

Parallel Port
Complete

Programming, Interfacing, & Using
the PC’s Parallel Printer Port

Jan Axelson

Lakeview Research

Madison, WI 53704

copyright 1996, 1997, 1999, 2000 by Jan Axelson. All rights reserved.
Published by Lakeview Research

Lakeview Research
5310 Chinook Ln.
Madison, WI 53704
USA
Phone: 608-241-5824
Fax: 608-241-5848
Email: info@lvr.com
WWW: http://www.lvr.com

14 13 12 11 10 9 8 7 6 5

Products and services named in this book are trademarks or registered trademarks of their
respective companies. The author uses these names in editorial fashion only and for the
benefit of the trademark owners. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with the book.

No part of this book, except the programs and program listings, may be reproduced in any
form, or stored in a database or retrieval system, or transmitted or distributed in any form,
by any means, electronic, mechanical photocopying, recording, or otherwise, without the
prior written permission of Lakeview Research or the author, except as permitted by the
Copyright Act of 1976. The programs and program listings, or any portion of these, may
be stored and executed in a computer system and may be incorporated into computer pro-
grams developed by the reader.

The information, computer programs, schematic diagrams, documentation, and other
material in this book and the accompanying diskette are provided “as is,” without war-
ranty of any kind, expressed or implied, including without limitation any warranty con-
cerning the accuracy, adequacy, or completeness of the material or the results obtained
from using the material. Neither the publisher nor the author shall be responsible for any
claims attributable to errors, omissions, or other inaccuracies in the material in this book
and the accompanying diskette. In no event shall the publisher or author be liable for
direct, indirect, special, incidental, or consequential damages in connection with, or aris-
ing out of, the construction, performance, or other use of the materials contained herein.

ISBN 0-965081-966

Manufactured in the United States of America

Parallel Port Complete iii

Table of Contents

Introduction ix

1 Essentials 1
Defining the Port 1

Port Types
System Resources 4

Addressing
Interrupts
DMA Channels
Finding Existing Ports

Configuring 6
Port Options
Drivers
Adding a Port

Port Hardware 9
Connectors
The Circuits Inside
Cables

Multiple Uses for One Port 11
Security Keys

Alternatives to the Parallel Port 13
Serial Interfaces

iv Parallel Port Complete

Other Parallel Interfaces
Custom I/O Cards
PC Cards

2 Accessing Ports 17
The Signals 17

Centronics Roots
Naming Conventions
The Data Register
The Status Register
The Control Register
Bidirectional Ports

Addressing 24
Finding Ports

Direct Port I/O 26
Programming in Basic
Other Programming Languages

Other Ways to Access Ports 31
LPT Access in Visual Basic
Windows API Calls
DOS and BIOS Interrupts

3 Programming Issues 39
Options for Device Drivers 39

Simple Application Routines
DOS Drivers
Windows Drivers
Custom Controls

Speed 45
Hardware Limits
Software Limits

4 Programming Tools 53
Routines for Port Access 53

Data Port Access
Status Port Access
Control Port Access
Bit Operations

A Form Template 60
Saving Initialization Data
Finding, Selecting, and Testing Ports

5 Experiments 85
Viewing and Controlling the Bits 85

Circuits for Testing
Output Types
Component Substitutions

Parallel Port Complete v

Cables & Connectors for Experimenting 99
Making an Older Port Bidirectional 100

Cautions
The Circuits
The Changes

6 Interfacing 105
Port Variations 105

Drivers and Receivers
Level 1 Devices
Level 2 devices

Interfacing Guidelines 110
General Design
Port Design

Cable Choices 112
Connectors
Cable Types
Ground Returns
36-wire Cables
Reducing Interference
Line Terminations
Transmitting over Long Distances

Port-powered Circuits 124
When to Use Port Power
Abilities and Limits
Examples

7 Output Applications 129
Output Expansion 129
Switching Power to a Load 132

Choosing a Switch
Logic Outputs
Bipolar Transistors
MOSFETs
High-side Switches
Solid-state Relays
Electromagnetic Relays
Controlling the Bits
X-10 Switches

Signal Switches 143
Simple CMOS Switch
Controlling a Switch Matrix

Displays 148

8 Input Applications 149
Reading a Byte 149

vi Parallel Port Complete

Latching the Status Inputs
Latched Input Using Status and Control Bits
5 Bytes of Input
Using the Data Port for Input

Reading Analog Signals 154
Sensor Basics
Simple On/Off Measurements
Level Detecting
Reading an Analog-to-digital Converter
Sensor Interfaces
Signal Conditioning
Minimizing Noise
Using a Sample and Hold

9 Synchronous Serial Links 165
About Serial Interfaces 165
A Digital Thermometer 166

Using the DS1620
The Interface
An Application
Other Serial Chips

10 Real-time Control 183
Periodic Triggers 183

Simple Timer Control
Time-of-day Triggers
Loop Timers

Triggering on External Signals 189
Polling
Hardware Interrupts
Multiple Interrupt Sources
Port Variations

11 Modes for Data Transfer 203
The IEEE 1284 Standard 203

Definitions
Communication modes

Detecting Port Types 207
Using the New Modes
Port Detecting in Software
Disabling the Advanced Modes

Negotiating a Mode 210
Protocol

Controller Chips 212
Host Chips
Peripheral Chips
Peripheral Daisy Chains

Parallel Port Complete vii

Programming Options 220

12 Compatibility and Nibble Modes 223
Compatibility Mode 223

Handshaking
Variations

Nibble Mode 228
Handshaking
Making a Byte from Two Nibbles

A Compatibility & Nibble-mode Application 232
About the 82C55 PPI
Compatibility and Nibble-mode Interface

13 Byte Mode 249
Handshaking 249
Applications 250

Compatibility & Byte Mode
Compatibility, Nibble & Byte Mode with Negotiating

14 Enhanced Parallel Port: EPP 267
Inside the EPP 267

Two Strobes
The Registers

Handshaking 269
Four Types of Transfers
Switching Directions
Timing Considerations

EPP Variations 275
Use of nWait
Clearing Timeouts
Direction Control

An EPP Application 277
The Circuit
Programming

15 Extended Capabilities Port: ECP 285
ECP Basics 286

The FIFO
Registers
Extended Control Register (ECR)
Internal Modes

ECP Transfers 289
Forward transfers
Reverse Transfers
Timing Considerations
Interrupt Use

viii Parallel Port Complete

Using the FIFO
Other ECP Modes 296

Fast Centronics
Test Mode
Configuration Mode

An ECP Application 298

16 PC-to-PC Communications 305
A PC-to-PC Cable 305
Dos and Windows Tools 306

MS-DOS's Interlnk
Direct Cable Connection

A PC-to-PC Application 311
Appendices

A Resources 323
B Microcontroller Circuit 327
C Number Systems 329

Index 333

Introduction

Parallel Port Complete ix

Introduction

From its origin as a simple printer interface, the personal computer’s parallel port
has evolved into a place to plug in just about anything you might want to hook to
a computer. The parallel port is popular because it’s versatile—you can use it for
output, input, or bidirectional links—and because it’s available—every PC has
one.

Printers are still the most common devices connected to the port, but other popular
options include external tape and disk drives and scanners. Laptop computers may
use a parallel-port-based network interface or joystick. For special applications,
there are dozens of parallel-port devices for use in data collection, testing, and
control systems. And the parallel port is the interface of choice for many
one-of-a-kind and small-scale projects that require communications between a
computer and an external device.

In spite of its popularity, the parallel port has always been a bit of a challenge to
work with. Over the years, several variations on the original port’s design have
emerged, yet there has been no single source of documentation that describes the
port in its many variations.

I wrote this book to serve as a practical, hands-on guide to all aspects of the paral-
lel port. It covers both hardware and software, including how to design external

Introduction

x Parallel Port Complete

circuits that connect to the port, as well as how to write programs to control and
monitor the port, including both the original and improved port designs.

Who should read this book?

The book is designed to serve readers with a variety of backgrounds and interests:

Programmers will find code examples that show how to use the port in all of its
modes. If you program in Visual Basic, you can use the routines directly in your
programs.

For hardware designers, there are details about the port circuits and how to inter-
face them to the world outside the PC. I cover the port’s original design and the
many variations and improvements that have evolved. Examples show how to
design circuits for reliable data transfers.

System troubleshooters can use the programming techniques and examples for
finding and testing ports on a system.

Experimenters will find dozens of circuit and code examples, along with expla-
nations and tips for modifying the examples for a particular application.

Teachers and students have found the parallel port to be a handy tool for experi-
ments with electronics and computer control. Many of the examples in this book
are suitable as school projects.

And last but not least, users, or anyone who uses a computer with printers or other
devices that connect to the parallel port, will find useful information, including
advice on configuring ports, how to add a port, and information on cables, port
extenders, and switch boxes.

What’s Inside

This book focuses on several areas related to the parallel port:

Using the New Modes
Some of the most frequently asked parallel-port questions relate to using, pro-
gramming, and interfacing the port in the new, advanced modes, including the
enhanced parallel port (EPP), the extended capabilities port (ECP), and the
PS/2-type, or simple bidirectional, port. This book covers each of these. Examples
show how to enable a mode, how to use the mode to transfer data, and how to use
software negotiation to enable a PC and peripheral to select the best mode avail-
able.

Introduction

Parallel Port Complete xi

Visual Basic Tools
Microsoft’s Visual Basic is one of the most popular programming languages for
PCs, and this book includes programming tools to help in writing Visual-Basic
programs that access the parallel port. One tool is a Visual-Basic form that
enables users to find, select, and test the parallel ports on a system. You can use
the form as a template, or beginning form, for applications you write. Also
included is a set of routines that simplify reading and writing to the parallel port’s
registers and reading and changing individual bits in a byte.

Visual Basic doesn’t include functions for performing simple reads and writes to a
port, but this book’s companion web page (www.lvr.com/parport.htm) has links to
free DLLs and other tools that add these abilities to Visual Basic. Versions are
available for use with both 16-bit and 32-bit programs.

Applications
Besides the general-purpose programming tools, I’ve included a variety of exam-
ple circuits with Visual-Basic code for controlling and monitoring external cir-
cuits. The examples include popular applications such as switching power to a
load, reading analog signals, expanding the number of inputs and outputs that the
port can access, and interfacing to a microcontroller circuit. One example shows
how to use the parallel port to communicate with chips that use a synchronous
serial interface. A chapter on real-time control shows how to write programs that
trigger on external events, such as a signal transition at the parallel port or time or
calendar information. There’s a discussion and examples of using the parallel port
as the power source for low-power external circuits.

Cables and Interfacing
The proper cable can mean the difference between a link that works reliably and
one that doesn’t. This book shows how to choose an appropriate parallel-port
cable, and how to design the circuits that interface to the cable.

PC-to-PC Communications
Although the parallel port was originally intended as an interface between a PC
and a printer or other peripheral, it’s also become a popular interface for transfer-
ring information between two PCs. This book shows how to set up a PC-to-PC
link using the parallel ports and either the operating system’s built-in tools or your
own programs.

Introduction

xii Parallel Port Complete

About the Program Code

Every programmer has a favorite language. The choices include various imple-
mentations of Basic, C/C++, and Pascal/Delphi, and assembly language.

For the program examples in this book, I wanted to use a popular language so as
many readers as possible could use the examples directly, and this prompted my
decision to use Microsoft's Visual Basic for Windows. A big reason for Visual
Basic’s popularity is that the programming environment makes it extremely easy
to add controls and displays that enable users to control a program and view the
results.

However, this book isn’t a tutorial on Visual Basic. It assumes you have a basic
understanding of the language and how to create and debug a Visual-Basic pro-
gram.

I developed the examples originally using Visual Basic Version 3, then ported
them to Version 4. As much as possible, the programs are designed to be compat-
ible with both versions, including both 16- and 32-bit Version-4 programs. From
the publisher’s website at www.lvr.com, you can download a zip file containing
two versions of each program: Version 3 and 16- and 32-bit Version 4.

One reason I decided to maintain compatibility with Version 3 is that the standard
edition of Version 4 creates 32-bit programs only. Because Windows 3.1 can’t run
these programs, many users haven’t upgraded to Version 4. Also, many paral-
lel-port programs run on older systems that are put to use as dedicated controllers
or data loggers. Running the latest version of Windows isn't practical or necessary
on these computers.

Of course, in the software world, nothing stays the same for long. Hopefully, the
program code will remain compatible in most respects with later versions of
Visual Basic.

Compatibility with Version 3 does involve some tradeoffs. For example, Version
3 doesn’t support the Byte variable type, so my examples use Integer variables
even where Byte variables would be appropriate (as in reading and writing to a
byte-wide port). In a few areas, such as some Windows API calls, I’ve provided
two versions, one for use with 16-bit programs, Version 3 or 4, and the other for
use with Version 4 programs, 16- or 32-bit.

In the program listings printed in this book, I use Visual Basic 4’s line-continua-
tion character (_) to extend program lines that don’t fit on one line on the page. In
other words, this:

PortType = _
Left$(ReturnBuffer, NumberOfCharacters)

is the same as this:

Introduction

Parallel Port Complete xiii

PortType = Left$(ReturnBuffer, NumberOfCharacters)

To remain compatible with Version 3, the code available on the website doesn’t
use this feature.

Most of the program examples are based on a general-purpose Visual-Basic form
and routines introduced early in the book. The listings for the examples in each
chapter include only the application-specific code added to the listings presented
earlier. The routines within a listing are arranged alphabetically, in the same order
that Visual Basic displays and prints them.

Of course, the concepts behind the programs can be programmed with any lan-
guage and for any operating system. In spite of Windows’ popularity, MS-DOS
programs still have uses, especially for the type of control and monitoring pro-
grams that often use the parallel port. Throughout, I’ve tried to document the code
completely enough so that you can translate it easily into whatever programming
language and operating system you prefer.

Several of the examples include a parallel-port interface to a microcontroller cir-
cuit. The zip file on the website has the listings for the microcontroller programs
as well.

About the Example Circuits

This book includes schematic diagrams of circuits that you can use or adapt in
parallel-port projects. In designing the examples, I looked for circuits that are as
easy as possible to put together and program. All use inexpensive, off-the-shelf
components that are available from many sources.

The circuit diagrams are complete, with these exceptions:

Power-supply and ground pins are omitted when they are in standard locations
on the package (bottom left for ground, top right for power, assuming pin 1 is
top left).
Power-supply decoupling capacitors are omitted. (This book explains when and
how to add these to your circuits.)
Some chips may have additional, unused gates or other elements that aren’t
shown.

The manufacturers’ data sheets have additional information on the components.

Introduction

xiv Parallel Port Complete

Conventions

These are the typographic conventions used in this book:

Corrections and Updates

In researching and putting together this book, I’ve done my best to ensure that the
information is complete and correct. I built and tested every circuit and tested all
of the program code, most of it multiple times. But I know from experience that
on the way from test to publication, errors and omissions do occur.

Any corrections or updates to this book will be available at Lakeview Research’s
World Wide Web site on the Internet at http://www.lvr.com. This is also the place
to come for links to other parallel-port information on the Web, including data
sheets for parallel-port controllers and software tools for parallel-port program-
ming.

Thanks!

Finally, I want to say thanks to everyone who helped make this book possible. I
credit the readers of my articles in The Microcomputer Journal for first turning
me on to this topic with their questions, comments, and article requests. The series
I wrote for the magazine in 1994 was the beginning of this book.

Others deserving thanks are product vendors, who answered many questions, and
the Usenet participants who asked some thought-provoking questions that often
sent me off exploring areas I wouldn’t have thought of otherwise.

Special thanks to SoftCircuits (PO Box 16262, Irvine, CA 92713, Compuserve
72134,263, WWW: http://www.softcircuits.com) for the use of Vbasm.

Item Convention Example

Signal name italics Busy, D0

Active-low signal leading n nAck, nStrobe

Signal complement overbar C0, S7 (equivalent to
-CO, -S7 or /C0, /S7)

Program code monospace font DoEvents, End
Sub

File name italics win.ini, inpout16.dll

Hexadecimal number trailing h 3BCh (same as &h3BC in
Visual Basic)

Essentials

Parallel Port Complete 1

1

Essentials
A first step in exploring the parallel port is learning how to get the most from a
port with your everyday applications and peripherals. Things to know include
how to find, configure, and install a port, how and when to use the new bidirec-
tional, EPP, and ECP modes, and how to handle a system with multiple paral-
lel-port peripherals. This chapter presents essential information and tips relating
to these topics.

Defining the Port

What is the “parallel port”? In the computer world, a port is a set of signal lines
that the microprocessor, or CPU, uses to exchange data with other components.
Typical uses for ports are communicating with printers, modems, keyboards, and
displays, or just about any component or device except system memory. Most
computer ports are digital, where each signal, or bit, is 0 or 1. A parallel port
transfers multiple bits at once, while a serial port transfers a bit at a time (though it
may transfer in both directions at once).

This book is about a specific type of parallel port: the one found on just about
every PC, or IBM-compatible personal computer. Along with the RS-232 serial
port, the parallel port is a workhorse of PC communications. On newer PCs, you

Chapter 1

2 Parallel Port Complete

may find other ports such as SCSI, USB, and IrDA, but the parallel port remains
popular because it’s capable, flexible, and every PC has one.

The term PC-compatible, or PC for short, refers to the IBM PC and any of the
many, many personal computers derived from it. From another angle, a PC is any
computer that can run Microsoft’s MS-DOS operating system and whose expan-
sion bus is compatible with the ISA bus in the original IBM PC. The category
includes the PC, XT, AT, PS/2, and most computers with 80x86, Pentium, and
compatible CPUs. It does not include the Macintosh, Amiga, or IBM mainframes,
though these and other computer types may have ports that are similar to the par-
allel port on the PC.

The original PC’s parallel port had eight outputs, five inputs, and four bidirec-
tional lines. These are enough for communicating with many types of peripherals.
On many newer PCs, the eight outputs can also serve as inputs, for faster commu-
nications with scanners, drives, and other devices that send data to the PC.

The parallel port was designed as a printer port, and many of the original names
for the port’s signals (PaperEnd, AutoLineFeed) reflect that use. But these days,
you can find all kinds of things besides printers connected to the port. The term
peripheral, or peripheral device is a catch-all category that includes printers,
scanners, modems, and other devices that connect to a PC.

Port Types

As the design of the PC evolved, several manufacturers introduced improved ver-
sions of the parallel port. The new port types are compatible with the original
design, but add new abilities, mainly for increased speed.

Speed is important because as computers and peripherals have gotten faster, the
jobs they do have become more complicated, and the amount of information they
need to exchange has increased. The original parallel port was plenty fast enough
for sending bytes representing ASCII text characters to a dot-matrix or
daisy-wheel printer. But modern printers need to receive much more information
to print a page with multiple fonts and detailed graphics, often in color. The faster
the computer can transmit the information, the faster the printer can begin pro-
cessing and printing the result.

A fast interface also makes it feasible to use portable, external versions of periph-
erals that you would otherwise have to install inside the computer. A parallel-port
tape or disk drive is easy to move from system to system, and for occasional use,
such as making back-ups, you can use one unit for several systems. Because a
backup may involve copying hundreds of Megabytes, the interface has to be fast
to be worthwhile.

Essentials

Parallel Port Complete 3

This book covers the new port types in detail, but for now, here is a summary of
the available types:

Original (SPP)
The parallel port in the original IBM PC, and any port that emulates the original
port’s design, is sometimes called the SPP, for standard parallel port, even though
the original port had no written standard beyond the schematic diagrams and doc-
umentation for the IBM PC. Other names used are AT-type or ISA-compatible.

The port in the original PC was based on an existing Centronics printer interface.
However, the PC introduced a few differences, which other systems have contin-
ued.

SPPs can transfer eight bits at once to a peripheral, using a protocol similar to that
used by the original Centronics interface. The SPP doesn’t have a byte-wide input
port, but for PC-to-peripheral transfers, SPPs can use a Nibble mode that transfers
each byte 4 bits at a time. Nibble mode is slow, but has become popular as a way
to use the parallel port for input.

PS/2-type (Simple Bidirectional)
An early improvement to the parallel port was the bidirectional data port intro-
duced on IBM’s model PS/2. The bidirectional port enables a peripheral to trans-
fer eight bits at once to a PC. The term PS/2-type has come to refer to any parallel
port that has a bidirectional data port but doesn’t support the EPP or ECP modes
described below. Byte mode is an 8-bit data-transfer protocol that PS/2-type ports
can use to transfer data from the peripheral to the PC.

EPP
The EPP (enhanced parallel port) was originally developed by chip maker Intel,
PC manufacturer Zenith, and Xircom, a maker of parallel-port networking prod-
ucts. As on the PS/2-type port, the data lines are bidirectional. An EPP can read or
write a byte of data in one cycle of the ISA expansion bus, or about 1 microsec-
ond, including handshaking, compared to four cycles for an SPP or PS/2-type
port. An EPP can switch directions quickly, so it’s very efficient when used with
disk and tape drives and other devices that transfer data in both directions. An
EPP can also emulate an SPP, and some EPPs can emulate a PS/2-type port.

ECP
The ECP (extended capabilities port) was first proposed by Hewlett Packard and
Microsoft. Like the EPP, the ECP is bidirectional and can transfer data at ISA-bus
speeds. ECPs have buffers and support for DMA (direct memory access) transfers

Chapter 1

4 Parallel Port Complete

and data compression. ECP transfers are useful for printers, scanners, and other
peripherals that transfer large blocks of data. An ECP can also emulate an SPP or
PS/2-type port, and many ECPs can emulate an EPP as well.

Multi-mode Ports
Many newer ports are multi-mode ports that can emulate some or all of the above
types. They often include configuration options that can make all of the port types
available, or allow certain modes while locking out the others.

System Resources

The parallel port uses a variety of the computer’s resources. Every port uses a
range of addresses, though the number and location of addresses varies. Many
ports have an assigned IRQ (interrupt request) level, and ECPs may have an
assigned DMA channel. The resources assigned to a port can’t conflict with those
used by other system components, including other parallel ports

Addressing

The standard parallel port uses three contiguous addresses, usually in one of these
ranges:

3BCh, 3BDh, 3BEh
378h, 379h, 37Ah
278h, 279h, 27Ah

The first address in the range is the port’s base address, also called the Data regis-
ter or just the port address. The second address is the port’s Status register, and the
third is the Control register. (See Appendix C for a review of hexadecimal num-
bers.)

EPPs and ECPs reserve additional addresses for each port. An EPP adds five reg-
isters at base address + 3 through base address + 7, and an ECP adds three regis-
ters at base address + 400h through base address + 402h. For a base address of
378h, the EPP registers are at 37Bh through 37Fh, and the ECP registers are at
778h through 77Ah.

On early PCs, the parallel port had a base address of 3BCh. On newer systems, the
parallel port is most often at 378h. But all three addresses are reserved for parallel
ports, and if the port’s hardware allows it, you can configure a port at any of the
addresses. However, you normally can’t have an EPP at base address 3BCh,
because the added EPP registers at this address may be used by the video display.

Essentials

Parallel Port Complete 5

IBM’s Type 3 PS/2 port also had three additional registers, at base address +3
through base address + 5, and allowed a base address of 1278h or 1378h.

Most often, DOS and Windows refer to the first port in numerical order as LPT1,
the second, LPT2, and the third, LPT3. So on bootup, LPT1 is most often at 378h,
but it may be at any of the three addresses. LPT2, if it exists, may be at 378h or
278h, and LPT3 can only be at 278h. Various configuration techniques can
change these assignments, however, so not all systems will follow this conven-
tion. LPT stands for line printer, reflecting the port’s original intended use.

If your port’s hardware allows it, you can add a port at any unused port address in
the system. Not all software will recognize these non-standard ports as LPT ports,
but you can access them with software that writes directly to the port registers.

Interrupts

Most parallel ports are capable of detecting interrupt signals from a peripheral.
The peripheral may use an interrupt to announce that it’s ready to receive a byte,
or that it has a byte to send. To use interrupts, a parallel port must have an
assigned interrupt-request level (IRQ).

Conventionally, LPT1 uses IRQ7 and LPT2 uses IRQ5. But IRQ5 is used by
many sound cards, and because free IRQ levels can be scarce on a system, even
IRQ7 may be reserved by another device. Some ports allow choosing other IRQ
levels besides these two.

Many printer drivers and many other applications and drivers that access the par-
allel port don’t require parallel-port interrupts. If you select no IRQ level for a
port, the port will still work in most cases, though sometimes not as efficiently,
and you can use the IRQ level for something else.

DMA Channels

ECPs can use direct memory access (DMA) for data transfers at the parallel port.
During the DMA transfers, the CPU is free to do other things, so DMA transfers
can result in faster performance overall. In order to use DMA, the port must have
an assigned DMA channel, in the range 0 to 3.

Finding Existing Ports

DOS and Windows include utilities for finding existing ports and examining other
system resources. In Windows 95, click on Control Panel, System, Devices, Ports,
and click on a port to see its assigned address and (optional) IRQ level and DMA

Chapter 1

6 Parallel Port Complete

channel. In Windows 3.1 or DOS, you can use Microsoft’s Diagnostic (msd.exe)
to view ports, assigned IRQ levels, and other system details.

Configuring

The parallel port that comes with a PC will have an assigned address and possibly
an IRQ level and DMA channel. Multi-mode ports may also be configured with
specific modes enabled. You can change some or all of these assignments to
match your needs. If you’re adding a new port, you need to configure it, making
sure that it doesn’t conflict with existing ports and other resources.

Port Options

There is no standard method for configuring a port. Some ports, especially older
ones, use jumper blocks or switches to select different options. Others allow con-
figuring in software, using a utility provided on disk. A port on a system mother-
board may have configuration options in the system setup screens (the CMOS
setup) that you can access on bootup. On ports that meet Microsoft’s Plug and
Play standard, Windows 95 can automatically assign an available port address and
IRQ level to a port.

Check your system or port’s documentation for specifics on how to configure a
port. Some ports allow a choice of just one or two of the three conventional base
addresses. A few allow you to choose any uncommitted address, including non-
standard ones. On some boards, the jumpers or switches are labeled, which is
extremely handy when you don’t have other documentation (or can’t find it).

If your port supports ECP transfers, assign it an IRQ level and DMA channel if
possible. Most ECP drivers do use these, and if they’re not available, the driver
will revert to a slower mode.

Multi-mode Ports
Configuring a multi-mode port needs special consideration. A multi-mode port’s
controller chip supports a variety of modes that emulate different port types. In
addition to the configuration options described above, on most multi-mode ports,
you also have to select a port type to emulate.

The problem is that there is no single standard for the basic setup on the controller
chips, and there are many different chips! Usually the setup involves writing to
configuration registers in the chip, but the location and means of accessing the
registers varies.

Essentials

Parallel Port Complete 7

For this reason, every port should come with a simple way to configure the port. If
the port is on the motherboard, look in the CMOS setup screens that you can
access on bootup. Other ports may use jumpers to enable the modes, or have con-
figuration software on disk.

The provided setup routines don't always offer all of the available options or
explain the meaning of each option clearly. For example, one CMOS setup I’ve
seen allows only the choice of AT or PS/2-type port. The PS/2 option actually con-
figures the port as an ECP, with the ECP’s PS/2 mode selected, but there is no
documentation explaining this. The only way to find out what mode is actually
selected is to read the chip’s configuration registers. And although the port also
supports EPP, the CMOS setup includes no way to enable it, so again, accessing
the configuration registers is the only option.

If your port is EPP- or ECP-capable but the setup utility doesn't offer these as
choices, a last resort is to identify the controller chip, obtain and study its data
sheet, and write your own program to configure the port.

The exact terminology and the number of available options can vary, but these are
typical configuration options for a multi-mode port:

SPP. Emulates the original port. Also called AT-type or ISA-compatible.

PS/2, or simple bidirectional. Like an SPP, except that the data port is bidirec-
tional.

EPP. Can do EPP transfers. Also emulates an SPP. Some EPPs can emulate a
PS/2-type port.

ECP. Can do ECP transfers. The ECP’s internal modes enable the port to emulate
an SPP or PS/2-type port. An additional internal mode, Fast Centronics, or Paral-
lel-Port FIFO, uses the ECP's buffer for faster data transfers with many old-style
(SPP) peripherals.

ECP + EPP. An ECP that supports the ECP’s internal mode 100, which emulates
an EPP. The most flexible port type, because it can emulate all of the others.

Drivers

After setting up the port’s hardware, you may need to configure your operating
system and applications to use the new port.

For DOS and Windows 3.1 systems, on bootup the operating system looks for
ports at the three conventional addresses and assigns each an LPT number.

In Windows 3.1, to assign a printer to an LPT port, click on Control Panel, then
Printers. If the printer model isn’t displayed, click Add and follow the prompts.

Chapter 1

8 Parallel Port Complete

Select the desired printer model, then click Connect to view the available ports.
Select a port and click OK, or Cancel to make no changes.

In Windows 95, the Control Panel lists available ports under System Properties,
Device Manager, Ports. There’s also a brief description of the port. Printer Port
means that Windows treats the port as an ordinary SPP, while ECP Printer Port
means that Windows will use the abilities of an ECP if possible. To change the
driver, select the port, then Properties, Driver, and Show All Drivers. Select the
driver and click OK. If an ECP doesn't have an IRQ and DMA channel, the Win-
dows 95 printer driver will use the ECP’s Fast Centronics mode, which transfers
data faster than an SPP, but not as fast as ECP.

The Device Manager also shows the port’s configuration. Select the port, then
click Resources. Figure 1-1 shows an example. Windows attempts to detect these
settings automatically. If the configuration shown doesn’t match your hardware
setup, de-select the Use Automatic Settings check box and select a different con-
figuration. If none matches, you can change a setting by double-clicking on the

Figure 1-1: In Windows 95, you can select a port configuration in the Device
Manager’s Resources Window. A message warns if Windows detects any system
conflicts with the selected configuration.

Essentials

Parallel Port Complete 9

resource type and entering a new value. Windows displays a message if it detects
any conflicts with the selected settings. To assign a printer to a port, click on Con-
trol Panel, Printers, and select the printer to assign.

Parallel-port devices that don’t use the Windows printer drivers should come with
their own configuration utilities. DOS programs generally have their own printer
drivers and methods for selecting a port as well.

Adding a Port

Most PCs come with one parallel port. If there’s a spare expansion slot, it’s easy
to add one or two more. Expansion cards with parallel ports are widely available.

Cards with support for bidirectional, EPP, and ECP modes are the best choice
unless you’re sure that you won’t need the new modes, or you want to spend as lit-
tle as possible. Cards with just an SPP are available for as little as $15. A card sal-
vaged from an old computer may cost you nothing at all.

You can get more use from a slot by buying a card with more than a parallel port.
Because the port circuits are quite simple, many multi-function cards include a
parallel port. Some have serial and game ports, while others combine a disk con-
troller or other circuits with the parallel port. On older systems, the parallel port is
on an expansion card with the video adapter. These should include a way to dis-
able the video adapter, so you can use the parallel port in any system.

When buying a multi-mode port, it’s especially important to be sure the port
comes with utilities or documentation that shows you how to configure the port in
all of its modes. Some multi-mode ports default to an SPP configuration, where all
of the advanced modes are locked out. Before you can use the advanced modes,
you have to enable them. Because the configuration methods vary from port to
port, you need documentation.

Also, because the configuration procedures and other port details vary from chip
to chip, manufacturers of ECP and EPP devices may guarantee compatibility with
specific chips, computers, or expansion cards. If you're in the market for a new
parallel port or peripheral, it's worth trying to find out if the peripheral supports
using EPP or ECP mode with your port.

Port Hardware

The parallel port’s hardware includes the back-panel connector and the circuits
and cabling between the connector and the system’s expansion bus. The PC’s
microprocessor uses the expansion bus’s data, address, and control lines to trans-

Chapter 1

10 Parallel Port Complete

fer information between the parallel port and the CPU, memory, and other system
components.

Connectors

The PC’s back panel has the connector for plugging in a cable to a printer or other
device with a parallel-port interface. Most parallel ports use the 25-contact D-sub
connector shown in Figure 1-2. The shell (the enclosure that surrounds the con-
tacts) is roughly in the shape of an upper-case D. Other names for this connector
are the subminiature D, DB25, D-shell, or just D connector. The IEEE 1284 stan-
dard for the parallel port calls it the IEEE 1284-A connector.

Newer parallel ports may use the new, compact, 36-contact IEEE 1284-C connec-
tor described in Chapter 6.

The connector on the computer is female, where the individual contacts are sock-
ets, or receptacles. The cable has a mating male connector, whose contacts are
pins, or plugs.

The parallel-port connector is usually the only female 25-pin D-sub on the back
panel, so there should be little confusion with other connectors. Some serial ports
use a 25-contact D-sub, but with few exceptions, a 25-pin serial D-sub on a PC is
male, with the female connector on the cable—the reverse of the parallel-port
convention. (Other serial ports use 9-pin D-subs instead.)

SCSI is another interface whose connector might occasionally be confused with
the parallel port’s. The SCSI interface used by disk drives, scanners, and other
devices usually has a 50-contact connector, but some SCSI devices use a 25-con-
tact D-sub that is identical to the parallel-port’s connector.

If you’re unsure about which is the parallel-port connector, check your system
documentation. When all else fails, opening up the enclosure and tracing the cable
from the connector to an expansion board may offer clues.

Figure 1-2: The photo on the left shows the back panel of an expansion card, with
a parallel port’s 25-pin female D-sub connector on the left side of the panel. (The
other connector is for a video monitor.) The photo on the right shows the 36-pin
female Centronics connector used on most printers.

Essentials

Parallel Port Complete 11

The Circuits Inside

Inside the computer, the parallel-port circuits may be on the motherboard or on a
card that plugs into the expansion bus.

The motherboard is the main circuit board that holds the computer’s microproces-
sor chip as well as other circuits and slots for expansion cards. Because just about
all computers have a parallel port, the port circuits are often right on the mother-
board, freeing the expansion slot for other uses. Notebook and laptop computers
don’t have expansion slots, so the port circuits in these computers must reside on
the system’s main circuit board.

The port circuits connect to address, data, and control lines on the expansion bus,
and these in turn interface to the microprocessor and other system components.

Cables

Most printer cables have a 25-pin male D-sub connector on one end and a male
36-contact connector on the other. Many refer to the 36-contact connector as the
Centronics connector, because it’s the same type formerly used on Centronics
printers. Other names are parallel-interface connector or just printer connector.
IEEE 1284 calls it the 1284-B connector.

Peripherals other than printers may use different connectors and require different
cables. Some use a 25-pin D-sub like the one on the PC. A device that uses only a
few of the port’s signals may use a telephone connector, either a 4-wire RJ11 or
an 8-wire RJ45. Newer peripherals may have the 36-contact 1284-C connector.

In any case, because the parallel-port’s outputs aren’t designed for transmitting
over long distances, it’s best to keep the cable short: 6 to 10 feet, or 33 feet for an
IEEE-1284-compliant cable. Chapter 6 has more on cable choices.

Multiple Uses for One Port

If you have more than one parallel-port peripheral, the easiest solution is to add a
port for each. But there may be times when multiple ports aren’t an option. In this
case, the alternatives are to swap cables as needed, use a switch box, or
daisy-chain multiple devices to one port.

If you use only one device at a time and switch only occasionally, it’s easy enough
to move the cable when you want to use a different device.

For frequent swapping, a more convenient solution is a switch box. A typical
manual switch box has three female D-sub connectors. A switch enables you route

Chapter 1

12 Parallel Port Complete

the contacts of one connector to either of the others. To use the switch box to
access two peripherals on one port, you’ll need a cable with two male D-subs to
connect the PC to the switch box, plus an appropriate cable from the switch box to
each peripheral.

You can also use a switch box to enable two PCs to share one printer or other
peripheral. This requires two cables with two male D-subs on each, and one
peripheral cable. Switch boxes with many other connector types are also avail-
able.

Manual switches are inexpensive, though some printer manufacturers warn that
using them may damage the devices they connect to. A safer choice is a switch
that uses active electronic circuits to route the signals. Some auto-sensing
switches enable you to connect multiple computers to one printer, with first-come,
first-served access. When a printer is idle, any computer can access it. When the
printer is in use, the switch prevents the other computers from accessing it. How-
ever, these switches may not work properly if the peripherals use bidirectional
communications, or if the peripheral uses the control or status signals in an uncon-
ventional way.

The parallel ports on some newer peripherals support a daisy-chain protocol that
allows up to eight devices to connect to a single port. The PC assigns a unique
address to each peripheral, which then ignores communications intended for the
other devices in the chain. The software drivers for these devices must use the
protocol when they access the port. The last device in the chain can be
daisy-chain-unaware; it doesn’t have to support the protocol. Chapter 11 has more
on daisy chains.

Security Keys

Security keys, or dongles, are a form of copy protection that often uses the parallel
port. Some software—usually expensive, specialized applications—includes a
security key that you must plug into the parallel port in order to run the software.
If you don’t have the key installed, the software won’t run.

The key is a small device with a male D-sub connector on one end and a female
D-sub on the other. You plug the key into the parallel-port connector, then plug
your regular cable into the security key. When the software runs, it attempts to
find and communicate with the key, which contains a code that the software rec-
ognizes. The key usually doesn’t use any conventional handshaking signals, so it
should be able to live in harmony with other devices connected to the port.

Essentials

Parallel Port Complete 13

The keys do require power, however. If you have a key that draws more than a
small amount of current, and if your parallel port has weak outputs, you may have
problems in using other devices on the same port as the key.

Alternatives to the Parallel Port

The parallel port is just one of many ways to interface inputs and outputs to a
computer. In spite of its many virtues, the parallel port isn’t the best solution for
every project. These are some of the alternatives:

Serial Interfaces

One large group of parallel-port alternatives is serial interfaces, where data bits
travel on a single wire or pair of wires (or in the case of wireless links, a single
transmission path.) Both ends of the link require hardware or software to translate
between serial and parallel data. There are many types of serial interfaces avail-
able for PCs, ranging from the ubiquitous RS-232 port to the newer RS-485, USB,
IEEE-1394, and IrDA interfaces.

RS-232
Just about every PC has at least one RS-232 serial port. This interface is especially
useful when the PC and the circuits that you want to connect are physically far
apart.

As a rule, parallel-port cables should be no longer than 10 to 15 feet, though the
IEEE-1284 standard describes an improved interface and cable that can be 10
meters (33 feet). In contrast, RS-232 links can be 80 feet or more, with the exact
limit depending on the cable specifications and the speed of data transfers.

RS-232 links are slow, however. Along with each byte, the transmitting device
normally adds a start and stop bit. Even at 115,200 bits per second, which is a typ-
ical maximum rate for a serial port, the data-transfer rate with one start and stop
bit per byte is just 11,520 bytes per second.

RS-485
Another useful serial interface is RS-485, which can use cables as long as 4000
feet and allows up to 32 devices to connect to a single pair of wires. You can add
an expansion card that contains an RS-485 port, or add external circuits that con-
vert an existing RS-232 interface to RS-485. Other interfaces similar to RS-232
and RS-485 are RS-422 and RS-423.

Chapter 1

14 Parallel Port Complete

Universal Serial Bus
A new option for I/O interfacing is the Universal Serial Bus (USB), a project of a
group that includes Intel and Microsoft. A single USB port can have up to 127
devices communicating at either 1.5 Megabits/second or 12 Megabits/second over
a 4-wire cable. The USB standard also describes both the hardware interface and
software protocols. Newer PCs may have a USB port built-in, but because it’s so
new, most existing computers can’t use it without added hardware and software
drivers.

IEEE 1394
The IEEE-1394 high-performance serial bus, also known as Firewire, is another
new interface. It allows up to 63 devices to connect to a PC, with transmission
rates of up to 400 Megabits per second. The 6-wire cables can be as long as 15
feet, with daisy chains extending to over 200 feet. The interface is especially pop-
ular for connecting digital audio and video devices. IEEE-1394 expansion cards
are available for PCs.

IrDA
The IrDA (Infrared Data Association) interface allows wireless serial communica-
tions over distances of 3 to 6 feet. The link transmits infrared energy at up to
115,200 bits/second. It’s intended for convenient (no cables or connectors) trans-
mitting of files between a desktop and laptop computer, or any short-range com-
munications where a cabled interface is inconvenient. Some computers and
peripherals now have IrDA interfaces built-in.

Other Parallel Interfaces

SCSI and IEEE-488 are two other parallel interfaces used by some PCs.

SCSI
SCSI (small computer system interface) is a parallel interface that allows up to
seven devices to connect to a PC along a single cable, with each device having a
unique address. Many computers use SCSI for interfacing to internal or external
hard drives, tape back-ups, and CD-ROMs. SCSI interfaces are fast, and the cable
can be as long as 19 feet (6 meters). But the parallel-port interface is simpler,
cheaper, and much more common.

IEEE 488
The IEEE-488 interface began as Hewlett Packard’s GPIB (general-purpose inter-
face bus). It’s a parallel interface that enables up to 15 devices to communicate at

Essentials

Parallel Port Complete 15

speeds of up to 1 Megabyte per second. This interface has long been popular for
interfacing to lab instruments. Expansion cards with IEEE-488 interfaces are
available.

Custom I/O Cards

Many other types of input and output circuits are available on custom expansion
cards. An advantage of these is that you’re not limited by an existing interface
design. The card may contain just about any combination of analog and digital
inputs and outputs. In addition, the card may hold timing or clock circuits, func-
tion generators, relay drivers, filters, or just about any type of component related
to the external circuits. With the standard parallel port, you can add these compo-
nents externally, but a custom I/O card allows you to place them inside the com-
puter.

To use an expansion card, you of course need an empty expansion slot, which
isn’t available in portable computers and some desktop systems. And the custom
hardware requires custom software.

PC Cards

Finally, instead of using the expansion bus, some I/O cards plug into a PC Card
slot, which accepts slim circuit cards about the size of a playing card. An earlier
name for these was PCMCIA cards, which stands for Personal Computer Memory
Card International Association, whose members developed the standard. Many
portable computers and some desktop models have PC-Card slots. Popular uses
include modems and data acquisition circuits. There are even PC Cards that func-
tion as parallel ports. You don’t need an internal expansion slot, and you don’t
have to open up the computer to plug the card in. But again, the standard paral-
lel-port interface is cheaper and more widely available.

Chapter 1

16 Parallel Port Complete

Accessing Ports

Parallel Port Complete 17

2

Accessing Ports
Windows, DOS, and Visual Basic provide several ways to read and write to paral-
lel ports. The most direct way is reading and writing to the port registers. Most
programming languages include this ability, or at least allow you to add it. Visual
Basic includes other options, including the Printer object, the PrintForm method,
and Open LPTx. Windows also has API calls for accessing LPT ports, and 16-bit
programs can use BIOS and DOS software interrupts for LPT access.

This chapter introduces the parallel port’s signals and ways of accessing them in
the programs you write.

The Signals

Table 2-1 shows the functions of each of the 25 contacts at the parallel port’s
connector, along with additional information about the signals and their corre-
sponding register bits. Table 2-2 shows the information arranged by register rather
than by pin number, and including register bits that don’t appear at the connector.
Most of the signal names and functions are based on a convention established by
the Centronics Data Computer Corporation, an early manufacturer of dot-matrix
printers. Although Centronics no longer makes printers, its interface lives on.

Chapter 2

18 Parallel Port Complete

The signal names in the tables are those used by the parallel port in the original
IBM PC. The names describe the signals’ functions in PC-to-peripheral transfers.
In other modes, the functions and names of many of the signals change.

Table 2-1: Parallel Port Signals, arranged by pin number.
Pin:
D-sub

Signal Function Source Register Inverted
 at con-
nector?

Pin:
Centron-
ics

Name Bit #

1 nStrobe Strobe D0-D7 PC1 Control 0 Y 1

2 D0 Data Bit 0 PC2 Data 0 N 2

3 D1 Data Bit 1 PC2 Data 1 N 3

4 D2 Data Bit 2 PC2 Data 2 N 4

5 D3 Data Bit 3 PC2 Data 3 N 5

6 D4 Data Bit 4 PC2 Data 4 N 6

7 D5 Data Bit 5 PC2 Data 5 N 7

8 D6 Data Bit 6 PC2 Data 6 N 8

9 D7 Data Bit 7 PC2 Data 7 N 9

10 nAck Acknowledge (may trigger
interrupt)

Printer Status 6 N 10

11 Busy Printer busy Printer Status 7 Y 11

12 PaperEnd Paper end, empty (out of paper) Printer Status 5 N 12

13 Select Printer selected (on line) Printer Status 4 N 13

14 nAutoLF Generate automatic line feeds
after carriage returns

PC1 Control 1 Y 14

15 nError (nFault) Error Printer Status 3 N 32

16 nInit Initialize printer (Reset) PC1 Control 2 N 31

17 nSelectIn Select printer (Place on line) PC1 Control 3 Y 36

18 Gnd Ground return for nStrobe, D0 19,20

19 Gnd Ground return for D1, D2 21,22

20 Gnd Ground return for D3, D4 23,24

21 Gnd Ground return for D5, D6 25,26

22 Gnd Ground return for D7, nAck 27,28

23 Gnd Ground return for nSelectIn 33

24 Gnd Ground return for Busy 29

25 Gnd Ground return for nInit 30

Chassis Chassis ground 17

NC No connection 15,18,34

NC Signal ground 16

NC +5V Printer 35

1Setting this bit high allows it to be used as an input (SPP only). 2Some Data ports are bidirectional.

Accessing Ports

Parallel Port Complete 19

Table 2-2: Parallel port bits, arranged by register.
Data Register (Base Address)

Bit Pin: D-sub Signal Name Source Inverted at
connector?

Pin: Centron-
ics

0 2 Data bit 0 PC no 2

1 3 Data bit 1 PC no 3

2 4 Data bit 2 PC no 4

3 5 Data bit 3 PC no 5

4 6 Data bit 4 PC no 6

5 7 Data bit 5 PC no 7

6 8 Data bit 6 PC no 8

7 9 Data bit 7 PC no 9

Some Data ports are bidirectional. (See Control register, bit 5 below.)

Status Register (Base Address +1)

Bit Pin: D-sub Signal Name Source Inverted at
connector?

Pin: Centron-
ics

3 15 nError (nFault) Peripheral no 32

4 13 Select Peripheral no 13

5 12 PaperEnd Peripheral no 12

6 10 nAck Peripheral no 10

7 11 Busy Peripheral yes 11

Additional bits not available at the connector:
0: may indicate timeout (1=timeout).
1, 2: unused.

Control Register (Base Address +2)

Bit Pin: D-sub Signal Name Source Inverted at
connector?

Pin: Centron-
ics

0 1 nStrobe PC1 yes 1

1 14 nAutoLF PC1 yes 14

2 16 nInit PC1 no 31

3 17 nSelectIn PC1 yes 36
1When high, PC can read external input (SPP only).
Additional bits not available at the connector:
4: Interrupt enable. 1=IRQs pass from nAck to system’s interrupt controller. 0=IRQs do not pass
to interrupt controller.
5: Direction control for bidirectional Data ports. 0=outputs enabled. 1=outputs disabled; Data port
can read external logic voltages.
6,7: unused

Chapter 2

20 Parallel Port Complete

Centronics Roots

The original Centronics interface had 36 lines, and most printers still use the same
36-contact connector that Centronics printers had. The PC, however, has a 25-pin
connector, probably chosen because it was small enough to allow room for
another connector on the back of an expansion card.

The 25-pin connector obviously can’t include all of the original 36 contacts. Some
non-essential control signals are sacrificed, along with some ground pins. The PC
also assigns new functions to a couple of the contacts. Table 2-3 summarizes the
differences between the signals on the original Centronics and PC interfaces.

Naming Conventions

The standard parallel port uses three 8-bit port registers in the PC. The PC
accesses the parallel-port signals by reading and writing to these registers, com-
monly called the Data, Status, and Control registers.

Each of the signals has a name that suggests its function in a printer interface. In
interfaces to other types of peripherals, you don’t have to use the signals for their
original purposes. For example, if you’re not interfacing to a printer, you don’t
need a paper-end signal, and you can use the input for something else.

Because this book concentrates on uses other than the standard printer interface, I
often use more generic names to refer to the parallel-port signals. The eight Data
bits are D0-D7, the five Status bits are S3-S7, and the four Control bits are C0-C3.
The letter identifies the port register, and the number identifies the signal’s bit
position in the register.

To complicate things, the port’s hardware inverts four of the signals between the
connector and the corresponding register bits. For S7, C0, C1, and C3, the logic
state at the connector is the complement, or inverse, of the logic state of the corre-
sponding register bit. When you write to any of these bits, you have to remember
to write the inverse of the bit you want at the connector. When you read these bits,
you have to remember that you’re reading the inverse of what’s at the connector.

In this book, when I refer to the signals by their register bits, an overbar indicates
a connector signal that is the inverse of its register bit. For example, register bit C0
becomes C0 at the connector. The descriptive names (nStrobe, Busy) always refer
to the signals at the connector, with a leading n indicating that a signal is
active-low. For example, nStrobe and C0 are the same signal. nStrobe tells you
that the signal is a low-going pulse whose function is to strobe data into a periph-
eral, but the name tells you nothing about which register bit controls the signal. C0

tells you that you that the signal is controlled by bit 0 in the Control register, and

Accessing Ports

Parallel Port Complete 21

that the register bit is the inverse of the signal at the connector, but the name says
nothing about the signal’s purpose. Whether to use nStrobe or C0 depends on
which type of information is more relevant to the topic at hand.

The Data Register

The Data port, or Data register, (D0-D7) holds the byte written to the Data out-
puts. In bidirectional Data ports, when the port is configured as input, the Data
register holds the byte read at the connector’s Data pins. Although the Centronics
interface and the IEEE-1284 standard refer to the Data lines as D1 through D8, in
this book, I use D0-D7 throughout, to correspond to the register bits.

The Status Register

The Status port, or Status register, holds the logic states of five inputs, S3 through
S7. Bits S0–S2 don’t appear at the connector. The Status register is read-only,
except for S0, which is a timeout flag on ports that support EPP transfers, and can
be cleared by software. On many ports, the Status inputs have pull-up resistors. In
their conventional uses, the Status bits have the following functions:

S0: Timeout. In EPP mode, this bit may go high to indicate a timeout of an EPP
data transfer. Otherwise unused. This bit doesn’t appear on the connector.

S1: Unused.

Table 2-3: Differences between original Centronics interface and PC interface
Pin (Centronics) Original Function New (PC) Function

14 signal ground nAutoLF

15 oscillator out no connection

16 signal ground no connection

17 chassis ground no connection

18 +5V no connection

33 light detect Ground return for nSelectIn

34 line count no connection

35 Ground return for line count no connection

36 Reserved nSelectIn

The PC's D-sub connector has just 25 contacts, compared to the Centronics connector's 36. Six of
the original Centronics signals have no connection at the PC, and the PC has five fewer
ground-return pins.

The PC interface also redefines three signals. Pin 14 (Signal Ground) is nAutoLF on the PC, pin
36 (Reserved) is nSelectIn, and pin 33 (Light Detect) is the ground return for nSelectIn.

Chapter 2

22 Parallel Port Complete

S2: Unused, except for a few ports where this bit indicates parallel port interrupt
status (PIRQ). 0 = parallel-port interrupt has occurred; 1 = no interrupt has
occurred. On these ports, reading the Status register sets PIRQ = 1.

S3: nError or nFault. Low when the printer detects an error or fault. (Don’t con-
fuse this one with PError (S5). below.)

S4: Select. High when the printer is on-line (when the printer’s Data inputs are
enabled).

S5: PaperEnd, PaperEmpty, or PError. High when the printer is out of paper.

S6: nAck or nAcknowledge. Pulses low when the printer receives a byte. When
interrupts are enabled, a transition (usually the rising edge) on this pin triggers an
interrupt.

S7 Busy. Low when the printer isn’t able to accept new data. Inverted at the con-
nector.

The Control Register

The Control port, or Control register, holds the states of four bits, C0 through C3.
Conventionally, the bits are used as outputs. On most SPPs, however, the Control
bits are open-collector or open-drain type, which means that they may also func-
tion as inputs. To read an external logic signal at a Control bit, you write 1 to the
corresponding output, then read the register bit. However, in most ports that sup-
port EPP and ECP modes, to improve switching speed, the Control outputs are
push-pull type and can’t be used as inputs. On some multi-mode ports, the Control
bits have push-pull outputs in the advanced modes, and for compatibility they
switch to open-collector/open-drain outputs when emulating an SPP. (Chapter 5
has more on output types.) Bits C4 through C7 don’t appear at the connector. In
conventional use, the Control bits have the following functions:

C0: nStrobe. The rising edge of this low-going pulse signals the printer to read
D0-D7. Inverted at the connector. After bootup, normally high at the connector.

C1: AutoLF or Automatic line feed. A low tells the printer to automatically gener-
ate a line feed (ASCII code 0Ah) after each Carriage Return (ASCII 0Dh).
Inverted at the connector. After bootup, normally high at the connector.

C2: nInit or nInitialize. Pulses low to reset the printer and clear its buffer. Mini-
mum pulse width: 50 microseconds. After bootup, normally high at the connector.

C3: nSelectIn. High to tell the printer to enable its Data inputs. Inverted at the con-
nector. After bootup, normally low at the connector.

C4: Enable interrupt requests. High to allow interrupt requests to pass from nAck
(S6) to the computer’s interrupt-control circuits. If C4 is high and the port’s IRQ

Accessing Ports

Parallel Port Complete 23

level is enabled at the interrupt controller, transitions at nAck will cause a hard-
ware interrupt request. Does not appear at the connector.

C5: Direction control. In bidirectional ports, sets the direction of the Data port.
Set to 0 for output (Data outputs enabled), 1 for input (Data outputs disabled).
Usually you must first configure the port for bidirectional use (PS/2 mode) in
order for this bit to have an effect. Does not appear at the connector. Unused in
SPPs.

C6: Unused.

C7: Unused, except for a few ports where this bit performs the direction-setting
function normally done by C5.

Bidirectional Ports

On the original parallel port, the Data port was designed as an output-only port.
The Status port does have five inputs, and on some ports the Control port’s four
bits may be used as inputs, but reading eight bits of data requires reading two
bytes, either the Status and Control ports, or reading one port twice, then forming
a byte of data from the values read. For many projects it would be more conve-
nient to use the Data port as an 8-bit input, and sometimes you can do just this.

In the original PC’s parallel port, a 74LS374 octal flip-flop drives the Data out-
puts (D0-D7). The Data-port pins also connect to an input buffer, which stores the
last value written to the port. Reading the port’s Data register returns this value.

If there were a way to disable the Data-port’s outputs, you could connect external
signals to the Data pins and read these signals at the Data port’s input buffer. The
74LS374 even has an output-enable (OE) pin. When OE is low, the outputs are
enabled, and when it’s high, the outputs are tri-stated, or in a high-impedance
state that effectively disables them. On the original PC’s port, OE is wired directly
to ground, so the outputs are permanently enabled.

Beginning with its PS/2 model in 1987, IBM included a bidirectional parallel port
whose Data lines can function as inputs as well as outputs. Other computer mak-
ers followed with their own bidirectional ports. EPPs and ECPs have other,
high-speed modes for reading the Data port with handshaking, but these ports can
also emulate the PS/2’s simple bidirectional ability.

Configuring for Bidirectional Operation
Most bidirectional ports have two or more modes of operation. To remain compat-
ible with the original port, most have an SPP mode, where the Data port is out-
put-only. This is often the default mode, because it’s the safest—it’s impossible to
disable the Data outputs accidentally. To use a bidirectional Data port for input,

Chapter 2

24 Parallel Port Complete

you must first configure the port as bidirectional. The configuration may be in a
software utility, or in the system’s CMOS setup screen that you can access on
bootup, or it may be a jumper on the port’s circuit board.

After the port is configured as bidirectional, you can use the Data lines as inputs
or outputs by setting and clearing bit 5 in the port’s Control register, as described
earlier. A 0 selects output, or write (the default), and a 1 selects input, or read.
(Just remember that 1 looks like I for input, and 0 looks like O for output.) Chap-
ter 4 includes program code to test for the presence of a bidirectional port.

A few ports use bit 7 instead of bit 5 as a direction control. To ensure compatibil-
ity with all ports, software can toggle both bits 5 and 7 to set the direction.

In an SPP or a port that hasn’t been configured as bidirectional, bit C5 may read as
1 or 0. It’s also possible, though rare, to have a bidirectional port whose direction
bit is write-only, so you can set and clear the bit, but you can’t read the bit to
determine its current state. This is especially important to be aware of if you use
the technique of reading the Control port, altering selected bits, then writing the
value back to the Control port. If bit 5 always reads 1, you’ll end up always writ-
ing 1 back to the bit, even when you don’t want to disable the Data-port outputs!
To avoid this problem, keep track of the desired state of bit 5 and always be sure
to set or clear it as appropriate when you write to the Control port.

If you have an older output-only parallel port with a 74LS374 driving the Data
port, it’s possible to modify the circuits so that you can use the Data port for input.
Chapter 5 shows how.

On some output-only ports, you may be able to bring the Data outputs high and
drive the input buffer with external signals, with no modifications at all. But in
doing so, you run the risk of damaging the port circuits. The outputs on non-bidi-
rectional ports aren’t designed to be used in this way, and connecting logic out-
puts to Data lines with enabled outputs can cause damaging currents in both
devices. Even if the circuits don’t fail right away, the added stress may cause them
to fail over time. If the circuit does work, the voltages will be marginal and sus-
ceptible to noise, and performance will be slow. So, although some have used this
method without problems, I don’t recommend it.

Addressing

There are many ways to access a parallel port in software, but all ultimately read
or write to the port’s registers. The registers are in a special area dedicated to
accessing input and output (I/O) devices, including printers as well as the key-
board, disk drives, display, and other components. To distinguish between I/O

Accessing Ports

Parallel Port Complete 25

ports and system memory, the microprocessor uses different instructions and con-
trol signals for each. You can read and write to the ports using assembly language
or higher-level languages like Basic, Pascal, and C.

On the original PC, port addresses could range from 0 to 3FFh (decimal 1024).
Many newer parallel ports decode an eleventh address line to extend the range to
7FFh (decimal 2048). The number of available ports may seem like a lot, but
existing devices use or reserve many of these, so only a few areas are free for
other uses. Each address stores 8 bits.

Finding Ports

The PC has some parallel-port support built into its BIOS (Basic Input/Output
Services), a set of program routines that perform many common tasks. The BIOS
routines are normally stored in a ROM or Flash-memory chip in the computer.

When a PC boots, a BIOS routine automatically tests for parallel ports at each of
three addresses: 3BCh, 378h, and 278h, in that order. To determine whether or not
a port exists, the BIOS writes to the port, then reads back what it wrote. If the read
is successful, the port exists. (This write/read operation doesn’t require anything
connected to the port; it just reads the port’s internal buffer.)

The BIOS routine stores the port addresses in the BIOS data area, a section of
memory reserved for storing system information. The port addresses are in a table
from 40:08h to 40:0Dh in memory, beginning with LPT1. Each address uses two
bytes. An unused address should read 0000.

In rare cases, the next two addresses in the BIOS data area (40:0Eh and 40:0Fh)
hold an address for LPT4. But few computers have four parallel ports and not all
software supports a fourth port. Some systems use 40:0Eh to store the starting
address of an extended BIOS area, so in these systems, the location isn’t available
for a fourth port. Windows 95 doesn’t depend on the BIOS table for storing port
addresses, and does allow a fourth LPT port.

Many programs that access the parallel port use this table to get a port’s address.
This way, users only have to select LPT1, LPT2, or LPT3, and the program can
find the address. By changing the values in the BIOS table, you can swap printer
addresses or even enter a nonstandard address. This enables you to vary from the
port assignments that were stored on boot-up. For example, some older DOS soft-
ware supported only LPT1. If you want to use a printer assigned to LPT2, you can
do so by swapping the two printers’ addresses in the table. However, Windows
and most DOS programs now allow selecting of any available port, so the need to
swap addresses in the BIOS table has become rare. Windows 95’s Control Panel
allows you to assign any address to an LPT port.

Chapter 2

26 Parallel Port Complete

Direct Port I/O

Reading and writing directly to the port registers gives you the most complete
control over the parallel-port signals. Unlike other methods, direct I/O doesn’t
automatically add handshaking or control signals; it just reads or writes a byte to
the specified port. (In EPP and ECP modes, however, a simple port read or write
will cause an automatic handshake.)

To write directly to a port, you specify a port register and the data to write, and
instruct the CPU to write the data to the requested port. To read a port, you specify
a port register and where to store the data read, and instruct the CPU to read the
data into the requested location.

You can use direct port reads and writes under DOS, Windows 3.1, and Windows
95. Under Windows NT, the ports are protected from direct access by applica-
tions. You can access ports under NT by using a kernel-mode device driver, such
as WinRT’s, described in Chapter 10.

Programming in Basic

Basic has long been popular as a programming language, partly because many
have found it easy to learn and use. Although the Basic language has evolved
hugely over the years, a major focus of Basic has always been to make it as simple
as possible to get programs up and running quickly. The latest version of Visual
Basic is much more complicated and powerful than the BasicA interpreter that
shipped with the original PC, yet many of the keywords and syntax rules are still
familiar to anyone who’s programmed in any dialect of Basic.

Basic under DOS
For creating DOS programs, two popular Basics are Microsoft’s QuickBasic and
the QBasic interpreter included with MS-DOS. PowerBasic is another DOS Basic
that evolved from Borland’s TurboBasic. In all of these, you use Inp and Out to
access I/O ports.

This statement writes AAh to a Data port at 378h:

OUT(&h378,&hAA)

This statement displays the value of a Status port at 379h, using hexadecimal
notation:

PRINT HEX$(INP(&h379))

Accessing Ports

Parallel Port Complete 27

Visual Basic for Windows
Microsoft’s Visual Basic has been the most popular choice for Basic programmers
developing Windows programs. Unlike other Basics, however, Visual Basic for
Windows doesn’t include Inp and Out for port access. However, you can add
Inp and Out to the language in a dynamic linked library (DLL).

A DLL contains code that any Windows program can access, including the pro-
grams you write in Visual Basic. This book includes two DLLs for port access:
inpout16.dll, for use with 16-bit programs, including all Visual Basic 3 programs
and 16-bit Visual Basic 4 programs, and inpout32.dll, for use with 32-bit Visual
Basic 4 programs.

The Inpout16 files include these:

Inpout16.dll. This is the DLL itself, containing the routines that your programs
will access.

Inpout16.bas. This file (Listing 2-1) contains the declarations you must add to any
program that uses the new subroutine and function added by the inpout DLL.
Each Declare statement names a subroutine or function, the argument(s) passed
to it, and the name of the DLL that contains the subroutine or function.

The use of Alias in the Declares enables Visual Basic to use alternate names for
the routines. This feature is handy any time that you don’t want to, or can’t, use
the routines’ actual names. In this case, the inp and out routines were compiled
with PowerBasic’s DLL compiler. Because Inp and Out are reserved words in
PowerBasic, and a routine can’t have the same name as a reserved word, I named
the routines Inp16 and Out16. Using Alias enables you to call them in Visual
Basic with the conventional Inp and Out.

On the user’s system, the file Inpout16.dll should be copied to one of these loca-
tions: the default Windows directory (usually \Windows), the default System
directory (usually \Windows\System), or the application’s working directory.
These are the locations that Windows automatically searches when it loads a
DLL. If for some reason the DLL is in a different directory, you’ll need to add its
path to the filename in the Declare statements.

With Inp and Out declared in your program, you can use them much like Inp
and Out in QuickBasic. This statement writes AAh to a Data port at 378h:

Out(&h378,&hAA)

This statement displays the value of a Status port at 379h, using hexadecimal
notation:

Debug.Print HEX$(Inp(&h379))

Inpout16 is a 16-bit DLL, which means that you can call it from any 16-bit
Visual-Basic program.

Chapter 2

28 Parallel Port Complete

Calling a 16-bit DLL from a 32-bit program will result in the error message Bad
DLL Calling Convention. A 32-bit program needs a 32-bit DLL, and this book
provides inpout32 for this purpose. As with inpout16, you copy the DLL to a
directory where Windows can find it, and declare Inp and Out in a .bas module.

Listing 2-2 shows a single declaration file that you can use in both 16-bit and
32-bit Visual Basic 4 programs. It uses Version 4’s conditional compiling ability
to decide which routines to declare. In a 32-bit program, Win32 is True, and the
program declares the Inp32 and Out32 contained in inpout32. In a 16-bit pro-
gram, Visual Basic ignores the Win32 section and declares the Inp16 and
Out16 contained in inpout16.

