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Preface

Rigid voltage sources, such as an ideal grid, an output-voltage feedback-controlled
converter, and a storage battery, have dominated as input sources for a long time.
As a consequence, the scholars and engineers have learned every detail and
developed a multitude of power stages and control methods for the voltage
domain. A common characteristic of these sources is that their output impedance
is low in magnitude at low frequencies. From time to time, a term current-sourced
converter has been used with a voltage-sourced converter in case there is an
inductor connected in series with the voltage-type source. Unfortunately, such a
converter has no explicit relation to the current source as an input source.
However, duality implies that there also exist sources that can be classified as real
current sources, that is, sources that have an output impedance, which is high in
magnitude.

Since the last decade, people have started paying more and more attention on
renewable energy sources for providing pollution-free energy and ensuring
energy availability also in the future. Usually, most of the power electronic
converters applied in interfacing the renewable energy sources into power
grid in grid-feeding mode are to be considered as current-fed converters due
to the feedback control of DC voltage. Despite the real nature of the input source,
the scholars and engineers still like to consider them as voltage sources and justify
their opinions by means of Norton–Thevenin transformation. The dual nature of
the photovoltaic generators (i.e., current and voltage at specific operation points
of their current–voltage curve) makes them an input source that may be too
confusing for an engineer to analyze and thus the analysis will be performed in the
familiar voltage domain even though such a power source will significantly affect
the dynamic behavior of the converters connected at their output terminals. The
long history of voltage sources as the dominating input source has created a
situation, which has prevented the full understanding of the special features
introduced by the current sources as input sources. This is quite understandable,
because the most difficult learning process is to learn out from the past.

This book contains material from both of the domains by using the same power
stage powered either by the rigid voltage or the current source. The differences in
the dynamic behavior of the converters in different domains are explicitly shown
including also comprehensive analyses of the source and load interactions in DC–
DC converter as well as in grid-connected three-phase converters. Similar
material cannot be found from any available book and the material in scientific
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papers is scarce and may be hard to identify from the vast number of published
papers.

Many individuals have helped us to create the book during the past 20 years in
academy. Most of those individuals are our past Ph.D. students and colleagues at
TUT, who have created new knowledge during the research projects we have
conducted together. We appreciate very much the Finnish industry and funding
organizations, who have helped us to fund the research.

Tampere University of Technology
Tampere, Finland

Teuvo Suntio

Tampere University of Technology
Tampere, Finland

Tuomas Messo

ABB Oy
Helsinki, Finland

Joonas Puukko
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1

Introduction

1.1 Introduction

For a long time, voltage-type sources such as storage battery, AC grid, and output
voltage-regulated converters have dominated as an input source for power
electronic converters [1,2]. These sources are usually referred to as rigid sources,
since the load has limited influence on their operating voltage. Both awareness on
the depletion of fossil fuel reserves and their impact on the observed climate
changes have accelerated the utilization of renewable energy sources, for example,
wind and solar [3]. Effective large-scale utilization of these energy sources
requires the use of grid-interfaced power electronic converters [4,5]. It has
been recently concluded [6,7] that the power electronic converters used in the
photovoltaic (PV) systems are essentially current-sourced converters because of
the current-source properties of PV generator [8,9] forced by the input-side
voltage feedback control [10,11]. At open loop, the static and dynamic properties
of the integrating converter are determined by the operating region of the PV
generator. The same also applies for the converters in wind energy systems.
Another example of a perfect current source is superconducting magnetic energy
storage (SMES) system, where a very large inductor serves as the energy storage
element [12,13]. Even though the properties of the mentioned sources are already
well known [14,15], they are still typically considered as voltage sources when
designing the interfacing converter power stages [16,17] or analyzing their
underlying dynamics [18–21] despite their current-type properties. The analysis
method is usually justified by Norton/Thevenin transformation [20].

The existence of two different input source types implies that two different
families of power electronic converters shall also exist, where the converters shall
be referred to as voltage-fed (VF) (Figure 1.1) and current-fed (CF) (Figure 1.2)
converters, possessing different steady-state and dynamic properties even though
the power stage can be the same in both of the cases [7,22]. The term current
source has already been widely used, for example, in Ref. [23–28], denoting a
voltage-fed converter, where an inductor is placed on the input-side current path
such as a boost-type converter [29] or two-inductor (super)buck converter [30].
Fuel cells as renewable energy sources [31] are such an input source, which can be
considered to be either voltage or current sources due to their rather constant

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1 VF converter. (a) VO
mode. (b) CO mode. Source: Suntio
2014. Reproduced with
permission of IEEE.

output impedance [32] and operation at the voltages less than the maximum
power point [33]. Therefore, the elimination of the harmful low-frequency ripple
can be performed by using either input current (i.e., voltage source) or input
voltage (i.e., current source) feedback control [34].

On the load side, the output voltage of a converter shall not be taken
automatically as an output variable, since this is true only when the converter
serves as a typical power supply, regulating its output voltage. In case, the
converter is used, for example, as a battery charger or grid-connected inverter,
the output voltage is determined by the load-side source and hence output
current shall be treated as an output variable. Therefore, the static input-to
output ratio M�D�, where D denotes the steady-state duty cycle, shall be actually
determined as the ratio of the input-terminal variable characterizing the input
source and the same variable at the output terminal, that is, the voltage ratio in a
VF converter and the current ratio in a CF converter. According to Figures 1.1 and
1.2, the converter may serve either as a VF or as a CF converter with voltage (VO)
or current (CO) as its main output variable, depending on the application. In all
the cases, the terminal constraints in terms of voltage and current levels remain
unchanged. Reference [22] shows explicitly in theory and by experimental
measurements that the dynamic behavior changes significantly application by
application as demonstrated in Figure 1.3, where the measured frequency
responses of the control-to-output transfer functions with different terminal
source configurations are shown. Therefore, it is very important to identify the
correct nature of the terminal sources when analyzing the dynamics of the

Figure 1.2 CF converter. (a) CO
mode. (b) VO mode. Source: Suntio
2014. Reproduced with permission
of IEEE.
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Figure 1.3 The frequency responses of a buck power stage converterwhen the terminal sources
are varied (i.e., voltage-fed converters at voltage (vf/vo) and current (vf/co) output modes and
current-fed converters at current (cf/co) and voltage (cf/vo) modes).

converter, for example, for control design purposes, which is obvious when
studying the frequency responses in Figure 1.3.

Every power electronic converter has unique internal dynamics, which will
determine the obtainable transient dynamics and robustness of stability as well as
its sensitivity to the external source and load impedances [35–37]. The internal
dynamics can be represented by a certain set or sets of transfer functions, which
are classified in circuit theory according to the network parameters [38] known as
G (Figure 1.1a), Y (Figure 1.1b), H (Figure 1.2a), and Z (Figure 1.2b), respectively.
The specific transfer functions can be directly modeled and measured as
frequency responses only when the used terminal sources correspond to the
ideal terminal sources given for each of the sets in Figures 1.1 and 1.2. Even if the
concept of internal dynamics is basically well known (i.e., all effects from the
source and load impedances are removed) [7,35], the tendency is still to use a
resistor as a load [39] yielding load-affected models or measured frequency
responses. A power stage fed by a certain input source under direct duty ratio
(DDR) control tends to maintain the output mode the same as the input source
(i.e., VF converters are inherently voltage sources at their output, and CF
converters are current sources at their output). As a consequence, the internal
transfer functions of such converters can be measured directly at open loop. The
other possible output mode does not work at open loop due to violation of
Kirchhoff’s voltage or current law. The same also applies for the current-mode
control, which changes the converter to be a current-output converter [40]. In
such a case, the use of resistive load is well justified, but the internal transfer
functions have to be computed from the load-affected transfer functions for being
useful [7].

A large number of excellent power electronics textbooks are available, such as
Refs [5,7,25,39,41–47], which are dedicated to the converters providing either
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DC–DC or DC–AC (AC–DC) conversion, or even both. None of these textbooks
presents topics that treat the CF converters even if they exist or may even
dominate within the specific application area covered in the specific books. The
inclusion of the effect of source and load impedances on the converter dynamics is
also usually left out by the topics covered in the books even if they are considered
very important in practical applications.

The main goal of this book is to provide the missing information in order to
complement the other textbooks as well as to present the base for the dynamic
analysis of the converters in a general form, which can be utilized with both
analytically derived transfer functions and the experimentally measured transfer
functions. As a consequence, the potentials of the theoretical work are extended
into practice and for the usage of practicing engineers.

The topics covered in the book are briefly discussed and clarified in the
subsequent sections in order to familiarize the reader with the secrets of dynamic
modeling, analysis, and control designs in both DC-voltage/current source and
AC-voltage/current source domains. The mastering of these items requires quite
consistent thinking ability as well as flexibility to change from one set of dynamic
descriptions to another while moving on.

1.2 Implementation of Current-Fed Converters

There are actually three different methods to implement CF converters: (i)
applying capacitive switching cells to construct CF converters [48] similarly as
the inductive switching cells are applied, for example, in Refs [1,2], (ii) applying
duality transformation methods [49–53], and (iii) adding a capacitor to the input
terminal of a VF converter [54] to satisfy the terminal constraints imposed by the
input current source [55]. The duality transformation yields CF converters, which
retain the main static and dynamic properties characterizing the original VF
converter [52]. The adding of a capacitor at the input terminal of a VF converter
yields a CF converter having static and dynamic properties resembling the dual of
the original converter, that is, a VF buck converter will have characteristics
resembling a boost converter and vice versa [54].

As an example, the power stage of a VF buck converter and its dual, that is, the
corresponding power stage of a CF buck converter, are given in Figures 1.4 and 1.5.
In the original buck converter, the high-side switch SHS conducts during the

Figure 1.4 VF buck converter.
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Figure 1.5 CF buck converter.

on-time and the low-side switch SLS during the off-time. In the CF buck converter,
the low-side switch SD

LSHS conducts during the on-time and the high-side switch SD

during the off-time. As both of the converters are buck-type converters, the ideal
input-to-output relation or modulo M�D� � D.

It has been observed earlier that the VF-converter power stages used in the
interfacing of PV generators exhibit peculiar properties, such as appearing of
right-half-plane (RHP) zero in the control dynamics of buck power stage
converter [56], unstable operation when the output voltage or current is tightly
controlled [57], necessity to reduce the pulsewidth for increasing the output
variables [58,59], and appearing of RHP pole when peak-current-mode (PCM)
control is applied in a buck power-stage converter [60,61], and even the
impedance-based stability assessment has to be performed differently compared
to the VF converters [62]. The observed phenomena are good evidence for the
necessity to fully take into account the used terminal sources as discussed in
Ref. [22].

1.3 Dynamic Modeling of Power Electronic Converters

The methods to develop the required small-signal or dynamic models for the
power electronic converters date back to the early 1970s [63] when the foundation
for the state space averaging (SSA) method was laid down [64] and later modified
to correctly capture the dynamics associated with the discontinuous conduction
mode (DCM) of operation [65,66] as well as with the variable frequency opera
tion [67,68]. The same methods also apply equally to modeling the dynamics of
three-phase grid-connected power converters [69]. The SSA method is observed
to produce accurate models up to half the switching frequency.

One of the most fundamental issues in performing the modeling in addition to
the recognition of the correct input and output variables is that the state variables
are to be considered as the time-varying average values within one switching cycle
of the corresponding instantaneous values [66]. In continuous conduction mode
(CCM), this is also true in the instantaneous state variables and, therefore, the
averaged state space can be constructed by computing the required items directly
by applying circuit theory. The continuity is also reflected as the known length of
the on-time and off-time. In DCM, the instantaneous variables are not anymore
necessarily continuous signals but rather pulsating signals, which is also reflected
as the unknown length of off-time. Therefore, their time-varying average values
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have to be computed based on the wave shapes of their instantaneous values and
used for computing the length of the unknown off-time. A number of variants are
available for the basic SSA method in continuous time as well as in discrete time,
which can also be used for obtaining the dynamic models but they do not offer
usually such benefits, which would justify their usage in practical applications.

The original SSA method can be applied as such only to the converters, which
operate in CCM under DDR control, which is also known as voltage-mode (VM)
control [39]. The last term is not recommended, however, to be used, because it
will mean in the future the internal control methods in a CF converter, where the
feedback is taken from the capacitor voltage (i.e., peak voltage mode (PVM) or
average voltage mode (AVM)) similarly as the current-mode controls (i.e., peak
current (PCM) or average current (ACM)) in a VF converter. The dynamic
models (i.e., the small-signal state space) induced by the DDR control will serve as
the base for the modeling of the converters, where the internal feedback loops are
used to affect the duty ratio generation, that is, the dynamics associated with the
duty ratio. The modeling of those converters can be simply done by developing
proper duty-ratio constraints, where the perturbed duty ratio is expressed as a
function of the state and input variables of the converter [7]. In case of variable-
frequency operation, the duty ratio is nonlinear and, therefore, the on-time of the
switches has to be used as the control variable instead of duty ratio [7,68].

1.4 Linear Equivalent Circuits

As an outcome of the SSA modeling method [64], the dynamics of the associated
converter was represented by means of the canonical equivalent circuit given in
Figure 1.6, which is valid for a second-order or two-memory-element converter
operating in CCM under DDR control. The structure and the circuit elements of
the equivalent circuit can be found from the corresponding small-signal state
space. Similar equivalent circuit can also be constructed for the higher order
converters as well as for CF converters (see Figure 1.7) applying the same
methodology. Figures 1.6 and 1.7 provide clear physical insight into the dynamic
processes inside the converters as well as clearly indicate the differences the

Figure 1.6 Canonical equivalent circuit for a second-order VF/VO converter.
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Figure 1.7 Canonical equivalent circuit for a second-order CF/CO converter.

duality transformation produces in the converter. As being a linear representation
of the converter, the effect of the source and load impedances can be computed by
applying circuit theory, which is very important for understanding the dynamic
behavior of the practical systems.

Similar equivalent circuits as in Figures 1.6 and 1.7 cannot be, however,
constructed for the converters operating in DCM or containing internal feedbacks,
for example, PCM control. More general equivalent circuit can be constructed
based on the set of transfer functions comprising the network parameters G, Y, H,
and Z, which can be utilized similarly as the canonical equivalent circuits in
Figures 1.6 and 1.7 to assess the effect of nonideal source and load [7,70]. Figures 1.8
and 1.9 show such a generic equivalent circuit representing the dynamics of VF/VO
DC–DC and a VF/CO DC–DC converters, respectively. On comparing the
equivalent circuits in Figures 1.6 and 1.7 with the equivalent circuits in Figures 1.8
and 1.9, the main difference found between them is that the latter equivalent circuits
present explicitly the main terminal characteristics of a converter. This information
is actually very important for being able to fulfill the terminal constraints stipulated
by the different input and output sources.

Similar equivalent circuits as in Figures 1.6 and 1.7 can also be constructed for
the three-phase grid-connected converters by means of their small-signal state
space given in the synchronous reference frame applying power invariant
transformation (i.e., power-invariant d–q state space), as shown in Figures 1.10
and 1.11 [71,72]. The corresponding physical schematics are given in Figures 1.12

Figure 1.8 Generic equivalent circuit for a VF/VO converter.
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Figure 1.9 Generic equivalent circuit for a CF/CO converter.

Figure 1.10 Canonical equivalent circuit for a three-phase AC–DC converter.

Figure 1.11 Canonical equivalent circuit for a current-fed three-phase DC–AC converter.
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Figure 1.12 Three-phase grid-connected rectifier.

and 1.13, respectively. According to Figures 1.12 and 1.13, the converters can be
constructed from each other by changing the direction of power flow. This
similarity is also visible in the corresponding equivalent circuits. These equivalent
circuits would give the same physical insight as the corresponding DC–DC
equivalent circuits.

Similar equivalent circuits as in Figures 1.10 and 1.11 cannot be, however,
constructed for the converters operating in DCM or containing internal feed
backs. Similarly, as in the case of DC–DC converters, the more general equivalent
circuits can be constructed based on the set of transfer functions comprising the
network parameters G, Y, H, and Z, which can be utilized similarly as the
canonical equivalent circuits in Figures 1.10 and 1.11 to assess the effect of
nonideal source and load [7,73]. Figure 1.14 shows such a generic equivalent
circuit representing the dynamics of a three-phase grid-connected AC–DC
converter, and Figure 1.15 shows a generic equivalent circuit representing the
dynamics of a three-phase grid-connected current-fed inverter. On comparing
the equivalent circuits in Figures 1.10 and 1.11 with the equivalent circuits in
Figures 1.14 and 1.15, the main difference found between them is that the latter
equivalent circuits present explicitly the main terminal characteristics of a
converter. This information is actually very important for being able to fulfill
the terminal constraints stipulated by the different input and output sources.

The variables of the equivalent circuits with a superscript s denote the three-
phase variables transformed into the synchronous reference frame (SRF) composed
of direct (d) and quadrature (q) components of the variables, respectively. The

Figure 1.13 Three-phase grid-connected current-fed inverter.
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Figure 1.14 Generic equivalent circuit for a three-phase grid-connected VF/VO converter.

Figure 1.15 Generic equivalent circuit for a three-phase grid-connected CF/CO converter.

transfer functions represented with boldface letters denote a transfer function
matrix composed of two or four discrete transfer functions. The computation of the
effect of nonideal source and load has to be performed by applying matrix
manipulation techniques instead of circuit theoretical methods [73].

The generic equivalent circuits are very flexible tools for solving the dynamic
problems associated with the impedance-based interactions [37,71,74] as well as
for assessing the stability in the practical interconnected systems [75,76]. The
dynamic equivalent circuits as well as the corresponding matrix-form represen
tations can be equally utilized by means of the model-based analytic transfer
functions and the corresponding measured frequency responses or even by their
combination.

1.5 Impedance-Based Stability Assessment

Stability assessment of a system composed of interconnected power electronic
converters as well as passive impedance-like elements can be effectively per
formed at any interface within the system by means of the ratio of upstream and
downstream impedances measured or predicted at the interface [7,22,63,75–84].
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Figure 1.16 Collection of forbidden regions in the complex plane according to Refs [77–84].
Source: Vesti 2013. Reproduced with permission of IEEE.

The method was originally launched in Refs [77,78] for designing stable input-
filter converter systems. The ratio was named as minor loop gain, where the
input-filter output impedance is the upstream impedance and the input imped
ance of the converter is the downstream impedance. The minor loop gain denotes
the ratio of the upstream and downstream impedances. The stability of the
interconnected system is retained when the minor loop gain satisfies Nyquist
stability criterion. It has been later observed that the original minor loop gain is
only valid for a certain type of interfaces, that is, the upstream subsystem is a
voltage-type system and the downstream system a current-type system. A general
definition for the construction of the minor loop gain is such that the numerator
impedance shall be the internal impedance of the voltage-type subsystem and the
denominator impedance shall be the internal impedance of the current-type
subsystem [22,62,78].

The minor loop gain concept is nowadays applied commonly in assessing the
stability and transient performance in interconnected power electronic systems.
The concept of forbidden region was launched in Ref. [79], which ensures robust
stability of the system if the minor loop gain stays out of the forbidden region. The
forbidden region launched by Middlebrook in Refs [77,78] is a circle having radius
of inverse of gain margin (GM) and the center at origin, as shown in Figure 1.16.
Middlebrook’s forbidden region was deemed to be too conservative, that is,
occupying unnecessary amount of area in the complex plain [79]. As a conse
quence, new forbidden regions were developed for reducing the conserva
tism [79–84] such as ESAC (energy systems analysis consortium) [79],
GMPM (gain margin phase margin) [80], and opposing argument [81] criteria
illustrated in Figure 1.16.
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Figure 1.17 Maximum peak criteria (MPC)-based forbidden region versus EASC and GMPM
regions [75]. Source: Vesti 2013. Reproduced with permission of IEEE.

According to Figure 1.16, all the different criteria aim to maintain robust
stability (i.e., acceptable transient performance) by requiring the minor loop
gain to satisfy certain PM and GM conditions. Reference [75] proposed a new
forbidden region by means of a circle having radius of inverse of maximum
peak value allowed in the affected system transfer functions and the center at
the point (�1,0) as depicted in Figure 1.17, which outperforms the other
earlier launched forbidden regions in terms of occupied area in the complex
plain. The forbidden region concept is applicable to DC and AC domain
systems as well.

1.6 Time Domain-Based Dynamic Analysis

Time domain-based dynamic analysis and control design are quite common in
control engineering [85,86] and are also utilized in conjunction with the grid-
connected power electronics applications [87]. The time domain responses do
not, however, reveal the origin of the observed transient behavior or how close the
system is for instability. Figure 1.18 shows the output-voltage transient behavior
of a buck converter when a step change is applied in the load current without
(Figure 1.18a) and with the input LC or EMI filters (Figure 1.18b and c). If both the
original and EMI filter-affected responses were not known, then it would be very
difficult to distinguish between the poor controller design and other external
reasons, because the decaying oscillation at the output-voltage response would be
similar with low margins (i.e., PM and GM) in the feedback loop.

Figure 1.19 shows the measured output-voltage feedback loop without and
with the input EMI filter. According to Figure 1.19, the EMI filter has not caused
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Figure 1.18 Output-voltage response of a buck converter to a step change in load current.

such a change in the feedback loop, which would affect the transient response,
that is, the PM and GM are not changed. Figure 1.20 shows the measured closed-
loop output impedance of the converter, where the EMI filter has created a
resonance, which actually initiates the decaying oscillation at the output-voltage
response [88,89]. More specifically, the resonance at the output impedance is
caused by the interacting EMI-filter output impedance and short-circuit input
impedance of the converter [90].

Figure 1.21 shows that the grid-connected inverter may become unstable when
the control bandwidth of the phase locked loop (PLL) is increased under certain
grid impedance conditions. PLL is used for synchronizing the inverter to grid. The

Figure 1.19 The measured original and EMI-filter-affected output-voltage feedback loops.
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Figure 1.20 Original and EMI-filter-affected closed-loop output impedances.

reason for the instability is the tendency of the inverter output impedance to have
negative resistor-like behavior at low frequencies, that is, at the frequencies lower
than the PLL crossover frequency [91]. The frequency responses of the inverter
output impedance and the grid impedance (Figure 1.22) can be used to reveal
explicitly the problems associated with instability phenomenon. The time domain
plot does not tell anything about the reasons behind the problem or how much
the condition has to change that the instability will vanish or occur again.

It may be quite obvious that the time domain evidence does not suffice to
proving the quality of design or the validity of the modifications for removing the
problem. The frequency domain evidence will provide a medium to assess the
robustness of the design as well as to reveal the risks left in the design for
reoccurrence of the “removed” problem.

Figure 1.21 Instability of three-phase grid-connected inverter induced by PLL control
bandwidth.
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Figure 1.22 Effect of the PLL bandwidth on the inverter output impedance.

1.7 Renewable Energy System Principles

Large-scale utilization of the renewable energy sources such as solar PV, wind,
and fuel cells necessitates the use of power electronic converters for providing the
grid integration [4]. The solar PV power plants are either constructed by using
one DC–AC stage (i.e., single stage) (Figure 1.23) or cascaded by using DC–DC
and DC–AC stages (i.e., double stage) (Figure 1.24) [92]. The full-power converter
wind energy and fuel cell systems are most often constructed by using double-
stage converter schemes according to Figure 1.24 [31,93–95].

The basic operation mode of these systems in terms of grid connection is either
grid-parallel (i.e., grid-feeding, grid-supporting) or grid-forming mode [96–98].
In grid-parallel operation mode, the inverter serves as current source, and the grid

Figure 1.23 Single-stage renewable energy system principle.

Figure 1.24 Cascaded renewable energy system principle.
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Figure 1.25 Single-stage grid-parallel energy system.

Figure 1.26 Cascaded grid-parallel renewable energy system.

Figure 1.27 Single-stage grid-forming energy system.

determines the level of AC voltage and frequency (Figures 1.25 and 1.26). Usually
maximum available power in the renewable energy source is supplied into the grid
applying different maximum power point (MPP) tracking algorithms [99–102]. A
characteristic of the grid-parallel operation mode is that the outmost feedback
loops of the power electronic converters are taken from the input terminal of the
converters (see Figures 1.25 and 1.26).

In grid-forming operation mode (i.e., standalone, off-grid, or islanding), the
inverter serves as a voltage source taking care of both the voltage level and
the frequency (Figures 1.27 and 1.28). The level of output power supplied into the

Figure 1.28 Cascaded grid-forming renewable energy system.
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system depends on the load of the system. A characteristic of the grid-forming
mode is that the outmost feedback loops are taken from the output terminal of the
power electronics converters (see Figures 1.27 and 1.28).

The feedback arrangements mean that the power electronic converters in grid-
parallel mode are CF/CO converters and in grid-forming mode VF/VO convert
ers. The change of operating mode is usually required in renewable energy
systems (i.e., from grid-parallel to grid-forming mode and back). The dynamic
behavior of the converters will profoundly change depending on the operation
mode, which has to be carefully considered when designing the control systems
for ensuring stable operation [97].

1.8 Content Review

The book is divided into four parts as follows: Part One, comprising Chapters 1
and 2, is dedicated to the introduction as well as to the dynamic analysis and
control design preliminaries in a generalized manner. Part Two, comprising
Chapters 3–6, is dedicated to the dynamics of voltage-fed DC–DC converters.
Part Three, comprising Chapters 7–11, is dedicated to the dynamics of current-
fed DC–DC converters as well as to the properties of photovoltaic generator and
its effects on the interfacing converter dynamics. Part Four, comprising Chapters
12–17, is dedicated to the dynamics and control of grid-connected three-phase
VSI-type converters. The content of the subsequent chapters is briefly reviewed in
order to clarify the message, which each chapter will deliver.

The conceptual and theoretical basis of the book is provided in Chapter 2 in a
simple and practical manner without using difficult mathematical treatments, but
at the same time in general form. The same theoretical formulas are repeated in
explicit modes in the associated chapters if deemed to be necessary for under
standing the message.

In Part Two, the dynamic modeling, analysis, and control of VF converters are
treated. Chapter 3 provides the unified dynamic modeling of direct-on-time-con
trolled converters applied to the basic converters (i.e., buck, boost, and buck–boost)
as well as to the superbuck or two-inductor buck converter in the fixed-frequency
mode of operation. The dynamic models provided by Chapter 3 are utilized to model
the dynamic behavior of the current-mode-controlled converters in Chapter 4. The
similarity between PCM and ACM controls is clearly pointed out. The modeling of
PCM control is also introduced in case of several simultaneous inductor-current
feedback arrangements as well as when coupled inductors are utilized. The source
and load interactions in PCM- and DDR-controlled converters are compared and the
origin of the differences is explained. Chapter 5 introduces the modeling of current-
output converters based on the models of the VF/VO converters. The source and load
interactions as well as impedance-based stability analysis are introduced and com
pared with the VF/VO converters. Chapter 6 is dedicated for the control design issues
in VF converters. The factors affecting the load transient response are explicitly
explained, which would facilitate the control design.

In Part Three, the implementation, dynamic modeling, analysis, and control of
CF converters are treated. Chapter 7 provides the methods to implement CF
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converters applying duality transformation and adding necessary components at
the input terminal for satisfying the terminal constraints imposed by the current-
type input source. Chapter 8 provides the dynamic models of DDR-controlled
basic CF converters implemented by duality-transformation methods or by
adding a capacitor at the input terminal of a VF converter. Chapter 9 introduces
the dynamic modeling of PCM- and PVM-controlled CF converters. Observed
stability problems in conjunction with PCM control applied in PV interfacing
converters are explicitly explained. The influence of the PCM and PVM controls
in source and load interactions as well as impedance-base stability assessment are
explicitly explained. Chapter 10 introduces the characteristics of PV generator as
well as the MPP tracking methods and design constraints. Chapter 11 is dedicated
to the photovoltaic generator interfacing problematics from the power electronics
converter viewpoint, including the PV generator-induced effects on the dynamics
of the interfacing converters as well as the associated stability issues.

In Part Four, the dynamic modeling, analysis, and control of grid-connected
three-phase VSI-type converters are treated. Chapter 12 provides consistent
methods to develop the dynamic models of voltage- and current-fed three-phase
PWM inverters in synchronous reference frame (or dq-domain) by utilizing space
vector theory. Chapter 13 is dedicated to applying the dynamic models to design
the required control functions in an inverter. The effect of different control
anomalies caused by the input terminal sources are explicitly treated as well.
Chapter 14 introduces reduced-order dynamic modeling of the inverters to relax
the high complexity of the inverter dynamics for achieving satisfactory dynamic
descriptions applicable for control design. Chapter 15 provides the detailed
models for analyzing the closed-loop dynamics of the inverter in multivariable
environment. Chapter 16 provides detailed information on the impedance-ratio
based stability assessment methods applying generalized Nyquist stability crite
rion. Chapter 17 is dedicated to the dynamic modeling and control design of
three-phase active rectifiers.
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2

Dynamic Analysis and Control Design Preliminaries

2.1 Introduction

This chapter introduces the basics behind the dynamic analysis and control
dynamics, defines the concepts of open- and closed-loop systems, and presents
the general sets of transfer functions for single-terminal input or output convert
ers as well as for multiterminal input or output converters in matrix, linear
network, and control-engineering block diagram forms. The basic dynamic
representations are given to correspond to the true internal dynamics of the
associated converters. The methods to address the effect of nonideal source and
load are introduced in general forms yielding a number of impedance-like special
parameters explaining the sensitivity/insensitivity of the associated converter to
the source and load interactions. The control-engineering block diagrams are
used in their general forms to derive the closed-loop representations for output
and input dynamics. The stability and performance indices such as control
bandwidth, loop crossover frequency, phase and gain margins, sensitivity and
complementary sensitivity functions, and instability, conditional stability, mar
ginal stability, and unconditional stability are reviewed. The stability assessment is
also expanded to the impedance-based stability assessment in general form. The
meaning and consequences of zeros and poles in the transfer functions are
explained. Especially, the right-half-plane zeros and poles are discussed in the
light of the control bandwidth constraints they impose.

2.2 Generalized Dynamic Representations – DC–DC

2.2.1 Introduction

The first linear equivalent circuit of a power electronic converter (Figure 2.1) was
proposed in the late 1970s in Ref. [1] by Middlebrook. This equivalent circuit is
valid only for the voltage-fed second-order DC–DC converters operating in CCM
under direct duty ratio control. Similar equivalent circuits can also be developed
for higher order converters and for current-fed converters under similar operat
ing conditions. The circuit gives physical insight into the dynamic processes taken
place in the converter, and explains well why, for example, the input filter will

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 2.1 Canonical equivalent circuit of a DRR-controlled second-order DC–DC converter.

affect the dynamics of the converter (i.e., the dependent current source at the
input terminal). As a consequence, the equivalent circuit was later utilized
effectively to develop the input-filter design rules published in Refs [2,3] to
prevent the input filter to degrade the transient performance and to cause
instability. Middlebrook has later revealed that the design rules were developed
utilizing the extra element theorem introduced in Ref. [4].

The above-discussed limitations in its applicability make this kind of equivalent
circuits, however, quite useless despite their very attractive properties. Actually, the
most important impacts the original design rules have created can be traced to the
application of the extra element theorem in terms of the interaction formulation.
This formulation reveals that there are a number of special ohmic parameters
explaining the dynamic behavior of the power electronic converters [5].

In order to overcome the applicability limitations, a more general equivalent
circuit was proposed in Ref. [6] (Figure 2.2) based on the transfer functions of a
power electronic converter, that is, on the circuit-theoretic two-port network
parameters [7]. It was later noticed [8] that the equivalent circuit shall be
constructed in such a way that the source and load effects are removed in the
corresponding set of transfer functions for improving the applicability of the
equivalent circuit [5]. The usefulness of the network parameter-based equiv
alent circuits is well recognized [9,10] and their applicability is also well

Figure 2.2 Equivalent circuit of a DC–DC converter based on two-port network parameters.
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Figure 2.3 VF converter. (a) Voltage-
output mode. (b) Current-output
mode. Source: Suntio 2014.
Reproduced with permission of
IEEE.

demonstrated [11–15]. It is also noticed that the same kind of equivalent
circuits can be equally utilized in the dynamic analysis of three-phase grid-
connected power electronic converters [16–19].

2.2.2 Generalized Dynamic Representations

The generalized treatment of the dynamics of the DC–DC converters is presented
in Ref. [20], covering the VF and CF DC–DC converters at voltage- and current-
output modes. The dynamic effects that the change of the terminal sources will
produce are demonstrated with both developed analytical transfer functions and
practical measurements by using a buck power stage as an example.

The set of transfer functions or two-port network parameters describing the
small-signal dynamic behavior of the converters in Figures 2.3 and 2.4 is unique
for each of the converters as follows [5,7]: The converter in Figure 2.3a shall be
represented by G-parameters, the converter in Figure 2.3b by Y-parameters, the
converter in Figure 2.4a by H-parameters, and the converter in Figure 2.4b by Z-
parameters.

In general, a set of transfer functions of a converter with single-input and
single-output terminals can be represented according to Eq. (2.1) using matrix

T
and two-variable

^^

notation with three-variable input vector

yin yout

^^ûin uout uc
T

, where the subscript “in” denotes an input-terminaloutput vector

Figure 2.4 CF converter. (a) Current-
output mode. (b) Voltage-output
mode. Source: Suntio 2014.
Reproduced with permission of
IEEE.
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variable, the subscript “out” designates an output-terminal variable, and the
subscript “c” symbolizes the control variable:

uin

uout

uc

^

^

^

ŷin

ŷout

� G11 G12 G13

G21 �G22 G23
(2.1)

The “^” over the variables denotes small-signal behavior and the Laplace variable
is dropped for brevity. Input and output variables can be either voltages or
currents depending on the converter application. The sign of the entry corre
sponding to G22 is negative, since the output current flows out of the terminal
(opposed to classical definition for the two-port networks [7]). To clarify, consider

battery-powered converter, feeding a microprocessor. Then,
yout^

would be
– battery^

ŷin
– microprocessor voltage (controlled variable), uin

a
battery current,
voltage, and microprocessor current.uout

The physical transfer functions in (2.1) can be stated as follows:

yin

uin
yin

uout
yin

uc

^

yout

^

^

^

^

^
^

^

–

G11 � : Converter input impedance (Zin) or admittance (Y in)

G12 � : Reverse transfer function (Toi)

G13 � : Control-to-input transfer function (Gci)

G21 � : Forward transfer function (Gio) (also known as audiosusceptibility)
uin

ûout

ŷout

^

ŷout

G22 � : Converter output impedance (Zo) or admittance (Y o)

G23 � : Control-to-output transfer function (Gco)
ûc

The set of the generalized network parameters in Eq. (2.1) cannot be repre
sented as a generalized linear equivalent circuit corresponding to Figure 2.2 since
the entry elements G11 and G22 are either impedance or admittance types
requiring their connection either in series or parallel with the corresponding
controlled source elements, as illustrated in Figure 2.2.

2.2.3 Generalized Closed-Loop Dynamics

According to control engineering principles [5], only one of the output system
variables may be independently controlled since there is a single control input. This
yields two different sets of closed-loop transfer functions as follows: Under input-
side feedback control, the closed-loop system (cf. Figure 2.5) can be represented as

ŷin

ŷout

�
G11-o G12-o Lin

1�Lin 1�Lin Gse-in�1�Lin� ^

^

^

uin

uout

ur-in1�Lin Gse-inG13-o�1�Lin�
(2.2)

G21-o �LinG21�1 G22-o �LinG22�1 G23-oLin
;

1�Lin
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Figure 2.5 General control-
engineering block diagrams
for the input-side feedback
control. (a) Input dynamics.
(b) Output dynamics. Source:
Suntio 2014. Reproduced
with permission of IEEE.

with

G11-oG23-oG21�1 � G21-o � G13-o
(2.3)

and

G22�1 � G22-o � G12-oG23-o

G13-o
; (2.4)

where Lin � Gse-inGaGc-inG13-o is the input-side loop gain, Gse-in the input-side
sensor gain, Ga the modulator gain, Gc-in the input-side controller transfer
function, and the input-variable ûr-in is the reference for the controlled variable
(see Figure 2.5). Transfer functions G21�1 and G22�1 are referred to as “ideal”
output-side transfer functions. The subscript extension “-o” denotes the open-
loop transfer function.



�

32 2 Dynamic Analysis and Control Design Preliminaries

Figure 2.6 General
control-engineering block
diagrams for the output-
side feedback control.
(a) Input dynamics.
(b) Output dynamics.
Source: Suntio 2014.
Reproduced with
permission of IEEE.

Under output-side feedback control, the closed-loop system (cf. Figure 2.6) can
be represented as follows:

G11-o �LoutG11�1 G12-o�LoutG12�1 G13-oLout

ŷin

ŷout

�
^

^

^

uin

uout

ur-out1�Lout Gse-out�1�Lout�
(2.5)

1�Lout 1�Lout Gse-outG23-o�1�Lout�
;

G21-o G22-o Lout

1�Lout

with

and

G11�1 � G11-o � G21-oG13-o

G23-o
(2.6)

G12�1 � G12-o � G22-oG13-o

G23-o
; (2.7)
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where Lout � Gse-outGaGc-outG23-o is the output-side loop gain, Gse-out is the
output-side sensor gain, Gc-out is the output-side controller transfer function,
and the output-variable ûr-out denotes the reference for the controlled variable (cf.
Figure 2.6). Transfer functions G11�1 and G12�1 are referred to as “ideal” input-
side transfer functions.

“Ideal” transfer functions defined in Eqs. (2.3, 2.4, 2.6) and (2.7) preserve their
values regardless of the state of feedback (i.e., they can be formed by open-loop
quantities only). According to Eqs. (2.2) and (2.5), the ideal transfer functions
determine the low-frequency behavior of the corresponding closed-loop trans
fer functions (or generally in the frequency range, where the corresponding
loop gains are sufficiently high). The low-frequency value of the ideal transfer
function defined in Eq. (2.4) resembles a pure resistor due to the constant-type
power output of the converter [20]. The low-frequency value of the ideal
transfer function defined in Eq. (2.6) resembles a negative resistor due to the
constant-type power input [5]. The constant-type power input or output means
that an increase or a decrease in the corresponding terminal voltage causes such
a decrease or increase in the terminal current that the terminal power will
remain the same due to the feedback control of the other terminal. It is
interesting to note that G11�1 is usually the reason for the input filter instability
phenomenon [5].

2.2.4 Generalized Cascaded Control Schemes

In many applications, cascaded control schemes are used, where, for example, the
output-current feedback loop forms the inner feedback loop, and the input-
voltage feedback loop forms the outer feedback loop [19,21,22]. In the rectifier
operation, the input-current feedback loop forms the inner feedback loop, and the
output-voltage feedback loop forms the outer feedback loop, as shown in
Figure 2.7 (i.e., the DC–DC converter). The general formulations for the
above-described cases are given in this section.

The analysis of cascaded control schemes is twofold: First the closed-loop
transfer functions induced by the closed inner feedback loop have to be devel
oped. The set of these transfer functions forms the open-loop set of transfer
functions for developing the closed-loop transfer functions induced by the closing
of the outer feedback loop.

For the case where the output-side feedback loop forms the inner loop and the
input-side feedback loop forms the outer loop, the inner-loop-induced set of

Figure 2.7 Cascade-controlled fuel-cell grid integration.



�

�

34 2 Dynamic Analysis and Control Design Preliminaries

Figure 2.8 General control-
engineering block diagrams
for the cascaded input–
output-side feedback control.
(a) Input dynamics. (b) Output
dynamics.

transfer functions are given in Section 2.2.3 in Eqs. (2.5)–(2.7), and illustrated in
Figure 2.6. The corresponding set of closed-loop transfer functions, when both of
the feedback loops are closed, yields (cf. Figure 2.8)

Gout Gout
11-c 12-c Lin

1 � Lin 1 � Lin Gse-in�1 � Lin� ûin

ûout

ûr-in

; (2.8)
ŷin

ŷout

�
Gout Gout Gout

21-c � LinGout
22-o � LinGout

23-cLin31�1 22�1
1 � Lin 1 � Lin Gse-inGout

13-c�1 � Lin�
G11-o �LoutG11�1 G12-o �LoutG12�1 Lin

�1�Lout��1�Lin� �1�Lout��1�Lin� Gse-in�1�Lin�
�G21-o=1�Lout��LinG21�1 �G22-o=�1�Lout���LinG22�1 G23-oLin

ûin

ûout

ûr-in

;
ŷin

ŷout

�
1�Lin 1�Lin Gse-inG13-o�1�Lin�

(2.9)
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with

G21-oG13-oG11�1 � G11-o � ; (2.10)
G23-o

G22-oG13-oG12�1 � G12-o � ; (2.11)
G23-o

G11-oG23-oG21�1 � G21-o � G13-o
; (2.12)

and

G22�1 � G22-o � G12-oG23-o

G13-o
; (2.13)

where Lin � Gse-inGaGc-in�G13-o=Gse-outG23-o� ? �Lout=�1 � Lout�� is the input-side
loop gain, Gse-inis the input-side sensor gain, Ga is the modulator gain, Gc-in is the

^

^

^

ûr-in is the reference
for the controlled variable (cf. Figure 2.8). The transfer functions Gij�o are the
original open-loop transfer functions derived for the converter. The ideal transfer
functions Gij�1 in Eqs. (2.10)–(2.13) are same as defined earlier in Section 2.2.3.

For the case, where the input-side feedback loop forms the inner loop and the
output-side feedback loop forms the outer loop, the inner-loop-induced set of
transfer functions are given in Section 2.2.3 in Eqs. (2.2)–(2.4) and illustrated in
Figure 2.5. The corresponding set of closed-loop transfer functions, when both of
the feedback loops are closed, yields (cf. Figure 2.9)

Gin
uin

yin uout
yout ur-out

^

^

input-side controller transfer function, and the input-variable

Gin Gin�LoutGin �LoutGin
11-c 11�1 12-o 12�1 13-oLout

1�Lout 1�Lout Gse-outGin
23-o�1�Lout�� ; (2.14)

Gin Gin
21-c 22-c Lout

1�Lout 1�Lout Gse-out�1�Lout�
�G11-o=1�Lin��LoutG11�1 �G12-o=�1�Lin���LoutG12�1 G13-oLout

�1�Lout��1�Lin� Gse-out�1�Lout�
(2.15)

ûin
ûout

ûr-out

;
ŷin

ŷout

� 1�Lout 1�Lout Gse-outG23-o�1�Lout�
G21-o �LoutG21�1 G22�0 �LoutG22�1 Lout

�1�Lout��1�Lin�

where Lout � Gse-outGaGc-out�G23-o=Gse-inG13-o� ? �Lin=�1 � Lin�� is the input-side
loop gain, Gse-out is the output-side sensor gain, Ga is the modulator gain, Gc-out

is the input-side controller transfer function, and the input variable is theûr-out

reference for the controlled variable (cf. Figure 2.9). The transfer functions Gij-o are
the original open-loop transfer functions derived for the converter. The ideal transfer
functions Gij�1 are same as defined earlier in Eqs. (2.10)–(2.13) and in Section 2.2.3.

The above-described cascaded control schemes assumed that the cascaded
feedback variables are located at the opposite terminals. There are, however,
situations, where both of the feedback-controlled variables locate at the same
terminals. Such applications are, for example, the different storage battery
charging applications, where the charging current and also the charging voltage
have to be limited for preventing the storage battery or the charging converter
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Figure 2.9 General con-
trol-engineering block dia
grams for the cascaded
output–input-side feed
back control. (a) Input
dynamics. (b) Output
dynamics.

from being damaged (cf. Figures 2.10 and 2.11) [5,21–23]. The controlling of such
application can be implemented in two ways: There can be two separate
controllers (i.e., one for the current and another for the voltage) running at
the same time in such a way that the controller determining the minimum
pulsewidth would overdrive the other controller and thus perform the control
action. In such a case, the control system is always a single-loop system treated in
detail in Section 2.3.3. If the control system is implemented in a cascaded manner

Figure 2.10 Telecom DC UPS system.
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Figure 2.11 Rectifier output voltage characteristics, where the inner feedback loop is the output
voltage, and the outer feedback loop is the output current.

as described in Ref. [21], then the dynamic analysis is more complicated, because
the output modes of the converter under both of the feedback arrangements are
not the same. Therefore, the dynamic representation induced by the closed inner
feedback loop has to be transformed to correspond to the output mode of the
outer feedback loop before computing the overall closed-loop transfer functions.

The set of closed-loop transfer functions induced by the closed inner feedback
loop is given in Eq. (2.16), where the superscript “A” denotes the output mode of
the converter when the inner feedback loop is only active (i.e., the mode is
voltage). The outer feedback loop requires the change of the output mode,
because it will use the feedback variable, which is the input variable of the other
mode (i.e., the output mode is current). The mode change can be performed

^^^B Ay u
superscript “B” denotes the output mode determined by the outer feedback loop.
By performing the change of variables, the new set of transfer functions can be
given as described in Eqs. (2.17) and (2.18) as function of the original closed-loop
transfer functions. The overall closed-loop set of transfer functions can be
obtained as defined earlier in Section 2.2.3 (i.e., Eqs. (2.5)–(2.7) and
Figure 2.5) based on the transfer functions given in Eq. (2.18).

A B� �changing the named variables as follows: and , where theûout out yout out

A

: (2.16)

: (2.17)

^

^

^

u

uoutGA �GA GA
21 22 23 u

�

�

in^Ayin

^Ayout

^Byin

^Byout

GA GA GA
11 12 13 A

A
c

B^

^

^

u

uoutGB �GB GB
21 22 23 u

inGB GB GB
11 12 13 B

B
c

GA GA GA

GA 21G
A

12 GA 1212 � 23G
A

11 � 13 � B
inGA

22 GA
22 GA

22

^

^

u

uoutGA 1 GA
21 23

^Byin B� : (2.18)
^Byout BûcGA GA

22 22GA
22
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2.2.5 Generalized Source and Load Interactions

The input and output terminal sources contain, in practice, finite-source
impedance, which may significantly affect the dynamic performance of the
converter in terms of transient behavior and stability [5]. The formulation of the
source–load interactions given below follows the formulation introduced in the
extra element method described in Ref. [4], which actually reveals the explicit
ohmic special parameters and which are vital for understanding the existence of
the interactions.

The general form of source–converter interaction can be determined based
on Figure 2.12, where the converter subsystem C is connected in series with the
source subsystem S, containing either voltage or current source with an internal
impedance/admittance denoted by S22. Input, output, and intermediate system
variables of the cascaded connection are denoted by (

us,ŷ^
^^^^ûin1, uout2, uc), (yin1, yout2),

), respectively, while input, output, and intermediate electrical varand ( s
^^^^�v̂out1iables are symbolized by (vin1, iin1), ( vin2, iout1 � îin2), and (vout2, iout2),^

respectively. Each electrical variable may serve as either input or output system
variable.

^

Dynamic representations of the source and the converter are given by (see the
end of this section for developing the source model)

ŷin1

ŷs

� 0 1

1 �S22

ûin1

ûs

ûs

ŷout2

� G11 G12 G13

G21 �G22 G23

ŷs

ûout 2

ûc

(2.19)

^

^

^

and the source–converter coupled system dynamics is then obtained as

uin 1

uout 2

uc

G11 G12 G13

ŷin 1

ŷout 2

1� S22G11 1� S22G11 1� S22G11�
G21 1� S22G11�xo 1� S22G11�1G22 G231� S22G11 1� S22G11 1� S22G11

(2.20)

Figure 2.12 Cascaded connection of source S and converter C. Source: Suntio 2014.
Reproduced with permission of IEEE.
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Figure 2.13 Cascaded connection of converter C and load L. Source: Suntio 2014. Reproduced
with permission of IEEE.

with

G12G21G11�xo � G11�sco � G11�oco � G11 � : (2.21)
G22

Transfer function G11�xo denotes the impedance/admittance characteristics of
the input terminal, when the output terminal is either short circuited (sco) or
open circuit (oco) depending on the nature of the ideal load (i.e., the output is
terminated with the inverse of the internal impedance of the ideal output load).

The general form of converter–load interaction can be determined based on
Figure 2.13, where the converter subsystem C is connected in series with the load
subsystem L containing either voltage or current sink with an internal imped
ance/admittance denoted by L11.

The coupled system input, output, and intermediate variables are the same as
defined above. Dynamic representation of the converter and the load are given by
(see the end of this section for developing the load model)

ŷin 1

ŷs

� G11 G12 G13

G21 �G22 G23

ûin1

ûs

ûc

ûs

ŷout 2

� L11 1

1 0

ŷs

ûout 2

(2.22)

^

^

and the converter–load coupled system dynamics is then obtained as

1� L11G22�xi G12 1� L11G22�1
yin 1

yout 2 ^

^

^

uin 1

uout 2

uc1 � L11G22 1� L11G22

(2.23)

G11 G131� L11G22 1� L11G22 1 � L11G22�
G21 G22 G23

1 � L11G22

with

G12G21G22�xi � G22�sci � G22�oci � G22 � : (2.24)
G11

Transfer function G22�xi denotes the impedance/admittance characteristics of the
output terminal, when the input terminal is either short circuited (sci) or open
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Figure 2.14 Different nonideal input sources (a) and (b) as well as output loads (c) and (d).
Source: Suntio 2014. Reproduced with permission of IEEE.

circuit (oci) depending on the nature of the ideal input source (i.e., the output is
terminated with the inverse of the internal impedance of the ideal input source).

The nonideal source and load arrangements used in Eqs. (2.19) and (2.22) for
obtaining the general dynamic descriptions for source- and load-affected transfer
functions are shown in Figure 2.14. The simultaneous equations for solving the
output variables as a function of the input variables can be given based on
Figure 2.14 as follows: (a) Eq. (2.25), (b) Eq. (2.26), (c) Eq. (2.27), and (d) Eq. (2.28)):

iin � iout

vout � vin � Zsiout
! �ıin

vout
� 0

1

1

�Zs

vin

iout
: (2.25)

vin � vout

iout � iin � Y svout
! vin

iout
� 0

1

1

�Y s

iin
vout

: (2.26)

iin � Y Lvin � iout

vout � vin
! iin

vout
� Y L

1

1

0

vin

iout
: (2.27)

vin � ZLiin � vout

iout � iin
! vin

iout
� ZL

1

1

0

iin
vout

: (2.28)

2.2.6 Generalized Impedance-Based Stability Assessment

A general interconnected system is given in Figure 2.15, where S denotes the
source-side subsystem, merging the dynamics of the upstream system, and L is

Figure 2.15 Cascaded connection of general-source S and load L subsystems. Source: Suntio
2014. Reproduced with permission of IEEE.
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the load-side subsystem, merging the dynamics of the downstream system. The
subsystems can be represented as

ŷin 1

ŷs

� S11 S12

S21 �S22

ûin 1

ûs

ûs

ŷout 2

� L11 L12

L21 �L22

ŷs

ûout 2

(2.29)

and the control variable is set to zero without loss of generality.uc

^
Stability of the interconnected system can be assessed by first computing the

uin 1, uout 2) to the intermediate^
us, y

^

^^
mappings from the system input variables (
variables ( ):s

S21L11 L12

ûin 1

ûout 2

ŷout 2)

ûs

ŷ

and then to the system output variables (ŷin 1,

1 � S22L11 1 � S22L11� (2.30)
S21 S22L12s

1 � S22L11 1 � S22L11

S12S21L11 S12L12S11 � 1 � S22L11 1 � S22L11ŷin 1

ŷout 2

� ûin 1

ûout 2
: (2.31)

S21L21 S12S22L12� L12 �1 � S22L11 1 � S22L11

If the original subsystems are stable, the stability of the interconnected system
depends on 1=�1 � S22L11� [5,24]. Consequently, the stability is ensured when
the product S22L11 satisfies Nyquist stability criterion, where the boundary
condition for instability corresponds to S22L11 � �1. If the subsystems are
conventional VF systems (cf. Figure 2.4a), then S22L11 is the impedance ratio
known as minor loop gain both at the input terminal (i.e., ZS=Zin) and output
terminal (i.e., Zout=ZL) interfaces [2,3], where ZS denotes the source output
impedance, Zin the converter input impedance, Zout the converter output
impedance, and ZL the load input impedance, respectively. If the subsystems
are of CF type (cf. Figure 2.5a), then S22L11 is the inverse minor loop gain both at
the input terminal (i.e.,Zin=ZS) and output terminal (i.e., ZL=Zout) interfa
ces [12]. Note that in Figures 2.4b and 2.5b, the output mode does not comply
with the input source. Therefore, stability assessment has to be performed at the
output terminal interface based on the inverse minor loop gain in the case of
Figure 2.4b, and on the minor loop gain in the case of Figure 2.5b. Stability
assessment at the input terminal interface has to be performed as in the cases of
Figures 2.4a and 2.5a, respectively. In general, it can be stated that the
numerator impedance in the impedance ratio has to be the impedance of
the voltage-source-type element, and the denominator impedance the imped
ance of the current-source-type element.
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2.3 Generalized Dynamic Representations: DC–AC, AC–DC,
and AC–AC

2.3.1 Introduction

In a similar manner as in the case of DC–DC converters (cf. Figure 2.1), an
equivalent circuit can be constructed for the grid-connected converters, where
the memory elements are visible, and the primary and secondary sides of the
converter are connected together by using a transformer [16,25]. Such an
equivalent circuit is given in Figure 2.16, which represents the dynamic behavior
of a grid-connected rectifier (cf. Figure 2.17) in synchronous reference frame with
power-invariant αβ-transformation [18,19,26–29]. The equivalent circuit (cf.
Figure 2.18) of a current-fed grid-connected inverter (cf. Figure 2.19) resembles
the equivalent circuit given in Figure 2.16 when the input and output terminals as
well as the power flow are interchanged. Similar physical insight into the dynamic
processes inside the three-phase converter as in Figure 2.1 is obvious, but the real
nature of the terminal properties is missing.

Figure 2.16 Canonical equivalent circuit for a three-phase voltage-fed AC–DC converter.

Figure 2.17 Three-phase grid-connected rectifier.



432.3 Generalized Dynamic Representations: DC–AC, AC–DC, and AC–AC

Figure 2.18 Canonical equivalent circuit for a three-phase current-fed DC–AC converter.

Figure 2.19 Three-phase grid-connected current-fed inverter.

An equivalent circuit resembling the equivalent circuit of a DC–DC converter
in Figure 2.2 (i.e., G-parameter representation) can also be constructed for the
grid-connected three-phase converters, as shown in Figure 2.20, where the
converter dynamic modeling is carried out in synchronous reference frame

Figure 2.20 A generic equivalent circuit for a three-phase grid-connected AC–AC VF/VO
converter.
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Figure 2.21 A generic equivalent circuit for a three-phase grid-connected AC–DC VF/VO
converter.

Figure 2.22 A generic equivalent circuit for a three-phase grid-connected DC–AC CF/CO
converter.

(i.e., the superscript “s” of the circuit variables denotes the synchronous reference
frame). This equivalent circuit is constructed for a three-phase voltage-fed
converter producing three-phase output voltage, that is, an AC–AC converter,
where both of the terminals are assumed to be three-phase AC networks, that is,
the converter is a real MIMO system. If either of the terminals is a DC terminal as
in Figures 2.17 and 2.19, then the corresponding terminal variables are also scalars
as shown in Figures 2.21 and 2.22.

2.3.2 Generalized Dynamic Representations

In a similar manner as the DC–DC converters were classified to VF and CF
converters in Figures 2.3 and 2.4, the AC–DC (i.e., rectifiers) and DC–AC (i.e.,
inverters) as well as AC–AC converters (i.e., matrix converters) can be classified
into VF and CF converters, as shown in Figures 2.23 and 2.24, respectively. In a
manner similar to the DC–DC converters, the sets of transfer functions or
network parameters describing their dynamic properties are unique for each
pair of input and output terminal sources: The converter in Figure 2.23a shall be
represented by G-parameters, the converter in Figure 2.23b by Y-parameters, the
converter in Figure 2.24a by H-parameters, and the converter in Figure 2.24b by
Z-parameters.
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Figure 2.23 Three-phase VF converter (a) at voltage-output mode and (b) at current-output
mode.

Figure 2.24 Three-phase CF converter (a) at current-output mode and (b) at voltage-output
mode.

In general, the set of transfer functions of a multi-input–multi-output (MIMO)
converter can be represented as given in Eq. (2.32) using matrix notation with

three-variable input vector
T

and two-variable output vectorUin Uout Uc
T

, where the subscript “in” denotes an input terminal variable, the
subscript “out” the output terminal variable, and the subscript “c” the general
control variable.

Yin Yout

Uin
Yin G11 G12 G13� (2.32)Uout
Yout G21 �G22 G23

Uc

The dynamic modeling of the three-phase converters is usually performed in
the synchronous reference frame [16–18,25–29]. As a consequence, the input
and output-variable vectors in Eq. (2.32) consist of submatrices with two
elements (i.e., the d and q components of the three-phase variables) as shown
in Eqs. (2.33) and (2.34). The transfer function elements in Eq. (2.32) are also
submatrices with four elements as described in Eq. (2.35), where the elements
Gqd and Gdq denote the cross-couplings between the d and q channels. The
negative sign of the element G22 denotes that the output current direction is
assumed to be opposite what is usually defined in circuit theory for such
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networks [7]. As a consequence, the matrix element G22 has to be constructed
according to Eq. (2.36).

ux-d ux-q^^
T

Ux � (2.33)

Tyyx-d x-q

Gd Gqd�
^^Yx � (2.34)

Gxy (2.35)

(2.36)

Gdq Gq

G22 G22
d qd

G22 �
G22 G22

dq q

^

^

^

^

^

^

If the cross-coupling elements Gqd and Gdq in Gxy (cf. Eq. (2.35)) are very small,
then the MIMO system in Eq. (2.32) can be represented by two separate SISO
systems according to Eqs. (2.37) and (2.38). As a consequence, all the analysis
presented for the DC–DC converters in Section 2.2 can be applied equally to the
systems described in Eqs. (2.37) and (2.38):

uind

uoutd

ucd

uinq

uoutq

ucq

ŷind

ŷod

ŷinq

ŷ

Gd�11 Gd�12 Gd�13� (2.37)
Gd�21 �Gd�22 Gd�23

Gq�11 Gq�12 Gq�13� (2.38)
Gq�21 �Gq�22 Gq�23oq

The transfer function matrices and the physical transfer functions in Eq. (2.32)
can be named according to the same principles as used in Section 2.2.2:

YinG11 � : Converter input impedances (Zind;q) or admittance (Y ind;q) and the
Uin

cross-coupling elements
YinG12 � : Reverse transfer functions (Toid;q) and the cross-coupling elements
Uout
YinG13 � : Control-to-input transfer functions (Gcid;q) and the cross-coupling
Uc

elements
YoutG21 � : Forward transfer functions (Giod;q) and the cross-coupling elements
Uin
YoutG22 � : Converter output impedances (Zod;q) or admittances (Y od;q) and the
Uout

cross-coupling elements
YoutG23 � : Control-to-output transfer functions (Gcod;q) and the cross-coupling
Uc

elements

The set of the generalized network parameters in Eq. (2.32) cannot be represented
as a generalized linear equivalent circuit corresponding to Figure 2.20, since the matrix
entries G11 and G22 are either impedance- or admittance-type elements requiring
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Figure 2.25 Grid-connected three-phase rectifier.

Figure 2.26 Grid-connected three-phase inverter in grid-parallel mode.

Figure 2.27 Grid-connected three-phase inverter in grid-forming mode.

their connection either in series or in parallel to the corresponding controlled source
elements (i.e., either voltage or current type), as illustrated in Figure 2.20.

Within the context of the book, the grid-connected power electronic convert
ers are always either three-phase rectifiers supplied by a three-phase voltage
source (Figure 2.25) or inverters connected to a three-phase grid (Figures 2.26 and
2.27). Therefore, the multivariable nature is limited either to the input terminal
(Figure 2.24; that is, a SIMO system) or to the output terminal (Figures 2.26 and
2.27; MISO systems). As a consequence, some of the entries in Eq. (2.32) may be
single-valued entries, which usually makes the overall analysis easier compared to
the full-scale MIMO systems [19,20].
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2.3.3 Generalized Closed-Loop Dynamics

In a converter, there are usually two output variables – one at the input side and
another at the output side, respectively. Therefore, there are also two different sets
of closed-loop transfer functions as follows: Under input-side multivariable
feedback control, the closed-loop system can be presented as (cf. Figure 2.28)

Uin
Yin �I�Lin��1G11-o �I�Lin��1G12-o �I�Lin��1LinG�1

se-in� Uout��1 ��1 G�1 G�1 ��1Yout �I�Lin �G22-o�G21�1Lin� ��I�Lin �G22-o�G22�1Lin� G23-o 13-o se-inLin�I�Lin

with

G21�1 � G21-o � G11-oG23-oG�1
13-o

and

G22�1 � G22-o � G12-oG23-oG
�1
13-o;

Ur-in

(2.39)

(2.40)

(2.41)

Figure 2.28 General multi
variable control-engineering
block diagrams for the input-
side feedback control. (a)
Input dynamics. (b) Output
dynamics.
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Figure 2.29 General
multivariable control-
engineering block dia
grams for the output-side
feedback control. (a) Input
dynamics. (b) Output
dynamics.

where Lin � Gse-inGaGc-inG13-o is the input-side multivariable loop gain, and the
other multivariable elements are, in principle, the same as defined in the SISO
case in Section 2.2.3. Transfer function matrices G21�1 and G22�1 contain the
transfer functions, which are referred to as “ideal” output-side transfer functions
in Section 2.2.3.

Under output-side multivariable feedback control, the closed-loop system can
be presented (cf. Figure 2.29) as

Uin��1 ��1 G�1 ��1Yin �I�Lout �G11-o�G11�1Lout� �I�Lout �G12-o�G12�1Lout� G13-oG�1 Lout�I�Lout23-o se-out� Uout
Yout �I�Lout��1G21-o ��I�Lout��1G22-o �I�Lout��1LoutG�1

se-out Ur-out

(2.42)
with

G�1G11�1 � G11�0 � G21-oG13-o 23-o (2.43)

and

G�1G12�1 � G12-o � G22-oG13-o 23-o; (2.44)
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where Lout � Gse-outGaGc-outG23-o is the output-side multivariable loop gain, and
the other multivariable elements are, in principle, the same as defined in the SISO
case in Section 2.2.3. Transfer function matrices G11�1 and G12�1 contain the
transfer functions, which are referred to as “ideal” output-side transfer functions
in Section 2.2.3.

2.3.4 Generalized Cascaded Control Schemes

It is quite common, especially, in renewable energy applications, that the inverter
control is arranged in a cascaded manner (cf. Figure 2.30), where the inverter
output current control forms the inner loop, and the DC-link voltage control
(Figure 2.30a) or the output-voltage control (Figure 2.30b) forms the outer
loop [17–19]. The general dynamic formulations for the above-described cases
are given in this section.

The analysis of the cascaded control schemes is twofold: (i) First the closed-
loop transfer functions induced by the closed inner feedback loop have to be
developed. (ii) The set of these transfer functions forms the “open-loop” set of
transfer functions for developing the set of closed-loop transfer functions induced
by the outer feedback loop. The procedure is more complicated if both of the
feedback loops are taken from the same terminal as in Figure 2.30b, because the
output or input mode of the converter would change necessitating to modify
accordingly also the set of transfer functions induced by the inner loop. Such a
situation is valid when the operation mode of the inverter has to be changed from
the grid-parallel mode (Figure 2.30a) to the grid-forming mode (Figure 2.30b)
(see, for example, Ref. [30]).

For the case, where the output-side feedback loop forms the inner loop and the
input-side feedback loop forms the outer loop, the inner-loop-induced set of
transfer functions are given in Section 2.3.3 in Eqs. (2.42)–(2.44) and illustrated in
Figure 2.22. The corresponding set of transfer functions when both of the

Figure 2.30 Grid-
connected inverter control
schemes in (a) grid-parallel
operation, and (b) grid-
forming operation.
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Figure 2.31 General multi
variable control-engineering
block diagrams for the
cascaded input–output
feedback control. (a) Input
dynamics. (b) Output
dynamics.

feedback loops are closed yields (cf. Figure 2.31)

Uin��1Gout ��1Gout�I�Lin 11-c �I�Lin 12-c �I�Lin��1LinG�1Yin se-in� Uout��1�Gout �Gout ��1�Gout �Gout Gout�1 ��1
22�1Lin� Gout G�1�I�Lin 21�1Lin� ��I�Lin �Yout 22-c 22-c 23-c 13-c se-inLin I�Lin

Ur-in

(2.45)
with

Gout � Gout Gout�1
21�1 � Gout Gout (2.46)21-c 11-c 23-c 13-c

and

Gout � Gout G�1
22�1 � Gout Gout (2.47)22-c 12-c 23-c 13-c

where Lin � Gse-inGaGc-inGout is the input-side loop gain and Gout is the closed13-c 13-c
inner-loop-induced control-to-input transfer function matrix. The other ele
ments are the same as matrices as defined for the SISO systems in Section 2.2.4.

For the case, where the input-side feedback loop forms the inner loop and the
output-side feedback loop forms the outer loop, the inner-loop-induced set of
transfer functions are given in Section 2.3.3 in Eqs. (2.39)–(2.41), and illustrated in
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Figure 2.32 General
multivariable control-
engineering block
diagrams for the cascaded
output–input feedback
control. (a) Input dynamics.
(b) Output dynamics.

Figure 2.21. The corresponding set of transfer functions when both of the
feedback loops are closed yields (cf. Figure 2.32)

Uin��1�Gin �Gin ��1�Gin �Gin Gin�1G�1 ��1Yin �I�Lout 11�1Lout� �I�Lout 12�1Lout� Gin Lout�I�Lout11-c 12-c 13-c 23-c se-out

Yout
�

I�Lout� ��1Gin
21-c � I�Lout� ��1Gin

22-c I�Lout� ��1LoutG�1
se-out

Uout

Ur-out

(2.48)
with

Gin
11�1 � Gin

11-c � Gin
21-cG

in
13-cG

in�1
23-c (2.49)

and

Gin
12�1 � Gin

12-c � Gin
22-cG

in
13-cG

in�1
23-c ; (2.50)

where Lout � Gse-outGaGc-outGin is the output-side feedback loop gain andGin
23-c 23-c

is the closed inner-loop-induced control-to-output transfer function matrix.
The other elements are the same as matrices as defined for the SISO systems in
Section 2.2.4.
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Figure 2.33 Grid-connected converter in
grid-parallel mode, that is, current-output
mode.

The case where both of the input terminal variables are controlled at the same
time in a cascaded manner is not very probable and, therefore, the output-side
cascaded control is treated in detail only. In grid-parallel (GP) operation mode,
the output of the converter is current source as illustrated in Figure 2.33, and its
dynamics can be given by

YGP � GGP � GGP � GGP
11 U

GP
12 U

GP
13 U

GP
in in out c (2.51)

YGP � GGP � GGP � GGP
21 U

GP
22 U

GP
23 U

GP
out in out c

In the grid-forming (GF) mode, the output and input variables at the output
� UGP � YGPterminal will be interchanged, that is,YGF andUGF , respectively. Theout out out out

other input variables will remain the same. Therefore, the transformed dynamic
representation, which corresponds to the voltage-output mode (Figure 2.34), can be
given by

YGF � GGP GGP � GGP UGF � GGP GGP� �GGP
12 G

GP�1

21 �UGP
12 G

GP�1 � �GGP
12 G

GP�1

23 �UGF
in 11 22 in 22 out 13 22 c

YGF
out � GGP�1

22 GGP
21 U

GF
in � GGP�1

22 GGP
22 U

GF
out � GGP�1

22 GGP
23 U

GF
c

(2.52)

or

YGF
in

YGF
out

� GGP
11 � GGP

12 G
GP�1

22 GGP
21

GGP�1

22 GGP
21

�GGP
12 G

GP�1

22

�GGP�1

22

GGP
13 � GGP

12 G
GP�1

22 GGP
23

GGP�1

22 GGP
23

UGF
in

UGF
out

UGF
c

(2.53)

where the matrices GGP denote the closed-inner-loop transfer function matricesxy
given in (2.39)–(2.41) and illustrated in Figure 2.21. The final set of closed-loop

Figure 2.34 Grid-connected converter
in grid-forming mode, that is, voltage-
output mode.
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transfer functions can be obtained by performing the computations in Eqs.
(2.39)–(2.41), again with the transfer functions given in Eq. (2.53).

2.3.5 Generalized Source and Load Interactions

The input and output terminal sources contain, in practice, finite source
impedances, which may affect the dynamic performance of the converter in
terms of transient behavior and stability [5]. The formulation of the source–
load interactions given below follows basically the formulation introduced in
the extra element method described in Ref. [4], similarly as in the case of DC–
DC converters in Section 2.2.5. The source and load interactions are computed
by using a simple internal impedance/admittance representing the source/load.
It is equally possible to use full dynamic representation with four matrix
elements.

The general form of the source–converter interactions can be determined
based on Figure 2.35, where the converter subsystem C is connected in series with
the source subsystem S, containing either voltage or current source with an
internal impedance/admittance matrix denoted by S22. The input, output, and
intermediate system variable vectors of the cascaded connection are denoted by
(Uin1, Uout2, Uc), (Yin1, Yout2), and (Us, Ys), respectively. The corresponding
electrical variables can be either voltage or current depending on application.

Dynamic representations of the source and converter are given by

Yin 1

Yout 1

� O I

I �S22
Uin 1

Uout 1

Yin 2

Yout 2

� G11 G12 G13

G21 �G22 G23

Uin 2

Uout 2

Uc

(2.54)

and the source–converter coupled system dynamics is then obtained as

Uin1
Yin1 �I�G11S22��1G11 �I�G11S22��1G12 �I�G11S22��1G13� Uout2��1 ��1 ��1Yout2 G21�I�S22G11 ��I�S22G11 �I�S22G11�xo�G22 �I�S22G11 �I�S22G11�1�G23

Uc

(2.55)

Figure 2.35 Cascaded connection of multivariable source S and converter C.
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Figure 2.36 Cascaded connection of multivariable converter C and load L.

with

G11�xo � G11 � G21G12G
�1
22 (2.56)

and

G11�1 � G11 � G21G13G
�1
23 (2.57)

Transfer function matrixG11�xo denotes the impedance/admittance characteristics
of the converter input terminal when the output terminal is either short circuited
(sco) or open circuit (oco) depending on the nature of the ideal load (i.e., the output
is terminated with inverse of the internal impedance of the ideal output load).

The general form of converter–load interaction can be determined based on
Figure 2.36, where the converter subsystem C is connected in series with the load
subsystem L containing either voltage or current sink with an internal imped
ance/admittance denoted by L11. The coupled system input, output, and inter
mediate variables are the same as above as denoted in Figure 2.36.

Dynamic representation of the converter and load are given by

Yin1

Yout1

� G11 G12 G13

G21 �G22 G23

Uin1

Uout1

Uc

Yin2

Yout2

� L11 I

I O

Uin2

Uout2

(2.58)

and the converter–load coupled system dynamics is then obtained as

Uin1��1 ��1 ��1Yin1 �I�L11G22 �I�L11G22�xi�G11 G12�I�L11G22 �I�L11G22 �I�L11G22�1�G13� Uout2�I�G22L11��1G21 ��I�G22L11��1G22 �I�G22L11��1G23Yout2
Uc

(2.59)
with

G22�xi � G22+G21G12G
�1 (2.60)11

and

G22�1 � G22 � G12G23G
�1 (2.61)13
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The transfer function matrix G22�xi denotes the impedance/admittance charac
teristics of the output terminal, when the input terminal is either open circuit (oci)
or short circuited (sci) depending on the nature of the ideal input source (i.e., the
output is terminated with the inverse of the internal impedance of the ideal input
source).

2.3.6 Generalized Impedance-Based Stability Assessment

A general interconnected multivariable system is given in Figure 2.37, where S
denotes the source-side subsystem, merging the dynamics of the upstream
system, and L denotes the load-side subsystem, merging the dynamics of the
downstream system. The subsystems can be represented as

Yin 1

Yout 1

� S11 S21

S21 �S22
Uin 1

Uout 1

Yin 2

Yout 2

� L11 L21

L21 �L22

Uin 2

Uout 2

(2.62)

where the control variablesUc�i are set to zero without loss of generality. The input,
output, and intermediate variable vectors are the same as given in Section 2.3.5. The
matrix entries X11 and X22 denote the impedance/admittance-like properties
measured at the input and output terminals of the subsystems in Eq. (2.62).

Stability of the interconnected system can be assessed by first computing the
mappings from the system input variables (Uin 1, Uout 2) to the intermediate
variables (Us, Ys),

Us �I � L11S22��1L11S21 �I � L11S22��1L12 Uin 1�
Ys Uout 2�I � S22L11��1S21 ��I � L11S22��1S22L12

(2.63)

and then the mapping from the system input variables (Uin 1, Uout 2) to the system
output variables (Yin 1, Yout 2):

Yin1 Uin1S11�S12�I�L11S22��1L11S21 S12�I�L11S22��1L12�
Yout2 Uout2L21�I�S22L11��1S21 ��L22�L21�I�S22L11��1S22L12�

(2.64)

Figure 2.37 Cascaded connection of general multivariable source S and load L.
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If the original subsystems are stable, then the stability of interconnected system
��1 ��1depends on �I � S22L11 and �I � L11S22 [24,31,32]. Consequently, the

stability is ensured when the determinants det�I � S22L11� and det�I � L11S22�
satisfy the generalized Nyquist stability criterion [33,34]: Let P denote the number
of RHP poles of the matrix product S22L11 or L11S22, then the system is stable if
the Nyquist plot of det�I � S22L11� and det�I � L11S22� will make P anticlockwise
encirclements of the origin, and the curve does not pass through the origin.

2.4 Small-Signal Modeling

2.4.1 Introduction

The material presented in Sections 2.2 and 2.3 can be equally utilized by substituting
the basic matrix element (i.e., transfer functions) with the predicted analytical
transfer functions expressed in Laplace domain or with the measured transfer
functions, which are transformed into complex numbers. The use of both analytical
predictions and measured transfer functions at the same time is also possible when
both of them are expressed as frequency-dependent complex numbers.

In this section, the methods to develop the analytical transfer functions are
introduced. The dynamic modeling was laid down in the early 1970s when the
switched-mode converter average modeling was introduced [35]. The method
was later streamlined into the famous state-space averaging (SSA) method in
Ref. [1], which was valid for the converters operating in continuous conduction
mode (CCM) under direct duty ratio (DDR) control. The method was later
extended to model also the converter dynamics in discontinuous conduction
mode (DCM), where the inductor current is zero during a part of the switching
cycle [36]. The modeling in Ref. [36] failed because of the wrong assumption on
the existence of the inductor current derivative. Valid DCM modeling has been
introduced much later in the early 2000s [37,38]. The dynamic models for the
converters under the other control methods such as peak-current mode, average-
current, and self-oscillation control can be developed from the basic dynamic
model by modifying the perturbed duty ratio or on-time with a proper duty ratio
or on-time constraints [5,39–42]. The DDR control is the basic control mode also
in modeling of the current-fed converters [43].

As implied above, the recognition of the correct operational mode of the
converter is very important because of its significant effect on the modeling
technique. Figure 2.38 shows the waveforms of inductor current and capacitor
voltage illustrating the definition of the different modes. In voltage-fed (i.e.,
conventional) applications, the capacitors are usually designed to have low
ripple content. Therefore, the conduction modes are related to the behavior of
the inductor currents. In current-fed applications, the inductors are usually
designed to have low ripple content. Therefore, the conduction modes are
related to the behavior of the capacitor voltages. As a consequence, the CCM
operation mode is such that the inductor current or capacitor voltage contains
two different derivatives within the cycle (cf. Figure 2.38: CCM-1 and CCM-2).
The mode, where instantaneous waveform touches the zero level, is known as
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Figure 2.38 Definition of conduction modes.

boundary conduction mode (BCM) (cf. Figure 2.38: BCM). The other names for
this conduction mode are critical conduction mode and transition mode. It
should be observed that BCM belongs also to CCM class. In DCM, the inductor
current or capacitor voltage is zero during a part of the off-time (cf. Figure 2.38:
DCM).

In order to model the dynamic behavior of the converter, we have to
recognize and choose the proper input (uin�i), output (yin�i), control (uc�i),
and state (xi) variables (cf. Figure 2.39). In multivariable case, there can be
several variables within each class of variables. The input and output variables

Figure 2.39 Dynamic modeling constellation.
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will change depending on the electrical sources connected to the input and
output terminals as explicitly demonstrated in Ref. [20]. The input variables are
most often the main electrical variables of ideal electrical sources connected to
the input and output terminals. The output variables are the duals of the input
variables (i.e., voltage↔current). If the converter is terminated at the output by
means of a resistor, then the output variable is the variable, which is to be
regulated constant. This is generally valid, because the output variable of
regulated sources cannot be anymore regulated. As a consequence, those
variables are always input variables. The inductor currents and capacitor
voltages are most often taken as state variables because of their memory-
element nature. The control variables are basically input variables but due to
their special nature they are considered as separate variables. Physically, the
input and output variables are always voltages and currents. The control
variables can be the on- or off-time or duty ratios of the controlled switches
as well as voltage and current (cf. Figure 2.39).

The SSA method produces an average model of the corresponding converter,
where the variables are the time-varying averages of the instantaneous variables
within one switching cycle. The derivatives of the state variables and the output
variables are expressed as functions of state, input, and control variables applying
Kirchhoff’s voltage and current laws. The small-signal model will be obtained
from the average model by means of linearizing techniques at a certain operating
point. Due to nature of the averaging, the small-signal models are valid only up to
half the switching frequency or half the frequency, which corresponds to the
averaging cycle time. The obtained derivatives and output variables are presented
in a state-space form as follows:

dx̂i�t� � A� � t�� � �� B �^

^

^

^^

�xi� ui�
�xi� ui�yi�

where the variables are expressed in the time-domain and coefficient matrices are
time invariant. The “hat” over the variables denotes the small-signal nature of the
variables (i.e., small variation around the corresponding steady-state value). For
solving the transfer functions, the time-domain state space has to be transformed
into Laplace (i.e., frequency) domain as follows:

� t� ;
dt (2.65)

� C� � � � D� � �;t� t� � t�

^�sxi�s�� � A� � ^�xi� � � B� � �s� � s�^

^

ui�
�ui�

;
(2.66)

^s� � C �xi�� � � � D� � �;ŷi� s� s�

^^

which can be solved for obtaining the input-to-state transfer functions:

�xi� ui�� � �sI � A � � �� �� 1 B �s� � s� (2.67)

^

and for the input-to-output transfer functions:

ui�ŷi�s� � �� �C �sI � A �� � � � ��� � 1 B � D � s��: (2.68)

In the case of SISO system, the identity matrix I equals 1. The denominator of the
transfer functions will be the determinant of the matrix �sI � A�.



60 2 Dynamic Analysis and Control Design Preliminaries

2.4.2 Average Modeling and Linearization

The required derivatives can be found based on the well-known relations between
the voltage and current in the memory elements as follows:

diL�i 1� vL�idt Li (2.69)
dvC�i 1� iC�idt Ci

The averaged state space can be found by computing the voltages across the
inductors and currents flowing through the capacitors during the on-time and
off-time and multiplying the on-time equations with the corresponding duty ratio
and the off-time equations with the complement of the duty ratio and summing
these together (cf. Eq. (2.70)). The averaged output variables are found in a similar
manner (cf. Eq. (2.70)):

dhiL�ii 1 ´� � �d d ;v v� � � �� i L i i L i offon

^

dt Li
dhvC�ii 1 (2.70)� �diiC�i�on � d´

iiC�i�off �;dt Ci

hyii yi�off :^ � d´� diŷ �i on

^

The averaged state space can be highly nonlinear (i.e., it contains products of
different variables or their inverses) and needs to be linearized. In power
electronics, the recommended method is to substitute the averaged values by

^

means of the sum of a DC value and small perturbation [44]. This method works
well when the averaged model is only slightly nonlinear as in the case of
continuous mode of operation but usually fails when the averaged model is
highly nonlinear as in the case of discontinuous mode of operation. In control
engineering [45], the linearization is typically carried out by computing the
Jacobian matrix of the function y � f �t; x�, where x contains the state and input
variables. The Jacobian matrix represents the partial derivatives of the function
with respect to all the variables as follows:

y xn;
@y @y� x̂1 � ? ? ? �
@x1 @xn

? ?

^

?

^

x1

(2.71)
@f @f

? ;� �t;X� ? ? ? �t;X�
@x1 @xn

?

xn

ŷ

where X in the Jacobian matrix contains the steady-state values of the corre
sponding variables at the operating point. As an example, we consider the

2function y � v which is highly nonlinear function. We consider thatiniL=vC,
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the steady-state values of the variables are V in, IL, and VC, respectively. According
to these assumptions, the linearized function ŷ can be given by

V 2 V 2
in inIL 2V inILŷ � ? îL � ? v̂C � ? v̂in: (2.72)

V 2VC C VC

In practice, this means that we treat each variable at a time and consider the other
variables to be constant when developing the required derivative applying basic
mathematics.

DC–DC Converter Modeling Example
Figure 2.40 shows an ideal synchronous buck or stepdown converter, which will
always operate in CCM due to the property of the MOSFET switches allowing
also negative current to flow in the low-side switch (SLS). The VF buck
converter operates in such a way that the high-side MOSFET (SHS) is turned
on during the on-time (cf. Figure 2.41a), and the low-side MOSFET (SLS) is
turned on during the off-time (cf. Figure 2.41b). The input variables of the
converter are vin and io, the state variables are vC and iL and the output variables
are vo and iin.

Figure 2.40 Synchronous buck
converter.

Figure 2.41 The subcircuits of the
buck converter during (a) the on-
time, and (b) the off-time.
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In order to construct the averaged derivatives and output variables given in Eq.
(2.70), we have to compute them first for the on- and off-time separately applying
Kirchhoff’s voltage and current laws. We can assume that iL represents the time-
varying average current directly because of CCM mode of operation (i.e., the
charge distribution incorporated in the inductor current during the on- and off-
times is directly related to the duty ratio d and its complement d´ (i.e., 1 � d) [5]).
The ripple of the output capacitor is assumed to be small and, therefore, vC

represents directly the time-varying average voltage.

On-Time

vL � vin � vC;

iC
iin

� iL � io;

� iL;
(2.73)

vo � vC:

Off-Time

vL � �vC;

iC
iin

� iL � io;

� 0;
(2.74)

vo � vC:

The averaging is performed by multiplying the equations in Eq. (2.73) by d and
the equations in Eq. (2.74) by d´(1 � d) and adding them together, which yields

hvLi � dhvini � hvCi
hiCi � hiLi � hioi

(2.75)hiini � dhiLi
hvoi � hvCi

and by applying Eq. (2.69)

dhiLi dhvini � hvCi� ;
dt L

dhvCi hiLi � hioi� ; (2.76)
dt C

hiini � dhiLi;
hvoi � hvCi:

The operating point of the converter can be solved from Eq. (2.76) by equating
the derivatives to zero, and substituting the averaged variables by the corre
sponding DC values (i.e., capital letters). This procedure yields

VC � DV in;

V o � VC;
(2.77)

IL � Io;

I in � DIo:
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The averaged state space in Eq. (2.76) is nonlinear because of the products
dhvini and dhiLi. It can be linearized applying Eq. (2.71), which yields

�vC � Dvin � V ind� ;
^^^d̂iL

dt L
iL � îo^dvC

dt C
iin

^

^

� ; (2.78)

d;^� D̂iL � IL

�

^

vo vC:

According to Eq. (2.65), the linearized state space in Eq. (2.78) can be presented
in the time-domain matrix form (i.e., the variable vectors are denoted by
superscript t) as follows:

t
vin

^^

td̂iL 1 D V in0 � t 0

^

^

^

iLL L Ldt � �
vC

^

vin

io

d

^
^

îo

dC Cdt (2.79)

1 1d vC0 0^ 0

t
t t

îin

v̂o

^

^

iL� �
vC

D 0 0 0 IL

0 1 0 0 0

and in the frequency-domain matrix form (i.e., Laplace form, that is, the variable
vectors are denoted by superscript s) as follows:

s1 D V in

îLL L L� �
^

^

^

vin

io

d
(2.80)s

0 � 0s s
îL

v̂C

;s
1 1v̂C0 0

^

^

^

0

vin

io

d

C C

0 0 IL

0 0 0

s s
îin

v̂o

^

^

iL� �
vC

D 0
:

0 1

The transfer functions from the input variables to the state variables can be
solved according to Eq. (2.67) yielding

�1 s1 D V ins
1 0 L L L

^

^

^

^

^

^

vin

io

dC C
Ds 1 V ins (2.81)
L LC L

vin

io

d

0 � 0îL

v̂C

� s
1 10 1

;

0 0 � 0

s
D s V in

LC C LC�îL

v̂C

s

1
s2 �

;

LC
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where the transfer functions can be concluded based on the corresponding output
and input variable pairs. The transfer functions from the input variables to the

^

output variables can be solved according to Eq. (2.68) yielding

^

^

Ds 1 V ins
L LC L

vin vin
iin

io io
vo

d d^

^

^
^

^

s s
D s V ins

D 0

10 1 s2 �
0 0 ILLC C LC� �
0 0 0

LC

D2s D DV in ILs2IL � s �
L LC L LC

v̂in

îo

d̂

LC C LC�
s

D s V in
îin

v̂o

s

1
s2 �

LC

(2.82)

where the transfer functions can be concluded based on the corresponding input-
and output-variable pairs. The denominator of the transfer functions in Eqs.
(2.81) and (2.82) is the determinant of sI � A, where I denotes the identity matrix
(cf. the upper equation in Eq. (2.81)) and indicates also the order of the system
(i.e., the maximum power of s corresponds to the number of memory elements in
the system).

2.4.3 Modeling Coupled-Inductor Converters

In the converters, where the power stage contains two or more inductors such as
the current-sourced or two-inductor buck converter [46–48] (cf. Figure 2.42), the
input or output current can be made almost ripple-free by applying integrated
magnetics technique [49]. When coupling the discrete inductors together, the
flexibility of choosing the inductor values freely is naturally also lost. This can
have detrimental effects on the converter dynamic behavior as explicitly described
in Ref. [48] in case of PCM control.

Figure 2.42 Coupled-inductor superbuck converter.
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Figure 2.43 Definition of (a) a two-winding
transformer and (b) its equivalent circuit.

The analysis of the coupled-inductor effects on the converter dynamics is based
on the basic terminal equations of a nonideal transformer [50] (cf. Figure 2.43)
given by

di1 di2v1 � L1 �M ;
dt dt (2.83)
di1 di2v2 � M � L2 ;
dt dt

where L1 and L2 are the self-inductances measured from the primary (v1) and
secondary (v2) ports, respectively, when the other port is an open circuit, and M is
the mutual inductance governing the transfer of energy between the primary and
secondary as defined in Figure 2.43a. The equivalent circuit of such a transformer
is given in Figure 2.43b, where Ll1 and Ll2 are the primary- and secondary-side
leakage inductances, LM is the primary-side magnetizing inductance, and n1 and
n2 are the primary- and secondary-side number of turns in the corresponding
windings of the ideal transformer. From Figure 2.43b, we can define that

L1 � Ll1 � LM;
2n2 LM;L2 � Ll2 � (2.84)n1

n2M � LM:
n1 p

The coupling coefficient (k) of a transformer is usually defined as k � M= L1L2

based on the total energy stored in the transformer [50]. Perfect coupling between
the primary and secondary (i.e., k � 1) means that leakage inductances (Lli) are
zero.

The small-signal representation of the coupled-inductor converter can be
constructed from the small-signal state space of the original converter defined
with the discrete inductors L1 and L2 taking into account that the voltages across
the inductors do not change. Therefore, if we denote the original derivatives of the
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inductor currents by DL1 and DL2 and apply the information given in Eq. (2.83),
the coupled-inductor-affected derivatives can be given by [5]

^^

d̂iL1

dt
DL1 � �M=L1�DL2 DL1 � �M=L1�DL2� � ;

1 � �M2=L1L2� 1 � k2

^^^^

(2.85)
d̂iL2

dt
DL2 � �M=L2�DL1 DL2 � �M=L2�DL1� � :

1 � �M2=L1L2� 1 � k2

^^^^

From Eq. (2.85), we may conclude that the perfect coupling (k � 1) would lead to
infinite derivatives indicating the existence of high-current spikes during the
transients.

2.4.4 Modeling in Synchronous Reference Frame

The dynamic modeling of three-phase grid-connected converters is a little bit
more complicated than the modeling of the DC–DC converters, but basically
obey the same principles described in Section 2.4.1 and follows the same steps as
described in Section 2.4.2. The main problem is that the sinusoidal signals are
time-varying signals, and, therefore, there is no time-invariant steady-state
operation point to be defined. Such a situation can be, however, created by
transforming the three-phase signals first into stationary reference frame (i.e., αβz
or Clarke transformation) applying space vectors [27], where the three-phase
variables are transformed into two-phase variables rotating at the same angular
frequency ωs as the three-phase variables. The stationary frame variables can be
further transformed into the synchronous reference frame (i.e., dqz or Park
transformation) [28], where the variables are DC variables, and, therefore, the
steady-state operating point can be defined explicitly. This actually means that the
synchronous reference frame is rotating at the angular frequency ωs and,
therefore, the variables are effectively DC variables. This also means that the
grid frequency is shifted to origin. In order to understand and perform the
dynamic modeling of three-phase converters, the above-described transformation
methods are described in the following sections.

Space Vector Theory
Space vector theory was originally developed as a tool to analyze the transient
states in electrical machines [28]. According to the theory, the three-phase
quantities can be modeled as equivalent two-phase quantities using space
vectors [29]. The complex space vector associated with a set of phase quantities
{xa, xb, xc} is given by

2K j2π=3 j3π=4x_� �xa � e xb � e xc� � xα � jxβ (2.86)
3

and the corresponding zero or common-mode component by

1
xz � �xa � xb � xc�; (2.87)

3 p p
where the scaling factor K is chosen as {1, 1=2, 3=2} for peak value, root mean
square value, and power invariant scaling [29]. If the peak amplitude of the
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sinusoidal signal transformed into space vector equals X, then the space vector
x_� KXejωst . The instantaneous power p of a three-phase system can be given by
means of the stationary components of voltage and current as follows [51]:

pabc � vaia � vbib � vcic;
3 (2.88)� vαiα � vβiβ� � 3vziz:pαβ 2K2 �

The Clarke transformation in Eq. (2.86) can be given in matrix form as follows:

1 1
1 � �

2 2xα xap p
2K 3 3� (2.89)xβ xb0 �3 2 2

xz xc1 1 1
2K 2K 2K

The space vectors can be transformed back into the three-phase variables by
using the inverse of Clarke transformation as follows:

2 2K
0

3 3
xa xα1 1 2K3 � p� (2.90)xβxb 3 332K
xc xz1 1 2K� �p

3 33

The two-phase signals in stationary reference can be transformed into the
synchronous reference frame as follows:

�jωstx_s � x_e ;
1 (2.91)

xz � �xa � xb � xc�;3

which can be expressed in matrix form as follows:

cos ωst sin ωst 0xd xα
� �sin ωst cos ωst 0 (2.92)xq xβ

0 0 1xz xz

The synchronous reference frame signals can be transferred back to the stationary
reference frame as follows:

jωstx_� x_se ;
1 (2.93)

xz � �xa � xb � xc�;3

which can be given in matrix form as follows:

cos ωst �sin ωst 0xα xd

� sin ωst cos ωst 0 (2.94)xβ xq

0 0 1xz xz
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The Clarke and Park transformations and their inverses can be combined as
follows:

2π 4π
cos ωst cos cosωst � ωst �3 3xd xa

2K 2π 4π�xq xb�sin ωst �sin �sinωst � ωst �3 3 3
xz xc1 1 1

2K 2K 2K
(2.95)

2K
cos ωst �sin ωst 3xa xd2π 2π 2K3 cos �sinωst � ωst �� (2.96)xb xq3 3 32K

xc xz4π 4π 2K
cos sinωst � ωst �3 3 3

The transformations of the phase voltages (va, vb, vc) to the corresponding
αβ- and dq-components are shown in Figures 2.44–2.46 applying amplitude
invariance (Figure 2.44), RMS invariance (Figure 2.45), and power invariance
(Figure 2.46), respectively. It is obvious that the different invariances yield as thep
peak of the αβ-components as x_� KXejωst [29], where K equals {1, 1=2,p

3=2} for the invariances in the order they are named above. When the three-
phase system is balanced (i.e., the amplitudes of the variables are the same), the
quadrature (q) component will be mapped to zero as is visible in Fig
ures 2.44–2.46. The figures also indicate that the direct (d) component is
mapped always to the peak of the αβ- components, which are varying in terms
of the used invariance scheme.

Figure 2.44 Amplitude-invariant transformations.
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Figure 2.45 RMS-invariant transformations.

Three-Phase Converter Modeling Example
Figure 2.47 shows a three-phase grid-connected rectifier or AC–DC converter,
which is basically boost- or step-up-type converter. The converter is assumed to
operate in CCM. The input variables are the three-phase grid voltages {van, vbn,
vcn} and the output current idc, the state variables are the inductor currents {iLa,
iLb, iLc}, and the output variables the three-phase grid currents {iina, iinb, iinc} and
the output voltage vdc. The control variables are the duty ratios {da, db, dc} of the
high-side IGBT switches as depicted in Figure 2.47.

In a similar manner as in the case of DC–DC converter dynamic modeling, we
have to construct the time-averaged derivatives of state variables and the time-
averaged values of the output variables (cf. Eq. (2.70)). Therefore, we consider

Figure 2.46 Power-invariant transformations.
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Figure 2.47 Ideal three-phase grid-connected rectifier.

each of the phase legs {a, b, c} of IGBT bridge separately. We assume also that the
inductors La;b;c � L.

On-Time

vLa � van � vC � vNn;

vLb � vbn � vC � vNn;

vLc � vcn � vC � vNn;

i∗L � iLa � iLb � iLc;

iC � i∗L � idc; (2.97)

iina � iLa;

iinb � iLb;

iinc � iLc;

vdc � vC:

Off-Time

vLa � van � vNn;

vLb � vbn � vNn;

vLc � vcn � vNn;

i∗ � 0;L

iC � �idc; (2.98)

iina � iLa;

iinb � iLb;

iinc � iLc;

vdc � vC:
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The averaging is performed by multiplying the equations in Eq. (2.97) by da;b;c

and the equations in Eq. (2.98) by d´ and summing them together, whicha;b;c
yields

hvLai � hvani � dahvCi � hvNni;
hvLbi � hvbni � dbhvCi � hvNni;
hvLci � hvcni � dchvCi � hvNni;

hi∗Li � dahiLai � dbhiLbi � dchiLci;
hiCi � hi∗Li � hidci; (2.99)

hiinai � hiLai;
hiinbi � hiLbi;
hiinci � hiLci;
hvdci � hvCi;

and by applying Eq. (2.69)

dhiLai hvani � dahvCi � hvNni� ;
dt L

dhiLbi hvbni � dbhvCi � hvNni� ;
dt L

dhiLci hvcni � dchvCi � hvNni� ;
dt L

dhvCi dahiLai � dbhiLbi � dchiLci � hidci (2.100)� ;
dt C

hiinai � hiLai;
hiinbi � hiLbi;
hiinci � hiLci;
hvdci � hvCi:

The averaged state space in Eq. (2.100) can be presented in a more convenient
form for facilitating the transformation from the phase domain to the αβ domain
as follows:

hvanidahiLai hvnNi
d 1 1 1hvCi � � ; (2.101)dbhiLbi hvbni hvnNidt L L L

dchiLci hvcni hvnNi
da hiLai

dhvCi 1 hidci� � ; (2.102)db hiLbidt C C
dc hiLci
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hiin-ai hiLai
�hiin-bi hiLbi

: (2.103)
hiin-ci hiLci

hvdci � hvCi
If the grid voltages and currents are in balance, then the common-mode

components of voltages and currents (cf. Eq. (2.87)) are zero. As a consequence,
the Clarke transformation matrix can be given by

1 1
1 � �

2K 2 2p p : (2.104)Tαβ � 3 3 3
0 �

2 2
The inductor-current derivatives in Eq. (2.101) are transferred into αβ-domain

or as rotating space vectors as follows:

hvani hvnNidahiLai
d 1 1 1� � Tαβ hvCi � Tαβ hvbni hvnNi ;dbTαβ hiLbi � Tαβdt L L L

hiLci hvcni hvnNidc

�ııαβL dαβ vαβin
0

dαβh αβd hiαβ vCi hvin i
L i � � � :

dt L L
(2.105)

The transformation of the capacitor-voltage derivative in Eq. (2.102) requires
considering the product of two space vectors similarly as the active power in Eq.
(2.88). According to Eq. (2.88), we can write

dhvCi 3 �dαhiLαi � dβhiLβi� hidci� � ;
dt 2K2 C C

(2.106)
Re �hdαβihiαβ ∗�dhvCi 3 L i hidci� � ;

dt 2K2 C C

where the superscript “∗” denotes the complex conjugate of the corresponding
variable.

The transformation of the output variables will yield as follows:

hiinai hiLai
;Tαβ hiinbi � Tαβ hiLbi

(2.107)hiinci hiLci
hiαβin i � hiαβL i;
hvdci � hvCi:

The transformation to the rotating reference frame or dq- domain will be
�jωstperformed by multiplying the rotating space vectors by e that yields
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xαβ � xdq_ _ ejωst . As a consequence of this, the averaged state space indq -domain can
be given by as follows:

ddq dq jωstd �hidq ejωsthvCi hvin ie
L iejωst� � � � ;

dt L L
dhvCi 3 �ddhiLdi � dqhiLqi� hidci� � ; (2.108)

dt 2K2 C C

hidq jωst jωst� hidq ;in ie L ie
hvdci � hvCi:

The term ejωst is inside the derivative in the upper equation in Eq. (2.108) and,
therefore, the derivation operation has to be performed, which yields

dhidq ddqhvCi dq
L i hidq hvin i� �jωs L i � � ;

dt L L
dhvCi 3 �ddhiLdi � dqhiLqi� hidci� � ; (2.109)

dt 2K2 C C

hidqin i � hidqL i;
hvdci � hvCi:

By collecting the d and q components separately into the state space, the
averaged state space can be given as follows:

dhiLdi ddhvCi hvindi� ωshiLqi � � ;
dt L L

dhiLqi dqhvCi hvinqi� �ωshiLdi � � ;
dt L L

dhvCi 3 �ddhiLdi � dqhiLqi� hidci (2.110)� � ;
dt 2K2 C C

hiindi � hiLdi;
hiinqi � hiLqi;
hvdci � hvCi:

The steady-state values of the operating point variables can be solved from Eq.
(2.110) by equating the derivatives to zero, which yields

ωsLILq � DdVC � V ind � 0

�ωsLILd � DqVC � V inq � 0
3

DdILd � DqILq� � Idc � 0
2K 2 � (2.111)
I ind � ILd

I inq � ILq

V dc � VC

In the case of balanced grid, V inq � 0 and if we assume that the converter is
operating at unity power factor, then I inq � 0. Thus, the operating point can be
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further manipulated to be as follows:

V indV dc � VC �
Dd (2.112)

2K2 IdcI ind � ILd �
3 Dd

or if V dc is known, then

V ind � �2K2=3�IdcωsLDd �
V dc (2.113)

2K2 IdcV dcI ind � ILd �
3 V ind � �2K2=3�IdcωsLp p

where K � f1; ; 1=2; 3=2g depending on the chosen invariance (see Section

^

2.4.4) and V ind as well as I ind equal their corresponding grid phase values as KX ,
where X is the peak amplitude of the corresponding grid variable.

The state space in Eq. (2.110) is nonlinear and it has to be linearized by applying
Eq. (2.71,) which yields

dd;
d̂iLd Dd 1 VC

dt
� ωsiLq � L

^ �v̂C v̂ind �L L
d̂iLq Dq 1 VC

^

^

^^^

dq;

dvC iLd � iLq � idc � dd �dt 2K2 C 2K2 C C 2K2 C 2K2 C
^

^ �iLd� �ωs

3 Dd

^v̂C � vinq �L L Ldt
Dq ILq3 1 3 ILd 3 (2.114)

^

^

^

^

^

^

^

^

^

^

^

^

dq;

^

^

iinq

vdc vC:

The state space can also be given in the standard matrix form in time domain
(i.e., the variable vectors are denoted by the superscript t) according to Eq. (2.65)
as follows:

vind

vinq

idc

dd

dq

vind

vinq

idc

dd

dq

�
îind � îLd;

� îLq;

�

tt
d̂iLd

^

1 VCDd0 ωs � 0 0 � 0t
iLd

dt L L L
Dq 1 VCd̂iLq �

^

îLq L LL
vC

��ωs 0 � 0 0 0
dt

Dq 1 3 ILd 3 ILq3 Dd 3^dvC

dt
0 0 �0

îind

îinq

v̂dc

2K2 C 2K22K2 C 2K2 C CC
t

t t
îLd

îLq

v̂C

1 0 0 0 0 0 0 0

� �0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

(2.115)
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and in frequency domain (in Laplace form) (i.e., the variable vectors are denoted
by the superscript s) as follows:

sv̂ind

dd

dq

^

^

^

v̂inq

idc

1 VCDd0 ωs � 0 0 � 0
^s L s L LîLd

îLq

v̂C

iLd

iLqL L L
vC^

^Dq 1 VC� ��ωs 0 � 0 0 0s

ILqDq 1 3 ILd 33 Dd 3
0 0 �0

vind^

2K2 C 2K22K2 C 2K2 C C C
s

s s
îind

îinq

v̂dc

1 0 0

0 1 0

0 0 1

îLd

îLq

v̂C

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

vinq

îdc

^

^

dd

� �

d̂q

(2.116)

The transfer functions from the input variables to the state variables can be
solved according to Eq. (2.67) yielding

s�1 1 VCDd v̂ind

v̂inq

îdc

d̂d

d̂q

0 ωs 0 0 0s L L LîLd

îLq

v̂C

1 VCDq� s 0 1 0 0 0 0 ��ωs 0 �
1 0 0

L LL
0 0 1

^

^

^

^

1 3 ILd 3 ILqDq

vind

vinq

idc

dd

3 Dd 3
0 0 �0

2K2 C 2K2 C 2K2 C 2K2 CC
s

s
G11 G12 G13 G14 G15îLd

îLq

v̂C

� G21 G22 G23 G24 G25

G31 G32 �G33 G34 G35

d̂q

(2.117)

where the inductor-current d-component-related transfer functions are given by

D21 2 � 3 q
;ΔG11 �

L
s

2K2 LC

3 DdDqωs s � ;ΔG12 �
L 2K2 ωsLC

DqωsDd s � ;ΔG13 �
LC Dd

3 DdILd 3DqVC Dq ILdωsΔG14 � � s2 � s � � ;
L L VC2K2 CVC 2K2C

ΔG15 � �VC

L
s

3

2K2

DdILq

VCC
� ωs � 3

2K2C

DqILqωs

VC
� DdDq

L
;

(2.118)
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and the inductor-current q-component-related transfer functions by

3 DdDqωsΔG21 � � s � ;
L 2K2 LCωs

1 3 D2
2 � d ;ΔG22 �

L
s

2K2 LC

Dq Ddωs
; (2.119)s �ΔG23 �

LC Dq

VC 3Dd3 DqILd Dq LLdωsΔG24 � � s � ;� ωsL 2K2 CVC L VC

VC

2K2C
3 DqILq 3Dd Dd ILqωsΔG25 � � s2 � s � ;

L L VC2K2 VC 2K2C

as well as the output-side dynamics-related transfer functions by

3Dd DqωsΔG31 � s � ;
2K2LC Dd

3Dq DdωsΔG32 � s � ;
2K2LC Dq

ΔG33 � 1 �s2 � ω2�; (2.120)sC
3ILd DqVCDdVCΔG34 � s2 � s � ωs ωs � ;

2K2C LILd LILd

3ILq DqVC DdVCΔG35 � s2 � s � ωs ωs � :
2K2C LILq LILq

Δ in Eqs. (2.118)–(2.120) is the denominator of the transfer functions, which can
be given by

3
D2

d � D2�q2K2 �
Δ � s3 � s � ω2; (2.121)sLC

where the individual transfer functions can be concluded based on the corre
sponding output- and input-variable pairs. The transfer functions from the input
variables to the output variables can be solved according to Eq. (2.68) yielding
actually the same sets of transfer functions as given in Eqs. (2.118)–(2.120),
because

^ ^iind iLd

^ ^� : (2.122)iinq iLq

v̂o v̂C

It is quite obvious that the state space of three-phase converters cannot be
anymore solved manually in practice, but proper software packages such as
MatalabTM Symbolic Toolbox having capability to solve symbolic equations are
needed.
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2.5 Control Design Preliminaries

2.5.1 Introduction

Control engineering is usually quite poorly understood and mastered in power
electronics. The control engineering textbooks and especially, the advanced control
engineering books, are quite difficult to understand for those who are not experts in
control engineering. This is because the control engineering professionals and
scholars utilize effectively linear algebra (e.g., matrix properties) to justify the results.
If not fully familiar with those items, the text is not transparent for understanding
the given point. We have tried to give simple and explicit information for performing
effective control design and understanding, especially the frequency responses and
the limitations imposed by certain anomalies. In this constellation, the behavior of
different transfer functions, the concept of stability in SISO and MIMO systems, and
its evaluation as well as the limitations the abnormal (i.e., RHP) poles and zeros will
impose on control design are very vital to understand. In addition to these, we also
introduce certain items related to the transient performance.

2.5.2 Transfer Functions

A transfer function is usually given as a ratio of two polynomials in s (cf. Eq.
(2.123)), where s is the Laplace variable. The roots of the numerator polynomial
ωzi are called zeros, and the roots of the denominator polynomial ωpi poles. The
zeros and poles may be real or complex numbers, and they are given with respect
to angular frequency ω (rad/s). The frequency (f ) in Hz and the angular frequency
(ω) in rad/s are related by f � ω=2π:

ansn � an-1sn-1 � ∙ ∙ ∙ � aoG�s� � ;
bmsm � bm-1sm-1 � ∙ ∙ ∙ � bo (2.123)�s � ωz1��s � ωz2� ∙ ∙ ∙ �s � ωzn�G�s� � K ? ;�s � ωp1��s � ωp2� ∙ ∙ ∙ �s � ωpm�

The magnitude of the transfer function (jG�s�j) is commonly expressed in dB, that
is, jG�s�jdB � 20 log10jG�s�j, and the phase (�G�s�) in degrees. The logarithmic
magnitude means that the combined effect of zeros and poles can be found by
adding together the dB values of the zeros and subtracting the dB values of the poles,
respectively. The phase of the transfer function can be found similarly adding
together the phase contributions of the zeros, and subtracting the phase contribu
tions of the poles. The zeros and poles located closest to the origin (i.e., zero
frequency) are called dominant zeros and poles having the strongest effect on the
time-domain behavior of the corresponding system. As a consequence of this, the
time-domain responses do not give accurate information on the dynamic properties
of the system. In order to understand the effect of different types of transfer
functions in the dynamic behavior and especially on the control design, the normal
(i.e., the zeros and poles locate on the left half plane (LHP) of the complex plane) and
abnormal (i.e., the zeros and poles locate on the right half plane (RHP) of the
complex plane) behaviors shall be able to be recognized in the behavior of the
transfer functions as described in the following subsections.
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Single Zero
Let us consider the single-zero transfer function of the form G�s� � 1 � s=ωz. Itsp
magnitude (i.e., jG�s�j � 1 � �ω2=ωz

2�) and phase (i.e., �G�s� � arctan�ω=ωz�)
may be given at certain interesting angular frequency points as follows:

ωzω � ;
10 pjG�s�jdB � 20 log10� 1:01� � 0:04 dB;

�G�s� � arctan �0:1� � 5:7°;

ω � ωz; pjG�s�j � 20 log10 � 2� � 3 dB;dB

�G�s� � arctan�1� � 45°;

ω � 10ωz; pjG�s�j � 20 log10 � 101� � 20 dB;dB

�G�s� � arctan �10� � 84:3°:

As a consequence, the behavior of the single-zero transfer functions (cf.
Figure 2.48) is typically considered to be such that its magnitude is unity (i.e.,
0 dB) up to ω � ωz, and starts increasing at a slope of +20 dB/decade (i.e., +20 dB
for a 10 times increase in frequency) from ω � ωz. Its phase is zero up to
ω � ωz=10, and starts increasing at a slope of +45°/decade up to ω � 10ωz, and
stays constant at 90° thereafter. The phase equals exactly +45° at ω � ωz. This is
the best point to locate exactly ωz. If G�s� � 1 � s=ωz, the magnitude behavior is
same, but the phase has the negative sign compared to G�s� � 1 � s=ωz (i.e., the
slope is �45°/decade and it will finally stay at �90°). If s � �ωz, then the zero is
called LHP zero. If s � ωz, then the zero is called RHP zero. The RHP zeros would
have a profound effect on the control design, and would exist also in certain type
of power electronic converters.

Figure 2.48 Behavior of single-zero transfer function in frequency domain.
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Single Pole

Let us consider the single-pole transfer function of the form G�s� � �1 � s=ωp��1. Its

magnitude (i.e., jG�s�j � 1= 1 � �ω2=ω2�) and phase (i.e.,�G�s� � �arctan �ω=ωp�),p

may be given at certain interesting angular frequency points as follows:
ωPω � ;
10 pjG�s�j � 20 log10�1= 1:01� � �0:04 dB;dB

�G�s� � �arctan �0:1� � �5:7°;

ω � ωp; pjG�s�jdB � 20 log10 �1= 2� � �3 dB;

�G�s� � �arctan �1� � �45°;

ω � 10ωp; pjG�s�j � 20 log10 �1= 101� � �20 dB;dB

�G�s� � �arctan �10� � �84:3°:

As a consequence, the behavior of the single-zero transfer functions (cf.
Figure 2.49) is typically considered to be such that its magnitude is unity (i.e.,
0 dB) up to ω � ωp, and starts decreasing at a slope of �20 dB/decade (i.e., �20 dB
for a 10 times increase in frequency) fromω � ωp. Its phase is zero up toω � ωp=10,
and starts decreasing at a slope of �45°/decade up to ω � 10ωp, and stays constant
at�90° thereafter. The phase equals exactly�45° atω � ωp. This is the best point to
locate exactly ωp. If G�s� � �1 � s=ωz��1, the magnitude behavior is same but the
phase has the positive sign compared to G�s� � �1 � s=ωp��1 (i.e., the slope is+45°/
decade and it will finally stay at+90°). If s � �ωp, then the zero is called LHP pole; if
s � ωp, then the zero is called RHP pole. An RHP pole in the system means that it is
unstable, and requires certain actions in control design to eliminate its effect.

Most important is to recognize that (i) the zeros and poles in the transfer
functions are given as angular frequency and ω � 6:28f , (ii) the phase starts

Figure 2.49 Behavior of single-pole transfer function in frequency domain.
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affecting the system behavior already 10 times earlier than the location of the zero
and pole, and (iii) keep on affecting up to 10 times higher frequencies than the
location of the zero and pole. These facts are forgotten very often.

Second-Order Transfer Function
The second-order polynomial is typically expressed as s2 � s ? 2ζωn � ω2 or asn
s2 � s ? �ωn=Q� � ω2 , comprising either zeros or poles in the correspondingn
transfer function, where ζ is called damping factor, ωn undamped natural
frequency, and Q quality factor. Based on the coefficients of s, we can state
that Q � 1=2ζ. The second-order polynomials are common in power electronics,
and shall be recognized because of their special influence on the control design as
well as the source and load-impedance effects on the converter dynamic behavior.

