 1

3
+

√
3

π

[
sin

(
θi ± π

2
∓ f (θ0)

)

− 1

2
cos 2

(
θi ± π

2
∓ f (θ0)

)

− 1

4
cos 4

(
θi ± π

2
∓ f (θ0)

)]
(3.102)

Fp(θ0) = 1

2
+ 2

π

[
sin(θ0 + φ0) + 1

3
sin 3(θ0 + φ0) + 1

5
sin 5(θ0 + φ0) + · · ·

]
(3.103)

FN(θ0) = 1

2
− 2

π

[
sin(θ0 + φ0) + 1

3
sin 3(θ0 + φ0) + 1

5
sin 5(θ0 + φ0) + · · ·

]
(3.104)

Substituting in iA and reducing,

iA = I0 sin(θ0 + φ0)

{
1

3
+

√
3

π

[
sin θi sin f (θ0) + 1

2
cos 2θi cos 2f (θ0)

− 1

4
cos 4θi cos 4f (θ0) − 1

5
sin 5θi sin 5f (θ0) + · · ·

]
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for a three-phase load. From [34]

+ 4
√

3

π2

[
− cos θi cos f (θ0) − 1

2
sin 2θi sin 2f (θ0) + 1

4
sin 4θi sin 4f (θ0)

+ 1

5
cos 5θi cos 5f (θ0) . . .

] [
sin(θ0 + φ0) + 1

3
sin 3(θ0 + φ0)

+ 1

5
sin 5(θ0 + φ0) + · · ·

]}
(3.105)

In the above expression f (θ0) = sin−1(r) sin(θ0) (see equation (3.100)) as explained
above when the modulating function uses the cosine wave crossing control method.

In general, however, the output will also be three-phase and, assuming perfectly
balanced input and output waveforms, each phase of the input will include the con-
tribution of the three output currents, i.e., iA = iA1 + iA2 + iA3, and the corresponding
waveform is illustrated by the broken line in Figure 3.72.

The above procedure can be extended to cases of three-phase output, under different
transformer connections and different converter configurations. This, however, is a
very long and tedious task, thoroughly documented in Pelly’s book [34] and will not
be detailed here. The chart of Figure 3.73 contains the main results of the harmonic
analysis for the case of a balanced three-phase output; it gives the relationships which
exist between the predominant harmonic frequencies present in the three-pulse input
current waveform versus the output to input frequency ratio. It also indicates the groups
of harmonics eliminated by the use of higher pulse numbers.
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3.11 A.C. Regulators

3.11.1 Single-Phase Full-Wave Controller

The main application of this type of controller is in single-phase resistive loads, partic-
ularly as dimmers for incandescent lighting. They consist of a back-to-back thyristor
pair in series with the load as shown in Figure 3.74. The output voltage waveform,
controlled by firing delay with reference to the voltage zero crossings, is as shown
in Figure 3.75 and its harmonic content, plotted as a function of the firing angle, is
illustrated in Figure 3.76.

VTh

Va
Vo Ra.c

supply

Figure 3.74 Single-phase full-wave regulator
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Figure 3.75 Waveforms of the single-phase regulator of Figure 3.74

3.11.2 Integral Cycle Control

Instead of point on wave switching selection, this type of control is based on the
switching of entire voltage half-cycles using a pair of back-to-back thyristors, as shown
in Figure 3.77. It is often called ‘burst-firing’ and has found application in long time
constant loads (e.g. temperature control in electric ovens).

The fundamental supply frequency cannot be used as a basis for the Fourier analysis
in this case, because the period of repetition, and thus the lowest frequency produced,
is now a variable subharmonic frequency.

If the number of ON cycles is N and the number of cycles over which the pattern
is repeated is M the period of repetition is M/f , where f is the supply frequency.

The lowest frequency, which now becomes the fundamental frequency, is f/M Hz.
With reference to this lowest frequency, the current being analysed can be expressed as

i = Imax sin(Mωt) (3.106)

Using the time reference indicated in Figure 3.77(b), the A0 and An Fourier coeffi-
cients are zero, i.e. there are only sine terms, their general expression being

Bn = 2

π

∫ 2πf/M

0
[−Imax sin(Mωt) sin(nωt)] d(ωt)

= −Imax · 2M

π
· sin((N/M)nπ)

M2 − n2
(3.107)

Consider as an example the case where M = 5 and N = 1.
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The lowest repetition frequency for a 50 Hz supply is therefore

f1 = f

M
= 50

5
= 10, (3.108)

i.e. n = 1 corresponds with 10 Hz.
The per unit levels of the various frequencies present, obtained from equation

(3.107), are

f1(10 Hz) = 0.078 f8(80 Hz) = 0.078

f2(20 Hz) = 0.14 f9(90 Hz) = 0.033

f3(30 Hz) = 0.189 f10(100 Hz) = 0

f4(40 Hz) = 0.208 f11(110 Hz) = 0.019

f5(50 Hz) = 0.2 f12(120 Hz) = 0.025

f6(60 Hz) = 0.17 f13(130 Hz) = 0.021

f7(70 Hz) = 0.126 f14(140 Hz) = 0.01

When n is multiple of M the coefficients are zero, i.e. for 100 Hz, 150 Hz, etc.
This clearly shows that integral cycle control produces no harmonic frequencies. It

does, however, produce inter-harmonic and subharmonic frequencies.

3.12 Discussion

Within the normal operating range the harmonic content of the transformer magnetising
current is not significant. It is only during energisation and when operating above their
normal voltage that transformers can considerably increase their harmonic contribution.

Similarly, the harmonic content of the internal e.m.f. of well-designed synchronous
machines is also small. Rotor saliency in the presence of transmission system unbal-
ance and/or load-injected harmonic currents is likely to be the main source of generator
e.m.f. distortion. Induction motors produce time harmonics as a result of the har-
monic content of the m.m.f. distribution, and these are speed dependent. However,
the impact on the power system is small, partly due to operational diversity and
partly to the smaller rating of these machines, when compared with the synchronous
generators.

Power electronic devices constitute the main sources of harmonic current distortion.
The characteristics of the main power electronic devices have been described in this
chapter with reference to their harmonic contribution under the assumption of specified
terminal conditions. For most applications this is an acceptable approximation. How-
ever the input terminal conditions (normally the voltage waveform) can change as a
result of the interaction that exists between the nonlinear power electronic component
and the rest of the system. A more rigorous analysis of the harmonic sources taking
this effect into account is described in Chapter 8.
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4

Effects of Harmonic Distortion

4.1 Introduction

Once the harmonic sources are clearly defined, they must be interpreted in terms of
their effects on the rest of the system and on personnel and equipment external to the
power system.

Each element of the power system must be examined for its sensitivity to harmonics
as a basis for recommendations on the allowable levels. The main effects of voltage
and current harmonics within the power system are:

• The possibility of amplification of harmonic levels resulting from series and par-
allel resonances.

• A reduction in the efficiency of the generation, transmission and utilisation of
electric energy.

• Ageing of the insulation of electrical plant components with consequent shortening
of their useful life.

• Malfunctioning of system or plant components.

Among the possible external effects of harmonics are a degradation in communi-
cation systems performance, excessive audible noise and harmonic-induced voltage
and currents.

4.2 Resonances

The presence of capacitors, such as those used for power factor correction, can result
in local system resonances, which lead in turn to excessive currents and possibly
subsequent damage to the capacitors [1].

4.2.1 Parallel Resonance

Parallel resonance results in a high impedance at the resonant frequency being presented
to the harmonic source. Since the majority of harmonic sources can be considered as

Power System Harmonics, Second Edition J. Arrillaga, N.R. Watson
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85129-5
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Figure 4.1 Parallel resonance at a point of common coupling (PCC)

current sources, this results in increased harmonic voltages and high harmonic currents
in each leg of the parallel impedance.

Parallel resonances can occur in a variety of ways, the simplest perhaps being that
where a capacitor is connected to the same busbar as the harmonic source. A parallel
resonance can then occur between the system impedance and the capacitor.

Assuming the system impedance to be entirely inductive, the resonant frequency is

fp = f

√(
Ss

Sc

)
(4.1)

where f is the fundamental frequency (Hz), fp is the parallel resonant frequency (Hz),
Ss is the short-circuit rating (VAr) and Sc is the capacitor rating (VAr).

Further opportunities for parallel resonance can occur with a more detailed repre-
sentation of the system. For instance in Figure 4.1 the harmonic current from con-
sumer B encounters a high harmonic impedance at the busbar. This may be due to
a resonance between the system inductance (Ls) and the system (Cs) and/or load
capacitance (Cl).

To determine which resonance condition exists it is necessary to measure the har-
monic currents in each consumer load and in the supply, together with the harmonic
voltage at the busbar. In general, if the current flowing into the power system from the
busbar is small, while the harmonic voltage is high, resonance within the power system
is indicated. If instead a large harmonic current flows in consumer A’s load and leads
the harmonic voltage at the busbar, resonance between the system inductance and the
load capacitor is indicated.

4.2.2 Series Resonance

Consider the system of Figure 4.2. At high frequencies the load can be ignored as the
capacitive impedance reduces. Under these conditions a series resonant condition will
exist when

fs = f

√(
St

ScZt

− S2
l

S2
c

)
, (4.2)
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Figure 4.2 Series resonance circuit

where fs is the series resonant frequency (Hz), St is the transformer rating, Zt is
the transformer per unit impedance, Sc is the capacitor rating and Sl is the load rat-
ing (resistive).

The concern with series resonance is that high capacitor currents can flow for rela-
tively small harmonic voltages. The actual current that will flow will depend upon the
quality factor Q of the circuit. This is typically of the order of 5 at 500 Hz.

4.2.3 Effects of Resonance on System Behaviour

Power Factor Correction Capacitors Harmonic resonances affect the design of
power factor correction capacitors. The overload current capability of these capacitors
is discussed in Section 4.4.3.

This problem can be illustrated with reference to a study carried out for an iron-
sand mining plant consisting of six-pulse rectifiers and fed from a long-distance 11 kV
line. The original rating of the scheme (8 MW at 0.85 power factor) was to be
increased to 10 MW by the shunt connection of power factor correction capacitors
at the plant terminals.

The minimum fault level at the point of connection was 35.4 MVA, which (on a
10 MW power base) is equivalent to a per unit maximum system impedance of

xs = (V 2)/(MVAF/MVAB) = (1)/(35.4/10) = 0.28 p.u.

The conversion from 8 to 10 MW required 3 MVAR (or 0.3 p.u. on the 10 MVA
base), the corresponding capacitance being

xc = V 2/MVAR = 1/(0.3) = 3.3 p.u.

and this capacitance was divided into three independently switched banks.
The converter harmonic currents were now injected into the a.c. system impedance in

parallel with the PF correction capacitors, the corresponding parallel resonant frequency
resulting from the equation:

n xs = (1/n)xc where n = ωn/ω
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Therefore n2 = xc/xs = 3.3/0.28 = 11.8, and n = 3.4 (when all the capacitance is
connected), n = 4.2 (with one of the three banks disconnected) and n = 5.9 (with two
banks disconnected).

However, measurements carried out at the plant indicated that the levels of third
(n = 3) and fourth (n = 4) harmonic current content were insignificant, and the decision
was made to eliminate the possibility of fifth harmonic resonance by placing 4%
inductance in series with the capacitors.

Another area where resonance effects may lead to component failure is associated
with the application of power line signalling (ripple control) for load management. In
such systems tuned stoppers (filters) are often used to prevent the signalling frequency
from being absorbed by low-impedance elements such as power factor correction capac-
itors. A typical installation is shown in Figure 4.3.

Where local resonances exist, excessive harmonic currents can flow, resulting in
damage to the tuning capacitors. Figure 4.4 shows the harmonic currents recorded at
one such installation where failure of this type occurred.

In another installation tuned stoppers (at 530 Hz) were fitted to 15 × 65 kVAr steps
of power factor correction capacitance, each stopper rated at 100 A. Most of the stopper
tuning capacitors failed within two days. The problem was eventually traced to a local
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Figure 4.3 Tuned stopper circuit for ripple control signal
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power system harmonic at 350 Hz, near to which frequency the tuned stoppers were
found to series resonate with the power factor correction capacitors.

Magnification of Low-Order Harmonics The following simplified reasoning
explains the harmonic magnification phenomena. Let us consider the case of a static
converter (represented as a harmonic current injector) fed from an a.c. system of
internal impedance Zr at the h harmonic.

The a.c. system admittance at the fundamental and low-order harmonics is predom-
inantly inductive, i.e.

Yr = Gr − jB r

In the absence of filters or compensation, the harmonic current (Ih) generates at the
point of connection a harmonic voltage of amplitude

Vh = ZrIh = Ih/Yr

When a capacitor bank or filters of admittance Yf are present, the harmonic voltage at
the point of connection becomes:

V ′
h = Ih/(Yr + Yf )

and, since the admittance of a filter bank is predominantly capacitive (Yf = jBf ),

V ′
h = Ih/(Gr − jB r + jBf )

When Br = Bf the harmonic voltage is only limited by the system resistance, which is
generally very small. Thus, when Yr + Yf < Yr the harmonic distortion is magnified,
the magnification factor being:

V ′
h/Vh = Yr/(Yr + Yf )

Consequently, a low-order non-characteristic harmonic current, which has no practical
adverse effect in the absence of the capacitor or filter banks, can be amplified to give
a voltage greater that the filtered harmonics.

4.2.4 Complementary and Composite Resonances

The traditional definition of resonance as described above is used with reference to
isolated parts of an overall system (e.g. the a.c. or d.c. sides of a static converter).
This sort of resonance is well defined, being the frequency at which the capacitive and
inductive reactances of the circuit impedance are equal. At the resonant frequency, a
parallel resonance has a high impedance and a series resonance a low impedance.

This approach has led to the concept of complementary resonance, i.e. a
high-impedance parallel resonance at a harmonic on the a.c. side closely coupled to
a low-impedance series resonance at an associate frequency on the d.c. side. The
first-order associate a.c. and d.c. side frequencies, derived from the general table of
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Figure 4.5 Associate three-port harmonic orders

Figure 3.50, are shown in the three-port model of Figure 4.5. A reported experience
of this condition, and used in the commonly used CIGRE benchmark HVd.c. test
system [2], involves a second-harmonic parallel resonance on the a.c. side and a
fundamental frequency series resonance on the d.c. side.

Moreover, when the a.c. and d.c. systems are interconnected by a static converter,
the system impedances interact via the converter characteristics to create entirely dif-
ferent resonant frequencies. The term ‘composite resonance’ has been proposed [3] to
describe this sort of resonance, emphasising its dependence on all the components of
the system

A composite resonance may be excited by a relatively small distortion source in
the system, or by an imbalance in the converter components or control. The result-
ing amplification of the small source by the resonant characteristics of the system
can compromise the normal operation of the converter and even lead to instability.
A true instability results when, at the composite resonant frequency, the resistance of
the overall circuit is negative. This can occur at non-integer frequencies and is driven
by conversion from the fundamental frequency and d.c. components to the compos-
ite resonance frequency via the converter control. A detailed representation of the
control, firing angle and end-of-commutation angle modulation is needed to model
this operating condition; this can be done using the advanced models described in
Chapter 8.

A frequently reported case of this type in HVd.c. converters is the so-called core
saturation instability [4]. This type of instability can be explained with reference to the
block diagram of Figure 4.6. If a small level of positive-sequence second-harmonic
voltage distortion exists on the a.c. side of the converter, a fundamental frequency
distortion will appear on the d.c. side. Through the d.c. side impedance, a fundamental
frequency current will flow, resulting in a positive-sequence second-harmonic current
and a negative-sequence d.c. flowing on the a.c. side. The negative-sequence d.c. will
begin to saturate the converter transformer, resulting in a multitude of harmonic currents
being generated, including a positive-sequence second-harmonic current. Associated
with this current will be an additional contribution to the positive-sequence second-
harmonic voltage distortion and in this way the feedback loop is completed. The
stability of the system is determined by this feedback loop.
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Figure 4.6 Mechanism of core saturation instability

Due to the dynamics of the instability, the d.c distortion is never exactly at the
fundamental frequency, therefore the so-called negative sequence d.c. is not a true d.c.
but is varying slowly, hence the use of the otherwise inappropriate term ‘negative-
sequence d.c.’ The same mechanism could be triggered by the presence of some d.c.
side fundamental frequency current induced by the proximity of an a.c. transmis-
sion system.

4.2.5 Poor Damping

Considerable power at the consumer’s end of the system is controlled by power elec-
tronics to be constant power loads.

A constant power load, such as a motor variable speed drive or a switched mode
power supply, presents a small-signal impedance or resistance to the power system
that is negative; that is, any rise in voltage causes the current to fall. This removes the
damping, or broadband energy absorption capability, from the power system. It can
be expected that the continuous addition of such loads to the power system will cause
instabilities or poor performance in the future

4.3 Effects of Harmonics on Rotating Machines

4.3.1 Harmonic Losses

Non-sinusoidal voltages applied to electrical machines may cause overheating. Motors
are not normally derated so long as the harmonic distortion remains within the 5%
normally recommended by the regulations. Above that limit they will often experience
excessive heating problems. On the positive side, motors contribute to the damping of
the system harmonic content by virtue of the relatively high X/R ratio of their blocked
rotor circuit.
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Harmonic voltages or currents give rise to additional losses in the stator windings,
rotor circuits, and stator and rotor laminations. The losses in the stator and rotor
conductors are greater than those associated with the d.c. resistances because of eddy
currents and skin effect.

Leakage fields set up by harmonic currents in the stator and rotor end-windings pro-
duce extra losses. In the case of induction motors with skew rotors the flux changes in
both stator and rotor and high frequency can produce substantial iron loss. The mag-
nitude of this loss depends upon the amount of skew, and the iron-loss characteristics
of the laminations.

As an illustration of the effect of supply waveform distortion on the power loss,
reference [5] reports on the case of a 16 kW motor, operating at full output and rated
fundamental voltage (at 60 Hz). With a sinusoidal voltage supply the total loss is
1303 W, whereas with a quasi-square voltage supply the total loss is 1600 W.

The following typical distribution of losses caused by supply harmonics has been
reported [6] for the case of an inverter-fed machine: stator winding, 14.2%; rotor bars,
41.2%; end region, 18.8%; skew flux, 25.8%.

It would be inappropriate to apply the above loss breakdown to individual harmonics
or to extend them to other machines, but it is clear that the major loss component is in
the rotor. With the exception of the skew losses, the loss subdivision of a synchronous
machine should follow a similar pattern.

When considering the harmonic heating losses in the rotor of synchronous machines
it must be remembered that pairs of stator harmonics produce the same rotor fre-
quency. For example the fifth and seventh harmonics both give induced rotor currents
at frequency 6f1. Each of these currents takes the form of an approximately sinusoidal
spatial distribution of damper bar currents travelling around the rotor at velocity 6ω1,
but in opposite directions. Thus for a linear system, the average rotor surface loss
density around the periphery will be proportional to (I 2

5 + I 2
7 ); however, because of

their opposing rotations, at some point around the periphery the local surface loss den-
sity will be proportional to (I5 + I7)

2. If the fifth and seventh harmonic currents are
of similar magnitude then the maximum local loss density would be about twice the
average loss density caused by these two currents.

Extra power loss is probably the most serious effect of harmonics upon a.c. machines.
An approximate assessment of the additional thermal stress of the coils can be achieved
with the help of a weighted distortion factor adapted to inductance, i.e.

THDL =

√√√√ N∑
n=2

(
V 2

n

nα

)

V1
(4.3)

where α = 1 to 2, Vn is the single frequency r.m.s. voltage at harmonic n, N is the
maximum order of harmonic to be considered and V1 is the fundamental line to neutral
r.m.s. voltage.

The capability of a machine to cope with extra harmonic currents will depend on
the total additional loss and its effect on the overall machine temperature rise and
local overheating (probably in the rotor). Cage-rotor induction motors tolerate higher
rotor losses and temperatures provided that these do not result in unacceptable stator
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Figure 4.7 Equivalent circuit of induction machine per phase for harmonic n

temperatures, whereas machines with insulated rotor windings may be more limited.
Some guidance as to the probably acceptable levels may be obtained from the fact
that the level of continuous negative-sequence current is limited to about 10% for
generators, and negative-sequence voltage to about 2% for induction motors. It is
therefore reasonable to expect that if the harmonic content exceeds these negative-
sequence limits, then problems will occur.

4.3.2 Harmonic Torques

The familiar equivalent circuit of an induction machine can be drawn for each har-
monic as in Figure 4.7, where all the parameters correspond to actual frequencies of
winding currents.

Harmonic currents present in the stator of an a.c. machine produce induction motor-
ing action (i.e. positive harmonic slips Sn). This motoring action gives rise to shaft
torques in the same direction as the harmonic field velocities so that all positive-
sequence harmonics will develop shaft torques aiding shaft rotation whereas negative-
sequence harmonics will have the opposite effect.

For a harmonic current In, the torque per phase is given by I 2
n (r ′

2n/sn) watts at
harmonic velocity. Referred to fundamental velocity this becomes

Tn = (I 2
n /n)(r ′

2n/sn) synchronous watts (4.4)

with the sign of n giving the torque direction.
Since sn is approximately 1.0, equation (4.4) can be written as

Tn = (I 2
n /n)r ′

2n per unit (4.5)

if In and r ′
2n are per unit.

Using the relationship Vn = InZn and Zn ∼ nZ1, the torque can be expressed in
terms of the harmonic voltages, i.e.

Tn = (V 2
n /n3)(r ′

2n/X2
1) (4.6)

Because the slip to harmonic frequencies is almost unity, the torques produced by
practical per unit values of harmonic currents is very small, and moreover the small
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Figure 4.8 Rotor harmonic torques and currents

torques occur in pairs, which tend to cancel. This effect is illustrated in Figure 4.8.
Therefore the effects of harmonics upon the mean torque may, in most cases, be
neglected.

Although harmonics have little effect upon mean torque, they can produce significant
torque pulsations.

Williamson [7] has developed the following approximate expression for the magni-
tudes of torque pulsations based on nominal voltage:

T3k = [I 2
n+ + I 2

n− − 2In+In− cos(φn+ − φn−)]1/2 per unit

where In+ and In− are per unit values, n+ represents the 1 + 3k harmonic orders and
n− represents the 1 − 3k harmonic orders. This expression permits the preliminary
assessment of possible shaft torsional vibration problems.

As an example, let us take the case of a supply voltage with total harmonic distortion
of about 4%, resulting in machine currents of 0.03 and 0.02 per unit for the fifth and
seventh harmonics, respectively. If both harmonics have the same phase angle, then for
a 50 Hz machine on full voltage the torque will have a varying component at 300 Hz
with an amplitude of 0.01 per unit. If the harmonics have the most adverse phase
relationship, the amplitude will be 0.05 per unit.

4.3.3 Other Effects

The perturbation of the speed/torque characteristic by the presence of harmonics can
cause clogging, a term used to describe the failure of an induction motor to run up to
normal speed due to a stable operating point occurring at a lower frequency.

The stray capacitances in ASD-fed electric motors in the presence of harmonics
cause capacitive currents to flow through the motor bearings and are often a source of
their failure [8].
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4.4 Effect of Harmonics on Static Power Plant

4.4.1 Transmission System

The flow of harmonic currents in the transmission network produces two main effects.
One is the additional power loss caused by the increased r.m.s. value of the current
waveform, i.e.

∞∑
n=2

I 2
nRn

where In is the nth harmonic current and Rn the system resistance at that harmonic
frequency. Skin and proximity effects are functions of frequency and raise the value
of the a.c. resistance of the cable, thus increasing the conductor I 2R losses.

The second effect of the harmonic current flow is the creation of harmonic voltage
drops across the various circuit impedances. This means in effect that a ‘weak’ system
(of large impedance and thus low fault level) will result in greater voltage disturbances
than a ‘stiff’ system (of low impedance and high fault level).

In the case of transmission by cable, harmonic voltages increase the dielectric stress
in proportion to their crest voltages. This effect shortens the useful life of the cable. It
also increases the number of faults and therefore the cost of repairs.

The effects of harmonics on Corona starting and extinction levels are a function of
peak-to-peak voltage. The peak voltage depends on the phase relationship between the
harmonics and the fundamental. It is thus possible for the peak voltage to be above
the rating while the r.m.s. voltage is well within this limit.

The IEEE 519 standard provides typical capacity derating curves for cables feeding
six-pulse convertors.

4.4.2 Transformers

The primary effect of power system harmonics on transformers is the additional heat
generated by the losses caused by the harmonic content of the load current. Other
problems include possible resonances between the transformer inductance and system
capacitance, mechanical insulation stress (winding and lamination) due to temperature
cycling and possible small core vibrations.

The presence of harmonic voltages increases the hysteresis and eddy current losses in
the laminations and stresses the insulation. The increase in core losses due to harmonics
depends on the effect that the harmonics have on the supply voltage and on the design
of the transformer core.

The flow of harmonic currents increases the copper losses; this effect is more impor-
tant in the case of converter transformers because they do not benefit from the presence
of filters, which are normally connected on the a.c. system side. Apart from the extra
rating required, converter transformers often develop unexpected hot spots in the tank.

Delta-connected windings can be overloaded by the circulation of triplen frequency
zero-sequence currents, unless these extra currents are taken into account in the design.
Under this condition a three-legged transformer design can be effectively overloaded
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by zero-sequence-caused harmonic fluxes. These fluxes cause additional heating in the
tanks, core clamps, etc.

If the load current contains a d.c. component, the resulting saturation of the trans-
former magnetic circuit (described in Section 3.2) greatly increases the harmonic
content of the excitation current.

Guidelines for transformer derating to take into account the harmonic content are
given in the ANSI/IEEE standard C57.110 based on a derating factor [9] expressed as

K =

√√√√√√√

∑
h

(I 2
hh2)

∑
h

I 2
h

(4.7)

In terms of the above K factor, the following expression is used to determine the
derated (or maximum allowed) current:

Imax =
√

1 + PEC.R

1 + KPEC.R

(IR) (4.8)

where IR is the fundamental r.m.s. current under rated load conditions and PEC.R is
the ratio of eddy-current loss to rated I 2R loss (I being the total r.m.s. current).

Examples of K -Factor Application

(i) Assume that the converter transformer used in Section 3.6.5 has a PEC (eddy current
loss) of 12 kW and an I 2R loss on rating of 100 kW.

In that example the calculated values of the fundamental and harmonic currents were

233.91 A(fundamental), 45.37 A(5th), 31.27 A(7th), 19.08 A(11th) and 14.03 A(13th)

Therefore PEC.R = 12/100 = 0.12 and IR (rated fundamental current) = 233.91 A.
From Equation (4.7)

K =

√√√√√√√√

(
233.91

233.91

)2

12 +
(

45.84

233.91

)2

52 +
(

31.27

233.91

)2

72 +
(

19.08

233.91

)2

112 +
(

14.03

233.91

)2

132

(
233.91

233.91

)2

+
(

45.84

233.91

)2

+
(

31.27

233.91

)2

+
(

19.08

233.91

)2

+
(

14.03

233.91

)2

= 1.996

and from Equation (4.8) the maximum allowed current is

Imax =
√

1 + 0.12

1 + (1.985)(0.12)
× (233.91) = 222 A

Therefore the transformer will be overloaded if used with the nominal (i.e. 233.91 A)
a.c. current rating.
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Table 4.1 Harmonic currents of two heat pumps operating at
nominal speed

h Pump A Pump B

Amplitude
(A)

Phase
(degrees)

Amplitude
(A)

Phase
(degrees)

1 11.87 17 14.4 2
3 7.487 0228 12.18 −10
5 3.003 −125 9.84 −17
7 1.329 −89 6.88 −24
9 0.582 67 3.99 −34

11 0.499 −55 1.63 −50
13 0.309 −227 0.39 −141
15 0.273 −68 0.88 151
17 0.154 −164 0.94 132

Number of units (VSHEHP)
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Figure 4.9 Reduction of the nominal capacity of a 75 kVA distribution transformer feeding
two types of heat pump

(ii) A 75 kVA single-phase transformer feeds different proportions of heat pumps
(VSHEHP) [10], involving rectification with high harmonic content (shown in
Table 4.1). The derated levels, using the ANSI-C57.110 recommendation, are plotted
in Figure 4.9 for different numbers of pump units.

4.4.3 Capacitor Banks

The presence of voltage distortion increases the dielectric loss in capacitors, the total
loss being expressed by

∞∑
n=1

C(tan δ)ωnV
2
n (4.9)
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where tan δ = R/(1/ωC) is the loss factor, ωn = 2πfn and Vn is the r.m.s. voltage of
the nth harmonic.

The additional thermal stress of capacitors directly connected to the system (i.e.
without series inductance) is assessed approximately with the help of a special capacitor
weighted THD factor defined as

THDC =

√√√√ N∑
n=1

(n · V 2
n )

V1
(4.10)

Series and parallel resonances (discussed in Section 4.2) between the capacitors
and the rest of the system can cause overvoltages and high currents, thus increas-
ing dramatically the losses and overheating of capacitors, and often leading to their
destruction. Therefore all possible resonances must be taken into account in the design
of power factor correction capacitors and in other applications, such as those used with
single-phase induction motors and in converter transients damping. These capacitors
are rated according to overcurrent limiting standards, such as ANSI/IEEE 18–1980,
typical values being 15% in the UK, 30% in Europe and 80% in the USA.

Moreover, the total reactive power, including fundamental and harmonics, i.e.

Q =
N∑

n=1

Qn

should not exceed the rated reactive power (taking into account the effect of permissible
overvoltage and component manufacturing tolerances).

Power factor correction capacitors are often tuned to about the third or fifth harmonic
frequency by adding a small series inductance (about 9% and 4%, respectively). This
makes the capacitor look inductive to frequencies above the third (or fifth) harmonic
and thus avoids parallel resonances.

4.5 Power Assessment with Distorted Waveforms

4.5.1 Single-Phase System

Early attempts to include waveform distortion in the power definitions were made by
Budeanu [11] and Fryze [12].

Budeanu divided the apparent power into three orthogonal components, i.e.

S2 = P 2 + Q2
B + D2 (4.11)

and defined the terms reactive power

QB =
n∑

l=1

VlIl sin(ϕl) (4.12)
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accepted by the IEC and IEEE, and complementary power (which Budeanu called
fictitious)

Pc =
√

S2 − P 2 (4.13)

Fryze separated the current into two orthogonal components, ia (active) and
ib (reactive)

i = ia + ib (4.14)

and proposed for the reactive power the following definition:

QF = V Ib =
√

S2 − P 2 (4.15)

To add some physical meaning to the matter, Shepherd and Zakikhani [13] proposed
the following decomposition for the apparent power:

S2 = S2
R + S2

X + S2
D (4.16)

being

S2
R =

n∑
1

V 2
n

n∑
1

I 2
n cos2(ϕn) (4.17)

S2
X =

n∑
1

V 2
n

n∑
1

I 2
n sin2(ϕn) (4.18)

S2
D =

n∑
1

V 2
n

p∑
1

I 2
p +

m∑
1

V 2
m

(
n∑
1

I 2
n +

p∑
1

I 2
p

)
(4.19)

In these expressions, SR is said to be active apparent power, SX reactive apparent
power and SD distortion apparent power.

The main advantage of this decomposition is that the minimisation of SX immediately
leads to the optimisation of the power factor via the addition of a passive linear element,
a property not available when applying Budeanu’s definition; however, there is no
justification for a power decomposition with an active component that differs from the
mean value of the instantaneous power over a period (i.e. the active power).

An alternative model also involving three components was proposed by Sharon [14]

S2 = P 2 + S2
Q + S2

C (4.20)

where

P ∼ active power

SQ = V

√√√√ n∑
1

I 2
n sin2(ϕn) ∼ a reactive power in quadrature (4.21)

and

SC ∼ a complementary reactive power
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Similarly to the model of Shepherd and Zakikhani, the minimisation of SQ in this
model results in maximum power factor via the connection of linear passive elements.
Moreover, Sharon replaces the questionable term SR by the more acceptable active
power P .

Taking into account that, in general, the main contribution to reactive power comes
from the fundamental component of the voltage, Emanuel [15] proposed the following
definitions:

Q1 = V1I1 sin(ϕ1) (4.22)

and a complementary power

P 2
C = S2 − P 2 − Q2

1 (4.23)

Based on Fryze’s theory, Kusters and Moore [16] proposed a power definition in
the time domain with the current divided into three components:

ip an active component with a waveform identical to that consumed in an
ideal resistance

iql/iqc a reactive component, corresponding to either a coil or a capacitor
iqlr/iqcr a residual reactive component, the remaining current after removing

the active and reactive, i.e.

iqr = i − ip − iq (4.24)

Furthermore, Kusters and Moore suggested the following decomposition for the
apparent power:

S = P 2 + Q2
l + Q2

lr = P 2 + Q2
c + Q2

cr (4.25)

where P = VIp is the active power, Ql = VIql the inductive reactive power, Qc = VIqc

the capacitive reactive power, and Qlr/Qcl the remaining reactive powers obtained
from equation (4.24).

Also based on Fryze’s definition, Emanuel [17] proposed two alternative decompo-
sitions distinguishing between the power components of the fundamental frequency
(P1, Q1) and harmonics (PH ,QH ), i.e.

S2 = (P1 + PH)2 + Q2
F (4.26)

being

Q2
F = Q2

B + D2 (4.27)

and

S2 = (P1 + PH )2 + Q2
1 + Q2

H (4.28)

where

Q2
H = Q2

F − Q2
1 (4.29)
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Further articles elaborating on the decomposition of power under non-sinusoidal
conditions have been published by Czarnecki [18] and Slonin and Van Wyk [19].

In a recent contribution, Emanuel [20] makes the following statements:

• All forms of non-active powers stem from energy manifestations that have a com-
mon mark: energy oscillations between different sources, sources and loads or loads
and loads. The net energy transfer linked with all the non-active powers is nil.

• Due to the unique significance of the fundamental powers, S1, P1 and Q1, that
comes from the fact that electric energy is a product expected to be generated and
delivered and bought in the form of a 60 or 50 Hz electromagnetic field, it is useful
to separate the apparent power S into fundamental S1 and the non-fundamental SN

apparent powers:

S2 = S2
1 + S2

N . (4.30)

• As well as all the non-active powers, the term SN contains also a minute amount
of harmonic active power, PH . The harmonic active power rarely exceeds 0.005P1.
Thus, in a first approximation, an industrial nonlinear load can be evaluated from
the measurements of P1,Q1 and SN .

• The further subdivision of SN into other components provides information on the
required dynamic compensator or static filter capacity and level of current and
voltage distortion.

Illustrative Example [21] To illustrate the practical consequences of using each of
the above definitions, a comparative test study is shown with four single-phase networks
with identical r.m.s. values of voltage (113.65 V) and current (16.25 A). In case A,
the applied voltage is sinusoidal and the load nonlinear; case B contains voltage and
current of the same, non-sinusoidal, waveform and in phase with each other; in case C
the two identical waveforms are out of phase, and finally in D the voltage and current
have harmonics of different orders.

The numerical information corresponding to these four cases is listed in Table 4.2
and the time-domain variation of the voltages and currents is shown in Figure 4.10.

Table 4.3 lists, for each case, the values of the powers previously defined, i.e. active
P , reactive QB , apparent reactive SX, reactive in quadrature QS , reactive of fundamen-
tal component Q1, Fryze’s reactive QF , distortion D, apparent S and also the power
factor PF.

Table 4.2 Voltage and current phasors V = 113.65 V, I = 16.25 A

Case V1 � α1 V3 � α3 V5 � α5 V7 � α7

A vA 113.65 � 0◦

iA 15 � − 30◦ 5.8 � 0◦ 2 � 0◦ 1 � 0◦

B vB 105 � 0◦ 35 � 0◦ 21 � 0◦ 15 � 0◦

iB 15 � 0◦ 5 � 0◦ 3 � 0◦ (15/7)� 0◦

C vC 105 � 0◦ 35 � 0◦ 21 � 0◦ 15 � 0◦

iC 15 � − 30◦ 5 � − 90◦ 3 � − 150◦ (15/7)� 150◦

D vD 105 � 0◦ 40.82 � 180◦ 15 � 0◦

iD 15 � − 30◦ 5.44 � − 60◦ 3 � − 30◦
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Figure 4.10 Voltage and current waveforms

Table 4.3 Alternative powers for four circuits with the same r.m.s. voltage and current but
with different waveforms

Magnitude Case A Case B Case C Case D

Active P(W) 1476 1845 1282 1403
Budeanu QB (Var) 852 0 978 810
Shepherd SX(VA) 852 0 1046 811
Sharon QS(Var) 852 0 1046 870
Emanuel QI (Var) 852 0 788 788
Fryze QF (Var) 1107 0 1327 1198
Budeanu D(VA) 707 0 897 883
Apparent S(VA)/PF 1845/0.80 1845/1 1845/0.695 1845/0.76

The rest of this section describes the results of three different comparisons made
between cases A, C and D.

The first method, type 1 in Table 4.4, relates to the conventional capacitive com-
pensation, and the table indicates the value of the capacitor that optimises the power
factor PF max 1 and the required apparent power Smin 1.

The second method, type 2, consists of a sinusoidal current injection of fundamental
frequency that cancels the reactive current ir1 in the load; the corresponding apparent
power and power factor are Smin 2 and PF max 2, respectively.

Finally, in type 3 compensation, the current injection not only cancels the reactive
component ir1, but also the harmonic currents; Smin 3 and PF max 3, are the apparent
power and power factor, respectively.
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Table 4.4 Smin and PF max values for different compensation techniques

Compensation Case A Case B Case C

Type 1 Smin 1(VA)/C(µF)/PF max 1 1636/210/0.902 1693/98/0.757 1759/81/0.798
Type 2 Smin 2(VA)/PF max 2 1636/0.92 1636/0.785 1636/0.858
Type 3 Smin 3(VA)/PF max 3 1476/1 1476/0.869 1476/0.950

The more relevant comments resulting from the comparison are:

(1) When the voltage is sinusoidal and the current non-sinusoidal (case A), the load
is nonlinear; in this case, all the reactive powers obtained are identical, except
Fryze’s, which includes the distortion component. With reference to the optimisa-
tion process, PF max 1 = PF max 2, as could be expected considering the sinusoidal
nature of the voltage.

(2) If the voltage and current are in phase and of the same waveform (case B) the
instantaneous power never reaches negative values; therefore P = S, the reactive
and distortion powers are zero and the power factor unity, the load equivalent
impedance being a linear resistance.

(3) When the voltage and current have the same waveform but are out of phase
with each other (case C) the reactive powers calculated according to the various
definitions proposed are different. In this case, the passive circuit does not distort
the current waveform but alters its phase such that the power factor increases
from an initial value of 0.695 to an optimal value PF max 3 of 0.869.

(4) Case D, due to the load nonlinearity, contains different harmonics; the third har-
monic is only present in the voltage and the fifth in the current waveforms,
respectively. This is the most general case; all the reactive powers calculated are
different and the maximum power factor (PF max 3) is 0.95.

(5) The reactive powers calculated according to the various definitions are all differ-
ent; the smallest is Emanuel’s, since he only considers the fundamental compo-
nent, and the largest Fryze’s, which also includes distortion. In general,

Q1 ≤ QB ≤ SX ≤ QS ≤ QF (4.31)

4.5.2 Three-Phase System

Apparent power in unbalanced three-phase systems is currently calculated using several
definitions that lead to different power factor levels. Consequently the power bills will
also differ, due to the reactive power tariffs and, in some countries, to the direct
registration of the maximum apparent power demand.

Four different expressions have been proposed for the apparent reactive power, two
of them based on Budeanu’s and the other two on Fryze’s definitions [22]:

(i) Sv =

√√√√√



(∑
k

Pk

)2

+
(∑

k

Qbk

)2

+
(∑

k

Dk

)2

 (4.32)
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or vector apparent power;

(ii) Sa =
∑

k

√
(P 2

k + Q2
bk + D2

k ) (4.33)

or arithmetic apparent power.
In the above expressions Pk represents the active power, Qbk Budeanu’s reactive

power and Dk the distortion power in phase k; these terms are generally accepted by
the main international organisations, such as the IEEE and IEC.

(iii) Se =
∑

k

√
(P 2

k + Q2
fk ) =

∑
k

VkIk (4.34)

an apparent r.m.s. power, that considers independently the power consumed in
each phase.

(iv) Ss =
√

(P 2 + Q2
f ) =

√ ∑
k

V 2
k

√∑
k

I 2
k (4.35)

a system apparent power, that considers the three-phase network as a unit.
The last two expressions use the reactive powers as defined by Fryze, Qf and Qfk ,

which include not only the reactive but also the distortive effects.
In the vector apparent power the phase reactive powers compensate each other, but

not in the other expressions; the system apparent power calculates the voltage and
current of each phase individually and therefore yields the highest apparent power. In
general, the following applies:

Sv ≤ Sa ≤ Se ≤ Ss (4.36)

The power factor of a load or system is generally accepted as a measure of the power
transfer efficiency and is defined as the ratio between the electric power transformed
into some other form of energy and the apparent power, i.e.

PF = P/S (4.37)

Correspondingly, the relative magnitudes of the power factors calculated from the
different definitions are

PF v ≥ PF a ≥ PF e ≥ PFs (4.38)

where PF v , PFa , PFe and PFs are the power factors corresponding to the vector,
arithmetic, r.m.s. and system apparent powers, respectively.

For the power factor to reflect the system efficiency in three-phase networks with
neutral wire, the neutral (zero sequence) currents must be included in the calculation
of the equivalent current, i.e. in equation (4.35):

I 2
k = I 2

a + I 2
b + I 2

c + I 2
n (4.39)
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and

V 2
k = V 2

a + V 2
b + V 2

c (4.40)

where a, b, c indicate the individual phase values and n the neutral.

Illustrative Example [23,24] The simple test system shown in Figure 4.11 is used
to illustrate the different performance of the proposed three-phase power definitions.
Asymmetrical three-phase networks, even with sinusoidal voltage excitation and linear
resistive loading, interchange reactive energy between the generator phases, despite the
absence of energy storing elements. To show this effect, the circuit of Figure 4.11 is
further simplified by making the line resistances equal to zero and assuming that the
load is purely resistive, i.e. Za = Ra , Zb = Rb, Zc = Rc. Moreover, the three-phase
source is assumed to be balanced and sinusoidal.

The following different operating conditions are compared in Table 4.5.

Case i Ra = 0 � Rb = 5 � Rc = 25 � without neutral wire
Case ii Ra = 5 � Rb = 5 � Rc = 25 � without neutral wire
Case iii Ra = 5 � Rb = 5 � Rc = 25 � with neutral wire
Case iv Ra = 5 � Rb = 5 � Rc = 5 � without neutral wire

As shown in Table 4.5, in case i, phases a and c generate reactive power while
phase b absorbs reactive power, even though the overall reactive power requirement
is zero. The effect is attenuated when a load is connected to phase a (case ii), but

Line Load

R

R

R

Za
Va

Zb

Zc

~
a

+

~ b+

Vc

Vb

~
c

n

+

Figure 4.11 Three-phase test system

Table 4.5 Apparent powers and power factors for test cases i to iv

Case SVa SVb SVc SV Sa = Se Ss PFv PF a = PF PFs

i 32.4 − j12.46 27 + j15.58 5.4 − j3.11 64.8 72.12 81.52 1 0.898 0.794
ii 14.7 − j5.7 14.7 + j5.7 4.9 34.36 36.47 39.58 1 0.942 0.868
iii 18 18 3.6 39.6 39.6 44.53 1 1 0.889
iv 18 18 18 54 54 54 1 1 1

∗All the powers are expressed in kVA.
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there is still reactive power in two phases. When the circuit topology is changed by
connecting a neutral wire (case iii) the generating source stops generating reactive
power; the reactive power generation is also absent when phase c is made equal to
phases a and b (case iv), i.e. when the network is perfectly balanced, and this is the
case of maximum efficiency.

Table 4.5 shows for each case the apparent powers resulting from the different def-
initions as well as the corresponding power factors. The table also shows the complex
apparent powers generated by the sources Va , Vb, Vc. It can be seen that the most
pessimistic power factor is PFs , which only gives the value of one when the resistive
load is perfectly balanced; on the other hand PFv remains unity in all cases since the
total load demand for reactive power, being resistive, is zero.

Next, a set of test cases v to x involve the circuit of Figure 4.11 with a perfectly
balanced source feeding either linear or nonlinear loads.

The calculations performed in each case involve the four power factors defined
above, the resistive losses in the line, and the line loss ratios of each of the cases to
that of case v (the balanced case), which is used as a reference; the latter will show
that only one of the definitions coincides with that ratio.

As the powers consumed by the load are different in all cases, for the purpose
of comparison, the power of case v is also used as a reference, i.e. 54 kW in the
test system.

Case v: Vns (non-sinusoidal voltages), balanced load, 3 or 4 wires

Ra = Rb = Rc = 5 �, R = 0.2 �/phase
va = 298.51

√
2 sin(ωt) + 29.85

√
2 sin(5 ωt); Va = 300 V

ia = 59.70
√

2 sin(ωt) + 5.97
√

2 sin(5 ωt); Ia = 60 A
P = 3 × 298.51 × 59.70 + 3 × 29.85 × 5.97 = 54 000 W

The power loss in the line is Pv = 3 × (60)2 × 0.2 = 2160 W. It should be noted
that this value is the same as case iv (the balanced sinusoidal circuit) for the same
line resistance.

Case vi(a): Vns, unbalanced load, 4 wires

Ra = Rb = 5 �, Rc = 25 �

va = 298.51
√

2 sin(ωt) + 29.85
√

2 sin(5 ωt)

ia = 59.70
√

2 sin(ωt) + 5.97
√

2 sin(5 ωt); Ia = 60 A
ib = 59.70

√
2 sin(ωt − 120) + 5.97

√
2 sin(5 ωt + 120); Ib = 60 A

ic = 11.94
√

2 sin(ωt + 120) + 1.19
√

2 sin(5 ωt − 120); Ic = 12 A

The topology of this case does not permit distorted or reactive power. To calculate
the line loss in relation to the power base, the calculated currents are multiplied by
factor K , which is the ratio of the power in case v to that of vi(a); therefore

K = 54 000/39 600 = 1.36

Pvi = [(60 × 1.3636)2 + (60 × 1.3636)2 + (12 × 1.3636)2] × 0.2 = 2731.23 W

The ratio Pv/Pvi = 0.79 is the square of PFs . It is observed that although the con-
sumed power has no reactive or distorted component, due to load unbalance, line losses
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are larger and the power factors PFv, PFa and PFe do not reflect that loss of network
efficiency; on the other hand PFs represents faithfully this increment. It should be
noted that the value Piii (of case iii) would be identical to Pvi if the line resistance (i.e.
0.2 �/phase) had been represented.

Case vi(b): Vns, unbalanced load, 3 wires

Ra = Rb = 5 �, Rc = 25 �, R = 0.2 �/phase
va = 298.51

√
2 sin(ωt) + 29.85

√
2 sin(5 ωt)

ia = 52.34
√

2 sin(ωt + 21.05) + 5.234
√

2 sin(5 ωt − 21.05); Ia = 52.60 A
ib = 52.34

√
2 sin(ωt − 141.05) + 5.234

√
2 sin(5 ωt + 141.05); Ib = 52.60 A

ic = 16.34
√

2 sin(ωt + 120) + 1.628
√

2 sin(5 ωt − 120); Ic = 16.36 A

The different behaviour in this case with respect to reactive and distorted power is
due to the new topology, which excludes the neutral wire.

The line losses, normalised to 54 kW, are Pvi(b) = 2865.3 and the ratio Pv/Pvi =
0.75 is again the square of PFs .

