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Preface 

The subject of antenna design, primarily a discipline within electrical engi
neering, is devoted to the manipulation of structural elements of and/or the 
electrical currents present on a physical object capable of supporting such a 
current. Almost as soon as one begins to look at the subject, it becomes clear 
that there are interesting mathematical problems which need to be addressed, 
in the first instance, simply for the accurate modelling of the electromagnetic 
fields produced by an antenna. The description of the electromagnetic fields 
depends on the physical structure and the background environment in which 
the device is to operate. 

It is the coincidence of a class of practical engineering applications and 
the application of some interesting mathematical optimization techniques that 
is the motivation for the present book. For this reason, we have thought it 
worthwhile to collect some of the problems that have inspired our research in 
applied mathematics, and to present them in such a way that they may appeal 
to two different audiences: mathematicians who are experts in the theory 
of mathematical optimization and who are interested in a less familiar and 
important area of application, and engineers who, confronted with problems of 
increasing sophistication, are interested in seeing a systematic mathematical 
approach to problems of interest to them. We hope that we have found the 
right balance to be of interest to both audiences. It is a difficult task. 

Our ability to produce these devices at all, most designed for a partic
ular purpose, leads quite soon to a desire to optimize the design in various 
ways. The mathematical problems associated with attempts to optimize per
formance can become quite sophisticated even for simple physical structures. 
For example, the goal of choosing antenna feedings, or surface currents, which 
produce an antenna pattern that matches a desired pattern (the so-called 
synthesis problem) leads to mathematical problems which are ill-posed in the 
sense of Hadamard. The fact that this important problem is not well-posed 
causes very concrete difficulties for the design engineer. 

Moreover, most practitioners know quite well that in any given design 
problem one is confronted with not only a single measure of antenna perfor-
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mance, but with several, often conflicting, measures in terms of which the 
designer would like to optimize performance. From the mathematical point of 
view, such problems lead to the question of multi-criteria optimization whose 
techniques are not as well known as those associated with the optimization of 
a single cost functional. 

Sooner or later, the question of the efficacy of mathematical analysis, in 
particular of the optimization problems that we treat in this book, must be 
addressed. It is our point of view that the results of this analysis is normative; 
that the analysis leads to a description of the theoretically optimal behavior 
against which the radiative properties of a particular realized design may be 
measured and in terms of which decisions can be made as to whether that 
realization is adequate or not. 

From the mathematical side, the theory of mathematical optimization, a 
field whose antecedents pre-date the differential and integral calculus itself, 
has historically been inspired by practical applications beginning with the 
apocryphal isoperimetric problem of Dido, continuing with Newton's problem 
of finding the surface of revolution of minimal drag, and in our days with 
problems of mathematical programming and of optimal control. And, while 
the theory of optimization in finite dimensional settings is part of the usual 
set of mathematical tools available to every engineer, that part of the theory 
set in infinite dimensional vector spaces, most particularly, those optimization 
problems whose state equations are partial differential equations, is perhaps 
not so familiar. 

For each of these audiences it may be helpful to cite two recent books in 
order to place the present one amongst them. It is our view that our mono
graph fits somewhere between that of Balanis [16] and the recent book of 
Cessenat [23], our text being more mathematically rigorous than the former 
and less mathematically intensive than the latter. On the other hand, while 
our particular collection of examples is not as wide-ranging as in [16], it is sig
nificantly more extensive than in [23]. We also mention the book of Stutzman 
and Thiele [132] which specifically treats antenna design problems exclusively, 
but not in the same systematic way as we do here. Moreover, to our knowledge 
the material in our final chapter does not appear outside of the research liter
ature. The recent publications of the IEEE, [35] and [84], while not devoted 
to the problems of antenna design, are written at a level similar to that found 
in our book. 

While this list of previously published books does not pretend to be com
plete, we should finally mention the classic work of D.S. Jones [59]. Part of 
that text discusses antenna problems, including the synthesis problem. The 
author discusses the approach to the description of radiated fields for wire an
tennas, and dielectric cylinders, and the integral equation approach to more 
arbitrarily shaped structures, with an emphasis on methods for the compu
tation of the fields. But while Jones does formulate some of the optimization 
problems we consider, his treatment is somewhat brief. 
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The obvious difficulty in attempting to write for a dual audience lies in the 
necessity to include the information necessary for both groups to understand 
the basic material. There are few mathematicians who understand the funda
mental facts about antennas, or even what is meant by an antenna pattern; it 
is not unknown but still unusual for engineers to know about ordered vector 
spaces or even weak-star convergence in Banach spaces. 

It is impossible to make this single volume self-contained. Our choice is to 
present introductory material about antennas, together with some elementary 
examples in the introductory chapter. That discussion may then serve as a 
motivation for a more wide-ranging analysis. On the other hand, in order 
to continue with the flow of ideas, we have chosen to place a summary of 
the mathematical tools that we will use in the Appendix. That background 
material may be consulted from time to time as the reader may find necessary 
and convenient. 

The chapter which follows gives some basic information about Maxwell's 
equations and the asymptotic behavior of solutions which is then used in 
Chapter 3. There we formulate a general class of optimization problems with 
radiated fields generated by bounded sources. Most importantly, we give sev
eral different measures of antenna performance related to the desired behavior 
of the radiated fields far from the antenna itself. These cost functionals are 
related to various properties of this far field and we discuss, in particular, 
their continuity properties which are of central importance to the problems of 
optimization. 

In the fourth chapter, we concentrate on one particular problem, the syn
thesis problem mentioned earlier, and on its resolution. Since the problem is 
ill-posed, we give there a brief discussion of the mathematical nature of this 
class of problems. 

The following two chapters then discuss, respectively, the boundary value 
problems for the two-dimensional Helmholtz equation, particularly important 
for treating TE and TM modes, and for the three-dimensional time-harmonic 
Maxwell equations. Our discussion, in both instances, includes some back
ground in the numerical treatment of those boundary value problems. 

Chapter 7, which together with Chapter 8 forms the central part of our pre
sentation, contains the analysis of various optimization problems for specific 
examples based on the general framework that we constructed in Chapter 3. It 
is our belief that, while the traditional antenna literature analyzes the various 
concrete antenna structures somewhat independently, emphasizing the specific 
properties of each, a more over-arching approach can guide our understanding 
of the entire class of problems. In any specific application it is inevitable that 
there will come a time when the very particular details of the physical nature 
of the antenna will need to addressed in order to complete the design. That 
being said, the· general analytical techniques we study here are applicable to 
antennas whether they take the form of a planar array of patches or of a line 
source on the curvilinear surface of the wing of an aircraft. For some of the 
standard (and si:rp.plest) examples, we include a numerical treatment which, 
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quite naturally, will depend on the specifics of the antenna; a curvilinear line 
source will demand numerical treatment different from an array of radiating 
dipoles. 

In the final chapter, Chapter 8, we address optimization problems arising 
when (as is most often the case) .there is a need to optimize antenna per
formance with respect to two or more, often conflicting, measures. To give a 
simple example, there is often a desire to produce both a focused main beam 
and to minimize the electromagnetic energy trapped close to the antenna itself 
e.g, to maximize both directivity and gain simultaneously. In such a situation, 
the end result of such an analysis is a "design curve" which concretely repre
sents the trade-offs that a design engineer must make if the design is to be in 
some sense optimal. 

These problems fall within the general area of multi-criteria optimization 
which was initially investigated in the field of mathematical economics. 
More recently, such techniques have been applied to structural engineering 
problems, as for example the problem of the design of a beam with maximal 
rigidity and minimal mass, and even more recently, in the field of electro
magnetics. While there is now an extensive mathematical literature available, 
the numerical treatment of such problems is most often, but not exclusively, 
confined to the "bi-criteria" case of two cost functionals. Our numerical illus
trations are confined to this simplest case. 

We make no pretense that our presentation is complete. Experts in antenna 
engineering will find many interesting situations have not been discussed. 
Likewise, experts in mathematical optimization will see that there are many 
techniques that have not been applied. We will consider our project a success 
if we can persuade even a few scientists that this general area, lying as it 
does on the boundary of applied mathematics and engineering, is both an 
interesting one and a source of fruitful problems for future research. 

Finally, we come to the most pleasant of the tasks to face those who 
write a monograph, namely that of thanking those who have supported and 
encouraged us while we have been engaged in this task. There are so many! 

We should begin by acknowledging the support of the United States Air 
Force Office of Scientific Research, in particular Dr. Arje Nachman, and the 
Deutsche Forschungsgemeinschaft for supporting our efforts over several years, 
including underwriting our continuing research, the writing of this book, the 
crucial travel between countries, sometimes for only brief periods, sometimes 
for longer ones. 

As well, our respective universities and departments should be given credit 
for making those visits both possible and comfortable. Without the encour
agement of our former and present colleagues, and our research of our research 
collaborators in particular, the writing of this book would have been impos
sible. 

Specific thanks should be given to Prof. Dr. Rainer Kress of the Institut 
fUr Numerische und Angewandte Mathematik, Universitat Gottingen, and 
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the late Prof. Ralph E. Kleinman, Unidel Professor of Mathematics at the 
University of Delaware who introduced us to this interesting field of inquiry. 



1 

Arrays of Point and Line Sources, and 
Optimization 

1.1 The Problem of Antenna Optimization 

Antennas, which are devices for transmitting or receiving electromagnetic en
ergy, can take on a variety of physical forms. They can be as simple as a single 
radiating dipole, or far more complicated structures consisting, for example, 
of nets of wires, two-dimensional patches of various geometric shapes, or solid 
conducting surfaces. Regardless of the particular nature of the device, the goal 
is always to transmit or receive electromagnetic signals in a desirable and ef
ficient manner. For example, an antenna designed for use in aircraft landing 
often is required to transmit a signal which is contained in a narrow horizontal 
band but a wide vertical one. 

This example illustrates a typical problem in antenna design in which it is 
required to determine an appropriate "feeding" of a given antenna structure 
in order to obtain a desired radiation pattern far away from the physical an
tenna. We will see, as we proceed with the theory and applications in later 
chapters, that a number of issues are involved in the design of antennas in
tended for various purposes. Moreover, these issues are amenable to systematic 
mathematical treatment when placed in a suitably general framework. 

We will devote the next chapter to a discussion of Maxwell's Equations and 
Chapter 3 to the formulation and general framework for treating the opti
mization problems. We begin with specific applications in Chapter 4 in which 
we analyse the synthesis problem whose object is to feed a particular antenna 
so that, to the extend possible, a prescribed radiation pattern is established. 
Chapters 5 and 6 discuss the underlying two and three dimensional boundary 
value problems, and subsequent chapters are devoted to the analysis of vari
ous optimization problems associated with the design and control of antennas. 
In this first chapter we introduce the subject by discussing, on a somewhat 
ad hoc basis, what is perhaps the most extensively studied class of antennas: 
arrays of elementary radiators and one-dimensional sources. 
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We make no pretense of completeness; we do not intend to present an ex
haustive treatment of what is known about these antennas, even were that 
possible. There are many books on the subject of linear arrays alone, and the 
interested reader may consult the bibliography for some of the more recent 
treatises. Our purpose here, and in subsequent chapters, is to present a single 
mathematical framework within which a large number of antenna problems 
may be set and effectively treated. 

Roughly speaking, this framework consists of a mathematical description of 
the relation between the electromagnetic currents fed to an antenna and the 
resulting radiated field. Of particular interest will be the "far field" which 
describes the radiated field at large distances (measured in terms of wave 
lengths and the geQmetry of the antenna), as well as certain measures of 
antenna "efficiency" or "desirability". Such measures are often expressed in 
terms of the proportion of input power radiated into the far field in the first 
case, or in terms of properties of the far field itself in the second. In addition, 
there are always constraints of various kinds which must be imposed if the 
design is to be practical e.g., the desired pattern must be attained with limited 
power input, or the radiation outside a given sector must meet certain bounds. 
The problems we treat here therefore fall into the category of constrained 
optimization problems. 

We set the stage by looking at two specific problems, the problem of optimizing 
directivity and efficiency factors of linear and circular arrays and line sources, 
and the "Dolph-Tschebysheff" problem which is concerned with optimizing 
the relationship between beam-width and side lobe level. We will return to 
various versions of these problems in later chapters. We begin by reviewing 
some basic facts about simple sources, which we will derive rigorously later. 
Once we have these facts at hand, we discuss optimization problems and some 
methods for their resolution. 

1.2 Arrays of Point Sources 

By an array of point sources we mean an antenna consisting of several individ
ual and distinguishable dipole elements whose centers are finitely separated. 
For a linear or circular array they are assumed to lie on a straight line or a 
circle, respectively. In Chapter 2, Section 2.10, we will show that the form of 
the electric field generated by a set of 2N + 1 electric dipoles with arbitrary 
locations Yn E ]R3, n = -N, ... ,N, with (common) moments p is 

. ikr N ( 1 ) 
E(x) = 1,wfJ,o ~ [x x (p x x)] L an e-ikYn "'" + 0 2" . 

4~ r r 
n=-N 

(1.1 ) 

where we have used spherical coordinates (r, 1>, B). Here, k is the wave num
ber which is related to the wave length)" by k = 2~ I)... The complex num
ber an is the excitation coefficient for the n-th element, and x = xllxl = 
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(sin () cos ¢, sin () sin ¢, cos 0) T E 8 2 is the unit vector in the direction of the 
radiated field1 . Once the direction p of the dipole orientation is fixed, the far 
field of E is entirely determined by the array factor, f ( x ), defined as 

N 

f(x) = f(O, ¢) = 2:::: ane-ikYn·m, (1.2) 
n=-N 

We note that the array factor should be distinguished from the far field pattern 

N 

Eoo(x) = x x (p x x) L an e-ikYn·m, x E 8 2 . (1.3) 
n=-N 

This is not only because Eoo is a vector field and f a scalar quantity but 
also because the magnitudes differ by the factor I x x (p xx) I. In spherical 
coordinates (¢,O) we have for p = e3 that Ix x (p x x)1 = sinO, ° ~ 0 ~ 1L 

We now specify a particular direction Xo E 8 2 which we will keep fixed during 
the following discussion. We think of Xo as that direction in which we would 
like to maximize the power of the array factor. Then it is convenient to rewrite 
(1.2) in the form 

N 

f(x) = f(O, ¢) = L an e-ikYn .(m-mo), x E 8 2 , (1.4) 
n=-N 

where we have replaced an by an exp(ikYn . xo) which is only a change in the 
phase of the complex number an. From this form we see directly that If(x)1 ~ 
L.:~=-N lanl for all x and f(xo) = L.:~=-N an. Therefore, if all coefficients an 
are in phase (i.e. if there exists some 8 E [0,21f] with an = lanl exp(i8) for all 
n) then from (1.4), If(x)1 attains its maximal value at x = xo. 

1.2.1 The Linear Array 

Let us first consider the simplest case of a linear array of uniformly spaced 
elements which we assume to be located symmetrically along the x3-axis of a 
three dimensional Cartesian coordinate system. The locations are thus given 
by Yn = nd e3, n = -N, ... , N, with inter-element spacing d. The array factor 
reduces to 

N 

f(O) L a e-inkd(cosfJ-cosfJo) 
n , (1.5) 

n=-N 

where 00 E [0,1f] corresponds to xo. An array with 00 = 1f /2 is called a 
broadside array since the main beam is perpendicular to the axis of the 

1 By 8 d - 1 we denote the unit sphere in ]Rd. Thus in ]R2, 8 1 is the unit circle. 
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antenna while the values (}o = ° or (}o = 1f correspond to end-fire arrays 
since the main beams are in the same direction as the axis of the array. 

An array which is fed by the constant coefficients 

1 
an = 2N +1' n= -N, ... ,N, (1.6) 

is called a uniform array. With respect to the original form (1.2) the coef
ficients an = exp(inkdcos(}o)/(2N + 1) have constant magnitude and linear 
phase progression. In this case, the array factor is given by 

N N 
f(e) = 1 """" e-inkd(cos I:I-cos 1:10 ) = 1 """" e-inl' 

2N + 1 n~N 2N + 1 n~N ' 

where we have introduced the auxiliary variable 'Y = 'Y(B, eo) = kd(cose -
cos eo). The following simple calculation shows how to rewrite f in the form 
(setting z := exp( -h)): 

so that 

f( e) 

1 N (1) N+l -N 
f(e)=2N+1 L zn = 2N+1 z z~; 

n=-N 

_ ( 1 ) zN+~ - z-(N+~) _ sin(N + ~h 
- 2N+1 z~-z-~ - (2N+1)sin~' 

sin(2N + 1H 

(2N + 1) sin ~ = 
sin [2";+1 kd( cos B - cos eo)] 

(2N + 1)sin[k2d(cose - cos eo)] 
(1.7) 

A typical graph for I t~~~~~;~(~j;l) I as a function of'Y then looks like the curve 
in Figure 1.1. 