The roots ofp the second-order polynomial can be expressed as
s1;2 � �ζωn � ωn ζ2 � 1. The system characterized by it (i.e., G(s) is of the
form ω2=s2 � s ? 2ζωn � ω2) may be classified according to the value of then n
damping factor as (i) underdamped, when 0 < ζ < 1, (ii) critically damped,
when ζ � 1, (iii) overdamped, when ζ > 1, (iv) marginally stable or oscillatory,
when ζ � 0, and (v) unstable, when ζ < 0:

1) Underdamped Case: 0 < ζ < 1
The roots of the second-order polynomial are complex conjugates of eachp

other, which can be expressed by s1;2 � �ζωn � jωd, where ωd � ωn 1 � ζ2 is
called damped natural frequency. Step response of such a system applied to the
reference input includes decaying oscillatory behavior, where the oscillation
frequency is ωd. The transfer function exhibits rapid change of magnitude and
phase at ωd (cf. Figures 2.50–2.52, ζ � 0:01). The corresponding unit-step
time-domain function can be given by p

exp ��ζωnt� 1 � ζ2

1 � p sin ωdt � tan�1 : (2.124)
ζ1 � ζ2

Figure 2.50 Unit-step response of a second-order system when the damping factor is varied.
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Figure 2.51 The
magnitude (a) and phase
(b) behavior of a second-
order transfer function
of the form
ω2=�s2 � s ? 2ζωn � ω2�.n n

p
The maximum peak value of the second-order resonant system 1=�2ζ 1 � ζ2�p
will take place at ωres � ωn 1 � 2ζ2, which means that the overshoot takes placep
only if ζ � 1= 2. ωres is known as the resonant frequency.
2) Critically Damped Case: ζ � 1

The second-order polynomial has a real double root, which can be expressed
by s1;2 � �ζωn. The step response resembles an exponential response but is
faster. The same applies also for the behavior of the transfer functions (cf.
Figures 2.50–2.52; ζ � 1). The corresponding unit-step time-domain function
can be given by

1 � exp��ωnt��1 � ωnt� (2.125)

3) Overdamped Case: ζ > 1
The second-order polynomial has two real roots, which can be expressed byp

s1;2 � �ζωn � ωn ζ2 � 1. The greater the damping factor, the more the roots
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Figure 2.52 The magni
tude (a) and phase
(b) behavior of a
second-order transfer
function of the form
�s2 � s ? 2ζωn � ω2�=ω2 .n n

separated from each other. The step response contains only exponential
behavior. The same applies also to the behavior of the transfer functions
(cf. Figures 2.50–2.52: ζ � 2). The corresponding unit-step time-domain
function can be given by

p p
exp � ζ � ζ2 � 1 exp � ζ � ζ2 � 1ωnt ωnt

1 � p � p : (2.126)p p
2 ζ2 � 1 ζ � ζ2 � 1 2 ζ2 � 1 ζ � ζ2 � 1

4) Oscillatory Case: ζ � 0
The second-order polynomial has two pure imaginary roots, which can be

expressed by s1;2 � �jωn. The system will oscillate at the undamped natural
frequency ωn (cf. Figure 2.50; ζ � 0). The magnitude of the transfer function is
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Figure 2.53 Control-to-output transfer function of a PCM-controlled superboost converter at
stable (solid line, LHP) and unstable (dashed line, RHP) mode of operation.

infinitely high or low at ωn, and its phase changes ±180° at ωn. The
corresponding unit-step time-domain function can be given by

1 � cos ωnt: (2.127)

5) Unstable Case: ζ < 0
The second-order polynomial has roots in the RHP of the complex plane,

which means that the transfer functions have positive real part and, therefore,
the step response exhibits amplifying behavior in contrast to the decaying
behavior in the stable system (cf. Figure 2.50; ζ � �0:01). The behavior of
transfer functions is such that the phase will be negative compared to the
corresponding stable system. Figures 2.53 and 2.54 show such an open-loop

Figure 2.54 Output-voltage waveform due to the unstable pole.
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behavior of a certain power electronic converter (i.e., PCM-controlled super-
boost converter) reported in Ref. [52]. The corresponding unit-step time-
domain function, when j jζ < 1, can be given byp

exp �ζωnt� 1 � ζ2
11 � p sin ωdt � tan� : (2.128)

ζ1 � ζ2

2.5.3 Stability

In general, the closed-loop output dynamics of a converter, when assuming the
feedback taken from the output variable, can be given for a SISO-type power
electronic converter (cf. Figure 2.6 and Eq. (2.5)) by

G21-o G22-o Lout� uin � uout �1 � Lout 1 � Lout Gse-out�1 � Lout�^^ (2.129)ûcyout

^

and for a MIMO-type power electronic converter (cf. Figure 2.28 and Eq. (2.42)) by

� � G-1 �Yout��I�Lout� 1G21-oUin��I�Lout� 1G22-oUout� se-outLout�I�Lout� 1Uc;

(2.130)

^

where Lout and Lout denote the output-side feedback loop gains or as known in
control engineering return ratio and return-ratio matrix, respectively, and 1 � Lout

and det�I � Lout� are called the closed-loop system’s characteristic polynomials.
The inverse of the characteristic polynomial are called sensitivity function S (S), and
LoutS or LoutS the complementary sensitivity function T (T). It is obvious that S �

^

^

T � 1 and S � T � I [31,32,53,54]. Therefore, the output dynamics can be given by

1
yout uin � S ?G22-ouout �� S ?G21-o ? T ? ^

Gse-out
uc;

(2.131)
Yout � S ?G21-o ?Uin � S ?G22-o ?Uout � G-1 ?T ?Uc:se-out

In the SISO case, the system can be stated to be unconditionally stable, when all
the roots of 1 � L lie in the open LHP of complex plane, where L denotes the loop
gain in general context. In practice, this means that the power of the exponential
function in Eq. (2.124) has to be less than zero. A system having roots at the
imaginary axis (i.e., the power of the exponential function in Eq. (2.124) is zero) is
considered to bemarginally stable in control engineering, but in power electronics, a
system with pure imaginary roots is deemed to be unstable. The system is unstable,
when the roots of the characteristic polynomial lie in the RHP of the complex plane
(i.e., the power of the exponential function is higher than zero) (cf. Eq. (2.128)).

In the MIMO case, the system can be stated to be unconditionally stable, when
all the poles of det�I � L� lie in the open LHP of complex plane, where L denotes
the loop–gain matrix in general context. The definitions of marginally stable and
unstable are the same as in the SISO case.

If an accurate analytical expression for the loop gain L is available, then the
study of the location of the roots of the characteristic polynomial can be made
either by solving the roots or applying Routh–Hurwitz test [52,53] to study the
existence and number of RHP roots of a polynomial. If an RHP pole exists, it
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means that the control bandwidth has to be designed to be higher than the
location of the pole. The roots of the higher order (i.e., the order is higher than 2)
cannot be solved easily in symbolic form to verify their locations in complex
plane, but the Routh–Hurwitz method will then solve the problem. According to
the method, the Routh array is to be constructed based on the coefficients of the
polynomial (P�s�) under considerations

P�s� � ans
n � an�1s

n�1 � an�2s
n�2 � ∙ ∙ ∙ a1s � ao (2.132)

as follows:

sn : an an�2 an�4 ∙ ∙ ∙ 0

sn�1 : an�1 an�3 an�5 ∙ ∙ ∙ 0

sn�2 : b1 b2 b3 ∙ ∙ ∙ 0

sn�3 : c1 c2 c3 ∙ ∙ ∙ 0 (2.133)

sn�4 : d1 d2 d3 ∙ ∙ ∙ 0

?

os : ∙ ∙ ∙ 0

where the first row (sn) starts with the highest-order coefficient an, the second row
(sn�1) with the second-highest-order coefficient an�1, and the next elements
within the rows are defined in Eq. (2.133), the elements of the third and
subsequent rows follow the algorithm defined as follows:

an an�2 an an�4 an an�6

an�1 an�3 an�1 an�5 an�1 an�7
b1 � b2 � b3 �

an�1 an�1 an�1

an-1 an�3 an-1 an�5 an-1 an�7

b1 b2 b1 b3 b1 b4
c1 � c2 � c3 �

b1 b1 b1

b1 b2 b1 b3 b1 b4

c1 c2 c1 c3 c1 c4
d1 � d2 � d3 �

c1 c1 c1

(2.134)

The number of RHP roots of P�s� is the number of algebraic sign changes in the
elements of the left column of the array in Eq. (2.133) proceeding from the top to
the bottom. The first- or second-order polynomial has all roots in LHP if and only
if all the coefficients have the same algebraic sign. In the case of higher order
polynomial, the same does not guarantee the absence of RHP roots but the
Routh–Hurwitz test has to be applied to confirm the situation. The sign changes
in the polynomial coefficients indicate, however, the existence of at least one RHP
root. The missing of one or several coefficients means that the polynomial has
either complex imaginary axis or RHP roots or both. The existence of imaginary
axis roots is reflected as an all-zero row in the Routh array. The location of the
roots can be studied by computing the roots of the directly previous existing row
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known as auxiliary polynomial. The repeating of the roots can be studied by
differentiating the auxiliary polynomial and computing its roots. If repeating roots
exist, then the system is unstable. The existence of the imaginary axis roots means
anyway that the system is marginally stable, which is not allowed in power
electronics.

The Routh–Hurwitz test can be equally applied to verify the existence of RHP
zeros in the control dynamics (i.e., the loop gain). The existence of the RHP zeros
requires to design the control bandwidth less than the location of the RHP zero
for stability to exist.

In practice, the frequency responses of the loop gain L or the loop gain matrix L
may be only available, from which the poles and zeros cannot be reliably
extracted. Therefore, other methods based directly on the loop frequency
responses have to be applied. The usual visualization methods of the loop
frequency behavior are polar and Bode plots. The polar plot (Figure 2.55a, solid

Figure 2.55 Frequency-
response visualization
methods. (a) Polar plot.
(b) Bode plot.
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line) is constructed by plotting the locus of the magnitude of the loop gain in the
complex plane with the x-axis containing the real part of the loop gain and the y-axis
containing the imaginary part. Usually the locus tends to zero when the frequency
approaches infinity. The frequency is not explicitly shown in the polar plot, but only
the direction of the increasing frequency. In order to study the stability of a SISO
system, the plot is constructed for both the positive (Figure 2.55a, solid line) and
negative (Figure 2.55a, dashed line) frequencies. In practice, this means that the
imaginary part is as it is in the original loop gain, and its sign is changed negative for
the negative frequencies producing a mirror effect with respect to x-axis. The Bode
plot (Figure 2.55b) is constructed by plotting the magnitude in decibels and the
phase in degrees usually in the separate subplots with respect to frequency, where x-
axis is the frequency in logarithmic scale and y-axis is the magnitude and phase in
linear scale. The polar and Bode plots in Figure 2.54 are drawn for the same loop
gain, but the polar plot shows only the frequencies higher than 10 kHz when the
Bode plot shows much higher frequency range.

In SIMO case, the stability of the closed-loop system can be studied by applying
the Nyquist stability criterion [52,53] to the loop gain L by means of a polar plot
constructed for the positive and negative frequencies, as shown in Figure 2.55a.
Such a plot is called Nyquist plot. If the open-loop system contains N RHP poles,
the system is stable and if and only if the locus of the loop gain encircles
anticlockwise the points (�1,0) N times, it does not pass through the point (�1,0)
or encircle it in clockwise direction when both of the loci are considered. In
practice, the situation can be more complicated, as discussed in Ref. [53] (cf. pp.
521–542).

Consider the following loop gain L and characteristic polynomial 1 � L of the
forms:

K
L � ;

s�s2 � 10�5 � s � 10�3 � 1�
(2.135)

s�s2 � 10�5 � s � 10�3 � 1� � K
1 � L � ;

s�s2 � 10�5 � s � 10�3 � 1�
where K is a constant. According to Figure 2.56a, the closed-loop system having
the loop gain according to (2.131) will become unstable for high-enough values of
K because of either passing through the point (�1,0) or encircling it in the
clockwise direction. Figure 2.56b shows the same situation as a Bode plot as in
Figure 2.56a. The numerator polynomial in Eq. (2.136) of the characteristic
equation (1 � L) in Eq. (2.135) contains the system poles as its roots:

s3 � 10�5 � s2 � 10�3 � s � K (2.136)

The existence of the RHP poles can be studied constructing the Routh array as
follows:

s3 : 10�5 1 0

s2 : 10�3 K 0

s : 1−10�2K 0 0
0s : K 0 0
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Figure 2.56 Stable
(K= 50) and unstable
(K= 200) systems. (a)
Nyquist plot. (b) Bode
plot.

According to the elements of the left column of the Routh array, the RHP poles
appear when 1 � 10�2K < 0 orK > 100. This means actually that the loop gain will
pass through the point (�1,0) whenK equals 100. According to the Routh array row
s, the row will contain all zeros, when K equals 100. The polynomial in Eq. (2.136)
can be developed to be �s � 102��s210�5 � 1�, which indicates that the complex
conjugate roots equal �j105and thus lie on imaginary axis as discussed earlier.

Closed-loop system may also be conditionally stable. The Nyquist plot illus
trating such as loop gain behavior is shown in Figure 2.57, where the encirclement
of the point (�1,0) is anticlockwise indicating stability. The system may, however,
become unstable when the gain is slightly increased or decreased. Such a situation
may take place, for instance, when the converter starts up due to the reduction of
gain in the associated control circuitry.

Figure 2.58a shows bode plots of a closed-loop system containing RHP pole in
its open-loop system, where the solid line denotes a stable system (i.e., the
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Figure 2.57 Conditionally stable system.

feedback-loop crossover frequency is higher than the RHP pole frequency), and
the dashed line denotes an unstable system (i.e., the feedback-loop crossover
frequency is lower than the RHP pole frequency). As discussed earlier, the
Nyquist plot (solid line) has to encircle the critical point (�1,0) anticlockwise
as shown in Figure 2.58b for the system to be stable. Figure 2.58c shows that the
Nyquist plot (dashed line) does not encircle the critical point and, therefore, the
system is unstable.

In MIMO case, the stability of the closed-loop system can be studied by
applying the Nyquist stability criterion [31,32] to det�I � L� by means of a polar
plot constructed for the positive and negative frequencies similarly, as shown in
Figure 2.55a. If the open-loop system contains N RHP poles, then the system is
stable if the locus of det�I � L� encircles anticlockwise the origin N times, does not
pass through the origin, or encircle it in clockwise direction when both of the loci
are considered. In practice, the situation can be more complicated, as discussed in
Ref. [31] (cf. pp. 37–74).

The robustness of stability is typically related to phase (PM) and gain (GM)
margins, and the dynamic transient performance is related to the control
bandwidth. The closed-loop systems usually employ negative feedback, which
is also taken into account when constructing the characteristic polynomials (i.e.,
1 � L): If the loop gain is physically measured, the overall phase change for
unstable operation is 360°, which is also the typical reading (i.e., 0°) in the
frequency response analyzers. For complying with the control engineering
domain, 180° is subtracted from the reading or data produced by the analyzers.
According to this, the PM (Figure 2.59a) is defined by

PM � �L � 180° (2.137)

at the frequency where j jL � 1 (i.e., the loop-gain crossover frequency ωgco or f gco).
Similarly, the GM (Figure 2.59a) is defined by

1
GM � (2.138)j jL
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Figure 2.58 System
containing RHP pole at
open loop. (a) Bode plot.
(b) Nyquist plot.
(c) Extended Nyquist
plot (solid line denotes
stable closed-loop
system, and dashed line
denotes unstable
closed-loop system).
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Figure 2.59 Phase and gain
margins. (a) Nyquist plot. (b)
Bode plot.

at the frequency where �L � �180° (i.e., the phase crossover frequency ωphco or
f phco). Figure 2.59b shows the same definitions using the Bode plot.

In power electronics, the loop crossover frequency (f gco) (Figure 2.60) is
typically called control bandwidth. In control engineering, the control bandwidth
is defined as the frequency range from zero to the frequency where the sensitivityp
function (S) equals –3 dB (i.e., j jS � 1= 2) (cf. Figure 2.60). The loop crossover
frequency is naturally higher than the theoretical control bandwidth (i.e.,
Figure 2.59: f � 2:36 kHz and f s�3 dB � 1:79 kHz). The amount of the differgco
ence is dependent on the gain behavior of the loop in the vicinity of its crossover
frequency. If the gain is small, then the theoretical control bandwidth can be
much shorter than the loop crossover frequency.

The effect of the PM and GM on the converter dynamic behavior does not only
come from the robustness of stability but also via their effect on the transient
behavior of the converters: Eq. (2.139) shows a typical formulation for the output
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^^

Figure 2.60 Control bandwidth (f s�3 dB) versus loop crossover frequency (f gco).

dynamics of a converter where the sensitivity functions (S) and complementary
sensitivity function (T) are visible. The low margins can cause peaking in S (cf.

^

Figure 2.61), which is reflected as an increase of the closed-loop transfer function
influencing the transient response (i.e., increased undershoot or overshoot). The
peaking is also clearly visible in Figure 2.60.

1
uin � S ?G22-ouout � uc:� S ?G21-o ?T ? (2.139)ŷout Gse-out

The magnitude of the sensitivity function can be given at the loop crossoverp
frequency by j jS jL�1j � 1= 2�1 � cos�PM� � 1=2sin�PM=2� and at the phase
crossover frequency by j jS �L��180° � jGM=�GM � 1�j. Therefore, it can be
observed that the peaking takes place if PM<60° (cf. Figure 2.58a) or GM<18 dB.
The typically used gain margin of 6 dB would actually cause peaking of 6 dB (i.e.,
doubling the value). As a consequence, the loop gain-related margins should be
maintained adequate for preventing the excess peaking and deterioration of
transient performance.

The impedance-based stability assessment (cf. Sections 2.25 and 2.3.6) is
commonly applied in assessing the stability and transient performance in
interconnected DC and AC power electronic systems [54–62]. The concept of
forbidden region was launched in Ref. [56] (cf. Figure 2.62), which ensures robust
stability of the system when the minor loop gain (i.e., an impedance ratio, where
the numerator impedance is the internal impedance of the voltage-type source
and the denominator impedance the internal impedance of the current-type
source [54]) stays out of the forbidden region. The concept of minor loop was
originally launched in Ref. [2,3] by Middlebrook. The corresponding forbidden
region is a circle having radius of inverse of gain margin (GM) and the center at
origin as shown in Figure 2.61. Middlebrook’s forbidden region was deemed to be
too large, that is, to occupy unnecessary large amount of area in the complex
plane [56]. As a consequence, new forbidden regions have been developed for
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Figure 2.61 The peak
value of the sensitivity
function (a) at the feed-
back-loop gain crossover
frequency (f gco) and (b) at
the phase crossover fre
quency (f phco).

reducing the occupied area such as ESAC (Energy Systems Analysis Consor
tium) [56], GMPM (gain margin phase margin) [57], and opposing argument [58]
criteria, as illustrated in Figure 2.62.

It may be obvious that all the forbidden regions aim at maintaining robust
stability (i.e., acceptable transient performance) by requiring the minor loop gain
to satisfy certain PM and GM conditions. Basically, the forbidden region criteria
apply also for the conventional loop gain. A new forbidden region has been
proposed in Ref. [54] by means of a circle having radius of the inverse of the
allowed maximum peaking in the affected transfer functions and the center at the
point (�1,0), as depicted in Figure 2.63.

The MPC forbidden region in Figure 2.63 can be derived as follows based on
Figure 2.64: The distance between the loop gain L�jω� and the point (�1,0) can be
always given as �1 � L�jω� according to Figure 2.64. By denoting jSmaxj � MS and
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Figure 2.62 Collection of forbidden regions in the complex plane. Source: Vesti 2013.
Reproduced with permission of IEEE.

L�jω� � α � jβ, then �1 � α�2 � β2 � 1=M2 forms a circle in the complex planeS
having the center at (�1,0) and the radius of 1=MS. This criterion also takes into
account the combined effects of both the margins regardless of the frequency of
occurrence. It is clear that the selection of the allowed peaking determines the area
of the forbidden region. In Figure 2.63, the MPC-based forbidden region (gray area)
is drawn assuming thatMS � 2, which corresponds to PM � 29:0° and GM � 6 dB.

Figure 2.63 Maximum peak criteria (MPC)-based forbidden region versus ESAC and GMPM
regions. Source: Vesti 2013. Reproduced with permission of IEEE.
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Figure 2.64 Loop gain robustness indices. Source: Vesti 2013. Reproduced with permission of
IEEE.

For robust stability to exist, the minor loop gain shall stay out of the defined
MPC-based forbidden region and shall also satisfy the Nyquist stability criterion
in terms of encirclements around the point (�1,0). The state of stability extract
able from the behavior of the minor loop gain is invariant to the interface at which
the minor loop gain is determined as discussed, for example, in Ref. [56]. The state
of the robustness of stability depends, however, on the interface at which the
minor loop gain is determined because of the hiding effects of the passive
components such as capacitors and LC filters between the direct interface of
the converter power stage and the applied interface. As a consequence, the
robustness can be reliably determined only at the direct interface of a regulated
converter as in assessing the effect of the input filter in Refs [2,3]. When the MPC
forbidden region is applied to the conventional loop gain, the robustness
information is always perfect.

The above discussions related to the feedback control loops are also equally
valid for the impedance-based minor loops introduced first time in the 1970s in
Refs [2,3].

2.5.4 Transient Performance

The transient performance is usually addressed to the load-transient behavior of
the output terminal voltage of a power electronic converter [63,54], but can
equally cover also the transient behavior of the other output variables such as
input current and voltage as well as the output current. There are always several
factors that can affect the behavior of the output variable in question. In control
engineering, the transient behavior is usually addressed to the behavior of the
controlled variable when a step change in its reference signal is excited [53]. In
this case, the transient behavior reflects the properties of the feedback loop purely,
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Figure 2.65 Typical parameters specifying the transient response in the control engineering
textbooks.

because (cf. Figure 2.6 and Eq. (2.5))

1 L
ŷ � ? ? ûr: (2.140)

Gse 1 � L

Consequently, the typical transient behavior indices are given for a second-
order system by (cf. Figure 2.65)

1 ωdtr � ? arctan ;
ζωn

π
ωd

tp � ;
ωd

4 3
ts � ��2:5%�; ��5%�;

ζωd ζωdp
Mp � e��ζ= 1�ζ2�π � 100%; (2.141)

1
Mr � p ;

2ζ 1 � ζ2

2ζ
PM � tan�1 p ;

1 � 4ζ4 � 2ζ2

where tr denotes rise time, tp time to peak, ts settling time, Mp maximum
overshoot, Mr maximum peak value, and PM the phase margin of the feedback-
loop gain. The other variables (ωn, ωd, ζ) are as defined in Section 2.5.2. The
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relation between the PM and the closed-loop system ζ (i.e., Eq. (2.140) can be
estimated to be ζ � PM�deg�=100 up to PM of 50°. PM of 65° corresponds to thep
optimal damping factor of 1= 2 (cf. the last equation in Eq. (2.141)).

In case of the other transients, there are always other elements too, which can
have an effect on the transient behavior as follows (cf. Figure 2.6 and Eq. (2.5)):

y u;^^
Gxy-o� ?
1 � L

y u;

where Gxy-o is a certain open-loop transfer function related to the considered
output variable, and Gxy�1 is the corresponding ideal transfer function. As
already stated, the most important transient response is usually the load-current
transient response. It can be given in Laplace domain by (cf. Section 2.2.3:
Figure 2.6, and Eq. (2.5))

^^
Gxy-o � L ?Gxy�1� ?

(2.142)

1 � L

Δvo

Lout � Gse-outGaGcc-outGco-o;

where Zo-o denotes the open-loop output impedance of a voltage-fed converter,
Lout the output-voltage feedback-loop gain, Δ̂io the injected load-current tran

^
Zo-o� ?Δîo;1 � Lout (2.143)

sient, and Δvo

concerning the output-voltage transient behavior would be valid also for the other
transient when properly adjusted for the transient in question. The example buck

^

converter used for producing subsequent figures is introduced in Figure 2.66. The
applied load-current change is from 1 to 2.5 A. The modulator gain (1/VM) (i.e.,
the inverse of the peak-to-peak voltage of the modulator ramp) is varied from 1 to
1/3 V�1. The resulting output-voltage and inductor-current transient behaviors
are shown in Figure 2.67.

The maximum dip of the output voltage (cf. Figure 2.67), when the load current
is changed stepwise, can be computed based on the value of the output impedance
(cf. Figure 2.68) at crossover frequency of the output-voltage feedback loop (cf.
Figure 2.69) and the step change in the output current (i.e., the product) as the
corresponding figures clearly indicate.

the response at the output voltage. The ideas presented below

Figure 2.66 An example buck converter.
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Figure 2.67 Output-voltage transient responses to a step change from 1 to 2.5 A in output
current when the modulator gain (1/VM) is varied.

It is stated in Ref. [63] that the location of the zeros of the output-voltage
feedback controller determines the settling time because they form the poles of
the transient function. At the low frequencies, the output-voltage loop gain is
usually high, and therefore, the load transient response in Eq. (2.143) can be given
by

Zo-o-num ΔIoΔvo�s� � ? ; (2.144)
Gse-outGaGcc-outGco-o-num s

which indicates that the zeros of Gcc-out forms the poles of Δv̂o response and,
consequently, the time constants of the related exponential functions and the
settling behavior. Therefore, the higher the frequencies the zeros are placed, the
faster the settling process. This is a very good explanation but does not exactly tell

Figure 2.68 Closed-loop output impedances when the modulator gain (1/VM) is varied.
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Figure 2.69 Output-voltage feedback-loop gains when the modulator gain (1/VM) is varied.

the physical reason behind the improvement: The settling process is actually very
much dependent on the behavior of the duty ratio when the output voltage
approaches its final set value. In this respect, the low-frequency controller gain is
decisive, because the controller error signal will decrease all the time when the
voltage set value is coming closer. If the low-frequency gain is small, then the duty
ratio will also stay close to its steady-state value and the settling process is slow, as
shown in Figure 2.70 (cf. Figure 2.68). In practice, the location of the controller
zeros affects the low-frequency gain of the feedback controller and, consequently,
the settling time similarly as the change of the modulator gain in this example.
Therefore, all the controller design methods increasing the low-frequency gain
would improve the settling time [64]. The output-current feedforward, reported

Figure 2.70 Behavior of averaged duty ratio when the modulator gain (1/VM) is varied.
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in Ref. [65], produces highly improved load transient behavior by changing
quickly the duty ratio directly without affecting the feedback controller.

2.5.5 Feedback-Loop Design Constraints

An optimum feedback-loop design according to Ref. [66] is the one with highest gain
below the loop crossover frequency and lowest gain above the crossover frequency.
According to Ref. [67], the optimal controller would be quickly responsive to
substantial changes in output voltage and also provide precise steady-state control.
The first definition of the optimum design [66] is actually in line with the
requirements of robust stability and fast transient response even if the external
interactions were quite unknown during the writing of Ref. [66]: The optimum
design might be expressed, as illustrated in Figure 2.71, where the loop gain is as high
as possible up to the loop crossover frequency, and as small as possible after loop
crossover frequency with constant phase margin of 60° for all the frequencies.

The reasoning behind the optimality is the fact that such a converter would be
highly invariant to impedance-based load interactions and would have fast transient
response: The high-loop gain means that the closed-loop output impedance of the
converter is extremely small up to the feedback loop crossover frequency, which
means that the load impedance would not easily affect the internal dynamics of the
converter [13–15], and the transient settling time is very short, as discussed in

Figure 2.71 Theoretically optimal loop shape.
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Section 2.5.4. In practice, the load transient is dictated by the properties of the
output capacitor and the other parasitic elements at the output of the converter and
along the current-carrying path between the converter and the load. The load
impedance does not affect the converter input impedance due to the extremely high
input-to-output attenuation provided by the input-to-output transfer function [15].
Therefore, the stability of the converter due to the source interactions would be
determined by the ideal input impedance in such a way that no impedance overlap is
tolerated at the direct input of the converter [15].

In reality, such a feedback-loop behavior cannot be accomplished due to the
practical constraints involved in the components such as operational amplifiers,
and A/D converters as well as duty-ratio generation.

RHP Zeros and Poles
The existence of RHP zeros and poles in power electronics converters is quite
common [5,17,47,48,51]. A converter having an RHP pole in its control dynamics is
known to exhibit a non-minimum phase behavior. The existence of the RHP zero
means that the maximum control bandwidth has to be limited to the frequency of
the RHP zero and in practice below it [68]. A typical recommended design margin is
half the frequency of the zero. The location of the RHP zero can be dependent on the
conduction mode of the converter, which shall be carefully considered [5].

Sometimes, the open-loop converter may even contain unstable pole that is
caused by the power stage itself [51] or, for example, the applied cascaded control
scheme [17]. This means that the minimum control bandwidth has to be designed
higher than the frequency of the RHP pole [68]. A typical recommended design
margin is twice the frequency of the RHP pole. The location of the RHP pole can
be highly dependent on the operation point variables and some circuit elements in
power stage, which shall be carefully considered [17].

The destabilizing effect of improper control design, when RHP zeros and poles
exist in the control dynamics (Gco-o) of the converter, can be illustrated by means
of the closed-loop output impedance (Zo-c) given in Eq. (2.145) based on the fact
that the system is unstable if RHP poles appear as follows:

Zo-oZo-c � ;
1 � Lout (2.145)

Lout � Gse-outGaGcc-outGco-o:

Let us assume that an RHP zero exist in Gco-o and the control bandwidth is
designed to be higher than the frequency of the zero. Thus, Zo-c in the vicinity of
f RHP-z can be given by

Num�Zo-o�f jLout j�1 > f RHP-z ! Zo-c � : (2.146)
Gse-outGaGcc-outNum�Gco-o�

According to Eq. (2.146), the system is unstable, because the RHP zero of Gco-o

has turned to an RHP pole of the system. If the control bandwidth is designed to
be less than the zero, then Zo-c can be given by

f jLout j�1 < f RHP-z ! Zo-c � Zo-o: (2.147)
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According to Eq. (2.147), the system is stable if the open-loop system is stable.
Let us assume that an RHP pole exists in the open-loop system and the control

bandwidth has been designed to be less than the frequency of the pole. Thus, Zo-c

in the vicinity of f RHP-pole can be given by

f jLout j�1 < f RHP-p ! Zo-c � Zo-o: (2.148)

According to Eq. (2.148), the system is unstable because the open-loop system is
unstable. If the control bandwidth is designed to be higher than the zero, then Zo-c

can be given in the vicinity of f RHP-pole by

Num�Zo-o�f jLout j�1 > f RHP-pole ! Zo-c � : (2.149)
Gse-outGaGcc-outNum�Gco-o�

According to Eq. (2.149), the system is stable because the RHP pole has
disappeared.

Minimum and Maximum Feedback-Loop Crossover Frequencies
In practice, the usable feedback-loop crossover frequencies ( f gco) without the
limitations imposed by the RHP poles and zeros are defined according to Ref. [69]
to be as follows:

� f > 3 ? f , where f is the resonant frequency of the converter: The resonantgco n n

pole will cause ringing and control has to eliminate this ringing. For doing so,
the control has to have adequate gain at the resonant frequency.� f gco < f s=5, where f s denotes the switching frequency: The high gain at the high

frequencies would also amplify the switching ripple, which may affect the
pulsewidth generation and lead to instability (cf. Ref. [69]).

Maximum High-Frequency Feedback-Loop Gain
The use of ceramic capacitors at the output of converters [70] may allow using
resonant frequencies of the output LC filter approaching the switching fre
quency of the converter. In case of analog controllers, the internal gain of the
used operational amplifiers may pose a stability problem if the feedback loop
gain becomes higher than the internal gain of the operational amplifier
especially at high frequencies. A typical operational amplifier gain behavior
is shown in Figure 2.72, where the GBW (i.e., gain–bandwidth product) equals
1.5 MHz. The differential operational amplifier circuit, which can be used as a
feedback controller, is shown in Figure 2.73. Based on Figure 2.73, the feedback-
controller transfer function including the effect of the internal gain (GOPA) can
be given by

GOPA Zf GOPA� ? : (2.150)cc Zin 1 � GOPA � �Zf=Zin�
If the controller is designed in such a way that Zf=Zin > GOPA, then
GOPA � GOPA, which implies dynamic problems especially if the frequency ofcc
occurrence is at high frequencies. If Zf=Zin < GOPA, then GOPA � Rf=Rin as it iscc
assumed to be.
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Figure 2.72 The open loop (i.e., internal gain) of an operational amplifier with 1.5-MHz GBW
product.

Figure 2.73 Feedback controller based on differential operational amplifier circuit.

2.5.6 Controller Implementations

A general simple feedback controller applied usually in DC–DC power electronic
converters based on the circuitry included in the pulse-width modulators (PWM)
can be given as shown in Figure 2.74. Resistor Rb is known as a bias resistor, which
contributes only to the level of output DC voltage. The transfer function of the
general controller can be given by

ZfGcc � : (2.151)
Zin

Depending on the impedances Zf and Zin, the controller can be proportional (P;
type-1) (Figure 2.75a), proportional integral (PI; type-2) (Figure 2.75b), propor
tional integral derivative (PID; type-3) (Figure 2.75c), or integral (I; type-4)
(Figure 2.75d). The P, PI, and PID controllers most often include one high
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Figure 2.74 Simple analog general
control circuitry.

Figure 2.75 Simple analog controller imple
mentations. (a) P. (b) PI. (c) PID. (d) I.
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Figure 2.75 (Continued)

frequency pole, which reduces the high-frequency gain of the controller in order
to make the control system proper.

The transfer function of the PID controller can be computed from Figure 2.75c

RinCf s�1 � sRdCd��1 � sRfCp�

yielding

Gcc � �1 � sRfCf ��1 � s�Rin � RdCd��
RinCf s�1 � sRdCd� 1 � sRf CfCp=�Cf � Cp� : (2.152)

Typically, Cp � Cf . Therefore, Gcc simplifies to

Gcc � :
�1 � sRfCf ��1 � s�Rin � RdCd� (2.153)

Therefore, the above-mentioned high-frequency pole can be given byωp � 1=RfCp.
The frequency response of a PID controller is given in Figure 2.76, where the zeros
and poles are denoted based on the generalized representation of the PID controller
transfer function given by

K cc�1 � s=ωz1��1 � s=ωz2�Gcc � ; (2.154)
s�1 � s=ωp1��1 � s=ωp2�
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Figure 2.76 Frequency response of a PID controller.

where the different zeros, poles, and K cc can be easily identified based on Eq.
(2.154).

The transfer function of a PI controller can be computed from Figure 2.75b
yielding

1 � sRfCf K cc�1 � s=ωz1�Gcc � � (2.155)
RinCf s�1 � sRfCp� s�1 � s=ωp1�

and the corresponding frequency response is given in Figure 2.77.
The transfer function of a P controller can be computed from Figure 2.75a

yielding

Rf K ccGcc � � (2.156)
Rin�1 � sRfCp� �1 � s=ωp1�

and the corresponding frequency response is given in Figure 2.78.
The transfer function of an I controller can be computed from Figure 2.73d

yielding

1 K ccGcc � � (2.157)
sRinCf s

and the corresponding frequency response is given in Figure 2.79.
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Figure 2.77 Frequency response of a PI controller.

Figure 2.78 Frequency response of a P controller.
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Figure 2.79 Frequency response of an I controller.

2.5.7 Optocoupler Isolation

The feedback loop of the transformer-isolated converters should also be iso
lated [72]. The most common medium for performing the isolation is an opto
coupler [73]. The optocoupler would also be a critical component in the loop,
because its current transfer ratio (CTR) can vary substantially depending on the
temperature, level of diode current, age, type, and manufacture; it may incorporate
an RC circuit-like behavior highly dependent on the collector/emitter resistance.
The transfer function describing its dynamic behavior [23] can be given by

�1 � s�td=2��
Gopto � CTR ? ; (2.158)�1 � s=ω�3dB��1 � s�td=2��

where the effect of the delay (td) is approximated by using the first-order Padé
approximation of e�std . In theory, the delay increases only the phase lag by �ωtd

(in radians) but does not affect the magnitude at all (i.e., e�std � 1� � ωtd). The
delay is usually given explicitly in the data sheet. Section 2.5.8 gives more
information on the different Padé approximations and their validity. The cutoff
frequency (ω�3dB) can be found from the frequency responses typically given by
the manufacturer at different collector resistors or from the time-domain
response given at a certain collector resistor (Rc1): The rise time (tr) and the
corresponding cutoff frequency are related by ω�3dB � 2:2=tr, from which the
equivalent Copto � 0:455 ? tr=Rc1. The corresponding ω�3dB at the used collector
resistor (Rc2) equals �Rc1=Rc2��2:2=tr�.
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2.5.8 Application of Digital Control

The control design can be performed completely in continuous time based on the
frequency-domain transfer functions even if the practical control is implemented
in discrete time or Z-domain by using digital signal processor. The feedback/
feedforward variables are sampled by using analog–digital converters, which
introduce a delay (Td) in the feedback/feedforward loops, which has to be also
added in the continuous-time feedback/feedforward loops when performing the
controller design [74]. Figure 2.80 shows the location of the delay block Gd in the
input and output dynamics of the converter, that is, it is connected to the control
signal Uc. The same procedures apply despite the number of feedback/feedfor
ward loops in the converter. Usually the sampling of the variables takes place once

Figure 2.80 The adding of
the delay block into (a) the
input and (b) output
dynamics.
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Figure 2.81 The effect of control delay on the phase shift of the feedback loopwhen Td � 1:5T s.

in a switching cycle T s, and the typically used delay Td � 1:5T s. In Laplace
domain, the delay equals e�Tds, which is usually approximated by using the first-
order Páde approximation by

1 � s�Td=2��Tds �e : (2.159)
1 � s�Td=2�

Figure 2.81 shows the validity of the first-order (Eq. (2.159)), the second-order
(Eq. (2.160)), and the third-order (Eq. (2.161)) Padé approximations when the
switching frequency (f ) is 100 kHz and, therefore, Td � 15 μs. As stated earlier,s
the maximum recommended feedback-loop crossover frequency should be
limited to f =5. Figure 2.81 indicates that the first-order Padé approximations
does not correctly model the phase behavior of the delay (i.e., �86° versus �108°)
at f =5. The second- and third-order approximations coincide with the real phases
of the delay. If Td � T s, then the first-order approximation predicts correctly the
phase shift imposed by the control delay at f =5.s

2 T 21 � s�Td=2� � s � d=12��Tds �e (2.160)
1 � s�Td=2� � s2�Td

2=12�
2 T 2 3 T 31 � s�Td=2� � s � d=10� � s � d=120��Tds �e : (2.161)

1 � s�Td=2� � s2�Td
2=10� � s3�Td

3=120�

2.6 Resonant LC-Type Circuits

2.6.1 Introduction

In power electronics, the resonant circuits have a significant effect on control
design but their behavior seems to be quite poorly understood. Therefore, we will
present here some fundamental basics related to the LC (Figure 2.82), LCL
(Figure 2.83), and CLCL (Figure 2.84) circuits. In DC–DC converters, an LC-type
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Figure 2.82 Single-section LC filters. (a) Voltage-
fed filter. (b) Current-fed filter.

input filter has to be usually added at the input terminals of the converters for
suppressing the power-stage input-current ripple (cf. Figure 2.82a) or input-
voltage ripple (cf. Figure 2.82b) to an acceptable level stipulated by the relevant
EMC standards. The first-filter topology is used in the conventional or voltage-fed
applications, and the last topology in the current-fed applications. The filters are
actually the dual of each other. In the voltage-fed inverters, the LCL-type filter (cf.
Figure 2.83) is usually added to the output terminals of the converter for
suppressing the ripples of the inverter output current to an acceptable level.
In the current-fed applications, an input capacitor has to be added at the input
terminal of the power stage of the inverter for enabling its use in the current-fed
applications. As a consequence, the overall filter including the output LCL filter

Figure 2.83 LCL-type output filter of the grid-connected voltage-fed inverter.

Figure 2.84 CLCL-type filter of the grid-connected current-fed inverter.
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and the input capacitor resembles the CLCL filter depicted in Figure 2.84. All the
filter topologies contain both series and parallel resonant behaviors having
characteristic features, which have to be known for understanding their effects
on the overall dynamics of the associated systems.

2.6.2 Single-Section LC Filter

The dynamic representations of the voltage-fed and current-fed LC filters can be
given as G and H parameter sets by

îin
v̂o

�
sC 1 � srCC

1 � srCC ��rL � sL��1 � srCC�
s2LC � s�rL � rC�C � 1

v̂in

îo

v̂in

îo
�

�rL � sL��1 � srCC� 1 � srCC

1 � srCC �sC
s2LC � s�rL � rC�C � 1

îin
v̂o

;

; (2.162)

(2.163)

where all the elements would exhibit parallel resonant characteristics, that is, peakingp
1at the resonant frequency ωres � ωn 1 � 2ζ2 � p 1 � ��rL � rC�2C=�2L��. The
LC

elements G11 and G22 in both of the sets have ohmic characteristics. If both of these
elements are given as impedances, we can observe that the series resonant features are
related to

s2LC � s�rL � rC�C � 1
(2.164)

sC

and the parallel resonant features to

�rL � sL��1 � srCC�
: (2.165)

s2LC � s�rL � rC�C � 1

The frequency responses of the series (Eq. (2.164)) and parallel (Eq. (2.165))
impedances are shown in Figure 2.85. The magnitudes of the impedances at the
resonant frequency can be computed by substituting s � jωres and developing the
magnitudes of the resulting complex numbers. Following these procedures, we
can obtain

p p
R2 2 2 2 R21 � �rL=2R2� 1 � �rC=R

2��1 � �rL=2R2��o o o o oZpar-max � �
rL � rC rL � rC

(2.166)

and

1 � ��rL � rC�2=4R2�o � rL � rC; (2.167)
1 � ��rL � rC�2=2R2�

Zser-min � �rL � rC�
op

where Ro � L=C denotes the characteristic impedance of a resonant circuit,
that is, ωnL � 1=ωnC � Ro. As discussed in detail in Section 2.5.2, the damping
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Figure 2.85 Bode plots of parallel (solid line) and series (dash–dotted line) impedances.

factor ς � �rL � rC�=2Ro and the quality factor Q � Ro=�rL � rC�. The changes in
the damping as long as the circuit retains its resonant nature do not affect the
magnitude dip of the series resonant circuit, but significantly the peak magnitude
of the parallel resonant circuit. It should be noticed that the peak magnitude of the
series resonant circuit is dependent on the characteristic impedance (Ro) by
square. This means that if the inductance value increases, then the peak value
increases in direct relation to the inductance value. The opposite takes place with
respect to the changes in the capacitance value. As a summary, the changes in the
inductance and capacitance values affect always the resonant frequency and also
the peak magnitude of the parallel resonant circuit. It shall be noticed that peakingp
in the parallel resonant circuit takes place only when ζ < 1= 2.

The maximum value of the other parallel resonant circuits in Eqs. (2.162) and
(2.163) (i.e., the matrix elements (1,2) and (2,1)) can be given by

RoGmax � � Q; (2.168)
rL � rC

which indicates that the quality factor corresponds directly to the maximum value
of these output-to-input and input-to-output transfer functions.

2.6.3 LCL Filter

The dynamic representation of the LCL filter as a set of Y parameters can be
given by

s2L2C � s�rL2 � rC�C � 1 ��1 � srCC�
^ 1 � srCC ��s2L1C � s�rL1 � rC�C � 1� v̂iniin � ;
^ Δ v̂oio

(2.169)
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Figure 2.86 The frequency responses of the input admittance (dash–dotted line) and output
admittance (solid line).

where

2Δ� s3L1L2C� s �L1�rL2 �rC��L2�rL1 �rC��C� s�L1 �L2 ��rL1rL2� rC�rL1 �rL2��C�� rL1 �rL2:

(2.170)

According to the denominator of the system in Eq. (2.170), there is one pole close
to the origin (i.e., approximately at �rL1 � rL2�=�L1 � L2�) and a resonant doublep
pole approximately at 1= �L1 k L2�C. The double pole represents naturally the
parallel resonance involved in the system. According to Eq. (2.169), the circuit

Figure 2.87 The frequency response of the input-to-output transfer function (Gio).



1152.6 Resonant LC-Type Circuits

inductors form with the circuit capacitor separate series resonances having
double zeros at 1=L1C and 1=L2C, respectively. According to the symbolic forms
of the resonances, the series resonances locate always at the lower frequency than
the parallel resonance as clearly visible in Figure 2.85, where the frequency
responses of the input (i.e., the element G11) and output (i.e., element G22)
admittances of the LCL filter are shown. In the other two transfer functions, only
the parallel resonance and the low-frequency pole are clearly visible, as shown in
Figures 2.86 and 2.87.

2.6.4 CLCL Filter

The dynamic representation of the CLCL filter as a set of H parameters can be
given by

ΔZin ΔToi

^v̂in ΔGio �ΔY o iin� ; (2.171)
îo Δ v̂o

where

2ΔZin � �s3L1L2C2 � s ��rL2 � rC2�L1 � �rL1 � rC2�L2�C2

� s�L1 � L2 � �rL1�rL2 � rC2� � rL2rC2�C2� � rL1 � rL2��1 � srC1C1�;
ΔGio � ΔToi � �1 � srC1C1��1 � srC2C2�;

C1C2 C1C2ΔY o � �C1 � C2� s2L2 � s�rL � rC1 � rC2� � 1 ;
C1 � C2 C1 � C2

(2.172)

and the denominator of the system

3Δ � s4L1L2C1C2 � s �L1�rL2 � rC2� � L2�rL1 � rC1 � rC2��C1C2

� s2�L1C1 � L2�C1 � C2� � ��rL1 � rC1��rL2 � rC2� � rL2rC2�C1C2�
� s��rL1 � rL2 � rC1�C1 � �rL2 � rC2�C2� � 1:

(2.173)

The system is of fourth order as Eq. (2.173) clearly indicates. Therefore, it is quite
difficult to exactly define the resonant frequencies the circuit contains. We can
state that there are two complex conjugate pole pairs in the system, which locate
approximately at

21 1 C1 � C2 1 1
1 � C1�C2? � ? � ;�ωres1;2 � L2C2 L1C1C22 2L2C2 L1C1C2 L1L2C1C2

(2.174)

which are clearly visible in the plot of the frequency response of the input-to
output transfer function (Gio) given in Figure 2.88.
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Figure 2.88 The frequency response of the input-to-output transfer function (Gio).

The output admittance (Y o) (cf. Figure 2.89) and input impedance (Zin) (cf.
Figure 2.88) also contain one series resonance, which can be easily derived for
Y o from the corresponding symbolic form given in Eq. (2.172) (i.e.,p
ωser-res � 1= L2�C1C2=�C1 � C2��) but not so easily for Zin due to the
third-order nature of the numerator term: Zin also contains one single
zero approximately at ωz1 � �rL1 � rL2�=�L1 � L2� in addition to the resonantp
zero approximately at ωser-res � 1= L1L2=�L1 � L2� � C2 as indicated in
Figure 2.90.

Figure 2.89 The frequency response of the output impedance (Yo).
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Figure 2.90 The frequency response of the input impedance (Z in).
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3

Dynamic Modeling of Direct-on-Time Control

3.1 Introduction

This chapter provides the unified basis for the average and small-signal modeling
of voltage-fed switched-mode converters under direct-on-time (DOT) control in
continuous (CCM) and discontinuous (DCM) conduction modes [1]. In case of
fixed switching frequency, the control mode will be referred as direct duty ratio
(DDR) control, because the same dynamics associated with the on-time is also
present in the duty ratio (i.e., d � ton=T s). If the switching frequency is varying,
then the dynamic modeling has to be performed applying the DOT control
method, because the duty ratio is then a nonlinear function of on-time and cycle
time (i.e., d � ton=ts) and cannot be used as the control variable [1]. The DDR
control is also known widely as voltage-mode control (VMC) [2]. The name VMC
should be, however, reserved for the capacitor voltage-based internal control
methods in current-fed converters (cf. Chapter 4), similarly as the inductor
current-based internal control methods are known generally as current-mode
control (CMC). The DOT and DDR models are important, because they form the
basis for the other internal control methods such as peak-current-mode (PCM),
average-current-mode (ACM), hysteretic current-mode (HCM), and self-oscilla
tion control [1]. The modeling of the dynamics of the converters under the named
internal control methods can be performed by finding the dynamics associated
with the on-time and duty ratio when the new control method is applied. The
relation is known as on-time or duty-ratio constraints [1,2].

The dynamic modeling of the switched-mode converters dates back to early
1970s, when first attempts to produce such models were published in Ref. [3].
The famous state-space averaging (SSA) technique, introduced in Ref. [4], is
actually an extension and improvement of Ref. [3]. It was first developed for
CCM and later also extended to DCM [5]. The DCM modeling failed to
produce accurate models because of considering the inductor current to
lose its derivative at the end of a switching cycle. The accurate models for
the DCM operation were developed about 20 years later, where the inductor
current derivative is correctly addressed to the input and output voltages as well
as to the inductor value and switching frequency [6,7]. The basic finding of the
unified modeling method introduced in Ref. [7] is that the dynamics of the

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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converter was associated with the time-averages of the instantaneous circuit
variables. As a consequence, all the variables are continuous functions of time
regardless of the operational mode of the converter. In practice, this means that
the dynamic behavior of the converter seen from its input and output terminals
is mainly contributed by the time-averaged variables, where the averaging is
performed over one switching cycle. If feedback or feedforward signals are
applied either to implementing the usual feedback signals or to producing
different modes such as current-mode control, the ripple components super
imposed on the time-averaged signals may produce ripple effects on the
converter dynamics, which may even lead to instability under certain
conditions [8,9].

The pulse width modulators (PWM), which are used to produce the switching
actions in power electronic converters, are noticed to affect the dynamics of the
converter at the frequencies close to the switching frequency when using internal
inductor current-based feedback schemes [10]. Under DOT or DDR control, the
response of the PWM to the sinusoidal injection is found to be, however,
linear [11] without causing any extra phase shift or affecting the magnitude of
the signal.

The modeling is still usually carried out by using resistive loading, as in Ref. [2],
even if it is well known already [1] that such models are load affected and do not
really represent the dynamics incorporated into the power electronic converters.
In case of DOT or DDR control, the major effect of the load resistor can be
addressed to the extra damping of the converter internal resonances. In CMC-
controlled converters, the resistor will totally hide the real dynamic behavior of
the converter [1]. Therefore, it is highly recommended to use the corresponding
ideal load (i.e., a current source for the voltage-output converters, and a voltage
source for the current-output converters) when performing the analytic model
ing. The same also applies for measuring the corresponding frequency responses.
The CMC-controlled converters are actually current-output converters at open
loop. The output-voltage feedback transforms them into the voltage-output
mode. They cannot supply constant current loads without violating Kirchhoff’s
current law, as discussed in Ref. [12]. Therefore, the CMC converters are to be
characterized by using resistive loading but the real internal dynamics shall be
then revealed by computationally using the load-interaction formulas presented
in Section 3.6.

The average and small-signal models presented in this chapter are always the
real internal models. We derive and present the state spaces in general form first
in DOT control domain. Thus, they are applicable for both fixed- and variable-
frequency operations. In addition, the generalized modeling technique enables
the modeling of converter dynamics when a part of the inductors is in DCM and a
part of them in CCM. This kind of situation may take place in the higher order
converters. The transfer functions are derived only for the fixed-frequency
operation. The variable-frequency operation is treated more in detail in Section
4.4. The converters we treat in more detail are the basic converters – buck, boost,
and buck–boost. As an example of the higher order converters, the superbuck or
two-inductor buck converter is modeled as discrete-inductor and coupled-
inductor implementations.
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3.2 Direct-on-Time Control

The DOT control is the basic control method of the power electronic converters
(cf. Figure 3.1), where the length of on-time is controlled to keep the associated
output variable at the output or input terminal constant at the predefined level. In
this chapter, the output variable is the output voltage but it can also be input
current. As an example, the synchronous buck converter is shown in Figure 3.1,
where the high-side switch SHS conducts during the on-time (cf. Figure 3.1b, ton),
and the low-side switch SLS during the off-time (cf. Figure 3.1b, toff ), respectively.
This process is repeated in a sequential manner, that is, the operation is
periodical. When the PWM switch is implemented by using MOSFETs as in
Figure 3.1a, the operation of the converter is all the time in CCM due to the
properties of the MOSFETs. If the low-side switch SLS is substituted with a diode,

Figure 3.1 DDR-controlled synchronous buck converter. (a) Schematics. (b) Pulse-width
generation.
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where the anode is pointing up, the diode will be turned automatically off, when
its current reaches the zero level leading to DCM operation. If the switching
frequency f (cf. Figure 3.1a) is constant, then the DOT control equals the DDRs
control, where the duty ratio (d) can be expressed by ton=T s, and its complement
(d´ � 1 � d) by toff=T s. The inverse of the switching frequency (f ) T s (Figures
3.1b, T s � ton � toff ) is called cycle time.

The on-time or pulse width under fixed-frequency operation is implemented
(cf. Figure 3.1b) by comparing the voltage provided by the controller (i.e., vco) to a
constant-slope PWM signal (i.e., MPWM � �VM=T s�t) provided by the modulator.
The gate pulse is switched on in the beginning of the cycle by means of the pace
signal applied to the set input (S) of the RS flip-flop. The pace signal also
determines the switching frequency (f ). The gate pulse is terminated whens
the PWM ramp exceeds the control voltage (vco) by turning the comparator
output high and resetting the RS flip-flop. The flip-flop controls the gate drivers,
which in turn provides the gate-control signals of the associated switches.

When considering the situation from the dynamic point of view, the slope of
the PWM ramp would affect the gain (i.e., Ga, Figure 3.2) of the dynamic actions
through the modulator. The gain is usually called modulator gain. It can be found
by constructing the comparator equation (cf. Figure 3.1a), which determines the
length of the on-time as follows:

VMvco � � ton; (3.1)
T s

and when developing the partial derivatives of (3.1) (i.e., linearizing), which
yields

T st̂on � � v̂co: (3.2)
VM

Figure 3.2 DOT-controlled converter at open loop with a PWM modulator.
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Under the fixed-frequency operation, Eq. (3.2) becomes

d̂ � � v̂co; (3.3)
VM

and consequently, the modulator gain (Ga) equals V�1
M . Due to the PWM process,

the modulator gain may also contain some frequency-dependent components [10]
in addition to the constant gain already defined.

When defining the dynamic models for the DOT-controlled converters in the
subsequent sections, we assume that the modulator gain equals unity (1) as
illustrated in Figure 3.2. The derived models are also the internal or unterminated
models, that is, the source impedance (i.e., Zs, Figure 3.2) and the load admittance
(i.e., Y L, Figure 3.2) are assumed to be infinite (i.e., impedance) and zero
(i.e., admittance), respectively, when deriving the corresponding state spaces.

3.3 Generalized Modeling Technique

The power electronic converters are nonlinear variable structure systems, where
different topological structures are periodically switched on and off. The non
linearity can be removed by averaging the converter operation within one
switching cycle. Linearizing the obtained averaged model by developing the
associated partial derivatives with respect to the state, input, and control variables
at a certain operating point would yield the desired dynamic representation of
the converter. It is obvious that the models are valid only up to the half of the
switching frequency due to the nature of the averaging. In order to construct the
averaged state space, we have to consider the variables as the time-varying
averages of the corresponding instantaneous values x, which we denote by hxi.

The behavior of time-averaged inductor current hiLii would determine most of
the dynamics in a voltage-fed converter. The portion of the inductor current
having positive up-slope (m1i) and negative down-slope (m2i) are shown in
Figure 3.3 for an arbitrary switching cycle. The corresponding portions of the
cycle time (ts) are denoted by ton and toff1. It should be noted that ts � ton � toff1 in
CCM but ts > ton � toff1 in DCM (cf. Figure 2.37; Section 2.4). The slopes m1i and
m2i are the local averages within the on-time or off-time, respectively.

The time-averaged inductor current hiLii is a continuous signal of time
regardless of the conduction mode (i.e., in CCM and DCM) but its charging

Figure 3.3 Waveforms of inductor current at an arbitrary switching cycle.
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potential within those subcycles is distributed as

ton�hiLiion � hiLii;ton � toff 1 (3.4)
toff 1hiLiioff � � hiLii:ton � toff 1

For developing the state space, the derivatives of the time-averaged state
variables have to be defined. The derivative of time-averaged inductor current
can be approximated according to the average slope of the instantaneous inductor
current (cf. Figure 3.3) by

dhiLii ton toff 1� �m1i � �m2i; (3.5)
dt ts ts

where m1i � vLi-on=Li and m2i � �vLi-off 1=Li as well as vLi-on the voltage across the
inductor during the on-time (ton) and vLi-off 1 the voltage across the inductor
during the part (toff 1) of the off-time (toff ) when the inductor current is nonzero.
These relations may be obvious, because vL � L�diL=dt�. The bar over the voltages
denotes the variables constituting the voltages that are the corresponding local
averages during the corresponding subcycles.

The derivative of the time-averaged capacitor voltage can be approximated (cf.
Figure 3.4) by

dhvCki hi�i hi�i� � ; (3.6)
dt Ck Ck

where hi�i is the time-averaged current charging the capacitor, and hi�iis the
time-averaged current discharging the capacitor within a switching cycle, respec
tively. This relation is obvious, because iC � C�dvC=dt� and hiCi � hi�i � hi�i
according to Kirchhoff ’s current law.

The output of the converter is most often provided with an output capacitor as
illustrated in Figure 3.5. Therefore, the average output voltage can be given by

hvoi � hvCki � rCkhi�i � rCkhi�i; (3.7)

or by

dhvCkihvoi � hvCki � rCkCk ; (3.8)
dt

which is a useful form in the final state space for the output voltage.

Figure 3.4 Capacitor charge balance.
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Figure 3.5 Converter output stage.

The time-varying averaged input current hiini is usually the current of a certain
power-stage inductor or part of it. In the higher order converters, the input
current can also be a sum of the power-stage inductor currents or a part of them.
In all the cases, the value of time-varying averaged inductor current can be
determined based on Eq. (3.4). The input (vin) and output (vo) voltages may affect
the slopes of the inductor currents. In such cases, the input and output voltages
have to be taken as their local averages over the corresponding subcycles when
solving the slopes (mij). The usual error in modeling is to consider the variables as
the averages over the whole switching cycle.

3.3.1 Buck Converter

The power stages of a buck or step-down converter with two different
implementation principles – the diode (cf. Figure 3.6a) and synchronous
(cf. Figure 3.6b) switched – are shown in Figure 3.6. In practice, the buck
converter cannot work without an input capacitor because of its pulsating
input current as shown in Figure 3.6c. In a buck converter, the input terminal
voltage has to be higher than the output terminal voltage, and consequently,
the input terminal current has to be lower than the output terminal current in
order to maintain the power balance. The steady-state input-to-output mod
ulo M�D� � D.

We perform the modeling for all the three power stages shown in Figure 3.6
differing from each other with respect to the implementation of the PWM switch
scheme or the input capacitor. The use of diode in the PWM switch scheme
means that the converter can operate either in CCM or DCM depending on the
level of output current. The use of MOSFETs means that the converter operates
only in CCM without any special control arrangements down to the no load. The
internal parasitic resistances (i.e., rdsi and rd) in the associated switches also
include the switching losses. As shown in Figure 3.6, the high-side switch
conducts during the on-time, and the low-side switch during the off-time or a
part of the off-time.

According to the generalized method, we divide the switching cycle into two
subcycles: During the on-time (cf. Figure 3.7a), the topological structures are
exactly the same. During the off-time1 (i.e., during the part of the off-time when
the inductor current slope is negative), the topological structures differ only in
terms of the losses (cf. Figure 3.7b and c). We have not added the input capacitor
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Figure 3.6 Buck-converter power stages. (a) Diode switching. (b) Synchronous switching.
(c) With an input capacitor.

C1 into Figure 3.7 but we take its effect, however, into account in the generalized
state space.

According to Figure 3.7, we may conclude that the current hi�i charging the
output capacitor equals the time-averaged inductor current hiLi because the
inductor current charges the output capacitor during both of the subcycles. For
the same reason, the local average of the output voltage during the on-time and
off-time1 can be given by

vo-on=off � rChiLi � hvCi � rChioi: (3.9)

The time-averaged input current hiini equals the on-time inductor current, and
therefore, the first equation in (3.4) applies. The contribution of the input
capacitor can be taken into account as follows:

dhvC1i �vC1 � vin� ; (3.10)
dt rC1C1

because iC1 � �vin � vC1�=rC1. It may be obvious that the contribution of an ideal
input capacitor cannot be taken into account as presented here because of infinite
input capacitor current, which indicates that the derivative of the capacitor is not
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Figure 3.7 The topological subcircuit structures of a buck converter during the (a) on-time and
off-time1 with (b) diode-switching and (c) synchronous-switching schemes.

independent but perfectly dependent on the input voltage. In such a case, other
methods have to be considered. We come up to this problem later when deriving
the system transfer functions.

According to these conclusions and applying Eqs. (3.4–3.10), the general state
space with the input capacitor can be given for the buck converter by

dhiLi ton toff1� �m1 � �m2;dt ts ts

dhvCi hiLi hioi� � ;
dt C C

dhvC1i hvC1i hvini� � � ; (3.11)
dt rC1C1 rC1C1

tonhiini � � hiLi;ton � toff1

dhvCihvoi � hvCi � rCC ;
dt
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where the up-slope

hvini � �rL � rds1 � rC�hiLi � hvCi � rChioim1 � ; (3.12)
L

the down-slope of the diode-switched scheme

�rL � rd � rC�hiLi � hvCi � rChioi � VDm2 � ; (3.13)
L

and the down-slope of the synchronous-switched scheme

�rL � rds2 � rC�hiLi � hvCi � rChioim2 � : (3.14)
L

If the input capacitor is not to be considered, the corresponding derivative shall be
removed from the state space.

3.3.2 Boost Converter

The power stages of a boost or step-up converter with two different implementa
tion principles – the diode (cf. Figure 3.8a) and synchronous (cf. Figure 3.8b)

Figure 3.8 Boost-converter power stages. (a) Diode switching. (b) Synchronous switching.
(c) With an input capacitor.
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switched – are shown in Figure 3.8. In practice, the boost converter can work
without an input capacitor because of its continuous input current but we
consider also the case, where the input capacitor is connected at the input terminal
as shown in Figure 3.8c. In a boost converter, the input terminal voltage has to be
lower than the output terminal voltage, and consequently, the input terminal
current has to be higher than the output terminal current in order to maintain the
power balance. The steady-state input-to-output modulo M�D� � 1=D´.

Similarly as in the case of the buck converter in Section 3.3.1, we perform the
modeling for all the power stages shown in Figure 3.8. Under the synchronous-
switching scheme, the converter operates all the time in CCM. Under the diode-
switching scheme, the converter operates both in CCM and DCM depending on
the level of the output current and the input voltage. The parasitic resistances (i.e.,
rdsi and rd) of the associated switching components also include the switching
losses. As indicated in Figure 3.8, the low-side switch conducts during the on-time
and the high-side switch during the off-time or a part of the off-time.

According to the generalized method, we divide the switching cycle into two
subcycles: During the on-time (cf. Figure 3.9a), the topological structures are
exactly the same. During the off1-time (i.e., during the part of the off-time when
the inductor current slope is negative), the topological structures differ only in
terms of the losses (cf. Figure 3.9b and c). We have not added the input capacitor
C1 into Figure 3.9, but we take its effect, however, into account in the generalized
state space.

According to Figure 3.8, we may conclude that the current hi�i charging the
output capacitor equals the time-averaged off-time inductor current hiLioff
defined in the last equation of Eq. (3.4), because the inductor current charges
the output capacitor during the off-time only. For the same reason, the local
average of the output voltage during the on-time and off-time1 can be given by

vo-on � hvCi � rChioi; (3.15)
vo-off � rChiLi � hvCi � rChioi:

The time-averaged input current hiini equals the on-time inductor current
hiLi given as the first equation in (3.4). The contribution of the input capacitoron
can be taken into account as presented in Section 3.3.2 (Eq. (3.10)).

According to these conclusions and applying Eqs (3.4–3.8), (3.10), and (3.15), the
general state space with the input capacitor can be given for the buck converter by

dhiLi ton toff 1� �m1 � �m2;dt ts ts

dhvCi toff 1 hiLi hioi� � � ;
dt ton � toff 1 C C

(3.16)dhvC1i hvC1i hvini� � � ;
dt rC1C rC1C

hiini � hiLi;
dhvCihvoi � hvCi � rCC ;

dt
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Figure 3.9 The topological subcircuit structures of a boost converter during the (a) on-time and
off-time1 with (b) diode-switching and (c) synchronous-switching schemes.

where the up-slope

hvini � �rL � rds1�hiLim1 � ; (3.17)
L

the down-slope of the diode switching converter

�rL � rd � rC�hiLi � hvCi � rChioi � VD � hvinim2 � ; (3.18)
L

and the down-slope of the synchronous switching converter

�rL � rds2 � rC�hiLi � hvCi � rChioi � hvinim2 � : (3.19)
L

3.3.3 Buck–Boost Converter

The power stages of a buck–boost or step-up/down converter with three different
implementation principles – the diode (cf. Figure 3.10a) and synchronous (cf.
Figure 3.10b) switched and its noninverting version (cf. Figure 3.10c) – are shown
in Figure 3.10. It should be noted that the polarity of the output voltage in the
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Figure 3.10 Buck–Boost power stages. (a) Inverting converter with diode switching.
(b) Inverting converter with synchronous switching. (c) Noninverting converter with
synchronous-switching and with an input capacitor.

inverting buck–boost converter (cf. Figure 3.10a and b) is considered in the
schematics. Therefore, there will not appear a minus sign in the converter input-
to-output modulo M�D� � D=D´. In practice, the buck–boost converter cannot
work properly without an input capacitor because of its pulsating input current
as shown in Figure 3.10c. In a buck–boost converter, the levels of terminal
voltages and currents are not constrained similarly as in the buck and boost
converters but they can be higher or lower in respect to each other depending on
the operating point.

Similarly as in the case of the buck converter in Section 3.3.1, we perform the
modeling for all the power stages shown in Figure 3.10. Under the synchronous-
switching scheme, the converter operates all the time in CCM. Under the diode-
switching scheme, the converter operates both in CCM and DCM depending on
the level of the output current and the input voltage. The parasitic resistances (i.e.,
rdsi and rd) of the associated switching components also include the switching
losses. As indicated in Figure 3.10a and b, the left high-side switch conducts
during the on-time and the right high-side switch during the off-time or a part
of the off-time. In the noninverting converter, the left high-side switch and the
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Figure 3.11 The topological subcircuit structures of an inverting buck–boost converter
during the (a) on-time and off-time1 with (b) diode-switching, and (c) synchronous-
switching schemes.

right-low side switch conduct during the on-time and the right high-side switch
and the left low-side switch conduct during the off-time or a part of off-time as
indicated in Figure 3.10c.

According to the generalized method, we divide the switching cycle into two
subcycles: During the on-time (cf. Figure 3.11a), the topological structures of
the inverting converter are exactly the same in the inverting converter. During
the off1-time (i.e., during the part of the off-time when the inductor current
slope is negative), the topological structures differ only in terms of the losses (cf.
Figure 3.11b and c). The topological structures of the noninverting converter
are shown during the on-time in Figure 3.12a, and during the off-time in
Figure 3.12b, respectively. We have not added the input capacitor C1 into
Figures 3.11 and 3.12, but we take its effect, however, into account in the
generalized state space.

According to Figure 3.10, we may conclude that the current hi�i charging the
output capacitor equals the time-averaged off-time inductor current hiLioff
defined in the last equation of Eq. (3.4), because the inductor current charges
the output capacitor during the off-time only. For the same reason, the
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Figure 3.12 The topological subcircuit structures of a noninverting buck–boost converter
during the (a) on-time and (b) off-time1 with the synchronous-switching scheme.

local average of the output voltage during the on-time and off-time1 can be
given by

vo-on

vo-off

� hvCi � rChioi;
� rChiLi � hvCi � rChioi: (3.20)

The time-averaged input current hiini equals the inductor current hiLi. The
contribution of the input capacitor can be taken into account as presented in Section
3.3.2 (Eq. (3.10)). According to these conclusions and applying Eqs (3.4–3.8), (3.10),
and (3.20), the general state space with the input capacitor can be given for the
buck–boost converter by

dhiLi ton toff1� �m1 � �m2;dt ts ts

dhvCi toff1 hiLi hioi� � � ;
dt ton � toff1 C C

dhvC1i
dt

� � hvC1i
rC1C1

� hvini
rC1C

; (3.21)

hiini � ton

ton � toff1
� hiLi;

hvoi � hvCi � rCC
dhvCi

dt
;

where the up-slope of the inverting converter can be given by

m1 � hvini � �rL � rds1�hiLi
L

; (3.22)
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the up-slope of the noninverting converter by

hvini � �rL � 2rds1�hiLim1 � ; (3.23)
L

as well as the down-slope of the inverting converter with diode switching scheme
by

�rL � rd � rC�hiLi � hvCi � rChioi � VDm2 � ; (3.24)
L

the down-slope of the inverting converter with synchronous switching scheme by

�rL � rds2 � rC�hiLi � hvCi � rChioim2 � ; (3.25)
L

and the down-slope of the noninverting converter by

�rL � 2rds2 � rC�hiLi � hvCi � rChioim2 � : (3.26)
L

3.3.4 Superbuck Converter

The buck converter known as superbuck [13], current-sourced buck [14], and
two-inductor buck [15] converter is a fourth-order buck-type converter (cf.
Figure 3.13), where the input current is also continuous in contrast to the
pulsating input current of the conventional second-order buck converter. This
feature makes the superbuck converter to be very suitable to interfacing, for
instance, the photovoltaic generator into the rest of the power system [16]. The
power stage of the converter is shown in Figure 3.13, where the resistive losses
(i.e., rds and rd) assigned to the power-stage switching components also include
the switching losses. The diode in the power stage could be replaced by a
MOSFET, which would make the converter to operate all the time in CCM.
According to the modeling of the basic converters, the state space of such a power
stage can be easily derived from the state space of the diode-switched converter by
considering the resistive and voltage losses carefully. The steady-state input-to
output modulo of the converter M�D� � D.

Figure 3.13 Superbuck converter.



1413.3 Generalized Modeling Technique

Figure 3.14 Superbuck topological structures during the (a) on-time and (b) off-time.

According to the generalized modeling method, we divide the switching
cycle into two subcycles: During the on-time, the MOSFET conducts and the
topological circuit structure is as shown in Figure 3.14a. During the off-time or
during a part of the off-time when the inductor current slopes are negative, the
diode conducts and the topological circuit structure is as shown in Figure 3.14b.

According to Figure 3.14, we may conclude that the current hi�i charging the
output capacitor C2 equals the sum of the time-averaged inductor currents hiL1i
and hiL2i, because they charge the output capacitor during the on-time and off-
time. The current hi�i charging the capacitor C1 is the off-time inductor current
hiL1ioff defined in the last equation of Eq. (3.4). The current hi�i discharging the
output capacitor is naturally the time-averaged output current hioi. The current
hi�i discharging the capacitorC1 is the on-time inductor current hiL1i defined inon
the first equation of Eq. (3.4). Because of continuous supply of inductor currents
into the output capacitor, the local averages of the output voltage during the on-
time and off-time1 can be given by

vo-on;off � rC2hiL1i � rC2hiL2i � hvC2i � rC2hioi: (3.27)

According to Figure 3.13, the time-averaged input current hiini equals the
inductor current hiL1i. The contribution of the input capacitor C3 can be taken
into account as presented in Section 3.3.2 (Eq. (3.10)).
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According to these conclusions and applying Eqs. (3.4–3.8), (3.10), and (3.27),
the general state space can be given by

dhiL1i ton toff1� �m11 � �m12;dt ts ts

dhiL2i ton toff1� �m21 � �m22;dt ts ts

dhvC1i toff1 hiL1i ton hiL2i� � � � ;
dt ton � toff1 C1 ton � toff1 C1

hioi (3.28)dhvC2i hiL1i hiL2i� � � ;
dt C2 C2 C2

dhvC3i hvC3i hvini� � � ;
dt rC3C3 rC3C3

hiini � hiLi;
dhvC2ihvoi � hvC2i � rC2C2 ;

dt

where the up-slopes

��rL1 � rds � rC2�hiL1i � �rds � rC2�hiL2i � vC2 � vin � rC2hioim11 � ;
L1

��rds � rC2�hiL1i � �rL2 � rds � rC1 � rC2�hiL2i � vC1 � vC2 � rC2hioim21 � ;
L2

(3.29)

and the down-slopes

�rL1 � rd � rC1 � rC2�hiL1i � �rd � rC2�hiL2i � hvC1i � hvC2i � vin � rC2hioi � VDm12 � ;
L1

�rd � rC2�hiL1i � �rL2 � rd � rC2�hiL2i � hvC2i � rC2hioi � VDm22 � :
L2 (3.30)

As stated earlier, the state space in (3.28) enables the modeling of the converter
dynamics also in an operation mode, where one of the inductors operates in CCM
and the other in DCM. The possibility to perform the dynamic modeling in a
mixed conduction mode indicates the powerfulness and flexibility incorporated
in the introduced generalized modeling method in addition that it also harmo
nizes the CCM and DCM modeling.

3.4 Fixed-Frequency Operation in CCM

The method to perform the average modeling and to obtain the linearized state
space is described in Chapter 2 with a detailed example based on a buck
converter. In this section, we provide the averaged and linearized state spaces as
well as the definition of the operation points and the corresponding transfer
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functions for the converters treated in Section 3.3. The detailed modeling is left
for the reader. In addition to the basic transfer functions, we also derive the set
of special transfer functions based on the generalized special transfer functions
derived in Section 2.2. The set of basic transfer functions forms the
G-parameter representation of the converter dynamics, where the input var
iables are the input voltage (vin) and output current (io), the output variables the
input current (iin) and output voltage (vo), the state variables the inductor
currents (iLi) and capacitor voltages (vCi), and the control variable is the duty
ratio (d). The set of the transfer functions given in this section is

v̂in
^ Y in Toi Gciiin ^� ; (3.31)io

Gio �Zo Gcovo
d̂

and the special transfer functions

GioToi GioGci ZoGciY in � Y in � Toi �
Y in-sco Y in-1 Toi-1 Zo Gco Gco� :
Zo-oci Zo-1 Gio-1 GioToi ToiGco Y inGcoZo � Zo � Gio �Y in Gci Gci

(3.32)

The special transfer functions denoted by Gxy-1 in Eq. (3.32) determine either
the low-frequency value of the corresponding closed-loop transfer function (cf.
Sections 2.2.3 and 2.2.4) or the source and load interactions (cf. Section 2.2.5).
The other two special transfer functions in Eq. (3.32) determine the source and
load interactions propagating through the converter (cf. Section 2.2.5).

3.4.1 Buck Converter

The averaged state space of the diode-switched buck converter (cf. Figure 3.6a) is
given in Eq. (3.33) and the averaged state space of the synchronous-switched
converter (cf. Figure 3.6b) in Eq. (3.35). The corresponding operation points are
given in Eqs. (3.34) and (3.36), respectively.

dhiLi rL � drds1 � d´rd � rC 1 d rC d´VD� � hiLi � hvCi � hvini � hioi � ;
dt L L L L L

dhvCi hiLi hioi� � ;
dt C C

dhvC1i 1 1� � hvC1i � hvini;dt rC1C1 rC1C1

hiini � dhiLi � 1 hvC1i � 1 hvini;rC1 rC1

hvoi � rChiLi � hvCi � rChioi � hvCi � rCC
dhvCi

dt
:

(3.33)
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IL � Io;

I in � DIo;

V o � VC; (3.34)
V o � DV in � D´VD � �rL � Drds1 � D´rd�Io;

V o � VD � �rL � rd�IoD � :
V in � VD � �rd � rds1�Io

dhiLi rL � drds1 � d´rds2 � rC 1 d rC� � hiLi � hvCi � hvini � hioi;dt L L L L

dhvCi hiLi hioi� � ;
dt C C

dhvC1i 1 1� � hvC1i � hvini;dt rC1C1 rC1C1

1 1hiini � dhiLi � hvC1i � hvini;rC1 rC1

dhvCihvoi � rChiLi � hvCi � rChioi � hvCi � rCC dt
:

(3.35)

IL � Io;

I in � DIo;

V o

V o

� VC;

� DV in � �rL � Drds1 � D´rds2�Io;
(3.36)

D � V o � �rL � rds2�Io

V in � �rds2 � rds1�Io
:

^

The linearized state space for both of the converters is given in Eq. (3.37):

d;
dîL 1 D V ere rC ^^^îL � vC � vin � iodt L L L L L

�
d ^îL io� � ;
v̂C

dt C C

^

d

iin

v̂C1

dt rC1C1 rC1C1

^

^v̂C1 vin� � � ; (3.37)

d;
^v̂C1 vin� DîL � � � IorC1 rC1

dûC

dt
^v̂o vC � rCC

where re and V e are for the diode-switched buck converter:

re � rL � Drds1 � D´rd � rC;
(3.38)

V e � V in � VD � �rd � rds1�Io;

� ;
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and for the synchronous-switched buck converter

re

V e

� rL � Drds1 � D´rds2 � rC;

� V in � �rds2 � rds1�Io:
(3.39)

The transfer functions corresponding to Eq. (3.31) can be derived from
Eq. (3.37) by transforming the state space into Laplace domain and applying
linear algebra (cf. Section 2.4), which yields

D2s D�1� srCC� DV es re 1 v̂in� s2 � s � Io^ re 1L LC L L LCiin ^� s2 � s � ∗ :ioL LCD�1� srCC� �re � rC � sL��1� srCC� V e�1� srCC�vo
d̂

LC LC LC
(3.40)

The special transfer functions can be computed based on Eq. (3.40) and applying
Eq. (3.32), which yields

Y in-sco Y in-1 Toi-1 �
Zo

o-oci Zo-1 Gio-1

D2 DIo IoL re �rC� D� s�
sL� re �rC V e V e L

:
1� srCC �sL� re � rC��DV e=Io���1� srCC� D�1� srCC�

sC LC s� 2� s��re=L���DV e=IoL����1=LC�� LC s� 2� s��re=L���DV e=LIo����1=LC��
(3.41)

The special output impedance Zo-oci is dependent on the state of output-
voltage feedback. Its open-loop value is given in Eq. (3.41). In general, its value can
be given by [17]

Zo-xZx (3.42)o-oci � Y in-sco;Y in-x

where the superscript and subscript extension x denotes either the open- “o” or
closed- “c” loop transfer function. The short circuit input admittance (Y in-sco)
does not depend on the state of feedback [1]. This also applies to all the special
transfer functions denoted by subscript extension 1 in Eq. (3.41).

The effect of the input capacitor C1 (cf. Figure 3.6c) can be taken into account
in such a manner that it is actually in parallel with the impedances measured from
the input terminal without the input capacitor. It has no other effects on the
dynamics of the converter. As a consequence,

sC1YC1
in-x � Y in-x � ;

1 � srC1C1
(3.43)

sC1YC1 � Y in-sco � ;in-sco 1 � srC1C1
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where the subscript x means open- “o” or closed- “c” loop transfer function,
respectively.

According to the denominator of the transfer functions in Eq. (3.40) and the
resonant nature of the converter, natural frequency (ωn), resonant or damped
natural frequency (ωd), damping factor (ζ), and quality factor (Q) can be given by
(cf. Section 2.5.2)

ωn � ;
1

LC
p ; ωd � 1

LC
p 1 � re C re C 1 L

2

2 L
; ζ �

2 L
; Q �

re C

(3.44)

p
where L=C is known as the characteristic impedance (Zo) of resonant
circuit.

3.4.2 Boost Converter

The averaged state space of the diode-switched boost converter (cf. Figure 3.8a) is
given in Eq. (3.45) and the averaged state space of the synchronous-switched
converter (cf. Figure 3.8b) in Eq. (3.47). The corresponding operation points are
given in Eqs (3.46) and (3.48), respectively.

dhiLi rL � drds1 � d´rd � d´rC d´ 1 d´rC d´VD� � hiLi � hvCi � hvini � hioi � ;
dt L L L L L

dhvCi d´ 1� hiLi � hioi;dt C C

dhvC1i 1 1� � hvC1i � hvini;dt rC1C1 rC1C1

1 1hiini � hiLi � hvC1i � hvini;rC1 rC1

dhvCihvoi � d´rChiLi � hvCi � rChioi � hvCi � rCC :
dt

(3.45)

IoIL �
D´ ;

I in � IL;

(3.46)V o � VC;

V in � D´VD rL � Drds1 � D´rd � DD´rCV o � � 2 � Io;D´ D´
�V o � VD � rCIo�D´2 � �V in � �rd � rds1 � rC�Io�D´ � �rL � rds1�Io � 0:
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dhiLi rL � drds1 � d´rds2 � d´rC d´ 1 d´rC� � hiLi � hvCi � hvini � hioi;dt L L L L

dhvCi d´ 1� hiLi � hioi;dt C C

dhvC1i 1 1� � hvC1i � hvini;dt rC1C1 rC1C1

1 1hiini � hiLi � hvC1i � hvini;rC1 rC1

dhvCihvoi � d´rChiLi � hvCi � rChioi � hvCi � rCC dt
:

(3.47)

IL � Io

D´ ;

I in � IL;

V o � VC; (3.48)

V o � V in

D´ � rL � Drds1 � D´rds2 � DD´rC

D´2 � Io;

�V o � rCIo�D´2 � �V in � �rds2 � rds1 � rC�Io�D´ � �rL � rds1�Io � 0:

^

The linearized state space for both of the converters is given in Eq. (3.49):

d;^^^^ D´
iL � vC � vin � rC iodt L L L L L

D´ 1dîL V ere �
D´^v̂C iL

dt C C C
d îo IL ^

^^

d;

vC1 vin� � � ; (3.49)

�

^

d

iin

v̂C1

dt rC1C1 rC1C1

v̂in

rC1 rC1

^� îL � vC1 � ;

dv̂C

dt
^v̂o vC � rCC

where re and V e are for the diode-switched boost converter:

re � rL � Drds1 � D´rd � D´rC;

Io (3.50)
V e � V o � VD � �rd � rds1 � DrC�D´ ;

� ;
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îin �
vo

and for the synchronous-switched boost converter

re � rL � Drds1 � D´rds2 � D´rC;

V e � V o � �rds2 � rds1 � DrC� Io

D´ :
(3.51)

The transfer functions corresponding to Eq. (3.31) can be derived from
Eq. (3.49) by transforming the state space into Laplace domain and applying
linear algebra (cf. Section 2.4), which yields

Io�s�V e v̂ins D´�1� srCC� V eC 2D´re ^L LC L s2 �s � ∗ :ioL LC
D´ �D´2 D´2V e�1� srCC� �re rC � sL��1� srCC� Io d̂� re � sL �1� srCC�LC LC D´LC Io

�3:52�
The special transfer functions can be computed based on Eq. (3.52) and applying
Eq. (3.32), which yields

Y in-sco Y in-1 Toi-1

Zo
o-oci Zo-1 Gio-1

1 1 D´�rC � �V e=Io��
2sL � re � D´ rC sL � re � �D´2V e=Io� sL � re � �D´2V e=Io�� :

1 � srCC �V e � rCIo��1 � srCC� Io�1 � srCC�
sC D´V e�sC � �Io=V e�� D´V e�sC � �Io=V e��

(3.53)

The special output impedance Zo-oci is dependent on the state of output voltage
feedback. Its open-loop value is given in Eq. (3.53). In general, its value can be
given by [17]

Zo-xZx (3.54)o-oci � Y in-sco;Y in-x

where the superscript and subscript extension x denotes either the open- “o” or
closed- “c” loop transfer function. The short circuit input admittance (Y in-sco)
does not depend on the state of feedback [1]. This also applies to all the special
transfer functions denoted by subscript extension 1 in Eq. (3.53).

The effect of the input capacitor C1 (cf. Figure 3.8c) can be taken into account
in such a manner that it is actually in parallel with the impedances measured from
the input terminal without the input capacitor. It has no other effects on the
dynamics of the converter. As a consequence,
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sC1YC1 � Y in-x � ;in-x 1 � srC1C1
(3.55)

sC1YC1 � Y in-sco � ;in-sco 1 � srC1C1

where the subscript x means open- “o” or closed- “c” loop transfer function,
respectively.

According to the denominator of the transfer functions in Eq. (3.52) and the
resonant nature of the converter, undamped natural frequency (ωn), resonant or
damped natural frequency (ωd), damping factor (ζ), and quality factor (Q) can be
given by (cf. Section 2.5.2)

ωn � D´

LC
p ; ωd � D´

LC
p 1 � re

2D´
C
L

2

; ζ � re

2D´
C
L
; Q � D´

re

L
C
;

(3.56)p
where L=C is known as the characteristic impedance (Zo) of resonant circuit.
It should be observed that the undamped natural frequency and damping factor
vary with the operating point, and the control-to-output transfer function
(Gco-o) in Eq. (3.52) contains an RHP zero at

D´2V e � reIoωRHP-z � ; (3.57)
LIo

causing design limitation to the maximum control bandwidth as discussed in
Chapter 2 (Section 2.5.5). According to Eq. (3.57), the RHP zero is closest to origin
when the load power is at its maximum, and the input voltage at its minimum.

3.4.3 Buck–Boost Converter

The averaged state space of the diode-switched boost converter (cf. Figure 3.10a) is
given in Eq. (3.58), the averaged state space of the synchronous-switched converter
(cf. Figure 3.10b) in Eq. (3.60), and the averaged state space of the noninverting
buck–boost converter (cf. Figure 3.10c) in Eq. (3.62). The corresponding operation
points are given in Eqs (3.59), (3.61), and (3.63), respectively.

dhiLi �rL � drds1 � d´rd � d´rC� d´ d d´rC d´VD� � hiLi � hvCi � hvini � hioi � ;
dt L L L L L

d´dhvCi io� hiLi � hioi;dt C C

dhvC1i 1 1� � hvC1i � hvini;dt rC1C1 rC1C1

hiini � dhiLi � 1 hvC1i � 1 hvini;rC1 rC1

hvoi � d´rChiLi � hvCi � rChioi � hvCi � rCC
dhvCi

dt
:

(3.58)
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IoIL �
D´ ;

D
I in �

D´ Io;

V o � VC;

DV in �rL � Drds1 � D´rd � DD´rC�V o �
D´ � VD �

D´2 � Io;

�V in � V o � VD � rCIo�D´2 � �V in � �rd � rds1 � rC�Io�D´ � �rL � rds1�Io � 0:

(3.59)

dhiLi �rL � drds1 � d´rds2 � d´rC� d´ d d´rC� � hiLi � hvCi � hvini � hioi;dt L L L L
d´dhvCi io� hiLi � hioi;dt C C

dhvC1i 1 1� � hvC1i � hvini;dt rC1C1 rC1C1

1 1hiini � dhiLi � hvC1i � hvini;rC1 rC1

dhvCihvoi � d´rChiLi � hvCi � rChioi � hvCi � rCC :
dt (3.60)

IoIL �
D´ ;

D
I in �

D´ Io;

V o � VC;

DV in �rL � Drds1 � D´rds2 � DD´rC�V o � � VD � 2 � Io;D´ D´
�V in � V o � rCIo�D´2 � �V in � �rds2 � rds1 � rC�Io�D´ � �rL � rds1�Io � 0:

(3.61)

dhiLi �rL � d2rds1 � d´2rds2 � d´rC� d´ d d´rC� � hiLi � hvCi � hvini � hioi;dt L L L L
d´dhvCi io� hiLi � hioi;dt C C

dhvC1i 1 1� � hvC1i � hvini;dt rC1C1 rC1C1

hiini � dhiLi � 1 hvC1i � 1 hvini;rC1 rC1

hvoi � d´rChiLi � hvCi � rChioi � hvCi � rCC
dhvCi

dt
:

(3.62)
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IoIL �
D´ ;

D
I in �

D´ Io;

V o � VC;

DV in �rL � D2rds1 � D´2rds2 � DD´rC�V o � � VD � � Io;D´ D´2

�V in � V o � rCIo�D´2 � �V in � �2rds2 � 2rds1 � rC�Io�D´ � �rL � 2rds1�Io � 0:

^

(3.63)

The linearized state space for both of the converters is given in (3.64):

d;
D´

^D´rC ioL L
dîL D V ere iL � vC �
dt L L L

^^ �
D´d 1 ILvC iL � iodt C C C

^^^
d̂;

1

�
d

iin^

1vC1

dt rC1C
^ �v̂C1 (3.64)

^

^

^^

vin;

vC1 vin� DîL � � � ILd;

rC1C1

rC1 rC1

dv̂C

dt
^v̂o vC � rCC

where re and V e are for the diode-switched buck–boost converter

re � rL � Drds1 � D´rd � D´rC;

Io (3.65)
V e � V in � V o � VD � �rd � rds1 � DrC�D´ ;

and for the synchronous-switched buck–boost converter

re � rL � Drds1 � D´rds2 � D´rC ;
(3.66)

V e � V in � V o � �rds2 � rds1 � DrC�D
Io
´ ;

and for the noninverting buck–boost

re � rL � D2rds1 � D´2rds2 � D´rC;

Io (3.67)
V e � V in � V o � �2rds2 � 2rds1 � DrC�D´ :

� ;

�v̂in
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The transfer functions corresponding to Eq. (3.31) can be derived from
Eq. (3.64) by transforming the state space into Laplace domain and applying
linear algebra (cf. Section 2.4), which yields

IoDV e s�
D2s DD´�1�srCC� V eC

îin L LC L�
D´2V evo � re� sL �1� srCC�2 IoDD´�1�srCC� �re �D´ rC � sL��1�srCC� Io

LC LC D´LC

The special transfer functions can be computed based on
applying Eq. (3.32), which yields

Y in-sco Y in-1 Toi-1 �
Zo

o-oci Zo-1 Gio-1

v̂in
D´2re ^s2 � s � ∗ :ioL LC

d̂

�3:68�

Eq. (3.68) and

D2 D2 DD´�rC � �V e=Io��
2sL � re � D´ rC sL � re � �D´2V e=Io� sL � re � �D´2V e=Io�

:
1 � srCC �1 � �IorC=V e���1 � srCC� DIo�1 � srCC�

sC sC � �Io=V e� D´V e�sC � �Io=V e��
(3.69)

The special output impedance Zo-oci is dependent on the state of output voltage
feedback. Its open-loop value is given in Eq. (3.69). In general, its value can be
given by [17]

Zo-xZx � Y in-sco; (3.70)o-oci Y in-x

where the superscript and subscript extension x denotes either the open- “o” or
closed- “c” loop transfer function. The short circuit input admittance (Y in-sco)
does not depend on the state of feedback [1]. This also applies to all the special
transfer functions denoted by subscript extension 1 in Eq. (3.69).

The effect of the input capacitor C1 (cf. Figure 3.10c) can be taken into account
in such a manner that it is actually in parallel with the impedances measured from
the input terminal without the input capacitor. It has no other effects on the
dynamics of the converter. As a consequence,

YC1
in-x

YC1
in-sco

sC1� Y in-x � ;
1 � srC1C1 (3.71)

sC1� Y in-sco � ;
1 � srC1C1
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where the subscript x means open- “o” or closed- “c” loop transfer function,
respectively.

According to the denominator of the transfer functions in Eq. (3.68) and the
resonant nature of the converter, undamped natural frequency (ωn), resonant or
damped natural frequency (ωd), damping factor (ζ), and quality factor (Q) can be
given by (cf. Section 2.5.2)

2
D´ D´ re C re C D´ L

ωn � p ; ωd � p 1 � ; ζ � ; Q � ;
LC LC 2D´ L 2D´ L re C

(3.72)p
where L=C is known as the characteristic impedance (Zo) of resonant circuit. It
should be observed that the undamped natural frequency and damping factor
vary with the operating point, and the control-to-output transfer function (Gco-o)
in Eq. (3.68) contains an RHP zero at

D´2V e � reIoωRHP-z � ; (3.73)
LIo

causing design limitation to the maximum control bandwidth as discussed in
Chapter 2 (Section 2.5.5). According to Eq. (3.73), the RHP zero is closest to origin
when the load power is at its maximum, and the input voltage at its minimum.

3.4.4 Superbuck Converter

The averaged state space of the superbuck converter (cf. Figure 3.13) is given in
Eq. (3.74), and the corresponding operation point in Eq. (3.75), respectively.

dhiL1i
dt

� � rL1 � rC2 � drds � d´rd � d´rC1

L1
� hiL1i � rC2 � drds � d´rd

L1
� hiL2i

� d´hvC1i
L1

� hvC2i
L1

� hvini
L1

� rC2

L1
� hioi � d´VD

L1
;

dhiL2i
dt

� � rC2 � drds � d´rd

L2
hiL1i � rL2 � rC2 � drds � drC1 � d´rd

L2
hiL2i

� dhvC1i
L2

� hvC2i
L2

� rC2

L2
hioi � d´VD

L2
;

dhvC1i
dt

� d´hiL1i
C1

� dhiL2i
C1

;

dhvC2i
dt

� hiL1i
C2

� hiL2i
C2

� hioi
C2

;

hiini � hiL1i;
hvoi � rC2hiL1i � rC2hiL2i � hvC2i � rC2hioi � hvC2i � rC2C2

dhvC2i
dt

:

(3.74)
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IL1 � DIo;

� D´IL2 Io;

�I DI ;in o

´ ´� � � � � �V V D V Dr D I (3.75):rC1 in D L1 L2 o

The linearized state space is given by

^

2V o � DV in � D´VD � �Drds � DD´rC1 � D´rd � D2rL1 � D´ rL2�Io;

VC2 � V o;

d;
D´dîL1 1 1 V e1re1 re2 rC2

^

^^iL1 � iL2 � vC1 � vC2 � vin � iodt L1 L1 L1 L1 L1 L1 L1
^

d;

^^^ �
dîL2 D 1 V e2re2 r3e rC2iL1 � iL2 � vC1 �dt L2 L2 L2 L2

^

d;^

^^ �v̂C2 �îoL2 L2

D´d D IovC1 iL1 � iL2 �dt C1 C1 C1

^^^ �
d 1 1 1 ^vC2 iL1 � iL2 � io;dt C2 C2 C2 (3.76)

^

^�i i ;in L1

^^

^

�

d^
vo vC2 � rC2C2

vC2

dt

where

^^ � ;

re1 � rL1 � rC2 � Drds � D´�rd � rC1�;
re2 � rC2 � Drds � D´rd;

re3 � rL2 � rC2 � D�rds � rC1� � D´rd;

V e1 � V in � VD � �rd � rds � DrC1 � DrL1 � D´rL2�Io;

V e2 � Ve1 � rC1Io;

V in � VD � �rC1 � rds � rd � 2rL2�Io V o � VD � �rL2 � rd�IoD2 � � D � � 0:�rL1 � rL2 � rC1�Io �rL1 � rL2 � rC1�Io

(3.77)

The transfer functions corresponding to Eq. (3.31) can be derived from
Eq. (3.76) by transforming the state space into Laplace domain and applying
linear algebra (cf. Section 2.4), which yields

Input dynamics (i.e., the top row of transfer functions in Eq. (3.31))

s re3 C1 � D2C2s2 � s � ;ΔY in-o �
L1 L2 L2C1C2

1 re3 � re2 D
s2 � s � �1 � srC2C2�;ΔToi-o �

L1C2 L2 L2C1

2 D
´IoL2 � �re3V e1 � re1V e2�C1U1 s3 � sΔGci-o �

L1 U1L2C1

�V e1 � V e2�C1 � �D2V e1 � DD´V e2 � �Dre2 � D´re3�Io�C2 Io� s � :
U1L2C1C2 U1L2C1C2

(3.78)



1553.4 Fixed-Frequency Operation in CCM

Output dynamics (i.e., the bottom row of transfer functions in Eq. (3.31))

1 re3 � re2 D
ΔGio-o � �s2 � s � ��1 � srC2C2�;L1C2 L2 L2C1

1 2 �re3 � rC2�L1 � �re1 � rC2�L2ΔZo-o � �s3 � s
C2 L1L2

2D2L1 � D´2L2 � �re1re3 � r re1 � 2re2 � re3��C1e2 � rC2�� s
L1L2C1

D2 2re1 � 2DD´re2 � D´ re3 � rC2� ��1 � srC2C2�;L1L2C1

�V e1L2 � Ve2L1�ΔGco-o �
L1L2C2

C1�V e1�re3 � re2� � V e2�re1 � re2�� � �D´L2 � DL1�Io� �s2 � s
C1�U1L2 � U2L1�

DV e1 � D´V e2 � �D�re1 � re2� � D´�re2 � re3��Io

s4 � s � s

�
C1�V e1L2 � V e2L1� ��1 � srC2C2�;

(3.79)

where the determinant Δ is

3 re3L1 � re1L2 2 �L1 � L2�C1 � �D2L1 � D´2L2�C2 � �re1re3 � re2�C1C2
2

L1L2 L1L2C1C2
2�re1 � 2re2 � re3�C1 � �D2re1 � 2DD´re2 � D´ re3�C2 1� s � :

L1L2C1C2 L1L2C1C2

(3.80)

The determinant has two complex conjugate or resonant LHP roots approxi
mately at

1
ωres1 � ;�L1 � L2�C1

(3.81)
L1 � L2ωres2 � :
L1L2C2

The control-to-output transfer function (Gco-o) in Eq. (3.79) contains resonant
zeros approximately at the frequency given in Eq. (3.82). The resonant zeros will
be RHP zeros if the coefficient of first-order term in the numerator becomes
negative as given in Eq. (3.83). The other terms in Eq. (3.38) except D´L2 � DL1

are always positive. Therefore, if designing the inductors such that
L2 � �Dmax=1 � Dmax�L1, the RHP zeros do not appear when the duty ratio D �
Dmax within the specified operation range. Typically, the inductors are designed to
have equal value for the logistic reason and for reducing the costs [18].

1
; (3.82)ωres � �L1 � L2�C1
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C1�V e1�re3 � re2� � V e2�re1 � re2�� � �D´L2 � DL1�Io < 0: (3.83)

The special transfer functions can be computed based on Eqs. (3.78–3.80) by
applying Eq. (3.32). The resulting transfer functions including the parasitic
elements are extremely long preventing their publication as such in this book.
The solving requires the use of software packages capable of symbolic computa
tion such as MatlabTM Symbolic Toolbox. The special transfer functions are given
omitting the parasitic elements as follows:

s2 � �D2=L2C1�Y in-sco � ;
L1s s2 � ��D´2L2 � D2L1�=L1L2C1�

s � �DIo=C1V e1�Y in-1 � ;�L1 � L2� s2 � s ��D´L2 � DL1�Io�=C1�L1 � L2�V e1 � 1=�C1�L1 � L2��
L2�s2 � s�D´Io=C1V e1� � �D=L2C1��Toi-1 � ;�L1 � L2� s2 � s ��D´L2 � DL1�Io�=C1�L1 � L2�V e1 � 1=�C1�L1 � L2��

s2 � �D2=L2C1�Zo � ;o-oci C2s s2 � ��C1 � D2C2�=L2C1C2�
s2 � s�D´Io=C1V e1� � �D=L2C1�Zo-1 � ;

C2�s3 � s2�D´Io=C1V e1� � s�D=L2C1� � �Io=L2C1C2V e1��
��s � �DIo=C1V e1��Gio-1 � :

L2C2�s3 � s2�D´Io=C1V e1� � s�D=L2C2� � �Io=L2C1C2V e1��
(3.84)

The special output impedance Zo-oci is dependent on the state of output voltage
feedback. Its open-loop value is given in Eq. (3.84). In general, its value can be
given by [17]

Zo-xZx (3.85)o-oci � Y in-sco;Y in-x

where the superscript and subscript extension x denotes either the open- “o” or
closed- “c” loop transfer function. The short circuit input admittance (Y in-sco)
does not depend on the state of feedback [1]. This also applies to all the special
transfer functions denoted by subscript extension 1 in Eq. (3.84).

The effect of the input capacitor C3 (i.e., if connected at the input terminal)
can be taken into account in such a manner that it is actually in parallel
with the impedances measured from the input terminal without the input
capacitor. It has no other effects on the dynamics of the converter. As a
consequence,

sC3YC3 � Y in-x � ;in-x 1 � srC3C3
(3.86)

sC3YC1
in-sco � Y in-sco � 1 � srC3C3

:
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Boundary Conduction Mode
The peak-to-peak ripple currents of the inductors L1 and L2 can be computed
according to the on-time derivatives of the corresponding currents from
Figure 3.14a at a certain operating point in Eq. (3.77) to be as follows:

DT s�V in � V o � �DrL1 � rds�Io�ΔiL1-pp � ;
L1 (3.87)

DT s�V in � V o � �DrL1 � D´rC1�Io�ΔiL2-pp � :
L2

The mode boundary between the CCM and DCM conduction modes would take
place [2] when the output current equals half the sum of the inductor current peak
to-peak ripples given in Eq. (3.87) or ΔiL1�pp � ΔiL2�pp � 2Io, because the sum of
the inductor currents is supplied to the output capacitor (cf. Figure 3.14) via the
MOSFET during the on-time and via the diode during the off-time. The critical
K-value based on the sum of inductor currents yieldsK crit � D´, which is the same as
defined for the conventional buck converter in Ref. [2]. The K-value for analyzing
the operation mode (i.e., CCM:K > K crit, DCM:K < K crit, and BCM:K � K crit) can
be given by 2Lp=T sReq, where Lp � L1L2=�L1 � L2� and Req � V o=Io, respectively.

3.4.5 Coupled-Inductor Superbuck Converter

By means of the coupling of the inductors, the input current ripple in the
superbuck converter can be reduced down to zero [19,20]. The application of
the coupled-inductor technique will, however, also affect the dynamics of the
converter profoundly. The methods to model the converter dynamic behavior,
when the coupled inductor is used, are presented in Section 2.4.3. Following the
presented steps and applying the linearized state space of the discrete inductor
converter in Eq. (3.76), the coupled-inductor state space can be given by

^ ^� v̂in � io � d;
L1L2 �M2 L1L2 �M2 L1L2 �M2 (3.88)

d^ D´ D Io^ ^ ^vC1 � iL1 � iL2 � d;
dt C1 C1 C1

dv̂C2 1 1 1^ ^ ^�

d^ L2re1 �Mre2 L2re2 �Mre3iL1 ^� � iL1 �dt L1L2 �M2 L1L2 �M2

L2 L2rc2 ^� v̂in � io �
L1L2 �M2 L1L2 �M2

dîL2 L1re2 �Mre1 L1re3 �Mre2^� � iL1 �dt L1L2 �M2 L1L2 �M2

M �L1 �M�rC2

dt

îin

v̂o

iL1 � iL2 � io;C2 C2

� îL1;

� v̂C2 � rC2C2

C2

dv̂C2
:

dt

L2D´ �MD L2 �M
îL2 � v̂C1 � v̂C2

L1L2 �M2 L1L2 �M2

L2V e1 �MV e2 d̂;
L1L2 �M2

DL1 �MD´ L1 �M
îL2 � v̂C1 � v̂C2

L1L2 �M2 L1L2 �M2

L1V e2 �MV e1
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The transfer functions corresponding to Eq. (3.31) can be derived from Eq. (3.88)
by transforming the state space into Laplace domain and applying linear algebra
(cf. Section 2.4), which yields

Input dynamics (i.e., the top row of transfer functions in Eq. (3.31))

sL2 re3 C1 � D2C2s2 � s � ;ΔY in-o �
L1L2 �M2 L2 L2C1C2

1
s2�L2 �M� � s�re3 � re2� � C

D

1
�1 � srC2C2�;ΔToi-o � �L1L2 �M2�C2

1 2 �re3V e1 � re1V e2�C1 � �D´L2 �M�IoΔGci-o � s3�V e1L2 �MV e2� � s
L1L2 �M2 � C1

�V e1 � Ve2�C1 � �D2V e1 � DD´V e2 � �Dre2 � D´re3�Io�C2 Io� s � �:
C1C2 C1C2

(3.89)

Output dynamics (i.e., the bottom row of transfer functions in Eq. (3.31))

1 D
s2�L2 �M� � s�re3 � re2� � �1 � srC2C2�;ΔGio-o � �L1L2 �M2�C2 C1

1 2 �re3 � rC2�L1 � �re1 � rC2�L2ΔZo-o � �s3 � s
C2 L1L2

�re3 � rC2�L1 � �re1 � rC2�L2 � 2�re2 � rC2�M� s
L1L2 �M2

D2 2re1 � 2DD´re2 � D´ re3 � rC2� ��1 � srC2C2�;�L1L2 �M2�C1

2 �L2 �M�V e1 � �L1 �M�V e2 E1 � �D´�L2 �M� � D�L1 �M��IoΔGco-o � �s � s�L1L2 �M2�C2 �L1L2 �M2�C1C2

E2� �1 � srC2C2�;�L1L2 �M2�C1C2

E1 � ��re3 � re2�V e1 � �re1 � re2�V e2�C1;

E2 � �DV e1 � D´V e2� � �D�re1 � re2� � D´�re2 � re3��Io; (3.90)

where the determinant Δ is

3 re1L2 � re3L1 � 2Mre2 12Δ � s4 � s � s a2 � sa1 � ;
L1L2 �M2 �L1L2 �M2�C1C2

2�re1re3 � re2�C1C2 � �L1 � L2 � 2M�C1 � �D2L1 � D´2L2 � 2DD´M�C2a2 � ;�L1L2 �M2�C1C2

2�re1 � 2re2 � re3�C1 � �D2re1 � 2DD´re2 � D´ re3�C2a1 � : (3.91)�L1L2 �M2�C1C2
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The stability of the coupled-inductor converter at open loop can be studied
based on the determinant coefficients as instructed in Section 2.5.3. When
constructing the Routh array, it can be concluded that the converter is stable
at open loop.

The special transfer functions can be computed based on Eqs (3.89–3.91) by
applying Eq. (3.32). The resulting transfer functions, including the parasitic
elements, are extremely long preventing their publication as such in this book.
The solving requires the use of software packages capable of symbolic computa
tion such as Matlab Symbolic Toolbox. The special transfer functions are given
omitting the parasitic elements as follows:

s2L2C1 � D2

Y in-sco � ;
s3�L1L2 �M2�C1 � s�D2L1 � D´2L2 � 2DD´M�

sC1V e1 � DIoY in-1 � ;
s2�L1 � L2 � 2M�V e1C1 � s�D´L2 � DL1 � �D � D´�M�Io � V e1

2 D´s �L2 �M�C1V e1 � s� L2 � DM�Io � DV e1Toi-1 � ;
s2�L1 � L2 � 2M�C1V e1 � s�D´L2 � DL1 � �D � D´�M�Io � V e1

s2L2C1 � D2

Zo � ;o-oci s3L2C1C2 � s�C1 � D2C2�
2 D´s �L2 �M�C1V e1 � s� L2 � DM�Io � DV e1Zo-1 � ;

s3�L2 �M�C1V e1 � s2�D´L2 � DM�Io � sC2DV e1 � Io

�sC1V e1 � DIoGio-1 � :
s3�L2 �M�C1V e1 � s2�D´L2 � DM�Io � sC2DV e1 � Io

(3.92)

The special output impedance Zo-oci is dependent on the state of output voltage
feedback. Its open-loop value is given in Eq. (3.92). In general, its value can be
given by [17]

Zo-xZx (3.93)o-oci � Y in-sco;Y in-x

where the superscript and subscript extension x denotes either the open- “o” or
closed- “c” loop transfer function. The short circuit input admittance (Y in-sco)
does not depend on the state of feedback [1]. This also applies to all the special
transfer functions denoted by subscript extension 1 in Eq. (3.92).

The effect of the input capacitor C3 (i.e., if connected at the input terminal) can
be taken into account in such a manner that it is actually in parallel with the
impedances measured from the input terminal without the input capacitor. It has
no other effects on the dynamics of the converter. As a consequence,

sC3YC3
in-x � Y in-x � ;

1 � srC3C3
(3.94)

sC3YC3
in-sco � Y in-sco � 1 � srC3C3

:
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Input-Current Ripple Reduction
Applying the coupled inductor algorithms (cf. Section 2.4.3) to the inductor
current derivatives given in Eq. (3.87), the peak-to-peak ripple values
become

�L2 �M��V in � V o � �DrL1 � rds�Io� MD´�rC1Io � VD�ΔiL1-pp � � DT s;
L1L2 �M2 L1L2 �M2

�L1 �M��V in � V o � �DrL1 � rds�Io� L1D´�rC1Io � VD�ΔiL2-pp � DT s:
L1L2 �M2 L1L2 �M2

(3.95)

According to Eq. (3.95), the close-to-zero-input ripple or ΔiL1-pp � 0 can bep
obtained, when M � L2 or k � L2=L1. These values are also the commonly
defined zero input ripple conditions [20]. As a consequence, the residual peak-to
peak ripple values are

rC1Io � VDΔiL1-pp � � DD´T s;L1 � L2

V in � V o � �DrL1 � rds�Io rC1Io � VD DD´T sL1ΔiL2-pp � � DT s � � ;
L2 L1 � L2 L2

(3.96)

which imply that L1 should be sufficiently higher than L2 for obtaining optimal
ripple reduction.

Substituting M and k in the small-signal state space in Eq. (3.88) with the above
given values yields

dîL1 re1 � re2 re2 � re3^ ^� � iL1 � iL2dt L1 � L2 L1 � L2

1 1 V e1 � V e2 ^� v̂C1 � v̂in � d;
L1 � L2 L1 � L2 L1 � L2

dîL2 L1re2 � L2re1 L1re3 � L2re2 DL1 � D´L2 1^ ^� � iL1 � iL2 � v̂C1 � v̂C2dt �L1 � L2�L2 �L1 � L2�L2 �L1 � L2�L2 L2

1 rC2 L1V e2 � L2V e1^ ^� v̂in � io � d;
L1 � L2 L2 �L1 � L2�L2

dv̂C1 D´ D Io^ ^ ^� iL1 � iL2 � d;
dt C1 C1 C1

dv̂C2 1 1 1^ ^ ^� iL1 � iL2 � io;dt C2 C2 C2

îin � îL1

dv̂C2v̂o � v̂C2 � rC2C2 : (3.97)
dt
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The corresponding set of transfer functions can be given by

Input dynamics:

s re3 C1 � D2C2s2 � s � ;ΔY in-o �
L1 � L2 L2 L2C1C2

1 re3 � re2 D
s � �1 � srC2C2�;ΔToi-o � �L1 � L2�C2 L2 L2C1

1 2 �re3V e1 � re2V e2�C1 � L2IoΔGci-o � �s3�V e � V e2� � s
L1 � L2 L2C1

�V e1 � V e2�C1 � �D2V e1 � DD´V e2 � �Dre2 � D´re3�Io�C2 Io� s
L2C1C2

�
L2C1C2

�:
(3.98)

Output dynamics:

ΔGio-o � 1
�L1 � L2�C2

s
re3 � re2

L2
� D
L2C1

�1 � srC2C2�;
1 2 �re3 � rC2�L1 � �re1 � 2re2 � rC2�L2ΔZo-o � �s3 � s
C2 �L1 � L2�L2

� s
�re1re3 � re2

2 � �re1 � 2re2 � re3�rC2�C1 � D2L1 � D´�1 � D�L1

�L1 � L2�L2

D2 2re1 � 2DD´re2 � D´ re3 � rC2� ��1 � srC2C2�;�L1 � L2�L2

V e2 ��re3 � re2�V e1 � �re1 � re2�V e2�C1 � D�L1 � L2�IoΔGco-o � �s2 � s
L2C2 V e2�L1 � L2�C1

DV e1 � D´V e2 � �D�re2 � re1� � D´�re3 � re2��Io� ��1 � srC2C2�;V e2�L1 � L2�C1

(3.99)

where the determinant (Δ) is

4 � s3 re3L1 � �re1 � 2re2�L2 2 1
Δ � s � s a2 � sa1 � ;�L1 � L2�L2 �L1 � L2�L2C1C1

2�re1re3 � re2�C1C2 � �L1 � L2�C1 � �D2L1 � D´�1 � D�L2�C2a2 � ;�L1 � L2�L2C1C2

2 (3.100)�re1 � 2re2 � re3�C1 � �D2re1 � 2DD´re2 � D´ re3�C2a1 � :�L1 � L2�L2C1C2

The special transfer functions can be computed based on Eqs. (3.98–3.100)
by applying Eq. (3.32) or simply from Eq. (3.92) substituting M � L2.
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The special transfer functions are given omitting the parasitic elements as
follows:

s2L2C1 � D2

Y in-sco � ;
s3�L1 � L2�L2C1 � s�D2L1 � D´�1 � D�L2�

sC1V e1 � DIoY in-1 � ;
s2�L1 � L2�V e1C1 � sD�L2 � L1�Io � V e1

sL2Io � DV e1Toi-1 � ;
s2�L1 � L2�C1V e1 � sD�L2 � L1�Io � V e1 (3.101)

s2L2C1 � D2

Zo � ;o-oci s3L2C1C2 � s�C1 � D2C2�
sL2Io � DV e1Zo-1 � ;

s2L2Io � sC2DV e1 � Io

�sC1V e1 � DIoGio-1 � :
s2L2Io � sC2DV e1 � Io

The special output impedance Zo-ociis dependent on the state of output voltage
feedback. Its open-loop value is given in Eq. (3.101). In general, its value can be
given by [17]

Zo-xZx Y in-sco; (3.102)o-oci � Y in-x

where the superscript and subscript extension x denotes either the open- “o” or
closed- “c” loop transfer function. The short circuit input admittance (Y in-sco)
does not depend on the state of feedback [1]. This also applies to all the special
transfer functions denoted by subscript extension 1 in Eq. (3.101).

Design Considerations
According to Eq. (3.99), the control-to-output transfer function (Gco-o) may
contain two RHP zeros depending on the operating point approximately at

1
(3.103)ωz-RHP � �1 � k2�L1C1

or
DIoωzero-RHP1 � ;

V inC1
(3.104)

V inωzero-RHP2 � ;
DIo�1 � k2�L1

when

��re3 � re2�V e1 � �re1 � re2�V e2�C1 � D�1 � k2�L1Io < 0; (3.105)p
where k is the coupling coefficient ( L2=L1). The appearance of the RHP zero is
most likely in the applications, where the input voltage is rather low and the
output current rather high. In this case, the appearance of the RHP zeros cannot



1633.5 Fixed-Frequency Operation in DCM

be anymore canceled, because the coupling coefficient (k) has to be less than 1 for
proper operation, and therefore, there is no possibility to choose the inductor
values as in the case of uncoupled inductors in Section 3.4.4. This means that the
control bandwidth shall be designed to be lower than the lowest RHP zero for
stability to exist.

3.5 Fixed-Frequency Operation in DCM

The small-signal modeling of the converters operating under fixed-frequency
operation in CCM can be modeled without considering the methods presented in
Section 3.3, because the instantaneous inductor current is continuous within the
switching cycle. Therefore, the circuit theory can be applied directly to construct
the required derivatives. In DCM, the instantaneous inductor current is dis
continuous, which means that the charge incorporated in the inductor current is
not anymore distributed within the on- and off-times following the duty ratio and
its complement. Therefore, the generalized method has to be applied.

The DCM operation is possible only if a part of the PWM switches in the power
stage are implemented by using components, which can provide only uni
directional current flow such as diodes. Therefore, when the inductor current
tends to go negative during the off-time, the corresponding current carrying path
is effectively disconnected. As a consequence, the converters will have three
different topological subcircuits during a switching cycle: one for the on-time, one
for the off-time1, and one for the off-time2 (cf. Figure 3.7, Section 3.3.1). The
corresponding inductor-current waveform is shown in Figure 3.15. It is natural
that the time-varying averaged inductor current hiLi is continuous regardless of
the operation mode. In DCM, its value is less than half the peak value of the
instantaneous inductor current.

When considering the generalized state-space equations we defined in Section
3.3, the only unknown variable is the length of the off-time1 (toff1). The dynamics
associated with toff1 can be recovered by computing its relation to hiLi [1]
according to the waveform of Figure 3.15, which gives

hiLi � 1
T s

iLdt � 1
2T s

�m1ton�ton � toff1�; (3.106)

0

T s

Figure 3.15 Inductor-current
waveform in DCM.
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and which under the fixed-frequency operation equals

1hiLi � �m1d�d � d1�T s: (3.107)
2

According to Eq. (3.107), we find that

2hiLid1 � � d: (3.108)
dm1T s

In order to find the fixed-frequency averaged models in DCM, toff1 or d1 has
to be replaced with Eq. (3.108) in the generalized averaged state-space
equations given in Section 3.3. We will treat in this section only the basic
second-order converters. The generalized modeling method is, however, very
powerful enabling the modeling of the higher order converter even in mixed
conduction mode.

The DCM transfer functions are typically given in the form, where the steady-
state duty ratio (D), the input (V in) and output (V o) voltages, and the cycle time
(T s) are embedded into the notations M (i.e.,V o=V in) and K (i.e., 2L=T sReq),
where Req corresponds to V o=Io, respectively [2]. We do not perform the
modeling in detail but we give only the averaged and small-signal state spaces
as well as the set of basic transfer functions.

