
Haris Javaid · Sri Parameswaran

Pipelined
Multiprocessor
System-on-Chip
for Multimedia

Pipelined Multiprocessor System-on-Chip
for Multimedia

Haris Javaid • Sri Parameswaran

Pipelined Multiprocessor
System-on-Chip
for Multimedia

123

Haris Javaid
Sri Parameswaran
School of Computer Science

and Engineering
University of New South Wales
Kensington, NSW
Australia

ISBN 978-3-319-01112-7 ISBN 978-3-319-01113-4 (eBook)
DOI 10.1007/978-3-319-01113-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013948377

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1 Introduction . 1
1.1 Multimedia Applications . 2
1.2 Multimedia Architectures . 3

1.2.1 Application Specific Integrated Circuits 3
1.2.2 General Purpose Processors . 4
1.2.3 Digital Signal Processors . 4
1.2.4 Application Specific Instruction Set Processors. 5
1.2.5 Multiprocessor System-on-Chips 6

1.3 Challenges in Multimedia Heterogeneous MPSoCs 9
1.4 Research Aims and Contributions . 12
1.5 Monograph Outline . 15
1.6 Summary . 16
References . 16

2 Literature Survey . 21
2.1 Homogeneous MPSoCs . 21
2.2 Heterogeneous MPSoCs . 23
2.3 Design Space Exploration. 26

2.3.1 Exact Approaches . 26
2.3.2 Heuristic Approaches. 29
2.3.3 (Semi-) Automated Frameworks 34

2.4 Run-Time Adaptability. 39
2.5 Summary . 42
References . 42

3 Optimisation Framework . 53
3.1 Application Model and Pipelined MPSoCs 53
3.2 Shortcomings of Prior Research . 56
3.3 Overview of Optimisation Framework 58
3.4 Summary . 62
References . 63

v

http://dx.doi.org/10.1007/978-3-319-01113-4_1
http://dx.doi.org/10.1007/978-3-319-01113-4_1
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec15
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec15
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec16
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec16
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec17
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Sec17
http://dx.doi.org/10.1007/978-3-319-01113-4_1#Bib1
http://dx.doi.org/10.1007/978-3-319-01113-4_2
http://dx.doi.org/10.1007/978-3-319-01113-4_2
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_2#Bib1
http://dx.doi.org/10.1007/978-3-319-01113-4_3
http://dx.doi.org/10.1007/978-3-319-01113-4_3
http://dx.doi.org/10.1007/978-3-319-01113-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_3#Bib1

4 Performance Estimation of Pipelined MPSoCs 65
4.1 Pipelined MPSoC’s Analytical Models 67
4.2 Estimation Methods . 71

4.2.1 PS Method (Pipelined MPSoC Simulation) 71
4.2.2 PSP Method (Pipelined MPSoC Simulation

and Processor Analytical Model) 72
4.3 Experimental Methodology . 75
4.4 Results and Analyses . 76

4.4.1 Processor’s Analytical Model . 76
4.4.2 Pipelined MPSoC’s Analytical Models and Estimation

Methods. 77
4.4.3 Simulation Time of Estimation Methods 80
4.4.4 Comparison to Prior Research 81

4.5 Summary . 82
References . 82

5 Design Space Exploration of Pipelined MPSoCs 85
5.1 Problem Statement. 86
5.2 Optimisation Under an Execution Time Constraint 87

5.2.1 Variables . 87
5.2.2 Objective Function . 88
5.2.3 Constraints . 88

5.3 Optimisation Under a Latency Constraint 89
5.3.1 Variables . 89
5.3.2 Objective Function . 90
5.3.3 Constraints . 90

5.4 Optimisation Under a Throughput Constraint 92
5.5 Discussion . 93
5.6 Experimental Methodology . 93
5.7 Results and Analyses . 94

5.7.1 Pareto Fronts . 94
5.7.2 Exploration Time . 95
5.7.3 JPEG Encoder Case Study . 98

5.8 Summary . 99
References . 99

6 Adaptive Pipelined MPSoCs . 101
6.1 Motivational Example . 101
6.2 Adaptive Pipelined MPSoC Architecture 103
6.3 A Design Flow . 105
6.4 Problem Statement. 106

vi Contents

http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec10
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec10
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec11
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Sec11
http://dx.doi.org/10.1007/978-3-319-01113-4_4#Bib1
http://dx.doi.org/10.1007/978-3-319-01113-4_5
http://dx.doi.org/10.1007/978-3-319-01113-4_5
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec10
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec10
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec11
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec11
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec12
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec12
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec13
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec13
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec14
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec14
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec15
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec15
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec16
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec16
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec17
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Sec17
http://dx.doi.org/10.1007/978-3-319-01113-4_5#Bib1
http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec4

6.5 Leveraging Application Knowledge . 107
6.5.1 An H.264 Video Encoder Example 107

6.6 Processor Management Heuristics . 109
6.6.1 Application Execution Based Heuristic

(Exe Heuristic) . 110
6.6.2 Application Knowledge Based Heuristic

(Know Heuristic) . 112
6.6.3 System-Level Overview . 115

6.7 HD720p H.264 Video Encoder Case Study. 116
6.7.1 Implementation Details . 116
6.7.2 Results and Analyses. 118
6.7.3 Discussion . 124

6.8 Summary . 124
References . 125

7 Power Management in Adaptive Pipelined MPSoCs 127
7.1 Motivational Example . 128
7.2 Power Manager . 129

7.2.1 Analytical Analysis . 130
7.2.2 Leveraging Application Knowledge. 132

7.3 Problem Statement. 133
7.4 Power Management Heuristics . 133

7.4.1 Application Execution Based Heuristic
(Exe Heuristic) . 134

7.4.2 Application Knowledge Based Heuristics
(Know Heuristics) . 135

7.4.3 System-Level Overview . 139
7.5 HD720p H.264 Video Encoder Case Study. 139

7.5.1 Implementation Details . 140
7.5.2 Results and Analyses. 141

7.6 Summary . 145
References . 145

8 Multi-mode Pipelined MPSoCs . 147
8.1 Multi-mode Pipelined MPSoCs . 149
8.2 A Design Flow . 151
8.3 Problem Statement. 152
8.4 Merging Heuristics . 153

8.4.1 MaxS (Maximum Stages). 153
8.4.2 MaxN (Maximum Nodes) . 155
8.4.3 MaxC (Maximum Weight Clique). 156

Contents vii

http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec13
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec13
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec14
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec14
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec15
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Sec15
http://dx.doi.org/10.1007/978-3-319-01113-4_6#Bib1
http://dx.doi.org/10.1007/978-3-319-01113-4_7
http://dx.doi.org/10.1007/978-3-319-01113-4_7
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec10
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec10
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec11
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec11
http://dx.doi.org/10.1007/978-3-319-01113-4_7Sec12
http://dx.doi.org/10.1007/978-3-319-01113-4_7Sec12
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec13
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Sec13
http://dx.doi.org/10.1007/978-3-319-01113-4_7#Bib1
http://dx.doi.org/10.1007/978-3-319-01113-4_8
http://dx.doi.org/10.1007/978-3-319-01113-4_8
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec6
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec7
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec7

8.5 Experimental Methodology . 158
8.6 Results and Analyses . 159
8.7 Discussion . 160
8.8 Summary . 161
References . 161

9 Conclusions and Future Work . 163

Index . 167

viii Contents

http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec8
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec9
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec10
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec10
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec11
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Sec11
http://dx.doi.org/10.1007/978-3-319-01113-4_8#Bib1
http://dx.doi.org/10.1007/978-3-319-01113-4_9
http://dx.doi.org/10.1007/978-3-319-01113-4_9

Chapter 1
Introduction

Day to day computing has moved from mainframe to personal to ubiquitous
computing over the last several decades [1]. Ubiquitous computing is almost im-
perceptible and yet is everywhere around us, enabled by the proliferation of em-
bedded systems. An embedded system is a hardware-software computer system,
designed to perform specific tasks (unlike a general-purpose system) and is typically
embedded within a larger system or device. Common examples of embedded sys-
tems include digital watches, traffic controllers, mobile phones, music/video players,
tablets, health monitors and modern cars.

The evolution of embedded systems has been rapid and their market is growing
at a staggering rate. In a report published by the International Data Corporation in
2011 [2], 5.4billion embedded systems were shipped in 2010 and 8.8billion are
expected in 2015. Furthermore, 7.5billion embedded processors were used in 2010
and 14.5billion will most likely be required in 2015. Embedded systems’ market
includes a diverse set of industries spanning automotive, communication, consumer,
energy, healthcare, industrial and transportation. The communication and consumer
industries accounted for 48% of the revenue of the embedded systems’ market in
2010 [2], signifying user demands and expectations on consumer devices such as
mobile phones, personal digital assistants, digital cameras, digital TVs and gaming
consoles.

Multimedia is a combination of diverse content forms such as text, audio, video,
image and animation to provide information or entertainment to users. It is at the
backbone of consumer products and is considered the fastest growing class of
embedded applications [3]. Users expect multimedia content to be accessible vir-
tually from everywhere through portable devices. For example, a mobile phone is
expected to record high definition video and then upload it to a social networking
website. Another example is that users expect set-top boxes to provide digital televi-
sion, internet access, gaming experience, in-home entertainment and home automa-
tion. The number of mobile phones has increased from 12.4million to approximately
4.6billion, and internet users have grown from 3million to almost a quarter of the
earth’s population during the last two decades [4]. Therefore, analysis, design and

H. Javaid and S. Parameswaran, Pipelined Multiprocessor System-on-Chip 1
for Multimedia, DOI: 10.1007/978-3-319-01113-4_1,
© Springer International Publishing Switzerland 2014

2 1 Introduction

implementation of advanced and complexmultimedia embedded devices has become
an active research area in both academia and industry.

This monograph explores implementation of multimedia applications on a
pipelined MultiProcessor System on Chip (MPSoC) where the processors are
divided into stages, and are connected in a pipeline. Application Specific Instruction
set Processors (ASIPs) [5] are used so that their customisation can be used to bal-
ance the workload across stages of the pipelined MPSoC, improving the utilisation
of the processors for high performance, reduced area footprint and low power con-
sumption. The aim of this monograph is to optimise such a pipelined MPSoC for
area footprint and energy consumption under performance constraints by utilising
design-time and run-time optimisations. This chapter of the monograph entails an
overview of trends and challenges in multimedia applications and embedded archi-
tectures, starting from low resolution video processing on uniprocessor systems to
high definition video processing on (heterogeneous) multiprocessor systems.

1.1 Multimedia Applications

Multimedia has widespread application in embedded devices [6] in the form of:

• Digital Audio: audio recording, audio playback, voice calls/conferencing, etc.
• Digital Image: photography, image processing, image pre-/post-processing, etc.
• Digital Video: video calls/conferencing, video recording, video playback, digital
TV, etc.

• Display: brightness and contrast adjustment, up-/down-scaling, etc.
• Games: game processing, rendering, shading, etc.

Multimedia applications have seen a radical increase in their complexity over
the last two decades, driven by user expectations on better quality/experience,
interactive displays, high definition content, 3D content, longer playback time, etc.
Video resolutions have increased from Quarter Common Interface Format (QCIF,
176 × 144 pixels) to Standard Definition (SD, 720 × 480 pixels) to High Defini-
tion (HD, 1920 × 1080 pixels). These resolutions are expected to further increase
to Ultra High Definition TV and Realistic TV, resulting in approximately 1000×
increase in resolution complexity [6, 7] relative to MPEG-4 QCIF. Although high
resolutions are targeted for high-end devices, recent prototypes from Nokia have
demonstrated 3D video decoding on tablets [8, 9]. In addition to video resolution,
video codec complexity has dramatically increased to improve compression effi-
ciency. Since the introduction of MPEG-1, video coding standards have evolved
to H.264 [10] and Multiview Video Coding [11]. H.264 doubles the compression
efficiency compared to previous standards [12] at the cost of 10× additional com-
putational complexity [13]. A recent study by Meehan et al. [7] anticipated that the
overall complexity of video coding standards will double every two years. Besides,

1.1 Multimedia Applications 3

multimedia applications are expected to support different video formats and multiple
video coding standards due to extreme competition in consumer devices’ market.

High-end applications like user interfaces, video conferencing/calls, video record-
ing and internet video streaming require better video quality, higher video resolutions
and lower compression rates, and hence consume significant amounts of energy due
to their high computational complexity. These applications are executed on portable
devices like personal navigation devices, personal multimedia players, mobile
internet devices and netbooks that are powered by batteries. As a result, embed-
ded multimedia devices are anticipated to perform more than 100Giga operations
per second with power budgets of approximately 200mW [7, 14]. Therefore, as
multimedia moves towards 3D content at higher resolutions with multiple standards
to live up to user demands and expectations, embedded multimedia hardware needs
to be a flexible, computationally capable platform while being low power to run off
a standard mobile battery. The next section describes the evolution of multimedia
architectures.

1.2 Multimedia Architectures

Hardware architectures for multimedia have evolved significantly over the years,
starting from Application Specific Integrated Circuits to Digital Signal Processors to
Application Specific Instruction set Processors to Multiprocessor System-on-Chips.

1.2.1 Application Specific Integrated Circuits

Application Specific Integrated Circuits (ASICs) are integrated circuits designed
and optimised for a specific application. ASIC designs are described in a Hardware
Description Language (HDL) like VHDL and Verilog, which can then be simu-
lated and synthesised by Electronic Design Automation (EDA) tools such as Mentor
Graphics’ ModelSim [15], Synopsys’ Design Compiler [16] and Cadence’s Virtu-
oso Platform [17]. ASICs provide high performance under tight area footprint and
energy consumption budgets because of the highly optimised hardware. However,
they provide a pure hardware solution which involves high design effort and lacks
flexibility, and thus are increasingly becoming unattractive. Inflexibility and non-
programmability of ASICs mean that they cannot be used for applications other
than the ones for which they were initially designed. Therefore, ASICs need to be
redesigned to support product upgrades which not only lengthens time-to-design and
time-to-market of the product but also incurs significant Non-Recurring Engineering
(NRE) costs. NRE costs are growing steadily with continuous technology scaling [4]
which will make design reuse necessary, an attribute lacking in ASICs. Furthermore,

4 1 Introduction

support of multiple applications in a single ASIC will incur high design efforts due
to the amplified design complexity. Therefore, programmable platforms turn out to
be an attractive option for multimedia devices.

1.2.2 General Purpose Processors

General Purpose Processors (GPPs) offer a pure software solution that facili-
tates short time-to-design and time-to-market through code reuse, and allow easy
product upgrades and fixes. Furthermore, programmability of GPPs helps longer
time-in-market, and thus reduces NRE costs. Since GPPs cannot be optimised for
specific applications, they offer far less performance and consume far more energy
than ASICs. The quantitative analysis in [18] reported a difference of at least five
orders of magnitude in energy efficiency1 and area efficiency2 between ASICs and
GPPs.

1.2.3 Digital Signal Processors

Digital Signal Processors (DSPs), replacing GPPs, are domain-specific processors
customised to efficiently execute applications from a certain domain. DSPs pro-
vide better energy and area efficiencies than GPPs [4, 6, 19] due to domain-specific
instructions,multiple domain-specific functional units and exploitationof instruction-
and data-level parallelisms. A typical DSP designed for multimedia applications will
containMultiply Accumulate (MAC), Fast Fourier Transform (FFT), FusedMultiply
Add (FMA), etc. domain-specific functional units and associated instructions [20].
The Very Long Instruction Word (VLIW) technique allows a DSP to execute several
operations in parallel, and the compiler is responsible for encapsulation of multiple
operations in a single instruction. On the other hand, the Single Instruction Multiple
Data (SIMD) technique allows an instruction to execute an operation on multiple
data in parallel. VLIW and SIMD allow DSPs to exploit instruction- and data-level
parallelism available in multimedia applications [3, 21].

Commercial DSPs for multimedia include Texas Instruments’ C6000 series and
DaVinci [20], FreeScale’s StarCore [22], Analog Devices’ SHARC, SigmaDSP and
ADSP series [23], and NXP Semiconductor’s TriMedia [24]. DSPs are also used
as coprocessors with GPPs where GPPs offload domain-specific, computationally
intensive functions to DSPs. For example, ConnX Vectra DSP coprocessor [25] is
used with Tensilica’s Xtensa processors [26] to perform fixed-point arithmetic for
wireless communication applications. DSPs significantly improve energy and area
efficiencies of GPPs while still being flexible and programmable. However, they

1 Measured in mW/Million Operations Per Second.
2 Measured in Million Operations Per Second/mm2.

1.2 Multimedia Architectures 5

do not provide the best energy efficiency because they exploit a limited amount of
parallelism and their performance is constrained by memory bandwidth [27–30].

1.2.4 Application Specific Instruction Set Processors

Application Specific Instruction Set Processors (ASIPs) [5, 31] emerged as an attrac-
tive platform toASICs,GPPs andDSPs.ASIPs are highly customisedprocessorswith
domain-specific hardware accelerators. These hardware accelerators are integrated
with the processor pipeline and are accessible through custom instructions. There-
fore, ASIPs provide better energy and area efficiencies than DSPs and GPPs [28,
32, 33] while retaining flexibility and programmability to support product upgrades
and fixes with short time-to-design and time-to-market. The programmability feature
(such as pipeline control, register file, etc.) of ASIPs results in a larger area footprint
than ASICs, however technology scaling has subdued this shortcoming of ASIPs by
making billions of transistors available on a single chip [34].

ASIPs provide numerous customisations, categorised into custom instructions, in-
clusion/exclusion of optimised domain-specific blocks, and parametrisable
options [4, 35]. Custom instructions typically exploit the techniques of SIMD,VLIW
and fused operations. Examples of optimised domain-specific blocks include multi-
pliers, MAC units, Floating Point (FP) units and DSP coprocessors. Parametrisable
options include pipeline depth, register file size, number of load-store units, local
memory interface width, instruction and data caches, etc. An ASIP can be extremely
tailored to an application due to the availability of such a diverse set of customisa-
tions, and hence provides the best tradeoff between area efficiency, energy efficiency,
flexibility and programmability for multimedia applications [36–39]. Several com-
mercial ASIP platforms are available from Tensilica [26], ARC International [40],
CoWare [41], MIPS [42] and Target Compiler Technologies [43].

The design effort of anASIP is extremely large because it not only involves design
and verification of ASIP architecture but also the construction of the associated
software tools such as assembler, compiler, debugger and instruction set simulator.
However, several high-level ASIP frameworks have been developed over recent years
to lower the design and verification efforts, and hence shorten time-to-design and
time-to-market. These frameworks can be categorised as (inspired from [4]):

• Specification based frameworks [41, 43–45]: These frameworks let a designer
develop an ASIP from scratch through specification of its Instruction Set Archi-
tecture (ISA) in an Architecture Description Language (ADL). Automatic gener-
ators are then used to create both the hardware model of the ASIP in HDL and
corresponding software tool-chain.

• Base processor based frameworks [26, 40, 46]: These frameworks allow designers
to develop anASIP from a pre-designed and pre-verified configurable base proces-
sor. Designers can add functional units and custom instructions, and parametrise
hardware blocks. Like specification based frameworks, the hardware model and

6 1 Introduction

associated tool-chain is automatically generated. Furthermore, analysis tools are
provided to automatically analyse applications and generate domain-specific hard-
ware accelerators and associated custom instructions [47].

Recently, ASIPs have been coupledwith Field Programmable Gate Array (FPGA)
technology to create so-called reconfigurable processors. Like ASIPs, reconfigurable
processors contain custom instructions; however, the corresponding hardware accel-
erators are implemented in the reconfigurable region which is integrated with the
processor pipeline. The reconfigurable region is time-multiplexed among hardware
accelerators to reduce area footprint when an ASIP does not use most of its custom
instructions simultaneously. Reconfigurable processors further enhance the flexibil-
ity and programmability of ASIPs where both the hardware (through FPGA recon-
figuration) and software (through code modification) can be modified. However, this
increased flexibility comes at the cost of increased area footprint and power consump-
tion of the FPGA fabric and its reconfiguration. Some examples of reconfigurable
processors include MOLEN [48], WARP [49], RISPP [50], NIOS [51], eMIPS [52]
and Stretch series [53], with detailed surveys in [54, 55].

1.2.5 Multiprocessor System-on-Chips

From GPPs to ASIPs, performance improvements were mostly due to exploitation
of instruction- and data-level parallelisms, higher clock frequencies and technology
scaling. Instruction- and data-level parallelisms did not scale well with the increase
in complexity of multimedia applications, and hence single ASIP systems could not
handle complexity of current multimedia [57–59]. Higher frequencies significantly
increased dynamic power consumption while technology scaling increased leakage
power consumption due to smaller transistor dimensions and reduced threshold volt-
ages, increasing power densities and thus hitting the power wall [60–62]. Figure 1.1
illustrates that uniprocessor systems’ clock frequencies (marked as “clock speed”)
and instruction-level parallelism capabilities (marked as “perf/clock (ILP)”) have
levelled off in the recent years. Therefore, rather than using a single complex, power
inefficient processor, academia and industry went to explore the area of multiple,
small, power efficient processors [62–64].

Continuous technology scaling (that is, 90 to 65 to 45nm) has made billion of
transistors available on a single chip to be exploited by System-on-Chip (SoC) tech-
nology to place multiple components on a single chip. A recent report from the
International Data Corporation [2] noticed that SoCs will constitute the largest por-
tion of embedded systems’ market revenues, as shown in Fig. 1.2. The SoC technol-
ogy has evolved over the years to fabricateMultiProcessor System-on-Chip (MPSoC)
byputting togethermultiple processing elements,memoryhierarchy, I/O components
and an on-chip interconnect. Recent consumer products are believed to have up to
ten processing elements in the form of MPSoCs [65]; for example, Apple’s iPhone
5 has two processors while Samsung’s Galaxy S III has four processors in the main

1.2 Multimedia Architectures 7

Fig. 1.1 Industry’s move towards multiprocessor systems. Courtesy of Herb Sutter, sourced
from [56]

0

10

20

30

40

50

60

70

2010 2011 2012 2013 2014 2015

B
ill

io
n

 D
o

lla
rs

Year

DSPs Microcontrollers SoCs

Fig. 1.2 Share of DSPs, microcontrollers and SoCs in revenue of embedded systems’ market (data
from [2])

(control) MPSoC. Futurists are expecting consumer products to contain MPSoCs
with hundred processing elements in near future [62–64]. The International Tech-
nology Roadmap for Semiconductors (ITRS) has envisioned MPSoCs to contain
even thousand processing elements by 2020, as depicted in Fig. 1.3. Therefore,
MPSoCs have become a mainstream embedded platform for current multimedia
applications [66]. In general, MPSoCs:

• can execute multiple applications with higher performance through exploitation
of Task-Level Parallelism (TLP);

8 1 Introduction

0

500

1000

1500

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

P

ro
ce

ss
in

g
 E

le
m

en
ts

Year

Fig. 1.3 Design trends of MPSoCs (data from [67])

• can consume less power by switching off idle processing elements;
• can be more reliable by sparing some processing elements for redundancy; and,
• can be scalable by the addition of more processing elements.

MPSoCs are broadly categorised as homogeneous or heterogeneous. Homoge-
neous MPSoCs are Symmetric MultiProcessing (SMP) systems where identical
processing elements are used. For example, ARM’s MPCore [68] contains four
identical ARM11 processors with same Instruction Set Architecture (ISA), con-
nected to a shared memory. Other notable examples are Stanford’s Imagine [69],
Tilera’s TilePro64 [70] and Intel’s Single-chip Cloud Computer (SCC) [71]. These
MPSoCs typically contain a fast, efficient interconnect and an operating system to
manage application tasks and processors. Homogeneous MPSoCs are scalable, have
larger area footprint and higher power consumption; hence, are more suitable for
general-purpose systems rather than embedded systems [72].

Heterogeneous MPSoCs are Asymmetric MultiProcessing (AMP) systems made
up of architecturally different processing elements such as programmable proces-
sors (GPPs), application-specific processing elements (ASIPs, ASICs) and domain-
specific (co) processors (DSPs), typically connected through a custom-designed
interconnect. In such an architecture, processing elements are matched to the
requirements of application’s task(s), and hence heterogeneous MPSoCs provide
high performance under tight area and power budgets. Several researches have shown
that heterogeneous MPSoCs outperform their homogeneous counterparts [73–75],
especially in multimedia [57, 58, 76, 77]. Commercially available heterogeneous
MPSoCs for multimedia include Sony, Toshiba and IBM’s CELL [78], Intel’s
IXP [79], NXP Semiconductor’s Nexperia [80], Texas Instrument’s OMAP [81]
and STMicroelectronic’s Nomadik [82].

Multimedia architectures have come a long way from ASICs to heterogeneous
MPSoCs, and afigurative comparison is provided inFig. 1.4.Heterogeneous MPSoCs
have become an attractive platform for multimedia applications because:

1.2 Multimedia Architectures 9

Flexibility

E
ffi

ci
en

cy

“ Hardware Solution ”

“ Software
Solution ”

DSPs
- Programmable
- VLIW, SIMD ISAs GPPs

- Programmable

ASIPs
- Programmable
-Custom instructions
- Parameterisable

ASICs
- Non-programmable
-Highly specialised

Heterogeneous MPSoCs
- ASIC + ASIP + DSP + GPP
- Optimisedfor specific applications

Fig. 1.4 Comparison of multimedia architectures (inspired from [6])

• Multimedia applications are heterogeneous in nature, that is, the type of computa-
tion, access patterns, memory bandwidth and workload profiles vary across tasks
of a single application. For example, motion estimation in H.264 performs corre-
lation on macroblocks and is highly data-dependent. On the other hand, discrete
cosine transform performs large number of multiplications and additions with reg-
ular access pattern. Therefore, heterogeneous MPSoCs use customised processing
elements to match the computational requirements of individual tasks.

• Customised processing elements typically result in lower area footprint and lower
power consumption. Further power reductions can be achieved by switching off the
idle processing elements through clock-gating, power-gating andDynamicVoltage
and Frequency Scaling (DVFS). Hence, heterogeneous MPSoCs can deliver the
required performance under tight area and power budgets.

• Increasing complexities of multimedia applications (HD video, 3D video, etc.)
can be addressed with the further addition of customised processing elements in
the heterogeneous MPSoC.

• Heterogeneous MPSoCs built from domain-specific and application-specific
processors (DSPs and ASIPs) can support multiple multimedia standards on the
same platform through software, while still being able to deliver required perfor-
mance under area and power budgets due to optimised processors.

• Domain-specific and application-specific processors based heterogeneous
MPSoCs can also support multimedia features’ fixes and updates, multimedia
standard’s upgrade and product upgrade through software modifications.

1.3 Challenges in Multimedia Heterogeneous MPSoCs

The advantages of heterogeneous MPSoCs come at a cost. Most importantly, their
design becomes very complex due to the presence of a large number of architectural
and programming options. Consumer market factors such as quick deployment, low

10 1 Introduction

prices, etc. put further pressure on the design of heterogeneousMPSoCs. This section
describes these challenges and the motivation behind this monograph.

Time-to-Design and Time-to-Market

Consumer demands have forced semiconductor companies to regularly introduce
and upgrade their products. For example, mobile phone companies have to release
new models with innovative functionalities (such as face detection, higher pixel
cameras, etc.) every 6months or so to sustain their customer base. Not only this,
companies have to release several variants of a mobile phone to capture diverse user
expectations, and hence survive the competition. These market factors have resulted
in shorter time-to-design and time-to-market for heterogeneous MPSoCs, indicating
the need for comprehensive design automation frameworks.

Product Prices

Design of complex heterogeneous MPSoCs under short time-to-design and
time-to-market constraints requires a company to invest in large, talented design
teams. However, such investments mean that prices of products will increase which
is unacceptable in consumer markets as users always prefer to buy state-of-the-art
technology at the cheapest price.Design automation techniques can automatically run
cumbersome phases of the design cycle with little or no intervention from a designer,
and hence shortens time-to-design and time-to-market, which reduces product prices.
Flake et al. [83] reports that a company with comprehensive design automation
framework(s) is more likely to compete in consumer market by providing cheap yet
innovative products.

Design Complexity

The design space of heterogeneous MPSoCs explodes due to the presence of diverse
options such as processing elements,memory hierarchies, communication infrastruc-
ture and application/programming models. For example, should a heterogeneous
MPSoC use ASIPs or DSPs or both, and how many of each type? In communication
infrastructure, for example, a designer needs to choose from point-to-point buffers,
shared memory buffers and their sizes, and Network-on-Chip (NoC). Choices in
memory hierarchy include number of cache levels, configuration of caches and sizes
of local and shared memories. Last but not least, should the heterogeneous MPSoC
use the Kahn Process Network (KPN) [84], Synchronous Data Flow (SDF) [85]
or stream model [86] for applications and OpenMP or Message Passing Interface

1.3 Challenges in Multimedia Heterogeneous MPSoCs 11

(MPI) as its programming model? Exploration of such a diverse design space cannot
be done manually, and hence requires cleverly designed exploration techniques. Fur-
thermore, design space exploration should be fast and implementable as part of the
design automation framework(s).

Flexibility and Scalability

The heterogeneous MPSoC should be flexible enough to allow implementation of
multiple multimedia standards so that several variants of a product can be quickly
deployed. Furthermore, it should allow quick product fixes and upgrades after
deployment. These requirements indicate the use of programmable processing
elements like DSPs and ASIPs as the building blocks of a heterogeneous MPSoC.
Design-time scalability implies that the MPSoC should allow easy addition of com-
ponents in future to handle increasing complexity of next generation multimedia
without major redesign effort.

Performance, Area and Energy Constraints

Multimedia applications often have performance constraints such as 30 fps for a video
encoder that have to be met by heterogeneous MPSoCs. In addition, these MPSoCs
are deployed in embedded devices running off standard batteries, and hence favour
smallest possible area footprint and lowest possible power consumption. Design
space exploration, as explained above, has to be performed to choose the right number
and types of processing elements, cache configurations, memory sizes, type of low-
power technique, etc. under performance, area and power constraints.

Adaptability

Computational requirements of a multimedia content changes with time, requir-
ing multimedia applications and architectures to adapt accordingly at run-time. For
example, a video encoder might be inputted with a video that contains low motion
and then high motion. High-motion video frames require significantly more compu-
tation than low-motion video frames. Hence, a heterogeneous MPSoC should adapt
its resource (processing elements, memory, etc.) utilisation at run-time based on cur-
rent workload rather than operating under worst-case (that is, all the resources are
active) at all times. Such an adaptation is necessary for ultra low-power operation of
heterogeneous MPSoCs to increase battery lives in portable devices. Run-time man-
agement techniques should be used to manage resources in a heterogeneous MPSoC
so that it always operates with the lowest possible power consumption.

12 1 Introduction

1.4 Research Aims and Contributions

This monograph aims to address the above mentioned challenges, that can be con-
densed into the following three research problems:

• Selection of a suitable multimedia heterogeneous MPSoC platform;
• Design space exploration of the selected platform as part of design automation;
and,

• Support for run-time adaptability in the selected platform.

Selection of an implementation platform is typical of platform-based design
methodology [87] to keep the design complexity and design space of MPSoCs
tractable. This monograph uses the paradigm of pipelined MPSoCs as the multi-
media platform. A pipelined MPSoC is a system where processors are connected in
a pipeline [88–92]. It is divided into several stages where each stage contains one
or more processors. Communication between the stages typically occurs through
point-to-point FIFO buffers. Each processor has separate instruction and data caches
that are connected to its local memory. In addition to local memories, sharedmemory
could be usedwhere common data need to be shared among processors within a stage
or across different stages. Figure1.5 shows a typical four stage pipelined MPSoC.
Pipelined MPSoCs have emerged as an attractive platform for multimedia [88–92]
and offer several advantages that are summarised below:

• The data-flow nature of multimedia applications favours the topology of pipelined
MPSoCs [93–96]. Multimedia applications are characterised by several sub-
kernels which are executed repeatedly on an input data stream. For example, an
MP3 encoder contains the following sub-kernels: Reading input file (R); Polyphase
Filtering (PF); Transform and Quantisation (TQ); and, Entropy Coding and Writ-
ing output file (EC/W). These sub-kernels can be mapped to the four stages of
the pipelined MPSoC shown in Fig. 1.5. While processor P2.1 will be in its ith
iteration, processor P1.1 will be in its (i+1)th iteration, thereby allowing pipelined

Fig. 1.5 A typical pipelined
MPSoC (memories are
not shown for the sake of
simplicity)

P2.1

P3.1

P1.1

P2.2

S1

S2

S3

P4.1S4

1.4 Research Aims and Contributions 13

execution of the sub-kernels. Thus, these sub-kernels operate on different data
units of the input stream and the incoming data streams through the stages of the
pipelined MPSoC, enabling pipelined execution for high performance.

• Application Specific Instruction set Processors (ASIPs) are used as the processing
elements which allow extreme customisation to match processors to sub-kernels,
and thus deliver high performance with smaller area footprint and lower power
consumption. A number of researches have illustrated the usefulness of ASIPs in
multimediaMPSoCs [58, 65, 77, 97, 98]. ASIPs comewith high-level frameworks
that enable (semi-) automatic customisation [31, 47], reducing time-to-design
and time-to-market of pipelined MPSoCs. Furthermore, ASIPs make pipelined
MPSoCs flexible and scalable to support product upgrades through software.

• The point-to-point FIFO buffers allow communication at a much higher band-
width compared to a shared bus and provide blocking read and write operations
to allow synchronisation between processors. In addition, where FIFO buffers
might have unacceptable area footprint, shared memories could be used for data
communication [59].

The selection of pipelined MPSoCs as the multimedia platform limits the
design space to be tractable, yet provides a high performance, flexible, explorable
and customisable platform. Each processor in the pipelined MPSoC has a number
of configurations resulting from customisable options such as custom instructions,
cache configurations, etc. A design point of a pipelined MPSoC is then one of the
combinations of these processor configurations. The goal is to select one configu-
ration for each processor in the pipelined MPSoC to have the optimal combination
of processor configurations (the optimal design point) for a given objective function
such as minimum area or maximum throughput. The aim of this monograph is to
optimise a pipelined MPSoC with such a design space for area footprint and energy
consumption under performance constraints.3

This monograph proposes design-time and run-time optimisations targeted at dif-
ferent objective functions. At first, a pipelinedMPSoC is optimised for area footprint
under either an execution time, a latency or a throughput constraint by selection of
the most suitable processor configurations during its design space exploration. Then,
such a design-time optimised pipelined MPSoC is augmented with run-time adapt-
ability to deactivate idle processors at run-time to reduce energy consumption. Here,
the fact that not all the processors will be utilised at all times under a dynamic
workload is exploited by the proposed run-time management techniques. Finally,

3 Note that partitioning and mapping of a multimedia application on a pipelined MPSoC is done
either manually or semi-automatically [99–103].

14 1 Introduction

pipelined MPSoCs optimised for different multimedia applications are combined
into a single multi-mode pipelined MPSoC for further reduction of area footprint. In
particular, this monograph introduces:

1. Design space exploration of pipelined MPSoCs. For a pipelined MPSoC with
5 processors where each processor has 100 configurations, 1010 combinations of
processor configurations are possible. To explore such a large design space, quick
availability/evaluation of performance of design points and clever algorithms are
required as full-system, cycle-accurate simulation and exhaustive search of all
the design points is not feasible.

• Analytical models are proposed to estimate execution time, latency and
throughput of a pipelined MPSoC’s design point using latencies of indi-
vidual processor configurations, avoiding slow, full-system, cycle-accurate
simulations of all the design points. For effective use of these analytical mod-
els, latencies of individual processor configurations should be available. Two
estimation methods are proposed to gather latencies of processor configura-
tions with minimal number of simulations. The first method simulates all the
individual processor configurations once, while the second method simulates
only a subset of processor configurations and then uses a processor analytical
model to estimate the latencies of the processor configurations.

• Three exploration techniques are proposed for optimisation of a pipelined
MPSoC’s area footprint. The first two techniques minimise area footprint
under an execution time constraint and a latency constraint by exploiting
execution time and latency analytical models in Integer Linear Programming
(ILP) formulations. The third technique uses an algorithm to minimise area
footprint under a throughput constraint by exploiting the throughput analytical
model. Combined use of analytical models, estimation methods, and explo-
ration algorithms enabled quick exploration of design spaces containing up to
1018 design points.

2. Adaptive pipelined MPSoCs.Area footprint optimised pipelinedMPSoCs lack
adaptability to dynamic workload of multimedia applications, and hence will
keep all the processors active at all times, resulting in increased energy con-
sumption.

• An adaptive pipelined MPSoC architecture is proposed to enable run-time
adaptability. Each stage with significant run-time variations in workload is
implementedusingMain Processors andAuxiliary Processors,where themain
processor uses differing number of auxiliary processors considering run-time
workload variations. Such an architecture allows the main processor of a stage
to manage its auxiliary processors, independent of other stages, enabling the
use of scalable, distributed run-time managers.

• A run-time processor manager is proposed to predict the idle auxiliary proces-
sors of amain processor at run-time. The processormanagement heuristic uses
a combination of the application’s execution and knowledge (algorithmic and
data properties), and information fromoff-line profiling and statistical analysis

1.4 Research Aims and Contributions 15

to proactively predict the number of auxiliary processors that should be used.
The idle auxiliary processors are either clock- or power-gated to reduce energy
consumption.

• A run-time powermanager (built on top of the processor manager) is proposed
where auxiliary processors have multiple power states, trading-off overhead
of the transition to power states with their possible energy reductions rather
than just using clock-gating or power-gating. The power management heuris-
tic forecasts at run-time, the idle duration of an idle auxiliary processor using
the application’s knowledge (algorithmic and data properties) so that the most
suitable power state canbe selected using the information fromoff-line analyti-
cal analysis of the power states. Experiments illustrated that adaptive pipelined
MPSoC with processor manager saved up to 39% energy consumption com-
pared to a pipelined MPSoC without run-time adaptability. Furthermore, use
of the power manager (with the processor manager) reduced up to a further
40 % energy consumption compared to the use of only the processor manager.

3. Multi-mode pipelined MPSoCs. The area footprint and energy consumption
optimisations targeted a single pipelined MPSoC executing one multimedia
application. To further reduce area footprint, processors and FIFO buffers of
multiple pipelined MPSoCs, designed for multiple multimedia applications, are
shared when their use is mutually exclusive by creating a multi-mode pipelined
MPSoC. Pipelined MPSoCs are represented as graphs to capture the number of
processors, and number, size and connection of the FIFO buffers. Three heuris-
tics are proposed to find maximal overlap between the graphs where two of them
greedily find the overlap while the third one, based on maximum weight clique
approach, finds an optimal overlap at the cost of higher running time. The results
indicate significant area saving (up to 62% processor area, 57% FIFO area and
44 processor/FIFO ports) with minuscule degradation of system throughput (up
to 2%) and latency (up to 2%), and an increase in energy consumption (up to
3%) when compared to individual pipelined MPSoCs.

1.5 Monograph Outline

The remainder of the monograph is outlined as follows. Chapter2 provides the nec-
essary literature survey of notable homogeneous and heterogeneous MPSoCs. The
literature survey also reports various design space exploration and run-time adapt-
ability techniques for heterogeneous MPSoCs in general and pipelined MPSoCs in
particular. Chapter3 provides a philosophical overview of the research reported in
this monograph.

Chapter4 proposes analytical models for execution time, latency and throughput
of a pipelined MPSoC. Chapter 4 also introduces two estimation methods to reduce
the number of full-system cycle-accurate simulations of a pipelined MPSoC to aid
quick design space exploration. Chapter5 builds upon the analytical models and

http://dx.doi.org/10.1007/978-3-319-01113-4_2
http://dx.doi.org/10.1007/978-3-319-01113-4_3
http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_5

16 1 Introduction

estimation methods by proposing techniques for area footprint minimisation of a
pipelined MPSoC under performance constraints.

The adaptive pipelined MPSoC architecture is described in Chap.6, in addition
to a run-time processor manager and its heuristics. Chapter7 describes the run-time
powermanager and its heuristics. These chapters also present a system-level overview
and implementation of an adaptive pipelined MPSoC for an H.264 video encoder.

Chapter8 presents the case for multi-mode pipelined MPSoC, followed by the
heuristics for merging of individual pipelined MPSoCs. The final chapter, Chap.9,
summarises the research conducted during the course of this monograph. Chapter9
also presents the author’s proposals for future work.

1.6 Summary

This chapter introduced multimedia applications and their architectures currently in
use in academia and industry. The challenges in design of heterogeneousMPSoCs for
multimedia were discussed to motivate the need for selection of a multimedia plat-
form and its optimisation for reduced area footprint and reduced energy consumption
using design space exploration and run-time adaptability. Lastly, the chapter stated
the contributions of the monograph.

References

1. M. Weiser, The computer for the 21st century. SIGMOBILE Mob. Comput. Commun. Rev.
3, 3–11 (1999)

2. M.Morales, S.Rau,M.J. Palma,M.Venkatesan, F. Pulskamp,A.Dugar,Worldwide intelligent
systems 2011–2015 forecast: the next big opportunity. Technical report, International Data
Corporation, September 2011

3. C. Kozyrakis and D. Patterson, Vector vs. superscalar and vliw architectures for embedded
multimedia benchmarks, in MICRO 35: Proceedings of the 35th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, Los Alamitos, CA, USA, pp. 283–293 (IEEE
Computer Society Press, 2002)

4. K. Karuri, R. Leupers, Application analysis tools for ASIP design: application profiling and
instruction-set customization (Springer, New York, 2011)

5. K. Keutzer, S. Malik, A. Newton, From asic to asip: the next design discontinuity, in Proceed-
ings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers
and Processors, pp. 84–90 (2002)

6. M. Shafique, Architectures for adaptive low-power embedded multimedia systems. Ph.D.
thesis, Karlsruhe Institute of Technology, Germany (2011)

7. J. Meehan, S. Busch, J. Noel, F. Noraz, Multimedia ip architecture trends in the mobile
multimedia consumer device. Image Commun. 25, 317–324 (2010)

8. K. Willner, K. Ugur, M. Salmimaa, A. Hallapuro, J. Lainema, Mobile 3D video using mvc
and n800 internet tablet, in 3DTV Conference: The True Vision—Capture, Transmission and
Display of 3D Video, 2008, pp. 69–72, May 2008

9. Nokia, Mobile 3d video (2012), http://research.nokia.com/

http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_7
http://dx.doi.org/10.1007/978-3-319-01113-4_8
http://dx.doi.org/10.1007/978-3-319-01113-4_9
http://dx.doi.org/10.1007/978-3-319-01113-4_9
http://research.nokia.com/

References 17

10. International Telecommunucation Union, Advanced video coding for generic audiovisual
services, in Recommendation H.264 and ISO/IEC 14496–10:2005 (2005)

11. Joint Video Team of ISO/IECMPEG and I.-T. VCEG, Jvt-ab204: Joint draft 8.0 on multiview
video coding (2008)

12. T. Wiegand, G. Sullivan, G. Bjontegaard, A. Luthra, Overview of the h.264/avc video coding
standard. IEEE Trans. Circ. Syst. Video Technol. 13, 560–576 (2003)

13. J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer,
T. Wedi, Video coding with h.264/avc: tools, performance, and complexity. IEEE Circ. Syst.
Mag. 4, 7–28 (2004)

14. C. Van Berkel, Multi-core for mobile phones, in Proceedings of the Design, Automation Test
in Europe Conference Exhibition, 2009 (DATE ’09), pp. 1260–1265, April 2009

15. Mentor Graphics, Modelsim, http://www.mentor.com
16. Synopsys, Design compiler, http://www.synopsys.com
17. Cadence, Virtuoso platform, http://www.cadence.com
18. T. von Sydow, B. Neumann, H. Blume, T. G. Noll, Quantitative analysis of embedded fpga-

architectures for arithmetic, in Proceedings of the International Conference on Application-
Specific Systems, Architectures and Processors, 2006 (ASAP ’06), pp. 125–131, September
2006

19. Y.-S. Huang, B.-C. Chieu, Architecture for video coding on a processor with an arm and dsp
cores. Multimedia Tools Appl. 54, 527–543 (2011)

20. Texas Instruments, Texas instruments dsps, http://www.ti.com
21. D. Talla, L. John, V. Lapinskii, B. Evans, Evaluating signal processing and multimedia appli-

cations on simd, vliw and superscalar architectures, in Proceedings of the 2000 International
Conference on Computer Design, pp. 163–172 (2000)

22. Freescale, Freescale dsps, http://www.freescale.com
23. Analog Devices, Analog devices dsps, http://www.analog.com
24. NXP, Nxp trimedia architecture (2012), http://www.nxp.com
25. Tenslica, Connx vectra lx dsp engine, http://www.tensilica.com
26. Tensilica, Xtensa customizable processor, http://www.tensilica.com
27. U.J. Kapasi, S. Rixner, W.J. Dally, B. Khailany, J.H. Ahn, P. Mattson, J.D. Owens, Program-

mable stream processors. Computer 36, 54–62 (2003)
28. G.G. Lee, Y.-K. Chen, M. Mattavelli, E.S. Jang, Algorithm/architecture co-exploration of

visual computing on emergent platforms: overview and future prospects. IEEE Trans. Circ.
Sys. Video Technol. 19, 1576–1587 (2009)

29. G. R. Stewart, Implementing video compression algorithms on reconfigurable devices. Ph.D.
thesis, University of Glassgow (2009)

30. S. Hu, Z. Zhang, M. Zhang, T. Sheng, Optimization of memory allocation for h.264 video
decoder on digital signal processors, in Proceedings of the Congress on Image and Signal
Processing, 2008 (CISP ’08), vol. 2, pp. 71–75, May 2008

31. P. Ienne, R. Leupers, Customizable Embedded Processors: Design Technologies and Appli-
cations (Systems on Silicon) (Morgan Kaufmann Publishers, San Mateo, 2006)

32. C. Valderrama, L. Jojczyk, P. Possa, J. Gazzano, Fpga and asic convergence, in Proceedings
of the 2011 7th Southern Conference on Programmable Logic (SPL), pp. 269–274, April 2011

33. Tensilica, Xtensa lx benchmarks, http://www.tensilica.com
34. S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R.Milstrey, S. Sarkar, S. Siers, I. Stolero,

A. Subbiah, A 22nm ia multi-cpu and gpu system-on-chip, in Proceedings of the IEEE In-
ternational Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 56–57,
February 2012

35. J. Henkel, S. Parameswaran, Designing Embedded Processors: A Low Power Perspective
(Springer, New York, 2007)

36. S. Saponara, L. Fanucci, S. Marsi, G. Ramponi, D. Kammler, E. Witte, Application-specific
instruction-set processor for retinex-like image and video processing. IEEE Trans. Circ. Syst.
II: Express Briefs 54, 596–600 (2007)

http://www.mentor.com
http://www.synopsys.com
http://www.cadence.com
http://www.ti.com
http://www.freescale.com
http://www.analog.com
http://www.nxp.com
http://www.tensilica.com
http://www.tensilica.com
http://www.tensilica.com

18 1 Introduction

37. S.D. Kim, M.H. Sunwoo, Asip approach for implementation of h.264/avc. J. Signal Process.
Syst. 50(1), 53–67 (2008)

38. J. Janhunen,O. Silven,M. Juntti,M.Myllyla, Software defined radio implementation of k-best
list sphere detector algorithm, in Proceedings of the International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2008), pp. 100–107,
July 2008

39. A. Portero, G. Talavera, M. Moreno, J. Carrabina, F. Catthoor, Methodology for energy-
flexibility space exploration and mapping of multimedia applications to single-processor
platform styles. IEEE Trans. Circ. Syst. Video Technol. 21, 1027–1039 (2011)

40. ARC, Arc configurable processors, http://www.arc.com
41. CoWare, Lisatek, http://www.coware.com/
42. Mips Technologies, Mips corextend processor, http://www.mips.com
43. Target Compiler Technologies, Ip designer, http://www.retarget.com
44. Asip Solutions, Asip meister, http://www.asip-solutions.com
45. University of California Irvine, Expression adl, http://www.ics.uci.edu/express/
46. Xilinx, Microblaze soft core, http://www.xilinx.com
47. Tensilica, XPRES Compiler, http://www.tensilica.com/
48. S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, E. Panainte, The molen

polymorphic processor. IEEE Trans. Comput. 53, 1363–1375 (2004)
49. R. Lysecky, G. Stitt, F. Vahid, Warp processors. ACM Trans. Des. Autom. Electron. Syst. 11,

659–681 (2006)
50. L. Bauer,M. Shafique, J. Henkel, Rispp: a run-time adaptive reconfigurable embedded proces-

sor, in proceedings of the International Conference on Field Programmable Logic and Appli-
cations, 2009 (FPL 2009), pp. 725–726, 31 August–2 September 2009

51. Altera, Nios processor, http://www.altera.com
52. Microsoft Research, Emips: a dynamically extensible processor, http://research.microsoft.

com/
53. Stretch, Reconfigurable processors, http://www.stretchinc.com
54. H. Amano, A survey on dynamically reconfigurable processors, in Proceedings of the IEICE

Transactions (2006)
55. H.P. Huynh, T. Mitra, Runtime adaptive extensible embedded processors: a survey, in Pro-

ceedings of the 9th International Workshop on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS ’09), pp. 215–225 (Springer, Berlin, 2009)

56. H. Sutter, The free lunch is over, http://www.gotw.ca/publications/concurrency-ddj.htm
57. S.L. Shee, A. Erdos, S. Parameswaran, Heterogeneous multiprocessor implementations for

jpeg: a case study, in CODES+ISSS ’06: Proceedings of the 4th International Conference on
Hardware/Software Codesign and System Synthesis, pp. 217–222 (ACM, New York, 2006)

58. S.L. Shee, A. Erdos, S. Parameswaran, Architectural exploration of heterogeneous multi-
processor systems for jpeg. Int. J. Parallel Prog. 36(1), 140–162 (2008)

59. H.C. Doan, H. Javaid, S. Parameswaran, Multi-asip based parallel and scalable implementa-
tion of motion estimation kernel for high definition videos, in Proceedings of the 2011 9th
IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMedia), pp. 56–65,
October 2011

60. F. J. Pollack, New microarchitecture challenges in the coming generations of cmos process
technologies (keynote address) (abstract only), inProceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO 32), p. 2 (IEEE Computer Society,
Washington DC, 1999)

61. W. Knight, Two heads are better than one (dual-core processors). IEE Rev. 51, 32–35 (2005)
62. P.Gepner,D. Fraser,M.Kowalik,R.Tylman,Newmulti-core intel xeonprocessors help design

energy efficient solution for high performance computing, in Proceedings of the International
Multiconference on Computer Science and Information Technology, 2009 (IMCSIT ’09), pp.
567–571, October 2009

63. S. Borkar, Thousand core chips: a technology perspective, in Proceedings of the 44th Annual
Design Automation Conference (DAC ’07), pp. 746–749 (ACM, New York, 2007)

http://www.arc.com
http://www.coware.com/
http://www.mips.com
http://www.retarget.com
http://www.asip-solutions.com
http://www.ics.uci.edu/express/
http://www.xilinx.com
http://www.tensilica.com/
http://www.altera.com
http://research.microsoft.com/
http://research.microsoft.com/
http://www.stretchinc.com
http://www.gotw.ca/publications/concurrency-ddj.htm

References 19

64. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,
D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, K. Yelick, A view of the parallel computing
landscape. Commun. ACM 52, 56–67 (2009)

65. G.Martin,Multi-processor soc-based designmethodologies using configurable and extensible
processors. J. Signal Process. Syst. 53(1–2), 113–127 (2008)

66. Y.-K. Chen, C. Chakrabarti, S. Bhattacharyya, B. Bougard, Signal processing on platforms
with multiple cores, part 1: overview andmethodologies (from the guest editors). IEEE Signal
Process. Mag. 26, 24–25 (2009)

67. International Technology Roadmap for Semiconductors, System drivers (2011), http://www.
itrs.net

68. J. Goodacre, A. Sloss, Parallelism and the arm instruction set architecture. Computer 38,
42–50 (2005)

69. U. Kapasi, W. Dally, S. Rixner, J. Owens, B. Khailany, The imagine stream processor, in Pro-
ceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers
and Processors, pp. 282–288 (2002)

70. Tilera, Tilepro64 multicore processor product brief, http://www.tilera.com
71. Intel, Single-chip cloud computer, http://www.intel.com
72. W. Wolf, A. Jerraya, G. Martin, Multiprocessor system-on-chip (mpsoc) technology. IEEE

Trans. Comput. Aided Des. Integr. Circ. Syst. 27, 1701–1713 (2008)
73. R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, K.I. Farkas, Single-isa heterogeneous

multi-core architectures for multithreaded workload performance. SIGARCH Comput. Ar-
chit. News 32, 64 (2004)

74. R. Kumar, D. M. Tullsen, N. P. Jouppi, Core architecture optimization for heterogeneous chip
multiprocessors, inProceedings of the 15th International Conference on Parallel Architectures
and Compilation Techniques (PACT ’06), pp. 23–32 (ACM, New York, 2006)

75. M. Hill, M. Marty, Amdahl’s law in the multicore era. Computer 41, 33–38 (2008)
76. F. Sun, S. Ravi, A. Raghunathan, N.K. Jha, Synthesis of application-specific heterogeneous

multiprocessor architectures using extensible processors, in VLSID ’05: Proceedings of the
18th International Conference on VLSI Design Held Jointly with 4th International Conference
on Embedded Systems Design, pp. 551–556 (IEEE Computer Society, Washington DC, 2005)

77. R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B.C. Lee, S. Richardson,
C. Kozyrakis, M. Horowitz, Understanding sources of ineffciency in general-purpose chips.
Commun. ACM 54, 85–93 (2011)

78. H. P. Hofstee, Power efficient processor architecture and the cell processor, in Proceedings of
the 11th International Symposium on High-Performance Computer Architecture, pp. 258–262
(IEEE Computer Society, 2005)

79. Intel, Ixp network processors, http://www.intel.com
80. Nxp Semiconductors, Nexperia media processor, http://www.nxp.com
81. Texas Instruments, Omap mobile processors, http://www.ti.com/
82. STMicroelectronics, Nomadik application processor, http://www.st.com
83. P. Flake, S. Davidmann, F. Schirrmeister, System-level exploration tools for mpsoc designs,

in DAC ’06: Proceedings of the 43rd annual Design Automation Conference, pp. 286–287,
(ACM, New York, 2006)

84. G. Kahn, The semantics of a simple language for parallel programming, in Proceedings of
the IFIP Congress on Information Processing ’74, pp. 471–475 (1974)

85. E.A. Lee, D.G. Messerschmitt, Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)
86. W. Thies,M. Karczmarek, S.P. Amarasinghe, Streamit: a language for streaming applications,

in Proceedings of the 11th International Conference on Compiler Construction, CC ’02, pp.
179–196 (Springer, 2002)

87. A. Sangiovanni-Vincentelli, Quo vadis, sld? reasoning about the trends and challenges of
system level design. Proc. IEEE 95, 467–506 (2007)

88. H. Guo, S. Parameswaran, Balancing system level pipelines with stage voltage scaling, in
Proceedings of the IEEE Computer Society Annual Symposium on VLSI: New Frontiers in
VLSI Design, ISVLSI ’05 (2005)

http://www.itrs.net
http://www.itrs.net
http://www.tilera.com
http://www.intel.com
http://www.intel.com
http://www.nxp.com
http://www.ti.com/
http://www.st.com

20 1 Introduction

89. S. Carta, A. Alimonda, A. Pisano, A. Acquaviva, L. Benini, A control theoretic approach
to energy-efficient pipelined computation in mpsocs, ACM Trans. Embedded Comput. Syst.
Article id 27: 6(4), 28 (2007)

90. A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, L. Benini, A feedback-based approach to
dvfs in data-flow applications. IEEETrans. CAD Integr. Circ. Syst. 28(11), 1691–1704 (2009)

91. S. L. Shee, S. Parameswaran, Design methodology for pipelined heterogeneous multiproces-
sor system, in DAC ’07: Proceedings of the 44th Annual Conference on Design Automation,
pp. 811–816 (2007)

92. H. Javaid, A. Ignjatovic, S. Parameswaran, Rapid design space exploration of application
specific heterogeneous pipelined multiprocessor systems. Trans. Comput. Aided Des. Integr.
Circ. Syst. 29, 1777–1789 (2010)

93. I. Karkowski, H. Corporaal, Design of heterogenous multi-processor embedded systems: ap-
plying functional pipelining, in PACT ’97: Proceedings of the 1997 International Conference
on Parallel Architectures and Compilation Techniques (IEEE Computer Society, 1997)

94. M.I. Gordon, W. Thies, S. Amarasinghe, Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. SIGPLAN Not. 41, 151–162 (2006)

95. H. Park, Y. Park, S. Mahlke, Polymorphic pipeline array: a flexible multicore accelerator with
virtualized execution for mobile multimedia applications, in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 42), pp. 370–380 (ACM,
New York, 2009)

96. M.A. Suleman, M.K. Qureshi, Khubaib, Y.N. Patt, Feedback-directed pipeline parallelism, in
Proceedings of the 19th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’10), pp. 147–156 (ACM, New York, 2010)

97. 4g applications, architectures, design methodology and tools for mpsoc, in DATE ’06: Pro-
ceedings of the Conference on Design, Automation and Test in Europe, pp. 830–831 (European
Design and Automation Association, Leuven, 2006)

98. G. Goossens, Multi-asip socs: or how to design ultra-low power architectures for wireless
and multi-media systems, in Proceedings of the 2007 International Symposium on System-
on-Chip, p. 1, November 2007

99. S. Verdoolaege, H. Nikolov, T. Stefanov, Pn: a tool for improved derivation of process net-
works. EURASIP J. Embedded Syst. 2007, 19 (2007)

100. D.Cordes, A.Heinig, P.Marwedel, A.Mallik, Automatic extraction of pipeline parallelism for
embedded software using linear programming, in Proceedings of the 2011 IEEE 17th Inter-
national Conference on Parallel and Distributed Systems (ICPADS), pp. 699–706, December
2011

101. M.Kudlur, S.Mahlke,Orchestrating the execution of streamprograms onmulticore platforms,
in Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’08) (2008)

102. M. Hashemi, S. Ghiasi, Throughput-driven synthesis of embedded software for pipelined
executiononmulticore architectures.ACMTrans.Embed.Comput. Syst.8, 11:1–11:35 (2009)

103. S. M. Farhad, Y. Ko, B. Burgstaller, B. Scholz, Orchestration by approximation: mapping
stream programs onto multicore architectures, in Proceedings of the 16th International Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS ’11) (2011)

Chapter 2
Literature Survey

Many researchers have looked at design space exploration and run-time adaptability
ofMPSoCs.This chapter provides the necessary literature survey, startingwith homo-
geneous and heterogeneous MPSoCs. Focus is then directed to design space explo-
ration techniques such as linear programming and heuristics. The chapter concludes
with run-time resource and power management techniques for MPSoCs.