From the equation (1.7) we see some of the main features of uniform arrays. 
Besides the main lobe centered at () = Bo, i.e. 'Y = 0, we observe a number of 
side lobes of the same magnitude at locations 'Y = 2m1f, mE Z, m i= 0. These 
are called grating lobes. Returning to the definition of 'Y, as B varies between ° and 1f, the variable 'Y = kd( cos B - cos eo) varies over an interval of length 
2kd centered at 'Yo = -kdcosBo. This interval is called the visible range. Its 
length depends on d while its position depends on Bo. In particular, for the 
broadside array the visible range is [-kd, kdJ while for the end-fire array it 
is either [-2kd, OJ or [0, 2kdJ. We note that for the uniform array the grating 
lobes lie outside the visible range provided kd < 21f and kd < 1f for a broadside 
and an end-fire array, respectively. 
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0.9 
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From our expression (1.7) for 11(e)1 and its graph, we notice certain further 
typical features. The graph is oscillatory and the zeros (or nulls) which define 
the extent of the individual lobes correspond to the roots of the equations 

2N+1 
2 kd(cose-coseo) = jn, j=±1,±2,... (1.8) 

The angular separation between the first nulls on each side of the main beam 
can be approximated for large N by a simple use of Taylor's theorem. Indeed, 
the condition for the first null corresponding to j = -1 is 

-2n 
kd (cos e1 - cos eo) = -=-2N-=-=-+---C-1 (1.9) 

The difference on the left can be estimated, for large N, using the wave 
length >. = 2;:, by 

>. 
(2N + 1)d = cose1 - coseo 

(e1 - eo)2 
::::: - (e1 - eo) sin eo - 2 cos eo . 

Thus, for a broadside array (i.e. eo = n /2), the angular separation is 
(2~~1)d while the corresponding result for an end-fire array (i.e. eo = 0) 

1/2 
is 2 (2~~1)d) . Comparison of these results shows that, for large N, the 

beam-width for a broadside array is smaller than that for an end-fire array. By 
beam-width of .the main lobe we mean just the angular separation between 
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the first nulls on each side. Moreover, since the nulls in the broadside case are 
given by 

( j).. ) 
()j = arccos (2N + l)d ' j = ±1,±2, ... , (1.10) 

for positive j we must have 0 :S j)"/(2N + l)d :S 1 or j).. :S (2N + l)d. It 
follows from this last inequality that such an array has (2N + 1 )d/)" nulls on 
each side of the main lobe so that, if d = ),,/2, there are 2N nulls since 2N + 1 
is odd. 

The fact that the beam-width of the main lobe varies inversely with the size 
of the array suggests that a narrow beam-width can be obtained simply by 
increasing the number of elements in the array. The expression for the nulls 
shows, however, that the number of side lobes likewise increases with N, see 
Figure 1.2. Since the occurrence of these side lobes indicates that a consid
erable part of the radiated energy is distributed in unwanted directions, it 
should be clear that there is a trade-off between narrowing the main beam, 
and increasing the number of side lobes. We will come back to this idea of a 
"tradeoff" later in this chapter and again in Chapter 8. 

3.5 

Fig. 1.2. Arrays for 3 and 11 Element Arrays ()..Id = 1.5) 

It is also possible to keep the number of sources fixed, and then to study the 
dependence of the array pattern on the spacing d. Here again, we see that an 
increase in the spacing, while narrowing the main beam, increases the number 
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of side lobes. In both cases then, the narrowing of the main beam is made at 
the expense of the power radiated into that angular sector (see Figure 1.3). 
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Fig. 1.3. Effect of Increasing Spacing (N = 5): )..jd = 2 (solid) and Aid = 1.1 
(dashed) 

The specification of the pattern is given sometimes not only by the beam
width of the main lobe, but also by the ratio p between the maximum value 
of the main lobe and that of the largest side lobe which is often, but not 
always, the first side lobe. It is therefore of interest to be able to compute the 
various maxima of the array factor. 

Clearly, these local maxima occur when le l f (e)21 = 0 (and f(e) =1= 0). In 
the present case, that of a uniform array, a simple computation shows these 
critical points occur at solutions of the transcendental equation 

Thus, the points where maxima occur, as well as the maximal values them
selves, can be determined numerically. 

While these derivations depend on the representation of the far field pattern 
in the form (1. 7) which assumes that the feeding is uniform, we could imagine 
choosing different, non-uniform feedings. We expect that a different choice of 
weights would lead to alterations in the far field pattern. Indeed, a typical 
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problem of design is to feed the antenna in such a way that the prominent 
main beam contains most of the power, while the side lobes, which represent 
undesirable power loss, are negligible. For example, we may allow feeding coef
ficients in (1.5) other than the constant ones an = 1/(2N +1), n = -N, ... , N, 
in an attempt to suppress the unwanted side lobes. We illustrate this possi
bility by considering two feeding distributions which are called, respectively, 
triangular and binomial. If the coefficients appearing in the expression (1.5) 
for the array pattern are symmetric (i.e. a-n = an) then we can write the 
array pattern in the form 

N 

f(O) = ao + 2 I>n cos (n'f'(O)) where 'f'(0) = kd(cosO - cos 00 ) . (1.11) 
n=l 

In order to see concretely the effects of using these non-uniform distributions, 
let us consider a seven element broadside array (i.e. 00 = rr /2) in which 
the separation of the elements is d = >../2. With this spacing, the parameter 
'f'( 0) = rr cos O. The triangular distribution for this case has coefficients an = 
4 - n, n = 0, ... ,3 while the binomial feeding is defined by the coefficients 
an = (3~n) = (3-n)?~3+n)!' n = 0,1,2,3. Figures 1.4, 1.5, and 1.6 compare 
these two tapered distributions with the array factor for a uniformly fed seven 
element broadside array (as a function of 0). 
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Fig. 1.4. Array for Uniform Feeding (Broadside Array, N = 3) 
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Fig. 1.5. Array for Triangular Feeding (Broadside Array, N = 3) 
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Fig. 1.6. Array for Binomial Feeding (Broadside Array, N = 3) 

It is evident that, while the triangular distribution partially suppresses the 
side lobes, the binomial distribution does so completely. One might conclude 
that, since side lobes are undesirable features of an array pattern, the bino
mial distribution is in some sense optimal. However, numerical approximation 
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of the first nulls lead to beam-widths of approximately 1.86, 2.09, and 3.14 
respectively so that it is again clear that the suppression of the side lobes 
comes at the expense of beam-width. 

The question that we are confronted with is how such a trade-off is to 
be evaluated. One way to do this .is to introduce the notion of the directivity 
of an antenna; we turn to this idea in Section 1.3. But first we analyse a 
configuration other than a linear array. 

1.2.2 Circular Arrays 

In this subsection, we will consider a second example of an array, which has 
found applications in radio direction finding, radar, and sonar: the circular 
array. Our discussion will be parallel to that of the linear case but will be 
somewhat abbreviated since many of the ideas that we will meet have analogs 
in the linear case and are now familiar. 

Our object is to analyse a single circular array consisting of N elements equally 
spaced on the circumference of a circle of radius a which we take to lie in the 
(x, y)-plane and to have center at the origin. If we measure the phase excitation 
relative to the center of the circle (at which an element mayor may not be 
present), the mth element has the position vector 

Ym = a cos ¢m €l + a sin ¢m €2 = a (cos ¢m , sin ¢m , 0) T 

where 
211" 

¢m = N m, m= 1, ... ,N. 

With this notation, the array factor for the circular array becomes (compare 
equation (1.4)) 

N N 

f(x) = f(e, ¢) Lam e-iky",·Cm-mo) Lam e-ikYm·z (1.12) 
m=l m=l 

where z is the projection of x - Xo onto the plane of the array, i.e. 

z = z(e,¢) = (sinecos¢-sineocos¢o, sinesin¢-sineosin¢o, O)T, 

(eo, ¢o) denoting the spherical coordinates of xo. Introducing new variables p 

and ~ to be the plane polar coordinates of z, i.e. z = p(cos~,sinCO)T, yields 

N 

f(8, ¢) = Lam e-ikapcosCf,-q,,,,) (1.13) 
m=l 

where the dependence on 8 and ¢ is through p and ~. Comparison of this form 
with the expression (1.5) shows that now the array factor is a function of both 
¢ and e. 
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In the case of constant feeding am = -tt, m = 1, ... , N, we use the Jacobi
Anger expansion in terms of Bessel functions (d. [30]) 

00 

e-izcost = L In(z) ein(t-1r/2) , (1.14) 
n=-CX) 

to arrive at 

1 N 
f(e, ¢) = N L e-ikapcos(~-</>rn) 

m=l 

= ~ f In(kap) ein(~-1r/2) t e-inm~ 
n=-oo m=l 

00 

= L JnN(kap) einN(~-1r/2) 
n=-(XJ 

00 

= Jo(kap) + 2 L( _i)nN JnN(kap) cos(nN~) (1.15) 
n=l 

where nN is the product of the running index n and the total number of 
elements N. In the derivation, we have used the identity for the Bessel func
tions Jm, namely that J-m(z) = (-l)mJm(z). The term with the zeroth-order 
Bessel function Jo (kap) is called the principal term; the rest of the terms may 
be viewed as perturbations. Indeed, from the asymptotic behaviour of the 
Bessel functions (d. [50]) 

t m 
Jm(t) = 2m m! [1 + O(l/m)] as m --+ 00 (1.16) 

uniformly for t in compact subsets of [0, 00) and the estimate (nN)! ~ N! [(n
l)N]! for n, N ~ 1, we note that 

00 (kap)nN (kap)N 1 00 (kap)nN 
If(e, ¢) - Jo(kap) I ::; c ~ 2nN (nN)! ::; C 2 N! ; 2nN (nN)! 

< c (kap ) N ~ e kap / 2 . 
- 2 N! 

Therefore, for large N, the pattern f(e, ¢) is well approximated by Jo(kap) = 
Jo(ka Izl). 
There is a slightly different interpretation of this fact. We can consider the 
array factor f(e, ¢) from (1.13), in the case of am = liN, as the discretization 
of the continuous circular line source of radius a 

j(e, ¢) = 
21r 

~ J e-ikapcos(~-s) ds. 
211" 

o 

(1.17) 
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The application of the Jacobi-Anger expansion (1.14) in this expression also 
yields i(fJ, <p) = Jo(kap). 

As a particular example we consider first the broadside case fJo = 0 (or fJo = 
11"), Le. where the desirable beam is perpendicular to the plane of the array. 
The vector z takes the form z = sinO(cos<p,sin<p,O)T and thus p = sinO 
and ~ = <p. This gives the approximate far field i(O,<p) = Jo(kasinO) which 
is omnidirectional, Le. independent of <p, see Figure 1.7 for a = >./2, Le. 
ka = 11". 

In the case 00 = 11"/2, where the beam is in the plane of the array, we have 
z = (sin 0 cos <p - cos <Po, sin 0 sin <p - sin <Po, 0) T. Here we find both horizontal 
(azimuthal) patterns which lie in the plane 0 = 11"/2 of the array and vertical 
patterns which lie in the vertical plane corresponding to sin(<p - <Po) = O. For 
the horizontal pattern we have, after some elementary calculations, 

z = ( cos <p - cos <Po , sin <p - sin <Po, 0) T 

_ 2 . <p - <Po ( <p + <Po + 11" <p + <Po + 11" O)T 
- sm --2- cos 2 ' cos 2 ' , 

and so 
- <p - <Po 
f(11"/2,<p) = Jo(2kasin-2-)· 

For the vertical pattern corresponding to <p = <Po or <p = <Po + 11" we have 

z = (sinfJ - 1) (cos <Po, sin <Po, 0) T or z = -(sinO + 1) (cos <Po, sin <Po, 0) T, re
spectively, and thus 

i(O,<Po) = Jo(ka(l-sinO)), j(O,<Po+11") = Jo(ka(l+sinO)) , 

respectively. Plots of these patterns Iii for a = >"/2, Le. ka = 11", and <Po = 0 
are given in Figures 1.8 and 1.9 below. 

A convenient form of representing the array patterns as well as some other 
quantities we will derive from it as, for example, directivity is to use the 
notations from vector analysis. We denote by 

m 

(a, b) = L aj bj and lal = V(a, a) 
j=l 

the inner product and Euclidean norm, respectively, in em. If the point sources 
are located at Yn , n = -N, ... , N, we introduce a vector a E e2N+1 whose 
components are the feeding coefficients an, and the vector 

e = e(x) = (eikY_N'(X-XO), ... , eikYN"(X-XO)) T E e2N+1 
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Fig. 1.8. </> H li(7r/2,</»1 for 80 = 7r/2 and </>0 = 0 in the (x,y)-plane 
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Fig. 1.9. 8 M 11(8,4»1 for 80 = 7r/2 and 4> = 4>0 or 4> = 4>0 + 7r in the (x, z)-plane 

(note that we write vectors in column-form). Then the array factor may be 
represented simply as the complex inner product 

N 

f(x) = L an e-ikYn·(re-reo) = (a, e(x)). (1.18) 
n=-N 

In order to compare this form of the array pattern with other feeding mecha
nisms which will be introduced later it is convenient to consider the operator 

v '. ,.,...2N+l ------'- C(82 ) , f ( ) ,\- IL- -----, a t-+ = a, e . (1.19) 

This linear operator maps the finite dimensional space C2N+1 of feeding co
efficients into the space C(82 ) of continuous functions on the unit sphere. It 
is one-to-one since Ka = 0 implies that 2.::=-N an e-ikYn ·(re-reo) = 0 for all 
x E 8 2 and thus an = 0 for all n. 
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1.3 Maximization of Directivity and Super-gain 

The discussion in the preceeding section has shown that the behavior of the 
radiated far field pattern of a source depends on the "feeding" or currents 
on the radiating elements. The ability to change those currents affords us the 
possibility of manipulating the radiated pattern in the far field and, moreover, 
the possibility of doing so in an "optimal" fashion. In order to define what is 
an optimal pattern however, we must have some measure of desirability. It is 
to this question that we devote the first subsection. In part 1.3.2 we turn to 
the optimization problems. 

1.3.1 Directivity and Other Measures of Performance 

Measures of antenna performance are scalar quantities which, in some way 
measure desirable properties of the antenna pattern as a functional of the 
inputs to the antenna and, perhaps, other parameters of interest as, for ex
ample, inter-element spacing. In keeping with the introductory nature of the 
present chapter, we will discuss some traditional measures, in particular the 
directivity of an antenna and the signal-to-noise ratio. A more comprehensive 
discussion of performance measures will be deferred until Chapter 3. When 
treating arrays, these quantities are usually defined in terms of the array fac
tor f. The power radiated at infinity is, however, better modeled by the far 
field pattern Eoo which differs from the array factor by the term x x (p x x). 
Instead of using f = f (x) in the following definitions one can equally well 
take o:(x) f(x) where o:(x) = Ix x (p x x)l. We note again that o:(x) = sine 
in polar coordinates if p = e3. To follow the standard notations used in an
tenna theory, however, we take the array factor f for the definitions of these 
quantities. 

We begin with the notion of directivity. 

Definition 1.1. Let f = f(x), x E 8 2 , be the factor of an antenna array. 
We define the directivity D f by 

(1.20) 

if f -1= o. 
We write also Df(e, ¢) using spherical coordinates and suppress ¢ if f, and 
therefore D f' is independent of ¢. 

This quantity Df is sometimes called the geometric directivity (see [27]) 
since it is a quantity which depends only on the geometrical parameters of 
the antenna andnot on the feeding mechanism. 

The definition of directivity is a theoretical quantity and does not take into 
account the losses, of power due to feeding mechanisms. In other words, our 
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definition of directivity ignores the question of antenna input impedance due 
to the coupling of the power source with the antenna through a transmission 
line or wave guide. 