3.5.1 Buck Converter

The power stage and the topological subcircuit structures are given in Section
3.3.1 (cf. Figures 3.6 and 3.7). The averaged state space can be derived based on
Eqs (3.11–3.13), and (3.108), as already explained. This process yields

dhiLi d�hvini � �rd � rds1�hiLi � VD��
dt L

2hiLi �rL � rd � rC�hiLi � hvCi � rChioi � VD� � ;
dT s hvini � �rL � rds1 � rC�hiLi � hvCi � rChioi

dhvCi hiLi hioi� � ; (3.109)
dt C C

d2T shiini � �hvini � �rL � rds1 � rC�hiLi � hvCi � rChioi�;2L

dhvCihvoi � hvCi � rCC :
dt

The operation in DCM will actually remove the resonant behavior of the
converter, and therefore, the parasitic loss elements of the power-stage
component do not affect much on the dynamics of the converter but only
on the operation point. The ESR (i.e., equivalent series resistance) of the
output capacitor (rC) is left in the state space, because it has a fundamental
effect on the output dynamics in terms of load transient response and
stability [1]. Therefore, the parasitic elements are usually omitted from the
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state space, which yields a simplified and more convenient averaged state space
as follows:

dhiLi
dt

� dhvini
L

� 2hiLihvCi
dT s�hvini � hvCi� ;

dhvCi hiLi hioi� � ;
dt C C

(3.110)
d2T s�hvini � hvCi�hiini � ;

2L

dhvCihvoi � hvCi � rCC :
dt

The operation point can be derived from Eq. (3.109) by setting the derivatives
to zero. This procedure yields

IL � Io;

��rL � rd�Io � V o � VD�I in � � Io;�V in � �rd � rds1�Io � VD�
V o � VC;

2LIo V o � VD � �rL � rd�IoD � � :
T s �V in � V o � �rL � rds1�Io��V in � VD � �rd � rds1�Io�

(3.111)

When omitting the parasitic loss elements in Eq. (3.111) and utilizing the
denotations M, K , and Req as already defined, the operating point and the
linearized state space can be given by

IL � Io;

I in � MIo;

V o � VC; (3.112)

M � 2

1 � 1 � �4K=D2�p ; D � M
K

1 �M
; D1 � K �1 �M�p

:

d^ K 1 KiL Req � îL � � v̂Cdt L 1 �M L�1 �M� 1 �M

�2 �M�M K 2V in� � v̂in � � d̂;
L�1 �M� 1 �M L

dv̂C

dt
� îL

C
� îo
C
; (3.113)

îin � � M2

Req�1 �M� � v̂C � M2

Req�1 �M� � v̂in � 2V o

Req

1 �M
K

� d̂;

v̂o � v̂C � rCC
dv̂C

dt
:
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The set of transfer functions corresponding to Eq. (3.31) can be given by

M2 1 1 K 1 �M K
;s2 � s �ΔY in-o �

1 �M Req L 1 �M ReqLC 1 �M

M2 KReqΔToi-o � � s � ;
ReqC�1 �M� L 1 �M

2 1 1 �M 1 1
s � s � ;ΔGci-o � 2V o K L ReqLC (3.114)Req

M�2 �M� K
ΔGio-o � � �1 � srCC�;LC�1 �M� 1 �Mp

sL � Req K=�1 �M� �1 � srCC�ΔZo-o � ;
LC

2V in�1 � srCC�ΔGco-o � ;
LC

where the denominator (Δ) of the transfer functions is

Req K 1 K
Δ � s2 � s � � : (3.115)

L 1 �M LC�1 �M� 1 �M

The special transfer functions can be computed based on Eq. (3.114) by
applying Eq. (3.32) yielding

M2

Y in-sco �
Req�1 �M� ;

Y in-1 � �MIo

V in
;

Toi-1 � M
Req

1 �M
K

sL � Req
K

1 �M
;

Zo
o-oci � sL � Req K=�1 �M�p �1 � srCC�

s2LC � sReqC K=�1 �M�p � �1 �M� K=�1 �M�p ;

(3.116)

p
sL � Req K=�1 �M�

Zo-1 � p p ;
s2LC � sReqC K=�1 �M� � K=�1 �M�p

M K=�1 �M��1 � srCC�
Gio-1 � p p :

s2LC � sReqC K=�1 �M� � K=�1 �M�
The special output impedance Zo-oci is dependent on the state of output voltage
feedback. Its open-loop value is given in Eq. (3.116). In general, its value can be
given by [17]

Zo-xZx � (3.117)o-oci Y in-sco;Y in-x
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where the superscript and subscript extension x denotes either the open- “o” or
closed- “c” loop transfer function. The short circuit input admittance (Y in-sco)
does not depend on the state of feedback [1]. This also applies to all the special
transfer functions denoted by subscript extension 1 in Eq. (3.116).

According to Eq. (3.114) (i.e., Zo-o), the operation in DCM removes the
resonant nature of the converter creating a lossless resistor (i.e.,p
Req K=�1 �M�) at the output of the converter. The damping is so high that
the poles of the converter are well separated and can be given by

Reqsp-low � ;
C�1 �M�

(3.118)
K

sp-high � Req
:

L 1 �M

3.5.2 Boost Converter

The power stage and the topological subcircuit structures are given in Section
3.3.1 (cf. Figures 3.8 and 3.9). The averaged state space can be derived based on
Eqs (3.16–3.18), and (3.108) as already explained. This process yields

dhiLi d��rd � rC � rds1�hiLi � hvCi � rChioi � VD��
dt L

2hiLi �rL � rd � rC�hiLi � hvCi � rChioi � VD � hvini� � ;
dT s huini � �rL � rds1�hiLi

dhvCi hiLi d2T s hioi (3.119)� � �hvini � �rL � rds1�hiLi� � ;
dt C 2LC C

hiini � hiLi;
dhvCihvoi � hvCi � rCC :

dt

The operation in DCM will actually remove the resonant behavior of the
converter, and therefore, the parasitic loss elements of the power-stage compo
nent do not affect much on the dynamics of the converter but only on the
operation point. The ESR of the output capacitor (rC) is left in the state space,
because it has a fundamental effect on the output dynamics in terms of load
transient response and stability [1]. Therefore, the parasitic elements are usually
omitted from the state space, which yields a simplified and more convenient
averaged state space as follows:

dhiLi dhvCi 2hiLi�hvCi � hvini�� � ;
dt L dTshuini

dhvCi hiLi d2T shvini hioi� � � ; (3.120)dt C 2LC C
hiini � hiLi;

dhvCihvoi � hvCi � rCC :
dt
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The accurate operation point can be derived from Eq. (3.119) by setting the
derivatives to zero. When omitting the parasitic loss elements in Eq. (3.119) (i.e.,
by using Eq. (3.120)) and utilizing the denotations M, K , and Req as defined, the
operating point and the linearized state space can be given by

IL � MIo;

I in � MIo;

(3.121)V o � VC;p
1 � 1 � �4D2=K � p 1

M � ; D � KM�M � 1�; D1 � :
2 M � 1

dîL Req K �M � 1� 1 KM M2 KM 2V o� îL � � v̂C � � v̂in � � d̂;
dt L M L M � 1 L M � 1 L

^ ^dv̂C iL M�M � 1� io 2V o M � 1� � � v̂in � � � d̂;
dt C ReqC C ReqC KM

îin � îL;
(3.122)

dv̂Cv̂o � v̂C � rCC :
dt

The set of transfer functions corresponding to Eq. (3.31) can be given by

M2 KM M � 1
ΔY in-o � s � ;

L M � 1 MReqC

1 KM
ΔToi-o � ;

LC M � 1

2V o 1
s � ;ΔGci-o �

L ReqC
(3.123)

2M � 1 KM M�M � 1�
ΔGio-o � � s � � �1 � srCC�;LC M � 1 ReqC

p
sL � Req �K �M � 1��=M��1 � srCC�ΔZo-o � ;

LCp
1 � s � �L=Req� �M�M � 1��=K �1 � srCC�ΔGco-o � 2V in

;
LC

where the denominator (Δ) of the transfer functions is

Req K �M � 1� 1 KM� � : (3.124)Δ � s2 � s �
L M LC M � 1
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The special transfer functions can be computed based on Eq. (3.123) by
applying Eq. (3.32) yielding

p
M2 KM=�M � 1�

Y in-sco � p ;
sL � Req �K �M � 1��=M

p
M KM=�M � 1�

Y in-1 � p ;
sL � Req K=�M�M � 1��

p
Req KM=�M � 1�

Toi-1 � p ;
sL � Req K=�M�M � 1�� (3.125)

ReqM�1 � srCC�Zo � ;o-oci sReqCM �M � 1

Req�1 � srCC�Zo-1 � ;
sReqC � 1

M�1 � srCC�Gio-1 � :
sReqC � 1

The special output impedance Zo-oci is dependent on the state of output voltage
feedback. Its open-loop value is given in Eq. (3.125). In general, its value can be
given by [17]

Zo-xZx
o-oci � Y in-sco; (3.126)

Y in-x

where the superscript and subscript extension x denotes either the open- “o”
or closed- “c” loop transfer function. The short circuit input admittance
(Y in-sco) does not depend on the state of feedback [1]. This also applies to
all the special transfer functions denoted by subscript extension 1 in
Eq. (3.125).

According to Eq. (3.123) (i.e., Zo-o), the operation in DCM removes the
resonant nature of the converter creating a lossless resistor (i.e.,p
Req K �M � 1�=M) at the output of the converter. The damping is so high
that the poles of the converter are well separated and can be given by

M
sp-low � ;

ReqC�M � 1�
(3.127)

Req K �M � 1�
sp-high �

L
:

M

According to Eq. (3.123), the output-control dynamics (i.e., Gco-o) contains an
RHP zero at

K 2Req � ; (3.128)ωz-RHP �
L M�M � 1� DT s
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which locates at much higher frequency than the corresponding zero in the
converter operating in CCM. Therefore, the DCM RHP zero does not limit the
control bandwidth in practice.

3.5.3 Buck–Boost Converter

The power stage and the topological subcircuit structures are given in Section
3.3.1 (cf. Figures 3.10 and 3.11). The averaged state space can be derived based on
Eqs. (3.21–3.26), and (3.108) as already explained. This process yields

dhiLi d��rd � rC � rds1�hiLi � hvCi � rChioi � VD � hvini��
dt L

2hiLi �rL � rd � rC�hiLi � hvCi � rChioi � VD� � ;
dT s hvini � �rL � rds1�hiLi

dhvCi hiLi d2T s hioi� � �hvini � �rL � rds1�hiLi� � ; (3.129)
dt C 2LC C

d2T shiini � �hvini � �rL � rds1�hiLi�;2L

dhvCihvoi � hvCi � rCC :
dt

The operation in DCM will actually remove the resonant behavior of the
converter, and therefore, the parasitic loss elements of the power-stage compo
nent do not affect much on the dynamics of the converter but only on the
operation point. The ESR of the output capacitor (rC) is left in the state space,
because it has a fundamental effect on the output dynamics in terms of load
transient response and stability [1]. Therefore, the parasitic elements are usually
omitted from the state space, which yields a simplified and more convenient
averaged state space as follows:

dhiLi d�hvCi � hvini� 2hiLihvCi� � ;
dt L dT shvini

dhvCi hiLi d2T shvini hioi� � � ;
dt C 2LC C

(3.130)
d2T shvinihiini � ;

2L

dhvCihvoi � hvCi � rCC :
dt

The accurate operation point can be derived from (3.128) by setting the
derivatives to zero. When omitting the parasitic loss elements in Eq. (3.128)
(i.e., by using Eq. (3.129)) and utilizing the denotations M, K , and Req as defined,
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the operating point and the linearized state space can be given by

IL � �1 �M�Io;

�I MI ;in o

� � �M D M K D Kp ; ; :1

^

(3.131)V o � VC; p pD

K

d;

p p p
dîL M�M � 2� 2�V in � V o�Req K K K

^iL � vC � vin �dt L L L L
^^

M2d 1 1 2V ovC iL � vin � io p
dt C ReqC C ReqC K

^^^^
d̂;

d;vin � p ^
Req Req K (3.132)

^

�

M2 2V oiin

vĈvo vC � rCC dt

The set of transfer functions corresponding to Eq. (3.31) can be given by

^

p p
M2 Req K K

s2 � s � ;ΔY in-o �

^

^

R L LCeq

ΔToi-o � 0;
p p

2V o Req K K
s2 � s � ;ΔGci-o �

L LCReq

p (3.133)
2M K LM

ΔGio-o � 1 � s p �1 � srCC�;LC ReqC K
p�sL � Req K ��1 � srCC�ΔZo-o � ;
LC

p
1 � s�ML=�Req K �� �1 � srCC�

ΔGco-o � 2V in
;

LC

where the denominator (Δ) of the transfer functions is

�

d� :

p p
Req K K

Δ � s2 � s � : (3.134)
L LC
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The special transfer functions can be computed based on Eq. (3.132) by
applying Eq. (3.32) yielding

M2

Y in-sco � ;
Req p

K
Y in-1 � p ;

sLM � Req K
p

M sL � Req Kp ;Toi-1 � �
sLM � Req K

p (3.135)
sL � Req K �1 � srCC�

Zo � p p ;o-oci
s2LC � sReqC K � K

p
sL � Req K �1 � srCC�

Zo-1 � p p ;
s2LC � sReqC K � Kp

M K �1 � srCC�Gio-1 � p p :
s2LC � sReqC K � K

The special output impedance Zo-oci is dependent on the state of output voltage
feedback. Its open-loop value is given in Eq. (3.135). In general, its value can be
given by [17]

Zo-xZx (3.136)o-oci � Y in-sco;Y in-x

where the superscript and subscript extension x denotes either the open- “o” or
closed- “c” loop transfer function. The short circuit input admittance (Y in-sco)
does not depend on the state of feedback [1]. This also applies to all the special
transfer functions denoted by subscript extension 1 in Eq. (3.135).

According to Eq. (3.133) (i.e., Zo-o), the operation in DCM removes thep
resonant nature of the converter creating a lossless resistor (i.e., Req K ) at
the output of the converter. The damping is so high that the poles of the converter
are well separated and can be given by

1
ωp-low � ;

ReqCp (3.137)
Req K

ωp-high �
L

:

According to (3.132), the output control dynamics (i.e., Gco-o) contains an RHP
zero at

p
Req K 2

ωz-RHP � � ; (3.138)
LM DT s
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which locates at much higher frequency than the corresponding zero in the
converter operating in CCM. Therefore, the DCM RHP zero does not limit the
control bandwidth in practice.

3.6 Source and Load Interactions

3.6.1 Source Interactions

According to the generalized source interactions given in Section 2.2.5, the
source-affected set of transfer functions representing the source-impedance
induced changes in the dynamics of the voltage-fed voltage-output (VF-VO)
converter (cf. Figure 3.16) can be given by

îin

v̂o

�
Y in

1 � ZSY in

Toi

1 � ZSY in

Gci

1 � ZSY in

Gio

1 � ZSY in
� 1 � ZSY in-sco

1 � ZSY in
Zo

1 � ZSY in-1
1 � ZSY in

Gco

v̂inS

v̂o

d̂

;

(3.139)

where

GioToiY in-sco � Y in � ;
Zo

(3.140)
GioGciY in-1 � Y in � :
Gco

According to Eq. (3.139), the source impedance (ZS) would interact with the
converter via its input impedance (Zin) (i.e., 1 � ZSY in), its short circuit input
impedance (Zin-sco) (i.e., 1 � ZSY in-sco), or its ideal input impedance (Zin-1) (i.e.,
1 � ZSY in-1), respectively. The interactions via the input impedance would affect
all the transfer functions and would be dependent on the state of output-side
feedback: When the converter operates at open loop, the usual sign of interactions
is a dip in the corresponding internal transfer function. When the converter
operates at closed loop, the usual sign of interactions is a peaking in the

Figure 3.16 Linear network model of VF-VO converter with nonideal source.
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corresponding internal transfer functions. As discussed earlier, short circuit and
ideal input impedances are invariant to the state of output-side feedback.
Therefore, the source interactions caused by the impedance overlap in these
impedance ratios would not be removed at closed loop but they have similar effect
both at open and closed loop.

The source interactions were first discussed and design rules were developed
for preventing the input filter to affecting the dynamics of a converter in
Refs [21,22]. In short, the design rules are such that all the above given
impedance ratios should be much smaller than 1, which obviously would
prevent the source to affect the converter behavior. It has turned out that
the source interactions (i.e., especially the input filter-induced interactions) are
most likely to take place due to the source impedance overlap with the short
circuit input impedance of the converter [23,24].

3.6.2 Input Voltage Feedforward

It is possible to reduce the source interactions by applying input voltage
feedforward (IVFF) control scheme, where the PWM-modulator ramp slope
is made directly proportional to input voltage [25]. The effect of IVFF control
scheme on the converter dynamic behavior can be found by means of the
control block diagrams given in Figure 3.17, where Fm and qin denote the duty-
ratio gain and IVFF gain. Based on Figure 3.17, the set of transfer functions can
be given by

îin

v̂o

� Y in-o-FmqinGci-o Toi-o FmGci-o

Gio-o-FmqinGco-o �Zo-o FmGco-o

v̂inS

v̂o

d̂

: (3.141)

^

^

^

According to Eq. (3.141), the input-to-output attenuation (Gio-o) can be made
high by designing Fmqin � Gio-o=Gco-o. It may be obvious that in order to
implement theoretically perfect IVFF-control scheme, Gio-o and Gco-o should
have the same zeros. In a buck converter, this condition is valid (cf. Section 3.4.1,
Eq. (3.40)) yielding the required gain productFmqin � D=V e � D=V in. If the
IVFF-control scheme is implemented in a DDR buck converter, the set of transfer
functions becomes

vin

io

vco

Gio-oGci-o
îin

v̂o

Y in-o Toi-o FmGci-oGco-o� : (3.142)

0 �Zo-o FmGco-o

Equation (3.142) shows that the converter input admittance equals the ideal
input admittance. According to Eq. (3.140), we can also state that all the input
admittances would equal the ideal input admittance. As a consequence, the
source interactions would be greatly reduced.

The IVFF-control scheme can be implemented as shown in Figure 3.18.
According to it, the duty ratio is determined when vco � kvindT s. According
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Figure 3.17 Control block diagrams for
assessing the effect of IVFF-control scheme
on (a) input dynamics and (b) output
dynamics.

Figure 3.18 Duty-ratio generation under IVFF-control scheme.
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to this relation, the small-signal duty-ratio constraints can be computed
to be

1
d � vco vin� � Fm�vco vin�;

which gives Fmqin � D=V in as required for Gio-o � 0.
The constant k is designed in such a manner that the duty ratio is close to 100%

at a certain minimum input voltage (V in-min) (cf. Figure 3.18: D � D2-max). Accord
ing to this assumption, k � VM=V in-minT s, where VM � Vmax � Vmin. Thus, Fm �
V in-min=VMV in and qin � DVM=V in-min. This means, in case of buck converter, the

^

input and output control dynamics (i.e.,Gci-o andGco-o) (cf. Section 3.4.1, Eq. (3.40))
are not anymore dependent on the input voltage level as in the original buck
converter. The duty-ratio gain Fm can also be constructed so that it includes the

^^

3.6.3 Load Interactions

According to the generalized load interactions given in Section 2.2.5, the load

^

normal modulator gain (G ) and the additional part coming from the IVFF-controla´ ´� � �scheme as F G F , where G 1 V (cf. Section 3.2, Eq. (3.3)) and F= Mm a m a m

V V show explicitly the effect of the scheme on the control dynamics.=in-min in

affected of transfer functions representing the load impedance-inducedset
changes in the dynamics of the VF-VO converter (cf. Figure 3.19) can be given by

^ � kDT s � qin (3.143)�
kV inT s

1 � Y LZin-ocin Toi 1 � Y LZo-1Y in Gci

^

^

^

vin

ioL

d
1 � ZoY L 1 � ZoY L

(3.144)

îin

v̂o

� 1 � Zo 1 � ZoY L 1 � ZoY L Y L
;

Gio Zo Gco

1 � ZoY L

where

GioToiZon-oci � Zo � ;
Y in

(3.145)
ToiGcoZo-1 � Zo � :
Gci

Figure 3.19 Linear network model of VF-VO converter with nonideal load.
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According to Eq. (3.144), the load impedance (ZL) would interact with the
converter via its output impedance (Zo) (i.e., 1 � ZoY L), its open-circuit output
impedance (Zo-oci) (i.e., 1 � Y LZo-oci), or its ideal output impedance (Zo-1) (i.e.,
1 � Y LZo-1), respectively. The interactions via the output impedance would affect
all transfer functions and would be dependent on the state of feedback: When the
converter operates at open loop, the usual sign of interactions is a dip in the
corresponding internal transfer function. When the converter operates at closed
loop, the usual sign of interactions is a peaking in the corresponding internal
transfer functions. As discussed earlier, open-circuit output impedance is depen
dent on the state of output-side feedback.

When the IVFF-control scheme is properly implemented, the open-circuit
output impedance would equal the output impedance (cf. Eq. (3.143)), which
would prevent the load interactions to propagate into the input side. Without the
IVFF-control scheme, the resonant load can easily change the behavior of the
input impedance, and thereby, make the converter more prone to source
impedance interactions [26–28].

3.6.4 Output-Current Feedforward

According to Eq. (3.144), we may conclude that the load impedance-induced
interactions would be greatly reduced if the output impedance can be made to
equal zero. In theory, the reduction of open-loop output impedance down to zero
is possible by means of output-current feedforward (OCFF) [29]. The control-
block diagrams for developing the conditions for zero output impedance are given
in Figure 3.20, where Rs2 is the output current sensing resistor and Hc the
feedforward gain, respectively.

According to Figure 3.20, we can compute the set of transfer functions to
be

v̂in
^ Y in-o Toi-o � Rs2HcGaGci-o GaGci-oiin ^� ; (3.146)io
v̂o Gio-o ��Zo-o � Rs2HcGaGco-o� GaGco-o v̂co

which indicates that the OCFF-control scheme affects only the output impedance
(Zo-o) and the reverse transfer function (Toi-o), because Ga is the required
modulator gain to adapt the control voltage to the internal control variable
(cf. Section 3.2, Eq. (3.3)).

The aim of the OCFF-control scheme is to produce zero open-loop output
impedance. Therefore, Zo-o � Rs2HcGaGco-o � 0. As a consequence, the feedfor
ward gain should be designed as

1 Zo-oHc � � : (3.147)
Rs2Ga Gco-o

It may be obvious that the required feedforward gain can be implemented
only if the output dynamics is of minimum phase (i.e., Gco-o does not contain
RHP zeros). Thus, the conventional buck converter is the only prospective
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Figure 3.20 Control block diagrams for
assessing theeffect ofOCFF-control scheme
on (a) input dynamics and (b) output
dynamics.

candidate. In case of the DDR buck converter (cf. Eq. (3.40)), the required gain
becomes

Hc � VM

V e
� sL � re � rC

Rs2
� VM

V in
� sL
Rs2

; (3.148)

which is practically impossible to be implemented. The implementation will be,
however, possible when the buck converter operates under PCM control [29].

If the zero-output impedance condition in Eq. (3.147) is fully implemented, the
set of transfer functions in Eq. (3.146) would be

v̂inZo-oGci-o^ Y in-o Toi-o � GaGci-oiin ^Gco-o� : (3.149)io
v̂o Gio-o 0 GaGco-o v̂co
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According to Eq. (3.149), the reverse transfer function would equal Toi-1. In
addition, the short circuit input admittance would be infinitely high (cf.
Eq. (3.32)). This actually means that the output impedance would be always at
open and closed loop as

GioToiZo � Zs; (3.150)
1 � ZsY in

because of the source effects given in Eq. (3.139). Therefore, the zero-output
impedance condition would be possible only when Gio � 0.

3.7 Impedance-Based Stability Issues

The impedance-based stability analysis was originally developed for preventing
the input filter to affect the dynamics of the associated converter in Refs [21,22].
The minor-loop concept has been later generalized to be applicable for an
arbitrary system interface by stating that the minor-loop gain (i.e., the impedance
ratio) shall be constructed in such a manner that the numerator impedance is
the impedance of the voltage-type source, and the denominator impedance the
impedance of the current-type source [30–33]. The boundary for the instability is
naturally according to Nyquist stability criterion the state where the minor-loop
gain passes through the point (�1,0) in the complex plain. Based on this
knowledge and the behavior of the input and output impedances, the sensitivity
of a converter to the source and load-induced instability can be easily deter
mined [26,27] by

ZS � jZin j�φZin
� 180°;

(3.151)
ZL � Zo � � 180°;j j φZo

which are applicable for the VF-VO converters treated in this chapter.
Figure 3.22 shows the measured closed-loop input and output impedance of a

conventional buck converter (cf. Figure 3.21). According to the phase behavior of

Figure 3.21 The power stage of the experimental buck converter.
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Figure 3.22 Themeasured closed-loop (a) input impedance and (b) output impedance of abuck
converter.

the input impedance (cf. Figure 3.22a), the converter will be prone to instability
when the phase of the source impedance equals 0–90o. The corresponding
frequency range reaches up to 30 kHz. The appearing of instability requires
the existence of parallel resonant circuit in the source side. Such a typical circuit is
naturally an input EMI filter. According to the phase behavior of the output
impedance (cf. Figure 3.22b), the converter is prone to instability at the frequen
cies from 300 to 600 Hz when capacitive load is connected at its output terminal.
The instability may also take place if the converter is loaded by a regulated
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converter with an input LC filter close to its resonant frequency (i.e., the series
resonance of the filter). Similar conclusions can always be made when the
behavior of the impedances are known.

3.8 Dynamic Review

The dynamic models derived for the DDR-controlled converters are known to
be very accurate up to half the switching frequency when the modeling is
correctly done and all the vital elements are taken into account, as demonstrated
explicitly in Refs [1,33]. Therefore, we concentrate in this section to certain
issues, which are not so well understood. The experimental buck converter
applied to produce the phenomena described later is shown in Figure 3.22.
The experiments are performed at the stated minimum input voltage and
output power. The converter is equipped with an input filter having resonant
frequency of 500 Hz and also 500 Hz resonant load for demonstrating the source
ad load interactions.

Figure 3.23 shows all the measured and computationally solved (Zin-sco) input
impedances of the converter, where Z denotes the output impedance of the
input filter. According to it, there is an overlap of the source and open-loop
input impedances. According to the source interactions in (3.139) and taking
into account the operation at open loop, the overlap means that there will be
a dip in the output voltage loop gain (i.e., Gco-o), which is also visible in
Figure 3.24. The overlap of the source and short-circuit impedances mean that
both the open and closed-loop output impedances will be affected, as explicitly
shown in Figure 3.25. As a consequence, the load-transient response is also
affected, as clearly visible in Figure 3.26. The decaying oscillation resembles the

Figure 3.23 The measured input impedances.
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Figure 3.24 The measured output voltage loop gains.

oscillation caused by the poor phase or gain margins in the output voltage loop
gain but the margins are not changed, as can be concluded from Figure 3.24.
Therefore, this phenomenon cannot be removed by control design but only by
providing sufficient damping to the input filter. Figure 3.23 shows that the
converter is stable because there is no overlap between the source and closed-
loop input impedances.

Figure 3.27 shows the measured and computationally solved (Zx
o-oci) output

impedances, where the resonant load is denoted by ZL. It indicates that there are

Figure 3.25 The measured open- and closed-loop output impedances.
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Figure 3.26 Output-voltage response to a step change in the output current without and with
the input filter.

overlaps between the load and open-loop output impedances as well as the load
and open-circuit output impedances. These overlaps mean (cf. Eq. (3.144)) that
the output voltage loop gain and the input impedance are affected. The converter
is, however, clearly stable because there is no overlap between the load and
closed-loop output impedances.

Figure 3.28 shows the measured input impedances when the resonant load is
connected. Because of the overlap between the load and open-circuit output
impedances both the open-loop and closed-loop input impedances are affected.
The figure shows that the converter is now very close to instability, because the

Figure 3.27 The measured and computationally solved output impedances.
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Figure 3.28 Themeasured input impedancewhen a resonant load is connected at the output of
the converter.

source impedance is very close to the affected closed-loop input impedance
when the input filter is connected. This is also evident when studying the output
voltage loop gains in Figure 3.29 and the output voltage load responses in
Figure 3.30.

Figure 3.31 shows the measured and computationally solved input imped
ances of the IVFF-controlled buck converter. The power stage of the converter
is the same as presented in Figure 3.21. It may be obvious that the open-loop

Figure 3.29 Themeasured output voltage loop gains when the resonant circuits are connected
at the input and output terminals.
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Figure 3.30 The output-voltage responses to a step change in the load current when the
resonant circuits are connected at the input and output terminals.

and short circuit input impedances are changed profoundly from that of the
original converter (cf. Figure 3.23), as discussed in Section 3.6.2. As a conse
quence, the source interactions are expected to be reduced significantly. Figures
3.32 and 3.33 confirm this clearly. It should also be observed (cf. Figure 3.31),
the open- and closed-loop input impedances resemble negative incremental
resistance at a wide frequency range. Therefore, the converter can also be
unstable due to source interactions even at open loop, which the original
converter hardly is.

Figure 3.31 Themeasured and computationally solved input impedances of the IVFF converter.
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Figure 3.32 The measured output voltage loop gains of the DDR and IVFF converters.

Figure 3.33 The measured output impedances of the IVFF converter.

References

1 Suntio, T. (2009) Dynamic Profile of Switched-Mode Converters – Modeling,
Analysis and Control, Wiley-VCH Verlag GmbH, Weinheim, Germany.

2 Erickson, R.W. and Maksimovic , D. (2001)́ Fundamentals of Power Electronics,
Kluwer Academic Publishers, Norwell, MA.

3 Wester, G.W. and Middlebrook, R.D. (1973) Low-frequency characterization of
switched dc-dc converters. IEEE Trans. Aerosp. Electron. Syst., AES-9 (3),
376–385.



́

́

́

187References

4 Middlebrook, R.D. and Cuk, S. (1977) A general unified approach to modeling
switching-converter power stages. Int. J. Electron., 42 (6), 521–550.

5 Cuk, S. and Middlebrook, R.D. (1977) A general unified approach to modelling
switching DC-to-DC converters in discontinuous conduction mode, Proceeding
of the IEEE PESC, pp. 36–57.

6 Sun, J., Mitchell, D.M., Gruel, M.F., Krein, P.T., and Bass, R.M. (2001) Average
modeling of PWM converters in discontinuous modes. IEEE Trans. Power
Electron., 16 (4), 482–492.

7 Suntio, T. (2006) Unified average and small-signal modeling of direct-on-time
control. IEEE Trans. Ind. Electron., 53 (1), 287–295.

8 Tse, C.K. (2004) Complex Behavior of Switching Power Converters, CRC Press,
Boca Raton, FL.

9 Banerjee, S. and Verghese, G.C. (2001) Nonlinear Phenomena in Power
Electronics, IEEE Press, Inc., New York, NY.

10 Sun, J. (2002) Small-signal modeling of variable-frequency pulsewidth
modulators. IEEE Trans. Aerosp. Electron. Syst., 38 (3), 1104–1108.

11 Mitchell, D.M. (1980) Pulsewidth modulator phase shift. IEEE Trans. Aerosp.
Electron. Syst., AES-16 (3), 272–278.

12 Karppanen, M., Sippola, M., and Suntio, T. (2008) Methods to characterize
open-loop dynamics of current-mode-controlled converters, Proceeding of the
IEEE PESC, pp. 636–642.

13 Karppanen, M., Arminen, J., Suntio, T., Savela, K., and Simola, J. (2008)
Dynamical modeling and characterization of peak-current-mode-controlled
superbuck converter. IEEE Trans. Power Electron., 23 (3), 1370–1380.

14 Weaver, W.W. and Krein, P.T. (2007) Analysis and applications of a
current-sourced buck converter, Proceeding of the IEEE APEC,
pp. 1664–1670.

15 Veerachary, M. (2005) Two-loop voltage-mode control of coupled-inductor
step-down buck converter. IEE Electric Power Appl., 152 (6), 1516–1524.

16 Capel, A., Spruyt, H., Windberg, A., O’Sullivan, D., Crausaz, A., and Marpinard,
J.C. (1988) A versatile zero ripple converter, Proceeding of the IEEE PESC,
pp. 133–141.

17 Vesti, S., Suntio, T., Oliver, J.A., Prieto, R., and Cobos, J.A. (2013) Effect of
control method on impedance-based interactions in a buck converter. IEEE
Trans. Power Electron., 28 (11), 5311–5322.

18 Karppanen, M., Arminen, J., Suntio, T., Savela, K., and Simola, J. (2008)
Dynamical modeling and characterization of peak-current-mode-controlled
superbuck converter. IEEE Trans. Power Electron., 23 (3), 1370–1380.

19 Huusari, J., Leppäaho, J., and Suntio, T. (2010) Dynamic properties of PCM-
controlled superbuck converter – Discrete vs. coupled inductor implementation.
Eur. Power Electron. Drives J., 20 (2), 8–15.

20 Cuk, S. (1983) A new zero-ripple DC-to-DC converter and integrated magnetics.
IEEE Trans. Magn., MAG-19 (2), 57–75.

21 Middlebrook, R.D. (1976) Input filter considerations in design and applications
of switching regulators. Proceedings of the IEEE Industry Applications Society
Annual Meeting, pp. 91–107.



188 3 Dynamic Modeling of Direct-on-Time Control

22 Middlebrook, R.D. (1978) Design techniques for preventing input-filter
oscillations in switched-mode regulators, Proceeding of the Power Conversion
Conference, pp. A3.–A3.16.

23 Suntio, T. and Karppanen, M. (2009) The short-circuit input impedance as a
main source of input-filter interactions in a regulated converter. Eur. Power
Electron. Drives J., 19 (3), 31–40.

24 Vesti, S., Suntio, T., Oliver, J.A., Prieto, R., and Cobos, J.A. (2013) Effect of
control method on impedance-based interactions in a buck converter. IEEE
Trans. Power Electron., 28 (11), 5311–5322.

25 Karppanen, M., Suntio, T., and Sippola, M. (2007) Dynamical characterization of
input-voltage-feedforward-controlled buck converter. IEEE Trans. Ind. Electron.,
54 (2), 1005–1013.

26 Suntio, T., Hankaniemi, M., and Karppanen, M. (2006) Analysing the dynamics
of regulated converters. IEE Proc. Electric Power Appl., 153 (6), 905–910.

27 Hankaniemi, M., Karppanen, M., and Suntio, T. (2006) Load imposed instability
and performance degradation in a regulated converter. IEE Proc. Electric Power
Appl., 153 (6), 781–786.

28 Hankaniemi, M., Karppanen, M., Suntio, T., Altowati, A., and Zenger, K. (2006)
Source-reflected load interactions in a regulated converter, Proceeding of the
IEEE IECON, pp. 2893–2898.

29 Karppanen, M., Hankaniemi, M., Suntio, T., and Sippola, M. (2007) Dynamical
characterization of peak-current-mode-controlled buck converter with output
current-feedforward. IEEE Trans. Power Electron., 22 (2), 444–451.

30 Vesti, S., Suntio, T., Oliver, J.A., Prieto, R., and Cobos, J.A. (2013) Impedance-
based stability and transient-performance assessment applying maximum peak
criteria. IEEE Trans. Power Electron., 28 (5), 2099–2104.

31 Sun, J. (2011) Impedance-based stability criterion for grid-connected inverters.
IEEE Trans. Power Electron., 26 (11), 3075–3078.

32 Leppäaho, J., Huusari, J., Nousiainen, L., Puukko, J., and Suntio, T. (2011)
Dynamic properties and stability assessment of current-fed converters in
photovoltaic applications. IEEJ Trans. Ind. Appl., 131 (8), 976–984.

33 Suntio, T., Viinamäki, J., Jokipii, J., Messo, T., and Kuperman, A. (2014)
Dynamic characteristics of power electronic interfaces. IEEE J. Emerg. Sel. Top.
Power Electron., 2 (4), 949–961.



�

189

4

Dynamic Modeling of Current-Mode Control

4.1 Introduction

This chapter introduces the dynamic modeling of current-mode-controlled (CM) 
voltage-fed converters. The class of current-mode control includes peak current 
mode (PCM) control introduced in late 1970s [1], average current mode (ACM) 
control introduced in early 1990s [2], variable frequency PCM control (i.e., known 
also as self-oscillation control, boundary-mode control, critical-mode control, 
transition-mode control, etc.) [3], and hysteretic current-mode control [4,5]. 
Basically, the modeling of CM control requires developing proper duty ratio 
constraints, where the perturbed duty ratio is expressed as a function of other 
circuit variables being part of the duty-ratio generation [6]. The duty-ratio 
constraints are typically presented in the form 

n

^x̂c xi
i�1
 

where Fm denotes the duty-ratio gain, xc the new control variable, and qi the 
feedback or feedforward gain related to variable xi [6]. The modeling is simply 

^ �d Fm qi ; (4.1) 

carried out by substituting the perturbed duty ratio (d̂) in the DDR small-signal 
state space, as stated in Eq. (4.1) [7]. The CM transfer functions will be then 
obtained by proceeding as instructed in Section 2.4. It should be noted that the 
application of CM control would also change the corresponding converter to a 
current-output converter. This means that the open-loop converter cannot 
operate at constant current load, which is required for measuring the internal 
transfer functions for voltage-output converters. The best option is to use 
resistive load and solve the required transfer functions computationally applying 
the load interaction formulation introduced in Section 2.2.5 [8]. If the load effect 
is not removed, the transfer functions do not describe the internal dynamics at all. 
The second option is to use a constant voltage source or a storage battery as a 
load, and measure the transfer functions as is proper for a VF-CO converter. The 
required transfer functions can be then obtained by interchanging the output and 
input variable at the output terminal. This topic is shortly discussed in more detail 
in Chapter 5. The last section of this chapter discusses the usual validation 
methods of the PCM control, introduces shortly Dr. Ridley’s PCM models, and 
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verifies their accuracy for the basic second-order converters. In addition, the last 
section shows that the PCM models of this book can be made very accurate by 
means of a certain high-frequency extension as well. 

4.2 Peak Current Mode Control

The first attempt to model the dynamics of PCM-controlled converter was presented 
in Ref. [9] quite soon after the introduction of the control method [1]. After the first 
attempt, it was deduced that the sampling effect would produce the phenomenon 
noticed in the operation of the converter, that is, the subharmonic oscillation limiting 
the usable duty ratio to 50% without compensation [10]. After these first attempts, a 
multitude of modeling methods and models have been introduced. The methods 
presented in Refs [11–14] would actually explain the reason for the mode limit. The 
most elegant of these methods is presented in Ref. [14], which is also extended to 
cover the higher order converters [15,16] as well as operation in DCM [17]. The 
methods described in this book are based on Refs [14] and [17]. 

The PCM control is very popular both in the nonisolated and transformer-
isolated converters. The only exception where the PCM control cannot be used as 
such is the half-bridge-based capacitively coupled converters [18,19]. The capac
itively coupled half-bridge can be, however, modified by adding an extra primary 
side winding, which has the same number of turns as in the main primary side 
winding, to balancing the midpoint voltage of the capacitive voltage divider as 
shown in Figure 4.1. 

4.2.1 PCM Control Principles

Under PCM control, the on-time (ton) or duty ratio is generated by comparing the 
on-time inductor current and the control current (ico) (i.e., ico � vco =Rs in 
Figure 4.2, where Rs is the equivalent inductor current sensing resistor). In order 
to extend the duty ratio (d) beyond the mode limit of 50%, the control current has 
to be compensated by using an artificial ramp (Mc). In practice, the compensation 
ramp is added to the inductor current signal, but the analysis would be more 
convenient considering the compensation ramp to be subtracted from the control 
current, as depicted in Figure 4.2. The duty ratio (d) is established when the 
inductor current signal reaches the compensated control current (cf. Figure 4.2b). 

Figure 4.1 Adding a balancing primary side
winding for a capacitively coupled half-bridge
converter.
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Figure 4.2 PCM control principles. (a) Circuit schematics with a buck converter. (b) Duty-ratio
generation.

The state variables and contributors to the dynamic behavior of a converter are 
the time varying inductor currents, as discussed in Chapter 3. When the inductor 
currents are used to generate the duty ratio (cf. Figure 4.3), the desired feedback 
signals would be hiLiibut the real duty-ratio generation takes place as illustrated in 
Figure 4.2. According to Figure 4.3b, we can compute that at t � �k � d�T s, the 
following holds: 

n

hicoi �mcdT s � hiLii � ΔiL; (4.2) 
i�1 

where ΔiL denotes the difference between the peak inductor current feedback 
signal and its time-averaged value at t � �k � d�T s. Equation (4.2) is known as 
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Figure 4.3 Duty-ratio generation under PCM control with (a) single inductor current and (b)
multiple inductor currents.

comparator equation due to its physical realization, as shown in Figure 4.2a. This 
means that the duty-ratio constraints can be determined if ΔiL can be found. It 
would be obvious that ΔiL would be affected by the operation mode of the 
converter (i.e., CCM or DCM). 

4.2.2 Development of Duty-Ratio Constraints in CCM

In CCM, the time-averaged inductor current hiLi lies exactly in the inductor-
current ripple band. Its derivative can be approximated by means of the up and 
down slopes of the instantaneous inductor current, as given in Chapter 3. 
Therefore, we can express hiLi by 

dd´T shiLi � �dm1 � d´m2�t � �m1 �m2� � iL�kT s�; (4.3) 
2 

where iL�kT s� is the value of the time varying averaged inductor current in the 
beginning of the cycle (cf. Figure 4.3a). More detailed derivation of Eq. (4.3) can be 
found from Ref. [14]. The on-time instantaneous inductor current iL-on 
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(cf. Figure 4.3a) can be approximated by 

iL-on � m1t � iL�kT s�: (4.4) 

According to Figure 4.3a, ΔiL can be given by 

ΔiL � iL-on��k � d�T s� � hiL��k � d�T s�i; (4.5) 

yielding 

dd´T sΔiL � �m1 �m2�; (4.6)
2 

and the comparator equation as 

dd´T shicoi �McdT s � hiLi � �m1 �m2�; (4.7)
2 

when the compensation ramp is assumed to be constant. The corresponding 
duty-ratio constraints in Eq. (4.1) can be developed from Eq. (4.7) by substituting 
the up and down slopes with the topology-dependent values and linearizing the 
resulting comparator equation at the defined operating point. 

If several inductor currents constitute the feedback signal, the overall ΔiLΣ can 
be given by 

ndd´T s �m1i �m2i�; (4.8)ΔiLΣ �
2 i�1 

and the corresponding comparator equation by 

n dd´T shicoi �McdT s � hiLii � �m1i �m2i� : (4.9)
2i�1 

The comparator equation in Eq. (4.9) facilitates the modeling of the higher 
order converters, as will be demonstrated later in this chapter by presenting the 
modeling of the superbuck converter under PCM control based on the DDR state 
space given in Section 3.3.4. 

PCM control is also applied to control the transformer-isolated converters, 
where the inductor current feedback is usually taken from the primary side 
containing the secondary side reflected inductor current (iĹ) and the transformer 
magnetizing inductor current (iLM ), as depicted in Figure 4.4 in case of an active 
reset forward converter. Similar conditions also apply to the other transformer-
isolated converters, but the shape of magnetizing current can vary, and conse
quently, its effect on the duty ratio constraints may be different. It may be obvious 
that the magnetizing current would have similar effect as the artificial compen
sation ramp has. As a consequence, the comparator equation may be given by 

´kdT svinhicoi �mcdT s � � hiLi � ΔiL; (4.10)
LḾ 

´where vin and LḾdenote the corresponding values given at the secondary side, and 
k is the coefficient taking into account the shape of the magnetizing current (i.e., 
conventional forward converter: k � 1, active reset forward, full and half-bridge, 
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Figure 4.4 Active reset forward converter. (a) Schematics. (b) MOSFET current during the on-
time (dT s).

push–pull converters: k � 1=2). This means that the duty-ratio gain (Fm) and the 
input voltage feedforward gain (qin) would be changed compared to the corre
sponding basic converters. 

By linearizing the comparator equation in Eq. (4.9), we can compute the 
generalized duty-ratio gain to be 

1 
Fm � : (4.11) n

Mc � �D´ � D�� �M1i �M2i�=2�T s 
i�1 

It may be obvious that the duty ratio gain would become infinite when the duty 
ratio reaches the value: 

1 McDML � � ; (4.12) n2 �M1i �M2i�
i�1 

which defines the generalized mode limit (ML) for the PCM-controlled converter 
in CCM. It is obvious that the mode limit is 0.5 if the compensation is set to zero 
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(i.e., Mc � 0), as also has been observed in practice. Equation (4.12) also implies 
that the compensation ramp should be chosen according to 

n1 
Mc � �M1i �M2i�; (4.13)DML � 2 i�1 

for guaranteeing proper operation up to the chosen duty ratio (DML). 

4.2.3 Development of Duty-Ratio Constraints in DCM

The modeling of PCM control in DCM is the similar process as in CCM. The 
same comparator equation (4.2) applies, and the main task is to find a proper 
definition for hiLi. According to Figure 4.5, we can compute that at t � �k � d�T s 

m1d�d � d1�T sΔiL � m1dTs � ; (4.14)
2 

where the first term corresponds to the peak inductor current and the last term to 
the average inductor current. The unknown duty ratio (d1) can be solved from the 
equality dm1 � d1m2, which yields 

d1 � m1 
? d: (4.15) 

m2 

Substituting d1 in Eqs (4.11) with (4.12) yields 

m1�m1 �m2�d2T sΔiL � m1dTs � ; (4.16)
2m2 

and consequently, the comparator equation in Eq. (4.2) becomes as 

m1�m1 �m2�d2T shicoi �mcdT s � hiLi �m1dTs � : (4.17)
2m2 

The coefficients of the duty-ratio constraints in Eq. (4.1) can be solved from 
Eq. (4.14) by substituting the inductor-current slopes (i.e., m1 and m2) with their 

Figure 4.5 Inductor-current waveforms in DCM.
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topology-based values and linearizing the resulting comparator equation at the 
specific operating point. 

By linearizing the comparator equation in Eq. (4.17), we can compute the 
generalized duty-ratio gain of a second-order converter to be 

M1�M2 � �M1 �M2�D�Fm � 1 =� � T s Mc � : (4.18) 
M2 

It may be obvious that the duty ratio gain would become infinite, similarly as in 
CCM when the duty ratio reaches the value 

M2 M2McDML � � : (4.19) 
M1 �M2 M1�M1 �M2�

The first term in Eq. (4.19) defines actually the value of the duty ratio, where the 
converter enters into CCM mode of operation [6]. 

4.2.4 Origin and Consequences of Mode Limits in CCM and DCM

When the converter operates in CCM, we can compute according to the averaged 
comparator equation in Eq. (4.7) at steady state that the difference between the 
control current (Ico) and the averaged inductor current (IL) in terms of duty ratio 
(D) can be given by 

Ico � IL � � �M1 �M2�T s 

2 
?D2 � Mc �M1 �M2 

2 
T s ?D; (4.20) 

which has a minima according to 

�M1 �M2�T sMcT s Mc1 � � ; (4.21) jIco � IL jmin � 2 8 

at the duty ratio (D) 

1 Mc 

M1 �M2 

D � � : (4.22) 
2 M1 �M2 

The duty ratio  in  Eq. (4.22),  where the minima takes place,  is the same as obtained for  
the mode  limit in  Eq. (4.12). The parabola shape of  Eq. (4.20) dictates that the difference  
would decrease along  the increase in duty ratio  until the  mode  limit  in Eq.  (4.22) is  
reached. After that the difference should start increasing again, but it is physically 
impossible within a single cycle, because the difference should keep on decreasing 
along the increasing duty ratio. As a consequence, the converter is forced to enter into 
the second-harmonic mode of operation, where the difference naturally increases and 
a stable operating point would be found, as shown in Figure 4.6. The possible sub-
harmonic operation modes may exist at f =2n, where  f is the switching frequency s s 
and n � 1; 2; 3; . . . ; until the converter enters into chaotic operation mode [14]. 

Equation (4.20) may also be developed in terms of D as 

2�Ico � IL�2McD2 � 1 � D � � 0; (4.23) 
T s�M1 �M2�M1 �M2 
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Figure 4.6 Simulated inductor current waveforms in normal (solid line) and subharmonic
modes (second-harmonic: dashed line, fourth-harmonic: dash-dotted line) based on an
uncompensated buck converter.

having roots at 

1 Mc 1 Mc 
2 2�Ico � IL�D1;2 � � � � � : (4.24)

2 M1 �M2 2 M1 �M2 T s�M1 �M2�
If the difference in Eq. (4.24) is substituted with jIco � IL jminin Eq. (4.21), the 
quadratic equation in Eq. (4.23) would have a double root coinciding with 
Eq. (4.22), which means that the real-valued solution exists only up to the 
mode limit. Therefore, it is obvious that the averaged comparator equation in 
Eq. (4.9) and the small-signal duty ratio gain (Fm) in Eq. (4.11) correctly predict 
the existence as well as the value of duty ratio where it will take place. 

It is observed in practice that the inductor-current up (M1) and down (M2) 
slopes maintain certain relation in subharmonic mode, which is clearly visible in 
Figure 4.7 as well. The formula mathematically defining the relation can be 
derived as follows: The small-signal inductor current loop has infinite duty ratio 
gain (i.e., Fm � 1) at the mode limit. As a consequence, the perturbation in the 
inductor current would follow exactly the perturbation in the control current, 
which is zero at open loop. This means that the derivative of the time-averaged 
inductor current (hiLi) has to be zero, that is, 

dMLm1 � d´ (4.25)MLm2 � 0;

where dML equals Eq. (4.22). If substituting dML in Eq. (4.25) with Eq. (4.22), we get 

M2 � M1 � 2Mc; (4.26) 

which shows that the absolute values of the slopes are equal in an uncompensated 
(i.e., Mc � 0) converter, as Figure 4.7a also clearly shows. From Figure 4.7b, we 
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Figure 4.7 Inductor-current waveforms in second-harmonic mode. (a) Measured inductor
current without compensation. (b) Simulated inductor current with certain amount of
compensation.

may compute that 

�M1 �Mc�D1 � M2D´
2 �McD2;

(4.27) �M1 �Mc�D2 � M2D´
1 �McD1;

which yields the average duty ratio (Dav) as  

D1 � D2 M2Dav � � : (4.28) 
2 M1 �M2 

If we denote M � V o =V in and consider the ideal basic converts, then by 
applying Eq. (4.28) we will get M � Dav for a buck converter, M � 1=D´ for a av 
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´boost converter, and M � Dav =D for a buck–boost converter, which are similar av 
to the ideal modulos (i.e., M�D�) defined for the converters in Ref. [20]. The 
average duty ratio in Eq. (4.28) can be shown to equal the mode-limit duty ratio in 
Eq. (4.12) by substituting M2 in Eq. (4.28) with Eq. (4.26) and applying some 
mathematical manipulation. This means, in practice, that the converter is not 
anymore controllable, because the average duty ratio cannot be changed. 

When the converter operates in DCM, the comparator equation in Eq. (4.17) 
may also be presented at steady, when the compensation is set to zero, by 

M1�M1 �M2�T sIco � IL � � D2 �M1T sD: (4.29)
2M2 

Equation (4.29) is a similar quadratic equation as in CCM (i.e., Eq. (4.20)), which 
dictates that the difference (Ico � IL) shall decrease along the increase in the duty 
ratio until the minimum value 

M1M2T sjIco � IL jmin � ; (4.30)
2�M1 �M2�

is reached. The corresponding mode-limit duty ratio (DML) is  

M2DML � ; (4.31)
M1 �M2 

which is known to define the mode limit between DCM and CCM operation as 
already discussed. The averaged comparator equation can also be developed in 
terms of duty ratio as 

2M2 2M2�Ico � IL�D2 � D � � 0: (4.32)
M1 �M2 T sM1�M1 �M2�

It may be obvious that Eq. (4.32) has a real-valued solution only up to the duty 
ratio corresponding to Eq. (4.31). 

The steady-state comparator equation in Eq. (4.17) can also be developed in 
terms of the input-to-output relation (M), when taking into account that D �p p
M KM=1 �pM for a buck converter, D � KM�M � 1� for a boost converter, 
and D � M K for a buck–boost converter. This procedure yields for a buck 
converter 

2
IcoRLeq
M3 �M2 � K � 0; (4.33)
V in 

for a boost converter 

2K IcoRLeqM2 �M � � 0; (4.34)
2V in 

and for a buck–boost converter 
p
K ? IcoM � ; (4.35)
2V in 

where RLeq � V o =Io:
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Equation (4.33) can be developed further yielding 

2 22 3IcoRLeqM � M � � 0; (4.36) 
3 4V in 

which shows that there exist a double root at M � 2=3, which means that there are 
no real-valued solutions for M after M � 2=3 at open loop, as also discussed in 
Ref. [18]. It can be, however, proved theoretically that the mode limit M � 2=3 
exists only at open loop: According to the inductor current waveforms (cf.p
Figure 4.5, Mc � 0), we can compute substituting D with M K=�1 �M� andp
D1 with K �1 �M� that a real-valued solution for the control current can always 
be found as 

2V o 1 � �V o =V in�Ico � ; (4.37) 
KRLeq 

when the feedback loop is closed. This proves that the corresponding mode limit 
does not exist under feedback control. 

Figure 4.8 shows the simulated inductor current waveforms of an 
uncompensated buck converter having K � 0:45 (i.e., L � 9 μH, Req � 4 Ω, 
f � 100 kHz); the subharmonic operation would also take place in DCM. s 
The possible subharmonic frequencies are all the even and odd harmonics of 
switching frequency. It is obvious that there is not such a need in DCM as in CCM 
to compensate the inductor current loop, because the design of the converter 
would be such that the mode limit does not exist in the targeted operation range 
of the converter. 

Figure 4.8 Simulated inductor-current waveforms in subharmonic modes in a DCM buck
converter (basic switching frequency: solid line, second-harmonic: dashed line, third-harmonic:
dash-dotted line).
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4.2.5 Duty-Ratio Constraints in CCM

The duty-ratio constraints in Eq. (4.1) can be given for the second-order converters 
in the form of 

d � Fm�ico � qLiL � qCvC � qinvin � qioiô^^^^^ �; (4.38) 

by means of which the perturbed duty ratio in the corresponding DDR state space 
will be replaced, and the corresponding PCM transfer functions can be solved 
from the PCM state space. The transfer functions can also be found by utilizing 
the open-loop control engineering block diagrams [6]. For that purpose, the duty-
ratio constraints would be presented in the form of 

d � Fm�ico � qLiL � qinvin � q vo^^^^^ �: (4.39)o 

^^^

For the fourth-order converters, the duty-ratio constraints for the state-space 
application can be given as 

^d � Fm�ico � qL1iL1 � qL2iL2 � qC1vC1 � qC2vC2 � qinvin � qioio^^^^ �; (4.40) 

^

and for the control engineering block diagram application as 

vo^^d � Fm�ico � qL1iL1 � qL2iL2 � qinvin � qo 
^

4.2.5.1 Buck Converter

^^ �: (4.41) 

The power stage of the buck converter is given in Figure 3.6. The locally averaged 
inductor-current slopes are given in Eqs (3.12–3.14). Applying the given infor
mation, the comparator equation in (4.7) can be given by 

dd´T shicoi �McdT s � hiLi � �hvini � �rds2 � rds1�hiLi�;2L (4.42)
dd´T shicoi �McdT s � hiLi � �hvini � VD � �rd � rds1�hiLi�:2L

The duty-ratio constraints in Eqs (4.38) and (4.39) can be equally obtained from Eq. 
(4.42) by linearizing the given equations at a certain operating point, which yields 

�D´ � D�V eFm � 1= T s�Mc � � ;
2L

DD´T s DD´T s qL � 1 � �rds2 � rds1 �;  or 1 � �rd � rds1 �;2L 2L (4.43)
qC � 0;

DD´T s
� ;qin 2L
� 0;qio 

where V e is defined in Section 3.4.1. 

4.2.5.2 Boost Converter
The power stage of the buck converter is given in Figure 3.8. The locally averaged 
inductor-current slopes are given in Eqs. (3.17–3.19). Applying the given 
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information, the comparator equation in Eq. (4.7) can be given for the state-space 
application by 

dd´T shicoi �McdT s � hiLi � �hvCi � �rds2 � rC � rds1�hiLi � rChioi�;2L
dd´T shicoi �McdT s � hiLi � �hvCi � VD � �rd � rC � rds1�hiLi � rChioi�;2L

(4.44) 

and for the control block diagram application by 

dd´T shicoi �McdT s � hiLi � �hvoi � �rds2 � rds1�hiLi�;2L (4.45) 
dd´T shicoi �McdT s � hiLi � �hvoi � VD � �rd � rds1�hiLi�:2L

The duty-ratio constraints in Eq. (4.38) can be obtained from Eq. (4.44) by 
linearizing the given equations at a certain operating point, which yields 

�D´ � D�V eFm � 1= T s�Mc � 2L
� ;

DD´T s DD´T s qL � 1 � �rds2 � rC � rds1� or 1 � �rd � rC � rds1�;2L 2L
DD´T s (4.46) 

qC � ;
2L

� 0;qin
 

DD´T s
� � rC;qio 2L

where V e is defined in Section 3.4.2. 
The duty-ratio constraints in Eq. (4.39) can be obtained from Eq. (4.45) by 

linearizing the given equations at a certain operating point, which yields 

�D´ � D��V o � �rds2 � rds1�IL�Fm � 1= T s�Mc � �
2L

or
 
�D´ � D��V o � VD � �rd � rds1�IL�Fm � 1= T s�Mc � 2L

� ;

(4.47) 
DD´T s DD´T s qL � 1 � �rds2 � rds1� or 1 � �rd � rds1�;2L 2L

� 0;qin
 

DD´T s
 
:qio � 2L

4.2.5.3 Buck–Boost Converter
The power stage of the buck converter is given in Figure 3.10. The locally averaged 
inductor-current slopes are given in Eqs. (3.22–3.26). Applying the given 
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information, the comparator equation in Eq. (4.7) can be given for the state-space 
application by 

dd´T shicoi�McdT s �hiLi� �hvini� hvCi� �rds2 � rC � rds1�hiLi� rChioi�;2L
dd´T shicoi�McdT s �hiLi� �hvini� hvCi�VD � �rd � rC � rds1�hiLi� rChioi�;2L

(4.48) 

and for the control block diagram application by 

dd´T shicoi �McdT s � hiLi � �hvini � hvoi � �rds2 � rds1�hiLi�;2L
dd´T shicoi �McdT s � hiLi � �hvini � hvoi � VD � �rd � rds1�hiLi�:2L

(4.49) 

The duty-ratio constraints in Eq. (4.38) can be obtained from Eq. (4.48) by 
linearizing the given equations at a certain operating point, which yields 

�D´ � D�V eFm � 1= T s�Mc � � ;
2L

DD´T s DD´T s qL � 1 � �rds2 � rC � rds1� or 1 � �rd � rC � rds1�;2L 2L
DD´T s
 (4.50)qC � ;

2L
DD´T s
� ;qin 2L
DD´T s
� � rC;qio 2L

where V e is defined in Section 3.4.3. 
The duty-ratio constraints in Eq. (4.39) can be obtained from Eq. (4.49) by 

linearizing the given equations at a certain operating point, which yields 

�D´ � D��V in � V o � �rds2 � rds1�IL�Fm � 1= T s Mc � 2L
or 


�D´ � D��V in � V o � VD � �rd � rds1�IL�Fm � 1= T s Mc � ;
2L

DD´T s DD´T s (4.51) 
qL � 1 � �rds2 � rds1� or 1 � �rd � rds1�;2L 2L

DD´T s
� ;qin 2L
DD´T s
� :qio 2L
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4.2.5.4 Superbuck Converter
The power stage of the buck converter is given in Fig. 3.13. The locally averaged 
inductor-current slopes are given in Eqs (3.29) and (3.30). Applying the given 
information, the comparator equation in Eq. (4.9) can be given for the state-space 
application by 

dd´T s hv1i hv2ihicoi �McdT s � hiL1i � hiL2i � � ; (4.52) 
2 L1 L2 

where hv1i and hv2i are defined as 

hv1i � hvC1i � VD � �rC1 � rd � rds�hiL1i � �rd � rds�hiL2i;
(4.53) hv2i � hvC1i � VD � �rd � rds�hiL1i � �rd � rC1 � rds�hiL2i:

The duty-ratio constraints in Eq. (4.40) can be obtained from Eq. (4.52) by 
linearizing the given equations at a certain operating point, which yields 

Fm � T s Mc � D´ � D
2 

V 1 

L1 
� V 2

L2 
;

� 1 � DD´T s 

2 
rC1 � rd � rds 

L1 
� rd � rds

L2 

� 1 � DD´T s rd � rds �
2 L1 L2 

rd � rC1 � rds

DD´T s L1L2 
?

1=

;qL1 

;qL2 

(4.54) � ;qC1 2 L1 � L2 

� 0;qC2 

� 0;qin 

� 0;qio 

V 1 � V in � VD � �rd � rds � DrC1 � DrL1 � D´rL2�Io;

V 2 � V 1 � rC1Io:

The formula of the duty-ratio gain (Fm) in Eq. (4.54) indicates that Fm would 
become infinite when the mode-limit duty ratio (DML) is reached 

1 
DML � �McL1L2=�L2V 1 � L1V 2�: (4.55) 

2 

When the duty ratio exceeds the mode limit value, the converter will enter into 
the second-harmonic mode of operation, similar to the conventional buck 
converter. In order to ensure proper operation of the converter up to the desired 
mode limit, the compensation shall be designed as 

1 V 1 V 2Mc � � : (4.56) DML � 2 L1 L2 
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4.2.5.5 Coupled-Inductor Superbuck Converter
We assume that the coupling of the inductors are carried out by minimizing the p
input current ripple, as described in Section 3.4.5 (i.e., M � L2 and k � L2=L1). 
The coupling of the inductors naturally affects the up (m1i) and down (m2i) slopes 
of the inductor currents. By applying the algorithm presented in Section 2.4.3 
(Eq. (2.85)), ΔiLcan be given by 

dd´T s rd � rds rL2 � rd � rds hvC1i � VD 
: (4.57)ΔiL � hiL1i � hiL2i �2 L2 L2 L2 

The duty-ratio constraints can be found by linearizing the comparator equation 

hicoi �McdT s � hiL1i � hiL2i � ΔiL; (4.58) 

which yields 

D´ � D
Fm � 1= T s Mc � �V in � VD � �rd � rds � DrL1 � 2D´rL2�Io ;

2L2 

DD´T s qL1 � 1 � �rd � rds�;2L2
 

DD´T s
 qL2 � 1 � �rd � rds � rL2�;2L2
 

DD´T s
 
;qC1 � 2L2
 

� 0;qC2 

� 0;qin 

� 0:qio 

(4.59) 

The coupling also affects the duty ratio at the mode limit, where the converter 
would enter into the second-harmonic mode of operation, and its compensation 
as 

1 L2McDML � � ;
2 V in � VD � �rd � rds � DrL1 � 2D´rL2�Io 

(4.60)
1 V in � VD � �rd � rds � DrL1 � 2D´rL2�IoMc � :DML � 2 L2 

4.2.6 Duty-Ratio Constraints in DCM

The DCM duty-ratio constraints are given only for the buck, boost, and buck–
boost converters. 

4.2.6.1 Buck Converter
The inductor-current up slope is m1 � �hvini � hvoi�=L and the down slope 
m2 � hvoi=L. As a consequence, the averaged comparator equation can be 
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given by 

�hvini � hvoi�dT s �hvini � hvoi�hvinid2T shicoi �McdT s � hiLi � � ;
L 2Lhvoi

(4.61) 

and the corresponding small-signal duty-ratio-constraints coefficients by 

V in�1 �M��M � D�
Fm � 1= T s Mc � ;

LM

qL � 1;

DT s
 (4.62) D
qC � � 1 ;

2M2L

DT s �2 �M�D
1 � ;qin � L 2M

where M � V o =V in. 

4.2.6.2 Boost Converter
The inductor-current up slope is m1 � hvini=L and the down slope m2 ��hvoi � hvini�=L. As a consequence, the averaged comparator equation can be 
given by 

hvinidT s hvinihvoid2T shicoi �McdT s � hiLi � � ; (4.63) 
L 2L�hvoi � hV ini�

and the corresponding small-signal duty-ratio-constraints coefficients by 

V in�D´M � 1�
Fm � 1= T s Mc � ;

L�M � 1�
qL � 1;

D2T s
 (4.64) 
qC � ;

2L�M � 1�2
 

DT s
 DM2 

1 � ;qin � L 2�M � 1�
where M � V o =V in. 

4.2.6.3 Buck–Boost Converter
The inductor-current up slope is m1 � hvini=L and the down slope m2 � hvoi=L. 
As a consequence, the averaged comparator equation can be given by 

hvinidT s hvini�hvini � hvoi�d2T shicoi �McdT s � hiLi � � ; (4.65) 
L 2Lhvoi
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and the corresponding small-signal duty-ratio-constraints coefficients by 

V in�D´M � D�
Fm � 1= T s Mc � ;

LM

qL � 1;

D2T s (4.66) 
qC � 2LM2 ;

DT s
 D�2 �M�
1 � ;qin � L 2M

where M � V o =V in. 

4.2.7 General PCM Transfer Functions in CCM

The general PCM transfer functions, which are valid for a buck, boost, and buck–
boost converters in CCM, can be derived based on the duty-ratio-constraints 
coefficients corresponding to Eq. (4.39), the coefficients A and B (i.e., buck: A � 1, 
B � 0; boost and buck–boost: A � D´, B � IL), the corresponding DDR transfer 
functions, and the block diagrams given in Figure 4.9. As a consequence, the 
general transfer functions can be given by 

� �qL =AZC� GDDR GDDRqFm o io-o � qin ci-o� YDDR ;Y in-o in-o � 1 � Lc � Lv 

� �qL =AZC� ZDDR � �qL =A� GDDRqFm o o-o ci-o� TDDR ;Toi-o oi-o � 1 � Lc � Lv 

GDDRFm ci-o Gci-o � ;
1 � Lc � Lv (4.67)
1 � �BFmqL =A� GDDR � FmqinG

DDR 
io-o co-o ;Gio-o � 1 � Lc � Lv 

1 � �BFmqL =A� ZDDR � �FmqL =A�GDDR 
o-o co-o ;Zo-o �

1 � Lc � Lv 

GDDRFm co-oGco-o � ;
1 � Lc � Lv 

where ZC denotes the impedance of the output capacitor and Lc and Lv denotes the 
internal inductor-current-loop gain and output-voltage-loop gain, respectively: 

� FmqLG
DDRLc cL-o ; (4.68) 

GDDRLv � Fmq :o co-o 

GDDR 
cL-o in (4.68) denotes the control-to-inductor-current transfer function of the 

corresponding DDR-controlled converter. 
The general transfer functions are actually very useful for the following reasons: 

1) If the DDR control-to-output or control-to-input transfer function (GDDR orco-o 
GDDR 

ci-o ) contains an RHP zero, then the same zero also exists in the PCM 
converter with the same control bandwidth limitations. 
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Figure 4.9 Block diagrams for computing the generalized PCM transfer functions for the basic
converters. (a) Input dynamics. (b) Output dynamics.

2) If qin � 0, then the input-to-output transfer function (Gio-o) cannot be nullified 
by means of the artificial inductor-current compensation. 

� GDDR GDDR 
io-o ci-o3) If Gio-o can be nullified, then Y in-o � Y in-c � Y in-sco � Y in�1 � YDDR 
GDDR .in-o 

co-o 

4) We can also verify that the set of special ideal transfer functions derived for the 
DDR-controlled converters is also valid for the corresponding PCM-con
trolled converters: 



 

� �

�
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GDDR 
io-o G

DDR 

Y PCM � YDDR ci-o � ;in�1 in-o GDDR
 
co-o
 

TDDR
 
oi-o G

DDR 

ZPCM � ZDDR co-o� ;o�1 o-o GDDR 
ci-o (4.69)

ZDDRGDDR 

TPCM � TDDR o-o ci-o � ;oi�1 oi-o GDDR
 
co-o
 

YDDR
 

GPCM � GDDR co-o� in-o G
DDR 

:io�1 io-o GDDR
 
ci-o
 

4.2.8 PCM State Spaces and Transfer Functions in CCM

As stated in the beginning of the chapter, the PCM state spaces can be obtained 
from the corresponding DDR state spaces derived in Chapter 3 by substituting 

^

d) in them with the defined duty ratio constraints given 
in Section 4.2.5 (i.e., the state-space application-specific constraints). 

4.2.8.1 Buck Converter
The linearized state space of the DDR-controlled converter is given in Section 

^

d) with the derived duty-

the perturbed duty ratio (

3.4.1 (Eq. (3.37)). Substituting the perturbed duty ratio (
ratio constraints 

^

^

^^îco
d � Fm� � qLiL � qinvin�;
�D´ � D�V e
Fm � 1= T s Mc � ;

2L

^

(4.70)DD´T s DD´T s qL � 1 � �rds2 � rds1� or 1 � �rd � rds1�;2L 2L
DD´T s
� ;qin 2L

yields the PCM small-signal state space as 

vin 

io 

d̂iL re �FmV eqL 1 D�Fm rC FmV eV eqin 

îco 

v̂in 

îo 

^

^

iLL L L L Ldt � �
dvC 

;
1 1 
C Cdt

v̂C0 0 0 

îco 

^

^

iL � �
vC 

�D�FmILqL 0
îin 

v̂o 

�FmILqin 0 FmIL 

0 0 0 
;d 

1 � rCC0 
dt

(4.71) 

where re and V e are defined in Section 3.4.1 (Eqs (3.38) and (3.39)). Applying 
Laplace transformation and matrix algebra to Eq. (4.71), the input dynamics can 
be given by 
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=L�D � FmV eqin��D � FmILqL�sY in-o � � FmqinIL;Δ
�D � FmILqL��1 � srCC�ΔToi-o � ; (4.72) 

LC
FmV e�D � FmILqL�s =L � FmIL;Gci-o �

Δ
and the output dynamics by 

�D � FmV eqin��1 � srCC�ΔGio-o � ;
LC

�re � rC � FmV eqL � sL��1 � srCC�� ; (4.73) ΔZo-o LC
FmV e�1 � srCC�ΔGco-o � ;

LC

where the denominator (Δ) is  defined by 

re � FmV eqL 1
Δ � s2 � s ? � : (4.74) 

L LC

As stated earlier, the ideal special transfer functions equal the corresponding 
DDR transfer functions defined in Section 3.4.1 (Eq. (3.41)). The input admittance 
at short-circuited output (Y in-sco), and the output impedance at open-circuit input 
(Zo-oci) can be given by 

�D� FmV eqin��D� FmIoqL�Y in-sco � � FmIoqin;sL� FmV eqL � re � rC
D�FmqLIo �D� � Fmqin�DV e � �re � rC�Io�s� �1 � srCC�1 LFmqinILZo � ? ;o-oci D�FmqLIo �D� � Fmqin�DV e � reIo� 1C
s2 � s �

LFmqinIL LC

Zo-cZc � Y in-sco:o-oci Y in-c 

(4.75) 

The optimal compensation of a PCM-controlled buck converter [20] is usually 
such that the input-to-output transfer function (Gio-o) is nullified. According to 
Eq. (4.73), this means that D � FmV eqin � 0. According to this condition, the 
optimal compensation (Mc-opt) would be 

DV e V oMc-opt � � : (4.76) 
2L 2L

The optimal compensation does not necessarily ensure the operation of the 
converter up to the duty ratio of 100% in transient conditions, where dV e does not 
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equal V o. In order to avoid the converter to enter into the second-harmonic 
mode, the compensation should be designed by 

V e V inMc-100% � � ; (4.77)
2L 2L

but such a fixed compensation is not easy to provide due to the varying input 
voltage. The entering into the second-harmonic mode will just limit the 
dynamics of the converter but is not otherwise harmful to the converter 
operation. 

When the optimal compensation is applied in a buck converter, the input 
admittance (Y in-o) and the short-circuit input admittance (Y in-sco) would equal 
�DIo =V e (i.e., Y in-1) as well as the DC gain of the control-to-output transfer 
function (Gco-o) would equal 2L=T s =D´ (i.e., will increase when the input voltage 
decreases), as can be deduced based on Eqs. (4.72–4.73) and (4.75). 

It is well known [6] that the poles of the PCM-controlled converter are well 
separated due to high damping, which can be theoretically addressed to the 
lossless resistor (FmV eqL) connected in series with the inductor (cf. Zo-o in 
Eq. (4.73)). Therefore, the low- (ωp-low) and high-frequency (ωp-high) poles can be 
approximated by 

1 T sD´
ωp-low � � ;

FmV inC 2LC
(4.78)

FmV in 2
 
ωp-high � L

�
T sD´ :

The last terms in Eq. (4.78) correspond to the optimally compensated converter. 
The behavior of the low-frequency pole means that the output-voltage-loop 
crossover frequency does not change when the input voltage changes, which is 
quite different to what takes place in a DDR-controlled buck converter. 

If the converter control-to-output transfer function (Gco-o) is measured by 
using a resistive load, its dynamic behavior would be highly dominated by the load 
resistor as 

FmV in�1 � srCC�Gco-o � : (4.79)FmV in s2LC � sFmV inC �
RL 

According to Eq. (4.79), we can conclude that the low-frequency pole 
ωp-low � 1=RLC, the low-frequency gain Gco-o�DC� � RL, and only the high-
frequency pole is not affected (i.e., ωp-high � FmV in=L). Therefore, it is extremely 
important to remove the load effect when using the transfer functions for control 
design and other purposes. 

4.2.8.2 Boost Converter
The linearized state space of the DDR-controlled converter is given in Section 
3.4.2 (Eq. (3.47)). Substituting the perturbed duty ratio (d̂) with the derived duty-
ratio constraints 
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^ ^ ^ ^d � Fm�ico � qLiL � qC ̂vC � qioio�;�D´ � D�V eFm � 1= T s�Mc � � ;
2L

DD´T s DD´T s qL � 1 � �rds2 � rC � rds1� or 1 � �rd � rC � rds1�;2L 2L (4.80) 
DD´T s qC � ;

2L� 0;qin
 

DD´T s
� � rC;qio 2L

yields the PCM small-signal state space as 

d̂iL � re � FmV eqL �D´ � FmV eqC 
îLL Ldt �

D´ � FmILqL FmILqCdv̂C v̂C 

dt C C
D´rC � FmV eqio v̂in1 FmV eL

^ ; (4.81) � L L L io 

1 � FmILqio FmIL ^0 � � ico
C C

v̂in1 0 ^^ 0 0 0iLiin ^� � ;iod 
0 1  � rCCv̂o 0 0 0v̂Cdt îco 

where re and V e are defined in Section 3.4.2 (Eqs. (3.50) and (3.51)). Applying 
Laplace transformation and matrix algebra to Eq. (4.81), the input dynamics can 
be given by 

1 FmILqC
ΔY in-o � s � ;
C

D´
L

�D´ � FmV eqC�LrC � FmV eqio s � ; (4.82) ΔToi-o � D´L � rC � FmV eqio�C
FmV e D´IL
ΔGci-o � s � ;
L CV e 

and the output dynamics by 

�D´ � FmILqL�ΔGio-o � �1 � srCC�;LC
�1 � Fm
ILqio� re �D´2rC � FmV e�qL �D´qio� � FmIL�qiore � qLD

´rC� � sLΔZo-o � LC 1 � FmILqio �1 � srCC�;
Fm�D´V e � ILre� LILΔGco-o � �1 � s ��1 � srCC�;LC DV e � ILre 

(4.83) 
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where the denominator (Δ) is defined by 

D´2 �D´Fm�V eqC � ILqL��FmILqCrere �FmV eqL FmILqCΔ� s2 � s? � :
L C LC

(4.84) 

As stated earlier, the ideal special transfer functions equal the corresponding 
DDR transfer functions defined in Section 3.4.2 (Eq. (3.53)). The input admittance 
at short-circuited output (Y in-sco) and the output impedance at open-circuit input 
(Zo-oci) can be given by 

� D´2re rC � FmV e�qL � D´qio� � FmIL�qiore � qLD
´rC�Y in-sco � 1= sL � ;

1 � FmILqio 

�1 � FmqinIL��1 � srCC�Zo � ;o-oci sC � FmqinIL 

Zo-c Zc � Y in-sco:o-oci Y in-c 

(4.85) 

In a PCM-controlled boost converter, similar optimal compensation scheme as 
in the buck converter does not exist. The compensation should be carried out by 
providing the duty ratio range of 100% by designing Mc-100% as 

V e V oMc-100% � � : (4.86)
2L 2L

The same RHP zero in the control-to-output transfer function (Gco-o) as in the 
DDR-controlled boost converter clearly exists according to Eq. (4.83). Its low-
frequency gain Gco-o�DC� � L=T s =D´2 is highly dependent on the duty ratio, 
when the compensation in Eq. (4.86) is applied. The poles of the transfer functions 
are also highly separated for the similar reason as in a buck converter (i.e., lossless 
resistor FmV eqL), and can be approximated by 

D´2 T sD´3
 

ωp-low � � ;
FmV oC LC (4.87)
FmV o 1
 

ωp-high � L
�
T sD´ ;

where the last terms correspond to the compensated converter (i.e., Eq. (4.86)). 
Similarly as in the buck converter, the use of resistive load for characterizing the 
converter dynamics would yield highly load-dominated transfer functions, which 
do not characterize the converter dynamics at all. 

4.2.8.3 Buck–Boost Converter
The linearized state space of the DDR-controlled converter is given in Section 
3.4.3 (Eq. (3.60)). Substituting the perturbed duty ratio (d̂) with the derived 
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duty-ratio constraints 

^ ^ ^ ^d � Fm�ico � qLiL � qC ̂vC � qin ̂vin � qioio�;
�D´ � D�V e
Fm � 1= T s Mc � ;

2L
DD´T s DD´T s qL � 1 � �rds2 � rC � rds1� or 1 � �rd � rC � rds1�;2L 2L

(4.88) DD´T s qC � ;
2L

DD´T s
 
;qin � 2L

DD´T s
� � rC;qio 2L

yields the PCM small-signal state space as
 

d̂iL � re � FmV eqL �D´ � FmV eqC 
îLL Ldt �

D´ � FmILqL FmILqCdv̂C v̂C 

dt C C

D´ FmV eD � FmV eqin rC � FmV eqio v̂in=L
L L L

^� ;io 
FmILqin 1 � FmILqio FmIL 

îcoC C C
D � FmILqL �FmILqC^ îLiin � d 

0	 1 � rCCv̂o v̂Cdt
v̂in �FmILqin �FmILqio FmIL 
^� ;io 

0 0 0 
îco 

(4.89) 

where re and V e are defined in Section 3.4.3  (Eqs. (3.65–3.67)). Applying Laplace
transformation and matrix algebra to Eq. (4.89), the output dynamics can be given by 

FmILqin D�D´ � FmILqL� � Fmqin�reIL �D´Ve�ΔGio-o � �s� ��1 � srCC�;C LFmILqin 

re �D´2rC � FmV eqL � Fm�qio �D´V e � reIL� � qLILD´rC� � sL
�1 � FmILqio�ΔZo-o � 1 � F sp spLC m ILqio 

�1 � srCC�;
LILΔGco-o � Fm�D´V e � reIL� 1 � s ? �1 � srCC� =LC;

D´V e � reIL 

(4.90) 
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where the denominator (Δ) is defined by 

D´2 �D´Fm�V eqC � ILqL��FmILqCre�re �FmV eqL FmILqCΔ� s2 � s � :
L C LC

(4.91) 

The transfer functions corresponding to the input dynamics are extremely long 
and complicated. Therefore, they are not given explicitly here but they can be 
solved from the given state space in Eq. (4.87). 

The ideal special transfer functions equal the corresponding transfer functions 
of the DDR-controlled converter given in Section 3.4.3 (Eq. (3.69)). The short-
circuit input admittance (Y in-sco) and the open-circuit output impedance (Zo-oci) 
can be computed based on the transfer functions given in Eqs (4.89) and (4.90) 
applying their definitions given explicitly in Section 3.4 (Eq. (3.32)), but the 
resulting symbolic transfer functions are extremely long and, therefore, they are 
not given here. 

In a PCM-controlled buck–boost converter, similar optimal compensation 
scheme as in the buck converter does not exist. The compensation should 
be carried out by providing the duty ratio range of 100% by designing Mc-100%

as 

V e V in � V oMc-100% � � ; (4.92) 
2L 2L

which is difficult to implement perfectly because of its dependence on the varying 
input voltage. 

The same RHP zero in the control-to-output transfer function (Gco-o) as  
in the DDR-controlled boost converter clearly exists according to Eq. (4.90). 
The poles of the transfer functions are also highly separated for the similar 
reason as in a buck converter (i.e., lossless resistorFmV eqL), and can be 
approximated by 

D´2
 

ωp-low � ;
Fm�V in � V o�C (4.93) 
Fm�V in � V o�ωp-high � L

:

Similarly as in the buck converter, the use of resistive load for characterizing the 
converter dynamics would yield highly load-dominated transfer functions, which 
do not characterize the converter dynamics at all. 

4.2.8.4 Superbuck Converter
The linearized state space of the DDR-controlled converter is given in Section 
3.4.4 (Eq. (3.76)). Substituting the perturbed duty ratio (d̂) with the derived duty-
ratio constraints 
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^ ^ ^ ^d � Fm�ico � qL1iL1 � qL2iL2 � qC1 ̂vC1�;
D´ � D V 1 V 2Fm � 1= T s Mc � � ;

2 L1 L2 

DD´T s rC1 � rd � rds rd � rds� 1 � � ;qL1 2 L1 L2 

DD´T s rd � rds rd � rC1 � rds� 1 � � ;qL2 2 L1 L2 (4.94) 
DD´T s 1 1� ;qC1 � 2 L1 L2 � 0;qC2 

� 0;qin 

� 0;qio
 

V 1 � V in � VD � �rd � rds � DrC1 � DrL1 � D´rL2�Io;

V 2 � V 1 � rC1Io;

yields the PCM small-signal state space as 

d̂ �re1 �FmqL1V e1 �re2 �FmqL2V e1 �D´ �FmqC1V e1 � 1iL1 

dt

d̂iL2 

dt

dv̂C1 

dt

dv̂C2 

dt

�

îin 

�

1 
L1 

0 

0 

0 

L1 L1 L1 L1 

re2 �FmqL1V e2 re3 �FmqL2V e2 D�FmqC1V e2 1 
L2 L2 L2 L2 

D´ �FmqL1Io D�FmqL2Io FmqC1Io� 0 
C1 C1 

1 
0 0 

C2 

v̂in 

^ ;io 

îco 

îL1 

îL2 

v̂C1 

v̂C2 

�
0 0 0 1�rC2C2v̂o 

C1 

1 
C2 

rC2 FmV e1 

L1 L1 

rC2 FmV e2 

L2 L2 

FmIo0 �
C1 

1� 0 
C2 

1 0 0  0  

d 
dt

îL1 
v̂in 

^ 0 0 0iL2 ^� ;io 
0 0 0v̂C1 

îco 
v̂C2 

(4.95) 

where re1 and V e1 are defined in Section  3.4.4 (Eq. (3.77)). Applying  Laplace
transformation and matrix algebra to Eq. (4.95), the input dynamics can be 
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given by 

1 ��C22 Fm�V e2C1 � IoqC1L2� C1 � D�D � Fm�V e2qC1 � Io FmIoqC1s3 � s � s � ;ΔY in-o � L1 L2C1 L2C1 L2C1C2 

1 Fm��V e2 � V e1�C1 � IoqC1L2� D � Fm��V e1 � V e2�qC1 � Io�s2 � s � ;ΔToi-o � L1C2 L2C1 L2C1 

D´Io �V e1 � V e2�C1 � �D2V e1 � DD´V e2�C2 IoFmV e1 s3 � s2 � s � ;ΔGci-o � L1 V e1C1 V e1L2C1C2 V e1L2C1C2 

(4.96) 

and the output dynamics by 

1 FmIoqC1 D � FmV e2qC1s2 � s � ;ΔGio-o � L1C2 C1 L2C1 

1 2 Fm��V e2L1 � V e1L2�C1 � IoqC1L1L2�ΔZo-o � �s3 � s
C2 L1L2C1 

D2L1 � D´2L2 � Fm�qC1�V e1D´L2 � V e2DL1� � Io�D´L2 � DL1��� s (4.97)
L1L2C1 

Fm�DV e1 � D´V e2�� �;
L1L2C1 

�D´L2 � DL1�Io DV e1 � D´V e2ΔGco-o � Fm�V e1L2 � V e2L1� s2 � s � ;
L1L2C2 �V e1L2 � V e2L1�C1 �V e1L2 � V e2L1�C1 

where the denominator (Δ) is defined by 

Fm��V e1L2 � V e2L1�C1 � IoqC1L1L2�Δ � s4 � s3 

L1L2C1 

�s2 �L1 � L2��C1 � D´2C2� � Fm�qC1�V e1D´L2 � V e2DL1� � Io�D´L2 � DL1��C2 

L1L2C1C2 

Fm��DV e1 � D´V e2�C2 � IoqC1�L1 � L2�� 1 � FmqC1�V e1 � V e2��s � :
L1L2C1C2 L1L2C1C2 

(4.98) 

The parasitic elements are neglected in Eqs (4.96)–(4.98) for reducing the com
plexity and boosting their information content. The state space in Eq. (4.95) 
contains, however, all the parasitic elements, and by means of it the corresponding 
transfer functions, including all the parasitic elements can be solved by applying a 
proper software package such as MatlabTM Symbolic Toolbox. 

The ideal special transfer functions equal the corresponding transfer functions 
of the DDR-controlled converter given in Section 3.4.4 (Eq. (3.84)). The short-
circuit input admittance (Y in-sco) and the open-circuit output impedance (Zo-oci) 
can be computed based on the transfer functions given in Eqs (4.96) and (4.97) 
applying their definitions given explicitly in Section 3.4 (Eq. (3.32)), but the 
resulting symbolic transfer functions are extremely long and, therefore, they are 
not given here. 

Similarly as in the DDR-controlled superbuck converter, the control-to-output 
transfer functions (Gco-o) can contain an RHP-zero (cf. Eq. (4.97)). Therefore, the 
inductors should be designed in such a manner that L2 � �Dmax =D´ �L1, where max
Dmax denotes the maximum duty ratio within the desired input voltage range. 
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The low-frequency input noise attenuation in a PCM-controlled superbuck 
converter (cf. Gio-o in Eq. (4.97)) can also be maximized by designing the inductor 
current signal compensation by 

V o L1L2Mc-opt � ; Lp � ; (4.99) 
2Lp L1 � L2 

which means that D � FmV e2qC1 � 0. 
The complexity of the fourth-order denominator in Eq. (4.98) is such that its 

roots cannot be anymore approximated similarly as in case of the DDR-controlled 
superbuck converter. Therefore, the Routh–Hurwitz method should be utilized 
to estimate the existence of RHP poles, that is, the stability of the converter at 
open loop. According to the denominator in Eq. (4.98), the polynomial coef
ficients can be given by 

a4 � 1;

a3 � Fm V in � DD´T sIo 

2C1 
=Lp;

a2 � �L1 � L2��C1 � D´2C2� � Fm �DD´T s =2Lp� � Io 

L1L2C1C2 

�D´L2 � DL1�C2 
;

a1 � Fm V in � DD´T sIoL1L2 

2L2 
pC2 

1 
L1L2C1 

;

a0 � 1 
L1L2C1C2 

:

(4.100) 

The lowest- and highest-order coefficients are positive. Therefore, all the other 
polynomial coefficients in Eq. (4.100) and in the leftmost column of Routh’s array 
have to be positive as well. The positive signs of a1, a2, and a3 would require that 
C1 > DD´T sIo =2V in � C1�min, L2=L1 � D=D´, and C2 > �L1L2=L2 � ?C1�min,p
respectively. If the converter satisfies these conditions, then the array element 
b1can be given by 

1 1 1� D´ D´ ; (4.101) b1 � max� max � Dmax�Lp C2 C1 

which is a positive number if C1=C2 > D´ �D´ � Dmax�, where Dmaxis the max max 
maximum duty ratio applied for designing L1 and L2. This requirement will be 
surely fulfilled, because the last term is usually negative in practical design. 
Similarly, the array element c1 can be given by 

1FmV in 1 � ; (4.102) c1 � 1 � D´ �D´ � Dmax� ? �C2=C1�L1L2C1 max max 

when Dmax > 0:5 then D´ �D´ � < 0 and c1 would also become negative max max � Dmax

according to Eq. (4.102) and consequently, the converter would be unstable. The 
sign of the elements b2 and d1 is always positive because of equaling the zeroth-
order polynomial coefficient. In practice, the effect of the parasitic elements 
would maintain the stability of the converter, but it is highly recommended to 
perform more accurate analysis than presented here. 
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4.2.8.5 Coupled-Inductor Superbuck Converter
The linearized state space of the DDR-controlled converter is given in Section 

d) with the derived duty^3.4.5 (Eq. (3.88)). Substituting the perturbed duty ratio (
ratio constraints 

d �Fm�ico � qL1iL1 � qL2iL2 � qC1vC1�;
D´ �D

Fm �1= T s Mc � �V in �VD � �rd � rds �DrL1 � 2D´rL2�Io ;
2L2 

DD´T s
 qL1 �1 � �rd � rds�;2L2
 

DD´T s
 qL2 �1 � �rd � rds � rL2�; (4.103)
2L2
 

DD´T s
 
;qC1 � 2L2 

qC2 �0;

�0;qin 

�0;qio 

^

yields the PCM small-signal state space as 

^

d̂ Δre1 �FmqL1ΔV e1 Δre2 �FmqL2ΔV e1 1 �FmqC1ΔV e1iL1 � � � 0 
dt ΔL12 ΔL12 ΔL12 

^^^

îL1 

îL2 

v̂C1 

v̂C2 

Δre3 �FmqL1ΔV e2 Δre4 �FmqL2ΔV e2 D�L1=L2� �D´ �FmqC1ΔV e2 1d̂iL2 
ΔL12 ΔL12 ΔL12 L2dt �

D´ �FmqL1Io D�FmqL2Io FmqC1IodvC1^
C1 C1 C1dt

0 

1 1 

^

^dvC2 0 0 
C2 C2
 

1 FmΔV e1
 

dt

0
ΔL12 ΔL12 

vin1 rC2 FmΔV e2 

ΔL12 L2 ΔL12�
^

^ ;io 
FmIo 

d0 0 �
C1 

1
0 � 0 

C2 

^

^

^

^

iL1 

iL2 � �d 
vC1 

vC2 

v̂in 

îo 

d̂

1 0 0  0îin 

v̂o 

0 0 0  

0 0 0  
;

0 0 0 1  � rC2C2 dt

(4.104) 
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where Δre1, ΔL12, and ΔV e1 are as follows: 

Δre1 � re1 � re2; Δre2 � re2 � re3;

L1 L1
Δre3 � re2 � re1; Δre4 � re3 � re2;L2 L2 (4.105) 
ΔL12 � L1 � L2;

L1
ΔV e1 � V e1 � V e2; ΔV e2 � V e2 � V e1;L2 

and re1 and V e1 are as defined in Section 3.4.4 (Eq. (3.77)). Applying Laplace
transformation and matrix algebra to Eq. (4.104), the input dynamics can be 
given by 

1 2 Fm�V inC1 � qC1IoL2� C1 � �D2 �DFm�qC1U in � Io��C2 FmqC1Io s3 � s � s � ;ΔY in-o �L1 � L2 L2C1 L2C1C2 L2C1C2 

D� FmIoΔToi-o � ;�L1 � L2�L2C1C2
 

FmIo
 DV in 1 
s2 � s � ;ΔGci-o � �L1 � L2�C1 IoL2 L2C2 

(4.106) 

and the output dynamics by 

D� FmqC1V inΔGio-o � ;�L1 � L2�L2C1C2 

1 2 Fm�V inC1 � qC1IoL2�ΔZo-o � �s3 � s
C2 L2C1 

D2L1 �D´�1 �D�L2 �DFm�qC1V in � Io��L1 � L2� FmV in�s � �;�L1 � L2�L2C1 �L1 � L2�L2C1 

FmV in DIo 1 
s2 � s � ;ΔGco-o � L2C2 V inC1 �L1 � L2�C1 

(4.107) 

where the denominator (Δ) is  defined by 

4 � s3 Fm�V inC1 � qC1IoL2� 2 �C1 � �D2 �DFm�qC1V in � Io��C2��L1 � L2� � L2C2Δ � s � s
L2C1 �L1 � L2�L2C1C2 

Fm�V inC2 � qC1Io�L1 � L2�� 1�s � :�L1 � L2�L2C1C2 �L1 � L2�L2C1C2 

(4.108) 

The parasitic elements are neglected in Eqs. (4.106)–(4.108) for reducing the 
complexity and boosting their information content. The state space in Eq. (4.104) 
contains, however, all the parasitic elements, and by means of it the correspond
ing transfer functions, including all the parasitic elements can be solved by 
applying a proper software package such as Matlab Symbolic Toolbox. 
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The ideal special transfer functions equal the corresponding transfer functions 
of the DDR-controlled converter given in Section 3.4.5 (Eq. (3.92)). The short-
circuit input admittance (Y in-sco) and the open-circuit output impedance (Zo-oci) 
can be computed based on the transfer functions given in Eqs. (4.106) and (4.107) 
applying their definitions given explicitly in Section 3.4 (Eq. (3.32)), but the 
resulting symbolic transfer functions are extremely long and, therefore, they are 
not given here. 

The input-to-output transfer function (Gio-o) in Eq. (4.107) indicates that the 
optimal compensation (Mc-opt � V o =2Lp) defined in Eq. (4.99) will also nullify 
Gio-o of the coupled inductor PCM-controlled converter. When this optimal 
compensation is applied, the input dynamics can be given by 

1 DIo DIo 1 
Y in-o � ? s � = s2 � s � ;

L1 � L2 V inC1 V inC1 �L1 � L2�C1 

D�1 � �2L2Io =T sD´Uo��ΔToi-o � ;�L1 � L2�L2C1C2 

DV in 1

ΔGci-o � 2L2Io s2 � s � ;

T sD´V o�L1 � L2�C1 IoL2 L2C2 

(4.109) 

and the output dynamics by 

ΔGio-o �0;
1 2 2V inC1 �DD´T sIo
ΔZo-o � �s3 � s
C2 D´V inT sC1 

D2L1 �D´�1 �D�L2 � �2L2DIo =T sD´V in��L1 �L2� 2�s � �;�L1 �L2�L2C1 D´T s�L1 �L2�C1 

2 DIo 1

ΔGco-o � s2 � s � ;

T sD´C2 V inC1 �L1 �L2�C1 

(4.110) 

where the denominator (Δ) is defined by 

2 1 DIo 1
Δ � s2 � s � s2 � s ? � : (4.111)

D´T s L2C2 V inC1 �L1 � L2�C1 

The denominator in Eq. (4.111) shows that there exists two complex poles p
approximately at 1= L2C2 and also possibly one or two RHP poles depending on 
the effect of the parasitic elements. The control-to-output transfer function 
(Gco-o) contains one or two RHP poles approximately at the same frequencies 
as the RHP poles exist. Even if the zeros and poles are at the frequencies close to 
each other, we cannot state that they cancel each other. So the application of the 
coupled inductor technique and designing the input current ripple to be mini
mized, leads to the situation where the existence of the RHP zero cannot be 
removed, and the converter may become unstable at open loop. 
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4.2.9 PCM State Spaces in DCM

The state spaces induced by the PCM control in DCM are given only for the buck, 
boost, and buck–boost converters. The corresponding transfer functions are not 
solved explicitly but left for the reader. The solving of the transfer functions is 
instructed in Section 2.4.1. 

4.2.9.1 Buck Converter
The linearized state space of the DDR-controlled converter is given in Section 

d̂) with the derived duty3.5.1 (Eq. (3.113)). Substituting the perturbed duty ratio (
ratio constraints 

d �Fm�ico 

Fm � 1= T s Mc �
^^ iL1 � qovC � qinvin�;

V in�1 �M��M�D�
^^

;
LM

^

^

qL � 1;
(4.112) 

DT s D
qC � � 1 ;

2M2L

DT s �2 �M�D
1 � ;qin � L 2M

yields the PCM small-signal state space as 

d̂iL K 2FmV in 1 K 2FmV inqCReq � �
^

iL 

dvC vC 

1 �M L�1 �M� 1 �ML L Ldt �
dt C

1 
0 

�
�2 �M�M K 2FmV inqin 2FmV in v̂in 

îo 

îco 

0 
L�1 �M� 1 �M L L

;

C

2FmV o 1 �M M2 2FmV oqC 1 �M�

1 
0 � 0 

îin 

v̂o 

� îL 

v̂C 

Req�1 �M�KReq KReq 

d 
0 1 � rCC dt

v̂in 

îo 

îco 

:

M2 2FmV o 1 �M 2FmV o 1 �M
0 

K KReq�1 �M� Req Req�
0 0 0 

^

(4.113) 

4.2.9.2 Boost Converter
The linearized state space of the DDR-controlled converter is given in Section 

d) with the derived duty3.5.2 (Eq. (3.122)). Substituting the perturbed duty ratio (
ratio constraints 
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� îL � qovC � qinvin�;
V in�D´M� 1�

^^d �Fm�ico 

Fm �1= T s Mc �

^^

;
L�M� 1�

^

^

qL �1;
(4.114) 

D2T s�qC 2L�M� 1�2 ;

DT s
 DM2 

1 � ;qin � L 2�M� 1�
yields the PCM small-signal state space as 

Req K �M� 1� 2FmV o 1 KM 2FmV oqCd̂iL � �
M� 1 L iL 

vC 

L M L L
dt �

dvC 
1 �dt

^ M� 1 1 2FmV oqC M� 1 
KM C ReqC KMReq 

M2 KM 2Fm 2FmV oV oqin 

2FmV o 

v̂in� 0�
L M� 1 L L

� ^

^

^

;io 

1 M� 1 1 2FmV o M� 1 
ico 

vin 

M� 1� � 2FmM� V oqCReqC KM C ReqC KM

îo 

îco 

^

^

iL � �
vC 

1 0 

v̂o 

0 0 0  

0 0 0  

îin 

:d 
0 1  � rCC dt

^

(4.115) 

4.2.9.3 Buck–Boost Converter
The linearized state space of the DDR-controlled converter is given in Section 

d) with the derived duty3.5.3 (Eq. (3.132)). Substituting the perturbed duty ratio (
ratio constraints 

^d̂ �Fm�ico 

Fm �1= T s Mc �
� îL � q ^^ovC � qinvin�;

V in�D´M�D�
;

LM

qL �1;
(4.116) 

D2T s qC � ;
2LM2
 

DT s
 D�2 �M�
1 � ;qin � L 2M
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yields the PCM small-signal state space as 
p p

Req K 2Fm�V in �V o� K 2Fm�V in �V o�qCd̂iL 
L L L L ^

^

vin 

vin 

^

^

^

^

iLdt �
dvC vC 

iin 

^
io
 

vo vC
 

^

^

^

2FmV o 1 2FmV oqC �1 � � ?
dt

p p
Req K C ReqC Kp

M�M� 2� K 2Fm�V in �V o�qin 2Fm�V in �V o�0 
L L L� ^

^

;io 
1 2Fm 1 2FmV oV oqinM2 � ico

p p
ReqC K C ReqC K

2FmV o 2FmV o M2 2FmV oqin 2FmV o
îL 0

p p
Req K Req K p p

Req Req K Req K� � :
d 

1 � rCC 0 0 00 icodt
(4.117) 

4.3 Average Current-Mode Control

4.3.1 Introduction

It is widely assumed that average current-mode control was first time proposed in 
Ref. [2] but actually the topic was discussed already in late 1970s [21] and its digital 
implementation was patented in early 1980 [22]. ACM control is widely used in 
power-factor-correction applications to control the input or inductor current of a 
boost converter [23]. Photovoltaic generator interfacing is another application 
area, where the ACM control would provide beneficial contributions as well [24]. 

Dynamic modeling of ACM control has not attracted similar amount of 
interest as the PCM control. The first modeling attempts can be traced back 
to late 1990s [25] and early 2000s [26,27]. The models in Ref. [25] omits the 
inductor current ripple effects and are, therefore, well suited to be used in digital 
control applications, where the sampling of the inductor current can be arranged 
in such a manner that the feedback signal is exactly the time varying average 
inductor current (i.e., the sampling is timed to half the on-time). As a conse
quence of this, there are no ripple effects. It was concluded in Refs [28,29] that 
ACM and PCM controls have similarities depending on how large the residual 
inductor current ripple in the duty ratio generation is. It was shown that the 
amount of residual ripple dictates whether the converter dynamics resemble the 
dynamics under DDR or PCM control. The ACM control affects naturally the 
low-frequency behavior of the converter despite the amount of inductor current 
ripple in duty ratio generation. 

We introduce only the modeling of ACM control when the inductor current 
ripple will fully affect the duty-ratio-generation process in CCM operation mode. 
The ACM models are given as a set of generalized transfer functions similarly as 
in PCM control (Section 4.2.7). 
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Figure 4.10 ACM control principles. (a) Circuit schematics with a buck converter. (b) Duty ratio
generation.

4.3.2 ACM Control Principle

Under analog ACM control, the duty ratio is generated comparing the output 
signal (vca) of the current loop amplifier and the constant ramp signal (RsMc) 
provided by the PWM modulator shown in Figure 4.10, where Rs denotes the 
inductor current sensing resistor and Mc the slope of the PWM ramp in current 
domain. The duty ratio is established when the output signal (vca) of the current 
amplifier reaches the PWM ramp signal. The output signal (vca) can be given by 

vca � vco � Gca�vco � RsiL�; (4.118) 

where vco denotes the output signal of the voltage loop error amplifier and 
Gca the transfer function of the current-loop amplifier (cf. Figure 4.10). The 
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instantaneous inductor current (iL) can be given as a sum of its time varying 
average value (hiLi) and the triangle-shaped ripple current (iL-ripple). Therefore, the 
current-loop-amplifier output signal can be given according to Refs [26,27] by 

vca � vco � Gca�vco � RshiLi� � GcaRsiL-ripple: (4.119) 

The current-loop amplifier is typically a PI-type controller with an extra high-
frequency pole, as depicted in Figure 4.10a. The transfer function of a PI 
controller is actually similar to an averaging filter and, therefore, the control 
method is known as ACM control. It is obvious according to Eq. (4.119) that the 
inductor-current ripple may affect the duty-ratio generation, if the extra high-
frequency pole or the switching-frequency gain of the current-loop amplifier does 
not remove the ripple. The models presented in Ref. [25] are based on the 
assumption that the ripple term in Eq. (4.119) is zero. If the ripple term is not zero, 
then we can assume that the dynamics of the converter would change from that of 
zero-ripple condition. In practice, the ACM models exist only in case of zero-
ripple [25] or full-ripple [26,27] conditions. The full ripple condition would be 
valid when the high-frequency zero is placed beyond the switching frequency. 

4.3.3 Modeling with Full Ripple Inductor Current Feedback

As discussed in the beginning of this chapter, the fundamental issue is to find the 
proper duty-ratio constraints in the form of Eq. (4.1). The inductor current loop is 
provided by an averaging filter or PI controller (cf. Figure 4.10a), which is shown 
in Figure 4.11a in current domain, that is, the voltage signals are replaced with the 
corresponding current signals to facilitate the development of the duty ratio 
constraints. Its transfer function (Gca) can be given by 

1 � sRf CfGca � ; (4.120) 
Cf CpsRin�Cf � Cp� 1 � sRf Cf � Cp 

and the corresponding frequency response is given conceptually in Figure 4.11b, 
where the effect of the location of the extra high-frequency pole (f p) is explicitly 
shown. When performing the modeling, we assume that f pis much higher than 
the switching frequency (f ) of the converter. This means that the gain of the s
current loop amplifier at the switching frequency is K f � Rf =Rin (cf. Figure 4.11b), 
and consequently, the inductor-current switching ripple would be weighted by K f 

without any additional phase shift. Therefore, the amplifier output signal in Eq. 
(4.119) can be given in current domain by 

ica � �1 � Gca�hicoi � GcahiLi � K f iL-ripple: (4.121) 

The corresponding duty-ratio-generation process, when taking into account 
Eq. (4.121), is shown in Figure 4.12, where hicai � �1 � Gca�hicoi � GcahiLi, m1, 
and m2 are the corresponding inductor-current up and down slopes (Note: m2 is 
the absolute value of the instantaneous down slope) and K f the gain of the current 
loop amplifier at switching frequency (cf. Figure 4.11b). 

According to the already presented duty-ratio-generation process, it may be 
obvious that ΔiL is the same value as defined in the conjunction with the PCM 
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Figure 4.11 Current-loop PI controller. (a) Physical amplifier. (b) Its frequency response.

modeling, that is, ΔiL � dd´T s�m1 �m2�=2. This means that the duty-ratio 
constraints can be given by 

Kf �D´ �D�V e^ ^d � 1= T s Mc � ��1 �Gca �̂ico �GcaiL �K f qin ̂vin �K f qo ̂vo�;2L

(4.122) 

by applying the duty-ratio constraints developed for the PCM control in Section 
4.2.5 for the buck, boost, and buck–boost converters. 

According to Eq. (4.122), it may be obvious that the current-loop-amplifier 
gain at the switching frequency would  have  a fundamental  influence on the 
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Figure 4.12 The duty-ratio-generation process in current domain.

inductor-current-ripple effects. It may also also obvious that the similar mode 
limit as in the PCM control does not easily exist, because the inductor-current 
loop is automatically compensated by means of Mc (i.e., the PWM ramp). 
Reference [28] provides excessive data on determining the value of Fm for an 
ACM-controlled buck converter, and  coming up to the conclusion that 
Fm � 1=RsT sMc � 1=VM, where  VM is the peak-to-peak voltage of the 
PWM ramp. The tests were carried out close to D � 0:5, and K f was also 
very small. According to Eq. (4.122), the conclusion is evident and correct, 
because Mc � VM=RsT s. 

The ACM transfer functions can be most conveniently derived for the basic 
converters by applying the same technique as in conjunction with the PCM control 
for deriving the generalized transfer functions in Section 4.2.7. Figure 4.13 shows 
the required block diagrams, where the coefficients A and B for the basic converters 
are as follows: buck A � 1 and B � 0; boost and buck–boost A � D´ and B � IL, and 
qinand q as defined in Section 4.2.5 for the corresponding converters. o 

From Figure 4.13a, we can compute the generalized transfer functions repre
senting input dynamics as a function of the corresponding DDR transfer 
functions to be as follows: 

Gca �GDDR GDDR� YDDR �q � =�1 � Lc � Lv� ;FmY in-o in-o � o io-o � qin ci-o AZC 

Gca� TDDR ZDDR Gca GDDRq � =�1 � Lc � Lv� ;Toi-o oi-o � Fm o o-o ci-oAZC A

�FmGDDR � �1 � Gca ci-o :Gci-o 1 � Lc � Lv 

(4.123) 

From Figure 4.13b, we can compute the generalized transfer functions repre
senting output dynamics as a function of the corresponding DDR transfer 
functions to be as follows: 
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Figure 4.13 Block diagrams for ACM control in CCM. (a) Input dynamics. (b) Output dynamics.
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BFmGca GDDR GDDR1 � =�1 � Lc � Lv�;Gio-o � io-o � Fmqin co-oA

BFmGca ZDDR FmGca GDDR =�1 � Lc � Lv �; (4.124) 1 � �Zo-o � o-o co-oA A

GDDR �1 � Gca�Fm co-oGco-o � ;
1 � Lc � Lv 

where the inductor current (Lc) and output voltage (Lo) loops are defined by 

GDDRLc � GcaFm cL-o ;
(4.125) 

GDDRLv � Fmq :o co-o 

According to Eqs (4.123) and (4.124), we may conclude the following: 

1) The control-to-output transfer function (Gco-o) incorporates the same RHP 
zeros as in the corresponding DDR-controlled converter, if any. 

2) The buck converter may have high input noise attenuation similar to the 
corresponding PCM-controlled converter depending on the level of ripple 
effects. 

3) If K f is small, then the transfer functions will have features resembling the 
DDR control. Under digital ACM control K f � 0. 

4) If K f is high, then the transfer functions will have features resembling the PCM 
control. 

5) We can also verify that the set of special ideal transfer functions derived for the 
DDR-controlled converters is also valid for the corresponding ACM-con
trolled converters: 

GDDR 
io-o G

DDR 

YACM � YDDR ci-o � ;in�1 in-o GDDR
 
co-o
 

TDDR
 
oi-o G

DDR 

ZACM � ZDDR co-o� ;o�1 o-o GDDR 
ci-o (4.126) 

ZDDRGDDR 

TACM � TDDR o-o ci-o ;oi�1 oi-o � GDDR
 
co-o
 

YDDR
 � in-o G
DDR 

:io�1 io-o GDDR
 
ci-o
 

GACM � GDDR co-o 

4.4 Variable-Frequency Control

4.4.1 Introduction

Variable-frequency operation would take places when the termination of the 
switching cycle is based either on the behavior of inductor current [29] or 
capacitor voltage [30]. The inductor current-based control belongs naturally 
to a class of current-mode controls, and the capacitor-voltage-based control to a 
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Figure 4.14 A simple self-oscillating flyback converter.

class of voltage-mode controls. Self-oscillation control [3,31–36] – also known as 
boundary, critical, and transition-mode control – is a mode of peak current mode 
control, which is typically used in the applications requiring low-EMI or low-cost 
solutions, such as power factor correction [23] as well as mobile phone and 
notebook charging [35]. Boost and flyback converters [3,23,35] are the most 
common converter topologies applied under self-oscillation control. Under self-
oscillation control, the cycle is initiated when the inductor current reaches the 
zero level or after a determined delay of the zero crossing [36]. The on-time is 
terminated when the inductor reaches the control current. A simple self-oscil
lating flyback converter used in mobile phone charging application is shown in 
Figure 4.14 illustrating the implementation of the control principle in its simplest 
form [3]. 

The variable-frequency control-mode, where the cycle is initiated, when the 
inductor current reaches a certain minimum current and the on-time is deter
mined when the inductor current reaches the control current is known as 
hysteretic current control [37–39]. The hysteretic current-mode control can 
be implemented either by using constant hysteresis value or by using two different 
control currents separately for the upper and lower limits. 

It has been usually assumed that the dynamics associated with the variable-
frequency control is similar to the fixed-frequency DDR control [31,35]. The 
PCM control and variable switching frequency would, however, change the 
dynamics requiring special modeling methods to capture it [3,26,27,36]. It has 
also been noticed that the phase shift of the variable-frequency converters are 
usually lower than the average models would predict, as is clearly visible in 
Ref. [39]. Reference [40] provides an extra modulator gain, which would remove 
the inaccuracy of the average models. 

4.4.2 Self-Oscillation Modeling – DOT and PCM Control

The self-oscillating control is a derivative of PCM control, in which the resulting 
inductor current waveforms are shown in Figure 4.15, when a determined 
switching delay (TD) is applied. Similarly to PCM control, we have to find the 
proper duty-ratio constraints under variable switching frequency. However, the 



232 4 Dynamic Modeling of Current-Mode Control

Figure 4.15 Inductor-current waveforms under self-oscillation control.

small-signal state space under DOT control has to be solved before we can 
proceed with the PCM modeling. The DOT control is not a physical control mode 
but a fictive mode serving only the purposes of the modeling. 

According to Section 3.3, the derivative of the time-averaged inductor current 
hiLi can be given in general by 

dhiLi ton toff1� ?m1 � ?m2: (4.127) 
dt ts ts 

From the inductor current waveforms in Figure 4.15, we can solve toff1 by means 
of hiLi yielding 

2hiLitoff1 � : (4.128) 
m2�1 � �TD=ts��

Substituting toff1 in Eqs (4.127) with (4.128) yields 

dhiLi ton 2� ?m1 � : (4.129) 
dt ts ts � TD 

The derivative of the average capacitor voltage (hvCi) can be generally given by 

dhvCi hiLi hioi� q1 � ; (4.130) 
dt C C

where the coefficient q1 is as follows: buck q1 � 1, boost and buck–boost 
q1 � 1 � ton =�ts � TD�. The average output voltage (hvoi) can be given by 

dhvCihvoi � hvCi � rC ; (4.131) 
dt

and the average input current (hiini) by  

hiini � q2hiLi; (4.132) 

where the coefficient q2 is as follows: buck and buck–boost q2 � ton =�ts � TD�, 
boost q2 � 1. 
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As a summary, the general averaged state space under DOT control can be 
given by 

dhiLi
dt

� ton 

ts 
?m1 � ts 

2 
� TD 

;

dhvCi hiLi hioi� q1 � ;
dt C C (4.133) 

hiini � q2hiLi;
dhvCihvoi � hvCi � rC ;

dt

where q1 and q2 are as already defined. 
The steady-state operating point of the converter can be naturally solved from 

Eq. (4.133) by setting the derivatives to zero and substituting the inductor-current 
up-slope (m1) with its topology-based values given in Section 3.3. The operating 
point can also be given as an equivalent circuit shown in Figure 4.16, where the 
coefficients of the equivalent circuit and the other operating point variables can be 
defined for the basic converters as follows: 

1 � �TD=T s�

Buck:

M D;
TD 

T s 
� D

1 � �TD=T s� ;

V E � D´ � �TD=T s�
1 � �TD=T s� ?VD;

rE � rL � D
1 � �TD=T s� ? rds1 � D´ � �TD=T s�

1 � �TD=T s� ? rd;
(4.134) 

IL � Io;

I in � D
? Io:

Figure 4.16 The steady-state equivalent circuit for the self-oscillating converter.
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Boost:

TD
 1 � �TD=T s�M D; � ;
D´ � �TD=T s�

V E � VD;

T s 

�2 �1 � �TD=T s� D�1 � �TD=T s��rE � �2 ? rL � �2 ? rds1 �D´ � �TD=T s� �D´ � �TD=T s�
1 � �TD=T s� D (4.135) � ? rd � ? rC;D´ � �TD=T s� D´ � �TD=T s�

1 � �TD=T s�IL � ? Io;D´ � �TD=T s�
1 � �TD=T s�I in � ? Io:D´ � �TD=T s�

Buck–Boost:

TD
 D
M D; � ;

D´ � �TD=T s�
V E � VD;

T s 

�2 �1 � �TD=T s� D�1 � �TD=T s��rE � �2 ? rL � �2 ? rds1 �D´ � �TD=T s� �D´ � �TD=T s�
1 � �TD=T s� D (4.136) � ? rd � ? rC;D´ � �TD=T s� D´ � �TD=T s�

1 � �TD=T s�IL � ? Io;D´ � �TD=T s�
D

I in � ? Io:D´ � �TD=T s�
The steady-state cycle time (T s) can be solved from the inductor current 

waveforms in Figure 4.15 in a general form yielding 

2IL�M1 �M2�T2 � ?T s � T2 (4.137) 2TD � D � 0;s M1M2 

and substituting the topology-based up and down slopes of the inductor current 
with the values defined in Section 3.3. 