2.1 Homogeneous MPSoCs

Homogeneous MPSoCs, also referred to as chip multiprocessors, use the paradigm
of Symmetric MultiProcessing (SMP) and employ identical processors with same
Instruction Set Architecture (ISA). Multimedia applications, such as JPEG, MP3,
and H.264, contain common sub-kernels like Fast Fourier Transform (FFT) and
Discrete Cosine Transform (DCT). Therefore, researchers have exploited these com-
monalities to include support for such sub-kernels in homogeneous MPSoCs for
performance/energy efficient implementation of multimedia applications.

Stanford’s Imagine [1, 2] is a programmable stream processor with 48 Arith-
metic Logic Units (ALUs) consisting of floating-point adders, multipliers and divide
square-root units. These ALUs are arranged into eight clusters which are interfaced
with a local register file and a stream register file to provide the memory bandwidth
required of multimedia applications. The eight clusters work in a SIMDmanner with
six-way VLIW instructions per cluster. Imagine has been illustrated to achieve 32
GOPSand16GOPS for single precision (matrixmultiplication, etc.) and 16-bit fixed-
point (2D DCT, etc.) applications respectively, running at a frequency of 400 MHz.
Although Imagine is a stream processor, it can be classified as a homogeneous
MPSoC due to the replication of identical clusters. Imagine is programmed in a
stream model where applications are represented as a set of sub-kernels that con-
sume and produce data streams. KernelC and StreamC programming languages were
developed for easy programming of Imagine.

H. Javaid and S. Parameswaran, Pipelined Multiprocessor System-on-Chip 21
for Multimedia, DOI: 10.1007/978-3-319-01113-4_2,
© Springer International Publishing Switzerland 2014

22 2 Literature Survey

The RAW [3] processor fromMIT is another example of a homogeneousMPSoC.
It contains sixteen identical, programmable tiles where each tile has an in-order,
single issue, eight stage pipeline, MIPS-like processor, local data and instruction
caches, and static and dynamic routers. These tiles are arranged in a 4×4 grid and
are connected through a Network-on-Chip (NoC) which is designed to run at high
frequencies and to be scalable to even a thousand tiles. RAW has been shown to
achieve from a 2× to a 100× performance improvement depending on the amount
of data- and instruction-, and pipeline-level (stream-level) parallelisms [4]. Like
Imagine, a compiler was developed to exploit these parallelisms. Later on, a backend
for StreamIt [5] (a stream programming language) compiler was developed for
RAW [4, 6].

TILEPro64 [7], much like RAW, features an 8 ×8 grid with 64 tiles where each
tile contains a three-way VLIW processor supporting SIMD instructions on 32-, 16-
and 8-bit data. In addition, each tile has on-chip separate L1 instruction and data
caches, unified L2 cache, and a switch that connects the tile to a power-efficient
mesh network. Idle tiles can be put into a low-power state to reduce energy con-
sumption. TILEPro64 also features Tilera’s dynamic distributed cache technology
which provides a 2× improvement in cache coherence performance over traditional
coherence protocols. Software tools are provided for application analysis and com-
pilation, although a designer has to manually partition the application. TILEPro has
been shown to achieve more than 400BOPS which translates to 15Gbps of SNORT
processing, 20Gbps of nProbe processing and H.264 encoding of 10 HD (1080p)
video streams at 30 fps [7, 8]. Several variants of the architecture are available from
Tilera where the number of tiles range from 16 to 100.

Intel recently developed a research prototype of a tiled, homogeneous MPSoC,
which was named Single-chip Cloud Computer (SCC) [9]. The SCC consists of 24
tiles organised into a 4×6 grid. A tile contains a pair of Pentium processors, each
with independent, separate L1 instruction and data caches and a unified L2 cache.
In addition, each tile contains a message passing buffer and a router for efficient
inter-processor communication, but without the support for built-in (hardware) cache
coherency. Themost notable feature of SCC is the availability ofmultiple voltage and
frequency domains for implementation of Dynamic Voltage and Frequency Scaling
(DVFS) technique for low power consumption. SCC is still a research platform and
several researches have being conducted recently to study performance and power
management [10, 11], programming models [12, 13], and other related issues in
large MPSoCs (many-core platforms).

Since homogeneous MPSoCs replicate identical tiles, they are scalable and easy
to program. However, they also have a larger area footprint and higher power con-
sumption because no single type of tile or processor can be well suited to every
multimedia application [14]. Therefore, heterogeneous MPSoCs exploit customisa-
tion of processing elements and are more suitable for embedded devices because of
stringent area footprint and power consumption constraints [15].

2.2 Heterogeneous MPSoCs 23

2.2 Heterogeneous MPSoCs

Numerous heterogeneous MPSoCs have been proposed because the domain of
multimedia consists of a diverse set of applications. For example, the architectural
requirements of networking applications are considerably different from those of
audio/video applications. This section provides a brief overview of some of the
popular heterogeneous MPSoCs designed for multimedia.

The C-5 network processor [16] is one of the early examples of heterogeneous
MPSoCs, designed for packet processing applications in networking. It consists
of an executive processor, a fabric processor and sixteen channel processors, with
additional specialised buffermanagement, queuemanagement and table lookupunits.
The executive processor (a RISC based GPP) serves as the central system manager
and provides the standard system interfaces. The fabric processor extends the inter-
facing capability of C-5 by providing a high-speed network interface port. The main
crux of C-5 lies in the channel processors, grouped into clusters of four, that receive,
process and transmit network data. The specialised units perform management tasks
so that the processors can work together efficiently. The C-5 network processor can
process up to 15 million packets per second [16].

Intel’s IXP [17] network processor contains Intel’s XScale processor for general-
purpose processing and two Network Processing Elements (NPEs) for packet
processing. Each NPE contains eight micro-engines that are specialised functional
units and act as hardware accelerators. The NPE is equipped with separate instruc-
tion and data memories, and hardware based multi-threading for high performance.
In addition, IXP contains hardware accelerators for popular cryptography algo-
rithms to provide security features. Cisco’s Silicon Packet Processor (SPP) [18]
and QuantumFlow processor [19] used in its CRS-1 and CRS-2 routers are other
examples of heterogeneous MPSoCs. SPP and QuantumFlow employ 188 and 40
multi-threaded Xtensa LX processors [20], which are extremely customised for net-
work data processing.

The Viper [21] from Philips is an early example of a video MPSoC. It consists of
two main processors (a MIPS based GPP and a Timedia VLIW DSP [22]), various
audio/video hardware blocks (accelerators) and a number of standard interfaces. The
GPP runs an operating system and acts as a master to Trimedia DSP and audio/video
hardware accelerators to process HD resolution videos. Later, a configurable hetero-
geneousMPSoC platform named Eclipse was proposed by Philips where the number
and types of domain-specific hardware blocks, bus widths, memory sizes and sim-
ilar parameters can be set by a designer. The aim was to provide a platform that
can be tuned to an application without major architectural redesign effort. Eclipse
contains a GPP-DSP (RISC-VLIW) based main processor that acts as the master to
a number of weakly programmable, multitasking, domain-specific hardware blocks,
referred to as coprocessors. For example, an instance of Eclipse may use Discrete
Cosine Transform (DCT) and Motion Estimation (ME) coprocessors only for an
MPEG decoder. Eclipse uses the Kahn Processor Network (KPN) as the application
model andprovides task scheduling and communication synchronisationmethods for

24 2 Literature Survey

efficient utilisation of the coprocessors. Eclipse, when configured for video decoding,
consumed less than 240 mW for simultaneous real-time decoding of two HDMPEG
streams. NXP Semiconductor’s Nexperia [23] architecture is based on Viper and
Eclipse.

STMicroelectronic’s Nomadik [24] is another heterogeneous MPSoC that was
designed for mobile phones. It contains a master processor (an ARM based GPP) in
addition to two slave DSPs: one for audio and the other for video. These DSPs act
as hardware accelerators for audio and video applications. The video DSP itself is a
heterogeneousMPSoC, consisting of aDSP and several hardware accelerators like an
image pre-/post-processor and a video encoder/decoder. The audio DSP uses a single
DSP because audio applications require relatively smaller amounts of computational
power. The Nomadik processor has been succeeded by the NovaThor platform [25]
which contains an ARMCortex-A9MPCore processor [26], two DSPs and an ARM
Mali GPU [27] with NEON SIMD engine [28] for low-power, flexible multimedia
processing up to HD resolution.

The CELL [29] is a heterogeneous MPSoC with two types of processing ele-
ments. The Power Processor Element (PPE) runs an operating system to provide ser-
vices such asmemorymanagement and thread scheduling. The Synergistic Processor
Elements (SPEs), on the other hand, are extremely specialised units that are based
on VLIW and SIMD concepts and function as hardware accelerators. The CELL
processor can exploit instruction-, data-, task- and memory-level parallelisms with a
combination of a PPE, SPEs and DirectMemory Access (DMA) engines to provide a
high performance, low-power implementation platform for multimedia applications.

NVIDIA’s Tegra [30] is an example of one of the recent heterogeneous MPSoCs
for multimedia in mobile phones. It consists of seven types of processing units for
audio, video, image, graphics and general-purpose processing. More specifically,
Tegra includes an ARM Cortex-A9 MPCore for general-purpose applications, an
ARM7 processor for computationally less intensive and system management tasks,
an ultra low-power Graphics Processing Unit (GPU), an audio processor, an Image
Signal Processor (ISP), an HD video decoding processor and an HD video encod-
ing processor. Tegra also includes a system-level power management module that
shuts down idle processing units. Inclusion of such a diverse set of processing units
and the power management unit allows Tegra to deliver high performance with ultra
low power consumption. OMAP [31] is another recent heterogeneous MPSoC plat-
form from Texas Instrument. Like Tegra, it combines several types of specialised
processing units for specific tasks. It contains a Cortex-A9MPCore, an Image Video
Audio (IVA) hardware accelerator, an ISP, a PowerVR processor [32] based graphics
accelerator, and a display sub-system. The IVA itself is a heterogeneousMPSoCwith
a power-optimised, multi-mode hardware accelerator and a DSP processor. OMAP
is also equipped with Texas Instrument’s SmartReflex power and performance man-
agement technology which includes adaptive techniques for run-time control of fre-
quency, voltage and power to deliver required performance with ultra low power
consumption.

There have also been non-commercial efforts in the field of heterogeneous
MPSoCs for multimedia. Strik et al. [33] proposed a real-time video and graphics

2.2 Heterogeneous MPSoCs 25

system composed of a control processing sub-system (host), signal processing
sub-system and a memory sub-system. They used a reconfigurable NoC in the
MPSoC to enable concurrent processing of 25 video streams in real-time. The hetero-
geneous MPSoC for HDTV proposed in [34] uses five processors communicating
through FIFO buffers and shared memories. The proposed MPSoC was shown to
deliver the required performance through a combination of application partitioning,
customisedVLIWDSPs and a custom two level scratchpad basedmemory hierarchy.

Wu et al. [35] proposedMediaDSP, a scalable architecture consisting of two types
of processors, domain-specific hardware accelerators, a banked memory hierarchy,
an on-chip crossbar network and DMA engines. The authors demonstrated research
prototypes of a single-issue DSP with an ALU and a MAC unit, and a microcode
based dual-issue four-way SIMD DSP. The scalability of MediaDSP comes from
the on-chip network that can organise the processors in various topologies such as
a pipeline configuration or a master-slave configuration. MediaDSP exploits data-,
instruction-, memory- and task-level parallelisms and targets audio, video, gaming,
user interface and computer vision applications.

Tumeo et al. [36] proposed a master-slave heterogeneous MPSoC consisting of
two PowerPC processors [37], four Microblaze processors [38] and DMA engines.
Each processor is connected to a local memory in addition to a shared memory. The
processors synchronise with each other using interrupts. A software layer containing
a microkernel is executed on the master processor to enable pipelined execution of
multimedia applications. In addition, themicrokernel is responsible for the transfer of
data between the processors. The heterogeneity comes from different configurations
of the processors which are selected by the designer according to the application to
be executed on the MPSoC. Another master-slave architecture is the ePUMA [39]
where the master is a GPP with a DMA engine, and is connected to eight SIMDDSP
slaves with a ring bus in a star topology.

Most of the heterogeneous MPSoCs mentioned so far use master-slave configu-
ration where a GPP is used as the master and a mix of ASICs, ASIPs and DSPs is
used as slaves. Several researches have explored the pipeline configuration where
processing elements are connected in a pipeline (chain). Park et al. [40] proposed
a Polymorphic Pipeline Array (PPA) as an accelerator for multimedia applications,
inspired from Coarse Grained Reconfigurable Arrays (CGRAs), but with both static
and dynamic configurability. The PPA consists of an array of identical Processing
Elements (PEs) that are tightly connected using a mesh-style interconnect, and a
shared memory. A processor in PPA is made up of four PEs where the processor has
an Instruction Set Architecture (ISA) and executes its own instruction stream. The
heterogeneity is added by coalescing processors to create larger logical processors
at run-time with the support of virtualised execution. Experiments with three multi-
media applications showed that PPA can deliver required performance; however, it
was less energy efficient (performance/power) than an ASIP (Tensilica’s Diamond
processor [41]).

Shee et al. [42, 43] performed a detailed comparison of master-slave configura-
tion with pipeline configuration (will be referred to as pipelined MPSoCs for the
rest of the monograph) through a case study on a JPEG encoder, which is a typical

26 2 Literature Survey

multimedia application. The empirical data clearly suggested that pipelinedMPSoCs
are more suitable for multimedia applications as they provided up to a 2× perfor-
mance improvement over master-slave MPSoCs. Shee et al. further illustrated that
balancing workload across stages of the pipelined MPSoC with the use of ASIPs
(that is, adding heterogeneity through customisation of the processors) can result in
a 4.7× performance improvementwith a 3.1× area increase compared to a 3.8× per-
formance improvement and a 7× area increase of a homogeneous pipelinedMPSoC.
A recent paper by Hameed et al. [44] further analysed pipelined MPSoCs through a
case study on an H.264 encoder for HD720p video resolution. They illustrated that
extreme customisation of ASIPs can match performance of the pipelined MPSoC to
that of an ASIC, but with 3× energy consumption, which is the cost of reduced time-
to-design, reduced time-to-market, flexibility and programmability of the pipelined
MPSoC.

PipelinedMPSoCs exploit both data- and instruction-level parallelisms, which are
abundant in multimedia applications, by using ASIPs with SIMD and VLIW tech-
niques. More importantly, pipelined MPSoCs not only exploit task-level parallelism
with the use of multiple ASIPs, but also pipeline-level (stream-level) parallelism of
multimedia applications by arranging those ASIPs in stages of a pipeline. Therefore,
pipelinedMPSoCs have emerged as a viable implementation platform formultimedia
applications [45–49]. Note that these pipelined MPSoCs can be used as standalone
multimedia systems or as multimedia accelerators in commercial platforms. For
example, a chip may contain multiple pipelined MPSoCs for video encoders and
decoders; or OMAP, Tegra and other similar platforms may use pipelined MPSoCs
to implement video encoder and decoder accelerators. Typically, pipelined MPSoCs
will be used as multimedia accelerators because they are customised for specific
multimedia applications.

2.3 Design Space Exploration

It is obvious that design and optimisation of heterogeneous MPSoCs is difficult due
to the availability of a multitude of options such as application partitioning, MPSoC
architecture, processor types and memory hierarchy. Therefore, there is a need for
well-structured, systematic approaches to explore the design space resulting from
these options. Often design space exploration is performed with multiple objec-
tives and constraints, and the aim of quickly finding one or multiple (near-) optimal
design points. This section provides an overview of typical design space exploration
techniques used for heterogeneous MPSoCs, including pipelined MPSoCs.

2.3.1 Exact Approaches

Exact approaches in design space exploration search for the optimal design point and
are typically based on Linear Programming (LP) [50]. In LP, variables that can take
binary (0 or 1), integer or real values are used to represent parameters of the design

2.3 Design Space Exploration 27

space. The objective function is specified as a linear function of those variables while
the constraints are described as a set of linear equalities and/or inequalities in the
variables. These equations are then solved to find the values of the variables which
are interpreted to get the final design point.

Batista et al. [51] formulated the problem of mapping and scheduling tasks of an
application, which is represented as a task graph, onto a heterogeneous MPSoC with
task-specific processors connected through a shared bus as a Mixed Integer Linear
Programming (MILP) problem. The MILP model allowed pipelined execution of
tasks, with minimisation of initiation interval (period), latency and/or MPSoC hard-
ware cost as objective functions. A technique was also proposed to calculate upper
and lower bounds on initiation interval to prune the design space which improved
the MILP solver’s time to search the optimal mapping and schedule of the tasks.
Schwiegershausen et al. [52] also used MILP to explore the design space of a het-
erogeneous MPSoC with domain-specific blocks and processors. However, their
objective function comprised of a weighted sum of period, latency and MPSoC area
footprint (processors and busses) to prioritise the optimisation process based on the
individual weights. The proposedMILPwas tested bymapping H.261 video encoder
on a heterogeneous MPSoC with four types of processors.

The problem of mapping the Kahn Process Network (KPN) representation of
an application onto a heterogeneous MPSoC was formulated as a MILP problem
in [53]. Their heterogeneous MPSoC used ASICs, GPPs or DSPs as compute units,
and single and multiple buses, and crossbar switches as interconnection compo-
nents. The aim of theMILPmodel was to map processes in KPN to suitable compute
units and channels between processes to either local or shared memories, and selec-
tion of interconnection components to minimise MPSoC’s hardware cost (cost of
compute units, memories and interconnection components) under performance and
bandwidth constraints. Kuang et al. [54] also targeted a heterogeneous MPSoC with
ASICs, GPPs and DSPs, and a communication network; however, their aim was to
simultaneously map and schedule application tasks to allow pipelined execution on
theMPSoC. The authors proposed an ILPmodel tominimiseMPSoC’s area footprint
under a throughput constraint.

Suhendra et al. [55] studied the problem of task mapping and scheduling in
a heterogeneous MPSoC where each processor had a local scratchpad memory.
Scratchpad memories are typically deployed in embedded devices due to their
smaller area footprint, lower energy consumption and better timing predictability
over caches [56]. An ILP formulation was proposed with the objective function
of maximising application performance under an area constraint for the scratch-
pad memories. The ILP modelled mapping, scheduling and pipelined execution
of tasks, and sizes of scratchpad memories and allocation of variables to them.
Experiments with several multimedia applications showed that simultaneous opti-
misation of scratchpad memory sizes and task mapping/scheduling can improve
performance by up to 80% compared to the case when these optimisations are done
separately.

Several works have also looked at the transformation of the application task graph
during the mapping and scheduling problem. Ostler et al. [57] targeted mapping of

28 2 Literature Survey

application task graphs onto the Intel’s IXP network processor [17] where each
processing element is multi-threaded and has access to scratchpad, local and shared
memories. Therefore, during the mapping problem, they considered merging and
replication of tasks in addition to allocation of data to one of the memory types.
An ILP formulation was proposed with the objective function of maximising the
application throughput. Experiments with networking applications showed that task
graph transformations coupled with data mapping can result in up to an 8× per-
formance improvement. The work in [58] considered a similar problem with some
extensions and proposed an ILP formulation. They considered pipelined scheduling
of tasks, and multi-bank register files rather than scratchpad memories as one of the
memory types. Furthermore, their objective function was to minimise a weighted
sum of throughput and latency because both of these are important for real-time
multimedia applications. Yang et al. [59] also used ILP to formulate the problem of
task mapping and scheduling with the consideration of data-level parallelism where
appropriate tasks were duplicated. Their objective was to minimise the number of
processors under task deadlines.

Reliability has become an important concern in design of MPSoCs. Tosun et al.
[60] studied task mapping and scheduling considering fallibility (opposite to relia-
bility) of the underlying heterogeneous MPSoC. They considered several objective
functions and constraints such as maximising performance under energy consump-
tion and fallibility constraints, minimising energy consumption under performance
and fallibility constraints, and minimising fallibility under performance and energy
consumption constraints. Dynamic Voltage Scaling (DVS) and task duplication were
used to reduce energy consumption and fallibility of an application. A more com-
prehensive exploration approach, based on MILP, was proposed in [61] where the
authors considered task mapping and pipelined scheduling, heterogeneous process-
ing elements (differing error rates, clock frequencies and power consumptions),
communication overheads and mutual exclusion from locks/critical sections. Their
objective was to minimise energy consumption under performance and reliability
constraints.

In contrast to the above mentioned works, the authors of [62] formulated the
problem of mapping and pipelined scheduling of tasks on a message-oriented, dis-
tributed memory, shared bus heterogeneous MPSoC with special consideration to
communication costs as an ILP problem and a Constraint Programming (CP) prob-
lem respectively. They showed that solving mapping and scheduling problems as a
pure ILP or as a pure CP is much slower than the combined use of ILP and CP.

LPhas also been used for the exploration of FPGAbased (soft) MPSoCs.Wu et al.
[63] proposed an ILP formulation to obtain the MPSoC architecture with mapping
and scheduling of the tasks. In their work, the MPSoC design space consisted of
heterogenous processors, memory configurations, point-to-point FIFO buffers, pri-
vate busses and shared busses. The ILP model aimed for minimisation of FPGA
area footprint under a performance constraint. This work was extended in [64] to
consider instruction and data memory sizes as well because Block RAM (BRAM)
in FPGAs is a limited resource that needs to be used judiciously. Furthermore, the

2.3 Design Space Exploration 29

ILP model in [64] allows multiple objective functions targeting FPGA area footprint
and memory size, and application execution time.

Parallel compilation of applications on MPSoCs has also been achieved using
LP. An Integer Linear Programming (ILP) based compilation approach to parallelise
loops in array-intensive applications on a shared memory, shared bus, homogeneous
MPSoC was proposed in [65]. Their ILP model searches for the number of proces-
sors required to execute a loop with objective functions and constraints involving
execution time and/or energy consumption. Their ILP also models the overhead
involved in activating and deactivating processors at run-time as the number of
processors changes from one loop to another during the execution of the appli-
cation. Choi et al. [66] used ILP for compilation of streaming (multimedia) applica-
tions, which is represented as a graph, on a heterogeneous MPSoC with master-slave
configuration. The ILP model was aimed at mapping and scheduling of tasks on
processors, allocation of variables to local memory and generation of DMA trans-
fers between processors with the objective function of minimising initiation interval
(period) under memory and timing constraints. They also proposed an ILP formu-
lation to minimise the number of processors under memory and timing constraints.
Since they considered a large design space, several heuristics were used with ILP
to keep exploration tractable and to obtain near-optimal design point quickly. The
proposed compilation approach was implemented in SUIF compiler framework [67]
and was tested with the compilation of Software Defined Radio (SDR) application
on the CELL [29] MPSoC.

Design space exploration of pipelined MPSoCs have also been performed using
ILP. Jin et al. [68] explored mapping of a multimedia application’s task graph on an
FPGA based homogeneous MPSoC using an ILP formulation. They used buses and
point-to-point FIFO buffers for communication between the processors. The aim
of the ILP model was to maximise the throughput of the application with a fixed
number of processors. This work was improved by Cong et al. [69] by exploring
not only the mapping but also partitioning of the task graph to find the minimum
number of processors rather than fixing the number of processors in the MPSoC.
Cong et al. developed several exact graph algorithms (without any variants of LP)
based on labelling, clustering and packing techniques to minimise latency and the
number of processors under a throughput constraint. Since multimedia applications
exhibit run-time variations in execution time due to data-dependent behaviour, their
application model associated probabilities with execution times of the tasks.

2.3.2 Heuristic Approaches

Linear programming based approaches are exhaustive in the worst case and can be
slow for complex heterogeneous MPSoCs. Therefore, researchers have developed
several heuristic approaches so as to rapidly and efficiently explore the design space
at hand. Heuristic approaches do not guarantee an optimal solution; however, use of
cleverly designed algorithms can provide remarkable improvements in exploration
time with near-optimal solutions.

30 2 Literature Survey

Banerjee et al. [70] consideredmapping and pipelined scheduling of a multimedia
application, which is represented as a Directed Acyclic Graph (DAG), onto a hetero-
geneous MPSoC with ASICs and DSPs. A two level hierarchal heuristic approach
is proposed where a coarse-grained solution, in the number of pipeline stages in the
MPSoC, is obtained by partitioning the DAG using the ratio cut partitioning tech-
nique. This initial solution is then refined through successive application of either
architecture based partitioning or repartitioning, and retiming techniques. The heuris-
tic is terminated once no more throughput improvement is observed. Experiments
with typical multimedia applications illustrated that pipelined scheduling using het-
erogeneous processing elements improved throughput by several times over homo-
geneous processing elements.

Bakshi et al. [71, 72] also considered partitioning and pipelined scheduling of
a task graph onto a heterogeneous MPSoC. Their heuristic approach maps all the
tasks on processors first and then moves those that violate the throughput constraint
to ASICs to obtain an initial mapping. Then, pipelined scheduling is performed
to determine the number of pipeline stages based on a list scheduling algorithm.
Unlike [71, 72], Jeon et al. [73] proposed to perform pipelining before partitioning
and mapping of tasks on the heterogeneous MPSoC. In addition, they considered
hardware sharing during mapping, and proposed an iterative heuristic approach to
successively find more parallelism, while reducing area footprint through hardware
sharing under a performance constraint.

The work in [74] considered a pipelined scheduling problem similar to [70], but
with task duplication. The number of processors in theMPSoCwas fixed beforehand
and their objective function was to minimise latency rather than the throughput. A
five step heuristic approach was proposed where the first three steps obtain an initial
number of pipeline stages by clustering the application DAG. The fourth step then
duplicates tasks to reduce latency if some of the processors are still free. However,
if the number of clusters is more than the number of processors in the MPSoC, then
cluster compaction is performed. The final step produces the pipelined schedule of
the DAG.

Benoit et al. [75–79] proposed several heuristics for mapping and pipelined
scheduling of linear application DAGs (containing only a single path) onto a hetero-
geneousMPSoCwith a fixed number of homogeneous processors. The heterogeneity
in theMPSoCwasmanifested by differing frequencies of processors and bandwidths
of interprocessor links. The mapping and scheduling problem was formulated as an
interval mapping problem where intervals, consisting of consecutive tasks, were
scheduled on the processors to allow pipelined execution. Three heuristics were
proposed to maximise the throughput [75] while a dynamic programming based
algorithm was proposed to minimise the latency [76]. Several other heuristics were
also proposed to minimise throughput under a latency constraint and to minimise
latency under a throughput constraint, allowing bi-objective optimisations to find
Pareto-optimal mappings and schedules of linear DAGs [77, 78]. The heuristics con-
sisted of two steps: firstly, assign all the tasks to the fastest processor; and secondly,
greedily split the largest interval to improve throughput or latency. The heuristics
iteratively applied the second step and differed in the function chosen to split the

2.3 Design Space Exploration 31

interval. Benoit et al. [79] also proposed an ILP formulation to find optimal mapping
and schedule for evaluation of the solutions found by the proposed heuristics.

Ko et al. [80] studied pipelined scheduling of multimedia applications with the
focus on exploration of various pipeline configurations under latency and throughput
constraints. They proposed Pipeline Decomposition Tree (PDT) data structure to be
used in conjunction with scheduling and clustering techniques to analyse alternative
pipelines. They also considered heterogeneous data-level parallelism where data
with differing sizes is processed by multiple invocations of the same task in parallel.
Unlike [80], the work in [81] evaluated different mappings of a task graph on a fixed
MPSoC architecture using variants of list scheduling algorithm including As Soon
As Possible (ASAP), As Late As Possible (ALAP), Earliest Deadline First (EDF)
and Least Laxity (LL).

Mapping and scheduling in the context of a streaming language, StreamIt [5],
has also been explored in several works. Carpenter et al. [82] proposed an iterative
heuristic for partitioning a task graph and allocation of the tasks to processors in a
heterogeneous MPSoC. Like [70, 74], an initial partitioning of the task graph was
obtained which was then successively refined using merging of tasks, movement
of bottleneck tasks, creation of new convex and connected tasks, and reallocation
of tasks. Hashemi et al. [83, 84] proposed exact and approximate algorithms for
mapping of task graphs onto homogeneous [83] and heterogeneous [84] MPSoCs
containing only two processors. In [83], they also proposed a heuristic for MPSoCs
with more than two homogeneous processors. Their algorithms are based on graph
transformations to cut the task graph so that the throughput is maximised, consid-
ering interprocessor communication costs and memory sizes. Experiments with a
number of StreamIt benchmarks were conducted to compare the proposed mapping
techniques to StreamIt’s built-in mapper [6].

Stuijk et al. [85] studied resource allocation problemunder a throughput constraint
in a tiled heterogeneousMPSoCwhenmultiple multimedia applications, represented
as SDFs, need to be mapped on a fixed number of tiles. The proposed heuristic sorts
the tasks based on their impact on the throughput, and then greedily assigns tasks one
at a time to balance the workload across all the tiles. Once a mapping is available, if
it is possible, the tasks are moved around tiles to further balance the workload.

Several researchers have also looked at energy- and memory-aware mapping and
scheduling of tasks on heterogeneous MPSoCs. Kim et al. [86] explored hetero-
geneous scheduling policies while minimising energy consumption through power
management (that is, turn off a processor when it is idle to reduce energy consump-
tion). Their heuristic approach generates a set of initial mappings of the application
task graph onto the processors. Then, for each of those initial solutions, the heuristic
explores scheduling policies per processor with their power management to produce
Pareto-optimal design points representing energy consumption and area footprint
trade-off. Yang et al. [87] proposed an approximation algorithm to partition and
map a task graph onto a heterogeneous MPSoC where each processor employed
Dynamic Voltage Scaling (DVS) to control its energy consumption. The objective
was to minimise the energy consumption (both dynamic and leakage) of theMPSoC.
Thisworkwas extended in [88] for a heterogeneousMPSoCwith an arbitrary number

32 2 Literature Survey

of processors. Some of the other works on energy-efficient task graph partitioning
and mapping have been reported in [89–92]. Unlike the above mentioned works,
Ozturk et al. [93] proposed a compiler based approach to exploit data- and task-level
parallelisms of multimedia applications in a heterogeneous MPSoC with DVFS for
minimisation of energy consumption.

Bathen et al. [94, 95] exploredmemory-aware pipelined scheduling ofmultimedia
applications on a homogeneous MPSoC, where the processors were equipped with
scratchpad memories and were connected to a shared memory through a shared
bus. They considered data allocation during the mapping and pipelined scheduling
of tasks with the objective of minimising data transfers and power consumption.
Salamy et al. [96, 97] explored the problem of mapping and pipelined scheduling
of tasks and partitioning the available scratchpad memory among the processors
simultaneously with the objective of maximising throughput. They compared their
heuristic approachwith an ILP formulation proposed in [55], and the results indicated
that the heuristic solutions were off by a maximum of 13% from optimal solutions.

In contrast to deterministic heuristic approaches described above, researchers have
also applied random heuristic approaches comprising of Tabu Search (TS) [98], Sim-
ulated Annealing (SA) [99], Genetic Algorithm (GA) [100] and Evolutionary Algo-
rithm (EA; parent class of GA) [101] to design space exploration and optimisation of
MPSoCs. Ercan et al. [102] compared TS, SA and GAwith list scheduling heuristics
through the minimisation of throughput and deduced that solutions found by these
random heuristics were better than those found by deterministic heuristics. However,
in [102], the mapping and scheduling of tasks were done on a homogeneousMPSoC.
Tumeo et al. [103, 104] and Branca et al. [105] proposed TS, SA, GA, Ant Colony
Optimisation (ACO) and Bayesian Optimisation Algorithm (BOA) based heuris-
tics to map multimedia applications with pipelined execution on the heterogeneous
MPSoC proposed in [36]. The BOA based heuristic outperformed others, but with a
higher running time. Yang et al. [106] studied the classical problem of mapping and
scheduling a task graph on a heterogeneous MPSoC with the consideration of data-,
task- and pipeline-level parallelisms. They used a Quantum-inspired Evolutionary
Algorithm (QEA) to either maximise throughput or minimise MPSoC area footprint
(processors and pipeline buffers) under task deadlines. The solutions fromQEAwere
compared to the optimal solutions from ILP.

Multiple objective functions and constraints are often imposed during design
space exploration of heterogeneous MPSoCs, resulting in a need for multi-objective
optimisation of theseMPSoCs. EAs have emerged as an attractive heuristic approach
to multi-objective optimisation because they are able to quickly find near-Pareto-
optimal fronts of large design spaces.Application of EAs tomulti-objective optimisa-
tion ofMPSoCs include classical task graphmapping and scheduling problems [107,
108], exploration of application mapping [109], and simultaneous optimisation of
data allocation to memories and bus architecture [110].

Heterogeneous MPSoCs built from ASIPs exploit customisation to balance the
execution time across all the processors. For example, processors executing com-
putationally intensive tasks (over-utilised processors) can be augmented with cus-
tom instructions, hardware accelerators, special register files and the like, while

2.3 Design Space Exploration 33

functional units can be removed and cache sizes reduced in processors with less
intensive tasks (under-utilised processors) so as to balance the execution time across
all the processorswhile reducing area footprint. Customisation ofASIPs adds another
dimension to the design space; therefore, several researchers have studied design
space exploration of ASIP based MPSoCs in particular.

Givargis et al. [111] proposed a generic system-level design space exploration
heuristic for an MPSoC, consisting of parameterisable components such as ASIPs
to find Pareto-optimal fronts. Their idea was to build a parameter interdependency
graph to capture the interactions between all the parameters in the MPSoC. For
example, cache size and cache line size depend on each other but the voltage levels
of a processor do not depend on its cache configuration. Their heuristic first finds
Pareto-optimal design points in graph clusters (local Pareto-optimal front), which are
then used to find Pareto-optimal design points of the MPSoC (global Pareto-optimal
front). Experiments with several multimedia applications showed that the proposed
two phase, iterative exploration heuristic significantly reduced the exploration time.

In contrast to [111], Sun et al. [112] studied customisation of ASIPs in hetero-
geneous MPSoCs in particular. They motivated the need for selection of custom
instructions simultaneously with mapping and pipelined scheduling of an applica-
tion’s tasks on a multi-ASIP MPSoC. Their aim was to minimise the execution time
of the application on an MPSoC with a fixed number of processors while the area
footprint of custom instructions did not exceed the given constraint. The authors
proposed an iterative heuristic approach that initially assigns and schedules tasks on
the processors. Then, the processors on the critical path are augmented with custom
instructions to reduce execution time while the area footprint of the processors on
non-critical paths is reduced by relaxation of the already added custom instructions.
Experiments with several multimedia applications showed that customised MPSoCs
built with ASIPs outperformed their homogeneous counterparts in performance by
up to 2.9×.

Exploitation of task- and pipeline-level parallelisms of multimedia applications
by ASIP based pipelined MPSoCs has also been explored. Karkowski et al. [113]
exploited pipeline-level parallelism by mapping one of the main loops of an appli-
cation onto a pipeline of ASIPs. Multimedia applications, written in C language,
were parsed to derive a graph where vertices represented statements and edges rep-
resented data dependencies. A sub-graph representing a particular main loop of the
application was then selected to be compacted by merging some of the vertices
(that is, vertices representing combinable statements). The reduced sub-graph was
mapped on a pipeline with fixed number of ASIPs using modulo scheduling and
first-fit decreasing algorithms. Experimentswith a frequency tracking system showed
that the pipeline of ASIPs can provide high throughput, but the computational
workload need to be evenly distributed among the pipeline stages. The authors
attempted workload balancing through balanced partitioning of the reduced sub-
graph. Karkowski et al. extended this work in [114] where data- and pipeline-level
parallelismswere considered together, in addition to arbitrary number ofASIPs in the
pipelined MPSoC. A design space exploration algorithm was proposed to generate
Pareto-optimal front representing performance-area tradeoff with varying number of

34 2 Literature Survey

ASIPs. However, their work did not consider the selection of custom instructions for
the ASIPs.

Shee et al. [48] explored the design space of a pipelined MPSoC where each
processor had a number of configurations with performance-area tradeoffs. These
processor configurations included differing custom instructions and cache configu-
rations. The authors proposed a heuristic to select one configuration per processor
with the objective of maximising pipelined MPSoC’s execution time improvement
per area increase ratio compared to a uniprocessor system. Their heuristic employs an
analytical model to estimate the execution time of the pipelined MPSoC for a given
set of processor configurations and a pruning technique. The heuristic first selects the
configuration with maximum performance per area ratio for the critical processor,
and then relaxes the configurations of other processors based on the critical proces-
sor’s configuration to reduce theMPSoC’s area footprint. Shee et al. did not consider
performance constraints that are typical of real-time multimedia applications.

The work in [48] assumed a particular mapping of multimedia application’s
tasks on the ASIPs and then generated processor configurations (custom instructions
and cache configurations) according to the mapped tasks. On the other hand, Chen
et al. [115] explored simultaneous mapping and custom instruction selection with
variable number of ASIPs in the pipelined MPSoC. In addition, their aim was to
minimise the MPSoC’s area footprint under a throughput constraint. They proposed
a dynamic programming algorithm and compared it to an ILP formulation. The
throughput of a multimedia application may vary because of the data-dependent
nature of such applications. Therefore, Bordoli et al. [116] considered variations
in processor latencies during the selection of custom instructions. They proposed
a heuristic based on the branch and bound technique to select custom instructions
for processors with the objective of minimum variation in throughput under an area
footprint constraint for the custom instructions. Like [48], they assumed that the
application was mapped to the pipelined MPSoC beforehand.

2.3.3 (Semi-) Automated Frameworks

Design space exploration approaches described above are often deployed as part of
(semi-) automated frameworks to ease whole or part of an MPSoC’s design process.
This section provides a review of some of the design flows and design automation
frameworks.

In [117], a programmer-driven, semi-automatic framework was proposed to gen-
erate different parallel specifications of an application from its sequential C code.
The authors proposed six different code transformations: loop splitting; cumulative
access type analysis; partitioning vector dependants; breaking composite structures;
synchronising dependant variables; and, variable re-scoping. These code transfor-
mations are implemented using automated phases, but the decision to apply them is
left to the programmer. The MPA framework [118] also generates parallel code from
a sequential C code. A programmer marks the sections of the C code that need to

2.3 Design Space Exploration 35

be parallelised, and the analysis of parallel sections and code generation phases are
automated.

Tournavitis et al. [119] proposed a profile-driven parallelisation framework where
dynamic data flowanalysis rather thanmere static analysiswas used to extract parallel
loops from sequential C code. They also relied on the programmer to decide the loops
that should be parallelised at the end. Ceng et al. [120] proposed MAPS framework
to extract coarse-grained parallelism from sequential C code by transforming it to a
weighted statement control flow graph, which is annotated with profiling information
to enable both static and dynamic analyses. This graph is then processed by a heuristic
to cluster so-called coupled blocks to automatically generate parallel code where the
granularity of the parallelisation is controlled by the programmer. Thisworkwas later
improved in [121] to better guide aprogrammeron thegranularity of theparallel tasks.
Cordes et al. [122, 123] proposed an integer linear programming based framework
to extract task- and pipeline-level parallelisms by representing a sequential C code
in a hierarchal task graph. The granularity of the parallelisation is automatically
controlled by the costs of task creation and communication between the tasks, which
are provided by the programmer.

The frameworks described above focussed on parallelisation of applications for
MPSoCs. There have been other frameworks that focused on system-level design
automation to rapidly explore computation and communication elements in a hetero-
geneous MPSoC. A Simulink and SystemC based framework for hardware-software
co-design of heterogeneous MPSoCs was proposed in [124, 125]. The proposed
framework allows a designer to input application and MPSoC architecture at a
high level of abstraction in Simulink, which is then refined to an implementation
in SystemC. A Simulink Combined Algorithm/Architecture Model (CAAM) is used
to capture the abstract algorithmic flow of application and the abstract hardware
components of the MPSoC. From CAAM, a hardware generator produces MPSoC
architecture at three abstraction levels: virtual architecture; transaction-accurate
architecture; and, virtual prototype, which trade-off simulation speed with accuracy.
Amultithreaded code generator then generates codes of the abstract application tasks,
with some memory optimisations, for the processing elements in different abstrac-
tions of the MPSoC. Differing MPSoC architectures and an application’s parallel
specifications can be inputted manually, but evaluated quickly because of the auto-
mated refinement steps from application specification to MPSoC implementation.

Lyonnard et al. [126] proposed a framework where generic heterogeneous
MPSoC templates with parametrisable components were used to describe anMPSoC
architecture. They focused on communication coprocessors to connect heteroge-
neous processors and automated the generation of such coprocessors from proces-
sor and communication protocol libraries. Their framework allows a designer to
explore different implementations of communication coprocessors. Wolf et al. [127]
proposed an interface-centric framework for design and programming of MPSoCs.
A Task Transaction Level (TTL) interface was proposed to describe both applica-
tions and MPSoCs at a high abstraction level. The TTL supports different types
of communication primitives with differing implementations to trade-off perfor-
mance with programming simplicity. The authors proposed several source code

36 2 Literature Survey

transformations for effective use of TTL, and automated the transformation phases
for quick implementation of an application on an MPSoC architecture.

The works in [128–130] proposed frameworks for the automated exploration of
on-chip communication architecture and memory in MPSoCs. Lahiri et al. [128]
proposed several algorithms to generate an optimised on-chip communication archi-
tecture in the presence of differing network topologies and communication protocols.
Their framework decides the mapping of communication components of theMPSoC
to channels in the communication architecture template, and the protocols to be used
for each of those channels. The framework in [129] automatically builds a virtual
architecture of an MPSoC with differing communication architectures provided in
a library by the designer for quick simulation and performance evaluation. All the
communication architectures are then explored exhaustively to select the one with
the best performance. Pasricha et al. [130] proposed a framework for simultane-
ous exploration and optimisation of the communication architecture and memory
in an MPSoC. Their framework would output a bus-matrix type of communication
architecture with the minimum number of busses under performance and memory
area constraints. In particular, the framework determines bus topology, arbitration
schemes, bus speeds and buffer sizes simultaneously with mapping of the data to
memories and number, size, ports and type of each memory.

Some frameworks for automated exploration of ASIP based MPSoCs have also
been proposed. Wieferink et al. [131] proposed a framework for simultaneous
exploration of ASIP and communication architectures in an MPSoC. Their frame-
work uses LISAArchitectural Description Language (ADL) [132] for the description
of ASIP architectures and SystemC Transaction Level Modelling (TLM) to cap-
ture communication architectures. The automatically generated ASIP simulators are
interfaced with TLM communication models in the framework to allow exploration
at different abstraction levels, with automated refinement from one abstraction level
to the other. An ad hoc, iterative exploration approach, driven by the designer, is
employed to successively improve the ASIP and communication architecture.

Angiolini et al. [133] proposed a framework for exploration of ASIPs, caches,
memories and communication architectures in an MPSoC. Their framework inte-
grates a commercial ASIP platform (LISATek [134]) with an academic MPSoC
environment (MPARM [135]) because both these tools are based on SystemC and
MPARMsupports plug-and-play functionality. LISATek allows exploration ofASIPs
while MPARM allows exploration of memory hierarchies such as scratchpad mem-
ories and caches, and communication architectures like shared busses, crossbars and
NoCs. Their framework left design space exploration methodology to be imple-
mented by the designer.

Another ASIP based MPSoC exploration framework was proposed in [136], built
aroundTensilica’sXtensa LX [20] processors. TheMPSoC is described inXML to be
used by automated tools to generate simulation models for the hardware components
of the MPSoC, and separate executables for each processor from the C codes. The
framework then allows simulation of the MPSoC at either the cycle-accurate or
functional level, while trading-off simulation speed with accuracy. A designer can
explore MPSoCs with different number and types of processors, buffer sizes and

2.3 Design Space Exploration 37

so on within several hours, although the MPSoC architectures need to be inputted
manually.