Case vii: Vs (sinusoidal), nonlinear load, Ins (non sinusoidal) and balanced

R = 0.2 �/phase
va = 300

√
2 sin(ωt).

ia = 60
√

2 sin(ωt) + 6
√

2 sin(5 ωt); Ia = Ib = Ic = 60.3 A

In this case the load nonlinearity produces a harmonic component not present in the
voltage source. The power consumed is 54 kW and the values of the various power
factors are identical and close to unity, in spite of the fifth harmonic current, because
the fundamental component of the current is balanced and its power factor is unity.

Case viii: Vs, nonlinear load, Ins unbalanced

R = 0.2 �/phase
va = 300

√
2 sin(ωt).

This case has the same currents as in vi(b), yielding lower power factors, due to the
fact that the load active power decreases in the absence of fifth harmonic voltage.

Case ix: Vns, nonlinear load, Ins balanced

R = 0.2 �/phase
va = 298.51

√
2 sin(ωt) + 29.85

√
2 sin(5 ωt)

ia = 59.70
√

2 sin(ωt) + 5.97
√

2 sin(5 ωt) + 10
√

2 sin(7 ωt); Ia = 60.83 A

In this case the currents are as in v, but the load nonlinearity injects seventh harmonic,
which results in a reduction of power factors with respect to the base case.

Case x: Vns, nonlinear load, Ins unbalanced

R = 0.2 �/phase
va = 298.51

√
2 sin(ωt) + 29.85

√
2 sin(5 ωt)

ia = 59.70
√

2 sin(ωt); Ia = 59.70 A
ib = 59.70

√
2 sin(ωt − 120) + 5.97

√
2 sin(5 ωt + 120); Ib = 60 A

ic = 59.70
√

2 sin(ωt + 120) + 11.94
√

2 sin(5 ωt − 120); Ib = 60.88 A
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Table 4.6 Circuit characteristics for test cases v to x

Case Volt
components

Impedance Neutral Current
components

v ωi, ω5 Ra = Rb = Rc = 5 � No ω1, ω5, balanced
vi(a) ωi, ω5 Ra = Rb = 5; Rc = 25 � Yes ω1, ω5, unbalanced
vi(b) ω1, ω5 Ra = Rb = 5; Rc = 25 � No ω1, ω5, unbalanced
vii ω1 Nonlinear Yes ω1, ω5, balanced
viii ω1 Nonlinear Yes ω1, ω5, unbalanced
ix ω1, ω5 Nonlinear Yes ω1, ω5, balanced
x ω1, ω5 Nonlinear Yes ω1, balanced; ω5,

unbalanced

Table 4.7 Apparent powers and power factors of test cases v to x

Case Sv Sa = Se Ss PF v PF a = PF e PFs Pj Pv/Pj PF2
s

v 54 000 54 000 54 000 1 1 1 2160 1 1
vi(a) 39 600 39 600 44 529.5 1 1 0.889 2731.2 0.790 0.790
vi(b) 34 436.8 36 470.1 39 578.3 0.997 0.942 0.868 2865.3 0.753 0.753
vii 54 269.3 54 269.3 54 269.3 0.995 0.995 0.995 2181.6 0.990 0.990
viii 34 385.1 36 470.1 39 578.3 0.994 0.937 0.863 2893.9 0.746 0.746
ix 54 744.8 54 744.8 54 744.8 0.986 0.986 0.986 2220 0.972 0.972
x 54 117.5 54 176.0 54 177.9 0.997 0.996 0.996 2174.2 0.993 0.993

The fundamental component is as in case v; the nonlinear load contains unbalanced
fifth harmonic, chosen to ensure that the consumed active power is the same as that
of the base circuit; this case also shows a decrease of the power factors with respect
to the base case.

The main characteristics of the seven cases considered in this section are shown in
Table 4.6. Table 4.7 illustrates, for each case, the magnitudes of the apparent powers;
Pj is the power loss in the line, normalised to the base power of case v, Pv/Pj is the
ratio of the line power loss for the balanced line and that corresponding to each case.
Finally, the table lists the magnitude of PFs (the square of the system power factor),
which coincides always with Pv/Pj .

4.5.3 Power Factor Under Harmonic Distortion [25]

In general, the instantaneous values of the voltage and current components can be
expressed as

v =
n∑
1

√
2Vn sin(nωt + αn) +

m∑ √
2Vm sin(mωt + αm) (4.41)

i =
n∑
1

√
2In sin(nωt + αn + φn) +

p∑√
2Ip sin(pωt + αp) (4.42)
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and the power factor is given by

p.f. =
1/T

∫ T

0
vi dt

VrmsIrms
=

n∑
1

VnIn cos(φn)

{(
n∑
1

V 2
n +

m∑
V 2

m

) (
n∑
1

I 2
n +

p∑
I 2
p

)}1/2 (4.43)

This factor represents a figure of merit of the character of the power consumption. A
low value indicates poor utilisation of the source-power capacity needed by the load.

If the voltage waveform is sinusoidal, equation (4.43) reduces to

p.f. = V1I1 cos(φ1)

V1Irms
= I1

Irms
· cos(φ1) = µ cos(φ1) (4.44)

where cos(φ1) is the displacement power factor (DPF) between the fundamental compo-
nents of voltage and current, and µ is a current distortion factor. It is worth mentioning
that only DPF information is available from conventional instrumentation.

Thus unity power factor can only be achieved when µ = 1 since cos(φ1) in
equation (4.44) can not be greater than one.

Power factor compensation is not straightforward with distorted waveforms. As loss-
less devices are normally used for the compensation, the minimisation of the apparent
power should lead directly to the optimum power factor. If, for example, a capacitance
C is added in parallel to the load characterised by equations (4.41) and (4.42), the
general expression for the apparent power in terms of C is

S =
(

n∑
1

V 2
n +

m∑
V 2

m

)1/2

·
{

n∑
1

(I 2
n + V 2

n n2ω2C2 + 2VnInnωC sin(φn)) +
m∑

V 2
mm2ω2C2 +

p∑
I 2
p

}1/2

(4.45)

The differentiation of this equation with respect to C and its subsequent equating to
zero leads to an optimum value of the linear capacitance, i.e.

Copt = −
1/ω

n∑
1

VnnIn sin(φn)

n∑
1

V 2
n n2 +

m∑
V 2

mm2

(4.46)

The object of capacitor compensation is to improve the displacement factor if the
voltage is sinusoidal. Improvement in the values of distortion factor are achieved by
filters, higher pulse numbers, or current waveform modification. These techniques are
discussed in Chapter 6.
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4.5.4 Effect of Harmonics on Measuring Instruments

Measuring instruments initially calibrated on purely sinusoidal alternating current and
subsequently used on a distorted electricity supply can be prone to error. The magnitude
and direction of the harmonic power flow are important for revenue considerations as
the sign of the meter error is decided by the direction of flow.

Studies have shown that errors due to harmonic content vary greatly as to the type
of meter, and that both positive and negative metering errors are possible.

The classic energy measuring instrument is the Ferraris motor type kilowatt-hour
meter. Its inherent design is electromagnetic, producing driving and braking fluxes
which impinge on its rotor, developing a torque. Secondary flux-producing elements are
provided for compensation purposes to improve the instrument accuracy and to com-
pensate for friction in the register. These flux-producing elements, providing primary
and secondary torques, are essentially nonlinear in regard to amplitude and frequency.
The nonlinear elements include the voltage and current elements and overload mag-
netic shunts, and the frequency-sensitive elements include the disc, the quadrature and
anti-friction loops.

The response of this meter to frequencies outside the design parameter is inefficient,
and large inaccuracies result. An expression for total power as seen by a meter is

Total power

(PT)

= VdcIdc

(Pdc)

+ VF IF cos φF

(PF)

+ VH IH cos φH

(PH)
(4.47)

The meter will not measure Pdc but will be sensitive to its presence; it will mea-
sure PF accurately and PH inaccurately, the error being determined by the frequency.
The total harmonic power PH is obtained by adding all components derived from the
products of voltages and currents of the same frequencies, both above and below the
fundamental frequency.

Any d.c. power supplied to or generated by the customer will cause an error pro-
portional to the power ratio Pdc/PT, with the error sign related to the direction of
power flow. Similarly, any deficiency in measuring harmonic power PH will cause an
error represented by ±KPH/PT, where the factor K is dependent on the frequency-
response characteristics of the meter, and the error sign again will be related to power
flow direction.

D.c. power and harmonic voltages or currents alone should not produce torques,
but will degrade the capability of a meter to measure fundamental frequency power.
Direct currents distort the working fluxes and alter the incremental permeability of
the magnetic elements. Fluxes produced by harmonic currents combine with spurious
fluxes of the same frequency that may be present due to the imperfection of the meter
element and produce secondary torques.

The kilowatt-hour meter, based on the Ferraris (eddy current) motor principle, has
been found generally to read high to the extent of up to several percentage points with a
consumer generating harmonics through thyristor-controlled variable speed equipment
(particularly if even harmonics and d.c. are involved) and notably if there is also a low
power factor.

Converter loads using the ‘burst firing’ principle can cause kilowatt-hour meters
to read high by several percentage points (cases in excess of 6% have been quoted),
largely attributable to the lack of current damping during the no-load interval.
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It appears that consumers that generate harmonics are automatically penalised by a
higher apparent electricity consumption, which may well offset the supply authority’s
additional losses [26]. It is therefore in the consumer’s own interest to reduce harmonic
generation to the greatest possible extent.

There is no evidence that the reading of kVA-demand meters is affected by net-
work harmonics. However, kW-demand meters operating on the time interval Ferraris
motor principle will read possibly a few percentage points high, as shown earlier for
energy meters.

Harmonics present a problem to measurement of VAR values, since this is a quantity
defined with respect to sinusoidal waveforms.

The present trend is to use solid state instruments which can measure true power
irrespective of the waveforms. Modern r.m.s. responding voltmeters and ammeters are
relatively immune to the influences of waveform distortion. In such meters, the input
voltage or current is processed using an electronic multiplier type, such as variable
transconductance, log/antilog, time division, and thermal and digital sampling. All
these can be configured to respond to the r.m.s. value independently of the harmonic
amplitude or phase, as long as the harmonics are within the operating bandwidth of
the instrument and the crest factor (the ratio of peak to r.m.s.) of the waveform is not
excessively large. However, absolute average and peak responding meters which are
calibrated in r.m.s. are not suitable in the presence of harmonic distortion.

A seldom mentioned effect, but nevertheless an important one, is that measure-
ment and calibration laboratories, working to small tolerances of accuracy, may lose
confidence in their results.

4.6 Harmonic Interference with Ripple Control Systems

Ripple signals are often used for the remote control of street lighting circuits and for
load reduction (such as domestic hot water heaters) during peak times of the day.

Electricity suppliers have in the past experienced some practical difficulties with
their ripple control equipment as a result of harmonic interference.

Since ripple relays are essentially voltage-operated (high-impedance) devices, har-
monic interference can cause signal blocking or relay maloperation if present in
sufficient amplitude. The exact amplitude at which the voltage harmonic will affect
the relay is a function of the relay detection circuit (sensitivity and selectivity) and the
proximity of the ripple injection frequency of the interfering harmonic.

Signal blocking occurs when sufficient interfering voltage renders the relay unable
to detect the presence of the signal. Capacitors can produce the same effect due to their
capability to absorb the ripple signal. Relay maloperation occurs when the presence of
the harmonic voltage (usually in the absence of the signal) causes the relay to change
state. The latter problem has effectively been solved by the use of suitably encoded
switching signals in present generations of ripple relays.

Earlier ripple relays were electromechanical devices employing mechanical filter
assemblies. Although their response was slow, they did achieve very good selectiv-
ity. However, these relays commonly suffered from maloperation because they had
inadequate signal encoding to cater for any harmonic interference which got pass
the filters.
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However, modern ripple relays are basically electronic equivalents of their electrome-
chanical forerunners. They usually employ piezoelectric or active filter circuits and a
high degree of signal encoding to minimise maloperation. They have filter response
curves defined by international standards [27] and they require the use of precision
electronic components (high stability and reliability) to ensure a satisfactory perfor-
mance over the life of the relay. Even better immunity can be achieved with the use
of digital filtering techniques, which are ideally suited for the detection of signals of a
specified frequency in the presence of harmonic voltages.

4.7 Harmonic Interference with Power System Protection

Harmonics can distort or degrade the operating characteristics of protective relays
depending on the design features and principles of operation. Digital relays and algo-
rithms that rely on sample data or zero crossings are particularly prone to error when
harmonic distortion is present.

In most cases, the changes in operating characteristics are small and do not present a
problem. Early tests [28] indicate that for most types of relays operation is not affected
significantly for harmonic voltage levels of less than 20%. Most studies carried out
so far conclude that it is difficult to predict relay performance without testing; the
studies published have evaluated electromechanical and electronic relays but there is
no information on digital relays [29]. However with the increased content of large
power conversion equipment, this can be a potential problem.

Current harmonic distortion can also affect the interruption capability of circuit
breakers and fuses. Possible reasons are higher di/dt at zero crossings, the current
sensing ability of thermal magnetic breakers and a reduction in the trip point due to
extra heating of the solenoid. The fuses, being thermally activated, are inherently r.m.s.
overcurrent devices; the fuse ribbons are also susceptible to the extra skin effect of the
harmonic frequencies.

4.7.1 Harmonic Problems During Fault Conditions

Protective functions are usually developed in terms of fundamental voltages and/or cur-
rents, and any harmonics present in the fault waveforms are either filtered out or ignored
altogether. The latter is particularly the case for electromagnetic relay applications, such
as overcurrent protection. Electromechanical relays have significant inertia associated
with them such that often they are inherently less sensitive to higher harmonics.

More important is the effect of harmonic frequencies on impedance measurement.
Distance relay settings are based on fundamental impedances of transmission lines, and
the presence of harmonic current (particularly third harmonic) in a fault situation could
cause considerable measurement errors relative to the fundamental-based settings.

High harmonic content is common where fault current flows through high resistivity
ground (i.e. the ground impedance is dominant) so the possibility of maloperation is
great unless only the fundamental waveforms are captured.

In solid fault situations, the fundamental components of current and voltage are much
more dominant (notwithstanding the d.c. asymmetry associated with fault waveforms).
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However, because of current transformer saturation, secondary induced distortion of
current waveforms, particularly with large d.c. offsets in the primary waveforms, will
occur. The presence of secondary harmonics in such instances can be a real problem,
i.e. whenever current transformer saturation occurs it is very difficult to recover the
fundamental current waveform.

Whenever high secondary e.m.f. exists during steady-state conditions, the nonlinear
current transformer exciting impedance only causes odd harmonic distortion. During
saturation under transient conditions, however, any harmonics can be produced, with
dominance of second and third harmonic components [30].

Fortunately, these are often design problems. Correct choice of equipment in relation
to the system requirements can eliminate many of the difficulties associated with the
current and voltage transformers.

Filtering of the current and voltage waveforms, particularly in digital protection
systems, is of special importance to distance protection schemes. Although the imple-
mentation is not always simple, the recovery of fundamental frequency data has been
greatly improved by the use of digital techniques [31].

4.7.2 Harmonic Problems Outside Fault Conditions

The effective insensitivity of protective apparatus to normal system load conditions
implies that, generally, the harmonic content of the waveforms is not a problem outside
fault conditions.

The most notable exemption is probably the problem encountered in energisation of
power transformers. In practice, constructive use of the high harmonic content of mag-
netising inrush currents prevents (most of the time!) tripping of the high voltage circuit
breaker by the transformer protection due to the excessively high peaks experienced
during energisation.

The actual peak magnitude of the inrush current depends on the air-core inductance
of the transformer and the winding resistance plus the point on the voltage wave at
which switching occurs [32]. Residual flux in the core prior to switching also increases
the problem or alleviates it slightly, depending on the polarity of flux with regard to
the initial instantaneous voltage.

Since the secondary current is zero during energisation, the heavy inrush current
would inevitably cause the differential protection to operate unless it is rendered inop-
erative.

The simple approach is to use a time-delay differential scheme, but this could result
in serious damage to the transformer should a fault be present at energisation.

In practice, information on the uncharacteristic second harmonic component present
during inrush is used to restrain the protection, but protection is still active should an
internal fault develop during energisation.

4.8 Effect of Harmonics on Consumer Equipment

This is a broad subject discussed in many journal articles; a selected bibliography on
the topic can be found in a paper by the IEEE Task Force on the Effects of Harmonics
on Equipment [33]. A concise summary of the main effects is made below:
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(1) Television receivers Harmonics which affect the peak voltage can cause changes
in TV picture size and brightness. Inter-harmonics cause amplitude modulation
of the fundamental frequency; even a 0.5% inter-harmonic level can produce
periodic enlargement and reduction of the image of the cathode ray tube.

(2) Fluorescent and mercury arc lighting These appliances sometimes have capac-
itors which, with the inductance of the ballast and circuit, produce a resonant
frequency. If this corresponds to a generated harmonic, excessive heating and
failure may result. However, the resonant frequency of most lamps is in the
range 75–80 Hz and should not interact with the power supply. Audible noise is
another possible effect of harmonic voltage distortion.

(3) Computers [34] There are designer-imposed limits as to acceptable harmonic
distortion in computer and data processing system supply circuits. Harmonic rate
(geometric) measured in vacuum must be less than −3% (Honeywell, DEC) or
5% (IBM). CDC specifies that the ratio of peak to effective value of the supply
voltage must equal 1.41 ± 0.1.

(4) Power electronic equipment Notches in the voltage waveform resulting from
current commutations may affect the synchronisation of other converter equipment
or any other apparatus controlled by voltage zeros. Harmonics could theoretically
affect thyristor-controlled variable-speed drives of the same consumer in several
ways: (i) voltage notching (causing brief voltage dips in the supply) can cause
maloperation via a thyristor through misfiring; (ii) harmonic voltages can cause
the firing of the gating circuits at other than the required instant; (iii) resonance
effects between different equipment can result in over-voltages and hunting.

The problems described above could also be experienced by other consumers if
connected to the same (415 V or 11 kV) busbar. Consumers without problems with
the simultaneous operation of their own thyristor-controlled equipment are unlikely to
interfere with other consumers. Consumers on different busbars could interfere with
each other but ‘electrical’ remoteness (separation by impedances in the form of lines
and transformers) will tend to reduce the problem.

4.9 Interference with Communications

Noise on communication circuits degrades the transmission quality and can interfere
with signalling. At low levels noise causes annoyance and at high levels loss of infor-
mation, which in extreme cases can render a communication circuit unusable.

The continuously changing power transmission environment demands regular recon-
sideration of the interference problem when telephone lines are placed in the vicinity
of the power system.

The signal to noise ratio commonly used in communication circuits as a measure
of the transmission quality must be used with caution when considering power sys-
tem interference because of the different power levels of the signals involved, i.e. in
megawatts (power circuit) and milliwatts (communication circuit). Thus even a small
unbalanced audio-frequency component within the power network may easily produce
unacceptable noise level when coupled into a metallic communication circuit.
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Figure 4.12 Simple model of a telephone circuit

Moreover, the purpose of the power system is to transmit energy at high efficiency
but with relatively low waveform purity; on the other hand, in a communication circuit
the waveform must not be significantly distorted, as the intelligence being conveyed
may be destroyed, while the power efficiency is of secondary importance.

This section describes the factors influencing communication interference and the
means by which noise may be reduced to within acceptable levels

4.9.1 Simple Model of a Telephone Circuit

A physical telephone circuit consists of a twisted pair of wires with associated terminal
equipment, and a simplified model of such a circuit is illustrated in Figure 4.12.

For safety and practical reasons telephone circuits are referenced to earth and thus
the equivalent circuit of the telephone system of Figure 4.12 includes the terminal
impedances ZL1 and ZL2 to earth. An electromagnetic induced voltage is modelled as
voltage source Vm, and an electrostatic induced voltage as Vs . The terminal impedances,
ZL1 and ZL2, are generally of high value and the telephone line self-impedance, being
much smaller, may be neglected.

In the absence of an earth conductor the earth return circuit is completed by the
stray capacitances CS1 and CS2.

4.9.2 Factors Influencing Interference

Three factors combine to produce a noise problem on a communication line:

(1) Power system influence This depends on the source of audio-frequency compo-
nents within the power system and the relative magnitude of unbalanced harmonic
currents and voltages present in the power circuit in the vicinity of the commu-
nication circuit.

(2) Coupling to communication circuits This factor involves the coupling of inter-
fering currents and voltages into a communication system.

(3) Effect on communication circuits (susceptiveness) The effect of the noise inter-
ference on a communication circuit is dependent on the characteristics of the
circuit and associated apparatus.
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All three factors must be present for the problem to develop. Complete elimination
of the interference problem is usually impractical, and the degree of the problem will
be a function primarily of the basic factors that have the highest influence.

Some harmonic currents in the power line are confined to the phase conductors, thus
flowing in one phase and returning by the other two (the ‘balanced’ circuit); these are
the positive- and negative-sequence harmonic currents. Other harmonic components
flow in phase with each other in the phase conductors and return through the neutral
or earth; these are the zero-sequence or residual currents.

4.9.3 Coupling to Communication Circuits

Coupling refers to the mutual impedance existing between the power and telephone
lines. It depends on the separation between them, the length of exposure, earth resis-
tivity and frequency.

Noise voltages may be impressed on telephone circuits in several ways, i.e. by
loop induction, by longitudinal electromagnetic induction, by longitudinal electrostatic
induction and by conduction.

Loop Induction Loop induction occurs when a voltage is induced directly into the
metallic loop formed by the two wires of a telephone circuit. This type of induction
manifests itself directly as a transverse voltage across the terminations of the telephone
circuit. It is cancelled out by regular transpositions of aerial wires or by the use of
twisted pairs of cables. As these are standard practices in communication circuits, loop
induction is not generally a problem.

In the case of crossings, telephone lines often come so near the power line that the
loop effect may be important [35].

Longitudinal Electromagnetic Induction Longitudinal electromagnetic induction
occurs when an e.m.f. is induced along the conductors of a telephone circuit. The
residual current in a power line sets up a magnetic field, which causes flux lines to
intersect with any neighbouring telephone line and induces an e.m.f. longitudinally on
it. This type of coupling, illustrated in Figure 4.13, constitutes the most common form
of noise induction into communication lines.

For the close spacing of joint overhead transmission power and telephone lines,
the magnetic coupling from balanced currents is important. For roadside spacings or
greater, the earth return or residual current is the predominant source of interference.

The residual current IR in Figure 4.13 returns via earth to Vp, hence the current loop
so formed has a large cross-sectional area for overhead transmission lines. Likewise,
aerial open wire telephone circuits may have large cross-sectional areas.

This leads to a longitudinal electromagnetic induction on telephone circuits given by

Vm = MIR (4.48)

where M is the mutual impedance between the power and telephone systems.
The most widely accepted model for determining the mutual impedance between

power and telephone systems was developed by Carson [36].
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Figure 4.14 Power and telephone line configuration

In general, electromagnetic propagation at power frequencies is not very sensitive
to earth structure and resistivity and so Carson’s model (which assumes a uniform flat
earth) is valid for most cases.

Carson’s equation for the mutual impedance of a power line at height h1 and a
telephone line at height h2, as in Figure 4.14, is given by

M = jωµ0

2π

[
ln

d ′
12

d12
− 2j

∫ ∞

0

[√
(u2 + j) − u

]
e−uα(h1+h2) cos(uαx) du

]
(4.49)

where M is the mutual impedance per unit length, x is the horizontal separation of
power and telephone lines, h1 is the height of the power line above ground (which is
negative if below ground), h2 is the height of the telephone line above ground (which
is again negative if below ground), d12 = √

[(h1 − h2)
2 + x2] is the radial distance
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between lines, d
′
12 = √

[(h1 + h2)
2 + x2] is the radial distance between one line and

the underground image of the other, ω = 2πf is the angular frequency of the inducing
current, µ0 is the rationalised permeability of free space, α = √

2/δ, δ = √
(2ρ/µ0ω),

is the skin depth of uniform earth with resistivity ρ, and ρ is the resistivity of the earth
in ohm-metres.

The first term of Carson’s equation is the mutual impedance between two con-
ductors as if they were above a perfectly conducting earth, while the second term
‘corrects’ for finite earth resistivity. Unfortunately, the second term usually dominates
for typical parameters.

Carson’s solution relies on measurements of the earth resistivity, which can be
difficult to obtain, and simplified forms of Carson’s equation are often used to obtain
good approximations for the mutual impedance.

The factors influencing the mutual impedance between power and telecommunication
lines can be summarised as follows: it increases with increasing values of the residual
current loop area; it increases for increasing common distance run; it increases with
frequency; it increases with earth resistivity; it decreases for increasing separation
between circuits.

Longitudinal Electrostatic Induction Longitudinal electrostatic induction occurs
when an e.m.f. is induced between the conductors and earth.

The simplest way of visualising electrostatic induction is by considering the capac-
itances in an exposure between a single power wire and a single telephone wire, as
illustrated in Figure 4.15. The voltage of the power wire to ground (residual voltage),
Vr , divides over the capacitance between the power and telephone wire, CPT and the
telephone wire and ground, CTC in the ratio of their impedances, i.e.

Vs = ZT

1/(jωCPT) + ZT
· Vr (4.50)

CPG

CPT

CTG

ZT2

ZT1

Vs

Vr

Figure 4.15 Electrostatic induction
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where

ZT = 1

jωCTG + (1/ZT1) + (1/ZT2)

Because of the loading effect of ZT1 and ZT2 and the relative separations, Vs is very
small as compared with Vm and can easily be neutralised by cable screening.

Electrostatic induction is serious only when the residual voltage, Vr is large (e.g.
single-wire power lines) or when CPT is large (for example, in joint construction and
crossings, where the two lines are very close together). Generally the telephone line
is terminated in impedances which are small compared to the capacitive impedances
and thus reduce the induced voltage, Vs . This form of induction is often a problem on
long telephone lines in the neighbourhood of very high voltage transmission lines.

For instance, for the case of roadside separation between the power and communi-
cation lines, with an earth resistivity of 100 metre-ohms, the 60 Hz mutual impedance
is about one half ohm per mile. The longitudinal electric field in a telephone circuit on
the same right of way as the power line is about 10 V per mile. Therefore five miles
of exposure would induce 50 V on the telephone circuit.

Conductive Coupling There is always some residual current flowing in the neutral of
the power system due to out-of-balance components. With a multiple earthed neutral
(MEN) system, some of this residual current will return to the transformer by the
neutral wire, and some via earth. The earth currents will cause a local rise of earth
potential at the earth electrode.

If one end of a telephone line is earth referenced in the area of influence of this
earth potential rise, then a longitudinal voltage may be impressed on the line.

In the circuit of Figure 4.12, if a local earth potential rise occurred at A this would
cause unequal currents to flow through ZL1 and ZL2, giving rise to a transverse noise
voltage in the telephone circuit.

This source of interference is an increasing problem due to the following factors:

(1) MEN earth systems are carrying higher levels of noisy current.

(2) The earth resistances of telephone exchange earth systems are increasing as a
result of the use of less lead armoured cable; it is very costly to achieve low
earth resistance.

(3) Despite (2), the telephone exchange earth is often a relatively low impedance
earth return circuit for a MEN earth system feeding the exchange, and hence
a considerable noise voltage can be impressed onto the earth system from a
MEN system.

4.9.4 Effect on Communication Circuits (Susceptiveness)

Telephone Circuit Susceptiveness A voice band telephone channel is normally
designed to pass frequencies between 300 and 3000 Hz. Although harmonics in this
range of frequencies are very small compared with the fundamental, they still have an
effect on the telephone reception.
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The effect that a ‘noisy’ power line will have on a communication line may be
ascertained by considering the susceptiveness of the circuit to the effects of inductive
interference. Three characteristics are of importance in this respect: (i) the relative inter-
fering effects of different frequencies; (ii) the balance of the communication circuit;
and (iii) shielding effects of metallic cable sheaths and other buried metallic plant.

Harmonic Weights Standard weighting curves are used to take into account the
response of the telephone equipment and the sensitivity of the human ear to the har-
monic frequencies. Two weighting factors are in common use:

(1) the psophometric weighting by the CCITT [37], extensively used in Europe;
(2) the C-message weighting by Bell Telephone Systems (BTS) and Edison Electric

Institute (EEI) [38], used in the USA and Canada.

Figure 4.16 shows that the difference between these two weighting curves (when
normalised) is very slight and that the human ear in combination with a telephone set
has a sensitivity to audio-frequencies that peaks at about 1 kHz.

However, harmonics between 1000 and 3000 Hz are hardly diminished in the weight-
ing curves and yet modern electronic telephone sets appear to be more sensitive to these
higher frequencies; so perhaps the weightings should be revised accordingly.

Using these weighting factors, the total weighted transverse (or metallic) noise is
obtained from the expression:

Vm =
√√√√ N∑

n=1

(VcnKnBnCn)2 (4.51)

where Vm is the metallic mode weighted voltage, Vcn is the longitudinal induced volt-
age, N is the maximum order of harmonic to be considered, Cn is the psophometric
or the C-message weighting factor of harmonic n, Kn is the telephone circuit shield-
ing factor at harmonic n and Bn is the telephone circuit balance at harmonic n. The
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Figure 4.16 C-message ( ) and psophometric weighting (– - - - –) factors
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last two coefficients require detailed information on the telephone systems cables and
design as well as knowledge of the local earth resistivities.

Psophometric Weighting
Telephone Form Factor In the psophometric system the level of interference is
described in terms of a telephone form factor (TFF), which is a dimensionless value
that ignores the geometrical configuration of the coupling and is expressed as

TFF =
√√√√ N∑

n=1

(
Un

U
.Fn

)2

(4.52)

where Un is the component at harmonic n of the disturbing voltage, N is the maximum
harmonic order to be considered,

U =
√√√√ N∑

n=1

U 2
n

is the line to neutral total r.m.s. voltage, Fn = pn nf0/800, pn is the psophometric
weighting factor and f0 is the fundamental frequency (50 Hz). The required limit of
TFF is typically 1%.

The CCITT directives recommend that the total psophometric weighted noise on
a telephone circuit has an e.m.f. (i.e. open circuit voltage) of less than 1 mV. When
measuring the noise voltage the telephone circuit is terminated with its characteristic
impedance (which is a resistance of the order of 600 �) and the noise voltage is
measured across such resistance. Therefore, the psophometrically weighted noise across
the terminating resistor must be less than 0.5 mV.

As a general rule, if the TFF is greater than 0.5 mV it is likely to cause interference
to telephone services. It must be stressed that the TFF is only a guideline measurement;
it is not satisfactory as the sole measure of interference to a communication line as it
takes no account of coupling and exposure factors.

Equivalent Disturbing Current The CCITT also defines an equivalent disturbing cur-
rent (IP ), expressed as

IP = (1/p800)

√∑
f

(hf pf If )2 (4.53)

where If is the component of frequency f of the current causing the disturbance, pf

is the psophometric weighting factor at frequency f , and hf is a factor which is a
function of frequency and takes into account the type of coupling between the lines
concerned (by convention h800 = 1).

C-Message Weighting
Telephone Influence Factor The C-message weighting system uses the telephone
influence factor (TIF) instead of the TFF of the psophometric system. Again, TIF
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is a dimensionless value used to describe the interference of a power transmission line
on a telephone line, and is expressed as

TIF =

√√√√ N∑
n=1

(UnWn)
2

U
(4.54)

where Un is the single frequency r.m.s. voltage at harmonic n, N is the maximum
harmonic order to be considered, U is the total line to neutral voltage (r.m.s.), Cn is
the C-message weighting factor, f0 is the fundamental frequency (60 Hz), and Wn is the
single frequency TIF weighting at harmonic n (the relationship between the C-message
and TIF weighting factors is Wn = Cn 5n f0 and the corresponding coefficients for the
first 25 harmonics are shown in Table 4.8).

The TIF weights account for the fact that mutual coupling between circuits increases
linearly with frequency, while the C-message weights do not take this into consider-
ation. Because of this coupling relationship the TIF weights peak at about 2.6 kHz
(as compared with the 1 kHz peak of the C-message weighting curve). The TIF index

Table 4.8 C-message and TIF weighting coefficients

Frequency
(Hz)

Harmonic C-message
weight, C

TIF
W

60 (50) 1 0.0017 0.5 (0.71)
120 (100) 2 0.0167 10.0 (8.91)
180 (150) 3 0.0333 30.0 (35.5)
240 (200) 4 0.0875 105 (89.1)
300 (250) 5 0.1500 225 (178)
360 (300) 6 0.222 400 (295)
420 (350) 7 0.310 650 (376)
480 (400) 8 0.396 950 (484)
540 (450) 9 0.489 1320 (582)
600 (500) 10 0.597 1790 (661)
660 (550) 11 0.685 2260 (733)
720 (600) 12 0.767 2760 (794)
780 (650) 13 0.862 3360 (851)
840 (700) 14 0.912 3830 (902)
900 (750) 15 0.967 4350 (955)
960 (800) 16 0.977 4690 (1000)

1020 (850) 17 1.000 5100 (1035)
1080 (900) 18 1.000 5400 (1072)
1140 (950) 19 0.988 5630 (1109)
1200 (1000) 20 0.977 5860 (1122)
1260 (1050) 21 0.960 6050 (1109)
1320 (1100) 22 0.944 6230 (1072)
1380 (1150) 23 0.923 6370 (1035)
1440 (1200) 24 0.924 6650 (1000)
1500 (1250) 25 0.891 6680 (977)

Note: Number in brackets refer to the CCITT values and 50 Hz fundamental
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models the effectiveness of induction between adjacent circuits, and is thus particu-
larly useful to assess the interference of power distribution circuits on analogue-type
telephone systems (many recent telephone circuits, however, are of digital-type design).

Instead of voltage, the TIF is more usefully expressed in terms of line current
because the electromagnetic induction relates to line current amplitude. Also, the line
currents are best represented by their sequence of rotation, i.e. positive, negative and
zero sequences, respectively. The relationship between the phase and sequence cur-
rents is: 

 I+
I−

I 0


 = 1/

√
3


 1 a a2

1 a2 a

1 1 1





 IR

IY

IB


 (4.55)

where a = 1� 120◦.
As the power circuit is three-phase and the audio circuit single phase, the latter can

not distinguish between positive- and negative-sequence signals, but the effect of zero
sequence is very different.

Telephone circuits are more affected by zero-sequence harmonics because these
are in phase in the three phases and add arithmetically. Generally, standards are less
tolerant of zero-sequence harmonics to take this fact into account. When only the zero-
sequence signals are included in equation (4.54), the term residual is used in the TIF
(which in the case of a balanced three-phase system include only triplen frequency
components). The term balanced is used when the signals included in equation (4.54)
are only of positive and negative sequence. The latter contribution to the induced noise
is important in the immediate proximity of the transmission line, while the residual
signals are the dominant ones at greater distances from the line. When the balanced
signals are expected to contribute significantly to the induced noise, they must be
included in the calculation of the TIF, i.e.

TIF =
√

TIF2
r + TIF2

b (4.56)

where the suffixes r and b indicate residual and balanced, respectively.

Equivalent Disturbing Current

Ieq =
√√√√ N∑

n=1

(HnCnIn)2 (4.57)

where In is the effective disturbing current at harmonic n (generally corresponding to
residual mode currents), N is the maximum harmonic order to be considered, Cn is the
C-message weighting factor, and Hn is the weighting factor normalised to reference
frequency (1000 Hz) that accounts for the frequency dependence of mutual coupling,
shielding and communication circuit balance at harmonic n.

Again, when the balanced mode harmonic currents are taken into account the effec-
tive disturbing current is then specified as

In =
√

(Irn)2 + (KbIbn)2 (4.58)



182 EFFECTS OF HARMONIC DISTORTION

where Irn is the total residual mode current at harmonic n, Ibn is the balanced mode
current at harmonic n, and Kb is the ratio of balanced mode coupling to the residual
mode coupling at reference frequency.

IT and kVT Products The THD, TFF and TIF indices do not provide information
about the amplitude of the voltage (or current) to which they relate. The IT and VT (or
kVT) products incorporate that information. In these products the voltages or currents
of the power transmission line are represented by a single voltage or current obtained
by weighting each harmonic voltage or current with the corresponding factor of the
system (BTS-EEI or CCITT) used.

The VT product incorporates the line-to-line voltage amplitude, i.e.

VT =
√√√√ N∑

n=1

(WnVn)2 (4.59)

where Vn is the single frequency r.m.s. line-to-line voltage at harmonic n, N is the
maximum harmonic order to be considered and Wn = Cn 5 nf0 is the single frequency
TIF weighting at harmonic n.

The IT product is derived similarly using currents instead of voltages. However,
there is some confusion about whether to use the current in one phase or some kind of
sum of the three phase currents; if the latter is used it would have to be a phasor sum,
which is usually close to zero. Our interpretation is that when the analogue telephone
circuit is far from the three-phase power line, the value to be used is the phasor
combination of the three line currents. On the other hand, if the telephone circuit is
in the vicinity of the power line then the calculation based on one phase current or
a non-phasor combination of the three phases will be a better indicator of telephone
interference. In [39] the line current is multiplied by a factor of

√
3 to account for

the three-phase arrangement. Ideally, when assessing the interfering ability of a power
line the effect of the balanced sequence components needs to be represented, including
the geometry of the line, the separation of the telephone cable and the soil conditions;
these effects are significant in typical road width type separations.

Taking into account the above ambiguities and the fact that analogue communication
circuits are gradually being replaced by digital ones, the TIF and IT indices are not
used extensively by telecommunication companies, as they do not reflect the vulnera-
bilities of services operating over telephone cables. The weightings currently used are
based on the response of the human ear in conjunction with the telephone receiver.
However, modern telecommunication devices tend to use all of the available spectrum
that the cable can propagate. Even devices such as modems, which are restricted to the
traditional telephony band from 300 Hz to 3400 Hz, utilise the high-frequency part of
this band (1000 to 3400 Hz) much more extensively than the human voice does, and
are consequently much more sensitive to interference at these frequencies. Thus it is
possible to have acceptable TIF or psophometric noise on a telephone cable but still
have severe service degradation.

More modern telecommunication services such as ADSL utilise the spectrum from
about 25 kHz up to 1 MHz and beyond. As they are not using the low frequencies
they are proving to be tolerant of typical power line noise, but they are likely to be
sensitive to electrical fast transients.
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Illustrative Example A 4.16 kV 60 Hz distribution system bus is selected to supply
a three-phase 4.5 MVA purely resistive load. The corresponding fundamental frequency
current in the line is

I1 = (P1/3)/(V1/
√

3) = (4500/3)/(4.16/
√

3) = 624.5376 A

and the load resistance is

R = (V1/
√

3)/I1 = (4160/
√

3)/(624.537) = 3.8457 �

Two different voltage waveforms, both with the same THD, are used to illustrate
the relative effect of different frequencies on the IT and TIF indices. The voltage
waveforms include either

(1) 75 V of zero sequence third harmonic and 177 V of negative sequence fifth, or

(2) 177 V of zero sequence third harmonic and 75 V of negative sequence fifth.

In both cases the total harmonic distortion (THD) is the same, i.e.

THD = 100

(√
V 2

3 + V 2
5 /V1

)
= 100

(√
752 + 1772/4160

)
= 4.62%

which is below the 5% limit recommended by IEEE standard 519 for the 4.16 kV
distribution system.

The ANSI 368 standard indicates that telephone interference from a 4.16 kV distri-
bution system is unlikely to occur when the IT index is below 10 000. Let us check
the two cases against this limit using the TIF weightings (taken from Table 4.8) for
the fundamental (0.5), the third (30) and fifth (225) harmonic frequencies:

Case (i):

I3 = (V3/
√

3)

R
= (75/

√
3)

3.8457
= 11.26 A

I5 = (V5/
√

3)

R
= (177/

√
3)

3.8457
= 26.57 A

Therefore the following IT indices result (using the questionable
√

3 factor as sug-
gested in [39]):

IT1 = (624.537)(0.5)
√

3 = 540.865

IT3 = (11.26)(30)
√

3 = 585.071

IT5 = (26.57)(225)
√

3 = 10 355.752

and the total IT including the balanced and residual components becomes:

IT (total) =
√

(540.865)2 + (585.087)2 + (10 354.63)2 = 10 386.358

which is above the ANSI standard limit.
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The TIF index for this case is

TIF =
√

(0.5x4160)2 + (225x75)2 + (30x177)2√
(4160)2 + (75)2 + (177)2

= 9.59

Case (ii):

I3 = (177/
√

3)

3.8457
= 26.57 A

I5 = (75/
√

3)

3.8457
= 11.26 A

and the corresponding ITs

IT3 = (26.57)(30)
√

3 = 1380.77

IT5 = (11.26)(225)
√

3 = 4388.103

IT(total) =
√

(540.865)2 + (1380.62)2 + (4388.15)2 = 4631.83

which is well below the 10 000 limit.
The total TIF index for this case is

TIF =
√

(0.5x4160)2 + (30x177)2 + (225x75)2√
(4160)2 + (177)2 + (75)2

= 4.28

Typical requirements of TIF are between 15 and 50.

4.9.5 Telephone Circuit Balance to Earth

If the telephone line or terminal equivalent is not perfectly balanced with respect to
earth, longitudinally induced voltage on that line can be transformed into transversed
voltage, and it is as a transversed voltage across the ear piece that we can hear noise
on the telephone.

Consider the simple telephone circuit of Figure 4.12. If the impedances to earth of
the two wires that form a telephone circuit are different, and assuming that the two
wires are subjected to the same longitudinal induction, different currents will flow in
each wire. Because the self-impedances of the wires will be very similar, the different
current flows will give rise to a transverse voltage between the pair.

Factors which may affect the telephone circuit balance to earth are (i) any leakage
paths to earth, e.g. across-the-pole insulators or through-cable insulation; and (ii) any
unbalanced terminal equipment, either subscriber’s equipment (e.g. extension bells) or
exchange equipment. Some of these factors may be corrected simply and quickly to
reduce an induced noise problem, while others rely on the proper design and manu-
facture of the equipment or plant.
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Balance is simply defined as

20 log10

(
Longitudinal voltage

Transverse voltage

)

and for the majority of relay sets it is of the order of 45–50 dB.
The most critical component balance-wise is generally any terminal relay set in a

communication connection. As there are large numbers of such relay sets, it is not
practical to set balance objectives at a very high level as this would significantly
increase the cost of the communication network.

4.9.6 Shielding

A metallic or conducting earthed screen such as a cable sheath which encloses the
telephone circuit over the length of an exposure is totally effective in eliminating
electrostatic induction. Buried cables with a metallic screen or sheath are also immune
to electrostatic induction due to the conducting effect of the earth.

Metallic screens or sheaths are only partly effective in reducing the effects of elec-
tromagnetic induction.

The mechanism of electromagnetic shielding is as follows. The power line current
causes longitudinal voltages to be induced in the wires of the cable and also in the
shield. The resulting current flow in the shield is in the opposite direction to the
inducing current in the power line. This induced current in the shield generates in turn
a voltage in the wires of the cable opposing the voltage induced by the power line
current, thus tending to neutralise the latter.

If the shield current is large and/or well coupled to the inner conductors, reasonable
shielding factors can be obtained.

The shielding factor of a cable is the fraction by which the shield reduces the voltage
induced into the core; the shielding factor (K) of an installed shielded cable system is
given by

K = d.c. shield resistance + earth resistance

a.c. shield resistance + earth resistance
(4.60)

This simple formula shows that the shielding factor may be reduced by decreasing
the resistance and/or increasing the inductance of the sheath and/or decreasing the
earth resistance.

A good shielding factor for a cable can be achieved if the following set of condi-
tions hold:

(1) At points where the shield is earthed, the earth resistance must be low (typically
1–2 �).

(2) There is a low resistance shield, i.e. plenty of metal in the cable shield to keep
the resistance low.

(3) Steel tapes are usually required.

All these factors mean that shielded cables used for noise shielding are relatively
expensive; typically they can be expected to cost some 30–50% more than standard
unshielded types.
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4.9.7 Mitigation Techniques

The steps to be taken when a noise problem is known to exist are:

(1) Check the transverse noise voltage in the telephone circuit. If the e.m.f. is less
than 1 mV no further steps need be taken; if it is greater than 1 mV, then proceed
as below.

(2) Determine whether the mode of induction is of electrostatic or electromag-
netic type.

(3) Test telephone line and termination balance to earth.

(4) Where considered useful, derive by test the telephone form factor in various parts
of the power system to try to isolate the source of noise.

With the information gained from these tests, the following mitigation methods
are considered:

(1) A reduction of the influence of the power system, which can be achieved
by (i) physical relocation of either system (usually an expensive exercise);
(ii) replacing the copper wire with light conducting fibres (fibre optics); or
(iii) reduction of the harmonic content in the power system (the appropriate
techniques are discussed in Chapter 6).

(2) Reducing coupling is not usually a practical proposition, except in cases of earth
potential rise, where a noisy incoming multiple earthed neutral can be excluded
if required.

(3) Reducing the susceptiveness of the communication circuits can be achieved by the
use of noise chokes, noise-neutralising transformers, shielded cable and derived
circuits.

Noise Chokes Reducing factors upwards of 25 dB are achievable in certain cir-
cumstances. Generally, noise chokes are only useful for improving the balance of
substandard terminal relay sets. They work by increasing the a.c. longitudinal line
impedance, thereby reducing the noise current and with it the transverse noise volt-
age level.

Noise-Neutralising Transformers These work by inducing an equal but opposite
(in-phase) noise voltage in affected cable pairs, thus reducing the induced longitudinal
noise. Reduction factors of 15–20 dB can be achieved.

Shielded Cable Reduction factors upward of 60 dB can easily be achieved, but it is
costly. Generally the use of shielded cable is only applicable for new work.

Derived Circuits By providing the circuits via pulse code modulation (PCM) or
frequency division multiplexing (FDM), the system can be made relatively immune to
noise induction. In each case the degree of improvement depends on the circumstances.

It must be emphasised that the actual reduction factors depend on the particular
circumstances and the factors mentioned above are not achievable in all cases.
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4.10 Audible Noise from Electric Motors

The major causes of sound from electric motors are

• torque pulsations in induction and permanent magnet machines;

• torque and normal force pulsations in the doubly salient structure of the switched
reluctance machines.

Motors powered by pulse width modulation exhibit their predominant sound levels
at the modulating frequency. The level of sound is not a function of the load but is
inversely proportional to the motor speed.

The highest levels are produced by switched reluctance motors and are related to
the load torque.

4.11 Discussion

In the absence of an extremely intelligent harmonic traffic controller, the presence of
waveform distortion is normally detected by its effects on power system components
or on personnel or plant outside the power system. Some effects, such as telephone
interference, are immediately obvious to the senses and can thus be mitigated at an
early stage of the problem without excessive disturbance. Other effects, such as a
resonant condition, can occur at unexpected locations lacking monitoring facilities
and will often cause expensive damage to plant components such as capacitor banks
and inadequate filter equipment. The financial consequences of harmonic overloading
and equipment failure, not discussed in this chapter, should be an essential part in the
design of modern power systems.
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5

Harmonic Monitoring

5.1 Introduction

Harmonic monitoring involves the capturing and processing of voltage and current
signals at various points of the power system. The signals to be captured are normally
of high voltage and current levels, and thus require large transformation ratios before
they can be processed by the instruments.

As an introduction to the subject, a summary of the harmonic measurement require-
ments specified by the IEC are considered first. This is followed by an assessment of
the characteristics of conventional and special types of current and voltage transformers
for use in harmonic measurements.

The transducers are normally placed in outdoor switchyards and the transformed
low-level signals have to travel through a hostile electromagnetic environment before
they reach the control rooms; thus the transmission of data in that environment also
needs to be considered.

Once the captured signals reach the control room, the whole science of signal pro-
cessing becomes available for the derivation of the harmonic spectrum. Chapter 2 has
already described the main waveform processing techniques available with reference
to the power system signals. The implementation of these techniques in modern digital
instrumentation is also described in this chapter.