The small-signal state space can be derived from the averaged state space in Eq. 
(4.133) by developing the proper partial derivatives. Under self-oscillation control 
or generally in the variable-frequency operation, the cycle time (ts) is also variable. 
Therefore, we have to also develop proper dynamic constraints (i.e., cycle-time 
constraints) for the varying cycle time in order to introduce its effect on the 
dynamics of the converter. 

The cycle-time constraints can be obtained from the definition of the cycle time 
ts � ton � toff1 � TD by substituting toff1 with Eq. (4.128) yielding 

2hiLits � ton � � TD; (4.138) 
m2�1 � �TD=ts��
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Table 4.1 Cycle-time constraints.

Converter Fcm qcL qcC qcin qcio

Bucka) 

1= 1 � 2LILTD 

V o�T s � TD�2 

2LT s 

V o�T s � TD�
�2LILT s 

V 2 
o �T s � TD�

0 0 

Boost 
1= 1 � 2LILTD 

�V o � V in��T s � TD �2 

2LT s 

�V o � V in��T s � TD�
�2LILT s 

�V o � V in �2 �T s � TD�
2LILT s 

�V o � V in�2 �T s � TD�
0 

a) Applies also for the buck–boost converter.
 

and developing the proper partial derivatives, and formulating the results as
 

îots ton vin � qio ^^^ � Fc
m � q iL � q vC � qL C in ^^c c c c �: (4.139)�

^The final small-signal state space results when the perturbed cycle time (ts) is  
substituted with Eq. (4.139) in the linearized form of Eq. (4.113). The cycle-time 
constraints are presented in Table 4.1, when the power-stage losses are neglected. The 
losses can be naturally taken into account by considering m2 accordingly in Eq. (4.138). 

The steady-state values of ILand T s can naturally be solved from the corre
sponding operating points given in Eqs (4.134)–(4.136) and the quadratic cycle 
time equation in Eq. (4.137). We do not give the explicit DOT state spaces but we 
will leave that for the reader. 

In order to obtain the PCM small-signal state space, we have to develop the on
) to the control current (̂ico

^

^

^

^

^

time constraints relating the perturbed on-time (ton

and the other circuit variables and elements similarly as in the fixed-frequency 
PCM control described in Section 4.2. The comparator equation defining the 

^

^

length of on-time at t � kts � toncan be given based on Figure 4.15 by 

ico � hiLi � ΔiL: (4.140) 

The difference (ΔiL) between the peak inductor current and its time varying 
average value can be computed to be 

TDtonm1 1 � : (4.141)ΔiL � 2 ts 

Therefore, the comparator equation in Eq. (4.140) becomes 

TDtonm1ico � hiLi � 1 � ; (4.142)
2 ts 

from which the on-time constraints can be solved by developing the proper partial 
derivatives and applying the cycle time constraints in Eq. (4.139) yielding 

oton ico io

ts;ico 

) 

� Fo 
m � q ^^^

LiL � qCvC � qinvin � qio 
o o o �: (4.143)�

The generalized perturbed form of (4.142) can be given by 

M1 TD m̂1 �ton2 2 2T sT s T s 

TDTon DM1TD� îL � 1 � � 1 � (4.144) 
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where M1 is the steady-state up-slope of the inductor current (cf. Section 3.3), and m̂1 

the linearized form of the up-slope. By further processing Eq. (4.144), the on-time 
constraints can be found. We do not give them here explicitly but will leave the 
development for the reader. Usually, the dynamic effect of the power-stage losses and 
the delay (TD) are  insignificant because of heavily damped dynamics of the converters. 
As a consequence, we give explicitly the state spaces as well as the normal and special 
transfer functions for the basic converters, where the losses and delay are omitted: 

Buck:

d̂iL 4 2 
i ;co

^

dvC iL � io;dt C C (4.145) 
´� � � � �i D 2D 1 i DD i^ ;v�in L in co

^

^

^^^

^

iL �dt T s T s 

^

1 1�
DD´T s D2D´T s vC �

2L 2L
^

dvC vo vC � rCC dt

s2 � s�2=D´T s� � �1=LC�D2D´T s DD´T s DD´
Y in-o Toi-o Gci-o �

^

� � ��2L 2LC 4 Ts s s =� s

� � �1 C 2 1 Csr sr�C CGio-o Zo-o Gco-o 0 
sC sT sC s� � �4=T s��

(4.146) 

^

or 

^ � :

s2 � s�V o =LIo� � �1=LC�DIo DIo DD´
Y in-o Toi-o Gci-o V in sCV o s s� � �2D´V o =LIo��� ;

1 � srCC 2�1 � srCC�0 
sC sT sC s� � �2D´V o =LIo��

Gio-o Zo-o Gco-o 

(4.147) 

where we have applied the identity T s � 2LIL=D´V o (cf. Eq. (4.137)). 
The special transfer functions can be computed based on Eq. (4.146) and 

applying Eq. (3.32) in Chapter 3, which yields 

D2D´T s D2D´T s DD´ 2 
s�

D´T s2L 2L 2Y in-sco Y in-1 Toi-1 �
1 � srCC �s��2=D´T s���1 � srCC� D�1 � srCC�

sC C s� 2 � s�2=D´T s�� �1=LC�� LC s� 2 � s�2=D´T s�� �1=LC��
Zo-oci Zo-1 Gio-1

(4.148) 

or 

DIo DIo DD´ V o s�
LIoY in-sco Y in-1 Toi-1 V in V in 2 � ;

1 � srCC �s� �V o =LIo���1 � srCC� D�1 � srCC�
sC C s� 2 � s�V o =LIo� � �1=LC�� LC s� 2 � s�V o =LIo� � �1=LC��

Zo-oci Zo-1 Gio-1

(4.149) 

where we have applied the same identity as in developing Eq. (4.147). 
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In BCM, the average inductor current equals half the peak current, which is 
defined by the control current. Therefore, it is obvious that Gio-o � 0 and  
Zo-o � �1 � srCC�=sC (i.e., the impedance of the output capacitor), because 
IL � Io � Ico =2, as well as the input admittance and the short-circuit input 
admittance equal the ideal input admittance (Y in-1 � �DIL=V in). The transfer 
functions are mainly of first order except the control-related transfer 
functions. 

Boost:

d̂iL 4 2 
ico;

dvC iL � vC � vin �dt C 2LC 2LC C
^^

^

^^

iL �dt T s T s 

^

D´ DD´2T s DD´T s DD´2D� 1� 1�
îco;

iin 

dvC vo vC � rCC dt

Y in-o Toi-o Gci-o �
Gio-o Zo-o Gco-o 

2 
0 0 

^

Ts�s� �4=Ts��
DD´T s�1 � srCC� 1 � srCC 2D´�1 � s�DT s =2���1 � srCC�

2LC s� �DD´2T s =2LC� T sC s� �DD´2T s =2LC�

^

´2� � � � � ��C s DD T 2LC 4 Ts= =�s s

(4.151) 

^

^

or 

Y in-o Toi-o Gci-o �
Gio-o Zo-o Gco-o 

� îo (4.150)C

� îL;

� :

DVo0 0 
LIo�s� �2DV o =LIo��

;
Io�1 � srCC� 1 � srCC DD´V o�1 � s�LIo =V o���1 � srCC�

CD´V o�s� �Io =CV o�� C s� � �Io =CV o�� LCIo�s� �Io =CV o���s� �2DV o =LIo��
(4.152) 

where we have applied the identity T s � 2LIL=DV in (cf. Eq. (4.137)). 
The special transfer functions can be computed based on Eq. (4.151) and 

applying Eq. (3.32) in Chapter 3, which yields 

1 �2 
0 

L s� � �2=DT s�� DD´T s�s� �2=DT s��Y in-sco Y in-1 Toi-1 �
1 � srCC DD´T s�1 � srCC�Zo-oci Zo-1 Gio-1 0 

C s� �DD´2T s =2LC� 2LC s� �DD´2T s =2LC�
(4.153) 
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or 

Y in-sco 

Zo-oci 

Y in-1
Zo-1

Toi-1
Gio-1

�
0 

0 

1 
L s� �V in=LIL�� �

1 � srCC
C s� �Io =CV o�� �

�V in 

D´LIL s� �V in=LIL�� �
Io�1 � srCC�

CV in s� �Io =CV o�� �
; (4.154) 

where we have applied the same identity as in developing Eq. (4.152). 
In case of a boost converter, the input current does not change due to changes in 

the input variable, because the input current equals the inductor current, which is 
totally controlled by the control current. Therefore, Y in-o and Toi-o as well as Y in-sco 

and Zo-oci equal naturally zero as also indicated in Eqs (4.151)–(4.154). The converter 
contains an RHP zero in its output dynamics at ωz-RHP � 2=DT s, which is same as in 
the DCM boost converter (cf. Section 3.5.2). We may also conclude based on Gco-o in 
Eq. (4.151) that the maximum control bandwidth would be limited by the size of ESR 
of the output capacitor because of the requirement of high enough GM. 

Buck–Boost:

d̂iL 4 2 

^

^

^^

^

ico;

^
dvC iL � vC � vin � io ico;dt C 2LC 2LC C C (4.155) 

^

^

^ �iL 

^

iin �D�D�D´� vin �DD´ico;

dvCvo 

^

^

^

iL �dt T s T s 

^

D´ DD´2T s D2D´T s DD´�2D� 1� 1�
DD´2T s D2D´T sv̂C �2L 2L

vC � rCC dt
^

Y in-o Toi-o Gci-o �
Gio-o Zo-o Gco-o 

D2D´T ss DD´2T ss DD´ s2 � s�2=D´T s� � �D´=LC�
2L s� �DD´2T s =2LC� 2LC s� �DD´2T s =2LC� s� �DD´2T s =2LC� �s� �4=T s��

� :

D2D´Ts�1 � srCC� 1 � srCC 2D´�1 � s�DTs=2���1 � srCC�
2LC s� �DD´2T s =2LC� C s� �DD´2T s =2LC� T sC�s� �DD´2T s =2LC���s� �4=T s��

(4.156) 

or 

Y in-o Toi-o Gci-o �
Gio-o Zo-o Gco-o
 

D2ILs D´Ios DD´ s2 � s�V o =LIL� � �D´=LC� ;
V o�s� �D´Io =CV in�� CV in�s� �D´Io =CV in�� �s� �D´Io =CV in���s� �2D´V o =LIL��
D2IL�1 � srCC� 1 � srCC D´2V o�1 � s�LIL=V in���1 � srCC�

CV o�s� �D´Io =CV in�� C s� � �D´Io =CV in�� IL�s� �D´Io =CV in���s� �2D´V o =LIL��
(4.157) 

where we have applied the identity T s � 2LIL=DV in (cf. Eq. (4.137)). 
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The special transfer functions can be computed based on Eq. (4.156) and 
applying Eq. (3.32) in Chapter 3, which yields 

Y in-sco Y in-1 Toi-1 �
Zo-oci Zo-1 Gio-1
DD´2T s D ��s� �2=D´T s��

2L L s� � �2=DT s�� �s� �2=DT s��
1 � srCC �s� �2=D´T s���1 � srCC� D�1 � srCC�

sC C s� 2 � s�2=D´T s� � �D´=LC�� LC s� 2 � s�2=D´T s� � �D´=LC��
(4.158) 

or 

Y in-sco Y in-1 Toi-1 �
Zo-oci Zo-1 Gio-1

D´Io D ��s� �V o =LIL��
CV in L s� � �V in=LIL�� �s� �V in=LIL��

;
1 � srCC �s� �V o =LIL���1 � srCC� D�1 � srCC�

sC C s� 2 � s�V o =LIL� � �D´=LC�� LC s� 2 � s�V o =LIL� � �D´=LC��
(4.159) 

where we have applied the same identity as in developing Eq. (4.157). 
The converter contains an RHP zero in its output dynamics at ωz-RHP � 2=DT s, 

which equals the RHP zero in the DCM buck–boost converter (cf. Section 3.5.3). 
We may also conclude based on Gco-o in Eq. (4.156) that the maximum control 
bandwidth would be limited by the size of ESR of the output capacitor because of 
the requirement of high enough GM. 

In general, the averaging technique applied here would not yield very accurate 
high-frequency phase responses but the phase shift is slightly less than the 
practical measurements would yield. This inaccuracy can be corrected by 
applying the information given in Ref. [40], where the correction factor for 
the phase is given by esToff =2. This will increase the phase by ωToff =2. 

4.5 Source and Load Interactions

The basic formulations solving the source and load interaction in case of voltage-
fed voltage-output (VF/VO) converters are explicitly presented in Section 3.6. 
Under different current-mode controls, the input-to-output noise attenuation at 
open loop (i.e., Gio-o) can be very high (i.e., Gio-o � 0). In addition, the current-
output nature of the converters means that their output impedance (Zo-o) is  
usually rather high, especially at the low frequencies. These two properties yield 
positive contributions especially to the source and load dynamics of a buck 
converter in terms of increased insensitivity to external impedance interac
tions [41]. In order to better understand the origin of these improvements, 
the source (cf. Eq. (4.160)) and load (cf. Eq. (4.162)) interaction formulations are 
given in Eqs (4.160–4.163), including also the formulation for the closed-loop 



�

�

240 4 Dynamic Modeling of Current-Mode Control

input admittance under output voltage control (Y in-c) from Section 2.2.3. 

Y in Toi Gci 

îin 

v̂o 

�
vinS 

v̂o 

d̂

^

;
1 � ZSY in 1 � ZSY in 1 � ZSY in 

Gio 1 � ZSY in-sco 1 � ZSY in-1Zo Gco1 � ZSY in 1 � ZSY in 1 � ZSY in 

(4.160) 

where 

Y in-sco 

Y in-1

Y in-c 

� Y in � GioToi 

Zo 
;

� Y in � GioGci 

Gco 
;

� Y in-o 

1 � Lout 
� Lout 

1 � Lout 
Y in-1:

(4.161) 

1 � Y LZin-ocin Toi 1 � Y LZo-1
îin 

v̂o 

�
^

^

^

vin 

ioL 

d1 � ZoY L 1 � ZoY L 

(4.162) 

Y in Gci1 � ZoY L 1 � ZoY L 1 � ZoY L 
:

Gio Zo Gco 

1 � ZoY L 

GioToi ZoZon-oci � Zo � � Y in-sco;Y in Y in (4.163) 
ToiGcoZo-1 � Zo � :
Gci
 

According to Eq. (4.161), Y in-o � Y in-c � Y in-sco � Y in-1 if Gio-o � 0. It is also 
well known that the ideal input impedance of the buck converter equals approx
imately�V in=I in. As a consequence, the output impedance (Zo) and output voltage 
loop gain (Lout � Gco-o) will stay intact, because the numerator and denominator 
terms in the corresponding formulas are equal and effectively would cancel each 
other. When the input impedance equals the ideal input impedance at open and 
closed loop, which is independent of frequency, the converter may become unstable 
both at open and closed loop at any frequencies due to the source impedance 
interactions. Therefore, it is extremely important that there is no overlap with the 
input impedance of the converter and the source impedance as well as that the GM 
of the corresponding impedance ratios would be high enough for preventing the 
excess peaking to affect the converter dynamics. 

According to Eq. (4.163), Zo-o � Zo and Zo-c � Zc if Gio-o � 0. As ao-oci o-oci 
consequence, the load impedance does not affect the input impedance of the 
converter, because the numerator and denominator terms are equal, thus 
canceling effectively each other. 

4.5.1 Output Current Feedforward

According to Eq. (4.162), we may conclude that the load impedance does not 
affect the converter dynamics if the output impedance (Zo) can be made zero, as 
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discussed in Section 3.6.4 including the relevant formulation for obtaining the 
goal by means of output current feedforward control [42–44]. It was also 
explicitly stated that in case of DDR-controlled converter that the goal is difficult 
to fulfill. In case of different CM controls, the zero-impedance condition is not 
anymore impossible to be fulfilled in a buck converter. 

According to Eq. (3.147), the feedforward gain should be 

Rs1 Zo-oHc � ? ; (4.164)
Rs2 Gco-o 

for obtaining the zero-output impedance in case of CM control, where Rs1 and Rs2 

denote the inductor-current and output-current sensing resistors, respectively. 
According to this, the required feedforward gain of a PCM-controlled buck 
converter would be approximately 

D´T sRs1 Rs1Hc � 1 � s � ; (4.165)
2Rs2 Rs2 

when the optimal inductor current loop compensation (Mc � V o =2L) is utilized. 
Eq. (4.165) indicates that basically the unity feedforward gain would yield highly 
reduced open-loop output impedance, as discussed and also demonstrated in 
Refs [43,44]. When applying the unity feedforward gain (cf. Eq. (4.165)), the 
affected transfer functions of the PCM-controlled buck converter (i.e., Zo-o and 
Toi-o) (cf. Eq. (3.146)) can be given by 

� �re � rC � �qL �Rs2 

Rs1 
�FmV e � sL��1 � srCC� = LC s2 � s

re � FmV eqL 

L
� 1 
LC

�D�FmIoqL� 1�s rC� FmV e C
Rs2 

Rs1 Rs2 

LC s2 �s re � FmV eqL �
L LC

1 
� FmIo:Rs1 

;Zo-o 

Toi-o �

(4.166) 

Equation (4.166) indicates that the zeros of the open-loop output imped
ance would equal the zeros of the DDR-controlled buck converter, and  the  
poles would equal the poles of the PCM-controlled buck converter, when the 
current sensing resistors are equal. This means that the magnitude of the 
output impedance would be rather small (cf. Figure 4.17). If the sensing 
resistors are not equal, the magnitude would increase along the increase in the 
mismatch (cf. Figure 4.17). In addition, the phase of the output impedance 
would start at low frequencies at �180 degrees, if Rs2 > Rs1, which  would also  
affect slightly the transient response (i.e., causing an extra overshoot) (cf. 
Figure 4.17) [44]. 

The application of the output current feedforward would also change the short-
circuit input admittance (Y in-sco), and the open-circuit output impedance (Zo-oci). 
Y in-sco can be given as follows: 

�D � Fm qL � �Rs2=Rs1�V eqin� D � FmIo 
(4.167)Y in-sco � � FmqinIo;

sL � re � rC � FmV e qL � �Rs2=Rs1�
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Figure 4.17 The open loop output impedance of PCM-OCF-controlled buck converter when the
inductor current loop is compensated by using the optimal compensation (i.e.,Mc � Vo=2L) and
the current sensing resistor ratio is varying.

and Zx
o-oci can be computed based on 

Zo-xZx � (4.168) o-oci Y in-sco;Y in-x

where the superscript and subscript extension x denotes open (“o”) or closed (“c”) 
loop, respectively. All the other special parameters are the same as given for a 
buck converter in Section 3.4. 

Eq. (4.167) indicates that Y in-sco would equal the ideal input admittance 
(Y in-1 � �FmqinIo � �I in=V in) if the inductor current loop compensation 
(Mc) is designed in such a manner that Gio-o � 0 (i.e., Mc � DV e =2L). Usually 
the required compensation cannot be fulfilled, and Y in-sco would deviate from the 
ideal input admittance depending on the value of the sensing resistor ratio 
(Rs2=Rs1). 

Figure 4.18 illustrates the effects of the inductor current loop compensation 
and the current sensing resistor ratio on the short-circuit input impedance. The 
optimal compensation (Mc � Vo=2L) does not actually nullify Gio-o, and there
fore, Zin-sco is lower than the ideal impedance, when the resistor ratio is unity, as 
seen in Figure 4.18. When the resistor ratio deviates from unity, Zin-sco approaches 
the ideal input impedance, as seen in Figure 4.18. 

Figure 4.19 illustrates the effect of the inductor-current-loop compensation on 
the short-circuit input impedance, which clearly indicate that the over compen
sation decreases the magnitude making the converter more sensitive to the input-
source interactions via the short-circuit input impedance compared to the 
original PCM-controlled buck converter. 
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Figure 4.18 The behavior of the short-circuit input impedance (Z in-sco) when the optimal
compensation is utilized and the current sensing resistor ratio is varying.

4.6 Impedance-Based Stability Issues

Similarly as in Chapter 3, we can state the stability boundary for the source (ZS) 
and load (ZL) impedances based on 

ZS � jZin j�φZin 
� 180°;

(4.169)
ZL � Zo �φZo 

� 180°;j j
and the behavior of the closed-loop input and output impedances. Figures 4.21a and 
4.21b show the closed-loop input and output impedances of the PCM-controlled 

Figure 4.19 The behavior of the short-circuit input impedance (Z in-sco) when the inductor
current loop optimal compensation is varied compared to the optimal compensation and the
current sensing resistor ratio is kept at unity.
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buck converter (cf. Figure 4.20). Figure 4.21c shows the closed-loop output 
impedance of the PCM-OCF-controlled buck converter. Its closed-loop input 
impedance is the same as shown in Figure 4.21a. 

Based on the given information, we can state that the PCM and PCM-OCF
controlled buck converters are very sensitive to resonant-type (i.e., input LC filter) 
at very wide frequency range on the contrast to the DDR-controlled buck 
converter discussed Section 3.6.5. The closed-loop output impedances indicate 
that the converters are not sensitive to any kind of passive loads. The only type of 
load, which has theoretical possibility to make the converter unstable is another 
converter equipped with an input LC filter and exhibiting negative incremental 
resistance behavior. The low magnitude of the output impedance would imply 
that it is not very likely at all. 

4.7 Dynamic Review

The dynamic models derived for the CCM-converters are known to be quite 
accurate in the frequency range of interest [6]. The only exception is the phase 
behavior of the PCM-controlled converters where the control-related models 
given in this chapter predict slightly less phase shift than the experimental 
frequency responses indicate. Therefore, we concentrate in this section to the 
issues which are not so well known and understood. The experimental buck 
converter is given in Figure 4.20 and the measurements are performed at the input 
voltage of 20 V and in the output conditions described in Figure 4.20. The input 
LC filter and output resonant load are the same as applied also in Chapter 3 
having resonant frequency close to 500 Hz. 

Figure 4.22 shows all the input impedances of the PCM-controlled buck 
converter and the output impedance of the input LC filter. All the input 
impedance are effectively the same, and therefore, all the source interactions 
are canceled, because the numerator and denominator terms are the same, and 
thus canceling each other (cf. Eq. (4.160)). 

Figure 4.20 The power stage of the experimental buck converter.
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Figure 4.21 The measured closed-loop (a) input impedance, (b) the closed-loop output
impedance of the PCM-controlled buck converter, and (c) the closed-loop output impedance of
the PCM-OCF-controlled buck converter.



246 4 Dynamic Modeling of Current-Mode Control

Figure 4.22 The measured input impedances of the experimental PCM-controlled buck con
verter and the output impedance of the input LC filter.

Figure 4.23 shows all the input impedances of the PCM-OCF-controlled buck 
converter and the output impedance of the input LC filter. As discussed earlier, 
the magnitude of the short-circuit input impedance (Zin-sco) is slightly reduced 
and overlap takes place between the short-circuit and input-filter output imped
ance. This implies that the open- and closed-loop output impedances would be 
equally slightly affected as Figure 4.24 clearly shows (Note: The short-circuit 
input impedance contributes equally to the open- and closed-loop output 
impedances because it is the same regardless of the state of output-side feedback). 
The changes in the output impedance are very small and do not affect the load 
transient response. 

Figure 4.23 The measured input impedances of the experimental PCM-OCF-controlled buck
converter and the output impedance of the input LC filter.
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Figure 4.24 Themeasured open and closed-loop output impedances of the experimental PCM-
OCF-controlled buck converter.

Figure 4.25 shows the load-transient responses of the PCM and PCM-OCF
controlled buck converters to a step change in the output current. The figure 
shows that the settling time of the PCM-OCF-controlled buck converter is very 
fast compared to the PCM-controlled buck converter. In the load transient of the 
PCM-OCF-controlled converter, a small overshoot in output voltage is visible. 
Figure 4.26 shows the measured output voltage loop gains, which are identical for 
both of the converters as expected based on the theoretical models. Figure 4.27 
shows the measured closed-loop output impedances of the converters. According 
to Figure 4.27, the phase of the PCM-OCF-controlled buck converter starts from 
180 degrees at the low frequencies, which causes the small overshoot in the 

Figure 4.25 The load-transient responses of the PCM and PCM-OCF-controlled buck converter.
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Figure 4.26 Themeasured output voltage loop gains of the PCMand PCM-OCF-controlled buck
converters.

Figure 4.27 The measured closed-loop output impedances of the PCM and PCM-OCF-con
trolled buck converters.

transient response (cf. Figure 4.25) as discussed earlier. The magnitudes of the 
output impedances at the output-voltage-loop crossover frequency (i.e., at 
12 kHz) are 73 mΩ (PCM) and 22 mΩ (PCM-OCF). The voltage dip of the 
PCM-controlled buck converter corresponds well to the magnitude of the output 
impedance at the voltage loop crossover frequency and the applied step change in 
the output current. The voltage dip of the PCM-OCF-controlled converter is a 
little bit higher than the magnitude of the output impedance and step change in 
the output current would yield. 
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4.8 Critical Discussions on PCM Models and Their Validation

As we have stated explicitly earlier, the inductor current feedback in a current
mode-controlled converter will change the converter as a current source [1], 
which can operate at open loop either loaded by a resistor or a constant voltage-
type load. The converters are, however, operated usually as output voltage 
feedback-controlled voltage sources. Therefore, the transfer functions have to 
correspond also to the same mode of output terminal operation. Neither of the 
named loads would allow to measure directly the required transfer functions. If a 
resistor is used as the load, then the corresponding transfer functions are resistive 
load affected and do not suffice for validating the modeling methods. If the 
constant voltage-type terminal source is used as the load, then the transfer 
functions will correspond to the current-output mode of operation (i.e., the Y-
parameters). The most usual case is to use a resistor as a load, as in 
Refs [9–12,45,46], which will hide the real low-frequency behavior of the 
corresponding transfer functions as well. The validation of the PCM models 
by means of the practical measurements is also very difficult, because even small 
parasitic components will easily dominate especially the high-frequency mea
surements, as is clearly visible, for example, in Ref. [45]. Actually, the only feasible 
method to validate the models is to use deterministic simulation models from 
which the frequency responses can be usually accurately measured. In this 
section, we will validate the accuracy of the PCM models of the buck converter 
presented in Section 4.2 and the models derived by Dr. Raymond Ridley in 
Ref. [10]. We will also provide a feasible method to compute the frequency 
responses based on Ridley’s method. In addition, we will show that the PCM 
models of the book can be made very accurate as well. The frequency responses 
presented in this section are measured by using the pseudorandom binary 
sequence method introduced in Refs [47,48]. 

4.8.1 Ridley’s Models

The frequency responses based on Ridley’s models can be computed based on the 
general transfer functions given in Eqs (4.170) and (4.171), which are modified 
from Eqs (4.67) and (4.68) (cf. Figure 4.28). The parameters k f , kr, Fm, Qs, and ωs 

are defined in Table 4.2. The transfer functions with the superscript “DDR”

Table 4.2 Ridley’s model parameters for buck, boost and buck–boost converters.

Converter Fm Fc kf kr Qs ωs

Buck 

Boost 

Buck–Boost 

1 
T s�M1 �Mc�

1 
T s�M1 �Mc�

1 
T s�M1 �Mc�

1 
Rs 

1 
Rs 

1 
Rs 

�DT s 

L

�T s 

2L

�DT s 

L

1 � D
2 

1 � D
2 

T s 

2L

D´2T s 

2L

D´2T s 

2L

� 2 
π

� 2 
π

� 2 
π

π

T s 

π

T s 

π

T s 
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Figure 4.28 Control engineering block diagrams for solving Ridley’s PCM transfer functions.
(a) Input dynamics. (b) Output dynamics.

denote the open-loop transfer functions of the corresponding DDR-controlled 
converters given in Chapter 3. The parameters A and B are as follows: buck: A= 1 
and B= 0, boost and buck–boost: A=D´ and B � IL. Note that the resistive load 
effect is removed from all the parameters and transfer functions given further. All 
the items in Ridley’s original material in Ref. [10] include the effect of load resistor 
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and the inductor current equivalent sensing resistor, which is also removed. 

�GDDR GDDR ��kr � �He�s�=AZC� io-o � kfFm ci-o� YDDR ;Y in-o in-o � 1 � Lc � Lv 

�ZDDR =A� GDDR ��kr � �He�s�=AZC� � �He�s�Fm o-o ci-o� TDDR ;Toi-o oi-o � 1 � Lc � Lv 

FmGDDR
 

Gci-o � ci-o ;
1 � Lc � Lv
 

BFmHe�s� GDDR kf GDDR1 � =�1 � Lc � Lv �;� FmGio-o � io-o co-oA

BFmHe�s� FmHe�s�ZDDR GDDR1 � � =�1 � Lc � Lv�;Zo-o � o-o co-oA A

Gco-o � FmGDDR 
co-o 

1 � Lc � Lv 
;

(4.170) 

where 

Lc � FmHe�s�GDDR 
cL-o ;

Lv � FmkrGDDR 
co-o ;

He�s� � 1 � s=Qsωs � s2=ω2 
s ;

(4.171) 

GDDR 
cL-o � V esC

s2LC � sreC � 1 
:

M1 and Mc denote the steady-state up slope of the inductor current and its 
compensation ramp. 

The approximate transfer functions of a buck converter given by Ridley in 
Ref. [10] are as follows: 

L
GBuck � Fp�s�Fh�s�;co-o T s�MRD´ � 0:5�
GBuck 

io-o 

ZBuck 
o-o 

� D MRD´ � 1 � �D=2�� �
MRD´ � 0:5 

Fp�s�Fh�s�;

� Fp�s�
MRD´ � 0:5 

;

(4.172) 

where 

MR � 1 �Mc 

M1 
;

Fp�s� � 1 � srCC
1 � s=ωp 

; ωp � T s�MRD´ � 0:5�
LC

; (4.173) 

2 1 π
Fh�s� � 1= 1 � s � s

; Q � ; ωn � :
π�MrD´ � 0:5� T sQωn ω2 

n 
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4.8.2 The Book PCM Model in CCM

It has turned out that the PCM models presented for the second-order converters 
in Section 4.2 can be improved to model accurately also the high frequency 
behavior of the transfer functions by adding an ideal high-frequency resonant 
series element in the inductor current feedback loop similarly as Ridley has done 
in Ref. [10]. The series resonant filter, however, differs from Ridley’s filter. The 
transfer function of the high-frequency series resonant element can be given by 

2s
H sr�s� � 1 � ;

ω2 
sr (4.174) 

π
ωsr � ;

T s
 

Figure 4.29 Control engineering block diagrams for solving the modified PCM transfer func
tions of the book. (a) Input dynamics. (b) Output dynamics.
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and the corresponding general transfer functions for the basic converters can be 
given by (cf. Figure 4.29) 

s�qL =AZC� GDDR GDDRq � �Hsr�Fm o io-o � qin ci-o� YDDR ;Y in-o in-o � 1 � Lc � Lv 

s�qL =AZC� ZDDR s�qL =A� GDDRq � �Hsr�Fm � �H sr�o o-o ci-o� TDDR ;Toi-o oi-o � 1 � Lc � Lv
 

FmGDDR
 

Gci-o � ci-o ;
1 � Lc � Lv
 

BFmHsr�s�qL
 GDDR � FmqinG
DDR1 � =�1 � Lc � Lv �;Gio-o � io-o co-oA

BFmHsr�s�qL ZDDR FmHsr�s�qL GDDR1 � � =�1 � Lc � Lv �;Zo-o � o-o co-oA A

Gco-o � FmGDDR 
co-o 

1 � Lc � Lv 
;

(4.175) 

where 

Lc 

Lv 

� FmHsr�s�qLG
DDR 
cL-o ;

� FmqoG
DDR 
co-o :

(4.176) 

4.8.3 Evaluation of PCM-Controlled Buck in CCM

The used Simulink-based switching models are explicitly given in Chapter 6 and 
the buck converter is specified in Figure 4.20. The converter is loaded with a 4-Ω
resistor. Figure 4.30 shows the switching model-based measured (dots and 

Figure 4.30 The control-to-output-voltage transfer functions of DDR-controlled buck converter
measured at the input voltage of 20 and 50 V. The solid and dashed lines denote the predicted
transfer functions, the dot and cross-marked lines the measured transfer functions.
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crosses) and predicted (solid and dashed lines) control-to-output-voltage transfer 
functions of a DDR-controlled buck converter, where the power stage corre
sponds to Figure 4.20. The model-based predictions and the measured transfer 
functions have a perfect match. It should also be noted that the high-frequency 
phase does not have any extra deviations when approaching half the switching 
frequency (i.e., the maximum x-axis frequency in the figure), as discussed in 
Ref. [49]. This means that the basic SSA modeling method [50] will really yield 
perfect predictions for the converter internal dynamics. 

Figure 4.31a shows the predicted and measured control-to-output-voltage 
transfer functions as resistive load-affected (GRL ) and as unterminated where co-o
the load effect is removed. The inductor-current loop is compensated by using 
the optimal compensation (i.e., Mc � V o =2L). The load effect is clearly visible at 
the low frequencies, where the magnitude stays constant at 34.54 dB despite the 
changes in the input voltage. The dB value corresponds directly to RL=Rs. The  
low-frequency magnitude of the internal transfer function increases only 
slightly when the input voltage drops to 20 V. This is the effect of the optimal 
compensation. 

Figure 4.31b shows the high-frequency part of the transfer functions (i.e., from 
8 to 50 kHz). The solid and dashed lines represent the predicted responses by the 
basic PCM model of the book. The excess phase shift at the high frequencies is 
also clearly visible. The basic PCM models of the book will accurately predict the 
phase behavior up to 1/10th of the switching frequency. Ridley’s model also 
predicts accurately the high-frequency behavior. 

Figure 4.31c shows the internal responses of Ridley’s model (solid lines) and the 
modified model of the book (dashed lines) when the high-frequency resonant 
element is added according to Section 4.8.2. Both of the responses are virtually the 
same. 

Figure 4.32 shows the measured and predicted inductor current loop gains, 
which are load resistance affected according to Eq. (4.177), where GDDR ,cL-o , G

DDR 
co-o 

ZDDR , and TDDR denote the open-loop control-to-inductor-current transfero-o oL-o 
function, control-to-output-voltage transfer function, output impedance, and 
output current-to-inductor-current transfer function of the DDR-controlled 
buck converter, respectively, as given in Eq. (4.178). The low-frequency part 
of the loop gain equals FmqLV e =RLin Figure 4.32, which is exactly predicted by 
the model of this book. The high-frequency extension is not added in the 
prediction. The high-frequency phase behavior of the measured inductor current 
loop implies the existence of series resonant RHP circuit in the loop, as discussed 
by Ridley, but it does not work with the model of the book as discussed earlier. Dr. 
Ridley gives also the measured frequency response in Ref. [10], but according to 
his comments the low-frequency part does not match with the predictions. He has 
not actually taken into account that the feedback from output voltage (i.e., kr) 
affects also the inductor-current-loop gain (cf. Eq. (4.170)), which would correct 
the predictions. 

TDDR GDDR 

GDDR oL-o co-oLZL � ? : (4.177) � FmqL cL-o 1 � �ZDDRind-cur ZL =ZL�o-o 
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Figure 4.31 The control-to-output-voltage transfer functions. (a) The measured and predicted
load affected aswell as load effect removed. (b) Thehigh-frequency part of the transfer functions
(i.e., 8–50 kHz). (c) The comparison of Ridley’smodel (solid lines) versus themodifiedbookmodel
(dashed lines).
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Figure 4.32 Themeasured and predicted load-affected (RL � 4Ω) inductor current loop gain at
the input voltage of 50, 30, and 25 V. The predictions are marked with an asterisk.

V esCGDDR 
cL-o � ;

s2LC � sreC � 1
 
V e�1 � srCC�GDDR � ;co-o s2LC � sreC � 1 

(4.178) �re � rC � sL��1 � srCC�ZDDR � ;o-o s2LC � sreC � 1
 
1 � srCCTDDR 

oL-o � :
s2LC � sreC � 1 

Figure 4.33 shows the same set of output impedances as in Figure 4.31a. The 
effect of load on the transfer functions (ZRL ) is obvious (i.e., the low-frequency o-o

Figure 4.33 The set of output impedances as in Figure 4.31a.
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magnitude is 12 dB). In practice, the internal output impedances can be measured 
directly. The high-frequency phase does not exhibit any extra phase shift. As a 
consequence of this, the basic PCM model of the book gives exact prediction as 
well. Ridley’s model as well as the modified book model will give exactly the same 
responses. It is sometimes argued that Ridley has left the high-frequency 
extension (Fh) out of the model to make the model more accurate, but it is 
not actually true. 

Figure 4.34a shows all the input-to-output transfer functions (Gio-o) simi
larly as in Figure 4.31a. The resistive load clearly increases the attenuation due 

Figure 4.34 The set of input-to-output transfer functions similarly as in Figure 4.31a. (a) All the
transfer functions. (b) The internal transfer functions (Ridley: dotted line, Book basic model: solid
and dashed lines). The inductor current loop compensation is set to zero.
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to the voltage divider action. The high-frequency attenuation of the magni
tude is so high that even Matlab-based frequency response analysis is subject 
of resolution problems, which causes the high-frequency phase to have more 
phase shift than it has in reality. Figure 4.34b shows the comparison of Ridley’s 
model responses (dotted lines) and the basic model of the book. The modified 
model of the book gives exactly the same responses as Ridley’s responses are. 
They can be considered to show the correct high-frequency phase behavior as 
well. 

4.8.4 Evaluation of PCM-Controlled Boost in CCM

The power stage of the boost converter, which is used in the evaluation, is given in 
Figure 4.35 with the defined operating points and components. The actual load of 
the converter is a 50 Ω resistor when it is operated at open loop under PCM 
control. The control-to-output-voltage transfer function (Gco-o) and output 
impedance (Zo-o) are measured from the corresponding Simulink model and 
predicted by using Ridley’s models as well as the book model with the high-
frequency extension Hsr defined in Eq. (4.174). As discussed earlier, the internal 
output impedance can be measured as such but all the other transfer functions are 
load affected and, therefore, the corresponding unterminated transfer functions 
have to be solved computationally. In this case, we do not give the load-affected 
transfer functions. The inductor-current loop is compensated by using 
Mc � V o =2L, which will guarantee the operation of the converter without the 
second-harmonic mode in all conditions. 

The measured (diamonds (20 V) and squares (50 V)) and predicted (solid and 
dashed lines) frequency responses of the control-to-output-voltage transfer 
functions are given in Figure 4.36. The excess high-frequency phase shift, which 
is typical to the PCM control, is clearly visible. Both of the PCM models will 
describe perfectly the control-related dynamics. 

The measured (diamonds (20 V) and squares (50 V)) and predicted (solid and 
dashed lines) frequency responses of the output impedances are given in 
Figure 4.37. The excess high-frequency phase shift does not affect the output 
impedance. Both of the models predict perfectly the behavior of the output 
impedance as well. 

Figure 4.35 Boost converter with operating point and component definitions.
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Figure 4.36 The set of frequency responses of the control-to-output-voltage transfer functions
at the input voltage of 20 and 50 V.

Figure 4.37 The set of frequency responses of the output impedances at the input voltage of 20
and 50 V.

4.8.5 Concluding Remarks

The accurate modeling of PCM control has been subject of intensive research and 
debate for years. Multitude of models have been developed, of which most are 
based on the assumption of sampling effect causing the peculiar phenomena 
observed in the dynamic behavior of the PCM-controlled converters. This theme 
is also evident in Dr. Ridley’s modeling, which can be easily noticed when reading 
his Ph.D. dissertation [51] and different publications. His dissertation, however, 
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reveals that the modeling is not based on sampling effect by no means but it 
follows quite much the same procedures as introduced in this book. By computing 
the real low-frequency duty-ratio gain in Dr. Ridley’s buck converter models (cf. 
Eq. (4.179)) by means of Gco-o in Eq. (4.170), it is exactly the same as the duty-ratio 
gain of this book. Dr. Ridley’s modeling approach is more intuitive, including also 
assumptions which are not actually true, compared to the modeling method of 
this book. This is now quite obvious, when the high-frequency extension was also 
added to the models of the book yielding perfect accuracy in predictions and 
coinciding perfectly with measurements. The modeling method of this book is 
consistent, because all the steps taken are explicitly justified. It is also very easy to 
apply to different converter topologies as demonstrated in this book. 

�D´ � D�V inFRidley Mc � : (4.179) m-DC � 1= T s 2L
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5

Dynamic Modeling of Current-Output Converters

5.1 Introduction

The use of energy storage either to ensure uninterrupted operation (cf.
Figure 5.1) [1] as a primary energy source [2] or assisting the operation of the
system [3–6] is growing rapidly due to the increasing use of different battery-
powered devices as well as due to increased utilization of renewable energy
sources incorporating intermittent nature in energy production. In such appli
cations, the power electronic converters have to be able to operate in two different
operational modes, as shown in Figure 5.1b: When the storage battery is fully
charged, the power electronic converter will maintain the charge operating at
constant voltage-output mode (cf. Figures 5.1b and 5.2a). After the discharging of
the storage battery, its recharging will take place at current-limiting mode for
protecting the converter from damage due to the short circuit nature of storage
battery (i.e., extremely low internal impedance). As a consequence, the dynamics
of the converter would vary between the voltage and current-output modes,
which are profoundly different from each other and require different control
design considerations [7,8]. The typical problem involved in the change of
feedback arrangement is the profound change of control bandwidth, which easily
leads to instability either due to the source impedance interactions as reported in
Ref. [9] or due to extending the current-loop crossover frequency beyond the
switching frequency [10–12].

A voltage-fed DDR-controlled converter (cf. Chapter 3) is a voltage-output
converter at open loop. Therefore, the current-output transfer functions repre
senting the dynamics of the converter cannot be measured by using a constant
voltage sink as a load as the theory requires because of violation of Kirchhoff’s
laws. Therefore, a resistor is to be used as a load, but as a consequence, the transfer
functions are load affected and the effect of the load resistor has to be removed
computationally by applying proper load-interaction formulation.

A CM-controlled converter (cf. Chapter 4) is a current-output converter at
open loop, which can be easily characterized by connecting a constant voltage
sink at its output terminals. The dynamics of a CM-controlled converter cannot
be measured at open loop by using a constant current sink as a load because of
violating Kirchhoff’s laws [13]. Therefore, the measurements have to be carried

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.



266 5 Dynamic Modeling of Current-Output Converters

Figure 5.1 Typical DC UPS (a)
system structure and (b) the
required output terminal
behavior.

out by using a resistor as a load, and the load effect has to be removed
computationally by applying proper load-interaction formulation.

The dynamic models of the current-output converter can also be developed
directly from the known corresponding voltage-output mode transfer functions
by interchanging the input and output variables at the output terminal (i.e.,
vo $ io) [10–12].

The dynamic modeling and impedance-based interaction analysis of a voltage-
fed current-output converter will be introduced in detail in the subsequent
sections. A DDR- and PCM-controlled buck converter is used as an example
for demonstrating the dynamical changes the output mode will induce.

Figure 5.2 VF converter at (a) VO
and (b) CO mode.
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5.2 Dynamic Modeling

The dynamic modeling of the voltage-fed current-output converter can be
performed by using the same methods as introduced for the DDR-controlled
converters in Chapter 3 and for the CM-controlled converters in Chapter 4. The
only difference is that the voltage at the output terminal has to be considered as an
input variable, and the current as an output variable, respectively, as illustrated in
Figure 5.3. The set of transfer functions describing the dynamics of voltage-fed
current-output converter is known as Y parameters [8], and given in Eq. (5.1),
where c denotes the general control variable. The set of special transfer functions
can be given based on Eq. (5.1) and their generalized definition in Sections 2.2.3
and 2.2.5 according to Eq. (5.2). The methods for modeling the dynamics of
voltage-output converters are well described in Chapters 3 and 4. Therefore, in
this chapter we introduce the modeling method applying the known dynamic
models of the voltage-output converters. This technique has to be utilized anyway
when the converter is subjected to the change of output mode.
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(5.2)

where the open-circuit output admittance can also be given by

YY

YY�x o-x Y Y (5.3)o-oci � in-oco:YY
in-x

The superscript and subscript extension x in Eq. (5.3) denotes that the open-
circuit output admittance is dependent on the state of output-side feedback.

Figure 5.3 A linear circuit representing the internal dynamics of the voltage-fed current-output
converter.
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As already discussed, the difference between the voltage and current-output
modes is that the output terminal voltage and current denote different input and
output variables depending on the mode of output. The method to obtain the
dynamic models of the current-output converter from the dynamic models of the
voltage-output converter is to changing the output and input variables at the
output terminal as follows (Note: the superscript G denotes the transfer functions
of the voltage-fed voltage-output converter and the superscript Y the transfer
functions of the voltage-fed current-output converter):
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Based on Eq. (5.5), we may state that
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It may be understandable, when looking at Eq. (5.6), that the dynamics of the
current-output converter would be profoundly different compared to the dynam
ics of the corresponding voltage-output converter. The only transfer function,
which is the same, is the output impedances (ZG).o

The special transfer functions in Eq. (5.2) can also be given by means of the
transfer functions of the voltage-fed voltage-output converter as follows:

GG

YG YG ci-o
in-o in-1 GGYY YY TY

co-oin-oco in-1 oi-1 � : (5.8)
YY�x Y Y GY YG GG YG

o-oci o-1 io-1 in-x ci-o in-1
ZG YG GG TG TG

o-x in-sco co-o oi-1 oi-1
Equation (5.8) indicates that the ideal admittance (Y in-1) and the open-circuit

output admittance (Y o-oci � 1=Zo-oci) will stay intact. It is also quite obvious that
the open-circuit input admittance (Y in-oco) equals the open-loop input
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admittance (YG
in-o) of the voltage-output converter (i.e., the internal impedance of

the constant current sink is in nite).fi

derived for the DRR-controlled buck converter in Section 3.4.1, the set of current-
output transfer functions for a buck converter can be given by

^

^

When applying the information given in Eq. (5.6) and the dynamic models

vin

vo
îin

îo

D2 �D DV e � Io�sL � re � rC�� =�sL � re � rC� ;
D �s2LC � sreC � 1=�1 � srCC� V e

d̂

(5.9)

where V e and re are explicitly defined in Section 3.4.1.
When applying the information given in Eq. (5.4) and the dynamic models

derived for the PCM-controlled buck converter in Section 4.2.8, the set of
current-output transfer functions for a buck converter can be given for the input
dynamics by

�D � FmV eqin��D � FmIoqL�Y in-o � � FmqinIo;
Δ

(5.10)ΔToi-o � ��D � FmILqL�;
ΔGci-o � DFmV e � FmIo�sL � re � rC�;

^

and for the output dynamics by

ΔGio-o � D � FmV eqin;

^

s2LC � s�re � FmV eqL�C � 1
ΔZo-o � ; (5.11)�1 CsrC

^

ΔGco-o � FmV e;

where the denominator (Δ) is defined by

Δ � sL � FmV eqL � re � rC: (5.12)

5.3 Source and Load Interactions

The effect of nonideal source and load on the voltage-fed current-output
converter can be solved by means of the linear circuit in Figure 5.4 by computing
the input voltage (vin) and output voltage (vo) and substituting them into the
unterminated equations given in Eq. (5.1). The detailed derivations are presented
in the subsequent sections.

5.3.1 Source Interactions

We assume that the output load is ideal when computing the required equations
for the source interactions. According to the already described process, the input
voltage present at the direct input terminal would be

vin � vinS � ZSiin: (5.13)
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Figure 5.4 A linear circuit representing the internal dynamics of the voltage-fed current-output
converter terminated with a nonideal source and load.

When the input voltage (vin) defined in Eq. (5.13) is substituted into the
unterminated dynamic representation in Eq. (5.14), the source-affected repre
sentation will yield as given in Eq. (5.15).
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which can be also given according to Eq. (5.2) by
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As stated in Eq. (5.8), YY
in-oco equals the open-circuit input admittance of the

corresponding voltage-output converter, which is known to have resonant
behavior in the DDR-controlled converter. Therefore, the converter output
admittance may be more sensitive to the source-impedance interactions than
the output impedance of the corresponding voltage-output converter. For the
CM-controlled converters, the source sensitivity does not change when the
output mode is changed.

5.3.2 Load Interactions

We assume that the input source is ideal when computing the required equations
for the load interactions. According to the already described process, the output

? ?
1 � ZSYY

in
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voltage present at the direct input terminal would be

ZLGY
io� 1 ZLGY

covin � voL �
1 � ZLYY 1 � ZLYY 1 � ZLYY

o o o

^^ (5.17)vo c:

When the output voltage (vo) defined in Eq. (5.17) is substituted into the
unterminated dynamic representation in Eq. (5.14), the load-affected represen
tation will yield as given in Eq. (5.18).

^

^

^

^

�i ^in vin � vo

^io vin � voL � c;
1 � ZLYY 1 � ZLYY 1 � ZLYY

o o o

(5.18)

^

which can be also given according to (5.2) by

^

c;

^

^

^

� �GY
ioT

Y
oi=Y

Y YY
o � �Toi

Y GY =Gci
Y �1 � ZL coYY

o ĉ;
TY

oi1 � ZL �
YY

in GY
ci

o �
1 � ZLYY

o 1 � ZLYY
o 1 � ZLYY

o

GY YY GY
io o co�

îin �

îo

TY
oi1 � ZLYY

o-oci 1 � ZLYY
o-1�v̂inin

YY

�v̂in

GY
ci�v̂o

YY GY
o co

1 � ZLYY
o 1 � ZLYY

o 1 � ZLYY
o

(5.19)
GY

io� v̂oL �
1 � ZLYY 1 � ZLYY

o o

ĉ:

As stated in Eq. (5.8), YY
o-oci, which means that the load-impedanceo-oci � 1=ZG

interaction to the input impedance does not change due to the change of output
mode. If the controller of the current-output converter is designed and validated
by using a resistive load, then its application in the intended usage would actually
recover the internal dynamics. As a consequence of this, the control bandwidth
would increase substantially. If ZLYY � 1, then it would be obvious that the load-o
affected control-to-output transfer function would be

GG

GY -L co� ; (5.20)co ZL

which means that the output-current loop gain will have the dynamic properties
of the voltage-output converter. In case of DDR-controlled converters, this would
mean that the designer has to consider the use of PID controller even if PI
controller would suffice. This kind of situation may be valid in the cases where the
storage-battery internal impedance is increasing due to a reason or another (i.e.,
aging, low temperature, etc.).

5.4 Impedance-Based Stability Issues

The change of output mode would also affect how the minor-loop gain has to be
defined at the output terminal for having correct stability information when
applying Nyquist stability criterion: Actually the correct minor-loop gain is also

1 � ZLYY
o
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visible in the derived source and load-interaction formulations in Eqs (5.16) and
(5.19), that is, the impedance ratio shall be ZL=ZY . The input-side minor-loopo
gain does not naturally change although the input impedance of the converter has
experienced some changes, as discussed in Section 5.2.

5.5 Dynamic Review

A buck converter (cf. Figure 5.5) is used as an example. The converter is operated
both under DDR and PCM controls in order to demonstrate the differences
imposed by the different control methods. The load of the converters is a parallel
connection of a 4-Ω resistor and a 5-mF capacitor mimicking the dynamic short
circuit. The pure resistive load is naturally the 4-Ω resistor.

As already discussed, the resistive load would affect significantly the current-
output converter dynamics as shown in Figure 5.6 in case of DDR-controlled buck

Figure 5.5 Experimental DDR/PCM-controlled buck converter at current-output mode.

Figure 5.6 The pre
dicted (a) and (b) meas
ured effect of restive load
on the control-to-output
transfer function of the
DDR-controlled buck
converter.
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Figure 5.6 (Continued )

converter, and in Figure 5.7 in case of PCM-controlled converter: Figure 5.6a
predicts that the magnitude of the control-to-output transfer function (GY )co-o
decreases significantly when the resistive load is applied, which implies that the
current-loop crossover frequency can change by one decade depending on the type
of load as the measured current-loop gains clearly indicated in Figure 5.6b. In
addition, the resistive-load-affected loop gain shows the resonant nature of the
voltage-output converter. Figure 5.7a shows the same predicted load effect on the
control-to-output transfer function of the PCM-controlled converter, which
implies that the current-loop crossover frequency can change even by two decades
depending on the load applied, as Figure 5.7b clearly confirms.

Figure 5.7 The pre
dicted (a) and (b) meas
ured effect of restive
load on the control-to
output transfer function
of the PCM-controlled
buck converter.
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Figure 5.7 (Continued )

The design validation of the power electronic converters is very often per
formed by using electronic loads. The fact is, however, that usually only the
constant current load behaves as expected. Figure 5.8a shows the measured open-
loop output impedances of the DDR and PCM-controlled buck converter as well
as the internal impedance of an electronic load configured to operate as a constant
voltage load. According to the figure, the electronic load internal impedance
overlaps with the open-loop output impedance of the PCM-controlled converter.
This implies that the current-loop gain would be affected, as is clearly shown in
Figure 5.8b: The converter is clearly close to instability, and if the design of the
current-loop gain is corrected in order to meet the requirements, the outcome
would be an unstable converter in normal usage.

Figure 5.8 (a) The meas
ured open-loop output
impedances of the DDR
and PCM-controlled buck
converter as well as the
internal impedance of an
electronic load. (b) The
measured current-loop
gains of the original PCM-
controlled converter and
the electronic-load
affected converter.
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Figure 5.8 (Continued )
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6

Control Design Issues in Voltage-Fed DC–DC Converters

6.1 Introduction

The voltage-fed switched-mode converters are usually applied to supply power
for different electronics loads, where the transient performance requirements can
be very stringent due to low supply voltages and rapidly changing load currents as
in powering microcomputers and digital signal processors [1–3]. Such applica
tions are usually based on the use of intermediate bus architectures (IBA) shown
in Figure 6.1a [4], where the converters operate as voltage-output converters.
Although the load transient requirements are generally stringent, a part of the
converters (i.e., the bus converter) may operate even without feedback from the
output voltage for reducing the costs of implementation.

In some applications, the system may incorporate elements, which would
require the use of output current limiting to protect the converters from damage,
as in Telecom uninterruptible power supply (UPS) systems shown in
Figure 6.2a [5]. In such a system, the converter providing the recharging of
the storage batteries have to be able to operate both as a voltage-output and
current-output converter requiring the use of multiloop control arrangement, as
depicted in Figure 6.2b [6]. The cascaded nature of the control as well as the
varying dynamic features of the voltage-output and current-output operation
modes would further complicate the design of the required controllers, as shortly
discussed in Section 2.3.4.

Basically, it is always question of maintaining robust stability and achieving
adequate transient dynamics [7–26] within the certain constraints stipulated by
the application. In practice, the internal dynamical profile of the converter would
determine what the real transient dynamics would be in the operational environ
ment [27–31]. Of course, the fact is that a poor control design would yield also
poor transient performance and compromise the stability of the converter. There
are also several other factors that may affect the closed-loop dynamics, such as
remote sensing [32–34], and lead to unsatisfactory dynamic behavior even if the
original control design would be excellent. The reader is recommended to study
carefully the material provided in Chapter 2 (cf. Section 2.5) for avoiding the
typical problems in control design and understanding the frequency domain
behavior of different controllers. Chapters 3–5 provide in addition to the dynamic

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 6.1 Intermediate bus architec
ture-based DC–DC power system.

models of the converters also detailed discussions on the control design anoma
lies involved in the different converters under the named internal control
methods. We do not repeat those topics anymore in this chapter if not deemed
absolutely necessary.

The feedback amplifier design in voltage-fed converters is most often based on
the use of proportional integral derivative (PID) or proportional integral (PI)
controllers [15,22–26]. In the control applications, where the control-related
transfer functions exhibit resonant-like behavior, the use of PID controller is
required for having capability to boost enough the phase for obtaining proper
phase margin. The lack of resonant behavior may allow the use of PI controllers
but the designer should carefully consider the other possible effects arising from
the application of the converter (cf. e.g., current-output converters in Chapter 5).

Figure 6.2 DC UPS. (a) System
principle. (b) The output char
acteristics of the battery
charger.
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Very simple cost-effective control systems are often based on the use of TL431
type shunt regulators [35,36]. The dynamics and nature of the shunt regulator is
usually not very well understood. Reference [23] provides detailed information on
the problems associated with the application of these devices.

The rest of the chapter is organized as follows: We introduce first the method to
construct the switching and averaged converter models for being able to verify the
designs by simulation in MatlabTM Simulink environment. Simulink toolbox is
very handy tool for these purposes. Next, we introduce the factors affecting the
load transient response for being able to design the converter power stage and
controller to proving fast response. The next section discusses on the problems
induced by the application of output voltage remote sensing. The last section
provides examples on the simple controller design method.

6.2 Developing Switching and Average Models

The switching model of the power stage can be easily constructed based on the
development of the averaged state spaces for the DDR-controlled converters in
Chapter 3. The basic idea in constructing the Simulink model is to integrate the
derivatives of the state variables to obtain the instantaneous state variables (i.e.,
inductor currents and capacitor voltages) separately for on-time and off-time,
respectively. The operation mode is simply selected in such a manner that the
state variable value is limited to zero for DCM operation similarly as the diode
works in the actual circuit. If the value of the state variable is not limited, then the
converter operates in CCM all the time as if all the switches are MOSFETs
allowing bipolar flow of currents. The given power-stage switching models can be
used to construct the switching models for the other control modes by modifying
the method to generate the duty ratio.

The averaged model is simply constructed based on the average state space of
the converter following otherwise the same principles, as already discussed. This
method works extremely well for the DDR-controlled converters, and yields
exactly the same dynamic responses in time and frequency domains as the
switching model. We will also introduce a method to construct an averaged
simulation model for a PCM-controlled converter but there are some minor
things that would reduce its accuracy a little bit compared to the averaged models
of DDR-controlled converter.

6.2.1 Switching Models

The method to construct the switching models is illustrated by using a buck
converter as an example (cf. Figure 6.3). The detailed example of the development
of the averaged state space of an ideal synchronous buck converter (i.e., CCM
operation only possible) is given in Section 2.4.2.

As discussed extensively in Chapter 3, the topological structures of the
converter (cf. Figure 6.4) during the on-time and off-time shall be first identified
for obtaining the required derivatives of the state variables (i.e., inductor current
and capacitor voltage) and the dependence of the output variables (i.e., input
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Figure 6.3 Buck converter power stage. (a) Operating both in CCM and DCM depending on the
level of load current. (b) Operating only in CCM regardless of the level of load current.

Figure 6.4 The topological sub circuit structures during (a) theon-timeof bothof the converters,
(b) the off-time of the diode-switched converter (cf. Figure 6.3b), and (c) the off-time of the
synchronous-switching converter (cf. Figure 6.3c).
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current and output voltage) on the circuit variables and elements by applying
Kirchhoff’s laws.

Applying Kirchhoff’s voltage and current laws, we can compute that during the
on-time (cf. Figure 6.4a)

vL � vin � �rL � rds1�iL � vo;

iC � iL � io;
(6.1)

iin � iL;

vo � vC � rCiC � vC � rCiL � rCio;

and during the off-time (cf. Figure 6.4b)

vL � ��rL � rd�iL � vo � VD;

iC � iL � io;
(6.2)

iin � 0;

vo � vC � rCiC � vC � rCiL � rCio;

or (cf. Figure 6.4c)

vL � ��rL � rds2�iL � vo;

iC � iL � io;
(6.3)

iin � 0;

vo � vC � rCiC � vC � rCiL � rCio:

According to the basic electrical engineering principles, diL=dt � vL=L and
dvC=dt � iC=C. Therefore, Eqs (6.1)–(6.3) can be given by

diL vin �rL � rds1�iL vo� � � ;
dt L L L
dvC iL io� � ; (6.4)
dt C C
iin � iL;

vo � vC � rCiL � rCio:

diL �rL � rd�iL vo VD� � � � ;
dt L L L
dvC iL io� � ; (6.5)
dt C C
iin � 0;

vo � vC � rCiL � rCio:

diL �rL � rds2�iL vo� � � ;
dt L L
dvC iL io� � ; (6.6)
dt C C
iin � 0;

vo � vC � rCiL � rCio:
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Figure 6.5 The power-stage Simulink model.

The power-stage Simulink model of the diode-switched buck converter can be
given as shown in synchronous-switched buck converter shown in Figure 6.5,
where the duty signal equals 1 for on-time and 0 for off-time. Therefore, the
threshold for the selector switches marked with “∗” shall be set to 0.5 for proper
operation. The state of the selector switches are shown in the figures when the
duty signal is higher than the threshold value. The switch will change its state to
the lower position when the duty is less than the threshold. The initial values and
saturation levels of the integrators can be set to desired values. The setting of
initial values to the steady-state values may accelerate the settling processes and
is, therefore, recommended to be used. If the power stage is to work also in DCM,
then the lower limit of the saturation of the inductor current shall be set to zero. If
the operation is to be only in CCM, then the saturation levels shall not be defined.
It should be noted that the output voltage can be directly used when computing
the inductor current, which is not allowed in the dynamic modeling. The
differences between the two topologies are related to the value of VD and rd=rds2.

Figure 6.6 shows the power-stage model as an open-loop subsystem, including
some necessary items connected to its input (i.e., left side) and output (i.e., right
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Figure 6.6 The open-loop power-stage Simulink model as a subsystem for (a) DDR-controlled
second-order converters, (b) PCM-controlled second-order converters, and (c) the resistive load
application.
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Figure 6.7 PWM modulators for
(a) DDR control and (b) PCM
control.

side) terminals for controlling it, recording the results for documentation, and
providing timing of the events. The presented model in Figure 6.6a is applicable
for DDR-controlled converters and in Figure 6.6b for PCM-controlled converters.
It should be noticed that a PCM-controlled converter cannot work at constant
current load but a resistive load has to be used instead (cf. Figure 6.6b). The
Simulink model for the resistive load is given in Figure 6.6c.

Figure 6.7 shows the implementation of the DDR-PWM and PCM-PWM
blocks to generate the duty ratio signal to control the power stage of the
corresponding converters. In Figure 6.7a, the PWM ramp signal is generated
by using a repeating sequence, where the cycle time (T s � 1=f ) and the minimums
and maximum values (i.e., max–min=VM) of the ramp have to be specified. Two
pulse generators are used to generate the pace signal (i.e., switching frequency) for
setting the flip-flop (i.e., initiating the cycle) and for limiting to maximum pulse
width to a desired value depending on the delays in the control of the active
switches, and so on. The pulse width of the pace signal shall be set to 0.1%, and the
pulse width of the maximum duty ratio shall be set to the desired value. The time
setting of both of the pulse generators must be equal to the inverse of the
switching frequency ( f ).s

In Figure 6.7b, the repeating sequence is used to compensate the inductor
current loop, where the time has to be set to the inverse of the switching
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Figure 6.8 Closed-loop converter model. (a) The connection of controller to the power stage.
(b) The controller implementation.

frequency, the minimum value of the ramp to zero, and the maximum value to
RsMcTs. Rs denotes the equivalent sensing resistor (Ω) of the inductor current, Mc

the compensation ramp (A=s) (commonly for buck converter V o=2L), and T s the
cycle time (s).

Figure 6.8 shows the closed-loop converter model, including the implementa
tion of the control system. The controller is shown by using PID implementation
as an example but the other controller types can be equally implemented based on
their transfer function given in Section 2.5.6.

Figure 6.9a shows the connection of a single-section LC (SS-LC) filter at the
input of the converter and Figure 6.9b the corresponding Simulink model.
Figure 6.9c shows the Simulink model of the LC input filter, where Lf and Cf

denote the inductor and capacitor values, respectively, and rLf and rCf their
equivalent series resistances (ESR), respectively. Figure 6.9a provides the key for
understanding the principles for constructing the Simulink models.

Figure 6.10a shows the connection of a single-section LC (SS-LC) filter at the
output of the converter, and Figure 6.10b shows the corresponding Simulink
model. Figure 6.10c shows the Simulink model of the LC-type resonant load,
where Lf and Cf denote the inductor and capacitor values and rLf and rCf their
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Figure 6.9 Single-section LC input filter. (a) Connection to the converter input terminal. (b) The
Simulinkmodel of the cascaded connection of the input filter and the converter. (c) The Simulink
model of the LC input filter.
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Figure 6.10 Single-section LC loadfilter. (a) Connection to the converter output terminal. (b) The
overall Simulink model. (c) The Simulink model of the LV filter. (d) The model for combined
constant current restive loads.

ESR, respectively. Figure 6.10a provides the key for understanding the principles
for constructing the Simulink models.

6.2.2 Averaged Models

The averaged model of the converter is the corresponding averaged state space
given in Chapter 3 for a number of converters. As an example, the Simulink model
for a buck converter is given in this section, which is valid for CCM operation. It is
obvious that the CCM and DCM models are different because the dynamic
behaviors are different. The method to construct the Simulink models is basically
the same as applied to constructing the switched models in Section 6.2.1. The
main difference is that the duty ratio-controlled switch cannot be naturally used
anymore. Therefore, the duty ratio and its complement have to be used directly to
implement the required multiplications in the averaged state space.
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Figure 6.10 (Continued)

The averaged state space of the synchronous buck converter is given in Section
3.4.1 by

dhiLi
dt

� � rL � drds1 � d´rds2 � rC

L
hiLi � 1

L
hvCi � d

L
hvini � rC

L
hioi;

dhvCi hiLi hioi� � ; (6.7)
dt C C

hiini � dhiLi;
hvoi � rChiLi � hvCi � rChioi:

Figure 6.11a shows the closed-loop Simulink model for the DDR-controlled
buck converter. The power-stage model is given in Figure 6.11b and the DDR
modulator model in Figure 6.11c, where Vm denotes the modulator gain and the
saturation block limits the duty ratio to the range of 0–1.

The Simulink model for the PCM control is based on the same power-stage
model as given in Figure 6.11b but the PWM modulator is modified to correspond
to the PCM control, where the inductor current is used to provide the duty ratio,
as discussed in detail in Chapter 4. The closed-loop Simulink model for the PCM-
controlled converter is shown in Figure 6.12a.
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Figure 6.11 Buck converter average models for (a) closed-loop system, (b) power stage, and
(c) DDR PWM modulator.
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Figure 6.12 Averaged models for PCM-controlled converter in CCM. (a) Closed-loop system.
(b) PCM modulator.

The general averaged comparator equation for the single-inductor converters
(cf. Section 4.2.2), by means of which the duty ratio can be solved, can be given by

dd´T shicoi �McdT s � hiLi � �m1 �m2�; (6.8)
2
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where m1 and m2 denotes the absolute value of the inductor current up and down
slopes, respectively. The comparator equation is a quadratic equation in terms of
duty ratio, which can be given by

2Mc 2�hicoi � hiLi�d2 � 1 � d � � 0; (6.9)�m1 �m2�T sm1 �m2

from which the duty ratio can be solved as follows

1 Mc 1 Mc
2 2�hicoi � hiLi�d � � � � � : (6.10)

2 m1 �m2 2 m1 �m2 �m1 �m2�T s

Equation (6.10) defines the structure of the PCM modulator to generate the
duty ratio. The implementation of (6.10) in Simulink for the synchronous buck
converter is shown in Figure 6.12b.

As discussed in Chapter 4, the averaged duty ratio of a PCM-controlled
converter cannot be higher than the value of duty ratio at the mode limit (i.e.,
the operation at mode limit and second or higher harmonic modes). In the PCM
modulator, this limitation is implemented by forcing the discriminator of the
square root operator to be always higher or at least zero. This means that the
duty ratio cannot be unity within a cycle during the dynamic operation similarly
as in a practical converter. This would cause some inaccuracy in the dynamic
behavior if the transient response is very fast and the steady-state duty ratio is
quite close to the mode limit value (i.e., the input voltage is at its defined
minimum).

Even if we have presented the development of the switching and averaged
Simulink models for a buck converter, the models for other converters can be
naturally developed applying the described methods as well.

6.3 Factors Affecting Transient Response

The most important and strictly specified transient response is usually the load
transient response, which can be affected by means of the power-stage com
ponent and control designs. Neither of these alone would give an optimized
transient response. If the control-related transfer functions of the converter
incorporate RHP zeros (i.e., nonminimum phase system), then the most
important control design goal is to ensure stability. The transient response
would be anyway quite poor. As we have discussed in Chapter 3, the RHP zero
could be sometimes removed by a proper selection of the power-stage compo
nent affecting the appearance of the zero. The use of coupled inductor
technique would sometimes reduce the degree of freedom to select the
components as required. From the design point of view, this kind of knowledge
is quite essential.

There are several other factors, which will significantly affect the transient
response as discussed in Refs [20,37–41]. The selection of the output capacitor
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of a converter is sometimes implied to be performed based on the voltage ripple
caused by the charge/discharge processes of the output capacitor, as in Ref. [22]. In
practice, there are several other factors, which may determine the required
capacitor characteristics rather than the charge/discharge-induced voltage ripple,
because the capacitor has a significant role in the load transient response [20,42,43].

6.3.1 Output Voltage Undershoot

Figure 6.13 shows the simulated output voltage response to a step change of 1.5 A
in the output current of the DDR-controlled buck converter shown in Figure 6.14.
Figure 6.13 has been produced applying the given switched and averaged models
in Section 6.2. The response is naturally similar to the response given in Ref. [20]
except that the effect of series inductance is missing. In practice, the pure
capacitor voltage cannot be measured, because the capacitor ESR is embedded
in the capacitor.

As stated in Chapter 3, the averaged derivative of the inductor current can be
given in CCM by

dhiLi � dm1 � d´m2; (6.11)
dt

where m1 and m2 are the up and down slope of the inductor current, respectively,
as absolute values and d and d´ the duty ratio and its complement, respectively.
The slopes are dependent on the voltage across the inductor and its inductance
value, respectively. As Figure 6.13 indicates, the output capacitor discharges until
the averaged inductor current reaches the value of the load current, causing a dip
in the output voltage. It may be obvious that the larger the value of inductance and
the lower the input voltage are, the larger the dip would be. The third factor is
naturally the maximum value of the duty ratio, which is dependent on the ability
of the controller (cf. Figure 6.14b) to react to the changes in the output voltage.

Figure 6.13 An output-voltage response to a step change in output current in a buck converter.
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Figure 6.14 A DDR-controlled buck converter. (a) The power stage. (b) The control system.
(c) The output voltage loop gain.
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Figure 6.15 The closed-loop output impedance of the DDR-controlled buck converter.

Based on Figure 6.13 and Eq. (6.11), we can compute the value of the
capacitance (Cout) for satisfying the requirement for a certain dip in the output
voltage as follows:

�Δio�2Cout � : (6.12)
2Δvo�dmaxm1 � d´ m2�max

As discussed in Chapter 2, the value of the voltage dip corresponds closely to
the value of the small-signal closed-loop output impedance at the voltage loop
crossover frequency. According to Figure 6.15, the value of the output impedance
is approximately 90 mΩ, which yields a voltage dip of 135 mV for the step change
of 1.5 A in the output current. According to Figure 6.13, the voltage dip is
approximately 130 mV.

The minimum voltage dip would naturally correspond to Δio ? rC if the control
is arranged accordingly or other methods, such as the load current feedforward
scheme, are applied. Applying just the output voltage feedback, the voltage dip is
always higher than the absolute minimum.

6.3.2 Settling Time

According to Refs [24,25], the output voltage settling time is dependent on the
location of the controller zeros, because the zeros form the time constants of the
exponential functions determine the envelope behavior of the response. This can
be easily understood by looking the frequency domain equation governing the
output voltage transient in case of a step change in the output current, which can
be given by

Zo-oΔvo�s� � ?Δio�s�;1 � L�s� (6.13)
L�s� � Gse-outGaGccGco-o;
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where Zo-o denotes open-loop output impedance, L�s� output voltage feedback
loop gain, Gse-out out voltage sensing gain, Ga modulator gain, Gcc controller
transfer function, and Gco-o control-to-output-voltage transfer function. At the
low frequencies, where L�s� � 1, the output voltage response in Eq. (6.13) can be

s�1 � s=ωp1�

given by

Δvo�s� � Zo-o-num

Gse-outGaGccGco-o-num
?Δio�s�;

Gcc�PID� � K �1 � s=ωz1��1 � s=ωz2�
s�1 � s=ωp1��1 � s=ωp2� ; (6.14)

Gcc�PI� � K �1 � s=ωz1�
:

According to Eq. (6.14), it is obvious that the zeros of Gccwould form the poles
of Δvo�s�, and thereby, their inverses are the time constants of the corresponding
exponential time functions. This actually means that the higher the frequency of
the zeros, the faster the settling process.

Physically, the settling process is quite dependent on the behavior of the low-
frequency gain of the feedback loop, which is reflected as the ability of the error
amplifier (cf. Figure 6.14b) to keep the control voltage and thereby, the duty ratio
to be higher than its steady-state value [37]. As a consequence, we can state that
all the measures that would increase the low-frequency gain of the feedback loop
would make the settling process faster. These actually include the level of
modulator gain (i.e., VM), the feedback loop crossover frequency ( f gco), and
the phase margin (PM) as well [37]. For fast response, PM should be approxi
mately 50 deg.

Figures 6.16 and 6.17 show the effect of the PID-controller zeros (i.e., placed at
0:25 ? f , 0:5 ? f , and f ) and the varying input voltage on the dynamics of theres res res

Figure 6.16 The effect of controller zeros at the input voltage of 20 V on (a) voltage feedback
loop and (b) the transient response.
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Figure 6.16 (Continued)

Figure 6.17 The effect of controller zeros at the input voltage of 50 V on (a) voltage feedback
loop and (b) the transient response.
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Figure 6.18 The behavior of the closed-loop output impedances due to the changes in the
controller zeros and the input voltage. (a) 20 V. (b) 50 V.

DDR-controlled converter. The effect of the input voltage on the feedback loop
behavior is quite clearly visible (i.e., the crossover frequency (5 kHz�20V� !
10 kHz�50V�) and the low-frequency gain (+10 dB)). The phase margin is also slightly
reduced when the input voltage is increased providing slightly accelerated response.
Figures 6.16b and 6.17b show the effect of the zeros and the input voltage on the
output voltage transient response (i.e., the voltage dip and settling time). The
reduction of the voltage dip can be actually related to the level of the output impedance
at the voltage feedback loop crossover frequency (cf. Figure 6.18).

Figure 6.18 shows the effect of the controller zeros and the input voltage on the
closed-loop output impedance of the DDR-controlled converter, including the
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Figure 6.19 PCM-controlled buck converter. (a) The power stage. (b) The control system.

value of the output impedance at the voltage-feedback-loop crossover frequency.
According to Figure 8.18a, the voltage dip would be 150 mV, and according to
Figure 6.18b, the voltage dip would be 83 mV. The predicted voltage dips
correspond quite well to the voltage dips readable from Figures 6.16b and 6.17b.

Figure 6.19 shows the power stage and the control-system arrangement of the
PCM-controlled buck converter, which is used for analyzing the effect of the
placement of the controller zeros as well as the input voltage on its output
voltage-feedback loop and load transient response. The power stage is exactly the
same as in case of the DDR-controlled buck converter. As discussed in Chapter 4,
the resonant-free nature of the PCM-controlled converters allows the use of PI-
type feedback controller (cf. Eq. 6.14) containing only a single zero placed at
0:25 ? f , 0:5 ? f , and f . Even if the PCM-controlled converter does not haveres res res
resonant behavior, the same inductor and output capacitor as in the DDR-
controlled converter are still a part of the power stage. Therefore, the imaginaryp
resonant frequency can be defined (i.e., ωres � 1= LC) and applied in the control
design as well.

Figure 6.20a shows the effect of the placement of the controller zero on the
output voltage feedback loop at the input voltage of 20 and 50 V. As discussed in
Chapter 4, the varying input voltage does not have practical effect on the loop gain
at all. It should be noticed (cf. Figure 6.20a) that the phase margin is quite large,
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Figure 6.20 The effect of controller zeros and the varying input voltage on (a) the voltage
feedback loop, (b) the transient response at the input voltage of 20 V, and (c) the transient
response at the input voltage of 50 V.
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which actually would make the transient response quite sluggish, as shown in
Figure 6.20b (vin � 20 V) and Figure 6.20c (vin � 50 V). The input voltage clearly
has a significant effect on the response, which would be quite expected. The
responses are, however, much more sluggish than the responses of the DDR-
controlled converter in Figures 6.16b and 6.17b.

The control system is modified by placing the high-frequency pole in such a
manner that the phase margin would correspond to the phase margin of the
DDR-controlled buck converter. The modified output voltage feedback loop
gain is given in Figure 6.21a and the corresponding load transient response at
the input voltage of 50 V in Figure 6.21b. The phase margin has a clear effect
on the transient response. It should be understood that a too low phase

Figure 6.21 The effect of the controller zero on (a) the voltage loop gain and (b) the transient
response, when the phase margin is reduced. The input voltage is 50 V.
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margin could significantly deteriorate the response by causing oscillation and
increasing the voltage dip by affecting the output impedance (cf. Section 2.5).

The output voltage dip corresponds usually well to the product
Δio ?Zo-c�ω � ωgco�, where the output impedance is defined at the output
voltage loop crossover frequency as demonstrated in case of the DDR-con
trolled converter. The behavior of the output impedance of the PCM-con
trolled buck converter at the input voltage of 20 (cf. Figure 6.22a) and 50 V (cf.
Figure 6.22b) are given in Figure 6.22. The output impedance of Figure 6.22a
corresponds to the conditions given in Figure 6.20, and the output impedance
of Figure 6.22b corresponds to the conditions given in Figure 6.21.

According to Figure 6.20b, the voltage dip is approximately 250 mV, and the
predicted voltage dip is 77 mV. According to Figure 6.21b, the voltage dip is

Figure 6.22 The predicted output impedances of the PCM-controlled buck converter at the
input voltage of (a) 20 V and (b) 50 V.
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Figure 6.23 The buck converter. (a) The power stage and connections to the control system.
(b) The PCM-OCF control system.

approximately 75 mV, and the predicted voltage dip is 110 mV. The accuracy of
the predictions based on the small-signal behavior of the PCM-controlled
converter is not very high at all, but it gives only a good estimate.

Figure 6.23 shows the power stage of a practical buck converter including the
required connections for control system as DRR, PCM, and PCM-OCF converter
(Figure 6.23a) as well as the control system of PCM-OCF mode (Figure 6.23b).
The other control system principles are given in Figures 6.14b (DDR) and 6.19b
(PCM), respectively. More detailed information on the PCM-OCF control
implementation can be found from Ref. [44]. In practice, a large input capacitor
has to be connected at the input terminal of the converter in order to avoid
damage due to the rapidly changing input current and cabling inductance.

The output-voltage load-transient responses of the converters, when a step
change of 2 A in the output current is applied, are given in Figure 6.24a.
Figure 6.24b and c show the measured output-voltage-loop gains and the
corresponding closed-loop output impedances.

Figure 6.24b indicates that the crossover frequency of the control loop in the
DDR-controlled converter is approximately 5 kHz and PM approximately 49°.
The same values for the PCM-controlled converters are 12 kHz and 64°,
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Figure 6.24 Themeasured (a) output voltage load transients, (b) output voltage loop gains, and
(c) closed-loop output impedances.
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respectively. The control systems are designed in such a manner that the
controller zeros are placed at 0:5 ?ωres. As discussed earlier, the output voltage
responses would be slightly better if the zeros were placed closer to the resonant
frequency and the phase margin of the PCM-controlled converter were decreased
close to the phase margin of DDR-controlled converter.

According to Figure 6.24c, the closed-loop output impedances at the
output-voltage-loop crossover frequency are as follows: DDR: 143 mΩ,
PCM: 73 mΩ, and PCM-OCF: 18 mΩ. In these cases, the small-signal output
impedances predict quite well the measured voltage dips except for the PCM
OCF converter: DDR: 216 mV versus 286 mV; PCM: 180 mV versus 145 mV,
and PCM-OCF: 106 mV versus 36 mV. Basically, the minimum dip should be
approximately 66 mV due to the ESR of the output capacitor as all the
measured voltage dips definitively are.

6.4 Remote Sensing

6.4.1 Introduction

Usually the commercially available DC–DC converter modules are equipped
with two extra pins, which are intended for remote sensing the voltage at the
exact input terminals of the load powered by the DC–DC converter (cf.
Figure 6.25). It is not very well known, however, that the application of the
remote sensing can deteriorate the dynamics of the power module, and
thereby, also the well-being of the load system due to the extra impedances
between the converter and the load [32–34]. The effect of the external input
and output impedance on the converter dynamic behavior is well known, as
already discussed in Chapters 3, 4, and 5. Actually, similar methods as used in
the source, and load interaction analyses can be equally utilized also to analyze
the effect of the remote sensing-related impedances denoted in Figure 6.25 by
Zremote.

6.4.2 Remote Sensing Dynamic Effect Analysis Method

Similarly as developing the general load-affected dynamic models of a converter
in Section 2.2.5, the same methods can also be applied to a more complex load
than just a single impedance, as used in Chapter 2. The only difference is that the
load subsystem contains four elements instead of one.

Figure 6.25 Typical application of output voltage remote sensing.
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Figure 6.26 A cascaded system consisting of the converter and the remote sensing impedance
block.

Based on Figure 6.26 and the G-parameters of the converter at open loop, the
subsystems can be given by
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and the remote sensing impedance-affected dynamic description of the converter
can be given by
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in 1�Zo-o in Y RSîin 1�Zo-o 1�Zo-o�
ZRS

o1�Zo-oY RS
in 1�Zo-oY RS

in 1�Zo-oY RS
in

(6.16)

where Y RS
in-sco denotes the short-circuit input admittance of the remote sensing

impedance block and can be defined by

GRS
io T

RS

Y RS oi
in-sco � Y RS �

ZRS : (6.17)in
o

According to Eq. (6.16), it may be obvious that the dynamic behavior may
change significantly compared to the situation where the remote sensing is not
used. We will show later that even small inductances and capacitances can have a
significant effect and make the converter sensitive even to instability.

Based on Figure 6.26, the basic understanding of the formation of the special
impedance/admittance parameters of the converter is as follows:

� The ideal input admittance (Y in-1) would stay intact, because the output side
current is zero in small-signal sense, when the ideal input admittance is determined,� The short-circuit input admittance (Y in-sco) would change, because the imped
ance block generates an impedance in the output current path. The overall
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short-circuit input impedance can be easily defined by inspecting the circuitry
given in Figure 6.26 as an impedance by

ZRS
in-scoZM (6.18)in-sco � Zin-sco �

M�D�2 ;
where the superscript M denotes the overall short-circuit input impedance and
M�D� the ideal input-to-output modulo of the original converter. This means
that the converter sensitivity to source interactions would be changed.� The other special parameters can be naturally easily computed based on
Eq. (6.16) and the definition of the parameters, for example in Section 3.4,
which are valid for the voltage-fed voltage-output converters. In a generalized
form, the definitions can be found from Section 2.2.

6.4.3 Remote Sensing Impedance Block Examples

The typical remote sensing impedance blocks are the cable or circuit board trace
connection shown in Figure 6.27a and the T-type LCL circuit shown in Figure 6.27b.

The impedance blocks in Figure 6.27 can be represented by means of their
G-parameter sets as follows (cf. Eq. (6.15)):

0 1

1 ��sLRS �rL-RS�
sCRS 1� srC-RSCRS :

s2LRS1CRS � s�rL-RS1� rC-RS�CRS �1 s2LRS1CRS � s�rL-RS1 �rC-RS�CRS �1

1� srC-RSCRS �rL-RS1 � sLRS1��1� srC-RSCRS�sLRS2 � rL-RS2 �s2LRS1CRS � s�rL-RS1� rC-RS�CRS �1 s2LRS1CRS � s�rL-RS1 � rC-RS�CRS�1

(6.19)

Figure 6.27 Remote sense impedance blocks. (a) Cable connection. (b) T-type LCL circuit.
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Figure 6.28 The power stage of the experimental synchronous buck converter.

6.4.4 Experimental Evidence

The experimental analyses of the effect of output-voltage remote sensing on the
converter dynamics are performed by using the DDR-controlled buck converter
given in Figure 6.14a and the DDR-controlled synchronous buck converter given
in Figure 6.28. The component values of the used remote sensing impedance
blocks are defined in Figure 6.29. The selection of the capacitor in the T-type
impedance block in Figure 6.29b has to be performed in such a manner that its
ESR is high enough for maintaining the stability of the converter.

The remote sensing effect of the 100 kHz DDR-controlled buck converter (cf.
Figure 6.14a) was tested by connecting the connection cable between the
converter output and the load. Figure 6.30a shows that the output impedance
of the converter will become inductive at the high frequencies. The inductive
nature of the output impedance would make the converter sensitive, especially, to
capacitive load. Figure 6.30b shows the measured internal (1) and cable

Figure 6.29 The component definitions of the remote sensing impedance blocks. (a) Con
nection cable. (b) T-type LCL circuit.
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Figure 6.30 The effect of a connection cable on (a) the open-loop output impedance and (b) the
effect of an additional RC loading on the converter loop gain.

connection-affected (2) output-voltage loop gains, where the effect of the
inductive loading is visible as an increase in the loop phase only. An RC circuit
was connected at the input terminal of the load, where the capacitance value is
110 μF and the resistance value 4 Ω. The effect of the combination of the cable
connection and the RC load on the output voltage loop gain is shown in
Figure 6.30b as the curve (3). It is obvious that the converter would be close
to instability, which clearly confirms the existence of the sensitivity to capacitive
load as already discussed.

The effect of the T-type LCL block on the converter dynamics was tested by using
the synchronous buck converter (cf. Figure 6.28). The LCL load-affected (cf.
Figure 6.29b) open-loop output impedance of the converter is shown in
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Figure 6.31 The remote sensing effect of T-type LCL impedance block on (a) the open-loop
output impedance and (b) the output voltage loop gain.

Figure 6.31a containing the resonant behavior characteristic to resonant circuit.
Figure 6.31b shows the LCL load-affected output-voltage loop gain, where the
robustness of the performance is clearly deteriorated. Figures 6.32 and 6.33 show
the corresponding time domain output-voltage responses (a) without LCL imped
ance connection, (b) with the LCL impedance but without remote sensing, and (c)
with the remote sensing confirming the reduction in the performance robustness.

It may be obvious that the application of the remote sensing option in the DC–
DC converter modules requires careful considerations, identification of the
additional impedances, and analyzing their effect on the system performance
before activating the connection. The sufficient techniques to do the required
measures are already well presented.
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Figure 6.32 The timedomain behavior of (a) the output voltage of the original converter, (b) the
load–voltage responsewithout remote sensing, (c) with the remote sensing, and (d) when a step
change in the load current from 1 to 5 A is applied.

Figure 6.33 The timedomain behavior of (a) the output voltage of the original converter, (b) the
load–voltage responsewithout remote sensing, (c) with the remote sensing, and (d) when a step
change in the load current from 5 to 1 A is applied.

6.5 Simple Control Design Method

There are available very sophisticated methods for performing the control loop
design in the contemporary control design textbooks such as Refs [45–49]. The
use of robust control design methods yields usually very high-order controllers,
which cannot be easily realized in practice, and therefore, the controller-order
reduction methods have to be utilized to get practically realizable controller.
Usually, the method known as loop shaping yields quite satisfactory results and is
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easy to apply. The use of software packages such as Matlab makes the design
iterations and computing of different closed-loop transfer functions fast and easy.
It is highly recommended to use authentic measured transfer functions of the
converter as the dynamics description of the converter. The different algorithms
and formulas we have given in Chapter 2 are equally valid when using the
measured transfer functions or the predicted transfer functions given in
Chapters 3–5 or their combination. When using measured and predicted (i.e.,
analytic) transfer functions at the same time, both of them have to be transferred
into the same domain (i.e., complex numbers).

In order to succeed in the design, we have to first identify the true feedback loop
gain, that is, all the elements affecting the dynamic behavior of the converter. In
the nonisolated converters, this task is usually pretty easy but it should be,
however, understood that the used PWM modulator may also contain different
scaling factors, poles, and so on, which have to be taken into account. Therefore,
the data sheet information shall be carefully studied, and the information
transferred as elements in the loop if necessary. When using digital control,
the sampling of the signals will necessitate adding a delay in the control loops,
which usually corresponds to the sampling frequency (TSF) as e�sTSF . The delay
can be approximated by using the first-order Padé approximation in Laplace
domain as

�sTSF
1 � s�TSF=2�

e � : (6.20)
1 � s�TSF=2�

It should also be understood as Eq. (6.20) also indicates that the delay affects only
the phase by decreasing it as �ωTSF (cf. Section 2.5.8 for further information).

In case of transformer-isolated converters, the control loop usually also
contains isolation by means of an optocoupler or some other medium. The
optocoupler contains many dynamic elements such as current transfer ratio
(CTR), a single pole, and delay, which shall be identified based on the data sheet
provided by the manufacturer. Chapter 2 Section 2.5.7 provides more details on
this topic.

If the control-related transfer function of the loop gain contains an RHP zero,
then the control loop crossover frequency has to be less than the frequency of the
zero. Usually, the practical limitation will materialize as proving sufficient gain
margin in the control loop. If the control-related transfer function contains an
RHP pole (i.e., the system is unstable at open loop), then the control loop
crossover frequency has to higher than the frequency of the pole. The location
of poles has to be carefully considered when the operating point of converter
varies for identifying the worst case operating point, where design has to be
performed.

In the next sections, we will provide control design examples for a buck and
boost converters under DDR and PCM controls in CCM. If the control design is
performed in CCM and the converter enters into DCM, there will be no problems
in its dynamic behavior. If the converter is designed to be operated only in DCM
and the control design is performed accordingly, the unintentional operation of
the converter in CCM would lead to instability. This means that the selection of
the inductor for guaranteeing DCM operation has to be carried out with care.
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6.5.1 DDR-Controlled Buck Converter

The relevant transfer functions and the operating point values for the DDR-
controlled buck converter are given in Section 3.4.1. The corresponding power
stage and the control system are given in Figure 6.14. The switching frequency is
assumed to be 100 kHz and the peak-to-peak voltage (VM) of the modulator ramp
signal is assumed to be 3 V. The goal of the design is to produce a feedback loop
gain having maximum crossover frequency of 20 kHz, PM of 50°, and GM of at
least 6 dB. As stated earlier, the resonant nature of the converter necessitates to
using PID-type controller in order to provide enough phase boost at the resonant
frequency for the stable operation.

The output-voltage feedback loop gain can be given generally by

L�s� � Ga ?Gcc ?Gco-o; (6.21)

where Ga denotes the modulator gain (i.e., 1=VM), Gcc the controller transfer
function, and Gco-o the control-to-output-voltage transfer function. It is obvious
that VM and Gco-o are known and we have to choose the zeros, poles, and the gain
of the transfer function such that the goals are met. We also target to minimize the
settling time as discussed earlier in this chapter. Therefore, the loop gain can be
given by

1 K cc�1 � s=ωz1��1 � s=ωz2� �V in � VD � �rd � rds1�Io��1 � srCC�L�s� � ? ? :
3 s�1 � s=ωp1��1 � s=ωp2� s2LC � s�rL � Drds1 � D´rd � rC�C � 1

(6.22)

According to Gco-o, its highest gain takes place at the highest input voltage.
Therefore, we plot first the known part of the loop gain at the input voltage of
50 V, and design the controller in such a manner that the phase behavior yields
PM of 50°. In order to achieve good transient settling behavior, the zeros of the
controller are located at the resonant frequency. It is recommended in Ref. [24]
that the first controller pole should be placed at the frequency of the zero caused
by the output capacitor and its ESR (i.e., ωp1 � 1=rCC), and the second pole at the
proximity of the switching frequency (i.e., ωp2 � �0:5 � 0:8� ?ωs). In this case, the
ESR zero locates at 15.3 kHz, and we have placed the first pole at 20 ?ωz1, which is
close to the ESR zero as recommended in Ref. [24]. In many applications, the
output capacitor is of ceramic multilayer type having very small ESR, and
therefore, the ESR-related zero can locate at too high frequency. Therefore,
we have here adopted a little bit different approach for being able to meet the
target PM. The second pole is placed at ωs=4, in order to achieve PM of 50° at
20 kHz. According to these principles, the Bode plots of Gco-o=3 and Gcc with
K cc � 1 can be given by as shown in Figure 6.34.

Figure 6.35 shows the Bode plot of the output voltage loop gain (i.e., dashed
line) when the controller gain is unity (i.e., K cc � 1). According to it, we need
approximately 80 dB (i.e., K cc � 9660) gain boost for achieving the crossover
frequency of 20 kHz. The final loop gain is presented in Figure 6.35 as a solid line.
The phase behavior shows that the phase margin is approximately 50°, which
fulfills the goal. Figure 6.36 shows the effect of the varying input voltage on the
loop gain: The reduction of the crossover frequency from 20 to 10 kHz when the
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Figure 6.34 Bode plots of the control-to-output-voltage and controller transfer functions at the
input voltage of 50 V.

input voltage is reduced from 50 to 20 V is expected due to the reduction of the
gain of Gco-o from 40 to 26 dB at the low frequencies. The PM is also slightly
improved from 50° to 63° that may slightly affect the settling process of the
transient response.

Figure 6.37 shows the behavior of the closed-loop output impedance at the
input voltage of 50 (solid line) and 20 V (dashed line). The corresponding closed-
loop output impedance values at crossover frequencies are 48 and 58 mΩ. This
means that the voltage dip of the load transient response at the input voltage of
20 V would be slightly higher than at 50 V.

Figure 6.35 The output-voltage loop gains with K � 1 (dashed line) and Kcc � 9660 (solid line).
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Figure 6.36 The output-voltage loop gains at the input voltage of 50 V (solid line) and 20 V
(dashed line).

Figure 6.38 shows the output-voltage responses to the step change in the
output current from 1 to 2.5 A at the input voltage of 50 and 20 V. According to
the impedance values given in Figure 6.37, the predicted voltage dips would be 72
and 87 mV, respectively. According to the simulations, the corresponding values
are 57 and 76 mV, which are reasonably close to each other but not exactly the
same. The settling time of the converter at 50 V is slightly faster than at 20 V, as
already discussed.

Figure 6.37 The closed-loop output impedances at the input voltage of 50 V (solid line) and 20 V
(dashed line).
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Figure 6.38 The output-voltage responses to a step change in the output current from1 to 2.5 A
with a slew rate of 0:25 A=μs.

6.5.2 PCM-Controlled Buck Converter

The relevant transfer functions and the operating point values for the PCM-
controlled buck converter are given in Sections 4.2.8.1 and 3.4.1, respectively. The
corresponding power stage and the control system are given in Figure 6.19. The
switching frequency is assumed to be 100 kHz and the inductor current loop
optimally compensated (Mc � V o=2L). The goal of the design is to produce a
feedback loop gain having maximum crossover frequency of 20 kHz, PM of 50°, and
GM of at least 6 dB. As stated earlier, the resonant-free nature of the converter
allows using PI-type controller.

The output-voltage feedback loop gain can be given generally by

L�s� � Ga ?Gcc ?Gco-o; (6.23)

where Ga denotes the modulator gain, which usually equals 1=Rs but the PWM
modulator may also include anadditional scaling factor [23],Gcc the controller transfer
function, and Gco-o the control-to-output-voltage transfer function. It is obvious that
Rs and Gco-o are known and we have to choose the zero, pole, and the gain of the
transfer function such that the goals are met. We also target to minimize the settling
time as discussed earlier in this chapter. Therefore, the loop gain can be given by

L�s� � 1

75 � 10�3 ?
K cc�1 � s=ωz1�
s�1 � s=ωp1� ?

FmV e�1 � srCC�
s2LC � s�re � FmV eqL�C � 1

; (6.24)

where

re � rL � Drds � D´rd � rC;

V e � V in � VD � �rd � rds1�Io;

Fm � 1= T s Mc � �D´ � D�V e

2L
; (6.25)

DD´T sqL � 1 �
2L

�rd � rds1�:
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Figure 6.39 Bode plots of the control-to-output-voltage and controller transfer functions at the
input voltage of 50 V.

According to Gco-o, its highest gain takes place at the highest input voltage.
Therefore, we plot first the known part of the loop gain at the input voltage of
50 V, and design the controller in such a manner that the phase behavior yields
PM of 50°. In order to achieve good transient settling behavior, the zero of the
controller is located at the virtual resonant frequency. In case of PI control, the
location of the controller pole is to be iterated in order to achieve PM of 50° at
20 kHz. We have placed the pole at ωs=10. According to these principles, the Bode
plots of Gco-o=Rs and Gcc with K cc � 1 can be given by as shown in Figure 6.39.

Figure 6.40 shows the Bode plot of the output voltage loop gain (i.e., dashed line)
when the controller gain is unity (i.e., K cc � 1). According to it, we need

Figure 6.40 The output-voltage loop gains with Kcc � 1 (dashed line) and Kcc � 25763 (solid
line).
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Figure 6.41 The output-voltage loop gains at the input voltage of 50 V (solid line) and 20 V
(dashed line).

approximately 88 dB (i.e., K cc � 25763) gain boost for achieving the crossover
frequency of 20 kHz. The final loop gain is presented in Figure 6.40 as a solid
line. The phase behavior shows that the phase margin is approximately 50°, which
fulfills the goal. Figure 6.41 shows the effect of the varying input voltage on the loop
gain: The crossover frequency will stay essentially intact at 20 kHz when the input
voltage is reduced from 50 to 20 V. This kind of behavior is characteristic to PCM
control, as discussed in Chapter 4. The PM is, however, slightly increased from 50° to
61°, which may slightly affect the settling process of the transient response.

Figure 6.42 shows the behavior of the closed-loop output impedance at
the input voltage of 50 (solid line) and 20 V (dashed line). The corresponding

Figure 6.42 The closed-loop output impedances at the input voltage of 50 V (solid line) and 20 V
(dashed line).
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Figure 6.43 The output voltage responses to a step change in the output current from 1 to 2.5 A
with a slew rate of 0:25 A=μs by using the average model.

closed-loop output impedance values at crossover frequencies are 40 and 48 mΩ.
This means that the voltage dip of the load-transient response at the input voltage
of 20 V would be slightly higher than at 50 V.

Figure 6.43 shows the output voltage responses to the step change in the output
current from 1 to 2.5 A at the input voltage of 50 and 20 V, when the simulation is
based on the average model. Figure 6.44 shows the same output-voltage
responses, when the simulation is based on the switching mode. The averaged
model-based responses show small overshoot in the responses, which does not
exist in the switching model-based responses. The overshoot is the consequence

Figure 6.44 The output-voltage responses to a step change in the output current from1 to 2.5 A
with a slew rate of 0:25 A=μs by using the switching model.
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of the saturation of the averaged duty ratio to the mode limit value, which does
not exist in the real converter in the beginning of the transient. According to the
impedance values given in Figure 6.42, the predicted voltage dips would be 60 and
87 mV. According to the simulations, the corresponding values are 24 and 76 mV
with average model and 91 and 52 mV with the switching model. The small-signal
output impedance-based predictions are not very accurate at all. The settling time
of the converter at 50 V is slightly faster than at 20 V, as already discussed.

Figure 6.45 shows the behavior of the inductor current and the duty ratio
during 10 switching cycles in the beginning of the transient. It may be obvious that
the converter enters into the subharmonic mode at the input voltage of 20 and
50 V but recovers to the normal operation. This phenomenon was discussed
earlier in Chapter 4 and named as dynamic mode limit in contrast to the static
mode limit. The inductor current was compensated by using the optimal
compensation (i.e., Mc � V o=2L), which ensures steady-state operation up to
D= 1 but dynamically only to 0:5 ? �1 � V o=V in�. Figure 6.46 shows the behavior
of the averaged inductor current based on the averaged model. The averaged
inductor current behavior reflects quite closely the behavior of the average
inductor current at the input voltage of 50 V (cf. Figure 6.45) but the average
model fails to produce the correct inductor current behavior at the input voltage
of 20 V due to the long-lasting second-harmonic mode operation. The averaged
dynamic mode limit duty ratios are given in Figure 6.46, which explains the
differences between the switched and average model responses very well. The real
behavior of the PCM-controlled converter is difficult to be captured by using
average model-based simulations.

Figure 6.47 shows the inductor current instantaneous and average behaviors
when the inductor current loop is compensated by Mc � V in=2L, which ensures
second-harmonic-free operation of the converter up to 100% of duty ratio, as

Figure 6.45 The behavior of the instantaneous inductor current during 10 switching cycles in
the beginning of the transient based on the switching model.
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Figure 6.46 The behavior of the averaged inductor current during 10 switching cycles in the
beginning of the transient based on the average model.

discussed in Section 4.2.8.1. Figure 6.47 clearly indicates that the compensation
works, as we have claimed. Figure 6.47 also indicates that the average model
predicts quite accurately the behavior of average inductor current due to lack of
second-harmonic operation. In practice, the used compensation scheme does not
work if it cannot follow the changes in the input voltage.

Figure 6.47 The behavior of the instantaneous and average inductor current during the 10
switching cycles in the beginning of the transient based on the switching and average models,
when the inductor current loop is compensated based on Mc � V in=2L.
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6.5.3 DDR-Controlled Boost Converter

The relevant transfer functions and the operating point values for the DDR-
controlled boost converter are given in Section 3.4.2. The corresponding power
stage and the control system are given in Figure 6.48. The switching frequency is
assumed to be 100 kHz and the peak-to-peak voltage (VM) of the modulator ramp
signal is assumed to be 3 V. It is well known that the boost converter incorporates
an RHP zero in its output side control dynamics, which would limit the output
voltage loop crossover frequency to the frequency of the RHP zero or even to
lower frequency. Therefore, the goal of the design is to produce a feedback loop
gain having as high as possible crossover frequency with an acceptable PM and
GM of at least 6 dB. As stated earlier, the resonant nature of the converter
necessitates to using PID-type controller in order to provide enough phase boost
at the resonant frequency for the stable operation.

The output-voltage feedback loop gain can be given generally by

L�s� � Ga ?Gcc ?Gco-o; (6.26)

where Ga denotes the modulator gain (i.e., 1=VM), Gcc the controller transfer
function, andGco-o the control-to-output-voltage transfer function. It is obvious that
VM and Gco-o are known and we have to choose the zeros, poles, and the gain of the
transfer function such that the goals are met. We also target to minimize the settling
time as discussed earlier in this chapter. Therefore, the loop gain can be given by

1 K cc�1� s=ωz1��1� s=ωz2� D´�V o �VD�� �rL � rds1 �D´2rC�IL � sLIL��1� srCC�L�s� � ? ? :
3 s�1� s=ωp1��1� s=ωp2� s2LC� s�rL �Drds1 �D´�rd � rC��C�D´2

(6.27)

According to the explicit form of Gco-o in Eq. (6.27), the RHP zero (i.e.,
ωz-RHP � V in=LIL) locates closest to the origin when the input voltage is at its

Figure 6.48 DDR-controlled boost converter and the corresponding control system.
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minimum value, and the output load is at its highest value. In this case, the RHP
zero locates at 1.37 kHz, which would be the absolute maximum output voltage
loop crossover frequency. Therefore, the control design has to be performed at
this operating point to ensure stable operation within the specified operation
range. It should also be noticed that the resonant frequency would vary along the
changes in the input voltage. Therefore, we plot first the known part of the loop
gain at the input voltage of 20 V, and design the controller in such a manner that
the loop gain behavior yields GM of at least 6 dB and an acceptable PM. It may be
obvious that the load transient behavior would be quite poor whatever we do in
the control design.

We have placed the controller zeros (ωz1;2) at the resonant frequency (i.e.,
358 Hz) at the input voltage of 20 V. It is recommended in Ref. [24] that the first
controller pole should be placed at the frequency of the zero caused by the output
capacitor and its ESR (i.e., ωp1 � 1=rCC), and the second pole at the proximity of
the switching frequency (i.e., ωp2 � �0:5 � 0:8� ?ωs). In this case, the ESR zero
locates at 15.3 kHz, and we have placed the first pole at 30 ?ωz1 (i.e., 11 kHz),
which is close to the ESR zero as recommended in Ref. [24]. The second pole is
placed at ωs=8, in order to achieve PM of 50° at 20 kHz. According to these
principles, the Bode plots of Gco-o=3 and Gcc with K cc � 1 can be given by as
shown in Figure 6.49.

Figure 6.50 shows the Bode plot of the output-voltage loop gain (i.e., dashed
line) when the controller gain is unity (i.e., K cc � 1). According to it, we need
approximately 28 dB (i.e., K cc � 24:55) gain boost for achieving the crossover
frequency of 421 Hz, which ensures PM of 50° and GM of 8 dB as can be
confirmed based on the final loop gain (solid line).

Figure 6.51 shows the effect of the varying input voltage on the loop gain: The
change of resonant frequency along the changes in the input voltage is clearly
visible. In addition, the damping of the resonant frequency is very high at the

Figure 6.49 Bode plots of the control-to-output-voltage and controller transfer functions at the
input voltage of 20 V.
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Figure 6.50 The output-voltage loop gains with Kcc � 1 (dashed line) and Kcc � 24:55 (solid
line).

input voltage of 20 V and decreases clearly when the input voltage increases. The
increase in the crossover frequency is clearly visible when the input voltage
increases.

Figure 6.52 shows the behavior of the closed-loop output impedance at the
input voltage of 20 V (solid line) and 50 V (dashed line). The corresponding
closed-loop output impedance values at crossover frequencies are 1:54 and
0:53 Ω. These impedance values would imply that the expected load transient-
induced dips would be rather high as shown in Figure 6.53.

Figure 6.53 shows the output voltage responses to the step change in the output
current from 0.2 to 1.5 A at the input voltage of 50 and 20 V, when the simulation

Figure 6.51 The output-voltage loop gains at the input voltage of 50 V (solid line) and 20 V
(dashed line).



324 6 Control Design Issues in Voltage-Fed DC–DC Converters

Figure 6.52 The closed-loop output impedances at the input voltage of 20 V (solid line) and 50 V
(dashed line).

is based on the average model. According to the impedance values given in
Figure 6.51, the predicted voltage dips would be 0.69 and 2.0 V. According to the
simulations, the corresponding values are 0.56 and 1.37 V. The small-signal
output impedance-based predictions are not very accurate. The output-voltage
transients in Figure 6.53 clearly shows that it is not possible to achieve fast settling
transient behavior and low voltage dips when the control system contains an RHP
zero, which locates at rather low frequencies. Therefore, the nonminimum phase
converters are usually designed to operate in DCM, where the RHP zero locates at
much higher frequencies, as discussed in Chapter 3.

Figure 6.53 The output-voltage responses to a step change in the output current from 0.2 to
1.5 A with a slew rate of 0:25 A=μs by using the average model.
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6.5.4 PCM-Controlled Boost Converter

The relevant transfer functions and the operating point values for the PCM-
controlled boost converter are given in Sections 4.2.8.2 and 3.4.2. The corre
sponding power stage and the control system are given in Figure 6.54. The
switching frequency is assumed to be 100 kHz and the inductor current loop
compensated (Mc � V o=2L) for ensuring the duty ratio range of 100% both for
static and dynamic operations. It is well known that the boost converter
incorporates an RHP zero in its output side control dynamics, which would
limit the output voltage loop crossover frequency to the frequency of the RHP
zero or even to lower frequency. The PCM control does not remove the effect of
the RHP zero even if claimed, for example, in Ref. [50]. Under PCM control, the
limiting factor would be the high-frequency behavior of the loop magnitude (i.e.,
to obtain adequate gain margin). Therefore, the goal of the design is to produce a
feedback loop having as high as possible crossover frequency with an acceptable
PM and GM of at least 6 dB. As stated earlier, the resonant-free nature of the
converter allows using PI-type controller.

The output-voltage feedback loop gain can be given generally by

L�s� � Ga ?Gcc ?Gco-o; (6.28)

where Ga denotes the modulator gain, which usually equals 1=Rs but the PWM
modulator may also include an additional scaling factor [23], Gcc the controller
transfer function, and Gco-o the control-to-output-voltage transfer function. It is
obvious that Rs and Gco-o are known and we have to choose the zero, pole, and the
gain of the transfer function such that the goals are met. We also target to
minimize the settling time as discussed earlier in this chapter. Therefore, the loop

Figure 6.54 PCM-controlled boost converter and the corresponding control system.
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gain can be given by

L�s�� 1
0:15

?
K cc�1� s=ωz1�
s�1� s=ωp1� ?

Fm�D´V e � ILre�
LC

1� s
LIL

DV e � ILre
�1� srCC� =Δ ;

(6.29)

where

re �FmV eqL FmILqC D´2 �D´Fm�V eqC � ILqL��FmILqCreΔ � s2 � s ? � �� ;
L C LC

re � rL �Drds1 �D´rd �D´rC;

V e � V o �VD ��rd � rds1 �DrC�D
Io
´ ;

�D´ �D�V eFm � 1= T s Mc � ;
2L

DD´T sqL � 1� �rd � rC � rds1�;2L
DD´T sqC � :

2L
(6.30)

According to the explicit form of Gco-o in Eq. (6.29), the RHP zero (i.e.,
ωz-RHP � V in=LIL) locates closest to the origin, when the input voltage is at its
minimum value, and the output load is at its maximum value. In this case, the
RHP zero locates at 1.37 kHz, which would be the absolute maximum output
voltage loop crossover frequency. Therefore, the control design has to be
performed at this operating point to ensure stable operation within the specified
operation range. Therefore, we plot first the known part of the loop gain at the
input voltage of 20 V, and design the controller in such a manner that the loop
gain behavior yields GM of at least 6 dB and an acceptable PM. It may be obvious
that the load transient behavior would be quite poor whatever we do in the
control design.

We have placed the controller zero (ωz1) at 2=3 of the imaginary resonantp
frequency (i.e., ωres � D´= LC, that is, 87 Hz) at the input voltage of 20 V. The
controller pole is placed at ωs=8 (i.e., 12.5 kHz) to obtain PM of 50° at 671 Hz.
According to these principles, the Bode plots of Gco-o=Rs and Gcc with K cc � 1 can
be given by as shown in Figure 6.55. The controller zero can also be placed at the
imaginary resonant frequency but the PM would be then slightly reduced.

Figure 6.56 shows the Bode plot of the output voltage loop gain (i.e., dashed
line) when the controller gain is unity (i.e., K cc � 1). According to it, we need
approximately 58 dB (i.e., K cc � 750) gain boost for achieving the crossover
frequency of 671 Hz, which ensures PM of 50° and GM of 7 dB as can be
confirmed based on the final loop gain (solid line). As can be seen in
Figure 6.55, the high-frequency magnitude behavior of the loop gain actually
limits the crossover frequency to approximately half the RHP zero frequency. The
obtained crossover frequency is only slightly higher than the corresponding
crossover frequency of the DDR-controlled converter (cf. Figure 6.49).
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Figure 6.55 Bode plots of the control-to-output-voltage and controller transfer functions at the
input voltage of 20 V.

Figure 6.57 shows the effect of the varying input voltage on the loop gain: The
output-voltage loop gain does not stay constant as in the PCM-controlled buck
converter (cf. Figure 6.41), but behaves similarly as the DDR-controlled boost
converter having an increase in the loop crossover frequency and PM (cf.
Figure 6.51). The varying input voltage affects the phase margin much more
than in the DDR-controlled converter.

Figure 6.58 shows the behavior of the closed-loop output impedance at the
input voltage of 20 (solid line) and 50 V (dashed line). The corresponding closed-
loop output impedance values at crossover frequencies are 0:9 and 0:26 Ω, which

Figure 6.56 The output-voltage loop gains with Kcc � 1 (dashed line) and Kcc � 750 (solid line).
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Figure 6.57 The output-voltage loop gains at the input voltage of 50 V (solid line) and 20 V
(dashed line).

are much smaller than the values of the DDR-controlled converter (cf.
Figure 6.51). These impedance values would imply that the expected load
transient-induced dips would be lower than the output voltage dips in the
DDR-controlled converter (cf. Figure 6.53).

Figure 6.59 shows the output-voltage responses to the step change in the
output current from 0.2 to 1.5 A at the input voltage of 50 and 20 V, when the
simulation is based on the average model. According to the impedance values
given in Figure 6.58, the predicted voltage dips would be 0.34 and 1.2 V.

Figure 6.58 The closed-loop output impedances at the input voltage of 20 V (solid line) and 50 V
(dashed line).
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Figure 6.59 The output-voltage responses to a step change in the output current from 0.2 to
1.5 A with a slew rate of 0:25 A=μs by using the average model.

According to the simulations, the corresponding values are 0.35 and 0.9 V,
respectively, which match quite well to each other. The settling times of the
transients are quite similar to the settling times of the DDR-controlled converter.
The output voltage transients in Figure 6.58 clearly shows that it is not possible to
achieve fast settling transient behavior and low-voltage dips when the control
system contains an RHP zero, which locates at rather low frequencies.

Figure 6.60 shows the behavior of instantaneous inductor current (i.e., based on
switching model) and the average inductor current (i.e., based on the average
model) during the 21st switching cycle in the beginning of the transient. The

Figure 6.60 The behavior of the instantaneous inductor current during the 20 switching cycles
in the beginning of the transient based on the switching and average models.
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figure shows that the converter does not enter into the second-harmonic mode as
the PCM-controlled buck converter with the optimal compensation will do in the
beginning of the transient (cf. Figure 6.45). The reason for this kind of behavior is
that the used compensation (i.e., Mc � V o=2L) ensures static and dynamic
second-harmonic-free operation up to the 100% of duty ratio, as discussed in
Section 4.2.8.2. Figure 6.60 also shows (cf. the ripple-free lines in the response)
that the average model will describe the average dynamics of the converter quite
well. There is visible light in accuracy in the 20 V response only, which can be
noticed when the average response does not follow exactly the midline of the
peak-to-peak inductor current, as it does in the 50 V response.