Visual Basic 3 doesn’t support the conditional-compile directives, so version 3
programs have to use the 16-bit-only Declares in Listing 2-1.

The Declares for inpout32 also use Aliases, but for a different reason. Inpout32 is
compiled with Borland’s Delphi. Inp and Out aren’t reserved words in Delphi,
so the compiler doesn’t object to these names. However, in Win32, DLLs’
declared procedure names are case-sensitive. If the procedures had the names Inp
and Out you would have to be very careful to call them exactly that, not INP,
out, or any other variation. The Alias enables Visual Basic to define Inp and
Out without regard to case, so if you type INP or inp, Visual Basic will know
that you’re referring to the Inp32 function.

Why did Microsoft leave Inp, Out (and other direct memory-access functions)
out of Visual Basic? Direct writes to ports and memory have always held the pos-
sibility of crashing the system if a critical memory or port address is overwritten
by mistake. Under Windows, where multiple applications may be running at the
same time, the dangers are greater. A program that writes directly to a parallel port
has no way of knowing whether another application is already using the port.

Under Windows 95, a more sophisticated way to handle port I/O is to use a virtual
device driver (VxD). The VxD can ensure that only applications with permission
to access a port are able to do so, and it can inform other applications when a port
isn’t available to them.

Declare Function Inp% Lib “InpOut.Dll” Alias “Inp16” _
(ByVal PortAddress%)
Declare Sub Out Lib “InpOut.Dll” Alias “Out16” _
(ByVal PortAddress%, ByVal ByteToWrite%)

Listing 2-1: Declarations for Inp and Out in 16-bit programs.

Accessing Ports

Parallel Port Complete 29

But sometimes a port is intended just for use with a single application. For exam-
ple, an application may communicate with instrumentation, control circuits, or
other custom hardware. If other applications have no reason to access the port,
direct I/O with Inp and Out should cause no problems, and is much simpler than
writing a VxD. (Chapter 3 has more on VxDs.)

Other Programming Languages

Other programming languages, including C, Pascal/Delphi, and of course assem-
bly language, include the ability to access I/O ports. Briefly, here’s how to do it:

C
In C, you can access a parallel port with the inp and outp functions, which are
much like Basic’s inp and out.

This writes AAh to a Data port at 378h:

unsigned DataAddress=0x378;
int DataPort;
DataPort=outp(DataAddress,0xAA);
return 0;

Attribute VB_Name = “inpout”
‘Declare Inp and Out for port I/O
‘Two versions, for 16-bit and 32-bit programs.

#If Win32 Then
‘DLL procedure names are case-sensitive in VB4.
‘Use Alias so Inp and Out don’t have to have matching case in VB.
Public Declare Function Inp Lib “inpout32.dll” _
Alias “Inp32” (ByVal PortAddress As Integer) As Integer
Public Declare Sub Out Lib “inpout32.dll” _
Alias “Out32” (ByVal PortAddress As Integer, ByVal Value _
As Integer)

#Else
Public Declare Function Inp Lib “inpout16.Dll” _
Alias “Inp16” (ByVal PortAddress As Integer) As Integer
Public Declare Sub Out Lib “inpout16.Dll” _
Alias “Out16” (ByVal PortAddress As Integer, ByVal Value As _
Integer)
#End If

Listing 2-2: Declarations for Inp and Out in version 4 programs, 16-bit or 32-bit.

Chapter 2

30 Parallel Port Complete

This displays the value of a Status port at 379h:

unsigned StatusAddress=0x379;
int StatusPort;
StatusPort=inp(StatusAddress);
printf (“Status port = %Xh\n”,StatusPort);
return 0;

Pascal
Pascal programmers can use the port function to access parallel ports.

To write AAh to a Data port at 378h:

port[378h]:=AAh

To read a Status port at 379h:

value:=port[379h]

Delphi 2.0
The 32-bit version of Borland’s Delphi Object Pascal compiler has no port func-
tion, but you can access ports by using the in-line assembler.

To write AAh to a Data port at 378h:

asm
 push dx
 mov dx,$378
 mov al, $AA
 out dx,al
 pop dx
end;

To read a Status port at 379h into the variable ByteValue:

var
 ByteValue:byte;
asm
 push dx
 mov dx, $379
 in al,dx
 mov ByteValue,al
 pop dx
end;

Assembly Language
In assembly language, you use the microprocessor’s In and Out instructions for
port access.

To write AAh to a Data port at 378h:

mov dx,378h ;store port address in dx

Accessing Ports

Parallel Port Complete 31

mov al,AAh ;store data to write in al
out dx,al ;write data in al to port address in dx

To read a Status port at 379h into register al:

mov dx,379h ;store port address in dx
in al,dx ;read data at port address into al

Other Ways to Access Ports

Visual Basic, Windows, and DOS include other ways to access ports that have
been assigned an LPT number. These options are intended for use with printers
and other devices with similar interfaces. They write bytes to the parallel port’s
Data port, and automatically check the Status inputs and send a strobe pulse with
each byte. Because this book focuses on uses other than printer drivers, most of
the examples use direct port reads and writes rather than LPT functions. But the
other options do have uses. This section describes these alternate ways to access
ports.

LPT Access in Visual Basic

Although Visual Basic has no built-in ability for simple port I/O, it does include
ways to access LPT ports, including the Printer object, the PrintForm
method, and the Open LPTx statement. Their main advantage is that they’re
built into Visual Basic, so you don’t have to declare a DLL to use them. The main
limitation is that these techniques perform only a few common functions. For
example, there’s no way to write a specific value to the Control port, or to read the
Data port.

Each of the options for accessing LPT ports automates some of the steps used in
accessing a device. This can be a benefit or a hindrance, depending on the applica-
tion. When using these methods to write to a port, instead of having to include
code to toggle the strobe line and check the Status port, these details are taken care
of automatically. And instead of having to know a port’s address, you can select
an LPT port by number.

But if your application doesn’t need the control signals or error-checking, using
these techniques adds things you don’t need, and will cause problems if you’re
using any of the Status and Control signals in unique ways. For example, if you’re
using the nStrobe output for another purpose, you won’t want your program tog-
gling the bit every time it writes to the Data port.

Chapter 2

32 Parallel Port Complete

These methods won’t write to the Data port if the Status port’s Busy input is high.
Of course, if the Busy line indicates that the peripheral is busy, this is exactly what
you want, but it won’t work if you’re using the bit for something else.

The Printer Object
Visual Basic’s Printer object sends output to the default printer. (In Version 4
you can change the printer with a Set statement.) Sending the output requires two
steps. First, use the Print method to place the data to write on the Printer object,
then use the NewPage or EndDoc method to send the data to the printer.

The Printer Object isn’t very useful for writing to devices other than printers or
other peripherals that expect to receive ASCII text, because NewPage and End-
Doc send a form-feed character (0Ch) after the data. The device has to be able to
recognize the form feed as an end-of-data character rather than as a data byte.

A possible non-printer use for the Printer object would be to send ASCII text to an
input port on a microcontroller. Plain ASCII text uses only the characters 21h to
7Eh, so it’s easy to identify the form feeds and other control codes. For sending
numeric data, ASCII hex format provides a way to send values from 0 to 255
using only the characters 0-9 and A-F. Appendix C has more on this format.

For writing simple data to the parallel port, select Windows’ printer driver for the
Generic Line Printer driver.

To send data to the Printer object, Status bit S3 must be high, and S5 and S7 must
be low. If not, the program will wait.

Here’s an example of using the Printer object.

‘place the byte AAh on the printer object
Printer.Print Chr$(&hAA)
‘place the byte 1Fh on the printer object
Printer.Print Chr$(&h1F)
‘or use this format to send text
Printer.Print “hello”
‘send the bytes to the printer
Printer.NewPage

PrintForm
The PrintForm method sends an image of a form to the default printer. Because
the form is sent as an image, or pattern of dots, rather than as a byte to represent
each character, it’s useful mainly for sending data to printers and other devices
that can print or display the images.

Here’s an example of the PrintForm method:

‘First, print “hello” on Form1.
Form1.Print “hello”

Accessing Ports

Parallel Port Complete 33

‘Then send the form’s image to the printer.
Form1.PrintForm

Open “LPT1“
The documentation for Visual Basic’s Open statement refers only to using it to
open a file, but you can also use it to allow access to a parallel (or serial) port.

Here’s an example:

ByteToWrite=&h55
Open “LPT1” for Output as #1
Print #1, Chr$(ByteToWrite);

“LPT1” selects the port to write to, and #1 is the unique file number, or in this
case the device number, assigned to the port. The semicolon after the value to
print suppresses the line-feed or space character that Visual Basic would other-
wise add after each write. At the Status port, nError (S3) must be high, and Paper-
End (S5) and Busy (S7) must be low. If Busy is high, the program will wait, while
incorrect levels at nError or PaperEnd will cause an error message.

Windows API Calls

The Windows API offers yet another way to access parallel ports. The API, or
Application Programming Interface, contains functions that give programs a sim-
ple and consistent way to perform many common tasks in Windows. The API’s
purpose is much like that of the BIOS and DOS functions under DOS, except that
Windows and its API are much more complicated (and capable). To perform a
task, a program calls an appropriate API function. Although Windows has no API
calls for generic port I/O, it does have extensive support for printer access. If
Visual Basic doesn’t offer the printer control you need, you can probably find a
solution in the API.

Windows uses printer-driver DLLs to handle the details of communicating with
different models of printers. Under Windows 3.1, there are dozens of printer driv-
ers, with each driver supporting just one model or a set of similar models. Under
Windows 95, most printers use the universal driver unidrv.dll, which in turn
accesses a data file that holds printer-specific information. The Windows API
includes functions for sending documents and commands to a printer, controlling
and querying the print spooler, adding and deleting available printers, and getting
information about a printer’s abilities.

The API’s OpenComm and WriteComm functions offer another way to write to
parallel ports.

Chapter 2

34 Parallel Port Complete

This book concentrates on port uses other than the printer interface, so it doesn’t
include detail on the API’s printer functions. Appendix A lists sources with more
on the Windows API.

DOS and BIOS Interrupts

In 16-bit programs, MS-DOS and BIOS software interrupts provide another way
to write to parallel ports. For DOS programs, QuickBasic has Call Inter-
rupt and Call Interruptx. The QBasic interpreter included with DOS
doesn’t have these, however.

In 16-bit Visual-Basic programs, you can use the VBasm DLL on this book’s
companion disk. Vbasm includes three interrupt functions: VbInterrupt,
VbInterruptX, and VbRealModeIntX. Each is useful in certain situations.
(VbInterrupt doesn’t pass microprocessor registers ds and es, while VbIn-
terruptX and VbRealModeIntX do. VbRealModeIntX switches the CPU
to real mode before calling the interrupt, while the others execute under Windows
protected mode. VbRealModeIntX is slower, but sometimes necessary.)
Vbasm includes many other subroutines and functions, such as VbInp and
VbOut for port access (similar to inpout16), and Vbpeek and Vbpoke for read-
ing and writing to memory locations.

The Vbasm.txt file includes the declarations for Vbasm’s subroutines and func-
tions. You declare and call the DLL’s routines in the same way as the Inp and
Out examples above. Vbasm is for use with 16-bit programs only. There is no
equivalent for 32-bit programs.

BIOS Functions
The PC’s BIOS includes three parallel-port functions. You call each with software
interrupt 17h.

The BIOS functions are intended for printer operations, but you can use them with
other devices with compatible interfaces. Before calling interrupt 17h of the
BIOS, you place information (such as the function number, port number, and data
to write) in specified registers in the microprocessor.

When you call the interrupt, the BIOS routine performs the action requested and
writes the printer status information to the microprocessor’s ah register, where
your program can read it or perform other operations on it.

Just to keep things confusing, when the BIOS routine returns the Status register, it
inverts bits 3 and 6. Bit 7 is already inverted in hardware, so the result is that bits
3, 6, and 7 in ah are the complements of the logic states at the connector. (In con-

Accessing Ports

Parallel Port Complete 35

trast, if you read the Status register directly, only bit 7 will be inverted from the
logic states at the connector.)

These are the details of each of the BIOS functions at INT 17h:

Function 00
Sends a byte to the printer.
Called with:
ah=0 (function number)
al=the byte to print
dx=0 for LPT1, dx=1 for LPT2, dx=2 for LPT3
Returns:
ah=printer status

When a program calls function 0, the routine first verifies that Busy (S7) is low. If
it’s high, the routine waits for it to go low. When Busy is low, the routine writes
the value in al to the LPT port specified in dx. nStrobe (C0) pulses low after
each write. The function returns with the value of the Status port in ah.

Listing 2-3 is an example of how to use interrupt 17, function 0 to write a byte to a
parallel port in Visual Basic:

Function 01
Initializes the printer.
Called with:
ah=1 (function number)
dx=0 for LPT1, 1 for LPT2, or 2 for LPT3
Returns:
ah=printer status

Calling function 01 brings nInit (C2) of the specified port low for at least 50
microseconds. It also stores the value read from the Status port in ah.

Function 02
Gets printer status.
Called with:
ah=2 (function number)
dx=0 for LPT1, 1 for LPT2, or 2 for LPT3
Returns:
ah=printer status

Function 02 is a subset of Function 0. It reads the Status port and stores the value
read in ah, but doesn’t write to the port.

MS-DOS Functions
In addition to the BIOS interrupt functions, MS-DOS has functions for paral-
lel-port access. Both use interrupt 21h. Like the BIOS functions, these pulse
nStrobe (C0) low on each write. These functions won’t write to the port unless

Chapter 2

36 Parallel Port Complete

Busy (S7) and Paper End (S5) are low and nError (S3) is high. If Busy is high, the
routine will wait for it to go low. Unlike the BIOS functions, the MS-DOS func-
tions don’t return the Status-port information in a register.

Both of the following functions write to the PRN device, which is normally LPT1.
MS-DOS’s MODE command can redirect PRN to another LPT port or a serial port.

Function 05
Writes a byte to the printer.
Called with:
ah=5 (function number)
dl=the byte to write

Listing 2-4 is an example of using Interrupt 21h, Function 5 with Vbasm in Visual
Basic.

Function 40h
Writes a block of data to a file or device:
Called with:
ah=40h (function number)
bx=file handle (4 for printer port)

Dim InRegs As VbRegs
Dim OutRegs As VbRegs
Dim LPT%
Dim TestData%
Dim Status%

‘Change to 1 for LPT2, or 2 for LPT3
LPT = 0
TestData = &h55

‘Place the data to write in al, place the function# (0) in ah.
InRegs.ax = TestData
‘Place (LPT# - 1) in dl.
InRegs.dx = LPT

‘Write TestData to the port.
Call VbInterruptX(&H17, InRegs, OutRegs)

‘Status is returned in high byte of OutRegs.ax
Status = (OutRegs.ax And &HFF00) / &H100 - &HFF00
‘Reinvert bits 3, 6, & 7 so they match the logic states at the
‘connector.
Status = Hex$(Status Xor &HC8)

Listing 2-3: Using Bios Interrupt 17h, Function 0 to write to a parallel port.

Accessing Ports

Parallel Port Complete 37

cx= number of bytes to be written
dx=offset of first byte of buffer to write
ds=segment of first byte in buffer to write
Returns:
ax=number of bytes read, or error code if carry flag (cf)=1:
5 (access denied), 6 (invalid handle).

Listing 2-5 is an example of using Interrupt 21h, Function 40h in Visual Basic.

Two additional DOS functions provide other options for accessing ports. Func-
tion 3Fh accesses files and devices (including the printer port) using a handle
assigned by DOS. The standard handle for the LPT or PRN device is 4. Function
44h reads and writes to disk drives and other devices, including devices that con-
nect to the parallel port.

Dim InRegs As Vbregs
Dim OutRegs As Vbregs
Dim I%
Dim LPT%
‘Change to 1 for LPT2, or 2 for LPT3:
LPT = 0
TestData = &h55
InRegs.dx = TestData ‘place the byte to write in dl
InRegs.ax = &H500 ‘place LPT#-1 in ah
I = VbRealModeIntX(&H21, InRegs, OutRegs)

Listing 2-4: Using DOS Interrupt 21h, Function 5, to write to the parallel port.

Chapter 2

38 Parallel Port Complete

Dim ArrayByte%
Dim BytesWritten%
‘array containing data to write:
Dim A(0 To 127)
Dim DataWritten as String
LPT = 0 ‘Change to 1 for LPT2, or 2 for LPT3
NL = Chr(13) + Chr(10) ‘new line
‘create an array that stores 128 bytes
For ArrayByte = 0 To 127
 A(ArrayByte) = ArrayByte
Next ArrayByte
‘get the segment and offset of the array
ArraySegment = VbVarSeg(A(0))
ArrayOffset = VbVarPtr(A(0))
InRegs.bx = 4 ‘file handle for PRN device
InRegs.cx = 128 ‘number of bytes to write
InRegs.dx = ArrayOffset ‘array’s starting address in segment
InRegs.ax = &H4000 ‘function # (40h) stored in ah
‘write 128 bytes to the parallel port
BytesWritten = VbRealModeIntX(&H21, InRegs, OutRegs)

Listing 2-5: Using DOS Interrupt 21h, Function 40h, to write a block of data to the
parallel port.

Programming Issues

Parallel Port Complete 39

3

Programming Issues
In many ways, writing a program that accesses a parallel port is much like writing
any application. Two programming topics that are especially relevant to paral-
lel-port programming are where to place the code that communicates with the port
and how to transfer data as quickly as possible. This chapter discusses options and
issues related to these.

Options for Device Drivers

For communicating with printers and other peripherals, many programs isolate the
code that controls the port in a separate file or set of routines called a device
driver. The driver may be as simple as a set of subroutines within an application,
or as complex as a Windows virtual device driver that controls accesses to a port
by all applications.

The device driver translates between the specific commands that control a
device’s hardware and more general commands used by an application program or
operating system. Using a driver isolates the application from the hardware
details. For example, a device driver may translate commands like Print a charac-
ter or Read a block of data to code that causes these actions to occur in a specific
device. Instead of reading and writing directly to the device, the application or
operating system communicates with the driver, which in turn accesses the device.

Chapter 3

40 Parallel Port Complete

To access a different device, the application or operating system uses a different
driver.

Under MS-DOS, some drivers, such as the mouse driver, install on bootup and
any program may access the driver. Other drivers are specific to an application.
For example, DOS applications typically ship with dozens of printer drivers.
When you select a different printer, the application uses a different driver. Under
Windows, the operating system handles the printer drivers, and individual appli-
cations use Windows API calls to communicate with the drivers. Individual appli-
cations can also install their own device drivers under Windows.

There are several ways to implement a device driver in software. You can include
the driver code directly in an application. You can write a separate program and
assemble or compile it as a DOS device driver or as a terminate-and-stay-resident
program (TSR). You can use any of these methods under MS-DOS and—with
some cautions—under Windows. Windows also has the additional options of
placing the device-driver code in a dynamic link library (DLL) or a virtual device
driver (VxD). Each of these has its pluses and minuses.

Simple Application Routines

For simple port input and output with a device that a single application accesses,
you can include the driver code right in the application. This method is fine when
the application and driver code are short and simple. If the code is in an isolated
subroutine or set of subroutines, it’s easy to reuse it in other applications if the
need arises. Most of the examples in this book use this technique for the code that
handles port accesses.

DOS Drivers

A driver installed as an MS-DOS device driver is accessible to all programs, so
it’s useful if multiple programs will access the same device. The code has a spe-
cial format and header that identifies it as a device driver. MS-DOS drivers may
have an extension of .sys, .exe, or .com. A .sys driver is listed in MS-DOS’s con-
fig.sys file, with the form device=driver.sys, with device being the
device name, and driver.sys being the filename of the driver. The driver then
installs automatically on bootup. An .exe or .com file is an executable file that
users can run anytime. To install this type of driver on bootup, include it in the
system’s autoexec.bat file. A common use for DOS drivers is the mouse driver
(mouse.sys, mouse.com).

Programming Issues

Parallel Port Complete 41

DOS Drivers under Windows
DOS device drivers are usable under Windows, with some limitations and draw-
backs. Although this book concentrates on Windows programming and won’t go
into detail about how to write a DOS device driver, some background about using
DOS device drivers under Windows is helpful in understanding the alternatives.

The 80286 and higher microprocessors used in PCs can run in either of two
modes, real or protected. In real mode, only one application runs at a time and the
application has complete control over memory and other system resources.
MS-DOS runs in real mode. Although early versions of Windows could run in
real mode, Windows 3.1 and higher require protected mode, which enables multi-
ple applications to run at the same time. To ensure that applications don’t interfere
with each other, Windows has more sophisticated ways of managing memory and
other system resources.

In real mode, reading or writing to a specific memory address will access a partic-
ular location in physical memory. In protected mode, Windows uses a descriptor
table to translate between an address and the physical memory it points to.

When the microprocessor is in protected mode, Windows can run in either stan-
dard or enhanced mode. Most systems use enhanced mode because the operating
system can access more memory—up to 4 Gigabytes—and swap between mem-
ory and disk to create a virtual memory space that is much larger than the installed
physical memory. Systems with 80286 CPUs must use standard mode, however.

In enhanced mode, Windows divides memory into pages, and the operating sys-
tem may move the information on a page to a different location in physical mem-
ory or to disk. If a program bypasses the operating system and accesses memory
directly, there’s no guarantee that a value written to a particular address will be at
that same physical address later.

MS-DOS device drivers must run in real mode. When a Windows program calls a
DOS driver, Windows has to translate between the real and protected-mode
addresses. Each time it executes the driver code, Windows switches from pro-
tected mode to real mode, then switches back when the driver returns control of
the system. All of this takes time, and while the MS-DOS driver has control of the
system, other programs can’t access the operating system. In a single-tasking
operating system like MS-DOS, this isn’t a problem. But under Windows, where
multiple applications may need to perform actions without delay, an MS-DOS
device driver may not be the best choice.

TSRs
Another option is a driver written as a TSR (terminate and stay resident) program.
A TSR can reside in memory while other DOS programs run, and users can load

Chapter 3

42 Parallel Port Complete

TSRs as needed. You can create TSRs with many DOS programming languages,
including C, Turbo Pascal, and PowerBasic, but not QuickBasic.

Like DOS device drivers, TSRs run in real mode, with the same drawbacks. An
added complication under Windows is that in a TSR, the program, rather than the
operating system, must translate between real- and protected-mode addresses.

Windows Drivers

Windows has other options for device drivers, including DLLs and VxDs. A
Visual-Basic program can call a DLL directly or use a Vbx or Ocx to access a
DLL or VxD.

DLLs
A DLL (dynamic linked library) is a set of procedures that Windows applications
can call. When an application runs, it links to the DLLs declared in its program
code, and the corresponding DLLs load into memory. Multiple applications can
access the same DLL. The application calls DLL procedures much like any other
subroutine or function.

Many programming languages enable you to write and compile DLLs. Creating a
DLL can be as simple as writing the code and choosing to compile it as a DLL
rather than as an executable (.exe) file. Basic programmers can use products like
PowerBasic’s DLL Compiler to write DLLs in Basic. Visual-Basic programs can
call any DLL, whether it was originally written in Basic or another language.

As Chapter 2 showed, a DLL is also a simple way to add the Inp and Out that
Visual Basic lacks.

VxDs
A VxD (virtual device driver) is the most sophisticated way of implementing a
device driver under Windows 3.1 or Windows 95. A VxD can trap any access to a
port, whether it’s from a Windows or DOS program, and whether it uses a direct
port read or write or a BIOS or API call. When a program tries to access a port, the
VxD can determine whether or not the program has permission to do so. If it does,
the port access is allowed, and if not, the VxD can pass a message to the virtual
machine that requested it. A VxD also can respond quickly to hardware interrupts,
including interrupts caused by transitions at the parallel port’s nAck input.

Creating a VxD isn’t a simple process. It requires a wealth of knowledge about
Windows, the system hardware, and how they interact. Most VxD developers use
Microsoft’s Device Developers Kit, which includes an assembler and other tools-
for use in developing VxDs. Some C compilers also support VxD development.

Programming Issues

Parallel Port Complete 43

Because how to write VxDs is a book-length topic in itself, this book won’t go
into detail on it. Appendix A lists resources on VxD writing. But because
Visual-Basic programs can make use of VxDs, some background on how they
work is useful.

VxDs require Windows to be in enhanced mode, where a supervisor process
called the Virtual Machine Manager (VMM) controls access to system resources.
Instead of allowing Windows and DOS programs complete access to the system
hardware, the VMM creates one or more Virtual Machines, with each application
belonging to a Virtual Machine. The VMM creates a single System Virtual
Machine for the Windows operating system and its applications, and a separate
virtual machine for each DOS program.

To an application, the Virtual Machine that owns the application appears to be a
complete computer system. In reality, many hardware accesses first go through
the VMM. The VMM also ensures that each Virtual Machine gets its share of
CPU time. This arrangement allows DOS programs, which know nothing about
multitasking or Windows, to co-exist with Windows programs.

A process called port trapping can control conflicts between DOS applications, or
between a DOS and Windows application. For example, if a Windows program is
using the printer port, the VMM will be aware of this, and can prevent a DOS pro-
gram from accessing the same port.

The VMM is able to control port accesses from any program because it has a
higher level of privilege than the applications it’s controlling. The 80386 and
higher CPUs allow four levels of privilege, though most systems use just two.
Ring 3 is the lowest (least powerful), and Ring 0 is the highest. The Virtual
Machines run under Ring 3, and the VMM runs under Ring 0.

VxDs run under Ring 0, and this is why they’re powerful. A VxD can have com-
plete control over port accesses from any Virtual Machine, and can respond
quickly to parallel-port events.

Printer accesses in Windows 95 use two VxDs. Vcomm.vxd is the Windows 95
communications driver, which controls accesses to a variety of devices, including
the Windows print spooler. Vcomm in turn accesses a printer driver called lpt.vxd,
which handles functions that are specific to parallel ports. And lpt.vxd in turn
accesses data files that contain printer-specific information.

A Virtual Printer Device (VPD) handles contentions when a Windows program
requests to use a printer port that is already in use by another Windows program.
Windows may display a dialog box that asks the user to decide which application
gets to use the port.

Chapter 3

44 Parallel Port Complete

Under Windows NT, a kernel-mode driver can control port accesses much like
VxDs do under Windows 95.

Hardware Interrupts
Interrupt service routines, like VxDs, run under Ring 0, in protected mode. When
a hardware interrupt occurs, the VMM switches to Ring 0 and passes the interrupt
request to a special VxD, called the VPICD, that acts as an interrupt controller.

A VxD that wants to service a hardware interrupt must first register the inter-
rupt-service routine (ISR) with the VPICD. When the interrupt occurs, the VPICD
calls the VxD.

If no VxD has registered the interrupt, the ISR belongs to one of the Virtual
Machines. The VPICD must determine which Virtual Machine owns the interrupt,
and then schedule that Virtual Machine so it can service the interrupt. If the inter-
rupt was enabled when Windows started, the interrupt is global and any of the
Virtual Machines can execute the ISR. If the interrupt was enabled after Windows
started, the interrupt is local, and the VPICD considers the owner of the interrupt
to be the Virtual Machine that enabled it.

Custom Controls

Visual-Basic programs can access a special type of software component called the
Custom Control. A common use for Custom Controls is to add abilities and fea-
tures that Visual Basic lacks, such as port I/O or hardware interrupt detecting.
Other Custom Controls don’t do anything that you couldn’t do in Visual Basic
alone, but they offer a quick and easy way to add needed functions to an applica-
tion, often with better performance. Visual Basic includes some Custom Controls,
and many more are available from other vendors. Visual Basic supports two types
of Custom Controls: the Vbx and the Ocx. Either of these may handle paral-
lel-port accesses.

Vbx
A Vbx is a Custom Control that Visual-Basic 3 and 16-bit Visual-Basic 4 pro-
grams can use. A Vbx is a form of DLL that includes properties, events, and meth-
ods, much like Visual-Basic’s Toolbox controls. The Grid control is an example
of a custom control included with Visual Basic. To use a Grid control, you add the
file Grid.vbx to your project. A Grid item then appears in the Toolbox, and you
can add a grid to your project and configure it much as you do with the standard
controls.

Programming Issues

Parallel Port Complete 45

Ocx
Visual Basic 4 introduced a new form of Custom Control: the Ocx. Like a Vbx, an
Ocx has properties and can respond to events. In addition, Ocx’s use Object Link-
ing and Embedding (OLE) technology, which enables applications to display and
alter data from other applications. An Ocx may be 16-bit or 32-bit. Ocx’s aren’t
limited to Visual Basic; other programming languages can use them as well.
Visual Basic 3 programs can’t use Ocx’s, however. Chapter 10 shows an example
of an Ocx that handles port accesses and interrupts in 32-bit programs.

Speed

How fast can you transfer data at the parallel port? The answer depends on many
factors, both hardware- and software-related.

Hardware Limits

The circuits in the PC and peripheral are one limiting factor for port accesses.

Bus speed
The clock rate on the PC’s expansion bus limits the speed of parallel-port
accesses. This is true even if the port’s circuits are located on the motherboard,
because the CPU still uses the expansion bus’s clock and control signals to access
the parallel port.

Figure 3-1 shows the timing of the signals on the ISA expansion bus for reading
and writing to a parallel port. The signal that controls the timing is BCLK. One
BCLK cycle equals one T-cycle, and a normal read or write to a port takes six
T-cycles. During T1, the CPU places the port address on SA0-SA19. These lines
connect to the port’s address-decoding circuits. (The port hardware usually
decodes only the lower 10 or 11 address lines.) On the falling edge of IOR (read
I/O port) or IOW (write to I/O port), the port latches the address.

For a write operation, the CPU places the data on SD0-SD7, and on the rising edge
of IOW, the data is written to the port register. A normal write allows four wait
states (T2-T5) before IOW goes high.

A read operation is similar, except that after four wait states, the data from a port
register is available on SD0-SD7, and the CPU reads the data on the rising edge of
IOR.

In most modern PC’s, BCLK runs at about 8 Mhz, so a read or write to a port takes
at least 750 nanoseconds, for a maximum transfer rate of 1.33 Megabytes/second.

Chapter 3

46 Parallel Port Complete

According to the IEEE’s ISA-bus standard, BCLK may actually vary from 4 to
8.33 Mhz, so you can’t assume it will be a particular value. The clock speed of the
bus and microprocessor in the original IBM PC was 4.77 Mhz. The 8.33 Mhz rate
is the result of dividing a 50-Mhz clock by 6.

For faster access, there is a shortened, or zero-wait-state memory-access cycle
achieved by eliminating three of the wait states on the bus. This occurs if the port
circuits bring NOWS (no wait states) on the ISA bus low during T2. The data to be
read or written must be available by the end of T2. This doubles the speed of port
accesses, to 2.67 Megabytes per second on an 8-Mhz bus. Using the shortened
cycles requires both hardware and software support. Some of the newer paral-
lel-port controllers support the shortened cycles.

CPU Speed
Because all applications do more than just read and write to ports, the CPU
(microprocessor) speed also affects the speed at which a program can transfer data
at the parallel port. The speed of a microprocessor’s internal operations depends
on the clock rate of the timing crystal that controls the chip’s operations; a faster
clock means faster processing.

Figure 3-1: Timing diagram for port I/O cycles.

Programming Issues

Parallel Port Complete 47

The internal architecture of the microprocessor chip also affects how fast it can
execute instructions. For example, the Pentium supports pipelining of instruc-
tions, which enables new instructions to begin feeding into the chip before previ-
ous instructions have finished. Older 80x86 chips don’t have this ability.

EPP and ECP Support
A port that supports EPP or ECP modes of data transfer has the best chance for
fast parallel-port transfers. An SPP requires four port writes to read the Status
port, write a byte to the port, and bring nStrobe low, then high. With this hand-
shaking, the fastest that you can write to the port is the time it takes for four port
writes, or around 300,000 data bytes per second. If you use the DOS or BIOS soft-
ware interrupts to write to a port, the speed will be much less because these rou-
tines stretch the strobe pulse.

In EPP and ECP modes, the port’s hardware takes care of the handshaking auto-
matically, within a single read or write operation. When the PC and peripheral
both support one of these modes, you can transfer data at the speed of port writes
on the ISA bus, typically 1.3 Mbytes/sec, or 2.7 Mbytes/sec with the shortened
cycles. ECPs also support DMA transfers and data compression, discussed below.

For faster switching, a port’s Control outputs often switch from open-collector to
push-pull type when the port is in ECP or EPP mode.

Cables and Terminations
Cable design and the line-terminating circuits for the cable signals may also affect
the maximum speed of data transfers. Chapter 6 has more on this topic.

Software Limits

Software issues that affect access speed include the choice of programming lan-
guage as well as the program code itself.

Language Choices
Three basic categories of programming languages are assemblers, compilers, and
interpreters.

Assemblers
With an assembler, you write programs in an assembly language whose instruc-
tions correspond directly to each of the instructions in the microprocessor’s
instruction set. The assembler translates the program code into machine-level,
binary instructions that the microprocessor executes.

Chapter 3

48 Parallel Port Complete

Because assembly language gives intimate control over the microprocessor,
assembly-language programs can be very fast. But assembly language is a very
low-level language that requires detailed knowledge of the microprocessor’s
architecture. Even the simplest operation requires specifying particular registers in
the chip. For example, for the simple task of reading a port, you first store the port
address in the dx register, then read the port register into the al register. Then you
can perform calculations on the value or move the data to another memory loca-
tion.

Higher-Level Languages
Higher-level languages make things easier by providing functions, operators, and
other language tools that help you perform these and other complex operations
more easily.

For example, in Basic, this statement reads a port into a variable:

DataRead = INP(PortAddress)

You can then use the DataRead variable in any way you wish, without concern-
ing yourself with the specific registers or memory locations where the data is
stored.

Higher-level languages also include tools that make it easy to display information,
read keyboard input, send text and graphics to a printer, store information in files,
perform complex calculations, and do other common tasks. Most higher-level lan-
guages also have programming environments with tools for easier testing, debug-
ging, and compiling of programs.

Higher-level languages are also somewhat portable. If you learn to program in
Basic on a PC, you don’t have to learn an entirely new language in order to write
Basic programs for a Macintosh, or even a microcontroller like the 8052-Basic.

Two types of higher-level languages are compilers and interpreters.

Compilers
With a compiled language, you create one or more source files that hold your pro-
gram code. From the source files, the compiler program creates an executable file
that runs on its own. Like assembled programs, a compiled program consists of
machine code that the microprocessor executes. Examples of compiled languages
include the C/C++ compilers from Microsoft, Borland, and others, and Borland’s
Delphi.

Interpreters
With an interpreted language, you also create source files, but there is no
stand-alone executable file. Instead, each time you want to run a program, you run

Programming Issues

Parallel Port Complete 49

an interpreter program that translates the source file line by line into machine
code.

An advantage to interpreters is that while you’re developing a program, you can
run the program immediately without having to compile the code first. But
because the interpreter has to translate the code each time the program runs, inter-
preted programs tend to be much slower than compiled ones.

Although future versions may include a compiler, as of Version 4, Visual Basic is
an interpreted language. Visual-Basic does create executable (.exe) files, but the
.exe file must have access to a Vbrun DLL, which performs the function of an
interpreter on it. QBasic is also an interpreted language. QuickBasic’s program-
ming environment includes an interpreter, and you can also compile QuickBasic
programs into .exe files.

Choices
Different vendors’ implementations of the same language will also vary in execu-
tion speed. Some compilers allow in-line assembly code, so you can have the best
of both worlds by writing the most time-critical code in assembler. An optimizing
compiler examines the source files and uses various techniques to make the com-
piled program as fast as possible. Some compilers claim to produce programs that
are as fast as assembled programs, so there’s no need to use assembly language at
all.

In an interpreted language like Visual Basic, how you write programs has an espe-
cially big effect on execution speed. Visual Basic’s documentation includes tips
for optimizing your code for faster performance, such as using integer variables
for calculations and assigning frequently-used object properties to variables. You
can also speed execution by eliminating subroutine and function calls in favor of
fewer, longer routines. But there’s a tradeoff with this technique, because it also
tends to make the code less readable, less portable, and harder to maintain.

Programmers endlessly debate the merits of different languages and products, and
the products themselves change frequently. Visual Basic’s strength is its ease of
use, rather than the performance, or speed, of its programs. When speed is essen-
tial, a Visual-Basic program can call a DLL that contains the critical code in com-
piled form. Power Basic’s DLL Compiler offers an easy way to place code in a
compiled DLL, while still programming in a dialect of Basic.

Windows versus DOS
For the fastest data transfers, and especially for the fastest response to hardware
interrupts, DOS beats Windows. A DOS system runs just one program at a time,
while a Windows application has to share system time with whatever other appli-

Chapter 3

50 Parallel Port Complete

cations a user decides to run. When a hardware interrupt occurs, a DOS program
can jump quickly to an interrupt-service routine. Under Windows, the operating
system has to decide which driver or virtual machine should service the interrupt
and pass control to it, all the while handling the demands of whatever other appli-
cations are running. All of that takes time, so under Windows, the interrupt
latency, or the time before an interrupt is serviced, is much longer than under
DOS, and isn’t as predictable.

Code Efficiency
In addition to the programming language you use, how you write your programs
can affect execution speed. A complete discussion on how to write efficient pro-
gram code is well beyond the scope of this book, but a simple example illustrates
the issues involved:

You can generate a sine wave or other waveform by connecting a parallel port’s
outputs to the inputs of a digital-to-analog converter (DAC), and writing a repeat-
ing series of bytes to the port. One way to generate the series of bytes would be to
use a Sine function to calculate the value for each point in the waveform before
writing it. Another, usually faster way is to calculate the values just once, store
them, and write the stored values in sequence to the port.

Data Compression
For the fastest data transfers, compressing the data in software can reduce the
number of bytes to write. Even though the number of port writes per second
doesn’t change, the effective transmission rate (the amount of uncompressed data
sent per second) is greater. To use this method, you of course have to have soft-
ware on the receiving end that knows how to decompress what it receives. Parallel
ports in ECP mode can automatically decompress incoming data that uses ECP
mode’s protocol for data compression.

Application-related Limits
The simplest I/O operations just write data from a register to the port, or read the
port into a register. But all programs have to do more than just this, and the extra
time required for processing and moving data will also limit the rate at which you
can access a port in an application.

For example, a program might read an analog-to-digital converter’s output in two
nibbles, combine the nibbles into a byte, store the byte along with time and date
information, display the information, and use the information to decide if the sys-
tem needs to take an action such as sounding an alarm or adjusting a temperature
control. All of this takes time!

Programming Issues

Parallel Port Complete 51

Ports that support ECP mode can use direct memory access (DMA), where data
can transfer between memory and a port without intervention by the CPU. The
DMA transfers use the system’s expansion bus, but the CPU is free to perform
other tasks during the DMA transfers, and this can speed up the overall perfor-
mance of some applications.

Chapter 3

52 Parallel Port Complete

Programming Tools

Parallel Port Complete 53

4

Programming Tools
Many programs that access the parallel port do many of the same things, including
reading and writing to the port registers and finding and testing ports on a system.
Another common task is reading, setting, clearing, and toggling individual bits in
a byte. This chapter introduces tools to perform these functions in any
Visual-Basic program.

Routines for Port Access

Listing 4-1 is a set of subroutines and functions that simplify the tasks of reading
and writing to the port registers and performing bit operations. You can add the
file as a .bas module in your parallel-port programs (use Add Module) and call the
routines as needed in your code.

The individual routines are very short. The reason to use them is convenience. For
the port-write subroutines, you pass the base address of a port and a value to write
to the port. The routines automatically calculate the register address from the base
address and invert the appropriate bits, so the value passed matches the value that
appears at the connector. You don’t have to worry about calculating an address
and inverting the bits every time you write to a port. For the port-read functions,
you pass a base address and the function returns the value at the port connector.
For the bit operations, you pass a variable and bit number, and the routine auto-

Chapter 4

54 Parallel Port Complete

Function BitRead% (Variable%, BitNumber%)
‘Returns the value (0 or 1) of the requested bit in a Variable.
Dim BitValue%
‘the value of the requested bit
BitValue = 2 ^ BitNumber
BitRead = (Variable And BitValue) \ BitValue
End Function

Sub BitReset (Variable%, BitNumber%)
‘Resets (clears) the requested bit in a Variable.
Dim BitValue, CurrentValue%
‘the value of the requested bit
BitValue = 2 ^ BitNumber
Variable = Variable And (&HFFFF - BitValue)
End Sub

Sub BitSet (Variable%, BitNumber%)
‘Sets the requested bit in a Variable.
Dim BitValue, CurrentValue%
‘the value of the requested bit
BitValue = 2 ^ BitNumber
Variable = Variable Or BitValue
End Sub

Sub BitToggle (Variable%, BitNumber%)
‘Toggles the requested bit in a Variable.
Dim BitValue, CurrentValue%
‘the value of the requested bit
BitValue = 2 ^ BitNumber
‘Is the current value 0 or 1?
CurrentValue = Variable And BitValue
Select Case CurrentValue
 Case 0
 ‘If current value = 0, set it
 Variable = Variable Or BitValue
 Case Else
 ‘If current value = 1, reset it
 Variable = Variable And (&HFFFF - BitValue)
End Select
End Sub

Listing 4-1: Routines for reading and writing to the parallel port registers and for
reading, setting, clearing, and toggling individual bits in a byte. (Sheet 1 of 2)

Programming Tools

Parallel Port Complete 55

matically sets, resets, toggles, or returns the value of the requested bit in the vari-
able.

Most of the example programs in this book use these routines. The routines
require the Inpout DLL described in Chapter 2. Because the routines are funda-
mental to accessing the parallel port, I’ll explain them in detail.

Function ControlPortRead% (BaseAddress%)
‘Reads a parallel port’s Control port.
‘Calculates the Control-port address from the port’s
‘base address, and inverts bits 0, 1, & 3 of the byte read.
‘The Control-port hardware reinverts these bits,
‘so the value read matches the value at the connector.
ControlPortRead = (Inp(BaseAddress + 2) Xor &HB)
End Function

Sub ControlPortWrite (BaseAddress%, ByteToWrite%)
‘Writes a byte to a parallel port’s Control port.
‘Calculates the Control-port address from the port’s
‘base address, and inverts bits 0, 1, & 3.
‘The Control-port hardware reinverts these bits,
‘so Byte is written to the port connector.
Out BaseAddress + 2, ByteToWrite Xor &HB
End Sub

Function DataPortRead% (BaseAddress%)
‘Reads a parallel port’s Data port.
DataPortRead = Inp(BaseAddress)
End Function

Sub DataPortWrite (BaseAddress%, ByteToWrite%)
‘Writes a byte to a parallel port’s Data port.
Out BaseAddress, ByteToWrite
End Sub

Function StatusPortRead% (BaseAddress%)
‘Reads a parallel port’s Status port.
‘Calculates the Status-port address from the port’s
‘base address, and inverts bit 7 of the byte read.
‘The Status-port hardware reinverts these bits,
‘so the value read matches the value at the connector.
StatusPortRead = (Inp(BaseAddress + 1) Xor &H80)
End Function

Listing 4-1: Routines for reading and writing to the parallel port registers and for
reading, setting, clearing, and toggling individual bits in a byte. (Sheet 2 of 2)

Chapter 4

56 Parallel Port Complete

Data Port Access

DataPortWrite and DataPortRead access a port’s Data register (D0-D7),
which controls the eight Data outputs (pins 2-9). In a printer interface, these lines
hold the data to be printed. For other applications, you can use the Data lines for
anything you want. If you have a bidirectional port, you can use the Data lines as
inputs.

To control the states of pins 2-9 on the parallel connector, you write the desired
byte to the Data register. The address of the Data register is the base address of the
port. DataPortWrite has just one line of code, which calls Out to write the
requested byte to the selected address. DataPortRead calls Inp. On an SPP or
a bidirectional Data port configured as output, it returns the last value written to
the port. On a bidirectional port configured as input, it returns the byte read on the
Data lines at the connector.

Status Port Access

StatusPortRead reads a port’s Status register (S0-S7). Bits 3-7 show the
states of the five Status inputs at pins 15, 13, 12, 10, and 11. Bit 0 may be used as
a time-out flag, but isn't routed to the connector, and bits 1 and 2 are usually
unused.

The Status register is at base address +1, or 379h for a port at 378h. However, as
Chapter 2 explained, the value that you read doesn’t exactly match the logic states
at the connector. Bits 3-6 read normally—the bits in the Status register match the
logic states of their corresponding pins. But bit 7 is inverted between the pin and
its register bit, so the logic state of bit 7 in the register is the complement of the
logic state at its connector pin. To match the connector, you have to complement,
or re-invert, bit 7.

Using Xor to Invert Bits
The Boolean Exclusive-Or (Xor) operator is an easy way to invert one or more
bits in a byte, while leaving the other bits unchanged. This is the truth table for an
Exclusive-OR operation:

A B A Xor B

0 0 0

0 1 1

1 0 1

1 1 0

Programming Tools

Parallel Port Complete 57

The result is 1 only when the inputs consist of one 1 and one 0. Xoring a bit with 1
has the result of inverting, or complementing, the bit.

If the bit is 0:

0 Xor 1 = 1

and if the bit is 1:

1 Xor 1 = 0.

To invert selected bits in a byte, you first create a mask byte, where the bits to
invert are 1s, and the bits to ignore are 0s. For example, to invert bit 7, the mask
byte is 10000000 (binary) or 80h. If you Xor this byte with the byte read from the
Status register, the result is the value at the connector. The zeros mask, or hide, the
bits that you don't want to change. The StatusPortRead subroutine uses this tech-
nique to return the value at the connector.

Here's an example:

StatusPortRead also automatically adds 1 to the base address passed to it. This
way, the calling program doesn’t have to remember the Status-port address.
Because the Status port is read-only (except for the timeout bit in EPPs), there is
no StatusPortWrite subroutine.

Control Port Access

ControlPortRead and ControlPortWrite access a port’s Control regis-
ter (C0-C7). Bits 0-3 show the states of the four Control lines at pins 1, 14, 16, and
17. On an SPP, the Control port is bidirectional and you can use the four lines as
inputs or outputs, in any combination. The Control register's address is base
address + 2, or 37Ah for a port with a base address of 378h.

Bits 4-7 aren’t routed to the connector. When bit 4 = 1, interrupt requests pass
from the parallel-port circuits to the interrupt controller. When bit 4 = 0, the inter-
rupt controller doesn’t see the interrupt requests.

If you don’t want to use interrupts, bit 4 should remain low. However, in most
cases just bringing bit 4 high has no effect because the interrupt isn't enabled at
the interrupt controller or at the interrupt-enable jumper or configuration routine,
if used. Chapter 10 has more on interrupt programming.

10101XXX Status port, bits 3-7, at the connector. (X=don’t care)

00101XXX Result when you read the Status register. (Bit 7 is inverted.)

10000000 Mask byte to make bit 7 match the connector

10101XXX The result of Xoring the previous two bytes (matches the byte
at the connector)

Chapter 4

58 Parallel Port Complete

In ports with bidirectional Data lines, bit 5 (or rarely, bit 7) may configure the
Data port as input (1) or output (0). Usually, you must enable bidirectional ability
on the port before setting pin 5 will have an effect. But to be safe, you should take
care not to change bit 5 in your programs unless you intend to change the direction
of the Data port.

As on the Status port, the Control port has inverted bits. In fact, only bit 2 at the
connector matches the logic state of its bit in the Control register. The circuits
between the connector and the register invert bits 0, 1, and 3. In other words, if
you write 1111 (Fh) to the lower four bits in the Control register, the bits at the
connector will read 0100 (4h).

As with the Status port, you can make the bits match what you read or write by
re-inverting the inverted bits. To make the value you write match the bits at the
connector, Xor the value you want to write with 0Bh (00001011 binary). The
Control-port routines use this technique so that the values passed to or read from
the Control port match the logic states at the connector.

Keeping Bits Unchanged
In writing to the Control port, you can use logic operators to keep the upper bits
from changing. (You can use the same technique anytime you want to change
some bits in a byte, but keep others unchanged.)

These are the steps to changing selected bits:

Reading External Signals
To read an external input at a Control bit, you must first bring the corresponding
output high. You can use the Control-port bits as inputs or outputs in any combi-
nation. Because of this, the ControlPortRead routine doesn’t bring the bits high
automatically; the application program is responsible for doing it. (To bring all
four outputs high, call ControlPortWrite with ByteToWrite=&h0F.)

1. XXXX1010 Determine the bits to write. (X=don’t change)

2. 11001100 Read the port’s current value.

3. 11111010 Create a byte containing all 1s except the bits desired to be 0.

4. 11001000 AND the bytes in steps 2 and 3.

5. 00001010 Create a byte containing all 0s except the bits desired to be 1.

6. 11001010 OR the bytes in steps 4 and 5. Bits 0-3 now match the desired
logic states from step 1 and bits 4-7 are unchanged from the
original byte read in step 2.

Programming Tools

Parallel Port Complete 59

As with the outputs, the value read at the Control port has bits 0, 1, and 3 inverted
from their logic states at the connector. To re-invert bits 0, 1, and 3 and return the
value at the connector, ControlPortRead Xors the byte read with 0Bh.

Optimizing for Speed
These routines are designed for ease of use, rather than fast execution. These tech-
niques will increase the speed of the routines:

Eliminate subroutine and function calls by placing the code directly in the routine
that would otherwise make the calls. The routines are short, and easily copied.

Assign the Status and Control-port addresses to variables instead of calculating
them from the base address each time. You then need to specify the appropriate
address instead of using the base address. To use this technique, do the following:

Eliminate this line from StatusPortRead:

StatusPortAddress=BaseAddress+1

Eliminate this line from ControlPortWrite and ControlPortRead:

ControlPortAddress=BaseAddress+2

In your application:

Assign the Status and Control port’s addresses to variables:

StatusPortAddress=BaseAddress+1
ControlPortAddress=BaseAddress+2

And use these calls:

StatusPortData = Inp(StatusPortAddress)
ControlPortWrite Value, ControlPortAddress
ControlPortData = Inp(ControlPortAddress)

Instead of re-inverting the inverted Status and Control bits each time you read or
write to them, you can just take the inverted bits into account in the program. For
example, if a 1 at Control bit 0 switches on a relay, have the software write 0 to
the bit when it wants the relay to switch on. Keeping track of which bits are
inverted can be difficult however! One way to keep the program readable is to
assign the values to constants:

Const Relay3On% = 0
Const Relay3Off% = 1

Often, while you’re developing an application, you don’t have to be concerned
about speed. When the code is working properly, you can do some or all of the
above to speed it up.

Chapter 4

60 Parallel Port Complete

Bit Operations

Sometimes you just want to set, reset, or toggle one bit in a byte, toggle a control
signal, or set or read a switch. The BitSet, BitReset, BitToggle, and
BitRead routines perform these operations, which you can use any time you
want to read or write to a bit in an integer variable. Each routine is passed a vari-
able and a bit number. The routine calculates the value of the selected bit and uses
logic operators to perform the requested action on the individual bit.

For example, to set bit 4 in the variable PortData:

BitSet PortData, 4

and to read back this bit’s value:

Bit4 = BitRead(PortData, 4)

A Form Template

Figure 4-1 shows a second tool for parallel-port programs: a set of Visual-Basic
forms that you can use as a template, or starting point, for programs. The startup
form is blank except for a Setup menu with a Port submenu, which displays a
form that enables users to select a port, find the ports on a system, and test the
ports. (You can add other items to the Setup menu.)

Figure 4-1: A form with a setup menu that enables uses to select and test ports.

Programming Tools

Parallel Port Complete 61

Most of the programs in this book use these elements as a base, with command
buttons, text boxes, other controls and application-specific code added to the main
form or in other modules.

Listing 4-2 contains the code for the form that displays the Ports. Listing 4-3 has
the startup form’s small amount of code. Most of the code is in a separate .bas
module, Listing 4-4. In Visual Basic 3, procedures in a form module are local to
the form, but all forms can access procedures in a .bas module. Version 4 is more
flexible, with the ability to declare procedures Public or Private. Still,
grouping the general routines in one module is useful for keeping the code orga-
nized.

The listings show the Visual Basic 4 version of the program. The Version-3 code
differs in just a few areas, such as the calls for getting and saving initialization
data. The companion disk includes both Version 3 and Version 4 code.

Saving Initialization Data

Each time the program runs, Listing 4-4’s GetIniData subroutine retrieves
information about the system’s ports. When the program ends, WriteInidata
stores the information to be retrieved the next time the program runs. This way,
the program can remember what ports a system has, which port is selected, and
any other information the program wants to store. Remembering these isn’t essen-
tial, but it’s a convenience that users will appreciate.

Ini Files
One way to access initialization data is to use Visual Basic’s file I/O statements to
read and write to a file. Under Windows, however, there are other options. Win-
dows defines a standard method for storing data in ini files, which are text files
normally found in the Windows directory. The best-known ini file is win.ini,
which holds information used by Windows and may also contain data sections for
individual applications. An application may also have its own ini file. This is the
method used by Listing 4-4, which accesses a file called Lptprogs.ini. Listing 4-5
shows an example ini file. Ini files must follow a standard format consisting of
one or more section names in square brackets [lptdata], with each section
name followed by data assignments.

Although you can use ordinary file I/O statements to read and write to an ini file,
Windows provides API functions for this purpose. Calling an API function in a
Visual-Basic program is much like calling other functions. As when calling a
DLL, the program must declare the API function before it can call it. The listing
includes the Declare statements for the API functions GetPrivatePro-

Chapter 4

62 Parallel Port Complete

Private Sub cboEcpMode_Click(Index As Integer)
SetEcpMode (cboEcpMode(Index).ListIndex)
End Sub

Private Sub cmdAddPort_Click()
‘Display a text box to enable user to add a port
‘at a nonstandard address.
frmNewPortAddress.Show
End Sub

Listing 4-2: Code for Figure 4-1‘s form that enables users to find, test, and select
ports. (Sheet 1 of 4)

Programming Tools

Parallel Port Complete 63

Private Sub cmdFindPorts_Click()
‘Test the port at each of the standard addresses,
‘and at the non-standard address, if the user has entered one.
Dim Index%
Dim PortExists%
Dim Count%
Index = 0
‘First, test address 3BCh
Port(Index).Address = &H3BC
PortExists = TestPort(Index)
‘If the port exists, increment the index.
If Not (Port(Index).Address) = 0 Then
 Index = Index + 1
End If
‘Test address 378h
Port(Index).Address = &H378
PortExists = TestPort(Index)
‘If the port exists, increment the index.
If Not (Port(Index).Address) = 0 Then
 Index = Index + 1
End If
‘Test address 278h
Port(Index).Address = &H278
PortExists = TestPort(Index)
‘Disable option buttons of unused LPT ports
For Count = Index + 1 To 2
 optPortName(Count).Enabled = False
 Port(Count).Enabled = False
Next Count
If Not (Port(3).Address = 0) Then
 PortExists = TestPort(Index)
Else
 optPortName(3).Enabled = False
End If
End Sub

Private Sub cmdOK_Click()
frmSelectPort.Hide
End Sub

Listing 4-2: Code for Figure 4-1‘s form that enables users to find, test, and select
ports. (Sheet 2 of 4)

Chapter 4

64 Parallel Port Complete

Private Sub cmdTestPort_Click()
Dim PortExists%
Dim Index%
‘Get the address of the selected port
Index = -1
Do
 Index = Index + 1
Loop Until optPortName(Index).Value = True
PortExists = TestPort(Index)
Select Case PortExists
 Case True
 MsgBox “Passed: Port “ + Hex$(BaseAddress) + _
 “h is “ + Port(Index).PortType + “.”, 0
 Case False
 MsgBox “Failed port test. “, 0
End Select

End Sub

Listing 4-2: Code for Figure 4-1‘s form that enables users to find, test, and select
ports. (Sheet 3 of 4)

Programming Tools

Parallel Port Complete 65

Private Sub Form_Load()
Dim Index%
Left = (Screen.Width - Width) / 2
Top = (Screen.Height - Height) / 2

‘Load the combo boxes with the ECP modes.
For Index = 0 To 3
 cboEcpMode(Index).AddItem “SPP (original)”
Next Index
For Index = 0 To 3
 cboEcpMode(Index).AddItem “bidirectional”
Next Index
For Index = 0 To 3
 cboEcpMode(Index).AddItem “Fast Centronics”
Next Index
For Index = 0 To 3
 cboEcpMode(Index).AddItem “ECP”
Next Index
For Index = 0 To 3
 cboEcpMode(Index).AddItem “EPP”
Next Index

‘Enable the option buttons for existing ports.
For Index = 0 To 3
 optPortName(Index).Enabled = Port(Index).Enabled
Next Index
UpdateLabels
End Sub

Private Sub optPortName_Click(Index As Integer)
‘Store the address and index of the selected port.
Dim Count%
BaseAddress = Port(Index).Address
IndexOfSelectedPort = Index
EcpDataPortAddress = BaseAddress + &H400
EcrAddress = BaseAddress + &H402
For Count = 0 To 3
 cboEcpMode(Count).Enabled = False
Next Count
cboEcpMode(Index).Enabled = True
End Sub

Listing 4-2: Code for Figure 4-1‘s form that enables users to find, test, and select
ports. (Sheet 4 of 4)

Chapter 4

66 Parallel Port Complete

fileString and WritePrivateProfileString. The API calls differ
slightly under Windows 3.1 and Windows 95. The Version-4 code uses Visual
Basic’s conditional compile ability to decide which calls to declare. You can add
these statements to any .bas module in a program. In Version 3, you use only the
declares following #Else.

GetIniData uses GetPrivateProfileString to retrieve several values,
including the address and type of each existing port, and a value that indicates the
port that was selected the last time the program ran. WriteIniData uses
WritePrivateProfileString to save these values when the program
ends.

System Registry
Windows’ System Registry offers another way to store program information.
Visual Basic 4’s SaveSetting and GetSetting are a simple way to store
and retrieve information related to Visual Basic programs, and you can use these
in a similar way to save port information.

Under Windows 95, two API functions enable programs to find and add system
ports. EnumPorts returns the LPT number and a brief description of each paral-
lel port that Windows is aware of, and AddPort displays a dialog box that
enables users to add a port to the list.

Finding, Selecting, and Testing Ports

Because the parallel-port’s address can vary, programs must have a way of select-
ing a port to use. There are several ways to accomplish this.

Private Sub Form_Load()
StartUp
End Sub

Private Sub Form_Unload(Cancel%)
ShutDown
End
End Sub

Private Sub mnuPort_Click(Index%)
frmSelectPort.Show
End Sub

Listing 4-3: The startup form for the sample project is blank except for a menu.
You can add whatever controls you need for a specific application.