The frameworks described above focused on automation of some of the design
phases of a heterogeneousMPSoC. The following paragraphs reviewmore complete,
state-of-the-art frameworks for heterogeneousMPSoCs [137]. Metropolis [138] pro-
vides a modelling and simulation environment based on the Platform Based Design
(PBD) paradigm [139]. The PBD simplifies system-level design by constraining the
MPSoC to a fixed architectural template so that the design problem reduces to map-
ping of an application onto the MPSoC template. Metropolis uses a meta-model lan-
guage to capture application functionality and theMPSoC platform. Themeta-model
employs an event-based execution model where processes communicate with each
other through channels. For a given application and architectural template, synthesis
is performed by mapping the application onto the MPSoC where different phases
of the synthesis such as parsing of meta-models, generation of SystemC simulation
models, scheduling and so on are automated.

Koski [140] provides a framework for the following: modelling of an application;
automated MPSoC design space exploration; and, automated synthesis, program-
ming and prototyping on FPGA of the selected MPSoC design. An application is
described in aUMLmodel formapping onto a bus-basedMPSoC architecture, which
is constructed from a library of components. The UML interface transforms the
application and MPSoC descriptions to an abstract level for fast exploration. A
two step MPSoC architecture exploration approach is employed where the designer
can specify performance, area and power constraints. Once an MPSoC design is
selected, generation of code for application tasks, RTL description of components,
and integration of RTOS are automated for implementation on an FPGA.

PeaCE [141] is an extension of Ptolemy II [142], andprovides a hardware-software
co-design framework from functional simulation toMPSoC prototyping. PeaCE uses
extended synchronous data flow graphs and finite state machines to model data flow
and control flow of multimedia applications. The MPSoC architecture consists of a
number of processors and synthesise-able IP cores, which are connected through a
communication architecture. A two step design space exploration is used. The first
step explores the selection of processing elements and mapping of application tasks
on those elements. The second step involves the exploration of the communication
architecture such as bus and memory allocation. After design space exploration, the
chosen MPSoC designs can be prototyped on an FPGA. Another enhancement to
PeaCE, named HOPES [143], was proposed to ease the programming of MPSoCs.
HOPES introduces the Common Intermediate Code (CIC) model to capture both the
application and the MPSoC architecture. The CIC model can be either written man-
ually or generated automatically from PeaCE models. The CIC translator in HOPES
transforms the model to optimised software codes for processors and interface code
for IP cores with the scheduling of application tasks.

Daedalus [144, 145] provides a highly automated framework for system-level
exploration, synthesis, programming and prototyping of MPSoCs by combining
KPNgen [146], Sesame [147] and ESPAM [148] tools. Daedalus uses the Kahn
ProcessNetwork (KPN) as themodel of computation and composable, heterogeneous

38 2 Literature Survey

MPSoCs (created from a library of components) where the processing elements
communicate through distributed memories as the implementation platform. The
KPN of an application is either derived manually or automatically by utilising KPN-
gen if the application’s sequential C code is specified as a so-called static affine
nested loop program. KPNgen can also use automated source level transformations
to produce different KPNs of an application. The generated KPNs are then used by
Sesame to perform design space exploration ofmappingKPNs, scheduling processes
ofKPNs, and communication and computation components in theMPSoCplatforms.
Sesame trades-off simulation speed with accuracy by the use of either high- or low-
level architectural models. A set of promising KPNs and MPSoC platforms from
Sesame can be passed to ESPAM for prototyping on an FPGA. ESPAM automati-
cally generates C code of the processes in the KPN and synthesise-able VHDL of the
MPSoC platform from RTLmodels in the component library. Daedalus allows quick
exploration of differing application mappings and schedules, and differing MPSoC
platforms because of the automated design trajectory from application specification
to implementation. Recently, DaedalusRT has been proposed in [149] for mapping
and scheduling of multiple multimedia applications with hard real-time throughput
constraints.

SCE [150] is another framework for automated implementation of an applica-
tion on a heterogeneous MPSoC. Unlike previous frameworks, SCE is based on
SpecC [151] system-level design language and provides an interactive, user-driven
GUI. In SCE, an application is described as a hierarchical state machine while the
MPSoC platform is built from a library of components. SCE employs a Specify-
Explore-Refine approach to implement the specified application onto a predefined
MPSoC platform using a predefined mapping. The “explore” step consists of four
types of explorations: architectural (selection of processing elements and memories,
mapping of application tasks and data); scheduling of application tasks on selected
processing elements; communication architecture (selection of buses, communica-
tion elements and their connectivity); and, mapping of channels onto the commu-
nication architecture. SCE uses a plug-in approach for inclusion of user-defined
exploration and optimisation algorithms. In the last step, SCE automatically refines
the selected design point from the “explore” step by generating RTL models of the
hardware components and executables of the application’s tasks.

SystemCoDesigner [152] provides a framework to automatically map and sched-
ulemultimedia applications onto a heterogeneousMPSoCwhere applications consist
of actors, which communicate through channels. After the specification of the appli-
cation andMPSoC template in SystemC by the designer, the SystemCoDesigner gen-
erates hardware accelerators for the actors and adds those accelerators to a component
library made up of processors, IP cores, buses and memories. For quick evaluation
of differing implementations of the MPSoC template, SystemCoDesigner translates
the MPSoC into a so-called virtual architecture. Unlike previous frameworks, for
design space exploration, SystemCoDesigner transforms the input SystemC model
into a pseudo-Boolean formula and uses multi-objective evolutionary algorithms.
The Pareto-optimal designs from the exploration phase can be automatically proto-
typed on an FPGA.

2.4 Run-Time Adaptability 39

2.4 Run-Time Adaptability

The optimisation and exploration frameworks described above are typically used
at design-time to optimise heterogeneous MPSoCs under worst-case parameters so
that these MPSoCs, when deployed, can deliver the performance required of them
at all times. Design-time optimised MPSoCs lack adaptability, and thus result in
inefficient resource utilisation and increased energy consumption under a dynamic
environment. In a dynamic environment, run-time adaptability is an attractive option
to improve the resource utilisation and energy efficiency of heterogenous MPSoCs.
There is a plethora ofwork on run-time adaptability inMPSoCs; however, this section
provides an overview of only some of the run-time management techniques.1

Most of the run-time management techniques adapt the MPSoC under dynamic
workload by exploiting task migration, mapping and scheduling to increase util-
isation of the processors. In addition, these techniques use Dynamic Voltage and
Frequency Scaling (DVFS) or multiple power states to reduce energy consumption
by reducing frequency-voltage levels of under-utilised processors and/or by transi-
tioning idle processors to sleep states.

Schranzhofer et al. [154] addressed the problem of selection of processing ele-
ments in a heterogeneous MPSoC, and the mapping of multiple applications onto
the selected processing elements under different application scenarios (representing
dynamicworkload). Their objective was tominimise the average power consumption
of the heterogeneous MPSoC by improving the utilisation of processing elements.
They proposed a two-step solution: firstly, an approach to select processing elements
and to compute a static schedule of the tasks was introduced; and secondly, a set
of promising static schedules for all the application scenarios was computed off-
line and stored in the MPSoC to be used by the run-time manager during differing
application scenarios.

Since the overhead of run-time management techniques has to be low, like [154],
Couvreur et al. [155] also proposed a two step approach. A multi-objective design
space exploration is performed to obtain the Pareto-optimal design points, which are
stored in the MPSoC for use at run-time. Then, one of the Pareto-optimal design
points is selected by the run-time manager, considering run-time resource utilisation
of theMPSoC.Theobjective of their design space explorationwas tominimise energy
consumption of the MPSoC under a performance constraint, where memory usage,
processor frequencies, communication bandwidth, and the like constitutedMPSoC’s
resources. In addition, the authors used differing parallelisations of the application
based upon workload variations as the dynamic factor. Other similar works where
design-timedecisions are coupledwith run-timemanagement techniques are reported
in [156].

1 Dynamically reconfigurable systems use partial reconfiguration characteristic of FPGAs to adapt
their hardware to application demands at run-time. Since this monograph targets heterogenous
MPSoCs with non-reconfigurable hardware, literature on dynamic reconfigurable systems is not
covered here. However, interested readers are directed to [153], where the authors report some of
the recent adaptive, reconfigurable systems and their run-time management techniques.

40 2 Literature Survey

In situationswhere the dynamic nature of the systemcannot bemodelled at design-
time (such as the variations in workload due to input data), more advanced run-time
management techniques are deployed. These techniques are based upon design-time
analytical analyses, run-time monitoring and run-time prediction of the MPSoC’s
resource utilisation, power consumption, and the like. In [157], a run-time heuristic to
select frequency-voltage levels for components in a Globally Asynchronous Locally
Synchronous (GALS) system with frequency-voltage islands was proposed. The
proposed heuristic predicts the execution cycles for the next epoch based upon the
predicted and run-time monitored, actual execution cycles of the previous epochs.
Then, the predicted execution cycles are used to select an appropriate frequency-
voltage level for a component.

Isci et al. [158] proposed a global power manager to apply DVFS in an MPSoC,
where its workload changes at run-time. Like [157], they proposed a heuristic which
monitors performance and power of the MPSoC during an epoch, and then uses
the measured values to predict the performance and power for the next epoch. The
heuristic uses the predictions to select frequency-voltage level that will maximise
performance under a power budget. Puschini et al. [159] proposed a run-time man-
agement technique, inspired fromgame theory, to decide the frequency-voltage levels
of processors in anMPSoC. The decisions aremade locally for each of the processors
with the objective of latency minimisation under run-time varying energy constraint
or energy minimisation under run-time varying latency constraint.

Unlike the above mentioned works, Molnos et al. [160] proposed an OS-level
run-time technique to select frequency-voltage levels of processors in an MPSoC.
Their heuristic conservatively exploits the slack that occurs at run-time (due to the
dynamic workload) by allocating that slack to a ready task, and then by lowering the
ready task’s frequency-voltage level. The heuristic determines the slack at run-time
by monitoring the execution of the tasks, and minimises the energy consumption
under a performance constraint.

Huang et al. [161] proposed a run-time task mapping and scheduling technique to
maximise resource utilisation of an MPSoC under a performance constraint. A four
step heuristic was proposed: firstly, the application deadline (performance constraint)
is translated to individual task deadlines with the objective of maximal scheduling;
secondly, adaptive task mapping and clustering is performed with the objective of
maximising resource utilisation and minimising communication costs respectively,
considering the run-time feedback from the MPSoC; thirdly, local scheduling of
tasks on each of the processors; and lastly, bandwidth allocation in the NoC. Their
adaptive task mapping was shown to outperform traditional task mapping, which did
not consider run-time feedback from the MPSoC about its resource utilisation.

In [162], the problem of task mapping and scheduling of an application graph
exhibiting dynamicworkload on anMPSoCwithDVFSwas addressed. The dynamic
workload of an application is due to the conditional branches in the graph as some
of the tasks may not be executed at run-time. The branches are associated with
probabilities which are populated at run-time bymonitoring branch selections. Based
on the captured history of the branches, a run-time heuristic schedules the tasks and

2.4 Run-Time Adaptability 41

selects frequency-voltage levels for the processors. The heuristic is called every time
a branch probability changes by more than a predetermined threshold.

Huang et al. [163] addressed the problem of selecting power states of a device
(such as an MPSoC) in the presence of dynamic event streams in order to minimise
its average power consumption. They used real-time calculus to model the event
streams and hence to predict the future arrival of events. Based on a combination of
past and predicted events, decisions are made on the power state of the device. A
power state is used only when the device is predicted to be idle for a long enough
period to amortise the overhead of transitioning to that particular power state.

Unlike the above mentioned works which primarily focused on maximising
resource utilisation or minimising energy consumption, Coskun et al. [164] pro-
posed a proactive, run-time thermal management technique for MPSoCs. They used
the autoregressive moving average model for prediction of future temperature, based
on the temperature measurements of the past. In addition, they applied sequential
probability ratio test to predict when the predictions of moving average predictor will
significantly drift from actual measurements so that the predictor can be adapted in
advance. Experiments were conducted with task migration and the Dynamic Voltage
Scaling (DVS) enabled run-time thermal management to illustrate that the proposed
proactive technique significantly reduced the frequency of hotspots compared to
reactive techniques. On the other hand, Ebi et al. [165] used an agent based run-
time thermal management technique to proactively avoid potential hotspots that may
develop in future.

Machine learning has also been used in prior research to learn at run-time from the
history of an application’s execution so as to enable future predictions. Ge et al. [166]
applied machine learning to thermal management while Tan et al. [167] applied it
to power management in MPSoCs. Several techniques have also been proposed
for run-time management of communication in NoC based MPSoCs. The authors
of [168] studied the problem of task mapping of an application at run-time with
the objective of minimisation of NoC congestion. They proposed several heuristics
based on first-free neighbour, nearest-neighbour, communication path load, etc. and
compared their effectiveness in improvement in channel load, packet latency and
execution time. Al Faruque et al. [169] proposed a distributed, agent based run-time
task mapping technique for a similar problem.

Run-time adaptability has also been used in pipelined MPSoCs to adapt them
under dynamic workload. In pipelined MPSoCs, the variations in workload are typ-
ically due to the data-dependent behaviour of multimedia applications, resulting in
an unbalancing of the pipeline stages at run-time. Therefore, the authors of [45–47]
introduced per processor DVFS to reduce frequency-voltage level when a processor
is under-utilised and to increase frequency-voltage level when a processor exceeds
the throughput constraint. Consequently, the stages are balanced at run-time under
workload variations by making their latencies almost the same, and close to the
pipelined MPSoC’s throughput constraint.

Guo et al. [45] proposed a feedback controller based centralised run-timemanager.
The run-time manager uses one detector per FIFO buffer in the pipelined MPSoC to
monitor its utilisation by its producer and consumer processors. The voltage level is

42 2 Literature Survey

changed when the difference in utilisation of a FIFO buffer’s producer and consumer
is more than a threshold, indicating that the two processors are unbalanced. The
feedback controller is triggered every time a task is executed.

Like [45], in [46, 47], a feedback controller, based upon the occupancy levels of
the FIFO buffers, was proposed to select frequency-voltage levels of the processors.
However, the authors of [46, 47] proposed distributed, more fine-grained, both linear
and non-linear controllerswhere the feedback control policy is executed in each of the
processors of the pipelined MPSoC. The proposed controller can be triggered either
after a fixed time interval or adaptively based on the occupancy level of the FIFO
buffer. Every time a controller is triggered, it measures the current occupancy level of
the FIFO buffer and compares it to the desired and previous occupancy levels of the
FIFO buffer. If the error in occupancy level is within a threshold, then the frequency-
voltage level is unchanged. On the other hand, if the error in occupancy level is
negative (that is, the FIFO buffer is being filled slowly), then the frequency-voltage
level is increased. Otherwise, the frequency-voltage level is decreased. Although
feedback controllers provide run-time adaptability in pipelined MPSoCs, they are
reactive in nature rather than proactive as they do not utilise any form of prediction.
Therefore, the controller only acts when a performance penalty has occurred, instead
of forecasting such a penalty and acting in advance. Proactive techniques are typically
required when the workload variations are sudden, due to input data dependence,
which is the case with multimedia applications.

2.5 Summary

This chapter opened with a survey of homogeneous and heterogenous MPSoCs used
for multimedia. The chapter then focused on design space exploration of hetero-
geneous MPSoCs. Both exact and heuristic approaches typically utilised during
design space exploration were discussed. An overview of several (semi-) automated
frameworks that can ease and speed up the design and prototyping of heterogeneous
MPSoC was also provided. Finally, the chapter focussed on run-time adaptability
in heterogeneous MPSoCs under dynamic environments. In summary, the chapter
provided the necessary survey of the existing design-time and run-time optimisa-
tion techniques for heterogeneous MPSoCs in general and pipelined MPSoCs in
particular.

References

1. U. Kapasi, W. Dally, S. Rixner, J. Owens, B. Khailany, The imagine stream processor. in
Computer Design: VLSI in Computers and Processors, 2002. Proceedings. 2002 IEEE Inter-
national Conference on, pp. 282–288, 2002.

2. J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, “Evaluating the imagine
stream architecture”, in Proceedings of the 31st annual international symposium on Computer
architecture, ISCA ’04, (Washington, DC, USA), pp. 14-, IEEE Computer Society, 2004.

References 43

3. M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. John-
son, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal, “The raw microprocessor: a computational fabric for soft-
ware circuits and general-purpose programs”, Micro, IEEE, vol. 22, pp. 25–35, mar/apr 2002.

4. M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann, P. John-
son, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and
A. Agarwal, “Evaluation of the raw microprocessor: An exposed-wire-delay architecture for
ilp and streams”, in ISCA ’04: Proceedings of the 31st annual international symposium on
Computer architecture, (Washington, DC, USA), p. 2, IEEE Computer Society, 2004.

5. W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language for streaming
applications”, in Proceedings of the 11th International Conference on Compiler Construction,
CC ’02, pp. 179–196, Springer-Verlag, 2002.

6. M.I. Gordon, W. Thies, S. Amarasinghe, Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. SIGPLAN Not. 41, 151–162 (Oct. 2006)

7. Tilera, “Tilepro64 multicore processor product brief”. Available at http://www.tilera.com
8. A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina, C.-C. Miao, C. Ramey, and

D. Wentzlaff, “Tile processor: Embedded multicore for networking and multimedia”, in Hot
Chips, 2007.

9. Intel, “Single-chip cloud computer”. Available at http://www.intel.com
10. J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla, M. Konow,

M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, and R. Van
Der Wijngaart, “A 48-core ia-32 processor in 45 nm cmos using on-die message-passing and
dvfs for performance and power scaling”, Solid-State Circuits, IEEE Journal of, vol. 46, pp.
173–183, jan. 2011.

11. P. Gschwandtner, T. Fahringer, and R. Prodan, “Performance analysis and benchmarking of
the intel scc”, in Cluster Computing (CLUSTER), 2011 IEEE International Conference on,
pp. 139–149, sept. 2011.

12. T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal,
N. Borkar, G. Ruhl, and S. Dighe, “The 48-core scc processor: the programmer’s view”, in
Proceedings of the 2010 ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’10, (Washington, DC, USA), pp. 1–11, IEEE
Computer Society, 2010.

13. C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and improvements of program-
ming models for the intel scc many-core processor”, in High Performance Computing and
Simulation (HPCS), 2011 International Conference on, pp. 525–532, july 2011.

14. R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas, “Single-isa het-
erogeneous multi-core architectures for multithreaded workload performance”, SIGARCH
Comput. Archit. News, vol. 32, pp. 64-, Mar. 2004.

15. W. Wolf, A. Jerraya, and G. Martin, “Multiprocessor system-on-chip (mpsoc) technology”,
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 27,
pp. 1701–1713, oct. 2008.

16. Freescale, “C-5 network processor”. Available at http://www.freescale.com
17. Intel, “Ixp network processors”. Available at http://www.intel.com
18. W. Eatherton, “Silicon packet processor”, in Symposium on Architecures for Networking and

Communications Systems, 2005.
19. Cisco, “The cisco quantumflow processor: Cisco’s next generation network processor”. Avail-

able at http://www.cisco.com
20. Tensilica, “Xtensa Customizable Processor”. http://www.tensilica.com
21. S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor soc for advanced set-top

box and digital tv systems”, Design Test of Computers, IEEE, vol. 18, pp. 21–31, sep-oct
2001.

22. NXP, “Nxp trimedia architecture”. Available at http://www.nxp.com, 2012
23. Nxp Semiconductors, “Nexperia media processor”. Available at: http://www.nxp.com
24. STMicroelectronics, “Nomadik application processor”. Available at http://www.st.com

http://www.tilera.com
http://www.intel.com
http://www.freescale.com
http://www.intel.com
http://www.cisco.com
http://www.tensilica.com
http://www.nxp.com
http://www.nxp.com
http://www.st.com

44 2 Literature Survey

25. STMicroelectronics andEricsson, “Novathor platform for smartphones and tablets”.Available
at http://www.stericsson.com

26. ARM, “Arm processors”. Available at http://www.arm.com
27. ARM, “Mail multimedia hardware”. Available at http://www.arm.com
28. ARM, “Neon general-purpose simd enginer”. Available at http://www.arm.com
29. H. P. Hofstee, “Power efficient processor architecture and the cell processor”, in Proceedings

of the 11th International Symposium on High-Performance Computer Architecture, pp. 258–
262, IEEE Computer Society, 2005.

30. NVIDIA, “Tegra multiprocessor architecture”. Available at http://www.nvidia.com/
31. Texas Instruments, “Omap mobile processors”. Available at http://www.ti.com/
32. Imagination Technologies, “Powervr graphics”. Available at http://www.imgtec.com
33. M. Strik, A. Timmer, J. vanMeerbergen, G.-J. van Rootselaar, Heterogeneous multiprocessor

for the management of real-time video and graphics streams. Solid-State Circuits, IEEE
Journal of 35(11), 1722–1731 (Nov 2000)

34. A. Beric, R. Sethuraman, C. Pinto, H. Peters, G. Veldman, P. van de Haar, and M. Duranton,
“Heterogeneousmultiprocessor for high definition video”,ConsumerElectronics, 2006. ICCE
’06. 2006 Digest of Technical Papers. International Conference on, pp. 401–402, 7–11 Jan.
2006.

35. D. Wu, P. Karlstorm, J. Eilert, A. Ehlair, and D. Liu, “Mediadsp: An application specific
heterogeneous multiprocessor soc”, in Proc. Swedish System-on-Chip Conf. (SSoCC), 2006.

36. A. Tumeo, M. Branca, L. Camerini, M. Ceriani, M. Monchiero, G. Palermo, F. Ferrandi,
and D. Sciuto, “Prototyping pipelined applications on a heterogeneous fpga multiprocessor
virtual platform”, in ASP-DAC ’09: Proceedings of the 2009 Asia and South Pacific Design
Automation Conference, 2009.

37. C. May, E. Silha, R. Simpson, H. Warren, and C. International Business Machines, Inc.,
eds., The PowerPC architecture: a specification for a new family of RISC processors. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994.

38. Xilinx, “Microblaze soft core”. Available at http://www.xilinx.com
39. E. Hansson, J. Sohl, C. Kessler, and D. Liu, “Case study of efficient parallel memory access

programming for the embedded heterogeneous multicore dsp architecture epuma”, in Com-
plex, Intelligent and Software Intensive Systems (CISIS), 2011 International Conference on,
pp. 624–629, 30 2011-july 2 2011.

40. H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: a flexible multicore accelerator
with virtualized execution for mobile multimedia applications”, in Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, (New York,
NY, USA), pp. 370–380, ACM, 2009.

41. Tensilica, “Diamond processor”. Available at http://www.tensilica.com
42. S. L. Shee, A. Erdos, and S. Parameswaran, “Heterogeneous multiprocessor implementations

for jpeg: a case study”, in CODES+ISSS ’06: Proceedings of the 4th international conference
on Hardware/software codesign and system synthesis, (New York, NY, USA), pp. 217–222,
ACM, 2006.

43. S.L. Shee, A. Erdos, S. Parameswaran, Architectural exploration of heterogeneous multi-
processor systems for jpeg. International Journal of Parallel Programming 36(1), 140–162
(2008)

44. R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B.C. Lee, S. Richardson,
C. Kozyrakis, M. Horowitz, Understanding sources of ineffciency in general-purpose chips.
Commun. ACM 54, 85–93 (Oct. 2011)

45. H. Guo and S. Parameswaran, “Balancing system level pipelines with stage voltage scaling”,
in Proceedings of the IEEE Computer Society Annual Symposium on VLSI: New Frontiers
in VLSI Design, ISVLSI ’05, 2005.

46. S. Carta, A. Alimonda, A. Pisano, A. Acquaviva, L. Benini, “A control theoretic approach to
energy-efficient pipelined computation in mpsocs”, ACM Trans. Embedded, Comput. Syst.,
6(4), 2007.

http://www.stericsson.com
http://www.arm.com
http://www.arm.com
http://www.arm.com
http://www.nvidia.com/
http://www.ti.com/
http://www.imgtec.com
http://www.xilinx.com
http://www.tensilica.com

References 45

47. A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, and L. Benini, “A feedback-based approach
to dvfs in data-flow applications”, IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 28, no. 11, pp. 1691–1704, 2009.

48. S. L. Shee and S. Parameswaran, “Design methodology for pipelined heterogeneous mul-
tiprocessor system”, in DAC ’07: Proceedings of the 44th annual conference on Design
automation, pp. 811–816, 2007.

49. H. Javaid, A. Ignjatovic, S. Parameswaran, Rapid design space exploration of application
specific heterogeneous pipelined multiprocessor systems. Trans. Comp.-Aided Des. Integ.
Cir. Sys. 29, 1777–1789 (November 2010)

50. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stien, Introduction to Algorithms. CRC
Press, illustrated ed., 2002.

51. J. DeSouza-Batista and A. Parker, “Optimal synthesis of application specific heterogeneous
pipelinedmultiprocessors”, Application Specific Array Processors, 1994. Proceedings., Inter-
national Conference on, pp. 99–110, 22–24 Aug 1994.

52. M. Schwiegershausen and P. Pirsch, “A formal approach for the optimization of heterogeneous
multiprocessors for complex image processing schemes”, in EURO-DAC ’95/EURO-VHDL
’95: Proceedings of the conference on European design automation, (Los Alamitos, CA,
USA), pp. 8–13, IEEE Computer Society Press, 1995.

53. B. K. Dwivedi, A. Kumar, and M. Balakrishnan, “Synthesis of application specific multi-
processor architectures for process networks”, in VLSID ’04: Proceedings of the 17th Inter-
national Conference on VLSI Design, (Washington, DC, USA), p. 780, IEEE Computer
Society, 2004.

54. S.-R. Kuang, C.-Y. Chen, and R.-Z. Liao, “Partitioning and pipelined scheduling of embed-
ded system using integer linear programming”, in ICPADS ’05: Proceedings of the 11th
International Conference on Parallel and Distributed Systems - Workshops (ICPADS’05),
(Washington, DC, USA), pp. 37–41, IEEE Computer Society, 2005.

55. V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory optimization and
task scheduling for mpsoc architectures”, in Proceedings of the 2006 international conference
on Compilers, architecture and synthesis for embedded systems, CASES ’06, (NewYork, NY,
USA), pp. 401–410, ACM, 2006.

56. R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel, “Scratchpad memory:
design alternative for cache on-chip memory in embedded systems”, in Proceedings of the
tenth international symposium on Hardware/software codesign, CODES ’02, (NewYork, NY,
USA), pp. 73–78, ACM, 2002.

57. C. Ostler andK. Chatha, “An ilp formulation for system-level applicationmapping on network
processor architectures”, in Design, Automation Test in Europe Conference Exhibition, 2007.
DATE ’07, pp. 1–6, april 2007.

58. Y. Yi, W. Han, X. Zhao, A. Erdogan, and T. Arslan, “An ilp formulation for task mapping and
scheduling on multi-core architectures”, in Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09., pp. 33–38, april 2009.

59. H. Yang and S. Ha, “Ilp based data parallel multi-task mapping/scheduling technique for
mpsoc”, in SoC Design Conference, 2008. ISOCC ’08. International, vol. 01, pp. I-134 -I-
137, nov. 2008.

60. T. Suleyman, M. Nazanin, T. K. Mahmut, and O. Ozcan, “An ilp formulation for task schedul-
ing on heterogeneous chip multiprocessors”, in ISCIS, pp. 267–276, 2006.

61. Y.Yetim, S.Malik, andM.Martonosi, “Eprof:An energy/performance/reliability optimization
framework for streaming applications”, in Design Automation Conference (ASP-DAC), 2012
17th Asia and South Pacific, pp. 769–774, 2012.

62. M. Ruggiero, A. Guerri, D. Bertozzi, M. Milano, L. Benini, A fast and accurate technique
for mapping parallel applications on stream-oriented mpsoc platforms with communication
awareness. Int. J. Parallel Program. 36, 3–36 (Feb. 2008)

63. J. Wu, J. Williams, and N. Bergmann, “An ilp formulation for architectural synthesis and
applicationmapping on fpga-based hybridmulti-processor soc”, in Field ProgrammableLogic
and Applications, 2008. FPL 2008. International Conference on, pp. 451–454, sept. 2008.

46 2 Literature Survey

64. C.-L. Sotiropoulou and S. Nikolaidis, “Ilp formulation for hybrid fpga mpsocs optimizing
performance, area and memory usage”, in Electronics, Circuits and Systems (ICECS), 2011
18th IEEE International Conference on, pp. 748–751, dec. 2011.

65. I. Kadayif, M. Kandemir, and U. Sezer, “An integer linear programming based approach for
parallelizing applications in on-chip multiprocessors”, in Design Automation Conference,
2002. Proceedings. 39th, pp. 703–708, 2002.

66. Y.Choi,Y.Lin,N.Chong, S.Mahlke, andT.Mudge, “Streamcompilation for real-time embed-
dedmulticore systems”, inCodeGeneration andOptimization, 2009.CGO2009. International
Symposium on, pp. 210–220, march 2009.

67. M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao, and E. Bu, “Maximizing
multiprocessor performance with the suif compiler”, Computer, vol. 29, pp. 84–89, dec 1996.

68. Y. Jin, N. Satish, K. Ravindran, and K. Keutzer, “An automated exploration framework
for fpga-based soft multiprocessor systems”, in CODES+ISSS ’05: Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software codesign and system syn-
thesis, (New York, NY, USA), pp. 273–278, ACM, 2005.

69. J. Cong, G. Han, and W. Jiang, “Synthesis of an application-specific soft multiprocessor
system”, in FPGA ’07: Proceedings of the 2007 ACM/SIGDA 15th international symposium
on Field programmable gate arrays, (New York, NY, USA), pp. 99–107, ACM, 2007.

70. S. Banerjee, T. Hamada, P. Chau, R. Fellman, Macro pipelining based scheduling on high
performance heterogeneous multiprocessor systems. Signal Processing, IEEE Transactions
on 43(6), 1468–1484 (1995)

71. S. Bakshi, D.D. Gajski, Component selection for high-performance pipelines. IEEE Trans.
VLSI Syst. 4(2), 181–194 (1996)

72. S. Bakshi, D.D. Gajski, Partitioning and pipelining for performance-constrained hard-
ware/software systems. IEEE Trans. VLSI Syst. 7(4), 419–432 (1999)

73. J. Jeon and K. Choi, “Loop pipelining in hardware-software partitioning”, in Asia and South
Pacific Design Automation Conference, pp. 361–366, 1998.

74. S. Ranaweera and D. Agrawal, “Scheduling of periodic time critical applications for pipelined
execution on heterogeneous systems”, in Parallel Processing, International Conference on,
2001, pp. 131–138, sept. 2001.

75. A. Benoit, Y. Robert, Mapping pipeline skeletons onto heterogeneous platforms. Journal of
Parallel and Distributed Computing 68(6), 790–808 (2008)

76. Y. R. Anne Benoit and E. Thierry, “On the complexity of mapping linear chain applications
onto heterogeneous platforms”, in, Parallel Processing Letters, 2009.

77. A. Benoit, V. Rehn-Sonigo, and Y. Robert, “Multi-criteria scheduling of pipeline workflows”,
in Cluster Computing, 2007 IEEE International Conference on, pp. 515–524, sept. 2007.

78. A. Benoit, H. Kosch, V. Rehn-Sonigo, and Y. Robert, “Bi-criteria pipeline mappings for
parallel image processing”, in ICCS ’08: Proceedings of the 8th international conference on
Computational Science, Part I, (Berlin, Heidelberg), pp. 215–225, Springer-Verlag, 2008.

79. V. R.-S. Anne Benoit, Harald Kosch and Y. Robert, “Multi-criteria scheduling of pipeline
workflows (and application to the jpeg encoder)”, in Internation Journal of High Performance
Computing Applications, 2009.

80. D.-I. Ko and S. S. Bhattacharyya, “The pipeline decomposition tree: an analysis tool for multi-
processor implementation of image processing applications”, in CODES+ISSS ’06: Proceed-
ings of the 4th international conference on Hardware/software codesign and system synthesis,
(New York, NY, USA), pp. 52–57, ACM, 2006.

81. B. Ristau, T. Limberg, and G. Fettweis, “A mapping framework for guided design space
exploration of heterogeneous mp-socs”, in DATE ’08: Proceedings of the conference on
Design, automation and test in Europe, (New York, NY, USA), pp. 780–783, ACM, 2008.

82. P.M. Carpenter, A. Ramirez, and E. Ayguade, “Mapping stream programs onto heterogeneous
multiprocessor systems”, in Proceedings of the 2009 international conference on Compilers,
architecture, and synthesis for embedded systems, CASES ’09, (New York, NY, USA), pp.
57–66, ACM, 2009.

References 47

83. M. Hashemi and S. Ghiasi, “Throughput-driven synthesis of embedded software for pipelined
execution on multicore architectures”, ACM Trans. Embed. Comput. Syst., vol. 8, pp. 11:1–
11:35, February 2009.

84. M. Hashemi and S. Ghiasi, “Versatile task assignment for heterogeneous soft dual-processor
platforms”, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 29, pp. 414–425, march 2010.

85. S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, “Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs”, in Design Automation Conference,
2007. DAC ’07. 44th ACM/IEEE, pp. 777–782, june 2007.

86. M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian, “Energy-aware cosynthesis of
real-timemultimedia applications onmpsocs using heterogeneous scheduling policies”, ACM
Trans. Embed. Comput. Syst., vol. 7, pp. 9:1–9:19, January 2008.

87. C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele, “An approximation scheme for energy-
efficient scheduling of real-time tasks in heterogeneous multiprocessor systems”, in Proceed-
ings of the Conference on Design, Automation and Test in Europe, DATE ’09, (3001 Leuven,
Belgium, Belgium), pp. 694–699, European Design and Automation Association, 2009.

88. J.-J. Chen, A. Schranzhofer, and L. Thiele, “Energy minimization for periodic real-time tasks
on heterogeneous processing units”, in Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pp. 1–12, may 2009.

89. A. Rae and S. Parameswaran, “Voltage reduction of application-specific heterogeneous mul-
tiprocessor systems for power minimisation”, in Proceedings of the 2000 Asia and South
Pacific Design Automation Conference, ASP-DAC ’00, (New York, NY, USA), pp. 147–152,
ACM, 2000.

90. R. Xu, R. Melhem, D. Mosse, “Energy-aware scheduling for streaming applications on chip
multiprocessors”, in Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE, Interna-
tional, pp. 25–38, dec. 2007.

91. L. K. Goh, B. Veeravalli, and S. Viswanathan, “Design of fast and efficient energy-aware
gradient-based scheduling algorithmsheterogeneous embeddedmultiprocessor systems”, Par-
allel and Distributed Systems, IEEE Transactions on, vol. 20, pp. 1–12, jan. 2009.

92. B. Virlet, X. Zhou, J. P. Giacalone, B. Kuhn, M. J. Garzaran, and D. Padua, “Scheduling of
stream-based real-time applications for heterogeneous systems”, in Proceedings of the 2011
SIGPLAN/SIGBED conference on Languages, compilers and tools for embedded systems,
LCTES ’11, (New York, NY, USA), pp. 1–10, ACM, 2011.

93. O. Ozturk, M. Kandemir, and G. Chen, “Compiler-directed energy reduction for voltage
islands”, Computers, IEEE Transactions on, vol. PP, no. 99, p. 1, 2011.

94. L. Bathen, N. Dutt, and S. Pasricha, “A framework for memory-aware multimedia application
mapping on chip-multiprocessors”, in Embedded Systems for Real-Time Multimedia, 2008.
ESTImedia 2008. IEEE/ACM/IFIP Workshop on, pp. 89–94, oct. 2008.

95. L. Bathen, Y. Ahn, N. Dutt, and S. Pasricha, “Inter-kernel data reuse and pipelining on chip-
multiprocessors for multimedia applications”, in Embedded Systems for Real-Time Multi-
media, 2009. ESTIMedia 2009. IEEE/ACM/IFIP 7th Workshop on, pp. 45–54, oct. 2009.

96. H. Salamy, J. Ramanujam, A framework for task scheduling and memory partitioning for
multi-processor system-on-chip. High Performance Embedded Architectures and Compilers
5409, 263–277 (2009)

97. H. Salamy and J. Ramanujam, “An effective solution to task scheduling and memory parti-
tioning for multiprocessor system-on-chip”, Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 31, pp. 717–725, may 2012.

98. F. Glover, E. Taillard, D. de Werra, A user’s guide to tabu search. Ann. Oper. Res. 41, 3–28
(May 1993)

99. S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies. Journal of Statis-
tical Physics 34, 975–986 (1984)

100. J.H. Holland, Adaptation in natural and artificial systems (MIT Press, Cambridge, MA, USA,
1992)

48 2 Literature Survey

101. T. Bäck, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary
programming, genetic algorithms (Oxford University Press, Oxford, UK, 1996)

102. M. F. Ercan and C. OÄŸuz, “Performance of local search heuristics on scheduling a class
of pipelined multiprocessor tasks”, Computers and Electrical Engineering, vol. 31, no. 8, pp.
537–555, 2005.

103. A.Tumeo,C. Pilato, F. Ferrandi,D. Sciuto, andP.Lanzi, “Ant colonyoptimization formapping
and scheduling in heterogeneous multiprocessor systems”, in Embedded Computer Systems:
Architectures, Modeling, and Simulation, 2008. SAMOS 2008. International Conference on,
pp. 142–149, july 2008.

104. A. Tumeo, M. Branca, L. Camerini, C. Pilato, P. L. Lanzi, F. Ferrandi, and D. Sciuto, “Map-
ping pipelined applications onto heterogeneous embedded systems: a bayesian optimization
algorithm based approach”, in Proceedings of the 7th IEEE/ACM international conference
on Hardware/software codesign and system synthesis, CODES+ISSS ’09, (New York, NY,
USA), pp. 443–452, ACM, 2009.

105. M. Branca, L. Camerini, F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Evolu-
tionary algorithms for the mapping of pipelined applications onto heterogeneous embedded
systems”, in Proceedings of the 11th Annual conference on Genetic and evolutionary com-
putation, GECCO ’09, (New York, NY, USA), pp. 1435–1442, ACM, 2009.

106. H. Yang and S. Ha, “Pipelined data parallel task mapping/scheduling technique for mpsoc”,
in Design, Automation Test in Europe Conference Exhibition, 2009. DATE ’09., pp. 69–74,
april 2009.

107. T. Blickle, J. Teich, L. Thiele, System-level synthesis using evolutionary algorithms. Design
Automation for Embedded Systems 3(1), 23–58 (1998)

108. L. Pomante, “System-level design space exploration for dedicated heterogeneous multi-
processor systems”, in Application-Specific Systems, Architectures and Processors (ASAP),
2011 IEEE International Conference on, pp. 79–86, sept. 2011.

109. C. Erbas, S. Cerav-Erbas, and A. Pimentel, “Multiobjective optimization and evolutionary
algorithms for the application mapping problem in multiprocessor system-on-chip design”,
Evolutionary Computation, IEEE Transactions on, vol. 10, pp. 358–374, june 2006.

110. B. Meyer and D. Thomas, “Rethinking automated synthesis of mpsoc architectures”, in Paral-
lel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE, International, pp. 1–6,
March 2007.

111. T. Givargis, F. Vahid, and J. Henkel, “System-level exploration for pareto-optimal configu-
rations in parameterized system-on-a-chip”, Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 10, pp. 416–422, aug. 2002.

112. F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Synthesis of application-specific heteroge-
neous multiprocessor architectures using extensible processors”, in VLSID ’05: Proceedings
of the 18th International Conference on VLSI Design held jointly with 4th International
Conference on Embedded Systems Design, (Washington, DC, USA), pp. 551–556, IEEE
Computer Society, 2005.

113. I. Karkowski and H. Corporaal, “Design of heterogenous multi-processor embedded sys-
tems: applying functional pipelining”, in PACT ’97: Proceedings of the 1997 International
Conference on Parallel Architectures and Compilation Techniques, IEEE Computer Society,
1997.

114. I. Karkowski andH. Corporaal, “Design space exploration algorithm for heterogeneousmulti-
processor embedded system design”, in DAC ’98: Proceedings of the 35th annual Design
Automation Conference, (New York, NY, USA), pp. 82–87, ACM, 1998.

115. L. Chen, N. Boichat, and T. Mitra, “Customized mpsoc synthesis for task sequence”, in
Proceedings of the 2011 IEEE 9th Symposium on Application Specific Processors, SASP
’11, (Washington, DC, USA), pp. 16–21, IEEE Computer Society, 2011.

116. U. Bordoloi, H. P. Huynh, T. Mitra, and S. Chakraborty, “Design space exploration of instruc-
tion set customizable mpsocs for multimedia applications”, in Embedded Computer Systems
(SAMOS), 2010 International Conference on, pp. 170–177, july 2010.

References 49

117. P. Chandraiah and R. Domer, “Code and data structure partitioning for parallel and flexible
mpsoc specification using designer-controlled recoding”, Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, vol. 27, pp. 1078–1090, june 2008.

118. J.-Y. Mignolet, R. Baert, T. Ashby, P. Avasare, H.-O. Jang, and J. C. Son, “Mpa: Parallelizing
an application onto a multicore platform made easy”, Micro, IEEE, vol. 29, pp. 31–39, may-
june 2009.

119. G. Tournavitis, Z. Wang, B. Franke, andM. F. O’Boyle, “Towards a holistic approach to auto-
parallelization: integrating profile-driven parallelism detection and machine-learning based
mapping”, in Proceedings of the 2009ACMSIGPLAN conference on Programming language
design and implementation, PLDI ’09, (New York, NY, USA), pp. 177–187, ACM, 2009.

120. J. Ceng, J. Castrillon,W. Sheng, H. Scharwächter, R. Leupers, G. Ascheid, H.Meyr, T. Isshiki,
and H. Kunieda, “Maps: an integrated framework for mpsoc application parallelization”, in
DAC ’08: Proceedings of the 45th annual Design Automation Conference, (New York, NY,
USA), pp. 754–759, ACM, 2008.

121. R. Leupers and J. Castrillon, “Mpsoc programming using the maps compiler”, in Design
Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, pp. 897–902, jan.
2010.

122. D. Cordes, P. Marwedel, and A. Mallik, “Automatic parallelization of embedded software
using hierarchical task graphs and integer linear programming”, in Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference
on, pp. 267–276, oct. 2010.

123. D. Cordes, A. Heinig, P. Marwedel, and A. Mallik, “Automatic extraction of pipeline paral-
lelism for embedded software using linear programming”, in Parallel and Distributed Systems
(ICPADS), 2011 IEEE 17th International Conference on, pp. 699–706, dec. 2011.

124. K. Huang, S.-i. Han, K. Popovici, L. Brisolara, X. Guerin, L. Li, X. Yan, S.-l. Chae, L. Carro,
and A. A. Jerraya, “Simulink-basedmpsoc design flow: case study of motion-jpeg and h.264”,
in DAC ’07: Proceedings of the 44th annual Design Automation Conference, (New York, NY,
USA), pp. 39–42, ACM, 2007.

125. S.-I. Han, S.-I. Chae, L. Brisolara, L. Carro, K. Popovici, X. Guerin, A.A. Jerraya, K. Huang,
L. Li, X. Yan, Simulink-based heterogeneous multiprocessor soc design flow for mixed
hardware/software refinement and simulation. Integration, the VLSI Journal 42(2), 227–245
(2009)

126. D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Automatic generation of application-
specific architectures for heterogeneous multiprocessor system-on-chip”, in DAC ’01: Pro-
ceedings of the 38th annual Design Automation Conference, (New York, NY, USA), pp.
518–523, ACM, 2001.

127. P. Van Der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink, “Design and
programming of embeddedmultiprocessors: an interface-centric approach”, in CODES+ISSS
’04: Proceedings of the 2nd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, (New York, NY, USA), pp. 206–217, ACM, 2004.

128. K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration for optimizing on-chip
communication architectures”, Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 23, pp. 952–961, june 2004.

129. F.Dumitrascu, I. Bacivarov, L. Pieralisi,M.Bonaciu, andA. Jerraya, “Flexiblempsoc platform
with fast interconnect exploration for optimal system performance for a specific application”,
in Design, Automation and Test in Europe, 2006. DATE ’06. Proceedings, vol. 2, p. 6 pp.,
march 2006.

130. S. Pasricha and N. D. Dutt, “A framework for cosynthesis of memory and communication
architectures for mpsoc”, Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 26, pp. 408–420, march 2007.

131. A. Wieferink, T. Kogel, R. Leupers, G. Ascheid, H. Meyr, G. Braun, and A. Nohl, “A sys-
tem level processor/communication co-exploration methodology for multi-processor system-
on-chip platforms”, in DATE ’04: Proceedings of the conference on Design, automation and
test in Europe, (Washington, DC, USA), p. 21256, IEEE Computer Society, 2004.

50 2 Literature Survey

132. A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A. Wieferink, and
H. Meyr, “A novel methodology for the design of application-specific instruction-set proces-
sors (asips) using a machine description language”, Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 20, pp. 1338–1354, nov 2001.

133. F. Angiolini, J. Ceng, R. Leupers, F. Ferrari, C. Ferri, and L. Benini, “An integrated open
framework for heterogeneous mpsoc design space exploration”, in DATE ’06: Proceedings of
the conference on Design, automation and test in Europe, (3001 Leuven, Belgium, Belgium),
pp. 1145–1150, European Design and Automation Association, 2006.

134. CoWare, “Lisatek”. Available at: http://www.coware.com/
135. M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “Analyzing on-chip commu-

nication in a mpsoc environment”, in DATE ’04: Proceedings of the conference on Design,
automation and test in Europe, (Washington, DC, USA), p. 20752, IEEE Computer Society,
2004.

136. G.Martin,Multi-processor soc-based designmethodologies using configurable and extensible
processors. J. Signal Process. Syst. 53(1–2), 113–127 (2008)

137. A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov, D. Gajski, and J. Teich, “Electronic
system-level synthesis methodologies”, Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 28, pp. 1517–1530, oct. 2009.

138. F. Balarin, Y.Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli,
“Metropolis: an integrated electronic system design environment”, Computer, vol. 36, pp. 45–
52, april 2003.

139. A. Sangiovanni-Vincentelli, “Quo vadis, sld? reasoning about the trends and challenges of
system level design”, Proceedings of the IEEE, vol. 95, pp. 467–506, march 2007.

140. T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T.D. Hämäläinen, J.
Riihimäki, K. Kuusilinna, Uml-based multiprocessor soc design framework. ACM Trans.
Embed. Comput. Syst. 5, 281–320 (May 2006)

141. S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo, “Peace: A hardware-software codesign
environment for multimedia embedded systems”, ACM Trans. Des. Autom. Electron. Syst.,
vol. 12, pp. 24:1–24:25, May 2008.

142. University of California Berkeley, “Ptolemy project”. Available at http://ptolemy.eecs.
berkeley.edu/ptolemyII/

143. S. Kwon, Y. Kim, W.-C. Jeun, S. Ha, and Y. Paek, “A retargetable parallel-programming
framework for mpsoc”, ACM Trans. Des. Autom. Electron. Syst., vol. 13, pp. 39:1–39:18,
July 2008.

144. M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas, S. Polstra, and E. F. Depret-
tere, “A framework for rapid system-level exploration, synthesis, and programming of mul-
timedia mp-socs”, in CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, (New York, NY, USA), pp.
9–14, ACM, 2007.

145. H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zissulescu, and
E. Deprettere, “Daedalus: toward composable multimedia mp-soc design”, in Proceedings
of the 45th annual Design Automation Conference, DAC ’08, (New York, NY, USA), pp.
574–579, ACM, 2008.

146. S. Verdoolaege, H. Nikolov, T. Stefanov, pn: a tool for improved derivation of process net-
works. EURASIP J. Embedded Syst. 2007, 19–19 (Jan. 2007)

147. A. Pimentel, C. Erbas, S. Polstra, A systematic approach to exploring embedded system
architectures at multiple abstraction levels. Computers, IEEE Transactions on 55(2), 99–112
(2006)

148. H. Nikolov, T. Stefanov, and E. F. Deprettere, “Systematic and automated multiprocessor sys-
tem design, programming, and implementation”, IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 27, no. 3, pp. 542–555, 2008.

149. M. Bamakhrama, J. Zhai, H. Nikolov, and T. Stefanov, “A methodology for automated design
of hard-real-time embedded streaming systems”, in Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2012, pp. 941–946, march 2012.

http://www.coware.com/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://ptolemy.eecs.berkeley.edu/ptolemyII/

References 51

150. R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and D. D. Gajski, “System-
on-chip environment: a specc-based framework for heterogeneous mpsoc design”, EURASIP
J. Embedded Syst., vol. 2008, pp. 5:1–5:13, Jan. 2008.

151. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S (Specification Language and Design Method-
ology. Kluwer Academic Publishers, Zhao, SpecC, 2000)

152. J. Keinert, M. Streub&uhr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, and M.
Meredith, “Systemcodesigner—an automatic esl synthesis approach by design space
exploration and behavioral synthesis for streaming applications”, ACM Trans. Des. Autom.
Electron. Syst., vol. 14, pp. 1:1–1:23, Jan. 2009.

153. M. Platzner, J. Teich, N (Dynamically Reconfigurable Systems. Springer, When, 2010)
154. A. Schranzhofer, J.-J. Chen, and L. Thiele, “Dynamic power-aware mapping of applications

onto heterogeneous mpsoc platforms”, Industrial Informatics, IEEE Transactions on, vol. 6,
pp. 692–707, nov. 2010.

155. C. Ykman-Couvreur, P. Avasare, G. Mariani, G. Palermo, C. Silvano, and V. Zaccaria, “Link-
ing run-time resourcemanagement of embeddedmulti-core platformswith automated design-
time exploration”, Computers Digital Techniques, IET, vol. 5, pp. 123–135, march 2011.

156. C. Silvano, W. Fornaciari, E (The Multicube approach. Springer, Villar, Multi-objective
Design Space Exploration of Multiprocessor SoC Architectures, 2011)

157. K. Niyogi and D. Marculescu, “Speed and voltage selection for gals systems based on volt-
age/frequency islands”, in Proceedings of the 2005Asia and South PacificDesignAutomation
Conference, ASP-DAC ’05, (New York, NY, USA), pp. 292–297, ACM, 2005.

158. C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An analysis of efficient
multi-core global power management policies: Maximizing performance for a given power
budget”, in Proceedings of the 39thAnnual IEEE/ACM International Symposium onMicroar-
chitecture,MICRO 39, (Washington, DC, USA), pp. 347–358, IEEEComputer Society, 2006.

159. D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L. Torres, “Dynamic and distributed
frequency assignment for energy and latency constrained mp-soc”, in Design, Automation
Test in Europe Conference Exhibition, 2009. DATE ’09., pp. 1564–1567, april 2009.

160. A. Molnos and K. Goossens, “Conservative dynamic energy management for real-time
dataflow applications mapped on multiple processors”, in Digital System Design, Archi-
tectures, Methods and Tools, 2009. DSD ’09. 12th Euromicro Conference on, pp. 409–418,
aug. 2009.

161. J. Huang, A. Raabe, C. Buckl, and A. Knoll, “A workflow for runtime adaptive task allocation
on heterogeneous mpsocs”, in Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, pp. 1–6, march 2011.