6.6 PCM-Controlled Superbuck Converter:
Experimental Examples

6.6.1 Introduction

The dynamic models of the PCM-controlled superbuck converter without [51]
and with coupled inductors [52] are given in Section 4.2.8.4. The experimental
power stages are given in Figures 6.61 and 6.62 with the relevant component
definitions and the operating range. As discussed in Section 3.4.4, the superbuck

Figure 6.61 The power stage and component values of the PCM-controlled discrete-inductor
superbuck converter.
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Figure 6.62 The power stage and component values of the PCM-controlled coupled-inductor
superbuck converter.

converter incorporates an RHP zero in its output dynamics but it can be
effectively removed by designing the ratio of the inductors properly. The value
of the inductor L2 given in parenthesis corresponds to the theoretical value, which
can be obtained by means of the design algorithm L2D´ � L1Dmax � 0 withoutmax
considering the losses for Dmax � 0:7. The effect of the losses was, in this case,
such that equal inductance values could be used without the RHP zero.

If extremely low ripple of one of the inductor currents is desirable, then it
can be implemented by coupling the inductors in a certain manner as
discussed in detail in Chapter 3. In this particular case, the ripple of input
current of the converter is minimized by designing the coupling of the
inductors accordingly. The design outcome is that the values of the inductors
cannot be anymore designed to remove the appearance of the RHP zero, but
actually the design would boost the appearing. As a consequence, the
converter transient dynamics would be extremely poor even if the switching
frequency were rather high.

6.6.2 Discrete-Inductor Superbuck

Figure 6.63 shows the measured output-voltage loop gains at the input voltage of
15 and 20 V, which are effectively identical having crossover frequency approxi
mately at 58 kHz and PM of 68°. This kind of phenomenon is typical to the PCM
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Figure 6.63 The measured output-voltage loop gains at the input voltage of 15 and 20 V.

Figure 6.64 The output-voltage response to a step change in the output current from 0.5 to
2.5 A.

controlled buck-type converters, as clearly demonstrated earlier in Figure 6.41.
The figure also shows that the RHP zero does not appear into the control
dynamics within the specified operational range. Figure 6.64 shows the output-
voltage response to a step change in the output current from 0.5 to 2.5 A.

6.6.3 Coupled-Inductor Superbuck

Figure 6.65 shows the measured output voltage loop gains at the input voltage of
15 and 20 V. The output-voltage loop magnitudes are effectively identical but the
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Figure 6.65 The measured output-voltage loop gains at the input voltage of 15 and 20 V.

phase behavior indicates that the RHP zero appears into the control dynamics
when the input voltage decreases. As a consequence, the loop crossover frequency
has been designed to be approximately 1.1 kHz with PM of 72°. Figure 6.66 shows
the output-voltage response to a step change in the output current from 1.0 to 2.4
A. The transient behavior is rather poor as could be expected when the RHP zero
locates at the low frequencies (i.e., 4 kHz). Figure 6.67 shows the measured
inductor currents, which clearly indicates that the coupled-inductor technique
can be used to minimize one of the inductor currents but the penalty, in this case,
is the extremely poor transient performance.

Figure 6.66 The output-voltage response to a step change in the output current from 1 to 2.4 A.
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Figure 6.67 The measured inductor currents.

6.7 Concluding Remarks

Chapter 10 of the book gives more information on the effect of feedback loop
crossover frequency and phase margin on the dynamics of the converters. It will
show that the undamped natural frequency (ωn) and the damping factor (ζ) can be
explicitly computed based on the crossover frequency and phase margin (PM). As
a summary, it can be stated that the system time constant τ � 1=ωnζ. The large
PM is reflected as high damping, which will make the transient responses more
sluggish compared to the low PM.
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7

Introduction to Current-Fed Converters

7.1 Introduction

Majority of the converter power stages developed by far are devoted to the
voltage-fed applications due to the dominance of voltage as the main property of
the energy sources [1,2]. There are, however, also energy sources having current
as their main property such as photovoltaic generators [3–5] and superconductive
magnetic energy storage (SMES) devices [6,7]. As a consequence, there also have
to be power electronic converters, which can accept a current source as their main
input source [2]. Even the concept of duality in circuit theory would imply their
existence due to the dual nature of voltage and current [8].

The current-fed converters can be implemented from the corresponding
voltage-fed converters by applying the duality transformation methods [9–14]
or adding a capacitor at their input terminals for satisfying the terminal con
straints stipulated by the source [15,16]. It is also natural that the current-fed
converters can be implemented applying the capacitive switching cells (i.e.,
capacitive energy transfer) [17] similarly as the inductive switching cells (i.e.,
inductive energy transfer) applied for designing the voltage-fed converters [1].

The rest of this chapter is dedicated to implementing current-fed converters
from the known voltage-fed converters by applying duality transformation
methods. A short introduction to the steady-state properties of the current-
fed converters implemented by adding a capacitor at their input terminals is also
provided. The dynamic issues related to these converters are introduced in the
subsequent chapters in detail.

7.2 Duality Transformation Basics

Duality transformation changes the power-stage components into their duals in
the new power stage, as depicted in Figure 7.1. The usual problem in the
transformation process is forgetting the changing of the conducting mode
of the power-stage switching components to their corresponding duals, that
is, when the switching component is turned on during the on-time in the original

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 7.1 The duality-transformation pairs.
Source: Leppäaho 2010. Reproduced with permission of
IEEE.

power stage, it will be turned on during the off-time in the new power stage. This
problem is clearly visible, for example, in Ref. [7].

A highly theoretical method to perform the duality transformation is to use
graph technique as introduced in Refs [8,11], but this method would sometimes
fail to produce the dual of the converter as in the case of the voltage-fed superbuck
(cf. Chapter 3) [12]. The method introduced in Ref. [9] would yield easily the
desired result when applied as follows:

A dot is placed in the center of every mesh of the power stage and one outside it
serving as a common ground. The adjacent dots are connected together once over
a certain branch. In the transformed power stage, the dots provide the connection
points for the duality-transformed component in the branch over which the
connection line goes between two adjacent dots. The branch components are
transformed into their duals following the principles laid down in Figure 7.1. The
input and output terminals contain usually a source and a series or parallel-
connected component, which necessitates applying double conversion (i.e., the
components and their connection method (series/parallel)). It is recommended
that the parasitic elements associated with the converters are considered as
embedded elements in the component, that is, the power stage shall be the ideal
power stage of the converter. Sometimes the transformation of the switching
components may not be clear enough. In such cases, it is highly recommended to
transform the on-time and off-time subcircuits of the voltage-fed converter
separately for studying how the subcircuits of the current-fed converter would
look like in order to place correctly the switching components. It shall be
remembered that the on-time subcircuit of the voltage-fed converter would yield
the off-time subcircuit of the corresponding current-fed converter and the off-
time subcircuit of the voltage-fed converter would yield the on-time subcircuit of
the current-fed converter.

As an example of the application of the duality-transformation process, the
voltage-fed superbuck (Figure 7.2) converter is transformed into its dual, that is,
the current-fed superbuck converter (Figure 7.3). The duality transformation
retains the basic static and dynamic properties of the original converter also in the
transformed converter.

In the original converter (cf. Figure 7.2), the MOSFET switch (SF) is turned on
during the on-time, and the diode switch (SD) conducts during the off-time.
Figure 7.3 depicts the duality-transformation process according to the principles
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Figure 7.2 The voltage-fed super-
buck converter. Source: Leppäaho
2010. Reproduced with permission
of IEEE.

Figure 7.3 The original superbuck power stage and the transformation process flow. Source:
Leppäaho 2010. Reproduced with permission of IEEE.

laid down above. Figure 7.4 shows the power stage of the current-fed superbuck,
where the MOSFET will be turned on during the off-time. This means that the
gate signal used in the voltage-fed converter has to be inverted for correct
operation.

Figure 7.5 shows the subcircuits of the power stage during the on-time and off-
time. According to circuit theory, by applying Kirchhoff’s laws we can compute
the voltages over the inductors and the currents flowing through the capacitors
during the on-time and off-time as well as their averages as follows:

von
L1 � �vC2

von
L2

ion
C1

� vC1 � vC2 � vo

� iin � iL2
(7.1)

ion
C2 � iL1 � iL2
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Figure 7.4 The power stage of the current-fed superbuck. Source: Leppäaho 2010. Reproduced
with permission of IEEE.

Figure 7.5 The subcircuits of the power stage during the (a) on-time, and (b) off-time.
Source: Leppäaho 2010. Reproduced with permission of IEEE.

offvL1 � vC1

offvL2 � vC1 � vC2 � vo
(7.2)

ioff
C1 � iin � iL1 � iL2

ioff
C2 � �iL2
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hvL1i � d´hvC1i � dhvC2i
hvL2i � hvC1i � hvC2i � hvoi

(7.3)hiC1i � hiini � d´hiL1i � hiL2i
hiC2i � dhiL1i � hiL2i

Applying Vs and As balances (i.e., the averaged values have to be zero), we can
obtain the operating point as follows:

VC1 � DV o

VC2 � D´V o

V in � VC1

(7.4)
IL1 � I in

IL2 � DI in

Io � IL2

The operating point in Eq. (7.4) shows that Io � DI in and V in � DV o, which
indicate that the converter has the characteristic properties of buck converter (i.e.,
the input and output variables at the input and output terminals, respectively, are
related by M�D� � D). We shall notice that the input and output variables are
interchanged when considering the original voltage-fed converter and current-
fed converter. If we are studying the levels of voltages and currents at the input
and output terminals by not taking into account the change of input and output
variables, we will observe that the transformed converter looks like a boost
converter if the original converter looked like a buck converter or vice versa.
Actually, it is true that the power stages of the voltage-fed buck and boost
converters are dual of each other.

7.3 Duality-Transformed Converters

We provide here a collection of duality-transformed current-fed converters and
their counterparts in the voltage-fed domain. Only the noninverting converters
are treated. It shall be remembered that the transformation will interchange the
input and output variables at both of the terminals, which means that the input-
to-output modulo (M�D�) is related to the ratio of output- and input-terminal
voltages (i.e., M�D� � V o=V in) in the voltage-fed converter and to the ratio of
output- and input-terminal currents (i.e., M�D� � Io=I in) in the current-fed
converter, respectively (Figures 7.6–7.11).

Figure 7.12 shows the voltage-fed and duality-transformed current-fed full-
bridge converters equipped with an input LC filter. The corresponding gate-
driven signals of the converters are shown in Figure 7.12c, where VF denotes the
voltage-fed converter and CF the current-fed converter. It is also well known that
the DDR-controlled full-bridge converter needs a capacitor connected in series
with the primary side of the main transformer for ensuring proper transformer
reset. In the current-fed converter, the proper transformer reset can be ensured by
using the voltage-doubler circuit at the secondary side of the converter, as shown
in Figure 7.12b.
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Figure 7.6 Buck converters. (a) Voltage-fed buck. (b) Current-fed buck. Source: Leppäaho 2010.
Reproduced with permission of IEEE.

Figure 7.7 Boost converters. (a) Voltage-fed boost. (b) Current-fed boost.
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Figure 7.8 Buck–boost converters. (a) Voltage-fed noninverting buck–boost converter.
(b) Current-fed noninverting buck–boost converter.

Figure 7.9 SEPIC converters. (a) Voltage-fed SEPIC. (b) Current-fed SEPIC.
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Figure 7.10 Quadratic buck converters. (a) Voltage-fed quadratic buck. (b) Current-fed
quadratic buck.

Figure 7.11 Superboost converters. (a) Voltage-fed superboost. (b) Current-fed superboost.
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Figure 7.12 Full-bridge converters with input LC filters. (a) Voltage-fed full-bridge. (b) Current-
fed full-bridge. (c) The corresponding gate control schemes.

Figure 7.13 shows the voltage-fed and duality-transformed current-fed half-
bridge converters equipped with the input LC filters. It should be noticed that a
part of the power-stage components at the primary side works also as the filter
elements. The switch-control schemes of the converters are depicted in
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Figure 7.13 Half-bridge converters. (a) Voltage-fed full-bridge scheme. (b) Current-fed full-
bridge scheme. (c) The corresponding gate control scheme.

Figure 7.13c. Proper transformer reset is automatically ensured in the voltage-fed
converter due to the input-side capacitors. In the current-fed converter, the
proper transformer reset can be ensured by using the voltage-doubler circuit at
the secondary side of the converter, as shown in Figure 7.13b.
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7.4 Input Capacitor-Based Converters

The most common way of providing the interface between the current-based
sources such as photovoltaic generator is to use the well-known voltage-fed
converters equipped with an input capacitor [5,18–21]. It has been clearly noticed
that the controlling of the converter requires decreasing the duty ratio for
increasing the output variables when the switch control signals are maintained
as they are in the original voltage-fed converter [15,18,19]. Many other dynamic
anomalies will appear in addition to the necessity to decrement the duty ratio
instead of incrementing it for increasing the output variables. We will discuss
more in detail on those dynamic issues in Chapters 8 and 9.

Figures 7.14–7.16 show the basic power stages applied in the current-fed
applications and their input-to-output relations in current and voltage levels. The
physical terminal voltage and current levels are maintained the same as they are in
the voltage-fed application. If looking at the input-to-output modulos in the
figures, it is obvious that the duty ratio has to be decreased for increasing the
corresponding output variables.

The current-fed buck power-stage converter (cf. Figure 7.14) is usually applied
in interfacing the storage batteries and photovoltaic generators [22]. The power
stage resembles closely the current-fed boost converter shown in Figure 7.7b. The
current-fed boost converter properties can be fully recovered by inverting the gate
signals of the switch components [15].

The current-fed boost power stage converter (cf. Figure 7.15) is usually applied
as a front-end converter between the photovoltaic generator and the grid-
connected inverter for enabling the use of wider operation range in the photo
voltaic generator [23,24]. The power stage resembles the current-fed buck

Figure 7.14 Current-fed buck
power-stage converter.

Figure 7.15 Current-fed boost power-
stage converter.
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Figure 7.16 Current-fed buck–boost power-stage converter.

converter in Figure 7.6b when a LC input filter is added at its input terminal. The
missing of the output inductor means that the output current is pulsating. When
inverting the gate signals of the switches, the input-to-output relation also
becomes that of the buck converter.

The current-fed buck–boost power-stage converter (cf. Figure 7.16) is usually
applied in series-connected distributed photovoltaic applications, where the level
of the converter output voltage can be higher or lower than the corresponding
input voltage [25]. When all the switches of the converter are based on controlled
switches, the converter can be operated either in buck, boost, or buck–boost
mode. Similar manner as above, the buck–boost input-to-output relation can be
recovered by inverting the gate signals.
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8

Dynamic Modeling of DDR-Controlled CF Converters

8.1 Introduction

In principle, the methods applied to model the dynamics of DDR-controlled
voltage-fed converters introduced in Chapter 3 [1–7] will apply equally also to
model the dynamics of the current-fed converters. The main problem encoun
tered, in practice, is the inability to recognize the correct input and output
variables, which are naturally interchanged compared to the voltage-fed convert
ers [8]. When the converter is fed by a current source, the internal mode of
operation is classified based on the behavior of capacitor voltage similarly as in
case of the voltage-fed converters based on the behavior of inductor current [9]:
The operation mode is continuous if the corresponding state variable has two
different derivatives, and the operation is discontinuous if the corresponding state
variable will stay at zero level during a part of the cycle (cf. Chapter 3 and
Figure 2.37). Earlier, the discontinuous capacitor-voltage-mode operation has
been utilized in shaping the input current of the power factor correction
converters to emulate the shape of the input voltage [10,11].

In the renewable applications, where the current-fed converters are most often
used, the discontinuous mode of operation is not relevant. This means that we will
concentrate in this book on modeling the dynamic behavior of the relevant
converters in the continuous mode of operation only applying the basic state
space averaging method introduced in Ref. [4]. The renewable energy converters
will be operating most often as current-output converters (cf. Figure 8.1a) but the
output mode can be changed to voltage-output mode (cf. Figure 8.1b), for
example, to prevent the DC-link voltage to researching too high level in case
of the grid-connected inverter failure. The parameter set in Figure 8.1a represents
H-parameters, and in Figure 8.1b Z-parameters. We will actually provide dynamic
models only to the current-fed current-output CF-CO converter, and the
dynamic models for the current-fed voltage-output (CF-VO) converter can be
developed by interchanging the input-terminal input and output variables
similarly as obtaining the dynamic models for the VF-CO converters from the
corresponding dynamic models of the VF-VO converter introduced in Chapter 5.

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 8.1 The
dynamic equivalent
circuits of (a) a current-
fed current-output
converter and (b) a
current-fed voltage-
output converter.

8.2 Dynamic Models

As already stated, we will model the relevant converters in CCM only, where all the
state variables are continuous and the associated ripple components do not
contribute to the dynamic behavior of the converter. In practice, this means
that pure circuit theory can be applied for computing the required derivatives
of the state variables and the formulations for the output variables as instructed in
Chapter 2. In addition to the basic transfer functions, we will also give the set of
special transfer functions. The set of basic transfer functions forms theH-parameter
representation of the CF-CO converter (cf. Figure 8.1a), where the input variables
are the input current (iin) and output voltage (vo), the output variables are the input
voltage (vin) and output current (io), the state variables are the inductor currents (iLi)
and capacitor voltages (vCi), and the control variable is the duty ratio (d). The
corresponding set of the basic transfer functions can be given by

îinv̂in Zin Toi Gci� ; (8.1)v̂oîo Gio �Y o Gco
d̂

and the set of special transfer functions by

Zin-oco

Y o-sci

Zin-1
Y o-1

Toi-1
Gio-1

�
Zin � GioToi

Y o

Y o � GioToi

Zin

Zin � GioGci

Gco

Y o � ToiGco

Gci

Toi � Y oGci

Gco

Gio � ZinGco

Gci

:

(8.2)
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The CF converters in the renewable energy applications are usually operated at
closed loop under input-voltage feedback control. Therefore, Zin-oco (i.e., input
impedance at open-circuit output) will be affected by the state of input-voltage
feedback. Y o-sci (i.e., output admittance at short-circuited input) is not affected by
the state of input-voltage feedback. Thus Zx

in-oco can be given in general by

Gio-xToi-x Zin-xZx � � � Y o-sci; (8.3)in-oco � Zin-x Y o-x Y o-x

where the superscript and subscript extension x denotes the state of input-voltage
feedback (i.e., x � o at open loop and x � c at closed loop). If the feedback is taken
from the output current only, then Zin-oco will be invariant to the state of feedback.
All the other special parameters in Eq. (8.2) are invariant to the state of input-
voltage or output-current feedback.

If the CF converter is used in the output-voltage mode, the corresponding
transfer functions (i.e., the Z-parameter set) can be found by changing the input
and output variables at the output terminal in Eq. (8.1), which yields

îin
ZZ TZ GZv̂in in oi ci ^� ; (8.4)io
GZ �ZZ GZv̂o io o co d̂

where

GioToi Toi ToiGcoZin � � Gci �ZZ TZ GZ Y o Y o Y oin oi ci � : (8.5)
GZ ZZ GZ Gio 1 Gcoio o co

Y o Y o Y o

The corresponding set of ideal parameters can be given by

GZ GZ ZZGZ

ZZ ioT
Z
oi ZZ ioGci

Z

TZ o ci
in � in � oi �ZZ GZ GZZZ ZZ TZ

o co coin-oco in-1 oi-1 �
ZZ ZZ GZ GZ TZ ZZ

o-sci o-1 io-1 ZZ ioT
Z
oi ZZ oiG

Z

GZ inG
Z

co co
o o ioZZ GZ GZ

in ci ci

(8.6)

or

GciZin Zin-1ZZ ZZ TZ Gcoin-oco in-1 oi-1 � : (8.7)
ZZ ZZ GZ 1 1 Gio-1o-sci o-1 io-1

Y o-sci Y o-1 Y o-1
We do not give explicitly the Z-parameter-based transfer functions, which can

be developed easily by means of the H-parameter-based transfer functions given
in Eqs (8.5) and (8.7) by applying a proper software package such as MatlabTM and
its Symbolic Toolbox.

;



358 8 Dynamic Modeling of DDR-Controlled CF Converters

8.2.1 Duality Transformed Converters

As stated in Chapter 7, the duality transformed converters retain the similar steady-
state and dynamic properties as their original voltage-fed converters have, that is,
the input-to-output modulo, the basic dynamical features, and the increase in the
duty ratio yields an increase in the corresponding output variables accordingly.

8.2.1.1 Buck Converter
The power stage of the CF buck converter is given in Figure 8.2a with all the
relevant parasitic elements. In practice, the CF buck converter cannot be used as
such but an input filter has to be connected at its input terminal as depicted in
Figure 8.2b because of the output capacitor of the practical input current
sources [12]. If comparing the input filter of a VF converter and CF converter,
the input and output terminals are interchanged. The input filter will affect the
dynamics of the converter by means of its output impedance, which is a parallel
resonant circuit in case of VF converter and a series resonant circuit in case of CF
converter. This change of resonant circuit type also complies well with the duality
transformation principle.

The power stage of the CF buck converter in Figure 8.2a can be given during the
on-time as shown in Figure 8.3a, and during the off-time as shown in Figure 8.3b.
Applying Kirchhoff’s voltage and current laws, the set of state-space equations
related to the on-time can be given by

diL1 rL1 � rC1 1 rC1 1� � iL1 � vC1 � iin � vo;dt L1 L1 L1 L1

dvC1 1 1� � iL1 � iin; (8.8)
dt C1 C1

vin � �rC1iL1 � vC1 � �rC1 � rds1�iin;
io � iL1;

Figure 8.2 The power stage of a CF
buck converter (a) without the input
filter and (b) with the input filter.
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Figure 8.3 CF buck power-stage
structures. (a) During the on-time.
(b) During the off-time.

and related to the off-time by

diL1 rL1 � rC1 1 1� � iL1 � vC1 � vo;dt L1 L1 L1

dvC1

dt
� � 1

C1
iL1; (8.9)

vin � rds2iin;

io � iL1:

The averaged state-space equations and the operating point can be given by

dhiL1i rL1 � rC1 1 drC1 1� � hiL1i � hvC1i � hiini � hvoi;dt L1 L1 L1 L1

dhvC1i
dt

� � 1
C1

hiL1i � d
C1

hiini; (8.10)

hvini � �drC1hiL1i � dhvC1i � �d�rC1 � rds1� � d´rds2�hiini;
hioi � hiL1i:
VC1 � V o � DrL1I in;

V in � DV o � �D2rL1 � DD´rC1 � Drds1 � D´rds2�I in; (8.11)

Io � IL1 � DI in:

According to the operating point values in Eq. (8.11), the input modulo (M�D�)
equals clearly the steady-state duty ratio (D), which means that the converter is a
buck-type converter.
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The linearized state space can be given by

d̂iL1 re1 1 DrC1 1 rC1I in^ ^ ^� � iL1 � v̂C1 � iin � v̂o � d;
dt L1 L1 L1 L1 L1

dv̂C1 1 D I in^ ^ ^� � iL1 � iin � d; (8.12)dt C1 C1 C1

^ ^ ^v̂in � �DrC1iL1 � Dv̂C1 � re2iin � V e1d;

îo � îL1;

where

re1 � rL1 � rC1;

re2 � DrC1 � Drds1 � D´rds2; (8.13)

V e1 � V o � �DrL1 � D´rC1 � rds1 � rds2�I in:

The set of transfer function representing the dynamic behavior of the converter
can be solved from the linearized state space in Eq. (8.12), as instructed in
Chapter 2. Thus the input dynamics can be given by

2
2 L1 � �re1re2 � rC1�C1� re2 � D2�re1 � rC1�ΔZin-o � s re2 � sD2 � � ;

L1C1 L1C1

D�1 � srC1C1�ΔToi-o � ;
L1C1

� L1 � r2re1V e1C1 � D� C1C1�I in� V e1 � D�re1 � 2rC1�I inΔGci-o � s2V e1 � s � ;
L1C1 L1C1

(8.14)

and the output dynamics by

s
ΔY o-o � ;

L1

D�1 � srC1C1�ΔGio-o � ; (8.15)
L1C1

I in�1 � srC1C1�ΔGco-o � :
L1C1

Δ in Eqs (8.14) and (8.15) denotes the determinant of the system and can be given
by

re1 1
Δ � s2 � s � : (8.16)

L1 L1C1
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The set of special parameters can be given as follows:

D2 � sre2C1

LCV e1�s2 � s DI in=V e1C1� � �re1 � �DI in=V e1�r �=L1

Zo
in-oco �

sC1
;

Y o-sci � �D2 � sre2C1�=�L1C1re2�s2 � s
D2

re2C1 L1
� re1re2 � D2rC1 � �;re2 � D2�re1 � 2rC1�

L1C1

Zin-1 � re2 � ;
DV e1

I in

Toi-1 � ;
D�1 � s�V e1C1=DI in��

1 � srC1C1

Y o-1 � DI in�1 � s�V e1C1=DI in��
2 :� C1��1 � D�re1 � 2rC1��I in=V e1�=L1C1�

2DI in re1 � �DI in=V e1�rC1Gio-1 � ��DV e1 � re2I in��1 � srC1C1��= LCV e1�s2 � s �
V e1C1 L1

1 � D�re1 � 2rC1��I in=V e1�� �; (8.17)
L1C1

When comparing the dynamic representations of the VF buck converter given
in Chapter 3 and the CF buck converter given in Eqs (8.14)–(8.17), they resemble
very closely to each other, that is, Gio-o and Toi-o are symbolically the same, the
resonant frequency is not dependent on the duty ratio, the control-related
transfer functions do not contain RHP zeros, the ideal input impedance corre
sponds to a negative incremental resistance (i.e., Zin-1 � ��V in=I in�), and so on. It
is obvious that the duality transformation retains both steady-state and dynamic
properties quite intact.

The on-time and off-time power stages of the CF buck converter with the input
filter are shown in Figure 8.4, respectively. Applying Kirchhoff’s voltage and
current laws, the state space during the on-time can be given by

Figure 8.4 CF buck power-
stage structures with the input
filter. (a) During the on-time. (b)
During the off-time.
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diL1 rL1 � rC1 rC1 1 1� � iL1 � iL2 � vC1 � vo;dt L1 L1 L1 L1

diL2 rC1 rL2 � rds1 � rC1 � rC2 1 1 rC2� iL1 � iL1 � vC1 � vC2 � iin;dt L2 L2 L2 L2 L2

dvC1 1 1� � iL1 � iL2;dt C1 C1

dvC2 1 1� � iL2 � iin;dt C2 C2

vin � �rC2iL2 � vC2 � rC2iin;

io � iL1;

(8.18)

and during the off-time by

diL1 rL1 � rC1 1 1� � iL1 � vC1 � vo;dt L1 L1 L1

diL2 rL2 � rds2 � rC2 1 rC2� � iL2 � vC2 � iin;dt L2 L2 L2

dvC1 1� � iL1; (8.19)dt C1

dvC2 1 1� � iL2 � iin;dt C2 C2

vin � �rC2iL2 � vC2 � rC2iin;

io � iL1:

The averaged state space and the operating point values can be computed from
Eqs (8.18) and (8.19) and given by

dhiL1i rL1 � rC1 drC1 1 1� � hiL1i � hiL2i � hvC1i � hvoi;dt L1 L1 L1 L1

dhiL2i drC1 rL2 � rC2 � drC1 � drds1 � d´rds2 d� hiL1i � hiL2i � hvC1idt L2 L1 L2

1 rC2� hvC2i � hiini;L2 L2
(8.20)dhvC1i 1 d� � hiL1i � hiL2i;dt C1 C1

dhvC2i 1 1� � hiL2i � hiini;dt C2 C2

hvini � �rC2hiL2i � hvC2i � rC2hiini;
hioi � hiL1i:
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VC1 � V o � DrL1I in;

V in � VC2 � DV o � �D2rL1 � rL2 � DD´rC1 � Drds1 � D´rds2�I in;

IL1 � DI in; (8.21)

IL2 � I in;

Io � DI in:

^

The linearized state space can be computed from the averaged state space in Eq.
(8.20) applying the methods presented in Chapter 2. This process yields

d;

d̂iL1 DrC1 1 1 rC1I inre1 ^

^^

d;

vC2 � iin �L2 L2 L2

^iL1 � iL2 � vC1 � vodt L1 L1 L1 L1 L1
^^^ �

d̂iL2 DrC1� D 1 V e1re2 rC2iL1 � iL2 �dt L2 L2 L2

^^ �v̂C1

d̂;
dvC1 iL1 �dt C1 C1

^^ 1 D I in

C1

^ �iL2

îin;

(8.22)

dvC2

dt C2

vin

^

^

1

^

1

vC2 �

^ �iL2 C2

^dvC2rC2C2 ;^rC2iL2 � ^rC2iin �

where

re1 � rL1 � rC1;

re2 � rL2 � rC2 � DrC1 � Drds1 � D´rds2; (8.23)

V e1 � V o � �DrL1 � rC1 � rds1 � rds2�I in:

We present here only the set of transfer functions without the parasitic
elements in order to verify whether the adding of the input filter would produce
such anomalies, which would affect the control design or stability of the
converter. The input dynamics of the ideal converter can be given by

v̂C2 �
îo

s s
D2L1 � L22 � =�C2�;ΔZin-o �
L1L2C1

D
ΔToi-o � ; (8.24)

L1L2C1C2

dt

� îL1;

DI in 1V o s2 � s � ;ΔGci-o �
L2C2 V oC1 L1C1
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and the output dynamics by

C1 � D2C2ΔY o-o � s
s2 � ;

L1 L2C1C2

D
ΔGio-o � ; (8.25)

L1L2C1C2

DV o 1I in s2 � s � :ΔGco-o �
L1C1 I inL2 L2C2

Δ in Eqs (8.24) and (8.25) denotes the determinant of the system and can be
given by

1 1 D2 1
Δ � s4 � s2 � � � : (8.26)

L1C1 L2C2 L2C1 L1L2C1C2

The adding of input filter changes naturally the converter to a fourth-order
converter (cf. Eq. (8.26)) but the control-to-output-current transfer function
(Gco-o) in Eq. (8.25) will also contain an RHP zero, which will limit the maximum
control bandwidth to the frequency of the zero. The control-to-input-voltage
transfer function (Gci-o) in Eq. (8.24) does not contain any RHP zeros. This is a
very good example of the necessity to perform the dynamic analysis fully without
assuming anything based on the original converter.

The dynamic effect of the input filter on the converter dynamic behavior can
also be solved by applying the technique of source interactions, which is described
in detail in Chapter 2. The cascaded connection of the input filter (i.e., the source)
and CF converter is shown in Figure 8.5. In this technique, we can apply directly
the knowledge of the known transfer functions of the cascaded elements. As
depicted in Figure 8.5, the variables at the interface of the converters (i.e., îs and )v̂s

serve two different purposes depending on which of the cascaded elements are in
question. The H-parameter sets of the cascaded elements are given in Eqs (8.26)
and (8.27), which will clarify the above statement. The transfer functions in
Eq. (8.27) are explicitly given in Eqs (8.14)–(8.16).

ZLC TLC
in oiv̂in

îs

v̂in

îs

^

îin� :
vsGLC �Y LC

io o

^

^

^

^

^

iin1 � srC2C2 �sC2� :
vs

is

vo

d

(8.27)�rL2 � sL2��1 � srC2C2� 1 � srC2C2

s2L2C2 � s�rL2 � rC2�C2 � 1

v̂s

îo
� ZCF TCF GCF

in-o oi-o ci-o

GCF �YCF GCF
io-o o-o co-o

: (8.28)
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Figure 8.5 The cascaded connection of the input filter and the CF converter.

The set of the input-to-output transfer functions of the cascaded system can be
given by

1 � ZCF TLC TLC
^in-oY

LC

ZLC TCF oi GCFo-sci oi iin
1 � Y LCZCF in 1 � Y LCZCF oi-o 1 � Y LCZCF ci-ov̂in o in-o o in-o o in-o� :v̂o

GCF 1 � Y LCZCF 1 � Y LCZCFîo io-o GLC o in-oco YCF o in-1 GCF
^

1 � Y LCZCF io 1 � Y LCZCF o-o 1 � Y LCZCF co-o d
o in-o o in-o o in-o

(8.29)

The set of cascaded transfer functions in Eq. (8.29) reveals that the original filter
and converter transfer functions are affected through the output and input
impedances of the cascaded elements as well as through their special imped
ance-like parameters defined as H-parameters in Eq. (8.2). The special parameters
of the CF buck converter are given explicitly in Eq. (8.17). The special parameters
for the input filter can be given by

ZLC 1 � srC2C2� ;in-oco sC2 (8.30)
1

Y LC � :o-sci sL2 � rL2

The appearing of the RHP zero in the output-current dynamics is the conse
quence of the interaction of the source output admittance (i.e., Y LC in Eq. (8.27))o
with the ideal input impedance of the converter (i.e., ZCF

in-1 in Eq. (8.25)).
The practical analysis of the cascaded system in Figure 8.5 will be usually

performed by means of the individual transfer functions of the subsystems and the
set of transfer functions in (8.30) by utilizing a proper software package such as
Matlab and its toolboxes.

8.2.1.2 Boost Converter
The power stage of the CF boost converter with the relevant components is given
in Figure 8.6a. Its on-time and off-time power-stage structures are given in
Figure 8.6b and c, respectively.



366 8 Dynamic Modeling of DDR-Controlled CF Converters

Figure 8.6 CF boost converter. (a)
Basic power stage. (b) On-time
power-stage structure. (c) Off-time
power-stage structure.

According to Figure 8.6b, we can compute the on-time state-space equations to be

diL1 �rL1 � rds1� 1� � iL1 � vo;dt L1 L1

dvC1 1� iin; (8.31)
dt C1

vin � vC1 � rC1iin;

io � iL1;

and according to Figure 8.6c, we can compute the off-time state-space equations
to be

diL1 �rL1 � rC1 � rds2� 1 rC1 1� � iL1 � vC1 � iin � vo;dt L1 L1 L1 L1

dvC1 1 1� � iL1 � iin; (8.32)
dt C1 C1

vin � �rC1iL1 � vC1 � rC1iin;

io � iL1:
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The averaged state space can be computed based on Eqs (8.31) and (8.32) as
discussed in Chapter 2. The averaging process yields the averaged state space

dhiL1i �rL1 � d´rC1 � drds1 � d´rds2� d´ d´rC1 1� � hiL1i � hvC1i � hiini � hvoi;dt L1 L1 L1 L1

dhvC1i d´ 1� � hiL1i � hiini;dt C1 C1

dhvC1ihvini � �d´rC1hiL1i � hvC1i � rC1hiini � hvC1i � rC1C1 ;
dt

hioi � hiL1i;
(8.33)

and the steady-state operating point

Io � IL1 � I
D

in
´ ;

(8.34)
V o rL1 � DD´rC1 � Drds1 � D´rds2V in � VC1 �
D´ � I in:

D´2

The linearized state space can be computed from Eq. (8.33) by applying the
methods described in Chapter 2. This process yields

^^^^ D´
iL1 � vC1 � rC1 iin � vodt L1 L1 L1 L1 L1

D´d̂iL1 1 V e1re1 ^

^

d;

d;
C1 (8.35)

D´
^dv̂C1 iL1 �dt C1 C1

1 I in^

^
^

iin �
dvC1vC1 � rC1C1 dt

� îL1;

D´

�^

^

vin

io

where

re1 � rL1 � D´rC1 � Drds1 � D´rds2;

(8.36)V o rL1 � �D � D´�rC1 � rds1V e1 �
D´ � D´2 I in:

The set of transfer functions representing the input dynamics can be given by

21 re1 � D´ rC1s � �1 � srC1C�;ΔZin-o �
C1 L1

;

D´
ΔToi-o � �1 � srC1C�; (8.37)

L1C1

D´I in
2V e1 �1 � srC1C�;ΔGci-o � s � re1 �D´C1 I in
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and the set of transfer functions representing the output dynamics by

s
ΔY o-o � ;

L1

D´
ΔGio-o � �1 � srC1C1�; (8.38)L1C1

I in V e1C11 � s :ΔGco-o �
L1C1 I in

Δ in Eqs (8.37) and (8.38) denotes the determinant of the system and can be
given by

D´2
Δ � s2 � s

re1 � : (8.39)
L1 L1C1

The corresponding set of ideal impedance-like parameters can be given by

1 � srC1C1Zo � ;in-oco sC1

1
Y o-sci � 2 ;

sL1 � re1 � D´ rC1

�V e1 � rC1I in��1 � srC1C1�Zin-1 � ;
V e1C1�s � �I in=V e1C1��

(8.40)
I inToi-1 � � ;

D´V e1C1�s � �I in=V e1C1��
1

Y o-1 � ;
sL1 � �D´2V e1=I in� � re1

D´V e1
2V e1D´ = sL1 � � re1 :Gio-1 � rC1 � I in I in

The operating point given in Eq. (8.34) indicates that the converter has the
steady-state property of a boost converter when the input–output modulo is
considered in terms of input and output currents. The dynamic properties given
in Eqs (8.38)–(8.40) are quite similar to the properties of the VF boost converter
introduced in Chapter 3, that is, the resonant frequency is dependent on the
complement of the duty ratio, the control-to-output-current transfer function
(Gco-o) contains an RHP zero, and so on.

8.2.1.3 Noninverting Buck–Boost Converter
The power stage of the CF buck–boost converter with the relevant components is
given in Figure 8.7a. Its on-time and off-time power-stage structures are given in
Figure 8.7b and c, respectively.
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Figure 8.7 CF buck–
boost converter. (a)
Basic power stage.
(b) On-time power
stage-structure. (c)
Off-time power-
stage structure.

According to Figure 8.7b, we can compute the on-time state-space equations to be

diL1 �rL1 � rds2� 1� � iL1 � vo;dt L1 L1

dvC1 1� iin; (8.41)dt C1

vin � vC1 � �rC1 � rds1�iin;
io � iL1;

and according to Figure 8.7c, we can compute the on-time state-space equations
to be

diL1 �rL1 � rC1 � rds3� 1 1� � iL1 � vC1 � vo;dt L1 L1 L1

dvC1 1
dt

� � iL1; (8.42)C1

vin � rds4iin;

io � iL1:
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Based on Eqs. (8.41) and (8.42), the averaged state space can be given by

dhiL1i d´ 1rL1 � drds2 � d´rC1 � d´rds3 hiL1i � hvC1i � hvoi;dt L1 L1 L1

dhvC1i d´ d� � hiL1i � hiini; (8.43)dt C1 C1

hvini � dhvC1i � �drC1 � drds1 � d´rds4�hiini;
hioi � hiL1i;

and the corresponding operation point values by

D
Io � IL1 �

D´ I in;

V o D
VC1 �

D´ � D´2 �rL1 � Drds2 � D´rC1 � D´rds3�I in;

D´2 D´ D´D D2

V in �
D´ V o �

D´2 rL1 � rds1 � Drds2 � D´rds3 �
D2 rds4 � rC1 I in:D D

(8.44)

The corresponding linearized state space can be given by

D´d̂iL1 1 V e1re1 ^

^

d;

d;
D´ (8.45)C1

d;

^

^^

^

îL1 � vC1 � vodt L1 L1 L1 L1

iin �D´

^

^

^

^

^

^

dvC1 iL1 �dt C1 C1

vin � DvC1 � re2iin � V e2

io

D I in

� îL1;

where

re1 � rL1 � Drds2 � D´rC1 � D´rds3;

re2 � DrC1 � Drds1 � D´rds4;

(8.46)D
V e1 � VC1 � D´ �rds2 � rds3 � rC1�I in;

V e2 � VC1 � �rds1 � rds4 � rC1�I in:
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The set of transfer functions representing the input dynamics can be given by

D´2D2 re1 re2 � D2re1ΔZin-o � s2 � s � � ;
re2C1 L1 re2L1C1

DD´
ΔToi-o � ;

L1C1

2D´ �D´V e2 � DV e1� � Dre1I inDI in re1ΔGci-o � V e2�s2 � s � � ;
D´ D´V e2C1 L1 V e2L1C1

(8.47)

and the set of transfer functions representing the output dynamics by

s
ΔY o-o � ;

L1

DD´
ΔGio-o � ; (8.48)L1C1

I in V e1C11 � s :ΔGco-o �
L1C1 I in

Δ in Eqs (8.47) and (8.48) denotes the determinant of the system and can be
given by

D´2
Δ � s2 � s

re1 � : (8.49)
L1 L1C1

The corresponding set of ideal impedance-like parameters can be given by

D2 � sre2C1Zo � ;in-oco sC1

D2 2D2 re1 re1 � D´ re2
=re2L1C1s2 � �s � � ;D2 � sre2C1Y o-sci �

re2C1 L1 re2L1C1

D2V e1 � DD´V e2 � re2I in I inZin-1 � re2 s � = s � ;
Ve1C1

DI in

re2V e1C1

I inToi-1 � � V e2 s � = V e1 s � ;
D´ Ve1C1

DI inY o-1 �
V e2C1

s � =
D´V e2C1

2D´ �D´V e2 � DV e1� � Dre1I inDI in re1s2 � s � � ;L1 D´ D´V e2C1 L1 V e2L1C1

D�DV e1 � D´V e2� � re2I inGio-1 � re2�s � =
re2V e1C1

D´2 D´� V e2 � DV e1� � Dre1I inDI in re1s2 � s � � :L1 D´ D´V e2C1 L1 V e2L1C1

(8.50)
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The operating point given in Eq. (8.46) indicates that the converter has the
steady-state property of a buck–boost converter when the input–output modulo
is considered in terms of input and output currents. The dynamic properties given
in Eqs (8.47)–(8.50) are quite similar to the properties of the VF buck–boost
converter introduced in Chapter 3, that is, the resonant frequency is dependent on
the complement of the duty ratio, the control-to-output-current transfer function
(Gco-o) contains an RHP zero, and so on.

Similarly as the CF buck converter, the CF buck–boost converter cannot be
used without the input filter in practical applications due to the output capacitor
of the practical current sources such as the photovoltaic generator [12]. We do
not, however, perform the analysis in this book, because the topology is not
relevant from the practical point of view.

8.2.1.4 CF Superbuck Converter
The power stage of the CF superbuck–boost converter with the relevant compo
nents is given in Figure 8.8a. Its on-time and off-time power-stage structures are
given in Figure 8.8b and c, respectively. The dynamic modeling of the CF
superbuck converter also is presented in Ref. [13], including the verification of
the dynamic models and the operation in practical application in interfacing
photovoltaic generator. We do not present here anymore all the details included
in the modeling, which can be easily performed by means of Figure 8.8 and the
instructions given in Chapter 2 and the examples in the previous sections.

The averaged state space of the CF superbuck converter can be given by

dhiL1i d�rC2 � rd� � d´�rC1 � rds1� � rL1 d´rC1 � drC2� � hiL1i � hiL2idt L1 L1

d´ d d´rC1 dVD� hvC1i � hvC2i � hiini � ;
L1 L1 L1 L1

d´dhiL2i rC1 � drC2 rC1 � rC2 � rL2 1� � hiL1i � hiL2i � hvC1idt L2 L2 L2

1 rC1 1� hvC2i � hiini � hvoi;L2 L2 L2

dhvC1i d´ 1 1� � hiL1i � hiL2i � hiini;dt C1 C1 C1

dhvC2i d 1� hiL1i � hiL2i;dt C2 C2

hvini � �d´rC1hiL1i � rC1hiL2i � hvC1i � rC1hiini;
hioi � hiL2i;

(8.51)

the operating point parameter values by

IL1 � I in;

Io � IL2 � DI in;

V in � VC1 � D�V o � VD� � �DD´rC2 � D2rC1 � Drd � D´rds1 � rL1 � D2rL2�I in;

VC2 � D´V o � DVD � �DD´rC2 � D2rC1 � Drd � D´rds1 � rL1 � DD´rL2�I in;

(8.52)
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Figure 8.8 CF super-
buck converter. (a) Basic
power stage. (b) On-
time power stage struc
ture. (c) Off-time power-
stage structure. Source:
Leppäaho 2011. Repro
duced with permission
of IEEE.
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and the corresponding linearized state space by

d̂iL1 re1 ee2 D´ D D´rC1 V e1^ ^ ^ ^� � iL1 � iL2 � v̂C1 � v̂C2 � iin � d;
dt L1 L1 L1 L1 L1 L1

d̂iL2 re2 re3 1 1 rC1 v̂o V e2^ ^ ^ ^� � iL1 � iL2 � v̂C1 � v̂C2 � iin � � d;
dt L2 L2 L2 L2 L2 L2 L2

dv̂C1 D´ 1 1 I in^ ^ ^ ^� � iL1 � iL2 � iin � d;
dt C1 C1 C1 C1 (8.53)

dv̂C2 D 1 I in^ ^ ^� iL1 � iL2 � d;
dt C2 C2 C2

v̂in � v̂C1 � rC1C1
dv̂C1

;
dt

îo � îL2;

where

re1 � D´�rC1 � rds1� � D�rC2 � rd� � rL1;

� D´re2 rC1 � DrC2;

re3 � rC1 � rC2 � rL2; (8.54)

V e1 � V o � VD � �DrL2 � D´rC2 � DrC1 � rd � rds1�I in;

V e2 � �rC1 � rC2�I in:

The set of transfer functions representing the output dynamics can be given by

21 2 L1�re3 � rC1� � L2�re1 � D´ rC1�ΔZin-o � �s3 � s �
C1 L1L2

2 2L1 � D2L2 � �re1�re3 � rC1� � D´ re3rC1 � re2 � 2D´re2rC1�C2s
L1L2C2

re1 � 2Dre2 � D2re3 � rC1� ��1 � srC1C1�;L1L2C2

1 re1 � D´re2 D
ΔToi-o � s2 � s � �1 � srC1C1�;L2C1 L1 L1C2

3 I in 2 L1�I inre3 � V e2� � L2�I inre1 � D´V e1�ΔGci-o � �s � s �
C1 L1L2C1

D´ D´ 2L2DI in � C2�V e1� re3 � re2� � V e2� re2 � re1� � I in�re1re2 � re2��s
L1L2C1C2

V e1 � DV e2 � I in�re2 � Dre3�� ��1 � srC1C1�;L1L2C1C2

(8.55)
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and the set of the transfer functions representing the output dynamics by

re1 D2C1 � D´2C2ΔY o-o � s
s2 � s � ;

L2 L1 L1C1C2

1 re1 � D´re2 D
ΔGio-o � s2 � s � �1 � srC1C1�;L2C1 L1 L1C2

(8.56)
V e2 2 �V e1re2 � V e2re1�C1C2 � I inL1�C1 � C2�ΔGco-o � s3 � s �
L2 L1L2C1C2

�D�DV e2 � V e1� � I in�re1 � Dre2��C1��D´�V e1 � D´V e2� � I in�re1 � D´re2��C2 I ins � :
L1L2C1C2 L1L2C1C2

Δ in Eqs (8.55) and (8.56) denotes the determinant of the system and can be given by

2
3L1re3�L2re1 2L1�C1�C2��L2�D2C1�D´2C2��C1C2�re1re3�re2�Δ� s4� s � s �

L1L2 L1L2C1C2

�re1�2Dre2�D2re3�C1��re1�2D´re2�D´2re3�C2 1
s � :

L1L2C1C2 L1L2C1C2

(8.57)

The complex conjugate roots of the determinant can be approximated by
neglecting the parasitic elements to be

1 1 1 C1 � C2
: (8.58)f p1 � ; f p2 �

2π L1�C1 � C2� 2π L2C1C2

The neglecting of the parasitic elements in the numerator of the control-to
output transfer functions (Gco-o) in Eq. (8.56) reveals that the output control
dynamics can contain a complex conjugate RHP zero pair approximately atp
1=�2π L1�C1 � C2� (cf. Eq. (8.60)), which is quite close to the LHP pole pair (f p1)
in Eq. (8.58). The appearance of the RHP zero can be, however, eliminated by
selecting the sizes of the capacitors in such a way that D´

maxC2 � DmaxC1 > 0,
where Dmax denotes the maximum value of the duty ratio within the practical
operating range. This is quite the same phenomenon as encountered in the VF
superbuck converter but in terms of inductor values (cf. Chapter 3).

GNum V o�D´C2 � DC1� 1� s2 � s � : (8.59)co-o I inL1�C1 � C2� L1�C1 � C2�
The neglecting of the parasitic elements in the numerator of the control-to

input transfer function (Gci-o) yields

2 D
´V o D V oGNum I in� s3 � s � s � : (8.60)ci-o C1 I inL1 L1C2 I inL1L2C2

By applying Routh–Hurwitz test to the third-order polynomial in Eq. (8.60), we
find out that there can be at least one RHP root because of the change of sign in
the first row of Routh’s array. In reality, the parasitic elements may prevent the



RHP zero to appear, but it is highly recommended to verify the real situation due
to its effect on the control design. The feedback control of the input voltage is the
most often utilized control method in the renewable energy applications.

The corresponding set of ideal impedance-like parameters neglecting the
parasitic elements can be given by

Zo
in-oco � s2� D2

L1C2
= C1s s2�D2C1�D´2C2

L1C1C2
;

Y o-sci � s2� D2

L1C2
= L2s s2�L1�D2L2

L1L2C2
;

Zin-1 � 1
C1�C2

� s�DV o

I inL1
= s2� s

V o�D´C2�DC1�
I inL1�C1�C2� � 1

L1�C1�C2� ;

Toi-1 � C2

C1�C2
� s2� s

D´V o

I inL1C2
� D
L1C2

= s2� s
�D´C2�DC1�V o

I inL1�C1�C2� � 1
L1�C1�C2� ;

Y o-1 � 1
L2

� s2� s
D´V o

L1Iin
� DD´
L1C2

= s3� s2D
´V o

I inL1
� s

D
L1C2

� V o

I inL1L2C2
;

Gio-1 � � 1
L2C2

� s�DV o

I inL1
= s3� s2D

´V o

I inL1
� s

D
L1C2

� V o

I inL1L2C2
:

(8.61)

Zc
in�1 � 1

C1�C2
� s�DUo

I inL1
= s2� s

Uo�D´C2�DC1�
I inL1�C1�C2� � 1

L1�C1�C2� ;

Tc
oi�1 � C2

C1�C2
� s2� s

D´Uo

L1C2I in
� D
L1C2

= s2� s
�D´C2�DC1�Uo

I inL1�C1�C2� � 1
L1�C1�C2� ;

Y c
o�1 � 1

L2
� s2� s

D´Uo

L1I in
� DD´
L1C2

= s3� s2D
´Uo

L1I in
� s

D
L1C2

� Uo

L1L2C2I in
;

Gc
io�1 � � 1

L2C2
� s�DUo

L1I in
= s3� s2D

´Uo

L1I in
� s

D
L1C2

� Uo

L1L2C2I in
:

(8.62)

The operating point variables in Eq. (8.52) show that the modulo of the
converter is D. Therefore, the converter is a buck-type converter. The existence
of RHP zeros in the higher order converters is quite common as demonstrated in
Chapter 3. Therefore, the performing of the full-scale dynamic analysis is actually
quite mandatory for guaranteeing the product quality.

8.2.2 Input Capacitor-Based Converters

As discussed in Chapter 7, the other method to produce CF converters is to use
the well-known VF power stages and add a capacitor at the input terminal of the
converter for satisfying the terminal constraints stipulated by a current source as

8 Dynamic Modeling of DDR-Controlled CF Converters376



3778.2 Dynamic Models

an input source [14,15]. Applying duality transformation will produce a CF
converter having similar steady-state and dynamic properties as the original VF
converter has, as explicitly demonstrated in Section 8.2.1. The input capacitor-
based CF converters will actually have the steady-state and dynamic properties as
the dual of the VF converters [15]. In addition, if the gate signals of the active
switches are maintained as they are in the corresponding VF converter, then the
duty ratio has to be decremented for increasing the output variables of the CF
converter [15,16]. We will provide the dynamic models for the buck-, boost-, and
noninverted buck–boost-type power stages in the subsequent sections. We will
name those converters based on what their power stages are known in voltage
domain.

8.2.2.1 Buck Power-Stage Converter
The power stage of the CF buck power-stage converter with the relevant
components is given in Figure 8.9a. Its on-time and off-time power-stage
structures are given in Figure 8.9b and c, respectively. (Note: The switch control
scheme is maintained as it is in the VF buck converter). The dynamic modeling of
the buck power-stage converter is also presented in Refs [8,15], including the
verification of the dynamic models and the operation in practical application in
interfacing photovoltaic generator. We do not present here anymore all the

Figure 8.9 CF buck
power-stage converter.
(a) Basic power stage.
(b) On-time power-
stage structure. (c) Off-
time power-stage
structure.
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details included in the modeling, which can be easily performed by means of
Figure 8.9, the instructions given in Chapter 2, and the examples in the previous
sections.

The average state space and the operating point can be given by

dhiL1i rL1 � drds1 � d´rds2 � drC2 d drC2 1� � hiL1i � hvC2i � hiini � hvoi;dt L1 L1 L1 L1

^

dhvC1i 1 1� � hvC1i � hvoi;dt rC1C1 rC1C1

dhvC2i d 1� � hiL1i � hiini;dt C2 C2

dhvC2ihvini � �dhiL1i � hvC2i � rC2hiini � hvC2i � rC2C2 ;
dt

1 1hioi � hiL1i � hvC2i � hvoi;rC2 rC2

(8.63)

and

V o rL1 � Drds1 � D´rds2 � DD´rC2V in � VC2 � � I in;D D2

(8.64)
I inIo � IL1 � :
D

The corresponding linearized state space can be given by

d;
d̂iL1 D

^

drC2

d;

1 V e1re1
^^^îL1 � vC2 � iin � vodt L1 L1 L1 L1 L1

�

^
^dvC1 vC1 �dt rC1C1 rC1C1

1 1
^

I in

vo;

^^^dvC2 iL1 � iin �dt C2 C2 DC2

D 1 (8.65)

^

^

^
dvC2vC2 � rC2C2 dt

1 1
vC1 �

�

^

^

^

vin

io vo;rC1 rC1

where

re1 � rL1 � Drds1 � D´rds2 � DrC2;

(8.66)V o rL1 � rds2V e1 � � I in:D D2

;

� îL1 �
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The set of transfer functions representing the input dynamics of the converter
can be given by

re1 � D2rC2s � �1 � srC2C2�;ΔZin-o �
L1C2

D
ΔToi-o � �1 � srC2C2�; (8.67)

L1C2

I in D2V e1 � re1I ins � �1 � srC2C2�;ΔGci-o � �
DC2 I inL1

and the set of transfer functions representing the output dynamics by

s 1 � srC1C1Y o-o � � ;
L1�s2 � s�re1=L1� � �D2=L1C2�� sC1

D
ΔGio-o � �1 � srC2C2�; (8.68)

L1C2

V e1 I inΔGco-o � s � :
L1 V e1C2

Δ in Eqs (8.67) and (8.68) denotes the determinant of the system and can be given by

D2

Δ � s2 � s
re1 � : (8.69)
L1 L1C2

The special parameters can be given by

re1 � rC1 � D2rC2 1
Zo � s2 � s � �1 � srC2C2� =in-oco L1 L1C1

re1 � rC1 C2 � D2C1sC2 s2 � s � ;
L1 L1C1C2

1 sC1Y o-sci � � ;
sL1 � re1 � D2rC2 1 � srC1C1

�V e1 � rC2I in��1 � srC2C2�Zin-1 � ;
sV e1C2 � Iin

C1�s2L1I in � s�D2V e1 � �re1 � rC1�I in� � I in��1 � srC2C2�Toi-1 � � ;
s2DV e1rC1C1C2 � sD�V e1C2 � rC2I inC1� � DI in

1 sC1Y o-1 � � ;
sL1 � re1 � �D2V e1=I in� 1 � srC1C1

V e1 D2V e1
= sL1 � re1 � :Gio-1 � D rC2 � I in I in

(8.70)

According to the operating point, it may be obvious that the duty ratio has to be
decreased for increasing the output variables. The negative low-frequency sign of
the control-related transfer functions in Eqs. (8.67) and (8.68) indicates that the
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corresponding feedback signal and its reference have to be interchanged for
ensuring stable operation. In addition, the control-to-output-current transfer
function (Gco-o) contains an RHP zero approximately at I in=V inC1, which has to
be taken into consideration when designing the controller. The appearing of the
RHP zero was already detected in late 1970s [17] when the buck power-stage
converter was applied in PV applications. The RHP zero locates at very low
frequency, and therefore, the control bandwidth of the output-side feedback
controller would be also very low, and usually satisfying any controlnot

^

performance requirements. In the renewable energy applications, the input-
side feedback control would anyway dominate, and the control-to-input transfer
function (Gci-o) does not contain RHP zeros.

The inverting of the gate drive signals in Figure 8.9 (i.e., the on-time and off-
time subcircuits are interchanged) would yield the averaged state space, operating
point, and linearized state space as follows:

dhiL1i rL1 � d´rds1 � drds2 � d´rC2 d´ d´rC2 1� � hiL1i � hvC2i � hiini � hvoi;dt L1 L1 L1 L1

dhvC1i 1 1� � hvC1i � hvoi;dt rC1C1 rC1C1

dhvC2i d´ 1� � hiL1i � hiini;dt C2 C2

dhvC2ihvini � �d´hiL1i � hvC2i � rC2hiini � hvC2i � rC2C2 ;
dt

1 1hioi � hiL1i � hvC1i � hvoi:rC1 rC1

(8.71)

V o rL1 � D´rds1 � Drds2 � DD´rC2V in � VC2 �
D´ � 2 I in;

D´
(8.72)

Io � IL1 � I
D

in
´ ;

and

d;^^

^

^

^

^

^

^

^

^

^

d´
iL1 � vC2 � rC1 iin � vodt L1 L1 L1 L1 L1

iin � d;

vo;

dvC1vin

io vo;

D´d̂iL1 1 V e1re1

D´
^^dvC1 iL1 �dt C1 C1

1 I in

D´C1

^
^dvC2 vC2 �dt rC2C2 rC2C2

1 1 (8.73)

� ;

^

v̂C1 � rC1C1 dt
1 1

vC2 �� îL1 � rC2 rC2
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where

re1 � rL1 � D´rds1 � Drds2 � D´rC2;

V o rL1 � rds2 (8.74)
V e1 �

D´ � D´2 I in:

The set of transfer function representing the input dynamics can also be given by

21 re1 � D´ rC2s � �1 � srC2C2�;ΔZin-o �
C2 L1

D´
ΔToi-o � �1 � srC2C2�; (8.75)

L1C2

D´I in
2V e1 � re1I inΔGci-o � s � �1 � srC2C2�;D´C2 I inL1

and the set of transfer functions representing the output dynamics by

s 1 � srC1C1Y o-o � 2 � ;
L1 sC1

D´
ΔGio-o � �1 � srC2C2�; (8.76)

s2 � s�re1=L1� � �D´ =L1C2�

L1C2

V e1 I inΔGco-o � � s � ;
L1 V e1C2

where Δ denotes the denominator of the transfer functions and can be given by

Δ � s2 � s
re1 � D´2

: (8.77)
L1 L1C2

The set of special parameters can be given by

2re1 � rC1 � D´ rC2 1
Zo � �s2 � s � ��1 � srC2C2� =in-oco L1 L1C1

re1 � rC1 C2 � D´2C1sC2 s2 � s � ;
L1 L1C1C2

1 sC1Y o-sci � 2 � ;
sL1 � re1 � D´ rC2 1 � srC1C1

�V e1 � rC2I in��1 � srC2C2�Zin-1 � ;
sV e1C2 � Iin

C1�s2L1I in � s�D´2V e1 � �re1 � rC1�I in� � I in��1 � srC2C2�Toi-1 � � ;
D´�s2V e1rC1C1C2 � s�V e1C2 � rC1I inC2� � I in�

1 sC1Y o-1 � � ;
sL1 � re1 � �D´2V e1=I in� 1 � srC1C1

D´V e1
2V e1D´ = sL1 � re1 � :Gio-1 � rC2 � I in I in

(8.78)
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When the gate signals of the active switches are inverted, the operating point in
Eq. (8.72) indicates that the converter is a boost-type converter. In addition, the
control-related transfer functions do not anymore have negative low-frequency
sign, which means that the conventional feedback arrangement works. Actually,
the sets given in Eqs (8.72)–(8.78) can be derived from the corresponding sets of
the original buck power-stage converter by substituting duty ratio by its comple
ment or vice versa, and changing the sign of the control-related transfer functions.
It should also be noted that the signs of the perturbed duty ratio in Eq. (8.73) have
been changed (i.e., multiplied by �1) compared to Eq. (8.65).

The output capacitor (C1) in Figure 8.9 may not be used, and therefore, we also
present the same sets excluding the operating point as above in case of non-
inverted gate signals when the output capacitor is omitted:

dhiL1i
dt

� � rL1 � drds1 � d´rds2 � drC2

L1
hiL1i � d

L1
hvC2i � drC2

L1
hiini � 1

L1
hvoi;

dhvC2i
dt

� � d
C2

hiL1i � 1
C2

hiini;

hvini � �drC2hiL1i � hvC2i � rC2hiini � hvC2i � rC2C2
dhvC2i

dt
;

hioi � hiL1i:
(8.79)

d̂iL1 � � d̂;îL1 � v̂C2 � îin � v̂o
D drC2 1 V e1re1 �

dt L1 L1 L1 L1 L1

^^^^dvC2 iL1 � iin � d;
dt C2 C2 DC2 (8.80)

D 1 I in

^
^

dvC2vC2 � rC2C2 dt

� îL1;

�^

^

vin

io

where

re1 � rL1 � Drds1 � D´rds2 � DrC2;

(8.81)V o rL1 � rds2V e1 � � I in:D D2

;

re1 � D2rC2s � �1 � srC1C2�;ΔZin-o �
L1C2

D
ΔToi-o � �1 � srC2C2�; (8.82)

L1C2

I in D2V e1 � re1I ins � �1 � srC2C2�:ΔGci-o � �
DC2 I inL1
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s
ΔY o-o � ;

L1

ΔGio-o � D �1 � srC2C2�; (8.83)L1C2

V e1 I ins � :ΔGco-o �
L1 V e1C2

D2

Δ � s2 � s
re1 � : (8.84)
L1 L1C2

1 � srC2C2Zo � ;in-oco sC2

1
Y o-sci � ;

sL1 � re1 � D2rC2

�V e1 � rC2I in��1 � srC2C2�Zin-1 � ;
sV e1C2 � Iin

(8.85)
I in�1 � srC2C2�Toi-1 � � ;
D�sV e1C2 � Iin�

1
Y o-1 � ;

sL1 � re1 � �D2V e1=I in�
V e1 D2V e1D�rC2 � � = :sL1 � re1 �Gio-1 �
I in I in

8.2.2.2 Boost Power-Stage Converter
The power stage of the CF boost power-stage converter with the relevant
components is given in Figure 8.10a. Its on-time and off-time power-stage
structures are given in Figure 8.10b and c, respectively. (Note: The switch control
scheme is maintained as it is in the VF boost converter). The dynamic modeling of
the boost power-stage converter is also presented in Ref. [18] including the
verification of the dynamic models and the operation in practical application in
interfacing photovoltaic generator. We do not present here anymore all the

Figure 8.10 CF boost
power-stageconverter.
(a) Basic power stage.
(b) On-time power-
stage structure. (c) Off-
time power-stage
structure.
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Figure 8.10 (Continued )

details included in the modeling, which can be easily performed by means of
Figure 8.10, the instructions given in Chapter 2, and the examples in the previous
sections.

The average state space can be given by

dhiL1i rL1 � drds1 � d´rd � rC2 1 rC2 d´ d´
� � hiL1i � hvC2i � hiini � hvoi � VD;dt L1 L1 L1 L1 L1

dhvC1i 1 1� � hvC1i � hvoi;dt rC1C1 rC1C1

dhvC2i 1 1� � hiL1i � hiini;dt C2 C2

dhvC2ihvini � �rC2hiL1i � hvC2i � rC2hiini � hvC2i � rC2C2 dt
;

hioi � d´hiL1i � 1 hvC1i � 1 hvoi;rC1 rC1

(8.86)

the operating point by

V in � VC2 � D´�V o � VD� � �rL1 � Drds1 � D´rd�I in;

VC1 � V o;

IL1 � I in;
(8.87)

Io � D´I in;
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and the linearized state space by

d;

vo;

^

^

D´d̂iL1 1 V e1re1 rC2iL1 � vC2 � iin � vodt L1 L1 L1 L1 L1
^^^^ �

dvC1 vC1 �dt rC1C1 rC1C1
^

^ 1 1

dvC2 iL1 �dt C2 C2

^^ 1 1 (8.88)iin;

dvC2rC2C2 ;

^

^
vin vC2 �

� D´io iL1 � vorC1 rC1
^

where

re1 � rL1 � Drds1 � D´rd � rC2;
(8.89)

V e1 � V o � VD � �rd � rds1�I in:

^

The set of transfer functions representing the input dynamics can be given by

^

�sL1 � re1 � rC2�ΔZin-o � �1 � srC2C2�;L1C2

^

^

D´
ΔToi-o � �1 � srC2C2�; (8.90)

L1C2

V e1ΔGci-o � � �1 � srC2C2�;L1C2

and the set of transfer functions representing output dynamics by

D´2s sC1ΔY o-o � � ;
L1 Δ�1 � srC1C1�
D´

ΔGio-o � �1 � srC2C2�; (8.91)
L1C2

D´ 1V e1 re1s2 � s � ;ΔGco-o � �I in L1C2L1I in L1

�
dt

1 1
vC1 �^ d̂;� I in

where Δ denotes the denominator of the transfer functions and can be given by

re1 1
Δ � s2 � s � : (8.92)

L1 L1C2
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The set of related special transfer functions can be given as follows:

Zo
in-oco � s2 � s

re1 � D´2rC1 � rC2

L1
� D´2
L1C1

�1 � srC2C2� =

C2s s2 � s
re1 � D´2rC1

L1
� C1 � D´2C2

L1C1C2
;

Y o-sci � D´2
sL1 � re1 � rC2

� sC1

1 � srC1C1
;

Zin-1 � �s � D´V e1 � �rC2 � re1�I in

L1I in
��1 � srC2C2� =

C2 s2 � s
D´V e1 � re1I in

L1I in
� 1
L1C2

;

(8.93)

Toi-1 � �sC1�V e1 � D´rC1I in� � D´I in��1 � srC2C2�
s3L1C1C2rC1I in � s2�C1C2�D´rC1V e1 � rC1re1I in��L1C2I in� � s�C2�D´V e1 � re1I in� � C1rC1I in� � I in

;

Y o-1 � D´I in

V e1
� sC1

1 � srC1C1
;

D´V e1 � �rC2 � re1�I inGio-1 � � I inL1 s � :
V e1 L1I in

The operating point in Eq. (8.87) reveals that the duty ratio has to be decreased
for increasing the corresponding output variables. The negative low-frequency
signs of the control-related transfer functions in Eqs (8.90) and (8.91) indicate that
the feedback and its reference signals have to be interchanged for ensuring
stability. These behaviors are similar as in the buck power-stage converter
introduced in Section 8.2.2.1.

The conventional feedback arrangement and duty ratio control can be restored
by inverting the gate drive signals of the active switches. The corresponding
transfer functions can be obtained from Eqs (8.89)–(8.93) by replacing D with D´
and D´ with D as well as multiplying the control-related transfer functions in Eqs
(8.90) and (8.91) by �1. According to these procedures, the operating point will
become

V in � VC2 � D�V o � VD� � �rL1 � D´rds1 � Drd�I in;

IL1 � I in; (8.94)

Io � DI in;

which implies that the converter is a buck-type converter (i.e., M�D� � D) but its
control-to-output current transfer function (Gco-o) will contain two different RHP
zeros approximately at

I inωlow-freq � ; (8.95)
V inC2



3878.2 Dynamic Models

and at

V inωmedium-freq � : (8.96)
L1I in

The first RHP zero corresponds to the RHP zero of the buck power-stage
converter in Eq. (8.68) and the second RHP zero to the RHP zero of the VF
boost converter defined in Chapter 3.

8.2.2.3 Noninverting Buck–Boost Power-Stage Converter
The power stage of the CF buck–boost power-stage converter with the relevant
components is given in Figure 8.11a. Its on-time and off-time power-stage
structures are given in Figure 8.11b and c, respectively. (Note: The switch control
scheme is maintained as it is in the VF buck–boost converter, which is indicated
by d and d´.) The dynamic modeling of the buck–boost power-stage converter is
also presented in Ref. [19], including the verification of the dynamic models and
the operation in practical application in interfacing photovoltaic generator. We
do not present here anymore all the details included in the modeling, which can
be easily performed by means of Figure 8.11, the instructions given in Chapter 2,
and the examples in the previous sections.

Figure 8.11 Nonin
verting CF buck–boost
power-stage converter.
(a) Basic power stage.
(b) On-time power-
stage structure. (c) Off-
time power-stage
structure.
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The average state space can be given by

dhiL1i rL1 � d�rds1 � rds2� � d´�rds3 � rds4� � drC2

V in � VC2 � V o � �rL1 � D�rds1 � rds2� � D´ rds3 � rds4� � DD´rC2�

dt
� �

L1
hiL1i

� hvC2i � hiini � hvoi;d drC2 d´
L1 L1 L1

dhvC1i
dt

dhvC2i
dt

� � hvC1i � hvoi;1 1
rC1C1 rC1C1

� � hiL1i � hiini;d 1
C2 C2

(8.97)

hvini � hvC2i � rC2C2 ;
dhvC2i

dt

hioi � d´hiL1i � 1 hvC1i � 1 hvoi;rC1 rC1

the operating point by

D´ I in

^

�
D2 ;D

VC1 � V o;

I inIL1 � ;
D

D´� D´Io IL1 � I in;D
(8.98)

and the linearized state space by

d;
D´d̂iL1 D DrC2 V e1re1

^^^îL1 � vC2 � iin � vodt L1 L1 L1 L1 L1
�

^
^dvC1 vC1 �dt rC1C1 rC1C1

1 1
^

I in

vo;

^^^dvC2 iL1 � iin �dt C2 C2 DC2

D 1 (8.99)d̂;

^^

^

^^

^^

^

dvC2vin vC2 � rC2C2

io � D´iL1 � vC1 � vo d;
rC1 rC1 D

where

re1 � rL1 � D�rds1 � rds2� � D´�rds3 � rds4� � DrC2;

V o �rL1 � D2�rds1 � rds2� � D´�1 � D��rds3 � rds4� � D2rC2�V e1 � � I in:D D2

(8.100)

� ;
dt

1 1 I in
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The set of transfer functions representing the input dynamics can be given by

�sL1 � re1 � D2rC2�ΔZin-o � �1 � srC2C2�;L1C2

DD´
ΔToi-o � �1 � srC2C2�; (8.101)

L1C2

sL1I in � D2V e1 � re1I inΔGci-o � � �1 � srC2C2�;DL1C2

and the set of transfer functions representing output dynamics by

D´2s sC1ΔY o-o � � ;
L1 Δ�1 � srC1C1�
DD´

ΔGio-o � �1 � srC2C2�; (8.102)
L1C2

DD´V e1 re1 D
ΔGco-o � � I in s2 � s � ;

D L1C2L1I in L1

where Δ denotes the denominator of the transfer functions and can be given by

D2

Δ � s2 � s
re1 � : (8.103)
L1 L1C2

The set of related special transfer functions can be given as follows:

2 D´2re1 � D´ rC1 � D2rC2Zo � s2 � s � �1 � srC2C2� =in-oco L1 L1C1

2re1 � D´ rC1 D2C1 � D´2C2C2s s2 � s � ;
L1 L1C1C2

D´2 sC1Y o-sci � � ;
sL1 � re1 � D2rC2 1 � srC1C1

DD´V e1 � �DrC2 � re1�I inZin-1 � s � �1 � srC2C2� =
L1Iin

DD´V e1 � re1I in D
s2 � s � ;C2 L1I in L1C2

�s2L1C1I in � sC1�D2V e1 � �re1 � DrC1�I in � D´I in��1 � srC2C2�Toi-1 � 2 ;
s3L1C1C2rC1I in � s �C1C2�DD´rC1V e1 � rC1re1I in� � L1C2I in��s�C2�DD´V e1 � re1I in� � C1DrC1I in� � DI in

D´ sC1Y o-1 � � ;
sL1 � �D2V e1=I in� � re1 1 � srC1C1

DD´V e1 � �DrC2 � re1�I in D2V e1 � re1I ins � = s � :Gio-1 � �
L1I in L1I in

(8.104)
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The operating point in Eq. (8.98) reveals that the duty ratio has to be decreased
for increasing the corresponding output variables. The negative low-frequency
signs of the control-related transfer functions in Eqs (8.101) and (8.102) indicate
that the feedback and its reference signals have to be interchanged for ensuring
stability. These behaviors are similar as in the buck and boost power-stage
converters introduced in Sections 8.2.2.1 and 8.2.2.2.

The conventional feedback arrangement and duty ratio control can be restored
by inverting the gate drive signals of the active switches. The corresponding transfer
functions can be obtained from Eqs (8.101)–(8.104) by replacing D with D´ and D´
with D as well as multiplying the control-related transfer functions in Eqs (8.101)
and (8.102) by �1. According to these procedures, the operating point will become

D I inV in � VC2 �
D´ V o � �rL1 � D´�rds1 � rds2� � D�rds3 � rds4� � DD´rC2�

D´2 ;
VC1 � V o;

IL1 � I
D

in
´ ;

D
Io � DIL1 �

D´ I in;

(8.105)

which implies that the converter is a buck–boost-type converter (i.e.,
M�D� � D=D´) but its control-to-output current transfer function (Gco-o) will
contain two different RHP zeros approximately at

I inωlow-freq � ; (8.106)
V inC2

and at

V inωmedium-freq � : (8.107)
L1I in

The first RHP zero corresponds to the RHP zero of the buck power-stage
converter in Eq. (8.68) and the second RHP zero to the RHP zero of the VF
buck–boost converter defined in Chapter 3.

8.3 Source and Load Interactions

The general formulations for the source and load interactions are presented in
Chapter 2. In this section, we present the specific formulations for the CF-CO and
CF-VO converters.

8.3.1 CF-CO Converters

8.3.1.1 Source Interactions
According to the generalized source interactions given in Section 2.2.5, the
source-affected set of transfer functions representing the source impedance
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Figure 8.12 Linear network model of CF-CO converter with nonideal source.

induced changes in the dynamics of the CF-CO converter (cf. Figure 8.12) can be
given by

ZH TH GH
^in oi ci iinS

1 � Y SZH 1 � Y SZH 1 � Y SZHv̂in in in in� ;v̂o
^ GH 1 � Y SZH�x 1 � Y SZHio io in-oco YH in-1 GH

^o-x co d1 � Y SZH 1 � Y SZH 1 � Y SZH
in in-x in

(8.108)

where

ZH�x
in-oco � ZH

in-x � GH
io-xT

H
oi-x

YH
o-x

;

ZH
in-1 � ZH

in � GH
ioG

H
ci

GH
co

;

(8.109)

and the superscript x denotes that the open-circuit input impedance is dependent
on the state of input-side feedback, as discussed in Section 8.2.

According to Eq. (8.108), the source admittance (Y S) would interact with
the converter via its input impedance (Zin) (i.e., 1 � Y SZH

in), its open-circuit
input impedance (ZH�x

in-oco), or its ideal input impedancein-oco) (i.e., 1 � Y SZH�x
(ZH

in-1). The interactions would take place when the sourcein-1) (i.e., 1 � Y SZH

impedance (1=Y S) is smaller than the named impedances. The series reso
nant-type source impedance behavior would be the dominating origin of
source interactions. In the voltage-fed converters, the dominating origin of
source interactions is the parallel-resonant source behavior, as discussed in
Chapter 3.

8.3.1.2 Load Interactions
According to the generalized load interactions given in Section 2.2.5, the load-
affected set of transfer functions representing the load impedance-induced
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Figure 8.13 Linear network model of CF-CO converter with nonideal load.

changes in the dynamics of the CF-CO converter (cf. Figure 8.13) can be given by

1 � ZLYH TH 1 � ZLYH
o-sci ZH oi o-1 GH

in ci îin
v̂oL

d̂

;
v̂in

îo
� 1 � ZLYH

o 1 � ZLYH 1 � ZLYH
o o

GH YH GH
io o co

1 � ZLYH
o 1 � ZLYH 1 � ZLYH

o o

(8.110)

where

YH
in-sci � YH

o � GH
ioT

H
oi

YH
o

;

TH
oiG

H
(8.111)

coYH � :o-1 � YH
o GH

ci

According to Eq. (8.110), the load impedance (ZL) would interact with the
converter via its output admittance (Y o) (i.e., 1 � ZLYH ), its short-circuit outputo
admittance (YH

o-sci, or its ideal output admittance (YH
o-sci) (i.e., 1 � ZLYH

o-1) (i.e.,
1 � ZLYH

o-1). The interactions would take place when the load admittance (1=ZL)
is smaller than the named admittances. The dominant origin of the load
interactions would be the parallel resonant-type load impedances.

8.3.2 CF-VO Converters

8.3.2.1 Source Interactions
According to the generalized source interactions given in Section 2.2.5, the source-
affected set of transfer functions representing the source impedance-induced
changes in the dynamics of the CF-VO converter (cf. Figure 8.14) can be given by

ZZ TZ GZ
in oi ci îinS

îo

d̂

1 � Y SZZ 1 � Y SZZ 1 � Y SZZ
in in inv̂in

v̂o

� ;
GZ 1 � Y SZZ 1 � Y SZZ

io in-sco in-1 GZ
coZZ

o1 � Y SZZ
in 1 � Y SZZ

in 1 � Y SZZ
in

(8.112)
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Figure 8.14 Linear network model of CF-VO converter with nonideal source.

where

ZZ ZZ Gio
ZTZ� oi ;in-sco in � ZZ

o
(8.113)

GZ
ioG

Z
ciZZ � ZZ :in-1 in � GZ

co

Both of the special parameters in Eq. (8.113) are invariant to the state of output-
side feedback.

In a similar manner as in case of the CF-CO converter, the source interactions
will take place via the source admittance through the input impedance and its
special impedances. The interactions would take place when the source imped
ance (1=Y S) is smaller than the named input-side impedances. Only the ideal
input impedance is same as the corresponding impedance of the CF-CO
converter. Hence, the interactions taken place in the CF-CO converter cannot
be used to estimate the interactions that would take place in the CF-VO
converter.

8.3.2.2 Load Interactions
According to the generalized load interactions given in Section 2.2.5, the load-
affected set of transfer functions representing the load impedance-induced
changes in the dynamics of the CF-VO converter (cf. Figure 8.15) can be given

Figure 8.15 Linear network model of CF-VO converter with nonideal load.
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by

1 � Y LZZ�x TZ 1 � Y LZZ
^o-sci oi o-1 iin

1 � Y LZZ 1 � Y LZZ 1 � Y LZZv̂in o o o
^� ; (8.114)ioL

GZ ZZ GZv̂o io o co
d̂1 � Y LZZ 1 � Y LZZ 1 � Y LZZ

o o o

where

GZ TZ

ZZ�x ZZ io-x oi-x� � ;o-sci o-x ZZ
in-x

(8.115)
TZ

oiG
Z
coZZ � ZZ � :o-1 o GZ

ci

The superscript x in the short-circuit output impedance denotes its dependence
on the state of output-side feedback.

According to Eq. (8.114), the load impedance (1=Y L) would interact with the
converter via its output impedance (Zo) (i.e., 1 � Y LZZ), its short-circuit outputo
impedance (ZZ

o-sci), or its ideal output impedance (ZZ
o-sci) (i.e., 1 � Y LZZ

o-1) (i.e.,
1 � Y LZZ

o-1). The interactions would take place when the load impedance (1=Y L)
is smaller than the named impedances. The dominant origin of the load
interactions would be the series resonant-type load impedances.

8.4 Impedance-Based Stability Assessment

As stated in Section 2.2.5, the impedance ratio known as minor-loop gain would
be composed in such a way that the numerator impedance is the internal
impedance of the voltage-type subsystem and the denominator impedance is
the internal impedance of the current-type subsystem. Hence, in the CF convert
ers, the impedance ratio has to be taken as ZH ;Z=ZS as also visible in the source-in
affected sets of transfer functions in Eqs (8.108) and (8.112), respectively. At the
output terminal of the CF-CO converter, the impedance ratio shall be taken as
ZL=ZZ , which is also clearly visible in (8.110). At the output terminal of the CF-o
VO converter, the impedance ratio shall be taken as ZZ=ZL, which is also clearlyo
visible in Eq. (8.114). The boundary condition for the instability is the ratio equals
�1. The existence of stability requires that the impedance ratio satisfies the
Nyquist stability criterion discussed in Chapter 2.

8.5 Output-Voltage Feedforward

The renewable energy systems compose usually of two stages, where the first
stage is a DC–DC converter implementing the PV-generator interfacing and the
second stage is a DC–AC converter implementing the grid interfacing. In the
single-phase applications, the pulsating nature of the grid power at twice the grid
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frequency is reflected into the DC side of the DC–AC converter causing the DC-
link voltage to fluctuate at twice the grid frequency [20,21]. If this voltage
fluctuation passes through the DC–DC stage into the PV generator, it would
decrease the energy taken from the generator or disturb the tracking of the
maximum power point of the generator [20]. The DC-link voltage fluctuation can
be reduced by increasing the size of the capacitor. The same also applies to the PV
generator output side. The large capacitors are usually of electrolyte type, which
are known to have limited life time at elevated temperatures and at high ripple
currents.

According to the basic dynamic features of a CF-CO converter, we know that
the ripple at the output terminal voltage is reflected to the input terminal voltage

vin � TH
oi-o^ At open loop, the magnitude of TH at flow frequenciesoi-o

^

vo.
corresponds to M�D�, which does not provide usually sufficient attenuation at
twice the grid frequency. The only way to improve the attenuation is to design the
converter power stage such that its resonant frequency would locate approxi
mately at one tenth of twice the grid frequency, which is not usually feasible. At
closed loop, the input voltage feedback can improve attenuation significantly,
which may satisfy the stated requirements.

We would investigate, in this section, the method to improve the attenuation of
TH

oi-o by applying output-voltage feedforward (OVFF) technique. The input and
output dynamics of the CF-CO converter with the application of the OVFF
technique are given in Figure 8.16.

According to Figure 8.16a, we can compute that the input dynamics can be
given by

^

vco;

as

vin � ZH
in-o^ îin � �TH

oi-o � GovffGa ^GH
ci-o�vo � GaG

H
ci-o (8.116)

^^^

and according to Figure 8.16b, we can compute that the output dynamics ca be
given by

io �vo vco:� GH
io-o îin � �YH

o-o � GovffGaG
H
co-o � GaG

H
co-o (8.117)

According to Eq. (8.117), we can conclude that the output admittance can be, in
theory, nullified by selecting the OVFF gain by

YH
o-oGovff � : (8.118)
GHGa co-o

This is quite in-line with what would take place in a VF-VO converter, when
applying the output current feedforward technique [22]. When computing the
effect of the OVFF on TH-OVFF by means of Eq. (8.116) with the OVFF gain in Eq.oi-o
(8.118), we will come up to the conclusion that

YH GH

TH-OVFF o-o ci-o� TH � TH (8.119)oi-o oi-o � oi-1;GH
co-o

which has the same low-frequency behavior as TH
oi-o (i.e., M(D)).
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Figure 8.16 Application of OVFF (a) at the
input side and (b) at output side.

In order to nullify TH-OVFF, the OVFF gain shall be (cf. Eq. (8.116))oi-o

TH
oi-oGovff � � ; (8.120)

GaGH
ci-o

which yields that

TH-OVFF
oi-o � 0;

TH (8.121)co-oYH-OVFF � YH oi-oG
H � YH�o-o o-o o-1:GH

ci-o

According to Eq. (8.121), we can conclude that the application of OVFF with
negative sign makes the converter to resemble a constant power source similarly
as under input voltage feedback control (i.e., YH � �YH =1 � Lin��o-c o-o
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�Lin=1 � Lin�YH is dependent on the gate driveo-1). The required sing of Govff

scheme of the converter: If the output variables will increase along the increase in
duty ratio, then the sign of Govff will be as already presented. If the output
variables will decrease along the increase in duty ratio, then the sign of Govff shall
be interchanged compared to what has been already presented.

We will take as an example of the boost power-stage converter modeled in
Section 8.2.2.2. According to Eq. (8.120) and the corresponding transfer functions
in Eq. (8.90), we will come up to the conclusion that the OVFF gain should be

Govff � D´ VM � D´ VM
; (8.122)

V e1 V o

where VM is the inverse of the modulator gain (i.e., 1=Ga). All the other variables
in Eq. (8.122) are quite constant except the complement of the duty ratio.
According to the operation point definition in Eq. (8.87), we can rewrite Eq.
(8.122) as

V inGovff � VM: (8.123)
V 2

o

The OVFF gain in Eq. (8.123) can be easily implemented when digital control is
applied but the use of measured input and output voltage would provide
additional feedback/feedforward loops, which have to be carefully analyzed
and considered.

8.6 Dynamic Review

The predicted frequency responses of the control-to-output current (Gco-o) and
control-to-input voltage (Gci-o) transfer functions of a buck (cf. Figure 8.17) and
boost power-stage (cf. Figure 8.18) converters are compared to the experimental
measurements and presented in Figures 8.19 (Buck) and 8.20 (Boost), respec
tively. The operating point and the relevant component values are given in the
corresponding power stage figures. The corresponding predicted transfer func
tions in symbolic form are given in Eqs (8.67)–(8.69) for the buck converter, and
in Eqs (8.90)–(8.92) for the boost converter. The switch control scheme of the
converters is as it is in their VF counter parts.

Figure 8.17 The power stage of the experimental buck power-stage converter.



398 8 Dynamic Modeling of DDR-Controlled CF Converters

Figure 8.18 The power stage of the experimental boost power-stage converter.

Figure 8.19 The control-
related transfer functions
of the buck power-stage
converter. (a)Gco-o and (b)
Gci-o (Solid line denotes
the measured transfer
functions and dashed line
the predicted transfer
functions).
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Figure 8.20 The control-
related transfer functions
of the boost power-stage
converter. (a)Gco-o and (b)
Gci-o (Solid line denotes
the measured transfer
functions and dashed line
the predicted transfer
functions).

The measured control-related transfer functions (i.e., Gco-o and Gci-o) of the
buck power-stage converter in Figure 8.19 indicates that the phase of the transfer
functions will start at 180 degrees as the developed analytical models predict. The
control-to-output current transfer function (Gco-o) in Figure 8.19a shows that
the predicted RHP zero locates at quite low frequency (i.e., �5 Hz) making the
magnitude resemble inductive behavior, but the phase behavior reveals that the
origin of behavior is the RHP zero. Figure 8.19b proves that the control-to-input
voltage transfer function (Gci-o) does not contain RHP zeros. The dashed line in
Figure 8.19a denotes the predicted behavior of the transfer function that matches
very well with the measured response.

The measured control-related transfer functions (i.e., Gco-oand Gci-o) of the
boost power-stage converter in Figure 8.20 indicates that the phase of the transfer
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functions will start at 180 degrees as the developed analytical models predict. The
behavior of the control-to-output current transfer function (Gco-o) in Figure 8.20a
shows that there are two RHP zeros in the output dynamics as the developed
model correctly predicts. Figure 8.20b proves that the control-to-input voltage
transfer function (Gci-o) does not contain RHP zeros. The dashed lines in
Figure 8.20 denote the predicted behavior of the transfer functions, which match
very well with the measured response.
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9

Dynamic Modeling of PCM/PVM-Controlled CF Converters

9.1 Introduction

As discussed in Chapter 4, the peak current-mode (PCM) control would provide
highly desirable features, especially in the voltage-fed buck-type converters [1,2].
The PCM-controlled converters have also been applied in interfacing the
photovoltaic (PV) generators into the rest of the system [3,4]. It was noticed
earlier that the application of PCM-controlled buck converter in PV applications
could lead to system instability. The origin of the instability was later addressed to
the cascaded nature of the control under PCM control in Ref. [5]. The dynamic
modeling of the converter under PCM control can be performed by applying
exactly the same methods as have been introduced earlier in Chapter 4. The
resulting dynamic models are, however, quite different compared with the
dynamic models of the corresponding voltage-fed converters. We model only
the buck and boost power-stage converters in this chapter.

The peak voltage mode (PVM) is not introduced anywhere, but it seems to be a
quite natural control method when the duality is in question: It is the dual of PCM
control. The voltage ripple-based control is discussed in Ref. [6] but not in the
same sense as we will do in this chapter. We apply the modeling only to the CF
buck and CF superbuck converters introduced in Chapter 7. The main problem
with the PVM control is the measuring of the high-frequency capacitor voltage
ripple in such a way that it can be used for generating the duty ratio as depicted in
Figure 9.1, where the measured capacitor-voltage ripples of the CF superbuck
converter introduced in Chapters 7 and 8 are shown. The ripple component may
also be very small compared to the average capacitor voltage making its accurate
measurement a challenging task. The development of the PVM-controlled
models actually indicates that the PVM control is not practical in renewable
energy applications, as explained in more detail in Section 9.2.1. In the appli
cations where the output current is controlled constant, the PVM control will
provide similar features as the PCM control in VF converters. The dominating
applications are, however, in the future, the renewable energy applications, and in
those applications the PCM control would give the desired advantageous features,
as discussed in Chapter 4.

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 9.1 The measured capacitor voltage ripples in the CF superbuck converter [7].
Source: Leppäaho 2011. Reproduced with permission of IEEE.

9.2 Duty-Ratio Constraints and Dynamic Models under
PCM Control

The averaged comparator equation can be given, in general form, based on the
inductor current feedback arrangement in Figure 9.2 by

n dd´T shicoi �McdT s � hiLii � �m1i �m2i� : (9.1)
2i�1

Therefore, the main task is to develop the formulations to the up (m1i) and
down (m2i) slopes of the associated inductor current to finalize the averaged
duty-ratio constraints for the specific converters. As already said, we will treat
in this chapter only the PCM-controlled current-fed buck (Figure 9.3) and
boost (Figure 9.4) power-stage converters.

Figure 9.2 Duty-ratio generation under PCM control with multiple inductor currents.
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Figure 9.3 The power stage of PCM-controlled current-fed buck power-stage converter.

9.2.1 Buck Power-Stage Converter

The power stage of the PCM-controlled buck power-stage converter is given in
Figure 9.3, where the control scheme of the MOSFETs is the same as in the
corresponding voltage-fed converter. The converter is a second-order converter,
and therefore, the averaged comparator equation can be given by

dd´T shicoi �McdT s � hiL1i � �m1 �m2�: (9.2)
2

Figure 9.4 The behavior of converter input impedance, when Mc � 0 (solid line) and when
Mc � 10 �Mc-opt (dashed line) (i.e., Eq. (9.14)).
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The inductor-current slopes as positive values (i.e., as required in Eq. (9.2) (cf.
Chapter 4)) can be computed to be

vC2 � �rL1 � rds1 � rC2�iL1 � rC2iin � vom1 � (9.3)
L1

and

vo � �rL1 � rds2�iL1m2 � : (9.4)
L1

Substituting m1 and m2 in Eq. (9.2) by Eqs (9.3) and (9.4) yields the averaged
comparator equation to be

dd´T s dd´T s dd´T srC2hicoi �McdT s � 1 � �rC2 � rds1 � rds2� hiL1i � hvC2i � hiini:2L1 2L1 2L1

(9.5)

By linearizing Eq. (9.5), we will get the required gains of the linearized duty-ratio
constraints in the form of

d̂ � FH
m �̂ico � qHL1 îL1 � qHC2v̂C2 � qHin îin�; (9.6)

where

FH
m � 1= T s Mc � �D´ � D��DV o � �rL1 � rds2�I in�

2L1D2 ;

qHL1

qHC2

� 1 � DD´T s

2L
�rC2 � rds1 � rds2�;

� DD´T s

2L
;

(9.7)

qHin � DD´T s

2L
rC2:

The coefficients of the duty-ratio constraints resemble the duty-ratio constraints
of the corresponding voltage-fed converter (cf. Chapter 4). The duty-ratio gain (FH )m
will become infinite without compensation when the duty ratio equals 50%. This
means that the converter will enter into the second-harmonic mode when the
instantaneous duty ratio is further increased beyond 0.5. The required value of
compensation (Mc) can be selected similarly as in case of the voltage-fed converter
to keep the converter operating without second-harmonic mode, that is,

�D´ � D��DV o � �rL1 � rds2�I in�Mc � > 0: (9.8)
2L1D2

The linearized state space representing the dynamics of the PCM-controlled
current-fed buck power-stage converter can be obtained from the linearized
state space of the DDR-controlled current-fed buck power-stage converter
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(cf. Eq. (8.65)) [8] by substituting the perturbed duty ratio with Eq. (9.6). This
procedure will yield

^
HqinV e1 iin

Hd̂iL1 re1 � FHqL1V e1m DrC2 � FH
miL1 � vC2 �dt L1 L1 L1

^^ D � FH
m

H
C2V e1q

1 FH
mV e1 ico;

1 1

^�voL1 L1
^

^

dvC1 vC1 � vo;dt rC1C1 rC1C1

(9.9)

ico;

^^
^

D2 � FH
m FH

m D � FH
m FH

m
H
L1I in

HqC2I in
H
inI indvC2 iL1 �dt DC2 DC2

^^ I inq q�v̂C2 îin �DC2 DC2

dvC2vC2 � rC2C2 dt

1 1

^

vC1 �^

^�vin

^io vo;rC1 rC1

where

(9.10)

^

^

´� � � �Dr D Dr ;r r re1 L1 ds1 ds2 C2

�V r rL1 ds2o� �V I :e1 in2D D

The set of transfer functions representing the input dynamics of the converter
can be given by

D � FH Hqm C2I inrC2ΔZin-o �
DC2

H H Hre1 � FHq �D2 � FHqL1I in��D � FHq rC2m L1V e1 m m C2V e1�s � �
HL1 L1�D � FHqm C2I inrC2�

;

� îL1 �

�1 � srC2C2�; (9.11)

D2 � FH Hqm L1I inΔToi-o � �1 � srC2C2�;DL1C2

FHI in D2V e1 � re1I inm s � �1 � srC2C2�;ΔGci-o � �
DC2 L1I in
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and the transfer functions representing the output dynamics by

Hs � FHq sC1m C2I inΔY o-o � � ;
D Δ�1 � srC1C1�

H�D � FHqm C2V e1�ΔGio-o � �1 � srC2C2�; (9.12)
L1C2

FHV e I inm �s � ;ΔGco-o � �
L1 V e1C2

where the denominator (Δ) of the transfer functions can be given by

H H H HD3�FH �D2qre1�FHqL1V e1�FHqC2I inm m � m C2V e1��DqHL1� re1qC2�I in�
:Δ� s2� s

L1 DC2 DL1C2

(9.13)

The special parameters can be given by

Zin-oZo �in-oco Y o-sci;Y o-o

HD�FHqm inI inY o-sci � H HH HsL1�D�FHqinI in��D�re1 �D2rC2�FH �V e1�DqH �q �� I in�qinre1 �qL1rC2���m m in L1

sC1� ;
1� srC1C1

�V e1 � rC2I in��1� srC2C2�Zin-1 � ; (9.14)
sV e1C2 � Iin

C1�s2L1I in � s�D2V e1 ��re1 � rC1�I in�� I in��1� srC2C2�Toi-1 � � ;
s2DV e1rC1C1C2� sD�V e1C2� rC2I inC1��DI in

1 sC1Y o-1 � � ;
sL1 �re1 ��D2V e1=I in� 1� srC1C1

V e1 D2V e1
= sL1 �re1 � ;Gio-1 � D rC2� I in I in

where the parameters denoted by the subscript “1” are exactly the same as in the
DDR-controlled converter. The only special parameters, which are changed by
the application of the PCM control, are the open-circuit input impedance (Zx

in-oco)
and the short-circuit output admittance (Y o-sci). The formula of Zo is notin-oco
explicitly given, because it is very long but it is easily computed by using a proper
software package.

According to Eq. (9.12), the input noise attenuation can be made very high by
Hdesigning D � FHqC2V e1 � 0 by means of the compensation Mc. If neglecting them
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parasitic elements, the required value of compensation will be

V oMc � ; (9.15)
2L1

which is the same value as in the corresponding PCM-controlled voltage-fed
converter and known as an optimal value. The value of compensation in Eq. (9.15)
does not, however, guarantee that the converter will operate without entering into
the second-harmonic mode at all the operation points of the converter (cf.
Chapter 4 discussing PCM-controlled buck converter).

If neglecting the parasitic elements and replacing Mc in Eq. (9.13) with Eq.
(9.15), then the characteristic polynomial in Eq. (9.13) becomes

; (9.16)Δ � s2 � s
2

T sD´ � I in

V inC2
� 2I in

T sD´V inC2

which indicates that the open-loop converter will be unstable when operating as a
current-fed converter. When the roots of the polynomial in Eq. (9.16) are well
separated then they can be approximated as

I in 2
ωp-LHP � � (9.17)

D´V inC2 T s

and

V in D´T s (9.18)C2 �ωp-RHP � 1=
I in 2

The converter can be stabilized by means of input voltage feedback control by
designing its crossover frequency to be always higher than the frequency of the
RHP pole in Eq. (9.18). It may be obvious that the RHP pole will locate the closer
to the origin the larger the size of the input capacitor. This may explain why the
problem is not noticed or reported, for example, in Refs [4,9]. The open-loop
converter can also be stabilized [5] by providing excess inductor current loop
compensation according to

V o I inMc > � : (9.19)
2L1 D2T s

The origin of the open-loop instability can also be traced in such a way that we
construct a similar engineering block diagram as for the PCM control in
Chapter 4 from which we can conclude that the denominator of the transfer
functions (Δ) would be of the form

HΔ � 1 � FHqL1GcL1-o; (9.20)m

where GcL1-o denotes the control-to-inductor-current transfer function of the
DDR-controlled converter, which can be given by

I in re1 1
s � = L1 s2 � s � : (9.21)GcL1-o � V e1 L1 L1C2V e1C2
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According to Eq. (9.21), GcL1 contains the same RHP zero as in the control-to
output-current transfer function (Gco-o). Typically the magnitude of the inductor

Hcurrent loop (i.e., FHqL1GcL1-o) is high especially at the low frequencies, andm
therefore, the zeros of GcL1 will become the poles of the corresponding transfer
functions with slight modification (cf. Eq. (9.18)).

The stabilizing effect of the excess inductor current loop compensation in Eq.
(9.19) will arise from the change of the phase behavior of the converter input
impedance, as shown in Figure 9.4: The low-frequency phase will start from zero
(Figure 9.4: dashed line) as the consequence of excess compensation instead of
180° (Figure 9.4: solid line) without compensation.

9.2.2 Boost Power-Stage Converter

The power stage of the PCM-controlled boost power-stage converter is given
in Figure 9.5, where the control scheme of the MOSFETs is the same as in
the corresponding voltage-fed converter. The converter is a second-order con
verter, and therefore, the averaged duty-ratio constraints can be given by means of
Eq. (9.2).

The inductor current slopes as positive values (i.e., as required in Eq. (9.2) (cf.
Chapter 4)) can be computed to be

vC2 � �rL1 � rds1 � rC2�iL1 � rC2iinm1 �
L1

(9.22)

and

�vC2 � �rL1 � rd � rC2�iL1 � rC2iin � vo � VDm2 � : (9.23)
L1

Figure 9.5 The power stage of PCM-controlled current-fed boost power-stage converter.
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Substituting m1 and m2 in Eq. (9.2) by Eqs (9.21) and (9.22) yields the averaged
comparator equation to be

dd´T s dd´T shicoi �McdT s � 1 � �rd � rds1� hiL1i � �hvoi � VD�: (9.24)
2L1 2L1

By linearizing Eq. (9.23), we will get the required gains of the linearized duty-
ratio constraints in the form of

d � FH ico iL1 � q vo^^^^ H H� q �; (9.25)� L1m o

^

^

where

�D´ � D��V o � VD � �rd � rds1�I in�FH � 1= T s Mc � ;m 2L1

DD´T sH (9.26)q � 1 � �rd � rds1�I in;L1 2L

^

DD´T sHq � :o 2L

The coefficients of the duty-ratio constraints resemble the duty-ratio constraints
of the corresponding voltage-fed converter (cf. Chapter 4). The duty-ratio gain (FH )m
will become infinite without compensation when the duty ratio equals 50%. This
means that the converter will enter into the second-harmonic mode when the
instantaneous duty ratio is further increased beyond 0.5. The required value of
compensation (Mc) can be selected similarly as in case of the voltage-fed converter
to keep the converter operating without second-harmonic mode, that is,

�D´ � D��V o � VD � �rd � rds1�I in�Mc � > 0: (9.27)
2L1

The linearized state space representing the dynamics of the PCM-controlled
current-fed boost power-stage converter can be obtained from the linearized
state space of the DDR-controlled current-fed boost power-stage converter
(Eq. (8.88)) by substituting the perturbed duty ratio with Eq. (9.24) (See also Ref.
[10]). This procedure will yield

ico;

vo;

I inico;

^^
D´ �FH Hq V e1iL1� vC2� iin � vo

m o

dt L1 L1 L1 L1 L1

^
Hd̂iL1 re1�FHqm L1V e1 FH

m1 V e1^rC2 �

^

^

^

^

^

^

^

dvC1 vC1�dt rC1C1 rC1C1

iin;

dvC2vin vC2� rC2C2

io

1 1

^^dvC2 iL1�dt C2 C2

1 1
(9.28)

� ;
dt

� �D´ �FH
mq ^H

L1I in�iL1� ^
1 1
vC1� H�FHqm I in v̂o�FH

mrC1 rC1
o
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where

re1 � rL1 � Drds1 � D´rd � rC2; (9.29)
V e1 � V o � VD � �rd � rds1�I in:

The set of transfer functions representing the input dynamics of the converter
can be given by

HsL1 � re1 � rC2 � FHqL1V e1mΔZin-o � �1 � srC2C2�;L1C2

HD´ � FHq V e1m oΔToi-o � �1 � srC2C2�; (9.30)
L1C2

FHV e1mΔGci-o � � �1 � srC2C2�;L1C2

and the transfer functions representing the output dynamics by

D´2 � FH H H H
m�D´�qo V e1 � qL1I in� � qo I inre1� 1HΔY o-o � �FHq I in s2 � s �m o qHL1FH I in L1C2m o

sC1� ;
Δ�1 � srC1C1�

(9.31)
H�D´ � FHqm L1I in�ΔGio-o � �1 � srC2C2�;L1C2

FH 1I in D´V e1 re1m s2 � s � ;ΔGco-o � �
L1 L1C2L1I in L1

where the denominator (Δ) of the transfer functions can be given by

Hre1 � FHqL1V e1 1mΔ � s2 � s � : (9.32)
L1 L1C2

The special parameters can be given by

Zin-oZo
in-oco � Y o-sci;Y o-o

H H H H�sL1FHq I in �D´2 �D´FH �q V e1 �qL1I in��FHq I in�rC2 � re1� sC1m o m o m oY o-sci �
H

� ;
sL1 � re1 � rC2 �FHq 1� srC1C1m L1V e1

D´V e1 �re1I in 1
Zin-1 � D´V e1 ��rC2 � re1�I ins� = C2 s2 � s � ;�1� srC2C2�L1I in L1I in L1C2

(9.33)
�sC1�V e1 �D´rC1I in��D´I in��1� srC2C2�Toi-1 � ;

s3L1C1C2rC1I in � s2�C1C2�D´rC1V e1 � rC1re1I in��L1C2I in�� s�C2�D´V e1 � re1I in��C1rC1I in�� I in

D´I in sC1Y o-1 � � ;
V e1 1� srC1C1

I inL1 D´V e1 ��rC2 � re1�I inGio-1 � � s� ;
V e1 L1I in
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where the parameters denoted by the subscript “1” are exactly the same as in the
DDR-controlled converter. The only special parameters, which are changed by
the application of the PCM control, are the open-circuit input impedance (Zx

in-oco)
and the short-circuit output admittance (Y o-sci). The formula of Zo is notin-oco
explicitly given, because it is very long but it is easily computed by using a proper
software package.

The formulas of Toi-o and Gio-o in Eqs (9.30) and (9.31) indicate that the PCM
control would reduce the attenuation of the output and input side noise in
contrast to the PCM-controlled buck power-stage converter introduced in
Section 9.2.1. The control-to-output transfer function (Gco-o) contains the
same zeros as the corresponding DDR-controlled converter (i.e., one RHP
zero and one LHP zero). The denominator in Eq. (9.32) indicates that the
PCM-controlled boost power-stage converter will not be unstable at open
loop, because all the coefficients in Eq. (9.32) are always positive.

9.3 Duty-Ratio Constraints and Dynamic Models
under PVM Control

In a similar manner as in case of PCM control, the dynamics of the converter
under PVM control can be developed by constructing the dependence of the duty
ratio on the other variables and circuit elements. The duty-ratio-generation
process in case of PVM control is illustrated in Figure 9.6, when the associated
currents are assumed to be constant similarly as the voltages under the PCM
control. The equivalent series resistances (ESRs; rCi) of the capacitors are
embedded into them and, therefore, the pure capacitor voltages can be never
measured. The real capacitor voltage is denoted in the figure by dashed line. In a
manner similar to PCM control, the averaged comparator equation can be given

Figure 9.6 The duty-ratio generation under PVM control based on the series-connected
capacitor voltage waveforms.
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in general form by

n dd´T shvcoi �McdT s � : (9.34)hvCii � �m1i �mi� � iCi-onrCi2i�1

Thus the main task is to develop the formulations for the up (m1i) and down
(m2i) slopes of the associated capacitor voltages as well as the corresponding on-
time capacitor currents for computing the ohmic loss ( iCi-onrCi).

9.3.1 CF Buck Converter

The power stage of the CF buck converter with the PVM control system is given in
Figure 9.7, where Gsf denotes the capacitor voltage scaling factor. The converter is
a second-order converter, and therefore, the averaged comparator equation is of
the form

dd´T shvcoi �McdT s � hvC1i � �m11 �m12� � iC1-onrC1: (9.35)
2

The slopes of the capacitor voltage and the on-time capacitor current can be
given by

m11 � � iL1

C1
� iin
C1

;

m12 � iL1

C1
;

(9.36)

iC1-on � �iL1 � iin:

n

i�1

Figure 9.7 The power stage of the PVM-controlled CF buck converter.
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^

Thus, the averaged comparator equation in Eq. (9.35) can be given by

^

dd´T shvcoi �McdT s � hvC1i � hiini � rC1hiL1i; (9.37)rC1 � 2C1

and the duty-ratio constraints will be of the form

�vco iin�;^

^

^

iin

d;

d;

d � FH
m

where

^ H H H� qL1iL1 � qC1vC1 � qin^^ (9.38)

�D´ � D�I inFH � 1= T s Mc � ;m 2C1

Hq � �rC1;L1
(9.39)

Hq � 1;C1

DD´T sqH :in � rC1 � 2C1

The duty-ratio gain (FH ) in Eq. (9.39) indicates that the converter will enter intom
the second-harmonic mode if Mc � 0 and D > 0:5, similarly as the PCM-
controlled converter. The second-harmonic mode can be avoided by designing

�D´ � D�I inMc such that Mc � > 0.
2C1

The corresponding linearized state space can be computed by substituting
d̂ in the DDR-controlled state space (Eq. (8.12)) with Eq. (9.38). This process
yields

^
Hre1 � FHqm L1rC1I in iL1 �dt L1 L1 L1

^
1 � FH H D � FHqC1rC1I in �m mvC1 �

H
inI in�rC1d̂iL1 q

1 FH
mrC1I in�v̂oL1 L1

1 � FH
m ^

HFHq D � FH
m C1I in mvC1 � FH

m
H
L1I in

H
inI in^

^

^

^

^

^

^

dvC1 iL1 � iin �dt C1 C1 C1 C1

vin

d;

io iL1;

I inq q

DrC1 � FH
m

^H
L1V e1�iL1 � �D � FH ^H

C1V e1�vC1q qm

� �re2 � FH
m

^H
inV e1�iin � FHV e1q m

�
(9.40)
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where

re1 � rL1 � rC1;

re2 � DrC1 � Drds1 � D´rds2; (9.41)

V e1 � V o � �DrL1 � D´rC1 � rds1 � rds2�I in:

The set of transfer functions representing the input dynamics can be given
by

2 H A1 A0ΔZin-o � s �re2�FHqinV e1�� s � ;m L1C1 L1C1

2 H HA1 � rC1�FH ��qin�DqH inrC1�qL1re2�rC1I in�;re1re2�D2
m L1rC1�V e1��DqH

H HA0 � re2�D2�re1�2rC1��FHV e1�qin �DqH C1�re1� rC1��m L1�q

�FH H HI in��q in�re1�2rC1��;m L1�qC1�re1� rC1��re2�DqH

H H H HFHqL1V e1�DrC1 D�FHqC1V e1�DFHI in�qm m m L1�qC1rC1�ΔToi-o � s � ;
L1 L1C1

2�re1V e1C1�D�L1�rC1C1�I in� V e1�D�re1�2rC1�I inFH s2V e1� s � ;ΔGci-o � m L1C1 L1C1

(9.42)

and the set of transfer functions representing the output dynamics by

HsC1 � FHqm C1I inΔY o-o � ;
L1C1

H�D � FHqinI in��1 � srC1C1�m� ; (9.43)ΔGio-o L1C1

I in�1 � srC1C1�� FH ;ΔGco-o m L1C1

where the denominator of the transfer functions (Δ) can be given by

H H 1 � FH H Hre1 � FHqL1I inrC1 � FHqC1I in mI in�qL1 � �re1 � rC1�qC1�m ms2 � s � :
L1 C1 L1C1

(9.44)
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The set of special parameters can be given as follows:

H H

Zo sC1�re2�FHqinV e1��FH ��qC1re2�Dqin
H �I in�DqHm m C1V e1�

in-oco �
HsC1�FHq

;
m C1I in

Y o-oY o-sci � Zo
in-oco;Zin-o

DV e1Zin-1 � re2� ;
I in

V e1C11� s =�1� srC1C1�;DI in
Toi-1 � D

V e1C11� s =Y o-1 � DI in DI in

2DI in re1��DI in=V e1�rC1 1�D�re1�2rC1��I in=V e1�LCV e1�s2� s � � ;
L1C1V e1C1 L1

Gio-1 � �� DV e1� re2I in��1� srC1C1��=
2 1�D�re1�2rC1��I in=V e1�DI in re1��DI in=V e1�rC1LCV e1�s2� s � � ;

L1C1V e1C1 L1

(9.45)

where Y o-osi is not explicitly given due to its very long formula. It shall be also
noticed that all the ideal transfer functions are exactly the same as in the DDR-
controlled CF buck converter.

The input-to-output transfer function (Gio-o) in Eq. (9.43) indicates that the
input-to-output attenuation can be made high by designing the capacitor voltage
loop compensation (Mc) such that

HD � FHqinI in � 0. This means that Mc shall bem

DI in IoMc � � (9.46)
2C1 2C1

This requirement can be met if the converter output current is controlled
constant. In practice, the CF converters are usually applied in such a manner that
the input voltage is controlled constant and therefore, the output current varies
along the changes in the input current (i.e., Io � �V in=V o�I in). This means that the
nullifying of the input–output gain is impossible. In order to guarantee the
operation of the converter without entering into the second-harmonic mode, the
compensation should be done by

I inMc � : (9.47)
2C1

From the practical point of view, the PVM control is not feasible in a CF buck
converter. The set of transfer functions show that there are many similarities
between the PCM-controlled VF buck converter and the PVM-controlled CF
buck converter such as resonant-free operation, no RHP zero, the theoretical
possibility to nullify the input-to-output gain, and so on. The duality, however,
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Figure 9.8 The power stage of the PVM-controlled CF superbuck converter.

dictates that the capacitor voltage loop shall be compensated in respect to output
current, which is not usually controlled constant in the practical renewable energy
applications. Therefore, the PVM control will not be practical in these applications.

9.3.2 CF Superbuck Converter

The power stage of the CF superbuck converter is given in Figure 9.8 with the
associated components as well as the control system principle. We will develop
only the duty ratio constraints and the PVM state space without solving the
transfer functions due to the reasons discussed in the introduction.