5.2 Measurement Requirements

5.2.1 The IEC 61000 4-7 Document [1]

Standard IEC 61000 4-7 describes the techniques for measuring harmonic distortion in
the power system. For the purpose of formulating the requirements for measurement
instruments the standard divides the harmonics broadly into three categories:

(1) quasi-stationary (slowly varying);

(2) fluctuating;

(3) rapidly changing (very short bursts of harmonics).

Power System Harmonics, Second Edition J. Arrillaga, N.R. Watson
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85129-5
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The differing characteristics of the three categories of harmonics place different
requirements on the design of the measuring instrument. For measuring quasi-stationary
harmonics, there can be gaps between the rectangular observation window of 0.1–0.5 s
wide. On the other hand, to access fluctuating harmonics, the rectangular window
width has to be decreased to 0.32 s or a Hanning’s window of 0.4–0.5 s width has
to be used. Moreover, there should not be any gap between successive rectangular
windows and there should be a half-by-half overlapping of the successive Hanning’s
window (described in Section 2.11.3). Lastly, rapidly changing harmonics have to
be measured with a 0.08–0.16 s wide rectangular window without any gap between
successive windows.

Instruments designed for measuring quasi-stationary harmonics are only appropriate
to survey the long-term (such as thermal) effects of harmonics, or for the measure-
ment of constant harmonic currents, such as those produced by television receivers.
The measurement of fluctuating harmonic currents, such as those produced by motor
reversal or speed change in household appliances with phase control and regula-
tion, has to be made continuously without any gaps between successive observa-
tion intervals. Continuous real-time measurement capability is absolutely necessary
for assessing the instantaneous effects of the rapidly changing harmonics, or short
bursts of harmonics, on sensitive equipment such as electronic controls or ripple con-
trol receivers.

Measurements of up to the 50th harmonic order are commonly recommended but
there are discussions on increasing it up to the 100th in certain cases. With such
large amounts of data to be recorded, statistical evaluation over different observation
intervals can be used to compress the data. Five time intervals are recommended in
this standard:

(1) Very short interval (Tvs): 3 s

(2) Short interval (Tsh): 10 min

(3) Long interval (TL): 1 h

(4) One-day interval (TD): 24 h

(5) One-week interval (TW): 7 d

If instantaneous effects are considered important, the maximum value of each har-
monic should be recorded and the cumulative probability (at least 95% and 99%) of
these maxima should be calculated. On the other hand, if long-term thermal effects
are considered, the maximum of the r.m.s. value at each harmonic and its cumula-
tive probabilities (at 1%, 10%, 50%, 90%, 95% and 99%) are to be calculated and
recorded, i.e.

Cn,rms =

√√√√√√
(

M∑
k=1

C2
n,k

)

M
(5.1)

where all the M single calculated values Cn shall be determined over the time interval
Tvs for selectable individual harmonics (preferably up to n = 50).
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5.2.2 Inter-Harmonics

IEC 61000 4-7 also contains a small subsection on inter-harmonics as a broad extension
of harmonic phenomena. However, it leaves several important issues unresolved, and
recommends that issues such as the range of frequencies to be considered and the
centre frequency should be selected in accordance with the studied phenomenon, e.g.
their influence on ripple control receivers or on flicker.

A study report prepared by a joint IEEE/CIGRE/CIRED working group on inter-
harmonics [2] identifies the main problem associated with measurement of inter-
harmonics as being that a waveform consisting of two or more non-harmonically related
frequencies may not be periodic. Hence, most power system monitoring equipment,
which is based on the FFT, will encounter errors due to the end-effect. This effect can be
minimised by the signal processing techniques commonly used in the communication
and broadcast industries, whereby the sampling of the signal need not be synchronised
to the power frequency. The use of proper windowing functions and application of
zero padding before performing the FFT can improve the frequency resolution of the
measured inter-harmonic magnitudes significantly. For instance, the Hanning window
with four-fold of zero padding technique [2] should also be suitable for measuring
inter-harmonics in power systems.

The type of inter-harmonic measurement to be used also depends on the purpose of
the assessment. Purposes include the diagnosis of a specific problem, general survey
of an electromagnetic environment, compatibility testing and compliance monitoring.
The IEC proposes to fix the sampling interval of the waveform to 10 and 12 cycles
for 50 Hz and 60 Hz systems, resulting in a fixed set of spectra with 5 Hz resolution,
for harmonic and inter-harmonic evaluation. The sampling will be phase-locked to the
mains frequency, thereby minimising the contamination of the harmonic components
by the inter-harmonic components. However, recent indications are that the IEC will
opt to simplify the assessment process by summing the components between harmonics
into one single inter-harmonic group, and reserving the original method of showing
all inter-harmonic components at 5 Hz steps for specific cases. The frequency bins
directly adjacent to the harmonic bins are omitted.

X2
IH =

8∑
i=2

X2
10n+i (50 Hz system) (5.2)

X2
IH =

10∑
i=2

X2
12n+i (60 Hz system) (5.3)

where n is the inter-harmonic group of interest and i is the inter-harmonic bin being
summed.

Similarly, distortion indices equivalent to those for harmonics can be defined for
inter-harmonics. The corresponding total inter-harmonic distortion (TIHD) factor is

TIHD =

√√√√ n∑
i=1

V 2
i

V1
(5.4)
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where i is the total number of inter-harmonics considered and n is the total number
of frequency bins present including subharmonics (i.e. inter-harmonic frequencies that
are less than the fundamental frequency). If the subharmonics are important, they can
be analysed separately as another index called appropriately the total subharmonic
distortion (TSHD).

TSHD =

√√√√ S∑
s=1

V 2
s

V1
(5.5)

where S is the total number of frequency bins present below the fundamental frequency.
Other distortion factors and statistical evaluation of harmonics can also be applied for
the assessment of inter-harmonics in power systems.

5.2.3 Harmonic Phase-Angle Displacement

The measurement of phase angles between harmonic voltages and currents, together
with their amplitudes, is required for the following purposes:

(1) to evaluate harmonic flows throughout the system;

(2) to identify harmonic sources and harmonic sinks;

(3) to assess summation factors of harmonic currents from different disturbing loads
if they are connected to the same node;

(4) to establish system-equivalent circuits for calculating the impact of new disturbing
loads, or the effectiveness of the countermeasures such as filters.

The direction of the active power flow at the harmonic order of interest can help
to identify the source of the disturbance. To find the direction of the active power
flow, the phase angle between the harmonic voltage at the point of common coupling
and the plant feeder current has to be measured. If the active power flows into the
public system, the plant is a harmonic source; otherwise it is a sink of harmonic
currents from the system. The phase-lag of harmonic voltage and current in relation to
the fundamental (absolute phase angle) need not be known in this case. Such absolute
phase angle is only needed for evaluating the coupling between frequencies of nonlinear
loads. However, the measurement of absolute phase angles provides the following
additional advantages:

(1) Measurements at different nodes of similar or different systems can be compared.

(2) It becomes possible to deduce whether the connection or rearrangement of dif-
ferent systems, or locally spread disturbing loads, will increase or decrease the
harmonic level in the system. Harmonic distortions with similar phase angles will
superimpose, raising the harmonic level, while those with opposite phase angles
will compensate each other, thereby lowering the harmonic level.

(3) Phase angles of disturbing loads, especially from rectifier circuits without firing
control, can be detected in order to evaluate their overall disturbing effect or to
find countermeasures.
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Extra care is needed in operating the measuring instrument and in interpreting the
results, when precise synchronisation across multiple channels is required to measure
absolute phase angles.

5.2.4 Harmonic Symmetrical Components

If the loads and transmission and distribution systems are balanced, the three voltages
and currents have identical wave shape and are separated by exactly ± 1

3 of the fun-
damental period. In such case, only characteristic harmonics exist: these are of zero
sequence for orders n = 3m(m = 1, 2, 3 . . .), of positive sequence for the n = 3m − 2
orders, and of negative sequence for the n = 3m − 1 orders. However, asymmetries
always exists, causing non-characteristic harmonics in the system. These asymmetries
can be evaluated by monitoring the symmetrical components of the harmonics.

Positive-sequence (or negative-sequence) impedances differ from zero-sequence
impedances for nearly all loads and network equipment including transmission lines,
cables and transformers. Therefore, a separate treatment of the system is necessary for
assessing the harmonic voltages caused by the injected currents. Secondly, the effect of
each sequence component differs for most loads and network equipment. Zero-sequence
voltages do not affect delta-connected loads such as motors and capacitor banks. Only
the non-characteristic components (positive sequence or negative sequence) of the
third harmonic voltages cause additional losses in delta-connected motors. Moreover,
commonly used transformers with delta–star or star–zigzag winding connections do
not transfer zero-sequence currents and voltages.

5.3 Transducers

The function of a current or voltage transformer is to provide a replica of the power sys-
tem current or voltage, at a level compatible with the operation of the instrumentation,
in circumstances where direct connection is not possible.

While the behaviour of the conventional current and voltage transformers at funda-
mental frequency is well understood and defined, the behaviour at higher frequencies
has not been as fully examined. With the need to measure power system harmonic con-
tent, their performance in transforming current and voltage signals containing harmonic
components is essential to the measurement process.

Although the frequency response of a transducer may be poor, it can still be used
for harmonic measurements if such a response is known and compensated for at the
front end of the measuring instrument.

In line with the accuracy requirements suggested for instrumentation, the IEC 61000-
4-7 standard indicates that the errors of voltage and current transformers shall not
exceed 5% (related to the measured value) in magnitude and 5◦ in phase angle.

5.3.1 Current Transformers

The most common type of current transformer is the toroidally-wound transformer with
a ferromagnetic core. This has, by virtue of its construction, low values of primary and
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secondary leakage inductance and primary winding resistance. Under normal operating
conditions, the transformer primary current will be substantially less than that required
for saturation of the core, and operation will be on the nominally linear portion of the
magnetisation characteristic.

The frequency response of current transformers is effectively determined by the
capacitance present in the transformer and its relationship with the transformer induc-
tance. This capacitance may be present as inter-turn, inter-winding or stray capacitance.
Test have shown that while this capacitance can have a significant effect on the high-
frequency response, the effect on frequencies to the 50th harmonic is negligible [3,4].

In addition to harmonic frequencies, it is also possible that the primary current will
contain a d.c. component. If present, this d.c. component will not be transformed but
will cause the core flux of the transformer to become offset. A similar condition could
arise from remnant flux present in the transformer core as a result of switching.

For this reason, where the presence of a d.c. component is suspected, or remanence
a possibility, a current transformer with an air gap in the core can be used. This
air gap reduces the effect of the d.c. component by increasing core reluctance and
enables linearity to be maintained. Because the current transformer burden tends to
increase with frequency, the associated power factor reduces with increasing frequency
and the transformer will produce a higher harmonic output voltage than it would
for a purely resistive load. The resulting increased magnetising current will cause
further error.

For measurements of harmonic currents in the frequency range up to 10 kHz, the
normal current transformers that are used for switchgear metering and relaying have
accuracies of better than 3%. If the current transformer burden is inductive, there will
be a small phase shift in the current. Clamp-on current transformers are also available
to give an output signal that can be fed directly into an instrument.

The following practical recommendations are worth observing whenever possible:

(1) If the current transformer is a multi-secondary type, the highest ratio should
be used. Higher ratios require lower magnetising current and tend to be more
accurate.

(2) The current transformer burden should be of very low impedance, to reduce the
required current transformer voltage and, consequently, the magnetising current.

(3) The burden power factor should be maximised to prevent its impedance from
rising with frequency and causing increased magnetising current errors.

(4) Whenever possible, it is suggested that the secondary of the measuring current
transformer is short-circuited and the secondary current monitored with a precision
clamp-on current transformer.

Unconventional Types of Current Transformer [5] Various alternatives to the con-
ventional current transformer have been investigated, some of which are already finding
a place in power system monitoring. Among them are:

• Search coils. The magnetic field in the proximity of a conductor or coil car-
ries information on the components of the current which generates the field. The
amplitude of the induced harmonic voltage in a search coil is proportional to the
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effective coil area, number of turns, the amplitude of the harmonic magnetic field
perpendicular to the coil surface and the frequency of the harmonics.

In such measurements, the measured magnetic field can arise from the contribu-
tions of more than one source. The magnetic field is inversely proportional to the
distance from the source. Where it is possible to place the search coil at a small dis-
tance d from the conductor, while other conductors are located at distances larger
than 20d , the measurements of values in the chosen conductor are not substantially
changed by fields of the other conductors.

• Rogowski coils. These devices are coils wound on flexible plastic mandrels, and
they can be used as clamp-on devices. They have no metallic core, so problems
of core saturation are avoided in the presence of very large currents, such as the
60–100 kA in the feed to an arc furnace or in the presence of direct current.

• Passive systems. In a passive system, a transmitted signal is modulated by a
transducer mounted at the conductor. No power source is required at the conductor.
Optical systems use the Faraday magneto-optic effect, by which the plane of polar-
isation of a beam of linear polarised light is rotated by a magnetic field along
its axis.
Designs for Faraday effect current transformers use either the open-path or the
closed-path optical system [6].
Microwave systems make use of gyromagnetic materials to modulate a microwave
carrier by a magnetic field. The form of modulation is controlled by the arrangement
of the gyromagnetic material and the form of polarisation of the microwave signal.

• Active systems. An active system uses a conductor-mounted transducer to provide
a modulating signal for a carrier generated at the conductor. Transmission of the
carrier to the receiving station is then achieved via a radio or fibre-optic link.
The power for the transmitter is usually line derived using a magnetic current
transformer together with some battery back-up.

• Hall effect transducers. The Hall effect is used in a variety of probes and trans-
ducers covering a range of current levels. For current transformer applications, a
major problem is that of maintaining calibration over long periods.

5.3.2 Voltage Transformers

Only on low-voltage systems can the analyser be connected directly to the terminals
where the voltage components must be determined. On medium- and high-voltage
systems, means of voltage transformation are required.

Magnetic voltage transformers, of extensive use for medium voltage levels, are
designed to operate at fundamental frequency. Harmonic frequency resonance between
winding inductances and capacitances can cause large ratio and phase errors. For volt-
ages to about 11 kV, and harmonics of frequencies under 5 kHz, the accuracy of most
potential transformers is within 3%, which is satisfactory, the response being dependent
upon the burden used with the transformer [7].

At higher voltage levels, the transformer tends to exhibit resonances at lower frequen-
cies, as the internal capacitance and inductance values vary with insulation requirements
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and construction. The precise response for a particular unit will be a function of its
construction [8].

Figure 5.1 contains test results carried out in over 40 voltage transformers at levels
between 6 kV and 400 kV. The figure indicates the percentage of transformers that
maintained the required precision (i.e. 5% and 5◦) throughout the frequency range.
The main conclusions are:

• At medium voltage, all the transformers perform adequately up to 1 kHz, while
only 60% of them manage to cover the whole harmonic spectrum. The figures
reduce further, to 700 Hz and 50% respectively, when the phase precision level
requirement is included.

• At high voltage, the transformers’ response deteriorates quickly for frequencies
above 500 Hz unless special designs are introduced.

• The conventional voltage transformers of magnetic type do not provide accurate
information for harmonic orders above the 5th.

Capacitive Voltage Transformer The capacitive voltage transformer (CVT) com-
bines a capacitive potential divider with a magnetic voltage transformer, as shown in
Figure 5.2. This combination enables the insulation requirements of the magnetic unit
to be reduced, with an associated saving in cost.

The additional capacitance provided by the capacitive divider will influence the
frequency response of the CVT, producing resonant frequencies as low as 200 Hz,
which makes them unsuitable for harmonic measurements.

The form of frequency response obtained is also dependent upon the magnitude of the
fundamental component and its relationship to any transition point in the magnetisation
characteristic of the transformer steel.
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Capacitive Dividers For harmonics measurements, either a purpose-built divider
could be assembled or, alternatively, use could be made of the divider unit of a capac-
itive voltage transformer, with the magnetic unit disconnected, or the loss tangent tap
on an insulating bushing (Figure 5.3).

When subject to an impulse, such as might arise from local switching, the capacitive
divider is subject to ringing due to the interaction between the divider capacitors and
their internal inductances. This can lead to high common mode voltages, particularly in
areas of high earth impedances. To minimise ringing, the capacitors forming the divider
circuit should have a low inductance and the low-voltage capacitor should be screened.

In recent years, a number of amplifier-based capacitive divider systems have been
developed [9,10]. Although intended primarily for use with high-speed protection
schemes, they also have obvious application in harmonic measurements.

The basic arrangement for a single-phase unit is shown in Figure 5.4. High-input
impedance instrumentation amplifiers must be included in such measurements. For best



200 HARMONIC MONITORING

Ci

Co
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results, the input amplifier should either be battery operated or use a suitably shielded
and isolated supply. The leads from the low-voltage capacitors to the input amplifier
should be as short as possible. In general, short leads from the amplifier to the analyser
will greatly reduce the angle error when measuring phase angles. These devices have
a limit on the burden that they can supply without saturation, hence the requirement
for a high-impedance amplifier.

Unconventional Voltage Transformers [5] Electro-optical and electrogyration
effects can be used to measure voltage in a manner akin to the Faraday effect used for
current measurement.

The electro-optical effect causes linearly polarised light passing through the mate-
rial to become elliptically polarised. As the two mutually perpendicular components
propagate in the crystal at different velocities, they have a difference in phase as they
emerge from the material. This phase difference will be proportional to the path length
in the material and to either the field (the Pockels effect) or the square of the field (the
Kerr effect). By measuring this phase difference, the electric field strength, and hence
the voltage, can be obtained.

If a linearly polarised beam is propagated through an electrogyrational material in an
electric field, the effect is to rotate the plane of polarisation in a manner analogous to
that occurring in magneto-optic materials. The electrogyration effect can, therefore, be
used to measure voltage in a manner similar to the Faraday effect current transformers.

5.4 Harmonic Instrumentation

The derivation of voltage and current harmonics is carried out in instrumentation sys-
tems that receive the line signals in the time domain and convert them into the frequency
domain. The main purposes of a harmonic monitoring system are:

• capturing existing levels of harmonic distortion to check them against recommended
or admissible limits;

• testing equipment that generates or causes harmonics in order to ensure its com-
pliance to certain standards or guidelines;
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• diagnosing or troubleshooting a situation in which some equipment performance is
unacceptable to the utility or to the user;

• observing existing background levels and tracking the trends with time for any
hourly, daily, weekly, monthly or seasonal patterns;

• verifying simulation studies or techniques and fine-tuning the modelling of the
devices and the system under analysis;

• determining the driving point impedance at a given location. This impedance is
useful for gauging the system capability to withstand power quality disturbances.

Monitoring background levels will require the system to be operated continuously over
a long period of time and the measured data will have to be stored. The stored data may
comprise the average, maximum and minimum values over predetermined intervals so
as to provide an overall picture of the phenomenon. On the other hand, the testing of
equipment simply requires the use of snapshots under certain operating modes. The
captured data most likely will consist of several cycles of the time-domain waveforms,
which can be further processed to extract the necessary information.

Some commercial instruments have been specifically designed for power systems
use (e.g. harmonic analysers) while others are of more general use (signal analysers).
The main difference between these two categories is the need to follow the variations
in fundamental frequency in the case of harmonic analysis.

Portable instruments are of small size and lightweight, easy to set up and use in
the field. The transducers (clip-on type) and interconnecting cable normally are part of
the unit. They normally use microprocessor based circuitry to calculate the individual
harmonics up to the 50th, as well as their r.m.s., THD and TIF indices. Some of these
devices can also calculate harmonic powers and can upload stored waveforms and
calculated data to a PC. Generally, the logging feature allows periodic downloading of
the instrument readings to a PC through an RS323 interface.

To reduce cost, portable instruments are normally restricted to one or two chan-
nels. Battery operating is essential for usage flexibility without dependence on external
wires and power supplies, particularly as the instrument has to be close to the mea-
surement point due to the length of the clip-on cable. Generally, these instruments are
not automated and therefore they need a person controlling their operation, although
some now have a logging feature. The operator must control the transducer locations,
what quantity is displayed, and the storing of data to memory or downloading to PC.
The capabilities of these instruments are restricted to the features originally designed
into the unit and cannot be changed. Therefore, upgrades are achieved by buying a
newer model.

For permanent or semi-permanent monitoring, the instruments require many channels
as they are intended to operate without human intervention and, generally, the channels
are not designed to be moved from one location to another. Transducers do not come
as part of these instruments, as it is assumed that the CTs or VTs already existing in
the system will be used. Due to the high cost of such hardware, the functionality is
designed into the software to permit upgrades. As some of the measuring points are
likely to be in outdoor switchyards, the cables and transducers must be designed to
withstand all weather conditions and operate satisfactorily in a hostile electromagnetic
environment.
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These instruments operate unattended over long periods and software is thus required
to automate the data collection, processing and storage. Such instrumentation is nor-
mally required at a multitude of sites, therefore synchronisation and the ability to
control them all from a central location are important features.

The processing of the waveforms can be carried out in analogue or digital form,
although the latter has practically displaced the analogue-type analysers. Analogue
instrumentation is based on the use of an adjustable filter which can be tuned to specific
frequencies (heterodyne system) or a bank of filters, each of which detects a particular
harmonic. The characteristics and implementation of the digital instrumentation are
discussed in the following section.

5.4.1 Digital Instrumentation

As shown in Figure 5.5, A/D converters change the analogue signals into digital form
as required by digital instruments; these signals are then processed by digital filters or
the FFT.

Some digital analysers still use the digital filtering, method, which, in principle, is
similar to analogue filtering. Before starting a series of measurements, the range of
frequencies to be observed must be defined and this information selects the required
digital filters. At the same time, the bandwidth is varied to optimise the capture of all
the selected harmonics in the presence of a large fundamental frequency signal. All the
recent instruments, however, use the FFT (described in Chapter 2), a very fast method
of analysis that permits capturing several signals simultaneously via multi-channel
instruments.

Generally, digital instruments use microprocessors for the processing of the signals
and co-ordination of their functions. Some instruments include a PC with a data acqui-
sition card that collects the voltage and current signals from the transducers; the PC
contains a microprocessor that calculates the harmonic levels, a hard disk for data
storage and a screen for the visual display of the results.
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Figure 5.5 Components of a multiwave monitoring system (from Electric Research and
Management Inc.)
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The main components of an FFT-based instrument are illustrated in Figure 5.6. First,
the signal is subjected to low-pass filtering to eliminate all the frequencies above the
spectrum of interest; this is normally limited to orders below the 50th. Once filtered,
the analogue signal is sampled, converted to digital and stored. The FFT is then applied
to the 2i samples included in a period Tw multiple of the fundamental wave period,
i.e. Tw = NT 1, the sampling frequency being fs = 2i/(NT 1).

To reduce spectral leakage, the samples contained in Tw are sometimes multiplied
by a window function as described in Chapter 2.

The FFT process derives the Fourier coefficients ak and bk of frequencies fx =
k(1/Tw) for k = 0, 1, 2, . . . 2i−1 and with adequate synchronisation the nth harmonic
of the fundamental frequency is given by n = k/N .

Finally, an arithmetic processor calculates the harmonic amplitudes

Cn =
√

a2
n + b2

n (5.6)

and phases

ϕn = arctan

(
bn

an

)
(5.7)

An FFT computation can be undertaken for each fundamental cycle, producing a set
of harmonics every cycle, or several cycles of samples can be joined together before
using a longer FFT to achieve better frequency resolution.

The frequency resolution of the FFT is given by the reciprocal of the record length

�f = 1

T0

Hence to resolve harmonic values, separated by 50 Hz or 60 Hz, the record length
must be one period of the fundamental frequency (20 ms or 16.7 ms). An FFT output
bin is not, however, an impulse function centred on a particular harmonic. Instead, it
has a non-zero response to frequencies between harmonics. This means that signals

f(t)
1 3

T

4

A/D

5

Tw

6

FFT

7

P

8 9

lim

10

2
Syn

an, bn cn, jn cn

FFT Instrument

Figure 5.6 An FFT-based instrument 1, anti-aliasing low pass filter; 2, synchronisation;
3, sample and hold; 4, analogue/digital converter; 5, shape of window unit; 6, FFT processor;

7, arithmetic processor; 8, unit for evaluation of transitory harmonics; 9, programmable
classifier; 10, counter and storage unit
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present in the signal to be transformed, which are not harmonics, will contribute to
particular harmonic outputs from the FFT, making them erroneous. The severity of this
problem can be reduced by taking the FFT over longer time spans, thereby resolving
inter-harmonic frequencies which would otherwise contribute to harmonic outputs. This
does, however, require more data processing. In harmonic analysis this is seen as a
disadvantage because only harmonics are required—as opposed to a spectrum analyser,
which is required to have a very good resolution.

It is possible to achieve the same effect of taking the FFT over several periods
by averaging several periods to one and computing the FFT of that, provided that
sampling is synchronous with the fundamental. This preserves the bandwidth of the
FFT with only a small processing overhead. It must be noted that if subharmonics are
required, averaging is not suitable. Instead, the FFT must be taken over multiple cycles
to produce the sub-multiples of the 50 Hz or 60 Hz fundamentals.

A modern monitoring system is divided into the three subsystems shown in Figure 5.7.

(1) Input signal conditioning and acquisition subsystem. The function of this unit is
the conversion of analogue signals into digital formats. This digitisation simplifies
the design of analogue circuitry and provides greater flexibility for altering the
algorithms to be used for processing the data samples. The main factors to be
considered in the design of this unit are:
— the sampling rates, which for harmonic analysis are in the kHz range;

— an anti-aliasing filtering, to be determined by the bandwidth of the signal to
be measured;

— provision of immunity to EMI susceptibility to the extremely noisy power
system electromagnetic environment;

— synchronisation and timing (when multiple channels are used);

— automatic ranging, as the current can vary significantly between light and
heavy loading conditions (this ensures that the full dynamic range is used).

(2) Digital processing and storage subsystem. Digital samples are transferred to this
subsystem for processing and recording. This subsystem can simply be a data
logger or a powerful parallel processing computer system. Generally, it is the
design of this subsystem that determines if continuous real-time data acquisition
is possible or only snapshots can be captured and stored for offline processing.
The special requirements to achieve continuous real-time data acquisition are
discussed in Section 5.4.2.

(3) User interface subsystem. The purpose of this unit is to provide users with
access to the measured data, either through on-screen displays or in hard-copy
forms. It also provides the users with the ability to control and configure the moni-
toring system. The basic requirement on this subsystem is to hide the complicated

Processed
data

Digital
samples

Input signal
conditioning

and acquisition
subsystem

Analogue
signal

Digital
processing and

storage
subsystem

User interface
subsystem

Figure 5.7 Major subsystems making up a monitoring system
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details of the monitoring system from the users. A graphical user interface forms
the essential ‘face’, representing the monitoring system, to the user.

5.4.2 Structure of a Modern Monitoring System

Ideally, the harmonic assessment should be carried out continuously over a wide band-
width and with good resolution, usually at multiple nodes of the power network.
Furthermore, in order to capture the very low magnitude higher-order harmonics in
the presence of the large fundamental component, an adequate analogue to digital
conversion resolution is required.

Most existing instruments are not equipped with the capability of synchronising the
acquisition of data samples across multiple channels and between multiple instruments
and/or nodes on a power network. Consequently, the steady-state assumption is again
taken as implicit when snapshots, gathered at different parts of a power system network,
are used alongside each other in order to make simultaneous power quality assessment
of the system.

The need to know the precise state of the system at all times is particularly important
when endeavouring to locate the distorting sources. This requires good magnitude and
phase measurements, often at more than one location on the network and preferably
synchronised.

Most existing data acquisition systems use the centralised processing architecture
shown in Figure 5.8, which places a constraint on the data processing capability of the
system. From the harmonic monitoring perspective, this limited real-time processing
capacity results in offline post-processing of the acquired data to derive the necessary
information. The lack of online analysis processing capability results in large vol-
umes of raw data having to be acquired and stored. Consequently, the limited system
throughput, bandwidth and storage volumes only allow the system to record snapshots.

The centralised configuration relies on the outputs of the CTs and VTs being directly
routed to the metering room. Although this configuration is normally sufficient for relay
operation or metering purposes, the limited bandwidth and EMI susceptibility of the
long analogue communication links create serious concerns over the integrity of the
measurements.
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VT
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Figure 5.8 Conventional centralised processing architecture
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Figure 5.9 A possible distributed processing architecture

Therefore, some form of distributed processing architecture is preferred, such as
shown in Figure 5.9. In this configuration the A/D conversion is shifted from the
central location to the switchyard close to the transducers. This enables the use of digital
communication links between the switchyard and the central system, thus improving
the bandwidth, dynamic range and noise immunity of the acquired signals. The use of a
fibre optic link reduces the system’s susceptibility to electromagnetic noise, which can
be significant in a switchyard environment. The second key element is the provision of
a digital signal processor (DSP) to undertake the data processing for each individual
channel. By dedicating a single DSP (or CPU) to every data channel, computationally
intensive manipulations can be implemented online [11].

A centralised source of sampling signals provides the opportunity to synchronise
the sampling across all data channels. The DSP usually communicates with the central
data collection system through multi-processing bus architectures. This enables the
DSP modules to be designed as plug-in cards, facilitating flexible expansion.

Sampling synchronisation between units at different sites can be achieved using
GPS-generated timing signals.

5.5 Data Transmission

A high proportion of power system harmonic measurements will be made using instru-
mentation sited remotely from the transformers providing the replicas of system current
and voltage. Some means of communication is, therefore, needed between the trans-
formers and the instruments.

This communication link may pass wholly or partially through a high-voltage switch-
yard, in which case particular attention must be given to the effects of electrostatic and
electromagnetic interference as well as the necessary screening.

The provision of increased noise immunity may require the use of other forms of data
transmission such as current loop systems, modulated data or digitally encoded data.

Shielded conductors (coaxial or triaxial cables) are essential for accurate results, but
proper grounding and shielding procedures should be followed to reduce the pick-up
of parasitic voltages. Moreover, coaxial cable is only suitable for relatively short leads.
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Where high common-mode voltages can occur, the communications link may be
required to provide insulation up to several kilovolts to protect both users and equip-
ment. This may require the use of isolation amplifiers or, where higher levels of
isolation are required, fibre-optic links.

Information may be transmitted either as an analogue signal for direct connection
of the instrument, or in a modulated or encoded form using both analogue and digital
data systems. If direct analogue transmission is used, then a system of sufficiently
high signal to noise ratio is obviously required. For certain harmonic measurements, a
dynamic range of the order of 70 dB may well be needed and, hence, the achievable
signal to noise ratio must be in excess of this figure.

5.6 Presentation of Harmonic Information

Figure 5.10 illustrates the capturing and transmission of information from the high-
voltage network and its presentation in visual form by means of oscilloscopes and
harmonic analysers. The former permit observing the time variation of the voltage and
current waveforms, while the latter show their respective spectra.

The analogue-type analysers require minutes of processing time to gather the har-
monic information and produce either graphs (as shown in Figure 5.11) or tables (e.g.
the information corresponding to the graph of Figure 5.11 is shown in Table 5.1). The
discrete measurement at widely separate times can lead to substantial interpretation
errors. For instance, with reference to Figure 5.12, where the harmonic level varies
with time, if the harmonic measurement is registered every 12 minutes as shown, the
results will be very misleading.

When using digital systems the problem changes from one of insufficient data to one
of extracting relevant information from the vast amount of recorder data. The captured
information is often recorded for later offline processing.

As well as time-varying information (shown in Figure 5.12), it is possible to derive
cumulative probability graphs (Figure 5.13) or histograms (Figure 5.14).
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Figure 5.11 Typical harmonic plot from an analogue analyser

Table 5.1 Tabulated information
corresponding to the plot in

Figure 5.11

Frequency (Hz) Amplitude (V)

50 240
100 0.1
150 12
200 0.1
250 2.7
300 0.0
350 2.1
400 0.0
450 0.3
500 0.0
550 0.6
600 0.0
650 0.4
700 0.0
750 0.3
800 0.0
850 0.2
900 0.0
950 0.1

1000 0.0
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Another example of data presentation, shown in Figure 5.15, relates to the recom-
mendation from a joint CIGRE/CIRED based on the IEC directives [1]. In this case the
measurement at each observation point extends to several days (including the week-
end), and for each harmonic and day the maximum value (MAX) the value not to be
exceeded with a 95% probability (CP95) and the mean maximum value at 10-minute
intervals (MMV10) are retained.

5.7 Examples of Application

This section reports on field measurements carried out in the New Zealand power
system to illustrate the use and capability of modern digital instrumentation. The
instrument used was CHART (Continuous Harmonic Analysis in Real Time) [11].

5.7.1 Synchronised Tests

Figure 5.16 shows the 220 kV network of New Zealand’s South Island system. Between
the Islington and North Makawera substations, there are a number of hydro stations
and a HVd.c. scheme. The distribution network at Islington had reported a substan-
tial amount of 5th harmonic distortion caused by the presence of a large number of
industrial sites connected to this bus. The 5th harmonic current is largely absorbed
by the compensation capacitors at the Islington substation. However, the capacitors
are usually removed from service during light load conditions, causing the 5th har-
monic current to flow into the 220 kV transmission system. On the other hand, at
North Makawera, the opposite effect had been observed, with the 5th harmonic cur-
rent flowing from the 220 kV transmission network into the distribution system. The
main consumer of electrical power fed by the North Makawera substation is an alu-
minium smelter at the Tiwai bus. A recently installed 5th harmonic filter at Tiwai was
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Figure 5.16 CHART measurement points in the synchronised test

frequently overloaded and the source of the 5th harmonic current distortion was traced
to the 220 kV transmission system.

The first objective of the test was to decide whether there was any connection
between the 5th harmonic problems at the Islington and North Makawera substations.
If the two problems were related, the response of the 5th harmonic distortion at North
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Makawera to the switching of capacitors at Islington was to be identified. This required
that the measurements undertaken at both sites should be synchronised as accurately
as possible. The 5th harmonic problems at both substations were known to vary with
the daily operation of the South Island system. Therefore, the monitoring systems
had to gather harmonic information over a fairly long period, covering a variety of
operating conditions. CHART units were installed at the North Makawera and Islington
substations (shown in Figure 5.17), to monitor the currents flowing between the 220 kV
transmission system and the substations.

At Islington, the two transmission lines considered to have the lowest impedance
between the substation and the generating stations around Benmore were the Isling-
ton–Livingston and Islington–Timaru–Twizel lines. The three phases on these two

Islington

Benmore

North
Makawera

Generations

Power flow

HVDC link

Haywards

CHART

CHART

Figure 5.17 Location of CHART units in the synchronised test
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circuits were therefore measured. Besides measurements on the 220 kV system, the
voltage distortion on the 66 kV bus was also monitored. The CHART unit was also
set up to record the current of one of the transformers (T3) interconnecting the 66 kV
distribution network and the 220 kV transmission network.

At North Makawera, the main flow of power is between the generation at Manapouri
and an aluminium smelter at Tiwai. The CHART unit was set up to monitor the current
between these two places and the North Makawera substation. The connections from
North Makawera to the rest of the 220 kV network were also monitored by measuring
the current between North Makawera and 3-Mile Hill, and between North Makawera
and Invercargill. Moreover, the current of transformer T1 feeding the 33 kV distribution
network at North Makawera was monitored to determine if there is any 5th harmonic
source within the local load. The voltage distortion on the 33 kV distribution busbar
was also recorded. However, due to the limited number of channels available on this
particular CHART unit (12 channels), it was necessary to forgo some of the phases at
several measurement points.

The main requirement of this test was to record the harmonic distortion at both
substation simultaneously. The data samples were time-stamped to enable them to be
matched in time. It was decided to average the harmonics over one second and to
compute the mean, maximum and minimum harmonics over a minute throughout the
entire measurement.

The measured fundamental frequencies at Islington and North Makawera are shown
in Figure 5.18. The fundamental frequencies are identical at both sites with similar
deviations throughout the measurements. This ensured that the sampling processes
were synchronised between the two CHART units.

A selection of acquired data is shown in Figure 5.19. A number of steps are observed
on the 66 kV bus voltage which may be caused by the switching of the compensation
capacitors. However, only three of these show concurrent changes in the 5th harmonic
current flowing out of the Islington substation. The three cases are highlighted in
the figure together with the possible capacitor switching instants. The currents in the
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Figure 5.19 Selection of data acquired in the South Island synchronised test

two transmission lines, Islington–Livingston and Islington–Timaru–Twizel, show an
increase in the 5th harmonic current when the capacitors are switched out. A decrease
in the 5th harmonic current is also observed when the capacitor is switched back into
service towards the end of the test.

The variations in the 5th harmonic current at North Makawera do not always
correspond with the changes at Islington. Among the three aforementioned instants
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when there are changes to the 5th harmonic current flowing out of Islington, only
the last two show corresponding changes in the distortion at North Makawera. At the
second highlighted switching just after the 7th hour, when one of the capacitors is
removed from service, the sudden increase in the 5th harmonic currents in the two
outgoing lines from Islington coincides with similar increases in the lines between
3-Mile Hill, North Makawera and Tiwai. Similar coincidence is observed when one
of the capacitors is put back into service near the end of the test. The decrease in the
5th harmonic current flowing out from the Islington 220 kV system coincides with the
decreases in the 5th harmonic distortion around North Makawera.

These observations indicate that under certain operating conditions, the switch-
ing of capacitors at Islington substation can affect the 5th harmonic distortions at
North Makawera. However, more detailed analyses of the system, in particular dur-
ing the period when the measurement was carried out, will be required to finalise the
above findings.

5.7.2 Group-Connected HVD.C. Converter Test

During a maintenance period at the Benmore HVd.c. converter station, the opportunity
arose to test the possibility of operating the converter plant in the group-connection
mode, i.e. islanded from the South Island a.c. network; as the filters are connected on
the a.c. side of the converter transformers, the generators were subjected to greater
harmonic distortion than under the normal configuration. Moreover, the fundamental
frequency of the islanded network could deviate from the nominal 50 Hz depending
on the d.c. load and the amount of generation.
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Figure 5.20 CHART measurement points in the Benmore test
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Besides capturing the waveforms needed for validation of computer models, this
test provided the opportunity to illustrate some of the capabilities of the digital instru-
mentation. These include the ability to perform alternative data processing tasks, the
transparent handling of the different data formats of results from the tests, the ability
to track the varying fundamental frequency in the islanded a.c. system and its use to
ensure coherent sampling.

Figure 5.20 shows the islanded system at the Benmore converter station. Two CHART
units were used to provide a total of 24 data channels. The measurements include the
voltage at the 16 kV bus, generator currents, converter transformer currents, Pole 1B
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d.c. line voltage and current, and the firing angle of the Pole 1B converter. The main
task of the test system was to capture the time domain waveforms under different d.c.
current and a.c. generation configurations. It was decided to capture two different forms
of time-domain data, a small number of samples per fundamental cycle over a longer
period for steady-state analysis and a handful of cycles of data with a higher sampling
rate. A selection of data acquired during the islanded converter test at Benmore is shown
in Figure 5.21.

5.8 Discussion

The main components of power system waveform monitoring, i.e. transducers and
instrumentation, have been critically reviewed for their ability to transfer harmonic
information. Adequate technology is now available for the transfer of voltage and
current information and for their processing. The main limitation for reliable monitoring
is its dependence on expensive high-voltage transducers; these are relatively few in
number and primarily designed to obtain fundamental frequency related information.
The inadequacy relates particularly to the use of capacitor voltage transformers.

A number of alternatives to improve the transducers’ response at harmonic frequen-
cies have been described in the literature and some of them are now produced by
the industry. However, despite their limitations for harmonic monitoring, conventional
CTs and CVTs are still the preferred options for general power system use. A possible
solution is the re-calibration of the transducers’ performance at the specified harmonic
frequencies.

As the most popular technique, the chapter has discussed the FFT implementation of
digital processing. Hardware and software system requirements have been described,
both for single point and system-wide assessment, the latter requiring perfect sampling
synchronisation at geographically separated buses. Examples of local and system-wide
field test monitoring, using advanced digital instrumentation, have been included to
illustrate their capability in the real environment.
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6

Harmonic Elimination

6.1 Introduction

When planning the installation of large nonlinear plant components the decision has to
be made between designing the nonlinear devices for low levels of waveform distor-
tion or installing harmonic compensation equipment at the terminals. The first solution
is often possible by phase-shifting of the transformers and/or the control of converter
bridges or by the use of switching devices with turn-off capability. These alternatives
have been discussed under harmonic sources (Chapter 3). External harmonic compen-
sation, on the other hand, is achieved by means of filters. In each case the decision will
depend on factors like the power and voltage rating of the equipment to be installed
and the effect of the local (internal) waveform distortion on the rest of the plant.

When the sole purpose is to prevent a particular frequency from entering selected
plant components or parts of the power system (e.g. in the case of ripple control signals)
it is possible to use a series filter consisting of a parallel inductor and capacitor which
presents a large impedance to the relevant frequency. Such a solution, however, can not
be extended to prevent the harmonics from arising at the source, because the production
of harmonics by nonlinear plant components (like transformers and static converters)
is essential to their normal operation.

In the case of static converters, the harmonic currents are normally prevented from
entering the rest of the system by providing a shunt path of low impedance to the
harmonic frequencies.

Although this chapter is mainly concerned with passive filters, a section is devoted
to active filtering due to the increasing interest in this alternative.

6.2 Passive Filter Definitions

A shunt filter is said to be tuned to the frequency that makes its inductive and capacitive
reactances equal.

The quality of a filter (Q) determines the sharpness of tuning and in this respect
filters may be either of a high or a low Q type. The former is sharply tuned to one
of the lower harmonic frequencies (e.g. the fifth) and a typical value is between 30
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Figure 6.1 (a) Single-tuned shunt filter circuit; (b) single-tuned shunt filter impedance versus
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Figure 6.2 (a) Second-order damped shunt filter; (b) second-order damped shunt filter
impedance versus frequency

and 60. The low Q filter, typically in the region of 0.5–5, has a low impedance over
a wide range of frequency. When used to eliminate the higher-order harmonics (e.g.
17th up wards) it is also referred to as a high-pass filter. Typical examples of high
and low Q filter circuits and their impedance variation with frequency are illustrated
in Figures 6.1 and 6.2.

In the case of a tuned filter Q is defined as the ratio of the inductance (or the
capacitance) to resistance at the resonant frequency, i.e.

Q = X0/R (6.1)

As shown in Figure 6.1(b), the filter pass band (PB) is defined as being bounded by
the frequencies at which the filter reactance equals its resistance, i.e. the impedance
angle is 45◦ and the impedance module

√
2R. The quality factor and pass band are

related by the expression

Q = ωn/PB (6.2)
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where ωn is the tuned angular frequency in radians per second. The sharpness of tuning
in high-pass damped filters is the reciprocal of that of tuned filters, i.e. Q = R/X.

The extent of filter detuning from the nominal tuned frequency is represented by a
factor δ. This factor includes various effects: (i) variations in the fundamental (supply)
frequency; (ii) variations in the filter capacitance and inductance caused by ageing and
temperature; and (iii) initial off-tuning caused by manufacturing tolerances and finite
size of tuning steps.

The overall detuning, in per unit of the nominal tuned frequency, is

δ = (ω − ωn)/ωn (6.3)

Moreover, a change of L or C of say 2% causes the same detuning as a change of
system frequency of 1%. Therefore δ is often expressed as

δ = �f

fn

+ 1

2

(
�L

Ln

+ �C

Cn

)
(6.4)

6.3 Filter Design Criteria

6.3.1 Conventional Criteria

The size of a filter is defined as the reactive power that the filter supplies at fundamental
frequency. It is substantially equal to the fundamental reactive power supplied by the
capacitors. The total size of all the branches of a filter is determined by the reactive
power requirements of the harmonic source and by how much this requirement can be
supplied by the a.c. network.

The ideal criterion of filter design is the elimination of all detrimental effects caused
by waveform distortion, including telephone interference, which is the most difficult
effect to eliminate completely. However, the ideal criterion is unrealistic for technical
and economic reasons. From the technical point of view, it is very difficult to estimate
in advance the distribution of harmonics throughout the a.c. network. On the economic
side, the reduction of telephone interference can normally be achieved more econom-
ically by taking some of the preventive measures in the telephone system and others
in the power system.

A more practical approach is to try to reduce the problem to an acceptable level at
the point of common coupling with other consumers, the problem being expressed in
terms of harmonic current, harmonic voltage, or both. A criterion based on harmonic
voltage is more convenient for filter design, because it is easier to guarantee staying
within a reasonable voltage limit than to limit the current level as the a.c. network
impedance changes.

The voltage THD index is more representative than the arithmetic sum, because
it corresponds to the power of the harmonics and is therefore more closely related
to the severity of the disturbance. The recommended criteria for HVd.c. converter
filters [1] is the maximum level of any single harmonic and the THD. In general it
will be sufficient to include all harmonics up to the 25th order. The maximum values of
individual harmonics generally occur for different conditions. It is therefore necessary



222 HARMONIC ELIMINATION

Harmonic current from source

Harmonic source

Harmonic current into filter

Harmonic current into network

Filter A.c. network

Figure 6.3 Circuit for the computation of voltage harmonic distortion

to clarify whether the THD should use those values of individual harmonics which
are simultaneously present, or the non-coincident maximum values of each harmonic.
Regarding telephone interference, although used in a number of projects, the IT index
into a node of a meshed transmission system has little meaning. However, in cases
when earth resistivity is high there is justification to limit the magnitudes of harmonic
currents flowing in particular transmission lines which run close to telephone lines;
this is normally achieved with the use of the ‘equivalent disturbing current’ concept.

To comply with the required harmonic limitations, the design of filters involves the
following steps:

(1) The harmonic current spectrum produced by the nonlinear load is injected into
a circuit consisting of filters in parallel with the a.c. system (Figure 6.3) and the
harmonic voltages are calculated.

(2) The results of (1) are used to determine the specific parameters, i.e. the THD,
TIF and IT factors.

(3) The stresses in the filter components, i.e. capacitors, inductors and resistors, are
then calculated and with them their ratings and losses.

Three components require detailed consideration in filter design: the current source
and the filter and system admittances.

The current source content should be varied through the range of load and (in the
case of static converters) firing angle conditions. This subject has been discussed in
Chapter 3. As far as system and filter admittances are concerned, it is essential to
calculate the minimum total equivalent admittance at each harmonic frequency, which
will result in maximum voltage distortion.

The obvious filter design is a single broad band-pass configuration capable of atten-
uating the whole spectrum of injected harmonics (e.g. from the fifth up in the case of
a six-pulse converter). However, the capacitance required to meet such a target is too
large, and it is usually more economical to attenuate the lower harmonics by means of
single arm tuned filters.

6.3.2 Advanced Filter Design Criteria

The conventional criteria described above provide adequate filter designs for most
applications. However, in cases where the nonlinear plant has a very large power
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rating, such as an HVd.c. converter, these criteria can lead to inadequate solutions and
even harmonic instabilities. The reason is that the conventional approach ignores the
interaction that exists between the nonlinear device and the rest of the power system.
Such interaction affects the harmonic current injections as well as the overall system
harmonic impedances (which should include the effective contribution of the nonlinear
device), and thus requires an iterative solution, rather than the direct solution of the
conventional approach.

The derivation of advanced models of nonlinear plant, taking into account their
harmonic interaction with the rest of the system, is described in Chapter 8.

6.4 Network Impedance for Performance Calculations

The network harmonic impedances change with system configuration and load condi-
tions. Although these can be determined from measurements, it is difficult to monitor
all possible network conditions; in particular, future changes can not be captured by
measurements.