In the case of a linear array along the x3-axis, the array factor 1 is indepen
dent of ¢ and (1.20) reduces to 

D (8) - 1/(8)12 0 <_ 8 _< 7[". 
f - ~ J01l" 1/(8')12 sin B' dB' ' 

(1.21 ) 

If we want to express explicitly the dependence of D f on the feeding coeffi
cients an we write Da and use the operator K : C2N+1 --+ C(S2) and the 
vector notation again, see (1.19). It follows that we can express I/(x)12 as a 
quadratic form 

I/(x)12 = I(Ka)(x)1 2 = I(a, e(x))12 = (a, C(x) a) (1.22) 

where C(X) is the Hermitian, positive semi-definite, (2N + 1) x (2N + 1) 
matrix with elements 

(1.23) 

Likewise, we introduce the matrix B with entries 

which can be computed explicitly. Indeed, we make the change of variables 
x = Q T z where Q E jR3x3 is the rotation which transforms Yp - Yq into 

I Yp - Yq I e3 (the "north pole") and which yields 

b = ~ e-ik(Yp-Yq)o:iJo Jeik(Yp-yq)TQTz; dS 
p,q 47[" 

8 2 

= ~ e-ik(Yp-Yq)o:iJo J e-ikIYp-Yql "3°%: dS 
47[" 

8 2 

11" 

= ~e-ik(yp-yq)o:iJo J e-ikIYp-YqICOs8 sin8d8 

o 
1 

= ~ e-ik(Yp-Yq)o:iJo J e-ikIYp-Yqlt dt 

-1 

(1.24) 
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The denominator of the expression (1.20) can then be written as an Hermitian 
form (a, Ba) so that the geometric directivity for an array takes the simple 
form 

D ( A) = D (A) = (a, C(x) a) 
fX aX (B)' . a, a 

(1.25) 

We note that B is positive definite and that both the matrices C(X) and B 
depend on the parameters k, xo and Y n' 

For the linear equi-spaced array with spacing d, we have Yp - Yq = d(p - q)e3 
and thus 

Cp,q( 0) = eikd(p-q) (cos O-cos 00 ) and 

{ 
sin(kd(p - q)) 

bp,q = eikd(q-p) cos 00 kd(p _ q) , p i- q, 

1, P = q. 

In this case, both of the matrices Band C(O) are circulant, i.e. the entries 
bp,q and Cp,q(O) depend only on p - q. 

For circular arrays with radius a we have 

and thus 
Cp,q(x) = eik(Yp-Yq)'z 

where z is the projection of x - Xo onto the plane of the array, see (1.12). 
With plane polar coordinates z = p( cos ~, sin ~, 0) T this yields 

and 

{
sin ( 2ka sin IP;ZI71") 

b = eik sin 00 [cos(4)q-4>o)-cos(4>p-4>o)] . . 1 - 171" ,p i- q, 
p,q 2ka sm p :J 

1, p = q. 

As an example, we compute the directivity for linear broadside arrays. In this 
way we will have another comparison of the effect of suppressing the side lobe 
level on the main beam. 

Example 1.2. We consider a linear broadside array in the broadside direction 
(i.e. 0 = 00 = 1(/2). We assume the inter-element spacing to be d = >"/2, 
i.e. kd = 1(. We d,mote the directivity for uniform, triangular, and binomial 
feeding by D;;" D~ and D~, respectively. Then the matrices C(1(/2) and B 
have a particularly simple form. Indeed, B = I and C(1(/2) is a full matrix 
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whose entries are all 1. Naturally, the simplest case is that of the uniformly 
fed broadside array (see (1.7) for eo = 1r/2). In this case, a = 2lJ+1 (1, ... , l)T 
and thus 

(1.26) 

Similarly, we compute the directivities for the triangular and binomial feed
ings. For N = 3, i.e. a seven element array, we have for the uniform feed
ing D;I (1r /2) = 7, while those for the triangular and binomial feedings are 
D~(1r/2) = 5.8182 and D~(1r/2) = 4.4329, respectively. These results illus
trate once again that, in general, the attempt to suppress side lobes is met 
with a degradation of the directivity of the array. 

We will now introduce other measures of performance, the signal-to-noise 
ratio, denoted by SNR, and the radiation efficiency, which we will denote by 
G. The signal-to-noise ratio is defined in terms of the antenna factor alone: 

Definition 1.3. Let f = f(x) =J 0 be the antenna factor and wE Loo(S2) the 
noise temperature. Then we define the signal-to-noise ratio by 

(1.27) 

if f =J O. 

The denominator represents relative noise power. In terms of the feeding op
erator JC : C2N+1 --+ C(S2) and in vector notation, the signal-to-noise ratio 
takes the form 

(a, C(x) a) 
(a,Na) 

(1.28) 
if a =J O. Note that the matrix C has the form (1.23). The elements of the 
(positive definite) noise matrix N, which we write as np,q, are given by 

np,q := 4~ J eik(Yp-Yq)·(re-reo) w(x)2 dS(x). (1.29) 

S2 

We will give a more detailed discussion of the SNR-functional in Chapter 7. 

In contrast to the directivity and signal-to-noise ratio, the efficiency index 
Ga depends explicitly on the feeding coefficients a. It is defined by 

if a =J O. 

(a, C(x) a) 

lal 2 
(1.30) 

It is common to refer to the ratio of the directivity to the radiation efficiency 
as the quality factor of an array. 
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Definition 1.4. Let f = f(x) =1= 0 be the antenna factor of an array with 
feeding coefficient a = (a_ N , ... , aN) T E C2N + 1 . Then we define the quality 
factor (or Q-factor) by 

.- Ilfll~2(S2) 

Note that the matrix B has the form (1.24). 

lal 2 

(a, Ba) . (1.31) 

Intuitively, the Q-factor measures the proportion of input power which fails 
to be radiated into the far field. As such, it would be advantageous to make 
this factor as small as possible. In the next subsection we will see, however, 
that in general, an increase in directivity is accompanied by a corresponding 
increase in the Q-factor so that the antenna fails to radiate power efficiently. 

1.3.2 Maximization of Directivity 

For the case of a finite array we have expressed the directivity D a , the signal
to-noise-ratio SNR, and the Q-factor by ratios of quadratic forms (see (1.25), 
(1.28), and (1.31), respectively). For the optimization of these we recall the 
following result from linear algebra. 

Theorem 1.5. Let C, B E cnxn be Hermitian and positive semi-definite ma
trices with B positive definite. Let R(a) = i::~:~ for a =1= o. Then the maxi
mum value for R is the largest eigenvalue f-l of the generalized eigenvalue 
problem: 

Cv = f-lBv. (1.32) 

We should mention that some authors suggest that, since the matrix B is 
positive definite and hence invertible, the optimal quantities can be expressed 
in terms of the usual eigenvalue problem for the matrix B-1C. However, 
it is well known (see [144]), that computation directly with the generalized 
eigenvalue problem using, for example, the QZ algorithm is in general more 
stable and leads to more accurate results. 

Example 1.6. As we mentioned above, in the case of the broadside array with 
element spacing d = A/2 the matrix B has a particularly simple form, namely 
B = I and the matrices C(8) are circulant. It is easy to see that in this case 
there exists only one non-zero eigenvalue, namely f-l = 2N + 1, and that the 
corresponding eigenvector v is given by Vq = exp(ikdqcos8), q = -N, ... , N. 
Therefore, the uniform feeding is only optimal for 8 = 7f /2, i.e. the broadside 
direction, but the optimal value is always 2N + 1. For other spacings, the B 
matrix is more complicated. We have made the computation for three and 
seven element broadside and end-fire arrays for spacings from d/ A = 0.1 to 
d/ A = 1. We present the maximal values 
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of the directivities in the tables below (Figures 1.10 and 1.11) together with 
the corresponding Q-factors as a function of d/ A. Note the dramatic increase 
in the size of Qa as the spacing tends to zero. Thus, the fraction of power fed 
to the antenna which is radiated into the far field becomes very small and the 
antenna is very inefficient for small values of d. 

3 elements 7 elements 
d/>. Dmax(7r/2) Q Dmax(7r/2) Q 

0.1 2.2714 219.3716 4.8489 1.5 x 108 

0.2 2.3394 10.7757 5.0500 2.3 x 104 

0.3 2.4657 1.8732 5.4211 74.8379 
0.4 2.6737 0.9819 6.0301 1.4250 
0.5 3.0000 1.0000 7.0000 1.0000 
0.6 3.4800 1.1731 8.3312 1.1922 
0.7 4.0396 1.3605 9.5777 1.3786 
0.8 4.2513 1.4206 10.6327 1.5369 
0.9 3.7255 1.2419 11.4244 1.6436 
1.0 3.0000 1.0000 7.0000 1.0000 

Fig. 1.10. Optimal Values Dmax(7r/2) and Corresponding Q for 3- and 7-Element 
Broadside Arrays 

3 elements 7 elements 
d/>. Dmax(O) Q Dmax(O) Q 

0.1 8.7283 244.9548 47.4029 1.66 x 108 

0.2 7.9034 16.4239 42.4906 3.49 x 107 

0.3 6.5173 3.8458 33.8826 2.19 x 102 

0.4 4.6823 1.6626 21.0384 6.6948 
0.5 3.0000 1.0000 7.0000 1.0000 
0.6 2.5824 0.8896 5.9381 0.8792 
0.7 2.9562 1.0198 6.8266 1.0163 
0.8 3.2798 1.1437 7.7255 1.1464 
0.9 3.5014 1.1829 8.5107 1.2652 
1.0 3.0000 1.0000 7.0000 1.0000 

Fig. 1.11. Optimal Values Dmax(O) and Corresponding Q for 3- and 7-Element 
Broadside Arrays 

The problem of avoiding large Q-factors leads naturally to a problem of con
strained optimization in which we can ask for the current inputs which will 
maximize the directivity subject to the constraint that the Q-factor is kept at 
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or below a preassigned value. Other constraints may be imposed as well. We 
show here how linearly constrained optimization problems are related to the 
generalized eigenvalue problem. 

The general problem of maximizing the ratio of quadratic forms is 

(a, Ca) 
Maximize 

(a, Ba) , (1.33) 

subject to (Zj,a) =0, j=l, ... ,m. 

Here C and B are Hermitian positive semi-definite n x n-matrices, B 
positive definite. (In our application n = 2N + 1.) Suppose that Z := 
span{zl' Z2, ... , zm}, and that en is decomposed into the orthogonal sum 
Z and Y where a basis for Y is given by {Yl' Y2' ... ' Yn-m}. Since a is con
strained to be orthogonal to the subspace Z it has to be in Y so that the 
vector a E Y can be expressed as a = We where W is an n x (n-m) matrix 
whose columns are the Yi and c is an (n - m)-vector. Hence the form (1.33) 
becomes 

Maximize 
(c, W*CWc) 
(c, W*BW c)· 

(1.34) 

As a practical matter for finding a basis for the subspace Y, we can apply a 
Householder transformation to the matrix U whose columns are formed 
by the vectors Zj. If H is a Householder matrix which puts U in Hessenberg 
form 

where R is an m x m matrix which is tridiagonal, then the last n - m rows 
of H are linearly independent and form a basis for the subspace Y [144]. We 
may take W in (1.34) to be the n x (n - m) matrix with these rows. With 
this choice, we can easily check that the quadratic forms are non-negative and 
that the positive definiteness of B implies that of W* B W. We conclude that 
the linearly constrained problem reduces to a generalized eigenvalue problem 
of the same type as discussed above. 

1.4 Dolph-Tschebysheff Arrays 

We have seen in previous sections that, for a linear array of dipoles, it is pos
sible to affect the side lobe level in a variety of ways by means of choosing 
various inputs to the sources. Indeed, we have seen in Subsection 1.2.1 that, 
with a binomial distribution, we are able to suppress the side lobes entirely. 
However, we have also seen that lowering or even eliminating the side lobe 
power comes at expense of increasing the beam-width and reducing the di
rectivity of the main lobe. At the risk of repeating ourselves, we see in this 
situation that there is a trade-off between beam-width and side lobe level. 
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This fact led Dolph [34) to pose and solve the problem of finding the current 
distribution which yields the narrowest main beam-width under the constraint 
that the side lobes do not exceed a fixed level. In this section we will present 
this optimization problem for broadside arrays. Dolph's solution depends on 
certain properties of the Tschebysheff polynomials which we present in the 
next part of this section. 

1.4.1 Tschebysheff Polynomials 

There are many equivalent ways to define the Tschebysheff polynomials of the 
first kind. On the interval [-1,1) the Tschebysheff polynomial Tn of order 
n can be defined explicitly by the relation: 

Tn(x) = cos(n arccos x), -1:::; x :::; 1, n = 1,2, ... (1.35) 

This definition shows immediately that 

(1.36) 

Moreover, the cosine addition formula shows that the polynomials obey the 
recursion formula 

(1.37) 

From this recursion relation it is easy to see that, since To (x) = 1 and T1 (x) = 
x, the Tn are polynomials in x of degree n with leading coefficient 2n- 1 for 
n ::::: 1, and hence can be extended to the entire real line. Likewise, from the 
recursion relation it is evident that the polynomials of odd order contain only 
odd powers of the variable x while the polynomials of even order contain only 
even powers of that variable. The substitution x := cos 0 then results in the 
relation 

1 d 7r { 'if n = m = 0, J Tn (x) Tm(x) n = J cos (nO) cos(mO) dO = 'if/2, n = m oF 0, 
-1 0 0, n oF m, 

(1.38) 
and so these polynomials form an orthogonal system with respect to the weight 
1/ VI - x2 . The system {Tn : n = 0, 1, ... } is complete in the Hilbert space 
L2( -1,1) as well as in the space C[-I, 1). Figure 1.12 shows the graphs of 
Tn(x) for n = 1,2,3,4. 

The graphs of the Tschebysheff polynomial suggest certain important facts. 
Looking at the form (1.35) the zeros of these polynomials are given by the 
roots of the equation 
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Fig. 1.12. Graph of Tschebysheff Polynomials T I , T2 (left) and T3 , T4 (right) 

cos (nO) = 0, 

or by 

Xk = cosC2k~1)7f), k=1,2, ... ,n. (1.39) 

It is also easy to compute the critical points of Tn, those points being solutions 
of the equation sin( nO) = O. Equivalently, the critical points are 

Xk = cos(br/n), k=1,2, ... ,n, (1.40) 

and at these latter points, 

(1.41) 

Vlfe should keep in mind that both the set of critical points and the set of zeros 
are subsets of the interval [-1,1]. Moreover it should also be clear that the 
extended functions Tn are monotonic outside of the interval [-1,1]. Specif
ically, for x > 1, Tn is monotonically increasing, while for x < -1, Tn is 
monotonically decreasing or increasing depending upon whether n is even or 
odd. 

The property of the Tschebysheff polynomials which is of most interest to us 
here is the following remarkable optimality property in the space C[-l,l], 
equipped with the norm of uniform convergence, and which was discovered by 
Tsche bysheff. 

Theorem 1.7. Of all polynomials of degree n with leading coefficient 1, the 
polynomial with the smallest maximum norm on [-1,1] is 21- n Tn . 

There are several similar theorems see, e.g.,[2]' Chapter II. We will need the 
following version for even polynomials. Recalling that the largest zero of Tn 
is X = cos 2'7rn we can state it as: 
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Theorem 1.8. Let n be an even integer, Xo E [-1,0] and (3 > X, the largest 
zero of the polynomial Tn. Then 

1 
P* T: .- Tn ((3) n (1.42) 

is the unique solution of the minimization problem 

Minimize max . Ip( x) I 
"'0::;"'::;'" 

Subject to: p E Pn , p even, p(x) = 0, p((3) = 1. 

Here, Pn denotes the space of algebraic polynomials of order at most n. 

Proof: Assume, on the contrary, that there exists some admissible polynomial 
p such that 

max.lp(x)1 < max.lp*(x)1 = rr 1((3). 
"'0::;"'::;'" "'0::;"'::;'" J. n 

Then the polynomial q := p* -p vanishes at both x and (3. Since the maximum 
of /pl is smaller than the maximum of Ip* I, the polynomial q has alternating 
signs at the successive extreme points of Tn, namely at cos k: ' k = 1,2, ... , ~. 
Thus there are ~-1 zeros of q in the interval (0, x). Considering that q vanishes 
at both x and (3, it has .~ + 1 positive zeros and, since it is even, n + 2 real 
zeros. Since the polynomial q has degree at most n, this contradicts the fact 
that q can have at most n roots2 and the proof is complete. 0 

We remark that, in the formulation of the optimization problem, we do not 
require that the admissible polynomials have no zeros larger than x. How
ever, it turns out "automatically" that the optimal polynomial p* enjoys this 
property. 

1.4.2 The Dolph Problem 

The optimization problem considered by Dolph in his famous paper [34] can 
be stated in the following terms. 

For a given side lobe level and beam-width of the main lobe i. e., twice the 
distance (measured in degrees) from the center of the beam to the first null, 
maximize the peak power in the main lobe. 

An equivalent statement is the following: 

For a given main beam-width and peak power in the main beam, minimize the 
level of the side lobes in the sense of minimizing the maximum value of the 
array pattern i. e., the magnitude of the array factor outside the main beam. 

Indeed, these statements are equivalent in the sense that the same excitations 
lead to the optimal solutions. We take the second formulation in order to make 

2 The fact that a polynomial of degree n can have at most n roots is known as the 
Fundamental Theorem of Algebra 
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a precise statement of the problem. In particular, we will restrict ourselves 
to the standard example of cophasal, symmetric excitations in which case the 
coefficients an can be taken as real numbers with a-n = an and the expression 
for the array factor takes on the form (1.11). Moreover, since the array factor 
is symmetric with respect to () = 7r/2 (i.e., f(7r/2 - ()) = f(7r/2 + ()) for ° :s; () :s; 7r) we may restrict our consideration to the interval [0, 7r /2]. 