In case of CF superbuck converter, the averaged comparator equation is of the
form

dd´T shvcoi �McdT s � hvC1i � hvC2i � 2
�m11 �m12 �m21 �m22� (9.48)

� iC1-onrC1 � iC2-onrC2;

where the up slopes (m1i) of the capacitor voltages can be given by

m11

m21

� � iL2

C1
� iin
C1

;

� iL1

C2
� iL2

C2
;

(9.49)
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and the on-time capacitor currents by

iC1-on � �iL2 � iin;

iC2-on � iL1 � iL2;
(9.50)

as well as the down slopes (m2i) of the capacitor voltages by

iL1 iL2 iinm12 � � �
C1 C1 C1

(9.51)
iL2m22 �
C2

By replacing the variables in Eq. (9.35) as defined in Eqs (9.36)–(9.38), the
averaged comparator equation becomes

dd´T sC1�C2hvcoi�McdT s �hvC1i�hvC2i� hiL1i��rC1� rC2�hiL2i�rC1hiini;� rC22 C1C2

(9.52)

and the duty-ratio constraints will be of the form

d � FH
m

where

^ H H H H H

^

^

^�vco iin�;

�D´ � D�DI in�C1 � C2�FH � 1= T s Mc � ;m

^

2C1C2

DD´T s�C1 � C2�qH ;L1 � rC2 � 2C1C2 (9.54)
Hq � ��rC1 � rC2�;L2

H Hq � qC1 C2 � 1;

Hq � rC1;in

d in

vC1

� q ^^^
L1iL1 � qL2iL2 � qC1vC1 � qC2vC2 � qin
^ (9.53)

The corresponding linearized state space can be computed by substituting
the DDR state space (Eq. (8.53)) with Eq. (9.53). This process yields

^^
Hee2 � FHq D´ � FHqm L2V e1 miL1 � iL2 �dt L1 L1 L1

Hd̂iL1 re1 � FHqm L1V e1

^

^

^

H
C1V e1

V e1 vco;

vC1

vco;

^^
HD´rC1 � �FHqm inV e1vC2 � iin �L1 L1 L1

HD � FHqm C2V e1 FH
m

Hd̂iL2 re2 � FHqm L1V e2 ^^
Hre3 � FHqm L2V e2iL1 � iL2 �dt L2 L2 L2

1 � FH
m

H
C1V e2q

1 � FH
m ^^^

HrC1 � FHq vom inV e2vC2 � iin �L2 L2 L2 L2

H
C2V e2 FH

mV e2q� �
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1 � FH
mq

H
L2I in

HFHq FH
m C1I in mvC1 �^

HqC2I in
HdvC1 D´ � FHqm L1I in iL1 � iL2 �dt C1 C1 C1 C1

^^^
^

^

vC2

vco;

dvC2 vC2

vco;

^

dvC1vin

^

io

^

(9.55)

where

re1 � D´�rC1 � rds1� � D�rC2 � rd� � rL1;

� D´re2 rC1 � DrC2;

re3 � rC1 � rC2 � rL2; (9.56)

^

^

^

V e1 � V o � VD � �DrL2 � D´rC2 � DrC1 � rd � rds1�I in;

V e2 � �rC1 � rC2�I in:

9.4 Concluding Remarks

It was once again proved that the full dynamic analysis has to be performed before
concluding the applicability of the proposed control method or a power-stage
topology in the practical applications: It could be thought that the PVM control is
naturally the best control method in these converters because of duality of the CF
and VF converters, but as explicitly shown that may not be true but only under
certain conditions. The feedback control of output current and voltage are duals
of each other but when the feedback is taken from the input side, the duality does
not anymore exist. The PCM control works, because the output or DC-link
voltage is usually controlled constant by the downstream converter, and thus, the
inductor-current-loop compensation can be performed in a consistent manner.
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10

Introduction to Photovoltaic Generator

10.1 Introduction

In this chapter, we will introduce the properties of the photovoltaic (PV)
generator from the power electronics point of view, that is, we will concentrate
on the topics that are relevant for understanding the phenomena in the power
electronic converters interfacing the PV generator to the rest of the power system.
More detailed information on the semiconductor-related issues can be found, for
example, from Ref. [1]. The maximum power point (MPP) tracking is one of the
very essential topics in PV field. We will treat the topic only briefly in this chapter
but the detailed information can be found, for example, from Refs [2–6] or other
similar sources. Reference [2] also presents the methods to model the PV
generators as well as to obtain the parameters governing the behavior of the
generator.

The operation of solar cell is based on the phenomenon known as photo
voltaic effect, where the photons with sufficient energy emitted by the Sun will
create electron hole pairs in a proper semiconductor material, and thus electric
current when the circuit is closed. The spectral content of the sunlight at the
Earth’s surface also contains a diffuse (indirect) component in addition to the
direct component coming from the Sun. The diffused component is created by
scattering and reflections in the atmosphere and surrounding landscape and
can account up to 20% of the total light incident on a solar cell [1]. The nominal
value of the direct and diffused irradiations at the Earth’s surface is considered
to be 1 kW=m2, but it is naturally varied depending on the atmospheric
conditions and the angle of incidence of the irradiation over the location of
the cell, as depicted in Figure 10.1. Figure 10.1a represents a clear sky condition,
where the angle of incident is reduced due to the season of year. Figure 10.1b
represents a typical condition, where the clouds are moving over the solar cells
removing temporarily the direct irradiation from the spectrum of the light on
the surface of the cells (i.e., the residual irradiation corresponds to the diffused
radiation only).

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 10.1 Measured
irradiance behavior
over a day. (a) Clear sky
condition. (b) Cloud
passing condition.

10.2 Solar Cell Properties

In principle, a solar cell can be represented by an equivalent circuit composed of a
current source in parallel with two diodes, as depicted in Figure 10.2 [1,2,7]. The
current–voltage (I–V) characteristics of a cell can be given by

ipv � iph � Is1�exp�qvpv=kTK� � 1� � Is2�exp�qvpv=2kTK� � 1�; (10.1)

Figure 10.2 Simplified two-diode model of a photovoltaic
or solar cell.
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where q � 1:60217646 � 10�19 C (i.e., the electron charge), k � 1:3806503 �
10�23 J=K (i.e., the Boltzmann constant), TK denotes the temperature in Kelvin
degrees, and Is1 and Is2 denote the saturation currents of the diodes, respectively.
The two-diode equivalent circuit is most often simplified to a single diode model,
where the contributions of the two diodes are combined as follows [2,7]:

ipv � iph � Is�exp�qvpv=ηkTK� � 1�; (10.2)

where Is denotes the combined diode saturation current and η the diode ideality
factor.

The photoinduced current (iph) is dependent on the characteristics of the
semiconductor material used for the cell and is linearly dependent on the cell area,
irradiation level, and temperature. Its dependence on the irradiation level (G) and
temperature in Celsius degrees (TC) in respect to their values in standard test
conditions (STC) can be given by [2]

Iph � Iph-STC
G �1 � αi�TC � TSTC��; (10.3)

GSTC

where STC is defined by GSTC � 1 kW=m2 and TSTC � 25oC as well as αi denotes
the temperature coefficient of the photocurrent in STC.

Figure 10.3 shows the practical I–V characteristics of a solar cell, where the
current and voltage are normalized in respect to their values at the MPP. The
MPP is actually created by the behavior of the diodes when they start conducting
current along the increase in the cell terminal voltage. As depicted in the figure,
the cell current stays relatively constant in the region where the terminal voltage is
less than the MPP voltage. Therefore, this region is commonly known as constant
current region (CCR). The region defined by the cell terminal voltage higher than

Figure 10.3 The normalized I–V characteristics of a solar cell.
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the MPP voltage is commonly known as constant voltage region (CVR), because
the cell terminal voltage stays relatively constant when the cell terminal current
changes. The maximum terminal current and voltage are commonly known as
short-circuit current (ISC) and open-circuit voltage (VOC). ISC clearly equals Iph,
as depicted in Figure 10.3.

The open-circuit voltage (VOC) can be given by

kTK ISCVOC � ln ; (10.4)
q Is

where ISC � Is [1]. As a consequence, the open-circuit voltage stays relatively
constant when the irradiation level varies during a day. The open-circuit voltage is
known, however, to be negatively dependent on the cell temperature (i.e., its
temperature coefficient is negative). The temperature coefficient for silicon
corresponds to about �2:5 mV=°C at 25 °C. This means that the open-circuit
cell voltage decreases approximately by 2:5 mV when the temperature increases
by 1 °C. The temperature dependence of the open-circuit voltage can also be
given by [2]

G

VOC � VOC-STC 1 � αv�TC � TC-STC� � a ln ; (10.5)

GSTC

where αv denotes the temperature coefficient of the voltage and a � 0:06
according to IEC 60891. The temperature coefficients αi (Eq. (10.3)) and αv

(Eq. (10.5)) are typically given by the manufacturer of the solar cells (i.e., included
in the PV panel data sheet).

In practice, the cell also contains series (rs) and parallel (rp) resistances (cf.
Figure 10.4a), which actually affect the I–V characteristics as well: The effect is
visible as an increase in the slopes of the I–V curve. When the resistive losses are
taken into account, the I–V characteristics can be given by [2]

vpv � rsipvipv � iph � Is�exp�q�vpv � rsipv�=ηkTK� � 1� � : (10.6)
rp

It is well known that the amount of current flowing through a silicon diode is
reflected as diode dynamic resistance (rd) and also as dynamic capacitance (cd),
which is naturally dependent on the operating point of the cell and are connected
in parallel with rp. From the power electronics point of view, the solar cell can be
seen in small-signal sense as an operating point-dependent constant current
source with an impedance structure, as depicted in Figure 10.4b [8]. Therefore,
the small-signal source impedance can be given by

rp k rd rd rdZpv � rs � � rs � � : (10.7)
1 � s�rp k rd�cd 1 � srdcd 1 � srdcd
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Figure 10.4 Solar cell equivalent circuits. (a) Practical
equivalent circuit. (b) Its small-signal equivalent.

Figure 10.5 shows the behavior of the cell output resistance (rpv � rs � rd) and
output capacitance (cpv � cd) measured at the output terminal when the operat
ing point is changed from the short circuit to open circuit. The figure depicts
clearly that the output impedance of the solar cell in the CCR is very much higher
than the output impedance in the CVR, which supports the classification of the
regions to CCR and CVR.

From the power electronics point of view, the behavior of the dynamic (rpv) and
static (Rpv � V pv=Ipv) resistances of the solar cell is very important, because the
dynamic changes in the power electronic interfacing converters are dependent on
the ratio of the dynamic and static resistances [8]. Figure 10.6a shows the behavior

Figure 10.5 The terminal characteristics of a solar cell including the dynamic resistance and
capacitance.
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Figure 10.6 The behav
ior of dynamic (rpv) and
static (Rpv) resistances.
(a) General view.
(b) Extended view.

of the dynamic and static resistances when the operating point is varied from
short circuit to open circuit. It is quite evident that in the CCR rpv � Rpv, and in
the CVR rpv � Rpv.

According to Figure 10.3, it may be obvious that dp =dvpv � 0 at the MPP.pv
According to this knowledge, we can derive that

d�ipvvpv�dppv dipv� � VMPP � IMPP � 0
dvpv dvpv dvpvMPP MPP

(10.8)
dipv IMPP! � � :
dvpv VMPP
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Figure 10.7 Measured output impedance of solar cell when the operating point is varied from
short circuit to open circuit.

When the dynamic resistance (rpv) corresponds to the inverse of the derivative of
the I–V curve as

dipv1=rpv � � ; (10.9)
dvpv

we can conclude that rpv � Rpv at the MPP as well as that the dynamic resistance is
also a positive value and not a negative value as the outcome of Eq. (10.8) would
imply if not carefully considering the behavior of the I–V curve slope. This can
also be extended to the cases of multiple MPPs, that is, rpv-MPP-i � Rpv-MPP-i.

In many publications, rpv is, however, considered to be a negative incremental
resistance value as, for example, in Refs [9,10] based on the behavior of the input
impedance in an output-regulated power electronics converters, where the low-
frequency input impedance behaves as a negative resistance, as we have discussed
in Chapters 2–5. According to the theory we have presented in the previous
chapters, the low-frequency output impedance of a constant power-type source
equals approximately V o=Io, while the low-frequency input impedance of the
output side-regulated power electronic converter equals approximately �V in=I in.
Therefore, rpv clearly equals positive resistance as the measurements in
Figure 10.7 also show. The output impedance also resembles an RC circuit, as
depicted in Figure 10.4b. In practice, the connection cabling would also introduce
some amount of series inductance, and thus, the output of the PV generator may
also contain a series resonant circuit, where the resonant frequency varies along
the changes in the operating point (cf. Figure 10.5; the behavior of the
capacitance).

10.3 PV Generator

The maximum voltage of one solar cell is in the order of 0.5 V, which is usually
too low for powering switched-mode converters. Therefore, the practical PV
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generators are composed of series connection of solar cells forming PV modules,
which are further connected in series as PV panels [2]. Typical panels compose of
three series connected modules having up to 60 cells in series and the output
power up to 250 W. The open-circuit voltage of such panels is in the order of 40 V,
which is sufficient for certain applications. In the grid-connected applications, the
output voltage of the PV generators has to be in the order of the peak of the AC
voltage or more [11]. Therefore, a number of PV panels is usually connected in
series forming an entity known as a PV string to satisfy the higher voltage
requirements. To extend the power of the strings, they are usually connected in
parallel forming an entity known as PV array.

I–V and P–V characteristics of a PV array can be given similarly to a single cell
in Eq. (10.6) by using the parameters of a single cell as follows:

N sexp =N sηkTK � 1ipv � Npiph � NpIs q vpv � rsipvNp
(10.10)

vpv � �N s=Np�rsipv� ;�N s=Np�rp

where N s denotes the number of series-connected cells and Np the number of
parallel-connected strings, ipv and vpv denote the terminal variables of the PV
array, and iph, Is, rs, and rp denote the properties of a single cell, respectively. If the
resistive losses are identified from the physical entity, then �N s=Np�rs and
�N s=Np�rp in Eq. (10.11) will be substituted with the corresponding identified
values.

The series-connected cells will work properly only if the irradiation over the
cells is uniformly distributed. In practice, a part of the cells can be shaded by the
shadows from the nearby obstacles such as trees, chimneys, flag poles, other
structures of the adjacent building, and passing-by clouds [12,13]. As a conse
quence of the shading effects, the irradiation can vary by large extent. During the
shading conditions, a part of the cells can become reverse biased and the rather
high power loss can even damage the cells. In order to protect the cells from
damage, the modules are provided with a shunt diode limiting the reverse voltage
approximately to the forward voltage drop of a diode [11]. Therefore, each panel
contains usually three bypass or shunt diodes. Figure 10.8 shows authentic I–V
and P–V curves measured from a PV string composing 17 PV panels in series [14].
During the uniform irradiation conditions, there exists only one MPP, as
illustrated in Figure 10.8a. Figures 10.8b and c show the effect of shadowing
from the passing-by clouds, which can create multiple MPPs. In all the cases in
Figure 10.8, the absolute maximum or global maximum MPP occurs at the high
voltage. The practical situation can vary so that the global MPP can occur even at
the low voltages.

Figure 10.9 shows the measured I–V and P–V curves of two panels composing
of 36 cells in series, which are connected in series and exposed to different
irradiation levels, that is, Panel 1: 500 W=m2 and Isc � 1:0 A and Panel 2:
167 W=m2 and Isc � 0:3 A. The both of the panels are equipped with a bypass
diode. In this case, the global MPP occurs at the low voltage as clearly shown in
the figure.
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Figure 10.8 Measured
I–V and P–V curves from a
17-series panel string.
(a) Single MPP. (b) Two
MPPs. (c) Multiple MPPs.
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Figure 10.9 The measured I–V and P–V curves of cascaded panels subjected to shading effect.

Figure 10.10 shows the behavior of the dynamic and static resistances when the
operating point is varied. According to the figure, the operating range is divided
into two CC and CV regions, that is, the CC region exists at the voltages less than
the MPP, and the CV region exists at the voltages higher than the MPP. The CV
region is clearly the narrowest of the regions between the adjacent MPPs. At the
MPPs, rpv � Rpv, as discussed in Section 10.2.

According to Ref. [2], the usual irradiance slope is considered to be 30 W=m2=s,
which is used for different design purposes such as MPP tracking control. The actual
measurements [14] show that the irradiance slope can be even higher than
30 W=m2=s during the irradiance enhancement conditions (cf. Figure 10.11a;
the peaks higher than 1 kW=m2) caused by the passing-by clouds. The maximum
peak irradiance in Figure 10.12a is 1343 W, which is close to the values reported in
Refs [15–17]. Figure 10.11b shows an extended view around the maximum
irradiance peak in Figure 10.11a at noon of the particular day the data were recorded.

An 8-kW single-phase inverter was connected to the PV string subjected to the
irradiance changes in Figure 10.11a. The grid-current of the inverter shown in
Figure 10.12 indicates clearly that the dynamic behavior of the irradiance directly
affects the grid current, which may cause power balance problems in grid if the
penetration level of PV-based renewable sources is high. The irradiation enhance
ment should also be taken into consideration in the design of the inverters and
selection of the inverter size in respect to the PV generator power rating, as
discussed in Refs [15–17].

10.4 MPP Tracking Methods

The MPP tracking techniques can be classified into passive, hill climbing, perturb
and observe, incremental conductance, and stochastic methods [3–6]. The
passive methods are usually based on the approximate knowledge on the location
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Figure 10.10 Measured
behavior of the dynamic
and static resistances in
shaded condition.
(a) Overall behavior rpv.
(b) Extended view of the
behavior of rpv and Rpv
when the operating point
varies.

of the MPP through the fill factor of the PV array and measurement of short-
circuit current and/or open-circuit voltage. The fill factor (FF) is defined as [1]

IMPPVMPPFF � ; (10.11)
IscV oc

where the denominator corresponds to the maximum theoretical power involved
in the conversion process and the numerator to the maximum practical power,
which can be taken out of the PV generator. The fill factor typically varies within
the range of 0.6–0.8. Based on Figure 10.3, we can compute the fill factor to equal
0.758. Figure 10.3 also indicates that the short circuit current is close to the MPP
current. Based on this approximation, the MPP voltage can be computed based on
Eq. (10.11). The passive methods can also directly use empirical knowledge to
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Figure 10.11 The
behavior of irradiance
during a particular half
cloudy day. (a) All day.
(b) An extended view
around the maximum
irradiance peak of
1343 W=m2 at noon.

relate the MPP voltage and current to the corresponding values of open-circuit
voltage and short-circuit current as discussed in Ref. [6] by

VMPP � k1V oc; (10.12)
IMPP � k2Isc;

where the factor k1 has been reported to vary between 0.71 and 0.78 as well as
the factor k2 between 0.78 and 0.92. It should be known that these methods
would very seldom give the exact location of the MPP, but only its rough
estimation. The MPP can also be naturally found by measuring the whole I–V
curve at fixed time intervals and extracting the MPP from the recorded data
points. All of these methods require interrupting the energy supply during the
measurement of the desired variables, thus wasting the available energy.
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Figure 10.12 The behavior of the inverter grid current during the irradiance changes.

The hill climbing, perturb and observe, and incremental conductance meth
ods are working online. All of them require to inject a step change in one of the
PV variables and to observe the corresponding change in the other PV variable.
Based on these changes, the change in the PV power (i.e., the derivative of the
PV power in terms of the perturbed variable) or the dynamic resistance can be
approximated.

Hill climbing and perturb and observe methods will locate the MPP by
observing the behavior of the voltage derivative of the PV power (cf. Figure 10.13):
If the derivative is positive, the operation point locates at the voltages less than the
MPP, and if the derivative is negative, the operation point locates at the voltages

Figure 10.13 The behavior of dPpv=dvpvwhen the operating point changes due to
incrementing vpv.



436 10 Introduction to Photovoltaic Generator

Figure 10.14 The behavior of PV generator dynamic and static resistances when the operating
point varies.

higher than the MPP. At the MPP, the derivative is zero. By performing successive
perturb and observe cycles, the operation will finally oscillate between three
points, which are located so that the middle point is at the MPP and the two others
close to the MPP.

The incremental conductance method will apply the same perturb and observe
cycles as already described, but observe the relation between the PV generator
dynamic and steady-state resistances [18,19]. As shown in Figure 10.14, rpv � Rpv

in the CCR, rpv � Rpv at MPP, and rpv � Rpv in the CVR. The differences in the
resistances in the different regions are very clear, and therefore, quite easy to locate
the MPP.

The MPP can also be identified by observing the behavior of the PV power
ripple when the operating point is varying [20,21], as depicted in Figure 10.15,
which is produced by injecting a 100-Hz ripple component at PV voltage at each
operating point. The MPP can be found by identifying the location of the
minimum ripple point at the PV power. The ripple can be induced by the power
electronic converters, the pulsating power of the grid, or specially generated by
the MPP tracking controller.

There are numerous other methods applying genetic, fuzzy logic, and neural
network-based techniques, as introduced in Refs [2–6], but their introduction in
the context of the book is not, however, feasible.

10.5 MPP Tracking Design Issues

10.5.1 Introduction

The MPP tracking converters can be operated at open loop, that is, the
perturbation is applied directly to the duty ratio of the corresponding converter
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Figure 10.15 The behavior of PV power ripple induced by the ripple at PV voltage when the
operating point is varied.

or at closed loop, where the feedback variable is the PV voltage and the
perturbation is applied to the reference of PV voltage [22]. The controlled
variable cannot actually be the PV current because of the current-source nature
of the PV generator, which would cause violation in the Kirchhoff’s current law
and saturation of the controller especially during the varying climatic conditions,
as discussed and demonstrated explicitly in Ref. [23]. The MPP tracking design
variables are the size of perturbation step and the sampling frequency of the PV
voltage and current, which is usually also the same as the perturbation frequency.
If the size of the perturbation step is too small and/or the sampling frequency is
too high, then the MPP tracking process can become unstable, because the
computed voltage derivative of the PV power does not comply with the real
derivative [2,24,25]. The reasons for the errors can be the change of irradiance
level, the ripple in the measured variables, or the transient settling process of the
corresponding power electronic converters [2].

10.5.2 General Dynamics of PV Power

Figure 10.16 shows a grid-connected two-stage PV system, where PV interface
can be disturbed by the change in irradiation (i.e., direct effect on the photovoltaic
current iph), the settling behavior of the DC–DC converter, and the ripple at the

Figure 10.16 A grid-connected two-stage PV system.



�

438 10 Introduction to Photovoltaic Generator

Figure 10.17 The dynamic representation of the PV
generator-converter interface. Source: Kivimaki 1969.
Reproduced with permission of IEEE.

DC-link voltage caused, for example, by the grid power fluctuation at twice the
grid frequency. In order to capture the effect of these noise sources on the
behavior of the PV power (p ), voltage (vpv), and current (ipv), the dynamicpv
constellation of the PV generator–converter interface can be given as shown in
Figure 10.17, where all the vital elements are considered. The notation ^

d̂) when the DC DC converter is applied at–
c in

Figure 10.17 denotes the duty ratio (

^

^

^

open loop and the PV voltage reference (vref-pv) when the DC–DC converter is
applied at closed loop. In principle, all the information given below is equally valid
for a single-stage PV system but the analysis of such a system may be more
challenging due to the complexity of the inverter. It shall also be understood that
the controlled source elements (i.e., Gci and Toi) can be affected by the load
impedance or the inverter input impedance, which can naturally change the
dynamic behavior of the DC–DC converter.

According to Figure 10.17, we can compute that the dynamics related to the PV
voltage and current can be given by

v̂pv vo c
Zin Toi Gci� îph �1 � ZinY pv 1 � ZinY pv

� (10.13)
1 � ZinY pv

and

1� Y pvToi Y pvGci
^^îpv vo c:

As discussed earlier, the temperature of the panels has quite significant effect
on the PV generator voltage and hence, on the PV power but its dynamics is quite
slow due to the large thermal capacity of the PV panels. Therefore, its effect is not
taken into account into the dynamic models in Eqs (10.13) and (10.14) but
naturally affects the operating point variables and parameters.

The dynamics related to the PV power can be approximated as follows [2]:

îph �1 � ZinY pv 1 � ZinY pv
(10.14)

1 � ZinY pv

pv � Ipv � îpv (10.15)^^^p̂ � V pvipv vpv vpv

based on the definition of power in terms of voltage and current (i.e.,
� �V pv � ��Ipv � îpv�) and discarding the steady-state state value at thev̂pv

operating point. If considering only the dynamic behavior of the PV power
ppv
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induced by a step-change at the operation point of the DC–DC converter (i.e.,
iph�G� � 0, and vo^^^ � 0 in Eqs (10.13) and (10.14)), then Eq. (10.15) can be given by

2

vpvRpv rpv rpv
^

1 1 vpv� (10.16)
^� V pvp

because

^pv

1� �ipv vpv:rpv

According to Eq. (10.16), we can state that the PV power ripple can be defined in

^^ (10.17)

^^�vpv � V pvipv (i.e.,
) based on the behavior

� Ipv � Rpv), in CVR by
2p �v̂^

� �CCR by vpv (i.e., rpv

), and at MPP by
^ V pv=rpvp

� Rpv

^ p̂
�(i.e., rpv � Rpv

�pv pv� � =Rpvrpv pv pv
of rpv andRpv at the different operating points of the PV generator (cf. Section 10.2).

Figure 10.18 shows the effect of the PV voltage perturbation on the PV power.
According to the figure, the ripple of PV power is constant and in phase with the
PV voltage ripple in CCR, zero at MPP, and increasing along the increase in PV
voltage with 180° phase shift with the PV voltage ripple in CVR. This kind of
behavior is exactly as the developed PV power ripple in Eq. (10.15) predicts to
be happening. The extended plot of the operating points in the vicinity of the
MPP reveals explicitly that the MPP is not just a point but also a narrow region,
that is, a constant power region (CPR) as also discussed in Ref. [9]. The MPP
tracking parameter design issues are usually treated in CPR [2,24,25], where the
PV voltage perturbation effect on the PV power is actually minimized. We will
study the validity of the proposed technique in more detail in the subsequent
sections by means of the boost power-stage converter (cf. Figure 10.19)
modeled in Chapter 8.

10.5.3 PV Interfacing Converter Operating at Open Loop

The power electronic converter operating at open loop exhibits usually resonant
behavior in the transient conditions that would extend the settling process. The
boost power-stage converter (cf. Figure 10.19) is commonly used as an MPP
tracking converter. The discussions in the subsequent paragraphs and sections
are not limited by no means only to a boost converter but equally applicable to
other type of converters as well.

As discussed earlier, the dynamic resistance rpv of the PV generator is the
element in PV generator, which actually significantly affects the dynamic behavior
of the power electronic converter. In this case, the control-to-PV-voltage transfer
function Gci-o will be responsible on the transient behavior of the PV interface, as
implied explicitly in Eqs (10.13) and (10.14). The detailed modeling of the boost
power-stage converter has been presented earlier in Chapter 8.

If assuming that the PV generator is an ideal current source (i.e., in CCR), then
Gci-o can be given by [26]

V e�1 � srC2C2�Gci-o � � ; (10.18)
s2L1C2 � sreC2 � 1
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Figure 10.18 Effect of PV
voltage perturbation on
the PV power. (a) The
operationpoints fromshort
circuit to open circuit.
(b) The operation points in
the vicinity of the MPP.
Source: Kivimaki 1969.
Reproduced with
permission of IEEE.

where the DC gain of Gci-o (V e) and the equivalent loss resistance (re) are as
follows:

V e � V o � VD � �rd � rds�Ipv; (10.19)
re � rL1 � rC2 � Drds � D´rd:

Figure 10.19 PV generator inter
facingboost power-stage converter.
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The negative sign of Gci-o is the consequence of operating the power-stage
switches similarly as in the corresponding voltage-fed converter. This means that
the conduction time of the MOSFET has to be decreased for increasing the PV
voltage. The positive sign can be recovered by inverting the gate drive signal [27].

The PV generator-affected (i.e., by rpv) Gpv
ci-o can be given by

Gpv Gci-o
; (10.20)ci-o �

1 � Zin-oY pv

according to Eq. (10.13), where

�re � rC2 � sL1��1 � srC2C2�Zin-o � : (10.21)
s2L1C2 � sreC2 � 1

When replacing Y pv by 1=rpv, Gci-o by Eq. (10.18), and Zin-o by Eq. (10.21) in Eq.
(10.20), we get

Gpv
ci-o � � V e�1 � srC2C2�� �= s2L1C2 1 � rC2

rpv

� s� L1

rpv
� C2 re � rC2

rpv
�re � rC2� � 1 � re � rC2

rpv
: (10.22)

Usually rpv � rC2 and re, and hence, Eq. (10.22) can be approximated by

Gpv V e�1 � srC2C2�
; (10.23)ci-o � �

s2L1C2 � s �L1=rpv� � C2re � 1

which means that rpv affects the damping of the resonant behavior in the
converter as follows:

1 C2 1 L1� : (10.24)reςpv � 2 L1 rpv C2

All the PV generator interfacing converters have to be equipped with an input
capacitor (i.e., if not existing in the original converter) to satisfy the terminal
constraints stipulated by the constant current input source [8,28]. Therefore, the
control-to-input-voltage transfer function will always incorporate an ESR zero at
1=rC2C2 as in (11.18). Hence, Gpv

ci-o in Eq. (10.23) can be given in a generalized
form for the second-order converters under direct duty ratio control by

Gpv V eωn
2�1 � s=ωz-esr�

: (10.25)ci-o �
s2 � s2ςpvωn � ωn

2

Therefore, the PV voltage transient induced by a step change in the duty ratio can
be given in Laplace domain by (cf. Chapter 2)

V eω2�1 � s=ωz-esr� ΔdnΔvpv�s� � � ; (10.26)
s2 � s2ςpvωn � ωn

2 s
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which can be further developed as

1 s � 2ςpvωn � �ω2=ωz-esr�nΔvpv�s� � V eΔd ; (10.27)
s s2 � s2ςpvωn � ω2

n

for solving the corresponding inverse Laplace transform (i.e., the time domain
response) as

1 � �ωn=ωz-esr� �ωn=ωz-esr� � 2ςpvpΔvpv�t� � V eΔd 1 � exp��ςpvωnt�
1 � ς2

1 � ς2
pv�sin ωdt � tan�1 ; (10.28)

ςpv � �ωn=ωz-esr�
where the damped natural frequency ωd � ωn 1 � ς2 . The correspondingpv
inverse transform without considering the effect of ESR zero can be given
by [2,29]

p
1 � ς21

Δvpv�t� � V eΔd 1 �p exp��ςωnt� � sin ωdt � tan�1 :
ς1 � ς2

(10.29)

According to Eqs (10.28) and (10.29), we can conclude that the ESR zero would only
slightly affect the settling time of the transient, because typically ωz-esr � ωn, and
therefore, Eq. (10.28) equals Eq. (10.29).

According to Eqs (10.16) and (10.28), we can estimate the time domain
behavior of PV power when a step change in PV voltage (i.e., duty ratio) is
applied as follows.

In CCR, the time domain function of PV power can be given by

Δp �t� � IpvV eΔd 1 � A � exp��ςpv-CCRωnt�pv

1 � ς2
pv-CCR�sin ωdt � tan�1 ; (10.30)

ςpv-CCR � �ωn=ωz-esr�
and in CVR by

V pvV eΔdΔp �t� � � 1 � A � exp��ςpv-CVRωnt�pv rpv

1 � ς2
pv-CVR�sin ωdt � tan�1 ; (10.31)

ςpv-CVR � �ωn=ωz-esr�
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where

1 � �ωn=ωz-esr� �ωn=ωz-esr� � 2ςpA � : (10.32)
1 � ς2

The settling behavior of the PV power transient can be addressed to the
behavior of the exponential functions in Eqs (10.30) and (10.31) [29]. Hence, the
envelope behavior of the PV power transient in CCR and CVR can be given by

Δppv�t�env � IpvV eΔd 1 � A � exp��ςpv-CCRωnt� (10.33)

and

V pvV eΔdΔp �t� � � (10.34)1 � A � exp��ςpv-CVRωnt�pv env rpv

According to Eqs (10.28) and (10.29), we may conclude that the enveloped
^behavior of the PV voltage transient (i.e., Δvpv-env

by

1 A
Δvpv-env�s� � V eΔd � : (10.35)

s s � ςpvωn

In Section 10.5.2, we came up to the conclusion that the transient PV power in
CPR can be given by

) can be given in Laplace domain

v̂2
pv� � : (10.36)p̂

Thus, the corresponding time domain power transient behavior can be given by

V 2Δd2
eΔp �t� � � 1 � A � exp��ςpv-CPRωnt�pv Rpv

2
1 � ς2

pv-CPR�sin ωdt � tan�1 ; (10.37)
ςpv-CPR � �ωn=ωz-esr�

and the corresponding time domain envelope behavior can be given by

V 2Δd2
eΔp �t� � � 1 � A � exp��ςpv-CPRωnt� 2

: (10.38)pv-env Rpv

Further development of (10.38) yields

2Δd2V eΔp �t� � � 1 � 2ACPR � exp��ςpv-CPRωnt�pv-env Rpv

�A2
CPR � exp��2ςpv-CPRωnt��: (10.39)

pv Rpv



444 10 Introduction to Photovoltaic Generator

Figure 10.20 The behavior of the PV power transient in different operational regions when a
step change of 0.05 in duty ratio is applied.

When the time constant of the second exponential function in Eq. (10.39) is half
the time constant of the first exponential function, then the first exponential
function will determine the settling time of the PV power transient, and therefore,
Δp �t� can be given bypv-env

2Δd2V eΔp �t� � � 1 � 2ACPR � exp��ςpv-CPRωnt� : (10.40)pv env Rpv

Figure 10.20 shows the simulated PV power responses in different regions
when a step change of 0.05 in duty ratio is applied. The converter used in the
simulation is specified in Figure 10.23. Figure 10.20 shows clearly that the
region where the settling process shall be studied is CCR. As Figure 10.18
implied, the PV power transient is very small in CPR compared to the PV power
transient in the other regions. The similar transients are also shown in
Figure 10.21 based on experimental measurements validating the comments
given based on the simulations and the developed theory in Eq. (10.16).
Figure 10.22 shows that the behavior of the PV power transient is only slightly
dependent on the level of irradiation in CCR. This makes sense, because rpv �
1 and therefore, the damping behavior of the resonant circuit would correspondp
to that of the ideal current-sourced case (cf. ζcon-in � �re=2� �C2=L1� in
(10.24)).

Proper operation of the MPP tracking process necessitates that the PV power
transient has to be settled down to a certain percentage of the final value before
the measurement of ipv and vpv can be performed [2]. The required minimum
time between the measurements (i.e., the minimum sampling interval (T si)) can
be computed based on the exponential function given in Eq. (10.33) and the
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Figure 10.21 The measured transient behaviors of PV voltage, current, and power when a step
change in the duty ratio of a converter is applied in CCR, CPR, and CVR. Source: Kivimaki 1969.
Reproduced with permission of IEEE.

Figure 10.22 The behavior of the PV power transient in CCR when a step change of 0.05 in duty
ratio is applied and the level of irradiance is varied.

specified percentage value Δ (i.e., settling band equals (1 � Δ) times the final
value), which yields

1 1 � �ωn=ωz-esr� �ωn=ωz-esr� � 2ςcon-in
T si � ln p

ςcon-inωn Δ 1 � ς2
con-in (10.41)

1 1� ln p ;
1 � ς2ςcon-inωn Δ con-in



446 10 Introduction to Photovoltaic Generator

Figure 10.23 The experimental boost power-stage converter.

and which applies also for the settling time in CVR, when the damping factor is to
be defined in CVR. The CPR sampling interval can be given by

1 2
T si-CPR � ln p ; (10.42)

1 � ς2ςCPRωn Δ CPR

where the damping factor is to be defined, in practice, at the MPP.
Figure 10.23 shows the experimental boost power-stage converter with the

relevant power-stage components. The used PV generator is specified as follows:
Isc � 1:65 A, V oc � 25 V, IMPP � 1:5 A, and VMPP � 20 V. The operating points,
where we will analyze the transient behavior of the PV power, are selected to be
1:6 A and 15 V (CCR), MPP, and 0:7 A and 23 V (CVR). The measured dynamic
resistances (rpv) are 66:0 Ω (CCR), 10:6 Ω (MPP), and 1:4 Ω (CVR). p

According to Eqs (10.23)–(10.25), we can conclude that ωn � 1= L1C2 �p
5:56 �p103 rad=s, ωz-esr � 1=rC2C2 � 2 � 105 rad=s, ςpv � �1=2rpv� �L1=C2� ��re=2� �C2=L1�;and re � rL1 � rC2 � Drds � D´rd. The complement of the duty
ratio can be solved from

V pv � �rL1 � rds�IpvD´ � : (10.43)
V o � VD � �rd � rds�Ipv

Based on the given information, the damping factor ςpv can be computed to be
0.092 in CCR, 0.179 at MPP, and 0.734 in CVR. Hence, the minimum sampling
intervals can be computed to be 4.5 ms in CCR, 3.0 in CPR, and 0.65 ms in CVR.
Hence, it is quite clear that the CCR value should be used as the base for designing
the sampling frequency (i.e., 1=T si). As discussed earlier, the damping factor ζ,
which shall be used for computing the time constant τ � 1=ζωn, is the internal
damping factor of the converter without the need to consider the source effect.
Thus, the design of the sampling frequency is very deterministic and totally
governed by the design of the converter. Figure 10.24 shows the behavior of the
PV voltage, current, and power when the MPP tracking is in progress. The wave
forms in Figure 10.24 show clearly that the operating point will visit all the regions
during the MPP tracking operation in vicinity of the MPP, which further
emphasizes the necessity to design the sampling frequency in CCR.

As discussed in Refs [24,25], the ripple induced from the DC-link would also
disturb the MPP tracking process and would require to be taken into account in
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Figure 10.24 Thewave forms of PV voltage, current, andpowerwhen theMPP tracking is active.
Source: Kivimaki 1969. Reproduced with permission of IEEE.

selecting the correct perturbation step in the duty ratio. The attenuation of the
DC-link ripple is governed by

v̂pv Toi� ; (10.44)
v̂o 1 � ZinY pv

which can be given at open loop for the boost converter by

Tpv D´�1 � srC2C2�
: (10.45)oi-o �

s2L1C2 � s �L1=rpv� � C2re � 1

Figure 10.25 shows the frequency response of T vp
oi-o. If the converter should

attenuate sufficiently the DC-link voltage noise, then the resonant frequency
should be designed much lower than the frequency of the noise voltage. In order
to fulfill this requirement, the input capacitor should be increased significantly.
The significant increase in the size of the input capacitor would actually also
decrease the settling time of the PV power transient.

As discussed in Section 8.5, the attenuation of the DC-link ripple can be
improved at open loop by applying output voltage feedforward technique.
Figure 10.26a shows the DC-link ripple of 100 Hz and the corresponding PV
voltage ripple when the output voltage feedforward is not active. Figure 10.26b
shows the same voltage ripples when the output voltage feedforward is activated in a
boost power-stage converter. The effect is significant. The detailed implementation
of the scheme in a boost power-stage converter can be found from Ref. [30].

10.5.4 PV Interfacing Converter Operating at Closed Loop

The boost power-stage converter in Figure 10.23 was equipped with an input
voltage control loop having crossover frequency of 10 kHz and phase margin (PM)
of 50° by using a PID-type controller (Eq. (10.49)) (cf. Figure 10.27) as well as an
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Figure 10.25 The PV generator-affected frequency response of the output-to-input voltage
transfer function.

Figure 10.26 Attenuation of DC-link-induced ripple at PV voltage. (a) No DC-link voltage
feedforward. (b) Feedforward activated.
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Figure 10.27 The input voltage loop gain with PID controller.

I-type controller (Eq. (10.50)) having the crossover frequency of 50 Hz and PM close
to 90° (cf. Figure 10.28). The PV generator-affected loop gain can be given by

Lpv GpvGa (10.46)in � Gse Gcc ci-o;

where Gse � 1, Ga ci-o as defined in Eq. (10.23), and Gcc� 1=3 V, Gpv as defined in
Eqs (10.47) and (10.48).

GPID K cc�1 � s=ωz1��1 � s=ωz2�� ; (10.47)cc s�1 � s=ωp1��1 � s=ωp2�
K ccGI � : (10.48)cc s

Figure 10.28 The input voltage loop gain with I controller.
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The PID controller zeros and poles are placed as follows:p
ωz1 � ωz2 � 1= L1C2;
ωp1 � 1=rC2C2; (10.49)
ωp2 � πf =3;s

and K cc � 7079 as well as the I-controller K cc � 30. The corresponding input
voltage loop gains are given in Figures 10.27 (PID) and 10.28 (I).

In case of PV voltage feedback-controlled MPP tracking converter, the per
turbed PV voltage and current in Eqs (10.13) and (10.4) will become as

vpv � Zin-ciph � Toi-cvo vpv-ref ;

ipv vo vpv-ref ;^

^^

^

^^
^

� Gci-c (10.50)� îph � Y pvToi-c � Y pvGci-c

because Zin-cY pv � 1(cf. Figure 10.28), which means that the settling time of the
PV voltage, current, and power is not anymore dependent on the properties of the
PV generator and its operating point, as Figures 10.29 and 10.30 also clearly show.

Figure 10.29 The fre
quency responses
of the impedance-based
sensitivity functions
(1=�1 � Z in-cYpv�:
(a) with PID control
(f gco � 10 kHz) and
(b) with I control
(f gco � 50 Hz). Source:
Kivimaki 1969.
Reproduced with
permission of IEEE.
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Figure 10.30 The
measured PV voltage,
current, and power
transients (a) with PID
controller and (b) I
controller.

The overall transient behavior is different depending on the region, where the
operating point lies according to the general PV power transient dynamics
presented in Section 10.5.2 (cf. Figure 10.30).

According to Section 10.5.2, the relevant elements from the MPP tracking
sampling frequency point of view are the last rightmost elements in Eq. (10.50),
where Gci-c stands for

1 LinGci-c � : (10.51)
Gse-in 1 � Lin

Figure 10.31 shows the frequency responses of the closed-loop control-to-input
voltage transfer functions (Gci-c) of PID-controlled (Figure 10.31a) and I-con
trolled (Figure 10.31b) boost power-stage converter, including the effect of PV
generator. The input voltage scaling factor (Gse-in) in Eq. (10.51) equals unity in
Figure 10.31. Figure 10.31a indicates that Gci-c reassembles a second-order
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Figure 10.31 Frequency
responses of control-to
input-voltage transfer
functions. (a) PID control.
(b) I control.

resonant system when the phase margin is on the order of 50°. Figure 10.31b
indicates that Gci-c resembles a first-order system when the phase margin is rather
high. The next subsection will introduce methods to find a reduced-order model
for the closed-loop converter, which can be utilized in the designing of the
sampling frequency in case of closed-loop MPP tracking converters.

10.5.4.1 Reduced-Order Models: Intuitive Model Reduction
The full-order input voltage loop gains are presented in Eqs (10.46)–(10.48).
According to Figure 10.31, the corresponding closed-loop transfer functions in
Eq. (10.51) are clearly of second order. Therefore, the input voltage loop gains
have to be basically of second-order transfer functions, where the behavior of the
transfer functions in vicinity of the loop crossover frequency will determine the
dynamic behavior of the closed-loop system. The input voltage loop gains
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determining the high-frequency behavior can be approximated in case of PID
control by

LPID GseGaK ccV e ωn
2

; (10.52)in-RO �
ωz1ωz2 s�1 � s=ωp2�

and in case of I control by

GseGaK ccV eLI : (10.53)in-RO �
s

As a consequence, the closed-loop gains can be given by

ω21 Gse-inGaK ccV e nGRO-PID Gse-inGaK ccV e ωn
2� = 1 �

ωz1ωz2 s�1 � s=ωp2� ωz1ωz2 s�1 � s=ωp2�ci-c Gse-in

ω2 ω2GaK ccV e n Gse-inGaK ccV e n� = s2 � sωp2 � ωp2 ;ωp2
ωz1ωz2 ωz1ωz2

GRO-I 1 Gse-inGaK ccV e Gse-inGaK ccV e GaK ccV e� = 1 � � ;
s sci-c Gse-in s � Gse-inGaK ccV e

(10.54)

where Gse-inGaK ccV e equals the feedback loop crossover frequency under I
control (cf. Eq. (10.53)).

In general, the second-order transfer function can be given by

ω2
n ; (10.55)

s2 � s2ζωn � ω2
n

and if the roots of the denominator polynomial are well separated, then Eq.
(10.55) can be approximated at low frequencies by

�ωn=2ζ�
; (10.56)

s � �ωn=2ζ�
where ωn denotes the undamped natural frequency and ζ the damping factor. In
case of the resonant type system (i.e., Eq. (10.55)), the system time constant
τ � 1=ζωn, and in case of first-order system (i.e., Eq. (10.56)), the system time
constant τ � 2ζ=ωn. As discussed in case of the open-loop operated MPP tracking
converter, the system time constant will determine the settling time of the power
transient as well. According to Eqs (10.54)–(10.56), the time constants can be
given by

2
τPID �

ωp2
;

(10.57)1
τI � :

Gse-inGaK ccV e
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In case of resonant system, ωn and ζ can be given based on Eq. (10.54) by

ωPID
n-RO � GseGaK ccV eω2

n

ωz1ωz2
ωp2;

ζPID
RO � 1

2
ωz1ωz2ωp2

GseGaK ccV eω2
n
:

(10.58)

According to Eq. (10.41), the power transient settling time in CCR and CVR can
be given in case of resonant system (i.e., Eq. (10.55)) by

2 ωz1ωz2ωp2TPID � ln 1= Δ 1 � ; (10.59)s ω2ωp2 4GseGaK ccV e n

and in case of first-order system (i.e., Eq. (10.56)) by

1 1
T I � ln : (10.60)s ΔGse-inGaK ccV e

According to Eq. (10.42), the power transient settling time in CPR can be given in
case of resonant system (i.e., Eq. (10.55)) by

2 ωz1ωz2ωp2TPID-CPR � ln 2= Δ 1 � ; (10.61)s ω2ωp2 4GseGaK ccV e n

and in case of first-order system (i.e., Eq. (10.56)) by

1 2
T I-CPR � ln : (10.62)s ΔGse-inGaK ccV e

It may be obvious that the settling time in CPR is highest and, therefore, the
corresponding sampling interval T si shall naturally be higher than the computed
settling times (Tx-CPR) in Eqs (10.61) and (10.62).s

10.5.4.2 Reduced-Order Models: Control-Engineering-Based Method
The information, which is clearly visible (i.e., the second-order nature) in
Figure 10.31a, is a well-known fact in control engineering [29]. Therefore, the
open-loop system gain can be given based on the closed-loop system gain in Eq.
(10.55) by

ω2
nL � : (10.63)

s�s � 2ζωn�
According to Eq. (10.63), we can compute the loop crossover frequency (ωgco) by
setting the magnitude j jL � 1 and solving ωgco and the loop phase at ωgcoω�ωgco
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yielding the phase margin as PM � L�ωgco � 180o. According to these procedures,
we can obtain

(10.64)
:

ωgco � ωn 1 � 4ζ4
p � 2ζ2;

PM � tan�1 2ζ

1 � 4ζ4
p � 2ζ2

Based on Eq. (10.64), the closed-loop system in Eq. (10.55) can be characterized by

ωgco
ωn � p ;

1 � 4ζ4 � 2ζ2

(10.65)
tan�PM�

ζ � 1 ;
2�1 � tan2�PM��4

that is, the closed-loop system dynamics will be characterized by designing the
loop crossover frequency and PM to be as desired.

According to Eq. (10.55), we can also compute the frequency (i.e., the resonant
frequency (ωres)), at which the peak magnitude (Mp) will take place as follows:

p
ωres � ωn 1 � 2ζ2;

1 (10.66)
Mp � p :

2ζ 1 � 2ζ2

p
Equation (10.66) shows that the peaking will take place only when ζ � 1= 2,
which is known in control engineering [29] as the optimal damping. According to
Eq. (10.64), we can compute that the optimal damping corresponds to PM
of 65.5°.

10.5.4.3 Reduced-Order Model Verification
Figure 10.32 shows the estimated frequency responses of sensitivity (Figure
10.32a) and input-voltage loop gain (Figure 10.32b) versus the corresponding
full-scale frequency responses (solid line) under the PID control. The frequency
responses originating from the application of the intuitive and control engineer
ing methods are denoted by dashed and dash-dotted lines, respectively.
Figure 10.32b indicates that the intuitive method produces a phase response,
where the phase margin equals 60° when the original phase margin is 50°.
The control engineering method produces naturally correct phase margin. The
crossover frequency is the same in all the cases. According to Eq. (10.65), the
corresponding undamped natural frequency (ωn) and the damping factor (ζ)
of the full-order system will be 78.4 krad/s and 0.478, respectively. The intuitive
method yields 86.7 krad/s and 0.6. Therefore, the corresponding time constants
are 26:7 μs and 19:2 μs as well as the predicted settling times in respect to
5% settling band are 83:4 μs and 61:8 μs, respectively. Figure 10.34a shows the
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Figure 10.32 The esti
mated frequency
responses (intuitive
method: dashed line and
control engineering
method: dash-dotted
line) versus the full-order
frequency response (solid
line) under PID control.
(a) Sensitivity functions.
(b) Input voltage loop
gains.

corresponding simulated PV power transient from which the settling time can
be found to be approximately 80 μs. This shows that the control engineering
method will give very good approximation of the settling time. As the PM of 60°
implies, the intuitive method gives too short approximation for the settling
time.

Figure 10.33 shows the estimated frequency responses of sensitivity function
(Figure 10.33a) and input voltage loop gain (Figure 10.33b) versus the corre
sponding full-scale frequency responses (solid line) under I control. The fre
quency responses originating from the application of the intuitive and control
engineering methods are denoted by dashed and dash-dotted lines, respectively.
Figure 10.33 indicates that both of the methods will yield equal reduced-order
responses, which also coincide with the original full-order response in the vicinity
of the input voltage loop crossover frequency (i.e., ωgco � 2π � 50 Hz and
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Figure 10.33 The esti
mated frequency
responses (intuitive
method: dashed line and
control engineering
method: dash-dotted
line) versus the full-order
frequency response (solid
line) under I control.
(a) Sensitivity functions.
(b) Input voltage loop
gains.

PM= 89.5°). Based on the crossover frequency and the phase margin as well as
applying Eq. (10.65), the undamped natural frequency and damping factor can be
computed to be 3.36 krad/s and 5.35, respectively. The corresponding time
constant (cf. Eq. 10.56)) and settling time (cf. Eq. (10.60)) to the 5% settling band
can be computed to be 3.18 ms and 9.5 ms, respectively. Figure 10.34b shows the
corresponding simulated PV power transient from which the settling time can be
found to be approximately 10 ms. This shows that both of the methods will give
quite an accurate estimate on the settling time.

Figures 10.35 and 10.36 show the measured frequency responses of input
voltage feedback loops of a boost power-stage converter, where the feedback-loop
designs have been performed slightly differently from what is shown in the
previous subsections. The crossover frequency of the feedback loop in
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Figure 10.34 The simulated power transients in CCR induced by a step change of 0.5 V in PV
voltage in CCR: (a) under PID control and (b) under I control.

Figure 10.35 is approximately 3 kHz. The corresponding phase behaviors indicate
that the phase margin will vary slightly along the changes in the PV generator
operating point (i.e., CCR: 37°, CPR: 41°, and CVR: 45°), which means that the
system time constant will also vary accordingly. The variation does not actually
pose problems when selecting the PM corresponding to the CCR operation that
will give the longest settling time anyway. The practical evaluation of the
converter will also be performed by using a constant current source as an input
source, which corresponds to the operation in CCR. When the measured

Figure 10.35 The measured PV generator-affected frequency responses of the input voltage
feedback loops under PID control (CCR: solid line, CPR: dashed line, and CVR: dash-dotted line).
Source: Kivimaki 1969. Reproduced with permission of IEEE.
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Figure 10.36 The measured PV generator-affected frequency responses of the input voltage
feedback loops under I control (CCR: solid line, CPR: dashed line, and CVR: dash-dotted line).
Source: Kivimaki 1969. Reproduced with permission of IEEE.

feedback-loop crossover and PM are used to estimate the settling time, it will give
the worst case settling time as well.

Figure 10.36 shows that the PV generator effect on the low-crossover feedback-
loop gain is insignificant and, therefore, the crossover frequencies and PMs will
stay practically constant as 50 Hz and 89°, respectively.

Figure 10.37 shows the measured PV power transients for the PID-controlled
(Figure 10.37a) and I-controlled (Figure 10.37b), where the first settling time
corresponds to the measured value and the last one to the predicted value. The

Figure 10.37 The measured power transients in CCR induced by a step change of 0.7 V in PV
voltage in CCR: (a) under PID control and (b) under I control. Source: Kivimaki 1969. Reproduced
with permission of IEEE.
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Figure 10.38 The measured power transients in CPR induced by a step change of 0.7 V in PV
voltage in CCR: (a) under PID control and (b) under I control. Source: Kivimaki 1969. Reproduced
with permission of IEEE.

accuracy between the predictions and measured values is quite good. (Note: The
normalization in Figure 10.37 is performed by dividing the waveforms by their
final values.)

Figures 10.38 and 10.39 show the similar PV power transients as in
Figure 10.37, which are measured in CPR and CVR. Figure 10.38 confirms
that the longest settling time will take place in CPR as discussed earlier. Therefore,
the sampling frequency design shall be performed by using the settling times
defined in Eqs (10.61) and (10.62).

Figure 10.39 The measured power transients in CVR induced by a step change of 0.7 V in PV
voltage in CCR: (a) under PID control and (b) under I control. Source: Kivimaki 1969. Reproduced
with permission of IEEE.
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10.6 Concluding Remarks

The material presented in Section 10.5 shows that the design of the sampling
frequency can be solely based on the dynamic elements of the interfacing
converter, both at open and closed loop. During the MPP tracking process,
the operating point of the PV generator lies usually in all of the operating regions.
As it was shown explicitly, the PV power transient settling time is longest in CCR
region under duty ratio-operated (i.e., open loop) MPP tracking process, which
actually determines the design of the sampling frequency. In CCR, the internal
resistance is very high, and therefore, the transient behavior of the PV power will
be dependent only on the internal dynamics of the PV interfacing converter. In
addition, the PV power transient at MPP or in CPR is very small, which further
emphasizes that the MPP tracking design should not be based on the character
istics of the PV generator at MPP. When the interfacing converter operates at
closed loop, the PV power transient behavior is determined solely by the control
design (i.e., the feedback-loop crossover frequency and the feedback-loop phase
margin), but the PV power dynamics will determine that the settling time will be
longest in CPR although the system time constant stays constant in all the regions.
Under open-loop MPP tracking, the system time constant varies significantly, and
therefore, the PV power transient settling time will be longest in CCR.
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11

Photovoltaic Generator Interfacing Issues

11.1 Introduction

In this chapter, we will classify the PV systems based on the architecture of the
systems, that is, centralized versus distributed architectures. The distributed archi
tectures are later classified based on the level of MPP tracking distribution within the
PV generator. The implementation can also be classified according to the way the
power is processed in the architecture, that is, full or partial power processing. The
rest of the chapter will then concentrate on the dynamics of the PV generator
interfacing converters and the stability issues within this constellation.

11.2 Centralized PV System Architecture

Most of the PV systems are grid-connected systems as depicted in Figure 11.1.
The centralized system is such that there is only one common MPP tracking
device, which forces the system to operate at the MPP of the PV array [1]. This
kind of system is also known as grid-parallel system (cf. Figure 11.1a and b),
because the grid would determine the AC voltage level as well as the frequency.
The main goal of the system would be to transfer maximum available power into
the grid. Sometimes the PV system can be commanded to transfer only a certain
amount of power into the grid to prevent overvoltage in the grid [2]. This kind of
operation is known as power curtailment. This also means that the MPP tracking
has to be changed to maximum power (MP) tracking.

The PV system can also be operated as grid-forming system (cf. Figure 11.1c),
where the system inverter will determine the ac-voltage level as well as the grid
frequency. This kind of operation mode can be induced by a fault in the distribution
system, which isolates a part of the grid from the rest of the grid [3] or the grid power
supplying is based solely on renewable energy sources [4].

11.3 Distributed PV System Architectures

The distributed PV systems are usually applied to improve the energy yield of PV
generator, which would be reduced due to the shading effects of building

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 11.1 Centralized PV system
architectures. (a) Single-stage grid-
parallel architecture. (b) Two-stage
grid-parallel architecture. (c) Two-
stage grid-forming architecture.

structure, trees, flag poles, or passing-by clouds, as discussed in Chapter 10 [5,6].
The PV array is usually composed of PV strings connected in parallel. Thus, the
first step in increasing the energy output is to provide each parallel string with an
individual MPP tracking converter, as illustrated in Figure 11.2. Thus, all the
strings will be operated at their respective MPPs, and the total power transferred
into the grid is naturally the sum of the PV string powers.

The further improvement of power output will require the use of panel-based
MPP tracking converters, which can be connected either in series (cf.
Figure 11.3a) or in parallel (cf. Figure 11.3b) [7–13]. The parallel connection

Figure 11.2 String-based PV system architecture.
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Figure 11.3 PV panel-based
distributed systems. (a) Series-
connected MPP tracking con
verters. (b) Parallel-connected
MPP tracking converters.

requires using transformer-isolated converters to scale the panel voltage to the
DC-link-voltage level [13]. As discussed in Chapter 10, the panel may also be
called module in the literature, but in this chapter, the module is the subpart of the
panel across which the bypass diode is connected. The output voltage of the
series-connected converters (cf. Figure 11.3a) is directly dependent on the
corresponding PV panel power and the required DC-link voltage by

V con-i � PMPP-i

N
VDC-link; (11.1)

PMPP-i

which can be easily concluded, because the output-side current is the same for all
the converters. Therefore, the rating of the converter output voltage has to be
carefully considered, because the output voltage of some of the converters can be
zero due to the shading of the panels. It is usually assumed that quite low-voltage
output-side components can be used but that may not be true. Another issue is
also that only the buck–boost-type power stage can operate satisfactorily, because
the output voltage of the series-connected converter can be higher or lower than
the input voltage.

i�1
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Figure 11.4 Effect of shading on themodule behavior. (a)Module currents and voltages. (b) The
corresponding I–V curve when the operating point is varied.

If we like to further improve the energy yield, then the actions have to be taken
at the module level, as discussed in Refs [11,12,14–19]. Figure 11.4 illustrates the
behavior of the modules when the incident irradiation is not unified on the surface
of the panel, that is, the incident irradiation varies module by module. As
discussed in Chapter 10, a PV cell and module are current sources. Therefore,
the differences in the incident irradiation will cause equal differences in the
module currents. The series connection of current sources requires the currents
to be equal, and if the module current deviate from the maximum current of the
modules then the difference current would flow through the shunt diodes
dropping the voltage of the modules to the voltage drop of the shunt diode,
as indicated in Figure 11.4a. The I–V curve of the panel is illustrated in
Figure 11.4b by means of which the power output of the panel can be estimated.
In this case, we have three different power levels of which the lowest-voltage MPP
would be the global MPP.

It may be obvious that the panel power output can be increased by preventing
the module voltages to drop to zero during the partial shading, that is, an
additional current corresponding to the shunt-diode current must be produced
by another method. The implementation method can be based on full, partial, or
differential power processing principles [16–21]. Figure 11.5 illustrates the
differences in the full and partial-power processing schemes, Figure 11.6 illus
trates two differential power-processing schemes, and Figure 11.7 illustrates a
simple differential power-processing scheme.

The partial-power processing scheme in Figure 11.5b necessitates the use of
transformer-isolated converter where the output of the converter is added on
the top of the input of the converter [21]. The differential power processing
schemes in Figure 11.6 also necessitates using transformer-isolated convert
ers [18,19]. The simple differential power processing scheme in Figure 11.17
works in such a manner that the PV module voltages are connected across the
inductors depending on which of the switches are turned on [11,12]. Thus, the
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Figure 11.5 Different power processing schemes. (a) Full power processing. (b) Partial power
processing.

Figure 11.6 Differential power processing schemes. (a) Isolated or floating output port scheme.
(b) Trail-to-trail connected output scheme.

module voltages will be equal if the conduction times of the switches are equal.
The average inductor current will balance the differences in the module
currents. The scheme works well within three modules, but to balance the
module voltages within different panels requires connections inside the differ
ent panels, as shown in Figure 11.7.

Figure 11.7 Buck–boost converter-based simple
differential power processing scheme.
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11.4 PV Generator-Induced Effects on Interfacing-Converter
Dynamics

11.4.1 Introduction

As discussed in Chapter 10, the PV generator is a highly nonlinear input source with
limited output power and operation point-dependent source behavior. Its I–V curve
can be divided into three different regions, such as constant current (CCR), constant
power (CPR), and constant voltage (CVR) regions as depicted in Figure 11.8, where
the point (1,1) denotes the MPP: The CPR is a narrow region around the MPP, where
the static (Rpv) and dynamic (rpv) resistances are approximately equal [22–25]. The
CCR is located at the voltages less than the CPR voltages and is characterized by
rather high dynamic resistance (rpv) and low static resistance (Rpv) as well as rather
small output capacitance (cpv). The CVR is located at the voltages higher than the
CPR voltage and is characterized by rather low dynamic resistance (rpv) and high
static resistance (Rpv) as well as high dynamic capacitance (cpv).

Figure 11.9 shows a simplified small-signal equivalent circuit of the PV
generator and the input of the interfacing converter, which has always an input
capacitor. The origin of the dynamic effects in the interfacing converter can be

Figure 11.8 Characteristics of PV generator.

Figure 11.9 A simplified PV generator
small-signal equivalent circuit and the input
of the interfacing converter.
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traced to the way the PV generator affects the dynamic behavior of the input
capacitor [22]: In CCR, when the dynamic resistance is high, the full dynamics of
the input capacitor is available. In CVR, when the dynamic resistance is low, the
dynamics of the input capacitor is effectively shunted by the dynamic resistance,
and the input source resembles a voltage source. In practice, the changes in the
interfacing converter will take place when the operating point travels through the
constant power region. In CCR, the dynamics of the interfacing converter
resembles the dynamics introduced in Chapter 8, and in CVR, the dynamics
introduced in Chapter 3, respectively. In practical applications, the operating
point will locate in all the regions, and therefore, the converter has to be able to
operate in them also. When the PV generator is basically a current source, then
the current-fed dynamics will dominate in these applications.

At open loop, the dynamic changes do not affect the converter operation in
such a way that special design approaches should be done. As discussed in
Chapter 8, the active switch control scheme dictates which way the duty ratio has
to be changed to increase or decrease the corresponding output variable. At
closed loop, the high-bandwidth input voltage feedback loop will always maintain
the input source as a current source even in CVR due to the size of the dynamic
resistance (i.e., the input source will never be an ideal constant voltage source).

As explicitly demonstrated in Ref. [26], the terminal sources profoundly affect
the dynamics of the converter even if the power stage remains the same. The buck
power stage converter used in the analyses of Ref. [26] is shown in Figure 11.10 in
open-terminal mode with relevant components and operating point definitions.
Figures 11.11–11.14 show explicitly what kind of changes the varying terminal
sources will generate in the dynamics of the converter for comparison to the PV
generator-affected changes.

Figure 11.11 shows the Bode plots of the measured control-to-output transfer
functions (Gco-o) of the buck power stage converter when the terminal sources are
varied, where “vf” and “cf” denote voltage and current-type input terminal sources
and “vo” and “co” current and voltage-type output terminal sources. Actually, “vo”
means voltage output and “co” current output, but the corresponding terminal
sources are the duals of them. Figure 11.11 shows explicitly that the dynamic
changes are significant, and therefore, it is necessary to use the correct terminal
sources when performing modeling or measuring the frequency responses. It also
has to be understood that the VF/VO and CF/CO converters can be measured in

Figure 11.10 Buck power stage in open-terminal mode.
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Figure 11.11 All the relevant control-to-output transfer functions (Gco-o).

practice by using the correct output terminal sources. The VF/CO and CF/VO
converters have to be measured by using a resistor as a load, and the correspond
ing transfer functions have to be computationally solved from the measured
transfer functions applying a proper source-affected formulation.

According to the dynamic models presented in Chapter 3 for the VF converters
and in Chapter 8 for the CF converters, the dynamic changes are reality: The
phase of the control-to-output converter starts at zero in the VF converter and at
180 degrees in the CF converter, there are no RHP zeros in the VF converter but
one RHP zero in the CF converter, and so on.

Figure 11.12 shows the Bode plots of the measured control-to-input transfer
functions (Gci-o) when the terminal sources are varied, where the denotations are

Figure 11.12 All the relevant control-to-input transfer functions (Gci-o).



47311.4 PV Generator-Induced Effects on Interfacing-Converter Dynamics

Figure 11.13 All the relevant input impedances (Z in-o).

the same as in Figure 11.11. According to the figure, it is obvious that the control
design has to be based on the models developed by using correct terminal sources
for ensuring stable operation.

Figure 11.13 shows the Bode plots of the measured input impedances when the
output terminal source is varied. The figure shows that the input impedances are
equal when the output terminal source is the same, which complies with the
common sense, because the power stage is the same. When the output terminal
source is changed, the input impedance will also change significantly, especially at
the low frequencies.

Figure 11.14 shows the Bode plots of the measured output impedances when
the input terminal source is varied. The figure shows that the output impedances

Figure 11.14 All the relevant output impedances (Zo-o).
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are equal when the input terminal source is the same, which is also natural when
the power stage is the same. The change of the input terminal source will
significantly affect the output impedance.

In case of the CF converters, the source-affected transfer functions can be
computed (cf. Chapter 8) by

ZH TH GH
in oi ci îinS1 � Y SZH 1 � Y SZH 1 � Y SZHv̂in in in in� v̂o^ GH 1 � Y SZH�x 1 � Y SZHio io in-oco in-1 ^� YH GH do-x co1 � Y SZH 1 � Y SZH 1 � Y SZH

in in-x in

(11.2)

According to Chapter 10, the source admittance Y S in case of PV generator in
(11.2) can be substituted with the inverse of the dynamic resistance, that is,
Y S � 1=rpv. We show some examples of the PV generator effect on the CF
converters in the next section based on theory and experiments.

11.4.2 PV Generator Effects on Converter Dynamics

The PV generator is quite challenging input source for the power electronic
converters, because its effect on the interfacing converter will change along the
changes in the operating point [22]. The environmental and climatic conditions
are also varying all the time and sometimes very quickly, as we have discussed in
Chapter 10. This actually means that the operating point is varying due to the
named changes and can locate in any of the three I–V regions at least temporarily.

As stated earlier, the PV generator is basically a current source, and especially
in CCR quite an ideal current source. It was observed earlier that the input-
current feedback control does not work as a control method in the PV generator
interfacing, because the controller would saturate easily when the irradiation
conditions are rapidly changing [24]. Thus, the input voltage feedback control was
recommended to be used instead of input current feedback control [24]. The
further studies revealed that the origin of the problem is actually the violation of
Kirchhoff’s current law, which makes the converter to become unstable when the
operating point is moved into the CCR [27,28].

Figure 11.15 shows the power stage of an input-current-controlled coupled-
inductor superbuck converter, where coupling of the inductors was carried out in
such a manner that the input current of the converter is almost ripple free [28]. An
additional 1 mF capacitor was connected at the output of the PV generator for
satisfying the interfacing constraints of the converter. Figure 11.16 shows the
behavior of the PV voltage and current as well as the output current of the
converter when the operation point of PV generator is changed.

In Figure 11.16, the operating point is moved from CVR toward CPR and
CCR and back. The converter is clearly stable in CVR, but after the MPP (i.e.,
MPP is visible in the output current) the converter enters into CCR and
becomes unstable. The instability is removed when the operating point is
moved back into CVR. The origin of the instability is the violation of Kirchhoff’s
current law, which is quite expected due to constant PV current in CCR.



47511.4 PV Generator-Induced Effects on Interfacing-Converter Dynamics

Figure 11.15 The power stage of a coupled inductor superbuck converter.

Figure 11.16 The behavior of the PV voltage and current as well as the output current of the
coupled-inductor superbuck converter, when the operation point is varied.
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Reference [28] shows explicitly that the reason for the instability is solely the
violation of Kirchhoff’s current law and nothing else. We will discuss in more
detail in next section the other stability related issues. Hence, it is feasible to
limit the further discussions to the real CF converters. The converters that we
will treat are the buck power-stage converter [29], the boost power-stage
converter [30], and the superbuck converter [31].

11.4.2.1 Buck Power-Stage Converter
The buck power-stage converter used in the experimental measurements is shown
in Figure 11.17. In this case, the gate signals of the MOSFETs are inverted compared
with the original VF buck converter, as indicated in Figure 11.17. Thus, the relevant
transfer functions representing the converter dynamics can be found from
Chapter 8 in Eqs (8.75)–(8.78). The input source of the converter has been Raloss
SR30-36 PV panel, which is illuminated by an artificial light source producing
500 W=m2. The output-voltage feedback control is intended only for limiting the
output voltage in case of excess overvoltage at the output. Figure 11.18 shows that
the input voltage-controlled converter works well in all the regions of the PV
generator. The MPP is clearly visible at the output current.

According to Eq. (11.2), we can compute that the PV generator-affected
control-to-input transfer function would be of the form

Gpv sL1I in � D´V o
; (11.3)ci-o � 2s2 � s�1=rpvC2� � �D´ =L1C2�L1C2

Figure 11.17 The experimental buck power-stage converter.
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Figure 11.18 The behavior of PV voltage and current as well as converter output current, when
the operation point is swept from CCR to CVR and back.

and the PV generator-affected control-to-output transfer of the form

�I in=V in���1=rpv�� sC2 �1=Rpv���1=rpv�� sC2Gpv � � :co-o s2 � s�1=rpvC2���D´2=L1C2� s2 � s�1=rpvC2���D´2=L1C2�L1C2 L1C2

(11.4)

The parasitic elements are omitted for maximizing the information on the PV
generator effect. Eq. (11.3) shows that the sign of Gci-o is positive due to the
inverting of the MOSFETs’ gate signals. The PV generator clearly affects only the
damping of the resonant circuit, that is, the damping is lowest in CCR when rpv is
highest. Eq. (11.4) shows that the low-frequency sign of Gco-o is positive in CCR,
and the RHP zero exists, because rpv � Rpv. When the operating point enters
into CPR, the RHP zero moves to the origin, because rpv � Rpv. When the
operating point enters into the CVR, the RHP zero disappears but the sign of
the transfer function becomes negative at the low frequencies also, because
rpv � Rpv. This means that the output-side feedback control would become
unstable in CVR. Opposite will take place if the MOSFETs’ gate signals are not
inverted. Figure 11.19 shows the Bode plot of the measured control-to-output
transfer functions, which also explicitly proves the mentioned analyses to be
correct (i.e., RHP zero, the damping behavior and change of sign).

11.4.2.2 Boost Power-Stage Converter
The experimental boost power stage converter is shown in Figure 11.20 and the
measured input voltage loop gains in Figure 11.21. The figure shows that the PV
generator similarly affects the resonant damping as in the buck power-stage
converter, but only insignificantly the relevant part of the loop gain. The behavior
of the control-to-input and control-to-output transfer functions in CCR and CVR
are shown in Figures 11.22 and 11.23, respectively.
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Figure 11.19 Thebehavior of the control-to-output transfer function (Gco-o), when theoperating
point is moved from CCR (solid line) into CVR (dashed line).

Figure 11.20 The experimental boost power-stage converter.

According to Eq. (11.2), we can compute that the PV-generator-affected
control-to-input transfer function would be of the form

Gpv V o
; (11.5)ci-o � �

s2 � s�1=rpvC2� � �1=L1C2�
and the PV generator-affected control-to-output transfer of the form

L1C2

1��Rpv=rpv� 1 D´21 RpvGpv s2 � s � s2� s � :=L1C2�� I inco-o L1C2rpvC2 L1 rpvC2 L1C2

(11.6)

The roots of the numerator in Eq. (11.6) can be approximated by

ωz-HF � Rpv

L1
� 1
rpvC2

; (11.7)
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Figure 11.21 The input-voltage loop gains in CCR, CPR (MPP), and CVR.

and

ωz-LF � 1 � rpv

Rpv
=

L1

Rpv
� rpvC2 : (11.8)

According to Eq. (11.6), the PV generator affects only the resonant damping of the
control-to-input transfer function, as also the Bode plots in Figure 11.22 clearly
shows. The approximated locations of the zeros of the control-to-output transfer
functions are shown in Eqs (11.7) and (11.8), respectively. According to Eq. (11.7),
we can conclude that the zero lies always in RHP and actually corresponds to the
RHP zero of the VF boost converter. The location of the zero in Eq. (11.8) varies
depending on the operating point: In CCR, when rpv is high and Rpv is low, the

Figure 11.22 The behavior of the control-to-input transfer function (Gci-o), when the operating
point is moved from CCR (solid line) into CVR (dashed line).
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Figure 11.23 Thebehavior of the control-to-output transfer function (Gco-o), when theoperating
point is moved from CCR (solid line) into CVR (dashed line).

zero locates in RHP; in CPR, the zero locates in the origin; and in CVR, when rpv is
low and Rpv is high, the zero locates in LHP. The sign of the transfer function also
becomes positive when the operating point enters into CVR. Figure 11.23 clearly
shows that the above analyses really hold (i.e., change of sign, two RHP zeros in
CCR but only one in CVR).

11.4.2.3 CF Superbuck Converter
The experimental CF superbuck converter is shown in Figure 11.24 and the
measured input voltage loop gains in Figure 11.25. Figure 11.21 shows that the PV
generator affects the resonant damping as well as removing the effect of the input-
side capacitor C1. The used controller is of type I (i.e., pure integral controller). It
may also be quite obvious that the loop crossover frequency has to be less than the
parallel resonance visible in the figure.

According to Eq. (11.2), we can compute that the PV generator-affected
control-to-input transfer function would be of the form

2D
´V o D V oGpv I in s3� s � s � =ci-o �C1 L1I in L1C2 L1L2C2I in

1 2 �L1�C1 �C2��L2�D2C1�D´2C2� L1 �D2L2 1
s4 � s3 � s � s � ;

rpvC1 L1L2C1C2 L1L2C1C2rpv L1L2C1C2

(11.9)

and the PV generator-affected control-to-output transfer of the form

C1�C2 1 �DC1�D´C2�Rpv 1��Rpv=rpv�Gpv � I in�s2 � s� � �� =co-o C1C2L2 rpv�C1 �C2� L1�C1 �C2� L1�C1 �C2�
1 2 �L1�C1 �C2��L2�D2C1 �D´2C2� L1�D2L2 1

s4 � s3 � s � s � :
rpvC1 L1L2C1C2 L1L2C1C2rpv L1L2C1C2

(11.10)
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Figure 11.24 The experimental CF superbuck converter. Source: Leppäaho 2011. Reproduced
with permission of IEEE.

In Figure 11.25, the PV generator-induced changes are naturally the changes taken
place inGpv . If rpv ci-o ! Gci-o in Chapter 8, which meansci-o caused by rpv � 1, thenGpv

that the resonances visible in CCR are well damped when the converter enters into
CVR. Figure 11.26 shows the behavior of Gpv in CCR (solid line) and in CVRco-o

Figure 11.25 The input voltage loop gains in CCR (solid line) and CVR (dashed line).
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Figure 11.26 The behavior of the control-to-output transfer function (Gco-o) when the operating
point is moved from CCR (solid line) into CVR (dashed line).

(dashed line). The CVR operating point is quite close to the MPP of the corre
sponding generator, which is visible in the figure as a drop in the low-frequency
magnitude. This phenomenon can also be seen in Eq. (11.10) when we know that
rpv � Rpv. If the operating point is moved deeper into CVR then the magnitude
would increase, because rpv � Rpv. The change of sign of Gpv at the lowco-o
frequencies and appearing of RHP zeros are also clearly visible, which means
that the output current-controlled converter would be unstable in CVR (Figure
11.26).

11.5 Stability Issues in PV Generator Interfacing

The impedance-based stability assessment at the interface between the PV
generator and its interfacing converter shall be performed based on the imped
ance ratio Zin-con=Zpv, which is also known as an inverted minor loop
gain [27,32,33]. Stability would exist if the inverted minor loop gain satisfies
the Nyquist stability criterion (cf. Chapter 2). As stated in Chapter 8, the output
impedance of the PV generator equals the parallel connection of a nonlinear
resistor and capacitor, respectively. Thus, the instability would take place if the
input impedance of the interfacing converter resembles a negative incremental
resistance at the low frequencies. This kind of input impedance behavior would
exist in the output-side feedback-controlled converters. The PV arrays may need
long cables to connect to the interfacing converters, which means that the
PV-generator output impedance may also contain a resonant circuit with an
operating-point dependent resonance (i.e., the PV generator capacitor would
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increase when the operating point moves toward the open-circuit condition) (cf.
Figure 10.5). We provide some experimental examples on the instability phe
nomenon. It may be obvious that if the instability takes place at DC, then there
will be no sinusoidal oscillation even in the boundary condition (i.e.,
Zin-con=Zpv � �1). Actually, the phenomenon is usually known as voltage
collapse.

11.5.1 Buck Power-Stage Converter

The closed-loop input impedance behavior of the buck power-stage converter
(cf. Figure 11.17) is shown in Figure 11.27, when the operating point is varied
(i.e., solid line (CCR), dashed line (MPP), and dotted line (CVR)). It may be clear
that the converter cannot become unstable when supplied by a PV generator
(Figure 10.7) due to the phase behavior of the impedances of a PV generator and
the input-voltage-controlled converter.

Figure 11.28 shows the behavior of the input impedance of the output-voltage
controlled converter (solid line) and the corresponding output impedance of the
PV generator (dashed line) when the operating point moves from CCR toward
MPP. The figure shows that the low-frequency magnitudes of the impedances
approach each other and they will be equal at MPP, because rpv � Rpv at MPP
(Note: the low-frequency PV generator impedance equals rpv and the low-
frequency converter impedance under output voltage feedback control equals
�Rpv). Figure 11.29 shows the time domain behavior of the PV voltage and current
as well as the converter output current when the operating point is placed in CCR
and the output voltage feedback controller is activated. The PV voltage drops to
the level of output voltage, because the high-side MOSFET is turned permanently
on as a consequence of instability and the operating point moved deeply into
CCR. The PV and converter output currents are actually equal but the reference

Figure 11.27 The behavior of the closed-loop input impedance (Z in-c) under input-voltage
feedback controlwhen theoperatingpoint is located inCCR (solid line), atMPP (dashed line), and
in CVR (dotted line).
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Figure 11.28 The behaviors of the converter closed-loop input impedance (Z in) under output-
voltage feedback control (dashed line) and the corresponding output impedance (Zpv) of the PV
generator (solid line), when the operating point moves from CCR toward MPP.

level of the PV is slightly shifted below the zero level for visualizing better
instability phenomenon.

In Chapter 9, the application of PCM control in PV application was discussed.
According to the discussions, the PCM-controlled open-loop buck converter
works properly only in CVR. Figure 11.30 shows the measured input impedance
of the PCM-controlled buck power stage converter (solid line) and the output
impedance of the PV generator when the operating point is moved from CVR to
MPP. Similarly as in Figure 11.28, the magnitudes of the impedances become

Figure 11.29 The time domain behavior of the PV voltage and current as well as the converter
output current when the output-voltage feedback controller is activated in CCR.
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Figure 11.30 The behaviors of the converter open-loop input impedance (Z in) under PCM
control (dashed line) and the corresponding output impedance (Zpv) of the PV generator (solid
line) when the operating point moves from CVR toward MPP.

equal at MPP and the converter becomes unstable. The time domain behavior of
the PV voltage and current as well as the converter output current are shown in
Figure 11.31, which indicate clearly that the high-side switch is turned perma
nently on, and the PV and converter currents become equal.

11.5.2 CF Superbuck Converter

As discussed earlier, the superbuck converter is implemented by applying duality
transformation methods and the switch control scheme is also adapted correctly

Figure 11.31 The time domain behavior of the PV voltage and current as well as the converter
output current when the output-voltage feedback controller is activated in CCR.
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Figure 11.32 The behaviors of the converter closed-loop input impedance (Z in) under input-
voltage control (dashed line) and the corresponding output impedance (Zpv) of the PVgenerator
(solid line) when the operating point moves from CCR into CVR.

to the current-fed application. The power stage of the closed-loop converter is
given in Figure 11.24. Figure 11.32 shows the input impedance of the converter
under input-voltage feedback control (dashed line) and the output impedance of
the PV generator when the operating point is moved from CCR to CVR. The
magnitude and phase behavior of the converter and PV generator imply that the
instability is not possible to take place.

Figure 11.33 shows the input impedance of the converter under output-voltage
feedback control (dashed line) and the output impedance of the PV generator (solid

Figure 11.33 The behaviors of the converter closed-loop input impedance (Z in) under output-
voltage control (dashed line) and the corresponding output impedance (Zpv) of the PVgenerator
(solid line) when the operating point moves from CCR toward MPP.
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Figure 11.34 Nyquist plots of the impedance ratio Z in=Zpv at Vpv � 14; 15; and 16 V.

line) when the operating point is moved from CCR to MPP. The magnitude and
phase behavior of the impedances imply that the instability would take place when
the operating point enters to MPP. Figure 11.34 shows the corresponding Nyquist
plots at the PV voltage of 14, 15, and 16 V, which clearly indicate that the converter
would be unstable at 16 V, which equals the MPP voltage. Figure 11.35 shows the
time domain behavior of the PV voltage and current when the operating point is
moved to CVR and the output voltage feedback control is activated. As a conse
quence of the instability, the operating point is forced to move into CCR, where the
operation of the converter will be stable. The power levels of the CRV and CCV
operating points are equal. The behavior of the converter after the instability has
taken place is quite different compared to the CF converters, where the switch
control scheme is adopted from the corresponding VF converters.

Figure 11.35 The time domain behavior of the PV voltage and current when the output-voltage
feedback controller is activated in CVR.
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11.5.3 Concluding Remarks

As discussed in Section 11.2, the PV systems can be operated in grid-parallel
mode, where the outmost feedback loops are from the input side of the
converters. In such cases, the system stability is not compromised. The PV
systems can also be operated in grid-forming mode, where the outmost feedback
loops are taken from the output side of the converters. In this operation mode, the
instability will take place when the operation point is moved to MPP or enters into
the region, which is the dual of the intended operation region of the original
power stage (i.e., VF power stages in CCR and CF power stages in CVR). As we
demonstrated in Section 11.5.1, the instability in VF power stages would cease the
operation of the converter totally. In case of CF power stages, the instability would
force the operation point to move into the stable region only.

11.6 Control Design Issues

The control design will be performed exactly in a manner similar to that in case of
the VF converters discussed in Chapters 2 and 6. In PV applications, an integral (I)
controller may suffice and may be sometimes the only working solution as in case
of the input voltage control of the superbuck converter (cf. Figure 11.25). In
cascaded control schemes (i.e., the inner loop is output current and the outer loop
is input voltage), the control design of the current loop will be usually carried out
assuming the converter to operate in CVR, and thus the converter is unstable,
when the operation point is moved into CCR. The input voltage controller is then
designed to stabilize the converter, as discussed in Chapter 9 in case of PCM-
controlled buck power stage converter. This kind of issues will be discussed more
in the last parts of this book, which are related to the control of grid-connected
three-phase converters.
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12

Dynamic Modeling of Three-Phase Inverters

12.1 Introduction

This chapter presents a systematic method to obtain dynamic models for three-
phase grid-connected inverters. After studying this chapter, the reader should be
familiar with the concept of dynamic modeling of three-phase inverters in d–q
domain and be able to derive unterminated open-loop models for voltage and
current-fed inverters with L and LCL-type filters. Moreover, the reader should be
familiar with the methods for evaluating the dynamic effect of nonideal source
impedance.

In this chapter, dynamic models of voltage and current-fed inverter are derived
without the effect of source [1] and load impedance [2]. Such model is referred as
an un-terminated model [3]. The dynamic models are derived in the d–q domain
where three-phase sinusoidal signals can be analyzed as equivalent DC sig
nals [4,5]. Moreover, the models do not include the dynamic effects of control
functions, such as AC current control or DC voltage control. The open-loop
models for voltage and current-fed inverters and current-fed inverter with an
LCL-filter are derived. It is also demonstrated how the dynamic effect of source
impedance, such as a PV generator or an upstream DC–DC converter, can be
included in the dynamic model. The analysis in this book is restricted to two-level
inverters. However, the ideas and concepts can be adapted to multilevel inverters,
such as neutral-point-clamped three-phase inverters [6,7] that are widely used by
the industry.

Grid-connected inverters can be divided into two classes depending on the type
of the source. In voltage-fed inverters, the DC source is a constant voltage source,
such as a storage battery [8]. In current-fed inverters, the DC source is a constant
current source, such as a photovoltaic generator in a single-stage PV inverter [9].
The type of the source is an important feature since it defines how input and
output variable at the DC-side is selected. Therefore, voltage-fed and current-fed
inverters have different dynamic models. Moreover, when the DC-link voltage is
regulated by the inverter control system, the inverter should be analyzed as a
current-fed inverter for correct formulations of input and output variables [10].

The open-loop models are first derived analytically and then MATLAB is used
to solve the transfer functions numerically (or in some cases in symbolic form).

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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MATLAB Simulink with SimScape package is used for time domain simulations
and for model verification.

The analysis in this chapter is based on the amplitude invariant Clarke’s
transformation, which can be defined as in Eq. (12.1).

1 1
1 � �

2 2p p
2 3 3 (12.1)Tαβ � 0 �3 2 2

1 1 1
2 2 2

12.2 Dynamic Model of Voltage-Fed Inverter

Voltage-fed inverters are found in applications where the inverter input voltage is
determined by a stiff source, such as a battery storage depicted in Figure 12.1. The
battery usually has some internal impedance that depends on its state of charge.
Effect of source impedance Zbat can be included in the model by solving the
source-affected transfer functions as discussed later. Grid-connected battery
storage should be analyzed as an inverter when it operates in discharging
mode feeding power to the grid. In charging mode, power flow reverses and
the power stage should be analyzed as an active rectifier. In that case, the AC
terminals become input ports and the DC terminal becomes an output port. This
chapter only discusses the discharging mode.

12.2.1 Average Model of Voltage-Fed Inverter

A two-level inverter employs six controllable switches, whereas, a three-level
NPC inverter has two extra transistors and diodes per phase. Three-level inverters
are widely used in grid-connected applications due to lower voltage rating
requirement of the transistors and lower switching ripple. Modeling of three-

Figure 12.1 Grid-connected battery storage inverter.
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Figure 12.2 Three-phase voltage-fed inverter.

level inverters is out of scope of this book. However, the same modeling methods
can be adapted to three-level inverters.

Voltage-fed inverter with an ideal input source and an ideal three-phase
voltage-type load is shown in Figure 12.2. The input voltage vin and three-phase
grid voltages van, vbn, and vcn are chosen as input variables, inductor currents iLa,
iLb, and iLc are selected as state variables, and the input current iin and three-phase
output currents ioa, iob, and ioc are selected as output variables. The inductor
currents are essentially the same as output currents.

Duty ratios of lower switches in each phase-leg are complements of upper
switch duty ratios. Therefore, both switches on a phase-leg are never on at the
same time. Dead-time (or blanking time) is added near the switching instants to
guarantee that the DC source is not short-circuited. During dead-time, control
signals of both the upper and lower switches are low, for example, transistors T1

and T2. The dead-time introduces an additional nonlinear element in the circuit,
because during the dead-time the phase current flows through an antiparallel
diode. The dead-time effect produces similar harmonic components in the grid
current as a three-phase diode rectifier. However, the effect of dead-time is
neglected in the following to simplify analysis.

For modeling purposes, it is sufficient to treat only the duty ratios of either
upper or lower switches as controllable variables. It is customary to select the
upper switches as controlled switches and denote their duty ratios as dA, dB, and
dC. Duty ratios of low-side switches can be generated by, for example, a DSP-
based control platform. Current directions out of the source and toward the
three-phase grid are defined positive, as shown in Figure 12.2.

Power stage of the three-phase inverter can be represented as an equivalent
switching circuit, as depicted in Figure 12.3. The switch matrix has eight possible
switching states, as shorting the voltage source is not allowed. Ohmic losses
caused by transistors are modeled by the resistance rds that represents the on-time
resistance of a switch between its drain and source terminals. Switches, such as
IGBTs, have an additional constant voltage drop whose polarity depends on
direction of the current though the switch that greatly complicates the analysis. It
is assumed that the switching losses can be modeled by using parasitic resistance.
All inductors are assumed symmetric with equal nonsaturable inductance L and
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Figure 12.3 Equivalent switching circuit of a voltage-fed inverter.

resistance rL. Ideally the resistance value should also include the losses generated
by eddy current losses [11].

It is possible to analyze each of the eight switching states as a separate
subcircuit and to develop the corresponding average model as it is commonly
done for DC–DC converters [12]. Fortunately, common-mode voltage vnN can be
utilized to simplify derivation of the average model. Voltage over each phase
inductor can be defined in both switching states of a phase-leg to find out the
inductor current derivatives. The inductor voltage can be obtained by utilizing
Kirchhoff’s voltage law when the corresponding phase-leg is connected either to
the P or N terminal of the power stage.

Voltage over inductor in phase i i� � a; b; c� can be given as

PvLi � vin � �rds � rL�iLi � vin � vnN;

when phase-leg i is connected to DC terminal P, and as

NvLi � ��rds � rL�iLi � vin � vnN;

when phase-leg i is connected to DC terminal N.
Average voltage over the inductance in phase i can be obtained by averaging the

inductor voltage equations over one switching cycle that corresponds to one
period of triangular waveform of the SPWM. The derivatives of averaged inductor
currents can be expressed as

d iLi 1h i � d h i � r h i � v � h ii h i v ; (12.2)i vin eq Li in nNdt L

where ohmic losses of switches and inductors are lumped together as an
equivalent parasitic resistance req.

Average three-phase inductor current derivatives can be represented using
vector notation as

h i h i vh i vh iiLa dA iLa an nNd 1h i � ? vin �h i req h i vh i vh i : (12.3)iLb dB iLb bn nNdt Lh i h i vh i vh iiLc dC iLc cn nN
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The three-phase variables can be given in stationary reference frame by space
vectors by multiplying the equation from the left-hand side by the Clarke’s
transformation matrix Tαβ as

d
dt

Tαβ

iLah i
iLbh i
iLch i

� 1
L

Tαβ

dA

dB

dC

? vinh i � req ?Tαβ

iLah i
iLbh i
iLch i

�Tαβ

vanh i
vbnh i
vcnh i

� Tαβ

vnNh i
vnNh i
vnNh i

: (12.4)

The three-phase variables can be represented in the stationary reference frame (or
αβ-domain) as

d
dt

iLαh i
iLβ
iL0h i

� 1
L

dα
dβ
d0

? vinh i � req ?

iLαh i
iLβ
iL0h i

�
vαnh i
vβn

v0nh i
�

0
0
vnNh i

:

(12.5)

The average common-mode voltage h i affects only the DC component ofvnN

inductor current that can be easily proven by applying Clarke’s transformation to

the vector h i vnN h i T
vnN h i vnN . There is no path for zero sequence inductor

current h i in the three-wire converter. Therefore, the zero sequence compoiL0

nents iL0 , d0, h i, and vnN can be neglected.h i v0n h i
The derivative of inductor current can be represented in the αβ-domain by a

rotating space vector as in Eq. (12.6), that is, the variables are simply written by
using complex notation as, xα � jxβ � xαβ . The subscript o is used to denote that
the grid voltage space vector represents the voltage at the output terminals of the
inverter power stage.

L h i 1d iαβ

dαβ vin req iαβ αβ� � � v : (12.6)L odt L L L

A space vector in the αβ-domain can be given in the dq-domain by multiplying the
space vector with a rotating unit vector according to Eq. (12.7). The angular grid
frequency ωs is assumed to remain constant.

αβ � dq jθs� �t dq jωstx x ? e � x ? e : (12.7)

According to the above relation, the derivative of inductor current can be given in
the dq-domain as

idq jωstd ? eL h i 1
ddq jωst vin req idq jωst � dq jωst� ? e � ? e v ? e : (12.8)L odt L L L

jωstBy applying the product rule on the left-hand side of the equation, dividing by e
and by rearranging, the inductor current can be given in the dq-domain as shown
in Eq. (12.9). The inductor current d- and q-components are coupled by the term
jωs, which is why usually decoupling gains in the current control are used, as will
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be explained in more detail in Chapter 13.

idqd L vh i r 1� eqidq idqddq in dq� � jωs v : (12.9)L L odt L L L

The d- and q-components can be written separately and the average model of the
voltage-fed inverter can be given as in Eqs. (12.10)–(12.14). The average model
can be used as a fast simulation tool to evaluate the stability and performance of,
for example, current controllers prior to actual laboratory tests. However, the
model is not suitable for simulations where high-frequency phenomena, such as
switching ripple, are of interest.

d iLd 1h i � h i ωsL iLq � r h i vi � h i : (12.10)dd vin � eq Ld oddt L

d i 1Lq � d v � h i � rh i L i v : (12.11)q in ωs Ld eq iLq oqdt L
3

iin �h i h i d : (12.12)dd iLd � q iLq2
iod iLd (12.13)h i � h i:

� : (12.14)ioq iLq

An equivalent circuit diagram can be depicted based on the average model as
shown in Figure 12.4. The inverter has one DC input port and two output ports
that are often referred as the d and q-channels in the literature [10,13]. It is
possible to approximate the inverter dynamics by neglecting the q-channel
dynamics that gives good approximations at unity power factor [13]. However,
control functions, such as grid synchronization, affect only the q-channel
dynamics and should be analyzed carefully [14].

Steady-state operating point can be solved in the dq-domain by setting the
derivative terms equal to zero and by substituting all variables with their
corresponding steady-state values, that is, using uppercase letters. The steady-
state operating point is as given in Eqs. (12.15)–(12.19). It should be noted that the
steady-state values of inductor current d and q-components are the reference

Figure 12.4 Equivalent linearized circuit diagram of voltage-fed inverter in the d–q domain.
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values of output currents that are selected based on required real and reactive
power.

ILd � I∗ (12.15)od:

ILq � I∗ : (12.16)oq

V od � reqILd � ωsLILqDd � : (12.17)
V in

V oq � reqILq � ωsLILdDq � : (12.18)
V in

3
: (12.19)I in � DdILd � DqILq2

12.2.2 Linearized State-Space and Open-Loop Dynamics

The average model can be linearized at the steady-state operating point by using
the first-order expansion of the Taylor series. In other words, the average model is
linearized by solving the first-order partial derivatives in respect to each state and
input variable. The linearized state-space of the voltage-fed inverter can be given
as in Eqs. (12.20)–(12.24).

d̂iLd req Dd 1 V in^ ^ ^� � iLd � ωsiLq � v̂in � v̂od � dd: (12.20)
dt L L L L

d̂iLq req Dq 1 V in^ ^ ^� �ωsiLd � iLq � v̂in � v̂oq � dq: (12.21)
dt L L L L

3Dd 3Dq 3ILd 3ILq^ ^ ^ ^ ^iin � iLd � iLq � dd � dq: (12.22)
2 2 2 2

îod � îLd: (12.23)

îoq � îLq: (12.24)

Input, output, and state variables can be collected in vectors u, y, x and constant
terms in matrices A, B, C, and D as shown in Eqs. (12.25) and (12.26).

A
x x

req� ωs^ ^d iLd iLdL� ?req^ ^dt iLq iLq�ωs �
L

B

Dd 1 V in� 0 0
L L L� ?
Dq 1 V in0 � 0
L L L

u

v̂in

v̂od

v̂oq (12.25)

d̂d

d̂q
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u

vin^C Dy

iin

iod

ioq

^

^

^

x3Dd 3Dq 3ILd 3ILq

^
vod

v̂oq

^

^

^

dd

dq

(12.26)

0 0 0
iLd� ? �
iLq^

2 2 2 2
?1 0 0 0 0 0 0

0 1 0 0 0 0 0

The state-space can be transformed into the frequency domain by replacing the
derivative operator with Laplace variable s that allows solving the transfer
functions according to Eq. (12.27).

G � C sI � A� ��1B �D: (12.27)

^

^

^

^

^

Transfer functions of the voltage-fed inverter should be named according to their
function as in Eq. (12.28) where subscript extension -o is used to denote open-
loop transfer functions. The transfer functions correspond to the Y-parameters
presentation [15]. An example of MATLAB-code for solving the open-loop
transfer functions is illustrated in Figure 12.5.

vin

vod

voq

dd

dq

îin

îod

îoq

Y in-o Toid-o Toiq-o Gcid-o Gciq-o

� Giod-o �Y odd-o �Y oqd-o Gcodd-o Gcoqd-o (12.28)?

Gioq-o �Y odq-o �Y oqq-o Gcodq-o Gcoqq-o

Transfer functions of the same type, that is, control-to-input-current or input-to
output-current, can be collected into two-by-two submatrices, that is, transfer
matrices as demonstrated in Eq. (12.29) that allows writing the dynamics as an
equivalent MIMO system as in Eq. (12.30). Such approach enables modeling the
cross-coupling dynamics since the model does not have to be simplified by
neglecting any dynamics, such as cross-coupling transfer functions between d and
q-components. It should be noted that the second element of input current vector
îin is zero since the input terminal is a DC source. However, the input current of
an active rectifier is two-dimensional in which case the input current vector
would be defined using d and q-components of a three-phase current, as
discussed in Chapter 17.

^

^

^

^

^

vin

Y in-o 0 Toid-o Toiq-o Gcid-o Gciq-o

vod

voq

dd

dq

^

^

^

iin

0 0 0 0 0 00

iod

ioq

� ?
Giod-o 0 Y odd-o Y oqd-o Gcodd-o Gcoqd-o

Gioq-o 0 Y odq-o Y oqq-o Gcodq-o Gcoqq-o

(12.29)

0
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Figure 12.5 Example of MATLAB code for solving the open-loop transfer functions.

v̂in
^ Yin-o Toi-o Gci-oiin � ? ^ (12.30)vo^ Gio-o �Yo-o Gco-oio

d̂

A three-port model can be illustrated based on Eq. (12.29) which has one DC input
port and two AC output ports, that is, the d and q-channels as shown in Figure 12.6.
Such a linear circuit may not be the most elegant circuit, because the cross
coupling admittance terms Y oqd-o and Y odq-o have to be modeled as controllable
current sources that contradicts with their physical interpretation. However, the
three-port model is a useful representation in cases when cross-coupling transfer
functions can be neglected. The three-port model is used in Chapter 14 to evaluate
the dynamic effect of output AC capacitor and in Chapter 16 to evaluate the
dynamic effect of load impedance, such as finite grid impedance.
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Figure 12.6 Linear three-port model of a voltage-fed inverter. a) Input DC port. b) Output d and
q-channels.

A two-port model is shown in Figure 12.7 based on Eq. (12.30) which resembles
the small-signal linear equivalent circuit of a DC–DC converter. The main
difference with conventional linear two-port model is that system inputs and
outputs are defined as two-dimensional vectors and the transfer functions are
represented by two-by-two transfer matrices. Both input and output ports are
defined as similar to Norton’s equivalent circuit. The two-port model is useful in
determining source and load effects, for example, to evaluate the effect of grid
impedance or upstream DC–DC converter to control dynamics. Moreover, the
cross-coupling transfer functions can be included in the dynamics.

Figure 12.7 Two-port model of voltage-fed inverter.
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Figure 12.8 Full-order (a) input and (b) output dynamics of the voltage-fed inverter at open
loop.

12.2.3 Control Block Diagrams of Voltage-Fed Inverter

Control block diagrams representing the input and output dynamics of a voltage-
fed inverter at open loop can be depicted in Figure 12.8. Control block diagrams
resemble those that are conventionally used to present dynamics of a DC–DC
converter. Solving the closed-loop dynamics requires careful application of
matrix algebra and, thus, cannot be easily seen from the control block diagram,
as in the case of a DC–DC converter. Controller transfer functions, sensing gains,
and feedforward gains can be added in the open-loop control block diagrams to
solve the dynamic effect of various control schemes, feedforward loops, and grid
synchronization.

The dynamic model can be simplified to reduce the order of transfer functions
to reduce computational burden and to obtain results that are easier to interpret.
In that case, input dynamics are assumed to be dominated by transfer functions
related to d-components and all cross-couplings are neglected in the output
dynamics. Such assumptions yield control block diagrams according to
Figure 12.9 where the output dynamics are shown as two independent block
diagrams. The block diagram can be thought as the linearized version of the
equivalent circuit diagram in Figure 12.4, that is, one input port and two
decoupled output ports.

12.2.4 Verification of Open-Loop Model

A dynamic model may lead to wrong conclusions in, for example, determining
control system stability, if its accuracy has not been verified. The validity of the
open-loop model should be verified by measuring all transfer functions from a
prototype and by ensuring that the measured frequency responses match the
analytical model with sufficient accuracy. However, in real applications, the DC
source affects the transfer functions due to source effect and the three-phase AC
system affects the dynamics through load effect. Therefore, it is often impossible
to verify the unterminated model by other means than a circuit simulator.
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Figure 12.9 Simplified (a) input and (b) output dynamics at open loop.

The open-loop model can be verified by extracting the frequency responses
from a circuit simulator or other similar software that can be used to implement a
switching model of a three-phase inverter. The switching model was imple
mented using MATLAB/Simulink and the SimScape component library that can
be used for simulating electrical systems. The frequency responses were extracted
by using a Pseudo-Random Binary Sequences method (PRBS). Discussing the
implementation of the measurement method is out of the scope of this book but
the reader can familiarize with the method by going through Ref. [16].

Switching model of a three-phase voltage-fed inverter was implemented in
MATLAB/Simulink where the PRBS method was used to extract the frequency
responses that correspond to transfer functions solved earlier in Figure 12.5. The
parameters of the simulation model are as given in Table 12.1. The angle θ that is
used in the dq-transformations was generated inside the simulator by integrating
the grid frequency ωs. The grid voltage q-component steady-state value V q was
set to zero. Therefore, the inverter duty ratios are perfectly synchronized with the
grid voltages since the dynamic model does not yet include the effect of grid
synchronization (Figure 12.10).

Figure 12.11 shows the measured control-to-output-current transfer function
Gcod-o that was obtained by making the small-signal perturbation to duty ratio

Table 12.1 Parameters of the voltage-fed inverter simulation model.

Pin 5 kW V in 700 V V od 325 V

I∗od 10 A I∗oq 0 A ωs 2π ? 50 rad=s

L 5 mH rL � rsw 100 mΩ f sw 20 kHz
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Figure 12.10 Principle of simulation model implemented using Simulink.

Figure 12.11 Output control dynamics of voltage-fed inverter (Gcodd-o and Gcoqq-o).

d-component dd and measuring the frequency response from the duty ratio dd

to output current d-component iLd. The control-to-output-current transfer
function Gcoqq-o has identical shape and overlaps with Gcodd-o in the figure.
Therefore, identical controller transfer functions can be used to regulate both
currents, that is, d and q-component (Figure 12.12).

Figure 12.13 shows all of the four components of the inverter open-loop output
admittance. Of course, the inverter is not intended for open-loop operation and
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Figure 12.12 Open-loop input admittance Y in-o of voltage-fed inverter.

Figure 12.13 Components of the open-loop output admittance.



50712.3 Dynamic Model of Current-Fed Inverter

current control is usually applied to control the power factor. However, the
extracted admittances prove that the small-signal is correct and, thus, can be
utilized further to examine how different control functions affect the shape of
inverter input and output admittances.

12.3 Dynamic Model of Current-Fed Inverter

Current-fed inverters are found in applications where the source is physically a
current source such as a photovoltaic generator. Irradiance from the sun excites
electrons inside the depletion layer of a pn-junction and creates a continuous DC
current. Moreover, from the control theory point of view, the inverter has to be
analyzed as a current-fed system when the DC link voltage is controlled. DC voltage
control is mandatory for stable operation in grid-connected inverters [17,18] and to
guarantee that the input voltage is high enough compared to the grid voltage
amplitude to prevent over-modulation that leads to distorted grid currents.

12.3.1 Average Model of Current-Fed Inverter

Multilevel inverters, for example, three-level NPC, are commonly used in grid-
connected photovoltaic applications. Moreover, the inverter usually utilizes an
LCL or LC-type output filter. However, in this section the analysis is carried out
for a two-level inverter with L-type output filter to simplify analysis. However,
the same modeling methods can be applied to three-level inverters. Power stage
of a current-fed inverter with L-type output filter is depicted in Figure 12.14.
The power stage has an additional input capacitor that is required for interfacing
the inverter with a current source [19]. Otherwise, there could be no control
over the DC-side voltage. Moreover, the current drawn from the photovoltaic
generator has to be continuous. There has to be a path for DC current during
zero switching states of the inverter bridge, that is, when all upper switches or all
lower switches are on simultaneously. Parasitic resistance of the capacitor is
usually very small as several capacitors are connected in parallel and is neglected
in the analysis.

Figure 12.14 Three-phase current-fed inverter.
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Figure 12.15 Equivalent switching circuit of a current-fed inverter.

The switch matrix can be approximated using the SPDT switches with parasitic
resistive elements similarly as for the voltage-fed inverter. The equivalent switch
ing circuit is as depicted in Figure 12.15.

The averaged inductor currents can be solved from Figure 12.15 by utilizing the
common-mode voltage, and are the same as for the voltage-fed inverter. However, the
input voltage vin is defined as an output variable. Therefore, it has to be represented by
using input and state variables for correct formulation of the state-space model. The
input voltage equals the voltage over the DC capacitor, that is, vin � vC.

The average input voltage is substituted back in Eqs. (12.10) and (12.11) that allows
representing the three-phase inductor currents in the dq-domain, as in Eqs. (12.31)
and (12.32). The average state-space can be completed by solving the capacitor
voltage derivate and noting that the inductor currents are the output currents.

d iLd 1h i � �r h i L i � d h i vv � h i : (12.31)eq iLd � ωs Lq d C oddt L

d i 1Lq � �ωsL ih i � r � d h i v : (12.32)Ld eq iLq q vC � oqdt L

d vC 1h i 3� iin �h i h i d : (12.33)dd iLd � q iLqdt C 2

v � h i: (12.34)h i v

i � h i;
in C

h i i � : (12.35)od Ld ioq iLq

Average model can be depicted in the d–q domain as an equivalent circuit
diagram as shown in Figure 12.16.

Steady-state operating point of current-fed inverter can be solved from the
average model by setting derivative terms equal to zero and is shown in
Eqs. (12.36)–(12.40). The most straightforward way of solving the steady
state is to first solve duty ratio q-component Dq from the inductor current q-
component from Eq. (12.32) that yields Eq. (12.40). Duty ratio q-component is
substituted in Eq. (12.33) allowing the output current d-component to be solved
as given in Eq. (12.39). Finally, the current d-component ILd is substituted in
Eq. (12.31) yielding a second-order polynomial as a function of duty ratio
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Figure 12.16 Equivalent linearized circuit diagram of current-fed inverter in the d–q domain.

d-component Dd as given in Eq. (12.38).

VC � V in: (12.36)

ILq � I∗Lq: (12.37)

V 2
inD

2
d � V in 2ωsLI

∗
Lq � V od Dd

� r2
eq � ω2

sL
2 I∗2

Lq � req V oqI
∗
Lq � 2

3
V inI in � ωsLV odI

∗
Lq � 0:

(12.38)

ILd � �2=3�V inI in � V oqI∗Lq � reqI∗2
Lq
: (12.39)

DdV in � ωsLI∗Lq

Lq � ωsLILdV oq � reqI∗
Dq � : (12.40)

V in

It should be mentioned that steady-state value of output current q-component ILq

does not depend on the processed power, that is, power from input PV source,
and can be selected freely as long as the modulation index of the inverter does not

exceed unity, that is, Dd
2 � D2 < 0:5. Therefore, its steady-state value is equal toq

its reference value that is denoted by an asterisk. Current-fed inverters, such as
photovoltaic inverters, often operate at unity power factor and, therefore, the
reference of output current q-component I∗ is set to zero. However, theLq

reference can be nonzero to compensate reactive power drawn by the LCL-filter.
Additionally, the inverter can be used to support grid voltage by injecting or
drawing reactive power from the grid. The steady-state value of output voltage q-
component V oq is zero due to phase-locked loop as will be discussed later.
Operation at unity power factor simplifies the steady-state solution because the
effect of reactive current component ILq can be neglected. Steady-state operating
point at unity power factor can be defined as in Eqs. (12.41)–(12.44).

ILq � I∗Lq � 0 A: (12.41)

Dd � V od � V od
2 � �8=3�V inI inreq

2V in
: (12.42)
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2 I inILd � : (12.43)
3Dd

ωsLILdDq � : (12.44)
V in

12.3.2 Linearized Model and Open-Loop Dynamics

Average model of current-fed inverter is linearized at the predefined steady-state
operating point yielding the linearized state-space as given in Eqs. (12.45)–(12.49).

d̂iLd Dd 1 VCreq d̂ :diLd � ωsiLq � vC � vod �dt L C L L
^^^^ (12.45)

d̂iLq Dq 1 VCreq ^

^

dq:

^dvC iLd � iLq � iin � dd �dt 2 C 2 C C 2 C 2 C
^^^

� �ωsiLd � iLq � vC �
dt L L L

^^^ � (12.46)v̂oq L
Dq ILq3Dd 3 1 3 ILd 3

d̂q:

vin � vC:

ioq^

Input, output, and state variables are collected in vectors , and and constantu y x,
A B C, Dterms are collected in matrices and as shown in Eqs. (12.50) and (12.51)., ,

A

^^

(12.47)

(12.48)

iod � îLd;^ � îLq: (12.49)

^

^

^

^

x

^

^

x req Dd� ωs
iLd iLd

iLq iLq

vC vC

req Dq� �ωs �d
dt

L L

?
L L

3Dd 3Dq� � 0
2 C 2 C

^

^

^

^

^

u
B

iin

vod

voq

dd

dq

:

1 V in0 � 0 0
L L

1 V in� 0 0 � 0 (12.50)?
L L

1 3 ILd 3 ILq0 0 � �
C 2 C 2 C

^

^

^

^

^

u

vin

vod

voq

dd

dq

^

^

^

^

^

^

y C x D

vin iLd

iod iLq

ioq vC

0 0 1 0 0 0 0 0

� �1 0 0 0 0 0 0 0 (12.51)? ?

0 1 0 0 0 0 0 0
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Open-loop transfer functions can be solved symbolically or numerically in the
frequency domain according to Eq. (12.27). The transfer functions are named
after their physical interpretation as shown in Eq. (12.52).

iin^GH

Zin-o Toid-o Toiq-o Gcid-o Gciq-ov̂in

îod

îoq

� Giod-o �Y odd-o �Y oqd-o ?Gcodd-o Gcoqd-o

v̂od

^

^

v̂oq

dd

dq

�Y odq-o �Y oqq-oGioq-o Gcodq-o Gcoqq-o

(12.52)

Transfer functions can be collected in submatrices as in Eq. (12.53) and finally the
open-loop dynamics of current-fed inverter can be written by accounting the
multivariable nature of the inverter as in Eq. (12.54).

^

^

^

^

^

iin

Zin-o 0 0Toid-o Toiq-o Gcid-o Gciq-o

vod

voq

dd

dq

vin

0 0 0 0 0 0

iod

ioq

^

^

^

� ?
Giod-o 0 Y odd-o Y oqd-o Gcodd-o Gcoqd-o

Gioq-o 0 Y odq-o Y oqq-o Gcodq-o Gcoqq-o

(12.53)

� Zin-o Toi-o Gci-o

Gio-o �Yo-o Gco-o
?

îin
v̂o

d̂

v̂in

îo
(12.54)

The linear three-port model of current-fed inverter can be depicted as in
Figure 12.17. The cross-coupling admittances are modeled as controllable current
sinks.

Figure 12.17 Linear three-port model of current-fed inverter.
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Figure 12.18 Two-port model of current-fed inverter.

Figure 12.19 Full-order (a) input and (b) output dynamics of the current-fed inverter at open
loop.

The linear two-port model of current-fed inverter is depicted in Figure 12.18.
The output port is defined as a Norton’s equivalent circuit similar to the voltage-
fed inverter. However, the input is defined as the Thevenin’s equivalent circuit
since the source is of current type.

12.3.3 Control Block Diagrams of Current-Fed Inverter

Control block diagrams that represent the input and output dynamics of the
inverter at open loop can be depicted as in Figure 12.19, where the transfer
functions are equivalent to two-by-two matrices. Similarly, to voltage-fed
inverter, a reduced-order model can be developed where the input dynamics
are assumed to be dominated by the d-components and cross-coupling transfer
functions are neglected. The reduced-order control block diagrams are as shown
in Figure 12.20.

12.3.4 Verification of Open-Loop Model

The open-loop model was verified by extracting the frequency responses from a
current-fed inverter that was implemented in MATLAB/Simulink using the
SimScape library components, according to Figure 12.21. There is no grid
synchronization algorithm in the model as it will be included later in
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Figure 12.20 Reduced-order (a) input and (b) output dynamics at open loop.

Chapter 13. Therefore, the angle of the grid voltages θ is assumed to be a known
variable.

The parameters of the current-fed inverter are collected in Table 12.2 that are
the same as for one of the experimental setups introduced later in the book.

Figure 12.21 Principle of simulation model implemented using Simulink.
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Table 12.2 Parameters of the current-fed inverter simulation model.

Pin 1.5 kW V in 571.9 V V od 2
p

? 120 V

I in 2.69 A I∗oq 0 A ωs 2π ? 60 rad=s

L 4 mH rL � rsw 100 mΩ f sw 20 kHz

C 1.95 mF

Figure 12.22 shows the control-to-input transfer function Gcid-o that is
extracted from the switching model and the predicted frequency response given
by the analytical model according to Eq. (12.52). The transfer function given by
the small-signal model corresponds accurately with the extracted frequency
response and, therefore, the model is correctly formulated.

Figure 12.23 shows the control-to-output-current transfer functions Gcodd-o

and Gcoqq-o, which are later used in tuning of output current control loops. The
two transfer functions have totally different low-frequency behavior when
compared to voltage-fed inverter, where they had identical shape. This is
due to a right-half plane zero in Gcodd-o that will cause a control design
constraint for the DC voltage control, as will be discussed in more detail in
Chapter 13.

Figure 12.24 shows the input impedance at open loop. The impedance
resembles a capacitor that is expected due to large DC capacitance of
1.95 mF. However, the impedance also includes a resonance that is caused by
the AC output filter. Therefore, the input impedance should not be approximated
using a simple capacitor impedance.

Figure 12.22 Control-to-input-voltage transfer function Gcid-o.
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Figure 12.23 Control-to-output-current transfer functions (Gcodd-o and Gcoqq-o).

Figure 12.24 Input impedance Z in-o of current-fed inverter.

12.4 Source-Affected Dynamics of Current-Fed Inverter

Current-fed inverter is usually connected to a source that has finite output
impedance, such as, photovoltaic generator [20–22], upstream DC–DC con
verter [23–25], EMI-filter, long DC cable [26], or a passive or an active rectifier in
wind power applications. The source impedance may affect the inverter control
system performance if it is not taken into account properly [18,27]. The inverter
control system should be designed with the knowledge on impedance character
istics of the source as early as possible to prevent instabilities imposed by, for
example, resonances in the source impedance. Measuring the source impedance
is an easy task since one does only have to measure DC signals.
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Figure 12.25 Linear network equivalent with nonideal source subsystem.

In this section, a method to include the effect of source impedance to inverter
open-loop dynamics is presented. The method can be easily adapted to voltage-
fed inverters or current-fed inverters with LCL-filter. The linear network
equivalent of the current-fed inverter with nonideal source is depicted in
Figure 12.25. The H-parameter model is used to represent the source dynamics
to develop general equations for solving the source effect. The source can be
considered as an input filter, upstream DC–DC converter, long DC cabling, a
photovoltaic generator, and so on.