162. P. Malani, P. Mukre, Q. Qiu, and Q. Wu, “Adaptive scheduling and voltage scaling for mul-
tiprocessor real-time applications with non-deterministic workload”, in Proceedings of the
conference on Design, automation and test in Europe, DATE ’08, (New York, NY, USA), pp.
652–657, ACM, 2008.

163. K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. Buttazzo, “Adaptive dynamic power
management for hard real-time systems”, in Real-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE, pp. 23–32, dec. 2009.

164. A. Coskun, T. Rosing, and K. Gross, “Utilizing predictors for efficient thermal management
in multiprocessor socs”, Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 28, pp. 1503–1516, oct. 2009.

165. T. Ebi, M. Faruque, and J. Henkel, “Tape: Thermal-aware agent-based power econom
multi/many-core architectures”, in Computer-Aided Design - Digest of Technical Papers,
2009. ICCAD 2009. IEEE/ACM International Conference on, pp. 302–309, nov. 2009.

166. Y. Ge and Q. Qiu, “Dynamic thermal management for multimedia applications using machine
learning”, in Proceedings of the 48th Design Automation Conference, DAC ’11, (New York,
NY, USA), pp. 95–100, ACM, 2011.

167. Y. Tan, W. Liu, and Q. Qiu, “Adaptive power management using reinforcement learning”, in
Proceedings of the 2009 International Conference on Computer-Aided Design, ICCAD ’09,
(New York, NY, USA), pp. 461–467, ACM, 2009.

52 2 Literature Survey

168. E. de Souza Carvalho, N. Calazans, and F. Moraes, “Dynamic task mapping for mpsocs”,
Design Test of Computers, IEEE, vol. 27, pp. 26–35, sept.-oct. 2010.

169. M. A. Al Faruque, R. Krist, and J. Henkel, “Adam: run-time agent-based distributed applica-
tionmapping for on-chip communication”, in Proceedings of the 45th annual DesignAutoma-
tion Conference, DAC ’08, (New York, NY, USA), pp. 760–765, ACM, 2008.

Chapter 3
Optimisation Framework

This chapter provides a philosophical overview of the research reported in this
monograph. Firstly, the application model and pipelined MPSoCs considered in
this monograph are described. Then, shortcomings of prior research on pipelined
MPSoCs are discussed in order to provide an idea of how this monograph fills in
some of the gaps in prior research. Lastly, this chapter rationalises the design-time
and run-time optimisations proposed for pipelined MPSoCs in this monograph.

3.1 Application Model and Pipelined MPSoCs

Multimedia applications are characterised by several sub-kernels which are executed
repeatedly on an input data stream. For example, the JPEG decoder application con-
tains the following sub-kernels: EntropyDecoding (ED); Inverse Transformation and
Quantisation (ITQ); and, Colour Conversion (CC). These sub-kernels are indepen-
dent of each other and hence can operate on different data units at the same time,
enabling their execution on pipelined MPSoCs. The number of invocations of all the
sub-kernels is the same and equal to the number of data units in the input. Hence,
the number of iterations of the application is equal to the number of times each
sub-kernel is invoked. Figure3.1 illustrates task graphs of several multimedia appli-
cations where nodes and edges represent the sub-kernels and the data dependencies
respectively.

In a pipelined MPSoC, processors are organised in stages where the stages are
connected in a pipeline. Communication between the stages typically occurs through
FIFO buffers. These FIFO buffers allow communication at a much higher bandwidth
compared to a shared bus andprovide blocking read andwrite operations to allow syn-
chronisation between the processors running at different frequencies. Each processor
is an Application Specific Instruction set Processor (ASIP) with separate instruction
and data caches that are connected to its local memory. In addition to local memories,
shared memory could be used where common data need to be shared within a stage

H. Javaid and S. Parameswaran, Pipelined Multiprocessor System-on-Chip 53
for Multimedia, DOI: 10.1007/978-3-319-01113-4_3,
© Springer International Publishing Switzerland 2014

54 3 Optimisation Framework

Fig. 3.1 Graphs of typical multimedia applications

and/or among different stages. The nodes and edges of a multimedia application’s
task graph are assigned to one or more processors and FIFO buffers in the pipelined
MPSoC. For example, the sub-kernels of JPEGEnc1 have been one-to-one mapped
onto a pipelined MPSoC shown in Fig. 3.2. While the processor P2.1 is in ith iter-
ation, P1.1 will be in its (i+1)th iteration, thereby allowing pipelined execution of
the sub-kernels. In other words, the input data streams through the pipelinedMPSoC
before being written by the last stage. Note that an iteration of the pipelined MPSoC
refers to the processing of one data unit by all sub-kernels, and the number of itera-
tions of a pipelined MPSoC is the number of iterations of the application executing
on it. Figure3.2 also shows pipelined MPSoCs for other applications where some of
the FIFO buffers and memories have been omitted for the sake of simplicity. Note
that the TQ sub-kernel of JPEGEnc2 is implemented on three processors, which will
work in parallel to achieve the required performance.

The backward edges in an application graph introduce data dependencies that
can hamper pipelined execution of the sub-kernels. This is because the stage which
requires data from a backward edge (consumer stage) might have to wait due to
a stage further in the pipeline (producer stage). For example, stage 2 (ME) of the
H.264Enc requires data from stage 6 (LF) in Fig. 3.1. The dependency distance of
an edge is the dependence distance in number of iterations between the consumer
and the producer stages. Consider that the ith iteration of stage 2 needs the output
of (i-7)th iteration of stage 6, then the dependency distance of the backward edge is
seven. To avoid unnecessary waiting due to a backward edge in a balanced pipelined

3.1 Application Model and Pipelined MPSoCs 55

Fig. 3.2 Pipelined MPSoCs for multimedia applications of Fig. 3.1 (some FIFO buffers and mem-
ories are not shown for the sake of simplicity)

56 3 Optimisation Framework

MPSoC, the dependency distance of the backward edge should be ≥ the number of
stages included in it. This condition ensures that the data is always available to the
consumer stage on or before time. For example, when stage 2 of H.264 encoder is
in its ith iteration, then stage 6 would be in its (i-4)th iteration. Consider the depen-
dency distance of seven for the backward edge, then the output of (i-7)th iteration
of stage 6 will already be available and hence stage 2 will not wait unnecessarily
and the pipelined execution will continue. Alternatively, the dependency distance
of 7 is ≥ 5, which is the number of stages in the backward edge (that is, stages
2, 3, 4, 5 and 6). Unnecessary waiting due to the backward edges voids the use-
fulness of pipelined execution; therefore, applications that violate the dependency
distance condition for backward edges will not benefit from their implementations
on pipelinedMPSoCs. Interestingly, typical multimedia applications do fulfil the de-
pendency distance condition for backward edges. Consider that the H.264 encoder is
executed at the macroblock-level (which is typical of real-time implementations of
H.264 video encoder/decoder [1]), the ME stage of the H.264 encoder will require
the macroblocks of the previously reconstructed frame(s) that would have already
been produced by the LF stage.

In a pipelinedMPSoC, each processor is customised according to the sub-kernel(s)
assigned to it to balance the stages for improved performance, reduced area foot-
print and low power consumption. One can add custom instructions for processors
with computationally intensive sub-kernels while reducing unnecessary logic from
processors with computationally light sub-kernels. Hence, at the system-level, the
variants in the pipelinedMPSoC are the processor configurations resulting from cus-
tomisable options (custom instructions and cache sizes) that are generated for each
of the processors according to the assigned sub-kernels. The pipelined MPSoC will
be implemented with one of the combination of processor configurations (one of the
design points of the pipelined MPSoC). The goal is to select one configuration for
each processor in the pipelinedMPSoC to have the optimal combination of processor
configurations (the optimal design point) for a given objective function such as min-
imum area or maximum throughput. The selection of a pipelined MPSoC’s design
point is done during design space exploration by the evaluation of the design points’
performance metrics, coupled with exploration algorithms. For a pipelined MPSoC
with five processors where each processor has 100 configurations, 1010 combinations
of processor configurations are possible, requiring quick exploration methodologies.

3.2 Shortcomings of Prior Research

To enable quick exploration of a pipelined MPSoC’s design space, a quick method-
ology to obtain performance metrics of all the design points is required. Since there
can be billions of design points, a simulation only methodology is not feasible. A few
works on performance estimation of pipelined MPSoCs used full—system, cycle-
accurate simulations and an analytical model for only the execution time [2–5]. The
works in [2, 3] proposed less accurate models, while [4, 5] did not evaluate the

3.2 Shortcomings of Prior Research 57

accuracy of their models. Chapter4 addresses these issues by introducing analytical
models for three performance metrics (execution time, latency and throughput) of a
pipelined MPSoC and evaluates their absolute accuracy and fidelity [6]. Throughput
and latency are typical performance metrics for real-time pipelined MPSoCs. Two
estimationmethods are also proposed in Chap.4 to reduce the number of full-system,
cycle-accurate simulations of the pipelined MPSoC to aid quick exploration.

Once the performance metrics of design points are available (or can be computed
quickly), the next step is to use exploration algorithms to search for the optimal
design point. Jin et al. [7] addressed the problem of maximising the throughput of a
multimedia application on a pipelinedMPSoCwith fixed number of processors. Cong
et al. [8] proposed exact algorithms to minimise latency and number of processors
in a pipelined MPSoC under a throughput constraint. Both these works [7, 8] did
not consider processor customisation, and thus dealt with homogeneous pipelined
MPSoCs only.

The work in [2] addressed the problem of processor customisation (selection of
custom instructions or selection of processor configurations) in a pipelined MPSoC.
Shee et al. [2] proposed a heuristic to maximise pipelined MPSoC’s execution time
improvement per area increase ratio compared to a uniprocessor system. Thus, Shee
et al. did not consider performance constraints that are typical of real-time multi-
media applications. Chapter5 addresses these issues by proposing three techniques
for area footprint optimisation of a pipelined MPSoC under an execution time or a
latency or a throughput constraint respectively. To speed up the exploration process,
these techniques utilise the performance analytical models and estimation methods
proposed in Chap.4. Two works inspired from the proposals of Chap. 5 have been
published recently [9, 10]. Bordoli et al. [9] considered variations in processor laten-
cies during customisation of the processors. Their objectivewas tominimise variation
in throughput under an area footprint constraint. Chen et al. [10] explored simulta-
neous mapping and processor customisation with variable number of processors in
the pipelined MPSoC. Their aim was to minimise MPSoC’s area under a throughput
constraint.

The pipelined MPSoCs optimised at design-time use worst-case parameters
to ensure that the performance required of them is delivered at all times when
deployed. As such, worst-case pipelined MPSoCs lack run-time adaptability, and
thus may result in inefficient resource utilisation and increased energy consumption
under a dynamic workload. Hence, to enable low-power operation under a dynamic
workload, run-time adaptability must be introduced in pipelined MPSoCs.

The works in [11–13] considered run-time adaptability in pipelined MPSoCs.
Guo et al. [13] proposed a dynamic voltage scaling approach to reduce the voltage
to processors with low workload, while [11, 12] showed the application of Dynamic
Voltage and Frequency Scaling (DVFS) in pipelinedMPSoCs. All theseworks used a
feedback controller to monitor the occupancy level of the FIFO buffers to determine
when to increase or decrease the frequency-voltage levels of a processor. Although
feedback controllers provide run-time adaptability in pipelined MPSoCs, they are
reactive in nature rather than proactive as they do not utilise any form of predic-
tion. Therefore, the controller only acts when a performance penalty has occurred

http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_5
http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_5

58 3 Optimisation Framework

instead of forecasting such a penalty and acting in advance. Proactive techniques
are typically required when the variations in workload are sudden due to input data
dependence,which is the casewithmultimedia applications. Chapters6 and 7 address
run-time adaptability issues in pipelined MPSoCs. Chapter6 introduces an adaptive
pipelined MPSoC architecture with a processor manager to predict idle processors
in the pipelined MPSoC at run-time. The processor manager not only utilises the
application’s execution history, but also the application’s knowledge to predict the
upcoming workload. An application’s knowledge should be used in workload pre-
diction because an application knows (or may know) by far the most about its future
workload [14]. The idle processors are either clock- or power-gated to illustrate the
energy efficiency of adaptive pipelined MPSoCs compared to worst-case pipelined
MPSoCs. Thus, Chap.6 proposes proactive rather than reactive run-time processor
management techniques for adaptive pipelined MPSoCs.

Practically, provision of the DVFS circuitry for MPSoCs with more than two
processors is very expensive [15]. Furthermore, the large overhead of the DVFS
control circuitry limits its use to systems requiring only coarse-grained run-time
management [16]. The shrinkage of the dynamic range of frequency-voltage oper-
ational points due to downward scaling of supply voltage has also limited the use
of DVFS, and has given rise to the use of clock-gating, power-gating and multiple
power states. Therefore, Chap.6 used either clock- or power-gating to deactivate idle
processors in an adaptive pipelinedMPSoC. Chapter7 extends this work for multiple
power states, where the challenge is to also predict the upcoming idle period of an
idle processor to select the most energy saving power state. Like Chaps. 6, 7 also
proposes proactive run-time techniques utilising the application’s knowledge, but
for power management of adaptive pipelined MPSoCs.

A pipelined MPSoC will typically be used as a multimedia accelerator in a mul-
timedia platform (such as OMAP [17], Tegra [18], etc.) because it is extremely cus-
tomised for a specific multimedia application. So far, both worst-case (non-adaptive)
and adaptive pipelined MPSoCs have been designed for only one multimedia appli-
cation, requiring the deployment of individual accelerators for multimedia applica-
tions. Due to the area constraints in portable media devices, it is desirable to use a
multi-mode accelerator rather than individual accelerators when their use is mutu-
ally exclusive. Chapter8 makes the first attempt at multi-mode pipelined MPSoCs
for multiple, mutually exclusive applications to function as multi-mode multimedia
accelerators where each mode refers to the execution of one application. The idea of
merging individual application graphs into a single application graph at design-time
is exploited for realisation of a multi-mode pipelined MPSoC.

3.3 Overview of Optimisation Framework

The aim of this monograph is to optimise pipelined MPSoCs by reducing their
area footprint and lowering their power consumption under real-time performance
constraints. The author proposes design-time and run-time optimisations, which are
targeted at different objective functions. At first, a pipelined MPSoC is optimised

http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_7
http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_7
http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_7
http://dx.doi.org/10.1007/978-3-319-01113-4_8

3.3 Overview of Optimisation Framework 59

for area footprint under an execution time, a latency constraint or a throughput
constraint. Then, such a design-time optimised pipelined MPSoC is augmented with
run-time adaptability for low-power operation under a dynamic workload. Finally,
the pipelinedMPSoCs optimised for different multimedia applications are combined
into a single multi-mode pipelinedMPSoC for further reduction of the area footprint.
Figure3.3 presents a philosophical overview of how the research reported in different
chapters of this monograph is connected, and can be used to optimise pipelined
MPSoCs in the form of an optimisation framework.

The first phase of the framework involves analysis and profiling of the multime-
dia application to decide the initial architecture of the pipelined MPSoC (number
of processors, and number, size and connection of the FIFO buffers). The analysis
involves extraction of the sub-kernels if the application is specified as a C/C++ code,
which can be done manually or semi-automatically [19, 20]. Alternatively, an appli-
cation can be specified in a stream language such as StreamIt [21] to explicitly rep-
resent the sub-kernels. Once the sub-kernels are available, profiling is performed to
analyse the computational ratios of the sub-kernels so that they can be merged and/or
split if required. This process is typically referred to as an application-level balanc-
ing [22–24] and is done to ensure that the sub-kernels contain reasonable amount of
computation to be mapped to individual processors. After such an application-level
balancing, code segments of the sub-kernels are produced, in addition to the applica-
tion graphwhere nodes represent sub-kernels and edges represent data dependencies.
The initial pipelined MPSoC is then derived by mapping sub-kernels and edges of
the application graph to one or more processors and FIFO buffers respectively. Note
that the first phase of the framework is done manually or semi-automatically by the
designer, and is not the focus of this monograph.

The second phase of the framework optimises the area footprint of the initial
pipelined MPSoC under a performance constraint by customising the processors.
This phase takes the code segments of the sub-kernels and the pipelined MPSoC
architecture as the input from the last phase (the application graph is used in the
fourth phase). Initially, for each of the processors in the pipelinedMPSoC, processor
configurations trading-off performance and area footprint are created by combining
the custom instructions (generated using an ASIP generator which analyses the code
segments of the sub-kernels) with cache configurations. The combinations of these
processor configurations make up the design points of the pipelinedMPSoC’s design
space. The goal is to quickly explore the design space (by utilising quick performance
evaluation of design points and fast exploration algorithms) to select one configura-
tion for each processor so that the area of the pipelined MPSoC is minimised under
a performance constraint.

Chapter4 proposes analytical models to estimate the execution time, latency and
throughput of a pipelinedMPSoC’s design point using latencies of individual proces-
sor configurations, and thus avoiding slow, full-system, cycle accurate simulations
of all the design points. For effective use of these analytical models, latencies of
individual processor configurations should be available. To this end, two estimation
methods (PS and PSP) are proposed to gather latencies of processor configurations
with the minimal number of simulations. The PS method simulates all the processor

http://dx.doi.org/10.1007/978-3-319-01113-4_4

60 3 Optimisation Framework

Fig. 3.3 An optimisation framework for pipelined MPSoCs

3.3 Overview of Optimisation Framework 61

configurations once, while the PSP method simulates only a subset of processor con-
figurations and then uses a processor analytical model to estimate the latencies of
the processor configurations. Experiments with a number of pipelined MPSoCs ex-
ecuting typical multimedia applications (JPEG encoder/decoder, MP3 encoder and
H.264 encoder) showed that the analytical models with PS and PSP methods had
maximum absolute errors of 12.95 and 18.67% respectively, and minimum fidelities
of 0.93 and 0.88 respectively. The design spaces of the pipelined MPSoCs ranged
from 1012 to 1018 design points, and hence simulation of all design points will take
years and is infeasible. Compared to the PS method, the PSP method reduced simu-
lation time from days to several hours because it reduced the number of simulations
from hundreds to only tens.

Chapter5 builds upon Chap.4 by utilising the analytical models in the exploration
algorithms for quick design space exploration. It proposes Integer Linear Program-
ming (ILP) based techniques for area footprint optimisation under an execution time
constraint or a latency constraint, and an algorithm for area footprint optimisation
under a throughput constraint. The proposed exploration techniques were evaluated
on the five pipelinedMPSoCs created in Chap.4, again with design spaces up to 1018

design points. The time to find the Pareto front of each pipelinedMPSoCwith respect
to execution time or latency or throughput was less than seven minutes, illustrating
the applicability of the proposed design space exploration method. At the end of the
second phase, implementation of the pipelined MPSoC in terms of the processor
configurations is available. Note that a designer will typically optimise the pipelined
MPSoC using worst-case latencies of the processor configurations (that is, processor
latencies will be gathered by providing worst-case representative input data to the
pipelined MPSoCs) so that it can deliver the throughput required of it at all times
when deployed.

Once a pipelined MPSoC optimised for area footprint is available, the third phase
of the framework optimises it for low power consumption with the addition of run-
time adaptability. This phase takes the pipelinedMPSoC optimised for area footprint
using worst-case parameters and the application sub-kernels from the last phases.
Initially, off-line profiling and statistical analysis of the application sub-kernels is
conducted by executing the worst-case pipelined MPSoC with differing input data
to record possible run-time workload variations such as average workload, standard
deviation of the workload, etc. The author then exploits the fact that all the processors
will not be active at all times due to dynamic workload and hence can be managed
at run-time to reduce energy consumption.

Chapter6 proposes an adaptive pipelined MPSoC architecture, capable of adapt-
ing itself to run-time variations in workload. In an adaptive pipelinedMPSoC, stages
with significant run-time variations inworkload are implemented usingMain Proces-
sors and Auxiliary Processors, where the main processor uses differing number of
auxiliary processors, considering run-time workload variations. A main processor is
equipped with a run-time processor management technique which uses a combina-
tion of the application’s execution and knowledge (algorithmic and data properties)
and information from off-line profiling and statistical analysis to proactively predict
the number of auxiliary processors that should be used. The idle auxiliary processors

http://dx.doi.org/10.1007/978-3-319-01113-4_5
http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_6

62 3 Optimisation Framework

are either clock- or power-gated to reduce energy consumption. Experiments with
an H.264 video encoder, designed for HD720p at 30 fps, showed that an adaptive
pipelined MPSoC provided an energy reduction of up to 34 and 39% for clock- and
power-gating based deactivation of auxiliary processors respectivelywith aminimum
throughput of 28.75 fps compared to a worst-case pipelined MPSoC.

Chapter7 builds upon the processor manager of Chap. 6 by proposing a power
manager where auxiliary processors havemultiple power states, trading-off overhead
of the transition to power states with their possible energy reductions. In the presence
of multiple low-power states, the challenge is to predict the duration of the idle
period so that the most beneficial power state can be selected for an idle auxiliary
processor. Five heuristics are proposed as part of the power manager to forecast at
run-time the duration of upcoming idle period of an auxiliary processor using either
the application’s execution history or the application’s knowledge. Then, based on
the predicted duration of the idle period, the most suitable power state is selected.
Compared to the use of processor manager with only clock-gating or only power-
gating in an adaptive pipelined MPSoC executing H.264 video encoder (HD720p at
30 fps), the power manager reduced up to a further 40% energy consumption with
only an additional 0.5% degradation of the throughput.

The second and third phases of the framework optimise a single pipelinedMPSoC
for the area footprint and energy consumption. To further reduce area footprint,
processors and FIFO buffers of multiple pipelined MPSoCs, designed for multiple
multimedia applications, are shared when their use is mutually exclusive by creating
a multi-mode pipelined MPSoC. The third phase uses the application graphs as the
representation of the pipelined MPSoCs’ architectures (number of processors, and
number, size and connection of the FIFO buffers). Chapter8 proposes to merge
application graphs into a single graph by finding a maximal overlap between the
graphs so that the multi-mode pipelined MPSoC derived from the merged graph
contains minimal resources. The results indicate significant area footprint reduction
(up to 62% processor area, 57% FIFO area and 44 processor/FIFO ports) with
minuscule degradation of system throughput (up to 2%) and latency (up to 2%), and
an increase in energy per iteration (up to 3%) when compared to individual pipelined
MPSoCs. Chapter8 makes the first attempt at multi-mode pipelined MPSoCs.

3.4 Summary

This chapter pointed out shortcomings of the prior research done on pipelined
MPSoCs, and then explained how the research reported in this monograph addresses
some of those shortcomings. The chapter then introduced an optimisation framework,
where the connection between the research reported in the rest of the chapters of this
monograph was illustrated.

http://dx.doi.org/10.1007/978-3-319-01113-4_7
http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_8
http://dx.doi.org/10.1007/978-3-319-01113-4_8

References 63

References

1. T.C. Chen, C.J. Lian, L.G. Chen, Hardware architecture design of an h.264/avc video Codec,
in Proceedings of the 2006 Asia and South Pacific Design Automation Conference (ASP-DAC
’06), (IEEE Press, 2006)

2. S.L. Shee, S. Parameswaran, Design methodology for pipelined heterogeneous multiprocessor
system, inProceedings of the 44th Annual Conference on Design Automation (DAC ’07) (2007),
pp. 811–816

3. I. Karkowski, H. Corporaal, Design of heterogenous multi-processor embedded systems: ap-
plying functional pipelining, in Proceedings of the 1997 International Conference on Parallel
Architectures and Compilation Techniques (PACT ’97) (IEEE Computer Society, 1997)

4. H. Javaid, S. Parameswaran, Synthesis of heterogeneous pipelined multiprocessor systems
using ilp: jpeg case study, in Proceedings of the 6th IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES/ISSS ’08) (ACM, New York,
2008), pp. 1–6

5. H. Javaid, S. Parameswaran, A design flow for application specific heterogeneous pipelined
multiprocessor systems, in Proceedings of the 46th Annual Design Automation Conference
(DAC ’09) (ACM, New York, 2009), pp. 250–253

6. H. Javaid, A. Ignjatovic, S. Parameswaran, Fidelity metrics for estimation models, in Proceed-
ings of the 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
Nov 2010, pp. 1–8

7. Y. Jin, N. Satish, K. Ravindran, K. Keutzer, An automated exploration framework for fpga-
based soft multiprocessor systems, in Proceedings of the 3rd IEEE/ACM/IFIP International
Conference on Hardware/software Codesign and System Synthesis (CODES+ISSS ’05) (ACM,
New York, 2005), pp. 273–278

8. J. Cong, G. Han, W. Jiang, Synthesis of an application-specific soft multiprocessor system, in
Proceedings of the 2007 ACM/SIGDA 15th International Symposium on Field Programmable
Gate Arrays (FPGA ’07) (ACM, New York, 2007), pp. 99–107

9. U. Bordoloi, H.P. Huynh, T. Mitra, S. Chakraborty, Design space exploration of instruction set
customizable MPSoCS for multimedia applications, in Proceedings of the 2010 International
Conference on Embedded Computer Systems (SAMOS), July 2010, pp. 170–177

10. L. Chen, N. Boichat, T. Mitra, Customized MPSoC synthesis for task sequence, in Proceed-
ings of the 2011 IEEE 9th Symposium on Application Specific Processors (SASP ’11) (IEEE
Computer Society, Washington DC, 2011), pp. 16–21

11. S. Carta, A. Alimonda, A. Pisano, A. Acquaviva, L. Benini, A control theoretic approach to
energy-efficient pipelined computation in MPSoCS. ACM Trans. Embed. Comput. Syst. 6(4)
(2007)

12. A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, L. Benini, A Feedback-based approach to
DVFS in data-flowapplications. IEEETrans. CAD Integr. Circ. Syst. 28(11), 1691–1704 (2009)

13. H. Guo, S. Parameswaran, Balancing system level pipelines with stage voltage scaling, in
Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI ’05) (New
Frontiers in VLSI Design, 2005)

14. X. Liu, P.J. Shenoy, M.D. Corner, Chameleon: application-level power management. IEEE
Trans. Mob. Comput. 7(8), 995–1010 (2008)

15. W. Kim, M. Gupta, G.-Y. Wei, D. Brooks, System level analysis of fast, per-core dvfs using
on-chip switching regulators, in Proceedings of the IEEE 14th International Symposium on
High Performance Computer Architecture (HPCA 2008) (2008), pp. 123–134

16. K.K. Rangan, G. Yeon Wei, D. Brooks, Thread motion: fine-grained power management for
multi-core systems, in Proceedings of the International Symposium on Computer Architecture
(2009), pp. 302–313

17. Texas instruments, Omap mobile processors, http://www.ti.com/
18. NVIDIA, Tegra multiprocessor architecture, http://www.nvidia.com/
19. S. Verdoolaege, H. Nikolov, T. Stefanov, pn: a tool for improved derivation of process networks.

EURASIP J. Embed. Syst. 2007, 19 (2007)

http://www.ti.com/
http://www.nvidia.com/

64 3 Optimisation Framework

20. D. Cordes, A. Heinig, P. Marwedel, A. Mallik, Automatic extraction of pipeline parallelism
for embedded software using linear programming, in Proceedings of the 2011 IEEE 17th
International Conference on Parallel and Distributed Systems (ICPADS), Dec 2011, pp. 699–
706

21. W. Thies, M. Karczmarek, S.P. Amarasinghe, Streamit: a language for streaming applica-
tions, in Proceedings of the 11th International Conference on Compiler Construction (CC ’02)
(Springer, Heidelberg, 2002), pp. 179–196

22. M. Kudlur, S. Mahlke, Orchestrating the execution of stream programs on multicore platforms,
in Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’ 08) (2008)

23. M. Hashemi, S. Ghiasi, Throughput-driven synthesis of embedded software for pipelined ex-
ecution on multicore architectures. ACM Trans. Embed. Comput. Syst. 8, 11:1–11:35 (2009)

24. S.M. Farhad,Y.Ko, B. Burgstaller, B. Scholz, Orchestration by approximation:mapping stream
programs onto multicore architectures, in Proceedings of the Sixteenth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (AS-PLOS
’11) (2011)

Chapter 4
Performance Estimation of Pipelined MPSoCs

Estimation through analytical models enables quick evaluation of design points and
hence speeds up the design space exploration process. It is particularly so in the design
of MPSoCs where large design spaces arise from the presence of various architec-
tural parameters such as processor types, cache sizes and hardware accelerators. This
chapter focuses on analytical models and estimation methods for three performance
metrics (execution time, latency and throughput) of pipelined MPSoCs to speed up
their design space exploration process. The variants in the pipelined MPSoC are
the processor configurations resulting from customizable options (custom instruc-
tions and cache sizes). The selection of a combination of processor configurations
(pipelined MPSoC’s design point) is done during design space exploration through
the evaluation of the design points’ performancemetrics,which are typically obtained
through full-system, cycle-accurate simulations. Since there can be billions of design
points, a simulation only methodology is not feasible.

The analytical models proposed in this chapter use latencies of individual proces-
sor configurations to estimate the performance of a pipelinedMPSoC’s design point,
and hence avoid the use of slow, full-system, cycle-accurate simulations for all the
design points. The analytical models are further augmented with two estimation
methods (PS and PSP) to gather latencies of processor configurations with minimal
number of simulations. The PS method simulates all the processor configurations
once. On the other hand, the PSP method simulates a subset of processor configu-
rations and then uses an analytical model of the processor to estimate latencies of
processor configurations.

Prior research on pipelined MPSoCs’ performance estimation used full-system,
cycle-accurate simulations and an analytical model for only the execution time of
the pipelined MPSoC [1–4]. The works in [1, 2] proposed less accurate models (see
Sect. 4.4.4), while [3, 4] did not evaluate the accuracy of their models. In contrast,
this chapter introduces analytical models for three performance metrics (execution
time, latency and throughput) and evaluates their absolute accuracy and fidelity.
Furthermore, two estimation methods are proposed to reduce the number of full-
system, cycle-accurate simulations of the pipelined MPSoC.

H. Javaid and S. Parameswaran, Pipelined Multiprocessor System-on-Chip 65
for Multimedia, DOI: 10.1007/978-3-319-01113-4_4,
© Springer International Publishing Switzerland 2014

66 4 Performance Estimation of Pipelined MPSoCs

Performance estimation of processors is typically done either through processor
simulation or processor modelling. In the simulation domain, cycle-accurate sim-
ulators such as Xtensa Instruction Set Simulator (ISS) [5], PTLSim [6], RealView
ARMulator ISS [7], etc. are available for various architectures. However, such sim-
ulators are slow and produce large amounts of output, and hence are not suitable
for exploration of billions of design points. Processor modelling involves analytical
models to capture a processor’s micro-architecture and cache hierarchy timing to
estimate the execution time of the application executing on it. Analytical models are
less expensive to run compared to cycle-accurate simulators; however, they trade-off
simulation speed with accuracy. The authors of [8] proposed a MonteCarlo based
model for predicting the performance of Itanium-2 processor. Themodel broke down
the execution time of a processor in net time to execute instructions and the stalls
due to data dependencies and cache misses.

Processor configurations typically differ by the additional custom instructions and
special hardware units (Instruction Set Architecture (ISA)), and the size, line size and
associativity of instruction and data caches (cache configuration). A processor con-
figuration is then a combination of an ISA and a cache configuration. Typically, there
are far more cache configurations than the ISAs [1, 9]. Trace-based cache simulation
[10–12] is an attractive alternative to cycle-accurate simulation of all the processor
configurations. Trace-based cache simulation captures cache hit andmiss statistics of
all the cache configurations which are then used with an analytical model to estimate
a processor configuration’s execution time. Although a fast method, cache statis-
tics do not contain sufficient timing information for absolutely accurate estimation.
Singleton et al. [13] exploited cache statistics to estimate the execution time of the
tasks executing on a processor. These estimated values were used in Dynamic Volt-
age and Frequency Scaling (DVFS) techniques to reduce the energy consumption of
the processor. In contrast, the author uses cache statistics to estimate the latencies of
sub-kernels on different processor configurations in a pipelined MPSoC.

Lee et al. [14] and Joseph et al. [15] proposed a linear regression basedmodel using
a wide range of predictors to estimate the execution time and power consumption of
a processor. The authors of [16] modeled an out-of-order superscalar processor at a
very detailed micro-architectural level by considering the effects on the Clock cycle
Per Instruction (CPI) of the ISA, branch miss-prediction, the commit and reorder
buffer, and instruction and data cache misses. The works in [14–16] are orthogonal to
the author’s processor analytical model proposed in this chapter, thus their proposals
can be used to further refine and improve the proposed model at the cost of more
complex analysis of the processormicro-architecture. The processor analyticalmodel
proposed in this chapter is targeted at maximally reducing the number of simulations
due to cache configurations for a given ISA. Hence, the aim is to gather latencies of
processor configurations with reasonable accuracy without the need for a complex,
highly accuratemodel thatwill slowdown the exploration of billions of design points.

4.1 Pipelined MPSoC’s Analytical Models 67

4.1 Pipelined MPSoC’s Analytical Models

The execution time of a pipelined MPSoC is defined as the total time taken by the
multimedia application to process all the input data units. The latency of a pipelined
MPSoC is the time taken to process one data unit during the steady state, which
equals the time interval between the reading of the data unit by the first stage and
the corresponding output by the last stage. Throughput of a pipelined MPSoC, on
the other hand, is the number of data units produced per unit time by the last stage
during steady state. The notion of “steady state" of a pipelined MPSoC excludes the
time required to fill the pipelined MPSoC, that is, the time until the first output of
the pipelined MPSoC.

Figure4.1a shows a pipelinedMPSoCwith three stages,where each stage contains
one processor. Each processor is annotated with a 3-tuple number, depicting the
number of iterations of the sub-kernel executing on it, the computation latency of
each iteration, and the number of words transferred in each iteration. For example,
(7, 250, 64) means the sub-kernel is executed seven times, while computation latency
of each iteration is 250 clock cycles and 64 words are transferred in each iteration.
Since the last processor is writing out to file, 0 words will be transferred. Consider
that there are no stalls between the processors, and a word transfer takes a single
clock cycle, then the latency of the first processor for each iteration will be 250+64=
314 clock cycles. Likewise, the latency of the second and third processors will be
878 and 564 clock cycles respectively, which are marked in Fig. 4.1a.

A processor is considered critical in a pipelined MPSoC if its latency is the
maximum from amongst all the processors. In the running example, processor 2 is the

(a)

T = 1/878

L = 3 x 878 + 564 = 3,198

E= 314 + 878 + 564 + (7-1)x 878 = 7,024
(b)

Fig. 4.1 Execution of a pipelined MPSoC

68 4 Performance Estimation of Pipelined MPSoCs

critical processor and will be the bottleneck of the system. Here, the author assumes
that the intermediate FIFO buffers are able to accommodate the output of at least one
iteration. For example, 64 words are transferred between processor 1 and 2, and thus
the size of the FIFO buffer should be at least 64words. Otherwise, processor 2 (which
is the critical processor)will be stalled due to the limited data space in the FIFObuffer.
The critical processor should not be stalled due to non-critical processors because
such stalling will compromise the performance of the pipelined MPSoC. Thus, the
author believes that it is reasonable to assume the availability of sufficiently-sized
FIFO buffers, and hence, in the rest of the monograph, it is assumed that each FIFO
buffer is able to accommodate the output of one iteration.

Figure4.1b illustrates the execution of the pipelined MPSoC shown in Fig. 4.1a
for 7 iterations. The first iteration of each processor corresponds to the filling of the
pipeline. In this example, output from thefirst iteration of processor 1will be available
after 314 clock cycles, followed by the first output of the second processor at 1,192
clock cycles.While processor 2 is in its first iteration, processor 1 can finish its second
and third iterations. However, the output of the first processor’s third iteration cannot
be written to the FIFO buffer, because the buffer is still holding the output of the
second iteration. Thus, the first processor is stalled until the second processor reads
from the FIFO buffer (until 1,192 clock cycles), which ismarkedwith a red-coloured,
unnumbered rectangle in Fig. 4.1b. At 1,192 clock cycles, processor 3 starts its first
iteration, and the first output from the pipelined MPSoC is available at 1,756 clock
cycles. At the same time as the start of processor 3’s first iteration, that is, at 1,192
clock cycles, processor 2 will start its second iteration, emptying the FIFO buffer
between processor 1 and 2. Thus, the first processor will start its fourth iteration after
the third iterationwrites output to theFIFObuffer, delaying the execution of the fourth
iteration slightly. For the sake of simplicity, such delays are ignored in Fig. 4.1b. After
the first output from the pipelined MPSoC at 1,756 clock cycles, the third processor
waits for processor 2’s second iteration’s output. Thus, after the first output from
the pipelined MPSoC which corresponds to the filling of the pipeline, subsequent
outputs are available every 878 clock cycles which is the critical processor’s latency
(processor 2). Following this line of reasoning, second and third outputs from the
pipelined MPSoC will be available at 1, 756 + 878 = 2, 634 and 2, 634 + 878 =
3, 512 clock cycles respectively, as marked in Fig. 4.1b. From this observation, the
execution time of the pipelined MPSoC will be 1, 756 + (7 − 1) × 878 = 7,024
clock cycles. This concept can be generalised as follows to estimate the execution
time of a pipelined MPSoC:

E = I(s1) +
M∑

i=1

L
1(si) + (I− 1) × L(sc) + F(sM)

where,

• I: Returns the time spent in the initial non-kernel operations of a stage, that is, the
time spent until the start of the kernel operation.

4.1 Pipelined MPSoC’s Analytical Models 69

• F: Returns the time spent in the final non-kernel operations of a stage, that is, the
time spent after the end of the kernel operation.

• L
1: Returns the latency of the first iteration of a stage.

• L: Returns the latency of a stage that is averaged over all the iterations except the
first one. Note that in a stage with more than one processor, the maximum latency
from amongst all the processors in that stage is returned. The I,F andL1 functions
described above handle stages with multiple processors similar to the L function.

• si and sc: The i th and the critical stage of the pipelined MPSoC respectively.
• I: The number of iterations of the pipelined MPSoC.
• M: The total number of stages in the pipelined MPSoC.

The abovemodel considers the following factorswhich contribute to the execution
time of a pipelined MPSoC:

• Initialisation time of the first stage—I(s1);
• Time to fill the empty pipeline (time to enter steady state)—

∑M
i=1 L

1(si);
• Time spent by the critical stage in steady state—(I − 1) × L(sc); and,
• Finalisation time of the last stage—F(sM).

The reason for using L
1 instead of L for the time to enter steady state is that there

will be more cache misses in the first iteration compared to the second one due to
cold cache start.

The throughput of a pipelined MPSoC depends on the latency of the critical
processor. More formally,

T = 1

L(sc)

In the running example, T = 1/878 data units/clock cycle, which is also marked in
Fig. 4.1b.

The calculation of latency of a pipelinedMPSoC is not as simple as the calculation
of throughput. In the running example, the pipelined MPSoC enters into the steady
state when the first processor starts its fourth iteration, as each processor’s execution
sequence repeats itself afterwards. For example, the first processor starts its iteration
which is then followed by a stall period, similar to the third processor’s execution
sequence, though with different latencies and stalling periods. In the steady state,
three factors contribute to the latency of a pipelined MPSoC. Firstly, the number of
clock cycles spent in a processor’s execution sequence, which includes execution of
one iteration and the following stall period, becomes equal to the latency of the critical
processor if that processor appears before the critical processor in the pipelined
MPSoC. For example, iteration 4 of processor 1 and the corresponding stall period
overlaps with the second iteration of processor 2, taking the same number of clock
cycles as the critical processor’s latency. Thus, given this first observation, it will take
878+ 878 = 1,756 clock cycles for a data unit to appear at the output of processor
2. In general terms, it will take ic × L(sc) clock cycles where ic is the index of the
critical stage, starting from 1. The second factor which contributes to the latency of
a pipelined MPSoC depends on the number of FIFO buffers present in the pipelined

70 4 Performance Estimation of Pipelined MPSoCs

MPSoC on the critical path, that is, between the first and the critical processor.
This is because processors appearing before the critical one can start their iterations
earlier and hence will be processing data units further in the data stream compared
to the critical processor. For example, the fourth iteration of processor 1 starts at
the same time as the second iteration of processor 2, which means that the fourth
data unit cannot be processed by processor 2 until the second and third data units
are cleared. Since it is assumed that the FIFO buffers can accommodate the output
of one iteration, the delay introduced due to the early start of the first processor is
equal to the number of FIFO buffers present between the first and critical processors,
multiplied by the critical latency. For example, there is one buffer between the first
and second processors, meaning that there will be a delay of one extra iteration of the
critical processor for a data unit to reach the critical processor, after being processed
by the first processor. This is also illustrated in Fig. 4.1b, where the output of the
fourth iteration of processor 1 waits for the third iteration of processor 2, adding
878 clock cycles to the latency of the pipelined MPSoC. Thus, using the first and
second observations, it will take 1, 756+878 = 2,634 clock cycles for a data unit to
appear at the output of processor 2. In general terms, according to the first and second
observations, it will take ic ×L(sc)+ (ic − 1)×L(sc) = (2× ic − 1)×L(sc) clock
cycles, as there will be ic − 1 FIFO buffers present between the critical processor
and the first processor.1 Once the latency of a data unit to appear at the output
of the critical processor is estimated, the rest of the time is contributed by all the
processors appearing after the critical processor, being the third factor. For example,
the output of the fourth iteration of processor 2 is available at 3,826 clock cycles
from the start time, and is then processed by the third processor to produce the
fourth output at 4,390 clock cycles, where the latency of the fourth data unit will be
4,390 − 1,192 = 3× 878+ 564 = 3,198 clock cycles. To summarize, the latency
of a pipelined MPSoC can be estimated as follows:

L = (2× ic − 1) × L(sc) +
M∑

i=ic+1

L(si)

The timing analysis presented here ignored the variations in performance that
may occur due to the reading and writing of a FIFO buffer simultaneously, since
such variations are small in practice. A more accurate analysis could have been
conducted, butwould have further complicated the execution time and latencymodels
with little additional benefit. Note that these analytical models are applicable to
pipelined MPSoCs that implement applications with backward edges given those
edges fulfil the dependency distance condition. As such, the processors will not

1 Note that in real-time, the input data to first processor will be available at the rate equal to
throughput of the pipelined MPSoC. In such a scenario, number of FIFO buffers between the first
processor and critical processor will not affect the latency of the pipelined MPSoC because the
input data will not be available to the first processor in advance. Hence, the second factor will not
contribute to the latency of a real-time pipelined MPSoC.

4.1 Pipelined MPSoC’s Analytical Models 71

wait unnecessarily and pipelined execution will continue normally, and hence no
additional factors need to be considered in the analytical models.

The latency and throughput of multimedia applications can be estimated by repre-
senting the applications as Synchronous Data Flow (SDF) graphs. Since SDFs allow
generic backward edges, Maximum Cycle Mean (MCM), Max-Plus algebra and
state-space exploration based techniques are used to compute latency and through-
put [17]. These techniques are slow [18] and are not feasible when billions of design
points of a pipelined MPSoC need to be evaluated. Unlike SDFs, in this chapter,
the application model is restricted by the dependency distance condition for back-
ward edges, yet allowing enough flexibility for modelling of real-world multimedia
applications. Exploitation of the dependency distance condition results in analytical
models of the pipelined MPSoC that are linear equations in latencies of processors,
and thus avoids the computation of maximum cycles and state-space exploration,
making them suitable for rapid exploration of large design spaces. The author does
not know any work that reports exploration of billions of design points for a multi-
media application using SDFs.

4.2 Estimation Methods

The execution time, latency and throughput of a pipelined MPSoC’s design point
can be estimated using the analytical models, if the latencies of those particular
processor configurations are known. Hence, there is no need for full-system, cycle-
accurate simulations of all the design points because the latencies of individual
processor configurations can be captured. In this section, two methods are proposed
to estimate the latencies of individual processor configurations with minimal number
of simulations.

4.2.1 PS Method (Pipelined MPSoC Simulation)

In the simulation of a pipelined MPSoC with sufficiently sized FIFO buffers, the
stalls of non-critical processors are hidden in the latency of the critical processor
(see Fig. 4.1b). This observation leads to the fact that simulation of a pipelined
MPSoC with one combination of processor configurations can be used to record
the net computation and net communication latencies of individual processor config-
urations used in that particular simulation. Hence, in PS method, a pipelinedMPSoC
is simulated with the first available configuration of each processor. Then, the next
available configuration of each processor is used. Figure4.2 illustrates the PSmethod
for the pipelined MPSoC of Fig. 4.1a where the three processors have 10, 20 and 15
configurations respectively. The PS method allows simulation of each processor
configuration at least once and hence captures the net computation and communi-
cation latencies of all the processor configurations. For the running example, 20

72 4 Performance Estimation of Pipelined MPSoCs

Pipelined MPSoC ’s
Simulation

P1’s
Configuration

P2’s
Configuration

P3’s
Configuration

1 1 1 1

2 2 2 2

9 9 9 9

10 10 10 10

11 10 11 11

20 10 20 15

Fig. 4.2 An example of PS method where the three processors of pipelined MPSoC in Fig. 4.1a
have 10, 20 and 15 configurations respectively

simulations will be required which is equal to the maximum number of processor
configurations from amongst all the processors in the pipelined MPSoC. Note that
a naive method will simulate all the possible combinations of processor configura-
tions, that is, 10 × 20 × 15 = 3,000 simulations. Once the latencies of processor
configurations are available, the analytical models of the pipelined MPSoC are used
to estimate the performance of any of its design point (any combination of processor
configurations).

4.2.2 PSP Method (Pipelined MPSoC Simulation and Processor
Analytical Model)

Although the PS method dramatically reduces the number of simulations, it will be
slow when one of the processors in the pipelined MPSoC has hundreds of config-
urations which is the typical case (see Sect. 4.3). The author exploits the fact that a
processor configuration is a combination of an ISA and a cache configuration. Hence,
in the PSP method, a subset of processor configurations (instead of all the processor
configurations) is simulated to gather architectural parameters of the ISAs and cache
statistics (cache hit and miss counts) to build a processor analytical model, which is
then used to estimate the latencies of the rest of the processor configurations. Since
the ISAs are far less than the cache configurations, only a small subset of proces-
sor configurations need to be simulated to capture ISAs’ architectural parameters.
Note that the processor analytical model proposed here shares fundamental concepts
with [8, 13–16]; however, those concepts have been extended to estimate latencies
of processor configurations in a pipelined MPSoC.

4.2 Estimation Methods 73

The execution time, te, of a sub-kernel on a processor can be broken down into
two parts: the time to fetch the instructions and data, t f ; and the net time to execute
the fetched instructions, tne. The fetching time of instructions and data depends on
the memory hierarchy of the processor. The time to execute the fetched instructions
depends on the underlying micro-architecture, data dependencies and the total num-
ber of instructions in the program. A typical processor with classical 5-stage pipeline,
in-order issue, separate L1 instruction and data caches, and a single memory for both
instructions and data (local memory of each processor in the pipelined MPSoC) is
assumed. A write-through cache policy is also assumed.

The following terminology is introduced to explain the processor analyticalmodel:

• L I H : Instruction cache hit latency.
• L I M : Instruction memory read latency.
• L DM R : Data memory read latency. Since instructions and data are in the same
memory, L I M = L DM R .

• L DMW : Data memory write latency.
• CI H : Instruction cache hit count.
• CI M : Instruction cache miss count.
• CDM R : Data cache read miss count.
• CDMW : Data cache write miss count.
• NI : Total number of instructions.

The following analytical model estimates the latency of a sub-kernel on a
processor:

te = t f + tne

= L I H × CI H + (1+ L I M) × CI M

+ (1+ L DM R) × CDM R + (1+ L DMW) × CDMW

+NCPI × NI

The first four factors provide an estimate of the memory fetch time for both
instructions and data. In a typical 5-stage pipeline of a processor, instructions are
fetched in stage 1 (Instruction Fetch stage) while data fetches are processed in stage
4 (Memory stage), thereby overlapping instruction and data fetches. The two fac-
tors (1 + L I M) × CI M and L I H × CI H account for instruction fetches in case of
both instruction cache hits and misses. The instruction cache miss latency, L I M , is
incremented by one to account for the clock cycle needed to check whether cache
access was a hit or a miss. The data hits are ignored because they will be overlapped
with the instruction hits or misses due to the pipeline in the processor. However, data
misses may not be perfectly overlapped with instruction hits and misses, and hence
are taken into consideration. To make the model more accurate, read and write data
misses are included separately as (1+ L DM R)×CDM R and (1+ L DMW)×CDMW .

Once the time for instructions and data fetches is estimated, the rest of the time
is due to the execution of the fetched instructions. The last factor estimates the net
execution time by multiplying the Net Clock cycles Per Instruction (NCPI) with

74 4 Performance Estimation of Pipelined MPSoCs

the total number of instructions. Note that the NCPI is not the actual CPI of the
processor; the last factor estimates the net time to execute the instructions once they
have been fetched with their corresponding data. Hence, the NCPI captures various
micro-architectural events such as the overlapping of data misses with instruction
hits and misses, and stalls due to the data dependencies. The value of NCPI remains
fairly constant across different cache configurations of a given ISA executing a given
sub-kernel because the effect of cache configurations is taken into account by the
cache statistics (instruction and data caches’ hit and miss counts). The fluctuations
in the value of NCPI across the same ISA but with different cache configurations
are due to overlapped fetches of instructions and data, and stalls resulting from
the data dependencies. To accurately model such micro-architectural events, one
needs to perform cycle-accurate simulation or use data-flow analysis techniques.
Such events are condensed into the NCPI parameter to keep the processor analytical
model simple (though the model has illustrated reasonable absolute accuracy and
fidelity, see Sect. 4.4).

To find the value of NCPI, the analytical model is rearranged as:

NC P I = te − t f

NI

The author proposes to run cycle-accurate simulations of a few processor config-
urations (explained later in this section) that contain the same ISA but different
cache configurations to record both the actual latencies and cache statistics. Using
the recorded values, the average NCPI value of that particular ISA is calculated. The
average NCPI value is then used to estimate the latencies of the same ISA with the
rest of the cache configurations using cache statistics of those configurations. Cache
statistics are captured using trace-based cache simulators [10–12] which are much
faster than full-system, cycle-accurate simulators.

The choice of cache configurations that need to be simulated for an ISAwill affect
the accuracy of the analytical model. In this chapter, identical instruction and data
caches starting from the first cache configuration until the last one are simulated.
Such a policy captures the effects of all the individual instruction and data cache
configurations and is based on the analysis presented in [14] where the authors
empirically show that an application’s performance on baseline configurations is the
most significant predictor of its performance on other configurations. Consider that
a processor has one ISA, and its instruction and data cache sizes are changed from
1 to 32KB, then there will be 1 × 6 × 6=36 processor configurations. The author
simulates the ISA with both 1KB instruction and data caches, 2KB instruction and
data caches and so on until 32KB instruction and data caches, resulting in simulations
of only 6 processor configurations. The values recorded from these 6 simulations are
used to compute the average NCPI for the ISA. The latencies of this ISA and the
rest of the 30 cache configurations (rest of the 30 processor configurations) are then
estimated by utilising the average NCPI value and the cache statistics of those 30
configurations (obtained from a trace-based cache simulator) in the analytical model.

4.2 Estimation Methods 75

In case of more than one ISA for the processor, a similar process is applied to other
ISAs.