If we introduce the set IN of even trigonometric polynomials in the variable 
"( = kd cos (), i.e. 

(1.43) 

we can then state the optimization problem for the linear array as the follow
ing: 

Let {} E (0, 7r /2) be fixed. 

(PDT) {
Minimize 1(f):= max~ If(())1 

o~e~e 

Subject to : fEIN, and f({}) = 0, f(7r/2) = 1. 

In this optimization problem, we fix the maximum amplitude i.e., the peak 
power of the main beam to be 1 at 7r /2 and we fix {} to be a null. We do not 
require that it is the largest null in [0, 7r /2]. However, it will turn out to be 
the largest null of the optimal solution r (see (1.47)). 

Returning to the expression for the array pattern, recall that it has the form 

N 

f(()) = ao + 2 Lan cos (n"((())) , (1.44) 
n=l 

where "((()) = kdcos(). From cos"( = 2cos2 ("(/2)-1 and cos(n"() = Tn(cos"() = 
Tn(2cos2 ("(/2) -1) it follows that the array pattern (1.44) can be written as 

N 

f(()) = ao + 2LanTn(2cos2("(/2) -1) 
n=l 

which is an algebraic polynomial in cos2 ("(/2). Therefore, if P2N denotes the 
real vector space of algebraic polynomials of degree at most 2N, we have 

IN = {p(cos("(/2)) :pEP2N, peven}. (1.45) 

We now transform the problem (PDT) into a minimization problem over the 
set of even algebraic polynomials by setting x = f3 cos ( k2d cos ()). We choose 

the parameter f3 so that () = {} is mapped to x = X = cos 4";v which is the 
largest zero of the Tschebysheff polynomial T2N . This requires f3 to be 
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fJ = cos:iN 
cos( k; cos (j) . 

(1.46) 

Note that, under this transformation, the points () 0 and () = 'if /2 are 
mapped into x = fJ cos k; and x =:= fJ respectively. 

Now setting Xo = fJ cos k2d we can rewrite the problem (PDT) in the form 

Minimize: max A Ip( x) I 
xo:S:x:S:x 

Subject to: p E P2N, p even, p(x) = 0, p(fJ) = 1. 

We can now apply Theorem 1.8 provided that: (i) fJ > x and (ii) -1 ::; Xo ::; O. 
The first of these conditions is guaranteed provided 0 < cos( k; cos (j) < 1 i.e., 

provided 0 < k2d cos {j < 'if /2. This is equivalent to the requirement that 

A ..\ 

dcos(} < "2. 

The second requirement holds provided cos k2d ::; 0 and fJ cos k2d 2: -1. The 
first of these two inequalities holds provided 'if /2 ::; k2d ::; 3'if /2, which is 
equivalent to 

..\ 3..\ 
-<d<-. 2 - - 2 

Under these conditions, the application of Theorem 1.8 leads to the result 
that the optimal solution of the problem (PDT) is 

(1.47) 

with optimal value equal to 1/T2N (fJ). Here, fJ is given by (1.46) This optimal 
value is certainly less than 1 if fJ > 1. In the case that fJ < 1 the form 1* also 
gives the optimal solution but in this case, the side lobe level is larger than 
1 (since in this case T2N (fJ) < 1). This represents a non-physical case and is 
avoided if N is large or the spacing d is chosen so that d cos {j c::: ..\/2. 

In Figure 1.13 we show the pattern for N = 3, d = >../2 and (j = ~ . ~, i.e. 
beam-width 'if /5. 

1.5 Line Sources 

The electromagnetic fields of a finite line current flowing along the curve 
C C ]R3 with parametrization y = y(s), a ::; s ::; b, can be modeled as the 
limiting form of an array where the distance between the elements tends to 
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1.5,-----,----,--------;-------;-----,-------;---, 

Fig. 1.13. Array for Optimal Solution of Dolph Problem (N = 3, d = ),,/2 and 
A 4 e ="5'~) 

zero and the number of elements increases to infinity. Assuming the common 
dipole moment e3 we derive an expression for the electric far field 

Eoo(x) = i~~o [:1: x (e3 x x)] ! ?fJ(y) e-iky.a, dC(y) 

c 
b 

(1.48a) 

= iwf.Lo [x x (e3 x x)] !?fJ(y(s)) e-iky(s).a, !iJ(s)! ds, (1.48b) 
47r 

a 

x E 8 2 , and thus, using spherical polar coordinates, 

b 

IEoo(x)1 = wl:r0 Sine! ?fJ(Y(s)) e-iky(s).a, !iJ(s)! ds, x E 8 2. (1.49) 

a 

Analogous to the case of an array, we define 

f(x) := ! ?fJ(y) e-iky'a, dC(y) , x E 8 2 , (1.50) 

c 

and refer to the function f as the line factor. 

Just as we did in the case of an array we can specify a particular direction 
Xo E 8 2 and replace ?fJ(y) by ?fJ(y) exp(iky· xo). This substitution yields 

f(x) = ! ?fJ(y) eiky·(a,o-a,) dC(y) , x E 8 2 . (1.51 ) 

C 
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It is obvious that this concept of a line source is a continuous version of 
the array. Indeed, the replacement of the integral in (1.50) by a Riemann sum 
with quadrature points Sn, n = -N, ... , N, reduces the line factor to the form 
(1.2) for an array with feeding coefficients an = '1i-'(y(sn)) liJ(sn)1 /(2N + 1). In 
spite of this close relationship betw.een these two concepts there is an essential 
mathematical difference: While the feeding vectors a for arrays lie in the finite 
dimensional space C2N+1 , the current 'ljJ for the line source is an element of 
an infinite dimensional (function) space. 
The definitions 1.20 and 1.27 of directivity and signal-to-noise ratio are in
dependent of the feeding and make sense also for line sources. The feeding 
is now modeled by the operator which maps 'ljJ E L2 (C) into the line factor 
f - or the far field pattern Eoo. In order to treat both cases simultaneously, 
we allow a E C(82 ) to be an arbitrary function with a ~ 0 on 8 2 such that 
{ x E 8 2 : a( x) > o} is dense in 8 2 . We think of a being either constant 1 or 
a(x) = Ix x (e3 x x)l. Note that in the latter case a is independent of the 
angular variable ¢ and is given by a( B) = sin B in polar coordinates. 

We then define the corresponding far field operator K : L2(C) --+ C(82) by 

(K'ljJ) (x) := a(x) J 'ljJ(y) eikY·(&o-&) df(y) , x E 8 2 . (1.52) 

C 

If the operator K is one-to-one3 (or injective) we can formulate directivity and 
signal-to-noise ratio as: 

and 

8NR,p(x) 
4~ IS 21(K'ljJ)(x')12 w(x')2 d8 

for x E 8 2 and 'ljJ of o. 

(1.53a) 

(1.53b) 

The radiation efficiency and the quality factor are defined analogously as in 
the case of an array of point sources: 

Definition 1.9. Let the operator K : L2(C) --+ C(82) be one-to-one. Then 
we define the efficiency index G,p and the quality factor Q by 

G ( ,)._ I(K'ljJ)(x)12 
,p x.- 2 ' 

ii'ljJ ii£2 (C) 

and (1.54a) 

(1.54b) 

3 We later give examples for the operator to be one-to-one (Theorem 1.15). 
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In the next subsections we will study the linear and the circular line sources 
in more detail. 

We have seen that in the case of a finite array of point sources the directivity 
remains bounded if we vary the coefficients an. In the case of line sources this 
is not always the case due to the fact that the space of feeding coefficients is 
infinite dimensional. We note that we can write the directivity from (1.53a) 
in the form 

X E 8 2 , with p(y) = a(x) eiky.(oo-ooo) , y E C. 

Then we can prove the following abstract theorem from functional analysis 
which describes the range R(L*) of the adjoint L* of an operator L: 

Theorem 1.10. Assume that L : X --t Y is linear, bounded, and one-to-one 
between Hilbert spaces X and Y, and p EX. Then 