One is most often interested in how the source affects the control dynamics of
the inverter or output admittance of the inverter. In most cases, the inverter
controls its DC-side voltage. Therefore, the output variables of the system should
be selected as the input voltage of inverter power stage v̂in and the grid current îo.
Input variables are selected as the input current of the source system îinS, load
voltage v̂o, and the duty ratio d̂. Selecting the output variables in this manner
produces transfer functions according to Eq. (12.55) where superscript “S”
denotes that the corresponding transfer matrix is affected by dynamics of the
source. Note that transfer function GS

in-o does not represent impedance, because
the current and voltage are not defined at the same terminal.

îinS
GS TS GSv̂in in-o oi-o ci-o� (12.55)v̂o^ GS �YS GSio io-o o-o co-o

d̂

Current at the interface between the source system and the inverter îx can be
given according to Figure 12.25 and Eq. (12.56).

^ ^ix � GioSiinS � YoSv̂in: (12.56)

Source-affected dynamics can be formulated by substituting îx as the input
current of the inverter power stage îin in Eq. (12.54). The input dynamics can
be given using transfer matrices as in Eqs. (12.57)–(12.59).

GS
in-o � I � Zin-oYoS� ��1Zin-oGioS: (12.57)

TS
oi-o � I � Zin-oYoS� ��1Toi-o: (12.58)

GS
ci-o � I � Zin-oYoS� ��1Gci-o: (12.59)
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The source-affected output dynamics can be given as in Eqs. (12.60)–(12.62).

GS
io-o � Gio-oGioS � Gio-oYoS I � Zin-oYoS� ��1Zin-oGioS: (12.60)

YS
o-o � Yo-o � Gio-oYoS I � Zin-oYoS� ��1Toi-o: (12.61)

GS
co-o � Gco-o � Gio-oYoS I � Zin-oYoS� ��1Gci-o: (12.62)

The output variables should be selected as vinS and îo^ if the inverter employs an
input filter and controls the voltage preceding the input filter. Transfer functions
can be defined as in Eq. (12.63) while the output dynamics are the same as given in
Eqs. (12.60)–(12.62). Note that now the transfer function ZS representsin-o

vinS are defined at the same terminal.

iinS^

^impedance since current îinS and voltage

v̂inS

îo

ZS TS GS
in oi-o ci-o� (12.63)v̂o

d̂
GS �YS GS

io-o o-o co-o

Voltage of the source can be given as

vinS � ZinSiinS � ToiSvin:^^^ (12.64)

Input voltage of the inverter power stage ^

^^

vin can be given according to Eq. (12.55) as

vo d;

which is substituted in Eq. (12.64) to solve the source-affected input dynamics
defined on the first row of the matrix in Eq. (12.63). Source-affected input
dynamics can be given as in Eqs. (12.66)–(12.68).

ZS
in-o � ZinS � ToiS I � Zin-oYoS� ��1Zin-oGioS:

TS
oi-o � ToiS I � Zin-oYoS� ��1Toi-o:

GS
ci-o � ToiS I � Zin-oYoS� ��1Gci-o:

(12.66)

(12.67)

(12.68)

12.4.1 Source Effect: Photovoltaic Generator

A photovoltaic generator has nonlinear operating point-dependent terminal
characteristics [28]. A typical IV-curve of a photovoltaic generator (PVG) is
shown in Figure 12.26. The impedance of the PVG can be approximated by using
the operating point-dependent dynamic resistance as in Eq. (12.69). The value of
dynamic resistance equals the static resistance V PV=IPV at the maximum power
point (MPP). In the constant current region (CC), the generator has current
source-like properties and the dynamic resistance is large. In the constant voltage
region (CV), the behavior is the opposite, that is, the value of dynamic resistance is
small [20]. The operating point dependency of the value of dynamic resistance is
summarized in Eq. (12.70).

vin � ZS iinS � TS
in oi-o
^^ � GS

ci-o (12.65)

dvpvrpv � � : (12.69)
dipv
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Figure 12.26 Typical IV-curve.

V PVrPV > ; V PV < VMPP;IPV

V PVrPV � ; V PV � VMPP; (12.70)
IPV

V PV

rPV �

rPV < ; V PV > VMPP;IPV

The source-affected control-to-output dynamics can be evaluated by solving the
source-affected control-to-output transfer function in Eq. (12.62). The output
admittance of the PV generator is equal to the inverse of dynamic resistance rPV

and can be formulated in matrix form as

��1�rPV 0 (12.71)YoS �
0 0

As an example, the source-affected control-to-output dynamics can be given as

GS GS
codd-o coqd-o

GS �co-o GS GS
codq-o coqq-o

��1 ��1Giod-oGcid-o�rPV Giod-oGciq-o�rPVGcodd-o � Gcoqd-o ���1 ��11 � Zin-o�rPV 1 � Zin-o�rPV� ��1 ��1Gioq-oGcid-o�rPV Gioq-oGciq-o�rPVGcodq-o � Gcoqq-o ���1 ��11 � Zin-o�rPV 1 � Zin-o�rPV

(12.72)

Model of the PVG was implemented in Simulink. The derivation of the model is
out of the scope of this book and the reader is urged to see the work carried out in
Ref. [29] for further studies. The PVG is operated in two different operating
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Figure 12.27 Limited-power operation at 10 kW.

Table 12.3 PVG operating points.

ICCR
PV 23.43 A ICVR

PV 18.63 A

VCCR
PV 426.7 V VCVR

PV 536.8 V

rCCR
PV 116Ω rCVR

PV 8.8Ω

points: at voltage less than the MPP and higher than the MPP. The output power
of PVG is 10 kW in both of these cases, as shown in Figure 12.27. Such operation
is required when the output power of PVG is limited by a limit power-tracking
algorithm [30]. The dynamic resistance of the PVG differs significantly between
the operating points and, therefore, the source effect should be considered
according to Eq. (12.72). The operating point values are given in Table 12.3.

Figure 12.28 shows the source-affected transfer function GS
codd-o solved using

Eq. (12.72) in both operating points. The high-frequency part of the transfer
function is not affected much by the dynamic resistance. However, the low-
frequency phase experiences a phase shift of 180° between the operating points in
the CC and CV regions. This indicates that a low-frequency zero must shift from
the right-half to the left-half of a complex plane.

The effect of dynamic resistance on inverter control dynamics can be explained
by solving the source-affected control-to-output-current transfer function GS

codd-o
in symbolic form. The parasitic resistances associated with the inverter are
neglected in order to simplify the result, that is, req is set equal to zero. The
transfer function can be given in symbolic form as in Eq. (12.73).

1V in I in 1
GS s s � =codd-o�req�0� � L C V in rpv

(12.73)
ω21 3 sD2

d � D2 � ω2s3 � s2 � s � :q srpvC 2LC rpvC
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Figure 12.28 Source-affected control-to-output-current transfer function GS
codd-o in two dif

ferent operating points of the PV generator.

The transfer function has a low-frequency zero given by Eq. (12.74) that depends
on the value of dynamic resistance. The zero can have either a positive or negative
value depending on the value of dynamic resistance.

1 I in 1
: (12.74)ωzero �

C V in rpv

The zero is located in the right-half of the complex plane when ωzero has a positive
value, that is, when dynamic resistance is larger in value than the ratio of PVG
voltage and current, as given in Eq. (12.75). In fact, this occurs only when the PVG
operates at voltages lower than the MPP. The RHP-zero imposes a control design
constraint for the DC voltage control, which is discussed in Chapter 13.

V PVωzero > 0; when rPV > : (12.75)
IPV

The zero shifts to the left-half of the complex-plane when its value becomes
negative, according to Eq. (12.76). Thus, the constraint related to control design
disappears when the PVG is operated at voltages higher than the MPP.

V PVωzero < 0; when rPV < : (12.76)
IPV

12.4.2 Source Effect: Experimental Validation

The source-affected small-signal model has been validated in the laboratory using
a scaled-down prototype setup. The setup is depicted in Figure 12.29 where the
PVS7000 PV emulator feeds a three-phase two-level inverter connected to a
three-phase grid emulator. The grid and PV emulators are operated at lowered
voltages. The parameters of the setup are summarized in Table 12.4.



52112.4 Source-Affected Dynamics of Current-Fed Inverter

Figure 12.29 Setup for measuring open-loop transfer functions.


Table 12.4 Parameters of the low-voltage experimental laboratory setup.


PMPP 180 W V in 30–84 V V od 10 V

Cdc 1.95 mF I∗oq 0 A ωs 2π ? 60 rad=s

L 5.2 mH rL � rsw 100 mΩ f sw 20 kHz

In the initial setup, an isolation transformer is connected between the inverter
and the grid emulator. However, for evaluating the source effect, the isolation
transformer was removed from the setup that allowed excluding the load effect.
As a tradeoff, the voltage levels needed to be lowered to mitigate common-mode
currents that may cause damage to the expensive laboratory equipment such as
the PV emulator. However, for the purpose of verifying the source-affected small-
signal model, the setup is justifiable.

Photovoltaic generator has current source-like properties at voltages lower
than the MPP, voltage source-like properties at voltages higher than the MPP, and
behaves as a constant power source at the MPP. Output impedance of the PV
generator depends on the operating point and environmental conditions and is
continuously changing in value. The impedance is characterized by the dynamic
resistance, internal capacitance of the generator, and possibly inductance and
resistance from the DC cabling. Figure 12.30 depicts the IV-curve of the PV
simulator that was used during validation of source-affected open-loop model.
“CCR” refers to constant current region and “CVR” to constant voltage region and
“MPP” marks the position of the maximum power point.

The output impedance of the PV emulator was measured by using a
frequency response analyzer. The small-signal excitation was made in the d
component of the duty ratio, while the inverter was operated at open loop.
Perturbing Dd affects the power drawn from the PV emulator terminals causing
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Figure 12.30 IV-curve of the photovoltaic emulator.

the current and voltage of the PV emulator to oscillate at the frequency of the
perturbation. The measured input current and voltage of the PV emulator were
fed to a frequency response analyzer (FRA) to measure the emulator output
impedance.

The measured output impedance of the PV emulator is shown in Figure 12.31
in three different operating points, that is, in the CC and CV regions and at the
MPP. In the CC region, the low-frequency magnitude of impedance corresponds
to 330 ohms, at the MPP 24.6 ohms, and 4.2 ohms in the CV region. The dynamic
behavior of the PV emulator corresponds to typical characteristics of a real PV
generator [21].

Figure 12.31 Measured output impedance of the photovoltaic emulator.
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Table 12.5 Operating point and approximated dynamic resistance values.

V in(V) Iin(A) rpv(Ω)

CC

MPP

CV

53.5

66.8

79.6

2.89

2.71

1.21

330

25

4

Operating point values and the approximate values of dynamic resistances that
are obtained from the measured impedances of Figure 12.31 are collected in
Table 12.5. The values are substituted in Eq. (12.72) to obtain the predicted
frequency response.

Figures 12.32 and 12.33 show the measured and predicted control-to-output
current transfer function GS in the CC and CV regions, respectively. Thecodd-o
predicted transfer functions match well with the measured frequency responses.
Moreover, the shifting of the low-frequency zero from RHP to LHP can be seen as
a 180° phase-flip between the frequency responses measured in the CC and CV
regions. In Figure 12.32, the low-frequency phase is close to 180° that implies the
transfer function has a RHP-zero. However, the phase of the transfer function
starts from zero when the PV emulator is operated in the CV region, which
implies that the low-frequency zero has shifted to the LHP.

A current-fed inverter employs a RHP-zero in its control dynamics that has to
be taken into account in the control design. However, a nonideal current source,
such as a PV generator, can effectively hide these problematic dynamics in certain
operating conditions. In the case of a photovoltaic inverter, the RHP-zero
disappears in the CV region that may produce false conclusions on the stability

Figure 12.32 Measured and predicted control-to-output-current transfer function GS
codd-o in CC

region.
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Figure 12.33 Measured and predicted control-to-output-current transfer function GS
codd-o in CV

region.

of control system, for example, if the control system is tested only in the CV
region and near the MPP.

12.5 Dynamic Model of Current-Fed Inverter with LCL-Filter

In this section, the dynamic model of a current-fed inverter with LCL-type output
filter at open loop is developed. The power stage is as shown in Figure 12.34.
Passive damping is realized by connecting resistors in series with the AC-side
capacitors. Parasitic resistances of AC-side capacitors are neglected. However,
their effect can be easily taken into account by increasing the value of damping
resistance. Damping is required to stabilize the current control loops and to
mitigate low impedance in inverter output impedance at the resonant frequency.
The model is developed by assuming passive damping. However, the open-loop

Figure 12.34 Current-fed inverter with LCL-type output filter.
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model can be easily developed without passive damping by simply replacing the
damping resistors with parasitic resistance of AC-capacitors or assuming ideal
capacitors, that is, resistances are equal to zero. Therefore, the model can be used
to evaluate dynamics of three-phase inverters with active damping [31–33].

12.5.1 Average Model of Current-Fed Inverter with LCL-Filter

Developing an average model for inverter with LCL filter follows the same principle
as previously for inverters with L-type output filter. However, the amount of state
variables (in the dq-domain) increases from four to ten as all capacitor voltages and
inductor currents are selected as state variables. The averaged inductor currents
and capacitor voltages for an arbitrary phase i can be defined as

d
iL1i � 1 � vC � � Rd�h i � Rdh i � hvCf� i � h i�;h i dih i rL1 � iL1i iL2i i vSNdt L1

(12.77)

d
iL2i � 1 �hvCf�ii � Rdh i � �rL2 � � iL2i � h i � vnS �;h i iL1i Rd h i vin h i

dt L2

(12.78)

d hvCf�ii � 1
iL1i � h i�:�h i iL2i (12.79)

dt Cf

Note that the voltage h i refers to average voltage in phase i, not the inputvin

voltage. The average input capacitor voltage h i is defined asvC

d h i � 1 �h i � h i � h i � h i�: (12.80)vC iin dA iL1a dB iL1b dC iL1cdt C

Output variables are defined as the DC-capacitor voltage and currents through
grid-side inductors as vin � h i; h i � h i. The common-mode voltagesh i vC io-i iL2i

vSN vnSh i and h idisappear in the d–q transformation and the average state-space can
be given in the dq-domain as

d 1
idq idq idq dqddq� h i � � Rd � jωsL1� � Rd ;vC rL1 �L1 L1 L2 � vCfdt L1

d 1
idq dq idq idq dq� v � Rd � �rL2 � Rd � jωsL2� v ;L2 L1 L2 oCfdt L2

d 1dq idq � idq dqv � � jωsCf v :L1 L2Cf Cfdt Cf

(12.81)

The averaged state-space can be expressed in the dq-domain as in Eqs. (12.82)–
(12.91).

d 1h i � h i � � �h i � � h i � h i :iL1d dd vC rL1 � Rd iL1d ωsL1 iL1q Rd iL2d vCfddt L1

(12.82)
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d 1 h i � h i � � � � Rd :iL1q � dq vC ωsL1 iL1d rL1 � Rd iL1q iL2q vCfqdt L1

(12.83)

d 1h i � h i � h i � � �h i � � h i :iL2d vCfd Rd iL1d rL2 � Rd iL2d ωsL2 iL2q voddt L2

(12.84)

d 1� � Rd � �rL2 � Rd� � h i � :iL2q iL1q iL2q voqvCfq ωsL2 iL2ddt L2

(12.85)

d 1h i � h i � h i � : (12.86)vCfd iL1d iL2d ωsCf vCfqdt Cf

d 1� � ωsCfh i : (12.87)vCfq iL1q � iL2q vCfddt Cf

d 1 3
vC �h i h i � ddh i � dq : (12.88)iin iL1d iL1qdt C 2

h i � h i: (12.89)vin vC

iod � h i: (12.90)h i iL2d

� : (12.91)ioq iL2q

Steady-state operating point can be solved from the average model. However,
obtaining the steady state symbolically is not useful since the formulas will be
very complicated. Therefore, to obtain the numerical value of the steady-state
operating point, computer program, such as MATLAB with Symbolic Toolbox,
can be utilized. An example MATLAB code for solving the steady-state
operating point numerically with parasitic resistances and with arbitrary grid
current q-component IL2q can be found in Appendix 12.A.

Deriving the exact steady-state operating point is quite laborious and requires a
long series of substitutions. However, a good estimate for the real steady-state
operating point can be derived easily for the case when all resistive losses are
neglected and grid-voltage q-component V oq is assumed zero. Moreover, the
inverter is assumed to operate at unity power factor where the grid-side current q-
component IL2q is equal to zero. The symbolic steady-state operating point
defined in Eqs. (12.92)–(12.96) gives values that are in most cases very close to the
actual steady state.

1 � � �2L1Cfωs V od
; (12.92)Dd �

V in

1 � 1 � ωs
2CfL2� � 1 � ωs

2CfL1� � �2=3�I in
Dq � ; (12.93)

ωsCfV od

2 DqIL1d � I in � ωsCfV od; IL1q � ωsCfV od; (12.94)
3Dd Dd
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1
IL1d; IL2q � 0; (12.95)

1 � � �2CfL2
IL2d �

ωs

1 IL2d � IL1dVCfd � IL1q; VCfq � ; VC � V in: (12.96)
ωsCf ωsCf

12.5.2 Linearized State-Space and Open-Loop Dynamics

The linearized state-space can be developed by linearizing the average model in
Eq. (12.91) in the predefined steady-state operating point. Inverter-side inductor
currents are often controlled instead of grid-side currents. Therefore, it is useful
to find out transfer functions from input variables to currents of the inverter-side
inductors. The vector containing output variables is defined as

T
v̂in iL1d iL1q iL2d iL2q

Linearized state-space can be given as

^

rL1 � Rd Rd 1 Dd� ωs 0 � 0

^

L1 L1 L1 L1

rL1 � Rd Rd 1 Dq

^

iL1d

iL1q

^

iL2d

iL2q

vCfd

^

^

^

^

^

y � (12.97):

?

�ωs � 0 0 îL1d

îL1q

îL2d

îL2q

v̂Cfd

v̂Cfq

v̂C

L1 L1 L1 L1

Rd rL2 � Rd 1
0 � ωs 0 0

L2 L2 L2

d Rd rL2 � Rd 1� 0 �ωs � 0 0
dt L2 L2 L2

1 1
0 � 0 0 ωs 0

Cf CfvCfq^

v̂C 1 1 �ωs 0 00 0
Cf Cf

3Dd 3Dq� � 0 0 0 0 0
2C 2C

V in0 0 0 0
L1

V in0 0 0 0
îin

v̂od

v̂oq

d̂d

d̂q

L1

1
0 � 0 0 0

L2� ?
1

0 0 � 0 0
L2

:

0 0 0 0 0

0 0 0 0 0

1
C

0 0 � 3IL1d

2C
� 3IL1q

2C
(12.98)
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0 0 0 0 0 0 1

îL1d

îL1q

îL2d

îL2q

v̂Cfd

v̂Cfq

v̂C

îin

v̂od

v̂oq

v̂in

îL1d

îL1q

îL2d

îL2q

1 0 0 0 0 0 0

� � 0 ?0 1 0 0 0 0 0 (12.99)?

d̂d

d̂q

0 0 1 0 0 0 0

0 0 0 1 0 0 0

Open-loop transfer functions can be obtained from the matrix G according to
(12.100) and written using transfer matrices as in (12.101).

v̂in îin Zin-o Toid-o Toiq-o îinGcid-o Gciq-o

îL1d v̂od GiLd-o ToLdd-o ToLqd-o v̂odGcLdd-o GcLqd-o

îL1q � v̂oqG ? � GiLq-o ToLdq-o ToLqq-o v̂oqGcLdq-o GcLqq-o ?

îL2d d̂d Giod-o �Y odd-o �Y d̂doqd-o Gcodd-o Gcoqd-o

îL2q d̂q Gioq-o �Y odq-o �Y d̂qoqq-o Gcodq-o Gcoqq-o

(12.100)

v̂in

îL1

îo
�

Zin-o Toi-o Gci-o

GiL-o ToL-o GcL-o

Gio-o �Yo-o Gco-o

?

îin
v̂o

d̂
(12.101)

12.6 Summary

Three-phase inverters are essential components in modern power systems where
grid-connected renewable energy plays an important role. Inverters usually
control various electrical parameters such as their output currents and input
voltage. Moreover, a phase-locked loop is often used as a means to synchronize
currents with grid voltages and to enable controllable power factor. The dynamic
behavior of the inverter should be known to enable deterministic control design
of the inverter control system.

This chapter presents the methods to obtain dynamic models of grid-connected
three-phase inverters in the frequency domain. The dynamic models are derived at
open loop with all control loops left open that allows evaluating the effects of
nonideal source and load systems on the dynamic behavior of the inverter.

Appendix 12.A

MATLAB-code for solving the steady-state operating point of a current-fed
inverter with LCL filter.
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%operating point %passive components

w = 2*pi*60; C1 = 1.95e-3;

Vod=sqrt(2)*120; L1=2.2e-3;

Voq = 0; rL1=100e-3;

Vin =414.3; Rd=1;

Iin = 6.577; Cf=25e-6;

IL2q = 0; L2=300e-6;

rL2=65e-3;

syms Dd Dq VCfd VCfq IL1d IL2d IL1q %define unknowns as symbolic variables

eq1=Dd*Vin-(rL1+Rd)*IL1d+w*L1*IL1q+Rd*IL2d-VCfd==0;

eq2=Dq*Vin-w*L1*IL1d-(rL1+Rd)*IL1q+Rd*IL2q-VCfq==0;

eq3=VCfd+Rd*IL1d-(rL2+Rd)*IL2d+w*L2*IL2q-Vod==0;

eq4=VCfq+Rd*IL1q-(rL2+Rd)*IL2q-w*L2*IL2d-Voq==0;

eq5=IL1d-IL2d+w*Cf*VCfq==0;

eq6=IL1q-IL2q-w*Cf*VCfd==0;

eq7=Iin-3/(2*)*(Dd*IL1d+Dq*IL1q)==0;

VCfd_1=solve(eq6,VCfd); %solve for capacitor voltages

VCfq_1=solve(eq5,VCfq);

eq1=subs(eq1,[VCfd VCfq],[VCfd_1 VCfq_1]); %substitute back in original

eq2=subs(eq2,[VCfd VCfq],[VCfd_1 VCfq_1]);

eq3=subs(eq3,[VCfd VCfq],[VCfd_1 VCfq_1]);

eq4=subs(eq4,[VCfd VCfq],[VCfd_1 VCfq_1]);

eq7=subs(eq7,[VCfd VCfq],[VCfd_1 VCfq_1]);

IL2d_mid = solve(eq3,IL2d); %intermediate result #1

eq1=subs(eq1,IL2d,IL2d_mid); %substitute back in original

eq2=subs(eq2,IL2d,IL2d_mid);

eq4=subs(eq4,IL2d,IL2d_mid);

eq7=subs(eq7,IL2d,IL2d_mid);

IL1q_mid=solve(eq4,IL1q); %intermediate result #2

eq1=subs(eq1,IL1q,IL1q_mid); %substitute back

eq2=subs(eq2,IL1q,IL1q_mid);

eq7=subs(eq7,IL1q,IL1q_mid);

Dq_solved=solve(eq2,Dq); %intermediate result #3

eq1=subs(eq1,Dq,Dq_solved);

eq7=subs(eq7,Dq,Dq_solved);

IL1d_solved=solve(eq7,IL1d); %intermediate result #4

IL1d_solved=simplify(IL1d_solved(1,1)); %change to (2,1) if req.

eq1=subs(eq1,IL1d,IL1d_solved); %substitute back

Dd_solved=double(solve(eq1,Dd)); %intermediate result #5

eq7 = subs(eq7,Dd,Dd_solved);

IL1d_solved=double(solve(eq7,IL1d));

IL1d_solved=IL1d_solved(1,1); %check which solution makes sense

%change to (2,1) if required

eq2=subs(eq2,IL1d,IL1d_solved); %substitute back

Dq_solved=double(solve(eq2,Dq)); %Dq numerical value

eq4=subs(eq4,IL1d_solved);

IL1q_solved=double(solve(eq4,IL1q)); %IL1q numerical value

eq3=subs(eq3,[IL1d IL1q],[IL1d_solved IL1q_solved]); %substitute back
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IL2d_solved=double(solve(eq3,IL2d)); %IL2d numerical value

eq6=subs(eq6,IL1q,IL1q_solved); %substitute back

VCfd_solved=double(solve(eq6,VCfd)); %VCfd numerical value

eq5=subs(eq5,[IL1d IL2d],[IL1d_solved IL2d_solved]); %substitute back

VCfq_solved=double(solve(eq5,VCfq)); %VCfq numerical value

Dd = double(Dd_solved); %final numerical values to be used

Dq = double(Dq_solved); %to characterize open-loop transfer

IL1d=double(IL1d_solved); %functions

IL1q=double(IL1q_solved);

IL2d=double(IL2d_solved);

VCfd=double(VCfd_solved);

VCfq=double(VCfq_solved);
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13

Control Design of Grid-Connected Three-Phase Inverters

13.1 Introduction

After studying this chapter, the reader should be familiar with the most common
inverter control functions. Moreover, the readers should be able to apply the
dynamic model and loop-shaping technique to design stable control loops. In this
chapter, the most fundamental control functions of a three-phase grid-connected
inverter are included in the dynamic model such as the AC current control,
phase-locked-loop, and DC voltage control. The concepts of decoupling gains and
proportional grid voltage feedforward are introduced. Moreover, the principle of
tuning the control loops by using loop-shaping technique is discussed and
demonstrated by several simulation and experimental examples.

The dynamic model of the SRF-PLL is developed and included in the closed-
loop model of three-phase inverters. The control design of SRF-PLL is discussed
and demonstrated by design examples from a simulator and a laboratory proto
type. The dynamic models of voltage- and current-fed inverters are used to tune
stable AC current control for voltage-fed inverter and cascaded control for
current-fed inverter. Selection of decoupling gains of the current controller
and proportional feedforward gains are discussed.

13.2 Synchronous Reference Frame Phase-Locked-Loop

Three-phase converter transforms DC electricity into three-phase AC when they
operate in inverter mode and from AC to DC when they operate in rectifier mode.
The produced three-phase AC current needs to have the same fundamental
frequency as the AC system in which the inverter is connected to. Power systems
are usually designed to operate at 50 or 60 Hz. Phase shift between AC currents
and voltages determines how much real and reactive power is transferred.
Therefore, the converter must have a method to determine the frequency and
phase angle of the AC voltages to synchronize its AC-side currents with the grid
voltages. However, there are numerous applications, such as ship and airplane
power systems, that may have fundamental frequencies of several hundreds of
hertz. Selecting the control parameters for grid synchronization depends on the

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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application. Therefore, there is no general guideline to tune the grid synchroni
zation algorithm that applies for every application.

A vast amount of different grid synchronization methods have been developed.
The simplest methods include zero-crossing detection algorithms that try to
identify the zero-crossing instant of the AC voltage signal [1]. The frequency of
the AC system can be calculated from the amount of time that separates two zero-
crossings. The method based on zero-crossing is easy to implement but has
several drawbacks. Detecting the zero-crossing is not easy if the AC voltage is
distorted or there is noise in the measurement circuits. Moreover, the bandwidth
of the synchronization control is limited below the fundamental frequency of the
AC system since the zero-crossing algorithm has to wait half of the fundamental
period for the zero-crossing before taking any action.

Phase-locked-loops have been conventionally used in signal processing and
telecommunication applications [2]. The phase angle that is required for the control
system (Park’s transformation) can be generated as a repeating ramp that increases
from zero to 2π radians and is synchronized with the AC voltage as illustrated in
Figure 13.1. Grid synchronization methods for three-phase converters are based on
the synchronous reference frame phase-locked loop or, in short, the SRF-PLL [3]. The
method is based on the amplitude-invariant Park’s transformation that is used to
sense the magnitude of grid voltage d and q-components. The control block
diagram of SRF-PLL is depicted in Figure 13.2. The SRF-PLL is composed of Park’s
transformation, PI controller, and an integrator. The PI-controller is often referred
to as a loop-filter due to the fact that its parameters affect how much measurement
noise and distortion due to phase unbalance affect the output angle of the PLL.

The SRF-PLL is a controlled process that adjusts the angle θ´ to have a value
that eliminates the error signal e. The sensed q-component of the grid voltage is
effectively controlled to zero by the PI controller. The output of the controller can
be interpreted as a frequency that is transformed into an angle by using an
integrator. The angle is fed back to the Park’s transformation, which accounts for
the name phase-locked-loop. The constant term ωff should be added as the initial
output of the PI-controller to speed up the start transient, that is, to avoid long

∗settling time at start-up. Reference of the sensed q-component vq is not usually
drawn in control diagrams since it is zero. However, it is included here to
underline the operating principle of SRF-PLL as a controlled process.

Alternatively, the control diagram can be depicted as in Figure 13.3 by
∗neglecting the reference value vq (since it is zero). In this case there is no

Figure 13.1 Synchronized angle of a
phase-locked loop.
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Figure 13.2 Control diagram of synchronous reference frame phase-locked loop.

need for the summation block that calculates the error signal and, thus, it can be
removed. It should be noted that the PLL of Figure 13.2 requires inverted control
signal to be used, whereas the PLL in Figure 13.3 does not. However, the purpose
of this subchapter is to emphasize the PLL as a controlled process. Therefore, the
control diagram in Figure 13.2 will be analyzed instead.

The SRF-PLL synchronizes its internal frequency and phase angle with the AC
system by controlling the sensed grid voltage q-component to zero. By the
definition of Park’s transformation, the angle is equal to zero at the peak of
the voltage at phase A, when balanced and symmetrical AC voltages are assumed.
The angle increases from zero to 2�π in radians at the rate of ω´, as illustrated in
Figure 13.1. Such waveform can be used to verify that the PLL is synchronized to
grid voltages before the inverter is turned on.

The SRF-PLL is not the optimal choice for grids that experience unbalance
between phase voltages or has distorted voltage waveforms. Sudden dips and
glitches in grid voltages can be amplified by the control loop that distorts the
generated AC currents. Therefore, bandwidth of the SRF-PLL is usually on the
order of few tens of hertz [3]. Moreover, bandwidth of the SRF-PLL should be
limited to minimize risk of impedance-based instability [4–6], as will be discussed
in Chapter 16.

More sophisticated synchronization methods have been developed which can
mitigate the effect of unbalance, such as the synchronous double reference frame
PLL and dual second-order generalized integrator PLL [7,8]. The principle is to
mitigate the effect of unbalance by synchronizing the PLL to the positive sequence
component of grid voltage space vector. However, all the abovementioned
methods are modifications of the basic SRF-PLL. It is important to understand

Figure 13.3 Simplified control diagram of SRF-PLL.
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the operating principle and the dynamic effect of SRF-PLL, since it allows
modeling and designing of the advanced synchronization methods.

13.2.1 Linearized Model of SRF-PLL

At steady state, the PLL frequency is equal to the fundamental frequency of the
grid voltages, and the angle difference between sensed and the actual grid voltage
space-vector is zero (since grid voltage q-component is zero). However, the angle
experiences small deviation around the steady-state operating point when con
sidering its small-signal behavior, because PLL’s bandwidth is not infinite.
Figure 13.4 shows the space-vector of grid voltage vg that is defined parallel
with the real-axis of the ideal grid reference frame. The sensed grid voltage space

´vector vg leads the grid voltage space-vector by a small angle difference θΔ.
Therefore, the reference frame in which controllers are implemented leads the
ideal grid reference frame by the same angle θΔ. Real and imaginary axes of the
control system reference frame are denoted using Re´ and Im´, respectively. It
should be noted that at steady state the reference frames have no phase shift in
relation to each other. However, to understand the principle of linearizing the
PLL, it is important to understand that in small-signal sense the phase difference
can have a nonzero value.

Three-phase variables that are transformed using Park’s transformation are
affected by the dynamics of the PLL. The space vector xs in Figure 13.4 can be
projected along the real and imaginary axes of the control system reference frame
Re´ and Im´. In other words, the sensed d and q-components that are transformed
into the control system reference frame can be given as a function of the angle
difference θΔ and the d and q-components tied to the ideal grid reference frame.
Developing the small-signal model of the PLL requires that the dependency
between the two reference frames is solved and linearized.

Let us consider an arbitrary space vector xs that has been defined in the original
reference frame tied to grid voltages. The space vector can be projected along the
real and imaginary axes of the control system reference frame. The space vector
xs´ can be given as a function of the angle θΔ and space vector in the grid reference
frame by utilizing the Euler’s formula as

s s -jθΔ sx
´ � x ? e � x ? �cos θΔ � j sin θΔ�

from which the real and imaginary components can be solved as

Figure 13.4 Grid voltage space vectors tied to two
synchronous reference frames.
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´x � xd cos θΔ � xq sin θΔ;d (13.1)´x � xq cos θΔ � xd sin θΔ:q

The relation in Eq. (13.1) is equivalent to the average relation between d and q-
components of the space vectors tied to grid reference frame and to control
system reference frame. Equation (13.1) can be linearized by solving the partial
derivatives and by developing the proper first-order partial derivatives as

´x xd � sin ΘΔxq

xd � cos ΘΔxq̂

^

^

^^ � cos ΘΔ � Xq cos ΘΔ � Xd sin ΘΔ δΔ;d (13.2)´ � Xq sin ΘΔ � Xd cos ΘΔsin ΘΔ δΔ:xq̂

The steady-state value of the angle difference ΘΔ is zero. Therefore, the
relationship simplifies to

xd � XqθΔ;

xq θΔ:

^

^

^

^

´ �xd̂ (13.3)´ � � Xdxq̂

´ ´The values of sensed d and q-components x̂d and x̂q in the control system
reference frame depend on the steady-state values of the corresponding d and

θ̂Δ
unknown. The subscript “Δ” shall be omitted hereafter and the small-signal angle
q-components Xd and Xq and on the small-signal variable which is still

is denoted simply by .̂ A linear control block diagram can be drawn to solve theθ

^

unknown small-signal angle. The PI-controller and the integrator in Figure 13.4
can be linearized and represented in the frequency domain. However, the Park’s
transformation has to be treated carefully. The sensed grid voltage q-component

^

´vq can be given as a function of the grid voltage q-component and the small-signal
angle by applying Eq. (13.3) as

vq θ:´ � � V d (13.4)v̂q

The linear control block diagram can be represented in the frequency domain as
shown in Figure 13.5. The small-signal angle can be solved from the control block
diagram and is given in Eq. (13.5) where the loop gain of PLL is defined in Eq. (13.6).
As can be seen in Eq. (13.6), the SRF-PLL (cf. Figure 13.2) is basically an inverting
and integrating process. Moreover, the gain of the process depends linearly on the
amplitude of the balanced three-phase voltages V d that is a well-known drawback
of the SRF-PLL [3,9]. It should be emphasized that the PLL becomes a noninverting
process when the control diagram is defined as in Figure 13.3.

Figure 13.5 Linearized control block diagram of the SRF-PLL.
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1 LPLL 1 LPLL ∗: (13.5)?
V d

? � v
1 � LPLL� q�1 � LPLL�V d

θ � vq

V d � GPIGp: (13.6)LPLL � GPI s

∗The reference of the PI controller vq is set to zero in order to synchronize the
control system reference frame with the grid voltage space-vector. The closed-
loop transfer function of the PLL can be given as in Eq. (13.7), which is obtained by

∗noting that the reference vq is always zero.

^

θ � vq:

^

^

^

^ 1 LPLL (13.7)?
1 � LPLL�V d �

´ ´̂x̂d and x
can be given as in Eq. (13.8) which is obtained by substituting Eq. (13.7) in
Eq. (13.3). This is the relation that shall be later used to include the dynamic effect

^

of the PLL in the closed-loop models of voltage and current-fed inverters.

xd � vq;^

The small-signal d and q-components , which are affected by the PLL,q

Xq LPLL´ �xd̂ ?
1 � LPLL�V d �

(13.8)
Xd LPLL´ � ^xq vq:^

13.2.2 Control Design of SRF-PLL

The linearized control block diagram of SRF-PLL can be rearranged as shown in
´

xq̂ ?
1 � LPLL�V d �

Figure 13.6 by noting that the sensed grid voltage q-component v̂q is the actual
controlled variable and that the grid voltage q-component v̂q presents a distur
bance to the system. The closed-loop dynamics can be solved from the block
diagram and is given in Eq. (13.9).

LPLL 1∗´ � � (13.9)v̂q:

PI-controllers are conventionally used in SRF-PLL to eliminate steady-state
error. The plant transfer function Gp � �V d=s of the SRF-PLL is shown in
Figure 13.7 for a three-phase grid (230 Vrms, 50 Hz) where the grid voltages are
balanced and their amplitude are 325 V. The SRF-PLL presents an inverting,

v̂q v̂q1 � LPLL 1 � LPLL

Figure 13.6 Rearranged linearized control block diagram of the SRF-PLL.
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Figure 13.7 Plant transfer function and loop gain with I-type controller.

integrating process with a gain that depends on the grid voltage amplitude Vd.
Since it is an inverting process, the phase of the plant transfer function starts from
+90° opposed to normal integrator that has a phase of �90°. Inverting process
requires inverted control signal that is equivalent to multiplying the controller
transfer function with �1. Figure 13.7 also depicts the loop gain when inverting
integral control is applied instead of a PI-type controller ��K=s ?Gp�. The gain of
the controller is selected as unity for brevity. As can be deduced from the figure,
the loop gain is always marginally stable regardless of the controller gain K. The
phase margin of the loop gain is always zero degrees and cannot be increased
using an I-type controller.

The phase margin can be increased by adding a low-frequency zero in the
controller transfer function. In this example, 100 Hz crossover frequency is
planned for the SRF-PLL. Suitable phase margin is selected as 65° that is obtained
iteratively by adding first a zero at 10 Hz that is sufficiently below the planned
crossover frequency. Frequency of the zero is increased until phase of the loop
gain is approximately �115° at 100 Hz. The final value for the zero is found out to
be 47 Hz. Figure 13.8 shows the loop gains when the controller zero is placed at 10
and 47 Hz.

The controller gain K is adjusted to a value that satisfies the crossover
frequency of 100 Hz. The gain can be easily computed based on the frequency
response in Figure 13.8 since the gain K affects only the magnitude of the control
loop. One only needs to determine how much the gain curve has to be raised to

�make it cross the 0 dB line at 100 Hz. Thus, the gain is selected as 10 54:3=20�. The
final control loop gain that fits the initial specification is shown in Figure 13.9. The
controller transfer function is given in Eq. (13.10).

10�54:3=20���s=2π ? 47 rad=s� � 1�
Gc � �� � �1 : (13.10)

s
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Figure 13.8 Control loop gain with integrator and zero at two different frequencies.

A standard PI-type controller is depicted in Figure 13.10. A PI-controller is
usually preferred since it allows easy implementation of integrator wind up by
limiting the maximum and minimum value of the integrator output. Moreover, it
is easy to implement in discrete form or in a simulation program such as
MATLAB/Simulink.

Figure 13.9 The final
loop gain of the SRF-PLL.

Figure 13.10 PI-type controller.
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The parameters of the PI-controller can be derived from (13.10) and can be
given as

KPLL�s=ωz-PLL � 1� KPLL KPLLGPI � �� �1 ? � �1 ?� � � ; (13.11)
s ωz-PLL s

KPLLKP-PLL � ; K I-PLL � KPLL: (13.12)
ωz-PLL

13.2.3 Damping Ratio and Undamped Natural Frequency

Transfer function from the reference to controlled variable can be represented as
´̂v q

v̂∗q
� LPLL

1 � LPLL
� �1� � ?KPLL s=ωz-PLL � 1� �

s
? �V d

s

= 1 � �1� � ?KPLL s=ωz-PLL � 1� �
s

? �V d

s
� KPLLV d

ωz-PLL
s � KPLLV d

= s2 � KPLLV d

ωz-PLL
s � KPLLV d : (13.13)

The closed-loop transfer function can be analyzed as a second-order system asp
shown in Eq. (13.14) where the damping ratio is given by ξ � KV d=2ωz-PLL andp
the natural frequency is given by ωn � KPLLV d.

´vq �^ LPLL 2ξωns � ω2
n� : (13.14)∗ 1 � LPLL s2 � 2ξωns � ω2

nvq̂

In terms of PI-controller parameters, the damping ratio and natural frequency
can be given as in Eq. (13.15) [7]. These parameters are important in control
design because damping ratio determines the overshoot after a step test and
natural frequency defines the frequency of oscillation in the controlled variable
after a step test.

V dKP-PLLξ � ? : (13.15)
2 K I-PLL

p
ωn � K I-PLLV d: (13.16)

The damping ratio in Eq. (13.15) can be selected iteratively by changing the
values for the controller gain KPLL and the frequency of the controller zero ωz-PLL.p
The damping ratio 1= 2 is often considered as the optimal damping ratio that
provides good compromise between the settling time and overshoot of the
systems step response [9]. The natural frequency of the closed-loop transfer
function in Eq. (13.16) depends on the crossover-frequency of the loop gain.

13.2.4 Control Design Example and Experimental Verification

Phase-locked-loop of a 3 kW three-phase inverter intended for a 120 Vrms/60 Hz
AC grid is designed as an example. The loop gain is designed using the previously
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Figure 13.11 Measurement setup for extracting PLL loop gain.

presented loop-shaping techniques for crossover frequencies of 20 and 200 Hz.
The phase margin is set to 65° in both cases.

The control system of the inverter was implemented using a dSPACE real-time
simulator that made measuring the loop gain straightforward using a frequency
response analyzer since small-signal variables are easily accessible. The principle
of measurement setup is depicted in Figure 13.11. A sinusoidal small-signal
injection was added in the error signal of the PI-controller that is a perfect
injection point since the steady-state value of the error signal is zero. Therefore, it
is easier to prevent the AD converters from saturating. Signals before and after the
injection point were fed to a frequency response analyzer to calculate the loop
gain. The principle of the loop gain measurement is the same as in Ref. [10].

Figure 13.12 shows the measured and predicted loop gains. The loop gain is
affected by delay of analog-to-digital conversion of the measured three-phase

Figure 13.12 Measured and predicted PLL loop gains.
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Figure 13.13 Step response of the PLL with 20Hz crossover frequency.

voltages. The real-time simulator was sampling at the frequency of 20 kHz,
which is the same as inverter switching frequency. Analog-to-digital conver
sion of three-phase voltages introduces an average delay of half the switching
period Tdel � 0:5 ?T s � 0:5=f . The first-order Padé approximation was used tos
represent the delay transfer function in the frequency domain, as given in
Eq. (13.17). The sampling delay does not affect the magnitude of loop gain.
However, the phase starts decreasing after 1 kHz that sets the upper boundary
for theoretically achievable crossover frequency. In practical applications, there
are also other limiting factors regarding the maximum crossover frequency
such as the effect of unbalanced grid voltages and the risk of impedance-based
instability.

Tdel TdelGdel � 1 � s = 1 � s � 1 � s
= 1 � s

: (13.17)
2 2 4f 4fs s

Control performance of the PLL was tested by making a step change in the
grid frequency from 50 to 60 Hz. The grid voltages were generated using a
three-phase grid emulator. The inverter was disconnected while making the
step test to allow evaluating the PLL performance without the effect of the
inverter. Figure 13.13 shows the step response when PLL was tuned to have
crossover frequency of 20 Hz and phase margin of 65°. The sensed grid
frequency experiences an overshoot of roughly 23% while the calculated
damping ratio is 0.710.

The PLL controller was modified to have 200 Hz crossover frequency and 65°
phase margin. The step response is as shown in Figure 13.14. The overshoot in the
estimated grid frequency is roughly 25% and the calculated damping ratio is equal
to 0.688. The PLL with 200 Hz crossover frequency can track the step change in
grid frequency faster. However, it also picks up noise at twice the fundamental
frequency that is caused by small gain differences in the AC voltage probes and
small unbalance in three-phase voltages, that is, the PLL loop gain amplifies any
noise that is located below its crossover frequency. High-quality voltage probes
should be used if high-bandwidth PLL is to be used.
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Figure 13.14 Step response of the PLL with 200Hz crossover frequency.

13.2.5 The Effect of Unbalanced Grid Voltages

Unbalance in grid voltages is a common source of disturbances, such as ripple in
DC voltage at twice the fundamental frequency. Moreover, the gains of voltage
probes can differ and, therefore, the inverter control system sees an unbalanced
grid. Unbalanced grid voltages cause the estimated grid frequency and phase
angle to have a second-harmonic component [7] and the three-phase converter to
produce harmonic currents at the third harmonic [11].

An unbalanced three-phase system can be described using positive and negative
sequence components as in Eq. (13.18) where the space vector Vabc� denotes the
positive and Vabc� the negative sequence component.

cos �ωst�
2π

cos ωst � 3

2π

Vabc � V�

cos ωst � 3

� V�

cos �ωst�
2π

cos ωst � 3 � Vabc� � Vabc�:
2π

cos ωst � 3 (13.18)

Clarke’s transformation can be applied to the unbalanced grid as

1 1
1 � �

2 2p p
2 3 3Vαβ � �Vabc� � Vabc��0 �3 2 2

1 1 1 (13.19)
2 2 2

cos �ωst� cos �ωst�
� V� � V�sin �ωst� �sin �ωst� � Vαβ� � Vαβ-:

00
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Figure 13.15 Positive and negative sequence voltages in
the stationary reference frame.

Figure 13.15 illustrates the space-vectors of positive and negative sequence
components in the stationary reference frame. As the name suggest, the positive
sequence component Vαβ� rotates in the positive direction and the negative
sequence component Vαβ� rotates in the opposite direction.

The unbalanced voltages in the stationary reference frame can be given in the
synchronous reference frame (assuming ideal grid synchronization) that is
rotating in the same direction as the positive sequence component according
to Eq. (13.20). The zero-sequence component is neglected for brevity.

V� � V� cos �2ωst��jωst � : (13.20)Vdq � Vαβ ? e �V� sin 2ωst��
The d-component of the sensed grid voltage is equal to the amplitude of

the positive sequence voltage, but has an additional sinusoidal component at the
second harmonic that is determined by the amplitude of negative sequence
component. Moreover, the sensed q-component has zero DC value as expected
but also includes the sinusoidal component at the second harmonic. The
sinusoidal component caused by the unbalance is either amplified or attenuated
by the PLL, depending on the magnitude of the PLL control loop gain at the
second-harmonic frequency.

A photovoltaic inverter was connected to a 120 V/60 Hz grid in which one
phase had 20% smaller amplitude. The SRF-PLL was tuned to have crossover
frequencies of 200 and 20 Hz, as in the previous example. Figure 13.16 shows the
estimated grid frequency and the unbalanced three-phase grid voltages. The
estimated grid frequency contains a large component at twice the fundamental
frequency, that is, at 120 Hz. This is due to the fact that the control loop in
Figure 13.12 is tuned to have a crossover frequency of 200 Hz and, therefore,
disturbance at the second harmonic, and any other distortion for that matter, gets
amplified.

Figure 13.17 shows the grid currents of the inverter and the corresponding
spectrum obtained by FFT. Spectrum analysis reveals that there is large third
harmonic when fast PLL is used. The rest of the harmonic components are caused
by the dead-time effect of IGBT bridge and small offsets in the current and
differential voltage probes. The inverter switching frequency was set to 8 kHz
and the dead-time was selected as 4 μs (maximum turn-off time according to
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Figure 13.16 Estimated grid frequency in unbalanced grid with fast PLL.

datasheet is 3.6 μs). Amplitude of the fundamental component is 7 A, but it is not
shown in the figure for readability.

The effect of unbalance can be somewhat mitigated by decreasing the PLL
crossover frequency. Figure 13.18 shows the estimated grid frequency and grid
voltages when the PLL was tuned to have a crossover frequency of 20 Hz. The
second-harmonic distortion in the estimated grid frequency is decreased signifi
cantly because the loop gain provides roughly 16 dB attenuation at 120 Hz.

Grid current waveforms are significantly improved due to “cleaner” estimation
of the grid angle, or to be precise, the angle of grid voltage positive-sequence
component. Three-phase grid currents and the corresponding spectrum are
shown in Figure 13.19 with the slow PLL.

Slower PLL will generate less third harmonics in grid current during
unbalance. However, the ability of the inverter to follow variations in grid voltage
amplitude and frequency is worse. This is an important aspect to recognize since

Figure 13.17 Grid currents and the corresponding spectrum with fast PLL.
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Figure 13.18 Estimated grid frequency in unbalanced grid with slow PLL.

Figure 13.19 Grid currents and the corresponding spectrum with slow PLL.

many islanding protection schemes and other grid monitoring functions rely on
the grid frequency estimation of the PLL. The tendency is to use more sophisti
cated PLL schemes, such as decoupled double reference frame PLL that aim to
reduce the second harmonic component from appearing in the sensed grid angle
to avoid power quality problems in unbalanced grids. However, most of the recent
synchronization methods are based on the SRF-PLL that makes understanding
of its operation crucial. Moreover, the other methods can be linearized and
added in the inverter dynamic model by applying similar methods as presented in
this chapter.

13.3 AC Current Control

Ideally, a grid-parallel three-phase inverter should resemble a three-phase AC
current source. Interfacing such converter to a stiff voltage-type load, such as a
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stiff power system, does not produce any problems in the view of Kirchhoff’s laws,
since an ideal current source can feed any current to the grid. As a result, the
output currents of a three-phase inverter are usually controlled with high
bandwidth. The current control not only provides correct interfacing for a
voltage-type load, but fast current control is also used to limit the amplitude
of output currents during transients and faults. Moreover, the amount of real and
reactive power can be controlled separately by regulating the grid current d and q-
components.

There are numerous ways to implement current control [12]. Three most
widely adopted methods include current control in dq-domain using PI–
controllers, in αβ-domain using a proportional resonant controller (PR), and
several methods based on model predictive control (MPC). The PR and MPC are
not discussed in this chapter but the reader is advised to see, for example,
Refs [13–17] for further studies. The modeling and design methods presented in
this chapter concentrate on the control in dq-domain, since it is the most often
used method as it is inherited from motor control applications.

13.3.1 Current Control in the dq-Domain

Main advantage of current control in the dq-domain is the fact that real and
reactive power can be controlled separately using simple PI controllers. The
magnitudes of current d and q-components determine the amount of real and
reactive power fed to (or drawn from) the grid, respectively. The instantaneous
apparent power can be defined using space-vectors in the dq-domain as in
Eq. (13.21), which is based on the instantaneous power theory introduced by
Akagi et al. [18].

(13.21)s � v ? i∗ � vdid � vqiq � j vqid � vdiq

The apparent power has real and imaginary components that correspond to
instantaneous real and reactive powers, respectively. The phase-locked-loop
discussed in the previous chapter aligns the dq-reference frame to a position
where the grid voltage q-component vq seen by the inverter control system is
zero. Therefore, the real and imaginary powers can be defined as in Eq. (13.22)
from which it is rather easy to see that current d-component determines the
amount of active power and current q-component determines the amount of
reactive power.

p � vdid; q � �vdiq: (13.22)

13.3.2 Current Control in Voltage-Fed Inverters

Control design of a voltage-fed inverter is discussed first since it is much easier to
analyze than a current-fed inverter. Current-fed inverter employs a cascaded
control structure where the DC voltage controller gives a reference value for the
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Figure 13.20 Voltage-fed inverter with output-current control implemented in the dq-domain.

d-component of output current. Therefore, the dynamics of DC voltage control
affect the low-frequency characteristics of current control.

Figure 13.20 depicts an output-current-controlled voltage-fed inverter. The
inverter output currents are controlled in the dq-domain by using negative
feedback and PI-type controllers. The control laws can be simply given as in
Eqs. (13.23) and (13.24) when the effects of current sensing circuits are neglected.
The grid voltage angle θ is determined by the phase-locked-loop, which is
omitted from the figure for brevity. Reference values for output current d and
q-components are determined by a higher control function, for example, battery
charging algorithm or AC voltage controller, and are analyzed as system inputs.
Usually decoupling gains are used which aim to reduce cross-coupling effects
between d and q-components during transients. The decoupling gains are added
in the model and the selection of their parameters is discussed later. To keep it
simple, only two current controllers are included in the model at first.

i∗ : (13.23)dd � GPI-d od � iod

i∗ : (13.24)dq � GPI-q oq � ioq

Cross-couplings between d and q-components are assumed weak enough to
be neglected in the following analysis. Although, this is not usually the case, the
assumption allows us to build the dynamic model in a more comprehensible
manner and makes it easy to identify the control loop gains. Thus, the cross
coupling transfer functions between the d and q-components are neglected,
that is, transfer functions Yoqd-o, Yodq-o, Gcoqd-o, and Gcodq-o in Eq. (12.28) are
replaced by zeros. Moreover, it is assumed that the input dynamics depend only
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Figure 13.21 Reduced-order output dynamics of (a) d-channel and (b) q-channel.

^

^

on d-components, which is a justifiable assumption when the inverter operates

^

close to unity power factor [19]. As will be discussed later, such assumptions are
not needed when the small-signal model is built by noting the MIMO nature of
the inverter and using transfer matrices [20]. However, these simplifications
allow us to develop a reduced-order model of the voltage-fed inverter where, for

^

^

^

example, the dynamic effects of control loop gains are easier to interpret. The
reduced-order input dynamics and output dynamics of d and q-components
can be given as in Eqs. (13.25)–(13.27). The open-loop transfer functions of the

^

^

voltage-fed inverter with L-type filter can be derived using the method

^

presented in Chapter 12.

iin � Y in-ovin � Toid-ovod � Gcid-odd:^

vin � Y odd-ovod � Gcodd-odd:

vin � Y oqq-ovoq dq:

(13.25)

^ �i God iod-o

îoq

(13.26)

� Gioq-o � Gcoqq-o (13.27)

It is assumed that the controller and sensing circuits are linear and their
transfer functions are known. Current controller transfer functions are denoted
using GPI-d and GPI-q, whereas, transfer functions of sensing circuits are denoted
as Hd and Hq and modulator gain as GSPWM. The control block diagrams are given
in Figure 13.21 for output dynamics and in Figure 13.22 for input dynamics.

Figure 13.22 Reduced-order input dynamics.
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The current control loop gains can be identified from Figure 13.21 and given as

Lout-d � Gcodd-oGSPWMGPI-dHd; (13.28)

Lout-q � Gcoqq-oGSPWMGPI-qHq: (13.29)

The control dynamics Gcodd-o and Gcoqq-o have to be predicted or measured
accurately before selecting the controller transfer functions. Moreover, the
gains of the modulator and sensing circuits have to be known since they affect
directly the magnitude of the control loop gain. For simplicity, it is assumed that
the sensing gain and modulator gain are unity. DC gains can be easily
compensated, for example, inside the control algorithm running on a DSP.
Sampling delays introduced by DA and AD conversion and low-pass-filter of
the sensing circuit should be included in the model if they are expected to have
considerable effect on the inverter control performance. For now, it is assumed
that we have a system without delay and ideal measurement circuits. Parame
ters of the studied inverter switching model are collected in Table 13.1. The
inverter is operated at unity power factor and utilizes a SRF-PLL with 20 Hz
crossover frequency.

The inverter simulation model was implemented in MATLAB Simulink using
the SimScape component library and is shown in Figure 13.23. The model includes
two manual switches that can be used to exclude the effect of PLL and to operate
the inverter either in open loop or under output-current control.

The simulation model was operated at open loop by setting the “Manual
Switch1” in the position shown in Figure 13.23. Moreover, the PLL was bypassed
by the other manual switch, that is, the angle fed to the dq-transformation blocks
was calculated straight from the grid angular frequency using an integrator. The
open-loop control dynamics were extracted by using a PRBS-injection method
where the small-signal injection was summed to the steady-state value of duty
ratios Dd and Dq.

Figure 13.24 shows the control-to-output-current transfer functions Gcodd-o

extracted from the switching model. The q-component Gcoqq-o has identical
shape and is, therefore, not shown in the figure. The dynamic model predicts the
shape of the transfer function accurately since there are no unknown elements in
the simulator. Only the passive and active electrical components that are essential
to implement the inverter model are used. The transfer functions Gcodd-o and
Gcoqq-o frequency response in Figure 13.24 shall be used as the plant transfer
function to design the current controllers.

Table 13.1 Parameters of the voltage-fed inverter simulation model.

Pin 5 kW V in 700 V V od 325 V

I∗od 10 A I∗oq 0 A ωs 2π ? 50 rad=s

L 5 mH rL � rsw 100 mΩ f sw 20 kHz
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Figure 13.24 Output control dynamics Gcodd-o and Gcoqq-o of a voltage-fed inverter.

Phase of the plant transfer function starts from zero degrees which implies that
a conventional negative feedback control can be used to stabilize the control loop.
An integrator is used to eliminate steady-state error that can be simply given as
1=s in the frequency domain. Figure 13.25 shows the predicted current control
loop gain when an integrator with unity gain is included in the small-signal loop
gains of Eqs. (13.28) and (13.29). It is impossible to implement high-bandwidth
current control using pure I-type control since the phase drops to �180° after the
resonant frequency. Therefore, even though the crossover frequency could be set
to, for example, 1 kHz by increasing gain of the integrator, the phase margin
would still be zero.

Figure 13.25 Current control loop gain with unity-gain integrative feedback control.
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Figure 13.26 Current control loop with unity-gain integrator and LHP-zero at 500Hz.

The controller transfer function is multiplied by an LHP-zero at 500 Hz to
boost the phase around the desired crossover frequency, which in this case is
1 kHz. The resulting loop gain is as shown in Figure 13.26 where the phase boost
is illustrated compared to the previous case. The phase has now a value of
approximately �115° at 1 kHz that translates into 65° phase margin if crossover
frequency would be increased to 1 kHz.

The crossover frequency can be easily increased or decreased by selecting an
appropriate controller gain. According to Figure 13.26, a +42 dB boost is required
to have 1 kHz crossover frequency. The final controller transfer function can be
given in the frequency domain as in Eq. (13.30) or, alternatively as the equivalent
PI-type controller in Eq. (13.31). The final predicted loop gain is as shown in
Figure 13.27.

�s=�2π ? 500� � 1�
GPI-d � GPI-q � 1042=20 ? : (13.30)

s

1042=20 1042=20 K IGPI-d � GPI-q � � � KP � : (13.31)
2π ? 500 s s

The validity of control design was tested using the switching model. Both the
d and q currents were controlled using identical PI-controllers. Figure 13.28
shows the inverter output currents in the dq-domain when a step from 8 to 10 A
was made in the reference of the current d-component. The reference value of
output current q-component is set to zero. The control is stable and settles
around the new reference in approximately 1.5 ms. The PLL was tuned to have a
crossover of 20 Hz and phase margin on 65°.

Figure 13.29 shows the three-phase grid currents and voltages during the step
test. The amplitude increases from 8 to 10 A just as expected. Moreover, the phase
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Figure 13.27 Finalized loop gain with 1 kHz crossover frequency and 65° phase margin.

currents are in phase with grid voltages as the reference of the current q-
component is zero.

The loop gain was extracted from the simulator using the PRBS-method. As
can be seen from Figure 13.30, the loop gain predicted by the dynamic model gives
very good estimates at high frequencies. However, there is a resonance in the
predicted loop gain that does not appear in the actual inverter dynamics.
However, the accuracy of dynamic model in predicting the plant transfer
functions Gcodd-o and Gcoqq-o was verified earlier in Figure 13.24, which shows
that the open-loop model was correctly formulated. At this point, it should be
noted that the loop gains were derived by neglecting the cross-coupling transfer

Figure 13.28 Response of the designed current control to a step change from 8 to 10 A.
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Figure 13.29 Step response in the abc-domain.

functions and this, of course, comes with a price. However, the crossover
frequency and phase margin can be accurately predicted since the reduced-order
model is valid at frequencies higher than the resonance at approximately 50 Hz.

The control loop gains can be obtained from the full-order output control
block diagram of Figure 13.31. For simplicity, sensing and modulator gains are
neglected. Such model can be useful if for some reason very low crossover
frequency is wanted. Only the control dynamics are included in the figure for
brevity since other inputs, such as v̂v̂v̂in, od, and oq can be assumed zero. As
mentioned earlier, the inverter model in dq-domain is essentially a MIMO-
system, that is, the controllers interact with each other. The control loop gain of
the d-component can be solved from the control block diagram by cutting the

Figure 13.30 Measured current control loop gain of d-component.
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Figure 13.31 Control block diagram describing the current control loop gain with cross-
couplings.

signal path at the marked point and solving the transfer function from the input
ŷ .loopuloop to output^

The current control loop gain that includes the effect of cross-coupling transfer
functions can be given as in Eq. (13.32). Computing the loop gain may at first seem
too much of an effort when, in fact, crossover and phase margin can be evaluated
by using the reduced-order model. However, the full-order loop gain allows
including the dynamic effects of source and load impedances. Figure 13.32 depicts

Figure 13.32 Current control loop gain derived with cross-coupling transfer functions.
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Figure 13.33 Simplified average model without cross-couplings.

the control loop when cross-coupling transfer functions are included in the small-
signal model according to (13.32). The resonance has disappeared from the
predicted loop gain as can be seen by comparing the analytical model and the
obtained frequency response. In summary, neglecting the cross-coupling transfer
functions produces additional complexity in the predicted loop gain that is in
reality compensated by the cross-coupling transfer functions.

LFO
out-d �

ûloop

ŷloop � GPI-dGcodd-o � Gcodq-oGcoqd-o

1 � GPI-qGcoqq-o
GPI-qGPI-d: (13.32)

The main goal of this book is to provide a systematic approach to derive
dynamic models of three-phase converters. An accurate dynamic model
allows source and load effects to be evaluated and closed-loop impedances
with different control functions to be solved. However, the control dynamics
can be obtained by making very rough approximations on the inverter
dynamics. In the literature, it is common to approximate current control
dynamics using single-phase equivalent circuit. This is equivalent to neglec
ting the cross-coupling voltage sources in the average model as shown in
Figure 13.33.

The linearized state-space of the simplified average model can be given as in
Eqs. (13.33) and (13.34) from which the control-to-output-current transfer func
tions Gcodd-o and Gcoqq-o can be solved and given as in Eqs. (13.35) and (13.36).

v̂in

v̂od

v̂oq

d̂d

d̂q

^

^

Dd 1 V inreq � 0

iLq

iLdL� �
00

d
dt

îLd

îLq

L L L

L L

req Dq 1 V in0 � 0 � 0
L L

(13.33)



55913.4 Decoupling Gains

Figure 13.34 Comparison of extracted current control loop gain and the simplified model.

v̂in

v̂od

v̂oq

d̂d

d̂q

3Dd 3Dq 3ILd 3ILq
îin

îod

îoq

0 0 0
^

^

iLd� �
iLq

2K 2 2K 2 2K 2 2K 2

1 0 0 0 0 0 0

0 1 0 0 0 0 0

(13.34)

^

^
Gsimplified iod� �codd-o dd

V in

sL � rL
: (13.35)

^

^
Gsimplified ioq� �coqq-o

dq

V in

sL � rL
: (13.36)

Figure 13.34 shows the loop gain extracted from the simulator and the
simplified loop gain where Lout-d � GPI-dG

simplified. It is certain that the simplifiedcodd-o
model that does not consider cross-couplings can be used in current control
design. However, one should apply the model with caution since it is difficult to
include the dynamic effects of source or load impedances in the control dynamics.
Moreover, the effect of LCL-filter and active damping should be analyzed
carefully.

13.4 Decoupling Gains

Decoupling gains are often used in the AC current control in order to decouple
the dynamics of d and q-components from each other. The gains can be derived
from the linearized model of the voltage-fed inverter. The linearized output
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Figure 13.35 Linearized output
dynamics of voltage-fed inverter.

dynamics of d and q-components were derived in Chapter 12 and can be
expressed as

dîLd 1 ^ ^� ; (13.37)�reqiLd � ωsLîLq � Ddv̂in � v̂od � V indddt L

dîLq 1 ^ ^� : (13.38)�ωsLîLd � reqiLq � Dqv̂in � v̂oq � V indqdt L

The linear equivalent circuit diagrams representing the dynamics of d and q-
channels are shown in Figure 13.35.

The current-controlled voltage sources that have values of ωsLîLq and ωsLîLd

represent the cross-coupling effects of current d and q-components. The princi
ple of decoupling is to add suitable values d̂dx and d̂qx to the duty ratios inside the
control system that effectively cancel out the voltage drops caused by the cross-
couplings. The values for these duty ratios can be easily solved from Eqs. (13.37)
and (13.38) and given as

ωsL^ ^ddx � � iLq; (13.39)
V in

ωsL^ ^dqx � iLd: (13.40)
V in

Control laws for current control with decoupling gains can be given as

ωsLi∗ � iLq; (13.41)
V in

dd � GPI-d od � iod

ωsLi∗ � iLd: (13.42)dq � GPI-q � ioq V in
oq
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Figure 13.36 Current control with decoupling terms.

The value of the inductance and the steady-state value of input voltage have to be
known to realize decoupling of the output currents. Moreover, it is stressed that the
decoupling is derived for an inverter employing conventional three-phase SPWM.
The gains are different when space-vector modulator is used since the modulator
often utilizes measured input voltage to generate the switching vectors. Control
system of a voltage-fed inverter with decoupling gains is depicted in Figure 13.36.

The effect of decoupling gains can be demonstrated by making a step change
to output current q-component while keeping the d-component constant and
vice versa. Figure 13.37 shows the grid currents (in the ideal grid reference

Figure 13.37 Step-response of grid currents without decoupling gains.
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Figure 13.38 Step-response of grid currents with decoupling gains.

frame) when decoupling gains are not used. Reference of the q-component is
increased from 0 to 10 A at 0.05 s and decreased back to 0 at 0.1 s. A step change
in q-component induces a transient in the d-component. Moreover, the refer
ence of current d-component is decreased from 10 A to 0 at 0.15 s and back to 10
A at 0.2 s. Also the q-component experiences a transient every time the d-
component changes which is due to cross-couplings between current d- and q-
components.

Figure 13.38 shows the grid current d and q-components when decoupling
gains are used. Current d-component remains exactly at 10 A regardless of
change in current q-component. Moreover, the current q-component remains at
0 when d-component is stepped down to 0 and back to 10 A. Decoupling gains of
the current controller effectively prevent d and q-components from affecting each
other. However, the decoupling is not perfect if the steady-state value of DC
voltage changes.

13.5 Grid Voltage Feedforward

Grid voltage feedforward is often utilized in grid-connected inverters to improve
transient performance and impedance behavior. Originally, the method has been
developed to improve dynamic response of electrical drives but due to its benefits
and ease of implementation it has also become a popular control method in grid-
connected three-phase converters.

The principle of grid voltage feedforward is very simple and easy to understand.
The linearized circuit diagram in Figure 13.35 includes grid voltage d and q-
components that act as sources of small-signal disturbances. Their effect can be
canceled out by measuring the corresponding grid voltage and adding it to the
inverter duty ratios. With conventional SPWM, the current control laws
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including grid voltage feedforward then become

ωsL 1
i∗ � iLq � vod (13.43)

V in V in
dd � GPI-d od � iod

and
ωsL 1

i∗ � iLd � voq: (13.44)dq � GPI-q oq � ioq V in V in

The value of proportional feedforward gain is ideally the inverse of input
voltage steady-state value when SPWM is used. However, the gain should be
reduced, for example, to avoid impedance-based interactions if the control system
experiences significant amount of delay, as will be discussed in Chapter 16.

13.6 Cascaded Control Scheme in Current-Fed Inverters

In current-fed inverters, the input voltage is defined as an output variable. In fact,
the current-fed inverter employs unstable control dynamics that have to be
stabilized by using an outer DC voltage control loop. Figure 13.39 depicts the
conventional cascaded control scheme for a current-fed inverter implemented in
the dq-domain. The output currents are controlled using the same current
control scheme as in the case of a voltage-fed inverter. However, the reference
value of output current d-component i∗od is given by the input voltage controller,
which is usually a PI-type controller. The control laws can be defined as

∗i∗ v ; (13.45)dd � GPI-d � GPI-d GPI-v � iodod � iod in � vin

i∗ : (13.46)dq � GPI-q � ioqoq

Figure 13.39 Cascaded control scheme of a current-fed inverter.
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In a cascaded control structure, the inner control loop has to be fast enough
compared to the outer loop. Otherwise, the current controller is not able to follow
the reference set by the voltage controller. It is common to tune the inner loop
gain to have a crossover frequency of at least one decade higher than the outer
voltage control loop gain.

13.6.1 Control Block Diagrams

The reduced-order control dynamics can be derived by neglecting the cross
coupling transfer functions and by assuming that the input dynamics depend
only on the d-components. The reduced-order open-loop dynamics can be
given as

^

^

vin � Zin-oiin � Toid-ovod � Gcid-odd;^

iod � Giod-oiin � Y odd-ovod � Gcodd-odd;^

i d :oq q

^

^

^^

^

^

(13.47)

(13.48)

� Gioq-o �i Y v̂in o oqq-o q^ � Gcoqq-o (13.49)

Variables that are seen as disturbances, such as the input current and output
voltage d and q-components, are neglected in the following analysis because the
aim of this chapter is to identify the control loop gains. The input and output control
block diagrams can be developed based on Eqs. (13.47)–(13.49). Figure 13.40 shows
the control block diagram of the cascaded control structure where GSPWM is the
modulator gain and Hd and Hv are the gains related to output current and the DC
voltage sensors, respectively.

Figure 13.41 depicts the control block diagram of the output current q-
component where the transfer function Hq is the output current sensing gain.

Input voltage control loop gain can be solved from the control block diagram in
Figure 13.40 and can be given as

Gcid-o Lout-d HvLin � ? ? ?GPI-v; (13.50)
Gcodd-o 1 � Lout-d Hd

Figure 13.40 Control block diagram of the cascaded control scheme.
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Figure 13.41 Control block diagram of the output current control of q-component.

where the output current control loop gain of the d-component is given by

Lout-d � GPI-dGSPWMGcodd-oHd: (13.51)

The plant transfer function based on which the input voltage controller is
designed can be given as

v̂in Gcid-o Lout-d 1
Gcid-cc � ∗ � ? ? : (13.52)

îod
Gcodd-o 1 � Lout-d Hd

The reference of the output current q-component i∗ is usually set equal to zerooq
to operate the inverter at unity power factor. Alternatively, the reference can be
given by an outer control loop, such as an AC voltage controller. However, at this
point it is assumed that the reference of current q-component is an independent
input variable. The current control loop gain can be given as

Lout-q � GPI-qGSPWMGcoqq-oHq: (13.53)

The output current control loop of the q-component can be designed by
following exactly the same principles as with a voltage-fed inverter. However,
designing the cascaded control loops requires careful considerations due to special
dynamic properties of the current-fed inverter. The control-to-output-current
transfer function Gcodd-o can be solved symbolically using, for example, MATLAB
Symbolic Toolbox yielding the transfer function as shown in Eq. (13.54). Parasitic
resistances are neglected since they have no significant effect on the low-frequency
behavior of the transfer function.

Gcodd-o s� � � V in s � I in

CV in
= L s2 � 3 D2

d � D2
q

2CL
� ω2

s : (13.54)

The transfer function has a RHP-zero at the frequency given by Eq. (13.55) that
is usually on the order of few hertz, since large DC-link capacitors are preferred
and input voltage is quite large compared to input current.

I inωz-RHP � : (13.55)
CV in

The RHP-zero becomes a RHP-pole of the input voltage control loop gain of
Eq. (13.50), because the loop gain is divided by the transfer function Gcodd-o, that
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is, the input voltage control loop gain has a RHP-pole at ωp-RHP � I in=�CV in�. The
input voltage control loop gain can be approximated by Eq. (13.56) at low
frequencies where the current control loop is expected to have a large magnitude.
From this form it is easier to see how the RHP-zero becomes a RHP-pole. Similar
observations have been made in active rectifiers operated in regenerative mode in
Ref. [21].

Gcid-oLin � ?GPI-v: (13.56)
Gcodd-o

A process that employs a RHP-pole can be stabilized by enclosing the unstable
dynamics with an outer control loop and by setting the crossover frequency of the
control loop higher than the RHP-pole [22].

13.6.2 Control Design of Cascaded Loops

Control design of a current-fed inverter starts by first tuning the current control
loops. The control loops, or at least the control loop of the current d-
component should have high enough bandwidth in respect to the expected
bandwidth of the input voltage control. The predicted open-loop current
control dynamics Gcodd-o and Gcoqq-o are shown in Figure 13.42 where the
low-frequency behavior of transfer functions can be clearly seen. The parame
ters of the current-fed inverter are the same as used in the prototype later in
Table 13.2. The control-to-output-current transfer function Gcoqq-o suggests
that normal noninverted control signal, that is, negative feedback, should be
used since its low-frequency phase starts from zero degrees, that is, its DC gain
is positive. However, the transfer function that describes the control dynamics
related to output current d-component has a low-frequency phase of 180°.
Normally, this would imply inverted control signals, but since we know that the

Figure 13.42 Open-loop output current control dynamics.
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Table 13.2 Parameters of the photovoltaic inverter.

Pin 1.5 kW V in 400–716 V V od 2
p

? 120 V

I in 0–2.9 A I∗oq 0–3 A ωs 2π ? 60 rad=s

L 4 mH rL � rsw 100 mΩ f sw 20 kHz

C 1.95 mF

transfer function has a RHP-zero that is later stabilized by an outer control loop,
we choose to use noninverted control signals for both control loops.

The design of current control loop follows the exact same steps as in the case of
a voltage-fed inverter. The goal is to have current control crossover frequency of
1 kHz with 65° of phase margin. The loop gains are first plotted with just an
integrator as the controller transfer function, second, a LHP-zero is added at
480 Hz to boost the phase curve, and third, the gain of the controller is adjusted to
reach the desired crossover frequency. Finally, the controller transfer functions
according to Eq. (13.57) are selected that yield predicted current control loop
gains as shown in Figure 13.43. At this stage the RHP-zero is neglected since it will
be later stabilized by the outer input voltage control loop. The equivalent PI-
controller is as given in Eq. (13.58). Identical controller transfer functions are used
to control both d and q-components.

�s=2π ? 480 � 1�� �GPI-d � GPI-q � 10 42=20 ? : (13.57)
s

1042=20 1042=20

GPI-d � GPI-q � � : (13.58)
2π ? 480 s

Figure 13.43 Predicted current control loop gains.
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Figure 13.44 Low-frequency part of control-to-input-voltage transfer function Gcid-o.

The next task is to stabilize the unstable current control loop Lout-d by selecting
an appropriate input voltage controller transfer function. The low-frequency part
of control-to-input-voltage transfer function Gcid-o is as shown in Figure 13.44.
The phase of the transfer function starts from 180° that implies that the control
signal has to be inverted. However, the inner current control loop gain has to be
taken into account in control design according to Eq. (13.50).

The input voltage control loop gain is plotted with inverted control signal and
an integrator that eliminates the steady-state error as

�1� � Gcid-o Lout-d HvLin � ? : (13.59)
s Gcodd-o

?
1 � Lout-d

?
Hd

The predicted input voltage loop gain is as shown in Figure 13.45. The cross
over frequency is just few hertz where the phase of the loop gain is less than �180°
indicating the loop is unstable. However, the phase stays close to �180° over the
whole frequency range. Therefore, the phase of the loop gain has to be boosted by
a low-frequency zero that is placed at 10 Hz. Moreover, the gain of the loop is
adjusted to yield a crossover frequency of 20 Hz. The final loop gain is as shown
in Figure 13.46 and the controller transfer function is as given in Eq. (13.60).
Moreover, the input voltage loop gain extracted from the switching model is
shown in the figure as the solid line.

�s=�2π ? 10� � 1�� �GPI-v � �10 30=20 ? : (13.60)
s

Figure 13.47 shows the response of the inverter input voltage to a step change in
reference value from the initial value of 571.9 to 600 V. The current reference
value, that is, the output of the input voltage controller was limited to values
between 0 and 20 A, since larger currents would trip protection in a real inverter.
The rise time of the input voltage is, therefore, limited by the fact that current
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Figure 13.45 Predicted input voltage control loop gain Lin with unity-gain integrator and
inverted control signal.

reference is not allowed to go negative. The step response indicates that the
inverter is stable in a simulator.

Inverter output currents are shown in Figure 13.48 in the phase and dq
domains. The reference of output current d-component drops suddenly and the
fast current control loop can track the reference very quickly as it has been
tuned to have much higher crossover frequency than the input voltage control
loop. The q-component of the output current is maintained at zero during the
step test.

Figure 13.46 Predicted loop gain and the extracted frequency response.
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Figure 13.47 Step response of input voltage.

Figure 13.48 Step response of output currents.

13.6.3 Instability Caused by RHP-Pole

The control system is stable as can be seen from the simulation results and the
extracted control loop gain. However, a current-fed inverter with small input
capacitor may become unstable due to the RHP-pole in the input voltage control
loop gain [23]. The input capacitance of the inverter was decreased to 100 μF. The
value of input current is initially 2.6 A that can be used to determine the frequency
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of the RHP-pole to be 7.2 Hz as

2:6 A
ωp-RHP1 � � 2π ? 7:2 rad=s:

571:9 V � 100 μF

The RHP-pole can be seen in the plant transfer function of the input voltage
control Gcid-cc of Eq. (13.52) as illustrated in Figure 13.49 as a solid line. Due to
the RHP-pole, the magnitude starts to drop 20 dB per decade after approxi
mately 7 Hz, and opposite to a LHP-pole, the phase starts to increase at the rate
of 45° per decade. The dashed line illustrates the plant transfer function when
input current is increased to 8 A that effectively increases the frequency of
RHP-pole to 22 Hz.

Designing the loop gain to have a 20 Hz crossover frequency and 65 phase
margin requires a LHP-zero at a lower frequency than in the previous case to
yield sufficient phase boost. Moreover, the controller gain has to be readjusted.
The controller transfer function is as given in Eq. (13.61). The predicted input
loop gains with the initial 2.6 A input current and the increased current of 8 A
are shown in Figure 13.50 as solid and dashed lines, respectively. The loop gain
is stable when input current is 2.6 A. However, the phase margin becomes
slightly negative when input current is increased to 8 A that indicates that the
control loop is unstable.

�s=�2π ? 2� � 1�
GPI-v � �10��8:4=20� ? : (13.61)

s

Figure 13.51 depicts the step response of the input voltage to a reference step
from 571.9 to 600 V when the input current is 2.6 A. The settling time is
significantly longer than in the previous case in Figure 13.47 because the loop
gain has much lower magnitude below its crossover frequency. However, the step
response shows that the system is stable.

Figure 13.49 Plant transfer function of the input voltage control with small input capacitance
and two values of input current.
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Figure 13.50 Input voltage control loop gains with less input capacitance and input current of
2.6 (solid) and 8 A (dashed).

Figure 13.52 depicts the input voltage when the input current is increased
from 2.6 to 8 A at a steady ramp over 3 s. The input voltage experiences a
steady-state error during the ramp that is a well-known drawback when using
PI-type control. The input voltage becomes unstable when input current
reaches approximately 8 A and starts to oscillate at 6.5 Hz which is due to
negative phase margin of the control loop gain Lin-8A in Figure 13.50. Moreover,
the frequency of oscillation is exactly the same as the frequency at which the
unstable loop gain has a phase of �180°. The oscillation is reflected to output

Figure 13.51 Step response of the input voltage with smaller input capacitance.
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Figure 13.52 Input voltage when instability due to RHP-pole occurs.

currents because the input voltage controller directly affects the reference of
output current d-component. The output currents are shown in Figure 13.53 in
the phase and dq-domains. The amplitudes of phase currents experience
growing low-frequency oscillation.

FFT analysis reveals that the output currents in the dq-domain experience
the same low-frequency oscillation of 6.5 Hz as is expected since the current d-
component follows the reference value given by the input voltage controller.
However, the currents in the phase-domain have sub and interharmonic
components at 53.5 and 66.5 Hz. This can be understood by studying the

Figure 13.53 Output currents when instability due to RHP-pole occurs.
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inverse Park’s transformation. The current in phase A can be given as in
Eq. (13.62) when the q and zero-components of output current are assumed
equal to zero.

ia � cos �ωst� Iod � Id-ac ? cos �ω1t � φ1� : (13.62)

In Eq. (13.62), Iod is the steady-state value of output current d-component, Id-ac is
the peak value of the AC component caused by the unstable control loop, ω1 and
φ1 are the angular frequency and phase angle of the AC component, respectively.

The product-to-sum identity of a cosine function can be given as

2 cos θ cos φ � cos�θ � φ� � cos�θ � φ�: (13.63)

The phase current can be defined as in Eq. (13.64) from which it can be seen
that the inverse Park’s transformation produces two AC components in the
phase currents centered symmetrically around the fundamental frequency of
60 Hz. Therefore, the output currents in abc-domain have components at
60 � 6.5 = 53.5 Hz and 60 + 6.5 = 66.5 Hz.

Id-acia � cos �ωst�Iod � cos �ωst � ω1t � φ1� � cos �ωst � ω1t � φ1� :2
(13.64)

13.6.4 Stability Assessment Using the Nyquist Stability Criterion

Stability of the control loop was evaluated directly from the loop gains in the
frequency domain. However, to be precise, the stability of a loop gain with a RHP-
pole should be predicted by using the Nyquist stability criterion.

The Nyquist stability criterion states that the number of RHP-zeros in a control
loop gain is given by Eq. (13.65) where P is the number of RHP-poles and N is the
number of clockwise encirclements around the (�1,0) point on the imaginary
plane. Note that the RHP-zeros of an open-loop system (control-loop gain) are
the poles of the closed-loop system. Therefore, the input voltage control is
unstable if the loop gain has one or more RHP-zeros.

Z � N � P: (13.65)

The inverter is known to have one unstable pole (RHP-pole) in its input voltage
control dynamics and, therefore, P= 1. For the control loop to be stable the value
for N should be �1, that is, the contour in the imaginary plane should encircle the
(�1,0) point once in the counterclockwise direction. Figure 13.54 shows the input
voltage loop gains of Figure 13.50 plotted on the imaginary plane. The control
loop becomes unstable when input current reaches 8 A, because the contour does
not encircle the (�1,0) point.

13.6.5 Design Example: Three-Phase Photovoltaic Inverter

A grid-connected three-phase photovoltaic inverter is one common example of
an application where the inverter is modeled as a current-fed inverter and which
utilizes cascaded control scheme to stabilize the input voltage. The parameters of
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Figure 13.54 Input voltage control loop gains on complex plane.

the experimental current-fed inverter are given in Table 13.2. The laboratory
setup is as depicted in Figure 13.55.

A two-level three-phase inverter bridge MWINV-1044-SIC manufactured by
Myway with L-type output filter was used to interface a photovoltaic emulator to a
three-phase grid emulator. The control system was implemented using a dSPACE
real-time simulator. The bridge incorporates six SiC-MOSFET switches of type
SCH2080KE that have recommended dead time of 0.3 μs. The dead time was
generated by the dSPACE. The switching frequency of the inverter was selected as
20 kHz. The inverter was fed from the solar array emulator PVS7000 by
Spitzenberger & Spies and loaded by a three-phase 4-quadrant amplifier
PAS15000 from the same manufacturer. The three-phase linear amplifier can
sink approximately 5 kW of real power. Therefore, additional resistive load was not
required. The inverter was isolated from the load using a delta-wye-type isolation
transformer to mitigate common-mode currents flowing through ground loops.

Figure 13.55 Laboratory test setup.
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Figure 13.56 IV-curve of the PV emulator.

The IV-curve of the solar array emulator is shown in Figure 13.56. At voltages
below the maximum power point, the source resembles a DC current source with
constant current of approximately 2.9 A. Therefore, the inverter can be thought to
be fed by an ideal current source when operating point is sufficiently below the
MPP. From the dynamical point of view the constant current region is the most
critical operation region since the control dynamics incorporate a RHP-pole that
may destabilize the inverter and distort the output currents.

The input voltage control loop gain was tuned to have a crossover frequency of
20 Hz and phase margin of 65° by using the dynamic model and assuming an ideal
DC current source. Moreover, the stability was evaluated earlier using a switching
model. The input voltage controller transfer function was given previously in
Eq. (13.60). The output current control loop gains were tuned to have 1 kHz
crossover frequency and 65° phase margin, and their transfer functions were
previously given in Eq. (13.57). The inverter was first tested using these controllers
but it was found out that the reference of grid current d-component was corrupted
by noise. Therefore, the input voltage control loop needed to be redesigned.

The measured and predicted input voltage control loop gains are shown in
Figure 13.57 when the inverter was operated in the CC region at voltage of 400 V.
The initial control loop had higher crossover frequency, which means that it
will pass noise more easily and deteriorate the reference of the output current
d-component. The input voltage controller was redesigned to have lower magni
tude at the frequency of the expected noise component (50 Hz). The LHP-zero
of the controller was set to a lower frequency to maintain a sufficient phase
margin. The redesigned controller transfer function is

�s=ωz � 1� � � �s=�2π ? 2� � 1�
GPI-v � K � �10 1:65=20 ? : (13.66)

s s

Figure 13.58 shows the measured phase current and the reference of the
d-current controller with the initial and redesigned input voltage controller.
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Figure 13.57 Original and redesigned input voltage control loop gains.

Figure 13.58a shows a distorted current where the reference has lot of noise and
large 50 Hz component. In the example case, the 50 Hz noise originates from the
laboratory environment since the grid emulator was operated at 60 Hz. That is,
the utility grid in which the laboratory is connected to has a fundamental
frequency of 50 Hz. As discussed previously, the noise in the reference produces
distortion in the output current at 60� 50= 10 Hz and 60+ 50= 110 Hz; the main
reason why the phase current was of poor quality. Moreover, the DC voltage
contains harmonics due to dead-time effect that further reduces power quality.
The problem can be effectively mitigated by reducing the crossover frequency of
input voltage control loop. The redesigned controller attenuates noise at 50 Hz,
10 times better than the initial loop gain, as its magnitude in Figure 13.57 is 20 dB
less at 50 Hz. The reference in Fig. 13.58b has significantly cleaner waveform since
the 50 Hz component and harmonics caused by dead-time are diminished.
Therefore, the output current waveform has much less distortion. Note that
similar problems occur when grid voltages are unbalanced. Unbalanced grid
voltages produce ripple in the DC voltage at twice the fundamental frequency that
may corrupt the reference of the current d-component.

The output current control loop gains were measured using the same principle as
in Figure 13.59. The measured and predicted current control loop gains are as
shown in Figure 13.11 when the inverter is operated at the MPP. The crossover
frequency is slightly less than 1 kHz, that is, in reality the crossover frequency is
approximately 800 Hz. This is due to the fact that the effect of isolation transformer
was not taken into account in the small-signal model. The isolation transformer has
some inductance that decreases the crossover frequency through load effect.

Stability of the cascaded control system was evaluated by making a step change
to input voltage reference from 400 to 500 V. The step response of input voltage is
as shown in Figure 13.60. Even though the input voltage control was made slower,
the input voltage reaches its new reference in approximately 300 ms which is
equivalent to 18 periods of the fundamental grid voltage. The step response of the
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Figure 13.59 Measured and predicted output current control loop gains.

input voltage could be made faster if the reference of the output current d-
component would be allowed to drop below zero. However, in the current case,
the input capacitor charges according to available power from the PV simulator,
that is, the charging current is limited by the short-circuit current of the PV
simulator. Moreover, the inverter usually has a voltage boosting DC–DC con
verter that is responsible of maximum power point tracking and the reference of
the inverter is kept constant. Thus, the settling speed is considered adequate.

Output currents of the inverter are shown in Figure 13.61 during the step test.
The voltage controller drops the reference of the d-component quickly to zero and
no power is transferred to the grid. Moreover, the inverter operates at unity power
factor and current q-component is zero. The output currents are stable, new
operating point is reached smoothly, and no excessive overcurrents are observed.

Figure 13.60 Step response of input voltage.
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Figure 13.61 Step response of output currents.

Until now the inverter has been analyzed and operated at unity power factor.
However, the inverter can also be used to supply or draw reactive power from the
grid. The performance q-current control was tested by making a step change in its
reference from 0 to 3 A. The step response is shown in Figure 13.62. Speed of the
current control is evident from the measured waveforms, that is, the current
q-component settles around the new steady state in less than 2 ms, which is
roughly one tenth of the period of fundamental component of grid voltage. As can
be seen in the figure, the current is in phase with the grid voltage before the step
changes, as the q-current reference is equal to zero. After the positive step change
in q-current reference, the inverter supplies reactive power to the grid as the
phase current leads the phase voltage.

Figure 13.62 Step response of output current q-component.
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13.7 Case Study: Instability Due to RHP-Pole

Crossover frequency of the input voltage control loop was intentionally reduced
to demonstrate the unstable behavior caused by the RHP-pole in control dynamics.
It should be noted that the control system could also be destabilized by reducing
the DC capacitance or increasing the source current. Figure 13.63 shows the
predicted input voltage loop gain when the controller gain K in (13.66) is reduced
to one tenth of its original value. The crossover frequency is set to 1 Hz and the
phase margin is effectively zero. Thus, the control loop is marginally stable.

Current and phase voltage in phase A are shown in Figure 13.64. The grid
current has a large low-frequency component superimposed to its amplitude. A

Figure 13.63 Predicted unstable loop gain.

Figure 13.64 Instability due to RHP-pole in input voltage control loop.
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Figure 13.65 FFT of the grid current in (a) unstable and (b) stable cases.

closer look to the spectrum of the phase current in Figure 13.65a reveals that the
grid current contains significant amount of distortion at 59 and 61 Hz that is in-
line with Eq. (13.64).

Figure 13.66 shows the current and voltage of phase A when the inverter is
operated at the MPP with the same control parameters. The current is stable and
does not include excessive low- or high-frequency harmonics, except some
harmonics due to measurement noise and dead time effect. The spectrum of
the phase current is as shown in Figure 13.65b. Evidently, the source impedance,
that is, the dynamic resistance of PV generator, has a significant effect on the
inverter stability. However, its effect on the control dynamics can be evaluated
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Figure 13.66 Grid current and phase voltage at the MPP.

by solving the source-affected transfer functions according to methods pre
sented in Chapter 12.

13.8 Summary

In this chapter it has been shown that the dynamic modeling method can be
effectively used to design stable control loops for grid-connected three-phase
inverters. The control design has been verified by frequency response measure
ments and time-domain tests. A grid-connected photovoltaic inverter was used as
a case study. The inverter was shown to become unstable due to an inherent RHP-
pole in the control dynamics. Instability can be prevented by utilizing the
presented dynamic model.
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14

Reduced-Order Closed-Loop Modeling of Inverters

14.1 Introduction

This chapter provides methods to develop closed-loop inverter models that
include the dynamics of mostly used voltage and current control functions.
Closed-loop models of voltage- and current-fed inverters are developed with
L- and LCL-type output filters with passive components. Basic control functions
such as AC current, DC voltage control, grid synchronization, that is, the
SRF-PLL, and grid voltage feedforward are included in the dynamic model.
Derivation of closed-loop model starts by studying the voltage-fed inverter
with L-type filter since this is easiest to understand due to simple dynamic
model. Derivation of more complex closed-loop models, such as current-fed
inverter with LCL, follows exactly the same steps, the only difference being the
more complex dynamics as the number of open-loop transfer functions increases.

Closed-loop models produce a lot of useful information for a design engineer,
whether working with power stage, control design, or system-level issues. Most
useful outcomes of the closed-loop model are evidently DC and AC side
impedances that can be used to evaluate impedance-based stability and response
of the inverter to harmonic distortion in grid voltages. Moreover, closed-loop
models can be used to characterize how disturbances are reflected through the
inverter, for example, from AC to DC voltage.

14.2 Reduced-Order Model of Voltage-Fed Inverter

From here on, it will be assumed that the control design of the inverter is made
based on the loop-shaping method discussed in Chapter 13. Therefore, all control
loops are assumed to be stable.

The aim in developing the closed-loop model is simply to merge the control
functions and all the associated sensing and modulator gains with the open-loop
dynamics presented in Chapter 12. In this chapter, the transfer functions
developed in Chapters 12 and 13 are merged into a model that represents the
closed-loop behavior of the inverter in the frequency domain.

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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14.2.1 Closed-Loop Model with AC Current Control

The reduced-order control block diagrams of a voltage-fed inverter with L-type
output filter were depicted in Figures 13.21 and 13.22 for output and input
dynamics. To find out the closed-loop transfer functions, one should first solve
the block diagrams that include the inner-most control loops. In the case of
voltage-fed inverter, the output dynamics are solved first. The input variables are
the input voltage v̂in, output voltage d and q-components v̂od and v̂oq, respectively,

∗ ∗
and output current reference values î and î . The output variables are theod oq
output current d and q-components îod and îoq and input current îin. Developing
the closed-loop model requires solving transfer functions between all input and
output variables. Output dynamics can be solved from the block diagram of
Figure 13.21 and given as

Giod-o Y odd-o 1 Lout-d ∗^ ^iod � v̂in � v̂od � ? i (14.1)od;�1 � Lout-d� �1 � Lout-d� Hd �1 � Lout-d�
Gioq-o Y oqq-o 1 Lout-q ∗^ ^ioq � v̂in � v̂oq � ? i ; (14.2)oqHq1 � Lout-q 1 � Lout-q 1 � Lout-q

where the current control loop gains are defined as

Lout-d � Gcodd-oGSPWMGPI-dHd; (14.3)

Lout-q � Gcoqq-oGSPWMGPI-qHq: (14.4)

The transfer functions from input voltage to output current correspond to closed-
loop input-to-output transfer function. Transfer function from output voltage to
output current corresponds to output admittance. Transfer function from
reference to output current corresponds to a transfer function often referred
to as the “closed-loop transfer function” in control engineering that can be used to
determine the control bandwidth. The closed-loop output dynamics can be
simply written as

∗^ ^iod � Giod-cv̂in � Y odd-cv̂od � Gcodd-ciod; (14.5)
∗^ ^ioq � Gioq-cv̂in � Y oqq-cv̂oq � Gcoqq-cioq; (14.6)

where the subscript “c” is used to define that the transfer function represents
closed-loop dynamics.

Closed-loop input dynamics can be solved from the control block diagram in
Figure 13.22 by substituting the output dynamics in Eq. (14.1) as the output
current îod. Note that it is assumed that input dynamics depend mainly on d-
components and cross-coupling transfer functions can be neglected [1]. The
closed-loop input dynamics can be given as follows:

Gcid-oGiod-o Lout-d Gcid-oY odd-o Lout-dîin � Y in-o � ? v̂in� Toid-o� ? v̂odGcodd-o �1�Lout-d� Gcodd-o �1�Lout-d�
1 Gcid-o Lout-d ∗̂� iod;Hd

?
Gcodd-o

? �1�Lout-d�
(14.7)
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which can be written as
∗^ ^iin � Y in-cv̂in � Toid-cv̂od � Gcid-ciod: (14.8)

The closed-loop transfer functions derived from the reduced-order control block
diagrams can be represented as

v̂in

^ v̂odiin Y in-c Toid-c . . . Gcid-c . . .

^ v̂oq� (14.9)Giod-c �Y odd-c . . . Gcodd-c . . .iod
∗̂

^ iioq Gioq-c . . . �Y oqq-c . . . Gcoqq-c od
∗̂
ioq

As can be seen from Eq. (14.9), the reduced-order model does not provide
information on cross-admittance terms, how the q-components affect input
dynamics, or how the changes in current reference values affect the output
currents between the d and q-components. However, it is often enough to
consider the output admittance d and q-components when determining imped
ance-based interactions in the grid side [2]. Moreover, input admittance depends
mainly on the d-components at unity power factor allowing the model to be used
for stability analysis at the DC side.

The effect of output current control on the magnitude of output admittance
can be determined by studying the closed-loop output admittances Y odd-c and
Y oqq-c that are defined as follows:

Y odd-oY odd-c � ; (14.10)�1 � Lout-d�
Y oqq-oY oqq-c � : (14.11)

1 � Lout-q

The current control loop gains affect the denominator of the transfer function.
Therefore, the larger the magnitude of the loop gain at a specific frequency, the
smaller the magnitude of output admittance. Figure 14.1 shows the output
admittance d-component Y odd-c when current control is tuned to have a cross
over frequency of 1 kHz and phase margin of 65°. The admittances are extracted
from the simulation model studied in Section 13.3.2. The second frequency
response in Figure 14.1 illustrates the output admittance when current control
crossover is reduced to 500 Hz while keeping the same phase margin. It is evident
that high bandwidth current control provides an output admittance with low
magnitude that makes the inverter less prone to grid-induced interactions.

Figure 14.2 shows the equivalent impedances, that is, Zodd-c � 1=Y odd-c since
impedance provides better physical interpretation. From here on, admittances are
presented as impedances to enhance readability. As stated earlier, an ideal current
source should have infinite output impedance. Increasing the crossover frequency
of current control indeed makes the inverter behave more like an ideal current
source as the output impedance increases in magnitude. Grid-connected inverter
operating in output-current-control mode should have as large output impedance
as possible to avoid impedance-based interactions [3] and to prevent
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Figure 14.1 Output admittance d-component Yodd-c with two different current
controller settings.

amplification of harmonic distortion. It is not, however, possible to make the
current control infinitely fast because in practical applications, control delay can
destabilize the control system.

To be specific, output current control makes the inverter output impedance
capacitive within the bandwidth of current control while it remains inductive
outside the bandwidth due to the L-type output filter. In between the capacitive
and inductive regions, there is a region where impedance behaves as a resistor that
is determined by the PI controller parameters. The output impedance can,
therefore, be approximated as a series RLC circuit equivalent to Figure 14.3,

Figure 14.2 Output impedance d-component Zodd-c with two different current
control crossovers.
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Figure 14.3 Linearized output dynamics of
output current d-component.

however, this applies only to the output impedance d-component because the
q-component is affected by the SRF-PLL.

The symbolic form of the closed-loop output impedance can be solved by using
the Symbolic Toolbox of MATLAB. Parasitic resistances of the output filter will
be neglected to simplify the analysis since their effect is anyway enclosed inside
the frequencies where current controller dominates over the output impedance.
Moreover, ideal measurement circuits and zero control delay are assumed. The
equivalent series RLC circuit can be given as in Eq. (14.12) where KCC is the
controller gain and ωz-CC is the controller zero that are selected according to
(13.31). The controller transfer function is defined as GCC � KCC�s=ωz-CC � 1�=s.

1 1 KCCV inZodd-c � Leqs � � Req � Ls � � :
Ceqs Lω2 �1

s ωz-CC� KCCV ins

(14.12)

The analytical impedance already given is very user-friendly in terms of checking
the shape of output impedance d-component during control design without the
need to derive the whole dynamic model.

14.2.2 Closed-Loop Model with SRF-PLL

The phase-locked-loop affects the output admittance of the voltage-fed inverter
and its effect should be included in the closed-loop model. The effect of grid
synchronization can be included in the model by utilizing the linearized model of
the PLL in Figure 13.5. Figure 14.4 depicts the closed-loop dynamics of the
q-channel. From the small-signal viewpoint, the control system inside the dashed
rectangle rotates in its own reference frame that is coupled in the ideal grid
reference frame by the PLL. It is pointed out that the signals going from reference
frame to another are equal in their steady-state values but not by their small-
signal content, which is why there are additional signal paths from the grid voltage
q-component to duty ratio and the sensed current.

The relationship between variables in the two reference frames, that is, the
control system reference frame and the ideal grid voltage reference frame can be
obtained by applying Eq. (13.8) to each of the d- and q-components. The currents
and duty ratios can be given in the control system reference frame according to
Eqs. (14.13) and (14.14). It is assumed that the PLL works as intended, that is, the
sensed voltage q-component V oq equals to zero, and that the inverter operates at
the unity power factor, that is, the output current q-component Ioq is equal to
zero. Moreover, it is assumed that the duty ratio q-component Dq is small enough
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Figure 14.4 Output dynamics related to the q-components with SRF-PLL.

^^

in value to be neglected. Therefore, the PLL affects only the q-components and
the impedance d-component can be given as in Eq. (14.12).

´´
d dd:iod � îod;^

d � (14.13)

Iod LPLL Dd LPLL´´
^^^^

^

voq; d dq voq:

(14.14)

The closed-loop dynamics can be solved from the block diagram in Figure 14.4
and given as

Gioq-oioq

îoq � îoq � �? ?
1 � LPLL� 1 � LPLL�qV od V od� �

^1 Lout-q i
∗� v̂in �Hq1�Lout-q 1�Lout-q

? oq

Y oqq-o Iod Lout-q LPLL Dd Gcoqq-o LPLL v̂oq
:

? ? ? ?
V od1�Lout-q 1�Lout-q V od 1�Lout-q1�LPLL� 1�LPLL�� �
∗

^^v̂in �Gcoqq-ci voq:

(14.15)

The closed-loop output admittance is defined as in Eq. (14.16) from which the
effect of SRF-PLL can be identified. The current control works in the same way as
in the case of output admittance d-component, that is, the effect of open-loop
output admittance is diminished at frequencies where current control loop gain
has large magnitude. However, the second admittance term is produced by the
grid synchronization that introduces a parallel negative resistance equal to
�V od=Iod, that is, the term produces a pure resistance at frequencies where

� Gioq-c �Y oqq-coq
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both loop gains Lout-q and LPLL have large magnitudes [4–7]. Having a sum of
admittances is equivalent to having two admittances in parallel.

Y oqq-o Iod Lout-q LPLL Dd Gcoqq-o LPLLY oqq-c � � ? ? � ? ? :
1�Lq �1�LPLL� V od �1�LPLL�V od 1�Lout-q 1�Lout-q

(14.16)

Output impedance q-component with two different current
control settings is shown in Figure 14.5 when the PLL is tuned to have a crossover
frequency of 100 Hz. The impedance behaves as a negative resistor at low
frequencies as can be deduced based on Eq. (14.16). Moreover, the current
control does not affect the low-frequency behavior where the phase remains close
to �180° regardless of the current controller parameters. The model gives
accurate predictions on the shape of the impedance without making the model
very complex and, thus can be used in impedance-based stability analysis.

Output impedance q-component is shown in Figure 14.6 for two different
values of PLL crossover frequency, that is, when the PLL is tuned to have 100 and
20 Hz crossover. Phase margin is set to 65° in both cases. It is evident that the
crossover frequency of the PLL has a dominant effect on the impedance behavior
at low frequencies. The negative resistor-like behavior is known to cause
instability, especially, in inductive and weak grids. Therefore, the speed of grid
synchronization should be limited. It is a common practice to select the crossover
frequency of the PLL in the range of few tens of Hertz. Faster grid synchronization
makes the inverter more vulnerable to instability caused by impedance-based
interactions that is treated more in detail in Chapter 16.

The impedance q-component is found out to consist of two components
connected in parallel when symbolic analysis is applied. The first term originates
from the current control and can be given as in Eq. (14.17). The impedance is

Zoqq-c � 1=Y oqq-c

Figure 14.5 Output impedance q-component Zoqq-c with two current control crossover
frequencies.
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Figure 14.6 Output impedance q-component Zoqq-c with two different PLL settings.

identical to the d-component, that is, it constitutes of a series RLC branch.

1 KCCV in 1
Zoqq-CC � Ls � � � Leqs � � Req:�1

s ωz-CC CeqsLω2
s � KCCV in

(14.17)

The PLL produces an additional parallel impedance component, which can be
given as in Eq. (14.18). The negative resistance is caused by the control system and
cannot be easily represented using passive components as in the case of the
output impedance d-component. The equivalent linear circuit that presents
the dynamic behavior of the q-components can be depicted as in Figure 14.7.
The output impedance has the same branch made of passive components as in
Fig. 14.7. However, the PLL introduces a parallel branch that can be given as in
Eq. (14.18).

IodKCCKPLLV in�s � ωz-CC��s � ωz-PLL�Zoqq-PLL � � : (14.18)
ωz-PLLs

2 � KPLLV ods � KPLLV odωz-PLL

Lωz-CCs
2 � KCCV ins � KCCV inωz-CC � Lωz-CCω

2
s

Figure 14.7 Linearized output dynamics of output current q-component.
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14.2.3 Closed-Loop Input Admittance

The closed-loop input dynamics can be solved by assuming that the input
dynamics depend only on the d-components and that the cross-coupling transfer
functions can be neglected. The closed-loop input admittance can be given as
in Eq. (14.19).

Gcid-oGiod-o Lout-dY in-c � Y in-o � ? : (14.19)
Gcodd-o �1 � Lout-d�

The input admittance can be represented as in Eq. (14.20) to evaluate the effect of
control loop gains on the shape of the admittance. The open-loop transfer
functions inside the parentheses can be collected to form a special parameter
Y in-1 that will serve as a good shortcut for approximating the admittance
behavior inside the current control bandwidth. The term Y in-1 dominates the
shape of the input admittance at frequencies where current control has high gain,
that is, at frequencies where the term Lout-d=�1 � Lout-d� is close to unity.

Y in-o Lout-d Gcid-oGiod-oY in-c � � Y in-o ��1 � Lout-d� �1 � Lout-d� Gcodd-o (14.20)
Y in-o Lout-d� � Y in-1:�1 � Lout-d� �1 � Lout-d�

The special parameter Y in-1 can be solved symbolically and given as in Eq. (14.21)
by noting that at unity power factor, the term ILdLωsDq is equal to �V inD2. Thisq
can be verified by substituting the steady-state value of the duty ratio q-compo
nent in Eq. (14.21) according to the steady-state operating point solved earlier in
Chapter 12.

3 DdILdLs � V inD2
q � ILdLωsDq 3DdILd I in� � � � : (14.21)

2LV ins 2V in V in
Y in-1 � �

The low-frequency value of the inverter input impedance can be given as in
Eq. (14.22). The impedance corresponds to a negative static resistance that is a
well-known property of a constant power load. Negative resistance due to
constant power load characteristics has been discussed extensively in grid-
connected rectifiers [8,9] and DC–DC systems. Thus, it is reasonable to expect
similar dynamic behavior from an output-current-controlled voltage-fed inverter
when studying its dynamics from the DC side.

2V in V inZin-c-LF � � � � : (14.22)
3DdILd I in

Figure 14.8 shows the input impedance �Zin-c � 1=Y in-c� of the voltage-fed
inverter when current control is tuned to have crossover frequencies of 1 kHz
and 500 Hz. The reduced-order model gives accurate predictions on the shape of
the input impedance at unity power factor, even though dynamics related to
q-components are neglected. Moreover, the line marked using plus signs illus
trates the admittance term defined in Eq. (14.21). It gives a good approximation of
the low-frequency behavior of the impedance when only the operating point of
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Figure 14.8 The effect of current control on voltage-fed inverter input impedance Z in-c.

the inverter is known. Thus, one does not necessarily have to measure imped
ances to predict its low-frequency behavior, assuming that the control system is
equivalent to the conventional current control in the dq-domain and PI-type
controllers are used.

14.2.4 Output Impedance with Grid Voltage Feedforward

The principle of grid voltage feedforward was briefly introduced in Chapter 13.
Grid voltage feedforward is implemented by measuring the grid voltage and adding
its value to the duty ratios through a feedforward transfer function [10–13]. The
value of feedforward gain should be selected close to the inverse of input voltage
steady-state value 1=V in in the case of a SPWM and inverter with L-filter. The
feedforward loop can be included in the reduced-order control block diagram of
the output current d-component as depicted in Figure 14.9, where Gffd is the
feedforward gain by which the grid voltage d-component is processed. Note that
the following analysis does not apply for an inverter employing space-vector
modulator where the reference vectors are normalized by DC voltage.

Figure 14.9 Control block diagram related to current d-component with grid
voltage feedforward.
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The closed-loop transfer functions can be solved from Figure 14.9 and
given as

îiod vod � od^^ Y odd-o � Gcodd-oGffd�Giod-o 1 Lout-d ∗�� vin �1 � Lout-d� �1 � Lout-d�
vin � Y odd-cvod � Gcodd-c î^

^

^

?
1 � Lout-d�Hd ��

∗� Giod-c od:

(14.23)

The feedforward gain Gffd affects the closed-loop output admittance Y odd-c as can
be seen from Eq. (14.23). In fact, ideally the output admittance would be equal to
zero when feedforward gain is selected as in Eq. (14.24). This suggests that the
magnitude of output impedance d-component becomes infinite.

Y odd-o 1
Gffd � � : (14.24)

Gcodd-o V in

It is not possible to extract the impedance d-component from the simulator as its
value is ideally infinite. However, its effect can be seen by making a perturbation
on the grid voltage d-component and examining the effect of this disturbance on
the output current d-component. Perturbation to the grid voltage d-component is
equal to making a perturbation to amplitude of three-phase grid voltages.
Figure 14.10 shows the grid voltage and current waveforms extracted from
the simulator before and after activating the feedforward (in d-component).
The peak value of three-phase grid voltage is modulated at 350 Hz with an
amplitude equal to 10 V. Such modulation generates perturbation only in the
d-components since the q-component of grid voltage space vector is defined
equal to zero. This approach allows us to verify the effect of feedforward on the
impedance d-component without the effect of cross-coupling or q-components
of the inverter output impedance.

The grid currents have the same harmonic content as grid voltages prior to
activating the feedforward. However, the grid currents become sinusoidal without
any signs of harmonics after the feedforward is activated at 0.05 s. This simulation

Figure 14.10 Grid currentswhen feedforward control is activatedwith gainsGffd � Gffq � 1=V in.
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study is of course a very theoretical case, but provides valuable insight on the
effectiveness of feedforward in shaping the impedance d-component. Thus,
ideally the impedance becomes infinite after activating feedforward. Therefore,
the inverter does not generate any harmonic currents. Experimental results are
presented later with a photovoltaic inverter since identical feedforward method is
often utilized in renewable energy inverters.

In reality, various nonidealities affect the feedforward path that are not taken
into account in the reduced-order model, such as delays and nonidealities
associated with current/voltage sensing circuits. Moreover, the inverter may
not always be operated at unity power factor. In addition, in current-fed
inverter, the DC voltage control affects the low-frequency behavior of imped
ance d-component.

The feedforward gain should ideally be selected as the inverse of DC voltage.
However, the impedance cannot be extracted from the simulator since it has
ideally an infinite value. The feedforward gain was selected as 0:9=V in to
approximate the dynamic behavior when feedforward gain is close to the optimal
value. Figure 14.11 depicts the impedance d-component when feedforward is
disconnected, that is, Gffd � 0 (lowest magnitude) and when the feedforward gain
is selected as 0:9=V in (highest magnitude) and as 0:5=V in. The DC voltage was set
to 750 V to avoid overmodulation of the three-phase bridge during the frequency
response measurement. Magnitude of impedance is maximized when feedfor
ward gain is selected close to the optimal value. However, decreasing the
feedforward gain or deactivating the feedforward control lowers the impedance
magnitude significantly.

Increasing the feedforward gain beyond 1=V in has detrimental effect on the
impedance magnitude as well. Moreover, the impedance loses its passive features.
Figure 14.12 shows the impedance d-component when feedforward gain is
selected close to the optimal value as 0:9=V in (largest magnitude), 1:5=V in

(center-most magnitude) and twice the optimal value as 2=V in (lowest

Figure 14.11 Output impedance d-component Zodd-c with feedforward gains smaller than the
optimal value.
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Figure 14.12 Output impedance d-component Zodd-c with feedforward gains larger than the
optimal value.

magnitude). The phase of the impedance experiences a 180° shift upward when
feedforward gain is larger than 1=V in. Thus, the phase does not stay within �90°
and 90° and the impedance does not resemble a passive circuit. Such behavior can
introduce impedance-based instability [8] and, therefore, too large feedforward
gain should be avoided.

The effect of grid voltage feedforward on the impedance q-component can be
evaluated by adding the feedforward path in the block diagram of Figure 14.4.

´According to Eq. (13.8), the sensed grid voltage d-component v̂oq can be defined
as in Eq. (14.25) based on which the control block diagram can be modified by
adding the corresponding feedforward path as depicted in Figure 14.13.

� 1 �

v̂oq;

V od LPLL LPLL´ � (14.25)v̂oq ^^^

^

voq voq voq:

The closed-loop dynamics can be solved from the block diagram and given as

Gioq-oioq

1 � LPLL� 1 � LPLL�V od � �

^1 Lout-q i
∗� v̂in� oqHq1�Lout-q 1�Lout-q

Y oqq-o��Gcoqq-oGSPWMGffq�=�1�LPLL� ILd Lout-q LPLL Dd Gcoqq-o LPLL

1�LPLL� 1�LPLL�1�Lout-q 1�Lout-q 1�Lout-qV od V od� �

^^^^

(14.26)

or in short as
∗

ioq vin � Gciq-ci voq:� Gioq-c � Y oqq-c (14.27)oq

The output admittance q-component can be given as in Eq. (14.28) where the
feedforward affects the admittance through the term Gcoqq-oGSPWMGffq=�1 � LPLL�.
The effect of the open-loop admittance Y oqq-o is canceled when the feedforward
gain is selected as in Eq. (14.29). However, the feedforward does not affect the
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Figure 14.13 Control block diagram related to output current q-component with feedforward.

low-frequency impedance that is determined by the phase-locked loop. This can be
deduced from Eq. (14.28) by noting that the feedforward term is divided by the PLL
loop gain LPLL.

1 Gcoqq-oGSPWMGffqY oqq-c � Y oqq-o � �1 � LPLL�1 � Lout-q

� ILd

V od

Lout-q

1 � Lout-q

LPLL

1 � LPLL� � �
Dd

V od

Gcoqq-o

1 � Lout-q

LPLL

1 � LPLL� � ;
(14.28)

Gffq � Y oqq-o � 1
: (14.29)

Gcoqq-oGSPWM V in

Figure 14.14 shows the impedance q-component when feedforward is initially
deactivated (lowest magnitude) and feedforward gains of 0:5=V in and 0:9=V in are
used. The impedance magnitude increases in value at high frequencies when the
feedforward gain approaches the optimal value defined in Eq. (14.29). However, as
deduced earlier, the feedforward has no effect on the impedance at frequencies
inside the PLL bandwidth, that is, at frequencies below approximately few tens of
Hertz. The low-frequency impedance appears as a negative resistor determined
by the ratio �V od=Iod due to PLL. Negative resistance is an inherent property of
the grid synchronization.
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Figure 14.14 Output impedance q-component Zoqq-c with feedforward gains smaller than the
optimal value.

Figure 14.15 shows the impedance when feedforward gain is initially 0:9=V in and
increased beyond the optimal value to 1:5=V in and 2=V in. The low-frequency
impedance behaves still as a negative resistance and is not affected by feedforward.
However, large feedforward gain produces a sharp resonant spike and decreases the
phase of the impedance significantly. The impedance loses its passive character
istics at frequencies higher than the resonance since the phase does not stay
contained between�90° and 90° lines. Moreover, the magnitude drops significantly
at high frequencies that makes the inverter prone to impedance-based instability as
will be discussed in Chapter 16.