Programming Tools

Parallel Port Complete 67

#If Win32 Then
Declare Function GetPrivateProfileStringByKeyName& Lib _
“Kernel32” Alias “GetPrivateProfileStringA” _
(ByVal lpApplicationName$, ByVal lpszKey$, ByVal lpszDefault$, _
ByVal lpszReturnBuffer$, ByVal cchReturnBuffer&, ByVal lpszFile$)

Declare Function WritePrivateProfileString& Lib _
“Kernel32” Alias “WritePrivateProfileStringA” _
(ByVal lpApplicationName$, ByVal lpKeyName$, ByVal lpString$, _
ByVal lpFileName$)

Declare Function GetWindowsDirectory& Lib “Kernel32” _
Alias “GetWindowsDirectoryA” (ByVal lpBuffer$, ByVal nSize%)

#Else

Declare Function GetPrivateProfileStringByKeyName% Lib “Kernel” _
Alias “GetPrivateProfileString” _
(ByVal lpApplicationName$, ByVal lpKeyName$, ByVal lpDefault$, _
ByVal lpReturnedString$, ByVal nSize%, ByVal lpFileName$)

Declare Function WritePrivateProfileString% Lib “Kernel” _
(ByVal lpApplicationName$, ByVal lpKeyName$, _
ByVal lpString$, ByVal lpFileName$)

Declare Function GetWindowsDirectory% Lib “Kernel” _
(ByVal lpBuffer$, ByVal nSize%)

#End If

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 1 of 14)

Chapter 4

68 Parallel Port Complete

Type PortData
 Name As String
 Address As Integer
 PortType As String
 EcpModeDescription As String
 EcpModeValue As Integer
 Enabled As Integer
End Type
Global Port(0 To 3) As PortData
Global BaseAddress%
Global PortType$
Global IniFile$

Global EcrAddress%
Global EcrData%
Global EcpDataPortAddress%
Global EppDataPort0Address%
Global IndexOfSelectedPort%
Global PortDescription$

Global EcpExists%
Global SppExists%
Global PS2Exists%
Global EppExists%

Function GetEcpModeDescription$(EcpModeValue%)
Select Case EcpModeValue
 Case 0
 GetEcpModeDescription = “SPP”
 Case 1
 GetEcpModeDescription = “PS/2”
 Case 2
 GetEcpModeDescription = “Fast Centronics”
 Case 3
 GetEcpModeDescription = “ECP”
 Case 4
 GetEcpModeDescription = “EPP”
 Case 6
 GetEcpModeDescription = “Test”
 Case 7
 GetEcpModeDescription = “Configuration”
End Select
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 2 of 14)

Programming Tools

Parallel Port Complete 69

Sub GetIniData()
‘Use the Windows API call GetPrivateProfileString to read
‘user information from an ini file.
Dim NumberOfCharacters
Dim ReturnBuffer As String * 128
Dim Index%
Dim WindowsDirectory$
‘Get the Windows directory, where the ini file is stored.
NumberOfCharacters = GetWindowsDirectory(ReturnBuffer, 127)
WindowsDirectory = Left$(ReturnBuffer, NumberOfCharacters)
IniFile = WindowsDirectory + “\lptprogs.ini”

‘If the ini file doesn’t exist, don’t try to read it.
If Not Dir$(IniFile) = ““ Then
 ‘The port addresses:
 Port(0).Address = _
CInt(VbGetPrivateProfileString(“lptdata”,“Port0Address”,
IniFile))

 Port(1).Address = _
CInt(VbGetPrivateProfileString(“lptdata”,“Port1Address”,
IniFile))

 Port(2).Address = _
CInt(VbGetPrivateProfileString(“lptdata”,“Port2Address”,
IniFile))

 Port(3).Address = _
CInt(VbGetPrivateProfileString(“lptdata”,“Port3Address”,
IniFile))

 ‘The port types:
 Port(0).PortType = _
VbGetPrivateProfileString(“lptdata”, “Port0Type”, IniFile)
 Port(1).PortType = _
VbGetPrivateProfileString(“lptdata”, “Port1Type”, IniFile)
 Port(2).PortType = _
VbGetPrivateProfileString(“lptdata”, “Port2Type”, IniFile)
 Port(3).PortType = _
VbGetPrivateProfileString(“lptdata”, “Port3Type”, IniFile)

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 3 of 14)

Chapter 4

70 Parallel Port Complete

‘Port enabled?
 Port(0).Enabled = _
CInt(VbGetPrivateProfileString(“lptdata”,
“Port0Enabled”,IniFile))

 Port(1).Enabled = _
CInt(VbGetPrivateProfileString(“lptdata”,
“Port1Enabled”,IniFile))

 Port(2).Enabled = _
CInt(VbGetPrivateProfileString(“lptdata”,
“Port2Enabled”,IniFile))

 Port(3).Enabled = _
CInt(VbGetPrivateProfileString(“lptdata”,
“Port3Enabled”,IniFile))

‘The selected port
 IndexOfSelectedPort = _
Int(VbGetPrivateProfileString(“lptdata”, _
“IndexOfSelectedPort”, IniFile))
End If
End Sub

Function ReadEcpMode%(TestAddress%)
‘The Ecr mode is in bits 5, 6, and 7 of the ECR.
EcrAddress = TestAddress + &H402
EcrData = Inp(EcrAddress)
ReadEcpMode = (EcrData And &HE0) \ &H20
End Function

Function ReadEppTimeoutBit%(BaseAddress%)
‘Reads and clears the EPP timeout bit (Status port bit 0).
‘Should be done after each EPP operation.
‘The method for clearing the bit varies, so try 3 ways:
‘1. Write 1 to Status port bit 0.
‘2. Write 0 to Status port, bit 0.
‘3. Read the Status port again.
Dim StatusPortAddress%
StatusPortAddress = BaseAddress + 1
ReadEppTimeoutBit = BitRead(StatusPortRead(BaseAddress), 0)
Out StatusPortAddress, 1
Out StatusPortAddress, 0
ReadEppTimeoutBit = BitRead(StatusPortRead(BaseAddress), 0)
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 4 of 14)

Programming Tools

Parallel Port Complete 71

Sub SetEcpMode(EcpModeValue%)
‘Store the Ecp mode’s value and description in the Port array.
Port(IndexOfSelectedPort).EcpModeValue = EcpModeValue
Port(IndexOfSelectedPort).EcpModeDescription = _
GetEcpModeDescription(EcpModeValue)
EcrAddress = BaseAddress + &H402
‘Read the ECR & clear bits 5, 6, 7.
EcrData = Inp(EcrAddress) And &H1F
‘Write the selected value to bits 5, 6, 7.
EcrData = EcrData + EcpModeValue * &H20
Out EcrAddress, EcrData
End Sub

Sub ShutDown()
WriteIniData
End
End Sub

Sub StartUp()
Dim PortExists%
Dim Index%
‘Get information from the ini file.
GetIniData

‘Load the forms.
frmMain.Left = (Screen.Width - frmMain.Width) / 2
frmMain.Top = (Screen.Height - frmMain.Height) / 2
Load frmSelectPort
frmSelectPort.optPortName(IndexOfSelectedPort).Value = True
frmMain.Show
End Sub

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 5 of 14)

Chapter 4

72 Parallel Port Complete

Function TestForEcp%(TestAddress%)
‘Test for the presence of an ECP.
‘If the ECP is idle and the FIFO empty,
‘in the ECP’s Ecr (at Base Address+402h),
‘bit 1(Fifo full)=0, and bit 0(Fifo empty)=1.
‘The first test is to see if these bits differ from the
‘corresponding bits in the Control port (at Base Address+2).
‘If so, a further test is to write 34h to the Ecr,
‘then read it back. Bit 1 is read/write, and bit 0 is read-only.
‘If the value read is 35h, the port is an ECP.
Dim EcrBit0%, EcrBit1%
Dim ControlBit0%, ControlBit1%
Dim ControlPortData%
Dim TestEcrAddress%
Dim OriginalEcrData%
TestForEcp = False
EcrAddress = TestAddress + &H402
‘Read ECR bits 0 & 1 and Control Port bit 1.
EcrData = Inp(EcrAddress)
EcrBit0 = BitRead(EcrData, 0)
EcrBit1 = BitRead(EcrData, 1)
ControlPortData = ControlPortRead(TestAddress)
ControlBit1 = BitRead(ControlPortData, 1)
If EcrBit0 = 1 And EcrBit1 = 0 Then
 ‘Compare Control bit 1 to ECR bit 1.
 ‘Toggle the Control bit if necessary,
 ‘to be sure the two registers are different.
 If ControlBit1 = 0 Then
 ControlPortWrite TestAddress, &HF
 ControlPortData = ControlPortRead(TestAddress)
 ControlBit1 = BitRead(ControlPortData, 1)
 End If
 If EcrBit1 <> ControlBit1 Then
 OriginalEcrData = EcrData
 Out EcrAddress, &H34
 EcrData = Inp(EcrAddress)
 If EcrData = &H35 Then
 TestForEcp = True
 End If
 ‘Restore the ECR to its original value.
 Out EcrAddress, OriginalEcrData
 End If
End If
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 6 of 14)

Programming Tools

Parallel Port Complete 73

Function TestForEpp%(TestAddress%)
‘Write to an Epp register, then read it back.
‘If the reads match the writes, it’s probably an Epp.
‘Skip this test if TestAddress = 3BCh.
Dim ByteRead%
Dim StatusPortData%
Dim EppAddressPort%
Dim TimeoutBit%
Dim StatusPortAddress%
StatusPortAddress = TestAddress + 1
TestForEpp = False
‘Use EppAddressPort for testing.
‘SPPs, ECPs, and PS/2 ports don’t have this register.
EppAddressPort = TestAddress + 3
Out EppAddressPort, &H55
‘Clear the timeout bit after each EPP operation.
TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
ByteRead = Inp(EppAddressPort)
TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
If ByteRead = &H55 Then
 Out EppAddressPort, &HAA
 TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
 ByteRead = Inp(EppAddressPort)
 TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
 If ByteRead = &HAA Then
 TestForEpp = True
 End If
End If
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 7 of 14)

Chapter 4

74 Parallel Port Complete

Function TestForPS2%(TestAddress%)
‘Tests a parallel port’s Data port for bidirectional ability.
‘First, try to tri-state (disable) the Data outputs by
‘setting bit 5 of the Control port.
‘Then write 2 values to the Data port and read each back
‘If the values match, the Data outputs are not disabled,
‘and the port is not bidirectional.
‘If the values don’t match,
‘the Data outputs are disabled and the port is bidirectional.
Dim DataInput%
Dim ControlPortData%
Dim OriginalControlPortData%
Dim OriginalDataPortData%

‘Set Control port bit 5.
ControlPortWrite TestAddress, &H2F
TestForPS2 = False
‘Write the first byte and read it back:
DataPortWrite TestAddress, &H55
DataInput = DataPortRead(TestAddress)
‘If it doesn’t match, the port is bidirectional.
If Not DataInput = &H55 Then TestForPS2 = True
‘If it matches, write another and read it back.
If DataInput = &H55 Then
 DataPortWrite TestAddress, &HAA
 DataInput = DataPortRead(TestAddress)
 ‘If it doesn’t match, the port is bidirectional
 If Not DataInput = &HAA Then
 TestForPS2 = True
 End If
End If
‘Reset Control port bit 5
ControlPortWrite TestAddress, &HF
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 8 of 14)

Programming Tools

Parallel Port Complete 75

Function TestForSpp%(TestAddress%)
‘Write two bytes and read them back.
‘If the reads match the writes, the port exists.
Dim ByteRead%
‘Be sure that Control port bit 5 = 0 (Data outputs enabled).
ControlPortWrite TestAddress, &HF
TestForSpp = False
DataPortWrite TestAddress, &H55
ByteRead = DataPortRead(TestAddress)
If ByteRead = &H55 Then
 DataPortWrite TestAddress, &HAA
 ByteRead = DataPortRead(TestAddress)
 If ByteRead = &HAA Then
 TestForSpp = True
 End If
End If
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 9 of 14)

Chapter 4

76 Parallel Port Complete

Function TestPort%(PortIndex%)
‘Test for a port’s presence, and if it exists, the type of port.
‘In order, check for presence of ECP, EPP, SPP, and PS/2 port.
‘Update the information in the Port array and the display.
Dim EcpModeDescription$
Dim EcpModeValue%
Dim TestAddress%
TestPort = False
EcpExists = False
EppExists = False
SppExists = False
PS2Exists = False
PortType = ““
TestAddress = Port(PortIndex).Address
‘Begin by hiding all port details.
frmSelectPort.lblAddress(PortIndex).Visible = False
frmSelectPort.lblType(PortIndex).Visible = False
frmSelectPort.cboEcpMode(PortIndex).Visible = False
EcpExists = TestForEcp(TestAddress)
If EcpExists Then
 PortType = “ECP”
 ‘Read the current Ecp mode.
 EcpModeValue = ReadEcpMode(TestAddress)
Else
 ‘If it’s not an ECP, look for an EPP.
 ‘If TestAddress = 3BCh, skip the EPP test.
 ‘EPPs aren't allowed at 3BCh due to possible conflict
 ‘with video memory.
 frmSelectPort.cboEcpMode(PortIndex).Visible = False
 If TestAddress = &H3BC Then
 EppExists = False
 Else
 EppExists = TestForEpp(TestAddress)
 End If
 frmSelectPort.cboEcpMode(PortIndex).Visible = False
 EppExists = TestForEpp(TestAddress)
 If EppExists Then
 PortType = “EPP”

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 10 of 14)

Programming Tools

Parallel Port Complete 77

 Else
 ‘If it’s not an EPP, look for an SPP.
 SppExists = TestForSpp(TestAddress)
 If SppExists Then
 ‘Test for a PS/2 port only if the SPP exists
 ‘(because if the port doesn’t exist,
 ‘it will pass the PS/2 test!)
 PS2Exists = TestForPS2(TestAddress)
 If PS2Exists Then
 PortType = “PS/2”
 Else
 PortType = “SPP”
 End If
 Else
 PortType = ““
 End If
 End If
End If

If PortType = ““ Then
 frmSelectPort.optPortName(PortIndex).Enabled = False
 Port(PortIndex).PortType = ““
 Port(PortIndex).Address = 0
 Port(PortIndex).Enabled = False
Else
 TestPort = True
 Port(PortIndex).Enabled = True
 Port(PortIndex).PortType = PortType
 Port(PortIndex).Enabled = True
 If EcpExists Then
 Port(PortIndex).EcpModeValue = EcpModeValue
 Port(PortIndex).EcpModeDescription = _
 GetEcpModeDescription(EcpModeValue)
 End If
End If
UpdateLabels
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 11 of 14)

Chapter 4

78 Parallel Port Complete

Sub UpdateLabels()
‘Use the information in the Port array to update the display.
Dim Index%
Dim EcpModeValue%
For Index = 0 To 3
 frmSelectPort.lblAddress(Index).Caption = _
 Hex$(Port(Index).Address) + “h”
 If Port(Index).Enabled = True Then
 frmSelectPort.optPortName(Index).Enabled = True
 frmSelectPort.lblAddress(Index).Visible = True
 frmSelectPort.lblType(Index).Caption = _
 Port(Index).PortType
 frmSelectPort.lblType(Index).Visible = True
 If Port(Index).PortType = “ECP” Then
 EcpModeValue = ReadEcpMode(Port(Index).Address)
 frmSelectPort.cboEcpMode(Index).ListIndex = _
 EcpModeValue
 Port(Index).EcpModeValue = EcpModeValue
 Port(Index).EcpModeDescription = _
 GetEcpModeDescription(EcpModeValue)
 frmSelectPort.cboEcpMode(Index).Visible = True
 Else
 frmSelectPort.cboEcpMode(Index).Visible = False
 End If
 Else
 frmSelectPort.optPortName(Index).Enabled = False
 frmSelectPort.lblAddress(Index).Visible = False
 frmSelectPort.lblType(Index).Visible = False
 frmSelectPort.cboEcpMode(Index).Visible = False

 End If
Next Index
End Sub

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 12 of 14)

Programming Tools

Parallel Port Complete 79

Sub WriteIniData()
Dim BaseAddressWrite%
Dim PortTypeWrite%
Dim Index%
Dim IniWrite

‘Use Windows API call WritePrivateProfileString to save
‘initialization information.
‘If the ini file doesn’t exist, it will be created and stored in
‘the Windows directory.

‘The port addresses:
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port0Address”, CStr(Port(0).Address), IniFile)
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port1Address”, CStr(Port(1).Address), IniFile)
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port2Address”, CStr(Port(2).Address), IniFile)
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port3Address”, CStr(Port(3).Address), IniFile)

‘The port types:
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port0Type”, Port(0).PortType, IniFile)
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port1Type”, Port(1).PortType, IniFile)
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port2Type”, Port(2).PortType, IniFile)
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port3Type”, Port(3).PortType, IniFile)

‘Port enabled?
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port0Enabled”, CStr(Port(0).Enabled), IniFile)
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port1Enabled”, CStr(Port(1).Enabled), IniFile)
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port2Enabled”, CStr(Port(2).Enabled), IniFile)
IniWrite = WritePrivateProfileString _
(“lptdata”, “Port3Enabled”, CStr(Port(3).Enabled), IniFile)

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 13 of 14)

Chapter 4

80 Parallel Port Complete

For a short test routine, you can just place the port address in the code:

Out &H378, &HAA

Or, you can set a variable equal to the port's address, and use the variable name in
the program code:

BaseAddress = &H378
Out BaseAddress, &HAA

Using a variable has advantages. If the port address changes, you need to change
the code in just one place. And for anyone reading the code, a descriptive variable
name is usually more meaningful than a number.

Most programs will run on a variety of computers, and even on a single computer,
the port that a program accesses may change. In this case, it’s best to allow the
software or user to select a port address while the program is running.

The Port Menu
In Figure 4-1, the startup form contains a Port item in the Setup menu. Clicking on
Port brings up a form that enables users to find, test, and select ports. Clicking on
Find Ports causes the program to look for a port at each of the three standard port
addresses. If a port exists, the program tests it to find out whether it’s an SPP,

‘Find the selected port and save it:
Index = 4
Do
Index = Index - 1
Loop Until (frmSelectPort.optPortName(Index).Value = True) _
Or Index = 0
IniWrite = WritePrivateProfileString(“lptdata”, _
 “IndexOfSelectedPort”, CStr(Index), IniFile)
End Sub

Function VbGetPrivateProfileString$(section$, key$, file$)
 Dim KeyValue$
 ‘Characters returned as integer in 16-bit, long in 32-bit.
 Dim Characters
 KeyValue = String$(128, 0)
 Characters = GetPrivateProfileStringByKeyName _
 (section, key, ““, KeyValue, 127, file)
 KeyValue = Left$(KeyValue, Characters)
 VbGetPrivateProfileString = KeyValue
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file. (Sheet 14 of 14)

Programming Tools

Parallel Port Complete 81

PS/2-type, EPP, or ECP. If it’s ECP, the program displays a combo box that
shows the currently selected ECP mode, which the user can change.

To select a port, you click its option button. The Test Port command button tests
an individual port and displays the result.

You can also use the routines to test a port under program control. For example, if
you're writing a program that will run on many different computers, you may want
the software to detect the port type so it can choose the best communications
mode available.

Adding a Non-standard Port
The Add A Port command button brings up a form that allows you to enter an
address of a user port with a non-standard address. You can then use Test Port to
determine its type.

Detecting an ECP
In testing a port, you might think that the first step would be to test for an SPP,
and work your way up from there. But if the port is an ECP, and it happens to be
in its internal SPP mode, the port will fail the PS/2 (bidirectional) test. For this
reason, the TestPort routine in Listing 4-4 begins by testing for an ECP.

An ECP has several additional registers. One of these, the extended control regis-
ter (ECR) at base address + 402h, is useful in detecting an ECP.

[lptdata]
Port0Address=888
Port1Address=632
Port2Address=0
Port3Address=256
Port0Type=ECP
Port1Type=SPP
Port2Type=
Port3Type=SPP
Port0Enabled=-1
Port1Enabled=-1
Port2Enabled=0
Port3Enabled=-1
IndexOfSelectedPort=1

Listing 4-5: The contents of an ini file that stores information about the system
ports.

Chapter 4

82 Parallel Port Complete

Microsoft’s ECP document (see Appendix A) recommends a test for detecting an
ECP. First, read the port’s ECR at and verify that bit 0 (FIFO empty) =1 and bit 1
(FIFO full) =0. These bits should be distinct from bits 0 and 1 in the port’s Control
register (at base address + 2). You can verify this by toggling one of the bits in
the Control register, and verifying that the corresponding bit in the ECR doesn’t
change. A further test is to write 34h to the ECR and read it back. Bits 0 and 1 in
the ECR are read-only, so if you read 35h, you almost certainly have an ECP.

If an ECP exists, you can read and set the port’s internal ECP mode in bits 5, 6,
and 7 of the ECR. In Listing 4-4, a combo box enables users to select an ECP
mode when a port is ECP. Chapter 15 has more on reading, setting, and using the
ECP’s modes.

Detecting an EPP
If the port fails the ECP test, the program looks for an EPP. Like the ECP, an EPP
has additional registers. In the EPP, they’re at base address + 3 through base
address + 6. These additional registers, and the EPP’s timeout bit, provide a cou-
ple of ways to test for the presence of an EPP.

One test is to write two values to one of the EPP registers and read them back,
much as you would test for an SPP. If there is no EPP-compatible peripheral
attached, the port won’t be able to complete the EPP handshake. When the trans-
fer times out, the state of the Data port and the EPP register are undefined. How-
ever, in my experiments, I was able to read back values written to an EPP register,
while other port types failed the test. This is the method used in Listing 4-4. If the
reads aren’t successful, either the port isn’t an EPP or it is an EPP but doesn’t pass
this test.

If the port’s base address is 3BCh, the routine skips the EPP test. This address
isn’t used for EPPs because the added EPP registers (3BFh–3C3) may conflict
with video memory. One such conflict is register 3C3h, which may contain a bit
that enables the system’s video adapter. Writes to this register can blank the
screen and require rebooting!

Another possible test is to detect the EPP’s timeout bit, at bit 0 of the Status port
(base address + 1). On ports that aren’t EPPs, this bit is unused. On an EPP, if a
peripheral doesn’t respond to an EPP handshake, the timeout bit is set to 1. If you
can detect the setting of the timeout bit, then clear the bit and can read back the
result, you almost certainly have an EPP.

The problem with using the timeout bit to detect an EPP is that ports vary in how
they implement the bit. On some EPPs (type 1.9), the timeout bit is set if you
attempt an EPP transfer with nothing attached to the port. On others (type 1.7), to
force a timeout you must tie nWait (Busy, or Status port bit 7) low. Ports also vary

Programming Tools

Parallel Port Complete 83

in the method required to clear the timeout bit. On some ports, you clear the bit to
0 by writing 1 to it. On others, reading the Status port twice clears the bit. And it’s
possible that on still other ports, you clear the bit in the conventional way, by writ-
ing 0 to it.

So, to use the timeout bit to detect an EPP, you need to bring Status bit 7 low (in
case it’s type 1.7), then attempt an EPP read or write cycle, by writing a byte to
base address + 3, for example. Then read the timeout bit. If it’s set to 1, write
both 1 and 0 to the bit to attempt to clear it, then read the bit. If it’s zero, you have
an EPP. (You can also use this difference to detect whether an EPP is type 1.7 or
1.9.) Some controller chips, such as Intel’s 82091, don’t seem to implement the
timeout bit at all, or at least don’t document it. (The chip’s data sheet doesn’t men-
tion the timeout bit.)

Detecting an SPP
If a port fails both the ECP and EPP tests, it’s time to test for an SPP. To do this
the program writes two values to the Data port and reads them back. If the values
match, the port exists. Otherwise, the port doesn’t exist, or it’s not working prop-
erly. Also note that the port-test routine only verifies the existence of the Data
port. It doesn’t test the Status and Control lines. The other port types should also
pass this test.

Detecting a PS/2-type Port
If the port passes the SPP test, the final test is for simple bidirectional ability
(PS/2-type). The program first tries to put the port in input mode by writing 1 to
bit 5 in the port's Control register (base address + 2). If the port is bidirectional,
this tri-states the Data port’s outputs. Then the test writes two values to the Data
port and reads each back. If the outputs have been tri-stated, the reads won’t
match what was written, and the port is almost certainly bidirectional. If the reads
do match the values written, the program is reading back what it wrote, which tells
you that the Data-port outputs weren’t disabled and the port isn’t bidirectional.

An ECP set to its internal PS/2 mode should also pass this bidirectional test. Some
EPPs support PS/2 mode, while other don’t. You should test for a PS/2-type port
only after you’ve verified that a port exists at the address. Because the PS/2 test
uses the failure of a port read to determine that a port is bidirectional, a non-exis-
tent port will pass the test!

Using the Port Information
The program stores information about the ports in a user-defined array. For each
port, the array stores the base address, port type, and whether or not it’s the

Chapter 4

84 Parallel Port Complete

selected port. For ECPs, the array also stores two values: an integer equal to the
ECP’s currently selected internal mode (as stored in the ECR) and a string that
describes the mode (“SPP”, “ECP”, etc.). The port’s array index ranges from 0 to
2, or Lpt number - 1, with the user port, if available, having an index of 3.

Applications can use the information in the port array to determine which port is
selected, and what its abilities are.

When the program ends, the ini file stores the port information. When the program
runs again, it reads the stored information into the port array. This way, the pro-
gram remembers what ports are available and which port the program used last. If
you add, remove, or change the configuration of any ports in the system, you’ll
need to click Find Ports to update the information.

Automatic Port Selection
Rather than testing each of the standard addresses to find existing ports, another
approach is to read the port addresses stored in the BIOS data area beginning at
40:00. In 16-bit programs, you can use VbAsm’s VbPeekW (See Chapter 2) to
read these addresses:

Dim PortAddress(1 to 3)%
Dim Segment%
Dim LptNumber%
‘memory segment of BIOS table
Segment = &H40
For LptNumber = 1 to 3
 Offset = LptNumber * 2 + 6
 PortAddress(LptNumber) = vbPeekw(Segment, Offset)
Next LptNumber

Autodetecting a Peripheral
An intelligent peripheral can enable an application to detect its presence automat-
ically. For example, on power-up, the peripheral might write a value to its Status
lines. The PC’s software can read each of the standard port addresses, looking for
this value, and on detecting it, the PC’s software can write a response to the Data
lines. When the peripheral detects the response, it can send a confirming value
that the PC’s software recognizes as “Here I am!” The program can then select
this port automatically, without the user’s having to know which port the periph-
eral connects to.

Experiments

Parallel Port Complete 85

5

Experiments
You can learn a lot about the parallel port by doing some simple experiments with
it. This chapter presents a program that enables you to read and control each of the
port’s 17 bits, and an example circuit that uses switches and LEDs for port exper-
iments and tests.

Viewing and Controlling the Bits

Figure 5-1 shows the form for a program that enables you to view and control the
bits in a port’s Data, Status, and Control registers. The program is based on the
form template described in Chapter 4. Listing 5-1 shows the code added to the
template for this project.

The screen shows the Data, Status, and Control registers for the port selected in
the Setup menu. Clicking the Read All button causes the program to read the three
registers and display the results. Clicking a Data or Control bit’s command button
toggles the corresponding bit and rereads all three registers. The Status port is
read-only, so it has no command buttons. On the Control port, bits 6 and 7 have no
function and can’t be written to. These bits do have command buttons, and you
can verify that the values don’t change when you attempt to toggle them. On an
SPP, Control port bit 5 is read-only, and its state is undefined. In other modes, set-

Chapter 5

86 Parallel Port Complete

ting bit 5 to 1 disables the Data outputs, so if this bit is 1, you won’t be able to tog-
gle the Data-port bits.

Circuits for Testing

Figure 5-2 Figure 5-3, and Figure 5-4 show circuits you can use to test the opera-
tion of a parallel port, using Figure 5-1’s program or your own programs.

In Figure 5-2, the port’s Data outputs each control a pair of LEDs. As you click on
a Data button, the LEDs should match the display: red for 1 and green for 0.
Instead of using LEDs, you can monitor the bits with a voltmeter, logic probe, or
oscilloscope.

In Figure 5-3, switches determine the logic states at the Status inputs. Opening a
switch brings an input high, and closing it brings the input low. After clicking
Read Ports, the display should match the switch states.

Figure 5-4 shows the Control port. As with the Data port, a pair of LEDs shows
the states of the Control outputs. On an SPP, writing 1 to a Control bit enables you
to read the state of the switch connected to that bit. If you have an ECP, EPP, or
PS/2-type port, the Control bits may be open-collector type only when in SPP

Figure 5-1: The form for the port-test program.

Experiments

Parallel Port Complete 87

Figure 5-2: Buffer and LEDs for monitoring Data outputs.

Chapter 5

88 Parallel Port Complete

Figure 5-3: Driver and switches for testing Status port.

Experiments

Parallel Port Complete 89

Figure 5-4: Buffer/driver, LEDs, and switches for Control-port testing.

Chapter 5

90 Parallel Port Complete

Sub cmdControlBitToggle_Click (Index As Integer)
‘toggle a bit at the Control port
Dim ControlPortData As Integer
ControlPortData = ControlPortRead(BaseAddress)
BitToggle ControlPortData, Index
ControlPortWrite BaseAddress, ControlPortData
ReadPorts (BaseAddress)
End Sub

Sub cmdDataBitToggle_Click (Index As Integer)
‘toggle a bit at the Data port
Dim DataPortData As Integer
DataPortData = DataPortRead(BaseAddress)
BitToggle DataPortData, Index
DataPortWrite BaseAddress, DataPortData
ReadPorts (BaseAddress)
End Sub

Sub cmdReadAll_Click ()
ReadPorts (BaseAddress)
End Sub

Listing 5-1: Code for Figure 5-1‘s program. (Sheet 1 of 2)

Experiments

Parallel Port Complete 91

mode, or not at all. If in doubt, don’t connect the 7407’s buffer outputs in Figure
5-4.

If you have a bidirectional port, you can use Figure 5-5’s circuit. It has a buffer
and switches that you can connect to bidirectional Data lines when you’re using
the lines for input. To prevent the buffer outputs from being enabled when the par-
allel port’s Data outputs are enabled, it’s best to have a way to enable and disable
the buffers’ outputs under program control. In the schematic, a Control line from
the parallel port controls the output-enable input of the buffers. Bit C3 is normally
low on bootup. An inverter brings the bit high and disables the buffers. You could
also use a manual switch to enable and disable the outputs.

Sub ReadPorts (BaseAddress As Integer)
‘Read the Data, Status, and Control ports of selected port.
‘Display the byte read and each bit in the byte.
Dim ByteRead%
Dim BitNumber%
Dim BitValue%

ByteRead = DataPortRead(BaseAddress)
frmMain.lblDataPortByte(0).Caption = Hex$(ByteRead) + “h”
For BitNumber = 0 To 7
 BitValue = BitRead(ByteRead, BitNumber)
 frmMain.lblDataBit(BitNumber).Caption = BitValue
Next BitNumber

ByteRead = StatusPortRead(BaseAddress)
frmMain.lblStatusPortByte(0).Caption = Hex$(ByteRead) + “h”
For BitNumber = 0 To 7
 BitValue = BitRead(ByteRead, BitNumber)
 frmMain.lblStatusBit(BitNumber).Caption = BitValue
Next BitNumber

ByteRead = ControlPortRead(BaseAddress)
frmMain.lblControlPortByte(0).Caption = Hex$(ByteRead) + “h”
For BitNumber = 0 To 7
 BitValue = BitRead(ByteRead, BitNumber)
 frmMain.lblControlBit(BitNumber).Caption = BitValue
Next BitNumber
End Sub

Listing 5-1: Code for Figure 5-1‘s program. (Sheet 2 of 2)

Chapter 5

92 Parallel Port Complete

Figure 5-5: Circuit for reading external inputs on a bidirectional Data port.

Experiments

Parallel Port Complete 93

The 330-ohm resistors protect the circuits on both ends of the link in case the par-
allel port’s outputs and the buffer outputs happen to be enabled at the same time.
The resistors limit the current in each line to under 15 milliamperes.

You can connect both Figure 5-2’s and Figure 5-5’s circuits to the Data port at the
same time. Connect the buffer inputs of the ’244 (pins, 2, 4, etc.) in Figure 5-2 to
the PC (parallel-port D-sub connector) side of the 330-ohm resistors in Figure 5-5.

Buffers and Drivers
The circuit uses HCTMOS-family driver/buffers at inputs D0-D7 and C0-C3 and
outputs S3-S6. Using HCT-family logic has two benefits. HCT devices have
TTL-compatible input voltages, which are compatible with the parallel-port’s out-
puts. Plus, unlike TTL logic, HCT-family outputs can both source and sink
enough current to power an LED from either a high or low output.

The outputs that drive inputs C0-C3 are 7407 open-collector buffers. One of the
remaining 7407 buffers drives S7, only because any other choice would require
adding another chip to the circuit. (You could use a 7407 in place of the ’HC14 in
Figure 5-5 as well. Just remember to add a pull-up resistor, and be aware that the
7407 doesn’t invert like the ’HC14.)

The 7407’s open-collector outputs help to protect the Control port’s outputs. Each
Control output also connects to an input buffer. In early parallel ports, the Con-
trol-port outputs were 7405 open-collector inverters with 4.7K pull-up resistors.
When an open-collector Control output is high, you can drive its input buffer with
another digital output, which you can then read at the Control register. In newer
designs, the Control outputs may be push-pull type, so if you want a design to be
usable with any port, don’t use the Control bits as inputs.

Output Types

To understand how to use the Control lines (and bidirectional Data lines) for
input, it helps to understand the circuits that connect to the port pins. Output con-
figurations common to digital logic are open-collector/open-drain, totem-pole,
push-pull, and 3-state.

Open Collector and Open Drain
Figure 5-6A shows an open-collector output. The collector of its output transistor
is open, or not connected to any circuits on-chip. To use the output, you have to
add a pull-up resistor to +5V. When the output transistor switches on, the low
resistance from the output pin to ground results in a logic-low output. When the

Chapter 5

94 Parallel Port Complete

Figure 5-6: Output types used in digital logic.

Experiments

Parallel Port Complete 95

output transistor is off, the pull-up resistor brings the output pin to +5V. Another
name for the pullup resistor is passive pullup.

An advantage to open-collector logic is the ability to tie two or more outputs
together. When any of the outputs goes low, the low resistance from the output to
ground brings the combined output low.

This arrangement is sometimes called a wired-OR output, though it actually
behaves like an OR gate only if you assume negative logic, where a low voltage is
a logic 1 and a high voltage is logic 0. Using the more common positive logic, if
the individual gates are non-inverting buffers, the circuit behaves like an AND
gate: any low input brings the combined output low. If the gates are inverters, the
circuit is a NOR gate: any high input brings the combined output low.

You can use the ability to tie outputs together to create a bidirectional data line.
Figure 5-7 shows an example of a link with two nodes. Each node has an
open-collector output and an input buffer. When 1 is written to Aout, the input
buffers follow Bout. When 1 is written to Bout, the input buffers follow Aout.
With this arrangement, you can send data in either direction, one way at a time. If
both nodes’ outputs are low at the same time, the inputs will be low, and the
pull-up resistor will limit the current.

In a link with multiple lines like this, you can configure the individual bits at each
node to act as inputs or outputs according to the needs of your circuit.

Figure 5-7: A simple way to make a bidirectional link is to use open-collector
drivers. When Aout is high, Ain follows Bout. When Bout is high, Bin follows Aout.

Chapter 5

96 Parallel Port Complete

A disadvantage to open-collector logic is its slow switching speed. When an out-
put switches from low to high, the cable’s capacitance has to charge through the
resistance of the pull-up. The larger the resistance, the more slowly the output
voltage changes.

In CMOS components, the equivalent to open-collector is the open-drain output.
An example is the 74HCT03, a CMOS quad NAND gate with open-drain outputs.
The technology is different, but the operation is much the same.

Some NMOS and CMOS devices have outputs that behave in a way similar to
open-collector or open-drain outputs. Instead of an external, passive pull-up, this
type of device has an internal transistor with a high resistance that acts as weak,
active pull-up. As with open-collector logic, writing 1 to this type of output
enables you to read an external logic signal at the bit. The ports on the 8051 and
80C51 microcontrollers are examples of this type of output. Another name for
these outputs is quasi-bidirectional.

Totem Pole
In contrast to open-collector logic, many LSTTL devices use a type of output
called totem pole, with two transistors stacked one above the other. Figure 5-6B
illustrates. When the output is low, the bottom transistor conducts, creating a
low-resistance path from the output to ground, as in an open-collector output.
When the output is high, the top transistor conducts, creating a low-resistance path
to +5V. The original parallel port used the totem-pole outputs of a 74LS374 to
drive the Data lines (D0-D7).

In TTL logic, the resistance from a logic-high output to +5V is greater than the
resistance of a logic-low output to ground, so a totem-pole output can sink more
current to ground than it can source from +5V.

Their lower output resistance means that as a rule, totem-pole outputs can switch
faster than open-collector outputs. But it also means that the outputs aren’t suit-
able for bidirectional links. If you tie two totem-pole outputs together, if one is
high and the other is low, you have one output with a low resistance to +5V and
another with a low resistance to ground. The result is an unpredictable logic level
and large currents that may destroy the components involved.

Tying a totem-pole output to an open-collector output is OK as long as the
open-collector output stays high. If the open-collector output goes low and the
totem-pole output is high, you can end up with the same high current and unpre-
dictable result.

On the parallel port, you can avoid the problem by using only open-collector out-
puts to drive the Control-port inputs on the parallel port. If you do connect a

Experiments

Parallel Port Complete 97

totem-pole output to an open-collector output, a 330-ohm series resistor in the line
will protect the circuits (though it will slow the switching speed).

Push-pull
Outputs on most digital CMOS logic chips have complementary outputs that are
similar to totem-pole, except that the current-sourcing and sinking abilities of the
outputs are equal. This type of output is called push-pull.

3-state
A third type of output is 3-state, or tri-state, which has a control signal that dis-
ables the outputs entirely. For all practical purposes, disabling, or tri-stating, an
output electrically disconnects it from any circuits it physically connects to. Fig-
ure 5-6C illustrates. When the Output Enable line (OE) is low, the output follows
the input. When OE is high, both output transistors are off and the output has no
effect on external circuits.

Outputs that connect to computer buses are often 3-state, with address-decoding
circuits controlling the output-enable pins. This enables memory chips and other
components to share a data bus, with each enabled only when the computer selects
the component’s addresses.

As with totem-pole logic, if two connected 3-state outputs are on at the same time,
the result will be unpredictable. If you can’t guarantee the behavior of the outputs
in your circuit, open-collector is the safest choice.

Three-state logic also requires an extra input to control each set of outputs. One
output-enable bit typically controls all of the bits in a data bus. With open-collec-
tor logic, you can easily configure individual bits as either inputs or outputs, with
no extra control lines required.

Component Substitutions

If you don’t have the exact chips on hand for the circuits in this chapter, you can
substitute. With some cautions, you can use almost any HC, HCT, or TTL/LSTTL
inverters in many simple circuits. The buffer/driver chips are recommended
because they have stronger drivers and their inputs have hysteresis, which gives a
clean output transition even when an input is noisy or changes slowly. If you use
the Control port for input, open-collector drivers will protect the circuits, as
described above.

Chapter 5

98 Parallel Port Complete

Logic Families
If you use a 74HC-family buffer instead of the 74HCT244 at D0-D7, add a 10K
pullup resistor from each buffer’s input to +5V. The pullup ensures that the port’s
outputs will go high enough to meet the 74HC-family’s minimum for a logic high.
If you don’t use a pullup, the circuit will probably work. However, a logic-high
TTL output is usually guaranteed to be just 2.4V, while 5V HC-family logic
requires at least 3.5V for a logic-high input. HCT-family logic is designed to work
with TTL logic voltages, so pull-ups aren’t needed.

The Control outputs should already be pulled up by the port circuits, so you
shouldn’t have to add pullups to them.

You can use a 74LS244 buffer instead of the 74HCT244, but because TTL logic
can sink, but not source, enough current to drive an LED, remove the red LEDs
and their current-limiting resistors. The green LEDs will light when the corre-
sponding outputs are low, and they will be off when the corresponding outputs are
high.

If you use 74HCT240 inverting buffers, swap the red and green LEDs. (Be sure to
keep the polarity of the LEDs correct. The cathode always connects to the more
negative voltage.) With inverters, the switches will read 1 when closed and 0
when open.

Switches and Power Supplies
You can use any SPST (single-pole, single-throw) toggle or slide switches to con-
trol the Data, Status, and Control inputs. Power the circuit with any +5V supply
that can provide at least 300 milliamperes. (The LEDs use most of the current.)

Inverting Bits in Hardware
One reason you might use inverters for some of the bits is to reinvert the bits that
the port’s circuits invert between the connector and the register where you read
the port. If you use inverting buffers and drivers for just these bits, you don’t have
to reinvert bits in software when you read or write to the ports.

For example, in Figure 5-3 you could replace bit 7’s buffer with an inverting
buffer such as a 7405. If the inverter is an ordinary LSTTL or HCMOS logic gate
(not a driver), wire the inverter’s output to the 7407’s input, and let the 7407 drive
the line.

You could also invert the signal by replacing the normally open switch with a nor-
mally closed one. Or rewire the normally open switch with a pull-down resistor
instead of a pull-up, so that an open switch is logic-low rather than logic-high.
With TTL and HCTMOS inputs, however, a pull-up resistor gives better noise
immunity. (Noise is usually a greater problem when the switch is open. With a

Experiments

Parallel Port Complete 99

pull-up, there’s a 3V difference between +5V and the minimum TTL logic-high
input of 2V. With a pull-down, there’s just 0.8V between 0V and the maximum
logic-low input.)

Using any of these approaches to reinvert the inverted signals, the values that you
write to a port will match the bits at your outputs, with no software complement-
ing required. But if you use any code that assumes that the bits will be inverted as
usual, you’ll either have to change the routines or reinvert the bits elsewhere in
your program. The examples in this book assume no special inversions in the
hardware.

Cables & Connectors for Experimenting

Connecting a printer or another commercial product to a parallel port is usually
just a matter of plugging the device’s cable into the computer and the printer. But
for experimenting, you need a cable that allows access to all of the lines. There are
several options, depending on whether you’re soldering or wire-wrapping compo-
nents onto perfboard, or using a solderless breadboard.

One approach is to use a standard printer cable and wire a mating Centronics con-
nector to your circuits. This is probably the best solution because you can use a
readily available shielded printer cable for the link from the computer to your
device. You can buy PC-board-mountable connectors that solder onto perfboard.
Or you can use a solder-cup connector and solder individual wires to the connec-
tor, with the other ends of the wires soldered to perfboard or plugged into a solder-
less breadboard.

Another option is to use a cable with D-sub connectors on both ends. Although
there are PC-board-mountable D-subs, the pin spacings on the connector don’t
match the 0.1" grid used by most perfboards. If you want to use perfboard, you’ll
need to look for one with a hole pattern that will accept a D-sub. Of course, if
you’re designing your own printed-circuit board, you can add holes and solder
pads for the D-sub. Or use a solder-cup D-sub and solder the individual wires to
perfboard or plug them into a breadboard.

Yet another possibility is to use ribbon cable with a dual-row socket connector
crimped onto one end, and plug the connector into a dual header soldered onto
perfboard.

For solderless breadboards, which typically have two parallel rows of contacts
spaced 0.3" apart, a convenient solution is to use a ribbon cable with a D-sub on
one end and a ribbon-cable DIP connector on the other. The DIP connector has
two rows of pins with the same spacing as a DIP IC: the pins within a row are 0.1"

Chapter 5

100 Parallel Port Complete

apart, and the rows are 0.3" or 0.5" apart. Use an IDC (insulation-displacement
connector) tool or a vise to press the cable onto the contacts. Then plug the con-
nector into a breadboard or perfboard.

It’s best to limit cable length to 10 feet if possible, 15 at most. You can try longer
cables - even much longer - and you may be able to use them without problems.
But if you stretch the limits like this, there are no guarantees. Chapter 6 has more
on cables and cable length.

Making an Older Port Bidirectional

If you have one of the older expansion cards that uses a 74LS374 for the Data out-
puts, a fairly simple modification will enable you to use the Data port for input.
Although buying a board with a true bidirectional port is a quick and inexpensive
solution, this section describes an alternative for the determined.

Cautions

First of all, be warned that this method works only with parallel-port cards that
use the TTL chips described below. Not all cards will follow the exact design of
the original port, so unless you happen to have a schematic of your card, you’ll
need to do some signal tracing with an ohmmeter to find out exactly how the sig-
nals on your card are routed. The modification requires cutting one lead on the
74LS374 and adding at least one jumper wire. You’ve been warned; proceed at
your own risk!

Second, there is one difference about cards modified with this method. The modi-
fication allows you to use Control bit 5 to enable and disable the Data outputs, as
you do on other bidirectional ports. On these other ports, you can read this bit as
well as write to it. On a port that’s modified to be bidirectional, the bit is
write-only, because the early cards have no input buffer for Control bit 5 (unless
you can find a spare buffer and wire the connections). Because of this difference,
you have to be careful not to inadvertently turn off the Data outputs by writing 1
to Control bit 5.

Reading the bit on a modified port returns a 1. This means that if you read the
Control port, then write the same value back to the port, bit 5 will be set to 1,
which disables the Data outputs. A program that writes to the Control port of a
modified port should always write 0 to Control bit 5 if the Data port is being used
for output. If the Data port is being used for input, the program should always
write 1 to Control bit 5.

Experiments

Parallel Port Complete 101

On most true bidirectional ports, you don’t have to worry about whether the Data
port is input or output. You can just read the port and write back the same value
for bit 5, and the bit won’t change.

The Circuits

Figure 5-8 shows the relevant parts in the design of a typical early parallel port.
Not shown are the Control and Status port’s input buffers or the address-decoding
and other control signals.

Lines SD0-SD7 on the expansion bus carry Data bits D0-D7. On the parallel-port
card, a 74LS245 octal transceiver buffers AD0-AD7. The lines that connect to

Figure 5-8: On many older parallel ports, you can make the Data port bidirectional
by cutting one connection and adding a jumper wire.

Chapter 5

102 Parallel Port Complete

A1-A8 on the transceiver form a bidirectional, buffered Data bus (BD0-BD7).
When the 74LS245’s direction Control input (DIR) is low, B1-B8 are inputs and
A1-A8 are outputs. When DIR is high, A1-A8 are inputs and B1-B8 are outputs.

(Most of the chips in this circuit use the numbering 1 through 8 for sets of eight
bits, but the parallel port’s Data and Control bits and the buffered data bus are
numbered beginning with 0.)

When the CPU writes to the Data port, BD0-BD7 drive the inputs of a 74LS374
octal flip-flop. The outputs of the flip-flops connect through 30-ohm resistors to
DC0-DC7 on the parallel-port connector. These lines also connect to the inputs of
a 74LS244 octal buffer, and the buffer’s outputs connect back to BD0-BD7. This
buffer is what enables you to read the last byte written to the Data port.

The ’374’s Output-Control input (OC) connects to GND, so its outputs are always
enabled. If you could disable the outputs, external signals at the connector’s
D0-D7 could drive the ’244’s inputs, and reading the Data port would tell you the
logic states of D0-D7 at the connector.

At the Control port, six bits (C0-C5) drive the inputs of a 74LS174 hex flip-flop.
Outputs Q1-Q4 connect to 7405 open-collector inverters, whose outputs are wired
to C0-C3 at the connector. Output Q5 (C4 in the Control register) controls the
interrupt-enable circuits. and output Q6 (C5) connects to nothing at all. This is the
bit you can use to enable and disable the Data outputs.

The Changes

To make the modification, you cut the connection from the 74LS374’s OC (pin 1)
to ground and instead wire this pin to Q6 (pin 15) on the 74LS174.

To break pin 1’s connection, use a wire snips to clip pin 1’s lead, then bend the
stub on the chip so it doesn’t touch the bottom of the leg it’s cut away from. Then
take a short length of insulated wire (#30 wire-wrap wire works well) and trim
1/8" or so of insulation from each end. Solder one end of the wire to the stub of
pin 1 on the ’374, and solder the other end to pin 15 on the 74LS174.

Bit C5 will then determine the port’s direction. Writing 0 to C5 enables the Data
outputs, for an output port, and writing 1 to C5 disables the outputs and allows
you to use the Data port for input. Because C5 has no input buffer, you can’t read
it; all reads of the bit will return 1.

Not all cards will follow the exact wiring of Figure 5-7. To determine the wiring
on your card, first use an ohmmeter to find the connection between SD5 and the
74LS245. The schematic shows the location of SD5 (at A4) on the card connector.
The 74LS245 may be wired with either the A or B lines connected to the expan-
sion bus, so check all 16 signal pins to find the connection.

Experiments

Parallel Port Complete 103

If you don’t find a connection, your card is too different from the original design
to speculate on here, so you’re out of luck unless you can figure out the connec-
tions yourself.

If you do find a connection, you can determine which pin on the 74LS245 is the
corresponding I/O pin. For example, in Figure 5-8, pin 13 (B6) corresponds to pin
7 (A6). (Again, the signal names are numbered from 1 to 8 rather than from 0 to
7.) This pin should connect to one of the D inputs on the 74LS174. Use an ohm-
meter to find the connection.

On one board that I modified, there was no connection from BD5 to the ’174, but
the ’174 did have an unused input. If you don’t find the connection on your board,
you can use the process of elimination to see if you have a spare input. Use an
ohmmeter to trace the existing connections from BD0-BD5 to the 74LS174. Then
determine which input remains. If you don’t see any pc-board traces connected to
this pin (check both sides of the board), chances are that it’s unused and you can
solder a wire from it to BD5 (in Figure 5-8, pin 7 of the ’245).

When you’ve found the pin, determine its corresponding Q output. For example,
in Figure 5-8, pin 14 (D6) of the ’174 corresponds to pin 15 (Q6). Wire this Q out-
put to the stub of pin 1 on the 74LS374 and you’re done. Reinstall the port card
and you’re ready to test it. (Chapter 4 has a bidirectional-test program.)

Note that the Data outputs of this port are the totem-pole outputs of a 74LS374. If
you intend to use the Data port for input, you must disable the Data outputs before
you connect external outputs to the Data lines. Otherwise, you risk damaging the
port circuits. To protect the outputs, you can add a 330-ohm series resistor on each
Data line, to limit the current in case this situation occurs. This will affect the
impedance match on the lines and limit the link’s performance at high speeds,
however.

Chapter 5

104 Parallel Port Complete

Interfacing

Parallel Port Complete 105

6

Interfacing
Because parallel-port signals may travel over cables of ten feet or more, the
cable’s design and the circuits that interface to the cable can mean the difference
between a circuit that works reliably and one that fails, if not completely and
immediately, then intermittently and unpredictably. The cable and interface can
also affect the maximum speed of data transfers. This chapter includes tips on
designing circuits that connect to the parallel port, and on choosing cables to con-
nect the circuits. There’s also a section on how and when you can use the parallel
port as a power source for low-power devices.

Port Variations

Many parallel ports use ordinary TTL logic, or at best bus drivers and buffers, as
the cable interface. On the original parallel port, a 74LS374 flip-flop drove the
eight Data lines, 7405 open-collector inverters drove the Control lines, and the
Status lines connected to inputs of LSTTL logic gates. These days there’s no way
to know exactly what components a PC or peripheral may use for its parallel-port
circuits.

Although all parallel ports have the same 17 bits, the bits can differ in characteris-
tics such as output impedance and noise immunity. Although every parallel port’s
outputs should have at least the same current-sourcing and sinking ability as the

Chapter 6

106 Parallel Port Complete

original port, some ports do have weaker drivers. A symptom of weak drivers is
when a port works only with short cables, or at low speeds. Some very low-power
devices that connect to the parallel port don’t use an external power supply, and
draw their current from the port’s outputs, and these devices may not work with
weak ports.

The outputs of many of the newer port controllers meet the improved Level 2
interface described in IEEE 1284. These ports can use cables of over 30 feet, if
they connect to another Level 2 device.

Drivers and Receivers

The IEEE 1284 standard specifies characteristics for parallel-port drivers and
receivers. It describes two types of devices: Level 1 devices are similar to the
design of the original parallel port, while Level 2 devices give better performance
while remaining compatible with the original interface. A port with Level-2 driv-
ers and receivers can connect to a port with Level-1 drivers and receivers without
problems, though you won’t get the full benefit of using Level 2 devices unless
they’re present on both ends of the link. Both assume a power supply of +5V.

Level 1 Devices

The specification for Level-1 drivers and receivers are met by off-the-shelf
LSTTL, TTL, and HCTMOS components, including those in the original parallel
port.

Drivers
These are the characteristics of Level 1 drivers:

Logic-high outputs: +2.4V minimum at 0.32ma source current.

Logic-low outputs: +0.4V maximum at 12ma sink current.

Pullup resistors (if used): 1.8K minimum on Control and Status lines, 1.0K mini-
mum on Data lines.

Not surprisingly, since they were the chips used in the original parallel port,
LSTTL drivers are a good choice for the Data outputs, with 7405s or similar TTL
gates for the open-collector Control outputs.

LSTTL chips characterized as buffer/drivers easily meet the requirements. These
include the 74LS24X series and the 74LS374 octal flip-flop. On the 74LS240, low
outputs are guaranteed to sink 12 milliamperes at 0.5V, and high outputs are guar-
anteed to source 3 milliamperes at 2.4V, compared to 4 and 0.4 milliamperes for
ordinary LSTTL. Table 6-1 shows chips you might use:

Interfacing

Parallel Port Complete 107

In normal operation, the outputs don’t provide their maximum rated currents con-
tinuously, but the ability to source and sink high currents means that the output
has low impedance, and this in turn implies that the output can switch quickly. As
an output switches, the voltage must charge or discharge through the cable’s
capacitance, and the lower the output impedance, the faster the voltage can
change.

Ordinary LSTTL logic gates, like the 74LS14 hex inverter, are guaranteed to sink
just 8 milliamperes at 0.4V, so these aren’t recommended for driving a parallel
cable. Standard TTL, such as the 7405, does meet the requirements. The drawback
to using standard TTL is that each chip draws 20–40 milliamperes, compared to
8–12 milliamperes for an equivalent LSTTL chip, or 15–35 milliamperes for an
LSTTL octal driver.

The HCMOS family has equivalents to most LSTTL chips. However, the data
sheets for the 74HC24X buffer/drivers don’t include enough information to guar-
antee that these chips meet the Level 1 requirements. With a power supply of
4.5V, the outputs are guaranteed to sink 6 milliamperes at 0.33V. The sink current
will be greater with a 5V supply and 0.4V output, but the data sheets don’t include
figures for these conditions. Overall, the outputs of HCMOS driver chips aren’t
are strong as LSTTL, although in most situations, they’ll work without problems.

Receivers
These are the characteristics of Level 1 receivers:

Logic-high inputs: 2.0V maximum at 0.32ma sink current.

Logic-low inputs: 0.8V minimum at 12ma source current.

Table 6-1: Level-1 driver and buffer chips for parallel-port circuits.
Drivers for the Data, Status, and Control inputs:

74LS244, 74HC(T)244 octal buffer

74LS240, 74HC(T)240 octal inverting buffer

7405, 7406 open-collector hex inverting buffer

7407, 7417 open-collector hex buffer

(Use open-collector drivers for the Control lines.)

Schmitt-trigger buffers for the Data or Control outputs:

74LS14, 74HCT14 hex inverter

74LS374 octal buffered flip-flop

74LS244 octal buffer

74LS240 octal inverting buffer

Chapter 6

108 Parallel Port Complete

Pullup resistors (if used): recommended minimum values are 470 ohms on Con-
trol and Status lines, 1000 ohms on Data lines.

Rise and fall time (between 0.8V and 2.0V): 120ns maximum.

Input limits: inputs should withstand transient voltages from -2.0V to +7.0V.

Just about any LSTTL or HCTMOS input will meet the above requirements.
HCMOS chips aren’t a good choice, however, because their minimum voltage
guaranteed for a logic-high input is 3.5V, which is 1.5V greater than the 2V
(TTL-compatible) requirement. If you do use an HCMOS chip, add a pull-up
resistor from the input to +5V. HCTMOS devices have TTL-compatible inputs, so
you don’t need the pullups.

Although the specification doesn’t mention it, Schmitt-trigger inputs will give
greater noise immunity. A Schmitt-trigger input has two switching thresholds: one
that determines when the gate switches on a low to high transition, and a second,
lower, threshold that determines when the input switches on a high to low transi-
tion.

For example, the output of a 74LS14 inverter won’t go low until the input rises to
at least 1.6V. After the output switches low, it won’t go high again until the input
drops to at least 0.8V. The 0.8V hysteresis, or difference between the two thresh-
olds, means that the input will ignore noise or ringing of up to 0.8V. The hystere-
sis also prevents the output from oscillating when a slowly changing input reaches
the switching threshold.

The inputs of the 74LS24X buffer/driver series have Schmitt-trigger inputs with
0.4V of hysteresis. However, inputs of the 74HC(T)24X equivalents are ordinary,
non-Schmitt-trigger type. (But you may decide to use HCT inputs anyway, for
lower power consumption or CMOS’s greater noise immunity.

Level 2 devices

Level 2 devices have stronger drivers and inputs with hysteresis.

Drivers
These are the characteristics of Level 2 drivers:

Logic-high outputs: +2.4V minimum at 12ma source current. This is much greater
than Level 1’s requirement of 0.32ma.

Logic-low outputs: +0.4V maximum at 12ma sink current. This is the same as the
Level-1 specification.

Driver output impedance: 45-55 ohms at the measured (VOH - VOL).

Driver slew rate: 0.05 to 0.40 V/nsec.

Interfacing

Parallel Port Complete 109

Ordinary LSTTL drivers can’t sink enough current to meet the specification.
HC(T)MOS devices have equal source and sink currents, but aren’t strong enough
to meet the standard’s minimum. The outputs of many of the new controller chips,
including those from SMC and National, do meet the Level-2 requirements.

For simple parallel-port I/O with a Level-2 interface, you can use National’s
74ACT1284 IEEE 1284 transceiver, which, as the name suggests, is designed spe-
cifically as a parallel-port interface. Figure 6-1 shows the chip and pinout. It
includes four bidirectional lines and three one-way buffer/drivers. A Direction
input (DIR) sets the direction of the bidirectional lines. A high-drive-enable input
(HD) determines whether the B-side outputs are open-drain or push-pull type.

You can wire the 74ACT1284’s in any of a number of ways, depending on your
application. For example, using three chips, you could use eight bidirectional bits
for the Data lines, four more for the Control lines, and use five of the remaining
bits for Status inputs, with four bits left over. For bidirectional use, the Control
outputs can emulate the original port’s open-collector design. If you don’t need

Figure 6-1: National’s 74ACT1284 is a transceiver with seven lines that meet
IEEE 1284’s Level 2 interface standard.

Chapter 6

110 Parallel Port Complete

bidirectional Control lines, you can use two chips for the Data and Status bits and
one Control bit, and use cheaper buffers for the remaining Control bits.

The 74ACT1284 is available in two surface-mount packages: an SOIC with 0.05"
lead spacing, and a very tiny SSOP with 0.025" lead spacing.

Receivers
These are the characteristics of Level 2 receivers:

Logic-high input: 2.0V maximum at 20µa sink current. (Same voltage as Level 1
devices, but much lower current.)

Logic-low input: 0.8V minimum at 20µa source current. (Same voltage as Level 1
devices, but much lower current.)

Receiver hysteresis: 0.2V minimum. Greater hysteresis, up to 1.2V, will give
greater noise immunity.

Again, many new parallel-port controller chips meet the Level-2 requirements for
receivers.

For simple I/O applications, you can use 74HCT14 Schmitt-trigger inverters or
74HCT24X series buffer/drivers as receivers. LSTTL inputs draw too much cur-
rent to meet the requirement. The inputs of the 74ACT1284 are also suitable as
Level 2 inputs, with a minimum input hysteresis of 0.35V.

Interfacing Guidelines

When you’re designing circuits that connect to the parallel port, following some
guidelines will help to ensure that the link between the port and your device works
reliably.

General Design

These are general guidelines for interfacing digital logic to a cable:

Use plenty of decoupling capacitors. Connect a capacitor from +5V to ground
near each IC that connects to the cable. Use a type with good high-frequency
response, such as ceramic, mica, or polystyrene. Keep the wires or traces between
the capacitor’s leads and the chip’s +5V and ground pins as short as possible. A
good, general-purpose value is 0.01µF, but the precise value isn’t critical. Also
connect a 10µF electrolytic capacitor from +5V to ground, near where the 5-volt
supply enters the board.

Interfacing

Parallel Port Complete 111

The decoupling capacitors store energy needed by the logic gates as they switch.
All logic gates draw current as they respond to changes at their inputs. When the
current can be drawn from a nearby capacitor, the gate can switch quickly, with-
out causing voltage spikes in the power-supply or ground lines. The capacitor
should be near the chip it supplies, to minimize the inductance of the loop formed
by the electrical path connecting the capacitor and the chip. Lower inductance
means faster response.

The large electrolytic capacitor stores energy that the smaller capacitors can draw
on to recharge.

Buffer all clock and control signals. Add buffers like those in Table 6-1 to help
isolate clock and control signals from noise on the cable. Critical signals include
inputs and outputs of flip-flops, counters, and shift registers. Some chips, like the
74LS374 octal flip-flop, have buffered outputs on-chip.

Use the slowest logic family possible. LSTTL and HCTMOS chips are fine for
many links. Higher-speed logic can cause unwanted transmission-line effects
(described below).

Don't leave CMOS inputs open. If you have unused inputs, tie them to +5V or
ground. A floating CMOS input can cause the chip to draw large amounts of cur-
rent. You can leave unused TTL inputs open, or pull them high with a 4.7K pullup
resistor. Without the pullup, a TTL input will float at around 1.1 to 1.4V, which is
usually treated as a logic high, though it’s less than the 2V minimum specification
for a logic high input. An open TTL input won’t draw large currents like CMOS
can, however.

Port Design

These guidelines apply specifically to PC parallel-port interfaces:

Status line cautions. If you’re using DOS interrupts or other LPT functions to
access the port, tie S3 high and S5 and S7 low (unless you’re using these bits for
their intended purposes). The BIOS interrupt requires only S7 to be low.

Control line cautions. Use the Control bits as inputs on the PC only on SPPs or
ports that emulate the SPP. If you do use the Control lines as inputs, drive them
with open-collector outputs. This will protect the port’s circuits if a low Con-
trol-port output should connect to a high output. If you don’t use open collector
devices, place a 330-ohm resistor in series with each Control line.

Bidirectional data cautions. Use series resistors to protect the outputs when you
use a bidirectional Data port for input. (Some controllers have current-limiting
circuits that protect against damaging currents, but this isn’t guaranteed.)

Chapter 6

112 Parallel Port Complete

Cable Choices

Parallel-port cables may vary in connector type, shielding, the arrangement of the
wires in the cable, and the number of ground wires.

Connectors

The IEEE-1284 standard describes both the PC’s D-sub connector and the Cen-
tronics connector found on many peripherals. It describes the conventional uses
for the connectors—a female D-sub on the PC and female Centronics connector
on the peripheral—but it doesn’t recommend a particular connector for either
device. The standard does recommend using connectors with metal shells for
shielding continuity.

The standard calls the D-sub the 1284-A connector, and the Centronics connector,
the 1284-B. The standard also introduces a new connector, the 1284-C. It’s a
36-contact connector similar to the Centronics type, but more compact, with the
contacts on 0.05" centers rather than 0.85". With this connector, the standard rec-
ommends using female (receptacle) connectors on both the host and peripheral,
with male (plug) connectors on the cable. Table 6-2 shows the pin assignments
for all of the connectors.

Figure 6-2 shows the pin numbering for the connectors. The pin numbers are
labeled on most connectors, but the labeling typically consists of tiny,

Figure 6-2: Parallel-port devices and cables may use any of these connector
types.

Interfacing

Parallel Port Complete 113

hard-to-read numbers molded into the cable shell. Use bright light and a magni-
fier!

Cable Types

For a non-critical, low-speed link with a short cable, you can use just about any
assortment of wires and connectors without problems. For example, if you’re
using the parallel port’s inputs to read manual switches and using the outputs to

Table 6-2: Pin assignments for D-sub, Centronics, and IEEE 1284C connectors.
Signal Name Register

bit
Signal Pin Ground Return Pin

D-sub
(IEEE
1284-A)

Centron-
ics (IEEE
1284-B)

IEEE
1284-C

D-sub
(IEEE
1284-A)

Centron-
ics (IEEE
1284-B)

IEEE
1284-C

Data bit 0 D0 2 2 6 19 20 24

Data bit 1 D1 3 3 7 19 21 25

Data bit 2 D2 4 4 8 20 22 26

Data bit 3 D3 5 5 9 20 23 27

Data bit 4 D4 6 6 10 21 24 28

Data bit 5 D5 7 7 11 21 25 29

Data bit 6 D6 8 8 12 22 26 30

Data bit 7 D7 9 9 13 22 27 31

nError (nFault) S3 15 32 4 23 29 22

Select S4 13 13 2 24 28 20

PaperEnd S5 12 12 5 24 28 23

nAck S6 10 10 3 24 28 21

Busy S7 11 11 1 23 29 19

nStrobe C0 1 1 15 18 19 33

nAutoLF C1 14 14 17 25 30 35

nInit C2 16 31 14 25 30 32

nSelectIn C3 17 36 16 25 30 34

HostLogicHigh 18 18

PeriphLogicHigh 36 36

Chapter 6

114 Parallel Port Complete

light LEDs, it doesn’t really matter if the signals change slowly or have a few
glitches as they switch.

At other times, especially at higher speeds and over longer cables, cable design
may mean the difference between a link that works reliably and one that doesn’t.

Some interfaces are designed to be able to carry signals over long cables. In an
RS-232 serial link, the drivers use large voltage swings and limited slew rates (the
rate at which the output switches) to help provide a good-quality signal at the
receiver. The RS-485 serial interface use differential signals, where the transmit-
ting end sends both the signal and its inverse and the receiving end detects the
voltage difference between the two. An advantage to this type of transmission is
that any noise common to both lines cancels out.

When you’re using the PC’s parallel port, you have to make do with many of the
limits built into the design. IEEE 1284’s Level 2 drivers and receivers are
improved over the original design, but the improvement isn’t dramatic because
the Level-2 components are designed to be compatible with the original interface.
You still can’t use the parallel port for a 100-foot link. There are some things you
can do to ensure reliable communications, however.

Ground Returns

Most importantly, even though you might get by with just 18 wires in a paral-
lel-port cable, a full 25-wire cable is better, and a 36-wire twisted-pair cable is
better still.

In all circuits, current must flow back to its source. In a cabled link, the ground
wires provide the return path for the current. Although you may think of a ground
wire as having no voltage, every wire has some impedance, and current in the wire
induces a voltage. When multiple signals share a ground return, each of the inputs
sees the ground voltages caused by all of the others.

In the original Centronics interface, most signals had their own ground returns,
with the signal wire and its return forming a twisted pair in the cable. In a twisted
pair, two wires spiral around each other, with a twist every inch or so.

The PC’s D-sub connector has room for just eight ground contacts. The reduced
number of grounds is a compromise caused by the decision to use a 25-contact
connector on the PC, rather than Centronics’ 36-contact connector. A few of the
contacts are designated as ground returns for a particular signal, while others are
the ground return for two signals. Some signals have no designated ground return
at all.

If a peripheral uses a 36-contact connector, each of the shared ground wires in a
25-wire cable connects to two or three contacts. For example, the returns for

Interfacing

Parallel Port Complete 115

nStrobe and D0 share a wire. Using 1284-C connectors allows the return 36 con-
tacts on both ends.

In reality, ground currents will take the path of least resistance, and there’s no way
to guarantee that a current will flow in a particular wire. Multiple ground wires do
lower the overall impedance of the ground returns, however, and this reduces
ground currents.

If you eliminate seven of the ground wires and wire all of the ground contacts to a
single wire, the interface will probably work, most of the time, especially at low
speeds and over short distances. But a cable with at least 25 wires is preferable.

In a ribbon cable that connects to a dual header, the ground lines (18-25) alternate
with signal lines, and this helps to reduce noise in the cable. Although ribbon
cables usually aren’t shielded, they’re acceptable for low-speed, shorter links.

36-wire Cables

IEEE 1284 introduces a new cable for the parallel port. The cable contains 18
twisted pairs, with each signal line paired with its own ground return. Compared
to the original parallel cable’s 10-foot limit, the new cable may be as long as 10
meters, or 33 feet. A cable that meets the standard’s requirements may be labeled
IEEE Std. 1284-1994 compliant.

The 18th pair (at pins 18 and 36) has the only wires with new functions. The host
and peripheral each use this pair to detect the presence of the other device. At the
host, pin 18, HostLogicHigh, is a logic-high output, and pin 36 is an input with
7.5K impedance to ground. At the peripheral, pin 36, PeripheralLogicHigh, is a
logic-high output and pin 18 is the 7.5K input. When there is no device connected,
or when a device isn’t powered, the inputs read logic low. With this arrangement,
the host can read pin 36 and the peripheral can read pin 18 to detect whether or not
the opposite device is present and powered.

If you use the new cable with 1284-C connectors, each contact connects to one
wire, as Table 6-3 shows. You can also use this cable with 1284-A and -B connec-
tors. In these cases, the ground returns for two or more signals connect to a single
contact on the connector. (Even though the Centronics connector has 36 contacts,
its conventional use doesn’t include a ground return for every signal.) Table 6-4
shows the recommended wiring for a link with one D-sub and one Centronics con-
nector. Other combinations of connectors can use similar wiring schemes, with
each signal wire twisted with its ground wire.