Unlike the PS method where all the 36 processor configurations are simulated,
the PSPmethod simulates only 6 processor configurations, which further reduces the
number of cycle-accurate simulations. Note that the PSPmethodwill be less accurate
compared to the PS method as it uses a processor analytical model to estimate the
latencies of the processor configurations instead of relying on pure cycle-accurate
simulations. Once the latencies of processor configurations are available, the analyt-
ical models of the pipelined MPSoC are used to estimate the performance of any of
its design point (any combination of processor configurations).

4.3 Experimental Methodology

Five pipelined MPSoCs were created for the multimedia applications of Fig. 3.1
using a commercial design environment from Tensilica. The Xtensa LX2 [5] proces-
sor provides an Application Specific Instruction set Processor (ASIP) platform for
creation of processor configurations, and comes with Xtensa RB-2007.1 toolset that
includes a C/C++ compiler, an Instruction Set Simulator (ISS), Xtensa PRocessor
Extension Synthesis (XPRES) and XTensa Modeling Protocol (XTMP).

XPRES analyses the C code and automatically generates application specific
custom instructions, which may consist of a combination of fused operations, FLIX
instructions [19], specialised operations [20] and vector operations. XPRES can
also generate different sets of custom instructions, reflecting different ISAs. These
custom instructions are output in the Tensilica Instruction Extension (TIE) language,
and are compiled through the TIE compiler for seamless integration because the
C/C++ compiler will automatically exploit the new instructions without the need for
modification of the code.

XTMP is amulti-processor simulation environmentwhich enables instantiation of
multiple processors, connecting them via FIFO buffers to realise pipelinedMPSoCs.
The FIFO buffers provide blocking pop and push functions to read from and write
to the buffer. A pop from an empty buffer and a push to a full buffer stalls the
processor. During the simulation of a pipelined MPSoC, such stalls are recorded
to calculate the net computation and net communication latencies of the processor
configurations used in that particular simulation. XTMP uses ISS, Xtensa LX2’s
cycle-accurate simulator, to generate cycle-accurate performance measures of the
pipelined MPSoC.

The trace-based cache simulator proposed in [10] was used. For a given trace,
their simulator outputs cache statistics (hit and miss counts) for all the instruction
and data cache configurations. Cache parameters include cache size, line size and
associativity.

The pipelined MPSoCs were created by assigning each sub-kernel of a multi-
media application to one or more processors as illustrated in Fig. 3.2. For example,
the ME sub-kernel of H.264Enc in Fig. 3.1 is assigned to three processors. After the

http://dx.doi.org/10.1007/978-3-319-01113-4_3
http://dx.doi.org/10.1007/978-3-319-01113-4_3
http://dx.doi.org/10.1007/978-3-319-01113-4_3

76 4 Performance Estimation of Pipelined MPSoCs

Table 4.1 Processor configurations (ISAs × cache configurations)

Stage JPEGEnc1 JPEGEnc2 JPEGDec MP3Enc H.264Enc

1 4×36 5×36 8×36 7×36 6×36
2 4×36 5×36 8×36 8×36 8×36 7×36 7×36 6×36 4×36 4×36
3 11×36 7×36 7×36 7×36 7×36 9×36 5×36
4 4×36 7×36 - 9×36 5×36
5 7×36 4×36 - - 7×36
6 4×36 - - - 5×36
Design Space 4.2× 1013 2.35× 1016 1.73× 1012 1.92× 1012 1.42× 1018

allocation of sub-kernels to processors, differing sets of custom instructions (dif-
fering ISAs) are generated for the processors using XPRES. Each set of custom
instructions (each ISA) is combined with differing cache configurations to create
processor configurations where both instruction and data caches’ sizes are changed
from 1 to 32KB. These cache configurations were chosen to generate reasonable a
number of processor configurations and are not a limitation; cache line size and asso-
ciativity could also have been changed to further increase the number of processor
configurations. Table4.1 reports the number of configurations for all the processors
in the pipelined MPSoCs. Columns 2–6 report the names of the pipelined MPSoCs
while rows 2–7 report the number of processor configurations in a particular stage.
For example, the processor in stage 2 (greyed row) of JPEGEnc1 has 4× 36 = 144
configurations, where 4 is the number of ISAs and 36 is the number of cache con-
figurations. Since ME sub-kernel of H.264Enc is assigned to 3 processors, the entry
for stage 2 of H.264Enc contains the number of processor configurations for the
3 processors, which are separated by the spaces. Note that processor configurations
were not generated for the EC/W sub-kernel of the H.264Enc because the design
space was already very large. JPEGDec has only three stages, and thus stages 4–6
contain no data. The last row shows the total number of possible combinations of
processor configurations (the total number of design points) for each of the pipelined
MPSoCs where the design spaces range from 1012 to 1018 design points.

All experiments were conducted on a quad core machine running at 2.15GHz
with 8Gb RAM.

4.4 Results and Analyses

4.4.1 Processor’s Analytical Model

Firstly, the evaluation of the processor analytical model is presented. Figure4.3 illus-
trates the ratio of estimated latencies to actual latencies (plotted on y-axis) for all the
configurations of the processors (plotted on x-axis) in the first stages of the pipelined

4.4 Results and Analyses 77

JPEGEnc1

Processor Configurations

E
st

im
at

ed
/A

ct
ua

l
La

te
nc

ie
s

JPEGEnc2 JPEGDec MP3Enc H.264Enc

Fig. 4.3 Analysis of processor analytical model for the first stage’s processor of each pipelined
MPSoC

MPSoCs. If the ratio is 1, then the estimate is entirely accurate. The plots in Fig. 4.3
illustrate that the values are close to 1 which means that the latency estimates are
reasonably accurate. Other processors in all the pipelined MPSoCs revealed similar
findings.

A detailed analysis of the processor analytical model is reported in Table4.2.
The third and fourth columns report the absolute accuracy and fidelity2 where both
absolute error andfidelity are computed by comparing the actual latencies fromcycle-
accurate simulations of processor configurations to the estimated latencies from the
processor analytical model. Note that P3.2 of JPEGEnc2 in Table4.2 refers to the
second processor in the third stage of the pipelined MPSoC. The empirical data in
Table4.2 reports the worst average and worst maximum absolute errors of 7.15 and
15.02%, and minimum fidelity of 0.90 across all the processor configurations as
highlighted in the table. These results show that the processor analytical model is
reasonably accurate and hence is suitable for quick and early design space exploration
of pipelined MPSoCs.

4.4.2 Pipelined MPSoC’s Analytical Models and Estimation
Methods

Table4.3 reports detailed analysis of pipelined MPSoC’s execution time, latency
and throughput analytical models, and PS and PSP estimation methods. The second,
third and fourth major columns report the results for execution time, latency and
throughput analytical models. Minor columns in each of these major columns report
absolute accuracy and fidelity of both PS and PSP methods. For the execution time
analytical model, the PS method has worst average and worst maximum absolute
errors of 3.83 and 6.89% (MP3Enc) respectively across all the pipelined MPSoCs.
In the PSP method, worst average and worst maximum absolute errors increased to

2 Fidelity measures the correlation between the ordering of the actual and estimated values to
quantify the similarity between the trends of actual and estimated values. A value close to 1 means
that an analytical model has high fidelity. F Mρ metric from [21] is used to compute fidelity due to
its lower computational complexity.

78 4 Performance Estimation of Pipelined MPSoCs

Table 4.2 Detailed analysis of processor analytical model

Pipelined Processor Absolute Error (%) Fidelity
MPSoC Average Maximum

P1.1 0.46 1.36 0.98
P2.1 0.15 0.50 1.00

JPEGEnc1 P3.1 0.23 3.06 0.99
P4.1 0.70 0.73 1.00
P5.1 0.37 1.74 1.00
P6.1 0.48 2.15 0.96

P1.1 0.46 1.20 0.99
P2.1 0.16 0.96 1.00

JPEGEnc2 P3.1 0.80 3.53 0.99
P3.2 0.83 4.00 0.98
P3.3 0.83 4.00 0.98
P4.1 0.58 3.17 0.98
P5.1 0.34 1.38 0.99

P1.1 3.83 9.94 0.98
P2.1 6.05 14.79 0.97

JPEGDec P2.2 7.15 13.91 0.98
P2.3 6.09 14.23 0.98
P3.1 0.71 3.07 0.99

P1.1 5.56 15.02 0.95
P2.1 3.07 8.07 0.96

MP3Enc P2.2 2.80 9.13 0.96
P3.1 2.39 11.49 0.95
P4.1 0.86 4.23 0.98

P1.1 3.10 5.96 0.93
P2.1 4.96 9.04 0.91

H.264Enc P2.2 2.67 6.58 0.92
P2.3 2.79 6.50 0.92
P3.1 5.83 10.04 0.90
P4.1 1.23 3.17 0.96
P5.1 1.21 3.20 0.96
P6.1 3.53 7.07 0.94

5.91% (MP3Enc) and 13.21% (JPEGDec) respectively. The minimum fidelity of the
execution time analytical model dropped from 0.99 (JPEGEnc1) in the PS method
to 0.93 (H.264Enc) in the PSP method. Similar results were found for both latency
and throughput analytical models, which are reported in Table4.3.

To summarise, among the three analytical models and all the pipelined MPSoCs,
the worst average and worst maximum absolute errors of the PS method are 6.96%
(H.264Enc, throughput analytical model) and 12.95% (H.264Enc, latency analyti-
cal model) with a minimum fidelity of 0.93 (H.264Enc, latency analytical model), as
highlighted in Table4.3. On the other hand, the PSPmethod has theworst average and

4.4 Results and Analyses 79

Ta
bl

e
4.

3
D
et
ai
le
d
an
al
ys
is
of

pi
pe
lin

ed
M
PS

oC
’s
ex
ec
ut
io
n
tim

e,
la
te
nc
y
an
d
th
ro
ug

hp
ut

an
al
yt
ic
al
m
od

el
s,
an
d
PS

an
d
PS

P
es
tim

at
io
n
m
et
ho

ds

Pi
pe
lin

ed
E
xe
cu
tio

n
T
im

e
L
at
en
cy

T
hr
ou
gh
pu
t

M
PS

oC
A
bs
ol
ut
e
E
rr
or

(%
)

Fi
de
lit
y

A
bs
ol
ut
e
E
rr
or

(%
)

Fi
de
lit
y

A
bs
ol
ut
e
E
rr
or

(%
)

Fi
de
lit
y

A
ve
ra
ge

M
ax
im

um
A
ve
ra
ge

M
ax
im

um
A
ve
ra
ge

M
ax
im

um
PS

PS
P

PS
PS

P
PS

PS
P

PS
PS

P
PS

PS
P

PS
PS

P
PS

PS
P

PS
PS

P
PS

PS
P

JP
E
G
E
nc
1

2.
28

5.
00

5.
91

9.
11

0.
99

0.
96

0.
88

1.
87

3.
78

8.
59

0.
98

0.
94

1.
71

6.
28

5.
87

10
.7
5

0.
99

0.
94

JP
E
G
E
nc
2

0.
69

5.
91

2.
16

11
.4
1

0.
99

0.
94

0.
61

2.
50

3.
89

7.
10

0.
99

0.
92

0.
07

6.
91

1.
45

13
.0
6

1.
00

0.
94

JP
E
G
D
ec

0.
21

5.
08

1.
29

13
.2
1

0.
99

0.
98

1.
73

6.
31

5.
33

15
.6
6

0.
98

0.
88

0.
28

6.
76

1.
90

18
.6
7

0.
99

0.
98

M
P3

E
nc

3.
83

2.
56

6.
89

10
.5
4

1.
00

0.
94

1.
03

2.
28

5.
30

11
.2
8

1.
00

0.
94

2.
38

3.
79

4.
10

15
.8
2

0.
99

0.
93

H
.2
64
E
nc

1.
47

3.
11

2.
72

8.
33

0.
99

0.
93

6.
28

6.
83

12
.9
5

17
.5
6

0.
93

0.
93

6.
96

7.
56

7.
41

13
.3
6

0.
99

0.
93

80 4 Performance Estimation of Pipelined MPSoCs

worst maximum absolute errors of 7.56% (H.264Enc, throughput analytical model)
and 18.67% (JPEGDec, throughput analytical model) with a minimum fidelity of
0.88 (JPEGDec, latency analytical model). The drop in accuracy and fidelity of the
PSP method compared to the PS method is because it uses fewer cycle-accurate sim-
ulations and a processor analytical model instead of relying on pure cycle-accurate
simulations as used in the PS method. Overall, the evaluation results indicate that
execution time, latency and throughput analytical models, and the PS and PSP meth-
ods are reasonably accurate, and hence suitable for early design space exploration
of pipelined MPSoCs.

4.4.3 Simulation Time of Estimation Methods

The advantage of the PSP method over the PS method is the reduction in simulation
time due to the reduced number of cycle-accurate simulations, reported in Table4.4.
The second column reports the total number of design points. The time to simulate
a design point depends on the pipelined MPSoC, and in our experiments simulation
time of a design point varied from a fewminutes to tens ofminutes. Hence, simulation
of the whole design space will take years and is not feasible.

The third and fourthmajor columns report the total number and timeof simulations
done in the PS andPSPmethods. ThePSmethod simulates each pipelinedMPSoC for
the maximum number of processor configurations from amongst all the processors
in that pipelined MPSoC. Thus, 396 (11 × 36), 252 (7 × 36), 288 (8 × 36), 324 (9
× 36) and 252 (7× 36) simulations were run for JPEGEnc1, JPEGEnc2, JPEGDec,
MP3Enc and H.264Enc respectively.

Since there are billions of design points for each pipelined MPSoC, the absolute
accuracy and fidelity of execution time, latency and throughput analytical models
reported in Sect. 4.4.2 were computed using a few hundred design points. The author
used the same design points that are simulated in the PS method because it ensures
that all the individual processor configurations in a pipelinedMPSoC are simulated at
least once, and hence a reasonable evaluation can be conducted. More design points
could have been used at the cost of increased simulation time.

Table 4.4 Simulation time of estimation methods

Pipelined Design Space #Simulations Simulation Time
MPSoC PS PSP PS PSP

JPEGEnc1 4.2× 1013 396 66 19 h 2 h
JPEGEnc2 2.35× 1016 252 42 15 h 1.5 h
JPEGDec 1.73× 1012 288 48 13 h 2 h
MP3Enc 1.68× 1012 252 42 2 days 16 h
H.264Enc 1.42× 1018 252 42 5 days 21 h

4.4 Results and Analyses 81

Table 4.5 Analysis of execution time analytical model proposed in [1]

Pipelined Execution Time [1]
MPSoCs Absolute Error (%) Fidelity

Average Maximum
PS PSP PS PSP PS PSP

JPEGEnc1 2.87 4.49 6.52 8.51 0.99 0.96
JPEGEnc2 1.10 5.59 2.59 10.97 0.99 0.94
JPEGDec 0.27 5.02 1.44 13.04 0.99 0.98
MP3Enc 19.89 15.55 23.19 22.75 0.99 0.94
H.264Enc 2.21 3.52 3.95 9.48 0.99 0.93

ThePSPmethod simulates a subset of processor configurations to reduce simulation
time. Recall from Sect. 4.2.2 that each ISA of a processor is simulated with identical
instruction and data cache configurations to estimate the value of NCPI parameter.
Since the cache sizes are changed from 1 to 32KB, there are 6 identical instruction
and data cache configurations; 1KB instruction and data caches, 2KB instruction and
data caches and so on until 32KB instruction and data caches. Hence, only 6 cycle-
accurate simulations are run to estimate the value of NCPI of an ISA of a processor.
The latencies of the rest of the combinations of cache configurations and the ISA are
estimated using the processor analytical model. For example, the processor in the
third stage of JPEGEnc1 has 11 ISAs and 36 cache configurations for each of those
ISAs (from Table4.1). Each ISA is simulated with 6 cache configurations, resulting
in 11 × 6=66 simulations, which is maximum amongst all the other processors of
JPEGEnc1. Hence, only 66 simulations are used by the PSP method for JPEGEnc1
compared to 396 simulations in the PSmethod. Compared to the PSmethod, the PSP
method reduced simulation time (reported in the last major column of Table4.4) from
days to several hours because it reduced the number of simulations from hundreds
to only tens.

4.4.4 Comparison to Prior Research

Shee et al. [1] also proposed an execution time analytical model for pipelined
MPSoCs. Their model uses initialisation time of the first stage, time spent in critical
stage and finalisation time of the last stage, ignoring the time to fill empty pipelined
MPSoC (which can be computed from the latencies of first iteration, and is included
in the author’s execution time analytical model). In other words, their model focuses
more on the steady state of a pipelined MPSoC. Table4.5 reports the absolute accu-
racy and fidelity of their model when used with the PS and PSP estimation methods.
Their execution time estimation is quite similar to the author’s estimation (second
major column of Table4.3) except for MP3Enc. In the MP3Enc pipelined MPSoC,
first iteration latencies have high magnitudes and the number of iterations is small

82 4 Performance Estimation of Pipelined MPSoCs

which means that time to fill empty pipelined MPSoC is significant and cannot
be ignored. That is why Shee’s model exhibited high absolute errors for MP3Enc,
which are highlighted in Table4.5. In some cases (the PSP method for JPEGEnc1,
JPEGEnc2 and MP3Enc), there are slight unexpected decreases in both average and
maximum absolute errors of Shee’s model compared to the author’s model. This is
because only a few hundred design points (design points that are simulated in the PS
method) were used for calculation of absolute accuracy due to slow cycle-accurate
simulations and huge design spaces. Use of only a few hundred design points also
explains the decrease in both average and maximum absolute errors of the PSP
method compared to PS method for MP3Enc in Table4.5 in contrast to an obvious
increase for the rest of the pipelined MPSoCs. Note that Shee’s model exhibited the
same fidelity as the author’s model.

4.5 Summary

In this chapter, three analytical models and two estimation methods are proposed
to aid quick design space exploration of pipelined MPSoCs. The pipelined MPSoC
execution time, latency and throughput analytical models are linear in latencies of
the individual processors. Hence, two estimation methods (PS and PSP) are pro-
posed to quickly gather latencies of processor configurations with reduced number
of slow, full-system, cycle-accurate simulations. The PS method simulates all the
processor configurations once. On the other hand, the PSP method simulates a sub-
set of processor configurations and then uses an analytical model of the processor to
estimate latencies of processor configurations.

Experiments with five pipelined MPSoCs executing typical multimedia applica-
tions showed that the PS method had worst average and worst maximum absolute
errors of 6.96 and 12.95% with a minimum fidelity of 0.93. On the other hand, the
PSP method had worst average and worst maximum absolute errors of 7.56 and
18.67% with a minimum fidelity of 0.88. For design spaces ranging from 1012 to
1018 design points, the simulation time is reduced by several orders of magnitude;
from days in the PS method to several hours in the PSP method. These results indi-
cate that the proposed models and estimation methods are reasonably accurate, and
hence suitable for rapid design space exploration of pipelined MPSoCs. The next
chapter uses these analytical models to quickly explore a pipelined MPSoC’s design
space to optimise its area footprint under a performance constraint.

References

1. S.L. Shee, S. Parameswaran, Design methodology for pipelined heterogeneous multiprocessor
system, in DAC ’07: Proceedings of the 44th annual conference on Design automation, San
Diego, pp. 811–816 2007

References 83

2. I.Karkowski,H.Corporaal,Design of heterogenousmulti-processor embedded systems: apply-
ing functional pipelining, in PACT ’97: Proceedings of the 1997 International Conference on
Parallel Architectures and Compilation Techniques, IEEE Computer Society, San Francisco,
1997

3. H. Javaid, S. Parameswaran, Synthesis of heterogeneous pipelined multiprocessor systems
using ilp: jpeg case study, in CODES/ISSS ’08: Proceedings of the 6th IEEE/ACM/IFIP inter-
national conference on Hardware/Software codesign and system synthesis, ACM, New York,
pp. 1–6 2008

4. H. Javaid, S. Parameswaran, A design flow for application specific heterogeneous pipelined
multiprocessor systems, in DAC ’09: Proceedings of the 46th Annual Design Automation
Conference, ACM, New York, pp. 250–253 2009

5. Tensilica, Xtensa customizable processor. http://www.tensilica.com
6. M. Yourst, PTLsim: a cycle accurate full system x86–64 microarchitectural simulator, in Per-

formance Analysis of Systems and Software, ISPASS 2007. IEEE International Symposium on,
pp. 23–34 Aprl 2007

7. ARM, RealView ARMulator ISS. http://www.arm.com
8. R. Srinivasan, J. Cook, O. Lubeck, Performance modeling using monte carlo simulation, Com-

put. Archit. Lett. 5, 38–41 (2006)
9. H. Javaid, A. Ignjatovic, S. Parameswaran, Rapid design space exploration of application

specific heterogeneous pipelined multiprocessor systems. Trans. Comp.-Aided Des. Integ. Cir.
Sys. 29, 1777–1789 (2010)

10. M.S.Haque, J. Peddersen,A. Janapsatya, S. Parameswaran,Dew: a fast level 1 cache simulation
approach for embedded processors with fifo replacement policy, in DATE ’10: Proceedings of
the conference on Design, automation and test in, Europe, 2010

11. J. Edler, M.D. Hill, Dinero iv trace-driven uniprocessor cache simulator. http://www.cs.wisc.
edu/markhill/DineroIV/, 2004

12. N. Tojo, N. Togawa, M. Yanagisawa, T. Ohtsuki, Exact and fast l1 cache simulation for embed-
ded systems, in ASP-DAC ’09: Proceedings of the 2009 Conference on Asia and South Pacific
Design Automation, IEEE Press, Piscataway, pp. 817–822 2009

13. L. Singleton, C. Poellabauer, K. Schwan, Monitoring of cache miss rates for accurate dynamic
voltage and frequency scaling, in Proceedings of the Multimedia Computing and Networking
Conference (MMCN), 2005

14. B.C. Lee, D.M. Brooks, Accurate and efficient regression modeling for microarchitectural
performance and power prediction, in ASPLOS-XII: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating Systems,
ACM, New York, pp. 185–194 2006

15. P. Joseph, K. Vaswani, M. Thazhuthaveetil, Construction and use of linear regression mod-
els for processor performance analysis, in Proceedings of the High-Performance Computer
Architecture, The Twelfth International Symposium on, pp. 99–108 2006

16. T.S. Karkhanis, J.E. Smith, A first-order superscalar processor model. SIGARCH Comput.
Archit. News 32(2), 338 (2004)

17. A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij, B. Theelen,
M. Mousavi, Throughput analysis of synchronous data flow graphs, in Proceedings of the
Application of Concurrency to System Design, ACSD 2006. Sixth International Conference on,
pp. 25–36 june 2006

18. A. Ghamarian, M. Geilen, T. Basten, S. Stuijk, Parametric throughput analysis of synchronous
data flow graphs, in Proceedings of the Design, Automation and Test in Europe, DATE ’08, pp.
116–121 March 2008

19. Tensilica, Flix: fast relief for performance-hungry embedded applications. http://www.
tensilica.com/

20. Tensilica, XPRES generated specialized operations. http://www.tensilica.com/
21. H. Javaid, A. Ignjatovic, S. Parameswaran, Fidelity metrics for estimation models, in Proceed-

ings of the Computer-Aided Design (ICCAD), IEEE/ACM International Conference on, pp.
1–8 Nov 2010

http://www.tensilica.com
http://www.arm.com
http://www.cs.wisc.edu/markhill/DineroIV/,
http://www.cs.wisc.edu/markhill/DineroIV/,
http://www.tensilica.com/
http://www.tensilica.com/
http://www.tensilica.com/

Chapter 5
Design Space Exploration of Pipelined MPSoCs

A pipelined MPSoC’s stages need to be balanced for maximal utilisation of the
processors to achieve high throughput with reduced area footprint and reduced power
consumption. This chapter addresses the problem of optimising a pipelinedMPSoC’s
area footprint. Like Chap.4, each processor in the pipelinedMPSoC has a number of
configurations that trade-off performance with area footprint. Thus, a design point
is one combination of processor configurations and the design space consists of all
the combinations of processor configurations. The aim of this chapter is to quickly
search the design space for the optimal design point (minimum area footprint) under
either a performance constraint because such a constraint is often imposed on real-
time multimedia applications. Two Integer Linear Programming (ILP) formulations
for area footprint optimisation under an execution time constraint and a latency
constraint are proposed in addition to an algorithm for area footprint optimisation
under a throughput constraint.

Integer Linear Programming (ILP) is a widely used optimisation technique for
heterogeneous MPSoCs, and has already been employed in several works [1–4] (see
Sect. 2.3.1 for more references and details on ILP). However, those works focused on
architectures other than the pipelined MPSoC. Jin et al. [5] addressed the problem of
maximising the throughput of a multimedia application on a pipelined MPSoC with
a fixed number of processors. Cong et al. [6] proposed exact algorithms to minimise
latency and the number of processors in a pipelined MPSoC under a throughput
constraint. Both these works [5, 6] did not consider processor customisation, and
thus dealt with homogeneous pipelined MPSoCs only.

Theworks in [7–9] addressed the problemof processor customisation (selection of
custom instructions or selection of processor configurations) in a pipelined MPSoC.
Shee et al. [7] proposed a heuristic to maximise pipelined MPSoC’s execution time
improvement per area increase ratio compared to a single processor system. Thus,
Shee et al. did not consider performance constraints that are typical of real-time
multimedia applications. Two works inspired from the proposals of this chapter have
been published recently [8, 9]. Bordoli et al. [9] considered variations in processor
latencies during customisation of the processors. Their objective was to minimise

H. Javaid and S. Parameswaran, Pipelined Multiprocessor System-on-Chip 85
for Multimedia, DOI: 10.1007/978-3-319-01113-4_5,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_2

86 5 Design Space Exploration of Pipelined MPSoCs

variation in throughput under an area footprint constraint. Chen et al. [8] explored
simultaneous mapping and processor customisation with variable number of proces-
sors in the pipelined MPSoC. Their aim was to minimise MPSoC’s area under a
throughput constraint, but a latency constraint was not considered.

5.1 Problem Statement

A pipelined MPSoC where the application sub-kernels have already been mapped
onto the processors is represented as a directed graph, P M :

P M = (P, F)

Each node in the set P is a processor, denoted as:

P = {m.n : 1 ≤ m ≤ M, 1 ≤ n ≤ Nm}

where M is the number of stages in the pipelined MPSoC and Nm is the number of
processors in the mth stage. The processor m.n is the nth processor in the mth stage
of the pipelined MPSoC. Each edge in the set F is a FIFO buffer, denoted as:

F = {(m.n : i. j) : 1 ≤ m, i ≤ M, 1 ≤ n ≤ Nm, 1 ≤ j ≤ Ni }

For example, the FIFO buffer between processors 2.1 and 3.1 in a pipelined MPSoC
will be denoted as 2.1:3.1. The execution time, latency and throughout of a pipelined
MPSoC are denoted as E , L and T , and are calculated using the analytical models
proposed in Sect. 4.1. The area of the pipelined MPSoC is the summation of the area
of all the processors and FIFOs, calculated as:

A =
M∑

m=1

Nm∑

n=1

⎡

⎣A(m.n) +
M∑

i=1

Ni∑

j=1

A(m.n : i. j)

⎤

⎦

where the function A returns the area of the processors and FIFO buffers.
The processors in the pipelinedMPSoC have a number of configurations, trading-

off their latency with area footprint. The configurations of a processor m.n are
denoted as:

C = {m.no : 1 ≤ m ≤ M, 1 ≤ n ≤ Nm, 1 ≤ o ≤ Om,n}

where Om,n is the total number of configurations available for the processor m.n.
For example, the second configuration of processor 2.1 is denoted as 2.12. Each
processor configuration m.no is annotated with a 5-tuple number denoting the initial
time, latency of first iteration, average latency and final time of executing the assigned

http://dx.doi.org/10.1007/978-3-319-01113-4_4

5.1 Problem Statement 87

sub-kernel(s) on that particular configuration, and the area of that particular
configuration. The latency of a processor configuration includes both the net com-
putation and net communication latencies as explained in Sect. 4.2.1. The functions
I, L1, L, F and A return the aforementioned tuples of a processor configuration.

Given the above definitions, the optimisation problem can be stated as: For a
pipelined MPSoC where each processor has a number of configurations, the goal is to
select one configuration for each processor so that the area footprint of the pipelined
MPSoC is minimum and its execution time (or latency or throughput) satisfies the
execution time (or latency or throughput) constraint Ec (or Lc or Tc), provided by
the designer. Typically, execution time and latency constraints are provided as an
upper bound, while the throughput constraint is specified as a lower bound. Here,
the author assumes the throughput constraint to be an upper bound as well, that is, a
constraint on the latency of the critical processor in the pipelinedMPSoC (which can
be calculated by inverting the throughput constraint provided by the designer). Thus,
all the constraints (Ec, Lc and Tc) are assumed to be in clock cycles. The following
sections describe the techniques proposed to optimise the area footprint under these
constraints.

5.2 Optimisation Under an Execution Time Constraint

The processor configuration selection problem under an execution time constraint is
formulated as a binary ILP problem in the following way:

5.2.1 Variables

Binary variables are used to determine the selection of processor configurations:

• xm,n,o variables are used to select one configuration per processor.Avariable xm,n,o

equals 1 if the configuration o of processor m.n is selected, otherwise equals 0.
• sm,n,o variables are used to select one configuration per pipeline stage. A stage
with more than one processor will have one configuration selected for each of the
processors; however, only one of those (the one with maximum latency) configu-
rations can be selected as the stage configuration for calculation of the pipelined
MPSoC’s execution time. A variable sm,n,o equals 1 if the configuration o of
processor m.n is also selected as the configuration of stage m, otherwise equals
0. These variables are only used for stages that contain more than one processor
because configuration of a stage with only one processor will be the configuration
selected for the only processor in that stage.

http://dx.doi.org/10.1007/978-3-319-01113-4_4

88 5 Design Space Exploration of Pipelined MPSoCs

5.2.2 Objective Function

The objective function of the optimisation problem is to minimise the pipelined
MPSoC’s area footprint, which can be written as:

Minimise
M∑

m=1

Nm∑

n=1

Om,n∑

o=1

A(m.no)xm,n,o

Note that the area of the FIFO buffers is ignored here because their area is constant
for a given pipelined MPSoC and hence does not affect the optimisation problem.

5.2.3 Constraints

Various constraints applicable to the processor configuration selection problem are
listed below:

1. Only one configuration can be selected for a processor:

Om,n∑

o=1

xm,n,o = 1 ∀ m, n

2. For stages with more than one processor, only one processor configuration can
be selected as the stage configuration:

Nm∑

n=1

Om,n∑

o=1

sm,n,o = 1 ∀ m where Nm > 1

3. The configuration of a stage with more than one processor must be one of the
processor configurations selected using xm,n,o variables:

sm,n,o − xm,n,o ≤ 0 ∀ m, n, owhere Nm > 1

4. Of the selected processor configurations in a stage with more than one proces-
sor, the configuration with maximum latency must be selected as the stage
configuration. The following constraint compares the latencies of the nth and
j th processors in the mth stage:

max
1≤o≤Om,n

{L(m.no)} ×
⎡

⎣1 −
Om, j∑

o=1

sm, j,o

⎤

⎦ +
Om, j∑

m=1

L(m. jo)sm, j,o ∈
Om,n∑

o=1

L(m.no)xm,n,o

∀ n, j where 1 ≤ n, j ≤ Nm , j ≈= n and Nm > 1

5.2 Optimisation Under an Execution Time Constraint 89

There will be Nm − 1 such constraints for each processor in stage m as it has to
be compared with every other processor in that stage. Thus, in total there will be
Nm(Nm − 1) such constraints for stage m to ensure that the stage configuration
is the one with maximum latency.

5. The execution time of the pipelined MPSoC (calculated using analytical model
proposed in Sect. 4.1) must be less than or equal to the execution time constraint
Ec. Since any processor can be critical in the pipelined MPSoC, the following
constraint is used considering processor mc.nc critical:

N1∑

n=1

O1,n∑

o=1

I(1.no)s1,n,o +
M∑

m=1

Nm∑

n=1

Om,n∑

o=1

L
1(m.no)sm,n,o

+ (I − 1) ×
Omc ,nc∑

o=1

L(mc.nco)xmc,nc,o +
NM∑

n=1

OM,n∑

o=1

F(M.no)sM,n,o ≤ Ec

∀ mc, nc where 1 ≤ mc ≤ M, 1 ≤ nc ≤ Nmc

For stageswith only one processor (that is, Nm = 1), sm,n,o variables are replaced
by xm,n,o in the above constraint because sm,n,o variables are only used for stages
with more than one processor (that is, Nm > 1). The above constraint is repeated
considering each processor critical at a time, resulting in

∑M
m=1

∑Nm
n=1 many

constraints where the selection of the critical processor is embedded into these
constraints.

The output of the above binary ILP is a set of processor configurations with
one configuration per processor, which will be optimal due to the use of binary
ILP. For area footprint optimisation under an execution time constraint, the work in
[10] reports more advanced techniques to prune the design space and relax the ILP
formulation or use a heuristic to quickly search for a near-optimal solution.

5.3 Optimisation Under a Latency Constraint

The processor configuration selection problem under a latency constraint is formu-
lated as a binary ILP problem in the following way:

5.3.1 Variables

Binary variables are used to determine the selection of processor configurations:

• xm,n,o variables are used to select one configuration per processor.Avariable xm,n,o

equals 1 if the configuration o of processor m.n is selected, otherwise equals 0.

http://dx.doi.org/10.1007/978-3-319-01113-4_4

90 5 Design Space Exploration of Pipelined MPSoCs

• sm,n,o variables are used to select one configuration per pipeline stage. A stage
with more than one processor will have one configuration selected for each of the
processors; however, only one of those (the one with maximum latency) configu-
rations can be selected as the stage configuration for calculation of the pipelined
MPSoC’s latency. A variable sm,n,o equals 1 if the configuration o of processor
m.n is also selected as the configuration of stage m, otherwise equals 0. These
variables are only used for stages that contain more than one processor because
configuration of a stage with only one processor will be the configuration selected
for the only processor in that stage.

5.3.2 Objective Function

The objective function of the optimisation problem is to minimise the pipelined
MPSoC’s area footprint, which can be written as:

Minimise
M∑

m=1

Nm∑

n=1

Om,n∑

o=1

A(m.no)xm,n,o

Note that the area of the FIFO buffers is ignored here because their area is constant
for a given pipelined MPSoC and hence does not affect the optimisation problem.

5.3.3 Constraints

Various constraints applicable to the processor configuration selection problem are
listed below:

1. Only one configuration can be selected for a processor:

Om,n∑

o=1

xm,n,o = 1 ∀ m,n

2. For stages with more than one processor, only one processor configuration can
be selected as the stage configuration:

Nm∑

n=1

Om,n∑

o=1

sm,n,o = 1 ∀ m where Nm > 1

3. The configuration of a stage with more than one processor must be one of the
processor configurations selected using xm,n,o variables:

5.3 Optimisation Under a Latency Constraint 91

sm,n,o − xm,n,o ≤ 0 ∀ m, n, owhere Nm > 1

4. Of the selected processor configurations in a stage with more than one processor,
the configuration with maximum latency must be selected as the stage config-
uration. The following constraint compares the latencies of the nth and j th
processors in the mth stage:

max
1≤o≤Om,n

{L(m.no)} ×
⎡

⎣1 −
Om, j∑

o=1

sm, j,o

⎤

⎦ +
Om, j∑

m=1

L(m. jo)sm, j,o ∈
Om,n∑

o=1

L(m.no)xm,n,o

∀ n, j where 1 ≤ n, j ≤ Nm , j ≈= n and Nm > 1

There will be Nm − 1 such constraints for each processor in stage m as it has to
be compared with every other processor in that stage. Thus, in total there will be
Nm(Nm − 1) such constraints for stage m to ensure that the stage configuration
is the one with maximum latency.

5. The latency of the pipelinedMPSoC (calculated using analyticalmodel proposed
in Sect. 4.1) must be less than or equal to the latency constraint Lc. Since any
processor can be critical in the pipelined MPSoC, the direct use of the pipelined
MPSoC’s latency analytical model results in a non-linear constraint due to the
product factor. In this monograph, such a constraint is lineraised by considering
one of the processors critical at a time, leading to the following constraint:

(2×mc−1)×
Nmc∑

n=1

Omc ,n∑

o=1

L(mc.no)smc,n,o+
M∑

m=mc+1

Nm∑

n=1

Om,n∑

o=1

L(m.no)sm,n,o ≤ Lc

where mc refers to the stage of the processor currently being considered criti-
cal. For stages with only one processor (that is, Nm = 1), sm,n,o variables are
replaced by xm,n,o in the above constraint because sm,n,o variables are only used
for stages with more than one processor (that is, Nm > 1). The following con-
straint is also added to make sure that the configurations selected for non-critical
processors have lower latencies than the critical processor’s latency, where the
critical processor is referred to as mc.nc:

Om,n∑

o=1

L(m.no)xm,n,o ≤
Omc .nc∑

o=1

L(mc.nco)xmc,nc,o ∀m, n and (m, n) ≈= (mc, nc)

Since thebinary ILP formulationdescribed above considers onlyoneof theproces-
sors to be critical, one instance of such a formulation provides solution for that partic-
ular critical processor only, and thus not the whole optimisation problem. Therefore,∑M

m=1 Nm instances of the binary ILP formulation are run,where these instances suc-
cessively consider each processor as the critical processor in the pipelined MPSoC.
Then, the solution with minimum area footprint from amongst the solutions of all
the binary ILP instances is selected. Algorithmically, the optimisation approach is

http://dx.doi.org/10.1007/978-3-319-01113-4_4

92 5 Design Space Exploration of Pipelined MPSoCs

Algorithm 1: Optimisation Under a Latency Constraint

1 OptimalSol = NULL;

// One by one consider each processor as critical in the
pipelined MPSoC

2 for m=1 to M do
3 for n=1 to Nm do
4 CurrentSol = SolveILP(m, n, Lc);
5 if CurrentSol’s area footprint < OptimalSol’s area footprint then
6 OptimalSol = CurrentSol;

7 return OptimalSol;

shown in Algorithm 1. The two for-loops starting at lines 2 and 3 traverse all the
processors in the pipelined MPSoC, calling the function SolveI L P(m, n, Lc) with
processor m.n to be considered as the critical processor (mc = m and nc = n in
constraint 5 of the binary ILP formulation). The output of the algorithm is a set of
processor configurations with one configuration per processor. Since binary ILP is
used, the selected design point will be optimal.

Although the binary ILP formulation needs to be run multiple times, the number
of processors in a pipelined MPSoC is typically in the order of tens. Thus, the
running time of Algorithm 1 will be reasonable (refer to Sect. 5.7). Alternatively, the
optimisation problem could have been formulated as a non-linear problem, which is
beyond the scope of this monograph.

5.4 Optimisation Under a Throughput Constraint

Optimisation of a pipelined MPSoC’s area footprint under a throughput constraint
is not as complex as its latency constrained optimisation. The algorithm is shown in
Algorithm2. Intuitively, a throughput constraint Tc on a pipelinedMPSoCmeans that
none of the processors in the pipelinedMPSoCcan have latency greater than Tc . Thus,
the algorithm traverses all the configurations of all the processors (lines 1–5), and
deletes any configuration with latency greater than Tc. After this pruning phase, the
algorithm selects the configuration with the minimum area footprint for a processor
from its remaining configurations, repeating the process for all the processors in
the pipelined MPSoC. Such a selection results in minimum area footprint of the
pipelined MPSoC because its area footprint is a linear summation of the area of
individual processors. Thus, Algorithm 2 outputs one configuration per processor
where the selected design point is optimal. The algorithm traverses all the processor
configurations only once, resulting in a complexity of O(

∑M
m=1

∑Nm
n=1 Om,n).

5.5 Discussion 93

Algorithm 2: Optimisation Under a Throughput Constraint

// Prune processor configurations with latency greater than Tc
1 for m=1 to M do
2 for n=1 to Nm do
3 for o=1 to Om,n do
4 if L(m.no) > Tc then
5 Delete processor configuration m.no

// select minimum area footprint configurations
6 for m=1 to M do
7 for n=1 to Nm do
8 Select configuration with minimum area for processor m.n from the remaining

configurations

5.5 Discussion

The pipelined MPSoC used in this monograph does not restrict processors to run
at the same frequencies. If the processors are running at different frequencies, then
their latencies in clock cycles cannot be just added to compute the execution time
and latency of the pipelined MPSoC. In such a scenario, the latency of a processor
in clock cycles should be converted to actual time, by dividing it by the frequency
of that processor. Furthermore, the execution time and latency constraints should
be provided as actual times rather than clock cycles. However, these steps will not
change the binary ILP formulation andAlgorithm 1. Likewise, for area footprint opti-
misation under a throughput constraint, both the processor latencies and throughput
constraint should be converted to actual time. Thiswill again not changeAlgorithm2.
Hence, these simple modifications can extend the proposed optimisation methods to
pipelined MPSoCs with processors running at different frequencies.

5.6 Experimental Methodology

Design spaces of five pipelined MPSoCs, created in Chap.4, were explored using
the proposed optimisation methodologies. The number of configurations for each
processor and the total design points are reported in Table 4.1 where the design
spaces ranged from 1012 to 1018 design points. The latencies of the processor con-
figurations were gathered using the PS method described in Sect. 4.2.1. The area of
each processor configuration was measured in the number of gates and included the
area of the base processor, custom instructions, and instruction and data caches.

A commercial linear programming solver, CPLEX [11], was used to solve the
binary ILP formulation. CPLEX reads an input file in LP format and outputs the
values of variables in a text file. The proposed algorithms were programmed in

http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_4

94 5 Design Space Exploration of Pipelined MPSoCs

Perl and integrated with Tensilica’s design environment to automate the exploration
process. All the experiments were conducted on a 2.15 GHz quad core machine with
8GB RAM.

5.7 Results and Analyses

5.7.1 Pareto Fronts

Figures 5.1, 5.2, 5.3, 5.4 and 5.5 show the results of design space exploration of
the pipelined MPSoCs for execution time, latency and throughput. For the sake of
simplicity, the values on the axes are omitted.

Figures5.1a, 5.2a, 5.3a, 5.4a and 5.5a show the Pareto front of each pipelined
MPSoC, where the execution time is plotted on the y-axis while the area is plotted
on the x-axis. These Pareto fronts were obtained by specifying different execution
time constraints, spanning the whole design space, and obtaining the optimal design

E
xe

cu
ti

o
n

 T
im

e
(C

lo
ck

 C
yc

le
s)

Area (Gates)

(a)

L
at

en
cy

 (
C

lo
ck

 C
yc

le
s)

Area (Gates)

(b)

1/
T

h
ro

u
g

h
p

u
t

(C
lo

ck
 C

yc
le

s)

Area (Gates)

(c)

Fig. 5.1 Pareto fronts of JPEGEnc1: a execution time, b latency, and c throughput against area
footprint

5.7 Results and Analyses 95

E
xe

cu
ti

o
n

 T
im

e
(C

lo
ck

 C
yc

le
s)

Area (Gates)

(a)

L
at

en
cy

 (
C

lo
ck

 C
yc

le
s)

Area (Gates)

(b)

1/
T

h
ro

u
g

h
p

u
t

(C
lo

ck
 C

yc
le

s)

Area (Gates)

(c)

Fig. 5.2 Pareto fronts of JPEGEnc2: a execution time, b latency and c throughput against area
footprint

point for each of the individual constraints. For example, the JPEGEnc1 design
space was explored by providing execution time constraints from 3.5 million to 5.5
million clock cycles in steps of 100,000 clock cycles. The design spaces of other
pipelined MPSoCs were explored similarly, though with different ranges and steps.
Figures 5.1b, 5.2b, 5.3b, 5.4b and 5.5b show the Pareto fronts for all the pipelined
MPSoCs with respect to latency while Figs. 5.1c, 5.2c, 5.3c, 5.4c and 5.5c show the
Pareto fronts for1/Throughput, which translates to the latency of the critical processor
in the pipelinedMPSoC. A decrease in 1/T hroughput of a pipelinedMPSoCmeans
a tighter bound on the critical latency, which will require more resources, and thus
will increase the area footprint of a pipelinedMPSoC as depicted in the Pareto fronts.

5.7.2 Exploration Time

An important concern while exploring the design space is the time taken to obtain
the Pareto front. Table 5.1 reports the time to find the Pareto front of each pipelined
MPSoC for execution time, latency and throughput. The second, third and fourth

96 5 Design Space Exploration of Pipelined MPSoCs

E
xe

cu
ti

o
n

 T
im

e
(C

lo
ck

 C
yc

le
s)

Area (Gates)

(a)

L
at

en
cy

 (
C

lo
ck

 C
yc

le
s)

Area (Gates)

(b)

1/
T

h
ro

u
g

h
p

u
t

(C
lo

ck
 C

yc
le

s)

Area (Gates)

(c)

Fig. 5.3 Pareto fronts of JPEGDec: a execution time, b latency and c throughput against area
footprint

Table 5.1 Exploration time to obtain Pareto fronts

Pipelined MPSoC Execution time (s) Latency (s) Throughput (s)

JPEGEnc1 51 39 2
JPEGEnc2 77 81 3
JPEGDec 248 218 3
MP3Enc 264 226 2
H.264Enc 353 409 14

columns, titled execution time, latency and throughput, refer to area footprint opti-
misation under an execution time, a latency and a throughput constraint respectively.
Since optimisation under an execution time constraint and a latency constraint uses
binary ILP to find the optimal design point, their exploration time will be higher
than that of Algorithm 2. The maximum time to find the Pareto front with respect
to execution time and latency was less than 6 min (MP3Enc) and seven minutes
(H.264Enc) respectively. With respect to throughput, the maximum time to find the
Pareto front was 14 s, occurring for H.264Enc again.

5.7 Results and Analyses 97

E
xe

cu
ti

o
n

 T
im

e
(C

lo
ck

 C
yc

le
s)

Area (Gates)

(a)

L
at

en
cy

 (
C

lo
ck

 C
yc

le
s)

Area (Gates)

(b)

1/
T

h
ro

u
g

h
p

u
t

(C
lo

ck
 C

yc
le

s)

Area (Gates)

(c)

Fig. 5.4 Pareto fronts of MP3Enc: a execution time, b latency, and c throughput against area
footprint

Note that the reported exploration times depend on the number of constraints used
while exploring the design space, in addition to the complexity of binary ILPwhen an
execution time constraint is used or Algorithm 1 (which depends on the complexity
of binary ILP) when a latency constraint is used or the complexity of Algorithm 2
when a throughput constraint is used. In these experiments, a minimum of 50 and a
maximum of 200 execution time constraints were used for design space exploration
of the pipelined MPSoCs. Likewise, a minimum of 36 and a maximum of 82 latency
constraints were used. For throughput constrained design space exploration, at least
44 throughput constraints were used for each pipelined MPSoC, with a maximum of
240 for H.264Enc. This shows that the proposed optimisation methods can handle
exploration of reasonably large design spaces (with 1012 to 1018 design points),
finding the Pareto front in a few minutes for three different performance metrics.
Once these Pareto fronts are available, designers can trade-off the execution time,
latency or the throughput with the area footprint by choosing an appropriate set of
processor configurations for a pipelined MPSoC.

98 5 Design Space Exploration of Pipelined MPSoCs

E
xe

cu
ti

o
n

 T
im

e
(C

lo
ck

 C
yc

le
s)

Area (Gates)

(a)

L
at

en
cy

 (
C

lo
ck

 C
yc

le
s)

Area (Gates)

(b)

1/
T

h
ro

u
h

g
p

u
t

(C
lo

ck
 C

yc
le

s)

Area (Gates)

(c)

Fig. 5.5 Pareto fronts of H.264Enc: a execution time, b latency and c throughput against area
footprint

5.7.3 JPEG Encoder Case Study

The JPEG encoder application in Fig. 3.1 was partitioned in two differing ways to
compare alternative implementations of it on pipelined MPSoCs. Table 5.2 shows
the comparison of JPEGEnc1 with JPEGEnc2. The second, third and fourth major
columns refer to the optimal design point obtained under an execution time, a latency
and a throughput constraint respectively where the constraints are in clock cycles.
The term A stands for the area footprint of the selected design point, measured in
number of gates. Comparing JPEGEnc1 with JPEGEnc2, for the same execution
time constraint, the area of JPEGEnc2 (662,334 gates) is smaller than the area of
JPEGEnc1 (672,288 gates), resulting in a 1.48% reduction. Likewise, for the same
latency and throughput constraints, JPEGEnc2 had an area reduction of 5.68 and
2.44% respectively. This is because the three processors in the third stage process
Y, Cb and Cr components of a macroblock in parallel, and thus increase the per-
formance of the pipelined MPSoC. Therefore, simpler processor configurations in
JPEGEnc2 can be used to achieve the same performance as of JPEGEnc1, resulting
in lower area footprint of JPEGEnc2. Since the exploration time of the proposed

http://dx.doi.org/10.1007/978-3-319-01113-4_3

5.7 Results and Analyses 99

Table 5.2 Comparison of JPEGEnc1 and JPEGEnc2

Pipelined Execution time constrained Latency constrained Throughput Constrained
MPSoC Ec A Lc A Tc A

JPEGEnc1 5,300,000 672,288 36,000 700,104 5,800 678,953
JPEGEnc2 5,300,000 662,334 36,000 660,286 5,800 662,334

optimisation methods is in minutes, a designer can quickly compare and evaluate
different pipelined MPSoCs for the same application. However, application parti-
tioning and mapping need to be done either manually or semi-automatically using
one of the several techniques discussed in Chaps. 2 and 3.

5.8 Summary

In this chapter, the author proposed several techniques to quickly search an opti-
mal design point (minimum area footprint) of a pipelined MPSoC where its design
space consisted of differing combinations of processor configurations. Since per-
formance requirements of multimedia applications put constraints on the design of
pipelinedMPSoCs, area footprint optimisation was done under these constraints. For
five pipelined MPSoCs, the exploration time to find Pareto fronts of each of those
pipelined MPSoCs was less than seven minutes when their design spaces contained
at least 1012 design points. This illustrates the applicability of the proposed methods
to quickly optimise area footprint of performance constrained pipelined MPSoCs.