The use of computer programs provides greater flexibility. If the derived impedances
are too pessimistic (i.e. unreasonably large and/or the damping too low), which is
normally the case due to lack of accuracy in the parameters used for the calculation,
the filter will be more expensive than necessary. Thus the correct modelling of the
variation of component/branch resistance with frequency, particularly for transformers
and loads, is important to determine accurately the damping of the network.

6.4.1 Size of System Representation

As the system harmonic impedances vary with the network configuration and load
patterns, large amounts of data are generated. Considering the large number of stud-
ies involved in filter design, it is prohibitive to represent the whole system with the
same degree of detail for every possible operating condition. The detail of component
representation depends on their relative position to the harmonic source, as well as
their size in comparison with that of the harmonic source. Any local plant components
such as synchronous compensators, static capacitors and inductors, etc., will need to
be explicitly represented.

As the high voltage transmission system has relatively low losses, it is also necessary
to consider the effect of plant components with large (electrical) separation from the
harmonic source. It would thus be appropriate to model accurately at least all of the
primary transmission network. Moreover, due to the standing wave effect on lines and
cables, a very small load connected via a line or cable can have a dramatic influence
on the system response at harmonic frequencies.

It is recommended to consider the loads on the secondary transmission network
in order to decide whether these should be modelled explicitly or as an equivalent
circuit. If these loads are placed directly on the secondary side of the transformer, their
damping can be overestimated when using simple equivalents.

Increasing network complexity results in a greater number of resonance frequencies.
By way of illustration [2], Figure 6.4 shows the harmonic impedance at a converter
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Figure 6.4 Effect of size of system representation [2]

bus of a primary (400 kV) system with either 25, 232 or 1682 buses included; the
25-bus case includes the nearest 400 kV lines terminated by equivalent circuits plus
the transformers and large generators in this area. The continuous thick line shows the
same information when the network consists of 1682 buses, which include the complete
400 kV, 220 kV and 110 kV networks plus the generators down to the 1 MVA size;
however, it must be emphasised that the number of buses is not the only relevant
criterion for increased accuracy. The considerable differences observed are due to
the ‘hand-made’ formation of the small network while the large network is produced
automatically from the network database. Because modern computers can handle the
larger network in reasonable times, the larger representation must be recommended as
it gives accurate results at any point in the network and only one model for the whole
network has to be maintained.

Radial parts of the system or neighbouring interconnected systems that remain invari-
ant when performing multiple case studies can be replaced by frequency-dependent
circuits, or by their harmonic admittances at the point of connection.

6.4.2 Effect of A.C. Network Resistance at Low Frequencies [1]

When considering classical resonant filters, taking into account the damping of the a.c.
network generally allows the use of smaller sized filters when a target of maximum
harmonic voltage has been specified. This size reduction is a function of the maxi-
mum phase angle (φh max) of the network impedance at harmonic frequency h and is
expressed by

1/(1 + cos φh max)

The filtering performance of damped filters (Section 6.6) for high frequencies does
not depend much on the converter power rating or on the network impedance, the latter
being generally higher than that of the filters.
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Figure 6.5 Influence of system damping on the maximum overvoltage during the
energisation of a 150 MVAr filter bank. (1), Purely inductive system; (2), the real system

(400 kV/4 GVA/50 Hz)

On the other hand, when designing a damped filter for stronger damping of a low-
order harmonic voltage, it is essential to know accurately the network impedance at
low frequencies. It is necessary to ensure that connecting the filter in parallel with the
network impedance has a positive effect on the harmonic voltage and avoids excessive
amplification of harmonic voltages of other orders, especially those which are close.
These requirements must be fulfilled while keeping an acceptable level of losses.

The simulation of the transient overvoltages resulting from the energisation of the
converter transformers and of compensation equipment also depend on the damping of
the a.c. network at low frequencies. Figure 6.5 illustrates the calculated overvoltages
due to switching of a second-order high-pass filter bank for different switching instants;
these results show the influence of the damping representation of the network. Such
analysis requires the determination of the network impedance locus for its various
configurations and, especially, for the resonant frequencies between the a.c. network
and the filters.

6.4.3 Impedance Envelope Diagrams

The results of the computer studies can be presented in the form of tables or, more
effectively, as envelope diagrams, such as sector, polygon or circle diagrams. In the
latter case an X/R area in the complex impedance diagram is defined for a cer-
tain frequency range. The locus of the a.c. system impedance for varying system
conditions and at different harmonic frequencies is defined to be within the enve-
lope of these areas. Envelope diagrams permit a systematic search for the worst-case
impedance.
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Sector Diagrams The sector diagram restricts the area encompassing the loci of a
particular harmonic impedance to a circular sector limited by maximum and minimum
radii and angles, as shown in Figure 6.6. As the lower limit of the impedance, either
the minimum impedance or the minimum resistance is given.

This diagram is very simple to define when little information about the network is
available. The disadvantages of this representation are:

• Where the maximum R in a harmonic range is set by a system parallel resonance,
this will define the maximum Z, and will produce corresponding reactance limits
which often exceed their actual value.

• The maximum and minimum angles will normally be lower than those in the
diagram for the higher reactance values.

• The relationship between the minimum limits of Z and R is unlikely to correspond
to reality and yet it is an important factor in filter design.

Circle Diagram As Figure 6.7 illustrates, in this representation the locus of the sys-
tem impedances is a circle with a radius selected to encompass the maximum impedance
to be considered. In addition to the radius, the maximum and minimum angle and
minimum resistance should be specified.
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This diagram provides a better fitting envelope for the real values than the sector
diagram and a more realistic approximation for the characteristic harmonics. However,
the radius is determined by the largest value of the impedance range, generally fixed by
a parallel resonance which may apply over a more limited frequency range than that of
the complete diagram (or there may be a set of resonances at different frequencies for
different system conditions). Hence this approach could result in the inclusion of an
even larger non-applicable area than the sector diagram, particularly in the capacitive
reactance sector for the lower harmonic range.

Discrete Polygons For a more accurate representation of the network impedance, it
is necessary to use different diagrams for different frequency ranges, as the system
impedance is frequency dependent. In this way relatively limited impedance sectors
can be defined for each harmonic, thus permitting a more exact matching of the a.c.
filter design to the actual network conditions. This solution avoids filter over-designs
of the low-order and 11th and 13th characteristic harmonics.

Care should be taken in specifying impedances for the low-order harmonics, partic-
ularly the second, third and fifth. If the values specified are too large the calculations
may lead to filters tuned at these frequencies. Thus, it may be advisable to specify
separate diagrams for these frequencies.
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Figure 6.8 shows these polygons for the harmonic orders 2 to 5. In practice the
polygons encompassing the impedances at high frequencies become rather large and
it is more practical to use a circle diagram for these frequencies without introducing
too much pessimism in the filter designs. A combination of polygons (up to the 13th
harmonic) and circle diagram for the orders higher than the 13th is illustrated in
Figure 6.9.

6.5 Tuned Filters

A single tuned filter is a series RLC circuit (as shown in Figure 6.1) tuned to the
frequency of one harmonic (generally a lower characteristic harmonic). Its impedance
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is given by

Z1 = R + j

(
ωL − 1

ωC

)
(6.5)

which at the resonant frequency (fn) reduces to R. There are two basic design param-
eters to be considered prior to the selection of R, L and C. These are the quality factor
(Q), and the relative frequency deviation (δ), already defined.

In order to express the filter impedance in terms of Q and δ, the following relation-
ships apply:

ω = ωn(1 + δ) (6.6)

where

ωn = 1√
LC

(6.7)

The reactance of inductor or capacitor in ohms at the tuned frequency is

X0 = ωnL = 1

ωnC
=

√
L

C
(6.8)

Q = X0

R
(6.9)

C = 1

ωnX0
= 1

ωnRQ
(6.10)

L = X0

ωn

= RQ

ωn

(6.11)

Substituting equations (6.6), (6.10) and (6.11) in equation (6.5) yields

Zf = R

(
1 + jQδ

(
2 + δ

1 + δ

))
(6.12)

or, considering that δ is relatively small as compared with unity,

Zf ≈ R(1 + j2δQ) = X0(Q
−1 + j2δ) (6.13)

and

|Zf | ≈ R(1 + 4δ2Q2)1/2 (6.14)

It is generally more convenient to deal with admittances rather than impedances in
filter design, i.e.

Yf ≈ 1

R(1 + j2δQ)
= Gf + jBf (6.15)

where

Gf = Q

X0(1 + 4δ2Q2)
(6.16)

Bf = − 2δQ2

X(1 + 4δ2Q2)
(6.17)
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The harmonic voltage at the filter busbar is

Vn = In

Ynf + Ysn
= In

Yn

(6.18)

and therefore to minimise the voltage distortion it is necessary to increase the overall
admittance of the filter in parallel with the a.c. system.

For a prediction of the largest Vn, the variables that are not accurately known have
to be chosen pessimistically; these are the frequency deviation δ and the network
admittance Ysn . Since the harmonic voltage increases with δ, the largest expected
deviation δm must be used in the analysis. Again, the worst realistic system condition
(the lowest admittance) must be represented.

With certain limits the designer can decide on the values of Q and filter size (VA
rating at the fundamental frequency).

In terms of Q and δ, equation (6.18) can be written as follows:

|Vn| = In

{[
Gsn + 1

R(1 + 4Q2δ2)

]2

+
[
Bsn − 2Qδ

R(1 + 4Q2δ2)

]2
}−1/2

(6.19)

The case of a purely inductive a.c. network admittance, often used in filter design,
is unduly pessimistic.

The impedance loci indicate that generally the harmonic impedances can be circum-
scribed in a region of R, jX determined by two straight lines and a circle passing through
the origin (see Figure 6.7). The maximum phase angle of the network impedance can
thus be limited to below 90◦ and generally decreases with increasing frequency (except
in cable networks for high harmonic orders). The highest harmonic voltage is then
obtained by using φsn with a sign opposite to that of δ.

Then equation (6.19) becomes

|Vn| = In{(|Ysn | cos φsn + Gf )2 + (−|Ysn | sin φsn + Bf )2}−1/2 (6.20)

taking φsn positive and δ negative.
If |Ysn | is left unrestricted, the admittance giving maximum |Vn| is

|Ysn | = cos φsn(2Qδ tan φsn − 1)

R(1 + 4Q2δ2)
(6.21)

giving

|Vn| = InωnL

[
1 + 4Q2δ2

Q(sin φsn + 2Qδ cos φsn)

]
(6.22)

There is an optimum Q which results in the lowest harmonic voltage, i.e.

Q = 1 + cos φsn

2δ sin φsn
(6.23)
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for which

|Vn| = InδωnL

[
4

(1 + cos φsn)

]
= 2InR

sin φsn
(6.24)

Nevertheless, it should be noted that filters are not usually designed to give minimum
harmonic voltage under these conditions. Normally a higher Q is selected in order to
reduce losses.

A condition that also has to be considered in the design of filters, and which can
restrict the operation of the converters, is an outage of one or more filter branches.
The remaining filter branches may then be over-stressed as they have to take the total
harmonic current generated by the converter.

6.5.1 Graphic Approach

A graphic explanation is given by Kimbark [3] which helps to understand the selection
of optimum Q, i.e. the value that maximises Yn.

For a given maximum value of the frequency deviation factor δm, and using a fixed
reactance X0 and variable resistance R, the locus of the filter admittance, i.e.

Yf = 1

R(1 + j2δQ)

is a semicircle of diameter 1/(2δmX0) tangent to the G-axis at the origin, as shown
by the dashed line in Figure 6.10. The same figure displays (shaded area) the system
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Figure 6.10 Construction for finding optimum Q and worst network admittance Ysn , drawn
for φm = 60◦. From [3]. Copyright 1971, John Wiley and Sons, Inc
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admittance domain (Ysn), obtained by inverting the impedance locus, and the minimum
admittance for each frequency lies on the boundary of the shaded area.

For a given Ynf , the shortest vector Yn is perpendicular to and ends on the boundary.
The vector diagram of Figure 6.10 drawn for a positive δm and negative φ = φm

produces the highest harmonic voltage. Moreover, the optimum value of Ynf is that
which terminates on the semicircle at a point where the boundary at angle + φm is
the tangent to the semicircle. This optimum case is illustrated in Figure 6.10, where at
point D, Ynf maximises Vn and Ysn minimises it.

For such conditions the filter admittance can be shown to be

|Ynf | = cos(φm/2)

2δmX0
(6.25)

and

|Yn| = |Ynf | cos(φm/2) = 1 + cos φm

4δmX0
(6.26)

The quality factor of the chosen Ynf is

Q = X0

R
= X0

Xf /(tan φf )
(6.27)

but (from equation (6.13)

Xf = 2δmX0 (6.28)

and (from Figure 6.10)

tan φf = cot(φm/2) (6.29)

Therefore

Q = cot(φm/2)

2δm

= cos φm + 1

2δm sin φm

(6.30)

After the individually tuned filter Qs values have been determined, the entire filter
configuration must be used to determine the network admittance Yn that yields the
minimum total admittance Y at each harmonic frequency.

In practice, the minimal possible system admittances are also limited by a minimum
conductance, thus resulting in the admittance domain shown shaded in Figure 6.11.

At any harmonic frequency the equivalent admittance of the filter configuration
consists of a vector that ends at point O and starts in one of three regions of the
admittance plane as shown in Figure 6.11.

At frequencies for which tuned filters are provided, the origin of the filter admittance
is likely to lie in region 3, i.e. the total filter admittance is relatively large. At other
frequencies, however, the filter admittance origin may lie in region 1 or 2.

The most pessimistic values of the network admittance are those which result in
the lowest total admittance. These are clearly defined in the graph: (i) in region 1 the
resultant admittance vector Yn ends on the vertical (i.e. minimum conductance) part
of the boundary; (ii) in region 2, Yn ends on the corner of the boundary; and (iii) in
region 3, Yn is perpendicular to the nearer angular limit.
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Figure 6.11 Determination of network admittance Ysn , for minimum resultant admittance Yn

corresponding to filter admittances Yf lying in different regions. From [3]. Copyright 1971,
John Wiley & Sons, Inc

6.5.2 Double-Tuned Filters [4]

The equivalent impedances of two single-tuned filters (Figure 6.12(a)) near their res-
onance frequencies are practically the same as those of a double-tuned filter config-
uration, illustrated in Figure 6.12(b), subject to the following relationships between
their components

C1 = Ca + Cb (6.31)

C2 = CaCb(Ca + Cb)(La + Lb)
2

(LaCa − LbCb)
2

(6.32)

L1 = LaLb

La + Lb

(6.33)

L2 = (LaCa − LbCb)
2

(Ca + Cb)2(La + Lb)
(6.34)

R2 = Ra

[
a2(1 − x2)

(1 + ax2)2(1 + x2)

]
+ Rb

[
1 − x2

(1 + ax2)2(1 + x2)

]

+ R1

[
(1 − x2)(1 − ax2)

(1 + x2)(1 + ax2)

]
(6.35)
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Figure 6.12 Transformation from (a) two single-tuned filters to (b) double-tuned filters.
(c) The impedance versus frequency of filter double-tuned for 5th and 7th

where

a = Ca

Cb

and x =
√

LbCb

LaCa

The above practical approximation is carried out by omitting resistor R1, which is
therefore determined by the minimum resistances of the inductor L1. This has the
advantage of reducing the power loss at fundamental frequency as compared with the
single-tuned filter configurations. The main advantage of the double-tuned filter is in
high-voltage applications, because of the reduction in the number of inductors to be
subjected to full line impulse voltages. Typical equivalent impedances of a double-tuned
filter are illustrated in Figure 6.12.

A common design of double-tuned filter configurations is that of the Vindhyachal
HVd.c. converter plant [1], shown in Figure 6.13. The scheme consists of three sets
of double-tuned filters for 11/13, 3/27 and 5/24 harmonic orders. A filter for the third
harmonic is needed to eliminate resonances with the a.c. network and the fifth harmonic
filter is required to limit the individual harmonic distortion.

Triple- and quadruple-tuned filters can also be designed but these are rarely justified
because of the difficulty of adjustment.

6.5.3 Automatically Tuned Filters

In tuned filter design it is advantageous to reduce the maximum frequency deviation.
This can be achieved by making the filters tunable by either automatically switching
the capacitance or by varying the inductance. A range of ±5% is usually considered
adequate. A control system, which measures the harmonic frequency reactive power in
the filter (both its sign and magnitude) and uses the information to alter the value of
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Figure 6.13 Filter configuration of the Vindhyachal HVd.c. scheme. CIGRE  copyright

the L or the C, has been used in HVd.c. converter filters. Automatically tuned filters
offer the following advantages over fixed filters:

(1) The capacitor rating is lower.

(2) The capacitor used can combine a high temperature coefficient of capacitance and
a high reactive power rating per unit of volume and per unit of cost.

(3) Because of the higher Q, the power loss is smaller.

Advantages (1) and (2) reduce the cost of the capacitor, which is the most expensive
component of the filter. Advantage (3) reduces the cost of the resistor and the cost of
the system losses.

6.6 Damped Filters

The damped filter offers several advantages:

(1) Its performance and loading are less sensitive to temperature variation, frequency
deviation, component manufacturing tolerances, loss of capacitor elements, etc.

(2) It provides a low impedance for a wide spectrum of harmonics without the
need for subdivision of parallel branches, which increases switching and mainte-
nance problems.

(3) The use of tuned filters often results in parallel resonance between the filter and
system admittances at a harmonic order below the lower tuned filter frequency, or
in between tuned filter frequencies. In such cases the use of one or more damped
filters is a more acceptable alternative.
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Figure 6.14 High-pass damped filters: (a) first order; (b) second order; (c) third order;
(d) C-type

The main disadvantages of the damped filter are as follows:

(4) To achieve a similar level of filtering performance the damped filter needs to
be designed for higher fundamental VA ratings, though in most cases a good
performance can be met within the limits required for power factor correction.

(5) The losses in the resistor and reactor are generally higher.

6.6.1 Types of Damped Filters

Four types of damped filters are shown in Figure 6.14, first-order, second-order, third-
order and C-type.

(1) The first-order filter is not normally used, as it requires a large capacitor and has
excessive loss at the fundamental frequency.

(2) The second-order type provides the best filtering performance, but has higher
fundamental frequency losses as compared with the third-order filters.

(3) The main advantage of the third-order type over the second-order type is a
substantial loss reduction at the fundamental frequency, owing to the increased
impedance at that frequency caused by the presence of the capacitor C2. Moreover,
the rating of C2 is very small compared with C1.

(4) The filtering performance of the C-type [5] filter lies in between those of the
second- and third-order types. Its main advantage is a considerable reduction in
fundamental frequency loss, since C2 and L are series tuned at that frequency.
However, this filter is more susceptible to fundamental frequency deviations and
component value drifts.

6.6.2 Design of Damped Filters

When designing a damped filter the Q is chosen to give the best characteristic over
the required frequency band and there is no optimal Q as with tuned filters.



CONVENTIONAL FILTER CONFIGURATIONS 237

The behaviour of damped filters has been described by Ainsworth [4] with the help
of two parameters

f0 = 1

2πCR
(6.36)

m = L

R2C
(6.37)

Typical values of m are between 0.5 and 2. For a given capacitance these parameters
(and hence L and R) are decided to achieve an appropriately high admittance over the
required frequency range.

The conductance and susceptance terms of a second-order damped filter admit-
tance are

Gf = m2x4

R1[(1 − mx2)2 + m2x2]
(6.38)

Bf = x

R1

[
1 − mx2 + m2x2

(1 − mx2)2 + m2x2

]
(6.39)

where x = f/f0.
The minimum total admittance (i.e. the filter YF plus the a.c. system Ysn ) can be

shown to be

Y = Bf cos φm + Gf sin φm (6.40)

with both terms in equation (6.40) being positive and x being less than the value
that gives

| cot φf | = |Gf /Bf | = | tan φm| (6.41)

For greater values of x the minimum total admittance is that of the filter (i.e. with
Ysn = 0).

Figure 6.15 illustrates typical minimal admittances for a second-order damped filter
in parallel with a lossless system (i.e. φm = ±90◦

). For comparison the conductance
component Gf of a third-order damped filter, for the case of equal capacitors, is shown
in Figure 6.16. These figures show that the third-order filter peaks are much sharper
than those of the second order.

6.7 Conventional Filter Configurations

6.7.1 Six-Pulse Design

Static converters of large ratings are normally designed for at least 12-pulse operation.
In many schemes, however, to cope with maintenance and other partial temporary out-
ages, six-pulse operation is permitted. Under such conditions they produce considerable
5th and 7th harmonics as well as the characteristic 12-pulse-related orders. These are
conventionally filtered by using a hybrid combination of tuned branches for the low
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orders, i.e. 5th, 7th, 11th and 13th, and a high-pass damped filter for the 17th and
higher orders.

The conventional design is best illustrated with some examples.

(i) Strong a.c. System Connection [4] A six-pulse converter bridge is rated at
100 kV, 100 MW d.c., operating at α = 15◦. The bridge is connected to a 275 kV,
50 Hz a.c. system via a 275/83 kV converter transformer with 15% leakage reactance.
The secondary fundamental current is 780 A and that of the primary 236 A. The filters,
to be connected to the primary side, consist of resonant arms for the 5th, 7th, 11th and
13th harmonics, and a second-order high-pass arm.

For a total filter size of 50 MVAr, and assuming that the capacitance is to be equally
divided among the filter branches, each branch requires 0.421 µF. If the capacitor tem-
perature coefficient is 0.05% per degree Celsius, the inductor temperature coefficient
0.01% per degree Celsius, ambient temperature ±20◦C and frequency tolerance ±1%,
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then from equation (6.4),

δ = (1/100)[1 + 0.5(0.05 × 20 + 0.01 × 20)] = 0.016

Let the a.c. system impedance be of any magnitude but its phase angle restricted to
φa < 75◦ at any frequency. The optimum Q (giving the lowest harmonic voltage) is
then obtained from equation (6.30), i.e.

Q = 1 + cos 75◦

2(0.016) sin 75◦ = 40.7.

With Q and C known, the values of L and R of the resonant arms can then
be determined.

The damped arm components are found from equations (6.36) and (6.37) by choos-
ing m = 1 and f0 = 17 × 50 = 850 Hz. Since C has been fixed above (i.e. 0.421 µF),
the resulting values of inductor and resistor are 0.083 H and 444.9 �, respectively.

The complete circuit design is then as shown in Figure 6.17.

(ii) Weak a.c. System Connection Let us now consider the possible connection of
the converter of the test system described above to a 110 kV instead of 275 kV network
and assess whether the filters are effective at third harmonic. Let us further assume
that the system third harmonic impedance may lie between 70 and 100 �, while the
phase angle remains at 75◦.

The total filter capacitance is now

C = MVAr

(2π50)(110)2
= 13.15 µF

and that of the individual filter branches C/5 = 2.631 µF

5
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Figure 6.17 Example of a.c. filter design
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Following the same reasoning as in case (i), equations (6.36) and (6.37) give the
new values of the damped filter branch parameters, i.e.

R = 71.2 � and L = 0.0133 H

Similarly, equations (6.10) and (6.11) provide the following values for the remain-
ing branches:

5th-tuned branch : R = 5.94 � L = 0.1541 H
7th-tuned branch : R = 4.24 � L = 0.0786 H

11th-tuned branch : R = 2.70 � L = 0.0318 H
13th-tuned branch : R = 2.29 � L = 0.0228 H

The filter branch impedances at the third harmonic are obtained by substituting
ω3 = 150 Hz in the tuned and damped branch impedance equations. These are then
inverted and added together to produce the total filter admittance, i.e.

Y F
3 = 0.00016 − j (0.01469)

The system harmonic impedance that yields the largest parallel impedance with the
filter at 150 Hz has been found to be Z3 = 71� 75◦, i.e.

ZF
3 = 71 (cos(75◦

) − j sin(75◦
)) = 18.38 − j68.58

and

Y F
3 = 0.00365 − j0.01360

Thus, the parallel system and filter admittance is

Y T
3 = Y F

3 + Y S
3 = 0.00381 + j (0.00108)

The third harmonic voltage distortion is

V3 = (I3)/(Y
T
3 )

where I3 is the maximum expected level of injected third harmonic current. This
is a difficult parameter to calculate, as it results from a number of different sources,
among them the presence of some background third harmonic in the supply voltage, the
presence of negative sequence, some unbalance in the commutation reactance and firing
angle unbalance. Unbalance in the commutation reactances is the most likely cause of
third harmonic generation, which can be typically up to 0.7% of the fundamental
current (as shown in Table 3.7).

The fundamental frequency current for the 275 kV connection is 236 A and assum-
ing that the new current is inversely proportional to the voltage, the 110 kV current
will be

I1 = 236 × (275)/(110) = 588.5 A
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Therefore

I3 = (0.7 × I1)/100 = 4.12 A

and

V3 = 4.12/(
√

0.003812 + 0.001082) = 1040.61 V or 1.64%

Although this value is within the 2% limit of the IEC standard (61000-3-6), it is
very close to it, considering that only one of the possible third harmonic sources has
been included in the calculation. A reduction of the filter capacity is introduced in the
following case to further illustrate the problem.

(iii) Reduced Filter Capacitance Case (ii) is now repeated with a total filter capacity
of 40 instead of 50 MVAr, with the capacitance still equally divided between the various
filter branches.

At 110 kV the total capacitance required to supply 40 MVAr is 10.523 µF, or
2.105 µF per filter branch. Following the same process as for case (ii), the following
values of R and L are obtained:

5th-tuned branch R = 7.428 � L = 0.1926 H
7th-tuned branch R = 5.306 � L = 0.0983 H

11th-tuned branch R = 3.376 � L = 0.0398 H
13th-tuned branch R = 2.857 � L = 0.0285 H

The new damped filter branch parameters are:

R = 88.97 � and L = 0.0167 H

The corresponding total filter admittance at 150 Hz is:

Y F
3 = 0.000131 + j (0.011748)

The third harmonic impedance for the system under consideration will typically
lie within a sector limited by 70 � and 100 � radii and 75◦ and 80◦ phase angle.
Within this range the impedance which in parallel with the filters produces the largest
impedance value has been found to be ZS

3 = 87� 80◦ = 15.1074 + j85.6783.
The corresponding system admittance is thus

Y S
3 = 0.0020 − j (0.01132)

The combined system/filter admittance becomes:

Y T
3 = Y F

3 + Y S
3 = 0.00213 + j (0.00043)

The uncorrected (i.e. before the filters) power factor of the converter load is approx-
imately

cos φ = (1/2)(cos α + cos(α + µ))
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where cos(α + µ) is derived from the commutation equation (3.37) using the infor-
mation of the test system (case (i) above), i.e. V1 = 83 kV, Idc = 1000 A, α = 15 and
X = 15%; the resulting value of cos φ is 0.878.

When corrected by the addition of the filters (40 MVAr), the power factor becomes
0.990 and the primary side fundamental current is:

I1 = 1000

√
6

π

(
83

110

)
= 588.5 A

Again, using the firing unbalance criterion of Table 3.7, the third harmonic current
injection will be

I3 = 588.5(0.7)/(100) = 4.12 A

and

V3 = 4.12√
0.002132 + 0.000432

= 1896.0022 V

or
1896.0022

(110/
√

3) × 103
× 100 = 2.99%

which is well above the limit recommended by the IEC.

6.7.2 Twelve-Pulse Configuration

Whenever a reasonable twelve-pulse operation can be guaranteed under all operating
conditions the fifth and seventh harmonic filters can be eliminated. An example of the
configuration used in a high-voltage d.c. converter and its corresponding impedance
locus are shown in Figure 6.18. The locus exhibits resonant points at the 11th, 13th
and 27th harmonics, and reasonably low impedances to the fifth and seventh, which
will cope with the levels expected under slight unbalanced power distribution between
the individual bridges.

6.8 Band-Pass Filtering for Twelve-Pulse Converters

The conventional filter design for static converters, based on the use of separate tuned
filters of the resonant type for the 11th and 13th harmonics and a high-pass filter
for the higher orders, will usually provide a more effective reduction than required.
This is because the minimum size of the filters is usually determined by the available
economic size of the capacitor units and the minimum amount of reactive power
generation required by the converters.

Therefore the filter design can be simplified, either by replacing the 11th and 13th
tuned filters by a single filter of the damped type, or replacing all filters by a single
damped filter. In the first case, the damped filter replacing the two tuned filters should
be tuned to about the 12th harmonic and a fairly high Q can be selected (20–50),
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Figure 6.18 Filter configuration for 12-pulse operation and typical impedance locus

while the damped filter for the higher harmonics has a much smaller Q (2–4). In the
second case, the single damped filter is also tuned to about the 12th harmonic but at a
fairly low Q (2–6) to get a sufficiently low impedance at high harmonics.

Moreover, the hybrid design discussed in the last section (Figure 6.18) exhibits
increasing impedance at the lower harmonic frequencies.

With the large ratings of some HVd.c. projects there is an increased probability of
low-order non-characteristic harmonic resonance between the system impedance and
the filter capacitance. This condition is more likely when the network includes cables
or long a.c. overhead lines which provide substantial capacitive generation. The damp-
ing of a network tends to increase with increasing frequency; for low-order harmonics
the limiting impedance angle can be high and severe resonances can occur. Moreover,
in order to control the voltage profile of the a.c. network the tendency is to com-
pensate totally, by local means, the reactive power absorbed by the converters. The
high capacity of the filters or shunt capacitor banks decreases the resonant frequency
with the network. A parallel resonance can amplify considerably several harmonics at
different times, i.e. the critical frequency varies as a function of the a.c. system and of
the configuration and number of capacitors in operation; in general, therefore, reme-
dies can not be adopted only for one specific harmonic, but must avoid unacceptable
amplification for a number of frequencies.

A very common condition resulting from system unbalance is the production of a
significant third harmonic current by the converter (as explained in Section 3.6.9); this
third harmonic is of positive sequence and will not be blocked by the transformer
connection.
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Figure 6.19 Combined second-order and C-type damped filters

An alternative filter design consisting of a C-type and a second-order damped filter
(shown in Figure 6.19) can be used to eliminate the low-order resonance [5].

It is unduly pessimistic to consider the possibility of a number of harmonics in near
resonance simultaneously. In the filter design of the 2000 MW cross-channel HVd.c.
link the following combination of system impedances has been used:

(1) The harmonic order that produces the highest voltage distortion is assumed to be
at or near resonance with the system.

(2) Other harmonics in the range 2–25 are selected from tables containing informa-
tion about the system impedances under all likely system and planned outage
conditions.

(3) The remaining harmonics in the range 25–49 are assumed to lie within a wide
radius of 750 �, centred at R = 750 �, limited by impedance angles of 73◦

(capacitive) and 85◦ (inductive).

The filter configuration for this scheme (at the Sellindge end) is shown in Figure 6.20.
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400 kV primary
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Figure 6.20 Filter configuration of the cross-channel scheme. CIGRE  copyright
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Table 6.1 Derivation of the maximum r.m.s. distortion for the filter configuration of four
second-order plus four C-type filters at 2000 MW d.c. load

Harmonic order 2 3 5 7 11
Pre-existing distortion on the a.c.

system (%)
0.39 0.34 0.22 0.12 0.01

Distortion due to converter harmonic
current (%)

0.13 0.42 0.56 0.29 0.43

Distortion from converter third
harmonic current due to negative
sequence on the a.c. system (%)

– 0.19 – – –

Distortion due to VAR compensator
harmonic current (%)

– 0.03 0.03 0.02 0.01

Distortion due to compensator third
harmonic current due to a.c.
system unbalance (%)

– 0.17 – – –

Total contribution due to each
harmonic (%)

0.41 1.16 0.60 0.31 0.43

Four of the 130 MVAr filter banks are second-order high-pass filters to absorb the
characteristic harmonic currents. Large magnification factors for several system condi-
tions are possible, particularly at the third harmonic, and therefore the remaining four
filter banks are arranged as third-order C-type damped filters and have their minimum
impedance at around 150 Hz.

The predicted performance characteristics are illustrated in Table 6.1. Since in this
case the highest distortion is caused by the third harmonic, this harmonic is taken as
the arithmetic sum of the contents produced by the various sources listed.

6.9 Distribution System Filter Planning [6]

The increasing levels of voltage distortion in some distribution systems can best be
contained by the application of harmonic filters at strategic locations. In this respect,
radial distribution systems have special characteristics that make filter planning and
design different to those of industrial system plant. Among these are the differing X/R
ratios and larger electrical distances, a wider variation in load with limited information
on load characteristics, the use of capacitors for voltage control and power factor
correction and the dispersed nature of the harmonic injections.

Dispersed distribution loads generate smaller currents at the higher harmonics and
the phase angles of these currents are widely distributed [7, 8], resulting in a high
degree of cancellation. At the lower frequencies, particularly the third, fifth and seventh
harmonics, there is less cancellation and the resulting harmonic currents are higher.

Radial distribution systems with primary capacitor banks generally have resonances
in the vicinity of the fifth and seventh harmonic frequencies involving the entire group
of distributed capacitors. These resonances are much broader than the higher frequency
resonances, which involve only one or two capacitor banks.

The trend in distribution planning is to consider simultaneously the optimised use
of capacitances for the fundamental and harmonic frequencies. Although this can be
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achieved very effectively by genetic algorithms, this solution is extremely demanding
in computational requirements. Thus, generally, the locations and sizes of the reactive
compensation in distribution systems are made on fundamental frequency considera-
tions. Then the choice of capacitor banks to be tuned for filtering purposes is carried
out based on harmonic flow considerations. Such tuning is first made to reduce the
fifth harmonic content.

The effect of fifth harmonic tuning on the seventh harmonic voltage varies depending
on the system configuration. In general, replacing a capacitor bank with a fifth harmonic
filter tends to shift the resonance points above the fifth harmonic to a higher frequency,
and the resulting voltages at the seventh harmonic will depend on the location and
strength of these resonances.

On systems where a fifth harmonic filter also reduces the seventh harmonic voltage
near the filter location, a choice exists as to the frequency of additional filters. Any
further filtering investigation should include a comparison of both fifth and seventh
harmonic filters, as the best choice is not necessarily at one or the other frequency.

On systems where a fifth harmonic filter increases the seventh harmonic voltages
the frequencies must be treated separately. While additional filters at one frequency
may raise voltage at the other, this is generally a second-order effect and the filter
placement can be done independently.

6.10 Filter Component Properties

From knowledge of the fundamental and harmonic voltages at the relevant busbars the
current and voltage ratings of the capacitors, inductors and resistors can be calculated,
and with them the active and reactive powers and losses.

To prevent damage of these components their ratings must be based on the most
severe conditions expected. These should include the highest fundamental voltage, the
highest effective frequency deviation, and the harmonic currents from other sources
and from possible resonances between the filter and a.c. system.

6.10.1 Capacitors

Capacitors are composed of standard units connected in series and/or parallel in order
to achieve the desired overall voltage and kVA rating. The main factors involved in
their design are [9]: temperature coefficient of capacitance, reactive power per unit
volume, power loss, reliability and cost.

A very low temperature coefficient of capacitance is desirable for tuned filters in
order to avoid detuning caused by change of capacitance with ambient temperature or
with capacitor self-heating; this property, however, is unimportant for damped filters
or power capacitors.

Capacitors obtain their high reactive power per unit volume by having low losses
and by operating at very high voltage stresses. For this reason, prolonged operation at
moderate over-voltage must be avoided to prevent thermal destruction of the dielec-
tric; at higher over-voltages even brief periods of operation can produce destructive
ionisation of the dielectrics.
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The required reactive power rating of the capacitor is the sum of the reactive powers
at each of the frequencies to which it is subjected.

6.10.2 Inductors

Inductors used in filter circuits need to be designed bearing in mind the high frequencies
involved, i.e. skin effect and hysteresis losses must be included in the power loss
calculation. Also, the effect of the flux level in the iron, i.e. the detuning caused by
magnetic nonlinearity, must therefore be taken into account. This normally leads to
the use of low flux densities when using iron cores. Alternatively, filter inductors are
better designed with non-magnetic cores.

The Q at the predominant harmonic frequency may be selected for lowest cost and
is usually between 50 and 150. However, lower Q values are normally required and
these are derived by using a series resistor.

Inductor ratings depend mainly on the maximum r.m.s. current and on the insulation
level required to withstand switching surges. Normally the R and L form the ground
side of a tuned filter.

6.11 Filter Costs

An effective filter adequately suppresses harmonics at the least cost and supplies some
reactive power, but perhaps not all that is required. The cost of losses incurred in the
filters may be charged to reactive power supply and some to filtering, although there
is no logical basis for the division.

The following assumptions are usually made in the cost analysis of filter components:

(1) In a typical installation, a capacitor bank consists of a ‘matrix’ of capacitor units,
each having a nominal rating at the prescribed operating voltage and protected
by an external fuse.

The cost of a capacitor bank is thus approximately constant up to the rating
of the minimum matrix containing full units. For higher ratings, one or more
units are added to each series group as required and a reasonably accurate cost
per MVAr or SIZE can be arrived at. The situation is complicated further by
the availability of standard units with different nominal ratings, e.g. 50, 100,
150 kVAr etc., and the incremental cost varies for different bands of capacitor
bank SIZES. Although such factors would have to be included in the development
of an accurate cost equation, here we are assuming that the capacitors’ cost is
proportional to their ratings.

(2) Although the cost of filter inductors depends greatly on the method of construction
(e.g. oil insulated/cooled units, natural air-cooled reactors of open construction,
etc.), their cost does not vary greatly for units of different rating. The cost approx-
imation used in the analysis, therefore, is of the form

Inductor cost = UK + UL × (total MVAr rating)
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where UK is a constant cost component and UL is the inductor incremental cost
per MVAr rating.

(3) The power rating of the resistor necessary for Q-adjustment in each filter branch
will affect the cost to some extent. However, the nominal resistance of the unit
is difficult to predict in a general analysis, because it depends on the natural Q

factor of the inductor. For this reason, and also because the cost of an air-cooled
resistor is small compared with that of the other components, a constant cost
per resistor is allocated in the analysis. If an air-cooled unit is used, the cost
would be more significant but it would, in fact become virtually independent of
power rating.

(4) Finally, it is assumed that the resistance of the inductor, for the purposes of power
loss estimation, is constant at all frequencies.

6.11.1 Single-Tuned Filter

In a high-Q circuit it may be assumed that

Vc = VL + Vs (6.42)

where Vc, VL and Vs represent the capacitor, inductor and supply voltages, respectively.
The filter SIZE is expressed as

S = V 2
s

Xc − XL

(6.43)

where Xc and XL are the fundamental frequency reactances of the capacitor and
inductor.

But for a filter tuned to harmonic n,

X0 = nXL = Xc/n

i.e.

XL = Xc/n2 and VL = Vc/n2

Therefore

S = V 2
s /[Xc(1 − 1/n2)] = (V 2

s /Xc)[n
2/(n2 − 1)] MVAr (6.44)

Also

Vc − VL = Vc(1 − 1/n2) = Vs

i.e.

Vc = [n2/(n2 − 1)]Vs kV (6.45)

The loadings for each filter component are determined for cost evaluation as follows:
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Capacitor

Fundamental loading:

V 2
c /Xc = (V 2

s /Xc)[n
2/(n2 − 1)]2

= S[n2/(n2 − 1)] MVAr (6.46)

Harmonic loading:

I 2
n (Xc/n) = [(I 2

n .V 2
s )/(S.n)][n2/(n2 − 1)] MVAr (6.47)

Power loss:

KCL · (total loading) = KCL[S + (I 2
n · V 2

s )/(S · n)][n2/(n2 − 1)] kW (6.48)

where KCL is the loss factor of the capacitors (in kW/MVAr).

Inductor

Fundamental loading:

V 2
L/XL = (Vc/n2)2 · (n2/Xc) = V 2

c /n2Xc

= (S/n2)[n2/(n2 − 1)] MVAr (6.49)

Harmonic loading is the same as for the capacitor since the reactances are equal at
harmonic frequency.

For cost purposes, it is convenient to consider the losses in the total effective resis-
tance R, where

R = X0/Q = Xc/nQ

The fundamental current is

I1 = S/Vs kA

and the total power loss

(I 2
1 + I 2

n )R = (S2/V 2
s )Xc/nQ + I 2

nXc/nQ

= [S2/nQ](1/S)[n2/(n2 − 1)] + [I 2
nV 2

s /nSQ][n2/(n2 − 1)]

= [S/nQ + I 2
nV 2

s /nSQ][n2/(n2 − 1)] × 103 kW (6.50)

For comparison purposes, the cost of energy losses is expressed in terms of equivalent
capital cost by use of a present value factor:

Pv = [(1 + i)N − 1]/[i(1 + i)N ] (6.51)

where i is the interest rate and N is the budgeted filter life.
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Thus the present value cost of energy losses is

PvUuFu × 365 × 24 × (total power loss)

= 8760PvUuFu × (total power loss) (6.52)

where Uu is the cost of energy loss per kilowatt-hour and Fu is the filter utilisation
factor. The complete expression for the total cost is

TCOST = UT + [n2/(n2 − 1)]

{
Uc

(
S + V 2

s I 2
n

nS

)
+ UL

(
S

n2
+ V 2

s I 2
n

nS

)

+ 8760PvUuFu

[
KCL

(
S + V 2

s I 2
n

nS

)
+ 103

(
S

nQ
+ I 2

nV 2
s

nSQ

)]}

i.e.

TCOST = UT + AS + B

S
(6.53)

where UT is the total constant cost of the filter branch, Uc is the capacitor incremental
cost per MVAr, UL is the inductor incremental cost per MVAr,

A = [n2/(n2 − 1)]

[
Uc + UL

n2
+ 8760PvUuFu

(
KCL + 103

nQ

)]
(6.54)

and

B = [n2/(n2 − 1)][V 2
s I 2

n /n]

[
Uc + UL + 8760PvUuFu

(
KCL + 103

Q

)]
(6.55)

As SIZE S is varied, the minimum total cost occurs when

d(TCOST)/dS = 0

i.e. when

SMIN =
√

B

A
MVAr (6.56)

6.11.2 Band-Pass Filter

The component loadings at fundamental and all harmonic frequencies may be deter-
mined as for the single-tuned filter, i.e.

S = (V 2
s /Xc)[n

2
0/(n

2
0 − 1)] MVAr (6.57)

where n0 is the ratio of the tuned frequency to the supply frequency.
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Capacitor rating

The fundamental loading is

S[n2
0/(n

2
0 − 1)] MVAr (6.58)

The loading at harmonic n is

I 2
n (Xc/n) (6.59)

and using equation (6.57) this becomes

1

S
(I 2

n /n)V 2
s n2

0/(n
2
0 − 1) (6.60)

Thus the total harmonic loading is

[
1

S
(V 2

s n2
0)/(n

2
0 − 1)

] nmax∑
n=nmin

(I 2
n /n) MVAr (6.61)

Inductor rating

Referring to Figure 6.2(a), for a Q value of 1.5, say,

R = 1.5X0 = 1.5n0XL

Thus if the filter is tuned to a frequency close to the 17th harmonic

R ≈ 25XL

Since Ic = IL + jIR it follows that, at fundamental frequency,

Ic ≈ IL

and the fundamental loading is

I 2
LXL = I 2

c Xc/n2
0

= (S/Vs)
2[V 2

s /n2
0S][n2

0/(n
2
0 − 1)]

= (S/n2
0)[n

2
0/(2 − 1)] MVAr (6.62)

At harmonic n,

(IL)n = InR/(R + jXL) = InQ/[Q + (jn/n0)] (6.63)

and

|(IL)n| = InQ/[Q2 + (n/n0)
2]1/2 (6.64)
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The inductive reactance at harmonic n is

(XL)n = X0(n/n0) = (n/n0)(Xc/n0)

= (n/n2
0)(V

2
s /S)[n2

0/(n
2
0 − 1)]

Thus the loading at harmonic n is

(IL)2
n(XL)n = 1

S
Q2V 2

s [n2
0/(n

2
0 − 1)][nI 2

n /(Q2n2
0 + n2)] MVAr (6.65)

and the total harmonic loading is

1

S
Q2V 2

s [n2
0/(n

2
0 − 1)]

nmax∑
n=nmin

[
nI 2

n

Q2n2
0 + n2

]
MVAr (6.66)

Power losses

(1) The power loss in the capacitor is

KCL × (total rating in kilowatts) (6.67)

(2) The inductor series resistance at fundamental frequency is

RL = X0/QL = (n0/QL)XL (6.68)

where QL is the quality factor of the inductor, and the corresponding power
loss is

I 2
LRL = (n0/QL) (MVAr loading)

= [S/(n0QL)][n2
0/(n

2
0 − 1)] MW (6.69)

Similarly, the harmonic power loss is

∑
(IL)2

n(RL)n = 1

S
(Q2V 2

s n0/QL)[n2
0/(n

2
0 − 1)]

nmax∑
n=nmin

I 2
n

Q2n2
0 + n2

MW (6.70)

(3) The power loss in the shunt resistor R may also be expressed as a fraction of the
inductor loading. At the fundamental frequency,

R = QX0 = Qn0XL, |IR| = |IL|XL

R
= ILXL

Qn0XL

= IL

Qn0
(6.71)

and the power loss is

I 2
RR = (1/Qn0)I

2
LXL

= (1/Qn0) (MVAr loading)

= [S/(Qn3
0)][n

2
0/(n

2
0 − 1)] × 103 kW (6.72)



D.C. SIDE FILTERS 253

At harmonic n,

|(IR)n| = |(IL)n|(XL/R) (6.73)

and the power loss is

∑
(IR)2

n(R)n = 1

S
(QV 2

s /n0)[n
2
0/(n

2
0 − 1)]

nmax∑
n=nmin

[
n2I 2

n

Q2n2
0 + n2

]
× 103 kW

(6.74)

Total cost

Applying the present-value factor to energy costs and collecting terms in S and in 1/S
as for the single-tuned filter, it can be shown that once again the total cost is given by

TCOST = UT + AS + B

S
(6.75)

where

A =
[
Uc + UL

n2
0

+ 8760PvUuFu

(
KCL + 103

QLn0
+ 103

Qn3
0

)]
(n2

0/(n
2
0 − 1)) (6.76)

and

B = [n2
0/(n

2
0 − 1)]V 2

s

nmax∑
n=nmin

I 2
n

[
Uc

n
+ Q2ULn

Q2n2
0 + n2

+ 8760PvUuFu

(
KCL

n
+ Q2n0 × 103

QL(Q2n2
0 + n2)

+ Qn2 × 103

n0(Q2n2
0 + n2)

)]
(6.77)

As before, TCOST is a minimum when

S = SMIN =
√

B

A
MVAr (6.78)

6.12 D.C. Side Filters

Although the d.c. side voltage ripple of static converters generates harmonic currents,
these are rarely filtered out because they do not have a direct effect on other processes
or consumers.

High-voltage d.c. transmission is a special case, where overhead lines are used,
because of communications interference. The amplitudes of the harmonic currents,
discussed in Chapter 3, depend on the delay, extinction and commutation overlap angles
as well as the various impedances of the d.c. circuit (i.e. smoothing reactors, damping
circuits, surge capacitors and the line itself). The inclusion of the stray capacitances
in a three-pulse model of the converter produces a standing wave pattern of the total
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Figure 6.21 Example of induced voltage versus distance. Copyright  2003 IEEE

earth mode equivalent disturbing current along the line distance, or alternatively the
total induced voltage on an open circuit test line at a specified distance from the d.c.
line (typically 1 km). An example of such calculation is shown in Figure 6.21, where
the discontinuities are caused by parallel sections of electrode line at the ends of the
d.c. line.

Other criteria used to define the performance of the d.c. filters in d.c. transmission
schemes are the maximum voltage TIF on the high-voltage bus and the maximum
permissible noise to ground in telephone lines close to the high voltage d.c. line.

Typical types and location of d.c. filters used in existing schemes are illustrated in
Figure 6.22, and the subject is discussed thoroughly in [10].