Chapter 6

116 Parallel Port Complete

Table 6-3: Wiring for a 36-wire, twisted-pair cable with two IEEE 1284-C
connectors.
Cable
Pair

Host Peripheral

Signal Pin Pin Signal
1 S7 (Busy) 1 1 S7 (Busy)

Signal Ground (S7) 19 19 Signal Ground (S7)

2 S4 (Select) 2 2 S4 (Select)

Signal Ground (S4) 20 20 Signal Ground (S4)

3 S6 (nAck) 3 3 S6 (nAck)

Signal Ground (S6) 21 21 Signal Ground (S6)

4 S3 (nError) 4 4 S3 (nError)

Signal Ground (S3) 22 22 Signal Ground (S3)

5 S5 (PaperEnd) 5 5 S5 (PaperEnd)

Signal Ground (S5) 23 23 Signal Ground (S5)

6 Data Bit 0 (D0) 6 6 Data Bit 0 (D0)

Signal Ground (D0) 24 24 Signal Ground (D0)

7 Data Bit 1 (D1) 7 7 Data Bit 1 (D1)

Signal Ground (D1) 25 25 Signal Ground (D1)

8 Data Bit 2 (D2) 8 8 Data Bit 2 (D2)

Signal Ground (D2) 26 26 Signal Ground (D2)

9 Data Bit 3 (D3) 9 9 Data Bit 3 (D3)

Signal Ground (D3) 27 27 Signal Ground (D3)

10 Data Bit 4 (D4) 10 10 Data Bit 4 (D4)

Signal Ground (D4) 28 28 Signal Ground (D4)

11 Data Bit 5 (D5) 11 11 Data Bit 5 (D5)

Signal Ground (D5) 29 29 Signal Ground (D5)

12 Data Bit 6 (D6) 12 12 Data Bit 6 (D6)

Signal Ground (D6) 30 30 Signal Ground (D6)

13 Data Bit 7 (D7) 13 13 Data Bit 7 (D7)

Signal Ground (D7) 31 31 Signal Ground (D7)

14 C2 (nInit) 14 14 C2 (nInit)

Signal Ground (C2) 32 32 Signal Ground (C2)

15 (C0) nStrobe 15 15 (C0) nStrobe

Signal Ground (C0) 33 33 Signal Ground (C0)

16 C3 (nSelectIn) 16 16 C3 (nSelectIn)

Signal Ground (C3) 34 34 Signal Ground (C3)

17 C1 (nAutoFd) 17 17 C1 (nAutoFd)

Signal Ground (C1) 35 35 Signal Ground (C1)

18 Host Logic High 18 18 Host Logic High

Peripheral Logic High 36 36 Peripheral Logic High

- Shield Shield

Interfacing

Parallel Port Complete 117

Table 6-4: Wiring for a 36-wire, twisted-pair cable with one 25-pin D-sub
(IEEE 1284-A) and one Centronics (IEEE 1284-B) connector.
Cable
Pair

Host (D-sub) Peripheral (Centronics)

Signal Pin Pin Signal
1 S7 (Busy) 11 11 S7 (Busy)

Signal Ground (S7, S3) 23 29 Signal Ground (S7)

2 S4 (Select) 13 13 S4 (Select)

Signal Ground (S4, S5, S6) 24 28 Signal Ground (S4)

3 S6 (nAck) 10 10 S6 (nAck)

Signal Ground (S4, S5, S6) 24 28 Signal Ground (S6)

4 S3 (nError) 15 32 S3 (nError)

Signal Ground (S4, S5, S6) 23 29 Signal Ground (S3)

5 S5 (PaperEnd) 12 12 S5 (PaperEnd)

Signal Ground (S4, S5, S6) 24 28 Signal Ground (S5)

6 Data Bit 0 (D0) 2 2 Data Bit 0 (D0)

Signal Ground (D0, D1) 19 20 Signal Ground (D0)

7 Data Bit 1 (D1) 3 3 Data Bit 1 (D1)

Signal Ground (D0, D1) 19 21 Signal Ground (D1)

8 Data Bit 2 (D2) 4 4 Data Bit 2 (D2)

Signal Ground (D2, D3) 20 22 Signal Ground (D2)

9 Data Bit 3 (D3) 5 5 Data Bit 3 (D3)

Signal Ground (D2, D3) 20 23 Signal Ground (D3)

10 Data Bit 4 (D4) 6 6 Data Bit 4 (D4)

Signal Ground (D4, D5) 21 24 Signal Ground (D4)

11 Data Bit 5 (D5) 7 7 Data Bit 5 (D5)

Signal Ground (D4, D5) 21 25 Signal Ground (D5)

12 Data Bit 6 (D6) 8 8 Data Bit 6 (D6)

Signal Ground (D6, D7) 22 26 Signal Ground (D6)

13 Data Bit 7 (D7) 9 9 Data Bit 7 (D7)

Signal Ground (D6, D7) 22 27 Signal Ground (D7)

14 C2 (nInit) 16 31 C2 (nInit)

Signal Ground (C1, C2, C3) 25 30 Signal Ground (C2)

15 (C0) nStrobe 1 1 (C0) nStrobe

Signal Ground (C0) 18 19 Signal Ground (C0)

16 C3 (nSelectIn) 17 36 C3 (nSelectIn)

Signal Ground (C1, C2, C3) 25 30 Signal Ground (C3)

17 C1 (nAutoFd) 14 14 C1 (nAutoFd)

Signal Ground (C1, C2, C3) 25 30 Signal Ground (C1)

18 tied together, no
connection at host

18 Host Logic High

36 Peripheral Logic High

- Shield Shield

Chapter 6

118 Parallel Port Complete

Reducing Interference

Interference occurs in a cabled link when signals couple from one wire into
another, either within a cable or between a cable and a signal outside the cable.
The coupling may be capacitive, inductive, or electromagnetic. Capacitive cou-
pling occurs when an electric field, such as that generated by a voltage on a wire,
interacts with an adjacent electric field. Inductive, or magnetic, coupling occurs
when a magnetic field generated by a voltage on a wire interacts with an adjacent
magnetic field. Electromagnetic coupling occurs when a wire acts as a transmit-
ting or receiving antenna for signals that radiate through the air.

You can reduce interference by shielding, or blocking, signals from entering or
leaving a wire, or by reducing the amplitude of the interfering signals.

Shielding
Metal shielding is an effective way to block noise due to capacitive, electromag-
netic, and high-frequency magnetic coupling. A good parallel-port cable will have
a metal shield surrounding the conductors and extending to the metal connectors.

The cable should have no large gaps where the conductors are unshielded. In par-
ticular, instead of a single wire, or “pigtail” connecting the shield to the connector,
the full 360 degrees of the shield should contact the connector shell. The connec-
tors in turn plug into the metal chassis of the PC or peripheral.

Solid shields provide the best protection, but they tend to be rigid and likely to
break. Many cables instead use a more flexible braided shield made by interleav-
ing bundles of thin metal strands into a shield that surrounds the wires. Although a
braided shield doesn’t cover the wires completely, it’s durable, flexible, and effec-
tive enough, especially at higher frequencies.

IEEE-1284-compliant cables have two shielding layers. A solid aluminum or
polyester foil surrounds the wires, and this is in turn surrounded by braided shield
with 85% optical covering. The shield has a 360-degree connection to the connec-
tor’s shell, which connects to the grounded chassis of both devices. The standard
also recommends wire size of AWG 28 or lower. (Lower AWG numbers indicate
larger wire diameters.)

Twisted Pairs
Using twisted pairs is another way to reduce interference in a cabled link. A
twisted pair has two insulated wires that spiral around each other with a twist
every inch or so. IEEE 1284 specifies a minimum of 36 twists per meter. The sim-
ple act of twisting results in benefits.

Interfacing

Parallel Port Complete 119

Twisting reduces magnetically coupled interference, especially from low-fre-
quency signals such as 60-Hz power-line noise. Changing voltages on a wire
cause the wire to emanate a magnetic field. The magnetic field in turn induces
voltages on wires within the field.

The fields that emanate from a signal wire and its ground return have opposite
polarities. Each twist causes the wires to physically swap positions, causing the
pair’s magnetic field to reverse polarity. The result is that the fields emanating
from the wires tend to cancel each other out. In a similar way, the twisting reduces
electro-magnetic radiation emitted by the pair.

Cable-buying Tips
Buying a cable labeled IEEE-1284 compliant is a simple way to guarantee good
cable design. Other than this, there often is no easy way to tell how many wires
are in a cable, or what type of shielding it has, if any, or whether the wires are in
twisted pairs. The connectors are normally molded to the cable, so there’s no way
to peek inside without cutting the cable apart. Some catalogs do include specifica-
tions for the cables they offer. Whatever you do, don’t mistakenly buy a 3-wire or
9-wire serial cable for parallel-port use. These cables may have 25-pin D-subs, but
because serial links rarely use all 25 lines, they often have just three or nine wires.

Line Terminations

Another factor that affects signal quality in a link is the circuits that terminate the
wires at the connector. To understand cable termination, you have to think of the
cable as more than a simple series of connections between logic inputs and out-
puts.

Transmission Lines
When a long wire carries high-frequency signals, it has characteristics of a trans-
mission line, defined as a circuit that transfers energy from a source to a load.
Because the fast transitions of digital signals contain high-frequency components,
most digital circuits are considered high frequency, even if the transmission rate
(bits per second) is slow. To ensure reliable performance, transmission lines use
line terminations, which are circuits at one or both ends that help ensure that the
signals arrive in good shape at the receiver.

In many cases, especially when the cable is short and transmission speed is slow,
an interface will work without any special attention to terminations. However,
there are basic facts about transmission lines that are helpful when you’re dealing
with a cabled interface, especially if you need to stretch the limits.

Chapter 6

120 Parallel Port Complete

At low speeds and over short distances, you can consider a short wire or PC-board
trace to be a perfect connection: a logic high or low at one end of the wire or trace
instantly results in a matching high or low at the opposite end. Most of the time,
you don’t have to concern yourself with delays, signal loss, noise, or other prob-
lems in getting a signal from an output to an input.

But when the connection is over a 10-foot or longer cable, and the signals are
short pulses with fast rise and fall times, these factors can become important. Spe-
cifically, when a cable is physically long in relation to the highest wavelength it
carries, it’s considered to be a transmission line, which behaves differently than a
cable that carries only low frequencies relative to its physical length. Transmis-
sion-line effects are significant when the wire length is greater than 1/10 to 1/20 of
the wavelength of the highest frequency signal transmitted on the wire.

A 5-Megahertz sine wave has a wavelength of 60 meters, and 1/20 of that is 3
meters, or about 10 feet, which is the length of a typical parallel cable. From this,
you might think that a parallel cable isn’t a transmission line because the parallel
port’s maximum rate of transmitting is much less than 5 Mhz. But what’s impor-
tant isn’t how often the voltages switch, but rather how quickly they switch.

This is because the frequencies that make up a digital waveform are much higher
than the bits-per-second rate of the signal. Mathematically, a square wave (a
waveform with equal, alternating high and low times) is the sum of a series of sine
waves, including a fundamental frequency plus odd harmonics of that frequency.
A 1000-Hz square wave actually consists of sine waves of 1000 Hz, 3000 Hz,
5000 Hz, and so on up.

A perfect square wave has an infinite number of harmonics and instant rise and
fall times. Real-life components can pass limited frequencies, and their outputs
require time to switch. A signal with fast rise and fall times will contain higher
harmonics than a similar signal with slower rise and fall times. Parallel-port sig-
nals usually aren’t square waves, but the principles apply generally to digital
waveforms.

LSTTL and HCMOS logic are fast enough that transmission-line effects can be a
factor on a parallel cable. Whether or not the effects will cause errors in an appli-
cation depends in part on the bits-per-second rate of the transmitted signal and
also on the hardware and software that detects and reads the signals. In a slow,
short link that allows time between when an output switches and when the corre-
sponding input is read, the software probably won’t see any transmission-line
effects, which occur mainly as the outputs switch. If you’re pushing a link to its
limit with either a long cable or high transmitting frequencies, you may have to
consider the effects of the cable.

Interfacing

Parallel Port Complete 121

Characteristic Impedance
One way that a transmission line differs from other connections is that the trans-
mission line has a characteristic impedance. Measuring the characteristic imped-
ance of a wire involves more than a simple measurement with an ohmmeter. The
characteristic impedance is a function of the wire’s diameter, insulation type, and
the distance between the wire and other wires in the cable.

It doesn’t, however, change with the length of the wire. This seems to violate a
fundamental rule of electronics, which says that a longer wire has greater resis-
tance from end-to-end than a shorter one. But in most transmission lines, wire
length isn’t a major factor.

For the most efficient energy transfer from the source (output) to the load (input),
the load’s input impedance should match the characteristic impedance of the wire.
When the impedances match, all of the energy is transferred from the source to the
load and the logic level at the receiver matches the logic level at the driver.

If the impedances don’t match, some of the energy reflects back to the source,
which sees the reflection as a voltage spike. The reflections may bounce back and
forth between the source and load several times before dying out. If the receiver
reads the input before the reflections die out, it may not read the correct logic
level, and in extreme cases, high-voltage reflections can damage the components.

If you’re designing an interface from the ground up, you can specify terminations
to match your design. But with the parallel port, things aren’t as straightforward,
because the driver and receiver components can vary. The wrong termination can
cause reflected signals and errors in reading the inputs, or it may just slow the sig-
nal transitions and reduce the port’s maximum speed.

Cable manufacturers often specify the characteristic impedance of their products.
Typical values for twisted-pair and ribbon cable are around 100 to 120 ohms.

Example Terminations
A line termination may be located at the output, or source, or at the input, or
receiver. In a bidirectional link, each end may have both a source and receiver ter-
mination.

Figure 6-3A shows a termination used on some ports. A series resistor at the
driver and a high-impedance receiver cause an impedance mismatch that, amaz-
ingly, results in a received voltage that equals the transmitted voltage. The series
resistor should equal the cable’s characteristic impedance, minus the output
impedance of the driver. Many parallel ports use series resistors of 22 to 33 ohms.
You can add similar resistors in series with outputs that you use to drive the Status
or Control inputs on a PC’s port.

Chapter 6

122 Parallel Port Complete

When the driver switches, half of the output voltage drops across the combination
of the series resistor and the driver’s output impedance, and the other half reaches
the receiver’s input. Losing half of the output voltage doesn’t sound like a good
situation, but in fact, the mismatch has a desirable effect.

On a transmission line, when a signal arrives at a high-impedance input, a voltage
equal to the received signal reflects back onto the cable. The reflection plus the
original received voltage result in a signal equal to the original voltage, and this
combined voltage is what the receiver sees. The reflected voltage travels back to
the source and drops across the source impedance, which absorbs the entire
reflected signal and prevents further reflections.

The impedance match doesn’t have to be perfect, which is a good thing because
it’s unlikely that it will be. The driver’s output impedance varies depending on the
output voltage and temperature, so an exact match is impossible. If the impedance

Figure 6-3: Line terminations for parallel-port cables.

Interfacing

Parallel Port Complete 123

at the source doesn’t exactly match the cable’s impedance, the signal at the
receiver won’t exactly match the original, and small reflections may continue
before dying out. In general, an output impedance slightly smaller than the cable
impedance is better than one that is slightly larger.

Figure 6-3B shows another option, an end termination at the receiver, consisting
of a resistor and capacitor in series between the signal wire and ground. The resis-
tor equals the characteristic impedance of the wire, and the capacitor presents a
low impedance as the output switches. Unlike some other input terminations, this
one is usable in both TTL and CMOS circuits. However, this type of termination
doesn’t work well with a series termination at the driver, because the series termi-
nation is designed to work with a high-impedance input. Because many paral-
lel-port outputs have series terminations built-in, it’s best not to use this end
termination unless you’re designing for a specific port that you know can use it
effectively.

Figure Figure 6-3C shows IEEE 1284’s recommended terminations for a Level-2
bidirectional interface. The standard specifies a characteristic cable impedance of
62 ohms, and assumes that each signal line will be in a twisted pair with its ground
return. The outputs have series resistor terminations. If the inputs have pull-ups,
they should be on the cable side of the source termination.

Transmitting over Long Distances

If the parallel port’s 10 to 15-foot limit isn’t long enough for what you want to do,
there are options for extending the cable length.

If the interface isn’t a critical one, and especially at slower speeds, you can just try
a longer cable and see if it works. You may be able to stretch the interface without
problems. But this approach is only recommended for casual, personal use, where
you can take responsibility for dealing with any problems that occur.

A shielded, 36-wire, twisted-pair cable allows longer links than other cables. If
you know that both the port and the device that connects to it have Level 2 inter-
faces, this type of cable should go 30 feet without problems.

Parallel-port extenders are also available from many sources. One type adds a line
booster, or repeater, that regenerates the signals in the middle of the cable, allow-
ing double the cable length. Other extenders work over much longer distances by
converting the parallel signals into a serial format, usually RS-232, RS-422, or
RS-485.

The serial links use large voltage swings, controlled slew rates, differential sig-
nals, and other techniques for reliable transmission over longer distances. You

Chapter 6

124 Parallel Port Complete

could do the same for each of the lines in a parallel link, but as the distance
increases, it makes sense to convert to serial and save money on cabling.

One drawback to the parallel-to-serial converters is that most are one way only,
and don’t include the parallel port’s Status and Control signals. You can use the
converters for simple PC-to-peripheral transfers, but not for bidirectional links.
Also, serial links can be slow. After adding a stop and start bit for each byte, a
9600-bits-per-second link transmits just 960 data bytes per second.

If you need a long cable, instead of using a serial converter, you might consider
designing your circuit to use a serial interface directly.

Port-powered Circuits

Most devices that connect to the parallel port will require their own power supply,
either battery cells or a supply that converts line voltage to logic voltages. But
some very low-power circuits can draw all the power they need from the port
itself.

When to Use Port Power

The parallel-port connector doesn’t have a pin that connects to the PC’s +5V sup-
ply, so you can’t tap directly into the supply from the connector. But if your
device requires no more than a few milliamperes, and if one or more of the Data
outputs is otherwise unused, you may be able to use the port as a power source.

As a rule, CMOS is a good choice for low-power circuits. CMOS components
require virtually no power when the outputs aren’t switching, and they usually use
less power overall than TTL or NMOS.

Powering external circuits is especially easy if the circuits can run on +3V or less.
Some components aren’t particular about supply voltage. HCMOS logic can use
any supply from +2V to +6V, with the logic high and low levels defined in pro-
portion to the supply voltage. (Minimum logic high input = 0.7(supply voltage);
maximum logic low input = 0.3(supply voltage).) National’s LP324 quad op amp
draws under 250µa of supply current and can use a single power supply as low as
+3V. If you need +5V, there are new, efficient step-up regulator chips that can
convert a lower voltage to a regulated +5V.

The parallel port’s inputs require TTL logic levels, so any logic-high outputs that
connect to the parallel-port inputs should be at least 2.4V. (Status-port inputs may
have pullups to +5V, but this isn’t guaranteed.)

Interfacing

Parallel Port Complete 125

The source for port power is usually one or more of the Data pins. If you bring a
Data output high by writing 1 to it, you can use it as a power source for other cir-
cuits. The available current is small, and as the current increases, the voltage
drops, but it’s enough for some designs.

Of course, if you’re using a Data pin as a power supply, you can’t use it as a data
output, so any design that requires all eight Data lines is out. One type of compo-
nent that’s especially suited to using parallel-port power is anything that uses a
synchronous serial interface, such as the DS1620 digital thermometer described in
Chapter 9. These require as few as one signal line and a clock line, leaving plenty
of bits for other uses.

Abilities and Limits

One problem with using parallel-port power is that the outputs have no specifica-
tion that every port adheres to. If you’re designing something to work on a partic-
ular computer, you can experiment to find out if the outputs are strong enough to
power your device. If you want the device to work on any (or almost all) comput-
ers, you need to make some assumptions. One approach is to assume that the cur-
rent-sourcing abilities of a port’s outputs are equal to those of the original port.
Most ports do in fact meet this test, and many newer ports have the more powerful
Level 2 outputs. It’s a good idea to also include the option to run on an external
supply, which may be as simple as a couple of AA cells, in case there is a port that
isn’t capable of powering your device.

On the original port, the eight Data outputs were driven by the outputs of a
74LS374 octal flip-flop. If you design for the ’374’s typical or guaranteed source
current, your device should work on just about all ports. Typical output current for
a 74LS374 is 2.6 milliamperes at 3.1V (2.4V guaranteed). A logic-low output of a
’374 can sink much more than this, but a low output doesn’t provide the voltage
that the external circuits need.

Level 2 outputs can source 12 milliamperes at 2.5V. If you know that your port
has Level 2 outputs, you have more options for using parallel-port power.

What about using the Control outputs as a power source? On the original port,
these were driven by 7405 inverters with 4.7K pullups. The pull-ups on the out-
puts make it easy to calculate how much current they can source, because the out-
put is just a 4.7K resistor connected to +5V. These outputs can source a maximum
of 0.5 milliampere at 2.5V, so the Data outputs are a much better choice as current
sources. On some of the newer ports, in the advanced modes, the Control outputs
switch to push-pull type and can source as much current as the Data outputs.

Chapter 6

126 Parallel Port Complete

Using Control bits as supplies is an option for these ports, but it isn’t practical for
a general-purpose circuit intended for any port.

I ran some informal tests on a variety of parallel ports, and found widely varying
results, as Table 6-5 shows. The port with 74LS374 outputs actually sourced
much more current than the specification guarantees, about the same as the Level
2 outputs on an SMC Super I/O controller. A port on an older monochrome video
card had the strongest outputs by far, while a port on a multifunction board was
the weakest, though its performance still exceeded the ’374’s specification.

Examples

If the exact supply voltage isn’t critical, you can use one or more Data outputs
directly as power supplies. If you use two or more outputs, add a Schottky diode
in each line to protect the outputs, as Figure 6-4 shows. The diodes prevent current
from flowing back into an output if one output is at a higher voltage. Schottky
diodes drop just 0.3V, compared to 0.7V for ordinary silicon signal diodes.

How much output current is a safe amount? Again, because the components used
in ports vary, there is no single specification. Also, because a power supply isn’t
the conventional use for a logic output, data sheets often don’t include specifica-
tions like maximum power dissipation.

The safest approach is to draw no more than 2.6 milliamperes from each output,
unless you know the chip is capable of safely sourcing higher amounts. At higher
currents, the amount of power that the driver chips have to dissipate increases, and
you run the risk of damaging the drivers.

If you need a regulated supply or a higher voltage than the port can provide
directly, a switching regulator is a very efficient way to convert a low voltage to a
steady, regulated higher (or lower) value. For loads of a few milliamperes,

Figure 6-4: You can use spare Data outputs as a power source for very low-power
devices. If you use more than one output, add a Schottky diode in series with
each line.

Interfacing

Parallel Port Complete 127

Maxim’s MAX756 step-up converter can convert +2.5V to +5V with over 80%
efficiency. Figure 6-5 shows a supply based on this chip.

As an example, assume that you want to power a circuit that requires 2 milliam-
peres at +5V, and assume that the parallel port’s Data outputs can provide 2.6 mil-
liamperes at 2.1V (2.4V minus a 0.3V drop for the diodes). This formula
calculates how much current each Data pin can provide:

(load supply (V)) * (output current (A)) =

converter efficiency * (source voltage (V)) * (source current (A))

which translates to:

5 * (output current) = 0.8 * 2.1 * (0.0026)

and this shows that each Data pin can provide just under 0.9 milliampere at +5V.
Three Data outputs could provide the required total of 2 milliamperes, with some

Table 6-5: Results of informal tests of current-sourcing ability of the Data outputs
on assorted parallel ports.
Card No Load

Voltage
Source Current at Data output
(milliamperes)

4V 3V 2V

Original-type, LS374 outputs 3.5 - 11 25

Monochrome video card, single-chip
design

4.9 18 35 35

Older multifunction card, with IDE
and floppy controller

4.9 2.7 5 7

SMC Super I/O controller 4.9 0.6 7.5 27

Figure 6-5: Maxim’s Max756 can convert a Data output to a regulated +5V or
+3.3V supply.

Chapter 6

128 Parallel Port Complete

to spare. In fact there is a good margin of error in the calculations, and you could
probably get by with two or even one output. If the port has Level 2 outputs, each
pin can source 4 milliamperes, so all you need is one pin. You can do similar cal-
culations for other loads.

The ’756 has two output options: 5V and 3.3V. The ’757 has an adjustable output,
from 2.7V to 5.5V.

The selection of the switching capacitor and inductor is critical for the MAX756
and similar devices. The inductor should have low DC resistance, and the capaci-
tor should be a type with low ESR (effective series resistance). Maxim’s data
sheet lists sources for suitable components, and Digi-Key offers similar compo-
nents. Because of the ’756’s high switching speed, Maxim recommends using a
PC board with a ground plane and traces as short as possible.

If you just need one supply, Maxim sells an evaluation kit that’s a simple, no-has-
sle way of getting one up and running. The kit consists of data sheets and a
printed-circuit board with all of the components installed.

Output Applications

Parallel Port Complete 129

7

Output Applications
One category of use for the parallel port is control applications, where the com-
puter acts as a smart controller that decides when to switch power to external cir-
cuits, or decides when and how to switch the paths of low-level analog or digital
signals. This chapter shows examples of these, plus a port-expansion circuit that
increases the number of outputs that the port controls.

Output Expansion

The parallel port has twelve outputs, including the eight Data bits and four Con-
trol bits. If these aren’t enough, you can add more by dividing the outputs into
groups and using one or more bits to select a group to write to.

Figure 7-1 shows how to control up to 64 TTL- or CMOS-compatible outputs, a
byte at a time.

U1 and U4 buffer D0-D7 and C0-C3 from the parallel port. Four bits on U4 are
unused.

U5 is a 74HCT138 3-to-8-line decoder that selects the byte to control. When U5 is
enabled by bringing G1 high and G2A and G2B low, one of its Y outputs is low.
Inputs A, B, and C determine which output this is. When CBA = 000, Y0 is low;
when CBA = 001, Y1 is low; and so on, with each value at CBA corresponding to

Chapter 7

130 Parallel Port Complete

F
ig

ur
e

7-
1:

 T
he

 e
ig

ht
 d

at
a

lin
es

 o
n

th
e

pa
ra

lle
l p

or
t c

an
 c

on
tr

ol
 6

4
la

tc
he

d
ou

tp
ut

s.
 T

he
 fo

ur
 c

on
tr

ol
 li

ne
s

se
le

ct
 a

 b
yt

e
to

w
rit

e
to

.

Output Applications

Parallel Port Complete 131

a low Y output. At the parallel port, bits C0-C2 determine the values at A, B, and
C. If G1 is low or either G2A or G2B is high, all of the Y outputs are high.

U2 is a 74HCT374 octal flip-flop that latches D0-D7 to its outputs. The Output
Control input (OC, pin 1) is tied low, so the outputs are always enabled. A rising
edge at Clk (pin 11) writes the eight D inputs to the Q outputs.

U3 is a second octal flip-flop, wired like U2, but with a different clock input. You
may have up to eight 74HCT374s, each controlled by a different Y output of U5.

To write a byte, do the following:

1. Write the data to D0-D7.
2. Bring C3 high and write the address of the desired ’374 to C0, C1, and C2 to
bring a Clk input low.
3. Bring C3 low, which brings all Clk inputs high and latches the data to the
selected outputs. You can write just one byte at a time, but the values previously
written to other ’374’s will remain until you reselect the chip and clock new data
to it.

Listing 7-1 contains program routines for writing to the outputs. Figure 7-2 shows
the form for a test program for the circuit. These demonstrate the circuit’s opera-
tion by enabling you to select a latch, specify the data to write, and write the data.

You can use HCT-family or LSTTL chips in the circuit. If you can get by with 56
or fewer outputs, you can free up C3 for another use, and bring Y0-Y6 high by
selecting Y7. One possible use for C3 would be to enable and disable the ’374’s
outputs by tying it to pin 1 of each chip.

Figure 7-2: User screen for Listing 7-1‘s program code.

Chapter 7

132 Parallel Port Complete

Switching Power to a Load

The parallel port’s Data and Control outputs can control switches that in turn con-
trol power to many types of circuits. The circuits may be powered by a +5V or
+12V supply, another DC voltage or voltages, or AC line voltage (115V). In a
simple power-control switch, bringing an output high or low switches the power
on or off. To decide when to switch a circuit on or off, a program might use sensor
readings, time or calendar information, user input, or other information.

Power-switching circuits require an interface between the parallel port’s outputs
and the switch that you want to control. In an electromagnetic, or mechanical,
relay, applying a voltage to a coil causes a pair of contacts to physically separate
or touch. Other switches have no moving parts, and operate by opening and clos-
ing a current path in a semiconductor.

Choosing a Switch

All switches contain one or more pairs of switch terminals, which may be
mechanical contacts or leads on a semiconductor or integrated circuit. In addition,

Sub cmdWriteByte_Click ()
‘Write the value in the “Byte to Write” text box
‘to the selected output (1-8).
DataPortWrite BaseAddress, CInt(“&h” & txtByteToWrite.Text)
‘Select an output by writing its number to
‘Control Port, bits 0-2, with bit 3 = 1.
‘This brings the output’s CLK input low.
‘Then set Control bit 3 = 0 to bring all CLK inputs high.
‘This latches the value at the data port to the selected output.
ControlPortWrite BaseAddress, ByteNumber + 8
ControlPortWrite BaseAddress, 0
‘Display the result.
lblByte(ByteNumber).Caption = ““
lblByte(ByteNumber).Caption = txtByteToWrite.Text & “h”
End Sub
PortType = Left$(ReturnBuffer, NumberOfCharacters)

Sub optByte_Click (Index As Integer)
ByteNumber = Index
End Sub

Listing 7-1: To write to Figure 7-1‘s bytes, you write a value to the data port, then
latch the value to the selected output byte.

Output Applications

Parallel Port Complete 133

electronically controlled switches have a pair of control terminals that enable
opening and closing of the switch, usually by applying and removing a voltage
across the terminals.

An ideal switch has three characteristics. When the switch is open, the switch ter-
minals are completely disconnected from each other, with infinite impedance
between them. When the switch is closed, the terminals connect perfectly, with
zero impedance between them. And in response to a control signal, the switch
opens or closes instantly and perfectly, with no delay or contact bounce.

As you might suspect, although there are many types of switches, none meets the
ideal, so you need to find a match between the requirements of your circuit and
what’s available. Switch specifications include these:

Control voltage and current. The switch’s control terminals have defined volt-
ages and currents at which the switch opens and closes. Your circuit’s control sig-
nal must meet the switch’s specification.

Load current. The switch should be able to safely carry currents greater than the
maximum current your load will require.

Switching voltage. The voltage to be switched must be less than the maximum
safe voltage across the switch terminals.

Switching speed. For simple power switches, speed is often not critical, but there
are applications where speed matters. For example, a switching power supply may
switch current to an inductor at rates of 20 kilohertz or more. You can calculate
the maximum switching speed from the switch’s turn-on and turn-off times.
(Maximum switching speed = 1/(max. turn-on time + max. turn-off time.)

Other factors to consider are cost, physical size, and availability.

Figure 7-3 shows some common configurations available in mechanical switches.
Electronic switches can emulate these same configurations. You can also build the
more complex configurations from combinations of simpler switches.

As the name suggests, a normally open switch is open when there is no control
voltage, and closes on applying a control voltage. A normally closed switch is the
reverse—it’s closed with no control voltage, and opens on applying a voltage.

A single-throw (ST) switch connects a switch terminal either to a second terminal
or to nothing, while a double-throw (DT) switch connects a switch terminal to
either of two terminals. In a single-pole (SP) switch, the control voltage controls

Chapter 7

134 Parallel Port Complete

one set of terminals, while in a double-pole (DP) switch, one voltage controls two
sets of terminals. A double-pole, double-throw (DPDT) switch has two terminals,
with each switching between another pair of terminals (so there are six terminals
in all).

Logic Outputs

For a low-current, low-voltage load, you may be able to use a logic-gate output or
an output port bit as a switch. For higher currents or voltages, you can use a logic
output to drive a transistor that will in turn control current to the load. In either
case, you need to know the characteristics of the logic output, so you can judge
whether it’s capable of the job at hand.

Table 7-1 shows maximum output voltages and currents for popular logic gates,
drivers, and microcontrollers, any of which might be controlled, directly or indi-
rectly, by a PC’s parallel port. The table shows minimum guaranteed output cur-
rents at specific voltages, usually the minimum logic-high and the maximum
logic-low outputs for the logic family.

To use a logic output to drive a load other than a logic input, you need to know the
output’s maximum source and sink current and the power-dissipation limits of the
chip. Many logic outputs can drive low-voltage loads of 10 to 20 milliamperes.
For example, an LED requires just 1.4V. Because you’re not driving a logic input,
you don’t have to worry about valid logic levels. All that matters is being able to
provide the voltage and current required by the LED.

Figure 7-4 illustrates source and sink current. You might naturally think of a logic
output as something that “outputs,” or sends out, current, but in fact, the direction
of current flow depends on whether the output is a logic-high or logic-low.

You can think of source current as flowing from a logic-high output, through a
load to ground, while sink current flows from the power supply, through a load,
into a logic-low output. Data sheets often use negative numbers to indicate source

Figure 7-3: Five types of switches.

Output Applications

Parallel Port Complete 135

current. In most logic circuits, an output’s load is a logic input, but the load can be
any circuit that connects to the output.

CMOS logic outputs are symmetrical, with equal current-sourcing and sinking
abilities. In contrast, TTL and NMOS outputs can sink much more than they can
source. If you want to use a TTL or NMOS output to power a load, design your
circuit so that a logic-low output turns on the load.

All circuits should be sure to stay well below the chip’s absolute maximum rat-
ings. For example, an ordinary 74HC gate has an absolute maximum output of 25
milliamperes per pin, so you could use an output to drive an LED at 15 milliam-
peres. (Use a current-limiting resistor of 220 ohms.) If you want 20 milliamperes,
a better choice would be a buffer like the 74HC244, with an absolute maximum
output of 35 milliamperes per pin. In Figure 7-5, A and B show examples.

Don’t try to drive a high-current load directly from a parallel-port output. Use
buffers between the cable and your circuits. Because the original parallel port had
no published specification, it’s hard to make assumptions about the characteristics
of a parallel-port output, except that it should be equivalent to the components in
the original PC’s port. Using a buffer at the far end of the cable gives you known
output characteristics. The buffer also provides some isolation from the load-con-
trol circuits, so if something goes wrong, you’ll destroy a low-cost buffer rather
than your parallel port components. A buffer with a Schmitt-trigger input will
help to ensure a clean control signal at the switch.

Figure 7-4: A logic-high output sources current; a logic-low output sinks current.

Chapter 7

136 Parallel Port Complete

Bipolar Transistors

If your load needs more current or voltage than a logic output can provide, you
can use an output to drive a simple transistor switch.

A bipolar transistor is an inexpensive, easy-to-use current amplifier. Although the
variety of transistors can be bewildering, for many applications you can use any

Figure 7-5: Interfaces to high-current and high-voltage circuits.

Output Applications

Parallel Port Complete 137

general-purpose or saturated-switch transistor that meets your voltage and current
requirements.

Figure 7-5C uses a 2N2222, a widely available NPN transistor. A logic-high at the
control output biases the transistor on and causes a small current to flow from base
to emitter. This results in a low collector-to-emitter resistance that allows current
to flow from the power supply, through the load and switch, to ground. When the
transistor is switched on, there is a small voltage drop, about 0.3V, from collector
to emitter, so the entire power-supply voltage isn’t applied across the load.

The exact value of the transistor’s base resistor isn’t critical. Values from a few
hundred to 1000 ohms are typical. The resistor needs to be small enough so that
the transistor can provide the current to power the load, yet large enough to limit
the current to safe levels.

Table 7-1: Maximum output current for selected chips.
Chip Output high volt-

age (VOH min)
Output low volt-
age (VOL max)

Supply
Voltage

Absolute maximums

74LS374 flip-flop,
74LS244 buffer

2.4V@-2.6mA 0.5V@24mA 4.5 to 5.5 -

74HC(T)374
flip-flop,
74HC(T)244 buffer

Vcc-0.1@-20µΑ
3.84V@-6mA

0.1V@20 µΑ
0.33V@6mA

4.5 35mA/pin,
500mW/package

74LS14 inverter 2.7V@-0.4mA 0.5V@8mA 4.5 to 5.5 -

74HC(T)14 inverter 4.4V@-20µA
4.2V@-4mA

0.1V@20µA
0.33V@4mA

4.5 25mA/pin,
500mW/package

8255 NMOS PPI
(programmable
peripheral interface)

2.4V@-200µΑ 0.45V@1.7mΑ
(on any 8 Port B
or C pins)

4.5 to 5.5 4mA/pin

82C55 CMOS PPI
(programmable
peripheral interface)

3V@-2.5mA 0.4V@2.5mA 4.5 to 5.5 4.0mA/pin

8051 NMOS
microcontroller

2.4V@-80µΑ 0.45V@1.6µΑ 4.5 to 5.5 -

80C51 CMOS
microcontroller

Vcc-0.3@-10µΑ
Vcc-0.7@-30µΑ
Vcc-1.5@-60µΑ

0.3@100µΑ
0.45@1.5mA
1.0@3.5mA

4 to 5 10mA/pin,
15mA/port,
71mA/all ports

68HC11 CMOS
microcontroller

Vdd-0.8@-0.8mA 0.4@1.6mA 4.5 to 5.5 25mA/pin;
also observe power
dissipation limit for
the chip

PIC16C5x CMOS
microcontroller

Vdd-0.7@-5.4mA 0.6@8.7mA 4.5 +25/-20mA/pin,
+50/-40mA/port,
800mW/package

Chapter 7

138 Parallel Port Complete

The load current must be less than the transistor’s maximum collector current (IC).

Look for a current gain (hFE) of at least 50. Many parts catalogs include these

specifications.

The load’s power supply can be greater than +5V, but if it’s more than +12V,
check the transistor’s collector-emitter breakdown voltage (VCEO), to be sure it’s

greater than the voltage that will be across these terminals when the switch is off.

For large load currents, you can use a Darlington pair, as Figure 7-5D shows. One
transistor provides the base current to drive a second transistor. Because the total
current gain equals the gain of the first times the gain of the second, gains of 1000
are typical. The TIP112 is an example of a Darlington pair in a single TO-220
package. It’s rated for collector current of 2 amperes and collector-to-emitter volt-
age of 100V. A drawback is that the collector-to-emitter voltage of a Darlington is
about a volt, much higher than for a single transistor.

The above circuits all use NPN transistors and require current from a logic-high
output to switch on. If you want to turn on a load with a logic-low output, you can
use a PNP transistor, as Figure 7-5E shows. In this circuit, a logic-low output
biases the transistor on, and a voltage equal to the power supply switches it off. If
the load’s power supply is greater than +5V, use a high-voltage open-collector or
open-drain output for the control signal, so that the pullup resistor can safely pull
logic-high outputs to the supply voltage.

Another handy way to control a load with logic is to use a peripheral-driver chip
like those in the 7545X series (Figure 7-5F). Each chip in the series contains two
independent logic gates, with the output of each gate controlling a transistor
switch.

There are four members of the series:

75451 dual AND drivers
75452 dual NAND drivers
75453 dual OR drivers
75454 dual NOR drivers

Each output can sink a minimum of 300 milliamperes at 0.7V (collector-to-emit-
ter voltage).

MOSFETs

An alternative to the bipolar transistor is the MOSFET. The most popular type is
an enhancement-mode, N-channel type, where applying a positive voltage to the
gate switches the MOSFET on, creating a low-resistance channel from drain to
source.

Output Applications

Parallel Port Complete 139

P-channel MOSFETs are the complement of N-channel MOSFETs, much as PNP
transistors complement NPNs. An enhancement-mode, P-channel MOSFET
switches on when the gate is more negative than the source. In depletion-mode
MOSFETs (which may be N-channel or P-channel), applying a gate voltage opens
the switch, rather than closing it.

Unlike a bipolar-transistor switch, which can draw several milliamperes of base
current, a MOSFET gate has very high input resistance and draws virtually no
current. But unlike a bipolar transistor, which needs just 0.7V from base to emit-
ter, a MOSFET may require as much as 10V from gate to source to switch on
fully.

One way to provide the gate voltage from 5V logic is to use a device with an
open-collector or open-drain output and a pull-up resistor to at least 10V, as Fig-
ure 7-5G shows. Some newer MOSFETs have lower minimum on voltages.
Zetex’s ZVN4603A can switch 1.5 amperes with just +5V applied to the gate
(Figure 7-5H).

MOSFETs do have a small on resistance, so there is a voltage drop from drain to
source when the device is switched on. The on resistance of the ZVN4603A is
0.45 ohms at 1.5 amperes, which would result in a voltage drop of about 0.7V. At
lower currents, the resistance and voltage drop are less.

Include a gate resistor of around 1K (as shown) to protect the driver’s output if
you’re switching a relay, motor, or other inductive load.

High-side Switches

Another way of controlling a load with a logic voltage is to use a high-side switch
like the LTC1156, a quad high-side MOSFET driver chip from Linear Technol-
ogy, shown in Figure 7-6. The chip allows you to use the cheaper, more widely
available N-channel MOSFETs in your designs and adds other useful features.
Single and dual versions are also available, and other manufacturers have similar
chips.

Most of the previous circuits have used a low-side switch, where one switch ter-
minal connects to ground and the other connects to the load’s ground terminal. In
a high-side switch, the load’s ground terminal connects directly to ground and the
switch is between the power supply and load’s power-supply terminal.

A high-side switch has a couple of advantages. For safety reasons, some circuits
are designed to be off if the switch terminals happen to short to ground. With a
low-side switch, shorting the switch to ground would apply power to the load.
With a high-side switch, although shorting the switch to ground may destroy the

Chapter 7

140 Parallel Port Complete

switch, it removes power from the load. (Most switches fail by opening perma-
nently.)

Connecting the load directly to ground can also help to reduce electrical noise in
the circuit. With a low-side switch, the load always floats a few tenths of a volt
above ground.

The LTC1156 can control up to four MOSFETs. You can use any 5V TTL or
CMOS outputs as control signals, because the switches turn on at just 2V.

Providing a high-enough gate voltage can be a problem when using an N-channel
MOSFET in a high-side switch. When the MOSFET switches on, its low
drain-to-source resistance causes the source to rise nearly to the supply voltage.
For the MOSFET to remain on, the gate must be more positive than the source.

Figure 7-6: A high-side switch connects between the load and the power supply.
Linear Technology’s LTC1156 control high-side MOSFET switches with logic
signals.

Output Applications

Parallel Port Complete 141

The LTC1156 takes care of this with charge-pump circuits that bring the gate volt-
ages as much as 20V above the supply voltage.

By adding a small current-sensing resistor, you can cause the outputs to switch off
if the MOSFETs’ drain current rises above a selected value (3.3A with 30 millio-
hms in the circuit shown). The outputs switch off when the voltage drop across the
current-sensing resistor is 100 millivolts.

Solid-state Relays

Another way to switch power to a load is to use a solid-state relay, which offers an
easy-to-use, optoisolated switch in a single package. Figure 7-7A shows an exam-
ple.

In a typical solid-state DC relay, applying a voltage across the control inputs
causes current to flow in an LED enclosed in the package. The LED switches on a
photodiode, which applies a control voltage to a MOSFET’s gate, switching the
MOSFET on. The result is a low resistance across the switch terminals, which
effectively closes the switch and allows current to flow. Removing the control
voltage turns off the LED and opens the switch.

Solid-state relays are rated for use with a variety of load voltages and currents.
Because the switch is optoisolated, there need be no electrical connection at all
between the control signal and the circuits being switched.

Solid-state relays have an on resistance of anywhere from a few ohms to several
hundred ohms. Types rated for higher voltages tend to have higher on resistances.
Solid-state relays also have small leakage currents, typically a microampere or so,
that flow through the switch even when off. This leakage current isn’t a problem
in most applications.

There are solid-state relays for switching AC loads as well. These provide a sim-
ple and safe way to use a logic signal to switch line voltage to a load. Inside the
relay, the switch itself is usually an SCR or TRIAC. Zero-voltage switches mini-
mize noise by switching only when the AC voltage is near zero.

Electromagnetic Relays

Electromagnetic relays have been around longer than transistors and still have
their uses. An electromagnetic relay contains a coil and one or more sets of con-
tacts attached to an armature (Figure 7-7B). Applying a voltage to the coil causes
current to flow in it. The current generates magnetic fields that move the armature,
opening or closing the relay contacts. Removing the coil voltage collapses the
magnetic fields and returns the armature and contacts to their original positions.

Chapter 7

142 Parallel Port Complete

A diode across the relay coil protects the components from damaging voltages
that might otherwise occur when the contacts open and the current in the coil has
nowhere to go. In fact, you should place a diode in this way across any switched
inductive DC load, including DC motor windings. For AC loads, use a varistor in
place of the diode. The varistor behaves much like two Zener diodes connected
anode-to-cathode on both ends.

Figure 7-7: Solid-state and electromagnetic, or mechanical, relays are another
option for switching power to a circuit. An advantage to relays is that the load is
electrically isolated from the switch’s control signal.

Output Applications

Parallel Port Complete 143

Two attractions of electromagnetic relays are very low on resistance and complete
physical isolation from the control signal. Because the contacts physically touch,
the on resistance is typically just a few tenths of an ohm. And because the contacts
open or close in response to magnetic fields, there need be no electrical connec-
tion between the coil and the contacts.

Drawbacks include large size, large current requirements (50-200 milliamperes is
typical for coil current), slow switching speed, and the need for maintenance or
replacement as the contacts wear. One solution to the need for high current is to
use a latching relay, which requires a current pulse to switch, but then remains
switched with greatly reduced power consumption.

Controlling the Bits

For simple switches, a single output bit can control power to a load. The bit rou-
tines introduced in Chapter 4 make it easy to read and change individual bits in a
byte. If you store the last value written to the port in a variable, there’s no need to
read the port before each write.

X-10 Switches

A different way to control power to devices powered at 115V AC is to use the
X-10 protocol, which can send on, off, and dim commands to a device, using a
low-voltage signal carried on 115V, 60-Hz power lines. An X-10 interface is a
simple way to control lights and plug-in appliances using only the existing wiring
in the building.

Besides the popular manually programmed X-10 controllers and appliance mod-
ules, there are devices that enable you to program an X-10 controller from a PC,
usually using a serial or parallel link to communicate with the controller.

Signal Switches

One more type of switch worth mentioning is the CMOS switch for low-power
analog or digital signals. A logic signal controls the switch’s operation.

Simple CMOS Switch

The 4066B quad bilateral switch is a simple and inexpensive way to switch
low-power, low-frequency signals. As Figure 7-8 shows, the chip has four control

Chapter 7

144 Parallel Port Complete

inputs, each of which controls two I/O pins. A logic-high at a control input closes
a switch and results in a low resistance between the corresponding I/O pins. A
logic-low opens the switch, and opens the connection between the I/O pins.

The 4066B’s power supply can range from 3 to 15V. With a 5V power supply, the
on resistance of each switch is about 270 ohms, with the resistance dropping at
higher supply voltages. The on resistance has no significant effect on standard
LSTTL or CMOS logic or other signals that terminate at high-impedance inputs.
An HCMOS version, the 74HC4066, has lower on resistance and, unlike other
HCMOS chips, can use a supply voltage of up to 12V.

Controlling a Switch Matrix

A more elaborate switching device is the crosspoint switch, which allows com-
plete control over the routing of two sets of lines. Examples are Harris’
74HCT22106 Crosspoint Switch with Memory Control and Maxim’s MAX456 8
x 8 Video Crosspoint Switch.

Figure 7-9 shows how you can use the parallel port to control an 8 x 8 array of sig-
nals with the ’22106. You can connect any of eight X pins to any of eight Y pins,
in any combination. Possible applications include switching audio signals to dif-
ferent monitors or recording instruments, selecting inputs for test equipment, or
any situation that requires flexible, changeable routing of analog or digital signals.

The ’22106 simplifies circuit design and programming. It contains an array of
switches, a decoder that translates a 6-bit address into a switch selection, and
latches that control the opening and closing of the switches.

To connect an X pin to a Y pin, set MR=1 and CE=0. Then do the following:

1. Write the address of the desired X pin to A0-A2 and write the address of the
desired Y pin to A3-A5. Set Strobe=1. Set Data=1.

Figure 7-8: The 4066B contains four CMOS switches, each controlled by a logic
signal.

Output Applications

Parallel Port Complete 145

3. Set Strobe=0 to close the requested switch, connecting the selected X and Y
pins.
3. Set Strobe=1.

To break a connection, do the same thing, except bring the Data input low to open
the switch.

Figure 7-10 shows the screen for Listing 7-2’s program, which demonstrates the
operation of the switch matrix. The program uses Visual Basic’s Grid control to

Figure 7-9: The parallel port’s data lines can control an 8 x 8 crosspoint switch.

Figure 7-10: Clicking on a grid cell opens or closes the matching switch.

Chapter 7

146 Parallel Port Complete

Const OPENSWITCH% = 0
Const CLOSESWITCH% = 1

Sub ActivateSwitch (OpenOrClose%)
Dim Strobe%
Dim XY%
‘Data port bit 7 = OpenOrClose (0=open, 1=close)
OpenOrClose = OpenOrClose * &H80
‘Data port bit 6 = Strobe.
Strobe = &H40
‘Data port bits 0-2 hold the X value, bits 3-5 hold the Y value.
XY = grdXY.Col - 1 + (grdXY.Row - 1) * 8
‘Write the address, select open or close, Strobe = 1
DataPortWrite BaseAddress, XY + Strobe + OpenOrClose
‘Pulse the Strobe input.
DataPortWrite BaseAddress, XY + OpenOrClose
DataPortWrite BaseAddress, XY + Strobe + OpenOrClose
End Sub

Sub DisplayResults ()
Select Case SwitchState
 Case “Closed”
 grdXY.Text = “X”
 Case “Open”
 grdXY.Text = ““
End Select
End Sub

Sub Form_Load ()
StartUp
LabelTheGrid
End Sub

Sub grdXY_Click ()
Select Case grdXY.Text
 Case “X”
 ActivateSwitch OPENSWITCH
 SwitchState = “Open”
 DisplayResults
 Case Else
 ActivateSwitch CLOSESWITCH
 SwitchState = “Closed”
 DisplayResults
End Select
End Sub

Listing 7-2: Controlling an 8 x 8 crosspoint switch (Sheet 1 of 2)

Output Applications

Parallel Port Complete 147

display the switch matrix. When you click on a cell, the associated switch opens
or closes. An X indicates a closed switch, an empty cell indicates an open switch.

You can make and break as many connections as you want by writing appropriate
values to the chip. All previous switch settings remain until you change them by
writing to the specific switch. The switches can connect in any combination. For
example, you can connect each X pin to a different Y pin to create eight distinct
signal paths. Or, you can connect all eight Y pins to a single X pin, to route one
signal to eight different paths. The X and Y pins may connect to external inputs or
outputs in any combination.

Figure 7-9 shows the ’22106 powered at +5V, but the supply voltage may range
from 2 to 10V, and Vss (and Vdd) may be negative. (The HCT version
(74HCT22106) requires a +5V supply.) The chip can switch any voltages within
the supply range. However, the maximum and minimum values for the address
and control signals vary with the supply voltage. For example, if Vdd is +5V and
Vss is -5V, the address and control signals can no longer use 5V CMOS logic lev-
els, because the logic levels are in proportion to the supply voltage. The maximum
logic low for these signals drops from +1.5V to -2V (Vss + 0.3(|Vdd-Vss|)), and
the minimum logic high drops from +3.5V to +2V (Vss +0.7(|Vdd-Vss|)).

At 5V, the switches’ typical on resistance is 64 ohms, dropping to 45 ohms at 9V.
The chip can pass frequencies up to 6 Megahertz with ±4.5V supplies.

In Figure 7-9, the parallel port’s D0-D7 control the switch array. The 74HCT244
buffer has TTL-compatible inputs and CMOS-compatible outputs. If you use a
74LS244, add a 10K pull-up resistor from each output to +5V, to ensure that logic

Sub LabelTheGrid ()
Dim Row%
Dim Column%
grdXY.Col = 0
For Row = 1 To 8
 grdXY.Row = Row
 grdXY.Text = “Y” & Row - 1
Next Row
grdXY.Row = 0
For Column = 1 To 8
 grdXY.Col = Column
 grdXY.Text = “X” & Column - 1
Next Column
lblXY.Caption = “8 x 8 Crosspoint Switch”
End Sub

Listing 7-2: Controlling an 8 x 8 crosspoint switch (Sheet 2 of 2)

Chapter 7

148 Parallel Port Complete

highs meet the ’22106’s 3.3V minimum. If you use a 74HC244, add pullups at the
inputs to bring the parallel port’s high outputs to valid CMOS logic levels.

For a simple test of the switches, you can connect a series of equal resistors as
shown to the X inputs. Each X input will then be at a different voltage. To verify a
switch closure, measure the voltages at the selected X and Y inputs; they should
match.

Pin 3 (CE) is tied low. To control multiple switches from a single parallel port,
connect each switch’s CE to one of the Control outputs, and wire D0-D7 to all of
the switches. You then can use the Control lines to select a switch to write to. The
Reset input (MR) is tied high. If you want the ability to reset all of the switches, tie
this pin to one of the Control outputs.

Maxim’s ’456 is similar, but can pass frequencies up to 25 Megahertz, separate
analog and digital ground pins, and V+ and V- inputs. The address and control sig-
nals use 5V logic levels even if the chip uses another supply voltage.

Displays

Because the parallel port resides on a personal computer that has its own
full-screen display, there’s usually little need to use the port’s outputs to control
LEDs, LCDs (liquid crystal displays), or other display types. You might want to
use LEDs as simple indicators to show troubleshooting or status information. And
of course, you can use the port’s Data and Control outputs to control other types
of displays if the need arises.

Input Applications

Parallel Port Complete 149

8

Input Applications
Because the parallel port’s most common use is to send data to a printer, you
might think that the port is useful only for sending information from a PC to a
peripheral. But you can also use the parallel port as an input port that reads infor-
mation from external devices. SPPs have five Status inputs and four bidirectional
Control lines, and on many newer ports, you can use the eight Data lines as inputs
as well.

This chapter shows a variety of ways to use the parallel port for input. The exam-
ples include latched digital inputs, an expanded input port of 40 bits, and an inter-
face to an analog-to-digital converter.

Reading a Byte

On the original parallel port, there is no way to read eight bits from a single port
register. But there are several ways to use the available input bits to put together a
byte of information.

Chapter 2 showed how to perform simple reads of the Status, Control, and bidirec-
tional Data bits, and later chapters show how to use IEEE 1284’s Nibble, Byte,
EPP, and ECP modes to read bytes and handshake with the peripheral sending the
information. The following examples show other options, including a simple way

Chapter 8

150 Parallel Port Complete

to read a byte in two nibbles at the Status port and how to add a latch to store the
data to be read.

Latching the Status Inputs

Figure 8-1 and Listing 8-1 show a way to read bytes at the Status port. The circuit
stores two nibbles (1 nibble = 4 bits), which the program reads in sequence at the
Status port. One Control bit latches the data, and another selects the nibble to read.

The latch is a 74LS374 octal flip-flop. The rising edge of the Clk input latches the
eight D inputs to the corresponding Q outputs. Even if the inputs change, the out-
puts will remain at their latched values until C1 goes low, then high again. This
ensures that the PC’s software will read the state of all of the bits at one moment
in time. Otherwise, the PC may read invalid data. For example, if the byte is an
output from an analog-to-digital converter, the output’s value may change by one
bit, from 1Fh when the PC reads the lower four bits, to 20h when the PC reads the
upper four bits. If the data isn’t latched, the PC will read 2Fh, which is very differ-
ent from the actual values of 1Fh and 20h.

A 74LS244 buffer presents the bits to the Status port, four at a time. When 1G is
low, outputs 1Q-4Q are enabled, and the PC can read inputs 1D-4D. When 2G is
low, outputs 5Q-8Q are enabled and the PC can read inputs 5D-8D. A second ’244
buffers the two Control signals. You can substitute HCT versions of the chips.

Figure 8-1: A ‘374 flip-flop latches a byte of data, and a Control bit selects each of
two nibbles to be read at the Status port.

Input Applications

Parallel Port Complete 151

Listing 8-1 latches a byte of data, then reads it in two nibbles, recombines the nib-
bles into a byte, and displays the result. The data bits are the upper four Status
bits, which makes it easy to recombine the nibbles into a byte. In the upper nibble,
the bits are in the same positions as in the original byte, so there’s no need to
divide or multiply to shift the bits. For the lower nibble, just divide the value read
by &h10.

Latched Input Using Status and Control Bits

Figure 8-2 is similar to the previous example, but it uses both Status and Control
bits for data. Control bits 0-2 are the lower three bits, and Status bits 3-7 are the
upper five bits, so each bit has the same position as in the original byte. Control bit
3 latches the data.

For this circuit, multi-mode ports must be in SPP mode to ensure that the Control
bits can be used for input. Some multi-mode ports can’t use the Control bits as
inputs at all.

The three Control lines are driven by 7407 open-collector buffers. The remaining
Control input uses another buffer in the package.

You must write 1 to Control bits 0-2’s corresponding outputs in order to use them
as inputs. (Because bits 0, 1, and 3 are inverted between the port register and the
connector, you actually write 4 to bits 0–3 to bring all outputs high.)

Option Explicit
Const SelectHighNibble% = 1
Const Clock% = 2

Sub cmdReadByte_Click ()
Dim LowNibble%
Dim HighNibble%
Dim ByteIn%
‘Latch the data
ControlPortWrite BaseAddress, Clock
ControlPortWrite BaseAddress, 0
‘Read the nibbles at bits 4-7.
LowNibble = StatusPortRead(BaseAddress) \ &H10
ControlPortWrite BaseAddress, SelectHighNibble
HighNibble = StatusPortRead(BaseAddress) And &HF0
ByteIn = LowNibble + HighNibble
lblByteIn.Caption = Hex$(ByteIn) + “h”
End Sub

Listing 8-1: Reading a byte in two nibbles at the Status port.

Chapter 8

152 Parallel Port Complete

Listing 8-2 latches 8 bits, reads the Status and Control ports, recreates the original
byte, and displays the result.

5 Bytes of Input

If you have a lot of inputs to monitor, Figure 8-3 shows how to read up 5 bytes at
the Status port. Five outputs of a 74LS244 octal buffer drive the Status inputs, and
the other 3 bits buffer the bit-select signals from C0-C2.

Outputs C0, C1, and C2 select one of eight inputs at each of five 74LS151 data
selectors. At each ’151, the selected input appears at output Y, and also in inverted
form at W. An output of each ’151 connects through a buffer to one of the Status
inputs. To read a bit from each ’151, you write to C0-C2 to select the bit, then read
S3-S7.

Listing 8-3 reads all 40 bits, 5 bits at a time, combines the bits into bytes, and dis-
plays the results. Figure 8-4 is the program screen. Since the ’151 has both normal
and inverted outputs, you could use the W output at S7 to eliminate having to rein-
vert the bit in software. Listing 8-3 uses the StatusPortRead routine that automati-
cally reinverts bit 7, so Figure 8-3 uses the Y output.

Figure 8-2: Eight latched input bits, using the Status and Control ports.

Input Applications

Parallel Port Complete 153

Figure 8-3: Forty input bits, read in groups of five.

Chapter 8

154 Parallel Port Complete

Using the Data Port for Input

If you have a bidirectional data port, you can use the eight data lines as inputs.
You can also use the port as an I/O port, both reading and writing to it, as long as
you’re careful to configure the port as input whenever outputs are connected and
enabled at the data pins. In other words, when the data lines are configured as out-
puts, be sure to tristate, or disable, any external outputs they connect to. You can
use a ’374 to latch input at the Data port, as in the previous examples.

Reading Analog Signals

The parallel port is a digital interface, but you can use it to read analog signals,
such as sensor outputs.

Sensor Basics

A sensor is a device that reacts to changes in a physical property or condition such
as light, temperature, or pressure. Many sensors react by changing in resistance. If
a voltage is applied across the sensor, the changing resistance will cause a change
in the voltage across the sensor. An analog-to-digital converter (ADC) can con-
vert the voltage to a digital value that a computer can store, display, and perform
calculations on.

Simple On/Off Measurements

Sometimes all you need to detect is the presence or absence of the sensed prop-
erty. Some simple sensors act like switches, with a low resistance in the presence

Figure 8-4: Screen for Listing 8-3‘s program.

Input Applications

Parallel Port Complete 155

of the sensed property, and a high resistance in its absence. In this case, you can
connect the sensor much like a manual switch, and read its state at an input bit.
Sensors that you can use this way include magnetic proximity sensors, vibration
sensors, and tilt switches.

Level Detecting

Another common use for sensors is to detect a specific level, or intensity, of a
property. For this, you can use a comparator, a type of operational amplifier (op
amp) that brings its output high or low depending on which of two inputs is
greater.

Figure 8-5 shows how to use a comparator to detect a specific light level on a pho-
tocell. The circuit uses an LM339, a general-purpose quad comparator. The resis-
tance of a Cadmium-sulfide (CdS) photocell varies with the intensity of light on it.
Pin 4 is a reference voltage, and pin 5 is the input being sensed. When the sensed

’Clock is Control bit 3.
Const Clock% = 8
‘Write 1 to bits C0-C2 to allow their use as inputs.
Const SetControlBitsAsInputs% = 7

Sub cmdReadByte_Click ()
Dim LowBits%
Dim HighBits%
Dim ByteIn%
‘Latch the data.
ControlPortWrite BaseAddress, SetControlBitsAsInputs + Clock
ControlPortWrite BaseAddress, SetControlBitsAsInputs
‘Read the bits at C0-C2, S3-S7.
LowBits = ControlPortRead(BaseAddress) And 7
HighBits = StatusPortRead(BaseAddress) And &HF8
ByteIn = LowBits + HighBits
lblByteIn.Caption = Hex$(ByteIn) + “h”
End Sub

Sub Form_Load ()
‘(partial listing)
‘Initialize the Control port.
ControlPortWrite BaseAddress, SetControlBitsAsInputs
End Sub

Listing 8-2: Reading 8 bits using the Status and Control ports.

Chapter 8

156 Parallel Port Complete

input is lower than the reference, the comparator’s output is low. When the sensed
input is higher than the reference, the comparator’s output is high.

As the light intensity on the photocell increases, the photocell’s resistance
decreases and pin 5’s voltage rises. To detect a specific light level, adjust R2 so
that Vout switches from low to high when the light reaches the desired intensity.
You can read the logic state of Vout at any input bit on the parallel port.

R4 is a pull-up resistor for the LM339’s open-collector output. R3 adds a small
amount of hysteresis, which keeps the output from oscillating when the input is
near the switching voltage.

You can use the same basic circuit with other sensors that vary in resistance.
Replace the photocell with your sensor, and adjust R2 for the switching level you
want.

Reading an Analog-to-digital Converter

When you need to know the precise value of a sensor’s output, an analog-to-digi-
tal converter (ADC) will do the job. Figure 8-6 is a circuit that enables you to read
eight analog voltages. The ADC0809 converter is inexpensive, widely available,
and easy to interface to the parallel port. The ADC0808 is the same chip with
higher accuracy, and you may use it instead.

Figure 8-5: A comparator can detect a specific voltage.

Input Applications

Parallel Port Complete 157

The ADC0809 has eight analog inputs (IN0-IN7), which may range from 0 to
+5V. To read the value of an analog input, you select a channel by writing a value
from 0 to 7 to inputs A-C, then bringing Start and Ale high, then low, to begin the
conversion. When the conversion is complete, Eoc goes high and the digital out-
puts hold a value that represents the analog voltage read.

The chip requires a clock signal to control the conversion. A 74HCT14
Schmitt-trigger inverter offers a simple way to create the clock. The frequency
can range from 10 kilohertz to 1280 kilohertz. If you prefer, you can use a 555
timer for the clock, although the maximum frequency of the 555 is 500 kilohertz.
Conversion time for the ADC is 100 microseconds with a 640-kilohertz clock.

Figure 8-6: The ADC0809 analog-to-digital converter provides a simple way to
read 8 analog channels at the parallel port.

Chapter 8

158 Parallel Port Complete

Dim DataIn%(0 To 7)
Dim DataByte%(0 To 4)

Sub cmdReadBytes_Click ()
Dim BitNumber%
‘The Control port selects a bit number to read.
‘The Status port holds the data to be read.
For BitNumber = 0 To 7
 ControlPortWrite BaseAddress, BitNumber
 DataIn(BitNumber) = StatusPortRead(BaseAddress)
Next BitNumber
GetBytesFromDataIn
DisplayResults
End Sub

Sub DisplayResults ()
Dim ByteNumber%
For ByteNumber = 0 To 4
lblByteIn(ByteNumber).Caption = Hex$(DataByte(ByteNumber)) & “h”
Next ByteNumber
End Sub

Listing 8-3: Reading 40 inputs. (Sheet 1 of 2)

Input Applications

Parallel Port Complete 159

Inputs Vref+ and Vref- are references for the analog inputs. When an analog input
equals Vref-, the digital output is zero. When the input equals Vref+, the digital
output is 255. You can connect the reference inputs to the +5V supply and ground,
or if you need a more stable reference or a narrower range, you can connect other
voltage sources to the references.