Figure 14.15 Output impedance q-component Zoqq-c with feedforward gains larger than the
optimal value.
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14.2.5 Impedance Characteristics of Voltage-Fed Inverters

Based on the analysis above, the following guidelines and remarks on impedance
behavior of voltage-fed inverters can be given:

� Output current control produces a capacitive element in both impedance
components (d- and q-components). The capacitive element increases imped
ance magnitude, thus making the inverter to resemble more an ideal current
source. Higher current control bandwidth produces larger capacitive element.
However, in practical applications, current control cannot be tuned faster than
switching frequency and the associated control delay allow, to avoid instability
of the current control loop.� Phase-locked-loop produces a negative resistance in the impedance q-compo
nent that determines its low-frequency behavior. The magnitude of negative
resistance depends on the ratio of voltage and current d-components, or in the
case of constant grid voltage, the processed power. The negative resistance
region can be limited to low frequencies by using low-bandwidth PLL that,
however, reduces the dynamic performance of the PLL. The negative resistance
is not affected by current control or feedforward. The negative resistance is
an inherent property of any grid synchronization algorithm and cannot be
removed.� Grid voltage feedforward increases the magnitude of both impedance compo
nents (d- and q-components). However, the feedforward gain should not be
selected larger than the optimal value that is equal to the inverse of DC voltage
steady-state value 1=V in. A value smaller than the optimal reduces the
effectiveness of feedforward by decreasing the magnitude of the impedance.
However, increasing the feedforward gain beyond the optimal value will result
the decrease of both, the magnitude and the phase. This can be harmful for
impedance-based stability since the impedance loses its passive features, that is,
the phase does not stay between �90° and 90°.

14.3 Reduced-Order Model of Current-Fed Inverter with
L-Type Filter

14.3.1 Closed-Loop Model with Cascaded Control Scheme

Current-fed inverter utilizes a cascaded control scheme where the outer input
voltage control loop sets the reference value for the inner d-current control loop.
The inverter with L-type output filter is analyzed first to demonstrate the method
how the cascaded control scheme is included in the closed-loop model. First the
closed-loop dynamics with current control are solved and secondly the outer
control loop is included in the model. This allows the effects of different control
loops on the closed-loop dynamics to be identified more easily.

Figure 14.16 depicts the inverter control block diagram when the current
control loop of the d-component is closed. It is assumed that the cross-coupling
transfer functions Y oqd-o and Gcoqd-o can be neglected and that the input dynamics
depend mainly on real power [1]. Thus, the transfer functions Toiq-o and Gciq-o are
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Figure 14.16 Reduced-order d-channel and input dynamics with current control.

neglected. Moreover, it is assumed that the d-channel dynamics are not affected
by the PLL. Such model is referred as a reduced-order model.

Closed-loop transfer functions can be solved from Figure 14.16 and defined as
in Eqs. (14.30–14.35) where the superscript “cc” is used to denote that transfer
functions include the dynamic effect of current control.

Gcc
iod � îod

îin
� Giod-o

1 � Lout-d� � ; (14.30)

Y cc
odd � � îod

v̂od
� Y odd-o

1 � Lout-d� � ; (14.31)

Gcc
codd � îod

î
∗
od

� 1
Hd

?
Lout-d

1 � Lout-d� � ; (14.32)

Zcc
in � v̂in

îin
� Zin-o

1 � Lout-d� � �
Lout-d

1 � Lout-d� � Zin-o � Gcid-oGiod-o

Gcodd-o
; (14.33)

T cc
oid � v̂in

v̂od
� Toid-o

1 � Lout-d� � �
Lout-d

1 � Lout-d� � Toid-o � Gcid-oY odd-o

Gcodd-o
; (14.34)

Gcc
cid � v̂in

î
∗
od

� 1
Hd

?
Gcid-o

Gcodd-o
?

Lout-d

1 � Lout-d� � : (14.35)

The current control loop gain can be defined as in Eq. (14.36) where Hd is the
current sensing gain and GSPWM is the modulator gain of the SPWM. The effect of
a low-pass filter in the sensing circuit and delay from analog-to-digital converters
can be taken into account by modifying the sensing gain transfer function.
Moreover, the effect of a nonunity modulator gain and the corresponding delay
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Figure 14.17 Reduced-order con
trol dynamics (d-component) with
input voltage control.

can be taken into account by modifying the modulator transfer function.

Lout-d � Gcodd-oGSPWMGPI-dHd: (14.36)

iin

^

^

The input voltage control loop can be included in the closed-loop model by

^

^

considering the output-current controlled inverter as an open-loop system from
the perspective of the outer voltage control loop. The corresponding control
block diagram can be depicted as in Figure 14.17. Hv is the sensing gain of the
input voltage measurement circuit and GPI-v is the transfer function of input
voltage controller. The dot at the controller output denotes that inverted control
signal is used and is equivalent to a “�1” in the loop gain.

Closed-loop transfer functions can be solved from Figure 14.17 and given
according to Eqs. (14.37–14.42).

vin

vin

vod

Zin-o Lout-d Gcid-oGiod-oZin-c � � � Zin-o � ;
1 � Lin��1 � Lout-d� 1 � Lin��1 � Lout-d� Gcodd-o� �

(14.37)

Toid-o Lout-d Gcid-oY od-oToid-c � � � Toid-o � ;
1 � Lin��1 � Lout-d� 1 � Lin��1 � Lout-d� Gcodd-o� �

(14.38)

1 Linv̂in
∗Gcid-c � � (14.39)? ;

1 � Lin�Hv

^

^

^

vin

iod

iin

�
Giod-o Lin Gcodd-oZin-o

; (14.40)Giod-c � � � Giod-o �1 � Lin��1 � Lout-d� 1 � Lin� Gcid-o� �



60514.3 Reduced-Order Model of Current-Fed Inverter with L-Type Filter

îod Y odd-o Lin Gcodd-oToid-oY odd-c � � � � ;Y odd-o �v̂od �1 � Lin��1 � Lout-d� �1 � Lin� Gcid-o

(14.41)

îod 1 Lin Gcodd-oGcodd-c � ∗ � ? ? : (14.42)
v̂in Hv �1 � Lin� Gcid-o

The input voltage control loop gain is defined as in Eq. (14.43) where the inverted
control signal is taken into account by multiplying the loop gain by minus one.

Hv Gcid-o Lout-dLin � � ?GPI-v:� �1 ? ? ? (14.43)
Hd Gcodd-o �1 � Lout-d�

14.3.2 Effect of Input Voltage Control Bandwidth

Effect of the input voltage control bandwidth on the inverter output impedance d-
component is studied in this section. The parameters of the studied photovoltaic
inverter used for impedance model verification are as given in Table 14.1 that are
used in the simulation model and as the parameters of the actual experimental
setup.

The output admittance d-component is as defined by Eq. (14.41) where the first
terms corresponds to the open-loop admittance Y odd-o divided by both control
loop gains Lin and Lout-d. The current control effectively tries to make the inverter
to look like an ideal current source with high output impedance. At low-
frequencies, the first term is close to zero due to the fact that both loop gains
have large magnitudes. Therefore, the second term of Eq. (14.41) defines the low-
frequency behavior of the impedance and can be defined as in Eq. (14.44). At low
frequencies, the term Lin=�1 � Lin� is close to unity, that is, inside the input voltage
control bandwidth.

Gcodd-oToid-o LinY low-freq Lin� � ?Y od-1: (14.44)Y odd-o �odd-c �1 � Lin� �1 � Lin�Gcid-o

The open-loop transfer functions inside the brackets in Eq. (14.44) are defined
using the special parameter Y od-1. The special parameter in the operating point
defined in Table 14.1 can be drawn in the frequency-domain as shown in
Figure 14.18. The transfer function has a special meaning since it defines the
low-frequency value of admittance d-component Y odd-c.

The transfer function has a value of approximately Iod=V od up to 100 Hz.
Therefore, the low-frequency impedance, below the input voltage control band
width, can be approximated by Eq. (14.45). The same result can be obtained by

Table 14.1 Parameters of the photovoltaic inverter.

p
Vmpp 414.3 V La;b;c 5 mH V od �2��120 V

Impp 6.58 A Cdc 1.5 mF ωs 2π ? 60 rad=s

Pmpp 2.7 kW req 100 mΩ f sw 8 kHz
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Figure 14.18 The special term Yod-1 and its approximated value.

applying symbolic analysis to Eq. (14.44). Based on the analysis, one should expect
that the low-frequency impedance behaves as a resistor at frequencies below the
input voltage control bandwidth and its value depends on the processed power.
The value of the resistance decreases with increasing output current, assuming
the grid voltage amplitude remains constant. This corresponds to the well-known
behavior or a constant power source. This result is very beneficial in determining
the low-frequency impedance since one only has to know the grid voltage
amplitude and the amount of real power supplied by the inverter.

�1 V odZlow-freq Y low-freq� � : (14.45)odd-c odd-c Iod

Figure 14.19 shows the output impedance d-components extracted from the
switching model in two cases. The input voltage control is tuned to have crossover
frequencies f of 10 and 50 Hz with 65° phase margin, correspondingly. Thec
current control is tuned to have a crossover frequency of 500 Hz in both cases.
The impedance resembles a resistor at frequencies below the bandwidth of the
input voltage control. However, one should remember that the inverter also
employs current control that has to be tuned to have faster dynamics than the
input voltage control. In principle, the passive resistance region cannot be
extended over few tens of hertz. Wide-bandwidth DC voltage control amplifies
noise, such as the DC voltage ripple at second harmonic during unbalance that
easily corrupts the output current references as discussed in Chapter 13. The low-
frequency resonant spike can be shifted by changing the voltage control crossover
frequency.

14.3.3 Effect of AC Current Control Bandwidth

The AC current control is usually tuned to have crossover frequency of at least
one decade higher than the input voltage control loop. The current control
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Figure 14.19 Effect of input voltage control bandwidth on inverter output impedance
d-component Zodd-c.

effectively makes the inverter to appear as a current source, that is, the current
control increases the magnitude of inverter output impedance. It should be noted
that the simulation model does not include delay and, therefore, the current
control is stable even with very large bandwidth. However, in real applications
delays originating from sampling and the modulator may destabilize the current
control, whereas, higher switching frequency reduces the delay and enables faster
current control.

Figure 14.20 shows the output impedance d-component when the current
control is tuned to have crossover frequencies of 500 Hz and 1 kHz and 65° phase
margin. The input voltage control is tuned to have a crossover frequency of 10 Hz

Figure 14.20 Effect of current control bandwidth on inverter output impedance
d-component Zodd-c.
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Figure 14.21 Effect of control delay on inverter output impedance d-component Zodd-c.

in both cases. The low-frequency impedance is determined by the input voltage
control, that is, by the constant power nature of the inverter, and cannot be
modified by current control. The current control starts affecting the impedance
magnitude at frequencies that are outside the input voltage control bandwidth.
Moreover, increasing the current control bandwidth increases the resonant
frequency.

The effect of control delay on the impedance was evaluated by multiplying the
loop gain with the delay transfer function. A second-order Pade-approximation
was used to define the delay transfer function. Figure 14.21 shows the impedance
with three values of delay. The dotted line depicts the impedance when no delay is
present, dashed line depicts the impedance when delay is selected as one switching
cycle 1=f , and the solid line depicts the impedance when delay is selected assw
1:5=f . The delay decreases the magnitude only slightly. However, the phase of thesw
impedance experiences a jump of +360° at the resonant frequency. Therefore, the
impedance loses its passive features that is generally seen as a precondition for
impedance-based interactions when the grid has finite impedance.

14.3.4 Experimental Verification: Measured Impedance d-Component

Figure 14.22 shows the measured impedance d-component from the 2.7 kW
laboratory setup. The frequency response given by the analytical model in
Eq. (14.41) is shown as the dotted line. The analytical model includes a control
system delay of 1:5 T s. The current control was tuned to have a crossover
frequency of 500 Hz and the input voltage control had a crossover frequency
of 40 Hz. The impedance does not resemble a passive circuit due to the control
delay as discussed earlier. The impedance measured from the prototype includes
many spikes in the magnitude and phase that are caused by measurement noise
and harmonics generated by the dead-time effect. The dead-time was used to
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Figure 14.22 Measured output impedance d-component Zodd-c.

avoid simultaneous conduction of current in upper and lower switches in a phase-
leg. The inverter utilizes an IGBT–IPM module type 7MBP50RJ120 based on
IGBT switches that has recommended dead-time of 4 μs.

14.3.5 Effect of SRF-PLL

The phase-locked-loop affects the output dynamics related to the q-components
and should be included in the closed-loop model. The control block diagram is as
shown in Figure 14.23 that is very similar to the one depicted in Figure 14.4 in the

Figure 14.23 Control block diagram describing q-channel output dynamics.



610 14 Reduced-Order Closed-Loop Modeling of Inverters

Figure 14.24 Measured output impedance q-component Zoqq-c.

case of a voltage-fed inverter. The only difference is that the input voltage v̂in is
treated as an output variable and input current îin as an input variable.

The closed-loop output impedance q-component Y oqq-c can be solved from the
block diagram by solving the transfer function from output voltage q-component
to output current q-component and is given by Eq. (14.46). The transfer function
seems to be identical with the output impedance of voltage-fed inverter in
Eq. (14.16). However, the open-loop transfer functions of current-fed inverter
are of higher order since they include the dynamic effect of DC capacitor.

Y oqq-c �� îoq

v̂oq
� Y oqq-o

1�Lout-q
� ILd

V od

Lout-q

1�Lout-q

LPLL

1�LPLL� ��
Dd

V od

Gcoqq-o

1�Lout-q

LPLL

1�LPLL� � :
(14.46)

Figure 14.24 shows the measured and predicted impedance q-component when
PLL was tuned to have crossover frequencies of 20 and 200 Hz. Increasing the PLL
crossover makes the phase to stay close to �180° over a wider frequency range.
Moreover, the magnitude stays constant at frequencies below the crossover
frequency. Thus, the impedance resembles a negative resistance of �V od=Iod

at low frequencies.
The negative resistance can easily destabilize a grid-connected inverter. There

fore, the PLL bandwidth should be limited. However, the question of maximum
allowed PLL crossover frequency depends on many factors such as processed power
and shape of grid impedance and requires a case-specific evaluation of impedance-
based stability. An example case study is presented in Chapter 16.

14.3.6 Effect of Grid Voltage Feedforward on Impedance d-Component

Similarly, as with a voltage-fed inverter, the current-fed inverter often utilizes
feedforward measurements from grid voltages to improve its output impedance
behavior. The grid voltage feedforward can be included in the reduced-order
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Figure 14.25 Current-fed inverter output dynamics (d-component) with current control and
grid voltage feedforward.

closed-loop model (of d-components) by using the same approach as before when
solving the effect of cascaded control scheme. The current control and feedfor
ward loops are first closed as illustrated in Figure 14.25. The closed-loop transfer
functions are solved from the block diagram.

The most convenient way of solving the transfer functions is to use the
principle of superposition. For example, output voltage d-component v̂od and

∗
output current reference îod are set equal to zero that allows drawing the control
block diagram as in Figure 14.26. From this form, it is easier to find the closed-
loop transfer function from input current to output current d-component as
given in Eq. (14.47). The superscript “cc-ff” is used to denote that the transfer

Figure 14.26 Control block diagram to solve Gcc-ff .iod
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function includes the dynamic effects of output current control and grid voltage
feedforward.

Gcc-ff iod� �iod iin^

^

�
Giod-o

1 � Lout-d� : (14.47)

Transfer function from input current to input voltage can be solved by noting that
the duty ratio is given by

^dd � �GSPWMGPI-dHdiod � � iin:^^ Giod-o Lout-d (14.48)
Gcodd-o

? �1 � Lout-d�
Therefore, the input voltage can be defined as

Gcid-oGiod-o Lout-d ^^vin � Gcid-odd � Zin-oiin � � iin � Zin-oiin;

(14.49)

which can be simplified as

^^^
Gcodd-o

? �1 � Lout-d�

Zin-o Lout-d Gcid-oGiod-o ^vin � iin;

and finally the closed-loop transfer function from input current to input voltage,
that is, the input impedance Zcc-ff , can be given asin

^ Zin-o � (14.50)?
1 � Lout-d� 1 � Lout-d� Gcodd-o� �

Zin-o Lout-d Gcid-oGiod-o
: (14.51)Zcc-ff

in � v̂in

îin
� � Zin-o �?

1 � Lout-d� 1 � Lout-d� Gcodd-o�
By using the same approach, the rest of the closed-loop dynamics can be solved
and given as

Y odd-o � Gcodd-oGffd

�1 � Lout-d�
^

^
Y cc-ff iod

odd � � �
vod

; (14.52)

îod
∗

1 Lout-dGcc-ff
codd � � ; (14.53)

Hd �1 � Lout-d�îod

Toid-o � Gcid-oGSPWMGffd Lout-d Gcid-oY odd-o
;

^

v̂in� �
vo

T cc-ff
oid � Toid-o �1 � Lout-d� 1 � Lout-d� Gcodd-o� �

(14.54)

1 Gcid-o Lout-d

Hd Gcodd-o �1 � Lout-d�
^

^
Gcc-ff vin� �cid ∗

i
; (14.55)

od

where the current control loop is given as

Lout-d � Gcodd-oGSPWMGPI-dHd: (14.56)

The input voltage control can be added in closed-loop dynamics by treating the
output-current controlled converter as an open-loop system from the view-point
of the input voltage controller, that is, the control input of the “open-loop” system
is the reference value of output current d-component. Control block diagram
with input voltage control is depicted in Figure 14.27.
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Figure 14.27 Current-fed inverter
output dynamics (d-component)
with input voltage control.

The output signal of input voltage controller GPI-v is inverted that equals a gain
of minus one. Closed-loop transfer functions can be solved from the block
diagram and given as in Eqs. (14.57–14.62).

Zin-o 1 Lout-d Gcid-oGiod-o
;

vin

îin

^
Zff

in-c �

^

^

vin

vod

� � Zin-o �1 � Lin��1 � Lout-d� 1 � Lin� �1 � Lout-d� Gcodd-o� �
(14.57)

Toid-o�Gcid-oGSPWMGffd 1 Lout-d Gcid-oY odd-o
;T ff

oid-c � � � Toid-o�1�Lin��1�Lout-d� �1�Lin��1�Lout-d� Gcodd-o�
(14.58)

1 Lin

Hv �1�Lin�

^

^

^

^

Gff vin� �cid-c ∗v

iod

iin

; (14.59)
in

Giod-o Lin Gcodd-o
;Zin-oGff

iod-c � � � Giod-o��1�Lin��1�Lout-d� 1�Lin� Gcid-o�
(14.60)

Y odd-o�Gcodd-oGSPWMGffd^

^

^

Y ff iod
odd-c vod

iod

Lin� Y od-1; (14.61)�1�Lin��1�Lout-d� 1�Lin��
1 Gcodd-o LinGff

codd-c � � : (14.62)∗ Hv Gcid-o �1�Lin�v̂in

The input voltage control loop gain is defined as

��1�GPI-vG
cc-ff Hv Gcid-o Lout-dLin � Hv cid � ��1� ? GPI-v ; (14.63)

Hd Gcodd-o �1 � Lout-d�
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and the special parameter Y od-1 as

Gcodd-oToid-oY od-1 � Y odd-o � : (14.64)
Gcid-o

The output admittance in Eq. (14.61) is affected by the grid voltage feedforward
similarly, as in the case of a voltage-fed inverter. The low-frequency behavior of
the admittance is determined by the term Y od-1 and cannot be influenced by the
feedforward. At low frequencies, where the ratio Lin=�1 � Lin� is close to unity,
the admittance d-component depends on the inverter output power according to
the ratio Iod=V od as demonstrated earlier in Figure 14.19.

The output admittance at frequencies over the input voltage control bandwidth
is affected by the feedforward. According to Eq. (14.61) the feedforward gain
cancels out the open-loop admittance when its value is selected according to

1
Gideal Y odd-o� � : (14.65)ffd Gcodd-oGa V in

It is easy to see that with optimal feedforward gain (and negligible delay) the
output impedance d-component is given by

Y ideal-ff Lin� (14.66)odd-c Y od-1�1 � Lin�
Therefore, the output impedance d-component can be approximated as in
Eq. (14.67) when the input voltage control bandwidth is known and current
control is tuned to be sufficiently fast. The pole ωBW-dc is placed according to the
voltage control bandwidth which is defined as the – 3 dB point from Lin=�1 � Lin�.

�1Iod 1
Zapprox � ? : (14.67)odd-c V od �s=ωBW-dc � 1�

Figure 14.28 shows the impedance d-component extracted from a switching model
and the simplified analytical approximation according to Eq. (14.67). The input
voltage control bandwidth is 13.6 Hz (or 85.3 rad/s). The solid line is the impedance

Figure 14.28 Output impedance d-component Zodd-c with optimal grid voltage feedforward.
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Figure 14.29 Output impedance d-component Zodd-c with different feedforward gains.

extracted using PBRS-method, dots represent the analytical impedance according
to transfer function of Eq. (14.61), and the dashed line depicts the simpli ed formfi

^

according to Eq. (14.67). The feedforward gain was selected as 1=V in according to
the previous analysis. Current control with a crossover of 1 kHz and phase margin of
65° was used. The gain and phase of the analytical model deviates from the
simulated impedance at high frequencies. This is caused by the fact that cross
coupling dynamics were neglected when deriving the closed-loop impedance. A
full-order model can be used that predicts the shape of the impedance also at higher

^

frequencies that is discussed in the next chapter. The simplified impedance model
of Eq. (14.67) gives a prediction with a reasonable accuracy up to a few hundred
hertz.

The feedforward gain should be selected as the inverse of DC voltage to obtain
output impedance with the highest magnitude. Figure 14.29 shows the analytical
impedance according to Eq. (14.61) and the simulated impedance when the
feedforward gain is selected as 0:5=V in, 1=V in, and 2=V in. As can be seen by
comparing the results, increasing the feedforward gain makes the feedforward to
lose its effectiveness, since the magnitude drops compared to the previous case.
Moreover, using a feedforward gain smaller than the optimal value makes the
feedforward to lose its effectiveness as well. Small feedforward gain makes the
impedance to resemble more like the case when feedforward is deactivated.
Moreover, the low-frequency resonance appears back in the impedance.

14.3.7 Effect of Grid Voltage Feedforward on Impedance q-Component

The output impedance q-component can be solved from the block diagram in
Figure 14.30. The block diagram is modified from Figure 14.23 by noting that the
q-components (current, voltage or duty ratio) inside the control system reference
frame are affected by the PLL and can be given according to Eq. (14.68).

xq vq:
Xd LPLL´x̂q � (14.68)
V d �1 � LPLL�
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Figure 14.30 Current-fed inverter output dynamics (q-component) with PLL, output current
control, and grid voltage feedforward.

The grid voltage q-component inside the control system reference frame can,
therefore, be given as

V d LPLL 1´ � � (14.69)^

^

^

^

vq vq:

The sensed grid voltage q-component is multiplied by the feedforward gain Gffq

and the control block diagram of the output dynamics can be depicted as in
Figure 14.30.

Closed-loop transfer functions can be solved from the block diagram by using
the principle of superposition and given as in Eqs. (14.70–14.72).

ioq

iin

v̂ v̂qV d �1 � LPLL� �1 � LPLL�q

Gioq-o� ; (14.70)
1 � Lout-q

Gff
ioq-c �

^

^
Y ff ioq

oqq-c voq

Y oqq-o � �Gcoqq-oGSPWMGffq=�1 � LPLL��
1 � Lout-q

� Iod

V od

Lout-q

1 � Lout-q

LPLL

1 � LPLL� � �
Dd

V od

Gcoqq-o

1 � Lout-q

LPLL

1 � LPLL� � ;
(14.71)

^

^
Gff ioq� �coqq-c ∗

ioq

1 Lout-q

Hq 1 � Lout-q
: (14.72)

Let us consider the first term in the output admittance q-component in Eq. (14.71),
assuming unity modulator gain as in Eq. (14.74). It is easy to show that if the PLL has
negligible gain at the frequencies of interest, the numerator is equal to zero when
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feedforward gain is selected as Gffq � Y oqq-o=Gcoqq-o. The ideal feedforward gain
Gffq can be solved from the transfer functions and is as given by Eq. (14.74) that has
the same value as in the case of feedforward gainGffd affecting the d-components, as
one could expect.

�with very slow PLL�Y oqq-o � �Gcoqq-oGffq=�1� LPLL�� Y oqq-o �Gcoqq-oGffq
Y 1st term � � ;oqq-c 1� Lout-q 1� Lout-q

(14.73)

Gideal Y oqq-o 1
ffq � � : (14.74)

Gcoqq-o V in

However, the PLL diminishes the effect of feedforward at frequencies inside its
control bandwidth because the term Gcoqq-oGffq is effectively divided by the PLL
loop gain LPLL in Eq. (14.71). Figure 14.31 shows the PLL loop gains and the
corresponding output admittance q-component when the crossover frequency of
the PLL is selected as 10, 100, and 1000 Hz. The PLL phase margin is kept at 65° in
all cases. Using faster PLL pushes the negative resistance region toward higher
frequencies. At the same time the effect of the grid voltage feedforward is
diminished, that is, the magnitude of the output impedance is smaller over
the whole frequency range when fast PLL is used. As a conclusion, the grid voltage
feedforward cannot be used to remove the negative resistance from the inverter
output impedance. The negative resistance is an inherent property of the PLL and
is caused by the fact that the PLL inverter tries to force the sensed grid voltage
q-component to zero. The only feasible way of avoiding the negative resistance-
behavior is to limit the PLL bandwidth.

Figure 14.32 shows the impedance q-components when grid voltage feedfor
ward is deactivated and when the feedforward gain is selected according to
Eq. (14.74). The impedances were also extracted from a switching model by
using the PRBS injection method. The PLL was tuned to have a crossover
frequency of 10 Hz and current control a crossover frequency of 1 kHz. The
feedforward with optimal gain increases the impedance magnitude significantly
compared to the case when it is deactivated. As deduced earlier, the negative
resistance appears at low frequencies due to the PLL. However, the feedforward
effectively increases the impedance at high frequencies. The impedance model
was developed by neglecting the cross-coupling transfer functions. This is the
reason why the model cannot reproduce the impedance magnitude correctly at
high frequencies. In reality, the cross-coupling transfer functions, although small
in their magnitude, start to have an effect on the impedance at high frequencies.
Their effect can be taken into account by using the multivariable small-signal
model as discussed more in detail in Chapter 15.

A rough approximation for the output impedance q-component can be given as
in Eq. (14.75) when the feedforward gain is selected as 1=V in. The pole ωBW-PLL is
placed according to the PLL control bandwidth that is defined as the – 3 dB point
from transfer function LPLL=�1 � LPLL�. Figure 14.33 shows a comparison of the
impedance extracted from the simulator, given by the reduced-order impedance
model in Eq. (14.71) and the approximation in Eq. (14.75). The approximation
gives quite good approximation on the shape of the impedance and can be used to
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Figure 14.31 (a) PLL with different crossover frequencies. (b) The corresponding output
impedance q-component.

get a rough idea, for example, on the negative resistance region without needing
to derive the whole dynamic model. However, the approximation only applies to
inverter with L-type output filter in the case when switching frequency is high
enough to allow the control delay to be neglected.

�1Iod 1
Zapprox: : (14.75)oqq-c V od �s=ωBW-PLL � 1�

The grid voltage feedforward evidently increases inverter output impedance
that is in line with the studies showing that the feedforward improves current
quality when grid voltages experience harmonic components, that is, the inverter
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Figure 14.32 Impedance q-component Zoqq-c extracted from the switching model with and
without grid voltage feedforward.

Figure 14.33 Comparison of output impedance q-component (14.75) with measurement and
reduced-order model.

is operated as a current source and should have as large output impedance as
possible. These results apply to the current-fed inverter utilizing an L-type output
filter. Impedance model for inverter with LCL-filter require more complex small-
signal model that is derived in the next chapter.

14.4 Closed-Loop Model of Current-Fed Inverter with
LC-Type Filter

In state-of-the-art inverters an LCL-type output filter is used to reduce the
physical size of inductive elements and cost [14,15]. Moreover, an LCL-filter
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Figure 14.34 Passively damped LCL-filter with (a) delta-connected and (b) star-connected
AC capacitor.

provides better attenuation of switching harmonics. Figure 14.34 shows two
typical three-phase LCL-filters with passive damping. The AC capacitors can be
connected to either star or delta configuration. The operational principle of these
two types of filters is basically the same and in this book the emphasis is on the
star-connected LCL-filter in Figure 14.34b.

In some cases the inverter utilizes an LC-type output filter where the leakage
inductance of an isolation transformer effectively forms the grid-side inductive
filter element. A transformer isolated inverter is illustrated in Figure 14.35, where
Ltf denotes the internal inductance of the transformer. It could be possible to
derive the whole model of the inverter again by analyzing the AC capacitors as a
part of the power stage. However, the filter can also be added as a load effect to
avoid lengthy derivation of a new dynamic model.

The AC capacitor can be depicted in the phase-domain as in Figure 14.36. The
capacitor is assumed to be fed from an ideal three-phase current source and
loaded by ideal three-phase voltage source. The capacitor voltage in phase i is
determined by the capacitor current that again depends on the difference in
capacitor voltage and grid voltage and the value of the damping resistor Rd

according to Eq. (14.76). The average voltage vnS is virtually zero in a balanced
grid and can be neglected in the analysis for simplicity.

d �vin � vCf i � vnS�Cf �vCf i� � : (14.76)
dt Rd
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Figure 14.36 Star-connected AC
capacitor in the phase-domain.

The three-phase voltage and currents can be written using vectors as

vCfa van vCfa
d 1 1� � vnS

: (14.77)Cf vCfb vbn vCfbdt Rd Rd Rd
vCfc vcn vCfc

Capacitor voltages can be represented in the stationary reference frame by
multiplying the current and voltage vectors by the Clarke’s transformation matrix
and given as in Eqs. (14.78) and (14.79).

voαvCfα vCfα
d 1 1� : (14.78)Cf voβvCfβ vCfβdt Rd Rd

v0vCf0 vCf0

d 1 1αβ αβ αβCf v � v � v (14.79)Cf o Cf :dt Rd Rd

After applying Eq. (12.6), the capacitor voltage can be given in the dq-domain as

d �vod � vcd�Cf vcd � � ωsCfvcq; (14.80)
dt Rd

d voq � vcq � ωsCfvcd: (14.81)Cf vcq �
dt Rd

The capacitor currents depend on the voltage difference between output voltage
and capacitor voltage and the value of damping resistor, similarly as in Eq. (14.76).
However, the capacitor has cross-couplings between the d and q-components
that are represented as current sources parallel to each capacitor. The capacitor
can be depicted in the dq-domain as in Figure 14.37.

It is assumed that the cross-coupling terms ωsCfvcq and �ωsCfvcd are small
enough to be neglected in the following analysis. After all, the goal of this chapter is
to provide a reduced-order model of the inverter with less complexity. The output
current controlled inverter with L-type output filter, or the “original power stage” in
Figure 14.35 can be treated as a source system. Moreover, the AC capacitor can be
treated as a load system. The transformer is left out of the analysis since the interest
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Figure 14.37 (a) d-components
and (b) q-components of a star-
connected capacitor in the d–q
domain.

lies in how the AC capacitor affects the inverter impedance. The linear equivalent
circuit of the inverter with AC capacitor is as shown in Figure 14.38. The circuit
includes only the transfer functions that were derived in the previous section and
that are relevant for the reduced-order model.

Admittance of the output capacitor can be given as

sCfYCap-d � YCap-q � : (14.82)�RdCf s � 1�
According to basic circuit theory, admittances connected in parallel can be
summed together to get the total admittance of the circuit. Therefore, the output
impedance d- and q-components of the current-fed inverter with LC output filter
can be given as in (14.83) and (14.84), where Y odd-c and Y oqq-c are the closed-loop
admittances of the inverter with L-type output filter. The closed-loop admittances
include all control functions, such as the grid voltage feedforward, and can be
modeled based on the previous section.

ZLC �1
: (14.83)Y odd-c � YCap-d

ZLC

odd-c �
� �1

: (14.84)Y oqq-c � YCap-qoqq-c

Figure 14.38 Reduced-order linear equivalent circuit of the inverter with LC-filter.
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Figure 14.39 Analytical (dotted) and simulated (solid) output impedance d-component.

Figure 14.39 shows the inverter output impedance d-component with and
without grid voltage feedforward when the inverter has an output LC-filter.
The impedances were extracted from a simulator. In the previous chapter, it was
shown that the magnitude of inverter output impedance tends to infinity at high
frequencies. However, the situation is different when the inverter is interfaced
with an AC capacitor. The high-frequency impedance is determined by the
parallel connected capacitor as can be analyzed by studying Figure 14.38.
Therefore, it is natural to expect that the impedance magnitude decreases as
frequency increases. The same applies regardless whether the proportional grid
voltage feedforward is used or not. Actually, the grid voltage feedforward gain
should be a transfer function of higher order to increase the impedance at
frequencies higher than the resonant frequency of the output filter, as discussed,
for example, in Refs [16–18] (Figure 14.40).

Figure 14.40 Output impedance q-component with and without grid voltage feedforward.
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14.4.1 Experimental Verification of Impedance Model

Figure 14.41 shows the experimental setup that was used to measure inverter
output impedance in the dq-domain. Moreover, the effect of feedforward on
power quality was demonstrated. The inverter was fed from an electrical PV
emulator and loaded by a three-phase grid emulated. An isolation transformer
was connected between the inverter and the grid emulator to mitigate common-
mode currents. The control system was implemented using dSPACE real-time
simulator. The FRA stands for a sine-sweep frequency response analyzer.
Photograph of the laboratory setup is shown in Figure 14.42. The principle of
impedance measurement is described in Ref. [19].

Figure 14.43 shows the grid currents of a photovoltaic inverter with and
without grid voltage feedforward. The currents are sinusoidal and symmetric
in both cases, which demonstrate that the feedforward does not diminish the
quality of grid currents under normal operating conditions.

Figure 14.41 Experimental measurement setup.

Figure 14.42 Photograph of the measurement setup.
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Figure14.43 Grid currents ofphotovoltaic inverter in a cleangridwith andwithout feedforward.

Figures 14.44 and 14.45 show the measured impedance d and q-components
with and without feedforward. The shape is essentially the same as in the
impedances that were extracted from a switching model. The inverter impedance
has significantly larger magnitude when the grid voltage feedforward is used. Due
to measurement noise, it is challenging to extract the impedance d-component
around the fundamental frequency. The inverter was operated at 60 Hz fre
quency, while the grid where laboratory equipment is connected into has 50 Hz
frequency. The noise prevents extracting the impedance at these frequencies.

Figure 14.44 Measured inverter output impedance d-component with LC-filter ZLC
odd-c.
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Figure 14.45 Measured inverter output impedance q-component with LC-filter ZLC
oqq-c.

The references of three-phase grid voltages are generated by the dSPACE real-
time simulator that allows arbitrary waveforms to be generated. 3% of fifth
harmonic was added to each phase voltage reference to study the effect of
feedforward on the power quality in a distorted grid. The fifth harmonic can
be given in the stationary reference frame as

αβv � �5ωst� � jsin 5ωst��;� (14.85)fifth � V fifth cos

Figure 14.46 Grid currents when grid voltages have fifth harmonic.
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which can be further given in the dq-domain as

dq αβv � v � �5ωst � �� ? �cos � � � j sin �ωst
�jωst � V fifth cos � � j sin 5ωst ωst ��:fifth fifth ? e

(14.86)

By using trigonometric identities, the fifth harmonic can be given as

vdq � V fifth�cos � � (14.87)4ωst� � j sin 4ωst��;fifth

which corresponds to a frequency component of 240 Hz in the dq-domain. Both
impedance d and q-component have significantly larger magnitude at 240 Hz
when feedforward is activated as can be seen by studying the impedances in
Figures 14.44 and 14.45. Therefore, the inverter produces significantly less
harmonic currents at the fifth harmonic when feedforward is used.
Figure 14.46 shows the grid currents when grid voltages were intentionally
distorted. The use of grid voltage feedforward is often supported by observations
that it improves inverter transient response by compensating the effect of
changing grid voltage. However, it is important to also consider the effect of
feedforward on inverter output impedance.

The impedance magnitude of output-current-controlled inverter, such as a
photovoltaic inverter, determines how much the inverter produces harmonic cur
rents in distorted grid. Thus, an inverter with large output impedance generates less
distortion to the grid. However, the magnitude is not the only property to consider in
grid-connected inverters. Another important property that deserves attention is the
passive/nonpassive properties of the impedance. Sufficient condition to guarantee
stability of a grid-connected inverter is to assure that its output impedance remains
passive, assuming the grid impedance also presents passive characteristics.

Figure 14.47 shows the measured inverter output impedance q-component
when the feedforward gain was selected as 0:5=V in, 1=V in, and 1:5=V in. The
optimal value for the feedforward is the inverse of DC voltage steady-state value.

Figure 14.47 Measured output impedance q-component ZLC with different values of feedoqq-c
forward gain.



62914.4 Closed-Loop Model of Current-Fed Inverter with LC-Type Filter

The impedance magnitude increases when the feedforward gain is selected
beyond the optimal value. Large feedforward gain also introduces an additional
resonance around 70 Hz. However, the impedance loses its passive character
istics. The phase of the impedance experiences a severe drop after approximately
few tens of hertz. Such behavior should be avoided to reduce the possibility of
unstable impedance-based interactions. Therefore, the feedforward gain should
be kept below 1=V in.

Another concern with the feedforward is the control system delay. The delay is
caused by the control system and the SPWM modulator. Commonly, the delay is
approximated as 1.5× the switching period. The SPWM modulator causes on the
average a delay of half a switching cycle, and the control system (DSP-based)
causes a delay equal to one switching cycle when its execution is synched to
AD-conversion.

Figure 14.48 shows the measured impedance d-component and the impedance
given by the analytical impedance model. The control delay was approximated as
1.5 times the switching cycle T s during the first impedance measurement. An
additional delay of 1.5 times the switching cycle was added in the control system
running on dSPACE to demonstrate the detrimental effect of large delay, that is,
the total delay corresponds to three times the switching cycle. The switching
frequency was set to 20 kHz. The delay was included in the analytical model as a
second-order Padé approximation as given in Eq. (14.88), where Td is the total
amount of delay. Impedance magnitude experiences a slight drop when delay
increases. The effect of delay in the phase behavior is more severe. The phase
impedance is already nonpassive around 100 Hz, that is, having phase less than
�90°. However, when the delay is increased the phase drops down to approxi
mately �115° as can be seen from the zoomed figure.

T 2 T21 Td d 2 Td d 2Gffd � Gffq � ? 1 � s � s = 1 � s � s : (14.88)
2 12 2 12V in

Figure 14.48 Measured output impedance d-component ZLC
odd-c with feedforward and

increasing control delay.
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14.4.2 Impedance Characteristics of Inverter with
LC-Filter and Feedforward

Based on the above discussion, few key features and challenges of grid voltage
feedforward should be pointed out.

� Feedforward increases the magnitude of both impedance d and q-components.
However, the high-frequency magnitude of the impedance is determined by the
AC capacitor and cannot be influenced by conventional proportional
feedforward.� Large output impedance naturally means that the inverter generates less
harmonic distortion in a distorted grid. Thus, inverter with grid voltage
feedforward generally provides better power quality than inverter without
feedforward.� The feedforward gain should not be selected larger than the inverse of DC
voltage 1=V in when conventional SPWM is used. The situation may be
different when space-vector-based modulator (SV-PWM) is used since these
modulators often utilize the measured DC voltage in determining suitable
switching vectors. However, SV-PWM is out of the scope of this book. Too
large feedforward gain causes the inverter impedance to lose its passive
characteristics that can cause impedance-based interactions and instability,
as will be discussed more in detail in Chapter 16.� Control delay caused the impedance to lose its passive characteristics by
decreasing the impedance phase below �90°. The effect of delay can be
somewhat mitigated by reducing the feedforward gain.

14.5 Summary

Closed-loop models of voltage and current-fed inverters were derived in this
chapter to characterize the effect of different control functions to inverter output
impedance. The models were developed by assuming that the cross-coupling
transfer functions can be neglected. Impedances were extracted from simulation
models and prototype inverters to verify the accuracy of the closed-loop models.
The impedances given by the model were found out to correlate very well with the
measurements. Thus, the impedance models presented in this chapter are
suitable to be used in impedance-based stability analysis of grid-connected
inverters and for evaluating the amount of generated harmonic currents in
distorted grid conditions.
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15

Multivariable Closed-Loop Modeling of Inverters

15.1 Introduction

In the previous chapters, closed-loop models were derived by assuming that
cross-coupling transfer functions can be neglected and that inverter input
dynamics depend only on the d-components [1]. This is a good trade-off between
complexity of the model and its accuracy. However, the cross-coupling transfer
functions may affect the dynamic behavior and stability of the inverter, for
example, on impedance-based stability margins [2].

This chapter demonstrates how the closed-loop model can be formulated
without the need to neglect any dynamics. The model is solved by using two-by
two transfer matrices rather than reduced-order dynamics [3,4]. The reader is
urged to familiarize with the modeling of multivariable systems by referring to
Refs [5,6]. The multivariable model can be used to get more accurate predic
tions on impedance-based stability [7–9] and to include the effect of decoupling
gains that are usually part of the current controller. The model is derived for an
inverter with simple L-type output filter and with passively damped LCL-type
output filter.

15.2 Full-Order Model of Current-Fed Inverter
with L-Type Filter

Figure 15.1 shows a current-fed inverter with PLL, cascaded control scheme, and
decoupling gains. The decoupling gains are chosen as in Eqs. (15.1) and (15.2)
according to Ref. [10] and as discussed in Chapter 13.

ωsLGdec-dq � ; (15.1)
V in

ωsLGdec-qd � � : (15.2)
V in

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,

First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.

 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 15.1 Inverter control system with decoupling gains.

The current controller defines the values of duty ratio d and q-components
according to control laws in Eqs. (15.3) and (15.4):

ωsL∗̂
iod � H d̂i

c

î

c^HqiV in
oqdd � GPI-d

^

d̂q

; (15.3)od

ωsL∗ c^

^^

Hd

The superscript c denotes that the current is defined in the control system
reference frame, that is, it is affected by the PLL. The PLL-affected d and
q-components can be given in the control system reference frame according
to Eq. (13.8) as follows:

xd � voq;

c^� Hqioq oq� GPI-q � iod: (15.4)
V in

Xq LPLL
^cxd � (15.5)?

1 � LPLL�V od �
Xd LPLL

^cx � (15.6)

^

^x̂q voq:

Therefore, the current d and q-components can be given in the control system
reference frame as

voq;

?
1 � LPLL�q V od �

Ioq LPLLc
îod � îod � (15.7)?

1 � LPLL�V od �
Iod LPLL

?� îoq � (15.8)v̂oq:

Output current d and q-components can be given as a two-dimensional vector
and defined in the control system reference frame according to Eq. (15.9), where

c
îoq V od �1 � LPLL�
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Ioq and Iod are the steady-state values of grid current.

vod

voq

^

^

0 0id
c^

iq
c^

id� �
iq

^

^

0 Ioq

0 �Iod
? 0 ? (15.9)1 LPLL

? �1 � LPLL�V od

Output current can be defined using vectors as

ic � io � IL ?GPLL ? vo: (15.10)o

The closed-loop model should be defined in the ideal grid reference frame, in
order to include the effect of PLL in the model. The principle is exactly the same
as in Section 14.3. However, in this case, the closed-loop model is formulated by
using two-by-two transfer matrices to include the cross-coupling transfer func
tions and decoupling gains. The duty ratio is determined by the current controller
in the control system reference frame and can be given in the grid reference frame
by applying Eqs. (15.5) and (15.6) and given as

dd � d̂^ c Dq LPLL
d � (15.11)^ ;voq? �1 � LPLL�V od

c Dd LPLL

^

^

^dq d voq:

^

voddd

^

The duty ratio vector can be de ned in the grid reference frame asfi

d d voqq

^

^

^ � � (15.12)

(15.13)

?
1 � LPLL�q V od �

c 0 00 �Dqdd̂ 1 LPLL� � ? ?c 0 ?0 Dd 1 � LPLL�V odq �

c^

^

^

^

^

^

or as

d � dc �D ?GPLL ? vo: (15.14)

The output of the current controller, that is, the duty ratio in the control system
reference frame can be defined as in Eq. (15.15) by taking into account the control
laws in Eqs. (15.3) and (15.4).

∗
d i i

c
iid

c
GPI-d 0 Hd 0d od od� ∗c 0 GPI-q 0 Hq oqoqq

ωsL0 � Hd 0V in

c
îod
c
î

V in

Duty ratio can be written using vectors as

i∗ � GdecHouti
c : (15.16)dc � Gc-out o �Houtio

c
o

The full-order control block diagram that represents the inverter output dynam
ics can be depicted by including Eqs. (15.10), (15.14), and (15.16) in the inverter
open-loop output dynamics, as shown in Figure 15.2.

� (15.15)
ωsL 0 Hq0 oq
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Figure 15.2 Full-order closed-loop model with current control and PLL (output dynamics).

Closed-loop model is solved using the same approach that was used to derive
the reduced-order model. First, the transfer matrices are solved from
Figure 15.2 when all the inner control loops are closed, that is, PLL and current
control. As an example, the input-to-output transfer matrix Gcc is solved byio
setting all inputs other than iin to zero (i.e., vo and i∗) and solving the closed-o
loop transfer matrix from input current iin to output current io that can be given
according to Eq. (15.17):

Gcc
io � �I � Lcc � Ldec��1Gio-o: (15.17)

The loop gains are defined as Lcc � Gco-oGc-outHout and Ldec � Gco-oGdecHout.
Transfer matrix Gio-o is defined as in Eq. (15.18) and Gco-o as in Eq. (15.19). The
transfer functions inside the matrices are solved based on the methods presented
in Chapter 12.

Giod-o 0
; (15.18)Gio-o �

Gioq-o 0

Gcodd-o Gcoqd-o
: (15.19)Gco-o �

Gcodq-o Gcoqq-o

Transfer matrix from output voltage vo to output current io, that is, the output
admittance matrix, can be solved from Figure 15.3 using the same principle and
given as

Ycc � �I � Lcc � Ldec��1�Yo-o � YPLL�: (15.20)o
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Figure 15.3 Block diagram to solve input-to-output transfer matrix Gio-c.

The admittance term caused by the PLL can be defined as in Eq. (15.21) and the
open-loop output admittance matrix as in Eq. (15.22):

YPLL � ��Lcc � Ldec�IL � Gco-oD�GPLL; (15.21)

Y odd-o Y oqd-o
: (15.22)Yo-o �

Y odq-o Y oqq-o

Transfer matrix from output current reference i∗ to output current io can be given aso


Gcc ��1
� �I � Lcc � Ldec��1Lcc�Hout : (15.23)co

Finally, the output dynamics can be given as

� Gcc � Gcc i∗io io iin � Yccvo : (15.24)o co o

^The input current is defined as a vector iin � T
, output voltage asiin 0

T∗ ∗T ^ ^vo � , and output current reference as i∗ � .i iv̂od v̂oq o od oq

The input dynamics can be depicted as in Figure 15.4, where the duty ratio d is
determined by current controllers. The duty ratio can be solved from the closed-
loop output dynamics in Figure 15.2 and given according to Eq. (15.25).

d � D � �Gco-o��1�Lcc � Ldec�IL GPLLvo � Gc-outi
∗ � �Gco-o��1�Lcc � Ldec�io:o

(15.25)

According to Eq. (15.25) and Figure 15.4, the input dynamics can be redrawn as in
Figure 15.5 that accounts for the effect of the PLL and the output current control.
The transfer matrices from output voltage and output current to duty ratio are
defined as in Eqs. (15.26) and (15.27) to simplify the notation.

G´ D � �Gco-o��1�Lcc � Ldec�IL GPLL; (15.26)PLL �
G´ � � � �: (15.27)cc Gco-o��1 Lcc � Ldec
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Figure 15.4 Input dynamics at open loop.

The closed-loop input dynamics can be solved by applying the results obtained
earlier, that is, by substituting the closed-loop output dynamics of Eq. (15.24) into
the block diagram in Figure 15.5. The resulting block diagram can be depicted as
in Figure 15.6.

The input impedance can be solved from the block diagram by setting output
voltage vo and output current reference i∗ equal to zero and solving the transfero
matrix from input current iin to input voltage vin. Input impedance can be given as

Zcc Gcc
in � Zin-o � Gci-oG

´ (15.28)cc io :

Accordingly, the output-to-input voltage and reference-to-input-voltage transfer
matrices can be solved and given as in Eqs. (15.29) and (15.30). Finally, the input
dynamics can be given as in Eq. (15.31) which includes the dynamic effects of PLL
and output current control.

Tcc G´ Ycc ; (15.29)oi � Toi-o � Gci-o PLL � G´
occ


Gcc Gcc
� Gci-oGc-out � Gci-oG´ ; (15.30)ci cc co

� Gccvin � Zcc
in iin � Tcc : (15.31)oivo ci i

∗
o

Figure 15.5 Input dynamics with the PLL loop closed and the feedback from output current.



63915.2 Full-Order Model of Current-Fed Inverter with L-Type Filter

Figure 15.6 Control block diagram representing the closed-loop dynamics with PLL and output
current control.

The DC voltage control loop is included in the dynamic model next. As can be
seen in Figure 15.1, the DC voltage controller GPI-v determines the reference value
of the output current d-component. The q-component is set to zero, for unity
power factor operation or, alternatively, set by an outer control algorithm, such as
a grid voltage support function. However, for the purpose of the dynamic model
presented in this book, the reference of output current q-component can be
assumed as an input variable.

For the correct formulation of the full-order model, the voltage controller
has to be defined as in (15.32), where GPI-v is the transfer function of input
voltage controller and the unity gain on the second row passes the reference of
output current q-component through the matrix unchanged. The input
voltage vin is treated as a two-dimensional vector, even though its second
component is evidently zero, that is, vin � v̂in 0 . Moreover, the input
voltage sensing gain is defined as in Eq. (15.33) because the inverter input
terminal is a DC system, rather than a three-phase system defined in the dq
domain.

GPI-v 0

Gc-in � ; (15.32)

0 1

Hv 0

Hin � : (15.33)

0 0

Input dynamics can be represented as a control block diagram according to
Figure 15.7 after closing the DC voltage control loop.
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Figure 15.7 Input dynamics with DC voltage control loop closed.

The input dynamics can be solved from Figure 15.7 and given as in
Eqs. (15.34)–(15.36):

��1ZccZin-c � �I � Lin (15.34)in ;

��1TccToi-c � �I � Lin oi ; (15.35)

��1GccGci-c � �I � Lin ci Gc-in: (15.36)

The input control loop gain is defined as

Lin � Gcc
ci Gc-inHin: (15.37)

Finally, the input voltage vin can be written as

∗vin � Zin-ciin � Toi-cvo � Gci-cv : (15.38)

Figure 15.8 shows the control block diagram that describes the output dynamics
when DC voltage control loop is closed and the closed-loop transfer matrices of
Eqs. (15.34)–(15.36) are included in the block diagram.

Closed-loop transfer matrices can be solved from Figure 15.8 and given as in
Eqs. (15.39)–(15.41):

io � Gcc (15.39)Gio-c � Gcc Gc-inHinZin-c;co

� Ycc � GccYo-c Gc-inHinToi-c; (15.40)o co

� GccGco-c Gc-in�I �HinGri�: (15.41)co

Example m-files for solving the closed-loop transfer functions are shown in
Figures 15.9 and 15.10. Parameter values, for example, values of passive
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Figure 15.8 Output dynamics with DC voltage control loop closed.

Figure 15.9 Example MATLAB file to solve open-loop transfer functions.
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Figure 15.10 Example MATLAB file to solve closed-loop transfer functions.

components and steady-state operating point, are solved in an external file
according to Eqs. (12.41)–(12.44), which is executed by running the line “run
parameters.” Moreover, the controller transfer functions and the values for PI
controller parameters are defined in an external file “ctrl_tfs.” The transfer
functions should be converted to frequency-response data by using the frd()
function of MATLAB to avoid inaccuracy due to high number of poles and zeros.
Obtaining symbolic transfer functions with the cross-coupling dynamics is a far
more complicated problem and is not covered in this book.

The closed-loop transfer matrices are elements of the resulting transfer
matrix GH. Equation (15.42) illustrates the transfer matrices and Eq. (15.43) the
individual transfer functions inside the transfer matrices. Note that some
of the elements are zero due to the fact that input port of the corresponding
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H-parameter model is a DC terminal.

GH

iin
vin Zin-c Toi-c Gri� (15.42)vo
io Gio-c �Yo-c Gro ∗v

îin

v̂in Zin-c 0 Toid-c Toiq-c Gcid-c Gciq-c

v̂od0 0 0 0 0 0�
^ Giod-c 0 Y odd-c Y oqd-c Gcodd-c Gcoqd-c v̂oqiod

∗v̂inîoq Gioq-c 0 Y odq-c Y oqq-c Gcodq-c Gcoqq-c

∗̂
ioq

(15.43)

The input impedance Zin-c can be used to analyze impedance-based interactions
on the DC side. Output-to-input transfer functions Toid-c and Toiq-c can be used
to analyze how the input voltage is affected by variations in the grid voltage d and
q-components. Control-to-input-voltage transfer function Gcid-c can be used to
define the bandwidth of input voltage control and Gciq-c can be used to analyze
how changes in the reference of reactive current component affect the input
voltage. Input-to-output transfer functions Giod-c and Gioq-c can be used to
analyze how variations in input current affect the output current d and q-
components, that is, how much rapid changes or oscillations in input current
affect power quality. The output admittance terms Y odd-c, Y oqd-c, Y odq-c, and
Y oqq-c can be used to analyze impedance-based interactions on the AC side.
Control-to-output-current transfer functions Gcodd-c, Gcoqd-c, Gcodq-c, and Gcoqq-c

can be used to analyze how well different decoupling schemes succeed and to
evaluate control bandwidth of the output current control.

15.2.1 Verification of Dynamic Model

The closed-loop model was verified by extracting the transfer functions from a
simulation model. The parameters of the switching model are collected in
Table 15.1. As an example, Figure 15.11 shows the cross-coupling transfer

∗
function Gcoqd-c from the reference of output current q-component î to outputoq

Table 15.1 Parameters of the simulation model.

V in 700 V V a;b;c-rms 230 V L 2.46 mH

I in 14.65 A ωs 2π�50 rad/s rL 25.8 mΩ

Pin 10.25 kW C 2.6 mF rsw 20 mΩ

f s 10 kHz ILq 5 A ILd 20.95 A
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Figure 15.11 Transfer function from reference of current q-component to output current d-
component Gcoqd-c with and without decoupling gains.

current d-component îod with and without the decoupling terms. The cross
coupling between q and d-channels is much smaller when decoupling gains are
used since the magnitude of the transfer function is much smaller. Such transfer
functions cannot be obtained by using the reduced-order model.

Figure 15.12 shows time-domain behavior of inverter output currents when a
step change is applied to output current q-component from 5 to 0 A at time 0.1 s.
The decoupling effectively reduces the amount of oscillation observed in the
current d-component. Therefore, the full-order dynamic model can also be
utilized to evaluate the effect of decoupling gains on control performance.

The real power fed to the grid experiences some oscillation when the reference
of current q-component is changed from 5 to 0 A when decoupling is not used.
However, the real power remains constant during the step test when decoupling

Figure 15.12 Inverter output current d- and q-components (a) without and (b) with decoupling
gains.
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network is activated. The difference in time-domain behavior can be explained by
studying the transfer functions in Figure 15.11. The decoupling gains reduce the
cross-coupling from reference of current q-component to output current d-
component by approximately 20 dB over a wide frequency range.

The full-order model also allows evaluating the cross-diagonal terms of the
admittance matrix Yo-c, that is, the cross-coupling admittances Y oqd-c and
Y odq-c. A reduced-order model is often considered to yield adequate accuracy
in, for example, impedance-based stability analysis. However, the accuracy can
be improved by considering the full-impedance matrix in the stability analy
sis [2]. All the components of the admittance matrix were extracted from a
switching model by using the PRBS method. The decoupling terms were
included in the simulation model as, Gdec-qd � �ωsL=V in; Gdec-dq � ωsL=V in.
Crossover frequencies of current control loops, PLL, and DC voltage control
were selected as 500, 20, and 30 Hz respectively. All control loops were tuned to
have phase margin of 65°.

The admittance d and q-components Y odd-c and Y oqq-c are shown in
Figure 15.13. The d and q-components are not affected by the decoupling
gains. Therefore, their magnitudes are not dependent on the value of decou
pling gains. The positive resistance behavior due to DC voltage control makes
the phase of admittance d-component to remain close to zero at low
frequencies. The admittance q-component, however, behaves as a negative
resistor due to PLL that can be seen in the low frequencies where the phase is
close to 180°.

Figure 15.14 shows the admittance d- and q-components with and without the
decoupling terms: (Gdec-qd � �ωsL=V in; Gdec-dq � ωsL=V in). The decoupling
does not affect the low-frequency magnitude of cross-admittance term Y oqd-c,
as can be deduced by studying Figure 15.14a. However, the high-frequency gain is
reduced that suggests that decoupling effectively mitigates high-frequency cou
pling between q and d-channels. The cross-admittance term Y odq-c is shown in
Figure 15.14b. The decoupling reduces the admittance magnitude over the whole
frequency spectrum. The developed closed-loop admittance model gives very
precise results, as can be seen in Figures 15.13 and 15.14.

Figure 15.13 Inverter output admittance (a) d- and (b) q-components.
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Figure 15.14 Cross-coupling admittance terms (a) Yoqd-c and (b) Yodq-c.

15.3 Experimental Verification of Admittance Model

The admittance model was verified from an experimental grid-connected pho
tovoltaic inverter. A two-level inverter bridge was used to interface a PV simulator
to a three-phase voltage source according to Figure 15.15. Resistive three-phase
load was connected between the voltage source and the inverter to dissipate the
power generated by the PV simulator because the three-phase voltage source
could not sink power. Such measurement setup can be used when grid emulator
with power-sinking capabilities is not available. The control system was imple
mented using a dSPACE real-time simulator. The admittance measurement is
accurate down to �50 dB, after which measurement noise makes extracting the
admittance impossible. The decoupling gains Gdec-qd and Gdec-dq were set equal to
zero, which increases the cross-coupling admittance magnitudes, but also makes
it possible to measure them and, thus, verify the admittance model. Moreover, the
admittance can be extracted up to half the switching frequency (4 kHz) since the
admittance measurement algorithm runs on the same real-time simulator.

Current control loops were tuned to have crossover frequencies of 500 Hz. DC
voltage control loop and the PLL were tuned to have crossover frequencies of 10 Hz.
The inverter was operated at unity power factor, that is, the reference of output
current q-component was set to zero. The parameters of the experimental setup are
given in Table 15.2. The DC voltage reference was set equal to the MPP voltage of
the PV emulator. Thus, the dynamic effect of MPPT algorithm is not considered.

Figure 15.16 shows the measured admittance d and q-components Y odd-c and
Y oqq-c. The phase of the admittance d-component is close to zero degrees below

Figure 15.15 Experimental setup to measure inverter output admittance.
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Table 15.2 Parameters of the experimental setup.

V in 729 V V a;b;c-rms 230 V L 5.2 mH

I in 7.3 A ωs 2π�50 rad/s rL 100 mΩ

Pin 5.3 kW C 1.5 mF rsw 10 mΩ

f s 8 kHz ILq 0 A ILd 10.9 A

Figure 15.16 Measured admittance (a) d- and (b) q-components.

10 Hz and a value of approximately Iod=V od. Thus, the impedance d-component
behaves as a positive resistor. Moreover, the phase of admittance q-component is
close to 180° at low frequencies having a value of �Iod=V od. Thus, the impedance
q-component resembles a negative resistor. The grid voltage was higher than
230 V due to the isolation transformer that explains why the low-frequency
magnitude of the measured admittances differ slightly from the frequency
responses solved from the dynamic model.

Figure 15.17 shows the measured cross-coupling admittances Y oqd-c and Y odq-c.
The admittance cannot be extracted by the experimental setup when the
magnitude of the admittance component drops below approximately 50 dB

Figure 15.17 Measured cross-coupling admittances (a) Yoqd-c and (b) Yodq-c.
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due to measurement noise. Therefore, the cross-coupling admittances could be
measured only at frequencies over few tens of Hertz. The sine-sweep method was
used to extract the admittances. The cross-coupling admittances have magni
tudes of over �30 dB near 1 kHz, which suggest that they may have some effect on
impedance-based stability margins [2].

15.4 Full-Order Model of Current-Fed Inverter with
LCL-Type Filter

Current-fed three-phase inverter with passively damped LCL filter is depicted in
Figure 15.18. The inverter utilizes cascaded control scheme, SRF-PLL, and
proportional grid voltage feedforward. The feedforward signals dffd and dffq

are obtained from the measured grid voltage d and q-components vc and vcod oq
according to Eqs. (15.44) and (15.45). The feedforward gains Gffd, Gffq are omitted

^

^

from the figure for readability:
cdffd � Gffdvod; (15.44)
cdffq � Gffqv : (15.45)oq

The control laws for inverter-side inductor current control can be given as in
Eqs. (15.46) and (15.47), where the superscript denotes that the correspondingc

^

^

variable is affected by the PLL, that is, the variables are defined in the control
system reference frame.

c ∗ c c� G ;vPI-dd od

^

iL1d �^

cd i v

d̂ � Gffdi (15.46)L1d

∗c c� GPI-q � GffqL1q � î : (15.47)L1qq oq

Figure 15.18 Three-phase inverter with LCL-type output filter.
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Decoupling gains and current sensing gains are left out of the analysis to simplify
the results, but they can be included in the model by modifying the control laws

^

^

above. The duty ratio can be given in the control system reference frame as

∗ cvd i
c cvid

c^

^

^

^

^

^

c
iL1dGPI-d 0 GPI-d 0 Gffd 0 odd L1d� � ;∗c 0 GPI-q 0 GPI-q 0 GffqiL1q oqL1qq

^

^

(15.48)

and by using vectors as

cdc � Gc-outi
∗

L1 � Gffv : (15.49)L1 � Gc-outi
c

o

The duty ratio can be given in the grid reference frame as in Eq. (15.50) by
including the dynamic effect of PLL.

d vod

dq

dd

voqd

^

^

^

^

c 0 00 �Dqd 1 LPLL� � (15.50)? ?c 0 ?0 Dd 1 � LPLL�V odq �

^

^

Duty ratio in the grid reference frame can be given as

d � dc �D ?GPLL ? vo: (15.51)

^

The inverter-side inductor current icL1 can be given in control system reference
frame as in Eqs. (15.52) and (15.53) when the effect of PLL is taken into account.

c
î vodL1d

voq

0 0

^

iL1d� �
iL1q

0 IL1q 1 LPLL? ?c
îL1q

0�IL1d ?0 1 � LPLL�V od �
(15.52)

The inductor current can be defined using vectors as

icL1 � iL1 � IL1 ?GPLL ? vo: (15.53)

Finally, the grid voltage vc can be defined in the control system reference frame aso
in Eqs. (15.54) and (15.55)

^cvod

^cvoq

^

^

vod� �
voq

0 0

0 �V od

v̂od

v̂oq
(15.54)

0 0
1 LPLL0 ?

1 � LPLL�V od �
cv � vo � Vo ?GPLLvo: (15.55)o

The duty ratio can be given in the control system reference frame according to
Eq. (15.49) as

dc � Gc-outi
∗ � � � Gff �vo � Vo ?GPLLvo�;L1 � Gc-out iL1 � IL1 ?GPLL ? vo

(15.56)
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and in the grid reference frame as in Eq. (15.57) by applying the relation in
Eq. (15.51).

d � Gc-outi
∗
L1 � Gc-out�iL1 � IL1 ?GPLL ? vo� � Gff �I � Vo ?GPLL�vo �D ?GPLL ? vo:

(15.57)

It is possible to build the control block diagram directly based on Eq. (15.57).
However, the representation can be somewhat simplified to reduce the amount of
signal loops in the block diagram. Finally, the duty ratio can be defined using
transfer matrices according to Eq. (15.58):

^

^

i iL1d� �
∗
i iL1q

^

^

v̂od

v̂oq

IL1q LPLL0∗
d̂d

d̂q

1 � LPLL�V od �GPI-d 0 GPI-d 0L1d

�IL1d0 GPI-q 0 GPI-q LPLLL1q 0
V od �1 � LPLL�

0
�Dq LPLL

v̂od

v̂oq

^

^

vod� �LPLL

Gffd 0 V od �1 � LPLL�
(15.58)

1 �0 Gffq Dd LPLL

V od �1 � LPLL�
voq�1 � LPLL� 0

Duty ratio can now be defined as in Eq. (15.59), which is a far more friendlier
form to draw the control block diagram from. The control block diagram that
represents the dynamics related to inductor current control can be depicted
as in Figure 15.19. Transfer matrices GiL-o, ToL-o, and GcL-o are defined as in
Eqs. (15.60)–(15.62). The open-loop transfer functions can be obtained by
using MATLAB or similar software by applying the principles presented

Figure 15.19 Control block diagram of the inverter-side inductor current control.



65115.4 Full-Order Model of Current-Fed Inverter with LCL-Type Filter

in Chapter 12.

d � Gc-outi
∗ � � � GFFvo � GPLL-dvo: (15.59)L1 � Gc-out iL1 � GPLL-ivo

Open-loop transfer matrices related to inverter-side inductor current are as
follows:

GiL-o � GiLd-o

GiLq-o

0

0
; (15.60)

ToL-o � ToLdd-o

ToLdq-o

ToLqd-o

ToLqq-o
; (15.61)

GcL-o � GcLdd-o

GcLdq-o

GcLqd-o

GcLqq-o
: (15.62)

The key to solving closed-loop inverter transfer functions is to solve first the
duty ratio d from Figure 15.19 when all the control loops are closed, that is,
current control loop, PLL, and grid voltage feedforward. The duty ratio can be
given as

d � ��I � Lcc��1Gc-outGiL-oiin � �I � Lcc��1Gc-outi∗L1 (15.63)� �I � Lcc��1�GPLL-d � GFF � Gc-out�ToL-o � GPLL-i��vo;

where the current control loop gain Lcc can be defined as

Lcc � Gc-outGcL-o: (15.64)

As explained in Chapter 12, the input and output dynamics can be given
according to Eqs. (15.65) and (15.66) and illustrated using the control block
diagrams in Figure 15.20.

vin � Zin-oiin � Toi-ovo � Gci-od; (15.65)

io � Gio-oiin � Yo-ovo � Gco-od: (15.66)

The duty ratio, as defined earlier in Eq. (15.63), includes the effect of all the control
functions except the DC voltages control. Closed-loop dynamics with current
control loops closed can be obtained by substituting duty ratio d in Eqs. (15.65)

Figure 15.20 Input and output dynamics of current-fed inverter as control block diagrams.
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and (15.66) and by solving the input voltage vin and output current io in terms of
input variables iin, vo, and i∗L1.

The input dynamics can be given as in Eqs. (15.67)–(15.69) when current
control loops are closed.

Zcc
in � Zin-o � Gci-o�I � Lcc��1Gc-outGiL-o; (15.67)

Tcc

oi
 � Toi-o � Gci-o�I � Lcc��1�GPLL-d � GFF � Gc-out�ToL-o � GPLL-i��;

(15.68)

Gcc
ci � Gci-o�I � Lcc��1Gc-out: (15.69)

The output dynamics can be given as in Eqs. (15.70)–(15.72) when current control
loops are closed.

Gcc
io � Gio-o � Gco-o�I � Lcc��1Gc-outGiL-o; (15.70)

Ycc

o
 � Yo-o � Gco-o�I � Lcc��1�GPLL-d � GFF � Gc-out�ToL-o � GPLL-i��;

(15.71)

Gcc
co � Gco-o�I � Lcc��1Gc-out: (15.72)

Next, the input voltage control loop is included in the control block diagram as
shown in Figure 15.21. The input voltage controller transfer matrix is defined as in
Eq. (15.73) and input voltage sensing gain as in Eq. (15.74), similarly as in the case
of the full-order model of inverter employing L-type output filter in Chapter 14.

GPI-v 0

Gc-in � ; (15.73)

0 1

Hv 0

Hin � : (15.74)

0 0

Closed-loop input dynamics can be solved from Figure 15.21a and given as

��1ZccZin-c � �I � Lin (15.75)in ;

��1TccToi-c � �I � Lin oi ; (15.76)

��1GccGci-c � �I � Lin ci Gc-in; (15.77)

Figure 15.21 Control block diagrams when input voltage control loop is closed.
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where the input voltage control loop gain is defined as

Lin � Gcc
ci Gc-inHin: (15.78)

Closed-loop transfer matrices from Figure 15.21b can be solved by noting that the
input voltage can be represented using input variables as in Eq. (15.79) and
substituted in the output dynamics given by Eq. (15.80).

vin � Zin-ciin � Toi-cvo � Gci-cvin;
∗ (15.79)

io io iin � Ycc
o vo coGc-in� Gcc � Gcc v∗in �Hinvin : (15.80)

Closed-loop output dynamics can be given as

Gio-c � Gcc
io � GccGc-inHinZin-c; (15.81)co

� Ycc � GccYo-c Gc-inHinToi-c; (15.82)o co

� GccGco-c Gc-in � GccGc-inHinGci-c: (15.83)co co

15.4.1 Verification of Closed-Loop Model

Input impedance and all four components of the output admittance matrix were
extracted from a simulation model to validate the closed-loop model. The
Simulink model is as shown in Figure 15.22. Proportional grid voltage feedfor
ward is applied and the feedforward gain is selected as the inverse of DC voltage
steady-state value. Grid voltage d and q-components are estimated by using the
Park’s transformation block inside the PLL.

Simulation parameters are as shown in Table 15.3, which are the same as in the
experimental setup discussed in the next section. Steady-state solved operating
point can be solved from the average model presented in Chapter 12. An example
m-file for solving the operating point is provided in Appendix 12.A and the
numerical values are given in Table 15.4. The grid current q-component IL2q is
zero and the inverter provides the reactive current IL1q required by the LCL filter.
Therefore, from the grid’s perspective, the inverter operates at unity power factor.

Current control loop gains were tuned to have crossover frequencies of 500 Hz;
DC voltage control loop gain and PLL were both tuned to have crossover
frequency of 20 Hz. All control loops were designed to have 65° phase margin.

Figure 15.23 shows the input impedance that is obtained by using the PRBS
method. The perturbation is made in the input current, that is, in the input signal
of the controlled current source. The figure also shows the input impedance given
by the closed-loop model in Eq. (15.75). The input impedance can be obtained
from the first row and first column of Zin-c, whereas all the other elements have
zero value. The frequency response given by the closed-loop model follows
exactly the shape of the extracted input impedance. Thus, the model can be used
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Table 15.3 Inverter parameters.

C 1.95 mF Cf 25 μF Rd 1 Ω

L1 2.2 mF rL1 100 mΩ f sw 30 kHz

L2 0.3 mF rL2 65 mΩ ωs 2π�60 rad/s

Table 15.4 Steady-state operating point.

V in 414.3 V IL1d 10.583 A VCfd 170.4 V

I in 6.577 A IL1q 1.606 A VCfq �0.4 V

V od 169.7 V IL2d 10.579 A Dd 0.4106

V oq 0 V IL2q 0 A Dq 0.0245

in characterizing impedance-based instability on the DC side of the inverter; for
example, when the inverter utilizes a DC–DC converter or when the inverter is
used as an interface between the grid and a microgrid.

Figure 15.24 shows the components of the output admittance matrix Yo-c when
grid voltage feedforward is deactivated, that is, when gains Gffd and Gffq are zero.
The admittance model defined in Eq. (15.82) can predict the shape of all
admittance components accurately. The positive low-frequency resistance in
Y odd-c and negative resistance in Y oqq-c are both correctly captured by the closed-
loop model. Moreover, the cross-coupling admittances are accurately predicted
and include the resonance caused by the LCL filter. Figure 15.25 shows the output
admittance components when proportional feedforward is used. Also in this case,
all the admittance components are accurately predicted by the closed-loop model.

Figure 15.23 Input impedance.
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Figure 15.24 Inverter output admittance with grid voltage feedforward deactivated.

15.4.2 Measured Output Impedance of PV Inverter

Three-phase photovoltaic inverter with passively damped LCL filter was
studied in the laboratory. The laboratory setup is as illustrated in
Figure 15.26. The inverter employed SiC-MOSFET switches in its power stage,
which enabled using higher switching frequency. The controllers were imple
mented using the dSPACE real-time simulator and the switching frequency was
set to 30 kHz. Photograph of the setup is shown in Figure 14.42 where the LC-
type filter was replaced with an LCL filter. The DC voltage control loop was
redesigned to have a lower crossover frequency of 4 Hz to reduce the effect of
low-frequency ripple in DC voltage and to improve output current quality as
explained in Chapter 13.

Figure 15.27 shows the waveforms recorded from the primary-side of the
transformer, that is, on the inverter side. The inverter was operated with the
proportional grid voltage feedforward activated. The output current is sinusoidal
and has low amount of harmonics when the grid voltage is clean.
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Figure 15.25 Inverter output admittance with proportional feedforward.

Output impedance d and q-components of the inverter were measured using a
frequency-response analyzer based on the sine-sweep method. Figure 15.28
shows the measured impedances as solid lines, while the dotted lines represent
the impedance solved using the closed-loop model (obtained as the inverse of
admittances Y odd-c and Y oqq-c).

The proportional grid voltage feedforward has a significant effect on the
shape of both impedance d and q-components. The magnitude increases from
few tens of Hertz up to frequencies close to the resonant frequency of the LCL
filter that is approximately at 2 kHz. At higher frequencies, the grid-side
inductance starts to increase the impedance magnitude. However, proportional
feedforward cannot boost the impedance magnitude at frequencies over the
resonant frequency.

Larger output impedance magnitude naturally means that the inverter gener
ates less harmonics in a distorted grid. Figure 15.29 shows the inverter waveforms
when grid voltage is corrupted with fifth and seventh harmonics. The inverter
produces much more harmonic currents when proportional feedforward is
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Figure 15.26 Illustration of the experimental laboratory setup.

deactivated due to the fact that both impedance d and q-components have smaller
magnitude.

The feedforward transfer function should ideally be a third-order transfer
function to affect inverter impedance near the LCL filter resonance [11,12]. This
is due to the fact that the dynamics of the inverter with LCL filter are of higher
order than the inverter with L-type filter. However, the high-order grid voltage
feedforward should be designed carefully since it may easily pick up noise that
corrupts the control signals. Moreover, the effect of control delay should be
treated carefully since it may degrade the performance of the feedforward
loop [13].

Figure 15.27 Inverter output current in a clean grid (only phase A shown).
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Figure 15.28 Measured impedance (a) d and (b) q-components with and without proportional
feedforward.

15.5 Summary

In this chapter, the closed-loop model of three-phase current-fed inverter was
derived with all the cross-coupling transfer functions. The model allows evaluat
ing the shape of all four admittance components in the case of L-type and
passively damped LCL filter. Moreover, the model can be easily adapted to
include, for example, the effect of active damping [14–16]. The admittance
models were verified by extracting frequency responses from a simulator and
by measuring admittances from an experimental prototype.
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Figure 15.29 Inverter waveforms in distorted grid.
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16

Impedance-Based Stability Assessment

16.1 Introduction

Grid-connected three-phase power electronic converters have been reported to
suffer from power quality problems since the introduction of mercury-arc
thyristor-based converters. In the work carried out by Ainsworth in 1967,
abnormal harmonics were reported in a HVDC system that did not correspond
to normal odd harmonics caused by normal operation of such converter [1]. The
problems were reported to be most severe in a weak AC system. Moreover, the
used control scheme had a significant impact on converter stability. Similar
“harmonic instability” has been reported later, for example, in Ref. [2] related to a
traction power system. The term “harmonic instability” or “harmonic resonance”
might not be the optimal choice for discussing such phenomena since the
frequency content of the voltage and current waveforms during such an abnormal
operation may not be anyhow linked to actual fundamental frequency of the
power system. This has been discussed in Ref. [3] where a scaled-down prototype
inverter was demonstrated to generate subharmonic, interharmonic, and har
monic components depending on its control parameters. However, the term
harmonic resonance has been widely used in the literature.

In recent years, power quality problems and unstable behavior have been
reported in photovoltaic installations with high penetration level [4] and in grid-
connected wind power systems [5]. In many cases, the control functions of grid-
connected converter have been blamed to be at least partially responsible for
producing the abnormal operation. It should be noted that modern power
systems are becoming increasingly complex and, therefore, analyzing such
problems or eliminating the problem source may become a tremendous chal
lenge. However, failing to alleviate the harmonic stability problems may lead to
unfortunate problems such as the case with the BARD Offshore 1 wind farm [6].

Preventing harmonic resonances in grid-connected power electronic convert
ers is not a trivial task and, therefore, this chapter does not even try to give an
extensive analysis on how to succeed in this matter. The following analysis is
based on the assumption that the power system is balanced and that the grid
impedance seen by the grid-connected converter is either known or its worst-case
behavior can be predicted [7] [8]. Moreover, the presented control systems and

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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topologies are still quite conventional [9] (without harmonic compensators) and
may not represent the ones adopted by industry in high-end products.

This chapter demonstrates how impedance-based stability analysis can be
utilized to find out whether there may be a risk for unstable behavior by applying
the impedance models presented in Chapters 14 and 15. There are many other
methods to model three-phase inverters and to evaluate stability, such as
sequence-domain models [10], component connection method [11], and eigen
value-based analysis [12]. The following analysis exploits the impedance models
derived in the dq-domain [13–15]. The purpose of this chapter is not to make
comparisons with other methods, merely just to walk the reader through one of
the available methods. Moreover, the chapter aims to help the reader to under
stand the fundamental cause of the reported stability problems.

16.2 Modeling of Three-Phase Load Impedance in the
dq-Domain

Load impedance seen by the grid-connected inverter should be modeled or
measured to enable evaluating impedance-based stability margins. Figure 16.1
shows a general overview of an electrical three-phase source system connected to
a three-phase load system. It is assumed that the source can be modeled as a
Norton equivalent and the load as a Thevenin equivalent circuit. Stability
problems can arise when the impedances at the interface between the source
and load systems interact, much as in the case of interconnected DC–DC
systems [16].

The closed-loop output admittance of grid-connected inverter can be derived
in the dq-domain by using the methods presented in previous chapters. Reduced-
order models were developed in Chapter 14 where cross-couplings between d
and q- components were neglected. Therefore, the reduced-order model cannot
be used to obtain cross-coupling admittances Y oqd�c and Y odq�c (assuming the
source system represents a grid-connected inverter). Full-order models were
discussed in Chapter 15, which can also be used to obtain the cross-coupling
admittance terms and to include, for example, the effect of decoupling gains in the
current controller.

Figure 16.1 General overview of intercon
nected three-phase system.
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Figure 16.2 Inverter connected to a resistive–inductive grid.

Figure 16.2 shows a three-phase inverter connected to a grid impedance that
behaves as a series RL branch. Such impedance model is generally used for
evaluating inverter performance and stability in a weak grid where inverter is
located in a rural area [7]. The “DC–AC” block contains all the feedback
measurements and output filters of the inverter, that is, the inverter may have
L, LC, or LCL-type output filter, while the emphasis in this section is to give an
approximate model for the grid impedance.

Impedance of the resistive–inductive grid can be given as the input impedance
of an equivalent single-phase system as in Eqs. (16.1) and (16.2) when cross-
couplings between d and q-components are neglected.

Zgdd � Rg � sLg: (16.1)

Zgqq � Rg � sLg: (16.2)

Figure 16.3 shows a three-phase inverter connected to an inductive–resistive
grid. The inverter inside “DC–AC” block contains an L-type output filter and the
PLL synchronizes to the voltages over the passively damped AC capacitors.
Therefore, the interface between the source and load systems can be selected
according to the dashed line. The AC capacitors with passive damping, grid-side
filter inductors, and the resistive–inductive grid impedance can be lumped
together as the equivalent load impedance seen by the inverter. This simplifies
the analysis since one only has to develop the admittance model for an inverter
with L-type output filter. The admittance model can be obtained using the
methods presented in Section 15.2.

Figure 16.3 Inverter with LCL-type filter connected to resistive–inductive grid.
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Figure 16.4 Three-phase CL filter connected to resistive–inductive grid.

The CL filter can be depicted as in Figure 16.4 by assuming it is fed by an ideal
three-phase current source and loaded by ideal three-phase voltage source.
Grid-side filter inductance Lf , grid inductance Lg, filter parasitic resistance rLf ,
and grid resistance Rg can be lumped together as an equivalent three-phase RL
branch.

Three-phase inductor currents can be solved from Figure 16.4 and given as in
(16.3) where subscript i denotes the corresponding phase variable a, b, or c.

diLi 1� � Rg � rLf iLi � vCf i � Rdiin � vin : (16.3)
dt Lf � Lg

Capacitor voltages can be defined as in (16.4):

dvCfi 1� �iini � iLi�: (16.4)
dt Cf

The linearized state-space can be given in the d–q domain as in (16.5) and (16.6):

�Rd � rLf

Lg � Lf
ωs Lg

1
� Lf

0

îLd �ωs �Rd � rLf 0
1 îLd

îLqd � � LfLg Lg � Lf îLq?
v̂Cfddt 1 v̂Cfd

v̂Cfq
�
Cf

0 0 ωs v̂Cfq

1
0 � �ωs 0

Cf
Rd 1

0 � 0
Lg � Lf Lg � Lf

Rd 1

?

îind

îinq

v̂od

v̂oq

0 0
Lg � Lf Lg � Lf�

1
0 0 0

Cf
1

0 0 0
Cf

(16.5)
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iind

iinq

^
^

îLd
^

�Rd 0 1 0 Rd 0 0 0
0 �Rd 0 1
1 0 0 0
0 1 0 0

0 Rd 0 0iLq? �
vCfd

vCfq

^
^

� ?
0 0 0 0

v̂ind

v̂inq

îod

îoq 0 0 0 0
vod

v̂oq

^

(16.6)

Transfer functions of the CL filter can be solved by using (12.26) and collected
from the resulting transfer matrix G according to (16.7). The input impedance d
and q-components Zindd, Zinqd, Zindq, and Zinqq can be used to evaluate the
impedance-based stability margins.

^
^

^
^

vind iind
vinq iinq

iod vod

ioq voq

^
^
^
^

Zindd Zinqd Toidd Toiqd

Zindq Zinqq Toidq Toiqq� (16.7)?
Giodd Gioqd �Y odd �Y oqd

Giodq Gioqq �Y odq �Y oqq

16.3 Impedance-Based Stability Criterion

Figure 16.5 depicts the linear equivalent three-port model of a current-fed
inverter when cross-coupling dynamics are neglected and it is assumed that
input dynamics depend mainly on the d-components. Moreover, it is assumed
that the grid impedance has only d and q-components. Thus, the cross-diagonal
terms in the grid impedance matrix are neglected. The control inputs are the

∗∗ and output current q-component îoqreferences of input voltage v̂in Inverter.

^

^

^

^

^

^

^

^

dynamics at closed loop can be given as in Eqs. (16.8)–(16.10):

vod � Gcid�cvin;

^

^

iod � Giod�ciin � Y odd�cvod � Gcodd�cvin;

ioq � Gioq�ciin � Y oqq�cvoq � Gcoqq�ci

∗^� Zv̂in in-ciin � Toid�c (16.8)

(16.9)∗

∗
: (16.10)oq

Figure 16.5 Three-port model with grid impedance.
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Load-affected transfer functions can be solved from Figure 16.5 by noting that the
AC voltage d and q-components seen by the inverter are affected by the grid
impedance as in Eqs. (16.11) and (16.12) [17]:

vod � vgd � Zgddiod;

voq vgq � Zgqqioq:

^

^

^

^

^

^

(16.11)

� (16.12)

The voltage d and q-components and are substituted in Eqs. (16.8)–

^

vod voq

(16.10), which yields the load-affected transfer functions as given in Eqs. (16.13)–
(16.15). The transfer functions can be used to analyze how grid impedance affects
the inverter dynamics, such as input impedance or control bandwidth.

^

vin � Zin�ciin

^

^
1 � Zgdd�Y odd�c � ��Toid�cGiod�c�=Zin�c��

^

1 � Y odd�cZgdd

1
vgd� Toid�c (16.13)

1 � Y odd�cZgdd

1 � Zgdd�Y odd�c � ��Toid�cGcodd�c�=Gcid�c��
Gcid�c^

∗vin:�
1 � Y odd�cZgdd

Giod�c Y odd�c Gcodd�c ∗îod �

îoq

^^^ vin:iin � vgd �
1 � Y odd�cZgdd 1 � Y odd�cZgdd 1 � Y odd�cZgdd

(16.14)

Gioq�c Y oqq�c Gcoqq�c ∗̂
^ ivgq

(16.15)

All load-affected transfer functions have the same terms in the denominator, that
is, the product of inverter output admittance and input impedance of the grid
Y odd�cZgdd or Y oqq�cZgqq. Each of the transfer functions is stable on their own
when interactions with the grid impedance are not considered. However, both
inverse minor loop gains Y odd�cZgdd and Y oqq�cZgqq can make the inverter
unstable if the Nyquist stability criterion is not satisfied. If that is the case,
each of the transfer functions in Eqs. (16.14) and (16.15) have an unstable pole
and, thus, the inverter becomes unstable. To obtain stable operation, inverse
minor loop gains in both Eq. (16.16) and Eq. (16.17) should be analyzed by
plotting the corresponding Nyquist diagrams [18,19]:

Zgdd
MLd � Y odd�cZgdd � : (16.16)

Zodd�c

Zgqq
MLq � Y oqq�cZgqq � : (16.17)

Zoqq�c

� îin �
1 � Y oqq�cZgqq 1 � Y oqq�cZgqq

� :
1 � Y oqq�cZgqq

oq
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16.4 Case Studies

16.4.1 Instability Due to High-Bandwidth PLL in Weak Grid

The current-fed inverter with L-type output filter of Section 15.3 is used as an
example on how to evaluate impedance-based stability using the reduced-order
impedance model. The simulation model is as shown in Figure 16.6. Controller
parameters are the same as in Section 15.3 with the exception that two different
PLL settings were used; in the first case, the PLL has crossover frequency of 20 Hz
and in the second case 200 Hz. In both cases, the phase margin was set to 65°. In
fact, this means that the q-component of inverter output admittance Y oqq�c will
have a negative value �Iod=V od below the PLL bandwidth, which are approxi
mately 10 and 100 Hz. Thus, the inverter output impedance q-component
behaves as a negative resistance.

The grid impedance is assumed to be dominated by resistive and inductive
parts with an R/X ratio of 1 to demonstrate that large grid resistance does not
damp out oscillations caused by impedance-based interactions. Capacitance of
the line impedance is neglected for brevity, because it generally affects only the
high-frequency part of grid impedance [8]. The inverter may see large grid
inductance when the inverter is used in a weak grid in rural area at the end of long
medium voltage line [7]. Moreover, the inverter may be connected to the MV/LV
transformer using underground cable that has dominantly resistive properties [8].
A transformer with low power rating may also introduce additional inductance.

A weak grid is characterized by a small short circuit ratio (SCR) [20] [21],. The
short circuit ratio can be obtained as a ratio of theoretical short circuit current to
nominal grid current or as the ratio of short circuit and nominal powers. The grid
is assumed to resemble a series RL-circuit with inductance of 10 mH and
resistance of 3.14 ohm, which corresponds approximately to a SCR of 5. The
grid impedance d- and q-components can be given as in (16.18) by assuming that
the cross-diagonal impedance terms Zgqd and Zgdq can be neglected.

Zgdd � Zgqq � 3:14 � s ? 10 � 10�3: (16.18)

Inverter output admittance d-component is shown in Figure 16.7 as the equiv
alent impedance Zodd�c � �Y odd�c��1. The solid line depicts the inverter imped
ance and the dashed line depicts the d-component of grid impedance. The
inverter impedance d-component was obtained by using the reduced-order
model in Eq. (14.41). The dashed line depicts the grid impedance d-component
according to Eq. (16.18). The d-component of inverter output impedance is not
affected by the PLL and has the same shape with both PLL settings. The low-
frequency phase of the impedance is zero due to constant power source properties
introduced by the DC voltage control. The grid and inverter impedances overlap
at 262 Hz, that is, the impedances have the same magnitude. This is equivalent to
having the inverse minor loop gain MLd in Eq. (16.16) to cross the unity circle on
the complex plane. However, the phase difference is much less than 180° and,
therefore, the inverse minor loop gain does not encircle the (�1,0) point.

Figure 16.8 shows the product of inverter admittance and grid impedance d-
components on the complex plane, that is, the inverse minor loop Y odd�cZgdd.
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Figure 16.7 d-Components of grid (dashed) and inverter impedance (solid).

The contour does not encircle the (�1,0) point and, thus, the inverter seems to be
stable when only d-components are analyzed. Both impedances have their phase
contained between �90 and +90°, which means they behave as passive circuits.
Therefore, the impedance d-component obviously cannot cause instability. In
fact, inverter impedance should be designed to have characteristics as close to a
passive circuit as possible to avoid impedance-based interactions [22,23].

Figure 16.9 shows the q-components of inverter output impedance�1
and the grid impedance q-component Zgqq. The inverter

impedance is shown as a solid line with the two different PLL parameters. The
dots represent the impedance extracted from simulator. The impedances overlap
at 139 Hz when PLL crossover frequency is set to 200 Hz, and at 243 Hz when PLL
crossover frequency is set to 20 Hz. Overlapping impedances is an indication of

Zoqq�c � Y oqq�c

Figure 16.8 Ratio of impedance d-components MLd on the complex plane.
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Figure 16.9 q-Components of grid (dashed) and inverter impedance (solid).

possible impedance-based interactions. However, the phase difference is 114°
with slower PLL and 231° with faster PLL. The Nyquist stability criterion is
violated if the phase difference is more than 180° at the frequency where
impedances overlap. Thus, the inverter is unstable when the PLL is tuned to
have 200 Hz crossover frequency.

Figure 16.10 shows the product of inverter admittance and grid impedance q-
components on the complex plane, that is, the other inverse minor loop
Y oqq�cZgqq. The contour encircles the (�1,0) point in clockwise direction once
it indicates the minor loop has one RHP zero. Therefore, the load-affected
dynamics in Eqs. (16.13)–(16.15) have a RHP pole when PLL crossover is selected

Figure 16.10 Ratio of impedance q-components when PLL crossover is 20Hz (dashed) and
200Hz (solid).
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Figure 16.11 Grid currents with steadily growing oscillation.

as 200 Hz and, thus, the inverter becomes unstable. However, the inverter is stable
when the PLL crossover frequency is reduced to 20 Hz.

Figure 16.11 shows the simulated grid current waveforms when PLL controller
parameters are switched at 0.2 s to increase crossover frequency from 20 to
200 Hz. The oscillation in grid current increases gradually after 0.2 s. The inverter
output currents become distorted after the PLL parameters are changed due to
unstable interaction on impedance q-components.

Figure 16.12a shows zoomed waveforms in the stable case and Figure 16.12b in
the unstable case. The impedance-based interaction appears as a sustained
resonance rather than conventional instability where current or voltage tries

Figure 16.12 Grid currents in stable (a) and unstable (b) cases.
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to ramp to infinity. This feature can make it very hard to identify if the power
quality problem is caused by impedance-based interactions or, for example,
background harmonics in grid voltage. After all, the waveform looks very
much the same as the grid current in Figure 14.46, where the distortion was
caused by low inverter impedance at the harmonic frequency. FFT analysis is an
effective tool to determine whether the distortion is caused by grid harmonics or
interactions of inverter and grid impedance. However, there is always the
possibility that distortion caused by impedance-based interaction is located at
the harmonic frequencies in which case it may be hard to identify the source of the
problem [3].

It should be noted that the reduced-order model was used in this example to
evaluate impedance-based stability margins. However, as can be seen by com
paring the predicted impedance with the actual impedance in Figure 16.9, there is
a slight difference in the phase of the impedance with faster PLL settings.
Therefore, the reduced-order model may have somewhat limited accuracy in
predicting the stability margin. However, the reduced-order model can still give a
good indication whether there is a risk for impedance-based instability or not. The
full-order dynamic model presented in Chapter 15 can be used to improve the
accuracy of stability analysis as discussed in Refs [15,24,25], which is, however,
beyond the scope of this book.

16.4.2 Instability Due to Control Delay in Feedforward Path

Impedance-based interactions of the inverter discussed in Section 14.4 are
studied. The inverter employs an LC-type output filter. Such filter can be
used when inverter is connected to the grid using a transformer. In the example
case, the transformer was measured to have inductance of approximately 600μH
and resistance of 400 mΩ. Therefore, the LC filter and the transformer act
effectively as an LCL-type filter.

Impedance-based stability of the inverter was studied by adding a 5 mH three-
phase inductor between the grid emulator and the isolation transformer, as
depicted in Figure 16.13. The control delay originating from the DSP-based
control platform decreases the phase of inverter output impedance when pro
portional grid voltage feedforward is used, as discussed in Section 14.4. Therefore,

Figure 16.13 Inverter connected to an inductive load impedance.
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Figure 16.14 Impedance d-components with initial proportional feedforward gain.

the inverter may be vulnerable to impedance-based instability in the case when
grid impedance has a large magnitude, such as in the weak grid case. As a matter
of fact, the inverter was observed to become unstable when switching frequency
was reduced from 20 to 16 kHz because this causes control delay to increase.

The proportional feedforward gains were selected as the inverse of inverter DC
voltage, while the PV generator was operated at the MPP, 414.3 V.

Figure 16.14 shows the initial impedance d-components together with the
measured impedances when the switching frequency was selected as 16 kHz and
proportional feedforward gains Gffd and Gffq as the inverse of DC voltage 1=414:3.
The solid line depicts the d-component of inverter output impedance and the
dashed line is the total impedance of the load (transformer and the series
inductor.) The load impedance was approximated as in Eq. (16.19), which
includes the impedance of the isolation transformer:

Zgdd � 0:4 � s ? 5:6 � 10�3: (16.19)

The impedance d-components overlap at approximately 325 Hz and their phase
difference is 180°, which indicates instability. The instability is caused by delay of
the control system together with too large proportional feedforward gain. The
grid voltage feedforward decreases the phase of the inverter output impedance
below �90° around few hundreds of Hertz due to control delay, as discussed in
Chapter 14.

Three-phase grid currents are shown in Figure 16.15 (middle of the figure)
together with phase-to-phase voltage. Interaction of impedance d-components
can be seen as large oscillations in the grid current. The inverter impedance was
reshaped by reducing the value of proportional feedforward gain Gffd to
0:8=414:3, which effectively reduces the detrimental effect of control delay.

The reshaped impedances are shown in Figure 16.16 where grid and inverter
impedances overlap at 316 Hz. However, the phase difference is less than 180° and
the inverter is stable, as can be seen in Figure 16.15 (lower current waveforms). It
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Figure 16.15 Grid currents in unstable and stable cases.

should be noted that even though the inverter is stable at steady state, the stability
margin (derived from impedance d-components) is just 21°. Therefore, large
oscillations would still be seen during transients, but these oscillations are
damped out after a short transient.

Figure 16.17 shows the ratio of impedance d-components on the complex plane
in both cases. The impedance ratio is obtained by using the analytical inverter
impedance d-component in Eq. (14.83) and the grid impedance in Eq. (16.19).

Figure 16.16 Impedance d-components with reduced proportional feedforward gain.
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Figure 16.17 Ratio of impedance d-components obtained using the dynamic model.

The impedance ratio encircles the (�1,0) point with the initial feedforward gain and,
thus, the inverter becomes unstable. However, the inverter is stable when the
feedforward gain is reduced by 20% as the contour does not encircle the (�1,0) point.

As already mentioned, it was observed that in the example case, the instability
was caused by the impedance d-components. However, the q-components can
also cause impedance-based interactions, as demonstrated by the wide-band
width PLL in the previous section. Figure 16.18 shows the impedance q-
component given by the reduced-order model according to Eq. (14.84), the
grid impedance model Eq. (16.19), and the corresponding measured imped
ances. The impedance q-components overlap at 335 Hz, but the phase differ
ence is less than 180°. Thus, the q-components do not cause instability.

Figure 16.18 Impedance q-components.
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However, it would be beneficial for the transient behavior to also reduce the
feedforward gain Gffq in order to increase the stability margin.

16.5 Summary

In this chapter, the impedance models developed earlier were applied to evaluate
impedance-based stability of a grid-connected inverter. As a first case study, a
fast PLL control loop was demonstrated to cause instability in a weak grid due to
the negative resistance behavior. As a second case study, the grid voltage
feedforward loop was shown to cause instability due to nonpassive impedance
behavior caused by control delay. However, in both cases, the inverter could be
stabilized by reshaping the inverter output impedance by changing the control
parameters. The dynamic model presented in this book provides a necessary and
accurate tool for impedance shaping of grid-connected converters in order to
avoid instability.
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17

Dynamic Modeling of Three-Phase Active Rectifiers

17.1 Introduction

This chapter provides an introduction to modeling of active rectifiers. Further
analysis such as control design and derivation of closed-loop models [1–7] is
beyond the scope of the book because the active rectifier is a perfect topic for self-
studies and provides a good basis for homework topics for students at university-
level courses. Moreover, a grid-connected active rectifier serves as a good
platform for implementing laboratory assignments, since one does not require
expensive grid of PV emulators.

17.2 Open-Loop Dynamics

Active rectifiers are commonly found in motor drive applications. They have been
used to replace the three-phase diode bridge enabling significantly better power
quality and the possibility for four quadrant operation with regenerative braking.
The dynamic model of an active rectifier can be obtained by using identical
methods as in modeling of three-phase inverters. Main difference is the reversed
power flow. Moreover, the grid voltages act as the source system and the DC link
as a load system.

Power stage of the active rectifier is shown in Figure 17.1. The three-phase
grid acts as a source system and current sink connected at the DC side acts
as a load system. The rectifier has a DC capacitor to enable control of the
load voltage. The DC load can be, for example, a storage battery or a motor
drive. However, for obtaining the dynamic model without the effect of load,
the load is modeled as an ideal current sink with current io. The DC voltage
is selected as an output variable vo and grid voltages van, vbn, and vcn as input
variables.

The equivalent switch matrix is depicted in Figure 17.2 where the transistors
are modeled as SPDT switches and losses are modeled by parasitic resistances.

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 17.1 Power stage of an active rectifier.

Figure 17.2 Equivalent switch matrix of an active rectifier.

The average voltage over each phase inductance can be defined as in Eq. (17.1)
where i denotes the corresponding phase, that is, a, b, or c:

h i 1d iLi � �h i � �rL � �h i � vo � h i�: (17.1)vin rds iLi dih i vnNdt L

Three-phase inductor currents can be given by three-dimensional vectors as in
Eq. (17.2) where the equivalent resistance req is the sum of parasitic resistances
rL and rds.

h i h i h i h idAiLa van iLa vnNd 1h i � h i h i h i � h i :dB voiLb vbn � req iLb vnNdt Lh i h i h i h idCiLc vcn iLc vnN

(17.2)

The three-phase inductor currents are transformed into stationary reference
frame by using Clarke’s transformation as in Eq. (17.3), which yields the inductor
currents in stationary reference frame given in Eq. (17.4). The amplitude-invariant
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transformation is assumed. The subscript “-in” is used to denote that the grid
voltage is treated as an input voltage of the power stage.

h i h i h i dAiLa van iLad 1
Tαβ Tαβ Tαβh i � h i � reqT

αβ h i h idB voiLb vbn iLbdt Lh i h i h i dCiLc vcn iLc

h ivnN

Tαβ� h i : (17.3)vnNh ivnN

h i h i 0dαiLα iLαhvα�inid 1� vo �h i 0 :dβiLβ iLβvβ�in � reqdt Lh i hv0�ini h i h id0iL0 iL0 vnN

(17.4)

The zero component is neglected, which allows defining the inductor current as a
rotating space-vector as

1 h id
iαβ αβ req iαβ dαβ vo� v � � : (17.5)L in Ldt L L L

The inductor current can be given in the synchronous reference frame, that is, in
the dq-domain by noting the relationship between a rotating and a stationary

αβ � dq ? ereference frame (x x jωst). The transformation produces cross-couplings
between inductor current d and q-components. The inductor currents can be
defined as

d
idq

1 dq req idq idq ddq h i� v � � jωs � vo
: (17.6)L in L Ldt L L L

Average voltage of the output capacitor can be solved by utilizing the Kirchhoff’s
current law as

h i 1 1 3d vC � �h i � h i� � h i � � h i : (17.7)iP io ioiLqdd iLd dqdt C C 2

Finally, the average state-space model can be written by using the equivalent
variables in the dq-domain as in Eqs. (17.8)–(17.13):

h i h i ddd iLd vind req� � h i � ωs � vC ;h i (17.8)iLd iLqdt L L L

dqd iLq vinq req� � ωsh i vC ;iLd � h i (17.9)iLqdt L L L
dh ivC 3 3 1� ddh i � dq � io ;h i (17.10)iLd iLqdt 2C 2C C

h i � h i; (17.11)iin d iLd

� ; (17.12)iinq iLq

h i � h i: (17.13)vo vC
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Figure 17.3 Equivalent circuit model of an active rectifier.

The equivalent circuit model of the active rectifier can be depicted as in
Figure 17.3. The average model can be used for simulation studies and evaluating
control system stability, because control loops are usually tuned to have much
smaller bandwidths than the switching frequency. Therefore, the simulation step
size can be significantly longer. Such model can represent the dynamic behavior
of the control system with sufficient accuracy.

Steady-state operating point of the active rectifier can be solved from the
average model given in Eqs. (17.8)–(17.13) by noting that in steady state all
derivatives are zero, that is, all transients have disappeared. Moreover, all the
variables are replaced by their steady-state values (uppercase letters) yielding
Eqs. (17.14)–(17.16)

0 � V ind � reqILd � ωsLILq � DdVC; (17.14)

0 � V inq � reqILq � ωsLILd � DqVC; (17.15)

3 3
0 �

2
DdILd � 2

DqILq � Io: (17.16)

The q-component of grid voltage V inq (or inverter input voltage q-component to
be precise) is equal to zero due to the PLL. Moreover, it is assumed that the
rectifier operates at unity power factor; thus, grid current q-component ILq is
zero. It is also assumed that the output voltage V o and output current Io are
known. The steady-state operating point can be given as in Eqs. (17.17)–(17.20).

2IoILd � ; (17.17)
3Dd

VC � V o; (17.18)

2ωsLIoDq � � ; (17.19)
3DdV o

V o Dd
2 � V indDd � 2

Io � 0: (17.20)� � req3

The duty ratio d-component can be solved numerically by applying the solution of
a second-order polynomial as in Eq. (17.21) after which the numerical values of
inductor current d-component and duty ratio q-component can be solved from
Eqs. (17.17) and (17.19), respectively.
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8
V ind � �V ind�2 � reqV oIo3

: (17.21)Dd �
2V o

The linearized state-space can be obtained from the average model by developing
the proper first-order partial derivatives with respect to each state and input
variable and can be given as in Eqs. (17.22)–(17.27):

dd:^d̂iLd Dd 1 VCreq iLd � ωsiLq � vC � vind �dt L L L L
^^^^ (17.22)

d̂iLq Dq 1 VCreq

^

d̂q:

3ILq dq:

iLq � ωsiLd � vC � vinq �dt L L L L
^^^^ (17.23)

(17.24)
3Dq ^dvC iLd � iLq � io dd �dt 2C 2C C 2C 2C

^^^^ 3Dd 1 3ILd� �

iind � îLd: (17.25)^

iinq � îLq: (17.26)

vo vC:^

^

^ � (17.27)

The state matrices can be given as in Eqs. (17.28) and (17.29):

v̂ind

v̂inq

îo

d̂d

d̂q

^

1 VCreq Dd� ωs � 0 0 � 0
iLd

L L L L
iLd

îLq

^

^

vC

d
dt

Dq 1 VCreq� �îLq L LL L
�ωs � 0 0 0

v̂C

C 2C 2C2C 2C
3ILq3Dd 3Dq 1 3ILd0 0 �0

^

^

^

^

^

A B

(17.28)
vind

vinq

io

dd

dq

îind

îinq

v̂o

�
îLd

îLq

v̂C

1 0 0

� 00 1 0 (17.29)?

0 0 1 D

C

Transfer function matrix G can be solved in the frequency domain by using
Eq. (12.27). The dynamic model has five inputs and three outputs, and thus,
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15 transfer functions are obtained using MATLAB and collected from matrix G as
shown in Eq. (17.30).

vind^

?

vinq

îo
^
^

^

dd

dq

(17.30)
îind

îinq

v̂o

� Y indq�o Y inqq�o Toiq�o Gcidq�o Gciqq�o

Y indd�o Y inqd�o Toid�o Gcidd�o Gciqd�o

Giod�o Gioq�o �Zo�o Gcod�o Gcoq�o

^

The transfer functions can be collected as submatrices, or as transfer matrices as
in Eq. (17.31) where part of the matrices are intentionally filled with zeros to have
all submatrices as to two-by-two matrices. This modification allows analyzing the
rectifier using transfer matrices which is how the dynamics of MIMO systems
are usually analyzed.

vind

îind

îinq

Y indd�o Y inqd�o Toid�o 0 Gcidd�o Gciqd�o

^

^

^

v̂inq

io

Giod�o Gioq�o �Zo�o 0 Gcod�o Gcoq�o

dd

dq

Y indq�o Y inqq�o Toiq�o 0 Gcidq�o Gciqq�o�
vo

0 00 0 0 0 0

^

^^

^

^
^

(17.31)

The transfer matrices can be given as in Eq. (17.32) where each transfer matrix
corresponds to a submatrix collected from Eq. (17.31). Input and output variables

T
iind iinq

vin

io
d

are given as input and output vectors, that is, iin � .

îin
v̂o

Yin�o Toi�o Gci�o� (17.32)
Gio�o �Zo�o Gco�o

A control block diagram can be drawn based on Eq. (17.32) and depicted as in
Figure 17.4. The block diagram can be used to include different control functions
to the dynamic model and to evaluate the effect of cross-coupling dynamics since
none of the transfer functions in Eq. (17.31) have been neglected. However, one
should be careful when using the model in deriving closed-loop model since some
of the transfer matrices are not invertible, that is, there are zeros located at the
diagonal.

A reduced-order control block diagram can be constructed by neglecting the
cross-coupling transfer functions between d and q-components, that is, Y inqd�o,
Y indq�o, Gciqd�o, Gcidq�o, and by assuming that the rectifier operates at unity power
factor. Thus, the output dynamics depend mainly on the d-components and
transfer functions Gioq�o and Gcoq�o can be neglected. The reduced-order open-
loop control block diagrams can be depicted as in Figure 17.5.

An example code for solving the transfer functions using MATLAB is given in
Figure 17.6 where the “frd()” command is used to transform the transfer functions

0
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Figure 17.4 Control block diagram
of active rectifier drawn using the
transfer matrices.

Figure 17.5 Reduced-order (a) input and (b) output dynamics of the active rectifier as a control
block diagram.

into frequency-response data vectors. By using this command, all information
about the frequencies of poles and zeros are lost. However, analyzing the
dynamics as frequency-response data prevents the order of closed-loop transfer
functions from getting too high, which may cause problems in solving the closed-
loop transfer functions.
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Figure 17.6 Example m-file to solve transfer functions of an active rectifier.

17.3 Verification of Open-Loop Model

The open-loop model was verified by using a switching model implemented using
the SimScape package of MATLAB Simulink, which is shown in Figure 17.7. The
parameters of the simulation model are given in Table 17.1. The model does not
include the PLL as the purpose of this chapter is to present the open-loop model
without the effect of any of the control functions. Therefore, it is assumed that the
grid voltage is known and it is derived by integrating the grid angular frequency
“omega” in Figure 17.7.

The open-loop transfer functions were verified by extracting the corresponding
frequency responses from the switching model by using the PRBS injection

Table 17.1 Parameters of the simulation model.

Po 2.2 kW V g�a;b;c��rms 230 V L 8.1 mH

V o 700 V ωs 2π�50 rad/s rL � rsw 100 mΩ

Io 3.14 A ILq 0 A C 1.5 mF

ILd 4.52 A f sw 10 kHz
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Figure 17.8 Control-to-input transfer function, Gcidd�o.

method. As an example, the transfer function from duty ratio d-component dd to
input current d-component iindcan be obtained by perturbing the steady-state
value of the duty ratio Dd and extracting the corresponding frequency response.
The transfer function Gcid�o describes the small-signal dependency of duty ratio
d-component to input current d-component and is as shown in Figure 17.8. The
low-frequency phase of the frequency response starts from �180°, which indi
cates that inverted control signal should be used when input current is controlled
using conventional feedback control. Moreover, the developed small-signal
model gives an accurate prediction on the shape of the transfer function.

Figure 17.9 shows the output impedance of the active rectifier at open loop. The
impedance is mostly capacitive due to large DC capacitor as one would expect.

Figure 17.9 Rectifier output impedance Zo�o at open loop.
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However, the rectifier is usually controlled using a cascaded control scheme that
affects the shape of the output impedance. Open-loop transfer functions provide a
good starting point for control design. However, it is also useful to analyze the
closed-loop transfer functions, such as closed-loop input admittance and output
impedance, because they can be used to determine the impedance-based stability
of the rectifier [8] and for designing stable input filters [9].

17.4 Experimental Results

Active rectifier is often controlled using a cascaded control scheme according to
Figure 17.10 where the DC voltage controller GPI�v sets the reference value of
input current d-component i∗ind. The input current q-component is kept at zero
amperes to operate the rectifier at unity power factor. Thus, the reference of input
current q-component i∗inq is zero. The current control loops are designed first
followed by the design of the outer voltage control loop. The control design of
PLL, current control loops, and cascaded control loops follows exactly the same
principle as in the case of current-fed inverters in Chapter 13.

Designing stable controllers for the active rectifier acts as a perfect homework
for someone who wants to learn how to utilize the dynamic modeling method.
Therefore, the procedure is not shown here. However, the suggested design steps
can be given as follows:

1) Solving the open-loop transfer functions.
2) Drawing the required control block diagrams.
3) Identifying the loop gains related to PLL, AC current control, and cascaded

control.
4) Selecting PI controller parameters using the loop-shaping technique.
5) Verifying the rectifier stability by step tests.

Figure 17.10 Control scheme of an active rectifier.
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Figure 17.11 Laboratory setup used on a power electronic course.

Control design of the active rectifier is quite straightforward since the control
dynamics do not contain any RHP poles or zeros. However, it should be noted that
this is not true when the rectifier operates in regenerative operating mode as
pointed out in Ref. [6].

Figure 17.11 shows a photograph of a motor test bench at the Laboratory of
Electrical Energy Engineering at Tampere University of Technology, Tampere,
Finland. The test bench is used to verify the control performance of control
systems in a M.Sc. level course, where dynamic modeling of three-phase con
verters is taught. The active rectifier is located at the left-hand side of the test
bench. The rectifier is loaded by a motor drive that rotates the left-hand side
induction machine. The right-hand side induction machine is used to produce
load torque. The rectifier and motor drive are both controlled by using the
dSPACE real-time simulator that can be used to implement controllers designed
by students. The converters on the right-hand side control the load motor and
utilize their own controllers.

Figure 17.12 shows the DC voltage and grid current waveform when DC voltage
is stepped from 600 to 700 V. The rise time is ramp-rate limited inside dSPACE.
Settling time of the DC voltage is less than 20 ms. However, the grid current
contains excessive harmonics due to dead-time effect. It should be noted that the
converters were operated at partial load. Therefore, the relative amount of
harmonics in grid current is very large. The rated power of induction machines
is 2.2 kW, whereas the rated power of the rectifier is 10 kW.

The crossover frequency of DC voltage loop gain was modified to improve
quality of grid current. The measured original and redesigned control loop gains
are shown in Figure 17.13. The loop gains were measured using a frequency
response analyzer. The goal was to reduce the loop gain magnitude at the
frequencies where the DC voltage contains distortion due to dead-time effect.
A low-bandwidth DC voltage control can somewhat mitigate the effect of dead-
time, as discussed in Chapter 13. The loop gain was measured under no-load
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Figure 17.12 Rectifier waveforms with fast DC voltage control.

condition, that is, the motor drive was not drawing any current from the DC link.
Therefore, the low-frequency phase starts from �180° and not from �90° as
under loaded condition. However, the crossover frequency and phase margin are
the same under no-load and loaded conditions.

Figure 17.14 shows the DC voltage and grid current during a DC voltage step
test from 600 to 700 V. The settling time is slightly longer due to lower crossover
of the DC voltage control loop. The DC voltage settles around the new steady-
state value in approximately 90 ms, which is almost four times longer than in the
previous test. However, the grid current has much cleaner waveform since the
reference of output current contains less harmonics.

Figure 17.13 Measured DC voltage control loop gains.
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Figure 17.14 Rectifier waveforms with slow DC voltage control.

Figure 17.15 shows the DC voltage and grid current waveforms when the initial
control design and a first-order low-pass filter were used to filter out the
distortion in DC voltage. The figure shows the turn-on transient of the rectifier
after which the overvoltage protection circuit reacts and disconnects the rectifier.
The low-pass filter reduces both the magnitude and the phase of the loop gain.
Therefore, the phase margin of the loop gain is reduced. The designed loop gain is
stable when analyzed in the frequency domain. However, the DC voltage increases

Figure 17.15 Turn-on failure due to poor phase margin in DC voltage control loop gain.
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beyond the DC voltage protection limit that was set to 750 V due to inadequate
phase margin. Therefore, the rectifier cannot be turned on.

17.5 Summary

This chapter briefly discusses how to obtain the dynamic model of an active
rectifier at open loop. Control design of an active rectifier serves as a perfect
homework or group work assignment when this book is used as a textbook on a
university-level course. Therefore, the rest of the analyses, that is, control design
and closed-loop models, are not discussed in this book. Moreover, an active
rectifier serves as a perfect topic for a laboratory assignment since one does not
have to purchase expensive source and grid emulators.
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