Component ratings are considerably different to those for an a.c. filter, since the
harmonic current is reduced to a relatively small value by the large d.c. smoothing
reactor; consequently the capacitor cost is almost entirely dependent on its capacitance
and the d.c. voltage level. The capacitor has the greatest cost and is chosen first; the
inductor is then fixed for a given frequency. The selection of the quality factors is
made as for an a.c. filter (e.g. by using equation (6.29)).
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Figure 6.22 D.c. filter circuits of various HVd.c. schemes [10]

If the conventional stringent telephone interference criteria is imposed on HVd.c.
lines the result is expensive filtering arrangements. However, the propagation of har-
monics can be predicted with much greater accuracy in HVd.c. lines (as compared with
a.c. lines) and it is possible to make more realistic cost comparisons with alternative
changes in the telecommunications system.

6.13 Active Filters

The design complexity and high cost of losses of the conventional passive filters, as
well as their restricted capability to eliminate inter-harmonics and non-characteristic
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Figure 6.23 Active filters: (a) series; (b) shunt

harmonics, has encouraged the development of harmonic compensation by means of
power electronic devices, commonly referred to as active filters.

According to their connection to the network, active filters can be of the series type,
as shown in Figure 6.23(a), to prevent the transfer of harmonic current, or of the shunt
type, shown in Figure 6.23(b), to reduce the harmonic content in the network.

The operating characteristics and limitations of the two types of active filter are
discussed in the following sections.

6.13.1 Series Connection of Active Filters

As the generation of harmonic content is an inherent part of the operation of the
nonlinear components, a path must be provided for them to flow. Therefore the use of
series-connected filters in isolation is not normally viable and they have to be combined
with some type of passive filtering. The latter absorb the current harmonics generated
by the nonlinear plant, while the active filters blocks the transfer of harmonics in either
direction. This combination isolates the passive filters from the a.c. system impedance,
improving their response and reducing possible overloads.

Figure 6.24 shows a single phase diagram of the series active and shunt passive
filtering combination. The harmonics are represented by a current source iL and the
network and passive filter by the impedances ZS and ZF , respectively. The active filter
is represented by a voltage source VC in series.

The controlled voltage source offers no impedance to the flow of the fundamental
component but introduces a very large resistance between the network and the nonlinear

VC

VS

iF

iLZF

ZS

iS

Figure 6.24 Single-phase circuit of a series active filter
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plant for the harmonic frequencies. In practice, due to the limitation of the active filter
bandwidth, there is a maximum level for that resistance.

In the ideal case, the nonlinear plant current harmonic content is forced to circulate
via the passive filter, and the active filter voltage is the sum of the supply and passive
filter voltages. The power rating of the series active filter is of the order of 2–5% of
the nonlinear plant nominal power (in VA) [11].

The main limitation of the active/passive filter configuration is that it is restricted to
a fixed fundamental frequency.

6.13.2 Shunt Connection of Active Filters

An early proposal for the shunt active filter connection was made in 1971 [12] for the
elimination of the converter current harmonics via magnetic compensation, as shown
in Figure 6.25.

In this configuration a current transformer captures information about the total con-
verter current. The fundamental current is then eliminated by means of a series resonant
circuit. The remaining content of the current is amplified to the appropriate level by
means of a linear amplifier, the output of which is fed back via a tertiary winding in
the converter transformer.

More recently there has been considerable research in this field, especially in the
derivation and processing of the signal representing the current harmonic components
in order to derive the appropriate compensation current [13–15].

Besides harmonic elimination, the active compensation systems can be designed to
improve the power factor. Figure 6.26 shows a circuit based on the use of a signal
processor unit (SPU) for the compensation of a load harmonic current and the displace-
ment angle of the current fundamental frequency. In this unit the sampled harmonic
current content is transmitted to the SPU. The SPU synthesises a sinusoidal wave in
phase with the fundamental component of the load current (for the purpose of har-
monic elimination) or with the terminal voltage (for the combined compensation of
harmonics and displacement factor improvement). The synthesised sinusoidal current
is then subtracted from the signal representing the load current to obtain the required
compensating current; this signal is fed to an amplifier and then combined, via a rein-
jection transformer (or by direct connection using an inductor), with the load current
in order to form an almost sinusoidal system current.

Current
transformer

Filter

Amplifier

iCVS

iS

iL

Figure 6.25 Magnetic compensation of converter harmonics
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Figure 6.26 Active system for the compensation of the harmonic distortion

The main characteristic of this processing system is that the SPU operates in the
time domain and thus avoids the need for complex processing to extract the harmonic
components. Therefore the shunt-connected active filter is not tied to a specific fun-
damental frequency and thus the compensation achieved is effective at any source
frequency within the limits imposed by the design.

Although the shunt active filter has definite advantages over passive filtering, its
use in real industrial applications has so far been limited. This is because the cost of
the inverter is still higher than the passive filter solution. A recent contribution [16]
has proposed the connection of a shunt active filter in series with a passive filter. In
this case the rating of the active filter is reduced and improves the performance of the
passive filter.

The compensating effect of an active filter prototype [17] is illustrated in Figure 6.27.
Figure 6.27(a) shows the current waveform absorbed by a single-phase bridge rectifier
feeding a resistive load, and Figure 6.27(b) illustrates the compensating effect achieved
by the active filter.

(a)

(b)

Figure 6.27 Typical magnitudes of an active filter: (a) load current; (b) compensated
supply current
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6.14 Discussion

The decision on the magnitude and type of harmonic reduction to be used is always
made by economic considerations. Filters of whatever type are always expensive and
thus, if at all possible, must be avoided. One of the problems in this respect is the
difficulty in determining the extent of liability by the different parties involved. The
installation of passive harmonic filters at a point in the system normally has a positive
effect on the system as a whole. However, often the cost of providing such general
welfare is rarely shared between the parties benefiting from it. On the negative side, the
parallel combination of the filters and system impedances produces resonances (nor-
mally at non-characteristic harmonics) and, thus increases substantially the distortion
at those frequencies.

Active filters, on the other hand, can be designed to compensate the harmonic content
of the particular nonlinear load consideration, without providing an attractive path for
the harmonics of neighbouring plant. Looking at it from the supplier viewpoint, though,
too much active elimination can have a negative effect on the rest of the system, because
active filters do not provide damping for existing harmonics. With the increasing use
of highly controllable power electronic devices, especially in distributed generation
with active waveform control, the lack of system damping is going to be a growing
problem in the future.
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7

Computation of Harmonic Flows

7.1 Introduction

Although the title specifically refers to harmonic flows, the analysis and algorithms
described in this chapter are equally applicable to other frequencies in the region of
interest such as inter-harmonics and subharmonics.

The simplest harmonic flow involves a single harmonic source and single-phase net-
work analysis. This model is commonly used to derive the system harmonic impedances
at the point of common coupling in filter design. In general, however, the network will
be unbalanced and may contain several harmonic sources. Therefore, the derivation of
the harmonic voltages and currents requires multi-source three-phase harmonic analy-
sis. If the harmonics generated by the nonlinear components are reasonably independent
of the voltage distortion level in the a.c. system, the derivation of the harmonic sources
(the subject of Chapter 3) can be decoupled from the analysis of harmonic penetration
and a direct (nodal) solution is possible. Since most nonlinearities manifest themselves
as harmonic current sources, this is normally called the current injection method. In
such cases, the expected voltage levels or the results of a fundamental frequency load
flow are used to derive the current waveforms, and with them the harmonic content of
the nonlinear components.

After a description of the direct harmonic analysis algorithm, the following sections
discuss the modelling of network components and the formulation of the nodal admit-
tance matrix as well as the computer implementation of the harmonic flow algorithm.

7.2 Direct Harmonic Analysis

The distribution of voltage and current harmonics throughout a linear power network
containing one or more harmonic current sources is normally carried out using nodal
analysis [1]. The asymmetry inherent in transmission systems cannot be studied with
any simplification by using the symmetrical component frame of reference, therefore
phase components are used.

Power System Harmonics, Second Edition J. Arrillaga, N.R. Watson
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85129-5
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The nodal admittance matrix of the network at frequency f is of the form

[Yf] =




Y11 Y12 . . . Y1i . . . Y1k . . . Y1n

Y21 Y22 . . . Y2i . . . Y2k . . . Y2n

...
...

...
. . .

...
. . .

...
. . .

Yi1 Yi2 . . . Yii . . . Yik . . . Yin

...
...

...
. . .

...
. . .

...
. . .

Yk1 Yk2 . . . Yki . . . Ykk . . . Ykn

...
...

...
. . .

...
. . .

...
. . .

Yn1 Yn2 . . . Yni . . . Ynk . . . Ynn




(7.1)

where Yki is the mutual admittance between busbars k and i at frequency f , and Yii

is the self-admittance of busbar i at frequency f .
A separate system admittance matrix is generated for each frequency of interest.

The main difficulty is to determine which model best represents the various system
components at the required frequency and obtain appropriate parameters for them. With
this information, it is straightforward to build up the system fundamental and harmonic
frequency admittance matrices.

The three-phase nature of the power system always results in some load or transmis-
sion line asymmetry, as well as circuit coupling. These effects give rise to unbalanced
self- and mutual admittances of the network elements.

For the three-phase system, the elements of the admittance matrix are themselves
3 × 3 matrices consisting of self- and transfer admittances between phases, i.e.

Yii =

Yaa Yab Yac

Yba Ybb Ybc

Yca Ycb Ycc


 (7.2)

Figure 7.1 shows a case of two three-phase harmonic sources and an unbalanced
a.c. system. The current injections, i.e. I1h − I3h and I4h − I6h, can be unbalanced in
magnitude and phase angle.

I1h
I2h
I3h

I4h
I5h
I6h

Unbalanced
a.c. system

Figure 7.1 Unbalanced current injection into an unbalanced a.c. system
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The system harmonic voltages are calculated by direct solution of the linear equation

[Ih] = [Yh] [Vh] for h �= 1 (7.3)

where [Yh] is the system admittance matrix.
Therefore, the direct solution involves h − 1 independent sets of linear simultaneous

equations, i.e.

[Ih] = [Yh] [Vh]· · ·· · ·· · ·· ·[I3] = [Y3] [V3]

[I2] = [Y2] [V2]

(7.4)

The injected currents at most a.c. busbars will be zero, since the sources of the
harmonic considered are the nonlinear devices. To calculate an admittance matrix for
the reduced portion of a system comprising just the injection busbars, the admittance
matrix is formed with those buses at which harmonic injection occurs ordered last.
Advantage is taken of the symmetry and sparsity of the admittance matrix [2], by
using a row ordering technique to reduce the amount of off-diagonal element build-up.
The matrix is triangulated using Gaussian elimination, down to but excluding the rows
of the specified buses.

The resulting matrix equation for an n-node system with n − j + 1 injection points is

0
...
0

Ij
...

In

=

0

Yjj . .
.

. Yjn

0
...

...

Ynj . . . Ynn

V1
...

Vj−1

Vj

...

Vn

(7.5)

As a consequence, Ij . . . In remain unchanged since the currents above these in the
current vector are zero. The reduced matrix equation is




Ij

...

In


 =




Yjj . . . Yjn

... . . .
...

Ynj . . . Ynn


 ·




Vj

...

Vn


 (7.6)

and the order of the admittance matrix is three times the number of injection busbars for
a three-phase system. The elements are the self- and transfer admittances of the reduced
system as viewed from the injection busbars. Whenever required, the impedance matrix
may be obtained for the reduced system by matrix inversion.

Reducing a system to provide an equivalent admittance matrix, as viewed from a
specific bus, is an essential part of filter design. The reduction of the admittance matrix
to a set of busbars where nonlinearities exist is an essential step to allow accurate
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a.c. system representation in many other types of analysis, such as iterative harmonic
analysis or as frequency-dependent equivalents in time-domain analysis.

7.2.1 Frequency Scan Analysis

The simplest application of the direct method described above is the frequency scan.
It involves the derivation of the frequency response of a network looking from a spec-
ified busbar. A one per unit sinusoidal current is injected into the bus at a range of
frequencies and the set of equations (7.3) is used to calculate the voltage response.
This calculation is repeated at discrete frequency steps covering the specified fre-
quency spectrum.

This process can be equally used with phase or sequence components. In the latter
case, one per unit positive- or zero-sequence current is injected to derive the positive-
or zero-sequence driving-point network impedances seen from the specified bus.

Frequency scan analysis is widely used in filter design. It is also a preliminary
step in the derivation of frequency-dependent equivalents for use in electromagnetic
transients simulation.

Instead of injecting one per unit current, the use of one per unit voltage can be used
to investigate the effect of background harmonic voltages present at any specified point
in the network. The set of equations (7.3) is then used to derive the harmonic voltage
transfer to the rest of the network.

7.2.2 Incorporation of Harmonic Voltage Sources

Most power system nonlinearities manifest themselves as harmonic current sources, but
sometimes harmonic voltage sources are used to represent the distortion background
present in the network prior to the installation of the new nonlinear load. Moreover,
some recent power electronic devices based on GTO and IGBT switching, act as
voltage sources behind an impedance.

A system containing harmonic voltages at some busbars and harmonic current injec-
tions at other busbars is solved by partitioning the admittance matrix and performing
a partial inversion. This then allows the unknown busbar voltages and unknown har-
monic currents to be found. If V2 represents the known voltage sources then I2 are
the unknown variables. The remaining busbars are represented as a harmonic current
injection I1 (which can be either zero or specified by harmonic current source) and the
corresponding harmonic voltage vector V1 represents the unknown variables.

Partitioning the matrix equation to separate the two types of nodes gives

[
Y11 Y12

Y21 Y22

] [
V1

V2

]
=

[
I1

I2

]
(7.7)

The unknown voltage vector V1 is found by solving

[Y11] [V1] = [I1] − [Y12] [V2] (7.8)
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The harmonic currents injected by the harmonic voltage sources are then found
by solving

[Y21] [V1] + [Y22] [V2] = [I2] (7.9)

With this formulation some extra processing is required to obtain the reduced admit-
tance matrix, which is not generated as part of the solution.

7.2.3 Cascading Sections

Mutually coupled transmission lines with different tower geometries over the line
length need special consideration. If only terminal voltage information is required, the
line sections may be combined into one equivalent section using ABCD parameters,
as shown in Figure 7.2.

All the individual sections must contain the same number of mutually coupled three-
phase elements, to ensure that the parameter matrices are of the same order and that
matrix multiplications are executable. In this respect, uncoupled sections will use the
coupled format with zero coupling elements to maintain the correct dimensions.

For the case of a non-homogeneous line with n different sections

[
VS

IS

]
=

[
[A1] [B1]
[C1] [D1]

]
×

[
[A2] [B2]
[C2] [D2]

]
× · · · ×

[
[An] [Bn]
[Cn] [Dn]

] [
VR

−IR

]

[
VS

IS

]
=

[
[A] [B]
[C] [D]

] [
VR

−IR

]
(7.10)

It must be noted that in general [A] �= [D] for a non-homogeneous line.
Once the resultant ABCD parameters have been found, the equivalent nodal admit-

tance matrix for the subsystem can be calculated from

[Y ] =
[

[D] [B]−1 [C] − [D] [B]−1[A]
[B]−1 −[B]−1[A]

]
. (7.11)

[A] [B]

[C] [D]

[IS]

[VS]

[IR]

[VR]

(a)

(b)

[A] [B]

[C] [D]

VS

IS

VR

−IR
=

Figure 7.2 Two-port network transmission parameters: (a) multi-two-port network;
(b) matrix transmission parameters
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If, however, extra information along the line is required, appropriate fictitious nodes are
created at specified points and/or at regular intervals, and the following nodal matrix
equation is formed, inverted (factorised) and solved. The resultant vector provides
the harmonic voltage profile along the line. Alternatively, instead of creating fictitious
nodes during the solution, and thus increasing the computation, a more detailed voltage
profile can be derived by analysing the harmonic flow along the line once the overall
solution has been obtained.

IS

I1

I2

...

In

IR

h h

=

[YSS] −[YS1]

−[Y1S] [YSS] + [Y11] −[Y12]

−[Y21] [Y11] + [Y22] . . .

. . .
. . .

. . .

. . . [Ynn] + [YRR] −[YnR]

−[YRn] [YRR]
h

VS

V1

V2

...

Vn

VR

(7.12)

7.3 Derivation of Network Harmonic Impedances
from Field Tests

In the absence of more accurate information, existing harmonic standards and recom-
mendations often refer to harmonic impedance sources derived from the balanced short-
circuit impedance of the system at fundamental frequency. The inadequacy of such an
approach has become apparent with the help of online tests and computer studies.

The availability of voltage and current transducers throughout the power system
provides the basis for the indirect derivation of harmonic impedances. Their assessment
is therefore dependent on the performance of such transducers, which may not have
been designed to respond accurately to harmonic frequencies.

The present techniques for the derivation of harmonic impedances can be divided
into three groups, depending on the origin of harmonics or inter-harmonics:

• Use of existing harmonics sources (non-invasive)

• Direct injection (invasive)

• Analysis of transient waveforms (non-invasive).

7.3.1 Use of Existing Sources (Online Non-Invasive Tests)

In the non-invasive test the information required is obtained purely from measurements
of existing waveforms, i.e. using the harmonic content already present in the system.
This is the simplest and most commonly used technique.
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Electricit de France [3] has proposed two alternative ways of deriving information
on harmonic impedances, in the form of sequence components, using the principle of
digital filtering rather than Fourier analysis. One method uses numerical techniques to
perform the digital filtering of the physical input values, and retains only the frequencies
contained in a selected bandwidth. The information is then used to identify the network
with a simple impedance model which is only valid over a relatively narrow frequency
range. The identification is carried out separately for the zero-sequence and positive-
(negative-) sequence values. The second method uses electronic filters to transform the
six voltage and current values into four (two zero-sequence and two positive-sequence),
after eliminating the 50 Hz component.

The harmonic content produced by an existing high-voltage d.c. converter station
has been used [4] to obtain the harmonic impedances directly from the ratios of voltage
and current readings. This assumes that all other important harmonic sources in the
power system are disconnected; however, measurements taken without the existing
high-voltage d.c. converter station operating, or operating at a different operating point,
could have been used to account for the other harmonic sources in the system.

When the harmonic voltage levels are high and affected by the connection of a shunt
capacitor bank the method illustrated in Figure 7.3 has been used to identify the main
source of harmonics.

The harmonic current injection and harmonic impedances (for the Norton equiva-
lents) are obtained by solving the linear set of equations




1 0 −V ′
m 0

0 −1 0 V ′
m

1 0 −V ′′
m 0

0 −1 0 V ′′
m







I1

I2

Y1

Y2


 =




I ′
m

I ′
m

I ′′
m

I ′′
m − YcV

′′
m


 (7.13)

where V ′
m and I ′

m are the measured harmonic voltage and current prior to connecting
the capacitor and V ′′

m and I ′′
m after.

This method assumes that the components of the Norton equivalents are not affected
by the switching operation. In general, however, this is not the case as the related
variation in the system harmonic impedances, and particularly their phase angle vari-
ation [5], can have considerable effect on the Norton equivalent impedances of the
nonlinear load.

I1 I2
Y1 Y2

Yc

Vm

Im

Figure 7.3 Identification of main harmonic source by capacitor switching
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7.3.2 Direct Injection (Online Invasive Tests)

In principle, it is possible to design a source of harmonic power which absorbs
fundamental frequency power and converts it into harmonic power of the appro-
priate frequencies, magnitudes and phases. However, the measurement of harmonic
impedance requires a distorting source of considerable capacity.

In practice, measurements are usually taken at points where there is considerable
distortion due to existing harmonic sources in the network. The effect of injecting a
further source needed for harmonic measurement is superimposed on these. The result
is a low signal to noise ratio, which makes the measurement unreliable.

To overcome this problem, the Electricity Council Centre (Capenhurst, UK) [6]
designed a system which generates power at frequencies mid-way between the char-
acteristic harmonic frequencies of interest, i.e. at the odd multiples of 25 Hz, on the
assumption that interpolation between these frequencies is justifiable. The power rat-
ings of the distorting source for measurements at 11 kV, 33 kV and 132 kV are 9 kW,
36 kW and 180 kW, respectively, and the units consist of a switching modulator in
series with a resistive load in the form of a fan heater. The 11 kV and 33 kV systems
are portable and the 132 kV system is located in a purpose-built van.

Figure 7.4 illustrates the results of typical measurements carried out with this
equipment in combination with a harmonic impedance instrument [7], specially
designed to provide simultaneous information about voltage and current with their
phase relationship.

7.3.3 From Transient Waveforms (Online Non-Invasive Tests)

The methods discussed above involve measurement of the steady-state levels of par-
ticular frequencies. Alternatively, the network frequency characteristics can be derived
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Figure 7.4 Source impedance seen from an 11 kV busbar supplying a commercial load:
(· · – · · –), Obtained from the short-circuit impedance at 50 Hz; ( ), measured impedance

magnitude; (– · – ·), measured impedance phase angle



TRANSMISSION LINE MODELS 269

from the transient voltage and current waveforms produced by normal switching oper-
ations. These include the switching of capacitor banks and transformers or even the
system natural variations [8].

The advantage of using capacitor banks is their widespread use and their frequent
switching, which produces a rich spectrum of inter-harmonics. However, the resulting
harmonic currents are unsymmetrical, of short duration and depend on the point of
wave of switching.

The transient inrush current produced by transformer switching produces high har-
monic current levels compared to existing harmonics with a spectrum, ranging from
100 Hz to about 7000 Hz. Moreover, the signals are present for several seconds.
Again the currents are highly unsymmetrical and depend on the switching moment
and core remanence.

The use of natural system variations for spectral analysis can also provide time-
dependent system impedances. Although this method is generally applicable, it can
only achieve good precision in the presence of some predominant disturbing load.

The accuracy of applying the FFT to the voltage and current time-domain recordings
in the presence of noise can be improved by correlation analysis in conjunction with
spectral analysis. Spectral analysis of the auto- and cross-power spectra has been used
to determine the frequency response of two 26.6 kV feeders [9] and also to determine
the 3 × 3 impedance matrices [10]. With these methods, correlation indices are used
to reject measurements where the signal to noise ratio causes the calculated values to
be suspect. With least squares estimates, the matrix condition number also indicates
the accuracy of the answer.

Identification techniques that do not require the use of FFT have also been applied
to time-domain responses. Prony analysis and the direct ARMA method are two
identification techniques suitable for determining frequency characteristics [11] from
time-domain waveforms.

The main advantage of these non-invasive techniques is that they can be readily
applied without the need for special injection equipment; however, they are equally
applicable to invasive testing, where an impulse or other frequency-rich signal
is injected.

7.4 Transmission Line Models

A transmission line consists of distributed inductance and capacitance, which affect the
magnetic and electrostatic conditions of the line, and resistance and conductance, which
affect the losses. These electrical parameters are calculated from the line geometry and
conductor data. The effects of ground currents and earth wires are included in the
calculation of these parameters. The calculated parameters are expressed as a series
impedance and shunt admittance per unit length. A simple representation of the line
includes the line total inductance, capacitance, resistance and conductance as lumped
parameters, as shown in Figure 7.5 (nominal PI model). However, when the line length
becomes an appreciable part of the wavelength of the frequency of interest, errors
become apparent. Subdividing the line and using cascaded nominal PI sections to
represent the line can alleviate this problem. The more nominal PI sections used, the
closer the model represents the distributed nature of the line, and hence the more
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GL + jBL =
Z 'l

1

Yc = Y 'l
2

Yc

2

Yc

GL + jBL

Figure 7.5 Nominal PI representation of transmission line

accurate the model. However, computational burden also greatly increases due to the
increase in the number of busbars and lumped elements.

Before considering long line effects in detail, the lumped component representation
of a three-phase transmission line with ground wire and earth return, suitable for
inclusion in the system admittance matrix, will be considered next.

The impedance of a three-phase transmission line with an overhead earth wire is
illustrated in Figure 7.6. Each conductor has resistance, inductance and capacitance,
and is mutually coupled to the others.

With respect to Figure 7.6, the following equation can be written for the series
impedance equivalent of phase a

Va − V ′
a = Ia(Ra + jωLa) + Ib(jωLab) + Ic(jωLac)

+ jωLagIg − jωLanIn + Vn (7.14)

where

Vn = In(Rn + jωLn) − IajωLna − IbjωLnb − IcjωLnc − IgjωLng (7.15)

and substituting

In = Ia + Ib + Ic + Ig (7.16)

gives

Va − V ′
a = Ia(Ra + jωLa) + IbjωLab + IcjωLac

+ jωLag Ig − jωLan (Ia + Ib + Ic + Ig) + Vn (7.17)
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(a)

(b)

Pag
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Pbg
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Vn

V
a

V
′ a

Ra + jLa

Rb + jLb

Rc + jLc

Rn + jLn

a

b

c

n

Figure 7.6 (a) Three-phase transmission series impedance equivalent; (b) three-phase
transmission shunt impedance equivalent

Regrouping and substituting for Vn, i.e.

�Va = Va − V ′
a

= Ia(Ra + jωLa − jωLan + Rn + jωLn − jωLna)

+ Ib(jωLab − jωLan + Rn + jωLn − jωLnb)

+ Ic(jωLac − jωLan + Rn + jωLn − jωLnc)

+ Ig(jωLag − jωLan + Rn + jωLn − jωLng) (7.18)

�Va = Ia(Ra + jωLa − 2jωLan + Rn + jωLn)

+ Ib(jωLab − jωLbn − jωLan + Rn + jωLn)

+ Ic(jωLac − jωLcn − jωLan + Rn + jωLn)

+ Ig(jωLag − jωLgn − jωLan + Rn + jωLn) (7.19)
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or
�Va = Zaa−nIa + Zab−nIb + Zac−nIc + Zag−nIg (7.20)

and writing similar equations for the other phases and earth wire, the following matrix
equation results:

�Va

�Vb

�Vc

�Vg

=
Zaa−nZab−nZac−n Zag−n

Zba−nZbb−nZbc−n Zbg−n

Zca−nZcb−nZcc−n Zcg−n

Zga−nZgb−nZgc−n Zgg−n

Ia

Ib

Ic

Ig

(7.21)

Usually we are interested only in the performance of the phase conductors, and it is
more convenient to use a three-conductor equivalent for the transmission line. This is
achieved by writing matrix equation (7.21) in partitioned form as follows:

�Vabc

�Vg

ZA ZB

ZC ZD

Iabc

Ig

(7.22)

From (7.22)

[�Vabc] = [ZA] [Iabc] + [ZB] [Ig] (7.23)

[�Vg] = [ZC] [Iabc] + [ZD] [Ig] (7.24)

From equations (7.23) and (7.24), and assuming that the earth wire is at zero
potential,

[�Vabc] = [Zabc] [Iabc] (7.25)

where

[Zabc] = [ZA] − [ZB] [ZD]−1[ZC] =
Z′

aa−n Z′
ab−n Z′

ac−n

Z′
ba−n Z′

bb−n Z′
bc−n

Z′
ca−n Z′

cb−n Z′
cc−n

(7.26)

With reference to Figure 7.6(b), the potentials of the line conductors are related to
the conductor charges by the matrix equation [12]

Va

Vb

Vc

Vg

=

Paa Pab Pac Pag

Pba Pbb Pbc Pbg

Pca Pcb Pcc Pcg

Pga Pgb Pgc Pgg

Qa

Qb

Qc

Qg

(7.27)
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considerations as for the series impedance matrix, lead to

[Vabc] = [P ′
abc] [Qabc] (7.28)

where P ′
abc is a 3 × 3 matrix which includes the effects of the earth wire. The capaci-

tance matrix of the transmission line of Figure 7.6 is given by

[C′
abc] = [P ′

abc]
−1 =

Caa −Cab −Cac

−Cba Cbb −Cbc

−Cca −Ccb Ccc

(7.29)

The series impedance and shunt admittance lumped PI model representation of
the three-phase line is shown in Figure 7.7(a) and its matrix equivalent is illustrated
in Figure 7.7(b). These two matrices can also be represented by compound admit-
tances [13] (Figure 7.7(c)).

Using the compound component concept, the nodal injected currents of Figure 7.7(c)
are related to the nodal voltages by the equation

[Ii]

[Ik]

6 × 1

=
[Z]−1 + [Y ]/2 −[Z]−1

−[Z]−1 [Z]−1 + [Y ]/2

6 × 6

[Vi]

[Vk]

6 × 1

(7.30)

This forms the element admittance matrix representation for the short line between
busbars i and k in terms of 3 × 3 matrix quantities.

7.4.1 Mutually Coupled Three-Phase Lines

When two or more transmission lines occupy the same right of way for a considerable
length, the electrostatic and electromagnetic coupling between those lines must be
taken into account.

Consider the simplest case of two mutually coupled single-circuit three-phase lines.
The two coupled lines are considered to form one subsystem composed of four system
busbars. The coupled lines are illustrated in Figure 7.8, where each element is a 3 × 3
compound admittance and all voltages and currents are 3 × 1 vectors.

The coupled series elements represent the electromagnetic coupling while the cou-
pled shunt elements represent the capacitive or electrostatic coupling. These coupling
parameters are lumped in a similar way to the standard line parameters.

With the admittances labelled as in Figure 7.8, and applying the rules of linear
transformation for compound networks, the admittance matrix for the subsystem is
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Figure 7.7 Lumped PI model of a short three-phase line series impedance: (a) full circuit
representation; (b) matrix equivalent; (c) using three-phase compound admittances
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Figure 7.8 Two-coupled three-phase lines

defined as follows:

IA

IB

IC

ID

12 × 1

=

Y11 + Y33 Y12 + Y34 −Y11 −Y12

Y T
12 + Y T

34 Y22 + Y44 −Y T
12 −Y22

−Y11 −Y12 Y11 + Y55 Y12 + Y56

−Y T
12 −Y22 Y T

12 + Y T
56 Y22 + Y66

12 × 12

·

VA

VB

VC

VD

12 × 1

(7.31)

It is assumed here that the mutual coupling is bilateral. Therefore Y21 = Y T
12, etc.

The subsystem may be redrawn as in Figure 7.9. The pairs of coupled 3 × 3 com-
pound admittances are now represented as a 6 × 6 compound admittance. The matrix
representation is also shown. Following this representation and the labelling of the
admittance block in the figure, the admittance matrix may be written in terms of the
6 × 6 compound coils as

[
IA

IB

]

[
IC

ID

]

12 × 1

=

[Zs]−1 + [Ys1] −[Zs]−1

−[Zs]−1 [Zs]−1 + [Ys2]

12 × 12

[
VA

VB

]

[
VC

VD

]

12 × 1

(7.32)
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Figure 7.9 A 6 × 6 compound admittance representation of two coupled three-phase lines:
(a) 6 × 6 matrix representation; (b) 6 × 6 compound admittance representation

This is clearly identical to equation (7.31) with the appropriate matrix partitioning.
The representation of Figure 7.9 is more concise and the formation of equation (7.32)

from this representation is straightforward, being exactly similar to that which results
from the use of 3 × 3 compound admittances for the normal single three-phase line.

The data which must be available, to enable coupled lines to be treated in a similar
manner to single lines, is the series impedance and shunt admittance matrices. These
matrices are of order 3 × 3 for a single line, 6 × 6 for two coupled lines, 9 × 9 for
three and 12 × 12 for four coupled lines.

Once the matrices [Zs] and [Ys] are available, the admittance matrix for the subsystem
is formed by application of equation (7.32).

When all the busbars of the coupled lines are distinct, the subsystem may be com-
bined directly into the system admittance matrix. However, if the busbars are not
distinct then the admittance matrix as derived from equation (7.32) must be modified.
This is considered in the following section.

7.4.2 Consideration of Terminal Connections

The admittance matrix as derived above must be reduced if there are different elements
in the subsystem connected to the same busbar. As an example, consider two parallel
transmission lines as illustrated in Figure 7.10.
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IA1

IA2 IB2

IB1

Busbar A Busbar B

Figure 7.10 Mutually coupled parallel transmission lines

The admittance matrix derived previously related the currents and voltages at the
four busbars A1, A2, B1 and B2. This relationship is given by

IA1

IA2

IB1

IB2

= [YA1A2B1B2]

VA1

VA2

VB1

VB2

(7.33)

The nodal injected currents at busbars A and B are given by

IA = IA1 + IA2 (7.34a)

IB = IB1 + IB2 (7.34b)

Also, from inspection of Figure 7.10

VA = VA1 = VA2 (7.35a)

VB = VB1 = VB2 (7.35b)

The required matrix equation relates the nodal injected currents, IA and IB, to the
voltages at these busbars. This is readily derived from equation (7.33) and the condi-
tions specified above. It is simply a matter of adding appropriate rows and columns,
and yields

IA

IB

= [YAB]

VA

VB

(7.36)

where [YAB] is the required nodal admittance matrix for the subsystem.
It should be noted that the matrix in equation (7.33) must be retained, as it is needed

for the calculation of the individual line currents.

7.4.3 Equivalent PI Model

For long lines a number of nominal PI models are connected in series to improve
the accuracy of voltages and currents, which are affected by standing wave effects.
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For example, a three-section PI model provides an accuracy to 1.2% for a quarter
wavelength line (a quarter wavelength corresponds to 1500 km and 1250 km at 50 Hz
and 60 Hz, respectively).

As the frequency increases, the number of nominal PI sections to maintain a par-
ticular accuracy increases proportionally, e.g. a 300 km line requires 30 nominal PI
sections to maintain the 1.2% accuracy for the 50th harmonic. However, near resonance
the accuracy departs significantly from an acceptable value.

The computational effort can be greatly reduced and the accuracy improved with
the use of an equivalent PI model derived from the solution of the second-order lin-
ear differential equations describing wave propagation along transmission lines [14].
These are:

d2V (x)

dx2
= Z′Y ′V (x) (7.37a)

d2I (x)

dx2
= Z′Y ′I (x), (7.37b)

where
Z′ = r + j2π fL is the series impedance per unit length and Y ′ = g + j2π fC is the

shunt admittance per unit length
The solution of the wave equations at a distance x from the sending end of the

line is

V (x) = exp(−γ.x)Vi + exp(γ.x)Vr (7.38)

I (x) = (Z′)−1γ [exp(−γ.x)Vi − exp(γ.x)Vr] (7.39)

where γ = √
Z′Y ′ = α + jβ is the propagation constant, and Vi and Vr are the forward

and reverse travelling voltages, respectively.
Depending on the problem in hand, e.g. if the evaluation of terminal quantities

only is required, it is more convenient to formulate a solution using two-port matrix
equations. This leads to the equivalent PI model, shown in Figure 7.11, where

Z = Z0 sinh(γ.l) (7.40)

Y1 = Y2 = 1

Z0

cosh(γ.l) − 1

sinh(γ.l)
= 1

Z0
tanh

(γ.l)

2
(7.41)

Z

V1 Y1 Y2

IS IR

V2

Figure 7.11 The equivalent PI model of a long transmission line
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and

Z0 = √
Z′/Y ′ (7.42)

is the characteristic impedance of the line.
To illustrate the characteristics of the impedances in Figure 7.11, these are plotted

against frequency in Figure 7.12 for a 220 kV, 230 km line. The parameters of the
line were calculated using geometric mean distances and three equal length transpo-
sition sections. The shunt resistance and shunt reactance are formed by inverting the
shunt admittance.

The series and shunt reactances are the predominant components and both have
a period of 1300 Hz for the test line. The line length of 230 km corresponds with
one wavelength at this frequency. The series reactance increases from its inductive
50 Hz value up to a maximum at 325 Hz (the quarter wavelength frequency) and then
decreases, passing through zero at 650 Hz (the half wavelength frequency). Between the
half and full wavelength frequencies the series reactance is capacitive. By contrast, the
shunt reactance is capacitive and large at fundamental frequency, reducing in magnitude
to zero at the half wavelength frequency. Beyond this it becomes inductive.

The series resistance is small at audio frequencies. This is to be expected in a system
designed to transmit power at fundamental frequency with minimum losses. Also, the
peak magnitudes increase slowly as frequency increases. Since the series resistance
does not get appreciably larger over the audio frequency range, the attenuation does
not increase significantly. Thus, currents with frequencies in this range will propagate
large distances on the power system. The negative resistances are a mathematical
artifice and are not physically measurable. However they give the correct terminal
conditions for a distributed parameter transmission line.

The shunt resistance, which is normally considered to be zero in a nominal PI
model, has considerable effect at resonant frequencies and, as can be observed from
Figure 7.12, becomes very large as the wavelength frequency is approached.
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Figure 7.12 Impedance versus frequency for the equivalent PI model (skin effect included)
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The impedance variation of a transmission line at resonance is similar to the case
of a series and parallel resonating tuned circuit. In Figure 7.12 the series and shunt
reactances are equal in magnitude but of opposite sign at 325 Hz, i.e. there is a series
resonance (or node) with a low purely resistive impedance. This effect is better illus-
trated in Figure 7.13, where the impedance of the open circuited line is plotted. In
this case the low impedance magnitude (series resonance) only contains the series and
shunt resistances and occurs at the odd quarter wavelength frequencies.

At 650 Hz, although both the series and shunt reactances are small, the transmis-
sion line has a high impedance equivalent to a parallel resonating tuned circuit. This
condition is called an antinode and can also be observed in Figure 7.13. The parallel
resonances occur at the half wavelength frequencies.

Low impedance at the odd quarter wavelength frequencies and large impedance at the
half wavelength frequencies indicate the low level of attenuation of the audio frequency
signals. The addition of other system components such as loads and generators must
provide the harmonic damping.

The asymptotes of Figure 7.13 are calculated from knowledge of the total series
impedance, Z, and shunt admittance, Y , of the line [14]. The propagation constant
γ is

γ = √
(ZY ) = α + jβ (7.43)

where α is the attenuation constant and β is the phase constant. The characteristic
impedance Z0 is

Z0 = √
(Z/Y )

The upper asymptote or maximum impedance is

Z0 coth αl
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Figure 7.13 Impedance versus frequency for the open circuited Islington to Kikiwa
transmission line (skin effect included)
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and the lower asymptote or minimum impedance is

Z0 tanh αl

The lower asymptote is small in value and slowly increases with frequency, while the
upper asymptote decreases from an infinite value as frequency increases. For large fre-
quencies these two asymptotes approach a value equal to the characteristic impedance.

In the case of multiconductor transmission lines, the nominal PI series impedance
and shunt admittance matrices per unit distance, [Z′] and [Y ′] respectively, are square
and their size is fixed by the number of mutually coupled conductors.

The derivation of the equivalent PI model for harmonic penetration studies from
the nominal PI matrices is similar to that of the single-phase lines, except that it
involves the evaluation of hyperbolic functions of the propagation constant, which is
now a matrix

[γ ] = ([Z′] [Y ′])1/2 (7.44)

There is no direct way of calculating sinh or tanh of a matrix, thus a method using
eigenvalues and eigenvectors, called modal analysis, is employed [15] that leads to
the following expressions for the series and shunt components of the equivalent PI
circuit [16]:

[Z]EPM = l[Z′] [M]

[
sinh γ l

γ l

]
[M]−1 (7.45)

where l is the transmission line length, [Z]EPM is the equivalent PI series impedance
matrix, [M] is the matrix of normalised eigenvectors,

[
sinh γ l

γ l

]
=




sinh γ1l

γ1l
0 . . . 0

0
sinh γ2l

γ2l
. . . 0

...
...

...

0 0
sinh γj l

γj l




(7.46)

and γj is the j th eigenvalue for j /3 mutually coupled circuits. Similarly

1

2
[Y ]EPM = 1

2
l[M]

[
tanh(γ l/2)

γ l/2

]
[M]−1[Y ′] (7.47)

where [Y ]EPM is the equivalent PI shunt admittance matrix.
Computer derivation of the correction factors for conversion from the nominal PI to

the equivalent PI model, and their incorporation into the series impedance and shunt
admittance matrices, is carried out as indicated in the structure diagram of Figure 7.14.
The LR2 algorithm of Wilkinson and Reinsch [17] is used with due regard for accurate
calculations in the derivation of the eigenvalues and eigenvectors.
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Calculate equivalent PI
series impedance and

shunt admittance matrices

Form matrix
product [Y ′][Z ′]

Check eigen-
system solution
for acceptable
accuracy

Calculate the
diagonal
matrices of
hyperbolic
eigenvalue
functions

Calculate
correction
factors and
apply to give
[Z ]EPM and
[Y ]EPM

Calculate the
eigenvalues and
eigenvectors
and form [M],
calculate [M]−1

Figure 7.14 Structure diagram for calculation of the equivalent PI model

7.4.4 Evaluation of Transmission Line Parameters

The lumped series impedance matrix [Z] of a transmission line consists of three com-
ponents, while the shunt admittance matrix [Y ] contains one.

[Z] = [Ze] + [Zg] + [Zc] (7.48)

[Y ] = [Yg] (7.49)

where [Zc] is the internal impedance of the conductors (� · km−1), [Zg] is the
impedance due to the physical geometry of the conductor’s arrangement (� · km−1),
[Ze] is the earth return path impedance (� · km−1), and [Yg] is the admittance due to
the physical geometry of the conductor (�−1 · km−1).

In multiconductor transmission all primitive matrices (the admittance matrices of
the unconnected branches of the original network components) are symmetric and,
therefore, the functions that define the elements need only be evaluated for elements
on or above the leading diagonal.

Earth Impedance Matrix [Ze] The impedance due to the earth path varies with fre-
quency in a nonlinear fashion. The solution of this problem, under idealised conditions,
has been given in the form of either an infinite integral or an infinite series [18].

As the need arises to calculate ground impedances for a wide spectrum of frequen-
cies, the tendency is to select simple formulations aiming at a reduction in computing
time, while maintaining a reasonable level of accuracy.

Consequently, what was originally a heuristic approach [19] is becoming the more
favoured alternative, particularly at high frequencies.

Based on Carson’s work, the ground impedance can be concisely expressed as

Ze = 1000J (r, θ)(� · km−1) (7.50)

where
Ze ∈ [Ze]

J (r, θ) = ωµa

π
{P(r, θ) + jQ(r, θ)}
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rij =
√

ωµa

ρ
Dij

Dij =
√

(hi + hj )2 + d2
ij for i �= j

Dij = 2hi for i = j

θij = arctan
dij

hi + hj

for i �= j

θij = 0 for i = j

ω = 2πf (rad · s−1)

f is frequency (Hz)

hi is the height of conductor i (m)

dij is the horizontal distance between conductors i and j (m)

µa is the permeability of free space = 7π × 10−7(H · m−1)

ρ is the earth resistivity (� · m).

Carson’s solution to equation (7.50) is defined by eight different infinite series
which converge quickly for problems related to transmission line parameter calcula-
tion, but the number of required computations increases with frequency and separation
of the conductors.

More recent literature has described closed form formulations for the numerical
evaluation of line-ground loops, based on the concept of a mirroring surface beneath
the earth at a certain depth. The most popular complex penetration model, which has
had more appeal is that of C. Dubanton [20], due to its simplicity and high degree of
accuracy for the whole frequency span for which Carson’s equations are valid.

Dubanton’s formulae for the evaluation of the self- and mutual impedances of con-
ductors i and j are

Zii = jωµo

2π
× ln

2(hi + p)

ri

(7.51)

Zij = jωµo

2π
× ln

√
2(hi + p)√

(hi − hj )2 + d2
ij

(7.52)

where p = 1/
√

jωµoσ is the complex depth below the earth at which the mirroring
surface is located.

An alternative and very simple formulation has been proposed [21], which for the
purpose of harmonic penetration yields accurate solutions when compared to those
obtained using Carson’s equations.

Geometrical Impedance Matrix [Zg] and Admittance Matrix [Yg] If the conduc-
tors and the earth are assumed to be equipotential surfaces, the geometrical impedance
can be formulated in terms of potential coefficients theory.
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The self-potential coefficient ψii for the ith conductor and the mutual potential
coefficient ψij between the ith and j th conductors are defined as follows:

ψii = ln(2hi/ri) (7.53)

ψij = ln(Dij /dij ) (7.54)

where ri is the radius of the ith conductor (m) while the other variables are as
defined earlier.

Potential coefficients depend entirely on the physical arrangement of the conductors
and need only be evaluated once.

For practical purposes the air is assumed to have zero conductance and

[Zg] = jωK′[ψ] �/km (7.55)

where [ψ] is a matrix of potential coefficients and K′ = 2 × 10−4.
The lumped shunt admittance parameters [Y] are completely defined by the inverse

relation of the potential coefficients matrix, i.e.

[Yg] = 1000jω2πεa[ψ]−1 (7.56)

where εa is permittivity of free space = 8.857 × 10−12 (F · m−1).
As [Zg] and [Yg] are linear functions of frequency, they need only be evaluated once

and scaled for other frequencies.

Conductor Impedance Matrix [Zc] This term accounts for the internal impedance of
the conductors. Both resistance and inductance have a nonlinear frequency dependence.
Current tends to flow on the surface of the conductor, the skin effect, which increases
with frequency and needs to be computed at each frequency. An accurate result for a
homogeneous nonferrous conductor of annular cross-section involves the evaluation of
long equations based on the solution of Bessel functions, as shown in equation (7.57).

Zc = jωµo

2π

1

xe

Jo(xe)N′
o(xi) − No(xe)J′

o(xi)

J′
o(xe)N′

o(xi) − N′
o(xe)J′

o(xi)
(7.57)

where

xe = j
√

jωµoσcre

xi = j
√

jωµoσcri

re is the external radius of the conductor (m)
ri is the internal radius of the conductor (m)
Jo is the Bessel function of the first kind and zero order
J′

o is the derivative of the Bessel function of the first kind and zero order
No is the Bessel function of the second kind and zero order
N′

o is the derivative of the Bessel function of the second kind and zero order
σc is the conductivity of the conductor material at the average conductor temperature.
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The Bessel functions and their derivatives are solved, within a specified accuracy, by
means of their associated infinite series. Convergence problems are frequently encoun-
tered at high frequencies and low ratios of conductor thickness to external radius i.e.
(re − ri)/re, necessitating the use of asymptotic expansions.

A new closed form solution has been proposed [19] based on the concept of complex
penetration; unfortunately errors of up to 6.6% occur in the region of interest.

To overcome the difficulties of slow convergence of the Bessel function approach
and the inaccuracy of the complex penetration method at relatively low frequencies,
an alternative approach based upon curve fitting to the Bessel function formula has
been proposed [21].

For long lines, skin effect resistance (Rac/Rdc) ratios and their effect on the resonant
voltage magnitudes are important. Because the series resistance of a transmission line
is a small component of the series impedance when the transmission line is not at res-
onance, the harmonic voltages, shown in Figure 7.15, do not change to any significant
extent when skin effect is included. At resonance the series resistance and shunt con-
ductance become the dominant system components. Changes in the series resistance
magnitude change the voltage peaks but do not affect the resonance frequency.

In Figure 7.15 the voltage calculated with skin effect is, at resonance, 50% higher
than without skin effect; these results correspond with an Rac/Rdc ratio of 2. In a single-
phase model without ground return the ratio of voltages at resonance, with and without
skin effect, is the same as the skin effect ratio. In a three-phase model the presence
of shunt conductance and series resistance coupling between phases, and the different
resonant frequencies of the phases, reduces the resonant peak voltages compared with
single-phase modelling.

Skin effect is also taken into account in modelling the earth return as a conduc-
tor. The depth of penetration of the earth currents decreases with an increase in
frequency or a decrease in earth resistivity. The series inductance decreases as a result
of these changes.

As an alternative to the rigorous analysis described above, power companies often
use approximations to the skin effect by means of correction factors. Typical corrections
in current use by the NGC (UK) and EDF (France) are given in Table 7.1.