Listing 8-4 reads all eight channels and displays the results. It reads the data in
two nibbles at S3–S5 and S7. Outputs D0–D2 select the channel to convert, D3
starts the conversion, and D4 selects the nibble to read. Optional input S6 allows
you to monitor the state of the ADC’s end-of-conversion (Eoc) output.

A 74LS244 drives the Status bits. When D4 is low, you can read the ADC’s DB0–
DB3 outputs at the Status port. When D4 is high, you can read DB4–DB7.

A second 74LS244 interfaces the other signals to the ADC. Bringing D3 high
latches the channel address from D0–D2, and bringing D3 low starts a conversion.

Bit S6 goes high when the ADC has completed its conversion. You can monitor
S6 for a logic high that signals that the conversion is complete, or you can use the

Sub GetBytesFromDataIn ()
‘Bits 3-7 of the 8 bytes contain data.
‘To make 5 data bytes from these bits,
‘each data byte contains one bit from each byte read.
‘For example, data byte 0 contains 8 “bit 3s,”
‘one from each byte read.
Dim ByteNumber%
Dim BitNumber%
Dim BitToAdd%
For ByteNumber = 0 To 4
 DataByte(ByteNumber) = 0
 ‘BitRead gets the selected bit value (ByteNumber + 3)
 ‘from the selected byte read (DataIn(BitNumber)).
 ‘To get the bit value for the created data byte,
 ‘multiply times 2^BitNumber.
 ‘Add each bit value to the created byte.
 For BitNumber = 0 To 7
 BitToAdd = (BitRead(DataIn(BitNumber), ByteNumber + 3)) _
 * 2 ^ BitNumber
 DataByte(ByteNumber) = DataByte(ByteNumber) + BitToAdd
 Next BitNumber
Next ByteNumber
End Sub

Listing 8-3: Reading 40 inputs. (Sheet 2 of 2)

Chapter 8

160 Parallel Port Complete

Const Start% = 8
Const HighNibbleSelect% = &H10
Dim DataIn%(0 To 7)
Dim ChannelNumber%
Dim LowNibble%
Dim HighNibble%

Sub cmdReadPorts_Click ()
Dim EOC%
For ChannelNumber = 0 To 7
 ‘Select the channel.
 DataPortWrite BaseAddress, ChannelNumber
 ‘Pulse Start to begin a conversion.
 DataPortWrite BaseAddress, ChannelNumber + Start
 DataPortWrite BaseAddress, ChannelNumber
 ‘Wait for EOC
 Do
 DoEvents
 LowNibble = StatusPortRead(BaseAddress)
 EOC = BitRead(LowNibble, 6)
 Loop Until EOC = 1
 ‘Read the byte in 2 nibbles.
 DataPortWrite BaseAddress, ChannelNumber + HighNibbleSelect
 HighNibble = StatusPortRead(BaseAddress)
 DataIn(ChannelNumber) = MakeByteFromNibbles()
Next ChannelNumber
DisplayResult
End Sub

Sub DisplayResult ()
For ChannelNumber = 0 To 7
 lblADC(ChannelNumber).Caption = _
 Hex$(DataIn(ChannelNumber)) & “h”
Next ChannelNumber
End Sub

Listing 8-4: Reading 8 channels from an ADC. (Sheet 1 of 2)

Input Applications

Parallel Port Complete 161

rising edge at S6 to trigger an interrupt, or you can ignore S6 and just be sure to
wait long enough for the conversion to complete before reading the result.

The circuit uses S6 as end-of-convert because it’s the parallel port’s interrupt pin.
If you don’t use interrupts, you can wire the ADC’s data outputs to S4–S7 for an
easier (and faster) conversion from nibbles to byte.

At each analog input, you can connect any component whose outputs ranges from
0 to +5V.

Sensor Interfaces

If the output range of your sensor voltages is much less than 5V, you can increase
the resolution of the conversions by adjusting the reference voltages to a range
that is slightly wider than the range you want to measure.

To illustrate, consider a sensor whose output ranges from 0 to 0.5V. The 8-bit out-
put of the converter represents a number from 0 to 255. If Vref+ is 5V and Vref- is
0V, each count equals 5/255, or 19.6 millivolts. A 0.2V analog input results in a
count of 10, while a 0.5V input results in a count of 26. If your input goes no
higher than 0.5V, your count will never go higher than 26, and the measured val-
ues will be accurate only to within 20 millivolts, or 1/255 of full-scale.

If you lower Vref+ to 0.5V, each count now equals 0.5/255, or 0.002V. A 0.2-volt
input gives a count of 102, a 0.5-volt input gives a count of 255, and the measured
values can be accurate to within 2 millivolts.

If you decrease the range, you also increase the converter’s sensitivity to noise.
With a 5V range, a 20-millivolt noise spike will cause at most a 1-bit error in the

Function MakeByteFromNibbles% ()
Dim S0%, S1%, S2%, S3%, S4%, S5%, S6%, S7%
S0 = (LowNibble And 8) \ 8
S1 = (LowNibble And &H10) \ 8
S2 = (LowNibble And &H20) \ 8
S3 = (LowNibble And &H80) \ &H10
S4 = (HighNibble And 8) * 2
S5 = (HighNibble And &H10) * 2
S6 = (HighNibble And &H20) * 2
S7 = HighNibble And &H80
MakeByteFromNibbles = S0 + S1 + S2 + S3 + S4 + S5 + S6+ S7
End Function

Listing 8-4: Reading 8 channels from an ADC. (Sheet 2 of 2)

Chapter 8

162 Parallel Port Complete

output. With a 0.5V range, the same spike can cause an error of 10 bits, since each
bit now represents just 2 millivolts, rather than 20.

The lower reference doesn’t have to be 0V. For example, the output of an LM34
temperature sensor is 10 millivolts per degree Fahrenheit. If you want to measure
temperatures from 50 to 100 degrees, you can set Vref- to 0.5V and Vref+ to 1V,
for a 50-degree range, or 0.2 degree per bit.

Signal Conditioning

Not every sensor has an output that can connect directly to the ADC0809’s inputs.
A sensor’s output may range from -2 to 0V, from -0.5 to +0.5V, or from -12 to
+12V. In all of these cases, you need to shift the signal levels and/or range to be
compatible with a converter that requires inputs between 0 and 5 volts.

Figure 8-7 shows a handy circuit that can amplify or reduce input levels, and can
also raise or lower the output by adding or subtracting a voltage. Separate, inde-
pendent adjustments control the gain and offset. The circuit is a series of three op
amps: a buffer, a level shifter, and an amplifier. The circuit uses three of the
devices in an LF347 quad JFET-input op amp, which has fast response and high
input impedance. You can use another op amp if you prefer.

The first op amp is a noninverting amplifier whose output at pin 1 equals Vin. The
op amp presents a high-impedance input to VIN. The second op amp is an invert-
ing summing amplifier that raises and lowers pin 1’s voltage as R5 is adjusted.
Varying R5 changes the voltage at pin 7, but the signal’s shape and peak-to-peak
amplitude remain constant. The third op amp is an inverting amplifier whose gain

Figure 8-7: With this circuit you can adjust the offset and amplitude of an analog
signal.

Input Applications

Parallel Port Complete 163

is adjusted by R4. This amplifier increases or decreases the peak-to-peak ampli-
tude of its input.

As an example of how to use the circuit, if Vin will vary from +0.2V to -0.2V, set
Vin to +0.2V and adjust R4 until Vout is +2.5V. Then set Vin to -0.2V and adjust
R5 until Vout is 0V.

If the range of Vin is too large, use R4 to decrease the gain instead of increasing it.
If you need to shift the signal level down (to a lower range) instead of up, connect
R5 to +15V instead of -15V. If you don’t need level shifting, you can remove R5
and connect pin 6 only to R1 and R2.

Minimizing Noise

Rapid switching of digital circuits can cause voltage spikes in the ground lines.
Even small voltage spikes can cause errors in analog measurements. Good routing
of ground wires or printed-circuit-board traces can minimize noise in circuits that
mix analog and digital circuits.

To reduce noise, provide separate ground paths for analog and digital signals.
Wire or route all ground connections related to the analog inputs or reference volt-
ages together, but keep them separate from the ground connections for the digital
circuits, including the clock and buffer/driver chips. Tie the two grounds together
at one place only, as near to the power supply as possible. Also be sure to include
decoupling capacitors, as described in Chapter 6.

Using a Sample and Hold

An additional component that you may need for rapidly changing analog inputs is
a sample-and-hold circuit. To ensure correct conversions, the analog input has to
remain stable while the conversion is taking place.

A sample-and-hold circuit ensures that the analog signal is stable by sampling the
signal at the desired measurement time and storing it, usually as a charge on a
capacitor. The converter uses this stored signal as the input to be converted.

When do you need a sample-and-hold? Clocked at 640 kHz, the ADC0809
requires 100 microseconds to convert, and you’ll get good results with inputs that
vary less than 1 bit in this amount of time. For rapidly changing inputs, sam-
ple-and-hold chips like the LF398 are available, or you can use a converter with a
sample-and-hold on-chip.

Chapter 8

164 Parallel Port Complete

Synchronous Serial Links

Parallel Port Complete 165

9

Synchronous Serial
Links
The parallel-port interface can transfer eight bits at a time, with each data bit on its
own wire. In contrast, in a serial interface, the bits arrive one by one. Although the
two interfaces seem very different, there are times when it makes sense to use the
parallel port to send and receive certain types of serial data.

This chapter shows how to use the parallel port in a synchronous serial interface,
with an example of a link to a digital-thermometer chip.

About Serial Interfaces

One advantage to serial links is that they require fewer wires. If you use a parallel
port to transfer serial data, many bits remain available for other uses. Disadvan-
tages to using the parallel port for serial transfers are that the programming is
more difficult, because you have to separate each byte into bits, and the transfers
are slower, because they’re one bit at a time.

A serial link may be synchronous or asynchronous. In an asynchronous link, both
ends agree on a clock rate, but each provides its own clock. The receiving end
watches for a start bit that indicates the beginning of a transmission, then uses its

Chapter 9

166 Parallel Port Complete

own clock to determine when to read each of the bits that follow. Because the
clock rates may vary slightly, each byte begins with a start bit to resynchronize the
receiver to the transmitted data, and ends with a stop bit to indicate end of trans-
mission. The PC uses its serial (RS-232) port for asynchronous communications
with modems, serial printers, and other devices. A UART chip in the PC adds and
removes start and stop bits and translates between serial and parallel data.

In contrast, synchronous links use a single, common clock. One wire carries the
clock signal used by both ends. The transmitting end sends each bit at a defined
time in the clock cycle (after a falling edge, for example), and the receiving end
uses the clock transitions to determine when to read the incoming bits (on the next
rising edge of the clock, for example). Other than the requirement for a common
clock, the specific protocols of synchronous serial interfaces can vary. A synchro-
nous link doesn’t require start and stop bits, so it doesn’t need a UART. Some
chips have a built-in synchronous serial interface.

Disadvantages to synchronous links include the need for an extra wire for the
clock signal and sensitivity to noise, especially with longer cables. Because the
receiver uses clock transitions to determine when to read each bit, a single glitch
on the clock line can cause the receiver to misread an instruction or data.

One popular synchronous interface is National Semiconductor’s Microwire,
which is compatible with many of National’s analog-to-digital converters and
other components. Chips from other manufacturers, including Dallas Semicon-
ductor and Maxim, use an interface similar to Microwire.

A Digital Thermometer

Dallas Semiconductor’s DS1620 Digital Thermometer and Thermostat is an 8-pin
programmable chip that can measure temperature and detect and respond to alarm
temperatures. It uses a 3-wire synchronous serial interface.

The chip measures temperatures from -55 to +125 degrees Celsius (-67 to +257
degrees Fahrenheit), with no calibration required. From 0 to +70°C, thermometer
error is ±0.5°, increasing gradually to ±2° at the measuring limits. This makes the
chip convenient for many applications, including heating and cooling controls,
temperature alarms, or basic temperature logging.

The chip has two modes of operation: 3-wire and standalone. In 3-wire mode, a
computer sends commands to start a conversion (to measure and store the current
temperature), to read the stored temperature from the chip, to read and write high
and low setpoints for the alarm outputs, to set the mode of operation, and to read
conversion and alarm status. Three-wire mode requires two output bits to connect

Synchronous Serial Links

Parallel Port Complete 167

to Clk/Conv and Rst on the DS1620, and one bidirectional bit to connect to DQ.
The recommended power supply is +5V, ±10%.

The chip has three alarm outputs. THIGH goes high when the measured tempera-

ture is greater than the value stored in the TH register. TLOW goes high when the

temperature is less than the value in TL. And TCOM (combination) goes high when

the temperature is greater than TH, and stays high until the temperature falls
below TL. This output is handy if you want to prevent the output from cycling on
and off too often when the temperature is near the setpoint.

You can connect the alarm outputs to input bits on a PC or you can interface alarm
or control circuits to them. For example, you could use the TCOM output to cause a

heater to turn on at 68 degrees and off at 70 degrees.

Using 3-wire mode, you can configure the chip for standalone operation. This
mode is more limited but requires no computer interface. If Rst is low and you
bring Clk/Conv low, the chip will continuously measure the temperature and indi-
cate alarm conditions as they occur. Or, you can trigger individual temperature
measurements at specific times by pulsing Clk/Conv low briefly. Either way, you
can use the alarm outputs for monitoring or control functions.

To read or write data to the chip in 3-wire mode, you first send an 8-bit instruction
that tells the chip what type of data you’re going to read or write. Table 9-1 sum-
marizes the chip’s nine instructions.

The temperature registers in the DS1620 are nine bits each, and store positive and
negative values with resolution of 0.5 degree. For positive temperatures, bit 8 is 0,
bits 1–7 hold the integer value of the temperature, and bit 0, if set, adds 0.5
degree. Negative temperatures are similar, except that bit 8 is 1 and the tempera-
ture is stored in two’s complement format. (To find the two’s complement of a
value, complement each bit, then add 1 to the result.) Table 9-2 shows examples
of temperatures and their translations into DS1620 format.

To read or write a value to the DS1620, you first must do the following:

1.To begin, Rst is low, Clk/Conv is high. Configure the port bit that connects to
DQ as an output.
2.Bring Rst high.
3.Bring Clk/Conv low.
4.Set DQ equal to bit 0 of the desired instruction.
5.Bring Clk/Conv high.
6.Repeat steps 3-5 for bits 1-7 of the instruction.

Then, to write a value to the chip:

7.Repeat steps 3-5 for bits 0-7 or 0-8 of the data to be written (if any).
8.Bring Rst low for at least 5 milliseconds.

Chapter 9

168 Parallel Port Complete

To read a value from the chip:

7.Do steps 1-6 above, then:
8.Configure the port bit that connects to DQ as an input, to prepare to read from
DQ.
9. Bring Clk/Conv low. DQ is now an output that holds the data to be read.
10.Read and store DQ (bit 0).
11.Bring Clk/Conv high.
12.Repeat steps 8-10 for bits 1-7 or 1-8 of the data to be read.
13.Bring Rst low.
14.Reconfigure the bit that connects to DQ as an input.

The data sheet specifies minimum delays between each of the above steps, but
most are short enough (125 nanoseconds or less) that you won’t have to worry
about meeting the requirement in most cases. There are two exceptions. Rst must
remain low for at least 5 milliseconds after you write to data to the DS1620 (step 8
in the write operation above). The delay gives the chip’s internal EEPROM
enough time to store the data. The chip also needs one second to execute a
start-convert instruction, so after performing a temperature conversion (instruc-
tion EEh), you must wait one second before you read the result (instruction AAh).

Unlike some serial chips, the DS1620’s Clk frequency has no minimum, so you
can clock it as slowly as you want. The maximum is 4 Megahertz.

Table 9-1: Command set for the DS1620. Most commands are followed by 8 or 9
data bits read from or written to the chip.
Com-
mand
(hex)

Name Description Number &
Type of Bits
That Follow

AA Read Tempera-
ture

Read the last conversion result. 9 (output)

01 Write TH Write the high-temperature alarm value. 9 (input)

02 Write TL Write the low-temperature alarm value. 9 (input)

A1 Read TH Read the high-temperature alarm value. 9 (output)

A2 Read TL Read the low-temperature alarm value. 9 (output)

EE Start Convert Begin a temperature conversion (1-shot or continu-
ous).

0

22 Stop Convert Stop temperature conversions after the current con-
version completes (continuous mode).

0

0C Write Config Write to the configuration register. 8 (input)

AC Read Config Read the configuration register. 8 (output)

Synchronous Serial Links

Parallel Port Complete 169

Using the DS1620

You can use a parallel port to communicate with the DS1620. For example, you
might have an application where you measure temperatures or monitor for alarms
directly at the parallel port. With a portable computer, you can use the program
just about anywhere. A parallel-port connection also provides a convenient way to
program the chip for standalone mode. You can store setpoints, set the mode, and
configure the chip for standalone operation. Then you can use the chip to monitor
temperatures on its own, with alarm or control circuits added as needed.

The Interface

Figure 9-1 shows a circuit that uses the parallel port’s Status and Control lines to
read and write to a DS1620. The circuit adds buffers and drivers to help ensure
that all signals arrive in good shape. If you’re just programming the chip for use in
standalone mode, you can use a short cable and connect the chip directly to the
cable.

The DQ bit connects through a 74LS245 transceiver to the parallel port’s Control
bit 0 (C0). The parallel port must be in SPP mode to ensure that the Control bit is
bidirectional (open-collector).

Bit C3 on the control port is a direction control for the transceiver. When DQ is an
input (its usual state), C3 should be low. This enables the DS1620 to read C0. In
other words, signal flow is from pin 18 to pin 2. When DQ is an output (when you
are reading data from the chip), C3 should be high. This enables the PC to read
DQ, and signal flow is from pin 2 to pin 18.

Table 9-2: The DS1620 stores temperatures in a 9-bit format, with resolution of
1/2 degree. Negative temperatures are stored as two's complements.
Temperature
(degrees Fahrenheit)

Temperature
(degrees Celsius)

Digital Output
(Binary)

Digital Output (Hex)

257 +125 0 1111 1010 0FA

77 +25 0 0011 0010 032

33 +0.5 0 0000 0001 001

32 0 0 0000 0000 000

-31 -0.5 1 1111 1111 1FF

-13 -25 1 1100 1110 1CE

-67 -55 1 1001 0010 192

Fahrenheit degrees = (9/5 * (Celsius degrees)) + 32

Chapter 9

170 Parallel Port Complete

The Clk/Conv and Rst inputs connect to two of the buffers in a 74LS244 octal
buffer, which are driven by the two remaining bits of the control port.

The three alarm outputs each connect to a 74LS244 driver that controls a status
input (S3, S4, S5) on the parallel port. Connecting these is optional.

There are a couple of variations on this circuit that you might use, depending on
your port’s hardware. If you have a bidirectional Data port, you can use a Data bit
instead of a Control bit for reading and writing to DQ. If you do so, be sure to con-
figure the port as input before bringing C3 high.

Another option is to use separate input and output bits for reading and writing to
DQ. For example, you could connect a Data or Control output through a 3-state
buffer/driver to DQ, and also connect DQ through a buffer/driver to a Status input.
Use the 3-state driver’s control signal to disable the Data bit’s buffer/driver except
when DQ is an input. To read DQ’s state, read its Status bit. To write to DQ, write
to the Data bit and enable its buffer/driver. This arrangement will work on any
port, and doesn’t require any bidirectional bits on the Status port.

Figure 9-1: The DS1620 stores alarm temperatures and temperature information.

Synchronous Serial Links

Parallel Port Complete 171

An Application

Figure 9-2 is the screen for a program that enables reading and writing to the chip.
The alarm indicators are very simple: grayed text for no alarm, and normal text for
alarms. If you wish, you can replace these with more colorful and prominent indi-
cators.

Listing 9-1 is the program code. The code follows the procedures described above
for reading and writing to the port. The listing includes routines for setting all of
the chip’s options and reading the temperatures and configuration information.

Debugging
Debugging serial interfaces can be difficult. If the DS1620 doesn’t respond to an
instruction, it can be hard to figure out why. Unlike other interfaces where the
receiving device acknowledges each transmission, with the DS1620 and similar
interfaces, the transmitting end assumes that the receiving end is always ready to
accept whatever is sent. The only acknowledgment you get after sending an
instruction to the DS1620 is the data returned, if any.

If you have problems getting the circuit up and running, try single-stepping
through the program and monitoring the signals at each step to verify that every-
thing is as it should be. A logic probe with a memory LED is useful for detecting

Figure 9-2: Screen for testing and configuring the DS1620.

Chapter 9

172 Parallel Port Complete

’DS1620 signals:
‘Inputs connect to Control port outputs:
Const DataIO = 1: ‘bit 0 (this bit is I/O)
Const Clock = 2: ‘bit 1
Const ResetOff = 4: ‘bit 2
Const ReadDirection = 8: ‘bit 3
‘Outputs connect to Status port inputs:
Const HighTrigger = 8: ‘bit 3
Const LowTrigger = &H10: ‘bit 4
Const CombinationTrigger = &H20: ‘bit 5
Dim ModeSelect%
Dim InterfaceSelect%
Dim ConfigurationData%
Dim StopConvert%

Listing 9-1: Communicating with the DS1620 digital thermostat over a
synchronous serial link. (Sheet 1 of 8)

Synchronous Serial Links

Parallel Port Complete 173

Sub cmdApplySettings_Click ()
‘Write user changes to the DS1620.
Dim Temperature%
If txtHighAlarmTemperature.Text <> ““ Then
 Temperature =
ConvertToChipFormat(CInt(txtHighAlarmTemperature.Text))

 WriteInstruction (1)
 WriteData Temperature
End If
If txtLowAlarmTemperature.Text <> ““ Then
 Temperature =
ConvertToChipFormat(CInt(txtLowAlarmTemperature.Text))

 WriteInstruction (2)
 WriteData Temperature
End If
‘Read the configuration register,
‘set or clear the interface and mode-select bits,
‘and write the values back.
ConfigurationData = ReadConfiguration()
If optMode(0).Value = True Then
 ModeSelect = 0
Else
 ModeSelect = 1
End If
If optInterface(0).Value = True Then
 InterfaceSelect = 0
Else
 InterfaceSelect = 1
End If
WriteConfiguration ((ConfigurationData And &HFC) Or _
(ModeSelect + InterfaceSelect * 2))
End Sub

Sub cmdClearHistory_Click ()
Dim Configuration%
‘To clear the alarm history,
‘write 0 to bits 5 & 6 of configuration register.
Configuration = ReadConfiguration() And &H9F
WriteConfiguration (Configuration)
ReadChip
End Sub

Listing 9-1: Communicating with the DS1620 digital thermostat over a
synchronous serial link. (Sheet 2 of 8)

Chapter 9

174 Parallel Port Complete

Sub cmdReadConfiguration_Click ()
ReadChip
UpdateUserControls
End Sub

Sub cmdStartConvert_Click ()
Dim Temperature%
WriteInstruction (&HEE)
WaitForConversion
WriteInstruction (&HAA)
Temperature = ReadData()
lblCurrentTemperature.Caption =
CSng(ConvertFromChipFormat(Temperature)) & “ degrees C”

StopConvert = False
End Sub

Sub cmdStopConvert_Click ()
WriteInstruction (&H22)
StopConvert = True
End Sub

Function ConvertFromChipFormat! (ValueToConvert%)
‘Temperature values read from the chip use 2’s complement
‘for negative numbers. LSB (bit 0) = 2^-1, or 0.5.
‘Bits 0-7 indicate temperature, bit 8 = 1 for negative values.
‘This function converts the integer read from the chip
‘to a positive or negative floating-point value.
‘For negative values, get the temperature value from the _
‘2’s complement & clear bit 8.
If (ValueToConvert And &H100) = &H100 Then
 ValueToConvert = (ValueToConvert - 1) Xor &H1FF
 ValueToConvert = -(ValueToConvert And &HFF)
End If
‘Divide by 2
ConvertFromChipFormat = CSng(ValueToConvert) / 2
End Function

Listing 9-1: Communicating with the DS1620 digital thermostat over a
synchronous serial link. (Sheet 3 of 8)

Synchronous Serial Links

Parallel Port Complete 175

Function ConvertToChipFormat% (ValueToConvert!)
‘Converts a floating-point temperature to the format
‘required by the DS1620.
ValueToConvert = ValueToConvert * 2
‘If negative, put in 2’s complement format.
If ValueToConvert < 0 Then
 ValueToConvert = (Abs(ValueToConvert) Xor &H1FF) + 1
End If
ConvertToChipFormat = CSng(ValueToConvert)
End Function

Sub Form_Load ()
‘(partial listing)
tmrReset.Enabled = False
tmrReset.Interval = 5
tmrWatchForAlarms.Enabled = True
tmrWatchForAlarms.Interval = 1000
lblHigh.Enabled = False
lblLow.Enabled = False
lblCombination.Enabled = False
lblHighFlag.Enabled = False
lblLowFlag.Enabled = False
StopConvert = False
‘Initialize control bits.
ControlPortWrite BaseAddress, &HE
ResetChip
ReadChip
UpdateUserControls
End Sub

Sub optInterface_Click (index As Integer)
InterfaceSelect = index
End Sub

Sub optMode_Click (index As Integer)
ModeSelect = index
End Sub

Listing 9-1: Communicating with the DS1620 digital thermostat over a
synchronous serial link. (Sheet 4 of 8)

Chapter 9

176 Parallel Port Complete

Sub ReadChip ()
‘Reads the configuration register & alarms
‘& displays the results.
Dim Flag%
Dim Temperature%
Dim Alarms%
Dim Alarm%
ConfigurationData = ReadConfiguration()
‘Alarm flags (past alarms)
Flag = BitRead(ConfigurationData, 5)
If Flag = 1 Then
 lblLowFlag.Enabled = True
Else
 lblLowFlag.Enabled = False
End If
Flag = BitRead(ConfigurationData, 6)
If Flag = 1 Then
 lblHighFlag.Enabled = True
Else
 lblHighFlag.Enabled = False
End If
‘Alarm inputs (current alarms)
Alarms = StatusPortRead(BaseAddress)
Alarm = BitRead(Alarms, 3)
If Alarm = 1 Then
 lblHigh.Enabled = True
Else
 lblHigh.Enabled = False
End If
Alarm = BitRead(Alarms, 4)
If Alarm = 1 Then
 lblLow.Enabled = True
Else
 lblLow.Enabled = False
End If
Alarm = BitRead(Alarms, 5)
If Alarm = 1 Then
 lblCombination.Enabled = True
Else
 lblCombination.Enabled = False
End If
‘Read these, but update only when UpdateUserControls is called.
ModeSelect = BitRead(ConfigurationData, 0)
InterfaceSelect = BitRead(ConfigurationData, 1)
End Sub

Listing 9-1: Communicating with the DS1620 digital thermostat over a
synchronous serial link. (Sheet 5 of 8)

Synchronous Serial Links

Parallel Port Complete 177

Function ReadConfiguration ()
WriteInstruction (&HAC)
ReadConfiguration = ReadData()
End Function

Function ReadData% ()
Dim BitValue%
Dim DataIn%
Dim BitIn%
DataIn = 0
‘Set the transceiver direction to allow reading DataIO.
‘Write 1 to Control bit 0 to allow its use as an input.
ControlPortWrite _
 BaseAddress, Clock + DataIO + ResetOff + ReadDirection
For BitValue = 0 To 8
 ‘When Clock=0, DS1620 outputs data on DataIO.
 ControlPortWrite _
 BaseAddress, ReadDirection + DataIO + ResetOff
 ‘Read DataIO and add its value to ReadData
 BitIn = BitRead(ControlPortRead(BaseAddress), 0)
 DataIn = DataIn + BitIn * 2 ^ BitValue
 ‘Clock=1
 ControlPortWrite _
 BaseAddress, Clock + ReadDirection + DataIO + ResetOff
Next BitValue
‘Set ReadDirection=0 to switch transceiver back.
ControlPortWrite BaseAddress, Clock + DataIO + ResetOff
DataIn = DataIn And &H1FF
ReadData = DataIn
End Function

Sub ResetChip ()
‘toggle Reset before each write
ControlPortWrite BaseAddress, Clock + DataIO
‘wait at least 5 milliseconds
tmrReset.Enabled = True
Do
 DoEvents
Loop Until tmrReset.Enabled = False
ControlPortWrite BaseAddress, Clock + ResetOff + DataIO
End Sub

Listing 9-1: Communicating with the DS1620 digital thermostat over a
synchronous serial link. (Sheet 6 of 8)

Chapter 9

178 Parallel Port Complete

Sub tmrReset_Timer ()
‘Ensures a reset pulse of at least 5 milliseconds.
tmrReset.Enabled = False
End Sub

Sub tmrWaitForConversion_Timer ()
tmrWaitForConversion.Enabled = False
End Sub

Sub tmrWatchForAlarms_Timer ()
‘Read the alarms.
‘If continuous mode is selected, read a conversion.
If (optMode(0).Value = True) And (StopConvert = False) Then
 cmdStartConvert.Value = True
End If
ReadChip
End Sub

Sub UpdateUserControls ()
‘Updates the option buttons and alarm settings
‘with the values read from the configuration register.
‘(Verifies that the values were stored correctly.)
Dim Temperature%
‘Read TH
WriteInstruction (&HA1)
Temperature = ReadData()
txtHighAlarmTemperature.Text =
CSng(ConvertFromChipFormat(Temperature))

‘Read TL
WriteInstruction (&HA2)
Temperature = ReadData()
txtLowAlarmTemperature.Text =
CSng(ConvertFromChipFormat(Temperature))

optMode(ModeSelect).Value = True
optInterface(InterfaceSelect).Value = True
End Sub

Sub WaitForConversion ()
tmrWaitForConversion.Enabled = True
Do
 DoEvents
Loop Until tmrWaitForConversion.Enabled = False
End Sub

Listing 9-1: Communicating with the DS1620 digital thermostat over a
synchronous serial link. (Sheet 7 of 8)

Synchronous Serial Links

Parallel Port Complete 179

glitches on the Clk or Rst lines. (A single glitch on either of these can cause an
instruction to be misread.)

Sub WriteConfiguration (ConfigurationData%)
WriteInstruction (&HC)
WriteData (ConfigurationData)
End Sub

Sub WriteData (DataToWrite%)
‘Writes data to the DS1620 after a write instruction
‘Chip ignores bit 8 if unneeded
Dim BitNumber%
Dim BitValue%
For BitNumber = 0 To 8
 BitValue = BitRead(DataToWrite, BitNumber)
 ‘Clock=0
 ControlPortWrite BaseAddress, ResetOff
 ‘Set or clear DataIO to match the bit value.
 ControlPortWrite BaseAddress, BitValue + ResetOff
 ‘Clock=1
 ControlPortWrite BaseAddress, BitValue + Clock + ResetOff
Next BitNumber
End Sub

Sub WriteInstruction (Instruction%)
Dim BitNumber%
Dim BitValue%
‘Toggle Reset before each write.
ResetChip
ControlPortWrite BaseAddress, Clock + ResetOff
For BitNumber = 0 To 7
 BitValue = BitRead(Instruction, BitNumber)
 ‘Clock=0
 ControlPortWrite BaseAddress, ResetOff
 ‘Set or clear DataIO to match the bit value
 ControlPortWrite BaseAddress, ResetOff + BitValue
 ‘Clock=1
 ControlPortWrite BaseAddress, Clock + ResetOff + BitValue
Next BitNumber
End Sub

Listing 9-1: Communicating with the DS1620 digital thermostat over a
synchronous serial link. (Sheet 8 of 8)

Chapter 9

180 Parallel Port Complete

Standalone Mode
Figure 9-3 shows the DS1620 in standalone mode. It also shows circuits you can
connect to the alarm outputs in standalone or 3-wire mode. Before you can use
this circuit, you have to use 3-wire mode to program the chip by setting bit 1 in the
configuration register to 0 and writing the desired values to the alarm setpoints.

For continuous temperature conversions, close the switch at pin 2. (Clk/Conv must
be high on power-up.) To start a single conversion, use the alternate circuit shown
instead of the switch and resistor at pin 2. Press the switch to cause a single pulse
of about 1 millisecond at Clk/Conv.

The DS1620’s alarm outputs can source just 1 milliampere at 2.4V, and sink 4
milliamperes at 0.4V, so most alarm interfaces will require some buffering.

In the example, LEDs connect to the alarm outputs. The red one lights when the
temperature exceeds TH, the green one lights when the temperature is less than

Figure 9-3: In standalone mode, the DS1620 monitors temperature and outputs
alarm signals.

Synchronous Serial Links

Parallel Port Complete 181

TL, and the yellow one turns on at the same time as the red and stays on until the
green turns on.

Chapter 7 showed how to use a logic signal to control power to a circuit. For the
DS1620, possible uses might be to control a fan that runs when TCOM is high, or a

heater that runs when TCOM is low.

Table 9-3 shows the functions for each of the bits in the DS1620’s configuration
byte.

Other Serial Chips

Many other chips use serial interfaces similar to the DS1620’s. Maxim’s Max186
and ’188 are low-power, 8-channel analog-to-digital converters, and National
Semiconductor’s DAC0854 is a quad digital-to-analog converter.

If you’re considering using a device, examine its data sheet carefully, because the
specifics of the interfaces do vary. On National’s ADC0838 analog-to-digital con-
verter, the maximum time that the serial clock can remain high is 60 microsec-
onds, although the clock can remain low indefinitely as long as the analog input is
stable. Other chips are more flexible, and can be clocked as slowly as you wish.

Chapter 9

182 Parallel Port Complete

Table 9-3: Bit functions in the DS1620’s configuration register.
Bit Name Value Function

0 1-shot mode 0 Start Convert causes continuous conversions

Start Convert 1 causes one conversion

1 CPU use 0 Clk/Conv begins a conversion when Rst is low

1 3-wire mode, Clk/Conv acts as clock

2 - don't care unused

3 - don't care unused

4 - don't care unused

5 TLF 0 temperature > value in TL

1 temperature <= value in TL

6 THF 0 temperature < value in TH

1 temperature >= value in TH

7 DONE 0 conversion in progress

1 conversion complete

Real-time Control

Parallel Port Complete 183

10

Real-time Control
Programs that access the parallel port may use any of a number of ways to decide
when to read or write to a port. User actions are one obvious way. In many of the
examples in this book, the user triggers a port read or write by clicking a com-
mand button. Other examples of user actions are a request to print a file or read a
file from a parallel-port-based drive.

Other types of triggers include events that occur at a periodic rate (every five sec-
onds; every hour), at a specific time of day (2:10 pm; every hour on the hour), or
in response to an external event (a switch’s closing; an analog-to-digital con-
verter’s end-of-conversion pulse). This chapter shows how to do all of these in
Visual-Basic programs.

Periodic Triggers

Some applications need to read or write to the parallel port at a periodic rate. For
example, to control a (very slow) stepping motor, you might write to the port once
per second. A monitoring system might read a sensor once a day.

Visual Basic’s Timer control makes it easy to do these. You set the Timer control
to trigger a Timer event at regular intervals that you define. When the Timer event
occurs, the program run a subroutine that performs the desired actions.

Chapter 10

184 Parallel Port Complete

The Timer control is best suited for measuring intervals of a few hundred millisec-
onds to 1 minute, and when absolute accuracy isn’t essential. The longest interval
a Timer control can detect is 64.676 seconds, or a little over a minute. However,
using the Time function along with the Timer control enables measuring longer
periods. An 18-Hz clock updates the Timer’s contents, so the minimum interval
that the Timer control can measure is 1/18 second, or 56 milliseconds. The 18-Hz
clock is the same signal the computer uses to update its real-time-clock.

Visual Basic allows you to set the timer interval as short as 1 millisecond, but the
timer event won’t execute until the next clock tick, which may occur after 1 or 56
milliseconds. This also means that all timer events are no more precise than within
56 milliseconds.

In addition to the Timer control’s limited resolution, other system events can
reduce the Timer control’s accuracy. If other things keep the CPU busy for more
than 1/18 second, the Timer Control will miss one or more clock ticks and the
length between Timer events will increase. For example, if a Timer event is sup-
posed to occur after 1 second, but the Timer misses two clock ticks, the event will
occur 2/18 second late, or after 1.11 seconds. If your program is the only applica-
tion running, and if the program does little more than wait for Timer Events, miss-
ing Timer ticks won’t be a problem.

Tasks that can block timer updates include long loops or calculations, and lengthy
disk, network, or port accesses. In Visual-Basic programs, adding a DoEvents
statement in a long loop enables the Timer to update, although other applications
may still block additional Timer updates during DoEvents.

Simple Timer Control

Listing 10-1 is a program that demonstrates the use of the Timer Control, and Fig-
ure 10-1 is the program’s screen. Users can select the period between Timer
events. The Timer-event subroutine just sounds a beep. You can replace the beep
with whatever code you want to execute periodically.

The program allows intervals of hours, minutes, hours and minutes, or seconds.
For intervals of less than 1 minute, the Timer’s interval property equals the inter-
val time in milliseconds, and the Timer event calls an Alarm subroutine that con-
tains the code the program wants to execute periodically. If the interval is longer
than a minute, the time is too long to set directly in the Interval property, so the
program uses a different approach. The Timer event occurs once per minute, and
the Timer subroutine has an internal counter that keeps track of the remaining
minutes. Every minute, the Timer subroutine decrements the counter. When the
count equals zero, the Alarm subroutine executes.

Real-time Control

Parallel Port Complete 185

Although the subroutine is called Alarm, you can use similar Timer routines for
any type of application with periodic events, not just security or alarm indicators.

Time-of-day Triggers

Another way of triggering an event by time is to trigger at a specific time of day.
With the Timer control described above, you can cause an event to occur once an
hour, but there’s no way of ensuring that the events occur on the hour, at 1:00,
2:00, 3:00, and so on. The Timer control begins timing when it’s enabled, and that
may be on the hour or any time between.

The solution is in Visual Basic’s Time function, which can trigger an event when
the system time matches the time specified in the application. The Time function
is as accurate as the computer’s system clock. It’s also a convenient way of timing
longer intervals of minutes and hours, whether or not they have to occur on the
minute or hour. The Time function requires more programming effort than using
the Timer control alone, because the program has to check periodically to see if
the current time matches the event time.

Listing 10-2 is a program that enables the user to select an alarm time in hours,
minutes, and/or seconds, and then set, or turn on, the alarm. Figure 10-2 is the pro-
gram’s user screen. When the alarm is set and the system time matches the
selected values, the Alarm subroutine executes.

The program uses the Timer control to read the system time once per second. A
shorter interval gives greater precision in the alarm time, with the tradeoff that the
system spends more time checking the time. A longer interval is less precise, but
the Timer events take up less of the system’s time.

Figure 10-1: This program allows you to set an alarm interval in hours, minutes,
and seconds. When the selected time has elapsed, an Alarm subroutine runs.

Chapter 10

186 Parallel Port Complete

The program uses Visual Basic’s type 7 variant variable Date, which can store
time as well as date information. The time can use a variety of formats. Listing
10-2 uses the format “hh:nn:ss”, with 2-digit numbers for hours (0-23), min-
utes (0-59), and seconds (0-59). (The interval name for minutes is n because
months uses m.)

Visual Basic’s DateAdd and DateDiff functions make it easy to execute
Timer events that occur more than once per hour or minute. For example, you
might want a Timer event to occur on the hour and at 15, 30, and 45 minutes after
the hour. The DateAdd function enables you to add 15 minutes to a date vari-
able. The function automatically increments the hours and other fields when
appropriate. If each Timer event adds 15 minutes to the alarm time, the event will
execute every 15 minutes.

This statement adds one 15-minute interval to the variable AlarmTime:

DateAdd(“n”,15,AlarmTime)

Use of DateAdd and DateDiff requires the financial function msafinx.dll, pro-
vided with Visual Basic.

If you want to trigger actions on a specific date, use the Date function, which
works similar to Time.

Loop Timers

Another way to cause periodic events is to use a For loop to cause delays
between events:

For I = 1 to 10: Next I

Figure 10-2: This program allows you to set an alarm time for a specific time of
day.

Real-time Control

Parallel Port Complete 187

Dim IntervalSeconds&
Dim IntervalMinutes%
Dim IntervalHours%
Dim LongDelay%
Dim Alarm%
Dim SecondsCounter%
Dim MinutesCounter%

Sub AlarmEvents ()
Beep
‘Place code to execute periodically here.
End Sub

Sub cmdStart_Click ()
SetTimerInterval
tmrAlarm.Enabled = True
End Sub

Sub cmdStop_Click ()
tmrAlarm.Enabled = False
End Sub

Listing 10-1: Triggering periodic events. (Sheet 1 of 3)

Chapter 10

188 Parallel Port Complete

Sub SetTimerInterval ()
Dim Hours$
Dim Minutes$
Dim Seconds$
LongDelay = False
Alarm = False
Hours = txtHours.Text
Minutes = txtMinutes.Text
Seconds = txtSeconds.Text
If Hours = ““ Then Hours = “0”
If Minutes = ““ Then Minutes = “0”
If Seconds = ““ Then Seconds = “0”
IntervalSeconds = _
 Val(Hours) * 3600 + Val(Minutes) * 60 + Val(Seconds)
If IntervalSeconds < 60 Then
 tmrAlarm.Interval = IntervalSeconds * 1000
Else
 ‘For long delay, check the time once/minute
 tmrAlarm.Interval = 60000
 LongDelay = True
 ‘Get the number of minutes.
 IntervalMinutes = IntervalSeconds \ 60
End If
End Sub

Sub tmrAlarm_Timer ()
If LongDelay Then
 ‘Decrement the minutes remaining; see if count is finished.
 IntervalMinutes = IntervalMinutes - 1
 If IntervalMinutes <= 0 Then
 Alarm = True
 End If
Else
 Alarm = True
End If
If Alarm = True Then
 ‘Reset time variables
 SetTimerInterval
 lblTimeOfLastAlarm.Caption = Time$
 AlarmEvents
End If
text1.Text = _
 Time$ & “ “ & “;” & IntervalMinutes & “;” & IntervalSeconds
End Sub

Listing 10-1: Triggering periodic events. (Sheet 2 of 3)

Real-time Control

Parallel Port Complete 189

This method can create very short delays, but the time will vary depending on the
system. For this reason, creating timing loops like the one above isn’t a good idea
unless you need a simple, short, and very non-critical delay time.

Triggering on External Signals

Some applications, especially those that access circuits outside of the computer,
need to respond to external events. The event might be a user’s pressing a switch,
an alarm signal generated by an external condition, an analog-to-digital con-
verter’s signaling that it has a value waiting to be read, or any condition that tog-
gles one of the port inputs.

Two methods for detecting external signals are by polling and by hardware inter-
rupts. In polling, the software must read, or poll, a signal periodically to find out if
an event has occurred. With interrupts, the computer’s hardware is programmed to
detect a change at an external signal automatically.

The main advantage of polling is that the programming involved is relatively sim-
ple. The disadvantage is that the computer can waste a lot of time checking for
events. Interrupts eliminate the wasted time, but programming an interrupt routine
is more difficult. This is especially true under Windows, where multiple programs
may be running and the interrupt routine has to be able to execute without disrupt-
ing any of them.

Sub txtHours_Change ()
If txtHours.Text <> ““ Then
 txtSeconds.Text = ““
 txtSeconds.Enabled = False
 lblSeconds.Enabled = False
 End If
End Sub

Sub txtMinutes_Change ()
If txtMinutes.Text <> ““ Then
 txtSeconds.Text = ““
 txtSeconds.Enabled = False
 lblSeconds.Enabled = False
End If
End Sub

Listing 10-1: Triggering periodic events. (Sheet 3 of 3)

Chapter 10

190 Parallel Port Complete

Dim Alarm%
Dim AlarmTime$
Dim AlarmSounded%
Dim SkipHours%
Dim SkipMinutes%
Dim SkipSeconds%

Sub AlarmEvents ()
Beep
‘Place code to execute on alarm here.
End Sub

Sub cmdStart_Click ()
Dim AlarmHour$
Dim AlarmMinute$
Dim AlarmSecond$
AlarmHour = txtHour.Text
AlarmMinute = txtMinute.Text
AlarmSecond = txtSecond.Text
If AlarmHour = ““ Then
 SkipHours = True
 AlarmHour = “00”
Else
 SkipHours = False
End If
If AlarmMinute = ““ Then
 SkipMinutes = True
 AlarmMinute = “00”
Else
 SkipMinutes = False
End If
If AlarmSecond = ““ Then
 SkipSeconds = True
 AlarmSecond = “00”
Else
 SkipSeconds = False
End If
AlarmTime = Format$(AlarmHour & “:” & _
 AlarmMinute & “:” & AlarmSecond, “hh:mm:ss”)
AlarmSounded = True
tmrAlarm.Enabled = True
End Sub

Listing 10-2: Triggering events according to time of day. (Sheet 1 of 3)

Real-time Control

Parallel Port Complete 191

Sub cmdStop_Click ()
tmrAlarm.Enabled = False
End Sub

Sub Form_Load ()
‘(partial listing)
‘This determines how often the program checks for alarm
‘conditions:
tmrAlarm.Interval = 500
End Sub

Listing 10-2: Triggering events according to time of day. (Sheet 2 of 3)

Chapter 10

192 Parallel Port Complete

Sub tmrAlarm_Timer ()
Dim CurrentTime$
Dim CurrentHour%
Dim CurrentMinute%
Dim CurrentSecond%
Dim HourMatch%
Dim MinuteMatch%
Dim SecondMatch%
‘Save the current time.
CurrentTime = Time$
lblCurrentTime.Caption = CurrentTime
CurrentHour = DatePart(“h”, CurrentTime)
CurrentMinute = DatePart(“n”, CurrentTime)
CurrentSecond = DatePart(“s”, CurrentTime)
‘See if the current hours, minutes, and seconds match the
‘alarm conditions.
‘If a field in AlarmTime is blank (unused), use the value
‘from CurrentTime.
If SkipHours Then
 AlarmTime = Format$((DatePart(“h”, CurrentTime) & “:” _
 & DatePart(“n”, AlarmTime) & “:” & _
 DatePart(“s”, AlarmTime)), “hh:nn:ss”)
End If
If SkipMinutes Then
 AlarmTime = Format$((DatePart(“h”, AlarmTime) & “:” & _
 DatePart(“n”, CurrentTime) & “:” & _
 DatePart(“s”, AlarmTime)), “hh:nn:ss”)
End If
If SkipSeconds Then
 AlarmTime = Format$((DatePart(“h”, AlarmTime) & “:” & _
 DatePart(“n”, CurrentTime) & “:” & _
 DatePart(“s”, CurrentTime)), “hh:nn:ss”)
End If
If (CurrentTime >= AlarmTime) And Not AlarmSounded Then
 AlarmSounded = True
 Beep
 lblTimeOfLastAlarm.Caption = CurrentTime
 AlarmEvents
End If
If (CurrentTime < AlarmTime) And AlarmSounded Then
 ‘If the alarm field(s) have cycled back to 0,
 ‘set AlarmSounded to false to allow the next alarm.
 AlarmSounded = False
End If
End Sub

Listing 10-2: Triggering events according to time of day. (Sheet 3 of 3)

Real-time Control

Parallel Port Complete 193

Polling

Polling means checking periodically to see if an event has occurred. For paral-
lel-port applications, the event may be a transition at an input. The conventional
signal that indicates that the peripheral has received a byte and is ready for another
is nAck, but you can use any Status bit, or even a Control or Data bit configured as
input. In Visual Basic, you can use the Timer control or Time function to poll an
input at a rate you select.

If the signal you’re watching for is a brief pulse, you need to be sure that the pro-
gram doesn’t miss it. For example, to detect when a user presses a pushbutton,
you might connect the pushbutton to an input that goes low while the switch is
pressed. But if the software polls the input every 200 milliseconds, and the user
presses the switch for just 100 milliseconds, the software may not see the switch
press at all. Decreasing the time between polls will solve the problem, but the
increased time spent polling will degrade system performance in other areas.

Another problem with detecting manual switch presses is key bounce. When a
user presses a mechanical switch, the switch contacts usually bounce open and
closed a few times before making positive contact, and bounce again when the
switch is released. With a short time between polls, a program watching for a
switch closure may detect two or more switch presses when the user pressed the
switch just once.

One way to solve both of these problems is to latch the signal that indicates a key
press until the program detects and clears it. Figure 10-3 shows a circuit that does

Figure 10-3: A flip-flop can store a logic level that indicates a switch press. When
the PC reads the signal, it clears the flip-flop.

Chapter 10

194 Parallel Port Complete

just this. The Q output of a 74LS74 flip-flop connects to a Status input, and a Con-
trol output drives the flip-flop’s Clr (Clear) input. A switch controls the Pre (Pre-
set) input. Bringing Clr low causes Q to go low. When the user presses the switch,
Pre goes low, setting the flip-flop and bringing Q high. When the software detects
the change at its Status input, it pulses Clr low briefly to clear the flip-flop and
bring Q low again.

This circuit will reliably detect brief switch presses. For manual switches like the
one shown, if the flip-flop has already been cleared when the switch re-opens,
switch bounce may retrigger the flip-flop. The solution is to delay a bit before
clearing the flip-flop, or use a hardware debouncing circuit, such as a 1-shot mul-
tivibrator, to ensure that the flip-flop doesn’t see the switch bounce. You can use
any parallel-port input and output bits with this circuit.

Listing 10-3 is a program that polls the Status port. When bit 3 is high, the pro-
gram runs an Alarm subroutine that displays a message and pulses Control bit 0
to clear the flip-flop.

Polling Frequency
The program uses the Timer control to determine when to read the status port. The
ideal frequency of polling, or period between polls, depends on how fast the pro-
gram needs to respond to the events.

If you poll often, you’ll know very quickly if the event occurred, but you’ll proba-
bly waste a lot of time checking when nothing has happened. If you poll less
often, you won’t waste as much time looking, but you also won’t be able to guar-
antee a fast response. In an alarm circuit where the program needs to take action
within 1 second, the program should poll the alarm input more often than once per
second, even if the chance that an alarm has occurred at any single poll is slim. If
the computer has nothing else to do, there’s no harm in polling frequently. If the
computer has a lot of other things to do while it waits, it makes sense to set the
time between polls to the longest time that the application can tolerate.

Hardware Interrupts

A hardware interrupt is another way to cause a computer to respond to an external
event. When an interrupt occurs, the CPU stops what it’s doing and executes an
interrupt-service routine (ISR) that performs the desired actions. When the ISR is
finished executing, the CPU returns to what it was doing before the interrupt
occurred.

At the parallel port, a transition at nAck (Status bit 6) can cause a hardware inter-
rupt.

Real-time Control

Parallel Port Complete 195

Interrupts are fast and efficient. They can give the quickest response possible to a
hardware event. They’re efficient because the software doesn’t have to waste time

Dim PollBit%
Dim FlipFlopClearBit%
Dim ControlPortData%

Sub Alarm ()
lblAlarm.Caption = “Switch pressed at “ + Time$
End Sub

Sub ClearFlipFlop ()
‘Pulse the Clear input of the flip-flop
‘so new switch presses can be detected.
ControlPortData = ControlPortRead(BaseAddress)
BitReset ControlPortData, FlipFlopClearBit
ControlPortWrite BaseAddress, ControlPortData
BitSet ControlPortData, FlipFlopClearBit
ControlPortWrite BaseAddress, ControlPortData
End Sub

Sub Form_Load ()
StartUp
‘The Status-port bit that the program polls:
PollBit = 3
‘The Control-port bit that clears the flip-flop:
FlipFlopClearBit = 0
ClearFlipFlop
tmrPoll.Interval = 1000
tmrPoll.Enabled = True
lblAlarm.Caption = “Waiting for alarms...”
End Sub

Sub tmrPoll_Timer ()
Dim SwitchPress%
‘Read the bit being polled.
‘If the bit = 1, call the Alarm subroutine.
SwitchPress = BitRead(StatusPortRead(BaseAddress), PollBit)
If SwitchPress = 1 Then
 ClearFlipFlop
 Alarm
End If
End Sub

Listing 10-3: Program code for Figure 10-3‘s circuit.

Chapter 10

196 Parallel Port Complete

polling just in case an event has occurred. Instead, the hardware detects events
automatically.

But although they have advantages, hardware interrupts aren’t always a practical
solution. There are several reasons why programming with hardware interrupts is
challenging.

First, to use the interrupt, the system must know where the ISR resides in mem-
ory. Many programming languages, including Visual Basic, have no way of set-
ting or finding the memory location of a program, so you’re out of luck entirely
unless you can use another programming language or a control with this ability.

Also, bugs in an interrupt-driven program are very likely to crash the computer or
cause other problems that require rebooting. Getting an interrupt-driven program
up and running takes more time and effort than other types of programs.

And finally, when you’re using the parallel-port interrupt, although the interrupt
works in a similar way on most systems, there are exceptions to be aware of if you
want your application to work on all PCs.

Programming Options
Under Windows 3.x, a DLL may handle hardware interrupts. Windows 95
requires a VxD. Although you can’t write an ISR in Visual Basic, you can use
hardware interrupts in Visual-Basic programs. The quick and simple way to add
parallel-port interrupts is to use a commercial Ocx designed for this purpose.

Using an Ocx
An example of an Ocx for port access is BlueWater Systems’ WinRT Ocx, for use
in 32-bit programs. Figure 10-4 shows its properties screens, which enable you to
select a range of port addresses and select and enable a hardware interrupt. You
can also use WinRT for port accesses under Windows NT, which doesn’t allow
direct port I/O.

Port reads and writes using WinRT use this syntax:

Value = Inp(PortOffset)
Outp PortOffset, Value

where PortOffset is the relative address of the port (for example, 0 for the
Data port, 1 for the Status port, 2 for the Control port), and Value is the byte to
write to the port (with Outp) or the byte read from the port (with Inp).

To use WinRT with hardware interrupts, you do the following:

1. In WinRT’s Resources property sheet, enter a port address and IRQ level and
click Apply, then Restart Driver. You need to set and apply the properties only
once, but you must start the driver each time the system boots. If you want to start

Real-time Control

Parallel Port Complete 197

the driver automatically on bootup, check Automatically Start at Boot on the
Resources property sheet.

2. Place the code you want to execute on interrupts in the
OcxName_interrupt subroutine, where OcxName is the Ocx’s Name prop-
erty.

Figure 10-4: Bluewater System’s WinRT Ocx enables you do port I/O and
hardware interrupts under Windows 95. The properties screens enable you to
configure the Ocx.

Chapter 10

198 Parallel Port Complete

3. Run the program. Whenever the Ocx’s assigned interrupt occurs, the program
runs the Interrupt subroutine.

When WinRT loads, it checks Windows 95’s system registry to ensure that the
port addresses and other resources it needs aren’t reserved by other drivers. It also
stores WinRT’s resources in the registry, so other drivers can learn which ports
and IRQ level WinRT is using.

Multiple Interrupt Sources

Figure 10-5 is an example of interrupt use that allows a program to detect when a
user presses any of four switches. Each switch sets one of four flip-flops, whose
outputs you can read at S3-S5 and S7. Listing 10-4 is a program that uses WinRT
and hardware interrupts to respond to the switch presses in Figure 10-5. Listing
10-5 includes routines for reading and writing to the port registers using WinRT,
because the syntax is different than when using Inp and Out for direct port
access.

The Q output of each flip-flop drives an input to a 74LS20 4-input NAND gate.
When any Q output goes low, the NAND’s output goes high and triggers a
200-microsecond low-going pulse at nAck (Status port bit 6). The rising edge of
the pulse triggers an interrupt, and the interrupt routine reads the Status port to
determine which switch was pressed, and clears the flip-flops by bringing C0 low.

A 74HC14 Schmitt-trigger inverter generates the interrupt pulse. To lengthen or
shorten the pulse, increase or decrease the values of the resistor and capactor at
pin 1.

Port Variations

Not all parallel-port interrupts work in exactly the same way. On the original PC,
when the interrupt is enabled, a rising edge at nAck (S6) triggers an interrupt.
However, on the original PC and many of its early imitators, the interrupt signal
isn’t latched internally, and these computers may not respond properly to a very
brief pulse at nAck. On these systems, the interrupt signal must remain high until
the CPU acknowledges it, and this may take anywhere from 10 to 100 microsec-
onds or more, depending on your computer’s speed and whatever else the com-
puter has to do before it can service the interrupt. A 100-microsecond pulse is
long enough for most systems to detect.

Another difference is that a few ports trigger interrupts on the falling edge of
nAck. However, in conventional use, where the interrupt signal is a brief pulse to
acknowledge receiving a byte, it usually doesn’t matter which edge triggers the

Real-time Control

Parallel Port Complete 199

interrupt. Newer port designs will almost certainly have latched interrupts and
trigger on the rising edge.

Figure 10-5: This circuit causes an interrupt when any of 4 switches is pressed.
Reading the Status port tells you which switch was pressed

Chapter 10

200 Parallel Port Complete

Dim FlipFlopClearBit%
Dim ControlPortData%

Sub DisableInterrupt()
‘Disable the parallel-port interrupt.
‘(Set Control port bit 4 = 0.)
ControlPortData = ControlPortRead()
BitReset ControlPortData, 4
ControlPortWrite ControlPortData
End Sub

Sub EnableInterrupt()
‘Enable the parallel-port interrupt.
‘(Set Control port bit 4 = 1.)
ControlPortData = ControlPortRead()
BitSet ControlPortData, 4
ControlPortWrite ControlPortData
End Sub

Sub Form_Load()
‘The WinRt driver must be loaded!
‘In the WinRT property sheets,
‘click “Restart Driver” for manual loading
‘or select “Automatically start at boot” for autoloading
‘on bootup.
‘The Control-port bit that clears the flip-flops:
FlipFlopClearBit = 0
DisableInterrupt
ClearFlipFlops
‘Rearm automatically after an interrupt:
ocxParallelPort.ArmInterrupt True
EnableInterrupt
End Sub

Private Sub Form_Unload(Cancel%)
DisableInterrupt
End
End Sub

Listing 10-4: Using WinRT’s Ocx to detect hardware interrupts. (Sheet 1 of 2)

Real-time Control

Parallel Port Complete 201

Sub ClearFlipFlops()
‘Pulse the flip-flops’ clear input (Control port bit 0).
ControlPortData = ControlPortRead()
BitReset ControlPortData, FlipFlopClearBit
ControlPortWrite ControlPortData
BitSet ControlPortData, FlipFlopClearBit
ControlPortWrite ControlPortData
End Sub

Sub ocxParallelPort_Interrupt(ByVal Status As Long)
‘Read the status port.
‘Determine which switch was pressed.
‘Clear the flip-flops.
Dim StatusPortData%
Dim S3%
Dim S4%
Dim S5%
Dim S7%
Dim ResultCaption$
ResultCaption = “Switch pressed = “
StatusPortData = StatusPortRead()
S3 = BitRead(StatusPortData, 3)
If S3 = 1 Then ResultCaption = ResultCaption + “ S3”
S4 = BitRead(StatusPortData, 4)
If S4 = 1 Then ResultCaption = ResultCaption + “ S4”
S5 = BitRead(StatusPortData, 5)
If S5 = 1 Then ResultCaption = ResultCaption + “ S5”
S7 = BitRead(StatusPortData, 7)
If S7 = 1 Then ResultCaption = ResultCaption + “ S7”
lblSwitchPressed.Caption = ResultCaption + “ at “ + Time$
ClearFlipFlops
End Sub

Listing 10-4: Using WinRT’s Ocx to detect hardware interrupts. (Sheet 2 of 2)

Chapter 10

202 Parallel Port Complete

Function DataPortRead%()
‘Reads a parallel port’s data port.
DataPortRead = frmMain.ocxParallelPort.Inp(0)
End Function

Sub DataPortWrite(Value%)
‘Writes a byte to a parallel port’s data port.
frmMain.ocxParallelPort.Outp BaseAddress, Value
End Sub

Function StatusPortRead%()
‘Reads a parallel port’s status port.
‘Calculates the status-port address from the port’s
‘base address, and inverts bit 7 of the byte read.
‘The status-port hardware reinverts these bits,
‘so the value read matches the value at the connector.
StatusPortRead = frmMain.ocxParallelPort.Inp(1) Xor &H80
End Function

Function ControlPortRead%()
‘Reads a parallel port’s control port.
‘Calculates the control-port address from the port’s
‘base address, and inverts bits 0, 1, & 3 of the byte read.
‘The control-port hardware reinverts these bits,
‘so the value read matches the value at the connector.
Dim ControlPortData%
ControlPortData = frmMain.ocxParallelPort.Inp(2)
ControlPortRead = ControlPortData Xor &HB
End Function

Sub ControlPortWrite(Value%)
‘Writes a Value to a parallel port’s control port.
‘Calculates the control-port address from the port’s
‘base address, and inverts bits 0, 1, & 3.
‘The control-port hardware reinverts these bits,
‘so Value is written to the port connector.
frmMain.ocxParallelPort.Outp 2, (Value Xor &HB)
End Sub

Listing 10-5: Routines for reading and writing to the parallel-port registers using
WinRT.

Modes for Data Transfer

Parallel Port Complete 203

11

Modes for Data Transfer
The IEEE-1284 standard documents five types of data transfers: Compatibility,
Nibble, Byte, EPP and ECP. All of these were in use before the standard’s publi-
cation, but the standard provides a reference that circuit designers and program-
mers can use when designing products.

The standard also describes a software negotiation that enables a PC and a periph-
eral to decide on a protocol for transferring data. Other documents fill in topics
that IEEE 1284 doesn’t cover, such as information that is specific to the PC’s
architecture. Unfortunately a few aspects, such as the basic setup and configura-
tion procedures for a port, aren’t standardized, and vary with the controller chip.

This chapter introduces the new modes, describes IEEE-1284’s negotiation proto-
col, and shows ways of determining which modes a port supports and how to
select a mode from those available.

The IEEE 1284 Standard

The IEEE 1284 standard is a document that defines and describes all of the popu-
lar conventions and protocols for parallel-port communications. A committee of
the The Institute of Electrical and Electronic Engineers (IEEE) developed the
standard, which was released in 1994.

Chapter 11

204 Parallel Port Complete

The IEEE is an organization of engineers and engineering companies. One of its
activities is to develop and publish standards, or documents that recommend spec-
ifications for engineering practices, including computer interfacing. The idea
behind developing the standards is to reduce the extra work, confusion, and
incompatibilities that result when every manufacturer develops products indepen-
dently and customers have to choose from among variations on a single idea, such
as the parallel port.

The parallel-port standard has the designation IEEE Std 1284-1994 and the
lengthy full title of Standard Signaling Method for a Bi-directional Parallel
Peripheral Interface for Personal Computers. This book refers to it as IEEE 1284.
The complete document is available from the IEEE.

The standard describes Compatibility, Nibble, Byte, EPP, and ECP transfers. It
defines the parallel-port signals and their uses in the different modes, including
timing specifications. It also describes connectors and cables, including the origi-
nal ones and new, high-performance types (described in Chapter 6.)

IEEE 1284 doesn’t cover everything, however. Most notably, it doesn’t say any-
thing about how to program or access the interface in a PC or peripheral. There’s
no mention of the PC’s parallel-port registers and how to use them to configure,
read, and write to the port.

However, other sources have documented conventions for these. A document
published by Microsoft (see Appendix A) describes register use and protocol for
ECPs. Data sheets for parallel-port controller chips also describe the use of the
parallel-port registers. Another IEEE committee is developing a standard BIOS,
or API, for using the new modes.

Definitions

The purpose of IEEE 1284 is to describe methods for asynchronous, fully inter-
locked, bi-directional communications between a host and a peripheral device.
This means, a term at a time:

Asynchronous. As explained in Chapter 9, in synchronous communications, the
devices share a common clock signal, and events occur at defined times in relation
to the clock. The clock often runs at a fixed frequency, which causes each data
transfer to take the same amount of time.