References

1. B.K. Dwivedi, A. Kumar, M. Balakrishnan, Synthesis of application specific multiprocessor
architectures for process networks, in VLSID ’04: Proceedings of the 17th International Con-
ference on VLSI Design (Washington, DC, USA), p. 780, IEEE Computer Society, 2004

2. S.-R. Kuang, C.-Y. Chen, R.-Z. Liao, Partitioning and pipelined scheduling of embedded sys-
tem using integer linear programming, in ICPADS ’05: Proceedings of the 11th International
Conference on Parallel and Distributed Systems Workshops (ICPADS’05) (Washington, DC,
USA), pp. 37–41, IEEE Computer Society, 2005

3. J. Wu, J. Williams, N. Bergmann, An ilp formulation for architectural synthesis and applica-
tion mapping on fpga-based hybrid multi-processor soc, in International Conference on Field
Programmable Logic and Applications, FPL 2008, pp. 451–454, 2008

4. C.-L. Sotiropoulou, S. Nikolaidis, Ilp formulation for hybrid fpga mpsocs optimizing perfor-
mance, area andmemory usage, in 18th IEEE International Conference on Electronics, Circuits
and Systems (ICECS), pp. 748–751, 2011

5. Y. Jin,N. Satish,K.Ravindran,K.Keutzer,An automated exploration framework for fpga-based
soft multiprocessor systems, in CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis (ACM, New
York), pp. 273–278, 2005

http://dx.doi.org/10.1007/978-3-319-01113-4_2
http://dx.doi.org/10.1007/978-3-319-01113-4_3

100 5 Design Space Exploration of Pipelined MPSoCs

6. J. Cong, G. Han, W. Jiang, Synthesis of an application-specific soft multiprocessor system,
in FPGA ’07: Proceedings of the 2007 ACM/SIGDA 15th International Symposium on Field
Programmable Gate Arrays (ACM, New York), pp. 99–107, 2007

7. S.L. Shee, S. Parameswaran, Design methodology for pipelined heterogeneous multiproces-
sor system, in DAC ’07: Proceedings of the 44th Annual Conference on Design Automation,
pp. 811–816, 2007

8. L. Chen, N. Boichat, T. Mitra, Customized mpsoc synthesis for task sequence, in Proceedings
of the 2011 IEEE 9th Symposium on Application Specific Processors, SASP ’11 (Washington,
DC, USA), pp. 16–21, IEEE Computer Society, 2011

9. U. Bordoloi, H.P. Huynh, T. Mitra, S. Chakraborty, Design space exploration of instruction set
customizable mpsocs for multimedia applications, in International Conference on Embedded
Computer Systems (SAMOS), pp. 170–177, 2010

10. H. Javaid, A. Ignjatovic, S. Parameswaran, Rapid design space exploration of application
specific heterogeneous pipelined multiprocessor systems. Trans. Comp.-Aided Des. Integ. Cir.
Sys. 29, 1777–1789 (2010)

11. IBM, “ILOG CPLEX Optimizer”. Available at: http://www-01.ibm.com/

http://www-01.ibm.com/

Chapter 6
Adaptive Pipelined MPSoCs

Multimedia applications exhibit variations in computational workload of their
sub-kernels due to the adaptive nature of algorithms and input data. For example, the
workload of the motion estimation sub-kernel in H.264 video encoder varies depend-
ing on the amount of motion in the incoming video frames. Therefore, to guarantee
throughput at all times, pipelined MPSoCs have to be designed with worst-case
parameters. For example, the optimisation methods proposed in Chap. 5 for design-
time balancing of pipelined MPSoCs will use worst-case latencies of the processor
configurations (that is, processor latencies are gathered by providing worst-case rep-
resentative input data to the pipelinedMPSoCs). Sinceworst-case pipelinedMPSoCs
lack adaptability to run-time variations in their computational workload, they suf-
fer from inefficient resource utilisation and may result in high energy consumption
under a dynamic workload. Let us examine the limitations of a worst-case pipelined
MPSoC through a case study of the motion estimation in the H.264 video encoder.

6.1 Motivational Example

Motion estimation in the H.264 encoder is one of the most computationally intensive
sub-kernels. Motion estimation is performed on each macroblock of the incoming
frame, where the Sum of Absolute Differences (SAD) is used to compare the current
macroblock with the reference macroblocks to find the best possible match. The
number of SADs that need to be computed for a macroblock heavily depends on
the motion contained in that particular macroblock. A macroblock containing fast
moving objects will require more SADs compared to a macroblock of slow moving
objects. Figure6.1 shows the number of SADs that were computed for the first 200
macroblocks of the second frame (the first frame does not require motion estimation)
of the ‘pedestrian’ video sequence [1]. It is obvious that the workload of the motion
estimation sub-kernel varies significantly at run-time; the number of computed SADs

H. Javaid and S. Parameswaran, Pipelined Multiprocessor System-on-Chip 101
for Multimedia, DOI: 10.1007/978-3-319-01113-4_6,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/978-3-319-01112-7_5

102 6 Adaptive Pipelined MPSoCs

0

100

200

300

400

500

0 50 100 150 200

S

A
D

s

Iteration

During low workload periods, idle processors can
be deactivated to reduce energy consumption

Fig. 6.1 Number of SADs computed during different iterations of themotion estimation sub-kernel

can go as high as 500 and as low as 10 with an average and standard deviation of
154 and 153 SADs respectively.

Consider the motion estimation stage of a worst-case pipelined MPSoC which
contains 17 processors in parallel to process HD720p video. In addition, consider
that each processor can compute 30 SADs within the throughput constraint. Thus,
in total the motion estimation stage is capable of computing 17 × 30 = 510 SADs
which is enough to sustain throughput at all times (worst case is 500SADs). Dur-
ing low workload periods (marked in Fig. 6.1), only one processor is doing useful
work because these periods require computation of less than 30SADs (which can be
handled by a single processor). Thus, during the marked low workload periods, the
other 16 processors will be idle, resulting in inefficient utilisation of resources and
increased energy consumption of the pipelined MPSoC. In contrast, in an adaptive
pipelined MPSoC, a resource-aware approach would have shared the idle proces-
sors with other stages at run-time, while an energy-aware approach would have
deactivated the idle processors at run-time to reduce energy consumption.

In summary, design-time balanced, worst-case pipelinedMPSoCs do provide high
performance but at the cost of inefficient resource utilisation and increased energy
consumption. Hence, worst-case pipelined MPSoCs do not provide a resource- or
energy-aware platform for advancedmultimedia applications such asH.264/AVC [2],
AVS [3], VC1 [4] which exhibit huge variations in their workload at run-time due
to the adaptive nature of their algorithms and input data. As a result, applicability of
worst-case pipelined MPSoCs as a platform for multimedia applications in portable
devices is limited because of the area footprint and energy constraints in such devices.

In this chapter, a worst-case pipelined MPSoC is augmented with a run-time
management (balancing) technique so that it can adapt itself to run-time varying
workloads. To this end, an adaptive pipelined MPSoC architecture is proposed
where stages with significant run-time variations in workload are implemented
using Main Processors and Auxiliary Processors. The main processor uses differ-
ing number of auxiliary processors considering run-time workload variations. The

6.1 Motivational Example 103

run-time management technique uses a combination of the application’s execution
and knowledge (algorithmic and data properties) to predict the upcoming workload
(number of auxiliary processors for amain processor). To reduce energy consumption
of the adaptive pipelinedMPSoC, the idle auxiliary processors are either clock-gated
or power-gated.

The works in [5–7] considered adaptability in pipelined MPSoCs. Guo et al. [7]
proposed a dynamic voltage scaling approach to reduce the voltage to processors
with low workload, while [5, 6] showed the application of Dynamic Voltage and
Frequency Scaling (DVFS) in pipelined MPSoCs. All these works used a feed-
back controller to monitor the occupancy level of the queues to determine when to
increase or decrease the frequency-voltage levels of a processor. Thus, these works
used the execution history of the application andwere reactive in nature. The run-time
management techniques proposed in this chapter not only utilise the application’s
execution history, but also the application’s knowledge to proactively predict the
upcoming workload. An application’s knowledge should be used in workload pre-
diction because an application knows (or may know) by far the most about its future
workload [8]. However, unlike [8]where just algorithmic properties in a uniprocessor
system were employed, more diverse application knowledge (algorithmic and data
properties) are considered in a pipelined MPSoC in this chapter.

From a practical perspective, the provision of DVFS circuitry for MPSoCs with
more than two processors is very expensive [9]. Furthermore, the large overhead of
DVFS control circuitry limits its use to systems requiring only coarse-grained run-
time management [10]. The shrinkage of the dynamic range of voltage-frequency
operational points due to downward scaling of supply voltage has also limited DVFS
use, and has given rise to the use of clock-gating, power-gating and multiple power
states. Therefore, the adaptive pipelinedMPSoC architecture proposed in this chapter
allows a main processor to manage its auxiliary processors by either clock- or power-
gating them. Chapter7 extends this work for multiple power states.

6.2 Adaptive Pipelined MPSoC Architecture

Figure6.2 shows a typical pipelined MPSoC, comprised of various pipeline stages.
Adaptability is introduced in such a pipelinedMPSoC by the use of Main Processors
(MPs) andAuxiliary Processors (APs). Thus, each processor in the pipelinedMPSoC
is either an MP or an AP. A processor is categorised as an MP if its sub-kernel(s) is
(are) executed for every iteration of the multimedia application, that is it is always
active. On the other hand, an AP is a processor whose mapped sub-kernel(s) will
be executed for a maximum of the total number of the application’s iterations, that
is, it can be idle during some iterations. Adaptability in stages with significant run-
time variation in their workloads is realised by implementing those stages using
a combination of MPs and APs, where a pool of APs is connected to an MP using
FIFOs. In addition,MPs and theirAPs can have access to a sharedmemory if common
data needs to be shared between them.

http://dx.doi.org/978-3-319-01112-7_7

104 6 Adaptive Pipelined MPSoCs

MP1

MP2 AP2.1AP2.2

MP3

AP
4.2.1

AP
4.1.1

MP5

MP4.1 MP4.2

S1

S5

S4

S3

S2

MP6
S6

Run-time Processor
Manager

Determines the idle
APs

APs

Clock-gates or
power-gates idle

Fig. 6.2 Adaptive pipelined MPSoC’s architecture

An example of an adaptable stage is S4 in Fig. 6.2which contains twoMPs (MP4.1
and MP4.2) that will be active at all times. These MPs will use their corresponding
APs (AP4.1.1 and AP4.2.1) only when the workload increases beyond their capaci-
ties. In other words, MPs handle the nominal workload while APs handle the extra
workload by working in parallel with their corresponding MPs. If all the APs of an
adaptive pipelined MPSoC are considered to be MPs, then it will become a worst-
case pipelined MPSoC, where all the processors will be always active (thus only the
existence of MPs). It should also be noted that stages with almost constant work-
load do not need APs and are only implemented with MPs; for example, stage S3
in Fig. 6.2. Thus, an adaptive pipelined MPSoC provides an effective implementa-
tion platform for advanced multimedia applications which contain stages with both
almost constant workload (such as DCT) and run-time varying workload (such as
motion estimation).

Theproposed adaptive pipelinedMPSoC is a hybrid systemdue to the co-existence
of MPs and APs, and its adaptability can be exploited in several ways. For example,
a resource-aware run-time manager could be deployed to allocate the idle APs of
one stage to another stage that is currently experiencing high workload, resulting

6.2 Adaptive Pipelined MPSoC Architecture 105

in efficient resource utilisation.1 Another example is to deploy an energy-aware
run-time manager where the APs are deactivated during idle iterations to reduce
the energy consumption. This chapter focuses on the later by proposing a run-time
processor manager, considering the support for clock- and power-gating (two well-
known power reduction techniques) based deactivation of idle APs.

The architecture of the adaptive pipelined MPSoC allows for both a centralised
and a distributed run-time manager. However, a distributed processor manager is
proposed in this chapter where an MP adapts to its varying workload by activat-
ing/deactivating its APs, independent of other MPs. Such a distributed approach has
the advantage of scalability over a centralised processor manager. Furthermore, each
stage can tweak the run-time management heuristics (see Sect. 6.6) according to its
own workload profile. Therefore, highly customised, per-stage run-time managers
can be deployed in the adaptive pipelined MPSoC to lower their performance and
energy overheads.

Figure6.2 zooms in on one of the MPs to illustrate that each MP with a pool
of APs has a run-time processor manager. This processor manager determines the
idle APs of an MP by considering the workload at run-time for every iteration of
the application. For example, if the run-time manager determines AP14 and AP15
to be idle for an MP with 16 APs, then AP14 and AP15 will either be clock- or
power-gated to reduce energy consumption. In this chapter, either the idle AP is only
clock-gated or only power-gated without the provision for selective use of clock- and
power-gating. Chapter7 will extend this work for selective use of different power
reduction techniques through the use of multiple power states.

6.3 A Design Flow

The design flow to create an adaptive pipelined MPSoC is shown in Fig. 6.3. The
sub-kernels of a multimedia application are mapped to the processors of a pipelined
MPSoC. The pipelined MPSoC is then passed through a customisation phase, where
each processor is customised according to the sub-kernel(s) mapped on it to balance
the stages of the pipelined MPSoC. Further details can be found in Chaps. 3 and 5.
The customised pipelined MPSoC is created using worst-case parameters so that it
can deliver the required throughput at all times.

A worst-case pipelinedMPSoC is transformed into an adaptive pipelinedMPSoC
by the addition of a run-time manager. Firstly, the worst-case pipelined MPSoC
is profiled with various data inputs to gather statistical information such as mini-
mum, maximum and average workload. For example, in the motivational example of
Sect. 6.1 where 17 processors were used in the motion estimation stage, a minimum
and a maximum of 10 and 500 SADs are computed respectively with a standard

1 Resource sharing would require connection of an AP with multiple MPs. Since resource sharing
is not considered in this monograph, each AP is connected to only one MP, though multiple APs
can be connected to a single MP.

http://dx.doi.org/978-3-319-01112-7_7
http://dx.doi.org/978-3-319-01112-7_3
http://dx.doi.org/978-3-319-01112-7_5

106 6 Adaptive Pipelined MPSoCs

Worst-casePipelined
MPSoC

All the processors are
customised by selection of
processor configurations

Adaptive Pipelined
MPSoC

Selection of MPs and APs
for each pipeline stage

Mappingand Design Space Exploration

Profiling & Off-line
Statistical Analysis

Statistical Information:
Min, Max, Average Workload; etc.

Architectural Information:
Max APs; etc.

Application Information:
Throughput; etc.

Multimedia
Application’s
Sub-kernels

Design-time

Determine idle
APs that should be
deactivated using
clock-or power-

gating considering
run-time variation

inworkload

Run-time

Fig. 6.3 A design flow for adaptive pipelined MPSoCs

deviation of 153 SADs. In addition, the throughput constraint of the multimedia
application is used to compute the period of each pipeline stage (that is, the maxi-
mum number of clock cycles for an iteration), and is referred to as Tc. The profiling
information also records the amount of workload a processor can handle within Tc

clock cycles. For example, a processor in motion estimation stage can compute 30
SADs in Tc clock cycles. Using the profiling and statistical information, the number
of MPs and APs is decided for each stage of the worst-case pipelined MPSoC. For
the running example, motion estimation stage can be implemented with one MP and
16 APs because the minimum workload of 10 SADs can be handled by one proces-
sor. A similar procedure is also used for the other stages of the pipelined MPSoC
where run-time adaptation is required. In summary, statistical information from the
profiling is used to decide the number of MPs and APs for each stage of the adaptive
pipelined MPSoC. Then, the information gathered off-line (statistical, architectural
and application) is used by the run-time manager in addition to run-time monitoring
of the workload to activate and deactivate APs at run-time.

6.4 Problem Statement

Given an adaptive pipelined MPSoC and the off-line gathered information, the goal
is to determine “when” and “how many” APs to activate and deactivate at run-time
for each MP under run-time variations in workload so that the required throughput is
delivered with minimal degradation and maximal reduction in energy consumption.

The challenge is to predict the correct number of APs for an iteration because
the use of an incorrect number of APs will either result in loss of throughput (when
less than required APs will be used) or an increase in energy consumption (when
more than the required number of APs will be used which could otherwise have been

6.4 Problem Statement 107

deactivated). A feedback based approach, particularly the one that is only based on
the application’s execution history, suffers from slow response because the run-time
manager cannot detect workload variation until the current iteration has finished,
and thus may result in significant loss of throughput (see Sect. 6.7.2). In other words,
feedback based approaches are reactive in nature rather than proactive. Additionally,
multiple activations/deactivations of an AP within the same iteration may lead to
an increase in energy consumption rather than its reduction due to the overhead of
activation and deactivation. Thus, a sophisticated run-time manager is required to
decide the number of APs that should be activated for an MP, considering more
than just the application’s execution history. Furthermore, such a run-time manager
should have low performance and energy overheads.

The next two sections explain how application knowledge can be leveraged to
predict the workload of (some of the stages of) a multimedia application, and how
that prediction, in addition to the application’s execution history, can be used by an
MP to manage its APs.

6.5 Leveraging Application Knowledge

In multimedia applications, much information is available from the application and
input data, such as texture, brightness, size and homogeneity of the macroblocks or
frames in an H.264 video encoder/decoder [11]. Typically, a pre-processing stage
is employed in multimedia applications to analyse such information [11]. The pre-
processing stage processes the input data to extract useful information for the video
processing system in advance for run-time adaptation [12]. In this chapter, the author
uses such information at system-level in the run-time processor manager to decide
the number of APs for an MP.

6.5.1 An H.264 Video Encoder Example

In this section, one piece of information available at the pre-processing stage to
the motion estimation sub-kernel in an H.264 video encoder is elaborated. Con-
sider the pre-processing stage categorises the macroblocks of a frame as either
low or high motion macroblocks. Low motion macroblocks typically contain slow
moving objects and are homogeneous while high motion macroblocks are textured
and contain fast moving objects. Depending on the texture/variance of the cur-
rent macroblock (mbi) and the predicted SADs of the neighbouring macroblocks,
the workload in number of SADs for the current macroblock can be predicted
as follows:

108 6 Adaptive Pipelined MPSoCs

if V ar(mbi) < V arth and S AD(mbi) < S ADth then

mbi is a low motion macroblock

else

mbi is a high motion macroblock

where

V ar(mbi) = 1

N

N∑

j=1

(Pj − AvgBrightness(mbi))
2

AvgBrightness(mbi) = 1

N

N∑

j=1

Pj + N/2

S AD(mbi) = median{S AD(mbright), S AD(mbtop), S AD(mbtopRight)}

The V arth and S ADth are threshold values for the variance and number of SADs,
and are typically obtained through regression analysis [11]. The term Pj refers to
the j th pixel of a macroblock, and N is the total number of pixels.

The number of SADs for low- and high-motion macroblocks are obtained
through the Probability Density Function (PDF), which are shown for two test video
sequences (“station” and “tractor”) in Fig. 6.4. Based on the category of the cur-
rent macroblock (low- or high-motion), the correct distribution is used to obtain the
zone of high probability (a probability of 84% for Gaussian distributions) [13]. For
example, the two vertical (dotted-blue) lines in the “station” graph is the range for
the number of SADs for low motion macroblocks, while the range represented by
the two vertical (dotted-red) lines in the “tractor” graph is for the high-motion mac-
roblocks. From Fig. 6.4, the range for low- and high-motion macroblocks will be
[0, 150] and [150, 600] number of SADs. It should be noted that the prediction is
fuzzy as it is in the form of a range.

Fig. 6.4 Probability density function of number of SADs for low- and high-motion macroblocks
(MBs)

6.5 Leveraging Application Knowledge 109

For each range of the workload, an off-line analysis is performed to obtain the
number of processors that can handle that much workload. For example, the ranges
of [0, 150] and [150, 600] number of SADs can be converted to [0, 5] and [6, 20]
number of processors respectively if the off-line analysis revealed that each processor
can handle 30 SADs within one iteration.

In summary, the workload ranges are computed off-line and stored in the pre-
processing stage in the form of a lookup table to reduce the run-time overhead.
At run-time, the pre-processing stage first categorises the current macroblock (by
analysing its variance and number of SADs of neighbouring macroblocks), and then
uses its category to obtain the corresponding workload range from the lookup table.
Hence, the pre-processing stage can predict the workload of current iteration (an
iteration processes a macroblock) in the form of a range (in number of processors)
for the motion estimation stage of the H.264 video encoder.

6.6 Processor Management Heuristics

This section describes two heuristics to manage APs at run-time: the first heuristic is
based on only the application’s execution history, while the second heuristic is based
on both the application’s execution and knowledge. For the sake of simplicity, the
heuristics are explained from the perspective of one MP; however they are equally
applicable to other MPs of the adaptive pipelined MPSoC. The heuristics exploit
the fact that an MP cannot exceed Tc clock cycles (throughput constraint) during
an iteration in order to guarantee the required throughput. Therefore, at some time
instants during the current iteration, the heuristics checkwhether there is a possibility
of violating the Tc constraint. Then, according to the predicted workload (based on
either the application’s execution or a combination of the application’s execution
and knowledge) APs are either activated or deactivated. The following terms are
introduced to explain the heuristics:

• Wa[i]: Actual workload of the ith iteration, equal to the number of APs that are
active at the end of the ith iteration. For the current iteration, Wa[i] holds the
number of currently active APs.

• Wp[i]: Predicted workload for the ith iteration in number of required APs from
the pre-processing stage.

• CC[i]: Clock cycles spent by MP in its ith iteration which are monitored at run-
time.

• APM : The total number of APs for anMPwhereAPs are denoted as AP0, AP1, . . .

APM−1.
• obsW (observation window): The number of consecutive, previous iterations used
at run-time for observation of the application’s execution.

• calW (calculation window): The number of consecutive, previous iterations used
at run-time for calculation of the average workload in those iterations. The calW

110 6 Adaptive Pipelined MPSoCs

Function isLowWorkload

// Called during k-th iteration to check whether it will have
low workload or not based on previous iterations in the
observation window (obsW)

1 for o=0; o<obsW; o++ do
2 if CC[k-1-o] > Tc/2 then
3 return not low workload iteration

4 return low workload iteration

Function isHighWorkload

// Called during k-th iteration to check whether it will have
high workload or not based on previous iterations in the
observation window (obsW)

1 for o=0; o<obsW; o++ do
2 if CC[k-1-o] > Tc then
3 return high workload iteration

4 return not high workload iteration

is restricted to be less than or equal to obsW which means that the calculation
window is a subset of observation window.

The heuristics use isLowWorkload and isHighWorkload functions to determine
whether the current iteration will have low workload or high workload, based upon
the application’s execution history. If the clock cycles (CC[i]) of any one of the
previous iterations in the observation window (obsW) exceeded Tc, then the current
iteration is considered to be a high workload iteration. This is because the violation
of throughput constraint in the near past suggests that the chances of exceeding Tc

during current iteration are high. If the clock cycles of all the previous iterations in
the observation window were less than Tc/2, then the current iteration is considered
to be a low workload iteration. This is because low workload iterations in the near
past suggest that there are more chances of current iteration being a low workload
iteration.

6.6.1 Application Execution Based Heuristic (Exe Heuristic)

The Exe heuristic monitors the workload of previous iterations (in observation and
calculation windows) to keep a record of the average workload (in number of APs) of
those iterations. The average workload is then used as the predicted workload of the
current iteration, that is, the number of APs that will be required during the current
iteration. The heuristic is shown in Algorithm3.

6.6 Processor Management Heuristics 111

Function getAPsFromExecution

// Called during the k-th iteration to obtain the average
number of active APs from previous iterations in the
calculation window (calW)

1 APsFromExecution = 0;
2 for c=0; c<calW; c++ do
3 APsFromExecution += ≤ (CC[k−1−c]×(Wa [k−1−c]+1))

Tc
∀;

4 return APsFromExecution/calW;

The getAPsFromExecution function computes the average number of APs that
should have been active in the previous iterations where the number of the iterations
to consider is equal to the length of the calculation window (calW). The factor
(CC[k − 1− c] × (Wa[k − 1− c] + 1)) computes the workload of the (k − 1− c)th
iteration in clock cycles where the addition of one in Wa[k − 1 − c] is due to the
presence of the MP. The number of APs that should have been active in (k −1− c)th
iteration are then calculated by dividing the workload in clock cycles by Tc. For
example, if the last iteration used 3,000 clock cycles (CC[k −1] = 3, 000) and three
APs were active (Wa[k −1] = 3) under a throughput constraint of 9,000 clock cycles
(Tc = 9, 000) and calculation window of one iteration (calW = 1), then the average
workload in numbers of APs is one

(⌊ 3,000×(3+1)
9,000

⌋ = 1
)
. Note that Wa[k − 1 − c]

alone is not used because it is not the true workload of an iteration. For example, in
the running example, three APs were active in the last iteration; however, only one
of them should have been active which is the true workload of the last iteration. At
the end (line 4), getAPsFromExecution function returns the average workload of the
iterations in the calculation window in the number of APs.

The Exe heuristic uses the output of the getAPsFromExecution function as the
predicted workload for the current iteration (line 1). Afterwards, it checks whether

Algorithm 3: Exe Heuristic (for the sake of simplicity, boundary cases are not
reported here)

// Called at the start of k-th iteration to decide the number
of APs

1 Wp[k] = getAPsFromExecution();
2 if isHighWorkload() then
3 if Wp[k] > Wa[k] then
4 addAPs = Wp[k] − Wa[k];
5 ACTIVATE addAPs many more APs

6 if isLowWorkload() then
7 if Wp[k] < Wa[k] then
8 subAPs = Wa[k] − Wp[k];
9 DEACTIVATE subAPs many APs

112 6 Adaptive Pipelined MPSoCs

the current iteration will have a high (line 2) or low (line 7) workload based on the
clock cycles of the previous iterations in the observation window using isHighWork-
load and isLowWorkload functions respectively. If the current iteration is considered
to be a high workload iteration and the predicted workload is higher than the cur-
rent workload (line 3) then addAPs (equal to the difference between predicted and
current workloads) many extra APs are activated (lines 4–5). On the other hand, if
the current iteration is a low workload iteration and the predicted workload is less
than the current workload (line 7), then subAPs (equal to the difference between
predicted and current workloads) many APs are deactivated (lines 8–9). Note that
boundary cases to ensure the number of active APs does not exceed APM and some
optimisation steps are skipped for the sake of simplicity.

The Exe heuristic keeps the minimum amount of information so that its run-time
overhead is low. Furthermore, the average workload for a given iteration is updated
at run-time based on the execution history of the calculation window. However, the
Exe heuristic will have a slow response during sudden changes in workload, resulting
in significant loss of throughput (see Sect. 6.7.2). The Exe heuristic portrays typical
feedback controller based techniques that have been used in earlier works [5–7],
and hence is a representative of those techniques in the adaptive pipelined MPSoC
proposed here.

6.6.2 Application Knowledge Based Heuristic (Know Heuristic)

As explained in Sect. 6.5, a pre-processing stage is available which can predict the
workload range of each iteration in the number of APs using the application knowl-
edge. TheKnow heuristic combines such predictionwith statistical information gath-
ered off-line and the application’s execution monitored at run-time to better manage
APs with quick response. The following terms are used in addition to the ones
described in Sect. 6.6:

• WSD: Standard deviation of the MP’s workload in the number of APs, available
from off-line statistical analysis.

• APT : Minimum number of APs that should be activated or deactivated at an instant
during the current iteration, which is computed off-line. The value of APT affects
the response time of the MP, that is, how quickly an MP adapts to the variation in
its workload. For example, a high value of APT will enable a quick response by
activating a large number of APs, reducing the impact on the throughput. However,
a very high value (close to APM) will result in most of the APs being active at all
times, reducing the amount of energy reduction. Therefore, the author computes
APT such that the MP can respond to a variation of WSD

2 (half of the workload’s
standard deviation) within Tc clock cycles to allow a reasonable trade-off between
throughput degradation and energy reduction. Consider that the APs are activated
when the current iteration’s clock cycles have reached Tc/2 and 3Tc/4 (which will
be further explained later), then:

6.6 Processor Management Heuristics 113

WSD

2
= APT

2
+ APT

4

APT = 2WSD

3

The factors APT
2 and APT

4 refer to the workload that can be distributed to APs at

Tc/2 and 3Tc/4 time instants respectively. Thus, if APT = 2WSD
3 many APs are

activated at Tc/2 and 3Tc/4 time instants, then WSD
2 workload can be handled by

those APs without exceeding Tc clock cycles. Further variations in the workload
are addressed by the workload predictions from the application’s knowledge.

• get APs FromK nowledge: This function returns the minimum of the workload
range predicted for the current iteration by the pre-processing stage. Recall from
Sect. 6.5 that the pre-processing stage categorised each macroblock as either low-
or high-motion macroblock and the corresponding workload ranges in the number
of APs were [0, 5] and [6, 20], then getAPsFromKnowledge will return 0 and 6 for
low- and high-motion macroblocks (iterations) respectively.

• APD: The maximum difference between the minimums of consecutive workload
ranges. For example, APD = 6 for the two workload ranges of [0, 5] and [6, 20].

The Know heuristics has two parts which are triggered at different time instants
during the current iteration, which is shown in Algorithm4. The first part (lines 1–11)
is triggered at the start of each iteration to decide the number of APs in advance
to maximally minimise the penalty on throughput. The minimum number of APs
predicted for the current iteration are obtained using the getAPsFromKnowledge
function (line 1). If the predicted workload is more than the current workload, then
addAPs many extra APs are activated (lines 2–4). On the other hand, if the predicted
workload is less than the current workload, then some or all the APs are deactivated.
The number of APs to deactivate are computed by utilising not only the predicted
workload, but also the execution history and off-line statistical information. Thus,
the first step is to check whether the current iteration is considered a low workload
iteration or not based on execution history (line 6). If so, then the predicted workload
is adjusted by taking themaximumamong the application’s knowledge and execution
based predictions (line 7). If the adjusted predicted workload is less than the current
workload (which means that both the application’s knowledge and execution history
suggested use of less number of APs), then subAPs many APs are deactivated (lines
8–11). The minimum operation in line 10 ensures that not more than APT many
APs are deactivated so that the MP can respond back quickly when there is a sudden
increase in the workload, incorporating the information from the off-line statistical
analysis.

Although the first part of the Know heuristic activates or deactivates APs in
advance for minimum degradation of throughput and maximum reduction of energy,
the throughput constraint can still be violated because both the application’s knowl-
edge and execution based predictions are fuzzy. Therefore, the second part of the
Know heuristic is triggered at Tc/2, 3Tc/4 and Tc instants to check the possibility
of violating the throughput constraint. When triggered at Tc/2 and 3Tc/4 instants

114 6 Adaptive Pipelined MPSoCs

Algorithm 4: Know Heuristic (for the sake of simplicity, boundary cases are
not reported here)

// Called at the start of k-th iteration to decide the number
of APs

1 Wp[k] = getAPsFromKnowledge();
2 if Wp[k] > Wa[k] then
3 addAPs = Wp[k] − Wa[k];
4 ACTIVATE addAPs many more APs

5 else
6 if isLowWorkload() then
7 Wp[k] = max { Wp[k], getAPsFromExecution() };
8 if Wp[k] < Wa[k] then
9 subAPs = Wa[k] − Wp[k];

10 subAPs = min { subAPs, APT };
11 DEACTIVATE subAPs many APs

// Called at Tc/2, 3Tc/4 and Tc time instants during k-th
iteration to activate more APs

12 if CC[k] == Tc/2 ∈ CC[k] == 3Tc/4 then
13 if isHighWorkload() then
14 addAPs = getAPsFromExecution() −Wa[k];
15 addAPs = max { addAPs, APT };
16 ACTIVATE addAPs many more APs

17 else if CC[k] == Tc then
18 addAPs = APD ;
19 ACTIVATE addAPs many more APs

(lines 12–16), it checks whether the current iteration is considered a high workload
iteration or not. If so, then addAP many extra APs are activated. The value of addAPs
is computed from the application’s execution history and APT (lines 14–15) because
the application’s knowledge based prediction has already been utilised at the start
of the current iteration. It is possible that the variation in workload is too high and
even after previous activations of the APs, the clock cycles of current iteration have
reached Tc. At this instant, APD many extra APs are activated to ensure that the
remaining workload is handled within the next Tc clock cycles, introducing a worst-
case penalty of Tc clock cycles. This is because if, for example, the current iteration
is predicted to have a [0, 6] workload range, then it could not have required activa-
tion of more than APD = 6 APs. Otherwise, the current iteration would have been
categorised to have a [6, 20] workload range by the pre-processing stage (consider-
ing there are only two categorisations as described in Sect. 6.5). Note that boundary
cases, to ensure number of active APs does not exceed APM , and some optimisation
steps are skipped for the sake of simplicity.

TheKnowheuristic ensures that theAPs are not activated and deactivatedmultiple
times within the current iteration which otherwise would incur significant overhead

6.6 Processor Management Heuristics 115

of activation and deactivation. The first part of the heuristic only deactivates APs if
the current iteration is considered a low workload iteration (line 6) which is mutually
exclusive to the activation condition in the second part (line 13), avoiding unnecessary
activation and deactivation of APs. Furthermore, the deactivated APs will remain
deactivated until Tc clock cycles in the current iteration.

These run-time processormanagement heuristics are executed onMPswith a pool
of APs; however, the values of WSD , APM , APT , APD , obsW and calW will vary
from oneMP to another depending upon their workload profiles. Note that the length
of the observation and calculationwindows (obsW and calW)will affect the outcome
of the heuristics; however, the reason for the use of variable window lengths is that a
designer can tweak the heuristics for different stages of the adaptive pipelinedMPSoC
based on their workload profiles. The proposed run-time management heuristics do
not use any complex computations and hence their overhead is small (see Sect. 6.7.2).

6.6.3 System-Level Overview

The system-level implementation of the proposed adaptive pipelinedMPSoCwith the
processor manager, executing amultimedia application such as H.264 video encoder,
is shown in Fig. 6.5. A multimedia application is implemented as a combination of
pre-processing and multimedia systems. The pre-processing system extracts the fea-
tures of incoming frames to provide useful information to the multimedia system
for run-time adaptations. For example, a pre-processing stage can categorise mac-
roblocks according to the motion contained in them as described in Sect. 6.5. The
multimedia system implements the video codec on an adaptive pipelined MPSoC.
A processor manager is implemented for each of the MPs with a pool of APs. More
specifically, the processormanager uses either the Exe heuristic or theKnowheuristic
to deactivate the idle APs at run-time.

Pre-processing System
1. Categorisation: e.g., based on
motion (Section 6.5)
2. Workload prediction:e.g.,No. of
SADs, No. of APs (Section 6.5)

MultimediaSystem
H.264; MPEG-4; etc.

Frame-level or Macroblock-level

Profiling & Off-line Analysis
Application Information:

Throughput; etc.
Architectural Information:

Max APs; etc.
Statistical Information:

Min, Max, Average Workload;
Workload Ranges from PDFs; etc.

Processor Manager
1. Exe heuristic
(Algorithm 3)
2. Know heuristic
(Algorithm 4)

MP

MP MP

MP

AP

Macroblock-level

Video
frame

Fig. 6.5 A system-level implementation overview of adaptive pipelined MPSoCs

116 6 Adaptive Pipelined MPSoCs

Statistical, architectural and application information obtained through profiling
and off-line statistical analysis is used to guide the two systems at run-time. For
example, the workload ranges (number of SADs for the motion estimation stage)
are obtained through the statistical analysis which are then converted to equivalent
number of APs through profiling for workload prediction at run-time. Other infor-
mation such as the minimum, average and maximum workload is also provided. The
pre-processing system is expected to work at either the frame-level or macroblock-
level so that the workload predictions for all the macroblocks of a frame is available
to the multimedia system which is working at the macroblock-level. Thus, the pro-
posed run-timemanager is applicable to all advancedmacroblock based video coding
applications such as H.264, MPEG-4, AVS, and VC1.

The proposed adaptive pipelined MPSoC and processor manager is applicable to
all multimedia applications where a pre-processing stage can be deployed to guide
the run-time manager. If a pre-processing system is not available, then the processor
manager can use the application knowledge from the multimedia system (for exam-
ple, the actual number of SADs of the previous macroblocks) to predict the future
workload; however, such a prediction would be less accurate. The variables in the
run-time management heuristics (WSD , APM , APT , etc.) allow them to be tweaked
according to the workload profiles of a sub-kernel or stage of a multimedia applica-
tion. It should be noted that the run-time processor manager proposed here can be
used in architectures other than the pipelinedMPSoCs. For example, in amaster-slave
architecture, the master processor will execute the processor management heuristics
to deactivate the idle slave processors.

6.7 HD720p H.264 Video Encoder Case Study

Implementation of an H.264 video encoder for HD720p resolution at 30 fps on an
adaptive pipelinedMPSoC is presented in this section for comparison and evaluation
of the proposed heuristics.

6.7.1 Implementation Details

The adaptive pipelined MPSoC for H.264 video encoder was implemented using
Xtensa LX3 [14] family of processors, which come with the RC-2010.1 tool suite.
Like Chap.4, the processors were customised automatically by utilising the XPRES
tool and the adaptive pipelined MPSoC was created in the XTMP environment. The
XTMP uses the XT-XENERGY tool to measure the power and energy of the proces-
sors in a multiprocessor environment. Hence, the author obtained the throughput
and energy of the adaptive pipelined MPSoC from the XTMP, where all the proces-
sors were running at 1GHz and XT-XENERGY was configured for a given 45nm
technology.

The H.264 video encoder application graph from Chap. 3 is reproduced in Fig. 6.6
with additional details. Due to the feedback loop between the Loop Filter (LF) and

http://dx.doi.org/978-3-319-01112-7_4
http://dx.doi.org/978-3-319-01112-7_3

6.7 HD720p H.264 Video Encoder Case Study 117

the Motion Estimation (ME) sub-kernels, execution of this task graph at frame-level
will introduce unacceptable delay between each iteration, and thus will provide no
useful benefit. Thus, the task graph is executed at macroblock-level where each
sub-kernel processes one macroblock in an iteration (which is typical of real-time
implementations of the H.264 encoder/decoder [15]). Furthermore, the entropy cod-
ing processes macroblocks in parallel to the reconstruction path (ITQ and LF) to
increase the throughput of the system. The annotations around the arrows show the
amount of data (buffer sizes in adaptive pipelined MPSoC) in bytes being trans-
ferred in each iteration. For example, the CC sub-kernel sends the Y component of a
16 × 16 macroblock to ME sub-kernel, which is a transfer of 256bytes in each iter-
ation. It should be noted that the CC and IP/MC sub-kernels send data to IP/MC and
ITQ sub-kernels respectively in advance (bypassing the intermediate sub-kernels) to
increase the throughput of the system. In this task graph, ME, IP/MC and EC sub-
kernels exhibit run-time variation in their workloads, requiring a run-time processor
manager for each of them. However, in this case study, the author only deployed
adaptability for the ME sub-kernel, providing a proof of concept for the proposed
run-time management heuristics. Thus, all the sub-kernels in Fig. 6.6 were mapped
on MPs in the adaptive pipelined MPSoC, except the ME stage where a combination
of MPs and APs was used.

An H.264 encoder supporting HD720p at 30 fps needs to process 30 × 3600 =
108,000macroblocks/s. Since processors are running at 1GHz, a macroblock should
be processed within 1×109

108,000 ≈ 9,260 clock cycles. Thus, Tc = 9, 100 clock cycles is
used to have a conservative throughput constraint. The profiling andoff-line statistical

Fig. 6.6 Details of an H.264
video encoder application CC

EC

LF

ITQ

TQ

IP/
MC

ME

Encoded
Bitstream

256
384

8

768
384

784

384

784

256

LF: Loop Filter

CC: Colour Conversion ME: Motion Estimation
IP: Intra Prediction MC:Motion Compensation
TQ: Transform &Quantise ITQ: InverseTQ

EC: Entropy Coding

(bytes/MB)

384

384

118 6 Adaptive Pipelined MPSoCs

analysis of the ME sub-kernel (with a fast motion estimator [16]) using various input
video sequences yielded 225 average number of SADs with a maximum of 500
SADs and an average standard deviation of 200 SADs per macroblock. Further-
more, the ME processor was able to compute only 30 SADs in Tc clock cycles. The
pre-processing stage provided workload prediction by categorising macroblocks as
either low-, medium- or high-motion macroblocks [12]. The workload range of each
category in the number of APs was computed using off-line analysis and was saved
in a lookup table for use at run-time. These ranges were [0, 4], [5, 10] and [11,
16] (number of APs) for low-, medium- and high-motion macroblocks respectively.
Using the above described information and setup:

• WSD = 200
30 = 6.67.

• APM = ≤ 500
30 ∀ = 16 (17 processors including the MP).

• APT = 2WSD
3 = 2×6.67

3 ≈ 4.
• APD = 6.

Therefore, sixteen APs were connected to the MP in the ME stage of the adaptive
pipelined MPSoC. These APs could be either clock- or power-gated when idle. The
author assumed no overhead for clock-gating an AP as it can be done in a few
clock cycles. However, for power-gating an AP, an activation/deactivation time and
energy consumption of 100ns (100 clock cycles at 1GHz) and 250nJ were assumed
respectively, which are typical of processor-level power-gating [17, 18]. Note that
an AP is activated and then appropriate data is sent to it by the MP to overlap the
activation time with the communication time as the FIFOs between the MP and
APs are always active. The communication latency of sending data (at least 256ns
assuming a byte transfer takes at least 1 clock cycle @ 1GHz) to APs after activating
them is larger than the activation overhead of power-gating (100ns) and hence did
not affect the throughput of the pipelined MPSoC.

The MP monitored its execution in clock cycles per iteration using a built-in
timer module. The MP and APs executed the same code of ME sub-kernel except
that the MP also executed the two heuristics. The Exe heuristic used obsW = 8
and calW = 1, while the Know heuristic used obsW = 2 and calW = 1. This is
because the Exe heuristic needs longer windows of the application’s execution to
better capture the run-time variation in workload compared to the Know heuristic,
where the application’s knowledge compensates for the error in the workload profile
captured from smaller windows of execution.

6.7.2 Results and Analyses

The adaptive pipelined MPSoC was executed for five different HD720p (high def-
inition) video sequences: pedestrian; sky; station; sunflower; and, tractor [1]. The
hardware-related details of the adaptive pipelined MPSoC are reported in Table6.1,
where the second and third columns summarise the area and power consumption

6.7 HD720p H.264 Video Encoder Case Study 119

Table 6.1 Hardware-related details of the adaptive pipelined MPSoC for ‘pedestrian’ video
sequence

Processor Area Power (mW)
(KGates) Dynamic Leakage

CC 92.44 43.24 6.80
ME 103.23 41.49 8.40
ME-AP0–ME-AP15 103.23 ≈29.00 ≈6.51
IP/MC 103.65 40.37 7.69
TQ 91.56 48.42 6.50
ITQ 93.50 49.68 7.07
LF 87.76 41.68 6.48
EC 90.12 44.75 6.49

of the MPs and APs for the ‘pedestrian’ video sequence. Other video sequences
exhibited similar trends, and thus are not reported here.

Figure6.7a illustrates the adaptability of the ME stage at the iteration level for the
‘pedestrian’ video sequence. The figure plots the true workload (number of SADs
computed in each iteration/30 because each processor can compute 30 SADs in

0

2

4

6

8

10

12

14

16

A

ct
iv

e
A

P
s

Iteration

True Workload Exe Know

Know heuristic responds more
quickly than the Exe heuristic

0

10

20

30

40

50

60

0 20 40 60 80 100

0 20 40 60 80 100

C
lo

ck
 C

yc
le

s
(x

10
00

)

Iteration

Tc Exe Know

Little impact on throughput
by the Know heuristic

(a)

(b)

Fig. 6.7 a Adaptability and b Throughput for the ‘pedestrian’ video sequence

120 6 Adaptive Pipelined MPSoCs

Tc clock cycles) and the number of active APs in each iteration (Wa[i]) for both
the Exe and Know heuristics in the first 100 iterations. Both the Exe and Know
heuristics adapt to the variation in workload; however, the Know heuristic adapts
better than the Exe heuristic. Firstly, the Know heuristic responds more quickly to
sudden variations in workload due its proactive nature resulting from the use of
the application’s knowledge as marked in Fig. 6.7a. Secondly, the Know heuristic
changes the number of active APs more often than the Exe heuristic to better keep
up with the true workload. The throughput of the ME stage is reported in Fig. 6.7b
for the first 100 iterations where the y-axis plots the clock cycles of each iteration
including the overhead of the execution of the heuristics (CC[i]). It is obvious that
the Exe heuristic incurred a significant penalty (up to 55,000 clock cycles) when
the workload changed suddenly and significantly. On the other hand, the Know
heuristic incurred a small penalty by activating a number of APs in advance due to
the workload prediction from the application’s knowledge. Thus, the Exe heuristic
will result in more degradation of the throughput compared to the Know heuristic
due to its reactive nature. Figures6.8, 6.9, 6.10, and 6.11 show similar trends for the
other video sequences as well.

Table6.2 summarises the results of the comparison of the two heuristics. The
second column reports the average number of active APs which is less than APM

0

2

4

6

8

10

12

14

16

A

ct
iv

e
A

P
s

Iteration

True Workload Exe Know

0

10

20

30

40

50

60

0 20 40 60 80 100

0 20 40 60 80 100

C
lo

ck
 C

yc
le

s
(x

10
00

)

Iteration

Tc Exe Know

(a)

(b)

Fig. 6.8 a Adaptability and b Throughput for the ‘sky’ video sequence

6.7 HD720p H.264 Video Encoder Case Study 121

0

2

4

6

8

10

12

14

16

A

ct
iv

e
A

P
s

Iteration

True Workload Exe Know

0

10

20

30

40

50

60

0 20 40 60 80 100

0 20 40 60 80 100

C
lo

ck
 C

yc
le

s
(x

10
00

)

Iteration

Tc Exe Know

(a)

(b)

Fig. 6.9 a Adaptability and b Throughput for the ‘station’ video sequence

Table 6.2 Comparison of Exe and know heuristics

Video Avg. active Tc Violation Min. throughput Avg. throughput
Sequence APs (%) (fps) (fps)

Exe Know Exe Know Exe Know Exe Know

Pedestrian 13 10 3 11 24.17 28.76 25.42 29.00
Sky 10 8 5 8 23.22 28.76 23.98 29.10
Station 5 4 3 4 25.40 29.67 25.53 29.72
Sunflower 12 10 4 9 24.50 28.79 24.74 28.94
Tractor 6 5 4 5 24.93 29.53 25.12 29.56

(16 in the experiments) for all the video sequences, indicating the possibility of
significant energy reduction. The third major column, termed ‘Tc Violation’, reports
the number of iterations (as a percentage of the total iterations) that took more than
Tc clock cycles, hence violating the throughput constraint. For example, 11% of the
iterations in the ‘pedestrian’ video sequence exceeded Tc clock cycles. The impact of
such violations on the throughput of the adaptive pipelinedMPSoC is reported in the
fourth and fifth major columns. For example, the minimum and average throughput
for ‘pedestrian’ video sequence is 28.76 and 29.00 fps respectively, which is theworst

122 6 Adaptive Pipelined MPSoCs

0

2

4

6

8

10

12

14

16

A

ct
iv

e
A

P
s

Iteration

True Workload Exe Know

0

10

20

30

40

50

60

0 20 40 60 80 100

0 20 40 60 80 100

C
lo

ck
 C

yc
le

s
(x

10
00

)

Iteration

Tc Exe Know

(a)

(b)

Fig. 6.10 a Adaptability and b Throughput for the ‘sunflower’ video sequence

amongst all the video sequences. It is interesting to note that the Exe heuristic uses
more APs and incurs less number of throughput violations than the Know heuristic,
yet it degrades the throughput more than the Know heuristic. The primary reason
is that the Exe heuristic does not activate/deactivate APs at the right instants during
the execution of the application due its reactive nature. Therefore, even with less
number of throughput violations, each violation had a significant throughput penalty.
To summarise, the Know heuristic incurs minimal degradation of the throughput due
to a combination of run-time workload monitoring, workload prediction and off-line
statistical analysis.

Let us now have a look at the energy reduction due to the proposed processor
manager compared to a worst-case pipelined MPSoC where all the APs are always
active. Figure6.12 summarises thefindings. The light and dark bars refer to the energy
reduction using clock- and power-gating for deactivation of the idle APs respectively.
The results show an energy reduction of up to 35 and 39%with a minimum of 14 and
9% for clock- and power-gating respectively, when theKnow heuristic is used. These
energy reductions were computed from the total energy consumption of the pipelined
MPSoC (only the energy consumption of the processors was considered) rather
than just the ME stage, including the energy overhead of activation/deactivation
of an idle AP and the run-time processor management heuristics. Note that the Exe

6.7 HD720p H.264 Video Encoder Case Study 123

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

A

ct
iv

e
A

P
s

Iteration

True Workload Exe Know

0

10

20

30

40

50

60

0 20 40 60 80 100

C
lo

ck
 C

yc
le

s
(x

10
00

)

Iteration

Tc Exe Know

(a)

(b)

Fig. 6.11 a Adaptability and b Throughput for the ‘tractor’ video sequence

0

5

10

15

20

25

30

35

40

45

E
n

er
g

y
R

ed
u

ct
io

n
 (

%
)

Clock-gating Power-gating

Exe Know Exe Know Exe Know Exe Know Exe Know
pedestrian sky station tractorsunflower

Fig. 6.12 Energy reduction of an adaptive pipelined MPSoC compared to a worst-case pipelined
MPSoC

heuristic always saved less energy compared to the Know heuristic. In summary, the
adaptive pipelinedMPSoCwith the Know heuristic delivered aminimum throughput
of 28.75 fps with energy reduction of at least 9% using either clock- or power-gating

124 6 Adaptive Pipelined MPSoCs

0

2000

4000

6000

8000

10000

12000

14000

pedestrian sky station tractor

A
P

s'
 S

w
it

ch
in

g
 C

o
u

n
t

sunflower

Fig. 6.13 Switching count of APs in the adaptive pipelined MPSoC

when compared to a worst-case pipelined MPSoC. Furthermore, the overhead of
the processor manager is reasonable, illustrated by the fact that the throughput is not
significantly degraded and the energy consumption of the adaptive pipelinedMPSoC
is reduced.

6.7.3 Discussion

Typically, power-gating results in more energy reduction than clock-gating as it
reduces leakage energy in addition to dynamic energy. However, in Fig. 6.12, for the
‘pedestrian’, ‘sky’ and ‘sunflower’ video sequences, energy reduction from power-
gating is lower than that of clock-gating. This is because power-gating incurs an over-
head of activation/deactivation, which can increase significantly when the number
of AP activations/deactivations increase. Figure6.13 reports the total number of AP
activations and deactivations (switching count) during the execution of the adaptive
pipelined MPSoC. The switching count is significantly higher for the ‘pedestrian’,
‘sky’ and ‘sunflower’ sequences because these sequences exhibit high run-timework-
load variations, resulting in less energy reduction for power-gating. Therefore, the
next chapter focuses on selection of an appropriate power reduction technique at
run-time by the use of multiple power states and a power manager rather than blind
use of either only clock-gating or only power-gating.

6.8 Summary

This chapter introduced an adaptive pipelinedMPSoCarchitecture consisting ofmain
processors and auxiliary processors for run-time adaptation to varying workloads.
In addition, a distributed run-time processor manager was proposed to deactivate

6.8 Summary 125

idle auxiliary processors, considering the variations in workload. By implementing
an advanced multimedia application, the H.264 encoder supporting HD720p at
30 fps, the author illustrated that the adaptive pipelinedMPSoC delivered aminimum
throughput of 28.75 fps with energy reductions of up to 34 and 39% for clock- and
power-gating based deactivation of auxiliary processors respectively. These results
show that adaptive pipelined MPSoCs provide an energy-efficient implementation
platform for multimedia applications with run-time varying workload compared to
worst-case pipelined MPSoCs.