Lewis and Tuttle [22] presented a practical method for calculating the skin effect
resistance ratio by approximating ACSR (aluminium conductor steel reinforced)
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Figure 7.15 The result of modelling: curve A, skin effect included; curve B, no skin effect
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Table 7.1 Corrections for skin effect in overhead lines

Company Voltage (kV) Harmonic order Resistance

NGC 400, 275 (based on 0.4
sq.in. steel-core al.
conductors)

h ≤ 4.21 R1

(
1 + 3.45h2

192 + 2.77h2

)

132 4.21 < h ≤ 7.76 R1(0.806 + 0.105h)

h > 7.76 R1(0.267 + 0.485
√

h)

R1

(
1 + 0.6465h2

192 + 0518h2

)

EDF 400, 225 h ≤ 4 R1

(
1 + 3.45h2

192 + 2.77h2

)

4 < h < 8 R1(0.864 − 0.024
√

h + 0.105h)

8 < h R1(0.267 + 0.485
√

h)

150, 90 R1

(
1 + 0.646h2

192 + 0.518h2

)

Steel strand core

Aluminium strands

t

r

Figure 7.16 ACSR hollow tube conductor representation

conductors to uniform tubes having the same inside and outside diameters as the
aluminium conductors (Figure 7.16). Figure 7.17 illustrates the skin effect ratio for
different models and various tube ratios for ACSR conductors. Skin effect modelling is
important for long lines. Although the series resistance of a transmission line is typically
a small component of the series impedance, it dominates its value at resonances.

7.5 Underground and Submarine Cables [23]

A unified solution similar to that of overhead transmission is difficult for underground
cables because of the great variety in their construction and layouts.

The cross-section of a cable, although extremely complex, can be simplified to that
of Figure 7.18 and its series per unit length harmonic impedance is calculated by the
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following set of loop equations.

−

 dV1/dx

dV2/dx

dV3/dx


 =


 Z′

11 Z′
12 0

Z′
21 Z′

22 Z′
23

0 Z′
32 Z′

33





 I1

I2

I3


 (7.58)

where Z′
11 is the sum of the following three component impedances:

Z′
core−outside: internal impedance of the core with the return path outside

the core
Z′

core−insulation: impedance of the insulation surrounding the core
Z′

sheath−inside: internal impedance of the sheath with the return path inside
the sheath.

Similarly

Z′
22 = Z′

sheath−outside + Z′
sheath/armour−insulation + Z′

armour−inside (7.59)

and

Z′
33 = Z′

armour−outside + Z′
armour/earth−insulation + Z′

earth−inside (7.60)

The coupling impedances Z′
12 = Z′

21 and Z′
23 = Z′

32 are negative because of oppos-
ing current directions (I2 in negative direction in loop 1, and I3 in negative direction
in loop 2), i.e.

Z′
12 = Z′

21 = −Z′
sheath−mutual (7.61)

Z′
23 = Z′

32 = −Z′
armour−mutual (7.62)

where

Z′
sheath−mutual: mutual impedance (per unit length) of the tubular sheath between

inside loop 1 and the outside loop 2
Z′

armour−mutual: mutual impedance (per unit length) of the tubular armour between the
inside loop 2 and the outside loop 3

Finally, Z′
13 = Z′

31 = 0 because loop 1 and loop 3 have no common branch.
The impedances of the insulation are given by

Z′
insulation = jω

µ

2π
ln

routside

rinside
in �/m (7.63)

where µ is the permeability of insulation in H/m, routside is the outside radius of
insulation and rinside is the inside radius of insulation.

If there is no insulation between the armour and earth, then Z′ insulation = 0.
The internal impedances and the mutual impedance of a tubular conductor are a

function of frequency, and can be derived from Bessel and Kelvin functions.
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Z′
tube−inside =

√
j .ω.µ

2π.mq.D
[Io(

√
jmq)K1(

√
jmr) + Ko(

√
jmq)I1(

√
jmr)] (7.64)

Z′
tube−outside =

√
j .ω.µ

2π.mr.D
[Io(

√
jmr)K1(

√
jmq) + Ko(

√
jmr)I1(

√
jmq)] (7.65)

Z′
tube−mutual = ω.µ

2π.mq.mr.D
(7.66)

with
D = I1(

√
jmr)K1(

√
jmq) − I1(

√
jmq)K1(

√
jmr) (7.67)

where

mr =
√

K
1

1 − s2
(7.68)

mq =
√

K
s2

1 − s2
(7.69)

with

K = 8π.10−4.f.µr

R′
dc

(7.70)

s = q

r
(7.71)

where q is the inside radius, r is the outside radius and R′
dc is the d.c. resistance

in �/Km.
The only remaining term is Z′

earth-inside in equation (7.60), which is the earth return
impedance for underground cables, or the sea return impedance for submarine cables.
The earth return impedance can be calculated approximately with equation (7.64) by
letting the outside radius go to infinity. This approach, also used by Bianchi and
Luoni [24] to find the sea return impedance, is quite acceptable considering the fact
that sea resistivity and other input parameters are not known accurately.

Equation (7.58) is not in a form compatible with the solution used for overhead
conductors, where the voltages with respect to local ground and the actual currents in
the conductors are used as variables. Equation (7.58) can easily be brought into such
a form by introducing the appropriate terminal conditions, namely with

V1 = Vcore − Vsheath I1 = Icore

V2 = Vsheath − Varmour I2 = Icore + Isheath

V3 = Varmour I3 = Icore + Isheath + Iarmour

Equation (7.58) can be rewritten as

−

 dVcore/dx

dVsheath/dx

dVarmour/dx


 =


Z′

cc Z′
cs Z′

ca
Z′

sc Z′
ss Zsa

Z′
ac Z′

as Z′
aa





 Icore

Isheath

Iarmour


 (7.72)
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where
Z′

cc = Z′
11 + 2Z′

12 + Z′
22 + 2Z′

23 + Z′
33

Z′
cs = Z′

sc = Z′
12 + Z′

22 + 2Z′
23 + Z′

33

Z′
ca = Z′

ac = Z′
sa = Z′

as = Z′
23 + Z′

33

Z′
ss = Z′

22 + 2Z′
23 + Z′

33

Z′
aa = Z′

33

Because a good approximation for many cables having bonding between the sheath
and the armour, and the armour earthed to the sea, is Vsheath = Varmour = 0, the system
can be reduced to

−dVcore/dx = ZIcore (7.73)

where Z is a reduction of the impedance matrix of equation (7.72).
Similarly, for each cable the per unit length harmonic admittance is

−

 dI1/dx

dI2/dx

dI3/dx


 =


 jωC′

1 0 0
0 jωC′

2 0
0 0 jωC′

3





 V1

V2

V3


 (7.74)

where C′
i = 2πεoεr/ ln(r/q). Therefore, when converted to core, sheath and armour

quantities,

−

 dIcore/dx

dIsheath/dx

dIarmour/dx


 =


 Y ′

1 −Y ′
1 0

−Y ′
1 Y ′ + Y ′

2 −Y ′
2

0 −Y ′
2 Y ′

2 + Y ′
3





 Vcore

Vsheath

Varmour


 (7.75)

where Y ′
i = jωli . If, as before, Vsheath = Varmour = 0, equation (7.75) reduces to

−dIcoredx = Y ′
1Vcore (7.76)

Therefore, for frequencies of interest, the cable per unit length harmonic impedance,
Z′, and admittance, Y ′, are calculated with both the zero- and positive-sequence values
being equal to the Z in equation (7.73), and the Y ′ in equation (7.76), respectively.

In the absence of rigorous computer models, such as described above, power compa-
nies often use approximations to the skin effect by means of correction factors. Typical
corrections used by the NGC (UK) and EDF (France) are given in Table 7.2.

7.6 Three-Phase Transformer Models

The basic three-phase two-winding transformer is shown in Figure 7.19. Its primitive
network, on the assumption that the flux paths are symmetrically distributed between
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Table 7.2 Corrections for skin effect in cables

Company Voltage (kV) Harmonic
order

Resistance

NGC 400, 275 (based on 2.5
sq.in. conductor at 5 in.
spacing between centres)

h ≥ 1.5 0.74 R1 (0.267 + 1.073
√

h)

132 h ≥ 2.35 R1 (0.187 + 0.532
√

h)

EDF 400, 225 h ≥ 2 0.74 R1 (0.267 + 1.073
√

h)
150, 90 h ≥ 2 R1 (0.187 + 0.532

√
h)

I1

I4

V1 V2

V5

I5

I2

V3

V6

I6

I3

V4

Figure 7.19 Diagrammatic representation of a two-winding transformer

all windings, is represented by the equation

I1

I2

I3

I4

I5

I6

=

yp y ′
m y ′

m −ym y ′′
m y ′′

m

y ′
m yp y ′

m y ′′
m −ym y ′′

m

y ′
m y ′

m yp y ′′
m y ′′

m −ym

−ym y ′′
m y ′′

m ys y ′′′
m y ′′′

m

y ′′
m −ym y ′′

m y ′′′
m ys y ′′′

m

y ′′
m y ′′

m −ym y ′′′
m y ′′′

m ys

V1

V2

V3

V4

V5

V6

(7.77)

where y ′
m is the mutual admittance between primary coils, y ′′

m is the mutual admit-
tance between primary and secondary coils on different cores, and y ′′′

m is the mutual
admittance between secondary coils.

If a tertiary winding is also present, the primitive network consists of nine (instead
of six) coupled coils and its mathematical model will be a 9 × 9 admittance matrix.

The interphase coupling can usually be ignored (e.g. the case of three single-phase
separate units) and all the primed terms are effectively zero.

The connection matrix [C] between the primitive network and the actual transformer
buses is derived from the transformer connection.
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By way of example, consider the Wye G-Delta connection of Figure 7.20. The
following connection matrix applies:

V1

V2

V3

V4

V5

V6

=

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

0 0 0 −1 0 1

V a
p

V b
p

V c
p

V A
s

V B
s

V C
s

(7.78)

or

[V ]Branch = [C] [V ]node (7.79)

We can also write

[Y ]NODE = [C]T[Y ]PRIM[C] (7.80)

and using [Y ]PRIM from equation (7.77)

[Y ]NODE =
yp y ′

m y ′
m −(ym + y ′′

m) (ym + y ′′
m)

0

y ′
m

yp y ′
m 0 −(ym + y ′′

m) (ym + y ′′
m)

y ′
m y ′

m
yp (ym + y ′′

m) 0 −(ym + y ′′
m)

−(ym + y ′′
m) 0 (ym + y ′′

m) 2(ys − y ′′′
m ) −(ys − y ′′′
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(7.81)
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Figure 7.20 Network connection diagram for a Wye G-delta transformer
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If the primitive admittances are expressed in per unit the upper-right and lower-left
quadrants of matrix (7.81) must be divided by

√
3 and the lower-right quadrant by 3.

Then, in the absence of interphase coupling, the nodal admittance matrix equation of
the Wye G-delta connection becomes

I a
p

I b
p

I c
p
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s
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s

IC
s

=

y −y/
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3 y/
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3
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y y/
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3 −y/
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3
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3 y/
√
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(7.82)

where y is the transformer leakage admittance in per unit, which is approximated by

Yth = 1

R
√

h + jX1h
(7.83)

where R is the resistance at fundamental frequency and Xl is the transformer’s leak-
age reactance.

An example of a typical variation of the inductive coefficient of a transformer with
frequency is shown in Figure 7.21.

The magnetising admittance is usually ignored since under normal operating condi-
tions its contribution is not significant. If, however, the transformer is under severe satu-
ration, appropriate current harmonic sources must be added at the transformer terminals.

In general, any two-winding three-phase transformer may be represented by two
coupled compound coils as shown in Figure 7.22 where [Ysp] = [Yps]T .

If the parameters of the three phases are assumed balanced, all the common three-
phase connections can be modelled by three basic submatrices. The submatrices [Ypp],
[Yps], etc. are given in Table 7.3 for the common connections in terms of the follow-
ing matrices:

Y1 =
yt

yt

yt

Y11 =
2yt −yt −yt

−yt 2yt −yt

−yt −yt 2yt

Y111 =
−yt yt

−yt yt

yt −yt

For transformers with neutrals connected through an impedance, an extra coil is
added to the primitive network for each unearthed neutral and the primitive admittance
increases in dimension. However, by noting that the injected current in the neutral is
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Table 7.3 Characteristic submatrices used in forming the transformer
admittance matrices

Transformer connection Self-admittance Mutual admittance

Bus P Bus S Ypp Yss Yps, Ysp

Wye G Wye G Y1 Y1 −Y1

Wye G Wye Y1 Y11/3 −Y11/3

Wye G Delta Y1 Y11 Y111

Wye Wye Y11/3 Y11/3 −Y11/3

Wye Delta Y11/3 Y11 Y111

Delta Delta Y11 Y11 −Y11

zero (no direct connection), these extra terms can be eliminated from the connected
network admittance matrix. This results in the matrix:

Y =
yt − c −c −c

−c yt − c −c

−c −c yt − c

where c = yt.yt/(3.yt + yn)

Once the admittance matrix has been formed for a particular connection it represents
a simple subsystem composed of the two busbars interconnected by the transformer.

7.7 Generator Modelling

For the purpose of determining the network harmonic admittances, the generators can
be modelled as a series combination of resistance and inductive reactance, i.e.

Ygh = 1

R
√

h + jX′′
dh

(7.84)

where R is derived from the machine power losses and X′′
d is the generator’s sub-

transient reactance.
A frequency-dependent multiplying factor can be added to the reactance terms to

account for skin effect. It should be noted that equation (7.84) is not valid at fundamen-
tal frequency as the positive sequence component still sees the synchronous impedance
due to the flux not rotating with respect to the rotor.

7.8 Shunt Elements

Shunt reactors and capacitors are used in a transmission system for reactive power
control. The data for these elements is usually given in terms of their rated megavolt-
amps and rated kilovolts, and the equivalent phase admittance in per unit is calculated
from this data.
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Figure 7.23 Representation of a shunt element: (a) coupled admittance; (b) admittance
matrix; (c) compound admittance

The coupled admittances to ground at bus k are formed into a 3 × 3 admittance
matrix as shown in Figure 7.23, and this reduces to the compound admittance rep-
resentation indicated. The admittance matrix is incorporated directly into the system
admittance matrix, contributing only to the self-admittance of the particular bus.

While provision for off-diagonal terms exists, the admittance matrix for shunt ele-
ments is usually diagonal, as there is normally no coupling between the components
of each phase.

Consider, as an example, the three-phase capacitor bank shown in Figure 7.24. A
3 × 3 matrix representation similar to that for a line section is illustrated.

The megavolt-amp rating at fundamental frequency (Q) and the nominal voltage
(V ) are normally used to calculate the capacitive reactance at the n harmonic, i.e.
Xc = V 2/nQ .

k

Ik
a [Ik

abc ]

Ik
b

Ik
c

k

[Vk] [Ysh ]

1/jXc

1/jXc

1/jXc

Figure 7.24 Representation of a shunt capacitor bank
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In terms of ABCD parameters the matrix equation of a shunt element is:

[
Vs

Is

]
=

[
[U ]
[Ysh] [U ]

]
×

[
Vr

−Ir

]
(7.85)

where [Ysh] = Diag (shunt admittance of each phase) and [U ] = Identity matrix.
However, in harmonic analysis, any added inductance, often placed in series with

shunt capacitors, must be explicitly represented. For floating star or delta-connected
configurations, the procedure used in Section 7.6. for the transformer representation
should be followed.

7.9 Series Elements

Series elements are connected directly between two buses and for modelling purposes
they constitute a subsystem in the network subdivision.

A three-phase coupled series admittance between two busbars i and k is shown in
Figure 7.25(a), as well as its reduced nodal admittance matrix (Figure 7.25(b)) and
compound admittance (Figure 7.25(c)).

The series capacitor, used for transmission line reactance compensation, is an example
of an uncoupled series element; in this case the admittance matrix is diagonal. For a
lumped series element, the ABCD parameter matrix equation is:

[
Vs

Is

]
=

[
[U ] [Zse]

[U ]

]
×

[
Vr

−Ir

]
(7.86)

where [Zse] = Diag (series impedance of each phase) and [U] is the identity matrix.
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Figure 7.25 Representation of a series element: (a) coupled admittances; (b) admittance
matrix; (c) compound admittance
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7.10 Distribution System Modelling

The harmonic impedances seen from primary transmission system buses are greatly
affected by the degree of representation of the distribution system and the consumer
loads fed radially from each busbar. Moreover, the distribution system should also be
modelled in the three-phase frame to take into account unbalanced loading, transformers
of different connections and earth residual currents.

A typical simplified dominant configuration of a distribution feeder is shown in
Figure 7.26. Generally, the bulk of the load fed from distribution feeders is located
behind two transformers downstream. Thus, to calculate the harmonic impedances
seen from the high-voltage primary transmission side it may be sufficient to use a
discrete model of the composite effect of many loads and distribution system lines and
transformers at the high voltage side of the main distribution transformers; typically
the 110 kV in a system using 400 kV and 220 kV transmission.

The following guidelines are recommended for the derivation of distribution feeder
equivalents:

• Distribution lines and cables (e.g. 69–33 kV) should be represented by an
equivalent-π model. For short lines, the total capacitance at each voltage level
should be estimated and connected at that busbar. Due to their relatively low X/R
ratio, the resistance of lines and cables plays an important part in damping resonant
conditions and should always be included in the equivalent circuit.

• Transformers between distribution voltage levels should be represented by an equiv-
alent element.

• As the active power absorbed by rotating machines does not correspond to a damp-
ing value, the active and reactive power demand at the fundamental frequency may
not be used in a straightforward manner. Alternative models for load representation
should be used according to their composition and characteristics. Groups of small
motors may actually provide some damping for the harmonic content depending
on the X/R ratio of their blocked rotor circuit.

• Power factor correction (PFC) capacitance should be estimated as accurately as
possible and allocated at the corresponding voltage level.

• Other elements, such as transmission line inductors, filters and generators, should
be represented according to their actual configuration and composition.

220 kV

60 kV 60 kV 11 kV

Figure 7.26 Typical distribution feeder
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• The representation should be more detailed nearer the points of interest. Simpler
equivalents for the transmission and distribution systems should be used only for
remote points.

• All elements should be uncoupled three-phase branches, including unbalanced
phase parameters.

7.11 Load Models

There are no generally acceptable load equivalents for harmonic analysis [25]. In each
case the derivation of equivalent conductance and susceptance harmonic bandwidths
from specified P (active) and Q (reactive) power flows will need extra information on
the actual composition of the load. Power distribution companies will have a reasonable
idea of the proportion of each type in their system depending on the time of day and
should provide such information.

The aggregate nature of the load makes it difficult to establish models based purely
on theoretical analysis. Attempts to deduce models from measurements have been
made [26] but lack general applicability. Utilities should be encouraged to develop
databases of their electrical regions, with as much information as possible to provide
accurate equivalent harmonic impedances for future studies.

Consumers’ loads constitute not only the main element of the damping compo-
nent but may affect the resonance conditions, particularly at higher frequencies. Some
early measurements [27] showed that maximum plant conditions can result in reduced
impedances at lower frequencies and increased impedances at higher frequencies.
Simulation studies [28] have also demonstrated that the addition of detailed load rep-
resentation can result in either an increase or decrease in harmonic flow.

The energy utilisation systems are themselves growing contributors to the harmonic
problem as a result of the increased content of nonlinear appliances as explained in
Chapter 3.

There are basically three types of loads: passive, motive and power electronic.

(1) Predominantly passive loads (typically domestic) can be represented approxi-
mately by a series R, X impedance, i.e.

Zr(ω) = Rr

√
h + jXrh (7.87)

where Rr is load resistance at the fundamental frequency, Xr is load reactance at
the fundamental frequency and h is harmonic order (ω/ω1).
The weighting coefficient

√
h, used above for frequency dependence of the resis-

tive component, is different in different models; for instance, reference [25] uses
a factor of 0.6

√
h instead. The equivalent inductance represents the relatively

small motor content when known. In studies concerning mainly the transmission
network the loads are usually equivalent parts of the distribution network, speci-
fied by the consumption of active and reactive power. Normally a parallel model
is used, i.e.

YL(ω) = 1/Rp + j1/(Xph) (7.88)
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where Rp is Load resistance at the fundamental frequency, Xp is load reactance
at the fundamental frequency and h is harmonic order (ω/ω1).

Xp = V 2

Q
R = V 2

P
(7.89)

There are many variations of this parallel form of load representation. For example,
the parallel load model suggested by reference [25] is a parallel connection of
inductive reactance and resistance whose values are

X = j
V 2

(0.1h + 0.9)Q
R = V 2

(0.1h + 0.9)P
(7.90)

where P and Q are fundamental frequency active and reactive powers.

(2) Various models of predominantly motive loads have been suggested using resistive-
inductive equivalents, their differences being often due to the boundary of system

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1/1 load 1/2 load

f (Hz)

10

100

1000

Z
 (

Ω
)

Figure 7.27 Load effect on the magnitude of the network harmonic impedances.(Reproduced
from [29] by permission of CIGRE)
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representation. A detailed analysis of the induction motor response to harmonic
frequencies, leading to a relatively simple model, is described later in this section.

(3) Modelling the power electronic loads is a more difficult problem because, besides
being harmonic sources, these loads do not present a constant R, L, C config-
uration and their nonlinear characteristics cannot fit within the linear harmonic
equivalent model. In the absence of detailed information, the power electronic
loads are often left open-circuited when calculating harmonic impedances. How-
ever, their effective harmonic impedances need to be considered when the power
ratings are relatively high, such as arc furnaces, aluminium smelters, etc.

When studying the transmission network it is strongly recommended to model at least
part of the next lower voltage level and place the load equivalent there. To illustrate the
importance of the loading level on the harmonic impedances, Figures 7.27 and 7.28
show the effect of halving the load level on the magnitude and phase of the individual
harmonics at a converter bus connected to a 400 kV system [29].

90

80

70

60

50

40

30

20

10

0

−10

−20

−30

−40

−50

−60

−70

−80

−90
0 200 400 600 800 1000 1200 1400 1600 1800 2000

1/1 load 1/2 load

f (Hz)

D
eg

re
es

Figure 7.28 Load effect on the phase angle of the network harmonic impedances.
(Reproduced from [29] by permission of CIGRE)
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7.11.1 Induction Motor Model

The circuit shown in Figure 7.29 is an approximate single-phase representation of the
induction motor, with the magnetising impedance ignored.

The motor impedance at any frequency can be expressed as:

Zm(ω) = Rmh + jXmh (7.91)

At the fundamental frequency (h = 1)

Xm1 = X1 + X2 = XB (7.92)

Rm1 = R1 + R2

S
= RB

(
a + b

S

)
(7.93)

where RB is the total motor resistance with the rotor locked, R1 is the stator resistance
related to RB by coefficient a (which is typically 0.45), R2 is the rotor resistance related
to RB by coefficient b (which is typically 0.55), and XB is the total motor reactance
with the rotor locked.

S − Slip = ωs − ωr

ωs

At harmonic frequencies

Xmh = h · XB (7.94)

Rmh = RB

(
a.ka + b

Sh
.kb

)
(7.95)

where ka , kb are correction factors to take into account skin effect in the stator and
rotor, respectively, and Sh is apparent slip at the superimposed frequency, i.e.

Sh = ±hωs − ωr

±hωs
(7.96)

Sh ≈ 1 − ωr

hωs
for the positive-sequence harmonics

Sh ≈ 1 + ωr

hωs
for the negative-sequence harmonics

V

I1 I2R1
X1

Xm

X2 Xmh

R2
S

=

Figure 7.29 Approximate representation of the induction motor
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Figure 7.30 Accurate induction motor model

Assuming an exponential variation of the resistances with frequency, i.e.

ka = h∝

kb = (±h − 1)∝

the motor equivalent resistance for ∝= 0.5 becomes

Rmh = RB[a
√

h + (±h.b
√±h − 1)/(±h − 1)] (7.97)

An accurate model of a double cage induction motor is shown in Figure 7.30.

7.11.2 Norton Equivalents of Residential Loads

In practice there is always a mix of the three types of load and no general guidelines
can be given for their representation without detailed knowledge of their composition.
However, the latter are reasonably predictable in the case of radial distribution systems
feeding domestic customers. In these cases, and with judicious estimation of the load
mix, it is possible to derive accurate equivalents for the composite residential load.

The Pspice program is used in reference [30] to derive equivalent components for
specified combinations of linear and nonlinear appliances as well as the low-voltage
distribution network of a residential feeder. The nonlinear appliances include personal
computers, compact fluorescent lamps, television sets and fluorescent lighting. It is a
bottom-up approach, whereby the instantaneous voltages and currents of the network
are calculated and then the Fourier transform of the waveshapes obtained. The linear
load is represented as a single branch with a lumped circuit derived at the point of
common coupling (PCC) [31].

The different load combinations used in the test system were decided based on exten-
sive household interviews in the area. The third, fifth and seventh harmonic currents
on the LV side of the distribution transformer were also monitored over a period of
several days for the purpose of model verifications. The simulation results substantially
agreed with the recorded values.

While requiring considerable effort, this approach can be used to derive harmonic
equivalent circuits at PCCs of residential feeders to be used in further system
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Figure 7.31 Measured and calculated harmonic voltage magnitude

development. It is envisaged, however, that the application of this method to industrial
feeders is not straightforward considering the greater variety of their loads and
operating cycles.

7.11.3 Empirical Models Based on Measurements

An alternative approach to explicit load representation is the use of empirical models
derived from measurements.

In particular, information obtained from harmonic current and voltage measure-
ments with different operating conditions, for example by switching a shunt capacitor
(as described in Section 7.3.1), can be used to derive approximate Norton harmonic
equivalents of the load or group of loads connected at a distribution bus. By way of
example, Figure 7.31 shows measured and calculated harmonic voltages at four 10-
minute time intervals for an 11 kV distribution bus fed from the 220 kV transmission
system via a 40 MVA transformer [32]. Clearly the Norton approach gives a better
estimation of the harmonic voltages than the constant current source.

7.12 Computer Implementation [33]

The evolution of computer technology has removed many of the limitations that
affected implementation decisions in the past.
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Earlier implementations were restricted by the use of mainframe computers, and
limitations in graphical support, memory and storage space.

The main factor affecting recent implementations has been the acceptability of the
personal computer (PC) as the main computing platform in terms of capability and
price. The PC platform has been enhanced by the use of several graphical operating
systems and particularly Microsoft Windows. Other important developments have
been the availability of ample computer bandwidths, reduced cost of memory mod-
ules, making memory limitation secondary, cheaper storage modules with much larger
capacity, and great improvement in software support and development support tools.

To cope with the larger size and complexity of computer programs, new facilities
have become available to make the software more modular and easier to maintain.
Three important examples are multitasking operating systems, graphical user interfaces
(GUIs), and object-oriented design methodology.

In line with the steps described in the previous sections of the chapter, the computer
implementation involves the following stages:

• Computation of the admittance matrices of individual components at the specified
harmonic frequencies.

• Formation of the system admittance matrices at individual frequencies according
to the network topology.

• Calculation of the system harmonic voltages at all the system nodes given the
harmonic current injections at the nodes containing nonlinear plant components.

7.12.1 Harmonic Penetration Overview

A modern harmonic penetration program includes a GUI, the simulation algorithm
engine and a database handling data structure.

The GUI is used for data entry (component parameters and network topology), and
for the presentation of the simulation results.

The simulation algorithm engine performs the calculations required and has tradi-
tionally been written in the FORTRAN language, although recently object-oriented
languages have also been used. Mixed-language programming makes it possible to use
FORTRAN’s advantage of built-in complex number manipulation with other languages
to benefit from the strengths of each.

Database handling routines are used to store and retrieve the power system data from
disk. However, the traditional fixed format, still widely used today, is very rigid and
inflexible. The use of a platform-independent text format, such as ASCII, provides far
greater flexibility.

7.12.2 An Advanced Program Structure

Lack of memory space has in the past forced simulation packages to be fragmented
into several programs. Moreover, lack of computer power has often made it necessary
to store intermediate results rather than recalculate them as and when needed.
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The structure of a typical software package for harmonic analysis is illustrated in
Figure 7.32. The computational effort required to generate the harmonic admittance
matrices of transmission lines and cables usually exceeds that of forming the system
admittance matrix and solving for the harmonic voltages and currents. Therefore, these
matrices are usually computed separately and stored in disk files, which are then read
by the main simulation program when forming the system admittance matrices. The
modelling of nonlinear loads is also separated from the main program; the calculated
current injections are then stored in disk files and read by the main program when
performing the harmonic penetration analysis. The results of the harmonic penetration
study are also output to disk files to be imported into plotting tools for presenta-
tion. These can also be used by other tools such as Matlab for further analysis or
spreadsheets for reporting purposes.

Although the above subdivisions have enabled complex analysis to be performed suc-
cessfully despite the limitations presented by earlier computers, their main drawback is
the use of many intermediary files, the maintenance of which becomes laborious when
the simulated system is large, as all these files must be updated before the succeeding
program is activated. Moreover, the conversion of complex or floating numbers into
the text format typically used in these files introduces truncation or round-off errors.
These errors may distort the final results, especially at high harmonic frequencies when
the distortion levels are generally low, particularly when the analysis process involves
many such conversions. The use of unformatted data has the advantages of reduced file
size, and faster reading and writing to disk operations without introducing truncation
errors; however, the data in the file cannot be readily inspected.

Typically, a graphical data entry or editor is added to the package to help the user
to construct the simulation cases. These editors are usually separate applications that
are able to generate the necessary data files required in the simulation. The simulation
results are imported into plotting applications such as Matlab or Microsoft Excel
for further analysis or reporting purposes.

Several advances in computer technology have made it possible to integrate all the
above processes into a single framework without the need to combine them all into
a single huge executable binary. The most important developments are abundance
of cheap memory (which includes virtual memory and dynamic memory allocation
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Figure 7.32 Structure of harmonic analysis software
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technologies), dynamic linked libraries, object-oriented development tools and mixed-
language programming.

Making use of these new technologies, Figure 7.33 depicts how a harmonic pene-
tration simulation program is put together. The mathematical modelling of the power
system components, including nonlinear loads, and the harmonic penetration are pro-
grammed as relocatable dynamic linked libraries and these are made accessible to the
GUI. Through this GUI, users can construct the power system simulation network
by joining different power system components together and specifying the component
parameter settings. The constructed simulation network consists of lists of power sys-
tem components and their settings; these are passed to the harmonic penetration library
to carry out the tasks required by the simulation study.

7.12.3 Data Structure

The essence of the object-oriented methodology is a family of classes that make up the
application. Each of the classes has its own unique properties or settings and includes
procedures to alter the settings. At execution, objects of the classes are created when
they are needed to perform certain tasks and they are usually deleted upon completion
of these tasks.

The data used in the harmonic penetration study includes the power system com-
ponents and the topology by which they are connected to form a system. Therefore,
based on the object-oriented methodology, a simulation case can be regarded as a
drawing page or canvas object, which acts as a container for all the power system
components objects making up the system. The various classes of objects making up
an object-oriented version of harmonic analysis are summarised in Figure 7.34.

The two main classes are the Power System Canvas and the Power System Compo-
nent class, both inherited from the Generic Graphical Component, which provides the
interfaces to the low-level graphical functions of the GUI operating system (which is
Microsoft Windows in this implementation).
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Figure 7.34 Power system component models

G

Bus0−0 Bus0−1 Bus0−2

Figure 7.35 Typical interface

Figure 7.35 illustrates the use of the object-oriented method in building a network for
simulation studies. It shows a three-busbar power system consisting of a generator and
a load connected through a two-winding transformer, and a double-circuit transmission
line. All of these components are inherited from the common Power System Component
class. They differ from each other by the functions used to draw them, resulting in
different images and requiring different editing forms, as shown for the generator and
transformer in the figure. Consequently, the simulation test case is made up of three
objects of busbar class and one object each of the generator, transformer, transmission
lines and load classes. The busbar objects are differentiated from each other by their
busbar name property.
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Figure 7.36 View of solution results

In this object-oriented manner, a power system network is described by lists of
these Power System Component objects. There are altogether five container lists in the
example above, corresponding to the five different classes. These lists can be created
automatically as the network is built up using a graphical editor, or they are constructed
according to the information stored in the data file. These lists are then passed to the
simulation engine, which constructs the system admittance matrices at the respective
harmonic frequencies, and carries out the harmonic penetration studies, as outlined in
earlier sections. Each of the power system component objects also contains properties
for recording simulation results. Hence, the GUI can then extract the result values
from the lists of objects and display them on the canvas as shown in Figure 7.36.
The presentation of results is customised, allowing them to be presented differently
according to the component type. Harmonic voltages are only shown on the busbar
objects while multi-terminal objects such as transformers and transmission lines will
show the harmonic currents at the terminals, with the direction of the flow indicated
using arrows. Finally, the colour of the arrows and the result texts can be used to
indicate if the values exceed certain limits.

The database used in harmonic penetration analysis can be divided into graphical and
power system data. The graphical database contains information required for displaying
the power system network in a GUI. The power system database, on the other hand,
contains network topology information that describes the make-up of the simulated
power system network.

The power system database is designed to be a text file so that it is easier to transfer
from one operating system to another. This has the disadvantage of increasing the
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file size and the accessing time. Data reading is still a considerable proportion of the
solution time; for a 110 bus, 50 harmonics solution, the data reading time is about
20% of the total.

Generally, power systems have a fixed and rigid structure and their design takes
advantage of data formats such as the well-known IEEE common data format and the
PTI (Power Technology Incorporated) data format. These types of database typically

09/25/93 UW ARCHIVE           100.0  1962 W IEEE 14 Bus Test Case
BUS DATA FOLLOWS                            14 ITEMS
   1 Bus 1     HV  1  1  3 1.060    0.0      0.0      0.0    232.4   -16.9     0.0  1.060     0.0     0.0
0.0    0.0        0
   2 Bus 2     HV  1  1  2 1.045  -4.98     21.7     12.7     40.0    42.4     0.0  1.045    50.0   -40.0
0.0    0.0        0
   3 Bus 3     HV  1  1  2 1.010 -12.72     94.2     19.0      0.0    23.4     0.0  1.010    40.0     0.0
0.0    0.0        0
   4 Bus 4     HV  1  1  0 1.019 -10.33     47.8     -3.9      0.0     0.0     0.0  0.0       0.0     0.0
0.0    0.0        0
   5 Bus 5     HV  1  1  0 1.020  -8.78      7.6      1.6      0.0     0.0     0.0  0.0       0.0     0.0
0.0    0.0        0
   6 Bus 6     LV  1  1  2 1.070 -14.22     11.2      7.5      0.0    12.2     0.0  1.070    24.0    -6.0
0.0    0.0        0
   7 Bus 7     ZV  1  1  0 1.062 -13.37      0.0      0.0      0.0     0.0     0.0  0.0       0.0     0.0
0.0    0.0        0
   8 Bus 8     TV  1  1  2 1.090 -13.36      0.0      0.0      0.0    17.4     0.0  1.090    24.0    -6.0
0.0    0.0        0
   9 Bus 9     LV  1  1  0 1.056 -14.94     29.5     16.6      0.0     0.0     0.0  0.0       0.0     0.0
0.0    0.19       0
  10 Bus 10    LV  1  1  0 1.051 -15.10      9.0      5.8      0.0     0.0     0.0  0.0       0.0     0.0
0.0    0.0        0
  11 Bus 11    LV  1  1  0 1.057 -14.79      3.5      1.8      0.0     0.0     0.0  0.0       0.0     0.0
0.0    0.0        0
  12 Bus 12    LV  1  1  0 1.055 -15.07      6.1      1.6      0.0     0.0     0.0  0.0       0.0     0.0
0.0    0.0        0
  13 Bus 13    LV  1  1  0 1.050 -15.16     13.5      5.8      0.0     0.0     0.0  0.0       0.0     0.0
0.0    0.0        0
  14 Bus 14    LV  1  1  0 1.036 -16.04     14.9      5.0      0.0     0.0     0.0  0.0       0.0     0.0
0.0    0.0        0
-999
BRANCH DATA FOLLOWS                         20 ITEMS
   1    2  1  1 1 0  0.01938   0.05917     0.0528     0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   1    5  1  1 1 0  0.05403   0.22304     0.0492     0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   2    3  1  1 1 0  0.04699   0.19797     0.0438     0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   2    4  1  1 1 0  0.05811   0.17632     0.0374     0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   2    5  1  1 1 0  0.05695   0.17388     0.0340     0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   3    4  1  1 1 0  0.06701   0.17103     0.0346     0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   4    5  1  1 1 0  0.01335   0.04211     0.0128     0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   4    7  1  1 1 1  0.0       0.20912     0.0        0     0     0    0 0  0.978     0.0 0.0    0.0
0.0    0.0   0.0
   4    9  1  1 1 1  0.0       0.55618     0.0        0     0     0    0 0  0.969     0.0 0.0    0.0
0.0    0.0   0.0
   5    6  1  1 1 1  0.0       0.25202     0.0        0     0     0    0 0  0.932     0.0 0.0    0.0
0.0    0.0   0.0
   6   11  1  1 1 0  0.09498   0.19890     0.0        0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   6   12  1  1 1 0  0.12291   0.25581     0.0        0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   6   13  1  1 1 0  0.06615   0.13027     0.0        0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   7    8  1  1 1 0  0.0       0.17615     0.0        0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   7    9  1  1 1 0  0.0       0.11001     0.0        0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   9   10  1  1 1 0  0.03181   0.08450     0.0        0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
   9   14  1  1 1 0  0.12711   0.27038     0.0        0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
  10   11  1  1 1 0  0.08205   0.19207     0.0        0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
  12   13  1  1 1 0  0.22092   0.19988     0.0        0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
  13   14  1  1 1 0  0.17093   0.34802     0.0        0     0     0    0 0  0.0       0.0 0.0    0.0
0.0    0.0   0.0
-999
LOSS ZONES FOLLOWS                     1 ITEMS
  1 IEEE 14 BUS
-99
INTERCHANGE DATA FOLLOWS                 1 ITEMS
 1    2 Bus 2     HV    0.0  999.99  IEEE14  IEEE 14 Bus Test Case
-9
TIE LINES FOLLOWS                     0 ITEMS
-999
END OF DATA

Figure 7.37 IEEE common data format example
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start with several lines of comments or general descriptions of the power system net-
work. These are followed by sections of lines delimited by some code word such as
‘999’ or ‘End’. Each section corresponds to a type of power system components. Each
line (or several subsequent lines) within a section has a fixed format with multiple
fixed-width columns for specifying the setting values of a particular component. An
example of this is the IEEE common data format illustrated in Figure 7.37.

7.13 Examples of Application of the Models

7.13.1 Harmonic Flow in a Homogeneous Transmission Line [34]

A 230 km 220 kV line of flat configuration is used as the first test system; the param-
eters of this line are shown in Figure 7.38. A three-dimensional graphic representation
is used to provide simultaneous information on the harmonic levels along the line. At
each harmonic (up to the 25th harmonic), one per unit positive-sequence current is
injected at the Islington end of the line. The voltages caused by this current injection
are, therefore, the same as the calculated impedance, i.e. V+ gives Z++, V− gives
Z+− and V0 gives Z+0 (the subscripts +, −, 0 refer to the positive, negative and zero
sequences, respectively).

Figures 7.39–7.41 illustrate the effect of two extreme cases of line termination (at
Kikiwa), i.e. the line open-circuited and short-circuited, respectively. The differences
in harmonic magnitudes along the line are due to standing wave effects and shifting
of the resonant frequencies caused by line terminations.

Figure 7.39 indicates the existence of high voltage levels at both ends of the open-
circuited line at the half wavelength frequencies. The 25th harmonic clearly illustrates
the standing wave effect, with voltage maxima and minima alternating at quarter wave-
length intervals.

At any particular frequency, a peak voltage at a point in the line will indicate the
presence of a peak current of the same frequency at a point about a quarter wavelength
away. This is clearly seen in Figure 7.40

When the line is short-circuited at the extreme end, the harmonic current penetration
is completely different, as shown in Figure 7.41(a). The high current levels at the
receiving end of the line are due to the short-circuit condition. Figure 7.13 shows that

7.58 m 7.58 m

12.5 m

Figure 7.38 Conductor information for the Islington to Kikiwa line: conductor type, Zebra
(54/3.18 + 7/3.18); length, 230 km; resistivity, 100 �m
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Figure 7.39 Positive sequence voltage versus frequency along the open-ended Islington to
Kikiwa line
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Figure 7.40 Positive sequence current along the open-ended line for a 1 per unit
positive-sequence current injection at Islington

the resonant maxima decrease as frequency increases. However, this does not appear to
be the case in Figure 7.41(a). The reason is that the points plotted correspond only to
harmonic frequencies, and resonances do not fall exactly on these frequencies; i.e. the
peak magnitudes at non-harmonic frequencies can be greater than the values plotted
in the figure.

Coupling between Harmonic Sequences It is the zero-sequence penetration, rather
than the positive sequence, that provides relevant information for the assessment of
possible harmonic interference in neighbouring telephone systems. The presence of
zero sequence in a transmission line connected to a converter bridge is entirely due to
asymmetries in either the converter a.c. plant components or the transmission line itself.

In Figure 7.41 the locations of maximum zero-sequence current (Figure 7.41(c))
coincide with those of the positive sequence (Figure 7.41(a)), and the highest level
produced in the test line, about 10% of the injected positive-sequence current, occurs
at the 19th harmonic, at the Kikiwa end of the short-circuited line. However, the
levels of zero sequence current are low (notice the scale change between positive- and
zero-sequence plots).
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Figure 7.41 Sequence currents along the short-circuited line for a 1 per unit
positive-sequence current injection at Islington: (a) positive-sequence current;

(b) negative-sequence current; (c) zero-sequence current

Differences in Phase Voltages In conventional harmonic analysis using single-phase
positive sequence models, a transmission line is assumed to have one resonant fre-
quency. However, the use of the three-phase algorithm to model the Islington–Kikiwa
unbalanced transmission line shows that the resonant frequencies are different for each
phase. In this case, the spread of frequencies can be seen from Figure 7.42 to be
approximately 6 Hz.

The different magnitudes of the resonant frequencies (up to 30%) of the three phases
partly explains the problems encountered with correlating single-phase modelling and
measurements on the physical network. The results clearly indicate that harmonics in
the transmission system are unbalanced and three-phase in nature.
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Figure 7.42 Three-phase resonant frequencies of the Islington to Kikiwa line with a 1 per
unit positive sequence current injection (skin effect included)

5.5 m

6.34 m

4.42 m

4.8 m

5.5 m

12.5 m

Figure 7.43 Line geometry of a double circuit line. Length, 167 km; earth resistivity,
100 �m; two conductors per bundle; bundle spacing, 0.45 m; conductor, 30/3.71 + 7/3.71

Effect of Mutual Coupling in Double Circuits The unbalanced behaviour of double
circuit lines is well documented at fundamental frequency [35,36]. The three-phase
harmonic penetration algorithm is used in this section to determine the importance
of modelling mutual coupling at harmonic frequencies. The line used is shown in
Figure 7.43.

Figure 7.44 displays the harmonic impedance (Z++, Z00) seen from the point of
harmonic injection, both for a 1 per unit positive-sequence current and 1 per unit
zero-sequence injections. The figure also displays the coupling between the positive
sequence and the other sequence networks, i.e. Z+− and Z+0.

Results for the case of a coupled line are illustrated in Figure 7.44(a) and those of
two single-circuit lines in Figure 7.44(b).

The magnitudes and resonant frequencies of the Z++ and Z+0 impedances are not
affected by the modelling of mutual coupling. However, the level of Z+− has changed
substantially at resonance, showing appreciable imbalance. Moreover, the magnitude
and resonant frequency of Z00 is very different in the two cases.
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Figure 7.44 Sequence impedance magnitude versus frequency: (a) double-circuit coupled
line; (b) two single-circuit lines

Robinson [37] reported that telephone interference caused by zero-sequence currents
did not coincide with high levels of power system harmonics. This can partly be
explained by the different resonant frequencies of the Z++ and Z00 observed.

Maximum Values of Currents and Voltages along Transmission Lines Due to the
standing wave effect of voltages and currents on transmission lines, the maximum
values of these are likely to occur at points other than at the receiving end or sending
end busbars. These local maxima could result in insulation damage, overheating or
electromagnetic interference. It is thus necessary to calculate the maximum values of
currents and voltages along the line and determine the points at which they occur.

Knowing the receiving end current and voltage, for each harmonic frequency, the
current and voltage at any point on the line can be calculated for each frequency by
the following equations [38]:

I (x) = IR

2Z0

[
(ZR + Z0)e

γ x + (Z0 − ZR)e−γ x
]

(7.98)
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V (x) = IR

2

[
(ZR + Z0)e

γ x + (ZR − Z0)e
−γ x

]
(7.99)

where x is the distance from the receiving end, IR is the receiving end current, VR is the
receiving end voltage and ZR = VR/IR. The points on the transmission line at which
these are maximum are obtained by considering the currents and voltages as forward
(incident) and backward (reflected) travelling waves with respect to the receiving end.

For example, consider the current equation (7.100). The incident current at the
receiving end is

I+
R = (ZR + Z0)

2Z0
IR (7.100)

and the reflected current at the receiving end

I−
R = (Z0 − ZR)

2Z0
IR (7.101)

The angles associated with these currents at any point along the line are given by

θ+ = θ+
R + βx, θ− = θ−

R − βx, (7.102)

where θ+
R , θ−

R are the angles of the current at the receiving end.
The current will be a maximum for θ+

R equal to θ−
R . Thus

θ+
R + βx = θ−

R − βx, (7.103)

or

x = θ−
R − θ+

R

2β
(7.104)

The current will also have local maxima at intervals of one half wavelength along
the line.

While the total r.m.s. voltage and current (over the fundamental and all harmonics)
are of greatest importance, the location of the maximum total r.m.s. voltage and current
will most likely be dominated by that harmonic which is closest to a resonant frequency
of the system.

The harmonic analysis described above uses phase components whereas for telephone
interference the zero-sequence component is of primary importance. The sequence com-
ponents (indicated by subscripts +, −, 0 for the positive, negative and zero sequences,
respectively) are obtained from the phase quantities (1, 2, 3) using the relationship

[V+−0] = [Ts]
−1[V123] (7.105)

[I+−0] = [Ts]
−1[I123]

= [Ts]
−1[Y123][Ts][V+−0] (7.106)
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where [Ts] is the transformation matrix.

[Ts]
−1 = 1

3


 a a2 1

a2 a 1
1 1 1


 [Ts] =


 a2 a 1

a a2 1
1 1 1


 and a = −1

2
+ j

√
3

2

The sequence voltages and currents are thus related by the sequence admittance matrix

[Y+−0] = [Ts]
−1[Y123][Ts] (7.107)

In practice, a transmission line will contain sections with different tower geom-
etry. Each of these sections can then be explicitly represented by its equivalent PI
circuit or these can be cascaded to obtain an overall equivalent of the complete line.
The most efficient solution is to carry out the system harmonic flow analysis with-
out explicit representation of the individual sections and then use a post-processing
technique whereby the end terminals, voltages and currents are used to calculate the
harmonic current profile along the transmission line section of interest. An example of
the end result is shown in Figure 7.45 for a 110 kV double-circuit line.

When performing telephone interference studies often the harmonic sources are not
well known yet need to be represented in the simulation. For example, the troublesome
harmonics could be entering the 110 kV circuits from the local low-voltage distribution
system or from the 220 kV system. Without resorting to a system-wide Harmonic State
Estimation, it is difficult to overcome this problem for telephone interference studies.
A number of simulations are performed for different injection scenarios. Usually a
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Figure 7.45 Zero-sequence harmonic current profile along a double-circuit transmission line



318 COMPUTATION OF HARMONIC FLOWS

1 per unit injection is used and the post-processing program scales all the harmonic
penetration results to match given measurements levels at one point in the system.
Measurements are taken at a second point and these are compared to the scaled results
of the other scenarios. Injection scenarios that do not result in the correct harmonic
profile are then discarded. This can be taken a step further by opening some circuit
breakers to produce a different harmonic flow pattern to distinguish between scenarios
that are not easily distinguished from measurements at two locations.