Parallel-port data transfers are normally asynchronous, where the devices don’t
share a common clock, and the timing of events is defined in relation of one event
to another. For example, when the PC brings nStrobe low, the peripheral brings
Busy high in response. The delay before Busy goes high can vary from 0 to 10
microseconds, and the width of the nStrobe pulse can vary from 0.75 to 500

Modes for Data Transfer

Parallel Port Complete 205

microseconds. The peripheral is responsible for detecting nStrobe, reading the
data, then bringing Busy high, rather than depending on a clock signal to tell it
when to do each of these. The peripheral may bring Busy low again whenever it’s
ready to receive another byte. (It is possible to use the parallel port as a synchro-
nous interface, as Chapter 9 showed with the DS1620 thermometer chip.)

Fully interlocked. Every control signal is acknowledged with an answering con-
trol signal. This ensures that the transmitting device sends data only when the
receiving device is ready, and that the receiving devices acknowledges receiving
all data.

Bi-directional. Data may travel in both directions.

Host. This is usually a PC, though it can be any device that controls the interface.

Peripheral device. This may be a printer, scanner, A/D or D/A converter, a micro-
controller, another PC, or any device that connects to the host’s parallel port.

Communication modes

IEEE 1284 defines five communication modes. It uses the term forward channel
to refer to transfers from the host to the peripheral, and reverse channel to refer to
transfers from the peripheral to the host. Below is a summary of each mode:

Register Use
Table 11-1 summarizes the registers used by each of the modes. The functions of
some of the registers vary depending on the mode.

Compatibility mode
Compatibility mode is similar to the data-transfer protocol used by the BIOS in
the original PC. The host sends a byte at a time to the peripheral, and Busy and
nAck provide handshaking. This is the default mode that all PCs and PC-compati-
ble devices can use.

Nibble mode
Nibble mode defines a way that all ports can use to transfer data in the reverse
direction, from the peripheral to the host. Each byte of data arrives four bits (a nib-
ble) at a time, at four of the Status inputs. The remaining Status bit and a Data bit
provide handshaking.

Chapter 11

206 Parallel Port Complete

Byte Mode
Byte mode defines a way to transfer data in the reverse direction, from the periph-
eral to the host, when the data lines are bidirectional. For faster data transfers,
PS/2 ports, ECPs, and some EPPs can use Byte mode instead of Nibble mode.

EPP Mode
Enhanced Parallel Port (EPP) mode allows high-speed transfers of bytes in either
direction. Handshaking signals distinguish between data and address transfers.

ECP Mode
Like EPP mode, Extended Capabilities Port (ECP) mode can do high-speed trans-
fers in either direction. Handshaking signals distinguish between data and control
bytes. A control byte may contain an address or data-compression information. A
FIFO buffer stores bytes received and bytes to be sent.

Compatible and Compliant Devices
The 1284 standard defines the terms compatible and compliant in relation to the
standard. You might think that a device labeled as 1284-compatible or 1284-com-
pliant would have to support all of the above modes, but this isn’t so.

Table 11-1: Registers used by different port types.
Address Port Type Function

base address SPP, PS/2, EPP, ECP modes 000,
001

Data port

ECP mode 011 ECP FIFO (address)

base address + 1 all Status port

base address + 2 all Control port

base address + 3 EPP EPP address

base address + 4 EPP EPP data

base address + 5 EPP varies

base address + 6 EPP varies

base address + 7 EPP varies

base address + 400h ECP mode 010 Parallel Port FIFO (data)

ECP mode 011 ECP FIFO (data)

ECP mode 110 Test FIFO

ECP mode 111 Configuration Register A

base address + 401h ECP mode 111 Configuration Register B

base address + 402h ECP all modes ECR (extended control register)

Modes for Data Transfer

Parallel Port Complete 207

According to the standard, 1284-compatible devices include any device that can
use Compatibility mode. This includes the SPP and all of its imitators and deriva-
tives.

A device that is 1284-compliant must also support the IEEE 1284’s protocol for
negotiating. However, the only additional mode that a 1284-compliant device
must support is Nibble mode. An SPP or other 1284-compatible device can also
use Nibble mode, but it doesn’t support the negotiation protocol, so the host and
peripheral must have another way of selecting the mode.

According to the IEEE 1284’s definitions, neither compatible nor compliant
devices have to support EPP or ECP modes. So, if you’re buying a parallel port
labeled as 1284-compatible or compliant, it’s a good idea to verify that it also sup-
ports EPP and ECP modes.

Signal names
IEEE 1284 assigns new names to the port bits to reflect their new purposes. Some
of the bits have as many as five names, depending on the mode. Table 11-2 shows
the signal names for the bits in the Data, Status, and Control ports in each mode.

Detecting Port Types

On many of the ports that support the new modes, the new abilities go unused or
cause problems when the software expects to communicate with an old-style port
and accesses one of the new modes by mistake. Confusion about the new ports
includes very basic issues like how to find out what modes are available, how to
enable and disable the different modes, and how and when to use each mode.

Just figuring out what type of parallel port is in a system can be a challenge. Many
ports, no matter how many modes they support, default to SPP type, which can
use only Compatibility and Nibble modes. Before you can use the new modes,
you have to configure the port to allow their use.

Using the New Modes

To use Byte, EPP, or ECP mode, both the host and peripheral must have support-
ing hardware and software. These are the basic requirements:

PC Requirements
To use one of the new modes, the PC must have both hardware and software sup-
port for the mode:

Chapter 11

208 Parallel Port Complete

1. The mode must be enabled at the port.

2. The PC’s software has to know how to do the transfers using the new mode.
The application software or the operating system may provide a software driver
for Nibble, Byte, EPP, or ECP transfers. The following chapters have details
about the modes and how to program them.

Table 11-2: The functions of the parallel-port’s bits change depending on the
data-transfer mode.
Bit Function according to Mode

Compatibility Nibble Byte EPP ECP

D0 data bit 0 not used data bit 0 address/data
bit 0

data bit 0

D1 data bit 1 not used data bit 1 address/data
bit 1

data bit 1

D2 data bit 2 not used data bit 2 address/data
bit 2

data bit 2

D3 data bit 3 not used data bit 3 address/data
bit 3

data bit 3

D4 data bit 4 not used data bit 4 address/data
bit 4

data bit 4

D5 data bit 5 not used data bit 5 address/data
bit 5

data bit 5

D6 data bit 6 not used data bit 6 address/data
bit 6

data bit 6

D7 data bit 7 not used data bit 7 address/data
bit 7

data bit 7

S3 nError nDataAvail,
data bits 0, 4

nDataAvail User defined
bit 2

nPeriphReq

S4 Select XFlag,
data bits 1, 5

XFlag XFlag/User
defined bit 3

XFlag

S5 PaperEnd AckDataReq,
data bits 2, 6

AckDataReq User defined
bit 1

nAckReverse

S6 nAck PtrClk PtrClk Intr PeriphClk

S7 Busy PtrBusy,
data bits 3, 7

PtrBusy nWait PeriphAck

C0 nStrobe HostClk HostClk nWrite HostClk

C1 nAutoLF HostBusy HostBusy nDStrb HostAck

C2 nInit nInit nInit nInit nReverseReq

C3 nSelectIn 1284Active
(optional)

1284Active 1284Active
nAStrb

1284Active

Modes for Data Transfer

Parallel Port Complete 209

Peripheral Requirements
The peripheral must also support the mode you want to use. A peripheral with an
EPP- or ECP-capable port will almost certainly contain its own computer chip—a
microprocessor or microcontroller—to manage the parallel-port communications.
Some peripherals have a dedicated controller chip just for the parallel-port com-
munications, and a separate CPU that performs other tasks and accesses the port
controller as needed. Other peripherals may use a single computer chip for all
device functions.

The control program in a peripheral is normally stored as firmware: the code is in
ROM, EPROM, or another nonvolatile memory chip, and the peripheral’s CPU
reads the program directly from the chip, rather than loading from disk into RAM,
as on a PC. If you’re designing your own peripheral and you don’t use a dedicated
parallel-port controller, you’ll have to program the hardware to perform the trans-
fers.

Port Detecting in Software

If you’re writing a parallel-port application that will run on many different com-
puters, the application may want to detect what modes the PC’s and peripheral’s
ports support, so it can choose the best communication mode available.

Chapter 4 included software routines for detecting port types (and supported
modes) in a PC. IEEE 1284 defines a negotiation protocol, a series of signals and
responses, for determining which modes a peripheral supports. A PC can request
different modes until it finds one that both the PC and peripheral support. A
peripheral that is IEEE-1284-compliant will support the protocol.

Disabling the Advanced Modes

Some peripheral devices are designed for use only with SPPs. They may use the
Status and Control lines in unconventional ways that will confuse an EPP or ECP.
With these devices, you want to be sure to configure the port as an SPP.

One way to do so is to disable the advanced modes entirely, as described in Chap-
ter 1. This method is fine if you use the port only as an SPP. If you sometimes use
the port to connect to devices that use the newer modes, they won’t be able to use
the modes until you re-enable them.

A second option is to get a PS/2, EPP, or ECP to act like an SPP without disabling
the new modes entirely. A PS/2-type port or EPP will act like an SPP as long as
you don’t set bit 5 of the control port to 1, disabling the data outputs. To configure
an ECP to emulate an SPP, select mode 000 in the ECR. In mode 011 (ECP), writ-

Chapter 11

210 Parallel Port Complete

ing to the Data port (the base address) causes the port to try to do an ECP
Address-Write cycle, with automatic handshaking, which you don’t want.

If you have an unknown port and want it to emulate an SPP, first test for the pres-
ence of an ECP and if it exists, select mode 000 in the ECR. Otherwise, just
remember to keep control bit 5 = 0.

One difference on some of the newer ports is that even in SPP mode, the port
doesn’t have open-collector outputs on the Control bits, so you can’t use these bits
as inputs. Also, some EPPs don’t support Byte mode, so to do Byte-mode trans-
fers, you’ll need to configure the port as PS/2-type, or as ECP with the ECP’s
PS/2 mode selected.

Saving the Original Configuration
A final note for parallel-port experimenting: before you change any of the config-
urations, save the original values of the configuration registers. In most cases
you’ll want to restore these values on exiting your program. Rebooting resets the
chip’s configuration, then applies any settings in the CMOS setup.

Negotiating a Mode

With so many modes to choose from, when a host and peripheral want to commu-
nicate, they need a way to decide which mode to use. IEEE 1284’s negotiation
phase enables devices to talk back and forth to decide the best mode to use. This
way, users don’t have to concern themselves with configuring the software for a
particular mode, or even knowing which modes their ports support.

Through negotiating, the host can find out which modes a peripheral supports.
When a peripheral supports multiple modes, the negotiation tells the peripheral
which mode the host wants to use.

A 1284-compliant device will negotiate according to the standard. Some periph-
eral controllers have internal state machines that perform the negotiating automat-
ically. Otherwise, the peripheral’s firmware does the negotiating. If a host tries to
negotiate with a port that doesn’t respond to the negotiation, the host should
default to Compatibility mode.

Protocol

Figure 11-1 is a timing diagram for the negotiation between a host and peripheral.
These are the negotiating steps:

Modes for Data Transfer

Parallel Port Complete 211

Figure 11-1: The IEEE 1284 standard includes a negotiation protocol that enables
a PC and peripheral to decide which communications mode to use.

Time Minimum Maximum

Tl 0 35 millisecs.

Th 0 1.0 sec.

Tp 0.5 µsec -

Chapter 11

212 Parallel Port Complete

1. The host requests a mode by writing an extensibility request value to the data
lines (D0-D7), then bringing 1284Active (C3) high, and HostBusy (C1) low. Table
11-3 lists the extensibility bytes.

2. In response, a 1284-compliant peripheral brings PtrClk (S6) low and AckDa-
taReq (S5), XFlag (S4), and nDataAvail (S3) high. On a peripheral that isn’t
1284-compliant and thus doesn’t support negotiating, this situation is unlikely to
occur because an event that causes S5 (PaperEnd) to go high would cause S3
(nError) to go low. If PaperEnd and nError are not both high, the peripheral
doesn’t support IEEE 1284 negotiation and the host brings 1284Active (C3) low to
end the negotiation attempt. The link may then use compatibility mode to transfer
data.

3. If the peripheral supports negotiating, the host brings HostClk (C0) low to latch
the extensibility byte into the peripheral. The host then brings HostClk and Host-
Busy high.

4. In response, the peripheral brings AckDataReq low. If it supports the requested
mode, it leaves XFlag high. The exception is Nibble mode, which all 1284-com-
pliant devices must support, and for which XFlag goes low. If the peripheral has
data to send to the host, it brings nDataAvail low.

5. The peripheral brings PtrClk (S6) high to complete the negotiation.

If the requested mode isn’t supported by the peripheral, the host returns to com-
patibility mode and may try again with a different extensibility request byte.
When the host finds a mode that the peripheral supports, data transfer can begin.

Controller Chips

There are many different parallel-port controller chips. Some are designed for use
in a PC or other host device, while others are designed for use in peripherals, and
a few can be configured for either use.

Host Chips

If you have an ECP or EPP, it’s often possible to identify the controller chip.
Knowing the manufacturer and part number can be useful if you need to learn
more about configuring the chip or want to check compatibility with a periph-
eral’s driver.

On a typical EPP- or ECP-capable chip, performing basic configuration functions
such as selecting the port’s base address, IRQ level, and port type requires access-
ing configuration registers in the controller. To protect from accidental writes, the

Modes for Data Transfer

Parallel Port Complete 213

configuration registers often require a special series of writes before they can be
accessed. There is no standard method for accessing the configuration registers,
however. The addressing and protection methods vary with the chip.

Table 11-4 lists some parallel-port chips. The part number and manufacturer’s
name or logo are usually stamped on the chip.

SMC’s Super I/O
An example of parallel-port chips that support ECP and EPP modes is SMC (Stan-
dard Microsystems Corporation)’s FDC37C665GT and FDC37C666GT. Their
full name is Advanced High-Performance Multi-Mode Parallel Port Super I/O
Floppy Disk Controllers. I’ll call them SMC Super I/O for short.

As the name suggests, these chips include both a floppy-disk controller and a par-
allel port. You can even configure the parallel port as a floppy-disk port for exter-
nal drives—a useful feature for diskless portable computers. The chip also has
two serial-port UARTs and an IDE interface.

The two chips are similar. The -65GT is optimized for use on motherboards and
includes software configuration logic for the floppy controller. The -66GT is opti-
mized for use on expansion cards and includes a game-port select. Both support
all of the parallel-port modes: Compatibility, Nibble, Byte, EPP, and ECP.

The chips have 16 configuration registers, but you access the registers using just
two port addresses. One address holds the index of the register to access (0-Fh),
and the other holds the data to be written or read from the register.

Table 11-3: The host sends an extensibility byte to the peripheral to request a
transmission mode.
Extensibility byte Function

1000 0000 Request extensibility link

0100 0000 Request EPP mode

0011 0000 Request ECP mode with RLE

0001 0000 Request ECP mode

0000 1000 Reserved

0000 0100 Request Device ID, return data using Nibble mode

0000 0101 Request Device ID, return data using Byte mode

0001 0100 Request Device ID, return data using ECP mode without RLE

0011 0100 Request Device ID, return data using ECP mode with RLE

0000 0010 Reserved

0000 0001 Byte mode transfer

0000 0000 Nibble mode transfer

Chapter 11

214 Parallel Port Complete

To prevent accidental writes to the configuration registers, the software must first
enter the chip’s Configuration Mode. On the ’65 chip, you do so by writing 55h
twice to port 3F0h. SMC recommends disabling interrupts during these writes,
because any port access that occurs between the two writes will prevent the chip
from entering Configuration mode. You can re-enable interrupts after entering
Configuration Mode.

In Configuration mode, software may read and write to the configuration regis-
ters. To access a register, you write the register number to port 3F0h, then read or
write data at port 3F1h. You can verify that you’re in Configuration mode by
changing a bit in a configuration registers and reading back the result. When
you’re finished accessing the registers, you exit Configuration Mode by writing
AAh to port 3F0h.

On the ’66 chip, the configuration registers may be at 3F0h-3F1h or at 370h-371h,
depending on the logic states of two of the chip’s pins. An expansion card with a
’66 may include jumpers or a utility to select the address range. To enter configu-
ration mode, you write 44h twice in a row to the lower address, either 3F0h or
370h.

A single system may have three SMC Super I/O ports: a ’65 on the motherboard,
one ’66 on an expansion card with configuration registers at 3F0h, and another

Table 11-4: Parallel-port controller chips for PCs.
Manufacturer Part Number Part Name Package

Intel 82091AA Advanced Integrated Peripheral (AIP) 100-pin
QFP

National Semiconduc-
tor

PC87332VLJ Super I/O III Premium Green 100-pin
QFP

National Semiconduc-
tor

NS486SXF 486-Class Controller with On-chip Periph-
erals for Embedded Systems

160-pin
QFP

SMC (Standard
Microsystems Cor-
poration)

FDC37C665,
FDC37C666

Advanced High-Performance
Multi-Mode Parallel Port Super I/O
Floppy Disk Controller

100-pin
QFP

SMC (Standard
Microsystems Cor-
poration)

FDC37C93X Plug and Play Compatible Ultra I/O Con-
troller

160-pin
QFP

Startech ST78C34 General-purpose parallel port with 83-byte
FIFO

44-pin
PLCC,
40-pin DIP

Startech ST78C36 ECP/EPP parallel printer port with 16-byte
FIFO

44-and
68-pin
PLCC

Modes for Data Transfer

Parallel Port Complete 215

’66 expansion card with configuration registers at 370h. The different access
codes and configuration register addresses enable all three to co-exist. (Each port
must have a different base address as well.)

Only some of the configuration registers are related to parallel-port use. Table
11-5 lists the relevant bits. From the table, you can see that the default configura-
tion for the ’66 is SPP, with all of the other modes disabled. In order to use PS/2,
EPP, or ECP modes, you have to set Configuration Register 1’s bit 3 to 0. You
then can select a mode with bits 0 and 1 of Configuration Register 4.

The Configuration Registers also allow you to select a base address, place the port
in low-power mode, and select an EPP type, FIFO threshold for ECP transfers,
and interrupt-request polarity. Unlike other controller chips, these don’t include
an IRQ-level select, so external circuits have to perform that function.

On the ’66, the port address and mode (SPP, EPP, ECP, or ECP+EPP) are hard-
ware-selected by the logic states of pins on the chip. Expansion cards may include
jumpers or software to allow changing these.

Most data-transfer modes are available in more than one of the modes selected in
the Configuration Registers or in hardware. For example, on the ’65, if CR1, bit 3,
is 0, any of the modes in CR4 will allow SPP transfers. For EPP transfers, you can
use either mode 01 or 11 in CR4.

With all of these options, it may take two or three steps to select a mode. For
example, in order to do ECP transfers on a ’65, you would:

1. Enable the extended modes by setting bit 3 of CR1 to 0.
2. Select ECP port type by writing 10 or 11 to bits 0 and 1 of CR4.
3. Select the ECP’s internal ECP mode by writing 011 to bits 7-5 in the ECP’s
ECR.

For EPP transfers, you can either select SPP & EPP port type in CR4, or:

1. Select ECP & EPP port type.
2. Select the ECP’s internal EPP mode in the ECR.

FarPoint Communications’ F/PortPlus is an example of an expansion card that
uses the ’66. The chip is hardwired as ECP+EPP, and FarPoint provides a utility
for selecting the ECP’s internal modes. Farpoint also includes a program for
accessing the configuration registers, though you’ll need the chip’s data sheet for
documentation on the registers themselves.

SMC’s Ultra I/O
An enhancement to the Super I/O is SMC’s FDC37C93X Plug and Play Compat-
ible Ultra I/O Controller. It has the same abilities as the Super I/O, and also sup-
ports Microsoft’s Plug and Play standard.

Chapter 11

216 Parallel Port Complete

The port on this card may have any of 480 base addresses, on any byte boundary
from 100h to FF8h. Of course, other devices will use many of these locations, and
most parallel ports will continue to use the conventional addresses. But it is handy
to have the ability to choose a nonstandard address if necessary.

NSC’s Super I/O
National Semiconductor’s PC87332VLJ Super I/O, or NSC Super I/O for short, is
much like SMC’s Super I/O, with an EPP/ECP parallel port plus two serial ports,
control logic for an IDE interface (for hard drives), and a floppy-disk interface.

Table 11-5: Parallel-port configuration bits in SMC’s Super I/O Chips
Configuration
Register

Bit Name Description

CR1 1,0 Parallel port address
(note 4))

0 0 disabled

0 1 3BCh

1 0 378h

1 1 278h (default)

2 Parallel port power 1 power supplied (default)

0 low power mode

3 Parallel Port Mode
(note 4)

1 SPP (default)

0 extended modes allowed (see CR4, bits 0, 1)

4 IRQ polarity (affects
IRQ3, IRQ4, FINTR,
and LPT IRQ (5 or 7)

1 active high, inactive low (default)

0 active low, inactive high-Z (always true in
ECP, EPP modes)

CR4 0,1 Parallel Port Extended
Modes (if CR1 bit 3 =
0) (note 4)

1 0 SPP, PS/2 (default)

0 1 SPP & EPP (note 1)

1 0 ECP (note 3)

1 1 ECP & EPP (notes 2 & 3)

6 EPP type 0 EPP 1.9 (default)

1 EPP 1.7

CRA 0-3 ECP FIFO Threshold threshold for ECP service requests (0-15,
default = 0)

Note 1: Read/writes to SPP registers are SPP mode, read/writes to EPP registers are EPP mode.

Note 2: For EPP, set ECR register of ECP to mode 100.

Note 3: For SPP, set ECR register of ECP to mode 000.

Note 4: In the ’65GT, this option is set by hardware and can’t be changed in the configuration reg-
isters.

Modes for Data Transfer

Parallel Port Complete 217

This chip has eight configuration registers, and various bits in six of them config-
ure the parallel port. The parallel-port functions in the configuration registers are
similar to those in SMC’s Super I/O. You can enable the port, select an address,
power down, select an IRQ level and polarity, and enable PS/2, ECP, and EPP
modes. However, the register assignments are different from those in SMC’s
chips.

As with SMC’s chips, NSC’s Super I/O uses two consecutive port addresses for
accessing the Configuration Registers. The addresses and method for accessing
them differs, however. There are four possible address pairs. The active pair is
selected in hardware. The first address in the pair is an index register. The second
address is the data register, and holds the data to write or data read. To change the
configuration data, you write the index to the index register, then write the data
twice to the data register. Writing twice protects against inadvertent writes.

Five pins on the chip allow selecting of different combinations of default port
addresses in hardware.

NSC’s Embedded 486
National Semiconductor’s NS486SXF is nearly a complete computer system on a
chip. It contains an 80486 microprocessor and peripheral functions that you would
expect to find on a PC’s motherboard, including a parallel port that supports ECP.
The chip is intended as a controller for devices like fax machines, multi-function
peripherals, TV set-top boxes, and computer-based organizers and communica-
tors.

The NS486’s ECP can be configured in Host or Slave (peripheral) mode. In Host
mode, the signals emulate the signals on a PC’s parallel port, while in Slave mode,
they emulate the signals on a peripheral’s port. For example, in Host mode, the
Status lines are inputs; in Slave mode, they’re outputs. If the NS486 is functioning
as a PC, the port uses Host mode and connects to a peripheral device. If the chip is
the controller for a peripheral, the port uses Slave mode and connects to a PC’s
parallel port.

Peripheral Chips

In addition to chips designed for use in the host PC, there are parallel-port control-
lers designed for use in peripherals. Like the controller chips in PCs, many of the
peripheral chips support Byte, EPP, and ECP modes. But the peripheral chips
don’t have to interface to a PC’s ISA expansion bus, and they may not use the
standard PC addresses for the port registers. (Some peripherals do have 80x86
CPUs, however.) Some chips have a pass-through port that allows their use in a

Chapter 11

218 Parallel Port Complete

daisy chain of devices connected to a single port on the PC. And, as mentioned
above, the bits on the peripheral have different functions: the Status bits are out-
put, the Control bits are input, and the Data bits are input, or bidirectional bits that
are input on powerup.

The previous section described NSC’s Embedded 486, which can be configured
for use in peripherals as well as PCs. Table 11-6 lists other peripheral controllers
that support EPP and ECP modes.

SMC's 34C60
SMC’s 34C60 Parallel Port Interface chip is a companion to SMC’s Super I/O. It
handles the peripheral side of a parallel-port link. Like SMC’s Super I/O, it’s a
100-lead surface-mount chip and is a computer in itself. It has inputs and outputs
that can buffer and drive a parallel-port cable. It also has an interface to an
ISA-type bus. The peripheral doesn’t have to include a full ISA bus, of course, but
using the familiar ISA interface makes it easy for designers to interface a CPU to
the chip.

Other features include the ability to daisy-chain up to eight peripherals on the
port, support for interrupt-sharing among multiple devices, a low-battery sensor,
and an output for driving a piezo buzzer.

Cirrus Logic’s CD1283
Cirrus Logic’s CD-1283 is designed for use in printers, scanners, and tape drives.
It has a 64-byte FIFO, automatic compressing and decompressing of data, and
DMA support. A 16-bit data bus and 7 address lines interface to the peripheral’s
CPU. The chip’s internal state machine automatically responds to IEEE 1284
negotiations from the host. A Negotiation Status register indicates the current
mode and the success or failure of the latest negotiation attempt.

Peripheral Daisy Chains

Although you can easily add a second and third port to most desktop systems, and
there’s always the option of using a switch box to select a device at a single port, it
would be more convenient to be able to connect several devices to one port and
use each whenever you want. A supplement to the IEEE 1284 standard documents
a daisy-chain protocol that allows up to nine devices to connect to a single port. At
this writing, the supplement is still under development, but a preliminary version,
IEEE P1284.3, is available for review. The following information is based on the
preliminary version, which is subject to change.

Modes for Data Transfer

Parallel Port Complete 219

All of the devices in the chain use the same signal paths for communicating with
the host PC. Except for the PC and the last device in the chain, each device con-
nects both to the device ahead of it and to the device behind it in the chain. The PC
selects the device it wants to communicate with, and all of the others remain in
transparent, or pass-through, mode. In transparent mode, the device ignores all
transmissions and allows signals to pass to the next device in the chain. Only the
selected device communicates with the host.

Except for the last device in the chain, all devices have to understand the
daisy-chain protocol. The last device can be daisy-chain-unaware (in other words,
any conventional peripheral). This device can communicate when none of the oth-
ers is selected.

Protocol
The host communicates with the peripherals by sending commands in packets,
using the Command Packets Protocol (CPP). This is the format of the packets:

Table 11-7 shows the commands. The escape sequence is a series of bytes sent
without any handshaking. The peripheral has to monitor the Data inputs, watching
for the sequence. (An internal state machine may perform this function.) An
escape byte is considered valid if it remains for a least one microsecond. The
peripheral responds by setting the Status port as follows: After receiving the first
FFh, the peripheral sets the Status port to 00x10xxx (x = don’t care). After receiv-
ing 87h, it sends 11011xxx. After receiving 78h, if the device is selected, it sends
00111xxx, or 01111xxx if it’s the last device in the chain. If the device is not
selected, bit 4 in the byte sent after 78h is 0. The bytes are those on the daisy
chain; in the PC’s Status register, bit 7 is inverted from the values shown. After
the escape sequence, the PC sends the Command byte and pulses nStrobe, then
sends the FFh terminator with no handshaking.

Table 11-6: Controller chips for peripherals with EPP and ECP support.
Manufacturer Part Number Part Name Package

Cirrus Logic CL-CD1283 IEEE 1284-Compatible Parallel Interface
Controller

100-pin
QFP

SMC (Standard
Microsystems Cor-
poration)

34C60 Parallel Port Interface Chip - Peripheral
Side

100-pin
QFP

Escape Sequence Command Terminator

AA 55 00 FF 87 78 xx FF

Chapter 11

220 Parallel Port Complete

All of the daisy-chain-aware devices power up in transparent mode. Before com-
munications can begin, the host assigns each device an address corresponding to
its number in the chain. To assign an address to the first device in the chain, the
host writes the escape sequence followed by 00 to the data lines. When a
daisy-chain-aware peripheral recognizes this as an assign-address command (00
through 07), it blocks all Control signals from passing to the next device, so when
the host brings nStrobe low, the first device in the chain is the only one to see it. It
accepts the address and returns to transparent mode. The host then sends the next
address (01) to the next device in the chain, and continues until it reaches the last
device.

After each device has an address, the host can use the Select-Device commands to
select a device and communications mode.

Programming Options

There are several approaches to writing a program that uses one of the IEEE-1284
modes.

You can write your own software from scratch, using the IEEE 1284 specification
and other parallel-port conventions as a guide. Of course, the device that connects
to the host computer must also be capable of using the modes you program. With
IEEE-1284-compliant peripherals, you can use the standard’s negotiation protocol
to select a mode. If you’re designing your own peripheral, you can implement the

Table 11-7: MAP commands for parallel-port daisy chains.
Command (hexadecimal) Command (binary) Description

00-07 0000 0aaa Assign address aaa to current device.

08-0F 0000 1aaa Query interrupt from device aaa

10-17 0001 0aaa Query protocol ID from device aaa

20-27 0010 0aaa Select device aaa in EPP mode

30 0011 xxxx De-select all devices

40 0100 0xxx Disable daisy-chain interrupts

48 0100 1xxx Enable daisy-chain interrupts

50-57 0101 0aaa Clear interrupt latches on device aaa

58-5F 0101 1aaa Set interrupt latch on device aaa

D0-D7 1101 0aaa Select device aaa in ECP mode

E0-E7 1110 0aaa Select Device aaa in Compatible mode

Modes for Data Transfer

Parallel Port Complete 221

new modes by using a dedicated controller chip or by programming the transfers
yourself.

To make accessing the new modes easier, the IEEE 1284.3 supplement will define
a device driver, or software interface, for parallel-port data transfers, including
functions for detecting a port’s mode, transferring data, and selecting a device
when several are connected to one port.

There are also a few commercial device drivers available for parallel ports,
including support for the advanced modes. Peripheral manufacturers can license
these drivers for use with their products.

Chapter 11

222 Parallel Port Complete

Compatibility and Nibble Modes

Parallel Port Complete 223

12

Compatibility and Nibble
Modes
Every PC’s parallel port can use two communications modes: Compatibility mode
for eight-bit PC-to-peripheral transfers, and Nibble mode for four-bit periph-
eral-to-PC transfers. This chapter describes these modes and introduces a circuit
that you can use to interface a parallel port to a microcontroller or other peripheral
circuit.

Compatibility Mode

Compatibility mode is the default mode for sending data from the host to the
peripheral. The host writes bytes to the Data port, and Status and Control bits pro-
vide handshaking. The Compatibility mode described in IEEE 1284 uses hand-
shaking that is compatible with the handshaking in the original PC’s BIOS routine
for parallel-port transfers.

Handshaking

Three of the parallel port’s signals are intended as handshaking signals for con-
trolling the flow of data. The handshaking performs several functions. The periph-

Chapter 12

224 Parallel Port Complete

eral’s Busy output tells the PC when it’s ready to receive data. The PC’s nStrobe
output tells the peripheral that a byte is available to be read on the Data lines.
When the peripheral reads a byte, it sends a nAck pulse to tell the PC that the byte
was received.

You don’t have to use handshaking with parallel-port operations. For example, if
you’re using the port outputs to control a set of relays, simple Out statements that
write to the data port may be all you need. The handshaking signals are necessary
if there’s a chance that the receiving device won’t be ready when the transmitting
device has something to send, or if the PC wants the receiving device to acknowl-
edge receiving each byte.

Figure 12-1 shows the handshaking and data signals for Compatibility mode,
which should work with just about all existing parallel-port peripherals. The trans-
fer works like this:

1. The PC brings SelectIn (C3) low to tell the peripheral it wants to communicate.
In response, the peripheral brings Select (S4) high. The PC reads the Status port
and verifies that Select is high and that Busy (S7) is low.

If you use one of the MS-DOS functions to write to the port, PaperEnd (S5) must
also be low and nError (S3) must be high.

2. When all looks OK, the PC writes a byte to D0-D7.

3. After a delay of at least 0.75 microseconds, the PC pulses nStrobe (C0) low.
The pulse is typically 1 to 5 microseconds wide, but may range from 0.75 to 500
microseconds. The PC holds D0-D7 valid for at least 0.75 microseconds after
nStrobe returns high.

4. On the falling edge of nStrobe, the peripheral reads and latches (stores) D0-D7
and brings Busy high to tell the computer not to send another byte yet. Busy
should go high within 0.5 microsecond after nStrobe goes low.

5. When the peripheral has latched the data, it pulses nAck (S6) low to tell the PC
that it received the byte. The nAck pulse is typically 5 microseconds, but may
range from 0.5 to 10 microseconds. The PC may use nAck as an interrupt that tells
the PC when to write the next byte to the data port. When the peripheral is ready
to receive another byte, it brings Busy low and a new data transfer may begin.

Variations

Because IBM didn’t fully document the timing requirements and other details of
the parallel-port interface in the original PC, manufacturers of compatible com-
puters and peripherals had to resort to examining the design of the PC’s parallel
port and the PC’s BIOS functions, and designing products that were compatible

Compatibility and Nibble Modes

Parallel Port Complete 225

with these. With many companies making PCs, printers, and other parallel-port
devices, some variations were bound to occur along the way. (Now, of course,
designers of parallel-port hardware can use the IEEE-1284 standard as a basis for
port designs.)

If you’re writing programs that will run on many different computers or with
many different printers or other parallel-port devices, you want to be sure that the
program will work with all of them. For the most part, this is easy to do, though
there are some minor differences to be aware of. Specifically, there are variations

Figure 12-1: Compatibility mode handshaking.

Signal Minimum (microseconds) Maximum (microseconds)
Ready 0 -
Setup 0.75 -
Hold 0.75 -
Busy 0 0.5
nStrobe 0.75 500
Reply 0 -
nBusy 0 2.5 (typical)
nAck 0.5 10

Chapter 12

226 Parallel Port Complete

in the timing of the Busy and nStrobe signals, in the timing, definition, and use of
nAck, and in the triggering and latching of interrupts.

Busy and nStrobe
In the compatibility-mode timing described above, the peripheral must bring Busy
high within 0.5 microsecond after nStrobe goes low. IEEE 1284 calls this Busy
While Strobe timing. On some peripherals (and in the original Centronics inter-
face), Busy doesn’t go high until after nStrobe goes high (Busy after Strobe tim-
ing) (Figure 12-2A).

Busy and nAck
In Compatibility mode, the entire nAck pulse occurs while Busy is high (Ack in
Busy timing). Busy returns low either at the same time as nAck returns high, or up
to 2.5 microseconds later. There are two variations of this timing. With Ack while
Busy timing (Figure 12-2B), nAck goes low while Busy is high, but doesn’t go
high until after Busy has returned low. With Ack after Busy timing (Figure 12-2C),
nAck doesn’t go low until after Busy has returned low, so the entire nAck pulse is
outside the Busy pulse.

Interrupts
In addition, the interrupt circuits on some PCs varies from the original design.

In the original interface and most of the designs that imitate it, the rising edge of
nAck triggers interrupts. But a few ports interrupt on nAck’s falling edge instead.

Also, the parallel port on the original PC, XT, and some compatibles of the same
era didn’t latch the interrupt pulses. If the pulse isn’t latched, or stored, when it
occurs, there’s a chance that the PC won’t detect the interrupt request (if the entire
pulse occurs while interrupt requests are disabled, for example). To ensure com-
patibility with ports that don’t latch the interrupt signal internally, nAck should be
as long as 200 microseconds.

On some systems, the parallel port’s interrupt line is disabled, possibly because all
available IRQ levels are in use by other devices. The parallel-port BIOS routines,
MS-DOS functions, and Windows printer drivers will all function without using
parallel-port interrupts. If you want your software to be compatible with all ports,
include the ability to transfer data without using interrupts. (Chapter 10 has more
on interrupts.)

Tips for Reliable Data Transfers
For software that works with PCs or peripherals that have any of the above varia-
tions, data transfers should meet both of these requirements:

Compatibility and Nibble Modes

Parallel Port Complete 227

1. Before sending a byte, verify that Busy is low.

2. After sending a byte, wait at least 1.5 microseconds after nStrobe goes high
before checking Busy in preparation for sending the next byte. Otherwise, if the
device uses Busy After Strobe timing, there’s a chance that the PC will send a byte
before the device has latched the previous byte. A 1.5 microsecond delay is quite
short, however, and most programs will have this much delay built-in.

When Busy is low again, the PC can send another byte.

This method ignores nAck, so there is no acknowledgment from the peripheral
that it received the previous byte. When Busy is low, the peripheral must detect
nStrobe’s going low and bring Busy high before the PC tries to send another byte.
On most ports, it is possible to use nAck to interrupt the PC to let it know that the
peripheral received the previous byte and is ready for another.

(C) With Ack After Busy timing, the entire nAck pulse occurs after Busy has returned low.

(B) With Ack While Busy timing, nAck goes low while Busy is high, and returns high after Busy
has returned low.

Figure 12-2: Three variations on the Compatibility-mode timing.

(A) With Busy After Strobe timing, the peripheral doesn’t assert Busy until nStrobe has returned
high.

Chapter 12

228 Parallel Port Complete

Another way to guarantee that the peripheral received the byte is to use a hand-
shake where each control signal remains asserted until the opposite end acknowl-
edges it. The Byte, EPP, and ECP handshakes use this technique.

Nibble Mode

Nibble mode enables any parallel port interface to receive bytes of data from a
peripheral. The peripheral uses four Status outputs to send a byte in two nibbles.
Nibble transfers were in use long before IEEE 1284, but the standard formalizes a
protocol.

Handshaking

Chapter 2 showed a simple way to read a byte by reading four Status bits twice.
IEEE-1284’s Nibble mode uses the same idea, though the bit assignments differ
and the handshaking is more complex. Figure 12-3 shows a Nibble-mode transfer,
and Table 12-1 lists the Nibble-mode signals.

There are two phases, or parts, associated with Nibble mode. The data transfer
phase includes the writing of a byte from the peripheral to the host, or PC. Idle
phase defines the signal states when a transfer isn’t occurring.

Nibble mode works like this:

1. The host brings HostBusy (C1) low to say that it’s ready to accept the first nib-
ble from the peripheral.

2. The peripheral writes data bits 0-3 to S3, S4, S5, and S7 and brings PtrClk (S6)
low to indicate that the nibble is available to be read.

3. The host reads the four data bits and brings HostBusy high to indicate that it
received the nibble.

4. The peripheral brings PtrClk high.

5. When the host is ready for the second nibble, it brings HostBusy low.

6. The peripheral places data bits 4-7 on S3, S4, S5, and S7 and brings PtrClk low
to indicate that the nibble is available to be read.

7. The host reads the four data bits and brings HostBusy high to indicate that it
received the nibble.

8. The peripheral sets the status bits as follows:

PtrBusy (S7), high if the peripheral is busy, low if not busy
nDataAvail (S3), low if another byte is ready to be sent, high if no byte ready to
send

Compatibility and Nibble Modes

Parallel Port Complete 229

AckDataReq (S5), same as S3
XFlag (S4), same as in previous negotiation

9. The peripheral brings PtrClk high.

10. The host may now read nDataAvail to find out if another byte is available to
read, and PtrBusy to find out if the peripheral is busy.

After it receives a byte, the host may do any of the following:

Bring HostBusy low and wait for more data.
Leave HostBusy high to prevent the peripheral from sending another nibble.
Bring 1284Active low to return to compatibility mode.

Figure 12-3: Nibble-mode transfer (PC to peripheral).

Time Minimum Maximum

Tl 0 35 millisecs.

Th 0 1.0 sec.

Tp 0.5 µsec -

Chapter 12

230 Parallel Port Complete

Making a Byte from Two Nibbles

In most applications, after receiving two nibbles, the host will combine them into
a byte. The following table shows the bits and their positions in the status register:

The host reads the nibbles from the Status register, in bits 3–5 and 7. One way to
create a byte may be to extract the value of each bit in the nibbles and then con-
struct the byte from the individual bits.

These calculations divide a byte into two nibble-mode nibbles:

D0 = (ByteToSend And 1) * 8
D1 = (ByteToSend And 2) * 8
D2 = (ByteToSend And 4) * 8
D3 = (ByteToSend And 8) * &h10
D4 = (ByteToSend And &h10) \ 2
D5 = (ByteToSend And &h20) \ 2
D6 = (ByteToSend And &h40) \ 2
D7 = ByteToSend And &h80
LowNibble = D0 + D1 + D2 + D3

Table 12-1: Nibble mode signals
Port
Bit

Signal Name Source Function (reverse data
transfer)

Function (reverse idle)

S3 nDataAvail Peripheral Low if there is a byte to send,
then data bit 0, then 4

Low when there is a byte to
send

S4 Xflag Peripheral Data bit 1, then 5 -

S5 AckDataReq Peripheral Data bit 2, then 6 High until host requests a
data transfer, then follows S5

S6 PtrClk Peripheral High in response to C1’s
going high

Low to signal host that a byte
is available to be read

S7 PtrBusy Peripheral Data bit 3, then 7, then
peripheral busy status

-

C1 HostBusy Host High when host receives a
byte, low when host is ready
to receive another

High in response to S6’s
going low.

Status Bit Nibble 1 Nibble 2

S3 D0 D4

S4 D1 D5

S5 D2 D6

S7 D3 D7

Compatibility and Nibble Modes

Parallel Port Complete 231

HighNibble = D4 + D5 + D6 + D7

Using the fact that bits 0–2 use same multiplier, as do bits 4–6, another way to
divide a byte into nibbles is like this:

‘Get D3’s value and shift it right 4 places
D3 = (ByteToSend And 8) * &h10
‘Get the values of D0-D2 and shift left 3 places
‘Store all four bits in LowNibble
LowNibble = (ByteToSend And 7) * 8 + D3
‘Get D7’s value; no shifting necessary
D7 = (ByteToSend And &h80)
‘Get the values of D4-D6 and shift left 1 place
‘Store all four bits in HighNibble
HighNibble = (ByteToSend And &h70) \ 2 + D7

At the receiving end, these calculations recreate the byte from two Nibble-mode
nibbles:

D0 = (LowNibble And 8) \ 8
D1 = (LowNibble And &h10) \ 8
D2 = (LowNibble And &h20) \ 8
D3 = (LowNibble And &h80) \ &h10
D4 = (HighNibble And 8) * 2
D5 = (HighNibble And &h10) * 2
D6 = (HighNibble And &h20) * 2
D7 = HighNibble And &h80
ByteRead=D0+D1+D2+D3+D4+D5+D6+D7

Again, another way to do it is:

‘Get D3’s value from LowNibble and shift left 4 places
D3 = (LowNibble And &h80) \ &h10
‘Get the values of D0-D2 from LowNibble
‘and shift left 3 places
LowNibble = (LowNibble And &h38) \ 8 + D3
‘Get D7’s value from HighNibble; no shifting required
D7 = HighNibble And &h80
‘Get the values of D4-D6 from HighNibble
‘and shift right 1 place
HighNibble = (HighNibble And &h38) * 2 + D7
ByteRead = LowNibble + HighNibble

If you’re programming your own interface on both ends, you don’t have to use
IEEE 1284’s bit assignments. For example, you could use Status bits 4-7 for the
data bits in ascending order, and use Status bit 3 for handshaking. Then all you
would need to do is shift the lower nibble left four places (divide by 10h) and add
this value to the higher nibble. Status bit 6 is conventionally left for handshaking,
however, because it’s the PC’s interrupt input.

Chapter 12

232 Parallel Port Complete

A Compatibility & Nibble-mode
Application

In Compatibility and Nibble modes, the peripheral has to provide handshaking to
complement the signals from the PC. All but the simplest peripherals will have a
microcontroller or other computer chip that controls the interface and reads and
writes the handshaking signals at appropriate times. On some general-purpose
microcontrollers, such as Microchip’s PIC series, the port drivers are strong
enough that you can connect them directly to a parallel-port cable without external
drivers Otherwise, you need to add buffers and drivers between the cable and
microcontroller. Another option is to use a dedicated parallel-port controller chip.
Most of these can connect directly to a cable, and have the three port registers
built in, along with a CPU interface. A third option is to use a chip that’s designed
as a general-purpose interface, with I/O ports, a CPU interface, and handshaking
support, but that isn’t designed specifically as a PC’s printer interface.

In the examples that follow, I use the 82C55 Programmable Peripheral Interface
chip as an interface between a parallel port and a microcontroller. The 82C55 is a
general-purpose interface that offers a fairly simple way to experiment with the
different modes without having to use one of the more complex port chips or pro-
gram all of the handshaking yourself. The chip is widely available, and you can
interface it to many different microcontrollers and microprocessors. The hardware
interface and programming strategy in the examples are typical of many micro-
controller circuits, so you can use similar designs with other chips and any pro-
gramming language.

About the 82C55 PPI

To understand the circuits that follow, you need to know a little about the archi-
tecture and operation of the 82C55.

Chip Options
The 8255 is the original NMOS version of the chip, and the 82C55 is the CMOS
version, which is recommended for its lower power consumption. Some compati-
ble chips use different part numbers, such as NEC’s µPD71055.

Ports
The 82C55 has three 8-bit I/O ports and an 8-bit data bus for interfacing to a
microcontroller or other computer chip. You can configure the ports as inputs or
outputs, and one of these ports can function as a bidirectional port.

Compatibility and Nibble Modes

Parallel Port Complete 233

The 8255 was first designed for use with Intel’s 8085 and similar microproces-
sors. The port pins were intended to connect to peripheral devices controlled by
the microprocessor. Over the years, the 8255 has found uses in all kinds of circuits
and with many different computer chips. The original IBM PC contained an 8255
that performed a variety of functions, including reading system settings on DIP
switches, reading keyboard input, and controlling timer/counter functions.

In modern systems, a peripheral is likely to contain its own microprocessor or
microcontroller. This enables the peripheral to do much of its own processing
instead of burdening the system CPU with all of the work. In this situation, instead
of acting as a simple CPU-to-peripheral interface, the 82C55 can interface a PC’s
parallel port—which is controlled by the PC’s CPU—to a second CPU that con-
trols one or more peripheral devices. The second CPU may even control another
82C55, whose ports in turn control peripheral devices.

The 82C55 has enough port bits to interface to the parallel port’s 17 signals, with
7 bits left for other uses. The chip can automatically generate handshaking signals
that are compatible with parallel-port handshaking, including Compatibility, Byte,
and EPP modes. For the other modes, you can program the handshaking in soft-
ware or firmware.

One drawback of the 82C55 is that its outputs can’t source or sink the amount of
current recommended for parallel-port interfaces. Unless your cable is very short,
you’ll want to add drivers and buffers between the port pins and the cable.

Port Modes
The 82C55’s three ports function in two groups: Group 1 consists of Port A and
the lower four bits of Port C, and Group 2 consists of Port B and upper four bits of
Port C. Writing a value to the Configuration Register selects a mode for each
group. Figure 12-4 shows the possibilities.

Mode 0 (Basic Input/Output) is simple I/O. A write operation to an output port
latches the byte written to the data bus to the port pins. A read of an input port
places the byte on the port pins on the data bus, where the CPU can read it.

Mode 1 (Strobed Input/Output) adds handshaking to Port A or B. Port C provides
the handshaking signals.

In Mode 1, when a port is programmed as input, the 82C55’s STB (Strobe) input
corresponds to the PC’s nStrobe (C0) output, and its IBF (input buffer full) output
corresponds to the PC’s Busy (S7) input. When STB goes low, IBF goes high to
tell the PC that the peripheral is busy. STB can also cause an INTR (interrupt) out-
put to signal the peripheral’s CPU that a byte is available to be read. Reading a
byte at the 82C55 automatically brings IBF low, telling the PC that the peripheral
is ready for another byte.

Chapter 12

234 Parallel Port Complete

When a port is programmed as output, the peripheral writes a byte to the port and
brings the 82C55’s OBF low to signal the PC that a byte is available. The PC
brings the 82C55’s ACK input low, then high to tell the peripheral that it has

Figure 12-4: The 82C55’s control word selects the modes for its three ports.

Compatibility and Nibble Modes

Parallel Port Complete 235

latched the byte. ACK’s going high can cause the 82C55’s INTR output to signal
the CPU to write another byte to the port.

Mode 2 (Strobed Bidirectional Bus I/O) is the 82C55’s third mode of operation. It
allows using Port A as a bidirectional port, using an interface similar to Mode 1’s
input and output interfaces. The port is output when the peripheral’s CPU writes
to the port, input when the peripheral’s CPU reads the port, and high impedance at
other times.

Another feature of the Configuration register is the ability to set and reset individ-
ual bits on Port C with a single write operation. Figure 12-5 shows the Port-C val-
ues to accomplish this.

Figure 12-5: Another function of the 82C55’s control word is to set and clear
individual bits on Port C.

Chapter 12

236 Parallel Port Complete

Compatibility and Nibble-mode Interface

Figure 12-6 shows an interface that can do Compatibility and Nibble-mode trans-
fers. In this and other example circuits in this book, the 82C55 interfaces to an
8052-Basic microcontroller, which is a variant of an Intel 8052 microcontroller
with a Basic interpreter stored in the chip’s internal ROM.

The Basic interpreter provides a simple way to program the microcontroller using
the familiar Basic language, although the Basic-52 interpreter is by necessity
nowhere near as complex or capable as Visual Basic or other Basics used on PCs.
You can use an 8052-Basic chip as the brains in a data logger, controller circuit, or
other device that doesn’t require the computing power of a personal computer.

Figure 12-6: This circuit connects to an 8052 microcontroller, and can do
Compatibility and Nibble-mode transfers.

Compatibility and Nibble Modes

Parallel Port Complete 237

The chip can access up to 120 kilobytes for storing Basic programs and data. (The
Basic interpreter uses the remaining 8 kilobytes.)

Appendix C shows a 8052-Basic circuit that Figure 12-6’s circuit can connect to.
The companion disk includes the Basic-52 code for the applications in this and the
following chapters.

You can also use Figure 12-6’s circuit with any microcontroller in Intel’s 8051
family, using any programming language for the microcontroller. The 82C55 also
interfaces in a similar way to other microcontrollers that can access external mem-
ory.

On the 82C55, a chip-select (CS) input connects to address-decoding circuits that
select a range of at least four addresses. In Figure 12-6, CS selects a base address
of FC00h, but it can be any available series of addresses. Two address inputs (A0,
A1) select one of the four addresses in the range. Port A is at the base address, Port
B is at baseaddress + 1, Port C is at base address + 2, and the Configuration Port
is at base address + 3. Other control signals are read (RD) and write (WR), which
interface to the microcontroller’s RD and WR outputs, and Reset, which is brought
low on powerup. A data bus (D0-D7) transfers bytes between the microcontroller
and the 82C55.

In the example, on the 82C55, Port A is input, Mode 1, and Port B is output, Mode
0. Port C, bits 4 and 5 are handshaking signals for Port A. The handshaking bits
are defined by the 82C55’s architecture, and can’t be changed. The remaining bits
on Port C are inputs.

The parallel port’s Data outputs control Port A. Bits 0–3 of Port B control four of
the parallel port’s Status inputs, and Port C, bit 5 controls the fifth Status input.
The parallel port’s four Control-port outputs control bits 0, 1, 4, and 6 of Port C.

A 74LS245 bus transceiver buffers the parallel port’s data lines to Port A on the
82C55. Pin 1 is tied high to set the direction so that data passes from the parallel
port to the 82C55. A 72LS244 buffer/driver drives the five status outputs and
buffers three of the control inputs. The fourth control input may use any buffer.

Instead of the ’245 at the data lines, you can use a second 74LS244, with pins 1
and 19 tied low. I used a ’245 because, with just a few wiring changes, I was able
to use a similar circuit for the other 82C55 interfaces in this book. Control bits 2
and 3 are unused in the example program, but I included them in case a particular
application has a use for them. If you have no use for these bits, you don’t have to
connect them. On the 82C55, four of Port B’s outputs and one of Port C’s inputs
are unused and available for other uses.

Chapter 12

238 Parallel Port Complete

Example Program
Figure 12-7 shows the screen for a Visual Basic program that you can use to send
and receive data using this circuit. Listing 12-1 shows the program code. The
example program illustrates what’s involved in transferring blocks of data. You
can revise the example to suit a specific application.

The program transfers data in 16-byte blocks. In the example screen, the data dis-
plays as text, but it may be control commands, sensor readings, or other informa-
tion. Arrays store the data to be sent and data received, and command buttons
enable you to send or request to receive a block of data.

The PC controls the interface. The default direction for transmissions is from the
PC to the peripheral. Clicking the Send command button causes 16 bytes to be
written to the parallel port. The peripheral reads and stores the bytes. When the
link is idle, the peripheral polls Control bit 1. Clicking the Receive command but-
ton causes the PC to request data from the peripheral by bringing Control bit 1
low. When the peripheral detects the change, it sends a block of data to the PC.

PC-to-Peripheral Transfers
To receive data from the PC, the 82C55 uses its Mode 1, with automatic hand-
shaking. The parallel port’s nStrobe(C0) output drives the 82C55’s Strobe (STB)
input, and the 82C55’s Input Buffer Full (IBF) output drives the parallel port’s
Busy (S7) input.

In the example program, the PC reads the characters in the Send text box, and
writes their ASCII codes in sequence to the port. The program could instead read
bytes from an array variable, or from a file. The 8052 stores the received bytes in
an array variable.

The PC waits for Busy to be low, then writes a byte to D0-D7 and brings nStrobe
low, then high. When nStrobe goes low, the 82C55 latches the byte at Port A and

Figure 12-7: The test program allows users to send and receive blocks of 16
bytes. The screen displays the data to send and data received.

Compatibility and Nibble Modes

Parallel Port Complete 239

Dim StatusPortData%
Dim ControlPortData%
Dim TimedOut%
Dim DirectionSet%
Dim DataIn%
Dim LowNibble%
Dim HighNibble%
Dim ReadAnother%
Dim Character$

Listing 12-1: Transferring blocks of data using Compatibility and Nibble modes.
(Sheet 1 of 7)

Chapter 12

240 Parallel Port Complete

Sub cmdReadDataFromPort_Click ()
‘Read characters from the parallel port.
‘Display the received characters on the form.
Dim TextData$
Dim FileLength&
Dim BufferSize%
Dim CharNumber%
CharNumber = 0
TimedOut = False
lblDataInDisplay.Caption = ““
DirectionSet = DirectionRequest(“PeripheralToPC”)
tmrTimedOut.Enabled = True
If DirectionSet Then
 ‘Read characters at the port.
 ‘After each character, read the status port.
 ‘Stop reading if S3, S5, or S7 =1.
 ReadAnother = True
 Do

DoEvents
ReadByteFromPort
lblDataInDisplay.Caption = lblDataInDisplay.Caption _

 + Chr$(DataIn)
CharNumber = CharNumber + 1

 Loop Until ReadAnother = False Or TimedOut = True
 ‘Return to default direction
 DirectionSet = DirectionRequest(“PcToPeripheral”)
 If Not (TimedOut) Then

MsgBox “Successful transfer”, 0, “Result”
 End If
 CharNumber = 0
 tmrTimedOut.Enabled = False
End If
End Sub

Listing 12-1: Transferring blocks of data using Compatibility and Nibble modes.
(Sheet 2 of 7)

Compatibility and Nibble Modes

Parallel Port Complete 241

Sub cmdWriteDataToPort_Click ()
Dim CharNumber%
TimedOut = False
tmrTimedOut.Enabled = True
‘Write the characters in the text box to the parallel port.
For CharNumber = 1 To 16
 If Not (TimedOut) Then

‘Write each character in sequence
Character = Mid$(txtDataOut.Text, CharNumber, 1)
If Character = ““ Then Character = “ “
WriteByteToPort

 End If
Next CharNumber
If Not (TimedOut) Then
 MsgBox “Successful transfer”, 0, “Result”
End If
tmrTimedOut.Enabled = False
End Sub

Listing 12-1: Transferring blocks of data using Compatibility and Nibble modes.
(Sheet 3 of 7)

Chapter 12

242 Parallel Port Complete

Function DirectionRequest% (Direction$)
Dim C1%
Dim S6%
‘Control port, bit 1 is the direction control for the data port.
‘1=PC-to-peripheral (default), 0=peripheral-to-PC
‘The peripheral acknowledges a direction change by setting
‘Status bit 6 to match.
Direction = LCase$(Direction)
ControlPortData = ControlPortRead(BaseAddress)
‘Set Control port bits to match the selected direction.
Select Case Direction
 Case “pctoperipheral”

C1 = 1
BitSet ControlPortData, 1

 Case “peripheraltopc”
C1 = 0
BitReset ControlPortData, 1

 Case Else
 End Select
ControlPortWrite BaseAddress, ControlPortData
tmrTimedOut.Enabled = True
‘Wait for the peripheral to accept direction change by setting
S6=C1

Do
 DoEvents
 If TimedOut Then Exit Function
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
Loop Until S6 = C1 Or TimedOut = True
tmrTimedOut.Enabled = False
If S6 = C1 Then DirectionRequest = True
End Function

Sub Form_Load ()
‘(partial listing)
‘Timeout limit for peripheral.
tmrTimedOut.Interval = 5000
tmrTimedOut.Enabled = False
‘Set the initial direction.
DirectionSet = DirectionRequest(“PcToPeripheral”)
End Sub

Listing 12-1: Transferring blocks of data using Compatibility and Nibble modes.
(Sheet 4 of 7)

Compatibility and Nibble Modes

Parallel Port Complete 243

Sub MakeByteFromNibbles ()
‘Get the 8 bits from LowNibble and HighNibble
‘and arrange them into a byte.
Dim Bit0%
Dim Bit1%
Dim Bit2%
Dim Bit3%
Dim Bit4%
Dim Bit5%
Dim Bit6%
Dim Bit7%

Bit0 = BitRead(LowNibble, 3)
Bit1 = BitRead(LowNibble, 4) * 2
Bit2 = BitRead(LowNibble, 5) * 4
Bit3 = BitRead(LowNibble, 7) * 8
Bit4 = BitRead(HighNibble, 3) * &H10
Bit5 = BitRead(HighNibble, 4) * &H20
Bit6 = BitRead(HighNibble, 5) * &H40
Bit7 = BitRead(HighNibble, 7) * &H80
DataIn = Bit0 + Bit1 + Bit2 + Bit3 + Bit4 + Bit5 + Bit6 + Bit7
End Sub

Listing 12-1: Transferring blocks of data using Compatibility and Nibble modes.
(Sheet 5 of 7)

Chapter 12

244 Parallel Port Complete

Sub ReadByteFromPort ()
‘Read one character from the parallel port
‘Uses nibble mode.
Dim S6%
‘Read the control port.
ControlPortData = ControlPortRead(BaseAddress)
‘When S6=0, read the status port into LowNibble and set C1=1.
Do
 LowNibble = StatusPortRead(BaseAddress)
 S6 = BitRead(LowNibble, 6)
 DoEvents
 If TimedOut Then Exit Sub
Loop Until S6 = 0
BitSet ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘When the peripheral responds by setting S6=1, set C1=0.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
 If TimedOut Then Exit Sub
Loop Until S6 = 1
BitReset ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘When S6=0 again, read the status port into HighNibble
‘and set C1=1.
Do
 HighNibble = StatusPortRead(BaseAddress)
 S6 = BitRead(HighNibble, 6)
 DoEvents
 If TimedOut Then Exit Sub
Loop Until S6 = 0
BitSet ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘When the peripheral responds by setting S6=1, set C1=0.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
 If TimedOut Then Exit Sub
Loop Until S6 = 1
BitReset ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData

Listing 12-1: Transferring blocks of data using Compatibility and Nibble modes.
(Sheet 6 of 7)

Compatibility and Nibble Modes

Parallel Port Complete 245

brings Busy high. When nStrobe goes high, the 82C55 brings its Port C, bit 3,
high to trigger an interrupt (INT1) on the 8052. When the 8052 detects INT1’s
going low, it reads and stores the received byte at Port A on the 82C55. The read
operation automatically brings Busy low, to signal the PC that the 82C55 is ready
for another byte.

MakeByteFromNibbles
‘If any of S3 or S5 =1, the transmission is complete.
If (StatusPortData And &H28) > 0 Then ReadAnother = False
End Sub

Sub tmrTimedOut_Timer ()
TimedOut = True
MsgBox “Peripheral not responding”, 0
DirectionSet = DirectionRequest(“PcToPeripheral”)
tmrTimedOut.Enabled = False
End Sub

Sub WriteByteToPort ()
‘Write one character to the parallel port
‘Uses compatibility mode handshaking.
‘Wait for S7 (Busy) to be low.
Dim S7%
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S7 = BitRead(StatusPortData, 7)
 DoEvents
 If TimedOut Then Exit Sub
 Loop Until S7 = 0
‘Write the character.
If Character = ““ Then Character = “ “
DataPortWrite BaseAddress, Asc(Character)
‘After each write, toggle C0 (nStrobe).
BitReset ControlPortData, 0
ControlPortWrite BaseAddress, ControlPortData
BitSet ControlPortData, 0
ControlPortWrite BaseAddress, ControlPortData
End Sub

Listing 12-1: Transferring blocks of data using Compatibility and Nibble modes.
(Sheet 7 of 7)

Chapter 12

246 Parallel Port Complete

Other Programming Considerations
On the 82C55, all of the handshaking is built into the chip, so the only program-
ming required is configuring the chip for the appropriate modes and writing the
interrupt-service routine to read the bytes as they arrive. At the PC, the software
must do the handshaking (toggling nStrobe and checking Busy).

If you use a peripheral interface that doesn’t have handshaking functions built in,
you’ll need to program these. If you don’t use an interrupt at the microcontroller,
you can poll the Control port, watching for a change at C0, but you must poll it
often enough not to miss the brief nStrobe pulse.

Compatibility mode requires Busy to go high within 10 microseconds after
nStrobe goes low. If you’re programming your own interface on both ends, you
don’t have to meet this limit, but you do want to be sure that the peripheral reads
the byte before the PC has removed it. One way of doing so is to have the PC wait
until Busy goes high before it brings nStrobe high.

The example program doesn’t use nAck (S6), but if you wish, you can program the
82C55’s Port B, bit 3, to provide a nAck pulse.

Peripheral-to-PC Transfers
The reverse direction is more complicated, because the 82C55 has to break each
byte into nibbles and send them to the PC, and the PC has to recombine the
received nibbles into bytes on the other end.

Clicking the Receive command button causes the PC to request data from the
peripheral by bringing C1 low. When the 82C55 detects the request, it places the
lower nibble of the byte to send on S3-S5 and S7, then brings S6 low. The PC
reads the nibble and brings C1 high. To complete the handshake, the 82C55 brings
S6 high, and the PC brings C1 low. The 82C55 then places the higher nibble on
the status lines and the handshake repeats: S6 goes low, C1 goes high, S6 goes
high, and C1 goes low. The 82C55 then sends the next byte.

The 8052 stores the bytes to send in an array variable. The PC displays the values
received in the Receive text box. The program could also store the data in a file or
array variable.

After sending the last byte, the 82C55 brings S3 and S5 high to signal the PC that
the transmission is complete. Both devices then switch to the default
PC-to-peripheral direction, and the 82C55 waits for a strobe pulse that signals
received data or a low at C1 that signals a request to send data.

At the peripheral, the 82C55 doesn’t have a Nibble-mode handshake, so the pro-
gram must provide the handshake signals The 82C55’s Port C, bit 5 bit controls
S7 at the parallel port. In Mode 1, this bit indicates input-buffer full. In Nibble

Compatibility and Nibble Modes

Parallel Port Complete 247

mode, nStrobe (C0) must remain high to keep S7 from falsely detecting a
PC-to-peripheral transfer.

When Port A is in Mode 1, there is no way to read Port C, bit 4 (STB). (Reading
this bit instead returns the state of the interrupt-enable flag for the port.) Control
bit 0 is unused during Nibble transfers, but in the circuit shown, the bit is routed to
Port C, bit 7, where the 8052 can read it if desired.

The example program uses IEEE 1284’s Nibble-mode bit assignments, which
require some bit-shuffling to rearrange into a byte. If you prefer, you can use bit
assignments that are more convenient, and change the software to match.

Detecting Timeouts
One consideration with data transfers like these is providing a way out when the
interface hangs—when for some reason, one end of the link stops responding. The
programs on both ends should be able to detect when this has occurred, and exit
the transfer gracefully.

In the example program, on both ends, if a transfer takes longer than 5 seconds,
the program stops trying and returns to the idle, PC-to-peripheral state.

In the Visual Basic program, a Timer control watches for timeouts. If the periph-
eral doesn’t respond in 5 seconds, the Timer event displays a message and sets
the TimedOut variable to True. The data-transfer routines monitor the Timed-
Out variable, and quit the transfer when TimedOut is True.