P E R(L*) if and only if 
I(p, x)1 

~~~ lfLxlI < 00 , 

where again L* : Y --t X denotes the adjoint of L, i.e. (Lx, y)y = (x, L*x)x 
for all x EX, Y E Y. 

Proof: If p = L * z then, using the Cauchy-Schwarz inequality, 

for all x -=I- O. 

I(p, x)1 

IILxl1 

I(L*z,x)1 

IILxl1 
I(z, Lx)1 s:; Ilzll 

IILxl1 
(1.55) 

To prove the converse statement, assume that p tJ- R( L *) and define the 
subspace V := {x EX: (x,p) = O}. First, we show that the orthogonal 
complements4 of L(V) and L(X) = R(L) coincide, i.e. L(V)~ = L(X)~. The 
inclusion L(V)~ :J L(X)~ is obvious since L(V) C L(X). Let y E L(V)~, 
i.e. 0 = (y, Lv) = (L*y, v) for all v E V. Thus L*y E V~ = span{p}. The 
assumption p tJ- R(L*) yields L*y = 0, i.e. y E N(L*) = L(X)~. Thus 
L(V)~ = L(X)~, i.e, L(V) = L(X). Therefore, there exists Vn E V such that 
LVn ---+ Lp as n tends to infinity. Set Xn := p - Vn. Then IILxnl1 ---+ 0 and 
(p,xn) = Ip12, thus I(p,xn)l/ IILxnll---+ 00. This ends the proof. 0 

We will apply this result in the following two subsections to the linear and 
circular line sources. Both alternatives of this theorem will appear. From this 
point of view, the linear and the circular line sources behave quite differently. 

4 see AppendiX, Definition A.lD 
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1.5.1 The Linear Line Source 

In the case where the curve C is the straight line segment of length 2f along 
the €3-axis, the line factor f from (1.50) reduces to 

£ 

f( B) = / 'If;( s) eiks(cos Oo-cos 0) ds , B E [O,1TJ . (1.56) 

-£ 

Note that in this case the factor is independent on ¢. Therefore, the operator 
K can be considered as an operator from £2( -f, +f) into C[O,1TJ, given by 

£ 

(K'lf;) (B) := o:(B) / 'If;(s) eiks(cos (Jo-cos (J) ds, BE [O,1TJ, (1.57) 

-£ 

where 0:( B) == 1 or 0:( B) = sin B. We note that 

27r 7r 7r 

IIK'lf;lli2(S2) = / /1 (JC'lf;) (B) 12 sin B dB d¢ = 21T /1 (K'lf;) (B) 12 sin B dB 
o 0 0 

1 

= 21T /1 (K'lf;)(t) 12 dt = 21T 11K'lf;lli2(-1,+1) 
-1 

where the operator K: £2(-f,+f) ----+ C[-I,+I] is defined by 

£ 

(K'lf;)(t) := a(t) / 'If;(s) eiks(to-t) ds, It I :::; 1, (1.58) 

-£ 

where a == 1 or a( t) = Jf=t2 and to = cos Bo. Note that we distinguish 
between the operators K : £2( -f, +f) ----+ C(82 ) and K : £2( -f, +f) ----+ 
C[-I, +1] in the notation. Analogously, for the noise functional we have 

27r 7r 

IlwK'lf;lli2(S2) = / / w(B,¢) 1 (K'lf;) (B) 12 sinBdBd¢ 

o 0 

= 21T IlwK'lf;lli2(_1,+1) 

with w(t) := Jo27r w(arccos t, ¢) d¢, t E [-1,1]. 

Therefore, we can express D'lj;, 8NR'lj;, and Q'lj; as 
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I(K1jJ)(cosBW 
12' 
"211 K 1jJII£2(-l,+1) 

BE [0, n] , (1.59a) 

S'1\TR (ll) = I(K1jJ)(cosB)12 [] 
lV. 'I/J u 111- 112 ,B E 0, n , 

"2 wK 1jJ £2(-1,+1) 
(1.59b) 

(1.59c) 

In the simplest case of a constant current 1jJ(s) = 1/(2£), lsi:::; £, the factor 
(1.56) reduces to 

£ 

I(B) = ~ J eiks(cos8o-cos8) ds 
2£ 

-c 

sin[k£(cosBo - cos B)] 
k£ (cos Bo - cos B) 

(1.60) 
which corresponds to the form (1. 7) for the uniform linear array. We observe 
that both arrays formally coincide if we replace (2N + 1)kd/2 by k£ and the 
denominator of (1.7) by e~+l) kd(cosBo - cos B). This is only a reasonable 
approximation for small (2N + 1)kd/2. 

If we define 'Y by 'Y = 'Y( B, Bo) = k£( cos Bo - cos B) then the plot of'Y r--+ sin 'Y / 'Y 
in Figure 1.14 is comparable with that in Figure 1.1. 

Fig. 1.14. 'Y f-t I ~ I 
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The form of f given by (1.60) is analogous to that of the finite array with 
the exception that, while there is a main lobe at () = ()o, i.e. "f = 0, there are 
no grating lobes, i.e. side lobes of the same magnitude as the main lobe. The 
beam-width is again given by the angular separation between the first nulls 
on each side of ()o. Since the zeros. are the roots of the equation 

kf(cos()o-cos()) = j7f,jEZ, 

we may compute, for small A/f, the beam-width just as for the linear array. 
The approximations are A/f for the broadside array (i.e. ()o = 0) and 2yf5:Ti 
for the end-fire array (i.e. ()o = 0 or 7f). 

As we show in the next theorem, the operator K: L2(-f,+f) ------t C[-I,+I] 
satisfies the assumptions of Theorem 1.10. 

Theorem 1.11. The operator K L2(-f, +f) ------t C[-I, +1], defined in 
(1.58), is one-to-one and 

for every () E [0, 7f]. If a( ()) = sin () we have, of course, to assume that () E (0,7f) 
since otherwise D..;.,(()) = O. 

Proof: Without loss of generality we can restrict ourselves to the broadside 
case ()o = 7f /2 since a phase change does not change the injectivity of the 
operator or the directivity of the array. We will apply Theorem 1.10 to X = 
L2(-£,+f), Y = L2(-I, +1), and pes) = a(()) exp(iks cos ()), 0 S; s < 27f. 
First we show injectivity. K'ljJ = 0 implies, first, that 

£ J 'ljJ(s)e- ikts ds 

-£ 

and, second, by analyticity 

£ 

J 'ljJ(s) e- its ds 

-£ 

o for all t E (-1, + 1) , 

o for all t E lR. 

This means, that the Fourier transform of'ljJ (where'ljJ has been extended to 
zero outside (-£, +£)) vanishes. Here, the Fourier transform ,((J is defined by 

00 £ 

,((J(t) =. vk J 'ljJ(s) e-ist ds = vk J 'ljJ(s) e- ist ds, t E lR. 
-00 ~ 

The injectivity of the Fourier transform implies that also 'ljJ vanishes. 
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Now we have to show that p 1:- R(K*). Assume, on the contrary, that there 
exists 9 E L2( -1, +1) with K*g = p, i.e. 

1 J a(s)g(s)eikstds = p(t) = a(O)eiktcose for alltE (-f,f). 

-1 

By analyticity, this holds for all t E R The left hand side is y21f h( -kt) where 

h IS the Founer transform of h( s) = ,- , , .. {a(s) g(s) lsi < 1 
0, lsi> l. 

The Fourier transform of every integrable function decays to zero as It I tends 
to infinity. This contradicts the fact that the right hand side Ip(t)1 = a(O) > 0 
for all t. Application of Theorem 1.10 yields the assertion. D 

Let us now fix the current 'I/J and study the the behavior of the directivity 
when the wave length ..\ = 27f / k tends to zero, i.e. k tends to infinity. Again, 
we can restrict ourselves to the broadside case, i.e. 00 = 7f /2. We indicate the 
dependence of the far field operator K on ..\ by writing K>.. instead of simply 
Kin (1.58). 

From (1.58) we observe that 

where 'l/J1 denotes the extension of'I/J by zero onto lR and -$1 its Fourier trans
form. As before, we compute the norm of K>..'I/J: 

1 

2 J - 21' 12 IIK>..'l/JII£2(-l,+l) = 27f a(t) 'l/J1(kt) dt 
-1 

k 00 

= 2: J a(t/k)21-$1(t)12 dt ..\ J p>..(t)21-$1(t)1 2 dt 

-k -00 

= ..\ IIp>..-$111~2(lR) 

where p>..(t) = a(t/k) for It I ::; k = 27f/..\ and zero otherwise. We note that 
p>..(t) tends to one as ..\ ---+ 0 for every t E R Furthermore, 0 ::; P>.. ::; 1. 
From Lebesgue's Theorem on dominated convergence, we conclude that 

IIp>..-$111~2(lR) ---+ 11-$111~2(lR) as..\ tends to zero and thus, by Plancherel's Theo-
rem, 

..\---+0. 

Therefore, fR D>..,,p(7f/2) in the broadside direction is 
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(1.61) 

(1.62) 

Notice that, by the Cauchy-Schwarz inequality, Doo('ljJ) ::; 1 for every 'ljJ E 

L2 (-f!., f!.) and equality holds if and only if the current 'ljJ is constant. As we 
have seen in Theorem 1.11, for a finite line source and positive wave length 
..\ > 0, it is possible to increase the specific gain -.fe D>.,,p(7f/2) over that for 
a constant current. However, the quantity Doo('ljJ) must at the same time 
decrease. To quote Taylor ([133]): 

"It is in this sense, and only in this sense, that a uniform distribution 
has a specific gain [-.fe D>.,,p(7f/2)] greater than that of any other type 
of line-source distribution." 

Reference to the expression (1.62) shows that the directivity D>.,,p(7f/2) tends 
to infinity in the broadside direction: 

4f!. 
D>.,,p(7f/2) = >:[Doo('l/J) + 0(1)], ..\---+0. 

For directions B =I- 7f /2 and sufficiently smooth 'ljJ, however, the directivities 
D>.,,p(B) tend to zero as..\ tends to zero. Indeed, the numerator (K>.'ljJ) (cos B) = 
a(B)J~c'ljJ(s) exp(-ikscosB)ds tends to zero of order l/k as k tends to in
finity. This is easily seen for continuously differentiable functions 'ljJ using 
integration by parts: 

c 

J 'ljJ( s) exp( -iks cos B) ds = k c~s B [ 'ljJ( s) exp( -iks cos B) I~~ 
-c 

c -J 'ljJ' (s) exp( -iks cos B) dS] 

-c 

and thus I (K>.'ljJ) (cos B) 12 = 0(..\2). 

O(I/k) , 

Following Taylor, we may introduce the super-gain ratio as a measure of the 
relative growth of these quantities. 

Definition 1.12. For a linear line source with current'ljJ E L 2 (_£,£), 'ljJ =I- 0, 
we define the super-gain ratio "f>' ('ljJ) by 

..\ 11'ljJ11~2( -C,C) 

11K>. 'ljJ11~2( -1,+1) 
(1.63) 
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We note that the super-gain ratio {A('lj;) coincides with the Q-factor (1.59c) 
up to the factor 27T)... 

We illustrate this with a simple example. 

Example 1.13. For a uniform distribution 'lj; = 1 we compute 11'lj;11~2(-i!.i!) = 2€ 
and 

i! 

(KA'lj;)(t) = J e-ikstds = 
-i! 

sin(k€t) 
2 kt . 

Thus, using sin2 x = HI - cos(2x)) and partial integration, 

1 1 

11
K ·"112 = ~ J sin2(k€t) d = ~ J sin2(k€t) d 

A'f/ £2(-1,+1) k 2 t 2 t k 2 t 2 t 
-1 0 

1 

= ~ J 1 - cos(2k€t) d 
k2 t 2 t 

o 
4 . 

= k2 [cos(2k€) - 1 + 2k€ Si(2k€)] 

= ~€ [Si(2k€) _ sin:~k€)], 

where the sine-integral Si(x) is defined by 

x 

Si (x) : = J Si: s ds, x > 0 . 

o 

(1.64) 

The super-gain ratio {A (1) for the constant current 'lj; = 1 is therefore given 
as 

2€ 
{A (1) = ).. -.------------,-------.-¥ [Si(2k€) _ sin~~kC)] Si(2k€) 

This example motivates the following definition: 

7T /2 
sin2(kC) . 

ki! 
(1.65) 

Definition 1.14. Let the super-gain ratio {A ('lj;) for a linear line source and 
wave length ).. be defined by (1.63). A super-gain line source is one for 
which {A('lj;) > {A(l) where {.>.(1) is given by (1.65). 

The effects of super-gain (see [115]) are that the pattern becomes very large in 
the invisible region while changing little in the visible. Likewise, the aperture 
distribution oscillates rapidly over the aperture. Both of these effects severely 
limit the effectiveness of the antenna. 
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1.5.2 The Circular Line Source 

Analogous results can be derived for the circular line source much as before. 
We assume the circular line source occupying the circle 0 in the (Xl, x2)-plane 

and given by y(s) = a(coss,sins, 0) T E IR3 , ° ::; s ::; 27r. The operator 
K : L2(0, 21T) ---+ C(82) for this particular antenna and a(x) == 1 is given by 

27f 

(K'l/J) (x) := a J'l/J(s)eikY(S).(&O-&)ds, xE82 . 

o 

Analogously to Theorem 1.11 we prove 

(1.66) 

Theorem 1.15. The operator K : L2(0, 21T) ---+ 0(82), defined in (1.66), is 
one-to-one and 

sup D (x) = sup I(K'l/J)(x)lZ 
#o,p #0 4~ IIK'l/JII~2(S2) 

<00 

if and only if B =I- 1T /2 where (cp, B) denote the polar coordinates of x. 
We note the difference of this result to the case of a linear line source. While 
for the linear line source the directivity can be arbitrarily large, for the circular 
line source it remains bounded for all directions except those in the plane of 
the array. 

Proof: Again, we can assume that Xo = e3. Again, we begin with a proof of 
injectivity. Using spherical polar coordinates and y(s)· x = asinB cos(s - cp), 
we write K'l/J as 

27r 

(K'l/J) (x) = (K'l/J)(B,cp) = a J 'l/J(s)e-ikaSinOcos(s-c!»ds, (1.67) 

o 

for B E [0,1T], ¢ E [0, 21T]. The Jacobi-Anger expansion yields 

27f 

(K'l/J)(B,cp) = a "2)-i)nJn(kasinB)einc!> J'l/J(s)e-inSds. 
nEZ 0 

For fixed B, this is a Fourier series with respect to cp E [0, 21T]. Let K'l/J = 0 on 
8 2. We choose B > 0 so small such that I n (ka sin B) =I- 0 for all n E Z. From 
(K'l/J)(B, cp) = 0 for all cp E [0,21T] we conclude that all the Fourier coefficients 
J~7f 'l/J(s) e-ins ds of 'l/J vanish, i.e. 'l/J = o. 
Again, we will apply Theorem 1.10 to K : L2(0,21T) ----r L2(82), given by 
(1.66). We note that (K'l/J)(x) = ('l/J, P)P(0,27f) where 

p(t) = aeiky(t).& = aeikasinl1cos(t-c!» = a L in I n (ka sin B) ein(t-c!» , 
nEZ 



1.5 Line Sources 37 

o ::; t ::; 271". We have to study the solvability of the equation K* 9 = P in 
£2(82). The operator K* : £2(82) -+ £2(0,271") is given by 

(K*g)(t) = a J g(&) eiky(t).", d8(&) , t E [0,271"]. 

8 2 

Let us first consider the case B #- 71"/2, i.e. sin B < 1. We make an ansatz for 9 
in the form 

g(&) = g(B',</>') = IcosB'ILgn(sinB')lnleinci>' withsomegnEC. 
nEZ 

(1.68) 
Then, using y(t) . & = asinB' cos(t - </>') and the Jacobi Anger expansion 
again, 

(K* g)(t) 
271" 71" 

= L gn J J eika sin ()' cos(t-ci>') einci>' (sinB')lnl+l I cos B'I dB' d</>' 
nEZ 0 0 

271" 71" 

= L gn i m J eim(t-ci>') einci>' d</>' J Jm(ka sin B') (sinB')lnl+l1 cosB'1 dB' 
n,mEZ 0 0 

71" 

= 271" Lgn ineint J In(kasinB') (sinO')lnl+ll cosB'1 dB' 
nEZ 0 

The integral is well known as Sonine's first finite integral (see [139], p. 373) 
and its value is 

71" 71"/2 J In(ka sin B') (sinB')lnl+l1 cosB'1 dB' = 2 J In(kasinB') (sinB,)n+l cosO' dB' 

o 0 

2 
= ka In+1(ka) , n;::: o. 

For n < 0 we use In(t) = (-l)nLn(t) and get an analogous formula. 

Let us assume for the moment that ka is such that In(ka) #- 0 for all n E Z. 
Then we can solve for gn and have 

a Jlnl (ka sin B) -inci> 
gn = 2 e, n E Z. 

271" ka Jlnl+l(ka) 

It remains to show that 9 E £2(82) i.e., I:nEZ Ignl 2 < 00. This follows from 
the asymptotic behaviour of the Bessel functions 

1 (t)n Jr;(t) = n!"2 [1 + O(l/n)],. n-+oo, 
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uniformly with respect to t in compact subsets of R Indeed, 

Ignl = 2: In + 11 (sinO)lnl [1 + O(I/lnl)), n -+ ±oo, 

and sin 0 < 1. 

If Jno (ka) = 0 for some no E Z then we change the factor of gno in the assumed 
form (1.68) of 9 to I cosO'1 (sinO')lnol E(O')einoq,' where E is chosen such that 

LTr Jno (ka sin 0') (sin 0') Inol+! E( 0') I cos 0'1 dO' -# O. 

This does not effect the convergence property of the sequence {gn}~=l. 

Let us now consider the case 0 = 7r /2 i.e., sin 0 = 1. Assume, that K* 9 = P 
were solvable in L2(S2). Then, as before, 

271" 71" 

f f eika sin g' cos(t-q,') g( 0', ¢') sin 0' dO' d¢' aeikacos(t-q,) , 0 S t S 27r, 

o 0 

i.e. with the Jacobi-Anger expansion, 

71" 271" 

Lin f In(kasinO') f e-inq,' g(O',¢')d¢' sinO'dO'eint 

nEZ 0 0 

a L in In(ka) ein(t-q,) for all t E [0,27r]. 
nEZ 

Equating coefficients, we get 

71" 271" 

f In(kasinO') sinO' f e-inq,' g(O', ¢') d¢' dO' = aJn(ka)e-inq, 

o 0 

for all n E Z. Multiplying this equation by n! (k2a t exp( in¢) yields 

71" 

fin(e') dO' = n!(:a)naJn(ka) = a[1 + O(l/n)) , n-+oo, (1.69) 

o 

where 

271" 

n! (k2a) n einq, In(kasinO') sinO' f e-inq,' g(O', ¢') d¢'. 

o 

The functions in are bounded uniformly in nand in(O') -+ 0, n -+ 00, for 
all 0' -# 7r /2 by the asymptotic form of I n . Lebesgue's theorem on dominated 
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convergence yields Jo'IT fn(O') dO' -+ 0, a contradiction to (1.69). This proves 
the theorem. 0 

Just as in our previous discussion, we study the asymptotic form as A tends 
to zero, i.e. as k tends to infinity. We write again K>. instead of K to indi
cate the dependence on A. We first prove a special case of the method of 
stationary phase that will allow us to compute the asymptotic form of the 
norm IIK>.?/JII£2(S2): 
Lemma 1.16. Let <p E e2 [a, b] be strictly monotonic with <p' (s) > 0 for all 
s E [a, b) (or <p'(s) < 0 for all s E [a, b)) and <p(a) = O. Let 9 E el[a,b] and 

b 

j ( ) sink<p(s) d 
h.- 9 s <p(s) s, k>O. 

a 

Then 
h ---+ Jrg(a) as k -+ 00. 

21<p'(a)1 

The same assertion holds if the roles of a and b are interchanged. 

We add a proof for the convenience of the reader. 

Proof: Let <p' > 0 on [a, b). By the change of variables s' = s - a we can 
assume that a = O. We make the substitution IJ = <p(s), and set IJI := <p(b) 
which yields 

We note that our assumptions on 9 and <p guarantee that hEel [0, 1J1) and 
hELl (0, 1J1)' We begin by assuming that hEel [0, 1J1] rather than merely in 
el[O, IJd. Thell we write 

al al 

h = h(O) j sin~klJ) dlJ + j[h(lJ) - h(O)] sin~lJ) dlJ, (1. 70) 

o 0 

and consider the integrals separately. The change of variables s = klJ in the 
first integral yields 

where the sine-integral Si(x) is defined in (1.64). From limx ---+ oo Si(x) = 7'1/2 
(see [90]) we conclude that the first term of (1.70) tends to h(0)7r/2 = 
g(0)7r/(2<p'(0)) ~ k tends to infinity. 
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It remains to show that the second term in (1.70) vanishes as k tends to infin
ity. To this end we use the fundamental theorem of calculus and integration 
by parts: 

Ul al a 

I[h(a") - h(O)] Sin~a) da= 1 1 h'(T) sin~a) dTda 

o 0 0 

0"1 

= 1 h'(T) [Si(ka1) - Si(kT)] dT. 
o 

To this expression we apply Lebesgue's theorem on dominated convergence. 
Since Si(kad -Si(kT) tends to zero as k -t 00 for every T > 0 and is uniformly 
bounded by 21ISiIIC[0,00) we conclude that this integral tends to zero as k tends 