7.13.2 Impedance Loci

This section considers the progressive formation of the harmonic impedances of an
interconnected system from the individual component characteristics. The test system,
shown in Figure 7.46, is a nine-bus network comprising the 220 kV transmission sys-
tem below Roxburgh in the south island of New Zealand. The current harmonic source
is an existing aluminium smelter at the Tiwai bus.

The double-circuit lines are symmetrical about the tower axis and the transformers
have star or delta connections depending on their location in the system, as indicated
in Figure 7.47.

Generator transformers have deltas on the generator, or low-voltage side, and ground-
ed star connection on the high-voltage side. Transmission substation transformers have
grounded star on the high-voltage side and low-voltage windings with delta-connected
tertiaries. Distribution transformers supplying the electrical supply authorities are delta-
connected on the high voltage and grounded star on the low-voltage side.

The connection is important in considering the flow of zero-sequence harmonic
currents. A delta-connected winding will act as an open circuit and a star-connected
winding, with neutral point grounded, as a short-circuit to the zero-sequence harmonic
currents. The zero-sequence impedance of the system will thus be considerably different
to that presented to positive- or negative-sequence currents.

Tiwai

1 p.u.

Manapouri

Invercargill

135 MW, 36 MVAr

Roxburgh

90 MW, 54 MVAr

Figure 7.46 Test system including load and generation
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Figure 7.47 Transformer connections: (a) generating station; (b) transmission substation;
(c) distribution substation

Generator, Transformer and Load Impedances at Roxburgh With reference to
Figure 7.46, a step-by-step formation of the system impedances is initiated by exam-
ining the effect of the various components at Roxburgh.

The harmonic impedance locus of the generator, considered in isolation, is shown
in Figure 7.48 (curve A). The addition of the generator transformer produces the
impedance locus of curve B. Finally, curve C illustrates the damping effect of a 90 MW
and 54 MVAR load connected through a transformer to the Roxburgh bus.
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Figure 7.48 Polar plot of the generator, transformer and load impedances at Roxburgh: curve
A, generator only; curve B, generator and generator transformer; curve C, generator, generator

transformer, load (100%) and load transformer
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Figure 7.49 Polar plot of the impedance of the open-circuited Invercargill to Roxburgh lines
with 50 Hz intervals marked

Interconnection Between Invercargill and Roxburgh The double 220 kV trans-
mission line between Invercargill and Roxburgh in isolation (i.e. open-circuited at
Roxburgh) has the impedance locus of Figure 7.49.

At fundamental frequency the line is capacitive, although this is difficult to observe.
As the frequency increases the line approaches a series resonance, at which point the
impedance is very small and purely resistive, the phase angle becoming inductive.
From this point the impedance increases in magnitude in a clockwise direction with
increasing frequency. Somewhere between the 11th and 12th harmonics a parallel
resonance occurs, manifested by a large, purely resistive impedance. As frequency
increases further the line again becomes capacitive.

The effect of line termination is shown in Figure 7.50 for a one per unit harmonic
injection at Invercargill. When the line is isolated (i.e. corresponding to the locus of
Figure 7.49) the per unit voltages of the various harmonics are illustrated in curves A
of Figure 7.50. Figure 7.50(a) gives the voltage magnitudes and Figure 7.50(b) their
phase angles.

The same graphs show corresponding voltage magnitudes and phases when the
line is short-circuited (Figure 7.50, curves B), loaded by the generator-transformer
group (Figure 7.50, curves C) and by the complete system at Roxburgh (Figure 7.50,
curves D).

Left-Hand Side of the System Referring now to the left-hand side part of the system
of Figure 7.46, with the lines between Invercargill and Roxburgh open, Figure 7.51
illustrates the effect of one per unit harmonic current injections at Tiwai. Curves A



EXAMPLES OF APPLICATION OF THE MODELS 321

1 3

20

(a)

(b)

180

135

90

45

0

−45

−90

−135

−180

A

A

B

D
C

3 5 7 9 11 13 15 17 19 21 23 25

B A

C

D

C

D

B

A

D

C

18

16

14

12

10

8

6

4

2

0
5 7 9 11

Order of harmonic

Order of harmonic

V
ol

ta
ge

 m
ag

ni
tu

de
 (

pe
r 

un
it)

V
ol

ta
ge

 p
ha

se
 a

ng
le

 (
de

gr
ee

s)

13 15 17 19 21 23 25

Figure 7.50 Positive-sequence voltages at Invercargill versus frequency for different
terminations of the Roxburgh to Invercargill lines: (a) voltage magnitudes; (b) voltage phase

angles. Curves A, open circuit; curves B, short-circuit; curves C, generator and generator
transformer; curves D, generator, generator transformer, load and load transformer

10

8

6

4

V
ol

ta
ge

 m
ag

ni
tu

de
 (

pe
r 

un
it)

2

0
1 3 5 7 9 11 13

Order of harmonic

15 17 19 21 23 25

A

C

D

B

A

C

D

Figure 7.51 Positive-sequence voltage magnitude at Tiwai versus frequency for different
termination: curve A, open circuit; curve B, short-circuit; curve C, generator and generator

transformer; curve D, generator, generator transformer, load and load transformer



322 COMPUTATION OF HARMONIC FLOWS

and B of Figure 7.51 show the voltage spectra at Tiwai with the rest of the system
open and short-circuited, respectively.

When, first, generation (Figure 7.51, curve C) and then load (Figure 7.51, curve D)
are added with the associated transformers, similar effects to the previous section are
observed. The resonant points lie between those of the open and short-circuit cases,
with reduced magnitudes as compared with the extreme cases of termination.

Complete Test System By combining the two individual systems considered in the
two preceding subsections, the progressive formation of the test network (Figure 7.47)
is completed.

Figure 7.52 compares the voltage magnitudes at the Tiwai bus for different loading
conditions. Curve A shows the effect of the transmission system in isolation (i.e.
with all the generators and loads disconnected); the resulting resonance frequencies of
the interconnected system do not correspond to those of the two individual parts of
the system described in the two preceding subsections. There are now two resonances
around the 18th harmonic, one smaller in magnitude. The effect of this latter resonance
is to create an extra loop in the impedance locus (as shown in Figure 7.53).

Figure 7.53 illustrates the progressive complexity of the impedance locus as the a.c.
system increases.

An appreciation of the variation of the harmonic voltages throughout the complete
system is obtained using the three-dimensional diagram of Figure 7.54. Lower voltages
are observed on the transformer secondaries, namely at the generator and load busbars.
Two major resonances occur at all the busbars. The first is between the 4th and 5th
harmonics and the second between the 19th and 20th harmonics; these correspond with
the resonances observed in Figure 7.52 at Tiwai.

Three-Phase Impedances of the Test System at Tiwai The unbalanced nature of the
transmission network can be illustrated by plotting the three individual equivalent phase
impedances. Figure 7.55 shows that the imbalance is low at fundamental frequency,
but increases towards the first parallel resonance which occurs between the fourth and
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fifth harmonics, where the magnitude differences are of the order of 30%. This effect
is mainly caused by differences in the mutual impedances between phases, resulting
from the asymmetry in transmission line conductor geometries.

The series resonance at the 11th harmonic exhibits low levels of imbalance, and the
second parallel resonance between the 19th and 20th harmonics again shows consider-
able differences in the impedances between phases. High levels of imbalance at parallel
resonant frequencies assist in explaining the difficulties experienced with correlating
single-phase simulation results with measured tests [39].
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While most system loads are nearly balanced, this is not the case with single-phase
traction supplies [40]. This effect has been simulated by reducing phase 1 load by 10%
and increasing phase 3 load by 10%. The results, also plotted in Figure 7.55, indicate
that the level of impedance imbalance at the parallel resonant points increases with
load imbalance.

Voltage Sensitivity to Line Parameter Variation By selectively reducing the line
lengths and observing the voltages at Tiwai, the lines which most affect resonant
conditions are determined. The results are illustrated in Figure 7.56.

A 5% reduction in length in the Tiwai to Manapouri lines (Figure 7.56, curve B)
causes the two resonant frequencies around the 18th harmonic to shift by approximately
20 Hz. A 5% decrease in the lengths of the lines from Roxburgh to Invercargill has
practically no effect on the smaller resonant frequency, but changes the resonance
between the 19th and the 20th harmonics by approximately 10 Hz.

The lines close to the point of the current injection appear to have the largest effect
on the system resonance frequencies, and thus their parameters must be represented
with a greater level of accuracy than the lines more distant in the network.

Harmonic Imbalance Factor Any harmonic imbalance in the a.c. system will affect
the three-phase voltage waveforms, and hence the zero crossings used for the con-
verter control. As a consequence, harmonic imbalance will affect the non-characteristic
harmonics produced by converter plant.

At fundamental frequency an imbalance factor has been used to indicate the extent
of unbalanced system conditions [41]. The use of such an index at harmonic frequen-
cies gives a simple measure of imbalance. With reference to the reduced system of
Figure 7.46, Table 7.4 lists the values of the imbalance factor at parallel resonances,
defined as the ratio of negative-sequence voltage, for a balanced one per unit harmonic
current injection. The values of the imbalance factor are largest at parallel resonant
frequencies; Table 7.4 represents maximum levels.
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Table 7.4 Values of the imbalance factor at parallel resonances for various
terminations of the reduced system

Harmonic Imbalance
factor (%)

Reduced system, no generation or load 17 24.8
Reduced system, generation only 19 10.1
Reduced system, generation and 100% load 20 6.2
With phasing the same on each circuit 20 17.2

R

Y Y

B R

B

(a)

B

Y Y

R R

B

(b)

Figure 7.57 Examples of different tower conductor arrangements: (a) common arrangement;
(b) phase positions the same in each circuit

The imbalance factor is greatest with a network comprising only the transmission
lines. The connection of both generation and load, the models of which are balanced,
reduces the imbalance factor. At periods of light load, therefore, the a.c. system tends
to be more unbalanced than at times of high load, and the generation of converter
uncharacteristic harmonics will increase accordingly. At light load, however, the level
of harmonics will be higher and so imbalance is only one factor in the production of
these uncharacteristic harmonics.

The last two entries in Table 7.4 are for the system with both load and generation,
for line phasings as indicated in Figure 7.57(a) and (b) respectively.

The position of phases in double-circuit lines is normally varied in each circuit as
in Figure 7.57(a) to minimise the fundamental frequency imbalance. When the phase
positions are altered to be the same in each circuit, as illustrated in Figure 7.57(b), the
imbalance factor rises substantially to 17%. Conductor geometries are thus important
in unbalanced harmonic penetration analysis.

7.13.3 Harmonic Analysis of Transmission Line with Transpositions [42]

The conductor geometries of high-voltage transmission lines produce considerable
impedance asymmetry, which in turn causes corresponding voltage imbalance at the
far end of the line.

It is generally accepted that, for practical distances, the effect of line asymmetry
can be eliminated by the use of phase transpositions dividing the line into three, or
multiples of three, equal lengths. Accordingly, transpositions are often used in long-
distance transmission as a means of balancing the fundamental frequency impedances
of the line.
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In fundamental frequency studies the effect of transpositions is generally accounted
for by averaging the distributed parameters of the three transposed sections and using
them in a single nominal or equivalent PI circuit. Such a method, however, assumes
that the line geometry is perfectly symmetrical at all points, whereas the transpositions
occur at two discrete distances, at different points on the standing wave.

The series impedance and shunt equivalent matrices are combined into one admit-
tance matrix that represents the transposed section, i.e.

Y′ =
Y′

SS −Y′
SR

−Y′
RS Y′

RR

(7.108)

where
[YSS] = [YRR] = [Z]−1 + 1

2 [Y]

[YSR] = [YRS] = [Z]−1

The admittance parameters for the individual sections are then transformed into A′,
B′, C′, D′ parameters, such that they can be cascaded, i.e.

[A] = [A1][A2][A3] (7.109)

Finally, the resultant transmission parameters A, B, C, D are converted back into an
admittance matrix which properly represents the effects of transpositions.

The nodal admittance matrix equation of the three-phase transmission line may be
written as

IS

IR

=
YSS −YSR

−YRS YRR

VS

VR

(7.110)

where IS, IR, VS and VR are vectors of a size determined by the number of cou-
pled conductors.

Applying a partial inversion algorithm to equation (7.110), the following matrix of
inverse hybrid parameters is obtained.

IS

VR

=
YSS − YSRY−1

RRYRS −YSRY−1
RR

Y−1
RRYRS Y−1

RR

VS

IR

(7.111)

or

VR = Y−1
RRYRSVS + Y−1

RRIR (7.112)

Two different cases are of interest and will be used in the following sections. The
first relates to a harmonic voltage excited open-ended line, specified as VS = 1 p.u. and
IR = 0. This case produces the highest voltage harmonic levels and must, therefore,
be considered for design purposes. The second important case is the harmonic current
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VS  = 1   IR = 0

[VR]
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(b)

VS  = 0   IR = 1

[VR]

[IR]

Figure 7.58 Diagram of terminal conditions: (a) voltage source and open-ended line;
(b) current source and short-circuited line

6.9 m

27.5 m

9.00 m

12.65

Figure 7.59 Test line

excited short-circuited ended line, specified as VS = 0 and IR = 1 p.u., which is more
likely to be of practical interest. These two cases are illustrated by the simplified
diagrams of Figure 7.58(a) and (b), respectively.

Details of the Test Line The test line, shown in Figure 7.59, is of flat configuration
without earth wires, and the main parameters are:

Nominal voltage = 500 kV
Conductor type: Panther (30/3.00 + 7/3.00 ACSR)

Resistivity = 100 �/m
Equal distances between transpositions and the natural impedance matrix

Effect of Transpositions with Voltage Excitation Harmonic voltage sources are
often ignored when assessing harmonic distortion. However, under non-ideal system
conditions, synchronous generators can produce harmonic EMFS [43]. Moreover, some
power electronic circuits operate as harmonic voltage sources [44,45]. It is thus appro-
priate to consider the effectiveness of transpositions in the presence of harmonic as
well as power frequency voltage sources.
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The test line is fed from 1 p.u. voltage sources at fundamental and harmonic frequen-
cies. It is realised that the presence of 1 p.u. harmonic voltage sources is unrealistic, but
such a figure provides a good reference for comparability between the effects at dif-
ferent frequencies. The expected harmonic voltage levels are likely to be about 1–3%
of the fundamental and, therefore, the results plotted in later figures should be scaled
down proportionally.

Open-Ended Line The fundamental frequency behaviour of the open-ended line is
illustrated in Figure 7.60(a) and (b) for the line untransposed and transposed, respec-
tively. In each case, the receiving end voltages are plotted for line distances varying
from 50 to 1500 km.

These figures indicate that in the absence of voltage compensation, the effectiveness
of transpositions is limited to line distances under one-eighth of the wavelength (i.e.
750 km at 50 Hz). For distances approaching the quarter wavelength, the transposed
line produces considerably greater imbalance than the untransposed.
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Figure 7.60 Fundamental frequency three-phase voltages at the end of the test line
(open-circuited) versus line distance. (a) without transpositions: ( ), R; (- - - -), Y;

(· · · · · ·), B; (b) with transpositions: ( ), Y; (- - - -), B; (· · · · · ·), R
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Although such transmission distances are impractical without compensation, the
results provide some indication of the behaviour to be expected with shorter lines
at harmonic frequencies. Such behaviour is exemplified in Figure 7.61, which corre-
sponds to the case of a line excited by 1 p.u. 3rd harmonic voltage. However, the
results plotted in Figure 7.61, obtained at 50 km intervals, are not sufficiently dis-
criminating around the points of resonance. Thus the region of resonant distances has
been expanded in Figure 7.62 to illustrate more clearly the greatly increased imbal-
ance caused by the transpositions. The resonant peaks of the three phases occur at
very different distances, e.g. Figure 7.61(b) shows 50 km diversity between the peaks.
Therefore, for a given line distance the resonant frequencies will vary, thus increasing
the risk of a resonant condition.

It is also interesting to note the dramatic voltage amplification which occurs for
electrical distances equal to the first quarter wavelength. Figure 7.62 shows a peak of
35 per unit for the 3rd harmonic when the line is 500 km long, and the 5th harmonic
peak (not shown) reaches 45 per unit at about 300 km.

Figure 7.61(a) and (b) also show the effect of attenuation with distance, i.e. the con-
siderable reduction of the peaks at resonant distances at the odd quarters of wavelength
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Figure 7.61 Three-phase third harmonic voltages at the end of the test line (open-circuited)
versus line distance. For key see Figure 7.60
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Figure 7.62 Results of Figure 7.61 expanded in the region of resonance. For key see
Figure 7.60

other than the first. Such attenuation is caused by the series and shunt resistive com-
ponents of the equivalent PI model.

The immediate effect of the transpositions is the compensation of geometrical line
asymmetry. This can only result in electrical symmetry if the average currents in
each of the transposed sections are similar. Thus the deterioration of voltage balances
current standing wave along the line. The improved symmetry of the phase voltages
at the three-quarter wave distance, seen in Figure 7.61, is due to the averaging effect
produced by the third harmonic standing wave, as illustrated by the idealised waveforms
of Figure 7.63.

From the above discussion the effectiveness of transpositions should improve as the
voltage and current profile throughout the line becomes more uniform, i.e. closer to
the natural loading condition, which is discussed in the next section.

Line Loaded If an ideal (uncoupled and unattenuated) line is loaded with its char-
acteristic impedance, the sending end voltage will be sustained throughout the line,
provided that the phase angle difference between the sending and receiving end voltages
is kept below 45◦ (or 750 km at 50 Hz). To assess the effectiveness of transpositions
with loading, the test line was loaded with its characteristic impedance calculated at
50 Hz. It must be noted that in a coupled multiconductor line such impedance is a
matrix, of which only the diagonal elements are being used for the loading. Further-
more, the three diagonal elements are different and are also frequency dependent.
We cannot therefore expect to see the uniform 1 p.u. voltage predicted by conven-
tional theory.

For a line loaded with its characteristic impedance, the effectiveness of transpositions
is limited to distances of about 350 km and 200 km for the 3rd and 5th harmonics,
respectively. Beyond those distances the transposed lines produce higher levels of
imbalance. Subsequent harmonic peaks are seen to reduce rapidly with loading. By
way of example, the 5th harmonic voltages without and with transpositions are shown
in Figure 7.64(a) and (b), respectively.

The harmonic behaviour of a loaded transmission line without and with transpo-
sitions is illustrated in Figure 7.65(a) and (b), respectively. This figure displays the
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Figure 7.63 (a) Standing waves along a line of quarter wavelength: (i) voltage wave;
(ii) current wave. (b) Third harmonic standing waves along a line of three quarter wavelength:

(i) voltage wave; (ii) current wave
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Figure 7.64 Three-phase fifth harmonic voltages at the end of the test line (loaded with the
characteristic impedance). For key see Figure 7.60

variation of 5th harmonic voltage at the receiving end of a 250 km line with one per
unit voltage injection at the sending end. The level of imbalance of the untransposed
line (Figure 7.65(a)) shows a gradual increase up to about the natural load (1 p.u.
admittance) and very little change thereafter. In contrast, Figure 7.65(b) illustrates a
dramatic increase in the voltage imbalance as the load reduces from the natural level
(1 p.u. admittance) to the open-circuit condition. A qualitative justification for this
behaviour has been made in Figure 7.63. As the line load increases above the natural
level, Figure 7.65(b) shows that effectiveness of the transposition increases.

Considering the relatively insignificant levels of harmonic voltage excitation
expected from a well-designed system, the resulting voltage distortion in a transposed
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Figure 7.65 Three-phase fifth harmonic voltages at the end of a 250 km test line versus
loading admittance (referred to the characteristic admittance). For key see Figure 7.60
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Figure 7.66 Three-phase third harmonic voltages caused by 1 p.u. third harmonic current
at the point of harmonic current injection. For key see Figure 7.60

or untransposed load line is not expected to cause problems, except when the line is
lightly loaded. With harmonic current excitation the situation may be quite different,
and its effect is examined next.

Effect of Transpositions with Current Excitation The main cause of power sys-
tem harmonic distortion is the large static power converter, such as used in HVd.c.
transmission and in the metal reduction industry. Because of their large d.c. smoothing
inductance compared to the a.c. system impedance, static converters can be considered
as current sources on the a.c. side and voltage sources on the d.c. side [46].

Thus, the harmonic modelling of a long transmission line feeding a static converter
is basically that of Figure 7.58(b), i.e. a harmonic current source at the receiving end
of the line with the sending end shorted to ground through a relatively low impedance.

The harmonic voltages at the point of current harmonic injection follow the same
pattern as those of the open circuit line with harmonic voltage excitation. This is clearly
illustrated in Figure 7.66 for a case of 3rd harmonic current injection. Similarly to the
voltage excited open line, substantial voltage distortion results when the line length is
close to a quarter wavelength, although the imbalance caused by transpositions is less
pronounced in the case of current injection.
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7.13.4 Harmonic Analysis of Transmission Line with VAR
Compensation [47]

Matrix Model of a Compensated Line Generally, long transmission lines are divided
into two or three sections of equal length and VAR compensating equipment is con-
nected between them in the form of series capacitors and shunt inductors or capacitors.
An equivalent circuit of a typical long-distance transmission line with conventional
compensation elements is illustrated in Figure 7.67.

Each line section is represented by its harmonic admittance matrix

Y =
[

[YSS] [−YSR]
[−YRS] [YRR]

]
h

(7.113)

where
[YSS] = [YRR] = [Z]−1

EPM + 1
2 [Y]EPM

[YSR] = [YRS] = [Z]−1
EPM

the suffix EPM indicating equivalent PI model.
With the assumption that the compensating inductances and capacitances are uncou-

pled and linearly dependent with frequency, their corresponding harmonic matrix
admittances are:

Yc =

 jhoωoCc 0 0

0 jhoωoCc 0
0 0 jhoωoCc


 YL =




−j

hωoLc
0 0

0
−j

hωoLc
0

0 0
−j

hωoLc




(7.114)
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Comp.
Unit
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Figure 7.67 Equivalent circuit of VAR compensated transmission line point of harmonic
current injection
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where L and C are the fundamental frequency values of the compensating inductance
and capacitance derived from load flow studies, and h is the harmonic order.

Finally, the admittance matrices of the individual subsystems, i.e. the line sections
and VAR compensating units, must be combined into a single admittance matrix.

If the purpose is to observe harmonic voltages at the far end of the transmission
system, the individual subsystems must be transformed to ABCD parameters and then
cascaded to obtain an equivalent ABCD matrix equation. This in turn can be converted
back to an equivalent admittance matrix, which relates the currents and voltages at
the two ends of the line, as described by equations (7.112), (7.113) and (7.114) and
Figure 7.58

Harmonic Voltage Excitation The test line is a 1000 km line of the same configu-
ration as shown in Figure 7.59.

The addition of shunt inductive compensation effectively increases the characteristic
impedance and thus reduces the load that causes the optimum voltage profile.

For the positive-sequence shunt admittance values of the test system, a standard load
flow program was used to derive the optimal discrete shunt inductances required to
provide a practically constant voltage along the line at the fundamental frequency.

However, the addition of shunt inductance isolates the line from ground (reducing
its ability to act as a low-pass filter) and thus reduces its ability to dampen harmonics.

The results, plotted in Figure 7.68, correspond to an open-ended line and show
that while the fundamental frequency voltage profile is good, the line performance at
harmonic frequencies is worse than without compensation. In particular, the level of
the receiving end voltage for second-harmonic injection has increased dramatically.

In the absence of compensation, the natural load of the line under consideration is
approximately 950 MW, but the maximum nominal loading planned is 1450 MW, i.e.
1.5 times the natural load.

For this loading condition, Figure 7.69 shows the effect of a combined compensation
scheme, consisting of shunt and series capacitors. It is noted that shunt capacitors tend
to amplify harmonic distortion at the compensation points, while having the opposite
effect elsewhere.

Harmonic Current Excitation In this case, a one per unit harmonic current was
injected at the receiving end of the line.

The effect of shunt inductive compensation in the harmonic behaviour of the unloaded
line is shown in Figure 7.70; again the second harmonic shows the greater amplification.

The results of combining series and shunt capacitive compensation for the case of a
heavily loaded line, shown in Figure 7.71, indicate that the magnitudes of the harmonic
voltages for the loaded line are smaller than those of an open-ended line.

7.13.5 Harmonic Analysis of an HVD.C. Transmission Line [48]

Due to the limited number of phases and switching devices, the d.c. output voltages at
converter stations contain considerable ripple. Under perfectly symmetrical a.c. supply
and switching conditions, the voltage ripple consists only of twelve pulse-related har-
monics. In practice, however, a.c. system imbalance and asymmetrical firing may lead
to other frequencies being present in the d.c. voltage waveforms.
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It is, therefore, necessary to derive the full spectrum of harmonic admittances of the
d.c. link. For generality, the test system, based on the New Zealand system, contains
overhead lines and submarine cables, and each of them must be represented by the
frequency-dependent models derived in earlier sections. The New Zealand HVd.c. link,
illustrated in Figure 7.72, consists of six major subsystems, (ii), (v), (vi), (vii), (viii)
and (ix), and three auxiliary components (iii), (iv) and (x). The distances of the main
transmission components are:

SI inland line 484 km
SI coastal line 49 km
Cook Strait cable 37 km
NI coastal line 34.5 km

Figure 7.73 shows a typical tower, with relevant data (for the inland line section)
given in Table 7.5.
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(i)

(i) Convertor terminal
(ii) Smoothing reactor
(iii) High frequency capacitor (0.1 µF)
(iv) Line trap (1.05 mH)
(v) Surge capacitor (0.9 µF)

(vi) SI inland line section
(vii) SI coastal line section
(viii) Cook Strait cable
(ix) NI coastal line section
(x) 600 Hz damping circuit

(ii)

(iii) (v) (iii)(x)

(iv) (vi) (vii) (viii) (ix) (iv) (ii)
(i)

Figure 7.72 Layout of NZ d.c. link, including ancillary components

21 m

0.43 m 4.1 m

Figure 7.73 Typical d.c. tower
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Table 7.5 Inland line section data

Main conductors Earth wire

Resistance 0.351 3.1 ohms/km
Diameter 38.4 mm 11.5 mm
Skin ratio T/D 0.3859 0.5
Bundle spacing 431.8 mm –

Table 7.6 Data for the New Zealand cable system

Conductor Inside diameter
(mm)

Outside diameter
(mm)

Resistance

Core 13.462 33.477 0.0331 Ohms/km
Sheath 63.242 71.044 0.2865 Ohms/km
Armour 88.189 98.958 0.1148 Ohms/km
Sea 110.896 – 0.21 Ohms-metres

Towers in the coastal sections are identical to those in Figure 7.73 except that the
spacing between conductors is increased from 7.23 m to 12.8 m.

A cross-section of the submarine cable is shown in Figure 7.18, and relevant infor-
mation for the cable is given in Table 7.6.

A relative permittivity of 3.5 and a relative permeability of 1.0 for the insulation are
also assumed.

Derivation of Parameters [48] Considering the perfectly balanced self- and mutual
impedance of the line, the HVd.c. scheme is best analysed using sequence networks
(of positive and zero sequence). With reference to the circuit diagram of Figure 7.74,
the positive-sequence current is defined as the average current flowing from node 1 to
node 2, i.e.

I+ = (I1 − I2)/2 (7.115)

and the zero-sequence component is the average current flowing into the network, and
returning by some other path, i.e.

I0 = (I1 + I2)/2 (7.116)

I1 I3

V1

V2

V3

V4

I2 I4

Figure 7.74 Components of a two-phase system
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The relationships between the phase and sequence components of current and volt-
age are: [

I0

I+

] = [T]
[

I1

I2

]
(7.117)

[
V0

V+

] = [T]
[

V1

V2

]
(7.118)

where

[T] = 1

2
× [

1 1
1 −1

]
(7.119)

In terms of sequence components the impedances and admittances of the series and
shunt elements of the equivalent PI circuits of the subsystems are:

[Zsequence] =
[

Zo 0
0 Z+

]
(7.120)

[Ysequence] =
[

Yo 0
0 Y+

]
(7.121)

The above equation may be written as

[
Zs Zm

Zm Zs

]
= 0.5

[
1 1
1 −1

] [
Zo 0
0 Zp

] [
1 1
1 −1

]
(7.122)

Therefore
Zs = 0.5 [Zo + Zp] and Zm = 0.5 [Zo − Zp] (7.123)

Similarly
Ys = 0.5 [Yo + Yp] and Ym = 0.5 [Yo − Yp] (7.124)

The impedance and admittance matrices for each of the sections must be trans-
formed in ABCD parameter matrices in order to cascade the section. For the circuit of
Figure 7.75, the ABCD parameter transformation equations are as follows:

A = 1 + Y2Z

B = Z

C = Y1 + Y2 + Z Y1Y2

D = 1 + Y1Z (7.125)

For the situation under consideration, the scalar quantities Z, Y1 and Y2 must be
replaced with the appropriate matrices, i.e.

Y1 = Y2 = 0.5 [Yphase]

Z = [Zphase] (7.126)
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Y1 Y2

Z

Figure 7.75 Circuit for calculating ABCD parameters

Therefore, the ABCD parameter matrix equations become

[A] = [U] + 0.5[Yphase][Zphase]

[B] = [Zphase] (7.127)

[C] = [Yphase] + 0.5[Zphase][Yphase]
2

[D] = [A]

The final form of the ABCD parameter matrix for a particular section is, therefore

[ABCD] =
[

[A] [B]
[C] [D]

]
(7.128)

The sections may then be cascaded by simply multiplying their respective ABCD
matrices together, i.e.

[
[A] [B]
[C] [D]

]
=

[
[A1] [B1]
[C1] [D1]

]
x—x

[
[An] [Bn]
[Cn] [Dn]

]
(7.129)

The resulting 4 × 4 matrix must be converted back into a 4 × 4 admittance using
the following inverse equations:

[Y11] = [D][B]−1

[Y12] = [C] − [D][B]−1[A] (7.130)

[Y21] = −[B]−1

[Y22] = [B]−1[A]

The final admittance matrix, in terms of phase components, is

[Y] =




Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

Y41 Y42 Y43 Y44


 =

[
[Y11] [Y12]
[Y21] [Y22]

]
(7.131)
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Thus the transmission network of Figure 7.74 may be represented by the follow-
ing equation:

[I] = [Y][V] (7.132)

where [I] = [I1, I2, I3, I4] and [V] = [V1, V2, V3, V4].
In order to calculate the impedance seen from the sending end terminals, the 4 × 4

admittance matrix must first be reduced to a 2 × 2 matrix by eliminating the receiving
end voltages and currents. Since the receiving end converter can be approximated by a
voltage source, it appears as a short circuit to harmonic frequencies. It may, therefore,
be assumed that

V3 = V4 and I3 = −I4

This leads to the 2 × 2 admittance matrix in terms of I1, V1 and I2, V2 only:

Y′ =
[

Y11 − Ya Y12 − Yb

Y21 − Yc Y22 − Yd

]
(7.133)

where

Ya = (Y13 + Y14)(Y31 + Y41)

(Y33 + Y34 + Y43 + Y44)

Yb = (Y13 + Y14)(Y32 + Y42)

(Y33 + Y34 + Y43 + Y44)

Yc = (Y23 + Y24)(Y31 + Y41)

(Y33 + Y34 + Y43 + Y44)

Yd = (Y23 + Y24)(Y32 + Y42)

(Y33 + Y34 + Y43 + Y44)

Moreover, if the midpoint between the two poles at the far end is earthed, then
V3 = V4 = 0, and the above matrix simplifies to:

Y′ =
[

Y11 Y12

Y21 Y22

]
(7.134)

Finally, the positive-sequence admittance is

Ypos = 0.5[Y11 − Y12] (7.135)

Impedance Plots Figure 7.76 compares the impedance plots, as seen from the Ben-
more terminal, obtained both with and without ancillary components. As can be readily
seen, the effect of including the ancillary components is quite dramatic at high fre-
quencies, shifting all the resonances to the left, and markedly altering the magnitude
of the very first peak.

Figure 7.77 compares the same impedance plots as seen from the Haywards end.
Although the resonances are again shifted to the left, the effect of the cable, as discussed
in the previous section, tends to mask out the standing wave effects occurring in the
SI inland line section. Of note here, however, is the 600 Hz damping circuit, with the
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Figure 7.76 Harmonic impedances seen from Benmore: ( ), with ancillary components;
(- - - -), without ancillary components
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resonant point modified by the surrounding components. This resonant point may also
be observed from the Benmore end, in Figure 7.76, although its magnitude is reduced
by the masking effect of the cable.

7.14 Simulation Backed by Field Tests

The harmonic sources are not normally well known and yet they need to be represented
when performing harmonic penetration studies. Thus the analytical predictions must
be backed by limited field measurements to provide confidence on the adequacy of the
model representation.

The analytical model must provide information on the location of the harmonic
sources, possibly without resorting to the complexity of global state estimation tech-
niques. A variety of harmonic injection scenarios can be used to try to help to locate
these sources, e.g. to decide whether a particular troublesome harmonic penetrates a
110 kV system from the higher-voltage transmission side or from the local low-voltage
distribution network.

As an illustration, let us consider a set of field tests carried out in the New
Zealand system to detect the source of telephone interference experienced on the
Timaru–Temuka 110 kV line following the removal of the 110 kV line between
Ashburton and Temuka. Preliminary measurement determined that the 47th and 49th
harmonics were creating the problem. A number of simulations were carried out, and
those that did not show increases in the 47th and 49th harmonic content on the Timaru
end of the line were discarded (at that end of the line power and telecom lines share
the same poles).

The harmonic sources were lumped at strategic locations. On the 220 kV network
alternative harmonic injections were placed at Tiwai (the site of an aluminium smelter)
and at Benmore (the site of an HVd.c. converter); another source was considered at
low-voltage level in the Timaru area. The exciting source was a one per unit current
injection and a post-processing program was used to scale the harmonic penetration
results to match the measurement levels at one point in the system. The measurements
were then made at a second point and the scaled results were compared to those of the
previous scenario. This approach was repeated several times and the injection scenarios
that did not produced the correct harmonic profile were discarded. The results of this
tests indicated that the 47th and 49th harmonics were entering the 110 kV from the
220 kV system and that the 110 kV levels were insensitive to the location of these
sources in the 220 kV system.

Figure 7.78 shows the predicted profile before and after removing the Ashbur-
ton–Temuka line. This profiles matches the 110 mA of 49th harmonic measured at
Timaru and 10 mA measured at the Temuka end of this line. Various ways of reduc-
ing the harmonic levels were then investigated and studies carried out to determine
the sensitivity of the harmonic content to loading levels, length of lines (since the
actual length normally exceeds the map lengths due to the terrain of the countryside),
sequence of the harmonic injections and harmonic source locations.

Figure 7.78(b) shows the zero sequence obtained from the sequence components
transformation of the phase values in Figure 7.78(a). The zero-sequence currents along
other transmission lines in the South Island, displayed in Figure 7.79, show that some
of them are significantly larger.
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Figure 7.78 Effect of removal of the Ashburton–Temuka line on the 49th harmonic in the
Timaru–Temuka lines

The computer model was also used to evaluate the effect of either extra series
inductances or shunt capacitances. A promising solution was a possible system recon-
figuration; this was tested by opening some circuit breakers to produce a different
harmonic flow pattern, which was then compared to the computer predictions. The
results indicated that the 47th and 49th harmonic levels dropped when the circuit
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Figure 7.79 Zero sequence 49th harmonic current profile in New Zealand (SI)

breakers were opened to disconnect the 110 kV network south of Timaru. This is con-
sistent with the fact that a significant amount of the harmonics are entering the 110 kV
system from the 220 kV side.

A relatively simple field test to verify the theoretical models is the use of ripple
control signal injection on the system and then comparing the results with the computer
predicted values. For example, a test with a ripple signal of 175 Hz at the 66 kV busbar
in Christchurch (New Zealand) gave a measured value of 9.76, while the predicted
value was 8.92.

7.14.1 Post-Processing of Transmission Line Harmonics for Test
Result Comparisons

Restricted measurements on the physical network limit the ability to compare a
three-phase model with test results. Also, the data obtained from live three-phase
systems only includes the phase voltages and currents of the coupled phases. To
compare measured and simulated impedances at a current injection busbar it is thus
necessary to derive equivalent phase impedances from the 3 × 3 admittance matrix.
If the sequence of a given harmonic current injection is known, this can be used to
give a phase impedance incorporating mutual coupling. For example assuming positive
sequence and making I1 = I� 0◦ per unit, I2 = I � − 120◦ per unit, I3 = I � + 120◦ per
unit, the matrix equation


 I1

I2

I3


 =


 Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33


 ·


 V1

V2

V3


 (7.136)
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can be solved for V1, V2 and V3, yielding the following equivalent phase impedances:

Z1 = V1

I1
Z2 = V2

I2
Z3 = V3

I3
(7.137)

Often three-phase analysis results need to be compared against single-phase results
(i.e. positive-sequence model), either from measurements or single-phase analysis. Con-
sider the comparison of harmonic impedance.

In terms of sequence components, equation (7.136) becomes


 I+

I−
I0


 =


 Y++ Y+− Y+0

Y−+ Y−− Y−0

Y0+ Y0− Y00


 ·


V+

V−
V0


 (7.138)

If a pure positive sequence current is injected, all sequences of voltage are produced
due to the coupling between sequences. This coupling can be derived using a Kron
reduction, i.e. 

 I+
I−
I0


 =

[
[A] [B]
[C] [D]

]
 V+

V−
V0


 (7.139)

where
[A] = [Y++][B] = [ Y+− Y+0 ]

[C] = [ Y−+ Y0+ ]t and [D] =
[

Y−− Y−0

Y0− Y00

]

Setting I− = 0 and I0 = 0 and rearranging gives:

I+ = ([A] − [B]−1[D][C])V+ = Y effective
+ V+ (7.140)

which results in the following positive-sequence impedance:

[Z+] = ([A] − [B]−1[D][C])−1 (7.141)

7.15 Discussion

The main content of this chapter has been a review of the harmonic models in current
use for the network and load components of a linear power system. These models
and a set of specified harmonic sources (as described in Chapter 3) have been used
to develop a direct harmonic flow to calculate the distribution of voltage and current
harmonics throughout the linear power system. The harmonic flow algorithm has been
described as multi-phase and multi-source, although the single-phase, single-source
model is still in common use in filter design.

However, the direct solution is based on the assumption of fixed harmonic sources,
i.e. ignoring harmonic interactions between the nonlinear sources and the linear sys-
tem. This is a reasonable approximation when the power rating of the nonlinear source
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is small relative to the system fault level. The direct solution can lead to unsatisfac-
tory designs when large converter plant is involved, and more advanced solutions are
presented in the next chapter covering such cases.
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8

Advanced Harmonic Assessment

8.1 Introduction

Given the lack of detailed information normally available on the characteristics of the
harmonic sources, the latter are often represented as approximate harmonic current
injections. In an existing system these can be derived from selective measurements,
whereas for planning studies the current injections are obtained from relatively simple
models as described in Chapter 2.

In the static converter case the current injection method normally assumes a steady
firing delay angle, either no commutation period or one of unvarying duration, an
undistorted a.c. system voltage and perfect d.c. current. In practice this is rarely the
case. Some voltage distortion and/or unbalance will exist on the a.c. side and current
ripple on the d.c. side. Through the current controller the firing angle will not be
steady and the commutation period duration will also vary. Therefore not only will
harmonic voltages and currents be transferred through the converter, but they may also
be amplified through the variation of the valves’ switching instants. These interactions
have particular relevance for non-characteristic harmonics.

Although the current injection method is used extensively in the design of filters, as
explained in Chapter 6, this approach can lead to unsatisfactory solutions in applica-
tions involving very large power ratings such as an HVd.c. converter [1]. By ignoring
or oversimplifying the interaction that exists between the converter and the a.c. and
d.c. systems, an important low-order harmonic (or inter-harmonic) parallel resonance
can be missed, leading to operational problems and even harmonic instabilities [2].

This chapter describes several algorithms with more advanced representation of
the critical harmonic sources, taking into account their interactions with the rest of
the power system components. Other topics discussed are the prospects for global
harmonic state estimation and harmonic source identification. The chapter ends with
a thorough assessment of the potential application of the electromagnetic transients
simulation programs for harmonic analysis.

8.2 Transfer Function Model

Based on modulation theory and small signal linearisation, the transfer function concept
provides an accurate direct solution of the converter response when the input voltage
waveform is modulated by a signal at any specified frequency [3].

Power System Harmonics, Second Edition J. Arrillaga, N.R. Watson
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85129-5
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In the case of the six-pulse converter, two transfer functions Yψdc and Yψac are needed
to describe the interconnection between the d.c. and a.c. sides of the converter. The
d.c. voltage is calculated by summing each phase voltage multiplied by its associated
transfer function, i.e.

vd = N
∑
ψ

Yψdcvψ (8.1)

where ψ = 0◦, 120◦ and 240◦ for phases a, b and c, N is the converter transformer
ratio and vψ are the three phase voltages. Yψdc has values between −1 and +1, where
+1 signifies a connection of the d.c. side positive bus to the phase in question, −1
signifies a connection of the d.c. side negative bus to the phase in question, and 0
indicates no connection. By assigning the transfer function a value of 0.5 for the two
commutating phases, the d.c. voltage is correctly represented during the commutation
process.

The a.c. current in each phase can be defined by

iψ = NYψacidc (8.2)

where idc is the d.c. side current, and Yψac is similar to Yψdc, except that during
the commutation period the a.c. current rises or falls in a continuous manner and is
approximated by a linear transfer of the d.c. current from one phase to the next.

Both transfer functions are built up by the summation of a basic function (no
commutation period and steady firing angle), a firing angle variation function, and
a commutation function. The process is illustrated in Figure 8.1, where the dotted line
represents the basic transfer function, the dashed line the function revised to include a
firing angle variation of �α, and the solid line the function further revised to include
the effect of a commutation period. Breaking up the transfer function in this way allows
the frequency spectra to be more easily written.

The firing angle variation function is characterised as a set of pulses, with fixed
leading edges and variable trailing edges. For Yψdc, the commutation function comprises
a set of rectangular pulses, of which the leading edges match the firing angle variation,
and the trailing edges vary somewhat differently. For Yψac, the commutation function
comprises a set of saw-tooth pulses, of which the leading and trailing edges match the
firing angle variation. When the spectrum of this waveform is written, the current-time
area of the commutation function has the dominant effect. An effective commutation
period duration µ1 is defined, such that the area of the Yψdc commutation function
matches the area of the true commutation waveform. In addition a small variable
triangular pulse is added to account for the variation in this area consequential to the
a.c. voltage, d.c. current, or firing angle variations.

The frequency spectra of the transfer functions is derived in Chapter 5 of refer-
ence [3].

The transfer function is a very useful concept for the design of control systems
because it provides information on cause–effect relationships. However, to reduce the
complexity of the formulation, the linearisation process is truncated at the first term of
Taylor’s series. This simplification has little effect on the accuracy of the results for
the low harmonic orders but the solution accuracy decreases with increasing distortion
magnitude and frequency.
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Figure 8.1 Transfer functions: (a) Yψdc; (b) Yψac

The main limitation of the direct solution is its inability to model the interaction
between the harmonic source and the system harmonic flow.

8.3 Iterative Harmonic Analysis (IHA)

8.3.1 Fixed-Point Iterative Method

The simplest iterative scheme uses the fixed-point iteration (or Gauss) concept. At
each iteration the latest values of the distorted terminal voltages are used to calcu-
late the harmonic current injections. The direct analysis described in Chapter 7 is
invoked to update the a.c. voltage harmonics for the next iteration. With reference to
the three-phase static converter, the updated terminal voltages are used as the commu-
tating voltages for the converter solution. The calculated d.c. voltage waveform is then
impressed upon the d.c. side impedance to derive the d.c. current waveform, which
in turn, together with the switching instants and commutation process, provides the
a.c. current harmonic injections. The latter are then used to derive the a.c. voltage
harmonics in the frequency domain for the next iteration.

Early fixed-point iterative methods involved the solution of the switching
instants [4,5]. An alternative approach is to derive time-domain waveforms for the
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direct voltage and a.c. side phase currents by evaluating analytical expressions for
those quantities on a point-by-point basis and then applying the FFT to yield the
desired harmonic information [6].

The fixed-point solution is likely to diverge when the d.c. system harmonic impedance
is large and the commutating reactance small.

8.3.2 The Method of Norton Equivalents

In the fixed-point iteration, the nonlinear component is represented at each iteration by a
constant current source. Far better convergence can be expected with the use of a Norton
equivalent for the nonlinear component, with the Norton admittance representing a
linearisation, possibly approximate, of the component response to variation in terminal
voltage harmonics.

Time-invariant characteristics of some plant components, such as the transformer
magnetisation, can be described by the static voltage–current relationship,

i(t) = f (ν(t)) (8.3)

in the time domain. In this case, the current injection and the Norton admittance can be
calculated by an elegant procedure involving an excursion into the time domain [7].
At each iteration, the applied voltage harmonics are inverse Fourier transformed to
yield the voltage waveform. The voltage waveform is then applied point-by-point to
the static voltage/current characteristic, to yield the current waveform. By calculating
the voltage and current waveform at 2n equi-spaced points, a fast Fourier transform
(FFT) is readily applied to the current waveform, to yield the total harmonic injection.
This process is illustrated in Figure 8.2 for the case of the transformer magnetisation
nonlinearity.

8.3.3 Hybrid Time/Frequency Domain Solution

However, the characteristics of time-variant nonlinear components, such as power elec-
tronic devices, do not fall in the category defined by equation (8.3). Instead, their
voltage–current relationships result from many interdependent factors, such as phase
and magnitude of each of the a.c. voltage and current harmonic components, control
system functions, firing angle constraints, etc. Moreover, the solution accuracy achieved
with IHA methods when applied to static conversion is very limited due to the over-
simplified modelling of the converters (in particular the idealised representation of the
valve switching instants). The more accurate and generally applicable time-domain
solution (such as the state variable or the EMTP method) has been proposed to rep-
resent the behaviour of the nonlinear components in a hybrid frequency/time domain
solution [8,9].

The hybrid solution proceeds in two stages. First the periodic steady state of the
individual components is derived from a load flow program and then updated using
voltage corrections from the second stage. The calculations are performed in the fre-
quency domain where appropriate (e.g. in the case of transmission lines) and in the
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Load flow
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combine the linear and the linearised
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Figure 8.2 Iterative solution for the modelling of transformer magnetisation nonlinearities

time domain otherwise. In stage two the currents obtained in the first stage are used to
derive the current mismatches �i, expressed in the frequency domain. These become
injections into a system-wide incremental harmonic admittance matrix Y, calculated in
advance from such matrices for all the individual components. The equation �i = Y�v

is then solved for �v to be used in the first stage to update all bus voltages.
The first stage approach is modular, but in the second stage the voltage correc-

tions are calculated globally, i.e. for the whole system. However, convergence is only
achieved linearly, because of the approximations made on the accuracy of �v. A sep-
arate iterative procedure is needed to model the controllers of active nonlinear devices,
such as a.c.–d.c. converters, and this procedure relies entirely on information from the
previous iteration.

Acceleration Technique Time-domain simulation, whether performed by the EMTP,
state variable or any other method, may require large computation times to reach steady
state, thus the use of accelerating techniques [10,11] is advocated to speed up the
solution. These techniques take advantage of the two-point boundary value inherent in
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the steady-state condition. Thus a correction term is added to the initial state vector,
calculated as a function of the residuum of the initial and final state vectors and the
mapping derivative over the period. A concise version of the Poincare method described
in reference [11] is given here.