In order for the routines to detect the TimedOut condition, every Do loop that
waits for a response from the peripheral contains one of these:

DoEvents
If TimedOut then Exit Sub

or

DoEvents
Until (condition) or TimedOut

The DoEvents statement enables Visual Basic to update the Timer and per-
form other system functions while the program is waiting for a response. The
Exit Sub statement quits the subroutine when the TimedOut variable is
True. If the subroutine needs to continue after the timeout, the Until statement
in the loop checks the timeout condition and ends the loop if there’s no response.

In a similar way, at the peripheral, Basic-52’s Timer detects timeouts, and an On
Time routine restarts the program if there is no response from the PC.

Having to test for Timeout conditions slows the transfers, but it ensures that the
programs will recover if something goes awry. You can adjust the TimedOut

Chapter 12

248 Parallel Port Complete

value to suit your application. You could also add a command button in the
TimedOut Message Box to allow users to retry the transfer instead of quitting.

Byte Mode

Parallel Port Complete 249

13

Byte Mode
Many parallel ports, including PS/2-type, EPPs, and ECPs, have bidirectional data
ports. PS/2-type ports, ECP, and many EPPs can use Byte mode for software-con-
trolled, 8-bit peripheral-to-PC transfers, where the peripheral writes a byte at a
time to the data port, rather than having to chop every byte into nibbles and write
them in sequence to the status port. This chapter describes Byte mode and pre-
sents two applications that build on the example in the previous chapter. The first
application allows a PC to communicate with a peripheral in Compatibility and
Byte modes. The second allows a PC to communicate in Compatibility, Nibble,
and Byte modes, and uses IEEE 1284 negotiation to tell the peripheral which
mode to use for peripheral-to-PC transfers.

Handshaking

To use Byte Mode, the host must have a bidirectional data port, and the peripheral
must be able to write a byte to the data lines. IEEE 1284’s Byte mode describes a
handshaking protocol for Byte-mode transfers.

Like the Compatibility-mode handshake, the Byte-mode handshake includes a
Busy signal to tell the sending device when it’s OK to send a byte, and a Strobe
signal to tell the receiving device that data is available. The Busy signal is Host-
Busy (C1), and the Strobe is PtrClk (S6).

Chapter 13

250 Parallel Port Complete

In Byte mode, after asserting a control signal, the asserting device waits for an
acknowledgment from the other device before de-asserting the signal. As a result,
the timing requirements aren’t stringent, and the transfers can allow generous
delays.

If the peripheral isn’t IEEE-1284 compliant, the host can’t use IEEE-1284 negoti-
ation to select Byte mode, but any device with the required number of signals can
use Byte mode to exchange data, as long as both the host and peripheral agree on
the mode.

Figure 13-1 shows a timing diagram for Byte transfers. The transfers work like
this:

1. The host disables outputs D0-D7. On most bidirectional ports, bringing bit C5
high accomplishes this.

2. The host brings HostBusy (C1) low to indicate that it's ready to receive data.

3. The peripheral places data on D0-D7 and brings PtrClk (S6) low.

4. In response to PtrClk’s going low, the host reads D0-D7 and brings HostBusy
high. The host brings HostClk (C0) low, either at the same time as or after bring-
ing HostBusy high.

5. The peripheral sets the status bits as follows:

PtrBusy (S7), high if the peripheral is busy, low if not busy
nDataAvail (S3) low if another byte is ready to be sent, high if no byte ready to
send
AckDataReq (S5), same as nDataAvail
XFlag (S4), same as in previous negotiation

6. The peripheral brings PtrClk high.

7. The host brings HostClk high to indicate that it received the byte. This can
occur before or at the same time that HostBusy goes low in step 2 of the next
transfer. (Toggling both in one port write is quicker.)

After it receives a byte, the host may:

Bring HostBusy low and wait for more data.
Leave HostBusy high to prevent the peripheral from sending another byte.
Bring 1284Active low to return to compatibility mode.

Applications

The following two application examples show how to do Byte-mode transfers. As
in Chapter 12, the peripheral uses an 82C55 PPI for its parallel-port interface.
Both examples do Compatibility and Byte-mode transfers. In the second example,

Byte Mode

Parallel Port Complete 251

the PC negotiates with the peripheral to select Byte or Nibble mode for reverse
transfers.

Compatibility & Byte Mode

Figure 13-2 shows a circuit that you can use to transfer bytes in both directions
over the data lines.

Figure 13-1: Timing diagram for a Byte-mode transfer.

Parameter minimum maximum

Td 0 -

Th 0 1 sec.

Tl 0 35 msec.

Tp 0 -

Tinf 0 infinite

Chapter 13

252 Parallel Port Complete

The PC-to-peripheral transfers use Compatibility-mode handshaking. The periph-
eral-to-PC transfers use handshaking that is similar to IEEE 1284’s Byte mode,
with minor differences because the 82C55’s built-in handshaking doesn’t exactly
match the Byte-mode handshake. The next example in this chapter follows the
IEEE-1284 Byte-mode interface more closely.

All in all, the exact details of the handshake don’t matter, as long as the receiving
end can identify when a byte is available and the transmitting end can identify
when the peripheral has read a byte sent to it and is ready for another.

Figure 13-2’s circuit is very similar to the example in Chapter 12. The differences
are:

Figure 13-2: This circuit can communicate with a PC in Compatibility or Byte
mode.

Byte Mode

Parallel Port Complete 253

The 82C55’s Port A uses bidirectional mode (Mode 2) instead of input only
(Mode 1). As before, two Port C bits provide handshaking for PC-to-peripheral
transfers. Two other Port C bits provide handshaking for peripheral-to-PC trans-
fers. PtrClk (S6) connects to Port C, bit 7. (In the previous circuit, Port C, bit 7
was input, so S6 connected to Port B, bit 3.)

The 82C55’s Port C, bit 6, output controls the direction of the ’245 transceiver. In
the previous circuit, this bit was tied high, because the PC’s data port was out-
put-only.

The PC-to-peripheral transfers are exactly like those in Chapter 12’s circuit. The
PC writes bytes to its data port, and the 82C55 detects their arrival and stores the
received bytes.

An application similar to Chapter 12’s transfers blocks of data. Listing 13-1
shows the subroutines and functions that differ. On both ends, the programming
for peripheral-to-PC transfers changes from Nibble to Byte mode. When switch-
ing between Byte and Compatibility modes, the program code has to switch the
direction of the ’245 transceiver and the direction of the Data port on both ends at
the appropriate times. When using Nibble and Compatibility modes, you don’t
have to worry about this because the Data lines don’t change direction.

The Byte transfers are much simpler than Nibble transfers. Using Figure 13-2’s
circuit, the 82C55 places a byte on D0-D7 and brings PtrClk (S6) low. When the
PC detects that PtrClk is low, it brings HostBusy (C1) low and reads the byte. The
82C55 responds by bringing PtrClk high, and the PC then brings HostBusy high to
complete the transfer.

As with Compatibility mode, the handshake is automatic at the 82C55. When
HostBusy goes low, the 82C55 automatically brings PtrClk high. When HostBusy
goes high in response, the 82C55 automatically brings Port C, bit 3 high, which
generates an interrupt on the 8052. The 8052’s interrupt-service routine writes
another byte to Port A, and this automatically brings PtrClk low to begin the next
transfer.

HostBusy (C1) also provides the direction-control for the ’245. It goes low only
during a peripheral-to-PC transfer. To ensure that two drivers aren’t enabled at the
same time on the same line, the PC’s Control port, bit 5, should be set to 0 only
after HostBusy goes high, returning the ’245 to the PC-to-peripheral direction.

The circuit uses C3 as a direction-control request line. For PC-to-peripheral trans-
fers, C3 is high. When the PC wants to receive data, it brings C3 low. The periph-
eral detects this, and sends a series of bytes to the PC. When the transfer is
complete, the peripheral brings S3 high to indicate the end of the transfer and
switches to the PC-to-peripheral direction. The PC detects the direction change,
sets C3 high, and re-enables its data outputs in preparation for a PC-to-peripheral

Chapter 13

254 Parallel Port Complete

Sub cmdReadDataFromPort_Click ()
‘Read characters from the parallel port.
‘Display the received characters on the form.
Dim TextData$
Dim FileLength&
Dim BufferSize%
Dim CharNumber%
CharNumber = 0
TimedOut = False
lblDataInDisplay.Caption = ““
tmrTimedOut.Enabled = True
DirectionSet = DirectionRequest(“PeripheralToPc”)
‘Read bytes at the port.
‘After each byte, read the status port.
‘Stop reading if S3 =1 (indicates end of transmission).
ReadAnother = True
Do Until ReadAnother = False Or TimedOut = True
 DoEvents
 ReadByteFromPort
 lblDataInDisplay.Caption = _
 lblDataInDisplay.Caption + Chr$(DataIn)
 CharNumber = CharNumber + 1
Loop
 If Not (TimedOut) Then

MsgBox “Successful transfer”, 0, “Result”
 End If
CharNumber = 0
tmrTimedOut.Enabled = False
‘Re-enable the data outputs.
DirectionSet = DirectionRequest(“PcToPeripheral”)
End Sub

Listing 13-1: Byte-mode transfers data from a peripheral to a PC. (Sheet 1 of 3)

Byte Mode

Parallel Port Complete 255

Function DirectionRequest% (Direction$)
Dim S3%
Dim C3%
Direction = LCase$(Direction)
ControlPortData = ControlPortRead(BaseAddress)
BitSet ControlPortData, 1
‘Set Control port bits to match the selected direction.
‘For control bit 5,
‘0 enables the data outputs, 1 tristates the outputs.
Select Case Direction
 Case “pctoperipheral”

BitSet ControlPortData, 0
BitSet ControlPortData, 3
BitReset ControlPortData, 5
C3 = 1

 Case “peripheraltopc”
BitReset ControlPortData, 0
BitReset ControlPortData, 3
BitSet ControlPortData, 5
C3 = 0

 Case Else
 End Select
ControlPortWrite BaseAddress, ControlPortData
tmrTimedOut.Enabled = True
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S3 = BitRead(StatusPortData, 3)
 DoEvents
 If TimedOut Then Exit Function
Loop Until C3 = S3
If C3 = S3 Then tmrTimedOut.Enabled = False
End Function

Listing 13-1: Byte-mode transfers data from a peripheral to a PC. (Sheet 2 of 3)

Chapter 13

256 Parallel Port Complete

transfer. The direction line also tells the 8052 which interrupt-service routine to
use. When C3 is high, an interrupt causes the 8052 to read a byte at Port A, and
when C3 is low, an interrupt causes the 8052 to write a byte to Port A.

The IEEE 1284’s Byte mode differs from the above interface in a couple of
respects. In an IEEE 1284 Byte-mode transfer:

Sub ReadByteFromPort ()
‘Read one character from the parallel port
‘Similar to byte mode, but slightly different
‘handshake to accommodate the 82C55’s Mode 2.
Dim S6%
Dim S3%
Dim DataPortData%
‘Read the control port.
ControlPortData = ControlPortRead(BaseAddress)
‘Wait for S6=0.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
 If TimedOut Then Exit Sub
Loop Until S6 = 0
‘C1=0 enables data outputs
BitReset ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘Read the byte
DataIn = DataPortRead(BaseAddress)
‘When the peripheral responds with S6=1, set C1=1.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
 If TimedOut Then Exit Sub
Loop Until S6 = 1
BitSet ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘If S3 =1, the transmission is complete.
StatusPortData = StatusPortRead(BaseAddress)
If (StatusPortData And 8) > 0 Then
 ReadAnother = False
End If
End Sub

Listing 13-1: Byte-mode transfers data from a peripheral to a PC. (Sheet 3 of 3)

Byte Mode

Parallel Port Complete 257

HostBusy’s polarity is the reverse. HostBusy is low to begin a transfer, and high
after reading the data.
An additional control signal, HostClk (C0), is an Ack signal. It goes high, then
low, after PtrClk returns high, to indicate that the byte was received. In the
82C55’s handshake, instead of using HostClk, HostBusy’s going high after Ptr-
Clk goes high tells the 82C55 that the PC has received the byte.

Compatibility, Nibble & Byte Mode with Negotiating

A final example enables an 82C55 to do Compatibility, Nibble, and Byte-mode
transfers. For reverse (peripheral-to-PC) transfers, the PC determines whether or
not its port can do Byte-mode transfers, and uses IEEE 1284 negotiating to
request the appropriate mode from the peripheral.

Chapter 13

258 Parallel Port Complete

Figure 13-3 shows the circuit. All of the 82C55’s ports use Mode 0 (simple I/O),
with no built-in handshaking, so program code must control and read all of the
handshaking signals at the peripheral. Port A switches from input to output as
needed. Port B’s bits 3-7 correspond to the Status Ports bits 3-7, and Port C’s bits
0-3 correspond to the Control Port’s bits 0-3. Port B, bit 0, controls the direction
of the ’245 transceiver. Two of Port B’s outputs and the upper nibble of Port C are
free for other uses.

The program for the circuit uses IEEE 1284’s protocols for Compatibility, Nibble,
and Byte modes, and negotiating a mode. The only difference is that due to the
slowness of the Basic-52 program controlling the 82C55, Busy (S7) may not go
high within 10 microseconds after nStrobe (C0) goes low. To ensure that each
byte is transferred, the PC holds nStrobe low until Busy goes high. Listing 13-2
shows the PC’s program code, where it differs from Listing 13-1’s code.

Figure 13-3: This circuit can communicate in Compatibility, Nibble, and Byte
modes.

Byte Mode

Parallel Port Complete 259

Sub cmdReadDataFromPort_Click ()
‘Read characters from the parallel port.
‘Display the received characters on the form.
Dim CharNumber%
Dim RequestedMode$
Dim SuccessfulNegotiation%
CharNumber = 0
Timedout = False
lblDataInDisplay.Caption = ““
‘Tell the peripheral which mode to use.
Select Case Port(IndexOfSelectedPort).PortType
 Case “SPP”

RequestedMode = “NibbleMode”
lblReceiveMode.Caption = “(Nibble Mode)”

 Case Else
RequestedMode = “ByteMode”
lblReceiveMode.Caption = “(Byte Mode)”

End Select
SuccessfulNegotiation = Negotiate(RequestedMode)
If SuccessfulNegotiation Then
 tmrTimedOut.Enabled = True
 ‘Read characters at the port.
 ReadAnother = True
 Do

DoEvents
ReadByteFromPort (RequestedMode)
lblDataInDisplay.Caption = lblDataInDisplay.Caption _

 + Chr$(DataIn)
CharNumber = CharNumber + 1

 Loop Until ReadAnother = False Or Timedout = True
 If Not (Timedout) Then

MsgBox “Successful transfer”, 0
 End If
 CharNumber = 0
 tmrTimedOut.Enabled = False
Else
 MsgBox “Failed negotiation”, 0
End If
ReturnToCompatibilityMode
End Sub

Listing 13-2: Program code for the PC in Compatibility, Nibble, and Byte modes,
with negotiating. (Sheet 1 of 7)

Chapter 13

260 Parallel Port Complete

Sub cmdWriteDataToPort_Click ()
Dim CharNumber%
Timedout = False
tmrTimedOut.Enabled = True
‘Write the characters in the text box to the parallel port.
For CharNumber = 1 To 16
 If Not (Timedout) Then

‘Write each character in sequence
Character = Mid$(txtDataOut.Text, CharNumber, 1)
If Character = ““ Then Character = “ “
WriteByteToPort

 End If
Next CharNumber
If Not (Timedout) Then
 MsgBox “Successful transfer”, 0
End If
tmrTimedOut.Enabled = False
End Sub

Listing 13-2: Program code for the PC in Compatibility, Nibble, and Byte modes,
with negotiating. (Sheet 2 of 7)

Byte Mode

Parallel Port Complete 261

Function Negotiate (RequestedMode$)
Dim ExtensibilityByte%, S4%
Select Case RequestedMode
 Case “NibbleMode”

ExtensibilityByte = 0
 Case “ByteMode”

ExtensibilityByte = 1
 End Select
ControlPortData = ControlPortRead(BaseAddress)
DataPortWrite BaseAddress, ExtensibilityByte
BitSet ControlPortData, 3
BitSet ControlPortData, 0
BitReset ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
tmrTimedOut.Enabled = True
‘Wait for S3=1, S4=1, S5=1, S6=0.
Do
 DoEvents
 StatusPortData = StatusPortRead(BaseAddress)
Loop Until ((StatusPortData And &H78) = &H38) Or Timedout
S4 = BitRead(StatusPortData, 4)
If S4 = 1 Then
 Negotiate = True
Else
 Negotiate = False
End If
‘Peripheral latches the byte.
BitReset ControlPortData, 0
ControlPortWrite BaseAddress, ControlPortData
BitSet ControlPortData, 0
BitSet ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘Wait for S3=0, S5=0, S6=1.
Do
DoEvents
 StatusPortData = StatusPortRead(BaseAddress)
Loop Until ((StatusPortData And &H68) = &H40) Or Timedout
‘If using Byte mode, disable the data outputs.
If RequestedMode = “ByteMode” Then
 BitSet ControlPortData, 5
 ControlPortWrite BaseAddress, ControlPortData
End If
tmrTimedOut.Enabled = False
End Function

Listing 13-2: Program code for the PC in Compatibility, Nibble, and Byte modes,
with negotiating. (Sheet 3 of 7)

Chapter 13

262 Parallel Port Complete

Sub ByteModeTransfer
BitSet ControlPortData, 0
BitReset ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘When S6=0, read the data port and set control bits.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
 If Timedout Then Exit Sub
Loop Until S6 = 0
DataIn = DataPortRead(BaseAddress)
BitReset ControlPortData, 0
BitSet ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘Wait for peripheral to respond by setting S6=1.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
 If Timedout Then Exit Sub
Loop Until S6 = 1
BitReset ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘If S3 =1, the transmission is complete.
If (StatusPortData And 8) > 0 Then
 ReadAnother = False
 BitSet ControlPortData, 0
 ControlPortWrite BaseAddress, ControlPortData
End If

End Sub

Listing 13-2: Program code for the PC in Compatibility, Nibble, and Byte modes,
with negotiating. (Sheet 4 of 7)

Byte Mode

Parallel Port Complete 263

Sub NibbleModeTransfer
‘When S6=0, read the status port into LowNibble and set C1=1.
BitReset ControlPortData, 1
Do
 LowNibble = StatusPortRead(BaseAddress)
 S6 = BitRead(LowNibble, 6)
 DoEvents
 If Timedout Then Exit Sub
Loop Until S6 = 0
BitSet ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘When the peripheral responds by setting S6=1, set C1=0.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
 If Timedout Then Exit Sub
Loop Until S6 = 1
BitReset ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘When S6=0 again, read the status port into HighNibble

 ‘and set C1=1.
Do
 HighNibble = StatusPortRead(BaseAddress)
 S6 = BitRead(HighNibble, 6)
 DoEvents
 If Timedout Then Exit Sub
Loop Until S6 = 0
BitSet ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
‘When the peripheral responds by setting S6=1, set C1=0.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
 If Timedout Then Exit Sub
Loop Until S6 = 1
BitReset ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
MakeByteFromNibbles
‘If any of S3 or S5 =1, the transmission is complete.
If (StatusPortData And &H8) > 0 Then ReadAnother = False

End Sub

Listing 13-2: Program code for the PC in Compatibility, Nibble, and Byte modes,
with negotiating. (Sheet 5 of 7)

Chapter 13

264 Parallel Port Complete

Sub ReadByteFromPort (RequestedMode$)
‘Read one character from the parallel port
‘Uses nibble or byte mode.
Dim S6%
ControlPortData = ControlPortRead(BaseAddress)
Select Case RequestedMode
 Case “NibbleMode”
 NibbleModeTransfer
 Case “ByteMode”
 ByteModeTransfer
End Select
End Sub

Sub ReturnToCompatibilityMode ()
Dim S6%
BitSet ControlPortData, 0
BitSet ControlPortData, 1
BitReset ControlPortData, 3
ControlPortWrite BaseAddress, ControlPortData
tmrTimedOut.Enabled = True
‘Wait for S3=1, S4=1, S6=0, S7=1.
Do
 DoEvents
 StatusPortData = StatusPortRead(BaseAddress)
 Loop Until ((StatusPortData And &HD8) = &H98) Or Timedout
BitReset ControlPortData, 1
ControlPortWrite BaseAddress, ControlPortData
Do
 DoEvents
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
Loop Until (S6 = 1) Or Timedout
BitSet ControlPortData, 1
‘Re-enable the data outputs
BitReset ControlPortData, 5
ControlPortWrite BaseAddress, ControlPortData
tmrTimedOut.Enabled = False
End Sub

Listing 13-2: Program code for the PC in Compatibility, Nibble, and Byte modes,
with negotiating. (Sheet 6 of 7)

Byte Mode

Parallel Port Complete 265

Sub tmrTimedOut_Timer ()
Timedout = True
MsgBox “Peripheral not responding”, 0
tmrTimedOut.Enabled = False
ReturnToCompatibilityMode
End Sub

Sub WriteByteToPort ()
‘Write one character to the parallel port
‘Uses compatibility mode handshaking.
Dim S7%
‘Wait for S7 (Busy) to be low.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S7 = BitRead(StatusPortData, 7)
 DoEvents
 If Timedout Then Exit Sub
 Loop Until S7 = 0
‘Write the character.
If Character = ““ Then Character = “ “
DataPortWrite BaseAddress, Asc(Character)
‘Complete the handshake.
BitReset ControlPortData, 0
ControlPortWrite BaseAddress, ControlPortData
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S7 = BitRead(StatusPortData, 7)
 DoEvents
 If Timedout Then Exit Sub
 Loop Until S7 = 1
BitSet ControlPortData, 0
ControlPortWrite BaseAddress, ControlPortData
End Sub

Listing 13-2: Program code for the PC in Compatibility, Nibble, and Byte modes,
with negotiating. (Sheet 7 of 7)

Chapter 13

266 Parallel Port Complete

Enhanced Parallel Port: EPP

Parallel Port Complete 267

14

Enhanced Parallel Port:
EPP
An Enhanced Parallel Port (EPP) can transfer data at high speeds in both direc-
tions. An EPP can distinguish between two types of information, usually defined
as data and addresses. Because it can switch directions quickly, EPP is useful for
devices that exchange smaller blocks of data with frequent direction switches,
such as external disk drives or network interfaces.

Inside the EPP

An EPP can read or write a byte of data in one ISA-bus cycle, or about 1 micro-
second, including handshaking. The data lines are bidirectional, and a single con-
trol signal determines the direction of the data port. Two other control signals
distinguish between address and data information on the data lines.

Intel’s 82360SL I/O Subsystem is an early chip that contained an EPP. The chip
includes many peripheral functions besides the parallel port, and was used in
many laptop computers that used Intel’s 80386SL and 80486SL microprocessors.

EPP transfers differ from Compatibility, Nibble, and Byte transfers in that the
port’s hardware automatically generates control signals and detects responses

Chapter 14

268 Parallel Port Complete

from the opposite end. There’s no need for software instructions to toggle a strobe
output or read a busy input. The hardware handshaking enables an EPP to read or
write a byte, with handshaking, in one ISA-bus cycle, instead of the four cycles
required in Compatibility or Byte mode.

Two Strobes

The EPP’s data and address operations use different control signals to latch the
bytes into the receiving device. Address reads and writes use nAStrobe (C3),
while data reads and writes use nDStrobe (C1). This provides a simple way for the
receiving device to distinguish between two types of information.

For example, the sending device might write an address to the receiving device,
then write one or more data bytes. The receiving device could then store the
received data in a block of memory beginning at the received address.

The IEEE 1284 standard doesn’t document all aspects of the EPP. The standard
doesn’t mention features that are specific to PCs, such as the signals and timing on
the expansion bus and the additional register assignments for the port. Other doc-
uments, including the data sheets for the controller chips, describe conventions for
these.

The Registers

An EPP uses eight registers, five more than the original parallel port. Table 14-1
shows the registers and their functions.

The first three registers are nearly identical to the Data, Status, and Control regis-
ters in an SPP. One difference is that in the Status port, bit 0 usually indicates a
timeout on an EPP cycle. Some EPPs also emulate PS/2-type ports, where setting
Control bit 5 to 1 disables the data outputs and enables using the data lines for
simple input. On other EPPs, the Data lines are output-only (SPP type), except
when doing EPP transfers.

For EPP transfers, the port uses additional registers. To write a data byte in EPP
mode, you write to the EPP Data register (at base address + 4) rather than to the
base address. Writing to the EPP data register causes the port to initiate a com-
plete data-write cycle. The port’s hardware places the byte to write on D0–D7,
and the port automatically toggles the handshaking signals and detects the periph-
eral’s responses. In a similar way, reading a byte from the EPP Data register ini-
tiates a complete data-read cycle at the port.

Address transfers are much the same, except that you write to or read the EPP
Address register (at base address + 3), which causes the port to initiate a complete

Enhanced Parallel Port: EPP

Parallel Port Complete 269

address-write or address-read cycle. These are identical to the EPP data cycles
except that they use a different control signal to transfer the byte into the receiving
device.

The function of the registers at base address + 5 through base address + 7 vary.
On some ports, you can use 16- or 32-bit read or write operations to access the
port, and these registers will hold the additional byte or bytes written or read, with
the port transferring each byte in sequence.

The base address of an EPP is normally 378h or 278h, with the port using the
address range 378h–37Fh or 278h–27Fh. EPPs normally don’t use the base
address 3BCh, because the video display may use the bytes following 3BEh.

Handshaking

EPP mode supports four operations: address write, data write, address read, and
data read. Each has a different handshake.

Four Types of Transfers

On many ports, before accessing the EPP registers and initiating a transfer, Con-
trol port bits C0, C1, and C3 must be high. (Remember that the port hardware

Table 14-1: The EPP’s eight registers and their functions.
Register Name Offset Use

SPP/PS2 Data 0 Read or write to data lines, no handshaking

SPP Status 1 Read 5 status lines (S3-S7). In EPP mode, an
additional bit (0) indicates timeout

SPP Control 2 Read or write to 4 control lines (C0-C3); also
contains configuration bits for interrupt enabling
(C4) and byte-mode direction control (C5).

EPP Address 3 Read or write to data lines, with handshaking,
address cycle

EPP Data 4 Read or write to data lines, with handshaking,
data cycle

(varies) 5 May be used for 16/32-bit data transfers, port
configuration, or user-defined

(varies) 6 May be used for 16/32-bit data transfers, port
configuration, or user-defined

(varies) 7 May be used for 16/32-bit data transfers, port
configuration, or user-defined

Chapter 14

270 Parallel Port Complete

inverts these bits, so to bring them high, you write 0 to the corresponding register
bits.)

Table 14-2 has the timing limits for the signals in the timing diagrams that follow.
These are the steps in the four types of EPP transfers described in IEEE 1284:

Address write (forward transfer)
Figure 14-1 shows the signals for an address-write cycle.

1. The peripheral’s data outputs are disabled and nWait (S7) is low. The host
brings nWrite (C0) low, writes an address to the EPP Address register, which
causes the byte to appear on D0–D7, and brings nAStrobe (C3) low.

3. The peripheral brings nWait high to signal that it’s ready to latch the address.

4. The host brings nAStrobe high to cause the peripheral to latch the address.

5. When the peripheral is ready for another byte, it brings nWait low.

Figure 14-1: An EPP address-write cycle.

Enhanced Parallel Port: EPP

Parallel Port Complete 271

Data write (forward transfer)
Data writes are identical to address writes, except that the host uses nDStrobe
instead of nAStrobe.Figure 14-2 illustrates.

1. The peripheral’s data outputs are disabled and nWait is low. The host brings
nWrite low, writes data to the EPP Data register, which causes the byte to appear
on D0–D7, and brings nDStrobe (C1) low.

3. The peripheral brings nWait high to signal that it’s ready to latch the data.

Table 14-2: Timing limits for EPP transfers.
Parameter minimum maximum

Timeout 0 10 µsec.

Tel 0 10 µsec.

Th 0 1 sec.

Tes 0 125 nanosec.

Td 0 -

Figure 14-2: An EPP Data Write cycle.

Chapter 14

272 Parallel Port Complete

4. The host brings nDStrobe high to cause the peripheral to latch the data.

5. When the peripheral is ready for another byte, it brings nWait low.

Address read (reverse transfer)
For an address-read cycle, the host uses nAStrobe as in an address write, but reads
the EPP Address register instead of writing to it. Figure 14-3 illustrates.

1. The peripheral’s nWait is low. The host brings nWrite high, disables outputs
D0–D7, and brings nAStrobe low.

3. The peripheral enables its D0–D7 outputs, writes an address to them, and brings
nWait high to signal the host that the address is available to be read.

4. The host reads D0–D7 at the EPP Address register and brings nAStrobe high.

5. The peripheral disables outputs D0–D7 and brings nWait low.

Figure 14-3: An EPP address-read cycle.

Enhanced Parallel Port: EPP

Parallel Port Complete 273

Data read (reverse transfer)
Data reads are identical to address reads, except that the host uses nDStrobe
instead of nAStrobe. Figure 14-4 illustrates.

1. The peripheral’s nWait must be low. The host brings nWrite high, disables out-
puts D0–D7, and brings nDStrobe low.

3. The peripheral enables its D0–D7 outputs, writes data to them, and brings
nWait high to signal the host that the data is available to be read.

4. The host reads D0–D7 at the EPP Data register and brings nDStrobe high.

5. The peripheral disables outputs D0–D7 and brings nWait low.

Switching Directions

In EPP mode, changing direction doesn’t require any special negotiating. You can
mix read and write cycles without extra steps to set the direction. When nWrite is

Figure 14-4: An EPP data-read cycle.

Chapter 14

274 Parallel Port Complete

low, the peripheral must immediately disable its D0–D7 outputs so the host can
write to the peripheral, and the peripheral must respond to the host’s strobe by
reading D0–D7. Whenever nWrite is high, the host must immediately disable its
data outputs so the peripheral can write to the host, and the peripheral must
respond to the strobe signal by writing to D0–D7.

If you’re designing your own peripheral interface and your hardware doesn’t sup-
port automatic direction switching, you can use otherwise unused lines or soft-
ware commands to control the direction. The result won’t be a fully standard EPP
interface, but you can still use EPP mode for the transfers.

Although IEEE 1284 doesn’t specify it as a requirement, the PC’s EPP hardware
automatically toggles the nAStrobe or nDStrobe output, enables or disables the
data outputs when appropriate, and monitors the nWait input to see if the periph-
eral is ready for a new transfer. There’s no need to do any of these in software.

Timing Considerations

The minimum time specifications for EPP transfers are very short, so EPP trans-
fers can be very fast. The only restriction on the width of nAStrobe and nDStrobe
is that they are wide enough that the receiving device can detect them. On a PC, a
complete EPP transfer can take place within one I/O cycle on the ISA bus, so port
accesses can take place at bus speeds, or around 1 Megahertz on most systems. If
necessary, an EPP transfer can take much longer, however. The timing specifica-
tions allow the nDStrobe and nAStrobe pulses to be as long as 1 second.

An important timing limit is that the peripheral must bring nWait high within 10
microseconds after nDstrobe or nAStrobe goes low. If nWait doesn’t go high
within the time allowed, the timeout bit (S0, or Status port bit 0) will be set to 1
and the transfer will abort.

The reason for this timing constraint is that, unlike simple port reads and writes, in
an EPP transfer, the system bus’s I/O read or write cycle won’t complete until
nWait has gone high. The cycle must complete within 15 microseconds to allow
memory refresh. Other system resources may be waiting to access the system bus
as well.

Simple port reads or writes in SPP or PS/2 mode don’t have this constraint. The
CPU pulses IOR (I/O Read) or IOW (I/O Write) low briefly and the operation
completes in one bus cycle, without concerning itself with whether or not the
transfer with the peripheral completes.

In an EPP read or write, when IOR or IOW goes low, the EPP’s hardware brings
the system bus’s IOCHRDY (I/O Channel Ready) line low. This causes the CPU
to hold IOR or IOW low. The EPP brings IOCHRDY high when the EPP’s nWait

Enhanced Parallel Port: EPP

Parallel Port Complete 275

input goes high, or if a timeout occurs before nWait goes high. Only then does
IOR or IOW return high to complete the cycle, freeing the system bus for use by
other components. If Status bit 0 is low when the cycle ends, the transfer was a
success.

If you’re designing your own peripheral circuits, to prevent timeouts, a falling
edge on a strobe input must cause the peripheral to bring nWait high within 10
microseconds!

IEEE 1284 says that the peripheral may use its Intr (S6, or Status bit 6) output to
interrupt the host. However, it doesn’t specify a protocol for using interrupts, so
this is left to the programmer. You could use the interrupt line to signal the PC to
read an incoming byte, or write the next byte to the peripheral.

EPP Variations

Among EPPs, there are variations in the timing of data transfers in the PC’s I/O
cycle, in how to clear the timeout bit, and in the use of the direction bit in the Con-
trol register.

Use of nWait

One variation in EPPs is the result of a difference between IEEE 1284’s EPP pro-
tocol and the original EPP as implemented in Intel’s 82360SL chip. The original
type is sometimes called type EPP 1.7, while ports compatible with IEEE-1284’s
signaling are type EPP 1.9. Many newer EPPs can emulate either.

The types differ in their use of nWait. An EPP 1.7 host doesn’t wait for nWait to
be low before it brings nAStrobe or nDStrobe low. If nWait is high when the
strobe goes low, IOCHRDY won’t go low and the transfer will complete in one
bus cycle, without waiting for the peripheral to bring nWait high, and the timeout
bit won’t be set. Because of this, an EPP 1.7 peripheral should ensure that nWait
returns low before nDataStrobe or nAddressStrobe goes low to begin the next
transfer, or the peripheral should be able to detect the strobe even if nWait is high.
Otherwise, the host may think it executed a successful EPP read or write cycle,
when in fact the peripheral wasn’t ready.

The timing constraint is also slightly tighter for EPP 1.7, with timeouts deter-
mined by the width of the IOW or IOR pulse, rather than by the time between IOW
or IOR’s going low and nWait’s going high.

Chapter 14

276 Parallel Port Complete

If you’re having trouble with EPP transfers, and your controller chip supports
both EPP types, switching to the other EPP type might help. When there is a
choice, type 1.9 is usually the default.

Clearing Timeouts

IEEE 1284 doesn’t specify it, but Status bit 0 usually is a timeout bit that indicates
a failed EPP transfer. Unfortunately, the method for clearing the timeout bit varies
with the controller chip. On SMC’s ’665 and ’666 Super I/O controllers, you clear
S0 by writing 1 to it. Writing 0 to S0 has no effect. On National Semiconductor’s
Super I/O, after reading 1 at bit 0, another read of the Status register clears the bit.
If an application is going to run on many different systems, or if you’re not sure of
which method to use, you can do both: write 1 to the timeout bit, then read it
again. You might also write 0 to the bit to attempt to clear it, in case any chips use
the conventional method of clearing a bit!

Clearing the timeout bit is essential. On SMC’s ’665 and ’666 (and possibly other
chips), a set timeout bit will block all reads and writes to the port, in any mode,
until the bit is cleared either by software or a system reset.

IEEE 1284 specifies that the peripheral should bring nWait low within 125 nano-
seconds after nDStrobe or nAStrobe returns high. If a peripheral may take longer
and the host is EPP type 1.7, the host’s software should check nWait before begin-
ning a read or write cycle.

Direction Control

Some EPPs allow both automatic and software control of Control bit 5. As in PS/2
mode, when Control bit 5 is 0, the Data outputs are enabled, and when it’s 1, the
Data outputs are tristated and the host can read external signals on the Data lines.

SMC’s Super I/O toggles its direction bit (Control port bit 5, C5, or PDir) auto-
matically, and C5 should be 0 before beginning an EPP transfer. During EPP
cycles, the chip brings C5 low whenever nWrite is low and the data outputs are
enabled.

National’s Super I/O supports automatic direction control (the default), and also
includes a configuration bit that allows the software to control C5. Under software
control, the program must bring C5 low before a write cycle, and high before a
read cycle. Using software control, when C5=0, you can write to an EPP register
and read back what you’ve written without causing a complete EPP read cycle.
When C5=1, you can read an EPP register without causing a complete EPP write
cycle. This offers a way of testing for the presence of the EPP registers without

Enhanced Parallel Port: EPP

Parallel Port Complete 277

having anything connected to the port. But because other port controllers don’t
include this ability, it’s of limited general use.

An EPP Application

Figure 14-5 shows a circuit that can use EPP mode to exchange data with a micro-
controller. As in the previous examples, an 82C55 interfaces the microcontroller
to the parallel port. Listing 14-1 is excerpts from program code that transfers
blocks of 16 bytes using EPP data writes and reads.

Figure 14-5: Circuit for performing EPP transfers.

Chapter 14

278 Parallel Port Complete

Dim StatusPortData%
Dim ControlPortData%
Dim TimedOut%
Dim DirectionSet%
Dim DataIn%
Dim LowNibble%
Dim HighNibble%
Dim ReadAnother%
Dim Character$

Sub cmdReadDataFromPort_Click ()
‘Read characters from the parallel port.
‘Display the received characters on the form.
Dim CharNumber%
CharNumber = 0
TimedOut = False
lblDataInDisplay.Caption = ““
DirectionSet = DirectionRequest(“PeripheralToPc”)
tmrTimedOut.Enabled = True

‘Read bytes at the port.
‘After each byte, read the status port.
‘Stop reading if S3 =1 (indicates end of transmission)
ReadAnother = True
Do Until ReadAnother = False Or TimedOut = True
 DoEvents
 ReadByteFromPort
 lblDataInDisplay.Caption = _
 lblDataInDisplay.Caption + Chr$(DataIn)
 CharNumber = CharNumber + 1
Loop
 If Not (TimedOut) Then

MsgBox “Successful transfer”, 0, “Result”
 End If
CharNumber = 0
tmrTimedOut.Enabled = False
‘Re-enable the data outputs.
DirectionSet = DirectionRequest(“PcToPeripheral”)
End Sub

Listing 14-1: Transferring blocks of 16 bytes using EPP data reads and writes.
(Sheet 1 of 5)

Enhanced Parallel Port: EPP

Parallel Port Complete 279

Sub cmdWriteDataToPort_Click ()
Dim CharNumber%
TimedOut = False
tmrTimedOut.Enabled = True
ControlPortData = ControlPortRead(BaseAddress)
BitSet ControlPortData, 1
ControlPortWrite ControlPortData, BaseAddress
‘Write the characters in the text box to the parallel port.
For CharNumber = 1 To 16
 If Not (TimedOut) Then

‘Write each character in sequence
Character = Mid$(txtDataOut.Text, CharNumber, 1)
If Character = ““ Then Character = “ “
WriteByteToPort

 End If
Next CharNumber
If Not (TimedOut) Then
 MsgBox “Successful transfer”, 0, “Result”
End If
tmrTimedOut.Enabled = False
End Sub

Listing 14-1: Transferring blocks of 16 bytes using EPP data reads and writes.
(Sheet 2 of 5)

Chapter 14

280 Parallel Port Complete

Function DirectionRequest% (Direction$)
Dim S3%
Dim C3%
Direction = LCase$(Direction)
ControlPortData = ControlPortRead(BaseAddress)
BitSet ControlPortData, 1
‘Set Control port bits to match the selected direction.
‘For control bit 5,
‘0 enables the data outputs, 1 tristates the outputs.
Select Case Direction
 Case “pctoperipheral”

BitSet ControlPortData, 3
BitReset ControlPortData, 5
C3 = 1

 Case “peripheraltopc”
BitReset ControlPortData, 3
BitSet ControlPortData, 5
C3 = 0

 Case Else
 End Select
ControlPortWrite BaseAddress, ControlPortData
tmrTimedOut.Enabled = True
Do
 ‘Wait for the peripheral to acknowledge the
 ‘direction change.
 StatusPortData = StatusPortRead(BaseAddress)
 S3 = BitRead(StatusPortData, 3)
 DoEvents
 If TimedOut Then Exit Function
Loop Until C3 = S3
If C3 = S3 Then tmrTimedOut.Enabled = False
End Function

Sub Form_Load ()
Startup
DirectionSet = DirectionRequest(“PcToPeripheral”)
‘Timeout limit for peripheral.
tmrTimedOut.Interval = 5000
tmrTimedOut.Enabled = False
EPPDataPort0Address = BaseAddress + 4
‘Initial test data
txtDataOut.Text = “0123456789ABCDEF”
End Sub

Listing 14-1: Transferring blocks of 16 bytes using EPP data reads and writes.
(Sheet 3 of 5)

Enhanced Parallel Port: EPP

Parallel Port Complete 281

Sub ReadByteFromPort ()
‘Read one character from the parallel port.
‘Uses EPP mode.
Dim S7%
Dim S3%
Dim DataPortData%
‘Wait for S7=0.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S7 = BitRead(StatusPortData, 7)
 If ReadEppTimeoutBit(BaseAddress) = 1 Then

tmrTimedOut_Timer
 End If
 DoEvents
 If TimedOut Then Exit Sub
Loop Until S7 = 0
‘Read the byte
DataIn = DataPortRead(EPPDataPort0Address)

‘Check the timeout bit.
‘If it’s set, clear it and display the timeout message.
Dim ByteTimeout%
ByteTimeout = ReadEppTimeoutBit(BaseAddress)
If ByteTimeout = 1 Then
 tmrTimedOut_Timer
End If

‘If S3 =1, the transmission is complete.
StatusPortData = StatusPortRead(BaseAddress)
If (StatusPortData And 8) > 0 Then
 ReadAnother = False
End If
End Sub

Sub tmrTimedOut_Timer ()
‘On timeout, display a message and switch
‘direction to PC-to-peripheral.
TimedOut = True
MsgBox “Peripheral not responding”, 0, “Warning”
DirectionSet = DirectionRequest(“PcToPeripheral”)
tmrTimedOut.Enabled = False
End Sub

Listing 14-1: Transferring blocks of 16 bytes using EPP data reads and writes.
(Sheet 4 of 5)

Chapter 14

282 Parallel Port Complete

The Circuit

The circuit is similar to Chapter 13’s Compatibility-and-Byte-mode circuit. The
82C55’s Port A provides the Data lines, Port B provides four of the Status outputs,
and Port C provides the Control inputs and the other Status output. A 74LS245
transceiver interfaces Port A to the PC’s Data port. A 74LS244 buffer/driver inter-
faces the 5 Status lines and 3 of the Control lines to Ports B and C. The fourth
Control line uses another buffer.

The EPP uses just one pair of handshaking signals for both read and write opera-
tions. For data transfers, nDStrobe (C1) is the host’s, or PC’s, strobe output and
nWait (S7) is its busy input. In contrast, the 82C55’s strobed I/O modes use sepa-
rate handshaking signals for each direction.

In Figure 14-5, the 82C55’s outputs OBF and IBF connect together and through a
buffer to nWait, and inputs STB and ACK connect together and through a buffer to
nDStrobe. Connecting the STB and ACK inputs has no ill effects, but connecting
two outputs (OBF and IBF) normally isn’t a good idea. However, a solution is to
use the 82C55’s Mode 1, configure the 82C55 so that unused bits on Port C are

Sub WriteByteToPort ()
‘Write one character to the parallel port.
‘Uses EPP mode.
Dim S7%
Dim ByteTimeout%
‘Wait for Busy (S7)=0, then write a byte to the data port.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S7 = BitRead(StatusPortData, 7)
 DoEvents
 If TimedOut Then Exit Sub
Loop Until S7 = 0
If Character = ““ Then Character = “ “
DataPortWrite EPPDataPort0Address, Asc(Character)

‘Check the timeout bit.
‘If it’s set, clear it and display the timeout message.
ByteTimeout = ReadEppTimeoutBit(BaseAddress)
If ByteTimeout = 1 Then
 tmrTimedOut_Timer
End If
End Sub

Listing 14-1: Transferring blocks of 16 bytes using EPP data reads and writes.
(Sheet 5 of 5)

Enhanced Parallel Port: EPP

Parallel Port Complete 283

inputs, and switch Port A from input to output as needed. When Port A is config-
ured as input, OBF becomes an unused input, and when Port A is configured as
output, IBF becomes an unused input. With this arrangement, the PC must request
a direction switch from the peripheral, and can’t switch direction without warning.

The nWrite (C0) signal is the direction control for the ’245. The host’s EPP auto-
matically brings nWrite low when it requests to read a byte, and high after the byte
is read. A 74HC14 inverts nWrite so it has the correct polarity for controlling the
transceiver’s direction. The 82C55 doesn’t use this bit at all. (You can eliminate
the inverter by wiring the ’245 so that its A pins connect to the 82C55 and the B
pins connect to the cable to the PC.)

Programming

The example program does data transfers only, using nDStrobe (C1). Bits C3 and
S3 are direction-control bits. as in the earlier Compatibility/Byte mode example.
C3 and S3 are normally high.

Bit S3 is unassigned in the EPP, so it’s available for other uses. If you want to use
C3 as an address strobe, you could use C2, which is unused in the EPP, as the
direction control. The 82C55 has no built-in way to detect the difference between
the two strobe signals, however, so there is no simple way to do both types of
transfers and distinguish between them.

When the PC performs an EPP write, the 82C55 detects nDstrobe’s going low and
brings nWait high. The 82C55’s Mode 1 brings its IBF output high within 150
nanoseconds after its Stb input goes low. Even after adding delays due to the
transceiver and cable, the response easily meets the EPP’s 10-microsecond
requirement.

In response to nWait’s going high, nDStrobe returns high. This causes the 82C55
to interrupt the 8052, which then reads the byte from the 82C55’s Port A input
buffer. The read operation brings nWait low again. Because the 8052 can be slow
to read the byte, the host’s program reads nWait and waits for it to go low before
starting a new transfer.

When the host wants to read a byte, it brings C3 low. The 82C55 responds by
switching Port A to Mode 1, output, bringing S3 low to acknowledge the switch,
and writing the first byte to the 82C55’s Port A.

As with an EPP write, the 82C55 detects nDstrobe’s going low and brings nWait
high. This time, however, nWait is controlled by the 82C55’s OBF output, rather
than IBF. Again, the 82C55 responds within 150 nanoseconds.

Chapter 14

284 Parallel Port Complete

In response to nWait’s going high, nDStrobe returns high. This causes the 82C55
to interrupt the 8052, which then writes another byte to 82C55’s Port A. The write
operation brings nWait low again.

Extended Capabilities Port: ECP

Parallel Port Complete 285

15

Extended Capabilities
Port: ECP
The Extended Capabilities Port, or ECP, offers another fast way to transfer data at
the parallel port. Like an EPP, an ECP transfer can take place in one ISA-bus
cycle, or about 1 microsecond. An ECP conventionally has a 16-byte buffer to
hold data to be sent and data received. For the fastest transfers, an ECP may use
data compression to pack information into fewer bytes. Direct memory access
allows the CPU to do other things while the data is being transferred between the
buffer and memory.

Besides being fast, ECP transfers are flexible. Unlike EPPs, the ECP’s hardware
handshaking has no automatic timeout, and transfers can slow to accommodate
slower peripherals. Like EPPs, ECPs can also emulate SPPs and PS/2-type ports.
ECPs also include a Fast Centronics mode for improved communications with
SPP peripherals. Many ECPs can do EPP transfers as well.

This chapter describes the ECP and its abilities, and includes an example applica-
tion for exchanging data with a microcontroller, using ECP transfers.

Chapter 15

286 Parallel Port Complete

ECP Basics

As with the EPP, many of the ECP’s conventions aren’t documented in the
IEEE-1284 standard. There’s no mention of the ECP registers or FIFO use in the
PC. Much of the additional information is contained in document from Microsoft
titled The IEEE 1284 Extended Capabilities Port Protocol and ISA Interface Stan-
dard. (See Appendix A.) The data sheets for the controller chips include much of
this information as well.

Some of the features of the ECP, including DMA support and the ability to cause
hardware interrupts under new conditions, were first introduced in IBM’s PS/2
port.

The FIFO

In the host, the ECP typically has a 16-byte FIFO, a first-in, first-out, byte-wide
buffer that stores data to be sent or data received. The CPU can write a series of
bytes to the buffer, and the port circuits take care of the details of writing them in
sequence to port’s Data outputs. First-in, first-out means that the FIFO sends the
bytes in the same order it receives them. In the opposite direction, the buffer stores
a series of received bytes, and the CPU doesn’t have to worry about reading each
byte before the next one arrives. When the software reads the bytes from the
FIFO, they are in the same order that the FIFO received them.

If the PC is sending data to a slow peripheral, the PC can write as many as 16
bytes to the FIFO and then go on to other things. The ECP will transfer the bytes
automatically, as the peripheral is ready for them. In a similar way, if a fast
peripheral wants to send data to a PC, the PC’s FIFO will store up to 16 received
bytes, which the PC can read at its leisure.

Depending on the speed of the peripheral, the speed of port-to-port transfers may
be even faster than one byte per ISA-bus cycle. For example, if the peripheral isn’t
ready to receive data, the PC’s FIFO may store 16 bytes to be written. When the
peripheral is ready, the PC’s port will transfer the data to the peripheral at what-
ever speed both ports can handle.

The peripheral has its own FIFO, which works in much the same way. The FIFO
doesn’t have to be 16 bytes; some peripheral controllers have 64-byte FIFOs.

Data and Commands
An ECP uses control signals to distinguish between two types of read and write
cycles: data and commands. For forward (host-to-peripheral) transfers, the control
signal is C1 (HostAck). For reverse (peripheral-to-host) transfers, it’s S7 (Periph-

Extended Capabilities Port: ECP

Parallel Port Complete 287

Ack). In both cases, the signal is high when the device is sending data, and low
when sending a command.

In command bytes, when bit D7 is 1, bits 0-6 are a channel address, and when D7
is 0, bits 0-6 are a run-length count used in data compression.

Data Compression
ECPs include hardware support for a simple method of data compression,
run-length encoding, which can reduce the number of bytes needed to transfer a
block of data. The method is most effective when the data contains many identical
bytes in sequence, as do many graphics files.

Instead of transferring the identical bytes individually, the sending device first
writes a command byte that tells the receiving device how many times to repeat
the byte that follows, then writes the data byte. For example, instead of sending
the byte F0h five times, the sending device first writes 5 to the ECP Address FIFO
(at offset 0). This tells the receiving device to store five copies of the next data
byte. The sending device then writes F0h to the data FIFO (at offset 400h). The
receiving device sees five bytes of F0h, as if there had been five identical read
cycles.

Many ECP chips (like SMC’s Super I/O) have built-in support only for decom-
pressing the data on the receiving end. Software is responsible for compressing
the data before transmitting.

DMA Use
IBM’s Type 3 PS/2 port was an early port that supported direct memory access
(DMA), and ECPs can use DMA as well.

DMA is a way of reading and writing blocks of data independently from the CPU.
All PCs have a DMA controller that can transfer blocks of data between memory
and ports. To perform a DMA write operation, the software writes the starting
address of the source and the number of bytes to write to the DMA controller. The
DMA controller asks for control of the system bus by bringing the CPU’s Hold
input high. When the CPU responds by bringing its HldA output high, the DMA
controller writes each byte in sequence to the port.

A DMA read operation is similar, with the controller storing the starting address
of the destination and the number of bytes to read.

During the DMA transfer, the CPU can perform internal operations, but it can’t
access the system bus until the DMA transfer completes and the DMA controller
brings Hold low again, giving control back to the CPU. Because the CPU must
refresh the system RAM every 15 microseconds, DMA transfers must take no
longer than this before giving control of the bus back to the CPU. For this reason,

Chapter 15

288 Parallel Port Complete

the data sheet for SMC’s Super I/O warns that the port should do no more than 32
DMA cycles in a row.

Registers

An ECP requires six registers in the PC. Table 15-1 shows the registers and their
functions. Besides the SPP’s three registers, the added ECP registers are at base
address + 400h, base address + 401h, and base address + 402h.

The functions of some of the registers vary depending on which of the ECP’s
internal modes is selected. For example, in mode 011 (ECP), a write to the base
address will cause the port to attempt an ECP address-read cycle. For simple port
writes to the base address, the ECP should be in mode 000 or 001 (SPP or PS/2).

In order to access the added ECP registers, the port circuits have to decode at least
eleven port address lines. The parallel ports on early PCs decoded only 10 lines
(A0-A9). This allowed up to 1024 (400h) byte-wide ports. On these early PCs, if
you access a port with a higher address, the hardware ignores all address bits
above A9. The result is redundant addressing—you can access a port at 378h by
writing to any of a number of addresses, including 378h, 778h, B78h, or 378h plus
any multiple of 400h.

ECPs must decode an eleventh address line, A10, so that (using the example
address) a port at 778h is distinct from one at 378h.

A port that supports both ECP and EPP will use 11 registers in all: the three SPP
registers, plus the five EPP registers at the base address + 3 through base address
+ 7, and the three ECP registers beginning at base address + 400h.

Extended Control Register (ECR)

The Extended Control Register (ECR) holds configuration information for the
ECP, including the currently selected mode. Table 15-2 shows the functions for
each of the bits in the register.

Internal Modes

ECP-capable ports support SPP and PS/2 transfers as well as ECP transfers. In
addition, ECPs support a Fast Centronics mode for improved forward transfers
with SPPs. Many ECPs can also do EPP transfers. Table 15-3 shows the modes.

You select a mode by writing a value to bits 7, 6, and 5 of the ECR, at base
address + 402h. In mode 000, the ECP behaves like an SPP. In mode 001, it

Extended Capabilities Port: ECP

Parallel Port Complete 289

behaves like a PS/2-type port, with a bidirectional data port. Many ECPs support
mode 100, which causes the port to emulate an EPP.

The following sections discuss the remaining modes: ECP, Fast Centronics, Test,
and Configuration.

ECP Transfers

An ECP can do both forward (host-to-peripheral) and reverse (peripheral-to-host)
transfers. In either direction, the byte transferred may be data or a command.

Table 15-4 lists the timing limits for the ECP transfers in the timing diagrams that
follow.

Forward transfers

Figure 15-1 shows the signals for an ECP forward transfer. The transfer works
like this:

1. At the peripheral, nAckReverse (S5) high. PeriphAck (S7) is low when the
peripheral is not busy.

2. At the host, HostClk (C0) is high. Control bit 5 should be 0, to enable the data
outputs.

Table 15-1: ECP registers.
Register Name Offset ECP mode(s) Description

Data 000 000, 001 SPP/PS2 Data

EcpAFIFO 011 ECP Address FIFO

DSR 001 all SPP Status

DCR 002 all SPP Control

CFIFO 400 010 Parallel Port Data
FIFO (Fast Centron-
ics)

EcpDFIFO 011 ECP Data FIFO

TFIFO 110 ECP Test FIFO

CnfgA 111 Configuration A

CnfgB 401 111 Configuration B

ECR 402 all Extended Control
Register

Chapter 15

290 Parallel Port Complete

3. The host writes a byte to the ECP Data FIFO or ECP Address FIFO. If there are
no other bytes ahead of it in the FIFO, the byte is placed on D0–D7. The host
brings HostAck (C1) high for data and low for an address/command, and brings
HostClk low.

4. The peripheral brings PeriphAck high.

5. The host brings HostClk high.

6. The peripheral reads D0–D7 into its FIFO and brings PeriphAck low to com-
plete the transfer.

Reverse Transfers

Figure 15-2 shows the signals for a reverse transfer. The transfer works like this:

1. At the peripheral, nAckReverse (S5) is high, and PeriphAck (S7) is low when
the peripheral is not busy.

2. At the host, HostClk (C0) is high and HostAck (C1) is high.

Figure 15-1: ECP forward transfer.

Extended Capabilities Port: ECP

Parallel Port Complete 291

3. The host brings Control bit 5 high, to disable the data outputs. The host brings
HostAck low.

4. After a delay of at least 0.5 microseconds, the host brings nReverseReq (C2)
low.

5. The peripheral brings nAckReverse low.

6. The peripheral enables its Data outputs and writes a byte to the ECP Data FIFO
or ECP Address FIFO. If there are no other bytes ahead of it in the FIFO, the byte
is placed on D0–D7. The peripheral brings PeriphAck high for data and low for an
address/command, and brings PeriphClk low.

7. The host brings HostAck high.

9. The peripheral brings PeriphClk high.

10. The host reads D0–D7 into its FIFO and brings HostAck low to complete the
transfer.

Figure 15-2: An ECP switch to reverse (peripheral to PC) direction, reverse
transfer, and switch back to forward direction..

Chapter 15

292 Parallel Port Complete

Switching Directions: Host-to-peripheral
To switch back to the host-to-peripheral direction:

1. The host brings nReverseReq high.

2. The peripheral disables outputs D0–D7, brings PeriphClk high (if not high
already), and sets PeriphAck high if the peripheral is busy, low if not busy.

3. The peripheral brings nAckReverse high.

Timing Considerations

As in EPP mode, the port hardware automatically takes care of the handshaking at
the host, so you can read or write a byte in one I/O cycle on the PC.

The timing requirements for the peripheral are quite loose. In a forward transfer,
there is no specified limit on how long the peripheral may take to bring PeriphAck
high in response to HostClk’s going low, and when HostClk returns high, the
peripheral may take as long as 35 milliseconds to bring PeriphAck low again. In a
reverse transfer, after the peripheral brings PeriphClk low to send a byte and the

Table 15-2: The ECR (extended control register) configures the ECP.
Bit Name Read/

Write
Description

0 FIFOEmpty Read
only

1=empty.

0=at least 1 byte of data present.

1 FIFOFull Read
only

1= full.

0=at least 1 free byte remains.

2 ServiceIntr R/W 1=Disables DMA and service interrupts.

0=Enables service interrupt. Set to 1:

 If dmaEn=1, during DMA transfers.

 If dmaEn=0 and direction=0, when the number of free bytes
in the FIFO is equal to or greater than the FIFO’s threshold.

 If dmaEn=0 and direction=1, when the number of bytes in
the FIFO is equal to or greater than the FIFO’s threhold.

After the bit has been set to 1, it must be cleared to 0 to
re-enable interrupts.

3 dmaEn R/W 1=DMA enabled.

0=DMA disabled.

4 nErrIntrEn R/W 1= No interrupts at nError (S3).

0= Falling edge of nError generates interrupt.

5,6,7 ECP mode select R/W See Table 15-3

Extended Capabilities Port: ECP

Parallel Port Complete 293

host brings HostAck high in response, the peripheral may take as long as 35 milli-
seconds to bring PeriphClk high again. In reality, the host’s port hardware doesn’t
monitor the timings, so the software can allow the peripheral as long as it wants to
respond to the host.

If the peripheral doesn’t complete a transfer within a defined amount of time, the
host should abort the transfer and return the interface to the state it was in before
the transfer. The host can find out whether or not a transfer has completed by
reading the number of bytes in the FIFO. Checking for a timeout ensures that the
host’s port doesn’t stall as it waits for the peripheral to respond. The timeout
period can be any amount, however.

Interrupt Use

In ECP mode, several events can cause a hardware interrupt at the parallel port. In
order to use the interrupt, the selected IRQ level must be enabled at the host’s
interrupt controller, and the interrupt must be enabled at the parallel port, as
described in Chapter 10.

These are the events that can trigger an interrupt:

1. DMA transfers. When serviceIntr=0, dmaEn=1, and the DMA terminal count
(TC) is asserted in a DMA cycle.

2. ECP output. When the ECR’s serviceIntr=0, dmaEn=0, C5(Control Port bit
5)=0, and the number of free bytes in the FIFO is equal to or greater than the
FIFO’s threshold.

3. ECP input. When serviceIntr=0, dmaEn=0, C5=1, and the number of bytes in
the FIFO is equal to or greater than the FIFO’s threshold.

4. On Error. When nErrIntrEn=0 and nError goes low, or if nError is low when
nErrIntrEn is set low.

Table 15-3: ECP internal modes.
Mode (bits 7,6,5 of ECR) Description

000 SPP (original)

001 PS/2 (Byte, Bidirectional)

010 Fast Centronics

011 ECP

100 EPP

101 Reserved

110 Test

111 Configuration

Chapter 15

294 Parallel Port Complete

5. Ack. When C4 (Control port bit 4) =1 and nAck goes high. This is the conven-
tional parallel-port interrupt.

Using the FIFO

ECP transfers require a way to monitor the state of the FIFO. For forward trans-
fers, the host needs to know whether or not there is room in the FIFO for another
byte, and for reverse transfers, the host needs to know when there are bytes wait-
ing to be read.

There are three ways to determine the FIFO’s state. In the first, which I’ll call
Polled I/O, the host periodically reads the FIFO’s state from the ECR. In the sec-
ond way, Programmed I/O, when the FIFO reaches its threshold, the ECP gener-
ates an interrupt that causes the host to read or write to the FIFO. An in the third
way, DMA, the host’s DMA controller is programmed to transfer data to or from
the FIFO. The settings of dmaEn (bit 3) and serviceIntr (bit 2) in the ECR deter-
mine which method is enabled.

Polled I/O
In polled I/O, before doing a forward transfer, the host reads Bit 1 of the ECR. If it
reads 1, the FIFO has at least one free byte, and the CPU can write to the port. If it
reads 0, the FIFO is full and the CPU should wait. For reverse transfers, the host’s
CPU polls Bit 0 of the ECR. If it reads 0, there is at least one byte of data in the
FIFO to be read. If it reads 1, the FIFO is empty and there is nothing to read.

This is the simplest mode to program, because it doesn’t require interrupts or
accessing the DMA controller. However, it’s not the most efficient.

To use Polled I/O, set dmaEn=0 and serviceIntr=1.

Table 15-4: Timing limits for ECP transfers.
Parameter minimum maximum

Td 0 -

Th 0 1 sec.

Tl 0 35 msec.

Tp 0.5µsec. -

Tr 0 -

Tinf 0 infinite

Extended Capabilities Port: ECP

Parallel Port Complete 295

Interrupt-driven Programmed I/O
In interrupt-driven programmed I/O, the port generates an interrupt when the
FIFO has a predetermined number of bytes. For port reads, the interrupt occurs
when the FIFO has at least 16 - threshold bytes. The host’s interrupt-service rou-
tine then reads the bytes from the FIFO. For port writes, the interrupt occurs when
the FIFO has threshold or fewer bytes, and the host’s interrupt-service routine
writes more bytes to the FIFO.

The port’s controller chip may allow setting of the FIFO threshold from 1 to 16
bytes. On SMC’s Super I/O, you set the threshold by writing threshold - 1 to bits
0-3 of the chip’s CRA (Configuration Register A). (This is the controller chip’s
Configuration Register A, which requires the special access code described in
Chapter 11, not the read-only Configuration Register A accessed in the ECP’s
Configuration mode.)

For reverse transfers, the host must read the FIFO often enough to prevent it from
overflowing with incoming data. A large threshold is safest, because it causes the
host to read the FIFO when it has fewer bytes in it, so there’s less chance that the
FIFO will overflow while waiting for the host to read it. If the FIFO fills slowly,
the threshold can be smaller, with the advantage that the host will need to read the
FIFO less often.

For forward transfers, the threshold size is less critical. A large value will help
ensure that the FIFO always has data to send, and blocks of data will transfer more
quickly, but the host will be interrupted more often to write to the FIFO. With a
small value, the host will have fewer interrupts, with the risk that the FIFO may be
empty at times, with nothing to send.

The threshold value doesn’t affect the writing of the bytes in the FIFO to the port
pins. As soon as the FIFO receives bytes from the host, the port’s hardware begins
writing them in sequence to the port pins; the port doesn’t wait for the FIFO to fill
before transferring bytes to the connector.

Visual Basic doesn’t include the ability to write interrupt-service routines, so if
you want to use interrupts, you’ll need to program in C or another language that
enables you to do so, or use a DLL or Ocx with this ability.

To use Programmed I/O, set dmaEn=0 and serviceIntr=0.

DMA
In a DMA transfer, the host sets the direction and programs the system’s DMA
controller with a count and memory address to read or write. The host then sets
dmaEn=1 and serviceIntr=0, and the DMA controller transfers data to or from the
ECP’s FIFO. When the DMA controller reaches its terminal count, it causes an
interrupt and sets serviceIntr=1, which disables DMA.

Chapter 15

296 Parallel Port Complete

To use DMA transfers, the ECP must have an assigned DMA channel and IRQ
level. Again, Visual Basic alone doesn’t allow programming of interrupt-service
routines, though a Visual Basic program can communicate with a Vxd or DLL
that services hardware interrupts. Appendix A lists sources for more information
on programming DMA transfers in a PC.