to infinity, and the proof is complete for smooth h. 

Let us now drop the simplifying assumption that h E C 1 [0, a1] and consider 
the general case where merely h E C 1 [0, (1) nL1 (0, ad. Let f > 0 be arbitrary. 
Choose h E C1 [0, a1] with h = h on [0, al/2] and It Ih - hlds :::; a1 f/4. 
Application of the above arguments to h yields 

0"1 

i k := 1 h(a) sin~a) da ----+ h(O) ~ 
o 

Furthermore, we can make the estimates 

Ih - Jrg(O) I < jh - ikj + lik _ Jrg(O) I 
2ip' (0) - 2ip' (0) 

Jrg(O) 
2ip'(0) . 

0"1 _ :::; 1 Ih(a) ~ h(a)1 da + Ii - Jrg(O) I 
k 2ip' (0) 

0"l/2 

2 10"1 - 1- Jrg(O) I 
:::; a1 Ih(a) - h(a)1 da + Ik - 2ip'(0) 

0"l/2 

f 1- Jrg(O) I :::; "2 + h - 2ip'(0) , 

this last quantity being less than f for sufficiently large k. This proves the 
assertion of the lemma for the case that ip' > 0 on [a, b). In the case of ip' < 0 
on [a, b) we replace ip by -ip. If ip(b) = 0 instead of ip(a) = 0 we use the 
substitution s = b + s' (a - b), s' E [0, 1], which maps the zero into the left 
endpoint. This completes the proof. D 
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Having this lemma at our disposal, we may now establish the asymptotic 
behaviour of the circular line factor K>.ifJ from (1.66) for continuously differ
entiable functions ifJ and a(x) == 1. Since 

27r 27r 

IK>.ifJ(x)12 = a2 J J ifJ(s)ifJ(t)eik(y(t)-y(s))·{jJdsdt, 

o 0 

the norm of the element K>. ( ifJ) for this case can be computed explicitly. 

IIK>.ifJll~2(82) = J 1 K>.ifJ (x) 12 dS(x) 

8 2 

27r 27r 

= a2 J J ifJ(s) ifJ(t) J eik(y(t)-y(s)).{jJ ds(x) dS dt 

o 0 8 2 

27r 27r 

= a2 J J ifJ( s) ifJ(t) J eik!y(t)-y(s)! cos e dS( x) ds dt 

o 0 8 2 

27r 27r 7r 
= 27m2 J J ifJ(s)ifJ(t) J eik!y(t)-y(s)!cose sin()d()dsdt 

000 
27r 27r 1 

= 2na2 J J ifJ(s)ifJ(t) J eik!y(t)-y(S)!T dTdsdt 

o 0 -1 

27r 27r 
= 4na2 J J ifJ(s) ifJ(t) sin[k Iy(t) - y(s) I] ds dt. 

k Iy(t) - y(s)1 
o 0 

With Iy(t) - y(s)12 = 2a2 - 2a2 cos(s - t) = 4a2 sin2 s2t this yields 

2 4na2 J - sin [kcp( -s-t)] 
IIK>.ifJll£2(82) = -k- Q ifJ(s) ifJ(t) cp( s2t) d(s, t) 

where cp(O") = 2asinO" and Q = [O,2n]2 C JR2 . Now we transform this integral 
by setting s2t = 0" and stt = T. Noting that the determinant ofthis transform 
is 1/2, this yields 

2 8na2 J sin[kcp(O")] 
IIK>.ifJll£2(82) = -k- ifJ(T + 0") ifJ(T - 0") cp(O") d(O", T) 

Q' 
7r 

= 8na2 J ( ) sin[kcp( 0")] d 
k g 0" cp(O") 0" 

-7r 
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where 
27l"-10-1 

g(a) = J 'ljJ(T+a")'ljJ(T-a)dT, lal :S7f. 

10-1 

In the interval [-7f, 7f] the function cp has zeros in 0, ±7f. Therefore, we split the 
interval [-7f, 7f] of integration into [-7f, -7f /2]U[-7f /2, O]U[O, 7f /2]U[7f /2, 7f] and 
apply the previous lemma in each of these intervals. From g(O) = 11'ljJ11~2(O,27l") 
and g(±7f) = 0 and cp'(O) = 2a we conclude that 

J7l" ( ) sin[kcp(a)] d 2 11'ljJ11~2(O,27l") ~ 
9 a cp( a) a -+ 2a 2 

-7l" 

and thus that 

7f 11'ljJ11~2(O,27l") 
2a 

ask----+oo, 

12k 2 2 
;:: IIK,\'ljJII£2(S2) = 27f IIK,\'ljJII£2(S2) -+ 27fa 11'ljJ11£2(O,27l')' A ----+ O. 

As above we consider 4;a D,\,,p(e3) and observe that 

which converges to 

-{; [J~7l' 'ljJ(s) ds[2 

27l'la'\ IIK,\ 'ljJ11~2(S2) 

-{; IJ~7l' 'ljJ(s) dsl2 

11'ljJ11~2(O,27l') 

(1. 71) 

(1. 72) 

Again, we observe that, by the Cauchy-Schwarz inequality, Doo ('ljJ) :S 1 for 
every 
'ljJ E L2(0,27f) and equality holds if and only if the current 'ljJ is constant. 

For the circular loop, the super-gain ratio "f'\ ('ljJ) then takes the form 

We note that again the super-gain ratio coincides with the Q-factor (1.54b) 

up to the factor 27fA (since 11'ljJ11~2(C) = a 11'ljJ11~2(O,27l') for the circular line 
source of radius a). 

Along with the desire to control super-gain, there are other constraints that 
arise from power considerations. In the final part of this section, we illustrate 
their importance in the analysis of optimization problems in antenna theory. 
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Considerable experience has led to an understanding that certain physical 
limitations play an important role in the design of efficient antennas. 

For example, we have seen that there is a theoretical maximum value for the 
relative directivity of an array with a given element configuration. However, 
this theoretical maximal value may be attained only at the expense of very low 
values of the efficiency index, a quantity which was introduced in Section 1.3 
(formula (1.30)). Recall that the efficiency index, as defined there, is a measure 
of the amount of power radiated into the far field as a portion of the power 
at the "surface" of the antenna. Evidently, in order to measure the lack of 
efficiency, some arbitrary standard must be chosen against which comparisons 
will be made. Such a standard may be, for example, the value of the directivity 
of a uniformly fed array and its corresponding radiation efficiency. 

1.5.3 Numerical Quadrature 

Usually, for more complicated geometries or current distributions it is not 
possible to compute the line factors analytically. Therefore, one is led to the 
problem how to compute the factors numerically. Note that the line factors 
are of the form 

b 

J(1) := J f(8) d8 (1.74) 

a 

for the function f : [a, b] ----+ <C, defined by f(8) = 'ljJ(8) eiky(s).(xo-x), 8 E 

[a, b]. For the numerical evaluation of (1.74) one replaces the integral J(1) by 
weighted sums of the form 

n 

with weights Wj E lR. and node points tj E [a, b]. Since both depend on n we 

often indicate this dependence and write W]n) and t]n), respectively. One is 
then interested in the problem how well the sum 

n 

Qn(1) := L W]n) f(t]n)) (1. 75) 
j=l 

approximates the integral J (1). In general, this depends on the choices of W j n) , 

tjn) , and the smoothness of the function f. For a rigorous and comprehensive 
overview we refer to Davis and Rabinowitz [32]. In this subsection we will 
only state some theorems which are of particular importance to us. 

First, we consider the case of a circular line source or, more generally, a closed 
loop antenna of arbitrary shape. In this case, we can parametrize the closed 
curve C by a 27f-periodic function y : [0,27f] ----+ IR3. This leads to the 
computation of hltegrals of the form 
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211" 

I(f) = j f(s) ds (1.76) 

o 

with 2n-periodic functions f. For these integrals one can show that (in a cer
tain sense) the composite trapezoidal rule is the best possible. In particular 
one can show: 

Theorem 1.17. Let N E N and define tj = j N for j = 0, ... ,2N - 1 and 

2N-l 

TN (f) := ~ L f(tj) 
j=o 

(1.77) 

for any 2n-periodic and continuous function f : JR --t C. Then we have: 

(a) If f E CP(JR) for some odd pEN is 2n-periodic then there exists c = 
c(p) > 0 with 

211" 

II(f) -TN(f)1 :::; ~P jlf(P)(s)lds. (1. 7Sa) 

o 

(b) If f : JR --t C is 2n-periodic and analytic on JR then 

(1. 7Sb) 

where (J > 0 denotes the width of the strip JR + i( -(J /2, (J /2) c C into 
which f can be extended analytically and c is a bound on If I in this strip. 

For a proof we refer to Kress [76]. 

Second, we consider an arbitrary open line source which leads to an integral 
of the form (1.74) where f is not necessarily periodic. The most common 
quadrature rule is the (composite) Simpson's rule: 

Theorem 1.18. Let n E N be even and tj = a + jh, j = 0, ... , n, where 
h = b-a and 

n ' 

Sn(f) := ~ [J(to) + 4f(tr) + 2f(t2) + ... + 2f(tn-2) + 4f(tn-r) + f(tn)] . 

(1. 79) 
For f E C4 [a, b] one has the error estimate 

I I b - a 411 (4) II I(f) - Sn(f) :::; ISO h f C[a,b] . (1.S0) 

For a proof we refer again to Kress [76]. 
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It is important to note that the order 4 does not increase for smoother func
tions f. We describe two possibilities for quadrature formulas which automat
ically adopt the order of convergence to the smoothness of f. 
The first is the Gauss-Legendre method. By the change of variables 8 = 
~(b - a) + ~(b + a), t E [-1, +1], i.e. 

i f(8)ds = b;a ]If(t(b-a)/2+(b+a)/2)dt, 

a -1 

we can assume that [a, b] = [-1, + 1]. The Legendre polynomials are recur
sively defined by Po(t) := 1, Pl(t) := t, t E IR, and 

2n+1 n 
Pn+l(t) := --1 tPn(t) - --Pn-l(t) , tEIR, n=1,2, .... 

n+ n+1 

They are orthogonal in L2 ( -1, + 1). From the theory of orthogonal polyno

mials it can be shown that the zeros tin), ... ,t~n) of Pn are all simple, real, 
and lie in the interval (-1, + 1). There is, however, no analytical expression 

for these t;n). The weights w;n) are determined by the requirement that 

+1 n J Pk(t) dt = l:= WJn) Pk(t;n)) for all k = 0, ... , n - 1. 
-1 J=l 

It can be shown that this system is uniquely solvable and the weights are all 
positive. For n = 1 and n = 2 the nodes and weights are given by til) = 0, 

will = 2, and ti2) = -1/V3, t~2) = +1/V3, wi2) = w~2) = 1, respectively. 
For higher values of n we refer to Abramowitz, Stegun [1] for approximate 

values of t;n) and wJn). Then there exists a convergence result analogously 
to Theorem 1.17. In practice, however, one often prefers composite Gaussian 
rules to avoid the computation of the nodes and weights. We refer to Kress 
[76] for more details. 

In a second class of methods for the numerical integration of general, non
periodic, functions one transforms the integral into one with periodic inte
grand. Let the function w : [0,21f] --+ [a, b] be bijective5 , strictly monotoni
cally increasing and infinitely often differentiable. Then we substitute 8 = w(t) 
in (1.74) and have 

b 27r J f(8) ds = J g(t) dt with g(t) = w'(t) f(w(t)) , O:s:; t :s:; 21f. (1.81) 
a 0 

Now assume that w has derivatives 

5 that is, one-t-one and onto 
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w(j)(O) = w(j)(211") = 0, j = 1, ... ,p-l, 

for some odd p ~ 3. If f E CP[a, b] then 9 is 211"-periodic and p-times 
continuously differentiable with 

g(j)(O) = g(j)(211"} = 0, j=I, ... ,p-2. 

Therefore, we can apply the trapezoidal rule to J027f g(t) dt, i.e. 

b 2N+1 

j f(s) ds ~ QN(f) := ~ L w'(tj ) f(w(t j )) , (1.82) 
a j=O 

where tj = jN' j = 0, ... , 2N - 1. This quadrature formula has nodes w(tj) 
and weights N w'(tj). Application of Theorem 1.17 yields the error estimate 

j27f1 dP-2 I 
11(f) - QN(f) 1 ~ N~-2 dtp - 2 (f 0 w)(t) dt. (1.83) 

o 

There exist many examples for substitutions s = w(t). In the following nu
merical experiments we have chosen 

tP 

wp(t) = a + tP + (211" _ t)p (b - a) , t E [0,211"], 

for p = 3,5,7. 

Example 1.19. We illustrate the convergence properties for the linear line fac
tor 

+1 

j 1/;(s) e-ikst ds with 1/;(s) 
-1 

where the exact solution is known to be 

+1 

j 1/;(s)e-ikst dS = sin(11"-kt) 
11" - kt 

-1 

isin(11"s), lsi ~ 1, 

sin(11" + kt) 
11" + kt 

In the following tables we list the errors for some values of p and kt: 

p = 3 

N kt = 3 kt = 6 kt = 9 kt = 12 

2 9.7691942e - 01 1.4727376e - O11.4382097e - O11.4642124e - 01 
4 2.1311168e - 01 6.6557897e - 01 2.9781892e - 01 7.4794306e - 01 
8 2.0013140e - 04 5.5985148e - 03 5.7711962e - 02 2.6596132e - 01 
16 3.9574788e - 11 3.6551596e -10 4.4367871e - 08 1.9560116e - 06 
32 6.0995653e - 13 1.2080892e - 12 1.7816998e - 12 2.3191483e - 12 
64 9.3258734e - 15 1.901256ge - 14 2.7901292e - 14 3.613775ge - 14 
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p - 5 -

N kt = 3 kt = 6 kt = 9 kt = 12 

2 1.0191761e + 00 6.8101247e - 02 3.7743795e - 02 2.686382ge - 02 
4 8.4946538e - 01 3.5296713e - 01 3.4617122e - 01 2.5963205e - 01 
8 7.3449332e - 02 3.8739395e - 01 6.2345110e - 01 1.8167665e - 01 
16 1.0600692e - 05 4.3842412e - 04 7.000266ge - 03 5.4326473e - 02 
32 1.5543122e - 15 8.4617036e - 13 1.2304045e - 10 8.0069052e - 09 
64 2.2204460e - 16 6.938893ge - 17 4.0939474e - 16 3.4694470e - 16 

p = 7 
N kt = 3 kt = 6 kt = 9 kt = 12 

2 1.0196326e + 00 6.7200807e - 02 3.6424352e - 02 2.5161877e - 02 
4 9.9941155e - 01 1.0577645e - 01 8.9793736e - 02 8.8398572e - 02 
8 4.0282892e - 01 7.1861750e - 01 1.1515977e - 01 5.2077521e - 01 
16 2.5429396e - 03 3.6830896e - 02 2.1031953e - 01 5.1202900e - 01 
32 1.4103223e - 09 1.7583851e - 07 7.9043821e - 06 1.7263055e - 04 
64 4.4408921e - 16 4.3021142e - 16 7.7021722e - 16 1.0096091e - 15 

We observe that high values of p lead to worse results, in particular for large 
values of kt. This seems to contradict the theory but is a result of cancellations 
due to the oscillations of the integrand. 

For comparisons, we have also computed this example with Simpson's rule. 
The result is given in the following table (here n = 2N): 

n kt = 3 kt = 6 kt = 9 kt = 12 

4 3.1035363e - 01 1.2097315e - 01 1.2669697e + 00 3.9768914e - 01 
8 9.7345528e - 04 1.0735333e - 02 2.8950046e - 01 1.4252548e - 01 
16 4.7656766e - 05 3.3266175e - 04 1.2416022e - 03 3.651705ge - 03 
32 2.8206792e - 06 1.8268067e - 05 5.9955240e - 05 1.4367000e - 04 
64 1.7396911e - 07 1.1074264e - 06 3.5354250e - 06 8.1439882e - 06 
128 1.0837294e - 08 6.8695078e - 08 2.1784657e - 07 4.9715128e - 07 

One clearly observes the superiority of the transformation rule. 

1.6 Conclusion 

For the case of arrays, there are a number of parameters which describe the 
antenna. Among are, (1) the number of antenna elements which comprise the 
array; (2) the geometric configuration of the array; (3) the particular location 
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of the elements; and (4) the excitation of the elements of the array. For the 
case of line sources, the parameters are the shape of the curve and the current 
distribution. Likewise, the description of the behavior of the array of line 
source is specified by a number of parameters (1) the radiation pattern; (2) 
the directivity; (3) the power gain; (4) the impedance; (5) the side lobe levels; 
and (6) the beam-width. 

We have illustrated in this chapter some of the common optimization problems 
which have been discussed with respect to arrays of dipoles and to line sources. 
The exposition has not be rigorous, in so far as we have not carefully derived 
the various expressions for the electromagnetic quantities that we considered. 
Nevertheless, we have indicated some of the basic themes that will concern us 
in the following chapters. 

Our object, in the remainder of this work, is to present a more rigorous ap
proach to the general problem of antenna optimization which includes a vari
ety of physical configurations. What should be clear from the preceding pages 
is that the problems of antenna optimization can be put in a general frame
work. Specifically, we can view the antenna optimization problem as a set of 
admissible inputs of which can be fed into a system consisting of an "antenna" 
which then produces a state (the far field) and which can be associated with 
the feedings by means of an operator 

K:a ~ f or K:~ ~ f 

from some space X of inputs into the space of factors which is usually the 
space C(Sd-l), d = 2 or 3, of continuous functions on the unit sphere. If the 
factors are independent of ¢ as in the case of a linear array or linear line source 
along the z-axis then we can as well take the output space to be C[O, n] or 
C[-I, +1] by identifying () E [0, n] with t = cos() E [-1, +1]. 

In the next chapters we will make a systematic presentation of Maxwell's equa
tions and their use in order to describe radiated fields from antenna sources. 
We will then investigate various problems of optimization, both theoretically 
and numerically, which have relevance for practical design and, as well, will 
raise interesting mathematical questions. 



2 

Discussion of Maxwell's Equations 

2.1 Introduction 

The history of electromagnetism, and in particular that part which lead in 
the 19th century to the formulation of the equations governing the electro
magnetic fields, is studded with the names of the leading scientists of the 
time. Starting with Gauss, there was a more or less ongoing effort to under
stand the relationships and to model their interactions, and included efforts 
by B. Riemann, W. Thompson, M. Faraday, as well as Neumann, Kirchhoff 
and Weber and Helmholtz. Building on all this work, Maxwell's great insight 
was the introduction of the notion of the so-called displacement current, D, 
a generalization of Faraday's idea of charge polarization or displacement. Us
ing Faraday's work and the ideas of elastic continua, Maxwell developed his 
famous equations, and noting the close agreement between the electric ratio 
c and the velocity of light, asserted the coincidence of the two phenomena. 1 

His, and his contemporaries' assumption was that it was necessary to postu
late the existence of some medium (the ether) through which the electromag
netic waves would be propagated, and idea finally put to rest by the famous 
experiment of Michaelson and Merely. 

In this chapter, we will present Maxwell's equations and some of the related 
theory of electromagnetic potentials. 

2.2 Geometry of the Radiating Structure 

We will consider a prescribed radiating structure S as some subset of the 