References

1. H.264 test video sequences, http://media.xiph.org/video/derf/
2. International Telecommunucation Union, Advanced video coding for generic audiovisual ser-

vices. Recommendation H.264 and ISO/IEC 14496—10:2005, 2005
3. Audio Video Coding Standard Workgroup of China, Audio video standard (avs), http://www.

avs.org.cn/en/
4. H. Kalva, J.B. Lee, The vc-1 video coding standard. IEEE Multimedia 14, 88–91 (2007)
5. S. Carta, A. Alimonda, A. Pisano, A. Acquaviva, L. Benini, A control theoretic approach

to energy-efficient pipelined computation in mpsocs. ACM Trans. Embedded Comput. Syst.
Article id 27: 6(4) 28 (2007)

6. A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, L. Benini, A feedback-based approach to
dvfs in data-flow applications. IEEE Trans. CAD Integr. Circ. Syst. 28(11), 1691–1704 (2009)

7. H. Guo, S. Parameswaran, Balancing system level pipelines with stage voltage scaling, in
Proceedings of the IEEE Computer Society Annual Symposium on VLSI: New Frontiers in
VLSI Design (ISVLSI ’05) (2005)

8. X. Liu, P.J. Shenoy, M.D. Corner, Chameleon: application-level power management. IEEE
Trans. Mob. Comput. 7(8), 995–1010 (2008)

9. W. Kim, M. Gupta, G.-Y. Wei, D. Brooks, System level analysis of fast, per-core dvfs using
on-chip switching regulators, in Proceedings of the IEEE 14th International Symposium on
High Performance Computer Architecture (HPCA 2008), pp. 123–134 (2008)

10. K.K. Rangan, G. yeon Wei, D. Brooks, Thread motion: fine-grained power management for
multi-core systems, in Proceedings of the International Symposium on Computer, Architecture,
pp. 302–313 (2009)

11. M. Shafique, B. Molkenthin, J. Henkel, An hvs-based adaptive computational complexity
reduction scheme for h.264/avc video encoder using prognostic early mode exclusion, in Pro-
ceedings of the Design, Automation Test in Europe Conference Exhibition (DATE), 2010, pp.
1713–1718, March 2010

12. M. Shafique, L. Bauer, J. Henkel, Enbudget: a run-time adaptive predictive energy-budgeting
scheme for energy-awaremotion estimation in h.264/mpeg-4 avc video encoder, inProceedings
of the DATE, pp. 1725–1730 (2010)

13. B. Zatt, M. Shafique, S. Bampi, J. Henkel, An adaptive early skip mode decision scheme for
multiview video coding, in Proceedings of the Picture Coding, Symposium (2010)

14. Tensilica, Xtensa customizable processor, http://www.tensilica.com
15. T.-C. Chen, C.-J. Lian, L.-G. Chen, Hardware architecture design of an h.264/avc video codec,

in Proceedings of the 2006 Asia and South Pacific Design Automation Conference (ASP-DAC
’06) (IEEE Press, 2006)

http://media.xiph.org/video/derf/
http://www.avs.org.cn/en/
http://www.avs.org.cn/en/
http://www.tensilica.com

126 6 Adaptive Pipelined MPSoCs

16. M. Shafique, L. Bauer, J. Henkel, 3-tier dynamically adaptive power-aware motion estimator
for h.264/avc video encoding, in Proceedings of the ISLPED, pp. 147–152 (2008)

17. J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, C. Kozyrakis, Power management of
datacenter workloads using per-core power gating. Comput. Archit. Lett. 8(2), 48–51 (2009)

18. T. Tuan, A. Rahman, S. Das, S. Trimberger, S. Kao, A 90-nm low-power fpga for battery-
powered applications. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 26(2), 296–300
(2007)

Chapter 7
Power Management in Adaptive Pipelined
MPSoCs

System-level power management schemes are often deployed in MPSoCs to exploit
the idleness of processors at run-time for energy reduction by putting idle processors
in low-power states [1, 2]. These schemes decide “when” and “which” power state
should be selected for a processor tomaximally reduce the energy consumption of the
MPSoC. The decision is a challenging one due to the latency and energy overheads
involved in a transition from one power state to another. The aim of this chapter is
to propose a power manager for an adaptive pipelined MPSoC to select the most
suitable power state for each of the idle auxiliary processors.

Most of the run-time power management schemes are categorised as predictive
schemes and stochastic techniques [1]. Predictive techniques typically exploit tem-
poral correlation between the past history of the workload and its near future to
predict the upcoming workloads. On the other hand, stochastic techniques model the
workload behaviour as a controlledMarkov process, and then find the optimal power
management schemebasedon themodel. Predictive techniques sufferwhen thework-
load varies suddenly and significantly [1], while stochastic approaches suffer from
the inaccuracies in the workload model and the complexity involved in solving the
optimisation problem at run-time [2]. These issues primarily limit the use of both the
predictive and stochastic schemes to systems where either the workload is very regu-
lar or the workload model is known a priori. Some advanced history based heuristics
and stochastic schemes have been shown to predict with high accuracy in varying
workloads; however, their computational complexity severely limits their use [2]
and may not be suitable for fine-grained run-time management (which is required by
real-time multimedia applications to avoid degradation of the throughput). Hence,
Liu et al. [3] proposed the use of application knowledge for efficient run-time power
management schemes because the application by far knows (or may know) the most
about its future workload. The experiments illustrated application-aware power man-
agement outperforming OS-level and hardware-level schemes. However, the work
in [3] exploited only a limited application knowledge (algorithmic properties such
as the size and type of the frames) in a uniprocessor system. In this chapter, the
author leverages more diverse application knowledge (algorithmic and input data
properties) for run-time power management in adaptive pipelined MPSoCs.

H. Javaid and S. Parameswaran, Pipelined Multiprocessor System-on-Chip 127
for Multimedia, DOI: 10.1007/978-3-319-01113-4_7,
© Springer International Publishing Switzerland 2014

128 7 Power Management in Adaptive Pipelined MPSoCs

Table 7.1 Typical power states of a processor (CG and PG stand for clock-gated and power-gated
respectively)

Power state Description Power consumption Transition energy Wake-up latency

0 Active 1 0 0
1 CG 0.4 0.01 0.01
2 Partially PG 0.1 0.4 0.6
3 Fully PG 0.01 1 1

The values of power consumption, transition energy and wake-up latency are normalised, and are
inferred from [4]

7.1 Motivational Example

Table7.1 shows four typical states available for a processor (where CG and PG stand
for Clock-Gated and Power-Gated respectively). The values illustrate that the Power
State 3 (PS3) will result in the most energy saving; however, the amount saved will
depend on the amount of time the processorwill remain in PS3, and this saving should
amortise the energy overhead of the transition. Like Chap. 6, consider an adaptive
pipelined MPSoC where the motion estimation stage is implemented with one Main
Processor (MP) and sixteen Auxiliary Processors (APs) (designed for HD720p at
30 fps), where the APs can be deactivated using either only clock-gating or only
power-gating. These sixteen APs are not active at all times, and are used only when
the workload is beyond the capacity of the MP. Figure7.1 shows the activity of one
of the APs in the motion estimation stage, where 1 and 0 mean the AP is active
and idle respectively. The figure shows that the idle periods (number of consecutive
idle iterations) of the AP varies significantly at run-time. Power-gating will not be
beneficial during short idle periods due to its relatively large wake-up overhead,
while clock-gating will not be beneficial during long idle periods as it only saves
dynamic power. Hence, both clock- and power-gating alone, as used in Chap. 6,
do not exploit the full potential of idle periods because they do not evaluate the
suitability of clock- and power-gating depending upon the duration of an idle period.
On the other hand, a run-time power manager with the provision of multiple power
states will provide a fine-grained power reduction knob as multiple power states [4]

0

1

0 200 400 600 800 1000

A
ct

iv
it

y

Iteration

PS1 PS2PS3 PS3

Fig. 7.1 Activity of one of the APs in the motion estimation stage of the H.264 video encoder

http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_6

7.1 Motivational Example 129

trade-off wake-up latency and energy with the possible energy savings in anMPSoC.
For example, Fig. 7.1 illustrates that the AP is transitioned to different power states
(PS1, PS2 and PS3 from Table7.1) depending on the duration of the idle periods
instead of always power-gating or clock-gating it, which will result in more reduction
in energy consumption of an adaptive pipelined MPSoC. However, the challenge is
to predict, with high accuracy and in the presence of run-time variations in workload,
the duration of an upcoming idle period for an AP so that the most beneficial power
state can be selected for it.

Therefore, this chapter builds upon the processor manager of the last chapter
(which determined idle APs during every iteration) to propose a power manager
for an adaptive pipelined MPSoC (to select the most suitable power state for each
of the idle APs). Firstly, an analytical analysis is conducted so as to calculate the
minimum number of iterations for a given power state to be energy-wise beneficial
for an AP. That is, the given power state will be energy-wise beneficial if the AP
stays in that power state for at least the minimum number of iterations of that power
state. Secondly, five heuristics are proposed as part of the power manager to decide,
at run-time, the most beneficial power state for an idle AP. These heuristics attempt
to forecast the duration of an upcoming idle period of an AP using either the appli-
cation’s execution history or knowledge. Then, based on the predicted duration of
the idle period, the most suitable power state is selected for an idle AP.

7.2 Power Manager

Figure7.2 shows a typical adaptive pipelinedMPSoC, which is comprised of various
pipeline stages. The adaptable stages are implemented with a combination of MPs
and APs while the non-adaptable stages are implemented withMPs only. This makes
adaptive pipelined MPSoCs an effective platform for advanced multimedia applica-
tions which contain stages with both almost constant workload and run-time varying
workload. The architecture of the adaptive pipelined MPSoC allows for both a cen-
tralised and a distributed power manager. Like the processor manager in Chap. 6, a
distributed power manager is proposed where an MP monitors and controls its own
APs, independent of other MPs. Therefore, the power manager can be tweaked for
each stage of the adaptive pipelined MPSoC. For example, differing stages can have
differing power states for the APs depending on the type of processors used, in addi-
tion to different power management heuristics. Note that stages with almost constant
workload do not need any power manager; thus, avoiding run-time overheads for
such stages.

Figure7.2 zooms in on one of the MPs to illustrate the two run-time managers,
which are used in an adaptive pipelinedMPSoC.Thefirstmanager, named the proces-
sor manager and described in detail in Chap.6, decides “when” and “how many”
APs to activate and deactivate. The APs to be deactivated (that is, the idle APs) are
determined at the start of each iteration and remain deactivated until the end of the
current iteration (that is, for Tc clock cycles). The second manager, named the power

http://dx.doi.org/10.1007/978-3-319-01113-4_6

130 7 Power Management in Adaptive Pipelined MPSoCs

MP1

MP2 AP2.1AP2.2

MP3

AP
4.2.1

AP
4.1.1

MP5

MP4.1 MP4.2

S1

S5

S4

S3

S2

MP6
S6

Run-time Managers

Processor Manager
Determines the idle APs

Power Manager
Decides the power states

of all the idle APs

List of
idle APs

Fig. 7.2 Adaptive pipelined MPSoC’s architecture with run-time managers

manager, then decides the power state of all the idle APs based upon the durations
of the idle periods predicted for them. For example, if the processor manager reports
AP14 and AP15 to be idle during the current iteration, then the power manager will
decide the power states of AP14 and AP15 to maximally reduce the energy con-
sumption of the adaptive pipelined MPSoC. This chapter uses the Know heuristic
(Algorithm 4) from Chap.6 in the processor manager. Note that an iteration of a
processor refers to processing of one input data unit, where an iteration is considered
idle if the processor is inactive during it.

7.2.1 Analytical Analysis

The decision on the power state of an idle AP depends on the duration of its idle
period, that is, the number of consecutive idle iterations of the AP. In this section, the
author shows an analytical method to calculate the minimum number of iterations for
each power state so that if an AP is transitioned to a given power state for at least the
minimum number of iterations, then the transition would be energy-wise beneficial.
For the purpose of analysis, the following terms are introduced (some of the terms
were introduced in Chap.6 and are reproduced here for ease of readability):

http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_6

7.2 Power Manager 131

• N power states denoted as P S0, . . . , P SN−1 with power consumptions P0, ...PN−1
respectively, where Pi > Pj for i < j . Hence, P S0 would be the active state while
P SN−1 would be the most power saving state.

• Eov
i : Energy overhead of switching from P S0 to P Si and back to P S0. It is assumed

that state P Si directly transitions to P S0 without any transition to intermediate
states, which is similar to the assumption used in [2].

• T ov
i :Wake-up latency from P Si to P S0. AnAP is activated and then the data is sent

to overlap the activation time with the communication time as the FIFOs between
the MP and the APs are always active. It is assumed that the communication
time is greater than the wake-up latency which is typically the case with complex
multimedia applications (see Sect. 7.5.1). Hence, T ov

i will not be the deciding
factor for the minimum number of idle iterations.

• Tc: The throughput constraint of the multimedia application. The duration of an
iteration will be Tc clock cycles for all the stages, and hence for all the MPs and
APs.

The reduction in energy consumption in a transition from P S0 to P Si should amortise
the overhead of the transition. The energy consumption of an AP for I iterations in
P Si would be:

Pi × Tc × I + Eov
i

The first factor computes the energy consumption of P Si for I iterations, while the
second factor is the overhead of the transition to P Si from P S0 and back to P S0.
To evaluate whether a transition to P Si (higher power state) or a transition to P Sj

(lower power state) would be beneficial, the energy consumption in P Sj including
the overhead should be less than the energy consumption in P Si :

Pj × Tc × I + Eov
j < Pi × Tc × I + Eov

i

I >
Eov

j − Eov
i

(Pi − Pj) × Tc

where 0 ≤ i < j < N . Hence, if the number of idle iterations is more than
Eov

j −Eov
i

(Pi −Pj)×Tc
, then the transition to P S j (lower power state) would be beneficial, oth-

erwise the idle AP should be transitioned to P Si (higher power state). Thus,

I j,i =
⌈

Eov
j − Eov

i

(Pi − Pj) × Tc

⌉

is defined as the minimum number of iterations for P Sj to be beneficial than P Si .
Consequently, a power state can be compared with all the high power states to obtain
the values of I j,i . The minimum number of iterations for a power state P Sj would
then be:

I min
j = max{I j,i : ∀ i and 0 ≤ i < j < N }

http://dx.doi.org/10.1007/978-3-319-01113-4_6

132 7 Power Management in Adaptive Pipelined MPSoCs

Table 7.2 Minimum number
of iterations required for the
power states described in
Table7.1

Power state I j , i Imin
j

0 – –
1 I1,0 = 1 1
2 I2,0 = 1, I2,1 = 2 2
3 I3,0 = 2, I3,1 = 3, I3,2 = 7 7

Let us go through the example power states of Table7.1 to illustrate the calculation
of I min

j . The results are shown in Table7.2. For each power state, the values of I j,i

are computed assuming Tc = 1 sec. The value of I1,0 signifies the fact that an AP
should only be transitioned to PS1 from PS0 if the AP will be idle for at least one
iteration. It should be noted that a transition to PS2 from PS0 for one iteration will
also be beneficial (I2,0 = 1); however, for PS2 to be beneficial than PS1, the AP
should be in PS2 for at least 2 iterations (I2,1 = 2). Thus, if an AP remains in P Sj

for at least I min
j number of iterations, it is ensured that the energy saving would be

more than the transition to any of the higher power states.
The minimum number of iterations for each power state is computed off-line and

then saved in the MP for use at run-time by its power management heuristic. The
power management heuristic will predict the number of idle iterations (let us say
I p
idle) for an AP at the start of an iteration, which will then be used to obtain the most
beneficial power state from the saved values of I min

j . For example, for values of 1, 5

and 8 for I p
idle, the AP will be transitioned to PS1, PS2 and PS3 respectively.

7.2.2 Leveraging Application Knowledge

Like Chap.6, a pre-processing stage is employed to leverage application knowledge.
The pre-processing stage analyses the variance and brightness of macroblocks of
the incoming video frames to categorise them according to the motion contained
in them. The category of the macroblock is then used to select its workload range,
where workload ranges for different categories of macroblocks are computed off-
line and are saved in a lookup table for use at run-time. The selected workload range
is considered the predicted workload of the corresponding iteration of the motion
estimation stage in the adaptive pipelined MPSoC. For example, the pre-processing
stage may categorise macroblocks as either low- or high-motion macroblocks, and
the workload ranges for these two categories may be [0, 5] and [6, 20] number of

http://dx.doi.org/10.1007/978-3-319-01113-4_6

7.2 Power Manager 133

APs respectively. Note that the workload prediction is fuzzy as it is in the form of a
range. Also note that application knowledge can be exploited in other ways for other
stages of the adaptive pipelined MPSoC, if required.

7.3 Problem Statement

Given the minimum number of iterations for each power state and the number of idle
APs for the current iteration, the goal is to select the most beneficial power state for
the idle APs so as to maximally reduce the energy consumption of the system with
minimal degradation of the throughput.

The challenge is to accurately predict the duration of an idle period for an AP
because an incorrect prediction of idle period’s duration may result in either less
energy reduction or even an increase in energy consumption. Consider the scenario
where the predicted duration is longer than the actual duration of the idle period. Then,
the idle AP may be transitioned to a lower power state (according to the predicted
duration); however, it will be activated before the end of the predicted duration (due to
shorter actual duration). At this instant, it is quite possible that the energy overhead in
transition has not yet been amortised by the energy saving from the actual duration of
the idle period, resulting in an increase rather than reduction in energy consumption.
On the other hand, if the predicted duration of the idle period is shorter than the actual
duration, then the maximum energy saving will not be exploited as the idle APmight
be transitioned to a higher power state. Thus, a sophisticated run-time manager is
required to decide the most beneficial power state for an idle AP. In addition, such a
run-time manager should have low performance and energy overheads.

7.4 Power Management Heuristics

This section describes five heuristics for run-time management of the power states of
idle APs. The first heuristic uses only the application’s execution history. The other
four heuristics leverage the workload prediction from the application’s knowledge.
Note that the processor manager always decides the number of idle APs at the start
of an iteration. Thus, all the heuristics described below transition the APs to their
corresponding power states at the start of the iteration. For the sake of simplicity, the
heuristics are explained from the perspective of one MP; however they are equally
applicable to other MPs of the adaptive pipelined MPSoC. The following terms are
introduced to explain the heuristics (some of the terms are reproduced from Chap. 6
for ease of readability):

• Wa[i]: Actual workload of the i th iteration, equal to the number of APs that are
active at the end of the i th iteration. For the current iteration, Wa[i] holds the
number of currently active APs.

http://dx.doi.org/10.1007/978-3-319-01113-4_6

134 7 Power Management in Adaptive Pipelined MPSoCs

• APM : The total number of APs for an MP, where APs are denoted as AP0, AP1,
... APM − 1.

• idleAPs: The list of APs that will be idle during the current iteration, which is
provided by the run-time processor manager.

• I p
idle: The predicted duration of idle period (number of idle iterations) for an AP.

• I min
j : The minimum number of iterations for power state P S j as explained in

Sect. 7.2.1.

7.4.1 Application Execution Based Heuristic (Exe Heuristic)

The Exe heuristic monitors the workload of the previous iterations to keep a record of
the average duration of an idle period (average number of idle iterations) of each AP
which is later used to predict the duration of an idle period for an AP. The algorithm
is shown in Algorithm 5. The algorithm keeps the total number of idle iterations
(totalIdleIterations array) and the total number of idle periods (idlePeriods array)

Algorithm 5: Exe Heuristic

// Initialisation
1 for i = 0; i < APM ; i++ do
2 idlePeriods[i] = 0;
3 totalIdleIterations[i] = 0;

// Called at the start of k-th iteration to decide the power
states

4 for i ∈ idleAPs do
5 I p

idle = ≈ total I dleI terations[i]
idlePeriods[i] �;

6 for j = 1; j < N; j++ do
7 if I p

idle < I min
j then

8 break;

9 Transition i th idle AP to power state P Sj−1

// Called at the end of k-th iteration to populate the
history information

10 if Wa[k] ≤ Wa[k − 1] then
11 for i = Wa[k]; i < APM ; i++ do
12 totalIdleIterations[i]++;

13 else
14 for i = Wa[k − 1]; i < Wa[k]; i++ do
15 idlePeriods[i]++;

16 for i = Wa[k]; i < APM ; i++ do
17 totalIdleIterations[i]++;

7.4 Power Management Heuristics 135

16 13 14 13 13 16
k-3 k-2 k-1 k k+1 k+2

AP15 200 201 202 203 204 204
AP14 150 151 152 153 154 154
AP13 120 121 121 122 123 123

AP15 25 25 25 25 25 26
AP14 28 28 28 28 28 29
AP13 20 20 21 21 21 22

totalIdle
Iterations

idle
Periods

Iteration
Wa[k]

Fig. 7.3 An example illustrating the working of the Exe heuristic

seen till the current iteration (kth iteration in the Algorithm 5) for all the APs. The
application’s execution information is populated at the end of the current iteration
(lines 10–17), while this information is used at the start to choose the power state
for idle APs (lines 4–9). The predicted duration of idle period, I p

idle, is the average
number of idle iterations so far (line 5), and is used to select the most beneficial
power state using I min

j (lines 6–9).

The application’s execution information is populated as follows. If the current
number of active APs (Wa[k]) is less than the previous iteration’s active APs
(Wa[k − 1]), then the total number of idle iterations for all the inactive APs (includ-
ing the ones which were rendered idle in the current iteration) is incremented by
one (lines 10–12). On the other hand, if Wa[k − 1] > Wa[k], then some of the APs
were activated in the current iteration, and for these APs the number of idle periods
(because the idle period of these APs has just finished) is incremented by one (lines
14 – 15). For the rest of the APs, the total number of idle iterations in incremented by
one (lines 16–17). An example illustrating the working of the algorithm is shown in
Figure7.3, where APM = 16 and the calculation is shown for only the last three APs.
At iteration k −2, consider idleAPs = {13, 14, 15}. Then, the Exe heuristic will put
AP15 (I p

idle = ≈200/25� = 8) to PS3 (since 8 ≥ I min
3 , see Table7.2), while AP14

(I p
idle = ≈151/28� = 5) and AP13 (I p

idle = ≈121/20� = 6) will be transitioned to
PS2.

It should be noted that theExe heuristic keeps theminimumamount of information
so that its run-time overhead is low. Furthermore, the average duration of idle period
for each AP is updated at run-time based on the application’s execution; however,
the Exe heuristic will not be able to predict an idle period very accurately due to
sudden variations in workload (see Sect. 7.5.2).

7.4.2 Application Knowledge Based Heuristics (Know Heuristics)

As explained in Sect. 7.2.2, a pre-processing stage is available which can predict
the workload of an iteration beforehand in the number of APs that will be required
during that iteration. In this section, the author shows how that prediction can be
used to predict the duration of idle periods for APs, and then the author shows how

136 7 Power Management in Adaptive Pipelined MPSoCs

16 13 14 13 13 16
+1 2 i i+i i i+ +3 4 i+5

AP15 5 1
AP14 5

4 3 2
4 3 2 1

AP13 2 1 3 2 1
AP12 1 1 1 1 1

idle
Periods

Iteration
Wp[i]

Fig. 7.4 An example of populating idlePeriods table

the predicted duration of an idle period is used by the heuristics to decide the power
states of idle APs. The following terms are used in addition to the ones described in
Sect. 7.4 (some of the terms are reproduced from Chap.6 for ease of readability):

• Wp[i]: Predicted workload for the i th iteration in number of required APs from
the pre-processing stage.

• idlePeriods[k][i]: At i th iteration, the duration of the idle period (number of con-
secutive idle iterations) for the kth AP. For example, idlePeriods[0][10] = 3means
that the duration of the idle period starting at iteration 10 for AP0 is 3 iterations.
That is, starting at iteration 10, AP0 will remain idle for 3 iterations until iteration
12. This table is populated using the workload prediction from the pre-processing
stage.

• M BN : The total number of macroblocks in a frame. Although this information
is specific to video encoder/decoder applications; however, it is used for ease of
understanding and is not a limitation of the proposed heuristics. This information
can be generalised as the maximum number of data units (iterations) in a multi-
media application that can be pre-processed in advance for extraction of useful
information and workload prediction for the run-time managers.

The example in Fig. 7.4 illustrates the computation of idlePeriods table for the
last four APs only where APM = 16. The idea is to look into the future iterations
to compute the duration of idle period of an AP, if it is deactivated at the start of the
current iteration. For example, at iteration i in Fig. 7.4, if AP15 is deactivated, then it
will be idle for the next 5 iterations according to the workload prediction because it
will be activated again in iteration i + 5 (when Wp[i+5] = 16). Hence, the predicted
duration of idle period for AP15 at iteration i will be 5. As another example, AP12
will be idle for only 1 iteration as it will be used in iteration i + 1 according to the
predicted workload.

The algorithm to populate the entries of the idlePeriods table is shown in Algo-
rithm 6. It populates the entries for the i th iteration (i th column of the table) based
on the (i − 1)-th iteration’s values and predicted workloads of future iterations. The
initialisation is done at the first iteration (line 2) where the first column of the table is
populated. Lines 4–10 look into the future iterations until the future workload equals
the maximum number of APs (lines 9–10) to calculate the duration of idle period for
all the APs. The variable pWH in lines 7–8 tracks the number of APs for which the
duration of idle period has already been computed. For example, the first run of the
for-loop in lines 5–6 will compute the duration of idle period for AP0–AP12 (since

http://dx.doi.org/10.1007/978-3-319-01113-4_6

7.4 Power Management Heuristics 137

Algorithm 6: Populate idlePeriods Table (for the sake of simplicity, boundary
cases are not reported here)

1 for i = 0; i < M BN ; i++ do
2 if i == 0 then // First iteration
3 pHW = 0;
4 for ii=i+1; i < M BN ; ii++ do
5 for k = pH W ; k < Wp[i i]; k++ do
6 idlePeriods[k][i] = i i − i ;

7 if Wp[i i] > pH W then
8 pHW = Wp[i i];
9 if Wp[i i] == APM then

10 break;

11 else
12 for k = Wp[i]; k < APM ; ii++ do
13 idlePeriods[k][i] = idlePeriods[k][i-1] - 1;

14 pHW = 0;
15 for ii=i+1; i < M BN ; ii++ do
16 for k = pH W ; k < Wp[i i]; k++ do
17 idlePeriods[k][i] = i i − i ;

18 if Wp[i i] > pH W then
19 pHW = Wp[i i];
20 if Wp[i i] ≥ Wp[i] then
21 break;

i = 0, Wp[i+ 1] = 13). The second run of the same for-loop will only compute the
idle iterations for the rest of the APs, that is, AP13 and onwards.

The second part of the algorithm (lines 11–21) populates the rest of the columns
of the idlePeriods table. In this part, the duration of the idle period for some of the
APs can be inferred from the previous iteration’s values (lines 12–13). For other APs,
the algorithm looks into the predicted workloads of future iterations until the future
workload is the same or higher than the current iteration’s workload (lines 20–21)
to compute the duration of idle period (lines 14–15). For example, in Fig. 7.4, the
values for AP14 and AP15 at i + 2 are computed by subtracting one from the values
of i + 1 iteration; however, the values for AP12 and AP13 are computed from future
workloads. Handling of the boundary cases and some optimisation steps are omitted
for the sake of simplicity in Algorithm 6.

Once the idlePeriods table is available, the decision for the Know heuristic is
simplified. Consider that the Know heuristic has to decide the power state for AP0
at the start of the kth iteration, then the value of idlePeriods[0][k] (which will be
the predicted duration of the idle period for AP0) will be used to decide the most
beneficial power state for AP0. Algorithmically, it is stated in Algorithm 7. As an
example, in Fig. 7.4, if idleAPs = {14, 15} at i + 2 iteration, then both AP14

138 7 Power Management in Adaptive Pipelined MPSoCs

Algorithm 7: Know Heuristic

// Called at the start of k-th iteration to decide the power
states

1 for i ∈ idleAPs do
2 I p

idle = idlePeriods[i][k];
3 for j = 1; j < N; j++ do
4 if I p

idle < I min
j then

5 break;

6 Transition i th idle AP to power state P Sj−1

(idlePeriods[14][i+2] = 3) and AP15 (idlePeriods[15][i+2] = 3) will be transitioned
to PS2 (see Table7.2).

Recall from Sect. 7.2.2 that the workload prediction from the pre-processing stage
is fuzzy and is represented as a range. However, the algorithm to compute the idlePe-
riods table assumes a single value for the predicted workload. Thus, four different
mapping functions to obtain a single value from the predicted workload’s range are
used, resulting in four versions of theKnowheuristic. Consider thatMin(R),Max(R),
Avg(R) functions return the minimum, maximum and average values of a range R
respectively. Consider Q ranges are available from the pre-processing stage, which
are numbered from 1 to Q where Max(RQ) ≤ APM . The following text uses the
ranges of [0, 5] and [6, 20] in the number of APs for low-(L) and high-motion (H)
macroblocks (from Sect. 7.2.2), and APM = 20 for exemplary purposes.

1. MinKnow: Min(Ri) ∀ i is used to map ranges to single values. For example,
for a sequence of [L L H L] macroblocks, the predicted workloads would be
[0 0 6 0]. The drawback of computing the idlePeriods table with Min(R) is that
the maximum value of the predicted workload will be Min(RM). This means
that all the APs from Min(RM) to APM -1 will always be considered inactive
according to the predicted workloads. For example, AP6–AP19 will always be
idle and hence will always be transitioned to PS3 (the most power saving state
from Table7.2).

2. MaxKnow: Max(Ri) ∀ i is used to map ranges to single values. For the same
example of [L L H L] macroblocks, the predicted workloads would be [5 5 20 5].
Unlike MinKnow, MaxKnow introduces an error towards the other end of the
spectrum. Since the minimum value of the workloads will be Max(R1), the first
Max(R1) APs will be considered active during all the iterations according to the
workload prediction. For example, AP0–AP4 will be active at all times and hence
will only be transitioned to PS1 (the least power saving state from Table7.2).

3. AvgKnow: Avg(Ri) ∀ i is used to map ranges to single values. For example,
the predicted workload for the sequence of [L L H L] macroblocks would be
[3 3 13 3]. In AvgKnow, all the APs from 0 to Avg(R1)-1 (AP0 – AP2) will
always be transitioned to PS1, while all the APs fromAvg(RM) to APM -1 (AP13
– AP19) will always be switched to PS3.

7.4 Power Management Heuristics 139

4. FusedKnow: Min(R1), Avg(Ri), Max(RM) ∀ i, i �= 1, i �= M are used for the
ranges. FusedKnow fuses the minimum of the first range, the maximum of the
last range and the average of the intermediate ranges to compute the predicted
workloads. For example, the sequence of [L L H L] macroblocks would be trans-
lated to [0 0 20 0]. FusedKnow will not suffer from the drawbacks of MinKnow,
MaxKnow and AvgKnow as it uses Min(R1) and Max(RM) for the first and the
last range respectively.

All these heuristics have to compute the idlePeriods table at run-time whichmight
introduce anunacceptable overhead.The authors solution to this problem is to execute
the table computation algorithm at the pre-processing stage. The pre-processing
stage will write the table into a shared memory from which Know heuristic will
read the values at run-time, keeping its overhead to a minimum. The computation of
the idlePeriods table in the pre-processing stage will not affect the throughput of the
video processing system as the pre-processing stage is not part of the multimedia
system (see Fig. 7.5).

7.4.3 System-Level Overview

The system-level implementation of the proposed adaptive pipelinedMPSoCwith the
run-timemanagers, executing amultimedia application such as H.264 video encoder,
is shown in Fig. 7.5. Like Chap.6, a multimedia application is implemented as a
combination of pre-processing and multimedia systems. The pre-processing system
extracts the features of incoming frames to provide useful information to the mul-
timedia system for run-time adaptation. For example, the pre-processing stage can
categorise the macroblocks according to the motion contained in them, as described
in Sect. 7.2.2. The pre-processing stage is also responsible for the computation of the
idlePeriods table using Algorithm 6. The multimedia system implements the video
codec on an adaptive pipelined MPSoC. Each MP with a pool of APs implements
run-time processor and run-time power managers. More specifically, the processor
manager uses either the Exe heuristic or the Know heuristic from Chap. 6 to deter-
mine the idle APs at run-time. The power manager uses either the Exe heuristic or the
Know heuristic described in Sects. 7.4.1 and 7.4.2 to decide the power states of idle
APs at run-time. The pre-processing system is expected to work at the frame-level
so that the predicted workload of all the macroblocks of a frame is available to the
multimedia system which is working at the macroblock-level.

7.5 HD720p H.264 Video Encoder Case Study

In this section, the applicability of the proposed run-time power manager is illus-
trated by implementing an H.264 video encoder on an adaptive pipelined MPSoC
supporting HD720p at 30 fps.

http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_6

140 7 Power Management in Adaptive Pipelined MPSoCs

Pre-processing System
1. Categorisation: e.g., based on
motion (Section 6.5)
2. Workload prediction:e.g.,No. of
SADs, No. of APs (Section 6.5)
3. Populate idlePeriods table
(Algorithm 6)

MultimediaSystem
H.264; MPEG-4; etc.

Frame-level

Profiling & Off-line Analysis
Application Information:

Throughput; etc.
Architectural Information:
Max APs; Power States; etc.
Statistical Information:

Min, Max, Average Workload;
Workload Ranges from PDFs; etc.

Run-time Managers
1. Processor manager: Exe
or Know heuristic (Algorithm
3 or 4)
2. Power manager: Exe or
Know heuristic (Algorithm 5
or 7)

MP

MP MP

MP

AP

Macroblock-level

Video
frame

Fig. 7.5 A system-level implementation overview of run-time managers in adaptive pipelined
MPSoCs

7.5.1 Implementation Details

The adaptive pipelinedMPSoC created for theH.264 video encoder inChap. 6 is used
in this chapter as well. For proof of concept, both the processor and power managers
were implemented for only the motion estimation stage. The motion estimation
stage contained one MP and sixteen APs, running at a frequency of 1 GHz. Energy
consumption of the adaptive pipelined MPSoC was measured by configuring the
processors for a given 45nm technology.

The three power states shown in Table7.3 were used for the APs. The values of
transition energy and wake-up latency were inferred from [5, 6], while the values of
I min

j were computed according to the equations described in Sect. 7.2.1 with Pdyn

= 28.5 mW, Pleak = 6.50 mW and Tc = 9,100 clock cycles (to support ≥30 fps).
The adaptive pipelined MPSoC was tested with several video sequences to obtain
average values of Pdyn and Pleak of an AP. In the adaptive pipelined MPSoC, the
latency of sending the data (at least 256 ns assuming a byte transfer takes at least 1
clock cycle @ 1 GHz, see Sect. 6.7.1) to APs after activating them was larger than
the wake-up latency of PS2 (100 ns) and hence did not affect the throughput of the
pipelined MPSoC.

Table 7.3 Power states of the processors in the adaptive pipelined MPSoC

Power state Power consumption Transition energy (nJ) Wake-up latency (ns) Imin
j

0 Pdyn + Pleak 0 0 –
1 Pleak 1 3 1
2 ∼ 0 250 100 9

http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_6

7.5 HD720p H.264 Video Encoder Case Study 141

Like Chap.6, the pre-processing stage categorised all the macroblocks of a frame
into low-, medium- and high-motion macroblocks at run-time. The workload of each
category in the number of APs was computed using offline analysis and was saved
in a lookup table for use at run-time. The ranges (R1, R2 and R3) for predicted
workload of low-, medium- and high-motion macroblocks were [0, 4], [5, 10] and
[11, 16] (number of APs) respectively. These ranges were also used by Algorithm 6
to compute the idlePeriods table for the Know heuristic.

7.5.2 Results and Analyses

Theproposedpowermanagerwas testedwithfivedifferentHD720pvideo sequences:
pedestrian; sky; station; sunflower; and, tractor. Firstly, the capability of each heuris-
tic in choosing the correct power state for the idle APs is illustrated. Figure7.6 shows
part of the whole results where the power state of AP0 and AP15 is plotted for the
first 250 iterations for each of the five heuristics when the ‘pedestrian’ video was
inputted to the adaptive pipelined MPSoC. Several notable facts are illustrated in the
figure with labels A–E:

• Label A illustrates the scenario of incorrect power state transitions by the Exe
heuristic. The duration of the idle periods pointed by the first two arrows is less
than nine iterations. Hence, AP0 should have been transitioned to PS1; however,
the average duration of an idle period according to the current state of the applica-
tion’s execution information was more than nine iterations. Thus, the Exe heuristic
transitioned AP0 to PS2 which is not beneficial. The last arrow points out the con-
verse scenario. Due to the recent short idle periods, the average duration of idle
periods (from application’s execution) dropped below nine, resulting in AP0’s
transition to PS1 instead of PS2 (the correct power state).

• Label B illustrates the drawback of theMaxKnowheuristic. Recall fromSect. 7.4.2
that the MaxKnow heuristic considers the first Max(R1) APs (AP0–AP3 in the
adaptive pipelined MPSoC) active during all the iterations. Thus, it is always
switching AP0 to PS1 (the least power saving state) irrespective of the duration of
the idle period.

• Label C illustrates the problem with the MinKnow heuristic. In the MinKnow
heuristic, AP11–AP15 (Min(R3) to APM -1) will be considered inactive at all
times. Hence, AP15 is always transitioned to PS2 (the most power saving state)
according to the MinKnow heuristic.

• Label D shows the scenarios where the AvgKnow heuristic will take wrong deci-
sions on the power state of an AP. Since the AvgKnow heuristic uses Avg(R)
for converting the ranges to single values, it will always consider AP0 as active
and AP15 as inactive resulting in their transitions to PS1 and PS2 respectively
irrespective of the idle periods’ durations.

• Label E illustrates the scenario where the fuzzy workload prediction from the
pre-processing stage can be misleading. AP15 should have been transitioned to

http://dx.doi.org/10.1007/978-3-319-01113-4_6

142 7 Power Management in Adaptive Pipelined MPSoCs

Iterations

P
o

w
er

 S
ta

te
s

0

2

0

2

0

2

0

2

0

2

0

2

0

2

AP0 AP15LabelA

LabelB

LabelC

LabelD

LabelE
0

2

Iterations

0

2

0 100 200
0

2

0 100 200

(a)

(b)

(c)

(d)

(e)

Fig. 7.6 Power states of AP0 and AP15 for the ‘pedestrian’ video sequence for (a) Exe,
(b) MinKnow, (c) MaxKnow, (d) AvgKnow, and (e) FusedKnow heuristics

PS2 as the duration of the idle period is more than nine iterations, instead it was
transitioned to PS1. Frequentwrong decisions on the appropriate power statemight
result in increased energy consumption; however, it is shown later that the number
of wrong decisions from the FusedKnow heuristic is very low. This can also be
seen from the graphs where the FusedKnow chose the wrong power state only
once, that is, at Label E.

Figure7.6 illustrates that FusedKnow performs the best in selecting the most
beneficial power state for the two APs. Other APs in the adaptive pipelined MPSoC
and other video sequences exhibited similar trends. Note that the use of only clock-
gating and only power-gating in the processor manager of Chap.6 would have always
resulted in transition of both AP0 and AP15 to PS2 and PS1 respectively.

http://dx.doi.org/10.1007/978-3-319-01113-4_6

7.5 HD720p H.264 Video Encoder Case Study 143

Table 7.4 Percentage error in the selection of power states by the power management heuristics
when compared to the optimal scenario

Video sequence Exe Min know Max know Avg know Fused know

Pedestrian 15.35 27 7.05 20.23 1.57
Sky 52.13 20.94 14.5 21.10 1.64
Station 47.28 18.03 25.52 21.64 2.53
Sunflower 26.41 24.51 18.09 20.75 1.43
Tractor 48.29 18.85 18.96 23.77 0.68

To compare the accuracy of the heuristics, an “Optimal” scenario was created
by using the true workload of the motion estimation stage as the predicted work-
load, where the true workload was obtained from actual execution of the adaptive
pipelined MPSoC. The power states selected in the optimal scenario would be the
most beneficial states because the exact durations of idle periods are known from the
actual execution. The results are reported in Table7.4. The values report the number
of wrong decisions taken by a heuristic as a percentage of the total decisions taken
by it. For example, the Exe heuristic took 15.35% wrong decisions in the selection
of the power states for the ‘pedestrian’ video sequence. The second column shows
that the error of the Exe heuristic is quite high which corroborates the fact that the
application’s execution based heuristics do not perform well in a widely varying
workload. Column 6, on the other hand, reports the error of the FusedKnow heuristic
which is always less than 3%. This shows that appropriate leveraging of application
knowledge can significantly improve the efficacy of the run-time power management
heuristics. Another interesting fact is that the FusedKnow heuristic achieved such
an accuracy using only fuzzy workload predictions (ranges of predicted workloads).
Availability of better predictions (for example, 10 ranges instead of 3) would have
further improved the accuracy of the FusedKnow heuristic.

Let us now examine the energy reduction achieved by the five power management
heuristics. The proposed heuristicswere compared to the optimal scenario and the use
of only Clock-Gating (CG) and only Power-Gating (PG) in the processor manager
of Chap.6. The relative energy reduction was measured to show the improvement
achieved by the utilisation of the proposed heuristics. The relative energy reduction
of a heuristic j was computed as:

Er
j − min{Er

i : ∀ i}
min{Er

i : ∀ i}

where Er
j is the energy reduction of heuristic j over a worst-case pipelined MPSoC.

A worst-case pipelined MPSoC does not adapt itself at run-time, and hence all the
processors in it are active at all times. The value of Er

j for a heuristic was computed
by subtracting the energy consumption of the adaptive pipelined MPSoC (which
included the energy consumption of all the processors in the adaptive pipelined
MPSoC, excluding the memories) when heuristic j was used from the energy

http://dx.doi.org/10.1007/978-3-319-01113-4_6

144 7 Power Management in Adaptive Pipelined MPSoCs

0

5

10

15

20

25

30

35

40

45

pedestrian sky station sunflower tractor

R
el

at
iv

e
E

n
er

g
y

R
ed

u
ct

io
n

 (
%

)

Optimal PG CG Exe MinKnow MaxKnow AvgKnow FusedKnow

Fig. 7.7 Relative energy reduction of the power management heuristics in the power manager
compared to the use of only Power-Gating (PG) or onlyClock-Gating (CG) in the processormanager

consumption of the worst-case pipelined MPSoC. Therefore, the computed energy
reduction included the run-time energy overhead of the heuristics as well. Interest-
ingly, either only CG or only PG in the processor manager had the lowest energy
saving for all the five video sequences, and thus the relative energy reduction depicted
how much more energy was saved using the power manager compared to the use of
the processor manager with naive power management.

Figure7.7 reports the relative energy reduction achieved by the heuristics. For
example, CG (the third bar) saved 36% more energy than PG for the ‘pedestrian’
video sequence, while PG saved 11% more energy than CG for the ‘station’ video
sequence. It is obvious that the FusedKnow heuristic (the last bar) saves the most
energy from amongst all the heuristics as it is closest to the optimal (the first bar)
for all the video sequences. The FusedKnow heuristic was always within 1% of
the optimal result. This again shows the significance of proper leveraging of the
application’s knowledge at system-level for run-time power management. In terms
of run-time performance overhead, it was found that the power manager degraded
the throughput of the adaptive pipelined MPSoC by a maximum of 0.5% compared
to the use of only the processor manager. Hence, the effectiveness of the power
manager can be seen from the fact that the FusedKnow heuristic saved up to 40%
(‘pedestrian’ sequence) more energy than the processor manager with only an addi-
tional throughput degradation of 0.5%. This shows that adaptive pipelined MPSoCs
with run-time processor and power managers provide a low-power implementation
platform for multimedia applications.

7.6 Summary 145

7.6 Summary

In this chapter, a run-time power manager was proposed for adaptive pipelined
MPSoCs. Five heuristics were proposed as part of the power manager to predict
at run-time the upcoming idle period of an auxiliary processor and then to decide the
most appropriate power state for it. These heuristics were guided by an analytical
analysis and the application’s execution or knowledge. A case study with an H.264
video encoder on an adaptive pipelined MPSoC showed that one of the application’s
knowledge based heuristics (FusedKnow) provided up to 40% more energy saving
with only a 0.5% degradation of the throughput compared to a processor manager
with naive power management (Chap. 6). These results show that the proposed run-
time powermanager is a feasible option in adaptive pipelinedMPSoCs for low-power
implementation of multimedia applications.

References

1. L. Benini, A. Bogliolo, G. De Micheli, A survey of design techniques for system-level dynamic
power management. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 8, 299–316 (2000)

2. S. Irani, S. Shukla, R. Gupta, Online strategies for dynamic power management in systems with
multiple power-saving states. ACM Trans. Embed. Comput. Syst. 2, 325–346 (2003)

3. X.Liu, P.J. Shenoy,M.D.Corner,Chameleon: application-level powermanagement. IEEETrans.
Mob. Comput. 7(8), 995–1010 (2008)

4. K. Agarwal, K. Nowka, H. Deogun, D. Sylvester, Power gating with multiple sleep modes, in
Proceedings of the 7th International Symposium on Quality Electronic Design, ISQED ’06, pp.
633–637, 2006

5. J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, C. Kozyrakis, Power management of
datacenter workloads using per-core power gating. Comput. Architect. Lett. 8(2), 48–51 (2009)

6. T. Tuan,A.Rahman, S.Das, S. Trimberger, S.Kao,A90-nm low-power fpga for battery-powered
applications. IEEE Trans. Computer-Aided Des. Integr. Circuits Syst. 26(2), 296–300 (2007)

http://dx.doi.org/10.1007/978-3-319-01113-4_6

Chapter 8
Multi-mode Pipelined MPSoCs

A pipelined MPSoC will typically be used as a multimedia accelerator because
it is extremely customised for a specific multimedia application. Furthermore, it
provides a programmable accelerator platformwith reduced time-to-design and time-
to-market because of the design automation methodologies described in Chap.5 and
in [1, 2].

Typical multimedia platforms (such as OMAP [3], Tegra [4], etc.) consist of a
single-/multi-processor host system and multiple multimedia engines as shown in.
The multimedia engines function as hardware accelerators, and are considered to
be implemented as pipelined MPSoCs (rather than ASICs) in this chapter. The host
system handles concurrent execution of general-purpose applications and off-loads
multimedia applications to appropriate accelerators. It is often the case that not all
the accelerators will be used simultaneously. For example, a user can either browse
pictures or watch video in a smart phone, hence there is no need for concurrent
execution of JPEG and H.264 decoders. Furthermore, various other video decoders
such asMPEG-4 andVC-1will not be required at the same time as H.264. Therefore,
due to area constraints in portable media devices, it is desirable to use a multi-mode
accelerator rather than individual accelerators when their use ismutually exclusive. If
multiple applications need to be executed simultaneously such as listening to music
while browsing pictures, then JPEG and MP3 decoders have to be implemented as
twodistinct accelerators. For example, Tegra [4] has five distinct accelerators Fig. 8.1.

The aim of this chapter is to reduce area footprint of pipelined MPSoCs based
accelerators by combining mutually exclusive accelerators into a multi-mode accel-
erator with performance and energy consumption comparable to its individual
counterparts. Therefore,multi-modepipelinedMPSoCs formultiple,mutually exclu-
sive applications are proposed to function as multi-mode multimedia accelerators
where each mode refers to the execution of one application. The author exploits the
idea of merging individual application graphs (representing worst-case and adaptive
pipelined MPSoCs) into a single application graph for realisation of a multi-mode
pipelined MPSoC.

H. Javaid and S. Parameswaran, Pipelined Multiprocessor System-on-Chip 147
for Multimedia, DOI: 10.1007/978-3-319-01113-4_8,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-01113-4_5

148 8 Multi-mode Pipelined MPSoCs

Fig. 8.1 A typicalmultimedia
platform where multimedia
accelerators are implemented
as pipelined MPSoCs

Multimedia Platform

Single-/Multi-processor

Host System

Graphics

Accelerator

I/O Components

Other Compnents

MA1

MA2

MA4

MA3

P2.1

P3.1

P1.1

P2.2

P4.1 MA: Multimedia Accelerator

Previous research has focused on resource sharing through merging of data-paths
to reduce cost, area and power consumption of digital circuits. Initially, a number of
works [5–7] formulated the problem of data-path merging as finding the maximum
weight matching of a bipartite graph. However, bipartite matching based approaches
mainly consider nodes in a data-path and ignore the edges. Moreano et al. [8] and
Chong et al. [9] improved upon bipartite matching by formulating data-path merging
problem in reconfigurable architectures and custom floating-point units as finding
the maximumweight clique of a compatibility graph. Finally, Brisk et al. [10] formu-
lated data-path merging problem in custom instructions as a substring/subsequence
matching problem. However, their approach can only be applied to acyclic data-
paths. In this chapter, the author builds upon the maximum weight clique approach
to merge application graphs for a multi-mode pipelined MPSoC because: (1) both
the nodes and edges of application graphs need to be merged to maximally reduce
the number of processors and FIFO buffers and buffer sizes, and (2) multimedia
application graphs can have cyclic dependencies.

Typical design of multi-mode systems [11–15] is done in two steps: first, selec-
tion of processing elements (from a given library) for application tasks; and second,
mapping and scheduling of the tasks on the selected processing elements tominimize
area, power, energy, etc. while ensuring designer constraints such as task deadlines,
reliability constraint, etc. The works in [11–15] considered a predefined MPSoC
platform with fixed number and types of processing elements. Hence, their prob-
lem was to select appropriate types of processing elements and then schedule the
tasks on the selected elements to meet given task deadlines. On the other hand, in
a multi-mode pipelined MPSoC, the number of processors is variable and depends
on the application graphs. Thus, the problem here is to merge application graphs to
maximally share processors and reduce area footprint. Like the problem of selection
of processing elements, andmapping and scheduling of tasks, merging of application
graphs is an NP-complete problem [16].

Merging of application graphs has been studied in [17–20]. The works in [17–19]
mappedmultiple applications, represented as Synchronous DataflowGraphs (SDFs),
on a tiled MPSoC architecture. They used a heuristic to merge multiple uses-cases

8 Multi-mode Pipelined MPSoCs 149

of applications to reduce the number of tiles and number of links between the tiles.
One of the heuristics proposed in this chapter (MaxN, see Sect. 8.4.2) is similar
to their heuristic; however, they did not consider the size of buffers and different
permutations of merging application graphs. Furthermore, two other heuristics are
proposed where one of them finds optimal merging. Wildermann et al. [20] studied
themapping ofmultiple streaming applications on a tiled reconfigurable architecture.
They merged application graphs using the technique in [10], and thus their work is
limited to acyclic applications. Furthermore, their objective was to minimise FPGA
reconfiguration time rather than the area footprint. Hence, unlike [17–20], three
heuristics are proposed in this chapter to merge cyclic application graphs, trading-off
their running time with optimality of the merged graph (in the context of pipelined
MPSoCs). This is the first attempt at merging application graphs for multi-mode
pipelined MPSoCs.

8.1 Multi-mode Pipelined MPSoCs

A multi-mode pipelined MPSoC is defined to support multiple, mutually exclusive
applications by allowing several modes where each mode refers to the execution of
only one of the applications on it. Two approaches can be taken to designmulti-mode
pipelined MPSoCs:

1. Individual pipelinedMPSoCsdesigned separately for each application aremerged
at hardware-/gate-level through sharing of similar processors/FIFOs. Note that
gate-level hardware sharing is often the norm for multi-mode ASICs, but might
be infeasible for multi-mode pipelined MPSoCs due to high design complexity
resulting from millions of gates in such pipelined MPSoCs.

2. An abstract, system-level representation of a pipelined MPSoC’s architecture
(number of processors, and number and connection of FIFO buffers) is described
in a directed graph. Then, directed graphs representing individual pipelined
MPSoCs are merged into a single graph by finding the maximal overlap between
them. The merging of these graphs reveals system-level sharing of processors
and FIFO buffers in the multi-mode pipelined MPSoC. This approach is further
explored in this chapter.