Other ECP Modes

Three additional ECP modes are Fast Centronics, Test FIFO, and Configuration.

Fast Centronics

Fast Centronics, also called Fast mode or Parallel Port FIFO mode (010), allows
quicker data transfers when communicating with SPP peripherals. In this mode,
the host writes data to the FIFO and the hardware performs the SPP handshake,
writing a byte and pulsing nStrobe when Busy is low. Figure 15-3 shows the sig-
nalling for this mode.

In Fast Centronics mode, there’s no need to do the handshaking in software, and
the use of the FIFO makes it easy for the host to write a series of bytes to the port
without having to wait for the peripheral to respond. The peripheral doesn’t know
or care whether the host’s handshaking is generated by hardware or software, so
in most cases, it behaves as usual. Fast Centronics is too fast for some peripherals,
however, and these require SPP mode.

This mode does forward transfers (PC-to-peripheral) only. The IEEE 1284 stan-
dard doesn’t mention Fast Centronics mode, but Microsoft’s ECP document
describes it, and ECP controller chips include it.

Test Mode

Test mode allows reading and writing to the FIFO without generating handshak-
ing signals or writing to the port pins. This mode is intended for testing port speed,
or throughput, and determining at what rate the host should read and write to the
FIFO to prevent its overflowing.

Configuration Mode

ECP mode includes two configuration registers that hold information about the
chip’s support of data compression, use of interrupts and DMA, and the thresholds

Extended Capabilities Port: ECP

Parallel Port Complete 297

and current state of the FIFO. Some of the register functions vary depending on
the chip, while others should be the same on all ECP-capable ports.

Configuration Register A (cnfgA):
Read-only. Returns 10h, which indicates that the port is an 8-bit (byte) implemen-
tation.

Configuration Register B (cnfgB):
Bit 7. Compress. Read-only. 0 = doesn’t support hardware RLE compression.
(The chip may support hardware RLE decompression, however.)

Bit 6. intrValue. Read-only. State of the port’s IRQ line on the ISA bus.

Bits 5,4,3. On some chips, selects an IRQ level.

Bits 2,1,0. On some chips, selects a DMA channel.

Figure 15-3: Timing diagram for Fast Centronics transfers.

1If another data transfer is pending, Data is held until Busy goes inactive or time t3, whichever is
longer. If no transfer is pending, Data is held indefinitely.

(Timings are from SMC’s FDC37C665/6 Super I/O data sheet.)

Parameter Description min (nsec.) max (nsec.)

t1 Data valid to nStrobe active 600

t2 nStrobe pulse width 600

t3 Data hold from nStrobe active 4501

t4 nStrobe active to Busy active 500

t5 Busy inactive to nStrobe active 680

t6 Busy inactive to Data invalid 801

Chapter 15

298 Parallel Port Complete

An ECP Application

An ECP application can use a circuit identical to the Compatibility, Nibble, and
Byte-mode circuit of Chapter 13. As usual, an 82C55 is the interface between a
microcontroller and a PC’s parallel port, and the example application reads and
writes blocks of bytes. The only difference is that the Status and Control signals
have different names to reflect their new functions in the ECP interface.

All of the 82C55’s ports are configured in Mode 0 (simple I/O), with no automatic
handshaking. The 8052’s control program toggles and reads the handshaking sig-
nals when appropriate.

Listing 15-1 is excerpts from a program that does ECP transfers with this circuit.
The program uses polled, programmed I/O, checking FIFO full or FIFO empty
before each transfer. This isn’t the fastest, most efficient use of an ECP, but it
does illustrate what the software needs to do to perform simple ECP transfers. As
in previous examples, the program transfers blocks of 32 bytes.

Extended Capabilities Port: ECP

Parallel Port Complete 299

Function CheckFIFOEmpty% ()
‘Bit 0 of the Ecr indicates FIFO empty.
‘1=empty; 0=not empty
Dim FIFOFull%
EcrData = VbInp(EcrAddress)
If BitRead(EcrData, 0) = 1 Then
 CheckFIFOEmpty = True
Else CheckFIFOEmpty = False
End If
FIFOFull = BitRead(EcrData, 1)
End Function

Function CheckFIFOFull ()
‘Bit 1 of the Ecr indicates FIFO full.
‘1=full; 0=not full
Dim FIFOFull%
EcrData = VbInp(EcrAddress)
If BitRead(EcrData, 1) = 1 Then
 CheckFIFOFull = True
Else
 CheckFIFOFull = False
End If
End Function

Listing 15-1: Code to perform ECP forward and reverse transfers. (Sheet 1 of 5)

Chapter 15

300 Parallel Port Complete

Sub cmdReadDataFromPort_Click ()
‘Read characters from the parallel port.
‘Display the received characters on the form.
Dim CharNumber%
CharNumber = 0
TimedOut = False
lblDataInDisplay.Caption = ““
DirectionSet = DirectionRequest(“PeripheralToPc”)
tmrTimedOut.Enabled = True
‘Read bytes at the port.
‘After each byte, read the status port.
ReadAnother = True
‘Empty the FIFO
Do
 FIFOEmpty = CheckFIFOEmpty()
Loop Until FIFOEmpty = True
Do Until CharNumber = 32 Or TimedOut = True
 DoEvents
 FIFOEmpty = CheckFIFOEmpty()
 If FIFOEmpty = False Then

DoEvents
DataIn = DataPortRead(ECPDataPortAddress)
lblDataInDisplay.Caption = lblDataInDisplay.Caption _

 + Chr$(DataIn)
CharNumber = CharNumber + 1

 End If
Loop
 If Not (TimedOut) Then

MsgBox “Successful transfer”, 0
 End If
lblDataInDisplay.Caption = ““
‘Set C2 to tell peripheral to stop sending
BitSet ControlPortData, 2
ControlPortWrite BaseAddress, ControlPortData
CharNumber = 0
tmrTimedOut.Enabled = False
‘Re-enable the data outputs.
DirectionSet = DirectionRequest(“PcToPeripheral”)
End Sub

Listing 15-1: Code to perform ECP forward and reverse transfers. (Sheet 2 of 5)

Extended Capabilities Port: ECP

Parallel Port Complete 301

Sub cmdWriteDataToPort_Click ()
Dim CharNumber%
Dim FIFOFull%
TimedOut = False
tmrTimedOut.Enabled = True
DirectionSet = DirectionRequest(“PcToPeripheral”)
tmrTimedOut.Enabled = True
‘Write the characters in the text box to the parallel port.
For CharNumber = 1 To 32
 Do

DoEvents
FIFOFull = CheckFIFOFull()

 Loop Until (Not (FIFOFull)) Or (TimedOut = True)
 ‘Write each character in sequence
 Character = Mid$(txtDataOut.Text, CharNumber, 1)
 If Character = ““ Then Character = “ “
 DataPortWrite ECPDataPortAddress, Asc(Character)
Next CharNumber
Do
 DoEvents
 FIFOEmpty = CheckFIFOEmpty()
Loop Until FIFOEmpty Or TimedOut
If Not (TimedOut) Then
 MsgBox “Successful transfer”, 0
End If
tmrTimedOut.Enabled = False
End Sub

Listing 15-1: Code to perform ECP forward and reverse transfers. (Sheet 3 of 5)

Chapter 15

302 Parallel Port Complete

Function DirectionRequest% (Direction$)
Dim S3%
Dim PeripheralResponse
‘Use the ECP’s PS2 mode to switch directions.
SetEcpMode (PS2)
Direction = LCase$(Direction)
ControlPortData = ControlPortRead(BaseAddress)
BitSet ControlPortData, 0
BitSet ControlPortData, 3
‘Set Control port bits to match the selected direction.
‘For control bit 5,
‘0 enables the data outputs, 1 tristates the outputs.
Select Case Direction
 Case “pctoperipheral”

BitReset ControlPortData, 1
BitSet ControlPortData, 2
PeripheralResponse = 1

 Case “peripheraltopc”
BitSet ControlPortData, 1
BitSet ControlPortData, 5
ControlPortWrite BaseAddress, ControlPortData
BitReset ControlPortData, 2
PeripheralResponse = 0

 Case Else
 End Select
ControlPortWrite BaseAddress, ControlPortData
tmrTimedOut.Enabled = True
Do
 ‘Wait for the peripheral to acknowledge the
 ‘direction change.
 StatusPortData = StatusPortRead(BaseAddress)
 S3 = BitRead(StatusPortData, 3)
 DoEvents
 If TimedOut Then Exit Function
Loop Until S3 = PeripheralResponse
If S3 = 1 Then
 tmrTimedOut.Enabled = False
 ‘Enable the data outputs only after the peripheral
 ‘has acknowledged the direction change to
 ‘PC-to-peripheral.
 BitReset ControlPortData, 5
 ControlPortWrite BaseAddress, ControlPortData
End If
SetEcpMode (ECP)
End Function

Listing 15-1: Code to perform ECP forward and reverse transfers. (Sheet 4 of 5)

Extended Capabilities Port: ECP

Parallel Port Complete 303

Sub Form_Load ()
ECPDataPortAddress = BaseAddress + &H400
EcrAddress = BaseAddress + &H402
‘Timeout limit for peripheral.
tmrTimedOut.Interval = 5000
tmrTimedOut.Enabled = False
‘Initial Ecr setting (PS2 mode, no DMA or interrupts)
VbOut EcrAddress, &H30
DirectionSet = DirectionRequest(“PcToPeripheral”)
Do
 DoEvents
 FIFOEmpty = CheckFIFOEmpty()
 DataIn = DataPortRead(ECPDataPortAddress)
Loop Until FIFOEmpty
End Sub

Sub tmrTimedOut_Timer ()
‘On timeout, display a message and switch
‘direction to PC-to-peripheral.
TimedOut = True
MsgBox “Peripheral not responding”, 0
DirectionSet = DirectionRequest(“PcToPeripheral”)
tmrTimedOut.Enabled = False
End Sub

Listing 15-1: Code to perform ECP forward and reverse transfers. (Sheet 5 of 5)

Chapter 15

304 Parallel Port Complete

PC-to-PC Communications

Parallel Port Complete 305

16

PC-to-PC
Communications
The original purpose of the parallel port was to enable communications between a
PC and a peripheral. Another use that has become very popular is transferring
information between PCs. You can use a PC-to-PC link to transfer files without
having to use floppy disks. You can even set up a 2-computer network where one
computer can access the files and even run programs that reside on the other com-
puter.

MS-DOS and Windows 95 have PC-to-PC communications abilities built-in.
Traveling Software’s LapLink is an example of commercial software that adds
parallel- and serial-port communications abilities to a pair of computers.

A PC-to-PC Cable

Connecting two PCs’ parallel ports requires a special cable. In most cases, the
cable will have a 25-pin male D-sub connector on each end. An ordinary
male-to-male D-sub cable won’t do, though, because the wires on a PC-to-PC par-
allel cable don’t connect straight-across, pin-for-pin.

Chapter 16

306 Parallel Port Complete

In a PC-to-peripheral link, the host’s Control outputs connect to inputs on the
peripheral, and the host’s Status inputs connect to outputs on the peripheral. On
powerup, the Data lines are outputs on the host and inputs on the peripheral. If you
connect the parallel ports to two PCs straight together, you end up with inputs
connected to inputs, and outputs connected to outputs.

The solution is to use a special bidirectional parallel cable, often sold as LapLink
or Bidirectional parallel cables. Because they transfer data a nibble at a time, I’ll
call this type of cable a Nibble-mode bidirectional parallel cable. Table 16-1
shows the wiring for the cable. On each PC, five Data outputs (D0–D4) connect to
the five Status inputs (S3–S7) on the other computer. The cable should include all
eight ground wires. You can use the information in the table to make your own
bidirectional cable or adapter.

The four Control lines (C0–C3) are normally unused. If you’re connecting to
SPPs whose Control bits have open-collector outputs, you could wire the Control
bits straight-through and gain four more bidirectional lines that you can use in
programs you write. This is an unconventional use of the bits, however, and it
won’t work on all ports.

Dos and Windows Tools

Operating-system tools for parallel-port transfers include DOS’s Interlnk and
Windows 95’s Direct Cable Connection.

MS-DOS's Interlnk

MS-DOS version 6 added the ability to redirect disk and parallel-port operations
from one computer (called the client) to another (called the server), using a simple
parallel or serial connection between the computers. The client can read and write
to disks and LPT devices on the server.

DOS provides two programs for this purpose: Interlnk.exe and Intersvr.exe. You
also need either a bidirectional Nibble-mode cable connected to a parallel port on
each computer, or a null-modem serial cable connected to a serial port on each
computer. The parallel link is faster, but you can use the serial link if you don’t
have parallel ports to spare, if the computers are too far apart for a parallel link, or
if you don’t have the required parallel cable handy. Also, if only one of the com-
puters has the Interlnk and Intersvr files, you can use Interlnk to copy files over a
serial link (but not a parallel link).

PC-to-PC Communications

Parallel Port Complete 307

Using Interlnk, the client can read, write to, copy, move, and delete files on the
server. The client can send files to a printer connected to the server and access
other LPT devices that are controlled with MS-DOS functions. (See Chapter 2 for
more on MS-DOS’s LPT functions.)

To use Interlnk, you connect a cable, then install the device driver on the client.
To install Interlnk on Lpt1, you add this statement to the config.sys file and
reboot:

device=c:\dos\interlnk.exe /lpt1

The /lpt1 switch tells the driver where the cable is connected.

To block remote access to the parallel ports, add /noprinter to the end of the
command above:

device=c:\dos\interlnk.exe /lpt1 /noprinter

By default, Interlnk redirects three drives on the server. To change this number,
add a /drives:n switch to the end of the command:

device=c:\dos\interlnk.exe /lpt1 /drives:2

At the server, start the server program by typing:

intersvr

Table 16-1: Wiring for nibble-mode PC-to-PC parallel-port cable.
Computer A Direction Computer B

Pin Register Bit Register Bit Pin

2 D0 → S3 15

3 D1 → S4 13

4 D2 → S5 12

5 D3 → S6 10

6 D4 → S7 11

10 S6 ← D3 5

11 S7 ← D4 6

12 S5 ← D2 4

13 S4 ← D1 3

15 S3 ← D0 2

18-25 - GND - 18-25

1 C0 no connection C0 1

14 C1 no connection C1 14

16 C2 no connection C2 16

17 C3 no connection C3 17

Chapter 16

308 Parallel Port Complete

The server computer requires no changes to its config.sys file.

The client can then access disks and parallel ports on the server.

The client assigns its own letters to the server’s drives, beginning with the letter
after the client’s final drive. For example, if the client uses drives A through E,
drive A on the server becomes drive F on the client; drive B on the server becomes
drive G on the client, and so on up. At the client, saving a file to drive F will cause
the file to be saved to the server’s drive A.

The Interlnk connection will be active automatically if the client reboots while the
server is running, or if the client makes one of the server’s redirected drives the
active drive (by typing drive letter: at the command prompt). You can also acti-
vate the connection by typing interlnk at the client’s command prompt.

If only one computer has the Interlnk files, you can use intersvr’s rcopy com-
mand to copy files from one computer to another. At the computer with Interlnk,
type:

intersvr /rcopy

and follow the on-screen instructions. However, this command only works on
serial links.

Direct Cable Connection

Windows 95 has much greater built-in PC-to-PC communications abilities with its
Direct Cable Connection (DCC). DCC creates a simple network between two
computers. Both computers must be running Windows 95.

With DCC, one computer is the host, and the other is the guest. The guest has
access to the resources of the host, similar to the Interlnk’s client and server, but
with greater abilities. The guest can access files, drives (including CD-ROM
drives, which aren’t supported with Interlnk), and printers on the host. In addition,
with DCC, the guest can run applications on the host, though performance will be
limited by the speed of the link. If the host is connected to a network, the guest can
access the network, and the host can access shared resources on the guest.

As with Interlnk, to use DCC, you need either a free parallel port on each com-
puter or a free serial port on each computer, plus an appropriate cable. For parallel
connections, DCC can use the Nibble-mode bidirectional cable described above.
It can also use a special Direct Parallel Universal Cable from Parallel Technolo-
gies. This smart cable is useful if the ports on both computers are capable of bidi-
rectional, EPP, or ECP data transfers. The Universal cable automatically detects
the port types at each end and configures itself for the fastest data transfers possi-
ble. If ECP mode is available on both ports, DCC will use it.

PC-to-PC Communications

Parallel Port Complete 309

DCC will use hardware interrupts if the ports have them available; otherwise, it
will operate without interrupts.

As with Interlnk, a serial DCC link uses a null-modem cable.

Both computers must have Dial-up Networking and Direct Cable Connect
installed. To find out if these are installed, go to Control Panel, Add/Remove Pro-
grams, Windows Setup, Communications, Details. To add an item, click the
appropriate check box, then OK, and follow the instructions.

To establish a Direct Cable Connection, click on the Start menu, Programs,
Accessories, Direct Cable Connection. At each computer, on-screen prompts
guide you through selecting a port and selecting host or guest. If the connection
fails, Windows Help includes a DCC Troubleshooter that helps resolve many
common problems.

The host must specify which resources it wants to share, and what type of sharing
to enable. You can choose to share individual files, folders, or drives. The shared
access can be read-only or full (read/write). To enable sharing, in My Computer,
right-click the file or drive to share and select Properties, Sharing (Figure 16-1).
Click on Shared As and enter a name, which can be the same as the drive or file
name, and select an Access Type. When a resource is shared, its icon includes an
outstretched hand, so the shared resources are easy to identify in a list.

When the DCC is established, the View Host button on the DCC window enables
you to view and access the shared resources on the host. To select a folder, click
on it as usual.

Another way to view and access the host is to map a drive to an unused drive letter
on the guest. The host must have a name, which you specify in its Control Panel
under Network, Identification, Computer Name. In My Computer, click the Map
Network Drive icon. Select an unused drive letter, and type the path of the drive
you want to access, as Figure 16-2 shows. The double backslash (\\) tells the sys-
tem that the path is on the remote system. In the illustration, BackOffice is the

Figure 16-2: The Map Network Drive icon in My Computer enables you to
designate a letter to refer to a drive on the remote system.

Chapter 16

310 Parallel Port Complete

name of the host. Don’t add a colon (:) after the drive letter. The drive then
appears along with other system drives in My Computer.

Briefcase
If you use more than one computer to work on a set of files, Windows 95’s Brief-
case helps you maintain a single, up-to-date version of each file. If Briefcase isn’t
installed, you can add it in the Control Panel, Add/Remove Programs.

A common use for the Briefcase is when you use a portable computer and a desk-
top computer to work on the same files. You can use Briefcase to synchronize, or
maintain up-to-date copies, of files that reside on both computers. To use the
Briefcase, establish a Direct Cable Connection with the portable computer as
guest and the desktop computer as host. At the guest, use View Host to see the
shared resources. Copy the files you’ll want to synchronize to the guest’s Brief-
case. The Briefcase uses the syntax \\hostname\path\filename for the host’s files.
Now you can disconnect the DCC link and work with the files on the guest com-
puter.

Figure 16-1: In the properties screen for a drive or file, you can enable sharing
with a Direct Cable Connection.

PC-to-PC Communications

Parallel Port Complete 311

When you want to synchronize the files, re-establish the DCC link. In the guest’s
Briefcase, under the Briefcase menu item, select Update All or Update Selection.
If the two versions of a file differ, Briefcase will display the filename and date and
time information and ask if you want to update the older file. If you answer yes,
both computers will have identical, up-to-date versions of the file. If both versions
have changed, Briefcase allows you to select which version to use, or skip the
update entirely. If you no longer want to update a file, select Split From Original,
and the Briefcase will no longer attempt to synchronize it.

(You can also use the Briefcase without DCC, to synchronize files on a hard disk
and a floppy that you use with another computer.)

A PC-to-PC Application

Any two PCs with parallel ports can use Nibble mode to exchange data. Listing
16-1 shows the code for a program that enables two PCs to transfer files.
Although you can use Interlnk or Direct Cable Connect for this purpose, you
might want to include file transfers as part of another application, and this exam-
ple shows a way to do it. It uses Visual Basic’s Common Dialog control to display
and select files to send and to select filenames for received files.

Both PCs run identical programs. Each PC initializes to an idle condition. To send
a file, the user clicks a Send File command button, which brings up a Common
Dialog box that enables the user to select a file to send. When the file is selected,
the program writes the filename, the file length, and then the file itself to the
selected parallel port.

At the receiving end, a Timer subroutine reads the status port periodically. When
Status port bit 6 = 0, it means that the opposite end is sending a file. The receiving
PC reads the filename and brings up a Common Dialog box with the transmitted
filename as the default. Figure 16-3 illustrates. The user can then save the file
under this name or another name, and select a directory. The program then reads
the file length and stores the bytes in the requested file.

When the transfer is complete, both PCs return to the idle state, monitoring Status
bit 6 for an incoming file.

A couple of factors limit the speed of the file transfers. To ensure that the program
doesn’t hang if the opposite end stops responding, the program includes many
timeout checks and a DoEvents in each loop that waits for a response. Also, the
transmitting end has to divide each byte into nibbles, and the receiving end has to
recombine them. See Chapter 3 for tips for speeding up Visual-Basic programs.

Chapter 16

312 Parallel Port Complete

You can use the same data-transfer technique to exchange blocks of data, as in
earlier examples, rather than files. And of course, you can use the file-transfer
technique in this example with PC-to-peripheral transfers.

Figure 16-3: Visual Basic’s Common DIalog control makes it easy to select files to
transmit and filenames for received files.

PC-to-PC Communications

Parallel Port Complete 313

Dim StatusPortData%
Dim TimedOut%
Dim LowNibble%
Dim HighNibble%
Dim FileLengthByte%(0 To 3)
Dim S6%
Dim TimedOutInterval&
Dim TransferCancelled%

Sub cmdCancelTransfer_Click ()
‘Simulate a timeout to cause the transfer to end.
TransferCancelled = True
tmrTimedOut.Interval = 1
InitializeToIdleCondition
End Sub

Listing 16-1: Two PCs can use nibble mode to transfer files. (Sheet 1 of 10)

Chapter 16

314 Parallel Port Complete

Sub cmdWriteFileToPort_Click ()
‘Allow the user to select a file from a common-dialog box.
‘Then write the filename, file length, and the file itself to
‘the parallel port.
Const OFN_FILEMUSTEXIST = &H1000&
Dim ByteNumber&
Dim ByteToWrite%
Dim SelectedFile$
Dim CharacterRead$
Dim FileLength&
Dim FileNameToSend$
tmrWatchForIncomingFile.Enabled = False
tmrTimedOut.Interval = 0
TimedOut = False
On Error GoTo ErrorHandlerWr
cdlFileToSend.Filter = “All files (*.*)|*.*”
cdlFileToSend.Filename = ““
cdlFileToSend.Flags = OFN_FILEMUSTEXIST

‘Get the selected file from the common dialog box.
cdlFileToSend.Action = 1
cmdWriteFileToPort.Enabled = False
‘Write the filename and length to the port.
SelectedFile = cdlFileToSend.Filename
FileLength = FileLen(SelectedFile)
DivideFileLengthInto4Bytes (FileLength)
cmdCancelTransfer.Enabled = True
lblProgress.Caption = “Waiting for response...”
‘Extract the filename from SelectedFile, which includes a path.
FileNameToSend = GetFilenameToSend(SelectedFile)
‘Write the filename to the port.
For ByteNumber = 1 To 12
 WriteByteToPort Asc(Mid$(FileNameToSend, ByteNumber, 1))
Next ByteNumber
‘Write the file length to the port.
For ByteNumber = 0 To 3
 WriteByteToPort FileLengthByte(ByteNumber)
Next ByteNumber

Listing 16-1: Two PCs can use nibble mode to transfer files. (Sheet 2 of 10)

PC-to-PC Communications

Parallel Port Complete 315

‘Enable the timeout timer.
tmrTimedOut.Interval = TimedOutInterval
lblProgress.Caption = “Transferring file...”
Open SelectedFile For Input As #1
For ByteNumber = 1 To FileLength
 ‘Read 1 character from the file; send its ASCII code
 WriteByteToPort Asc(Input$(1, #1))
Next ByteNumber
If Not (TimedOut) Then
 lblProgress.Caption = “Successful transfer”
End If
GoTo EndTransferWr

ErrorHandlerWr:
TransferCancelled = True
Resume EndTransferWr

EndTransferWr:
Close #1
If TransferCancelled = True Then
 DisplayCancelMessage
End If
InitializeToIdleCondition
End Sub

Sub DisplayCancelMessage ()
lblProgress.Caption = “Transfer cancelled.”
TransferCancelled = False
End Sub

Listing 16-1: Two PCs can use nibble mode to transfer files. (Sheet 3 of 10)

Chapter 16

316 Parallel Port Complete

Sub DivideByteIntoNibbles (ByteToDivide%)
‘Divide a byte into low and high nibbles.
‘Each nibble is stored in a byte.
‘Bit 3 is the strobe.
‘Bits 5-7 are unused.
‘Original bit 0 = Low Nibble bit 0
‘Original bit 1 = Low Nibble bit 1
‘Original bit 2 = Low Nibble bit 2
‘Original bit 3 = Low Nibble bit 4
‘Original bit 4 = High Nibble bit 0
‘Original bit 5 = High Nibble bit 1
‘Original bit 6 = High Nibble bit 2
‘Original bit 7 = High Nibble bit 4
Dim Bit0%
Dim Bit1%
Dim Bit2%
Dim Bit4%
Bit0 = ByteToDivide And 1
Bit1 = ByteToDivide And 2
Bit2 = ByteToDivide And 4
Bit4 = (ByteToDivide And 8) * 2
LowNibble = Bit0 + Bit1 + Bit2 + Bit4
Bit0 = (ByteToDivide And &H10) \ &H10
Bit1 = (ByteToDivide And &H20) \ &H10
Bit2 = (ByteToDivide And &H40) \ &H10
Bit4 = (ByteToDivide And &H80) \ 8
HighNibble = Bit0 + Bit1 + Bit2 + Bit4
End Sub

Sub DivideFileLengthInto4Bytes (FileLength&)
FileLengthByte(0) = FileLength And &HFF
FileLengthByte(1) = ((FileLength \ &H100) And &HFF)
FileLengthByte(2) = ((FileLength \ &H10000) And &HFF)
FileLengthByte(3) = ((FileLength \ &H1000000) And &HFF)
End Sub

Sub Form_Load ()
StartUp
InitializeToIdleCondition
End Sub

Listing 16-1: Two PCs can use nibble mode to transfer files. (Sheet 4 of 10)

PC-to-PC Communications

Parallel Port Complete 317

Function GetFileLength& ()
GetFileLength = FileLengthByte(0) + FileLengthByte(1) * &H100 _
 + FileLengthByte(2) * &H10000 + FileLengthByte(3) * &H1000000
End Function

Function GetFilenameToSend$ (SelectedFile$)
‘SelectedFile contains the filename and path.
‘Extract the file name only into FileNameToSend.
‘FilenameToSend is 12 characters. Extra characters are spaces.
Dim Character$
Dim CharacterNumber%
Dim ByteNumber%
Dim FileNameToSend$

FileNameToSend = ““
ByteNumber = Len(SelectedFile)
‘Starting from the right, find the filename in the string.
Do
 Character = Mid$(SelectedFile, ByteNumber, 1)
 FileNameToSend = Character & FileNameToSend
 ByteNumber = ByteNumber - 1
Loop Until ByteNumber = _
 Len(SelectedFile) - 13 Or ByteNumber = 0 Or Character = “\”
If Character = “\” Then
 FileNameToSend = _
 Right$(FileNameToSend, Len(FileNameToSend) - 1)
End If
‘Pad the filename with spaces until it has 12 characters.
For CharacterNumber = Len(FileNameToSend) + 1 To 12
 FileNameToSend = FileNameToSend & “ “
Next CharacterNumber
GetFilenameToSend = FileNameToSend
End Function

Listing 16-1: Two PCs can use nibble mode to transfer files. (Sheet 5 of 10)

Chapter 16

318 Parallel Port Complete

Sub InitializeToIdleCondition ()
TimedOutInterval = 5000
tmrTimedOut.Interval = TimedOutInterval
tmrTimedOut.Enabled = False
tmrWatchForIncomingFile.Interval = 1000
‘Initialize D3 (strobe) to 1.
DataPortWrite BaseAddress, 8
‘Wait for the opposite end to set D3=1 (not busy).
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
Loop Until S6 = 1
tmrWatchForIncomingFile.Enabled = True
cmdWriteFileToPort.Enabled = True
cmdCancelTransfer.Enabled = False
End Sub

Function MakeByteFromNibbles% (LowNibble%, HighNibble%)
‘Get the 8 bits from LowNibble and HighNibble
‘and arrange them into a byte.
Dim Bit0%
Dim Bit1%
Dim Bit2%
Dim Bit3%
Dim Bit4%
Dim Bit5%
Dim Bit6%
Dim Bit7%

Bit0 = BitRead(LowNibble, 3)
Bit1 = BitRead(LowNibble, 4) * 2
Bit2 = BitRead(LowNibble, 5) * 4
Bit3 = BitRead(LowNibble, 7) * 8
Bit4 = BitRead(HighNibble, 3) * &H10
Bit5 = BitRead(HighNibble, 4) * &H20
Bit6 = BitRead(HighNibble, 5) * &H40
Bit7 = BitRead(HighNibble, 7) * &H80
MakeByteFromNibbles = _
 Bit0 + Bit1 + Bit2 + Bit3 + Bit4 + Bit5 + Bit6 + Bit7
End Function

Listing 16-1: Two PCs can use nibble mode to transfer files. (Sheet 6 of 10)

PC-to-PC Communications

Parallel Port Complete 319

Function ReadByteFromPort% ()
‘Read a byte of data at the status port, in 2 nibbles.
tmrTimedOut.Enabled = True
‘When S6=0, set D3=0.
Do
 LowNibble = StatusPortRead(BaseAddress)
 S6 = BitRead(LowNibble, 6)
 DoEvents
 Loop Until (S6 = 0) Or TimedOut
DataPortWrite BaseAddress, 0
‘When the peripheral responds by setting S6=1, set D3=1.
‘LowNibble holds 4 bits of data.
Do
 LowNibble = StatusPortRead(BaseAddress)
 S6 = BitRead(LowNibble, 6)
 DoEvents
Loop Until (S6 = 1) Or TimedOut
DataPortWrite BaseAddress, 8
‘When S6=0 again, set D3=0.
Do
 HighNibble = StatusPortRead(BaseAddress)
 S6 = BitRead(HighNibble, 6)
 DoEvents
Loop Until (S6 = 0) Or TimedOut
DataPortWrite BaseAddress, 0
‘When the peripheral responds by setting S6=1, set D3=1.
‘HighNibble holds 4 bits of data.
Do
 HighNibble = StatusPortRead(BaseAddress)
 S6 = BitRead(HighNibble, 6)
 DoEvents
Loop Until (S6 = 1) Or TimedOut
DataPortWrite BaseAddress, 8
ReadByteFromPort = MakeByteFromNibbles(LowNibble, HighNibble)
tmrTimedOut.Enabled = False
End Function

Listing 16-1: Two PCs can use nibble mode to transfer files. (Sheet 7 of 10)

Chapter 16

320 Parallel Port Complete

Sub ReadFileFromPort ()
‘This subroutine runs when tmrWatchForIncomingFile detects
‘an incoming file.
‘Read the filename and display it in a Common Dialog box.
‘When the user has selected a filename and path, read
‘the file length and store the file in the selected filename.
Dim FileLength&
Dim ByteRead%
Dim ByteNumber&
Const OFN_OVERWRITEPROMPT = &H2&
Dim FileReceived$
Dim CharacterToWrite$
tmrWatchForIncomingFile.Enabled = False
tmrTimedOut.Interval = TimedOutInterval
cdlFileReceived.Filter = “All files (*.*)|*.*”
cdlFileReceived.Filename = ““
cdlFileReceived.Flags = OFN_OVERWRITEPROMPT
On Error GoTo ErrorHandlerRd
FileReceived = ““

‘Read the filename and display the common-dialog box.
For ByteNumber = 1 To 12
 FileReceived = FileReceived & Chr$(ReadByteFromPort())
Next ByteNumber
cdlFileReceived.Filename = FileReceived
cdlFileReceived.Action = 2
lblProgress.Caption = “Receiving file...”
cmdCancelTransfer.Enabled = True
Open cdlFileReceived.Filename For Output As #1

‘Read the file length.
For ByteNumber = 0 To 3
 FileLengthByte(ByteNumber) = ReadByteFromPort()
Next ByteNumber

‘Read and store the file.
If Not (TimedOut) Then
 FileLength = GetFileLength()
 For ByteNumber = 1 To FileLength

CharacterToWrite = Chr$(ReadByteFromPort())
Print #1, CharacterToWrite;

 Next ByteNumber
 lblProgress.Caption = “Successful transfer”
End If

Listing 16-1: Two PCs can use nibble mode to transfer files. (Sheet 8 of 10)

PC-to-PC Communications

Parallel Port Complete 321

GoTo EndTransferRd

ErrorHandlerRd:
TransferCancelled = True
Resume EndTransferRd

EndTransferRd:
Close #1
If TransferCancelled = True Then
 DisplayCancelMessage
End If
InitializeToIdleCondition
End Sub

Sub tmrTimedOut_Timer ()
TimedOut = True
lblProgress.Caption = “Remote system not responding”
tmrTimedOut.Enabled = False
End Sub

Sub tmrWatchForIncomingFile_Timer ()
‘When not sending a file, poll Status bit 6.
‘If S6=0, the opposite end is sending a file.
StatusPortData = StatusPortRead(BaseAddress)
S6 = BitRead(StatusPortData, 6)
If S6 = 0 Then ReadFileFromPort
End Sub

Listing 16-1: Two PCs can use nibble mode to transfer files. (Sheet 9 of 10)

Chapter 16

322 Parallel Port Complete

Sub WriteByteToPort (ByteToWrite%)
‘Write a byte to the data port, in 2 nibbles.
‘The remote system reads the data at its status port.
‘The data bits are D0, D1, D2, and D4.
‘D3 is the strobe.
DivideByteIntoNibbles (ByteToWrite)
tmrTimedOut.Enabled = True
‘When S6=1 (not busy), write the low nibble and set D3=0.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
Loop Until (S6 = 1) Or TimedOut
DataPortWrite BaseAddress, LowNibble
‘When the peripheral responds by setting S6=0, set D3=1.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
Loop Until (S6 = 0) Or TimedOut
DataPortWrite BaseAddress, LowNibble + 8
‘When S6=1, write the high nibble and set D3=0.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
Loop Until (S6 = 1) Or TimedOut
DataPortWrite BaseAddress, HighNibble
‘When the peripheral responds by setting S6=0, set D3=1.
Do
 StatusPortData = StatusPortRead(BaseAddress)
 S6 = BitRead(StatusPortData, 6)
 DoEvents
Loop Until (S6 = 0) Or TimedOut
DataPortWrite BaseAddress, HighNibble + 8
tmrTimedOut.Enabled = False
End Sub

Listing 16-1: Two PCs can use nibble mode to transfer files. (Sheet 10 of 10)

Resources

Parallel Port Complete 323

Appendix A

Resources

This section lists a variety of resources that you may find useful in your paral-
lel-port explorations. Many of the items are ones I used in my research for this
book. For additions and updates to this list, visit Lakeview Research on the World
Wide Web at http://www.lvr.com, where I host a page devoted to the latest paral-
lel-port information and products.

Parallel-port Documents

IEEE Std 1284-1994. IEEE Standard Signaling Method for a Bidirectional Paral-
lel Peripheral Interface for Personal Computers. 1994. Sponsored by the Micro-
processor and Microcomputer Standards Committee of the IEEE Computer
Society. The official document describing the parallel port’s five modes of com-
munication and negotiation protocol. IEEE Standards:

Phone: 800-678-4333, 908-981-0060
Fax: 908-981-9667
WWW: http://stdsbbs.ieee.org/

“Extended Capabilities Port Protocol and ISA Interface Standard” A document
from Microsoft Corporation Windows Developer Relations that describes the par-
allel port’s ECP mode, including register use in the PC. This document has been

Appendix A

324 Parallel Port Complete

included on the Archive disk of the Microsoft Developer Network Developer's
Library CD-ROM (under Specifications).

Manufacturer’s data sheets for parallel-port controller chips contain a wealth of
information about the parallel port and its use. They’re often available for viewing
or downloading from the manufacturer’s Web site.

Hardware-related Resources

These include sources for parallel-port-related products and resources for learning
about the PC’s hardware and electronics in general.

Hardware Products

Universal cable, for fast PC-to-PC transfers using parallel ports, from Parallel
Technologies:
Phone: 800-789-4784 206-869-1136
WWW: http://www.lpt.com/lpt/

There are many sources for electronic components and parallel-port cards,
switches, extenders, and similar devices. The following vendors have good selec-
tions of these:

Digi-Key. Chips and other electronic components.
Phone:
Fax:
WWW: http://www.digikey.com/

Jameco. Chips, components, and parallel-port cards, switch boxes, and extenders.
Phone:
Fax:
WWW: http://www.jameco.com/

JDR. Chips, components, and parallel-port cards, switch boxes, and extenders.
Phone:
Fax:
WWW: http://www.jdr.com/

Warp Nine Engineering (formerly FarPoint), source for parallel-port expansion
cards that support EPP and ECP modes, cables.

http://www.fapo.com/

Resources

Parallel Port Complete 325

Books about Electronics
The Personal Computer from the Inside Out, Third Edition by Murray Sargent III
and Richard L Shoemaker. 1995, Addison-Wesley, 800 pages. A classic, detailed
reference to the PC’s hardware. Also includes a primer on assembly language, an
introduction to digital logic, a chapter on computer control and monitoring, and
even project construction tips.

The Art of Electronics, Second Edition, by Paul Horowitz and Winfield Hill. 1989,
Cambridge University Press, 1125 pages. An essential, complete introduction to
electronic circuits of all types.

High-Speed Digital Design: A Handbook of Black Magic, by Howard W. Johnson
and Martin Graham. 1993, Prentice Hall, 447 pages. A technical but very readable
guide to a difficult topic. Covers cable and interface design.

Software-related Resources

These include resources to help in writing Windows and other programs, plus pro-
gramming languages and other software products.

Windows Programming
Visual Basic Programmer’s Guide to the Win32 API, by Daniel Appleman. 1996,
Ziff-Davis Press, 1518 pages. The definitive reference for using the Windows API
in 32-bit Visual-Basic programs. Contain many insights and tips beyond simply
documenting the API.

Visual Basic Programmer’s Guide to the Windows API, by Daniel Appleman.
1993, Ziff-Davis Press, 1020 pages. Same as the previous listing, but for Win-
dows 3.1 programming.

These three books show what’s involved in writing VxDs and other Windows
device drivers:

Systems Programming for Windows 95: C/C++ programmer’s guide to VxDs, I/O
devices, and operating system extensions by Walter Oney. 1996, Microsoft Press,
715 pages.

Writing Windows VxDs and Device Drivers by Karen Hazzah. 1995, R & D Publi-
cations, 352 pages.

Writing Windows Device Drivers by Daniel A. Norton. 1992, Addison-Wesley,
434 pages.

The Windows Interface Guidelines for Software Design. 1995, Microsoft Press,
556 pages. How to design programs with user-friendly, consistent interfaces that
conform to the Windows guidelines.

Appendix A

326 Parallel Port Complete

Microsoft’s Developer’s Network. A wealth of information and programming
tools from Microsoft, on CD-ROM. Available in several levels. All but the lowe-
est level includes the Device Developer’s Kit, which is essential if you want to
create VxDs.

WWW: http://www.microsoft.com

General Programming
Code Complete by Steve McConnell. 1993, Microsoft Press, 857 pages. A tutorial
on how to write functional, maintainable programs.

Programming Languages

Visual Basic. The language of choice for Basic programming under Windows.
WWW: http://www.microsoft.com

Power Basic DLL compiler. Create compiled DLLs in Basic.
PowerBasic, Inc.
Phone: 800-780-7707, 408-659-8000
Fax: 408-659-8008
WWW: http://www.powerbasic.com

Delphi. An object Pascal compiler. The language is not too different from Basic,
but Delphi is a compiled, not interpreted, language and includes an in-line assem-
bler and other features not found in Visual Basic. You can use Delphi for an entire
project, or use it to create compiled DLLs for use with Visual-Basic programs.

WWW: http://www.borland.com

Other Software Products
These vendors offer Ocx’s for Port I/O and detecting hardware interrupts:

BlueWater Systems
Phone: 800-962-2114, 206-771-3610
Fax: 206-771-2742
WWW: http://www.bluewatersystems.com/

TetraDyne Software
Phone: 408- 377-6367
Fax: 408-377-6258
WWW: http://www.wintech.com

Microcontroller Circuit

Parallel Port Complete 327

Appendix B

Microcontroller Circuit

Several of the examples in this book use an 82C55 programmable peripheral inter-
face chip as an interface between a PC’s parallel port and a microcontroller. Fig-
ure B-1 shows a microcontroller circuit that can interface to an 82C55.

The microcontroller is an 80(C)52-Basic, with a Basic-52 interpreter in ROM.
The design is similar to that used in many microcontroller applications. The cir-
cuit includes the microcontroller chip, address decoding into eight 8K blocks,
RAM for temporary storage of data and Basic programs, and a serial interface for
connecting to a PC. To these components you can add EPROM or other nonvola-
tile memory for program storage and I/O circuits similar to the examples in this
book.

The companion disk for this book includes Basic-52 program code for the exam-
ple circuits that use an 82C55, along with a microcontroller circuit similar to this
one. The circuit is reprinted from my Microcontroller Idea Book, which has more
details about the circuit and how to use it.

Other 8051-family microcontrollers can use similar circuits, and the 82C55 can
interface in a similar way to other microcontrollers.

Appendix B

328 Parallel Port Complete

F
ig

ur
e

B
-1

: A
n

80
52

-B
as

ic
 m

ic
ro

co
nt

ro
lle

r
ci

rc
ui

t.
(R

ep
rin

te
d

fr
om

 T
he

 M
ic

ro
co

nt
ro

lle
r

Id
ea

 B
oo

k
 b

y
Ja

n
A

xe
ls

on
.)

Number Systems

Parallel Port Complete 329

Appendix C

Number Systems

Programming of parallel-port applications often involves using number systems
other than the familiar decimal system. Hexadecimal and binary numbers are use-
ful because they offer an easy-to-read way of expressing the bit- and byte-oriented
values that parallel-port applications often use. For those who are new to number
systems, or rusty on them, this appendix offers an introduction or review.

About Number Systems

A number system is a way to express quantitative information. Each of the num-
ber systems described below has a different base: 10, 2, or 16. Among other
things, the base determines how many characters are needed to express a given
quantity.

Decimal Numbers
The decimal number system used in everyday (non-computer) life has ten digits
(0-9). Each digit in a number represents a value raised to a power of 10.

Appendix C

330 Parallel Port Complete

This table shows the value of each digit in the decimal number 632:

Binary Numbers
In the binary number system, each digit represents a value raised to a power of 2.
The numbers use only two of the ten decimal digits, 0 and 1.

Binary representations are useful when you need to see the value of each bit in a
byte. For example, you might want to set, clear, toggle, or read a bit in one of the
parallel port’s registers. Visual Basic’s logical operators offer a way to control
and display individual bit values.

This table shows the value of each digit in 10 0111 1000, which is the binary rep-
resentation of the decimal number 632:

Hexadecimal Numbers
In the hexadecimal, or hex, number system, each character represents a value
raised to a power of 16. There are 16 characters, with the letters A through F rep-
resenting the decimal values 10 through 15.

Each character in a hex number represents 4 bits. This makes hex numbers a con-
venient, compact way to express 8- or 16-bit numbers. In Visual Basic, a leading
&h indicates a hex value:

&h278

Other common ways of indicating hex values are with a trailing h:

278h

with a leading 0x:

0x278

or with a leading $:

$278

Visual Basic’s Hex$ operator displays a value in hexadecimal:

debug.print Hex$(632)
278

Decimal digit 6 3 2

Digit multiplier 102 101 100

DIgit value 600 30 2

Binary bit 1 0 0 1 1 1 1 0 0 0

Bit multiplier 29 28 27 26 25 24 23 22 21 20

Bit value (decimal) 512 0 0 64 32 16 8 0 0 0

Number Systems

Parallel Port Complete 331

This table shows the value of each character in 278h, which is the hexadecimal
representation of the decimal number 632:

ASCII Hex format

Some devices expect to receive information as ASCII codes, with each code rep-
resenting a text character. If you try to send numeric data as bytes from 0 to 255 to
a device like this, the device will interpret each byte as its ASCII code, and this
can cause unwanted effects. For example, the value 0Ah may cause the device to
do a line feed, or a 7 may sound a bell. A solution is to use ASCII hex format,
which uses a pair of ASCII characters to represent each byte of information. The
only characters used are 0–9 and A–F. For example:

Instead of sending one byte to represent a value from 0 to 255, the sending device
sends two, one for each character in the hex number that represents the byte. In the
example above, the value to transmit is 1Fh, but the sending device sends two
bytes: 31h, the ASCII code for 1, and 46h, the ASCII code for F. The receiving
device treats the values like ordinary text. After the values have been received, the
receiving device can process or use the data any way it wants, including translat-
ing it back to binary data.

One common use for ASCII hex files is to send binary codes for programming
EPROMs or loading programs into RAM for testing on microcontroller systems.
Intel Hex and Motorola S-record formats both store data in ASCII hex format,
along with error-checking and other information.

Kilobytes and Megabytes

Two popular and sometimes confusing terms for dealing with quantities in the
computer world are kilobyte (K) and Megabyte (M).

Hex character 2 7 8

Character multiplier (decimal) 162 161 160

Character value (decimal) 512 112 8

Value to write (1Fh): 1 F

Character’s ASCII code 31h 46h

Byte to send (binary) 00110001 01000110

Appendix C

332 Parallel Port Complete

In the metric system of measurement, kilo means 1000, but in the computer world,
it commonly refers to 1024, which is 210, or 400h. An 8K RAM chip actually
stores 8192 bytes, not 8000.

In a similar way, in the metric system, Mega means a million, but in the computer
world, it commonly refers to 1,048,576 (220, or 1000h). One Megabyte equals
1024 kilobytes.

Multipliers

And finally, here’s a review of the prefixes often used to express component val-
ues and other quantities in electronics:

Prefix Description Multiplier

M Mega- 1,000,000

K kilo- 1,000

m milli- 1/1000

µ micro- 1/1,000,000

p pico- 1/10-12

Index

Parallel Port Complete 333

Index

1284
connector 112
See also IEEE 1284

1284Active
in Byte mode 250
in negotiating 212
in Nibble mode 229

16- and 32-bit transfers, EPP 269
32-bit programs 28
34C60 parallel port interface 218
3-state output 97
3V circuits 124
3-wire interface 166
4066B quad bilateral switch 143
60-Hz noise 119
7407 hex open-collector buffer 93
74ACT1284 transceiver 109
74HCT22106 crosspoint switch 144
74LS245 bus transceiver 237, 253
74LS374 octal flip-flop 23, 150

output current 125
7545x peripheral driver 138
80286, and Windows 41
80386SL/486SL 267
80486, embedded 217
8051 family 237
8052-Basic microcontroller 236–237

circuit 327
80x86 computer 2
82360SL I/O Subsystem 267
82C55 peripheral interface 232–235

Byte mode 257–258
Compatibility & Nibble mode 232–248
Compatibility mode 251–258
ECP mode 298
EPP mode 277–284
in IBM PC 233
Nibble mode 257–258

A
AC load, switching 141–143
Ack, Acknowledge. See nAck
AckDataReq

in Byte mode 250
in negotiating 212
in Nibble mode 229

ADC 156–163
serial 181

ADC0809 8-channel ADC 157
ADC0838 serial ADC 181
Add Module 53
adding a port 9, 66
address decoding, port 288
address register, EPP 268
address transfer, EPP 268
addressing 4, 24–25

nonstandard 5, 81, 216
redundant 288

alarm
subroutine 184, 194
timer 185

alias 27, 28
analog signals

Index

334 Parallel Port Complete

reading 154–163
analog-to-digital converter. See ADC
API function 33

EnumPorts, AddPort 66
for ini files 61
for new modes 204

ASCII Hex format 331
ASCII, sending 32
assembly language

port I/O in 30
speed 47

asynchronous 165, 204
AT computer 2
AT-type port 3
autoexec.bat 40
AutoLF 22
AWG (wire size) 118

B
bas module 53
Basic language, about 26–29
BCLK 45
bidirectional port

about 23–24
cable 305
cautions 111
modifying for 100–103
See also Byte, EPP, ECP, PS/2

binary numbers 330
BIOS

and Compatibility mode 223
data area 25, 84
for new modes 204
interrupts 34–37, 47

bit
inverting in hardware 98
inverting in software 56
leaving unchanged 58
routines 60

BlueWaterSystems 196
bounce, switch 193
breadboard, solderless 99
Briefcase 310
buffer

as protection 135
use of 111
See also FIFO buffer, receivers

bus. See ISA bus
Busy 22

and BIOS function 35
and DOS function 36
in Compatibility mode 224
inverting 56
variations in use of 226

byte
from nibbles 230–231
reading 149–152

Byte mode 249–258

C
C programming language 29
cable

design 113–119
for connecting two PCs 305, 308
for experimenting 99–100
long 123
types 11
universal 308

Call Interrupt 34–37
capacitance, cable 107
capacitive coupling 118
capacitors, decoupling 110
CD1283 Parallel Interface Controller 218
CdS photocell 155
Centronics

connector 20, 112
interface 3, 17

Centronics Data Corporation 17
channel, forward & reverse 205
characteristic impedance 121
Cirrus Logic 218
clearing bits 60
client, in Interlnk 306
CMOS

inputs 111
switch 143

CMOS setup 6
com file 40

Index

Parallel Port Complete 335

Command Packets Protocol 219
command, ECP 286
Common Dialog 311
comparator 155
Compatibility mode 223–228

example 232–248, 251–258
compatible vs. compliant 206
compiler 48
component, substituting 97–99
compression, data 50

in ECP 287
conditional compiling 28
conditioning, signal 162
config.sys 40
configuration

saving 210
configuration mode

ECP 296
See also configuring

configuring 6–9
multi-mode port 6–7
NSC Super I/O 217
SMC Super I/O 214

connector 10
for experimenting 99–100
types 112

contention handling 43
Control Panel 5, 7
Control pin as power supply 125
Control port 22

accessing 57
as input 58
cautions 111
experiments 86

control, custom. See custom control
control, real-time 183–199
controller chip 212–218
coupling, in a wire 118
CPP 219
CPU

speed 46
See also Intel

current
available from port 125

from logic output 134
custom control 44

See also Vbx, Ocx

D
DAC0854 quad DAC 181
daisy chain 218–220

protocol 12
Dallas Semiconductor 166
Darlington pair 138
data

ECP 286
transfer, EPP 268

data compression 50
Data pin as power supply 125–128
Data port 21

accessing 56
experiments 86

data register
EPP 268
See also Data port

Date function 186
Date variable 186
DB25. See D-sub
DCC. See Direct Cable Connection
decimal numbers 329
declaring DLLs 27–28
delay. See time
Delphi

port I/O in 30
writing DLLs in 28

device driver. See driver
Device Manager 8
differential signals 114
diode, Schottky 126
DIP connector 99
Direct Cable Connection 308–311
direct memory access. See DMA
direction

control bit 23
switching in Byte mode 253
switching, in ECP mode 292
switching, in EPP mode 273, 276

display, at parallel port 148
distance, increasing 123

Index

336 Parallel Port Complete

DLL
as device driver 42
declaring 27–28
inpout 27
Vbrun 49
writing in Basic 49

DMA
channel, assigning 5
in ECP 287, 293–295

DoEvents 184, 247
dongle 12
DOS. See MS-DOS
driver

device 39–45
generic line printer 32
printer (Windows) 33
selecting 7

driver (component) 106–110
DS1620 digital thermometer 166–181
D-sub connector 10, 112

and perfboard 99

E
ECP 3, 285–298

and speed 47
assigning resources 6
detecting 81
enabling 6
example application 298

ECR 288
electromagnetic coupling 118
EndDoc 32
enhanced mode 41
enhanced parallel port. See EPP 267
EnumPorts 66
EPP 3, 267–284

and speed 47
detecting 82
enabling 6
mode in ECP 289

Error. See nError
escape sequence 219
event

external 189–199

periodic 183–189
Exclusive Or. See Xor 56
exe file 40
expanding

input 152
output 129–131

expansion bus. See ISA bus.
expansion card

custom, for I/O 15
F/Port Plus 215
parallel port 11

extended capabilites port. See ECP
extended control register 288
extender, port 123

F
F/Port Plus 215
Far Point Communications 215
Fast Centronics 8, 296
Fault. See nFault
FDC37C665/6 Super I/O 213
FIFO 286

in ECP mode 294–296
in Fast Centronics mode 296

files, transferring 311
finding ports 5, 25
Firewire 14
firmware 209
flip-flop

with manual switch 193
See also 74LS374

form template for port I/O 60
forward channel 205

G
generic line printer driver 32
GetPrivateProfileString 61
GetSetting 66
GPIB, compared to parallel port 14
Grid control 44
ground return 114

analog 163
guest (Direct Cable Connection) 308

Index

Parallel Port Complete 337

H
handshake

reason for 223
See also specific modes

hardware interrupt 194–199
hardware, port 11
Harris Semiconductor 144
HCMOS

drivers 107
logic 93
power supply 124
See also logic families

Hewlett Packard GPIB 14
hexadecimal numbers 330
high-side switch 139
Hold, CPU 287
host

defined 205
Direct Cable Connection 308

HostAck 286, 290
HostBusy

in Byte mode 250
in negotiating 212
in Nibble mode 228

HostClk
in Byte mode 250
in ECP mode 289, 292

HostLogicHigh 115
hysteresis 108

I
I/O cycle 45
IBM PC 2

8255 in 233
IEEE 203

ISA-bus standard 46
IEEE 1284 203–207

compliant cable 115
connector 10, 112
negotiating 210–212
supplement 221
supplement to 218
transceiver chip 109

IEEE 1394 14
IEEE 488, compared to parallel port 14
impedance

characteristic 121
output 107, 108

inductive coupling 118
infrared interface 14
ini file 61
Init. See nInit
initialization data 61
inp function 26
inpout DLL 27
input

applications 149–163
bits 17–24
detecting external 189–199
expanding 152
latch 150
See also Byte mode, Nibble mode, ECP,

EPP
INT 17h 34
INT 21h 35
Intel

80386SL/486SL 267
82360SL I/O Subsystem 267

interfacing 105–124
interference, cable 118
Interlnk 306–308
interlocked handshake 205
interpreter 48
interrupt

and VxDs 44
enable bit 22, 57
hardware 194–199
in ECP mode 293, 295–296
in EPP mode 275
use of 5
variation in use 226

interrupt service routine. See ISR
inverted signals 20
inverting bit

in hardware 98
in software 56

IOCHRDY, in EPP mode 274
IOR and IOW 45, 274

Index

338 Parallel Port Complete

IrDA 14
IRQ 5–6

See also interrupt
ISA bus 2

IEEE standard for 46
speed 45

ISA-compatible port 3
ISR 194–199

K
kilobyte 331

L
language, programming

port I/O in 26–31
speed 47–50

Laplink cable 306
latch, input 150
LED

for viewing bits 86
interface 86, 135

Level 1 & 2 devices 106–110
level detecting 155
LF347 quad op amp 162
line printer driver 32
Linear Technology 139
Linefeed, auto 22
LM339 quad comparator 155
logic families 93, 98

and transmission-line effects 120
output characteristics 107
speed 111

logic output
as switch 134

loop, as timer 186
LP324 op amp 124
LPT

defined 5
ports, accessing 31–37

LPT4 25
lptprogs.ini 61
LSTTL 93

drivers 106

See also logic families 105
LTC1156 quad MOSFET driver 139

M
magnetic coupling 118
mapping 309
mask byte 57
matrix, switch 144
Max186 ADC 181
Max456 crosspoint switch 148
Max756 step-up converter 127
Maxim Semiconductor. See individual chips

(Max-)
Megabyte 331
memory, under Windows 41
Microchip PIC 232
microcontroller

8052-Basic 236–237
circuit 327
in peripherals 232

microprocessor. See CPU
Microsoft

Diagnostic 6
ECP document 286
Plug and Play 6
See also individual products

Microwire 166
mode

Byte 249–258
Compatibility 223–228
disabling 209
ECP 285–298
EPP 267–284
Fast Centronics 296
IEEE 1284 204–210
negotiating 210–212
Nibble 228–231

modification, bidirectional 100–103
MOSFET 138–141
motherboard port 11
msd.exe 6
MS-DOS

and PCs 2
device drivers 40–42

Index

Parallel Port Complete 339

functions for LPT access 34–37, 47
Interlnk 306–308
speed 49

multi-mode port 213–218
defined 4

multiple devices on a port 218–220
multiple uses 11

N
nAck 22

as interrupt trigger 194–199
in Compatibility mode 224
variations in use of 198, 226

nAckReverse 289
nAStrobe 268, 270
National Semiconductor. See NSC
nDataAvail

in Byte mode 250
in negotiating 212
in Nibble mode 228

nDStrobe 268, 271
negotiating 210–212

example 257–258
with internal state machine 218

nError 22
and DOS function 36
as interrupt trigger 293
in Compatibility mode 224

NewPage 32
nFault

See nError
Nibble mode 228–231

example 232–248, 257–258
nibbles

converting to byte 151
nInit 22
NMOS

8255 232
output 135

noise
cable 121
in analog circuits 163

nonstandard address 81
NOWS 46

NPN 137
nReverseReq 291
NS486SXF embedded 486 217
NSC

ADC0838 181
DAC0854 181
Embedded 486 217
IEEE 1284 transceiver 109
LP324 op amp 124
Microwire 166
Super I/O 216

nStrobe 22
and BIOS function 35
and DOS function 35
in Compatibility mode 224
variations in use of 226

number systems 329–332
nWait 270–275
nWrite 270, 273

O
Ocx

as device driver 45
for hardware interrupt 196

op amp 162
Open LPTx 33
open-collector, open-drain 93–96
OpenComm 33
original port. See SPP
out procedure 26
output

applications 129–148
bits 17–24
expanding 129–131
impedance of driver 107, 108
types 93–97
voltage, logic 98

P
page, memory 41
PaperEmpty

See PaperEnd
PaperEnd 22

Index

340 Parallel Port Complete

and DOS function 36
in Compatibility mode 224

parallel port
access routines 53–84
address decoding 288
addressing 4
configuring 6–9
controller chips 212–218
extender 123
finding, selecting, testing 25, 80–84
original design 101
registers 205, 207
saving information about 61
types 3, 4
viewing and controlling 85–93
See also port, SPP, PS/2, ECP, EPP

Parallel Port FIFO mode 296
Parallel Technologies 308
Pascal 30
path, remote 309
PC

See IBM PC
PC Card 15
PC87332 Super I/O 216
PC-compatible 2
PCMCIA 15
PC-to-PC links 305–312
Peek 84
Pentium 2, 47
perfboard 99
periodic events 183–189
PeriphAck 286, 289, 292
PeriphClk 291, 292
peripheral

controller chips 217
defined 2, 205
detecting automatically 84
driver chip 138
interface chip, 8255 232–235

PeripheralLogicHigh 115
PError

See PaperEnd
photocell 155
PIC 232

Plug and Play 6
PNP 138
polling 193–194

FIFO in ECP mode 294
port

Control 22
Data 21
defined 1
interfacing 105–124
Status 21
trapping 43
See also parallel port

Port menu 60, 80
power

from parallel port 124
switching 132–143

power line noise 119
power supply

using the parallel port as 124
PowerBasic

DLL compiler 49
for DOS 26

printer
default 32
driver, DOS 40
driver, Windows 33

Printer object 32
Printer Select 22
PrintForm 32
privilege level 43
PRN device 36
protected mode 41
protocol

daisy chain 219
negotiating 210–212

PS/2
See also bidirectional

PS/2 computer 2
PS/2 mode 3

enabling 6
in ECP 288

PS/2 port
detecting 83
DMA in 287
See also bidirectional port

Index

Parallel Port Complete 341

PtrBusy, in Nibble mode 228
PtrClk

in Byte mode 250
in negotiating 212
in Nibble mode 228

pullup 106
at open inputs 111
at open-collector output 93
vs. pulldown 98

push-pull output 97

Q
QBasic 26
QuickBasic 26, 49

software interrupts in 34

R
real mode 41
real-time control 183–199
receivers 106–110
reflected signal 121
register

control 22
data 21
ECP 288
EPP 268
status 21
use, all modes 205
See also specific register

registry, system 66, 198
relay

electromagnetic 141
solid-state 141

resetting bits 60
resistor

current limiting 97
current sense 141
current-limiting 135
pullup 106, 111
pullup vs. pulldown 98

resources, system 4, 6
shared 309

reverse channel 205

ring 0 through 3 43
RJ11, -45 connector 11
RLE 287
RS-232 166

converting to 123
vs. parallel interface 13, 114

RS-485
converting to 123
vs. parallel interface 13, 114

run length encoding 287

S
sample and hold 163
SaveSetting 66
Schmitt-trigger input 108
Schottky diode 126
SCR 141
SCSI

connector 10
vs. parallel port 14

security key 12
Select 22

in Compatibility mode 224
SelectIn 22

in Compatibility mode 224
sensors 154
serial link

compared to parallel 13–14
converting to 123
synchronous 165–181

server, in Interlnk 306
Set statement 32
setting bits 60
Setup menu 60
setup, CMOS 6
shared resources 309
shielding 118
signal 17–25

conditioning 162
external, as trigger 189–199
inverted 20
names 207
reflected 121

Index

342 Parallel Port Complete

sink current 134
SMC

34C60 parallel port interface 218
Super I/O 213–215
Ultra I/O 215

source current 134
speed

factors affecting 45–50
importance 2
of file transfers 311
optimizing for 59

SPP 3
components 105
detecting 83
emulating 209
making bidirectional 100–103
mode in ECP 288
variations 198, 224–228

standard mode 41
standard, for parallel port. See IEEE 1284
Status port 21

accessing 56
cautions 111
experiments 86

Strobe. See nStrobe
substituting components 97–99
switch

bounce 193
detecting 1 of 4 198
latching 193
low level 143
matrix 144
power 132–143
sensor as 154
simple 98

switch box 11
synchronous serial link 165–181
sys file 40

T
template for port I/O 60
termination, line 119–123
Test mode, ECP 296
Test Port 81

text, sending 32
thermometer, digital 166–181
threshold, FIFO 295
Time function 185
time, triggering events on 183–189
timeout

ECP 293
EPP 21, 82, 274–276
in data link 247

Timer control 183–186
in polling 193–194

toggling bits 60
totem pole output 96
transceiver, 74LS245 237
transistor

bipolar, as switch 136
MOSFET 138–141

transmission line 119
trapping ports 43
TRIAC 141
tristate output 97
TSR 41
TTL

See logic families
See also logic families

TTL logic 93
TurboBasic 26
twisted pair 118
two’s complement 167

U
UART 166
unidrv.dll 33
universal cable 308
Universal Serial Bus 14
USB 14

V
variable, for port address 80
Vbasm 34, 84
Vbrun 49
Vbx 44
vcomm 43

Index

Parallel Port Complete 343

virtual machine manager 43
virtual printer driver 43
Visual Basic

about 27
and hardware interrupts 196
Common Dialog 311
Date function 186
Date variable 186
DoEvents 184, 247
interpreter 49
LPT access in 31–33
Ocx 45
Time function 185
Timer control 183–186, 193–194
Vbx 44
version differences 44–45, 61, 66

VMM 43
voltage

analog, adjusting 162
VPD 43
VxD

device driver 42
for port I/O 28

W
wait state 46
win.ini 61
Win32 28
Windows 43

device drivers 39–45
modes 41
printer drivers 33

speed 49
system registry 66, 198
version differences 66

Windows 3.1
Control Panel 7

Windows 95
Control Panel 5, 8
Device Manager 8
Direct Cable Connection 308–311
EnumPorts, AddPort 66
registry 198

Windows API
See API

Windows NT 26
device drivers 44
Ocx for port I/O 196

WinRT Ocx 196
wired-OR 95
WriteComm 33
WritePrivateProfileString 66

X
X-10 switch 143
XFlag

in Byte mode 250
in negotiating 212
in Nibble mode 229

Xor, for inverting bits 56
XT computer 2

Z
zero-voltage switch 141