usual three-dimensional Euclidean space ]R3 which represents a physical body 

1 It is interesting to realize that much of the development of the theory by Thomp
son, Maxwell, and others, which culminated in the model described by what are 
now called Maxwell's Equations, was made with the fluid dynamical model firmly 
in mind. We refer the interested reader to the interesting historical essay on the 
work leading to this system of equations in [143]. 
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capable of supporting a flow of electric current. The following shapes are of 
particular interest: 

(a) 8 consists of finitely many points with position vectors Yl' ... 'Ym E ]R3. 

Such a configuration will be called an antenna array. The points could lie 
on a line (linear array) or in a plane (plane array) or be more generally 
distributed within a three dimensional volume. 

(b) 8 is a curve of finite length in ]R3 (a wire) or a collection of such curves. 
This case could also be considered as the limiting case of (a) where the 
number m of points tends to infinity and the distances between them tend 
to zero. 

(c) 8 is a connected part of the boundary 8D of some open and bounded 
subset D of ]R3. This class includes, as particular cases, both refiector
and slot antennas and, more generally, so called conformal antennas. 

(d) 8 is an infinite cylinder with axis in some direction (e.g. in the X3-

direction) with constant cross section 8' which could be considered as 
a subset of the two dimensional Euclidean space ]R2. 8' could be a disc, 
an annulus, a curve, or even a more complicated domain. 

The first chapter was devoted to an elementary discussion of examples which 
fall under the first category. In this chapter, we will give a discussion of the 
equations governing electromagnetic radiation from structures of a general 
type which will include all the cases enumerated above. 

2.3 Maxwell's Equations in Integral Form 

Electromagnetic wave propagation is described by particular equations relat
ing five vector fields e, 'D, 1-£, 13, .:J and the scalar field p, where e and 
'D denote the electric field (in Vim) and electric induction (in As/m2 ) 

respectively, while 1-£ and 13 denote the magnetic field (in A/m) and mag
netic induction (in Vs/m2 = T =Tesla). Likewise, .:J and p denote the 
current (in A/m2 ) and charge distribution (in As/m3 ) of the medium. 
Here and throughout the book we use the rationalized MKS-system, i.e. 
V, A, m and s (see [130], section 1.8). All fields will be assumed to depend 
both on the space variable x E ]R3 and on the time variable t E R . 

The actual equations that govern the behavior of the electromagnetic field, 
first completely formulated by Maxwell, may be expressed easily in integral 
form. Such a formulation, which has the advantage of being closely connected 
to the physical situation, has been used to effectively by a number of authors, 
in particular by Sommerfeld [125] and by MUller [105]. The more familiar 
differential form of Maxwell's equations can be derived very easily from the 
integral relations as we will see below in Section 2.5. 

In order to write these integral relations, we begin by letting 8 be a connected 
smooth surface with boundary 88 in the interior of a region D where elec
tromagnetic waves propagate. In particular, we require that the unit normal 
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vector n(x) for xES be continuous and directed always into "one side" of S, 
which we call the positive side of S. By t(x) we denote the unit vector tangent 
to the boundary of S at x E as. This vector, lying in the tangent plane of S 
together with a vector lI(x), x E as, normal to as is oriented so as to form 
a mathematically positive system (i.e. t is directed counterclockwise when we 
sit on the positive side of S). Furthermore, let n E ]R3 be an open set with 
boundary an and outer unit normal vector n(x) at x E an. Then Maxwell's 
equations in integral form state: 

J 1£. tde = %t J 'D. ndS + J:r. ndS (Ampere's Law) (2.1a) 

as s s 

J e· td.e = - %t J 13· ndS (Law of Induction) (2.1b) 

as s 

J 'D. ndS = J pdV (Gauss' Electric Law) (2.1c) 

as? S? 

J 13· n dS = 0 (Gauss' Magnetic Law) (2.1d) 

as? 

The initial goal of using such equations to model the electromagnetic field is 
to enable us to determine uniquely the five field quantities which result from 
a given distribution of currents and charges. From this point of view, the 
four equations are incomplete and must be supplemented by equations which 
describe the interaction between the fields and the medium through which the 
fields propagate. These constitutive relations, characteristic of the medium, 
may be either linear or nonlinear. In this book we will deal exclusively with 
linear constitutive relations which we describe in the next section. 

2.4 The Constitutive Relations 

In light of the preceding comments, we will consider electromagnetic wave 
propagation in linear, isotropic media. This means, first, that there exist 
linear relationships (the constitutive relations) between e and 'D, 1£, and 
13: 

'D = E e , and 13 = f-L 1£ . (2.2) 

In general, the quantities E and f-L may be space dependent, but we assume 
that they are independent of time and of direction and are therefore scalar 
(as opposed to tensor) quantities. Hence the term isotropic. 

The permittivity or dielectric constant, E, has a unit As/Vm, and is 
related to the ability of the medium to sustain an electric charge. Its value, 
EO, in a vacuum has been experimentally determined and is approximately 
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8.854 . 10-12 As/Vm while that, say, in fused quartz it is approximately 
3.545 . 10-11 As/Vm. 
The magnetic permeability for most substances, /1, is close to its value in 
vacuo /10 = 47r . 10-7 V s / Am. Those substances for which /1 is significantly 
different from this value are called magnetic, either paramagnetic or dia
magnetic if /1 > /10 or /1 < /10, respectively. In the following, however, we 
always will assume that /1 = /10. 

Usually E and /1 are independent of the field strength although in some impor
tant situations this is not the case. As we will mention below, one concomi
tant effect of attempting to synthesize a highly focused beam, is the storage 
of power close to the antenna itself, which may degrade performance because 
of dramatic alterations in these constitutive parameters of the atmosphere. 

The quantity Co := 1/ VEo/10 has the dimension of velocity. It is a consequence 
of the field equations that this quantity is the velocity of propagation of the 
electromagnetic field disturbance through free space. Experimental measure
ments have shown that, in vacuo, this velocity is the same as that of light and 
hence Co ~ 2.9979 . 108 m/ s. 

Two special cases will be considered in the following: media in which the con
stitutive parameters vary smoothly, and media in which there are manifolds 
of discontinuity (interfaces) of these parameters. In a medium where E and /1 
vary smoothly, Maxwell's equations are equivalent to a system of partial dif
ferential equations. In the second case where an interface exists, the behaviour 
of the constitutive parameters together with the correct choice of Sand [2 

lead to boundary conditions for these equations. 

2.5 Maxwell's Equations in Differential Form 

First, we consider a region D where /1 and E are constant (homogeneous 
medium) or at least continuous. In regions where the vector fields are smooth 
functions we can apply the Stokes and Gauss theorems for surfaces Sand 
solids [2 lying completely in D: 

J curlF· ndS = J F· tde (Stokes), (2.3) 

s as 

J div FdV = J F· ndS (Gauss), (2.4) 

n an 

where F denotes one of the fields 11., e, 13 or 1). With these formulas we 
can eliminate the boundary integrals in (2.Ia-2.Id). We then use the fact that 
we can vary the surface S and the solid [2 in D arbitrarily. By equating the 
integrands we are led to Maxwell's equations in differential form so that 
Ampere's Law, the Law ofInduction and Gauss' Electric and Magnetic Laws, 
respectively, become: 
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a 
curlll = at'D + .:T (2.5a) 

a 
curlE = --13 (2.5b) 

at 
div'D = p (2.5c) 

div 13 = 0 (2.5d) 

Taking the divergence of (2.5a), using (2.5c), and noting that divcurl = 0 we 
derive an equation relating the current and charge densities: 

div.:T + :tP = o. (2.6) 

We may consider (2.6), as analogous to the continuity or conservation equa
tion in fluid dynamics. It expresses the fact that charge is conserved in the 
neighborhood of any point. 

The current density .:T commonly consists of two terms: one, .:Te, associated 
with external sources of electromagnetic disturbances and the other, .:Te, as
sociated with conduction currents produced as a result of the electric field. In 
many cases we will be considering source free regions for which .:Te = o. 

To the linear constitutive relations, we add a third, namely Ohm's Law, 
which relates the quantities .:Te and E by a linear relation, 

.:Te = aE. (2.7) 

The scalar function a which is called the conductivity has units of v-;". Sub
stances for which a is not negligibly small are called conductors. Metals, for 
example, are good conductors as is brine. In general, the conductivity in met
als decreases with increasing temperature, but in the case of other materials, 
the semiconductors, conductivity increases with temperature over a wide 
range. 

By way of contrast, substances for which a is negligibly small are called di
electrics or insulators. For such substances, their electromagnetic properties 
are completely determined by the other constitutive parameters E and f-L. For 
the purposes of analysis, it is often convenient to approximate good conduc
tors by perfect conductors, characterized by a = 00, and good dielectrics 
by perfect dielectrics characterized by a = O. Examples of conductors are 
given in the following table: 

The constitutive relations (2.2) and Ohm's law (2.7) allow us to eliminate 'D, 
13 and .:Te from Maxwell's equations. Thus in a linear, isotropic, conducting 
medium we see that the propagation of the electromagnetic field is described 
by 
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Material Conductivity 
in siemens/meter at 

Copper, annealed 5.8005.107 

Gold 4.10.107 

Steel 0.5 - 1.0· 107 

Nickel 1.28.107 

Silver 6.139.107 

Tin 0.869.107 

Glass, ordinary 10-12 

Mica 1O-11 _ 10-15 

Porcelain 3.10-13 

Quartz, fused <2.10- 17 

Methyl Alcohol 7.1.10-4 

Water, distilled (18°C) 2.10-4 

Sea Water 3-5 

Table 2.1. Table of Conductivities 

a 
curl 1£ = E ate + (Je + :Te, 

a 
curle = -1/.-1£ 

t'" at ' 
div (Ee) = p, 

div (/11£) = O. 

20°C 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

Another remarkable equation which holds in isotropic homogeneous conduc
tors in source free regions follows directly from these equations. Indeed observ
ing that in this situation :Te = 0, taking the divergence of the equation (2.8a), 
and differentiating (2.8c) with respect to time, we find the two equations 

and 

O d · ae d' ~ = E IV at + (J IV" 
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. oe . op 
E dlV ot = ot' 

In this manner we arrive at the differential equation 

(5 () 
-; p + otP = 0, 

which (since (5 and E are constant) has the unique solution for t > 0: 

p(x, t) = p(x, 0) e-at/ E • 

We can interpret (5/ E as an angular frequency characteristic of the medium, 
and call the reciprocal E/(5 the relaxation time. For copper this is approxi
mately 1.5.10-19 8. Thus, for an electric disturbance incident from the exterior 
of a conductor, the electric charge density falls off exponentially with time. 
From this analysis it is clear that a metallic conductor does not support a 
charge and it is a reasonable approximation to replace (2.8c) with div(Ee) = o. 

2.6 Energy Flow and the Poynting Vector 

The description of the performance of antennas, which is the central theme of 
this book, often involves numerical measures which depend for their definition 
on the notion of power contained in the field. The power in the electromagnetic 
field is most often described using the Poynting vector S = e x 1l, and we 
are interested next in understanding how it arises. From the vector identity 

div (e x 1l) = 1l. curle - e· curl1l 

and Maxwell's equations (2.5a), (2.5b) we get immediately 

. 013 oD 
dlv (e x 1l) = -1l. - - e· - - e·.:J ot 8t ' 

(2.9) 

which is valid in any medium. In light of the constitutive relations, the terms 
involving time derivatives in (2.9) lead to 

1l. 013 + 
ot 

It can be shown (see e.g., [86]) that this equation expresses conservation of 
energy. In particular the right hand side of this equation represents the rates 
of increase of electric and magnetic internal energies Ue := ~D. e and Um := 
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~1-£.13, respectively, per unit volume. Using the Poynting vector S = e x 1-£ 
we can rewrite (2.9) as 

(2.10) 

The term e . :r is the rate per unit volume at which the electric field is doing 
work. In the absence of external currents this will represent heat dissipation. 
We note that this equation takes the form of a conservation law. 

Using Gauss' Theorem (2.4) in (2.10), we find that, for any volume [l with 
smooth surface o[l, 

:t J (Ue + Um) dV + J:r. e dV + J S· n dB = o. (2.11) 

U U M 

This equation is sometimes called Poynting's Theorem or the energy bal
ance equation. Setting W := fu(Ue + Um)dV and Q = fu:r· e dV, then W 
and Q represent, respectively, the total energy and the resistive dissipation 
of energy, called Joule heat in the conductor. There is a further decrease 
of energy if the field extends to the bounding surface of the volume, so the 
surface integral 

P = J S· n dB = J (e x 1-£) . n dB (2.12) 

aU aU 

in (2.11) must represent the flow of energy across the boundary. Therefore, 
we may think of S = e x 1-£ as representing the amount of energy crossing 
the boundary per second, per unit area. 

It is important to understand, however, that the vector S is a construct; the 
actual quantity of importance in the energy balance equation is S . n. In light 
of Gauss' theorem, we can add the curl of an arbitrary field without changing 
the value of the integral in (2.11) and so the choice of the vector S is not 
unique. 

From this analysis, one may conclude that the conductivity of a medium is con
nected to the appearance of Joule heat. Thermodynamically irreversible, this 
process transforms the electromagnetic energy into heat and, consequently, 
the wave is attenuated as it penetrates the conductor. This effect is particu
larly pronounced in metals with high conductivity. This leads to the so-called 
skin effect which we will make more precise below in our discussion of time
harmonic fields. 

2.7 Time Harmonic Fields 

From now on we assume that all fields vary periodically in time with the same 
angular frequency w = 21f IT and period T. This could be insured by assuming 
periodic time dependence of the applied external currents or fields. 
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It is very convenient to use the complex representation of the fields in the 
form 

&(x, t) = Re (E(x) e-iwt ) , 

1i(x, t) = Re (H(x) e-iwt ) , 

:1(x, t) = Re (J(x) e-iwt ) , 

1)(x, t) = Re (D(x) e-iwt ) , 

13(x, t) = Re (B(x) e-iwt ) , 

as well as for p. Here, E, D, H, Band J are now space dependent complex 
vector fields. By using these formulas the derivative with respect to time trans
forms into multiplication by -iw. Thus, Maxwell's equations (2.8a)-(2.8d) in 
conducting and isotropic media read for the space dependent parts 

curlH= (-iwE+a)E + J e , 

curlE = iWJ-lH, 

div (EE) = p, 

divH = O. 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

We assume, for the following analysis, that J-l = J-lo is the magnetic perme
ability of vacuo. We remark that in this case (2.13d) follows directly from 
(2.13b) while for homogeneous media equation (2.13c) follows from (2.13a) 
(with p = div J el (iw - a IE)). In these cases, both of them can be omitted 
from the system. In source free media in particular, div E = 0 and therefore 
no distributed charge p exists. 

By taking the curl again we can eliminate either E or H from the system: 

-curl2E + iWJ-lo(a-iwE)E = -iwJ-loJe , div(EE) = p, (2.14a) 

-curl ( 1. curlH) + iWJ-lo H = -curl ( 1 Je) . (2.14b) 
a - ZWE a - ZWE 

With E or H fI:om (2.14a) or (2.14b), respectively, one has to compute H or 
E by formulas (2.13b) or (2.13a), respectively. 

It is convenient to introduce the complex wave number k E C by 

k 2 . ( .) 2 . = ZWJ-lo a-ZWE = W J-loE + zWJ-loa. (2.15) 

Since only k 2 occurs we can choose that branch of the square root with Re k 2': 
o and also 1m k 2': o. 
In homogeneous media E and a are constant. In this case we note that 
curl2 = grad div - Ll and arrive at the inhomogeneous (vector-) Helmholtz 
equations 

-curlJe , (2.16) 

div E = piE, and div H = O. 