A nonlinear system of state equations is expressed as

ẋ = g(x, u) x(to) = xo (8.4)

where u = u(t) is the input, and xo the vector of state variables at t = to close to the
periodic steady state. This state is characterised by the condition

f (xo) = x(to + T ) − x(to) (8.5)

where x(to + T ) is derived by numerical integration over the period to to to + T of the
state equations (8.4).

Equation (8.5) represents a system of n nonlinear algebraic equations with n un-
knowns x and can thus be solved by the Newton–Raphson method.

The linearised form of equation (8.5) around an approximation x(k)
o at step k of its

solution is

f (xo) ∼= f (x(k)
o ) + J (k)(x(k+1)

o − x(k)
o ) = 0 (8.6)

where J (k) is the Jacobian (the matrix of partial derivatives of f (xo) with respect to
xo, evaluated at x(k)

o ).
With

x(k)
o → f (x(k)

o ) (8.7)

and

x(k)
o + εei → f (x(k)

o + εei) i = 1, . . . , n (8.8)

where ei are the columns of the unity matrix and ε is a small scalar, the J (k) is
assembled from the vectors

1

ε
(f (x(k)

o + εei) − f (x(k)
o )) i = 1, . . . , n (8.9)

obtained in equations (8.7) and (8.8).
Finally, using the above approximation J (k) of the Jacobian, the updated value x(k+1)

o

for xo is obtained from equation (8.6).
The process described above is quasi-Newton but its convergence is close to

quadratic. Therefore, as in a conventional Newton power flow program, only three
to five iterations are needed for convergence to a highly accurate solution, depending
on the closeness of the initial state xo to the converged solution.

8.3.4 The Harmonic Domain

An important step in solution accuracy and reliability is provided by the so-called
harmonic domain [12], a full Newton solution that takes into account the modulating
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effect of a.c. voltage and d.c. current distortion on the switching instants and converter
control functions. This method performs a linearisation around the operating point, that
provides sufficient accuracy. Modelling a distorting source in the harmonic domain
requires the derivation of a set of nonlinear equations describing the harmonic transfer
through the device in the steady state. A different model is thus required for each
nonlinear device.

So far this method has been applied to three-phase static power conversion equip-
ment. The converter model must be differentiable with respect to the solution variables
and this is achieved by the convolution technique, which calculates the transfers ana-
lytically using easily differentiable real-valued functions. The advantage of describing
the system in real-valued terms is that both electrical and non-electrical variables, such
as control variables, can be solved simultaneously.

Each of the six-pulse bridges of a converter terminal can be viewed as a four-port
circuit, i.e. consisting of two inputs and two outputs. The inputs in this case are the
a.c. phase voltage spectra and the d.c. current spectra. The outputs are the a.c. cur-
rent and d.c. voltage spectra. The convolution technique approximates the transferred
waveshapes (d.c. voltage and a.c. phase currents) to piece-wise waveshapes consist-
ing of twelve distinct periods of conduction. These periods are defined explicitly by
the switching angles of the converter. In the case of the d.c. voltage transfer, twelve
analytic frequency-domain expressions are derived from nodal analysis of the twelve
commutation circuits which describe steady-state waveshapes valid for those circuits.
The spectra calculated using these expressions are then convolved with those of band-
limited rectangular windowing functions. The resultant sum of the convolved spectra is
that of the total waveshape. Figure 8.3 illustrates one convolution for the d.c. voltage
of an inverter as seen in the time domain.

A similar process is followed to obtain the harmonic spectra of the a.c. phase currents.
These transfers are general for both inverter and rectifier, with only the direction of d.c.
current flow and the resultant sign of the d.c. voltage across the bridge being different.

Sampling pulse
Voltage sample

Total d.c. voltage       
Convolved voltage sample

0 1 2 3 4 5 6

0 1 2 3 4 5 6

µ θ

Figure 8.3 Convolution sampling waveforms for a six-pulse converter
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The harmonic transfers across a converter are largely dependant upon the accu-
racy of determining the switching instants, particularly the end of commutation angle.
For the convolution model these angles are obtained from twelve single-variable New-
ton–Raphson steps. The commutation angles are defined by the cross-over points of the
commutation currents with the d.c. current (harmonics included). The firing angles are
dependant upon the control strategy but are also solved using single-variable iterative
steps. As the full solution Jacobian includes the effect of modulating these switching
instants, the main solution is still of a full Newton nature.

To solve the standard twelve-pulse configuration, two convolution models are needed
for the star/star and star/delta connected bridges. The harmonic transfers from each
model are added together to yield the full transfer characteristic.

Each frequency is ordered by phase components and is partitioned into real and
imaginary parts. This leads to six variables for each harmonic at an a.c. busbar, and
two at a d.c. busbar. Consequently, for a study to the 50th harmonic, 300 variables need
to be defined at the converter a.c. terminal and 100 at the d.c. terminal. The remaining
required mismatches are those for the average d.c. current and the control variables.
For a current-controlled rectifier these are the firing angles, which are modulated by
the d.c. current through a PI (proportional integral) controller. The minimum gamma
controlled inverter assumes equidistant firings but requires the commutating voltage
zero crossings as variables in order to calculate the extinction angles.

The Jacobian, in Newton’s solution, only needs to be approximate, and therefore only
the significant terms need to be retained. Thus the full harmonic Jacobian can be about
96% sparse without affecting convergence. The Jacobian elements can be calculated
either by numerical partial differentiation or by analytically derived expressions for
the partial derivatives. Numerical calculation of the Jacobian has the advantage of ease
of coding, but is very slow; it is achieved by sequentially perturbing each variable
and calculating the change in all the mismatches. The analytical method of calculating
the Jacobian matrix requires considerable effort to obtain all the partial derivatives in
analytic form, but is exceptionally fast. Thus the latter method is preferred because
the solution speed is increased by a factor of 50 with respect to using one obtained
numerically.

Good variable initialisation is achieved in a two-stage process. The first stage uses a
positive-sequence power flow estimation and classical converter equations. This infor-
mation is used to start a three-phase power-flow solution including the control variables;
the results of the latter are then used to initialise the full harmonic solution.

As the two converters of an HVd.c. link interact nonlinearly with each other, it
is necessary to solve them simultaneously. At each converter busbar the variables
represent the specified harmonics in ascending order. The structure of the Jacobian is
illustrated in Figure 8.4, although for simplicity it only includes 13 harmonics.

The two a.c. systems of the d.c. link are not directly connected, and therefore there
is no direct coupling between the two a.c. busbars represented by numbers 1 and 2.
This can be seen in the matrix by the presence of zero blocks A2 and B1. The two
d.c. busbars at 3 and 4 are directly coupled through the nodal analysis of the system;
blocks C4 and D3 are the diagonal linear linking elements.

Some refinements have been made to the harmonic domain algorithm to make it
suitable for the efficient computation of inter-harmonics [13]. Inter-harmonics can
be accommodated efficiently by means of an adaptive technique complemented by
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Figure 8.4 Jacobian of the CIGRE Hvd.c. test system for 13 harmonics

interpolation between integer frequencies [14]. These refinements take advantage of
the inherent sparsity present in the harmonic arrays, which provide several orders of
improvement in solution time with no significant degradation in solution accuracy. As
a result, the increase in computation is now almost linear with the number of power
frequency cycles, as opposed to cubic with the original full method.

Although in principle any type of nonlinear component can be accommodated in the
harmonic domain solution, the formulation of each new component requires consider-
able skill and effort. Accordingly, a program for the calculation of the non-sinusoidal
periodic steady state may be of very high dimension and complexity, as well as being
difficult to use and develop further. However, this method is extremely useful to assess
the harmonic interaction between a.c. system and large power converters and has
already been adopted by several large manufacturers.

8.4 Harmonic Power Flow

The concept of harmonic power flow (HPF) was introduced in an early contribution
by Xia and Heydt [15] for the case of a symmetrical power system. Although there
have been further publications discussing this subject in the three-phase frame of ref-
erence [16–19], most of the power quality contributions still use the HPF concept
with exclusive reference to symmetrical operation on the basis that at the fundamental
frequency the power system is designed to operate under strict limits of unbalance.
However, the symmetrical solution is of very limited value to the industry because
the experience of many field tests indicates that asymmetry is the rule rather than the
exception with power system harmonics (both at characteristic and non-characteristic
harmonic frequencies) and such information can not be represented in a balanced HPF.
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Further compelling reasons for replacing the symmetrical HPF concept by the three-
phase alternative are:

(1) System unbalance produces non-characteristic harmonics in power electronic
equipment, particularly non-zero-sequence triplens. These are not normally fil-
tered and penetrate into the a.c. network regardless of the type of transformer
connection.

(2) Often the filters of large power conversion plant resonate with the a.c. system
impedance at low-order non-characteristic harmonics such as the third.

(3) Transmission system unbalance is greatly affected by line geometry, and the
use of transpositions, calculated to reduce fundamental frequency imbalance, is
ineffective at harmonic frequencies [20].

(4) Harmonic flows are affected by the transformer connections, which only a three-
phase model can represent.

(5) The need to model harmonic interactions between geographically separated con-
verter units.

The derivation of voltage inbalance requires a three-phase power flow solution. With
this information a three-phase model of the converter plant derives the characteristic
and non-characteristic harmonic currents injected by the converter, which constitute
the exciting sources for the harmonic penetration model described in Chapter 7.

Generally a direct solution based on the inbalance calculated from a preliminary
three-phase power flow will provide sufficiently accurate information. A few sequential
iterations of the three-phase power flow and the harmonic penetration study may be
required for greater accuracy [16].

However, under difficult resonant conditions the sequential solution is likely to
diverge and a unified Newton solution provides a more reliable alternative.

8.4.1 Components of a Three-Phase Newton HPF Solution

The three constituent parts of an HPF for use in systems containing large power
converters are:

(1) a three-phase a.c.–d.c. power flow [21] at the fundamental frequency;

(2) a multi-harmonic three-phase representation of the linear part of the power system
(the subject of Chapter 7);

(3) a harmonic domain representation of the individual converters, as described in
Section 8.3.4.

These three components need to be coupled with each other in a large, mostly
block-diagonal, Jacobian matrix.

Power Flow Requirements Unification of the three-phase power flow and har-
monic interaction at the converter terminals imposes a different set of requirements
on the power flow implementation than those that led to the development of the
decoupled algorithms. First, the converter harmonic model is necessarily in Cartesian
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co-ordinates [22]. If the power flow equations are in polar co-ordinates, as required by
the decoupling concept, nonlinear polar transforms must be carried out at each iteration
to interface with the converter a.c. terminal (at fundamental frequency). This is likely
to increase the number of iterations to convergence substantially, as well as complicate
the power flow implementation. An additional factor to consider is that the converter
equations take longer to calculate than the solution of the prefactorised Jacobian sys-
tem. It is therefore desirable to reduce the number of converter mismatch equation
evaluations by reducing the number of iterations to convergence. This can be achieved
by using the full Jacobian matrix, with no decoupling. Taken together, these points
indicate that a unified power flow and harmonic solution in Cartesian co-ordinates will
be more efficient than one in polar co-ordinates.

Combined Jacobian The nine-busbar network of Figure 8.5 is used to illustrate the
structure of the combined power flow and harmonic solution. The slack busbar is at
ROXBURGH-011, and loads are placed at ROXBURGH-220, INVERCARG-011 and
TIWAI-220. Also, the rectifier end of the CIGRE benchmark model [23] is connected
at the TIWAI busbar.

The combined Jacobian is illustrated in Figure 8.6. In this figure, the busbars and
specifications of the power flow solution can be observed at the top left-hand side. Of

INVERCARG-220

MANAPOURI-014

MANAPOURI-220

INV-MAN--TMP

NTH-MAKAR-220
P+JQ

P+JQ

INVERCARG-011

ROXBURGH-220

ROXBURGH-011
(Slack)

TIWAI-220

D.C.
system

Figure 8.5 Test system for three-phase power flow
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course, the structural sparsity would be much greater for a realistically sized system,
and is clearly not symmetric. The lower right-hand side matrix block represents the
converter harmonics solution, which is seen to be coupled only to the fundamental
frequency voltages at the converter terminals.

The combined Jacobian contains no more terms than the separate Jacobians of the
load flow and converter, and yet convergence has been found to be faster and more
robust than a fixed-point iteration between separate load flow and converter model
updates, which usually diverges.

The Thevenin equivalent of the a.c. system is retained at all harmonic frequencies
except the fundamental, which is the point of coupling to the power flow equations.
Similarly, three-phase power flow equations are retained at every bus except the con-
verter bus. It is assumed that were it not for the converter, the converter bus would be
PQ specified. Since the power flow is three-phase, six mismatch equations (real and
imaginary parts) are required at the converter bus at fundamental frequency.
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Because the processing required at every iteration is dominated by the converter
equations, it is essential that convergence of the load flow part of the system be
faster than that of the converter model, which typically converges in seven iterations.
The decoupled load flow method is not suitable as it requires more iterations for
convergence. As explained above, integration of the converter model with a load flow
requires that the load flow be reformulated in Cartesian components, with no decoupling
in the Jacobian matrix.

General HPF Framework for Systems with Multiple Converters The method and
components of the Newton solution have already been discussed in previous sections
with reference to a single 12-pulse converter connected to an a.c. power system. This
section describes the structure of a general Jacobian capable of accommodating, as
well as a three-phase power flow, multiple converters of different pulse numbers and
d.c. configurations placed in separate locations.

While all the system busbars must be explicitly represented at the power frequency,
due to the nonlinear nature of the power flow specifications, only the converter busbars
are nonlinear at the harmonic frequencies. Thus, in the latter case, the linear network
can be reduced to an equivalent system that links the nonlinear device busbars. The
linear reduction used also produces equivalent current injections for remote constant
voltage or current harmonic sources.

By way of illustration, Figure 8.7 shows the structure of the Jacobian representing
the power and harmonic flows in the New Zealand South Island transmission system.
This system consists of 100 busbars, of which 14 are generation busbars, 24 PQ loads
and 4 large rectifier busbars. The total system loading is about 2500 MW, of which
over half is rectified. Consequently there has been a question mark over the degree of
interaction between the four rectifier busbars (shown in Figure 8.8).
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Figure 8.7 Jacobian structure of the New Zealand South Island system
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Three of the busbars are grouped together at Benmore in the middle of the South
Island and form one end of the 1000 MW bipolar HVd.c. link. The fourth is located at
Tiwai, at the southern end of the South Island, and is a 500 MW aluminium smelter.

As explained in Section 8.3.4, 426 variables and mismatches are needed at each con-
verter bus, consisting of 300 a.c. voltages and 100 d.c. currents, the remaining 26 being
switching and control terms. These three components are separated in the generalised
Jacobian, as shown in Figure 8.7, where all the switching terms are placed last.

The 300 × 300 uppermost diagonal block contains the Benmore converter a.c. volt-
age variables and mismatches. Similarly, the next block diagonal matrix (also of order
300 × 300) contains the a.c. voltages of the Tiwai converters. The remaining elements
in the upper left-hand side region represents the couplings (harmonic interactions)
between the Benmore and Tiwai converters. Further down, and also on the right, are
the (100 × 100) d.c. current harmonic terms and their coupling elements to the rest of
the converter variables. The low right-hand side matrix contains the elements of the
three-phase power flow (100 buses × 3 phases × 2 real and imaginary parts). Finally,
the bottom and far right parts of the Jacobian contain the relatively few switching and
control terms (26 per converter).

The test system is used to assess the ability of the unified algorithm to determine
the degree of interaction between the multiple converters. At light load the Benmore-
220 filters are normally out of service to minimise excessive VAR generation. Under
these conditions, the results of the unified algorithm, shown by the black trace in
Figure 8.9, are considerably different than those of the simplified model; this indicates
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that in this case there is a noticeable harmonic interaction between the Tiwai-033 and
Benmore converters.

8.5 Harmonic State Estimation

Recent contributions [24–33] have extended the concept of power system state esti-
mation to harmonic frequencies. However, full measurement of the system states, by
first recording the voltage and current waveforms at nodes and lines and then deriving
their frequency spectra, is prohibitive for a large system. Only partial measurement (not
necessarily made at the harmonic sources) is practical and, therefore, the measurements
must be complemented by system simulation.

The framework of harmonic state estimation is illustrated in Figure 8.10. It uses a
three-phase system model to describe asymmetrical conditions such as circuit mutual
couplings, impedance and current injection unbalance. A partial measurement set is
also needed consisting of some bus voltages, injection currents and line currents, or
bus injection volt-amperes and line volt-amperes. Instead of system-wide harmonic
state estimation, some contributions [34,35] discuss the issue with reference to the
estimation of the harmonic components from the voltage or current waveform at a
measurement point.
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Based on the network topology, a harmonic state estimator (HSE) is formulated from
the system admittance matrix at harmonic frequencies and the placement of measure-
ment points. Measurements of voltage and current harmonics at selected busbars and
lines are sent to a central workstation for the estimation of bus injection current, bus
voltage and line current spectra at all or selected positions in the network.

The placement of measurement points is normally assumed symmetrical (e.g. either
three or no phases of injection currents of a busbar are measured). However, this
requirement restricts the search for optimal placement of measurement points in three-
phase asymmetrical power systems.

The implementation of existing algorithms is in practice limited by poor synchro-
nisation of conventional instrumentation schemes, lack of continuity of measurements
or lack of processing speed. A system-wide or partially observable HSE requires
synchronised measurement of phasor voltage and current harmonics made at the dif-
ferent measurement points, as illustrated in Figure 8.11.

HSE turns multi-point measurement to system-wide measurement in a very economic
way. Two important optimisation problems in HSE are the maximum observable sub-
system for a given measurement placement, and the minimum number of measurement
channels needed for the observability of a given system. The HSE can be implemented
continuously in real time if the measurement is continuous and the processing speed
fast enough. Potentially, the harmonic monitoring instrument and estimator can be
integrated into an existing supervisory control and data acquisition (SCADA) system.

State estimation is thus an alternative, or a supplement, to the direct measurement
of electrical signals. Strictly speaking, a system state is a mathematically definable,
although not necessarily measurable, electrical quantity such as a nodal voltage or a
line current. In practice, however, the state concept is often extended to other variables,
such as the voltage phase angle difference of a transmission line; it is also used for
complex combinations of individual variables.

The task of the HSE is to generate the ‘best’ estimate of the harmonic levels from
limited measured harmonic data, corrupted with measurement noise. The three issues
involved are the choice of state variables, some performance criteria and the selection
of measurement points and quantities to be measured.
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Figure 8.11 System-wide harmonic state estimation

State variables are those variables that, if known, completely specify the system.
The voltage phasors at all the busbars are usually chosen, as they allow the branch
currents, shunt currents and currents injected into the busbar to be determined.

Various performance criteria are possible, the most widely used being the weighted
least-squares (WLS)

Observability analysis (OA) [29] is required in HSE to identify its solvability. A
power system is said to be observable if the set of available measurements is sufficient
to calculate all the state variables of the system uniquely. Observability is dependent on
the number, locations and types of available measurements, and the network topology,
as well as the system admittance matrix. For a different network topology, or the same
network topology but different measurement placements, an OA is to be performed in
each case.

It is important for OA not only to decide whether the system is observable and
hence system-wide HSE can be performed, but also to provide information about the
observable/unobservable islands as well as redundant measurement points if not com-
pletely observable. This allows the repositioning of measurement points to maximise
their usefulness.

A system is observable if a unique solution can be obtained for the given mea-
surements. A unique solution exists if and only if the rank of [h] equals the number
of unknown state variables. Therefore, for observability the number of measurements
must not be less than the number of state variables to be estimated. However, this
condition is not sufficient since linear dependency may exist among rows of the mea-
surement matrix. The rank of [h] does not depend on the quality of the measurements
and therefore the noise vector can be assumed to be zero.

Existing OA can be divided into three groups of methods: numerical (floating-point
calculations), topological and symbolic. A detailed coverage of this topic is made
in [24,25].
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8.5.1 Load and Harmonic Source Identification

The harmonic simulation and HSE algorithms differ regarding the way loads are treated.
In general, a load bus may contain linear (passive) and nonlinear components. These
can be modelled in detail in harmonic simulation, which represents separately the
current injections and the passive components. HSE, on the other hand, may have no
information about the composition of the load and is only capable of estimating the
net current flow into or out of the load busbar.

Therefore, the current injection information supplied to the HSE algorithm is the
sum of the harmonic current source and harmonic current flowing in the load. The
harmonic voltages at the suspicious buses, and harmonic currents injected from the
suspicious sources to the backbone, are provided by the estimator at the end of HSE
and each suspicious source is classified as a harmonic injector or a harmonic absorber.

In general, a suspicious harmonic source can be considered as a Norton equivalent
circuit at each harmonic frequency (Figure 8.12), and the following relationship applies
for a harmonic of order n:

Îi (n) − Ii(n) = Vi(n) Yi(n) (8.10)

In equation (8.10), Vi(n) and Ii(n) are the nodal voltage and current injection, respec-
tively, as provided by the estimator, while Îi (n) and Yi(n) are the unknown Norton
harmonic current injection and admittance within the suspicious source (i = 1, 2, 3).
In theory, it should be possible to derive some information on the nature of the load
from the estimated harmonic voltages and injected currents at the bus.

When no harmonic current injection exists at a node, it is possible to identify the
load impedance using the nodal harmonic voltage and current information at two dif-
ferent harmonics. This calculated impedance can be verified using information at other
frequencies. When a harmonic source is present, it is not possible to identify the compo-
nents without additional information. This information may come from measurements
obtained under different operating conditions (e.g. a component switched in or out)
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Figure 8.12 Norton equivalent for suspicious harmonic sources
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or may take the form of an assumed ratio of the harmonic current injection to the
fundamental based on the converter pulse number. In the latter case, if the following
two assumptions are made for the suspicious source,

Yi(n) = Gi − j Bi/n (8.11)

|Îi(n)| = δi(n, n0)|Îi (n0)| (8.12)

where Gi and Bi are unknown parameters for node i, n0 is a chosen reference harmonic
(e.g. the 11th harmonic for the cases of 6-pulse and 12-pulse converters), and δi(n, no)

is a chosen ratio of |Îi(n)| to |Îi(n0)|, then for any two harmonics n1 and n2 which are
not n0, the set of quadratic equations (equations (8.10)–(8.12)) is solvable to obtain
the unknown Norton parameters Î i(n) and Yi(n) for each harmonic n of interest.

It can be shown, by sensitivity analysis, that the estimated Norton parameters using
the above method are very dependent on the chosen ratio when the suspicious source
contains non-zero Norton current injections, and very insensitive to the chosen ratio
when the suspicious source does not contain Norton current injections. Therefore, the
above method can at least be used to identify whether a suspicious source is a purely
passive load and, in such case, estimate the equivalent harmonic admittances of the
passive load.

8.6 The Electromagnetic Transients Solution

The EMTP method, although designed for the simulation of transients, can also be
used for the derivation of the steady-state voltage and current waveforms taking into
account the variety of system nonlinearities and the effect of the control functions.
Its potential extension to the steady-state solution should therefore simplify the cal-
culation of power system harmonics. Two different modelling philosophies have been
proposed for this purpose. One is the hybrid solution outlined above, which is basi-
cally a frequency-domain solution with periodic excursions into the time domain to
update the contribution of the nonlinear components. The alternative is a basically
time-domain solution to the steady state followed by FFT processing of the result-
ing waveforms. The latter alternative offers greater user simplicity, given the general
availability of EMTP packages, and is thus described further in the remaining part of
the chapter.

Starting from standstill, the basic time domain uses a ‘brute force’ solution, i.e.
the system equations are integrated until the steady state is reached within a specified
tolerance. The voltage and current waveforms, represented by sets of discrete values
at equally spaced intervals (corresponding with the integration steps), are subjected to
FFT processing to derive the harmonic spectra. This is a very simple method but can
be slow when the network has components with light damping.

The use of acceleration techniques, described in Section 8.3.3 for the hybrid solu-
tion, is not recommended here for the following reason. The number of periods to be
processed in the time domain required by the acceleration technique is almost directly
proportional to the number of state variables multiplied by the number of Newton
iterations. Therefore the solution efficiency reduces very rapidly as the a.c. system size
increases. This is not a problem in the case of the hybrid algorithm, because in that
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case the time-domain solutions require no explicit representation of the a.c. network.
On the other hand, when the solution is carried out entirely in the time domain, the
a.c. system components are included in the formulation and thus the number of state
variables is always large. Moreover, as the time-domain algorithm requires only a sin-
gle transient simulation to steady state run, the advantage of the acceleration technique
is questionable in this case, due to the additional complexity.

This method is very easy to use given the general availability of EMTP packages with
flexible and detailed modelling of the nonlinear components. However, their accuracy
is limited by the restricted frequency-dependence representation of the a.c. system
components, although this problem can be greatly reduced with the use of frequency-
dependent equivalents for the linear part of the system (a subject described later in
this section).

8.6.1 Time Step Selection

The time step selection is critical to model accurately the resonant conditions when
converters are involved. A resonant system modelled with 100 µS or 50 µS steps
can miss a resonance, while the use of a 10 µS does not. Moreover, the higher the
resonant frequency the smaller the step should be. A possible way of checking the
effectiveness of a given time step is to reduce the step and then compare the results
with those obtained in the previous run. If there is a significant change around the
resonant frequency, then the time step is too large. The main reason for the small time
step requirement is the need to pin-point the commutation instants very accurately, as
these have great influence on the positive feedback that appears to occur between the
a.c. harmonic voltages and the corresponding driven converter currents.

8.6.2 A.C. System Representation

The main requirement of a harmonic solution is the use of an accurate frequency-
dependent model for the system components. This is best achieved in the frequency
domain and has been the main reason for the development of the hybrid algorithms.

The next important question is the size of detailed system representation. To illus-
trate this point, Figure 8.13 shows the effect of the extent of system representation
on the harmonic impedances. The solid line indicates a representation of the entire
transmission system (11 kV and above) of the New Zealand South Island system. The
dash-dotted line relates to a system reduced down to the local 220 kV network and
only significant loads and generators represented. The dashed line represents the case
of the 220 kV transmission network without generators, transformers or loads. The
differences between these cases are very pronounced.

8.6.3 Frequency-Dependent Network Equivalents

The use of a frequency-dependent network equivalent (FDNE) avoids the need to
model any significant part of the a.c. system in detail, yet can still provide an accurate
picture of the system impedance across the selected range of harmonic frequencies.
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Figure 8.13 Comparison of depth of system representation

An early proposal [36] used the resonant points of the network frequency response
to derive a set of tuned branches that can be easily incorporated into the EMTP pro-
gram. Although the synthesis of those branches is direct, this method first ignores the
losses to determine the L and C values for the required resonant frequencies and then
determines the R values to match the response at minima points. In practice an iterative
optimisation procedure is necessary after this process to improve the fit.

The equivalents of multiterminal circuits, such as a three-phase system with mutual
couplings between phases, requires the fitting of admittance matrices instead of scalar
admittances [37].

A criticism of the above technique for general transients use is that it can not model
an arbitrary response. An alternative approach is to fit a rational function to a response
and implement it directly in the transients program without the need for an equivalent
circuit. In the latter, however, the parameters are functions of the time step and hence
the fitting must be performed again when the time step is altered. Moreover the stability
of the fit, without which the system can not be simulated, is still a problem with the
rational function methods. Thus the parallel branches RLC equivalent provides greater
simplicity and reliability at the expense of accuracy over the rational function methods.
For (steady state) harmonic studies, where transient performance is not an issue, the
parallel branches RLC equivalent can be fitted with high Q tuned branches for each
harmonic, giving good accuracy at each harmonic but not at intermediate frequencies.

8.6.4 Case Study

The application of FDNE to harmonic analysis is illustrated here with reference to the
CIGRE benchmark link [23] with the rectifier a.c. system replaced by the New Zealand
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Lower South Island test system [3] (Figure 8.14), which will be represented by a
frequency-dependent network equivalent with the admittance terms emulated either by
rational functions in the z domain or parallel RLC branches (as shown in Figure 8.15).
Being a three-phase system, the equivalent will be of the form shown in Figure 8.16.
The harmonic filters on the rectifier side of the d.c. link have been disconnected to
accentuate the harmonic levels, as the presence of harmonic filters tends to mask any
differences.
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A simplified FDNE, shown in Figure 8.17, is also considered using only the positive-
sequence component. Its admittance elements are obtained by post-multiplying each
3 × 3 matrix by the matrix: 

 1 a2 a

a 1 a2

a2 a 1




and then extracting the diagonal terms. This method is valid for systems with little
phase current asymmetry. The effectiveness of the three FDNE equivalent alternatives
is by comparison with the full representation of the system.

The first step in forming an FDNE is the calculation of the frequency response of
the system to be represented. Although this is best achieved using frequency-domain
programs, to enable comparison with simulations of the full system the frequency
response of the test system is determined from time-domain simulations.

Figure 8.18 shows the phase voltages at the point of injection resulting from three
current injection tests (at each phase of the Tiwai bus). These voltages are used to derive
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Figure 8.18 Voltages from injection tests

the self- and mutual impedances at each frequency. The 3 × 3 impedance matrices are
then inverted to derive the nodal admittance matrices to be fitted (their respective
magnitude and phase for the test system are shown in Figures 8.19 and 8.20).

In a nodal admittance matrix the off-diagonal elements are the negative of the
interconnecting branch admittance and the diagonal terms the sum of all the branch
admittances connected to a node; thus the latter are fitted by adding all admittances
in the row or column (as the admittance matrices are symmetrical) of the particular
node. Only six terms need to be fitted as Y12 and Y13 are the same as Y21 and Y31

respectively.
With the rational function approach each term is represented by a rational function

of the form

H(z) = a0 + a1z
−1 + a2z

−2 · · · + anz
−n

1 + b1z−1 + b2z−2 · · · + bnz−n

The values of the a and b coefficients are determined by setting up an over-determined
system of linear equations of the form

[
[A11] [A12]
[A21] [A22]

](
a

b

)
=

(
C

D

)
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Figure 8.19 Admittance magnitude

where a and b are vectors of the a and b coefficients. C and D are vectors of the
negative of the real and imaginary parts, respectively, of the sample data at each fre-
quency. The system of linear equations is derived by evaluating the frequency response
of H(z) and equating to the required response at each sample point. This is solved
via weighted least-squares. Two equations result from each sample point, one for the
real component and the other for the imaginary component. A weighting factor of 100
is applied to equations representing the fundamental frequency so as to ensure mini-
mal steady-state error. The rational function is implemented in PSCAD/EMTDC as a
Norton equivalent (a current source with a parallel resistance). As H(z) = I (z)/V (z),
multiplying by the denominator and rearranging for I (z) gives

I (z) = a0V (z)︸ ︷︷ ︸
Instantaneous

term

+
{

V (z)(a1z
−1 + a2z

−2 · · · + anz
−n)

−I (z)(b1z
−1 + b2z

−2 · · · + bnz
−n)

}
︸ ︷︷ ︸

History terms

The resistance represents the instantaneous term (R = 1/a0) while the current source
represents all the past history terms in current (a1, a2 . . . an) and voltage (b1, b2 . . . bn).
The complete formulation and implementation for this approach is given in [38]. The
following tables contain the parameters for the model of the lower South Island of New
Zealand. These have all been weighted for 50 Hz to minimize error at the fundamental.
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Figure 8.20 Admittance phase angle

Table 8.1 Coefficients of rational function representing Yself1 term

Order Yself1

a b

0 2.4518139802491529e−003 1.0
1 −1.5523400352713717e−002 −6.6654302428731960e+000
2 4.2380331810221161e−002 1.9230399247655740e+001
3 −6.4641019199195751e−002 −3.1130273213778576e+001
4 5.9457300767762414e−002 3.0538485772657317e+001
5 −3.2959346847465210e−002 −1.8155446247494950e+001
6 1.0187297977530718e−002 6.0572751686602073e+000
7 −1.3529372195878338e−003 −8.7501014304358138e−001

The rational function forms a finally balanced system that represents the frequency
response of the system. The positive and negative coefficients result in very similar
numbers being subtracted and hence precision is important in the calculations. Thus a
large number of decimal places is needed; this is illustrated in Tables 8.1 and 8.2 for
the Yself1 and Y12 coefficients used in PSCAD/EMTDC simulation.

Rounding the coefficients to less significant digits can have a dramatic effect on the
frequency response and often results in the system being unstable.

Figures 8.21 and 8.22 display the typical fitting accuracy for the Y12 and Yself1 terms
respectively. The Y12 is fitted by an 11th order rational function while the Yself1 term
by a 7th order. Although increasing the order of the Yself1 improves the fit, some poles
are unstable.
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Table 8.2 Coefficients of rational function representing Y12 term

Order Y12

a b

0 1.9501107426634562e−003 1.0
1 −1.8984910246341156e−002 −1.0472045700750085e+001
2 8.4077491417341846e−002 5.0242749736612936e+001
3 −2.2327784954520663e−001 −1.4577147599444638e+002
4 3.9436282600293848e−001 2.8416307981056764e+002
5 −4.8528978431109171e−001 −3.9078405955678375e+002
6 4.2318006985401002e−001 3.8685683419253877e+002
7 −2.6026788334542772e−001 −2.7568394845148111e+002
8 1.0983931015277194e−001 1.3859815103973341e+002
9 −2.9928875612837458e−002 −4.6818484850277628e+001

10 4.6331885907560004e−003 9.5644565932267973e+000
11 −2.9369352575267255e−004 −8.9525681690543701e−001
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Figure 8.21 Comparison of Yself1 admittance term

To implement an RLC network, the features of the frequency response, that is the
frequencies of peaks and troughs and trough magnitudes, are determined. For example,
running the Yself1 term through a feature extraction program gives the results shown
in Table 8.3.

Inspection of the frequency response allows some of the minor features to be
removed, such as the 510 Hz and 545 Hz peak and trough, respectively, as these
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Figure 8.22 Comparison of Y12 admittance term

Table 8.3 Features of Yself1

Frequency
(Hz)

Type Z magnitude
(�)

280.0 Peak 1155.31
490.0 Trough 45.19
510.0 Peak 94.23
545.0 Trough 68.07
840.0 Peak 322.26
845.0 Trough 322.17
910.0 Peak 522.90

1160.0 Trough 98.09

only cause a small deviation from the overall trend. Extra peaks and troughs can be
added outside the 5–1250 Hz frequency range to shape the response at the extremity
of the frequency range.

The fitting procedure starts by ignoring the resistances when determining the L and
C values so as to give the correct resonant frequencies. The resistances are set to be the
impedance at the troughs and then all the L and C values are scaled, while maintaining
the resonant frequencies, to give the correct circuit impedance at a specified match
frequency. In this case the scaling frequency is 200 Hz and the match value 366.47 �.

The resistances of the branches are then adjusted to further improve the size of the
resonant peaks. This can be achieved by modification of the impedance at the troughs
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Table 8.4 Final selection of features
used for Yself1 term

Frequency
(Hz)

Type Z magnitude
�

0 Trough 10.0
280.0 Peak –
490 Trough 90.18931
840.0 Peak –
845.0 Trough 400.0
910.0 Peak –

1160.0 Trough 98.091
1900 Peak –

Table 8.5 Features for RLC FDNE (3 × 3)

Trough
frequency

(Hz)

Trough
magnitude

(�)

Peak
frequency

(Hz)

Yself1 1 0.0 10.0 280.0
2 490 90.18931 840.0
3 845.0 400.0 910.0
4 1160. 98.091 1900.0

Yself2 1 0.0 4.0 315.0
2 440.0 300.0 465.0
3 500.0 134.3544 945.0
4 1155.0 292.0187 1900.0

Yself3 1 0.0 0.1 1.0
2 5.0 7.75 280.0
3 490.0 90.1893 910.0
4 1160.0 98.0910 1900.0

12 1 0.0 20.0000 185
2 495 18.3576 845.0
3 875 339.1000 990.0
4 2250 5.0000 2500.0

13 1 0.0 20.000 205.0
2 500.0 20.000 850.0
3 880.00 300.000 1015.0
4 1250.0 5.000 2500.0

23 1 0.0 20.000 185.0
2 495.0 18.3576 845.0
3 875.0 339.100 990.0
4 2250.0 5.000 2500.0

or directly modifying the R values. Increasing the resistance effectively reduces the
peak on either side. The final features used for the fitting are shown in Table 8.4. The
complete set of features obtained is shown in Table 8.5. Often after this process extra
branches are added to further improve the response in particular regions. The final RLC
values obtained are given in Table 8.6, while Table 8.7 gives the matching frequency
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Table 8.6 FDNE RLC 3 × 3

R (�) L (mH) C (µF)

11 1 10.000 167.99566 –
2 90.18931 94.8172641875 1.1126554076
3 400.000 11671.3350 0.0030395291
4 98.091 74.6789304842 0.2520729217

22 1 4.000 171.8693160074 –
2 300.000 425.2498126926 0.3076739870
3 134.3544 238.0594943090 0.4256128660
4 292.018674 138.1816356405 0.1374124129

33 1 0.100 4205.3875120966 –
2 7.750 175.2641568245 5781.0556064702
3 90.18931 94.3575961209 1.1180757678
4 98.091 76.6775418608 0.2455026041

12 1 20.000 311.0932318150 –
2 18.3576 66.3414891513 1.5582769607
3 339.100 1660.0376649282 0.0199299503
4 5.000 9.2106855866 0.5432294040
5 2000.00 4300.0 0.1720726

13 1 20.000 383.6827097296 –
2 20.000 89.0417534485 1.1379064284
3 300.000 1305.8401298774 0.0250486837
4 5.000 94.3258081564 0.1718658944
5 2000.000 3881.828 0.1552731

23 1 20.000 311.0932318150 –
2 18.35760 66.3414891513 1.5582769607
3 339.100 1660.0376649282 0.0199299503
4 5.000 9.2106855866 0.5432294040
5 2000.000 4300.00 0.1720726

Table 8.7 Match frequency and values

Term Match frequency
(Hz)

Match magnitude
(�)

Yself1 200.0 366.47
Yself2 200.0 300.47
Yself3 200.0 366.47
Y12 140.0 600.0
Y13 100.0 305.0
Y23 140.0 600.0

and magnitude. Note that terms Y12, Y13 and Y23 have an extra branch added (i.e. five
RLC branches and yet there are only four peak/trough combinations) to improve the
response at the first parallel resonance (approximately 185 Hz). Figures 8.23 and 8.24
display the comparison between the FDNE and required response.

Assuming balanced phase currents and diagonalising the impedance matrices results
in three uncoupled frequency responses, each of which can be fitted with an RLC
circuit. Applying the same procedure of feature extraction and synthesis of the RLC
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Figure 8.23 Comparison of magnitude response (RLC 3 × 3 FDNE)
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Figure 8.24 Comparison of phase angle response (RLC 3 × 3 FDNE)
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circuit results in the values shown in Table 8.8. Each phase has a correction branch
(branch 5 for phases A and C, and branch 6 for phase B) designed to give a better
match at fundamental frequency (50 Hz). These branches are series resonant at 45 Hz,
so at 50 Hz the impedance magnitude and phase angle are far closer to what is required.
Figure 8.25 displays the match for the phase A term. A better match can be achieved by
adding more branches to shape the response even further, particularly between 800 Hz
and 1000 Hz.

Table 8.8 FDNE, RLC simplified

R (�) L (mH) C (µF)

A 1 30.000 74.838 –
2 1.400 21.554 4.8549
3 91.30 1167.1335 0.068249
4 10.00 15.296 0.9799
5 5.0 530.5 23.58

B 1 30.000 74.072 –
2 89.700 77.518 0.45837
3 4.0 21.825 4.6423
4 65.4 463.24 0.072409
5 10.0 14.684 1.0207
6 5.0 530.5 23.58

C 1 35.000 68.236 –
2 7.000 19.959 5.1795
3 40.000 36.513 0.090611
4 10.000 13.795 1.0865
5 1.0 530.5 23.58
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Figure 8.25 Phase A term after diagonalising
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Table 8.9 FDNE voltage
source parameters

Voltage
(phase to neutral)

Magnitude
(kV)

Phase angle
(degrees)

Phase A 121.599 61.16755
Phase B 121.599 −59.15545
Phase C 121.599 180.66100

5 10 15 20 25
0

5

10

15

20

25

30
Harmonic current injected into Tiwai 220 kV busbar (Phase A)

M
ag

ni
tu

de
 (

%
 o

f 
fu

nd
am

en
ta

l)

Full
FDNE (rat)
FDNERLC
FDNERLCsim

Figure 8.26 Harmonic current injection (phase A)

The voltage source magnitude and phase angle for all the FDNEs are set to be that
of the full system under open circuit. These values are given in Table 8.9.

Setting the rectifier α order to 0.6 radians and inverter order to 2.42 and simulating
the four cases (full, FDNE rational functions, FDNE RLC and FDNE RLC simpli-
fied) give the results displayed in Figures 8.26 and 8.27. This example shows that the
assessed injected current from the d.c. link is very close for all cases. The harmonic lev-
els predicted by the FDNE (rational function) match the full system best. The injected
current into the rectifier a.c. system by the HVd.c. link is similar, with the rational
function FDNE being the most accurate and the simplified RLC the worst. The RLC
FDNE circuits show a large discrepancy in the 25th harmonic on the terminal volt-
age, which does not appear in the injected current. This is understandable when the
fitting errors are considered (Figure 8.23 for the RLC FDNE and Figure 8.25 for the
simplified RLC FDNE).
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Figure 8.27 Harmonic voltage at terminal busbar (phase A)

The system impedances are unbalanced, as they are in most practical systems, result-
ing in uncharacteristic harmonics being generated by the converter. It is essential that
the FDNE accurately represents the system at fundamental frequency as any discrep-
ancy, particularly in the imbalance, has a dramatic impact on the operation of the
converter, through the controller, and hence on the injected harmonic current, particu-
larly the uncharacteristic harmonics. This in turn results in very large errors in assessed
voltage distortion, even if the FDNE correctly represents the system impedance at
these harmonic frequencies. Hence the need for correction branches at fundamental
frequency for RLC FDNE or weighting factors for the rational function approach.
Tables 8.10 and 8.11 show the fundamental frequency conditions for this comparison.
Getting the fundamental frequency matching right is more important than getting the
matching correct at harmonic frequencies.

If the interaction of a nonlinear device with the a.c. system is not modelled; that
is, the device is represented by a fixed current injection, then the assessed harmonic

Table 8.10 Fundamental phase-neutral voltage at Tiwai 220 kV busbar

Full FDNE
(rational fcn)

RLC 3 × 3 RLC
(simplified)

Magnitude
(kV)

Angle
(degrees)

Magnitude
(kV)

Angle
(degrees)

Magnitude
(kV)

Angle
(degrees)

Magnitude
(kV)

Angle
(degrees)

Phase A 120.208 −27.48 120.183 −28.25 120.280 −28.22 120.411 −27.99
Phase B 120.551 −147.82 120.558 −148.45 120.678 −148.44 120.678 148.26
Phase C 119.804 92.14 120.133 91.44 120.247 91.45 120.343 91.64
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Table 8.11 Fundamental current injected into Tiwai 220 kV busbar

Full FDNE
(rational fcn)

RLC 3 × 3 RLC
(simplified)

Magnitude
(kA)

Angle
(degrees)

Magnitude
(kA)

Angle
(degrees)

Magnitude
(kA)

Angle
(degrees)

Magnitude
(kA)

Angle
(degrees)

Phase A 0.060 −87.19 0.060 −85.90 0.060 −85.32 0.060 −85.90
Phase B 0.056 154.02 0.054 151.78 0.053 151.51 0.054 151.78
Phase C 0.057 26.89 0.059 26.09 0.060 25.71 0.059 26.09

levels given by the FDNE will be even closer to the full system run under the same
conditions. The only difference will be the fitting errors. This provides one method
for finding modelling errors, by performing injection tests on the FDNE model in
the EMTP-type program, then taking the FFT to obtain the frequency response and
comparing it to the matched response in the frequency domain.

Although the modelling of the frequency dependency of overhead lines and cables
is well advanced in EMTP packages, this is not true for the other components. The
standard models for generators, transformers and loads do not represent the increase in
resistance (or slight reduction in inductance) associated with skin effect. This increase in
resistance will be most noticeable when a resonance occurs. Hence, using a frequency-
domain program to obtain the frequency response of the a.c. system to be represented
by an FDNE will give a frequency response closer to reality. Having developed an
FDNE from frequency data obtained using a frequency-domain program, it is very hard
to verify the accuracy of the final FDNE without accurate measurements of the actual
system. Hence, the above approach of using the less accurate time-domain derivation
of frequency data has been used, as this allows the complete time-domain model to be
used as the benchmark. Improved representation of components and their frequency
dependency can be achieved by using RL networks, as illustrated in Figure 8.28 for
a generator.

Figures 8.29–8.31 display the impedance magnitude, phase angle and impedance
loci, respectively, for frequency-domain and time-domain generation of frequency
responses. Frequency-dependent transmission line models with standard generator,
transformer and load models were used in the time domain. As expected, there is
reasonable agreement except at resonance, where the frequency domain generates a
higher peak. The impedance loci look a lot worse, as the impedance changes very
fast with frequency, near resonances. Hence the loops represent very narrow frequency
bands and are the regions where discrepancies in resistances are most pronounced.

 

(1−p)L pLRS

Rp

Figure 8.28 Generator model with improved frequency response
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Figure 8.29 Comparison between ( ) time- and (· · · · · ·) frequency-domain assessment
of system impedance
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Figure 8.30 Comparison between ( ) time- and (· · · · · ·) frequency-domain assessment
of system impedance



DISCUSSION ON ADVANCED HARMONIC MODELLING 387

0 200 400 600

−200

0

200

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

jX

−200 −2000 200 400 600 0 200 400 600

−200 0 200 400 600 −200

−200

0

200

jX

0 200 400 600 0 200 400 600

−200 0 200 400 600

−200

0

200

R

jX

−200

0

200

jX

−200

0

200

jX

−200

0

200

jX

−200

0

200

jX

−200

0

200

jX

−200

0

200
jX

−200 0 200 400 600

R

0 200 400 600

R

Figure 8.31 Comparison between ( ) time- and (· · · · · ·) frequency-domain assessment
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8.7 Discussion on Advanced Harmonic Modelling

Three advanced methods have been described in this chapter for the simulation of the
power system harmonic sources. These are the harmonic domain, the time domain and
a hybrid combination of the conventional frequency and time domains.

The harmonic domain includes a linearised representation of the nonlinear compo-
nents around the operating point in a full Newton solution. The fundamental frequency
load flow is also incorporated in the Newton solution, which thus provides the ideal
tool for general steady-state assessment. However, the complexity of the formulation
to derive the system Jacobian may well prevent its final acceptability.

The hybrid proposal takes advantage of the characteristics of the frequency and time
domains for the linear and nonlinear components, respectively. The hybrid algorithm
is conceptually simpler and more flexible than the harmonic domain but it is not a full
newton solution and therefore not as reliable under weak system conditions.

The direct time-domain solution, using EMTP-type programs, can be used for the
derivation of the steady-state voltage and current waveforms and harmonics levels,
and is particularly good at taking into account complex nonlinear devices and their
controllers. Care is required to ensure a realistic resistance at harmonic frequencies.
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FDNE can be used to represent the arbitrary frequency response of an a.c. system. When
representing the interaction between the a.c. system and nonlinear devices, an accurate
match at fundamental frequency must be achieved otherwise the incorrect operating
conditions will result, with wrong harmonic injection estimates being obtained. This
will follow through to wrong harmonic voltages.

With fixed harmonic current injections only the match at harmonic frequencies
is important.

The rational function representation is more accurate and more methodical than the
fitting of RLC networks, as the latter requires a certain amount of manual tuning of
parameters. However, the rational function approach has the problem of stability, and
hence trial and error is usually required to find the highest order that is stable.
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