The author uses application graphs to capture abstract, system-level representation
of the pipelined MPSoCs. Since sub-kernels and edges in an application graph are
one-to-one mapped to processors and FIFO buffers in a pipelined MPSoC respec-
tively, an application graph inherently captures system-level representation of the
pipelined MPSoC as a directed graph. Note that if a sub-kernel and edge of an appli-
cation is mapped to multiple processors and FIFO buffers in the pipelined MPSoC,
then both the sub-kernel and edge are replicated in the application graph accord-
ingly to keep a one-to-one mapping between the application graph and the pipelined
MPSoC. Thus, in the rest of the chapter, an application graph represents the abstract,
system-level architecture of the pipelinedMPSoC on which it will be executed. Note

150 8 Multi-mode Pipelined MPSoCs

3.11

4.11

1.11

2.11 2.21

3.11

4.12

1.11

2.12

2.11

3.12

2.21

3.22

1.12

4.11

P3.1

P4.1

P2.1

P3.2

P5.1

P1.1

4.12

1.12

2.12

3.12 3.22

(a) (b) (c)

Fig. 8.2 Merging two application graphs to derive a multi-mode pipelined MPSoC: a Two appli-
cation graphs b Merged application graph c Multi-mode pipelined MPSoC

that the application graphs abstract the types of processors (main processors, auxil-
iary processors, etc.), thus they can be used to merge both worst-case and adaptive
pipelined MPSoCs.

Figure8.2 shows an example of how two application graphs, representatives of
individual pipelined MPSoCs, can be merged to derive a multi-mode pipelined
MPSoC. The notation m.nx inside each node represents the nth sub-kernel in the
mth stage of the xth application. For example, 3.12 represents the 1st sub-kernel in
the third stage of the second application. The dotted lines illustrate one of the possi-
ble overlaps between the two application graphs. Based on the marked overlap, the
combined application graph is shown in Fig. 8.2b where the grey coloured nodes rep-
resent the combined nodes of individual application graphs. The thick arrows show
the merged edges from the individual application graphs. If each node and edge in
the merged application graph is assigned to a processor and a FIFO buffer respec-
tively, then a multi-mode pipelined MPSoC can be realised as shown in Fig. 8.2c. In
mode 1, the first application will be executed using processors P2.1 . . . P5.1 with
processor P1.1 being idle. Likewise, in mode 2, only processors P1.1 . . . P4.1 will
be used to execute the second application. The multi-mode pipelined MPSoC uses
only six processors and six FIFO buffers compared to a total of ten processors and
ten FIFO buffers in individual pipelined MPSoCs.

The example above shows that multi-mode pipelined MPSoCs can reduce area
footprint significantly; however, there are several issues that need to be addressed in
driving a multi-mode pipelined MPSoC from the merged graph:

• The processors in individual pipelined MPSoCs contain custom instructions and
cache configurations according to the sub-kernels mapped on them; however, the
customisation information has been abstracted in the application graphs. There-
fore, if two sub-kernelswith differing custom instructions and cache configurations

8.1 Multi-mode Pipelined MPSoCs 151

are merged, then the processor executing those sub-kernels in the multi-mode
pipelined MPSoC will contain a union of all the custom instructions and the cache
configurations. For example, the processor P2.1 will have the custom instructions
for both 1.11 and 2.12 sub-kernels and the larger of the two cache configurations.

• For processors executing sub-kernels from multiple applications, the individual
code segments of those sub-kernels are merged using a switch statement to select
between the appropriate sub-kernel through the mode.

• In each mode, processors that do not belong to the currently executing application
are power-gated to avoid an unnecessary increase in energy consumption of the
application compared to its individual pipelined MPSoC counterpart.

The aim of this chapter is to design a multi-mode pipelined MPSoC (as defined
above) with a minimal number of processors and FIFO buffers (due to the cost of
wires and interconnects in ports) and buffer sizes for a set of applications by finding
the maximum overlap among the application graphs. To this end, the following are
assumed:

• Homogeneous multi-mode pipelined MPSoC for the purpose of merging applica-
tion graphs. That is, sub-kernels of all the applications are executed on the same
base processor. Heterogeneity is added after the merging process, where customi-
sation from the individual pipelinedMPSoCs is added to the multi-mode pipelined
MPSoC (as explained above).

• The computation and communication ratios of the sub-kernelswithin each applica-
tion or across different applications will not affect the balancing of the multi-mode
pipelined MPSoC’s modes. This is because: (1) a multi-mode pipelined MPSoC
executes one application in a mode, and (2) the addition of custom instructions and
cache configuration to its processors after the merging process balances its stages
for each of its modes (because the individual pipelined MPSoCs were balanced
through the same customisation of the processors). Therefore, computation and
activation ratios do not need to be considered during the merging process.

8.2 A Design Flow

The design flow for creating a multi-mode pipelined MPSoC is as follows. The input
consists of application graphs and their individual pipelinedMPSoC implementations
(obtained using the methods in Chap.5 and/or Chap.7). Firstly, application graphs
are merged into a single application graph using one of the three merging heuristics
proposed in Sect. 8.4. Secondly, the multi-mode pipelined MPSoC is derived from
the merged application graph through one-to-one mapping. That is, each sub-kernel
and edge is mapped to a processor and a FIFO buffer respectively. In the third
step, the homogeneous multi-mode pipelined MPSoC (derived from merged graph)
is balanced for each of its modes by utilising the customisation of the processors
from individual pipelinedMPSoCs. That is, if two sub-kernels with differing custom
instructions and cache configurations are merged, then the processor executing those

http://dx.doi.org/10.1007/978-3-319-01113-4 _5
http://dx.doi.org/10.1007/978-3-319-01113-4 _7

152 8 Multi-mode Pipelined MPSoCs

sub-kernels in the multi-mode pipelined MPSoC will contain the union of all the
custom instructions and the cache configurations from the corresponding processors
in the individual pipelined MPSoCs. Since the third step does not affect the merging
of the application graphs, it is not discussed further in this chapter.

Note that multi-mode pipelined MPSoCs are used as accelerators and the appli-
cations are known apriori, thus they are optimised at design-time by merging appli-
cation graphs and customisation of the processors. Hence, the overhead of run-time
task mapping and merging techniques (which are used when the application mix is
unknown at design-time) is avoided. At run-time, the host system will configure the
multi-mode pipelined MPSoC in one of its modes to execute the desired application.

8.3 Problem Statement

An application is represented as a directed graph, Gx :

Gx = (Vx , Ex) : 1 ≤ x ≤ X

where X is the total number of applications. Each node in the set Vx is a sub-kernel,
denoted as:

Vx = {m.nx : 1 ≤ m ≤ Mx , 1 ≤ n ≤ Nm,x }

where Mx is the number of stages in the xth application graph and Nx,m is the
number of sub-kernels in the mth stage of the xth application graph. Each edge in
an application graph denotes the data dependency between the sub-kernels and the
amount of data that will be transferred in one iteration:

Ex = {(m.n : i. jx) : 1 ≤ m, i ≤ Mx , 1 ≤ n ≤ Nm,x

1 ≤ j ≤ Ni,x }

For example, the edge between 2.11 and 3.11 in Fig. 8.2 will be denoted as 2.1 :
3.11. Each vertex vx ∀ Vx has a hardware implementation cost denoted as P(vx).
Each edge ex ∀ Ex is implemented as a FIFObuffer. The size of the buffer depends on
the capacity of the edge, denoted as C(ex), which is the amount of data transferred in
one iteration and is known a priori because multimedia applications send and receive
the same amount of data in each iteration. Hence, each edge ex ∀ Ex has a hardware
implementation cost F(ex) which depends on the size of the buffer and the cost of
the two ports used to connect it to the reading/writing processors.

The area of a pipelined MPSoC is the summation of the area of all the processors
and FIFO buffers. Since an application graph is one-to-one mapped to derive a multi-
mode pipelined MPSoC, its area is calculated as:

Given X application graphs, the goal is to merge them into one application graph,
G MG , such that the area of the multi-mode pipelined MPSoC derived from G MG

8.3 Problem Statement 153

is minimal. This is equivalent to maximally reducing the number of nodes (cost
of processors) and the number of edges (cost of processor/FIFO ports) and their
capacities (size of FIFO buffers) in G MG .

8.4 Merging Heuristics

In this section, three methods are described to solve the problem of merging X
application graphs. Two of these methods are based on greedy heuristics, MaxS
and MaxN, while the third one, MaxC, is based on maximum weight clique based
approach to find the optimal merging of the application graphs. Figure8.3 shows the
working of the three heuristics on two application graphs, G1 and G2, and will be
used as an example in the rest of this section.

8.4.1 MaxS (Maximum Stages)

The MaxS heuristic, described in Algorithm8, works on the principle of keeping
the applications’ topologies. It selects the maximum number of stages from all the
graphs as the stages of the merged graph, G MG (line 2). Then, within each of those
stages, it selects the maximum number of nodes from the corresponding stages of all
the graphs (line 4). Each node in the mth stage of G MG is obtained by combining the
corresponding nodes from the mth stage of all the graphs. For example, in Fig. 8.3c,
two nodes are added to G MG in the second and third stages because both the second
stage of G1 and the third stage of G2 contain two nodes each. The first node in the
second stage of G MG (2.11/2.12) is a combination of the first nodes from the second
stage of both G1 and G2 while the second node only contains 2.21 since there is only
one node in the second stage of G2.

The second part of MaxS adds appropriate edges to G MG (lines 6–12). For each
edge ex in a graph Gx , a corresponding edge is added to G MG if it does not exist
in G MG . If the corresponding edge already exists in G MG , denoted as eMG , then
ex is combined with eMG . When two edges are merged, the higher of the two
capacities is used (lines 11–12). For example, in Fig. 8.3c, the thick arrow marked
1.1:2.11/1.1:2.12 represents a merged edge of G1 and G2 (the capacities are omitted
for the sake of simplicity). The heuristic does not use the lesser of the two capaci-
ties for the merged edge because the throughput of one of the applications will be
degraded significantly (see Chap.4).

Figure8.3c shows the merged graph from MaxS where the grey coloured nodes
and thick arrows represent the overlap between the two application graphs. Thick
arrows along with solid and broken arrows highlight the topology of G1 and G2
within G MG respectively. The MaxS is a stark greedy heuristic yet it has reduced the
total number of nodes and edges from nine and nine in G1 and G2 to six and seven

http://dx.doi.org/10.1007/978-3-319-01113-4 _4

154 8 Multi-mode Pipelined MPSoCs

M
er

ge
d

no
de

M
er

ge
d

ed
ge

C
om

pa
tib

le
 m

er
gi

ng
E

dg
e

m
er

gi
ng

N
od

e
m

er
gi

ng

(a
)

(b
)

(d
)

(e
)

(f
)

3.
1 1

1.
1 1

2.
1 1

2.
2 1

4.
1 2

2.
1 2

3.
1 2

3.
2 2

1.
1 2

3.
1 1

4.
1 2

1.
1 2

1.
1 1

2.
1 2

2.
1 1

3.
1 2

2.
1 1

3.
1 2

(c
)

(e
)

4.
1 2

3.
2 2

2.
2 1

1.
1 1

1.
1 2

1.
1 1

1.
1 2

1.
1 1

1.
1 2

2.
1 1

2.
1 2

3.
1 1

3.
1 2

1.
1:

2.
1 1

1.
1:

2.
1 2

4.
1 2

1.
1 1

1.
1 2

2.
1 1

2.
1 2

2.
2 1

3.
1 2

3.
1 1

3.
2 2

1.
1:

2.
2 1

1.
1:

2.
1 1

1.
1:

2.
1 2

1.
1:

2.
2 1

2.
1:

3.
2 2

2.
1:

3.
1 1

3.
1:

4.
1 2

2.
1:

3.
1 1

1.
1:

2.
1 2

1.
1:

2.
1 1

2.
1:

3.
1 2

1.
1:

2.
1 1

1.
1:

2.
1 2

3.
1 1

4.
1 2

1.
1 1

2.
1 2

2.
2 1

3.
2 2

2.
1 1

3.
1 2

1.
1 1

1.
1 2

1.
1 1

4.
1 2

2.
1 1

1.
1 2

2.
2:

3.
1 1

3.
2:

4.
1 2

F
ig

.8
.3

M
er
gi
ng

tw
o
ap
pl
ic
at
io
n
gr
ap
hs
:

a
G

1
,b

G
2
,c

G
M

G
fr
om

M
ax
S,

d
G

M
G
,f
ro
m

M
ax
N

e
G

M
G
fr
om

M
ax
C
,f

C
om

pa
tib

ili
ty

gr
ap
h,

G
c,

an
d
m
ax
im

um
w
ei
gh

tc
liq

ue
so
lu
tio

n.
Fo

r
th
e
sa
ke

of
si
m
pl
ic
ity
,e
dg

e
ca
pa
ci
tie

s
in

G
1
,G

2
an
d

G
M

G
,a
nd

no
de

w
ei
gh
ts
in

G
c
ar
e
om

itt
ed

8.4 Merging Heuristics 155

Algorithm 8: MaxS Heuristic

1 G MG = Ø;
2 maxStages = max{Mx : 1 ≤ x ≤ X};

// Adding nodes to G MG
3 for m=1; m ≤ maxStages; m++ do
4 Nm,MG = max{Nm,x : 1 ≤ x ≤ X};
5 A node in mth stage of G MG is combination of corresponding nodes from the mth stage

of all Gx

// Adding edges to G MG
6 for x=1; x ≤ X; x++ do
7 forall the ex ∀ Ex do
8 if ex does not exit in EMG then
9 Add ex to EMG

10 else
11 if C(eMG) < C(ex) then
12 C(eMG) = C(ex);

respectively in G MG . The MaxS heuristic visits all the nodes and edges in all Gx

only once, and hence its complexity is O(
∑

x |Vx | + |Ex |).

8.4.2 MaxN (Maximum Nodes)

Unlike MaxS, the MaxN heuristic focuses on maximally reducing the number of
nodes in the merged graph. The algorithm is described in Algorithm9 where the
fundamental operation is to merge two graphs at a time (lines 4–12). Line 4 initialises
G MG with the graph that has the maximum number of nodes amongst G MG and Gx .
The reason is that the number of nodes in G MG should not be greater than the
maximum number of nodes from all the graphs.

Once G MG is initialised, the algorithm traverses all the nodes in Gx in a breadth-
first manner and combines its nodes with those of G MG in a breadth-first manner as
well (lines 5–6). For example, in Fig. 8.3d, 1.11, 2.11 and 2.21 are combined with
1.12, 2.12 and 3.12 respectively. After merging nodes, appropriate edges are added
or merged by traversing all the edges in Gx (lines 7–12). Like MaxS, while merging
edges, the higher of the two capacities is used (lines 9–10). For example, in Fig. 8.3d,
the edge marked 1.1:2.11/1.1:2.12 is combined from G1 and G2 while edge 1.1:2.21
is added from G1. The topology of G1 and G2 is illustrated with thick and solid
arrows, and thick and broken arrows respectively. The MaxN heuristic has reduced
the total number of nodes and edges from nine and nine in G1 and G2 to five and
seven respectively in G MG .

After merging the first two graphs, further graphs are combined with the already
merged graph one by one (line 3). The amount of saving fromMaxN depends on the
order of merging the graphs. Hence, all the permutations of merging all the graphs
are exhausted to select the merged graph with the minimum area (lines 1 and 13). For

156 8 Multi-mode Pipelined MPSoCs

Algorithm 9: MaxN Heuristic

1 forall the permutations of merging all Gx do
2 G MG = G1;
3 for x=2; x ≤ X; x++ do
4 if

∑
m Nm,x >

∑
m Nm,MG then

5 Swap G MG with Gx

// Combining nodes and adding edges to G MG
6 while traversing vx ∀ Vx in breadth-first manner do
7 Combine vx with vMG ∀ VMG in breadth-first manner

8 forall the ex ∀ Ex do
9 if ex does not exit in EMG then

10 Add ex to EMG
11 else
12 if C(eMG) < C(ex) then
13 C(eMG) = C(ex);

14 return G MG with minimum area

onemerging of all Gx , MaxN visits the nodes and edges only once. Since there are X !
permutations of merging all Gx , the complexity of MaxN is O(X !∑x |Vx | + |Ex |).
This is reasonable as the number of applications is generally small (that is, X < 10)
and the merging will be used only once at design-time.

8.4.3 MaxC (Maximum Weight Clique)

Unlike MaxS and MaxN, MaxC targets maximal reduction of both the nodes and
edges in the merged graph. Reduction of the edges is important because addition of
an edge costs a FIFO buffer and two ports (one for the writing processor and the
other for the reading processor) which is expensive due to the extra memory required
and associated area overhead of wires and interconnects.

The MaxC heuristic, shown in Algorithm10, formulates the merging problem as
a maximum weight clique problem. It consists of three parts: firstly, creating the
compatibility graph, Gc (line 3); secondly, finding the maximum weight clique (line
4); and finally, constructing the G MG (line 5). These operations are performed on
the first two graphs and then subsequent graphs are merged with G MG one by one
(line 2).

The compatibility graph, Gc = (Vc, Ec), is an undirected weighted graph that
represents which node and edge merging of two graphs are compatible with each
other. Each vertex vc ∀ Vc denotes either the merging of two nodes or two edges
from Gx and G y , and hence is annotated as (vx/vy) or (ex/ey). Each vc ∀ Vc has
a weight wc that corresponds to the area reduction achieved by that merging. The
weights of all the vertices (vx/vy) will be P(vx) since merging two nodes would save

8.4 Merging Heuristics 157

Algorithm 10: MaxC Heuristic

1 G MG = G1;
2 for x=2; x ≤ X; x++ do
3 Build Gc for G MG and Gx
4 Find maximum weight clique of Gc
5 Reconstruct G MG

a node in the merged graph and each node has the same weight (P(vx) = P(vy)). For
(ex/ey) vertices, the weights are calculated as min{C(ex),C(ey)} because the edge
with the higher capacity is used in the merged graph. An edge ec = (uc, vc) ∀ Ec

indicates that the two merging represented by vertices uc and vc are compatible with
each other. The edges are added according to the following rules:

• Vertices (vx/vy) and (v̇x/v̇y) are compatible if vx ∈= v̇x and vy ∈= v̇y . This means
that a node in Gx cannot be merged with two different nodes in G y .

• Vertices (ex/ey) and (ėx/ėy) are compatible if ex ∈= ėx and ey ∈= ėy . This means
that an edge in Gx cannot be merged with two different edges in G y .

• Vertices (vx/vy) and (ex/ey) are compatible if any of the following holds:

– src(ex) == vx && src(ey) == vy

– dst (ex) == vx && dst (ey) == vy

– src(ex) != vx && src(ey) != vy

– dst (ex) != vx && dst (ey) != vy

where src(ex) and dst (ex) returns the source and destination node of ex respec-
tively. This rule means that the edges in Gx and G y are merged only if their source
and destination nodes are merged as well.

The compatibility graph for G1 and G2 is illustrated in Fig. 8.3f where circles and
ovals represent possible node and edge merging respectively. For the sake of sim-
plicity, only interesting vertices are shown.

To find the maximum overlap between the graphs, the maximum weight clique
problem on the compatibility graph is solved. The maximum weight clique graph is
a subgraph of Gc where all the vertices are pairwise adjacent and their total weight
is maximum. Hence, the maximum weight clique graph will report the optimal node
and edge merging, resulting in a maximum reduction of nodes (cost of processors),
edges (cost of processor/FIFO ports) and edge capacities (size of FIFO buffers) in the
merged graph. In Fig. 8.3f, the thick lines and thick bordered circles and ovals show
themaximumweight clique graph for the running example (for the sake of simplicity,
vertices’ weights are omitted). Finding amaximumweight clique of a graph is known
to be an NP-complete problem [21] and can be solved optimally using an exhaustive
algorithm; however, the author used a polynomial-time algorithm from Cliquer tool
[22] in the experiments. The resulting maximum weight clique is used to reconstruct
G MG . Firstly, the merged nodes and edges in G MG are obtained from the clique.
Then, all the nodes and edges in individual graphs that were not part of the clique

158 8 Multi-mode Pipelined MPSoCs

are added to G MG . Figure8.3e shows the merged graph from MaxC which has only
five nodes and five edges.

InMaxC, unlikeMaxN, exhaustive permutations ofmerging all Gx is not required
because the compatibility graph exhausts all possible merging of the two graphs.
Hence, MaxC results in optimal G MG ; however, it will be exorbitantly slow for large
graphs since the merging problem is NP-complete.

8.5 Experimental Methodology

Several benchmarks, reported in Table8.1, consisting of hand-partitioned applica-
tions, StreamIt applications [23] and synthetic applications were used to createmulti-
mode pipelined MPSoCs. Hand-partitioned applications contain JPEG encoder,
JPEG decoder and MP3 encoder. From StreamIt benchmark suite, the author chose
Fast Fourier Transform (FFT), Beam Former (BF) and Time Delay Equalisation
(TDE) applications. These are well-known streaming applications that appear fre-
quently in embedded domain [1, 24]. Synthetic applications were used to evaluate
the scalability of the heuristics with the increase in number of nodes and edges in
application graphs.

The application graphs were merged using the three heuristics to derive a multi-
modepipelinedMPSoC.Themulti-modepipelinedMPSoCwas created usingTensil-
ica’s Xtensa LX3 [25] processors with FIFO buffers between the processors. XTMP,
ISS andXT-XENERGY tools were used to record the throughput, latency and energy
consumption of the multi-mode pipelined MPSoC. For comparison of the three
heuristics, the pipelined MPSoCs were not customised as customisation does not
affect the merging of the application graphs. All the experiments were conducted on
a 2.15GHz quad core machine with 8GB RAM.

Table 8.1 Benchmark
characteristics

Application # nodes # edges

JPEGenc 7 9
JPEGdec 5 6
MP3enc 5 5
FFT 12 12
BF 12 12
TDE 13 12
Syn1 14 15
Syn2 14 15
Syn3 17 20

8.6 Results and Analyses 159

8.6 Results and Analyses

The results of merging different applications is shown in Table8.2. The first column
reports the merged applications. For example, the JPEGEnc/Dec/MP3Enc means
that JPEGEnc, JPEGDec and MP3Enc were combined. The second and sixth minor
columns, denoted as Ind., represent the traditional approach where individual appli-
cation graphs are separately mapped to pipelined MPSoCs. Hence, the number of
nodes and edges for Ind. would be the sum of the number of nodes and edges in
individual application graphs. For example, the number of nodes in Ind. for JPE-
GEnc/Dec is 12 due to 7 and 5 nodes in JPEGEnc and JPEGDec respectively (from
Table8.1). The rest of the minor columns report the number of nodes and edges in
merged graphs from MaxS, MaxN and MaxC. As expected, MaxC results in the
least number of nodes and edges in all the merged application graphs. In some cases,
MaxN results in higher number of edges thanMaxS because it only focuses on reduc-
ing the number of nodes. For example, in JPEGEnc/MP3Enc, MaxN produced 11
edges compared to 10 from MaxS. The optimality of MaxC comes at the expense
of higher running time which is reported in the fourth major column named Time.
MaxS and MaxN heuristics take a few seconds to run while MaxC’s running time
is several minutes. Three synthetic benchmarks are used to stress the heuristics, and
the results are reported in the last three rows. MaxC’s running time scales poorly
with the increase in number of nodes and edges as it did not finish in even 4 days
for Syn1/Syn3 and Syn2/Syn3. Hence, for large graphs, MaxS and MaxN should be
used instead.

Figure8.4 shows the area saving for the first eight merged graphs from Table8.2
(denoted (a) – (h)) compared to Ind. Synthetic benchmarkswere notmapped tomulti-
mode pipelined MPSoCs. For each merged graph, the area saving is broken down
in processor (P) and FIFO (F) area saving (in gates), plotted on the left y-axis as a
percentage; and, the number of processor/FIFO ports (#P) saved, plotted on the right

Table 8.2 Comparison of MaxS, MaxN and MaxC heuristics

Merge #nodes #edges Time
Ind. MaxS MaxN MaxC Ind. MaxS MaxN MaxC MaxS MaxN MaxC

JPEGEnc/Dec 12 9 7 7 14 12 12 8 <1s <1s 1m
JPEGEnc/MP3Enc 12 8 7 7 13 10 11 8 <1s <1s 1m
JPEGDec/MP3Enc 10 6 5 5 11 7 8 6 <1s <1s 1m
JPEGEnc/Dec/MP3Enc 17 9 7 7 19 12 13 8 1s 2s 3m
FFT/BF 24 14 12 12 24 16 14 13 1s 1s 5m
FFT/TDE 26 18 13 13 25 18 22 14 1s 1s 5m
BF/TDE 26 17 13 13 25 17 20 14 1s 1s 5m
FFT/BF/TDE 38 19 13 13 37 21 23 15 1s 2s 12m
Syn1/Syn2 28 18 14 14 30 24 29 20 1s 1s 16h
Syn1/Syn3 31 21 17 N/A 35 25 32 N/A 1s 1s >4d
Syn2/Syn3 31 26 17 N/A 35 23 31 N/A 1s 1s >4d

160 8 Multi-mode Pipelined MPSoCs

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8.4 Reduction in processor and FIFO area (left y-axis) and number of processor/FIFO ports
(right y-axis)

y-axis. MaxN always saves the same amount of processor area as MaxC since it uses
themaximumnumber of nodes fromall the application graphs.However,MaxC saves
more FIFO area and processor/FIFO ports. For example, in FFT/BF/TDE, MaxC
saved 44 ports compared to 28 and 31 from MaxN and MaxS which is significant
considering the cost of wires and interconnects in the ports. In summary, multi-mode
pipelined MPSoCs saved up to 62% processor area (FFT/BF/TDE), 57% FIFO area
(JPEGEnc/Dec/MP3Enc) and 44 processor/FIFO ports (FFT/BF/TDE) compared to
individual pipelined MPSoCs.

The author also compared the performance of the applications executing on the
multi-mode pipelined MPSoC with their individual counterparts. An average degra-
dation of 1% in throughput and 2% in latency with a standard deviation of 1% and
2% respectively was observed. The energy consumption per iteration of the multi-
mode pipelined MPSoC increased by a maximum of 3% due to the degradation in
throughput and latency. These results indicate that multi-mode pipelined MPSoCs
can be used as an execution platform for multiple, mutually exclusive multimedia
applications. In addition, multi-mode pipelinedMPSoCs can be designed bymerging
application graphs using the proposed heuristics.

8.7 Discussion

Use of all the three heuristics for merging application graphs is not necessary. Ideally,
a designer should use MaxC to find an optimal merging. When MaxC takes an exor-
bitant amount of time, the designer should utilise MaxS and MaxN to quickly gain
knowledge of a possible merging. MaxS performs poorly in reducing the processor
area (see Fig. 8.4) compared to MaxN which provides the same amount of processor
area saving as MaxC. However, MaxS has a higher chance (six out of eight times

8.7 Discussion 161

in Fig. 8.4) of reducing processor/FIFO ports compared to MaxN since it works at
graph topology level, although this cannot be proved because processor/FIFO port
reduction depends on graph topologies, and both MaxS and MaxN are heuristics. A
designer should first use MaxN to merge the application graphs, and then use MaxS
to gain an insight into reducing the number of processor/FIFO ports. This is possible
since both MaxS and MaxN are quite fast (see Table8.2).

8.8 Summary

This chapter proposed multi-mode pipelined MPSoCs where one application is exe-
cuted in a given mode. The author proposed merging of the application graphs into
a single graph to design a multi-mode pipelined MPSoC. Application graphs are
merged using two greedy heuristics (MaxS andMaxN) and amaximumweight clique
based approach (MaxC) so that the number of nodes and edges with their capacities
is minimal in themerged graph. The results show that multi-mode pipelinedMPSoCs
derived from merged graphs using MaxC save up to 62% processor area, 57% FIFO
area and 44 processor/FIFO ports compared to individual pipelined MPSoCs. In all
themulti-mode pipelinedMPSoCs, minuscule degradation in throughput and latency
and an increase in energy consumption per iteration was observed. These results
indicate viability of multi-mode pipelined MPSoCs as multi-mode accelerators in a
multimedia platform.

References

1. H. Javaid, A. Ignjatovic, S. Parameswaran, Rapid design space exploration of application
specific heterogeneous pipelined multiprocessor systems. Trans. Comput. Aided Des. Integr.
Circuits Syst. 29, 1777–1789 (2010)

2. S.L. Shee, S. Parameswaran, DAC ’07: Design methodology for pipelined heterogeneous mul-
tiprocessor system, in Proceedings of the 44th annual conference on Design automation, pp.
811–816, 2007

3. Texas Instruments, Omap mobile processors. Available at http://www.ti.com/
4. NVIDIA, Tegra multiprocessor architecture. Available at http://www.nvidia.com/
5. W. Geurts, Accelerator Data-Path Synthesis for High-Throughput Signal Processing Applica-

tions. Kluwer Academic Publishers, 1997
6. N. Shirazi, W. Luk, P. Cheung, Automating production of run-time reconfigurable designs, in

Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, pp. 147–156,
Apr 1998

7. Z. Huang, S. Malik, Managing dynamic reconfiguration overhead in systems-on-a-chip design
using reconfigurable datapaths and optimized interconnection networks, in Proceedings of
Conference and Exhibition 2001 on Design, Automation and Test in Europe, pp. 735–740,
(2001)

8. N. Moreano, E. Borin, C. de Souza, G. Araujo, Efficient datapath merging for partially recon-
figurable architectures. IEEETrans. Comput. AidedDes. Integr. Circuits Syst. 24, pp. 969–980,
(2005)

http://www.ti.com/
http://www.nvidia.com/

162 8 Multi-mode Pipelined MPSoCs

9. Y. J. Chong S. Parameswaran, Custom floating-point unit generation for embedded systems.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28, pp. 638–650, (2009)

10. P. Brisk, A. Kaplan, M. Sarrafzadeh, Area-efficient instruction set synthesis for reconfigurable
system-on-chip designs, in Proceedings of 41st Design Automation Conference, pp. 395–400,
(2004)

11. H. Oh, S. Ha, in CODES ’02: Hardware-software cosynthesis of multi-modemulti-task embed-
ded systems with real-time constraints, in Proceedings of the Tenth International Symposium
on Hardware/Software Codesign, (2002)

12. V. Kianzad, S. Bhattacharyya, Charmed: a multi-objective co-synthesis framework for
multi-mode embedded systems, in Proceedings of 15th IEEE International Conference on
Application-Specific Systems, Architectures and Processors, pp. 28–40, (20040

13. M. Schmitz, B. Al-Hashimi, P. Eles, Cosynthesis of energy-efficient multimode embedded
systems with consideration of mode-execution probabilities. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst, 24(2), 153–169 (2005)

14. M. Kim, S. Banerjee, N. Dutt, N. Venkatasubramanian, Energy-aware cosynthesis of real-time
multimedia applications on mpsocs using heterogeneous scheduling policies, ACM Trans.
Embed. Comput. Syst. 7, pp. 9:1–9:19, (2008)

15. L. Huang, Q. Xu, Energy-efficient task allocation and scheduling for multi-modempsocs under
lifetime reliability constraint, in Proceedings of Design, Automation Test in Europe Conference
Exhibition (DATE)2010, pp. 1584–1589, Mar 2010

16. N. Moreano, G. Araujo, C. de Souza,Cdfg merging for reconfigurable architectures’ Technical
Report on IC-03-18, Institute of Computing UNICAMP (2003)

17. A. Kumar, S. Fernando, Y. Ha, B. Mesman, H. Corporaal, Multiprocessor systems synthesis
for multiple use-cases of multiple applications on fpga, ACM Trans. Des. Autom. Electron.
Syst. vol. 13, pp. 40:1–40:27, (2008)

18. A. Shabbir, A. Kumar, S. Stuijk, B. Mesman, H. Corporaal, Ca-mpsoc: an automated design
flow for predictable multi-processor architectures for multiple applications, J. Syst. Architect.
(2010)

19. A. K. Singh, A. Kumar, T. Srikanthan CASES ’11: A hybrid strategy for mapping multiple
throughput-constrained applications on mpsocs, in Proceedings of the 14th International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems, (New York, NY,
USA), pp. 175–184, ACM, 2011

20. S. Wildermann, J. Angermeier, E. Sibirko, and J. Teich, Placing multimode streaming
applications on dynamically partially reconfigurable architectures, Int. J. Reconfig.Comput.
textbf2012, pp. 9:9, (2012)

21. E. Balas, V. Chvátal, J. Nešetřil, On the maximum weight clique problem, Math. Oper. Res.
12, no. 3, pp. 522–535, (1987)

22. Cliquer. Available at http://users.tkk.fi/ pat/cliquer.html
23. W. Thies, M. Karczmarek, S. P. Amarasinghe, CC ’02: Streamit: A language for streaming

applications, in Proceedings of the 11th International Conference on Compiler Construction,
pp. 179–196, (Springer-Verlag), 2002

24. M. Hashemi, S. Ghiasi, Throughput-driven synthesis of embedded software for pipelined exe-
cution onmulticore architectures, ACMTrans. Embed. Comput. Syst. 8, pp. 11:1–11:35, (2009)

25. Tensilica, Xtensa Customizable Processor. http://www.tensilica.com

http://users.tkk.fi/
http://www.tensilica.com

Chapter 9
Conclusions and Future Work

This monograph explored implementation of multimedia applications on a pipelined
MultiProcessor System on Chip (MPSoC) where the processors were divided into
stages, which are connected in a pipeline. Application Specific Instruction set Proces-
sors (ASIPs) were used so that their customisation could be exploited to balance the
workload across stages of the pipelined MPSoC; therefore, improving utilisation of
the processors for high performance, reduced area footprint and low power consump-
tion. Thus, each processor in the pipelined MPSoC had a number of configurations
trading-off performance and area footprint, where one combination of processor
configurations made up one of the pipelined MPSoCs design points. The aim of
the monograph was to optimise such a pipelined MPSoC for the area footprint and
energy consumption under performance constraints.

This monograph proposed design-time and run-time optimisations, which were
targeted at different objective functions. Firstly, a pipelined MPSoC was optimised
for the area footprint under either a latency constraint or a throughput constraint
by selection of the most suitable processor configurations during its design space
exploration. Then, such a design-time optimised pipelined MPSoC was augmented
with run-time adaptability to deactivate idle processors or transition them to low-
power states at run-time for low-power operation under a dynamic workload. Finally,
the pipelined MPSoCs that had been optimised for different multimedia applications
were combined into a singlemulti-modepipelinedMPSoC for further reduction of the
area footprint. The proposed design-time and run-time optimisations have shown that
pipelined MPSoCs can emerge as a viable implementation platform for multimedia
applications. The following paragraphs summarise the proposed optimisations and
the corresponding results.

Chapters4 and 5 targeted quick design space exploration of pipelined MPSoCs
for area footprint optimisation. Chapter4 proposed analytical models to estimate
the execution time, latency and throughput of a pipelined MPSoCs design point
using latencies of individual processor configurations, and thus avoiding slow, full-
system, cycle accurate simulations of all the design points. For effective use of these
analytical models, latencies of individual processor configurations were gathered

H. Javaid and S. Parameswaran, Pipelined Multiprocessor System-on-Chip 163
for Multimedia, DOI: 10.1007/978-3-319-01113-4_9,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_5
http://dx.doi.org/10.1007/978-3-319-01113-4_4

164 9 Conclusions and Future Work

with minimal number of simulations by utilising two estimation methods (PS and
PSP). The PS method simulated all the processor configurations once, while the
PSP method simulated only a subset of processor configurations and then used a
processor analytical model to estimate the latencies of the processor configurations.
Experiments with five pipelined MPSoCs executing typical multimedia applications
(JPEG encoder/decoder,MP3 encoder andH.264 encoder) showed that the analytical
modelswith PS and PSPmethods hadmaximumabsolute errors of 12.95 and 18.67%
respectively, and minimum fidelities of 0.93 and 0.88 respectively. Compared to the
PS method, the PSP method reduced simulation time from days to several hours for
design spaces that ranged from 1012 to 1018 design points.

Chapter5 followed on from Chap.4 by utilising the analytical models for quick
design space exploration. Integer Linear Programming (ILP) formulations for area
footprint optimisation under an execution time and a latency constraint, and an
algorithm for area footprint optimisation under a throughput constraint were pro-
posed. The proposed exploration techniques were evaluated using the five pipelined
MPSoCs created in Chap.4, which had design spaces up to 1018 design points. The
time to find the Pareto front of each pipelined MPSoC with respect to latency or
throughput was less than seven minutes, illustrating the applicability of the proposed
design space exploration methods.

Next, in Chaps. 6 and7, run-time optimisations were proposed to reduce energy
consumption of a pipelined MPSoC. Chapter6 proposed an adaptive pipelined
MPSoC architecture, capable of adapting itself to run-time variations in its workload.
In an adaptive pipelinedMPSoC, stages with significant run-time variations in work-
load are implemented using Main Processors and Auxiliary Processors, where the
main processor used differing numbers of auxiliary processors, considering the run-
time workload variations. A main processor was equipped with a run-time processor
manager which used a combination of the application’s execution and knowledge
(algorithmic and data properties) and information from the off-line profiling and
statistical analysis to proactively predict the number of auxiliary processors that
should be used. The idle auxiliary processors were either clock- or power-gated to
reduce energy consumption. Experiments with an H.264 video encoder, designed for
HD720p at 30 fps, showed that an adaptive pipelined MPSoC provided an energy
reduction of up to 34 and 39% for clock- and power-gating based deactivation of
auxiliary processors respectively with a minimum throughput of 28.75 fps compared
to a worst-case pipelined MPSoC.

Chapter7 proposed a power manager where auxiliary processors had multiple
power states, trading-off the overhead of the transition to power states with their
possible energy reductions. Five heuristics were proposed as part of the power man-
ager to forecast at run-time the duration of an upcoming idle period of an auxiliary
processor using either the application’s execution or the application’s knowledge.
Then, based on the predicted duration of the idle period, the most suitable power
state was selected. Compared to the use of the processor manager with only clock-
gating or only power-gating in an adaptive pipelined MPSoC executing H.264 video
encoder (HD720p at 30 fps), the power manager reduced up to 40% more energy
with only an additional 0.5% degradation of the throughput.

http://dx.doi.org/10.1007/978-3-319-01113-4_5
http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_4
http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_7
http://dx.doi.org/10.1007/978-3-319-01113-4_6
http://dx.doi.org/10.1007/978-3-319-01113-4_7

9 Conclusions and Future Work 165

Finally, Chap. 8 proposed to create multi-mode pipelined MPSoCs by merging
pipelined MPSoCs optimised for individual multimedia applications for further
reduction of area footprint. To this end, individual application graphs were merged
into a single graph by finding a maximal overlap between the graphs. Three heuris-
tics were proposed where two of them greedily merged application graphs, while the
third one found an optimal merging at the cost of higher running time. The results
indicated significant area savings (up to 62% processor area, 57% FIFO area and 44
processor/FIFO ports) with minuscule degradation of the system throughput (up to
2%) and latency (up to 2%) and an increase in energy per iteration (up to 3%) when
compared to individual pipelined MPSoCs.

Future works on this monograph can be conducted in several directions. Design
space exploration of a pipelinedMPSoCcan consider differing communication archi-
tectures in addition to differing processor configurations. For example, data transfers
in a pipelined MPSoC can be achieved using dedicated FIFO buffers (as was done
in this monograph), Direct Memory Access (DMA) engines or software managed
FIFO buffers in a shared memory. Such an exploration will not only optimise the
computational architecture (processors), but also the communication architecture of
a pipelined MPSoC, resulting in better area footprint optimisation.

A pipelinedMPSoCcan use reconfigurable processors as its building blocks rather
thanApplicationSpecific Instruction set Processors (ASIPs) to further reduce the area
footprint and improve system adaptability. Reconfigurable processors with so-called
reconfigurable regions can load custom instructions at run-time depending upon the
needs of the sub-kernel, and thus can time-multiplex the reconfigurable regions for
reduced area footprint. Furthermore, these reconfigurable regions can be turned off
to reduce energy consumption if none of the custom instructions are required. How-
ever, the introduction of reconfigurable processors in pipelinedMPSoCs will require
run-time management techniques at the processor-level, in addition to the system-
level techniques proposed in this monograph. The adaptability feature of reconfig-
urable processors can also be exploited in a multi-mode pipelined MPSoC where the
reconfigurable regions are loaded with the only custom instructions required of the
currently executing application.

The adaptability of the adaptive pipelined MPSoC proposed in this monograph
was exploited to reduce energy consumption only.One of the futureworks can exploit
the adaptability of an adaptive pipelined MPSoC for resource management, where
auxiliary processors of one stage can be used as the auxiliary processors of an other
stage depending upon the workload of the stages. In other words, a pool of auxiliary
processors can be shared among multiple stages of the adaptive pipelined MPSoC,
where allocation of auxiliary processors to a particular stage is done at run-time by
the resource manager. This will require run-time resource management heuristics.

Lastly, an operating system can be designed for the pipelined MPSoC so as to
manage its applications, resources and power consumption at run-time. Such an oper-
ating system can allow simultaneous execution of multiple applications by context
switching between them in a multi-mode pipelined MPSoC. To this end, an efficient
and fast context switch method will be required for not only the processors, but also
the FIFO buffers between the processors.

http://dx.doi.org/10.1007/978-3-319-01113-4_8

Index

A
Adaptive Pipelined MPSoC, 14, 102

adaptable stage, 104, 129
application knowledge, 107, 127,

132, 144
architecture, 103, 129
auxiliary processor, 103, 118
design flow, 105
high-workload iteration, 110
idle iteration, 130
idle period, break-even duration, 130
low-workload iteration, 110
main processor, 103, 118
off-line profiling information, 106, 116
off-line statistical information, 106, 116
pre-processing system, 107, 115, 139
run-time manager, 104

distributed, 105, 129
Exe heuristic, 110, 115, 120, 122, 134,

141, 143
Know heuristic, 112, 115, 120, 122,

137, 141, 143
power, 130, 133, 139, 144
processor, 109, 115, 130, 139, 144

run-time workload prediction, 107, 111,
113, 118, 133, 135

system-level implementation, 115, 139
Application Specific Instruction-set Processor.

See ASIP
Application Specific Integrated Circuit.

See ASIC
ASIC, 3
ASIP, 5, 53, 75

architecture description language, 5
custom instructions, 33, 56, 76
customisation options, 5
frameworks, 5

C
Cache

analytical modelling, 73
configuration, 66, 76
trace-based simulation, 66, 74

Clique, 148, 156
Cliquer tool, 158
compatibility graph, 157

Clock gating, 9, 105, 118, 123, 128, 143
CPLEX solver, 91

D
Design automation frameworks, 34
Design space exploration, 26

exact approaches, 26
frameworks, 34
heuristic approaches, 29

Digital Signal Processor. See DSP
DSP, 4
DVFS 9, 22, 39, 58, 103
Dynamic Voltage Frequency Scaling.

See DVFS

E
Embedded system, 1

F
Fidelity, 77
Frame-level execution, 116, 117, 139

G
General Purpose Processor. See GPP
GPP, 4

H. Javaid and S. Parameswaran, Pipelined Multiprocessor System-on-Chip
for Multimedia, DOI: 10.1007/978-3-319-01113-4,
� Springer International Publishing Switzerland 2014

167

H
H.264 video encoder, 54, 116, 139

K
Kahn Process Network. See KPN
KPN, 10

L
Latency

Pipelined MPSoC. See Pipelined MPSoC
Processor, 67, 71

Linear programming, 26
Integer, 28, 29, 61, 83, 85, 87, 94
mixed integer, 27, 28

M
Macroblock-level execution, 116, 117, 139
MPSoC, 6

design-time optimisation, 37
heterogeneous, 8, 23

customisation, 32, 33
customisation frameworks, 36
design complexity, 10

homogeneous, 8, 21
master–slave, 25, 116
multi-mode, 148
pipelined, 25 See also Pipelined MPSoC
run-time adaptability. See Run-time

adaptability
trends, 7

Multi-mode accelerator, 148
Multi-mode Pipelined MPSoC, 15, 149

application graph, abstract representation,
149

area footprint, 152
cache configurations, 151
custom instructions, 150
design flow, 151
example, 150
execution mode, 149, 152
resource sharing, merging graphs, 151

MaxC heuristic, 156, 159, 160
MaxN heuristic, 155, 159, 160
MaxS heuristic, 153, 159, 160
problem statement, 153

Multimedia
Accelerators, 58, 147
Applications, 2, 53

pipelined execution, 13, 25
pipelined scheduling, 30
workload balancing, 59

architectures, 3, 8
MPSoCs. See MPSoC

MultiProcessor System-on-Chip. See MPSoC

N
NP-complete problem, 148, 158

P
Pareto-optimal front, 92
Pipelined MPSoC, 12, 34, 53

application model, 53
feedback edges, 54

area footprint, 84
critical processor, 67
cycle-accurate simulation, 71, 80
data-level parallelism 26
design point, 13, 56
design space, 59, 76
design space exploration, 14, 29, 83, 92, 93

execution time constrained, 85, 92
latency constrained, 87, 93
optimisation problem, 84
throughput constrained, 90, 93

design-time, worst-case balanced. See
Worst-case Pipelined MPSoC

execution time, 67, 68, 77
FIFO buffer, 13, 68
instruction-level parallelism, 26
latency, 67, 69, 77
multi-mode. See Multi-mode Pipelined

MPSoC
optimisation framework, 59

design-time optimisations, 59, 62
run-time optimisations, 61

performance metrics, 65
pipeline-level parallelism, 26, 33
processor configurations, 13, 56, 74, 76
latencies from PS method, 71, 77, 80
latencies from PSP method, 72, 77, 81
run-time adaptability. See also Adaptive
Pipelined MPSoC, 41
task-level parallelism, 26, 33
throughput, 67, 69, 77
workload balancing, 26, 56

Power gating, 9, 105, 118, 123, 128, 143
Power management, 127

analytical analysis, 130
predictive techniques, 127
stochastic techniques, 127

Power states, 58, 105
transition overhead, 128, 140
wake-up latency, 128, 140

168 Index

Processor
analytical modelling, 66, 72, 76
CPI, 73
cycle-accurate simulation, 66
instruction set architecture, 66

R
Random heuristics, 32
Reconfigurable processors, 6, 165
Resource sharing, 148
Run-time

management techniques, 39
monitoring, 40
prediction, 40, 106, 107, 132, 135
workload variation, 101

Run-time adaptability
feedback controllers, 40, 42, 57, 107, 112
proactive controllers, 58

S
Scratchpad memories, 27
SDF, 10, 71
SIMD, 4
Single Instruction Multiple Data. See SIMD
StreamIt language, 10, 22, 31, 59, 158
Substring/Subsequence matching, 148
Synchronous Data Flow graph. See SDF

T
Tensilica, 75

TIE language, 75
XPRES tool, 75
XT-XENERGY tool, 116
Xtensa LX processor, 23, 36, 75
XTMP environment, 75

Time-to-design, 10
Time-to-market, 10

U
Ubiquitous computing, 1

V
Very Long Instruction Word. See VLIW
Video resolutions, 2
VLIW, 4

W
Worst-case Pipelined MPSoC, 101, 102,

104, 105

Index 169

	Contents
	1 Introduction
	1.1 Multimedia Applications
	1.2 Multimedia Architectures
	1.2.1 Application Specific Integrated Circuits
	1.2.2 General Purpose Processors
	1.2.3 Digital Signal Processors
	1.2.4 Application Specific Instruction Set Processors
	1.2.5 Multiprocessor System-on-Chips

	1.3 Challenges in Multimedia Heterogeneous MPSoCs
	1.4 Research Aims and Contributions
	1.5 Monograph Outline
	1.6 Summary
	References

	2 Literature Survey
	2.1 Homogeneous MPSoCs
	2.2 Heterogeneous MPSoCs
	2.3 Design Space Exploration
	2.3.1 Exact Approaches
	2.3.2 Heuristic Approaches
	2.3.3 (Semi-) Automated Frameworks

	2.4 Run-Time Adaptability
	2.5 Summary
	References

	3 Optimisation Framework
	3.1 Application Model and Pipelined MPSoCs
	3.2 Shortcomings of Prior Research
	3.3 Overview of Optimisation Framework
	3.4 Summary
	References

	4 Performance Estimation of Pipelined MPSoCs
	4.1 Pipelined MPSoC's Analytical Models
	4.2 Estimation Methods
	4.2.1 PS Method (Pipelined MPSoC Simulation)
	4.2.2 PSP Method (Pipelined MPSoC Simulation and Processor Analytical Model)

	4.3 Experimental Methodology
	4.4 Results and Analyses
	4.4.1 Processor's Analytical Model
	4.4.2 Pipelined MPSoC's Analytical Models and Estimation Methods
	4.4.3 Simulation Time of Estimation Methods
	4.4.4 Comparison to Prior Research

	4.5 Summary
	References

	5 Design Space Exploration of Pipelined MPSoCs
	5.1 Problem Statement
	5.2 Optimisation Under an Execution Time Constraint
	5.2.1 Variables
	5.2.2 Objective Function
	5.2.3 Constraints

	5.3 Optimisation Under a Latency Constraint
	5.3.1 Variables
	5.3.2 Objective Function
	5.3.3 Constraints

	5.4 Optimisation Under a Throughput Constraint
	5.5 Discussion
	5.6 Experimental Methodology
	5.7 Results and Analyses
	5.7.1 Pareto Fronts
	5.7.2 Exploration Time
	5.7.3 JPEG Encoder Case Study

	5.8 Summary
	References

	6 Adaptive Pipelined MPSoCs
	6.1 Motivational Example
	6.2 Adaptive Pipelined MPSoC Architecture
	6.3 A Design Flow
	6.4 Problem Statement
	6.5 Leveraging Application Knowledge
	6.5.1 An H.264 Video Encoder Example

	6.6 Processor Management Heuristics
	6.6.1 Application Execution Based Heuristic (Exe Heuristic)
	6.6.2 Application Knowledge Based Heuristic (Know Heuristic)
	6.6.3 System-Level Overview

	6.7 HD720p H.264 Video Encoder Case Study
	6.7.1 Implementation Details
	6.7.2 Results and Analyses
	6.7.3 Discussion

	6.8 Summary
	References

	7 Power Management in Adaptive Pipelined MPSoCs
	7.1 Motivational Example
	7.2 Power Manager
	7.2.1 Analytical Analysis
	7.2.2 Leveraging Application Knowledge

	7.3 Problem Statement
	7.4 Power Management Heuristics
	7.4.1 Application Execution Based Heuristic (Exe Heuristic)
	7.4.2 Application Knowledge Based Heuristics (Know Heuristics)
	7.4.3 System-Level Overview

	7.5 HD720p H.264 Video Encoder Case Study
	7.5.1 Implementation Details
	7.5.2 Results and Analyses

	7.6 Summary
	References

	8 Multi-mode Pipelined MPSoCs
	8.1 Multi-mode Pipelined MPSoCs
	8.2 A Design Flow
	8.3 Problem Statement
	8.4 Merging Heuristics
	8.4.1 MaxS (Maximum Stages)
	8.4.2 MaxN (Maximum Nodes)
	8.4.3 MaxC (Maximum Weight Clique)

	8.5 Experimental Methodology
	8.6 Results and Analyses
	8.7 Discussion
	8.8 Summary
	References

	9 Conclusions and Future Work
	Index