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Writing e(x, t) = ~ [E(x) exp( -iwt) + E(x) exp(iwt») and analogously for 1-£ 
we have for the Poynting vector S from Section 2.7 (after a short calculation) 

S(x, t) = e(x, t) x 1-£ (x, t) 

= ~ Re [E(x) x H(x») + ~ Re [E(x) x H(x) e-2iwt ] . 

The first term ~ Re [E x H) is real and constant with respect to the time 
variable t. The second term is also real but varying in time with frequency 
2w, so that its time average is zero. Hence the time average of e x 1-£ is equal 
to the real part of S where 

1 -
S .- -[ExH) .- 2 

denotes the complex Poynting vector. 

(2.17) 

The time average of the power flux from the volume into the region outside 
is then given by (cf. (2.12» 

p 

2.8 Vector Potentials 

Re J S·ndS. 

an 
(2.18) 

The advantage of the vector Helmholtz equations (2.16) over the original 
Maxwell system (2.13a)-(2.13d) is that every Cartesian component u of the 
fields satisfies the scalar Helmholtz equation Llu+k2u = f where f denotes the 
corresponding component of the right hand side. However, since the condition 
on the divergence couples the components again, it is not an easy task to 
construct solutions of (2.13a)- (2.13d) or, equivalently, (2.16) directly. This is 
the main reason why it is very convenient to introduce vector potentials A. 
In this section, we assume that the medium is homogeneous, i.e. E, f.L and (T 

are constant. 

It is well known (see, e.g., [94)) that in regions [2 without interior boundaries 
the condition div H = 0 is equivalent to the existence of a vector field A 
such that H = curl A. Vector fields A with this property are called vector 
potentials for the field H. Note that they are not unique. Indeed, with A also 
A + ~ <p for any differentiable function <p is also a vector potential for H. 
Substitution of H = curl A into the second equation of (2.16) yields 

which is certainly satisfied if 

(2.19) 
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where <p is any differentiable scalar function. 

On the other hand, if A satisfies (2.19) then 

H = curIA and E = iW/-loA + 1. \7 (div A _ <p) 
CT - ~WE 

(2.20) 

satisfies the Maxwell system (2.13a)-(2.13d) with p = div J e/ (iw - CT / E). The 
vector potential A used to express the magnetic field H is also called mag
netic Hertz potential. The following example is of particular importance: 

Example 2.1. (TM-mode) 

Let A be a solution of (2.19) of the form A(x) = u(x)p(x) with scalar field 
u and vector field p such that curlp = o. This situation is called TM-mode 
(transverse-magnetic mode) since H = curl (up) = \7u x p has no component 
in p-direction. 

As a particular example we take p being constant, without loss of generality 
p = e3, the unit vector in x3-direction, and J e = ge3' If u is a solution of 
the three dimensional scalar Helmholtz equation 

(2.21) 

we have 

(2.22a) 

(2.22b) 

If we choose 9 and u to be constant with respect to X3 then E has only a 
X3-component. This mode is also called E-mode. In this case equation (2.21) 
reduces to the two dimensional scalar Helmholtz equation for u. 

Analogously, we can introduce electric Hertz potentials. Indeed, if J e = 0 

then div E = 0 and we substitute the ansatz E = curl A into the first equation 
of (2.16). This yields 

curl (L1A + k2 A) = 0 

which is certainly satisfied if 

(2.23) 

where again <p is any differentiable scalar function. If, on the other hand, A 
satisfies equation (2.23) then 

1 
E = curIA and H = (CT - iWE) A + -. - \7(div A - <p) 

~W/-lo 
(2.24) 

satisfies the Maxwell system (2.13a)-(2.13d). Analogously to above we con
sider the following example: 



60 2 Maxwell's Equations 

Example 2.2. (TE-mode) 

Let J e = 0 and A be a solution of (2.23) of the form A = up with curlp = o. 
This situation describes the TE-mode since now E has no component in 
p-direction. With the particular choice p = e3 and a scalar solution u of the 
three dimensional Helmholtz equation Llu + k2u = ° we have 

, ( au au ) T 
E = curl (e3u ) = aX2 ' - aXl ' ° , (2.25a) 

H = (a- - iWE) ue3 + _. _1_ 'V(au/ax3) . 
ZWJ.lo 

(2.25b) 

The case where u is independent of X3 is also called H-mode. 

We observe that in both, the H- and the E-mode the electric and magnetic 
fields are perpendicular to each other. This is not true, in general, for the TE 
or TM mode or even for arbitrary solutions of Maxwell's equations (except in 
the far field, cf. (2.32)). 

2.9 Radiation Condition, Far Field Pattern 

We will see that solutions of Maxwell's equations decay or increase expo
nentially for conducting media, i.e. when a- > 0. For a- = 0, however, every 
solution must decay as l/r for r -+ 00. To illustrate this let us consider one 
of the simplest possible magnetic Hertz potentials, namely those which are 
radially symmetric. Therefore, let us assume that J.l = J.lo, E, and a- are con
stant, A = A(r), r > 0, and J e = 0, 'P = 0. The Helmholtz equation (2.19) 
in spherical coordinates reduces to the ordinary differential equation 

which has the two linearly independent solutions 

e ikr 
A(r) = p-

r 

e-ikr 
and A(r) = p-

r 

(2.26) 

as it is readily seen. The corresponding magnetic- and electric fields are given 
by (2.20), i.e. 

H(x) = curIA(x) 

e±ikr 
. E(x) = iwJ.lop-

r 

From the asymptotic behaviour 

e±ikr 
'V-- xp, 

r 

1 ( e±ikr) + . 'V p. 'V--
a- - ZWE r 
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e±ikr e±ikr 
\1-- = ±ik -- [:i; + O(l/r)] as r -t 00, 

r r 

82 e±ikr = _k2 e±ikr [Xj xe + O(l/r)] as r -t 00, 

8xj8xe r r r r 

uniformly in :i; E 82, we observe that 

e±ikr 
H(x) = ±ik -- [:i; x P + O(l/r)] , 

r 
e±ikr 

E(x) = iwfJ.o -- (p - :i;(:i;. p) + O(l/r)] 
r 

e±ikr 
= iwfJ.o -- [:i; x (p x:i;) + O(l/r)], 

r 
1 --

Sex) = 2 E(x) x H(x) 

(2.27a) 

(2.27b) 

(2.27c) 

1 _ e'F2rlmk [ ] 
= ±2 WfJ.o k r2 (lp12 -I:i;· pI2):i; + O(l/r) . (2.27d) 

Here we clearly see the asymptotic behavior as r -t 00; for a > ° we have 
that Imk > 0, i.e. H, E, and S are exponentially decreasing or increasing, 
respectively, depending on the sign in the exponential term. If a = 0, however, 
k is real valued and the fields E and H decay as l/T while S decays as 1/r2. 
This is different from the static case where it is well known that the fields 
could decay more rapidly (see also Section 5.2). 

We now formulate radiation conditions on E and H which are independent of 
the special example for A and distinguish between the two possible solutions. 

If the medium is conducting i.e. if Im k > 0, then, from conservation of energy, 
the radiated power cannot increase with r, thus we must take the positive sign 
in the exponential terms of A, E and H. Formulated in terms of E and H 
it is sufficient to require that 

E and H are bounded. (2.28) 

In vacuo, 10 = EO and a = 0, i.e. k is real valued and positive. We observe that, 
by using the Cauchy-Schwarz inequality, the Poynting vector 

Sex) = ~ WfJ.o k r12 [(lpI2 -I:i;· pI2):i; + O(l/r)] 

is directed into the direction :i; which represents outgoing rather than in
coming fields. Therefore, we also choose the positive sign in the exponential 
terms of A, E and H. Then, E and H satisfy the Silver-Miiller radiation 
conditions; 

E(x) x:i; + ~ H(x) = 0 (1/r2 ) , 

H(x) x:i; - Yo E(x) = 0 (1/r2 ) 

(2.29a) 

(2.29b) 
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as r -+ 00 uniformly with respect to x E 8 2 . Here, 

Yo := f£ = w%o = w:o (2.30) 

denotes the admittance in non-conductive media. In vacuo it is Yo :::::; 2.654 . 
10-3 A/V. 

It turns out that these radiation conditions describe the correct asymptotic 
behavior of electromagnetic waves generated by sources lying in a compact 
set. It can be shown (see [29]) that these conditions are equivalent (i.e. any 
solution (E, H) of the time harmonic Maxwell's equations which satisfies 
one of (2.29a), (2.29b) also satisfies the other one) and that they imply the 
following asymptotic behavior of E and H: 

eikr 
[ ] E(x) = -;:- Eoo(x) + O(l/r) , (2.31a) 

e
ikr 

[ ] H(x) = Yo -;:- Hoo(x) + O(l/r) (2.31b) 

as r -+ 00 uniformly with respect to x E 8 2 . The vector fields Eoo and 
H 00 are defined on the unit sphere 8 2 and are called far field pattern. In the 
particular example above the far field patterns are given by 

H ( A) ik A . A E ( A ) . A ( A ) 
00 x = Yo x x p = ZW/10 x x p, 00 x = ZW/10 x x P x x . 

In general, they enjoy the following properties (cf. [29]): 

Hoo(x) = xxEoo(x), x·Eoo(x) = x·Hoo(x) = 0 for x E 8 2 . (2.32) 

To explain the physical meaning of the far field pattern we consider the energy 
distribution which is given by the complex Poynting vector ~ [E x H] (cf. 
(2.17)) in any nonconducting medium, i.e. we assume k and Yo are both real 
valued and positive. The time averaged power radiated through the sphere 8a 

ofradius a can be written as (cf. (2.12)): 

(2.33) 

and so the power radiated into the far field is given by 

Poo .~ ~Re [.Ii,'!l,,(EXH)dS] (2.34) 

Using the definitions of the far field patterns (2.31a), (2.31b) and the proper
ties (2.32) we can express Poo in terms of Eoo alone: 

Poo = ~o J IE ool2 d8 . (2.35) 

8 2 
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2.10 Radiating Dipoles and Line Sources 

The construction of solutions of the Maxwell equations (2.13a)-(2.13d) by in
troducing vector potentials is a purely mathematical approach. In this section 
we will briefly connect this construction with the physical electromagnetic 
fields radiated by infinitesimal or finite linear current elements. 

To derive the fields for an electric dipole we start with a small volume element 
.dV(z) centered at z which e.g., can be, but doesn't have to be, a ball with 
center z and radius E. Assuming the total current to be I ii for some unit 
vector ii we define the current density J e by J e (x) = j (x) ii where j E 
C 1 (]R3) is any function with the properties that j (x) = 0 for x 1:. .d V (z) and 
fLlV(z) j(y) dy = I. 

We solve Maxwell's equations (2.13a)-(2.13d) for this particular current dis
tribution by introducing a magnetic Hertz potential A = u ii. Then u must 
satisfy the Helmholtz equation 

.du + k 2u = -j in]R3. 

The following theorem is well known (see, e.g., [41]) 

Theorem 2.3. Let [2 C ]R3 be a bounded domain and 

eikl;v-yl 

<l>(x,y) := 4 I I' x -=J y, 
7r X - Y 

(2.36) 

(2.37) 

denote the fundamental solution of the Helmholtz equation in ]R3. Then, for 
every j E C 1 ([2), the volume potential 

u(x) = ./<l>(x,Y)j(Y)dY , XE]R3, 
[2 

(2.38) 

with density j is two times continuously differentiable in [2 and in ]R3 \ [2 and 

Furthermore, u satisfies the Sommerfeld radiation condition 

:ru(x) - iku(x) = O(1/r2 ) asr-too, 

uniformly with respect to x = x / I x I E S2. 

(2.39) 

Applying this result to the current distribution yields that u, defined by 

u(x) = ./ <l>(x, y) j(y) dy 

LlV(z) 

=I<l>(x,z) + ./ j(y) [<l>(x,y)-<l>(x,z)]dy, 

Ll V(z) 
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solves (2.36). For fixed x i- z we let the region L1V(z) shrink to the point 
z while keeping the total current I fixed. Then u( x) converges to u( x) = 
IP(x, z). 

Remarks: 

• Actually, the function p_(x,y) := expi~"t:~Ylyl) is also a fundamental 
solution. As we have made clear in the previous section, however, the 
fields based on potentials with P _ do not satisfy the radiation condition 
and are therefore physically not relevant. 

• By this "shrinking process" the current density j has to tend to infinity 
since the total current I is kept fixed. The limit of these currents j cannot 
be a function in the ordinary sense. Therefore, by this limiting process, we 
extend the concept of a function to the wider class of " distributions". We 
actually take j(x) = I 5(x - z) where 5 denotes Dirac's delta-distribution 
introduced formally by the property fIR3 5(y)g(y) dy = g(O) for every g E 
C(JR3). We can write formally 

L1:vp(x, z) + k2p(X, z) = -5(x - z). 

This formulation can be made mathematically rigorous by using the theory 
of distributions (see [136]). 

The magnetic and electric fields corresponding to the potential A( x) = 
Ip(x,z)a are given by (2.20), i.e. 

H(x) = I curl (p(x, z) a) = 1\1 xp(x, z) x a (2.40a) 

E(x) = iWJ-loIP(x,z) a + I. \1x (\1xP(x,z).a). (2.40b) 
a - ZWE 

These are the fields of an electric dipole with dipole moment I a. 

We now want to derive the fields of a magnetic dipole. Let again L1V(z) 
be a volume element with center z and jm(x) as before an approximation of 
M 5(x). The vector field Je(x) = curl (jm(x) a) = \1jm(x) X a describes the 
current distribution of a small circular wire. We set J m := jm(x) a and call 
this auxiliary quantity a magnetic current distribution. It is our aim to 
solve Maxwell's equations (2.13a)- (2.13d) with this choice of J e = curlJrn,. 
Instead of going through the details again we make use of a mathematical 
trick: 

We define the purely mathematical vector fields 

E := H - J m and iI:= E. 

Then, since div J e = 0, the fields E, iI solve the system 

curlE = (a - iWE) iI, curliI = iWJ-lo E + iWJ-loJ m, 
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div E = -div J m , div iI = O. 

Formally, this looks like a Maxwell system with the roles of (J - iWE and iwf.1,o 
interchanged. The current density in this case is iWf.1,oJ m' Therefore, we solve 
this system as in the case of an electric dipole and arrive at the potential 
A(x) = iWf.1,oMiP(x,z)a and thus: . 

E(x) = cUrlA(x) = iWf.1,oM'\lxiP(x,z) x a, 
1 

H(x) = -. -curlE(x) M (-.d + '\ldiv )(iP(x, z)o,) 
zWf.1, 

= k2MiP(x,z) a + M'\lx('\lxiP(X,Z)'o'). 

(2.41a) 

(2.41b) 

These are the fields of a magnetic dipole with dipole moment Mo'. 

To find the asymptotic behaviour of these fields and the corresponding far 
field patterns we have to study the fundamental solution iP(x, z) as r = Ixl 
tends to infinity. From the representation 

x·z Ix - zl = Ixl - l;r + a(x,z) with la(x, z)1 :::; 4 I~; 
for all x, z E IR3 with x =I- 0, Izi :::; ~ lxi, we derive the asymptotic represen
tation of the fundamental solution iP of the Helmholtz equation in the form 
(using polar coordinates r, () and ¢ with respect to the origin): 

eikr . ~ 
iP(x, z) = - [e-,k",'z + D(l/r)] as r = Ixl -+ 00, (2.42a) 

41fr 
eikr . ~ 

'\lxiP(x,z) =ik-4 [e-,k",.Zx + D(l/r)] as r-+ 00, (2.42b) 
1fr 

!l2n;() ikr 
_u..,-'¥--,-x--,,_z~ = _k2 _e _ [e-ik",.Z Xj Xi + D(l/r)] as r -+ 00, (2.42c) 

OXjOXi 41fr r r 

uniformly in (), ¢ and z in any compact subset of IR3. Again, we have set 
x = x/r. From this we see that the fields generated by an electric dipole or 
magnetic dipole with moment I a and M a, respectively, satisfy 

and 

eikr . ~ 
H(x) = ikI- [e-,k",.z(x x a) + D(l/r)] , 

41fr 
eikr 

E(x) = iwf.1,o I - [e-ik",.Z[x x (a x x)] + D(l/r)] 
41fr 

. eikr . ~ 
E(x} = -kwf.1,o M - [e-,k",.Z(x x a) + D(l/r)] , 

41fr 
ikr 

H(x) = k2 M e4 [e-ik",.Z[x x (a x x)] + D(l/r)] , 
1fr 

(2.43a) 

(2.43b) 

(2.43c) 

(2.43d) 
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respectively, as r --+ 00. 

The far field patterns of an electric dipole have been computed in Section 2.9 
already. (This was the motivation for the Silver-Muller radiation condition). 
We repeat that the far field patterns generated by an electric or magnetic 
dipole are given by 

H ( ') _ ik1 -ikre·z (' , ) 
00 x - 41f e x x a , (2.44a) 

E ( ') - iwJ-to1 -ikre·z [' (' ')] ooX ---e xx axx . 
41f 

(2.44b) 

and 

E ( ') -kwJ-toM -ikre·z (' ') oox= e axx, 
41f 

(2.44c) 

Hoo(x) = k:: e-ikre .z [x x (a x x)]. (2.44d) 

Example 2.4. As a special example we consider the case a e3 (the unit 
vector in x3-direction). Using spherical polar coordinates (r,e,4;) of x with 
respect to z and coordinate vectors x, 8, (p we compute 

( 1) e ikr 
V' x<p(x, z) = ik -;;: 41fr x, 

V'x<P(x,z) x e3 = - (ik _~) e
ikr sine(p 

r 41fr 

(since x x e3 = -sine(p), and 

(2.45a) 

(2.45b) 

V'x-<P(x,z)=I----k2 -cosex+ --- -e3(2.45c) 8 ( 3 3ik ) e ikr (ik 1 ) e ikr 

8X3 \ r2 r 41fr r r2 41fr 

and thus for the electric dipole by (2.40a), (2.40b): 

( 1) eikr , H(x) = -I ik - - - sinecp, 
r 41fr 

(2.46a) 

E(x) = iwJ-to1 <p(x, z)e3 
I 8 

--'-V'-8 <p(x,z) 
(]" - ZWE X3 

i.e., since e3 = cos e x - sin e 8, 

21 (1 ) e ikr 
E(x) = . - - ik --2 cosex 

(]" - ZWE r 41fr 

- . k + - - - - sin e O. I (2 ik 1 ) eikr , 

(]" - ZWE r r2 41fr 
(2.46b) 
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Analogously, we have for the magnetic dipole 

( 1) eikr 
A E(x)=-iWfJ,M ik-- -sinO¢, 

r 41l'T 
(2.47a) 

H(x) = 2M - - ik -- cosOx - I k 2 + - - - - sinOn (2.47b) ( 1 ) eikr (ik 1 ) eikr 
A 

r 4Kr2 r r2 4Kr 

In the special case (J = 0 and z = 0 the far field patterns are given by 

iWfJ,oI. A 

Eoo(O,¢) = -~ smOn, 

for the electric dipole and 

iWfJ,oI . 0;" --- sm '+' 
4K 

(2.48a) 

kWfJ,oM. A 

E 00 (0, ¢) = sm 0 n , 
4K 

kWfJ,oM. A 

Hoo(O,¢) = - smO¢ (2.48b) 
4K 

for the magnetic dipole. The radiated power from (2.35) takes the form 

(2.49) 

respectively. 

We would like now to return to our example in Section 1.2. There we intro
duced the notion of an array by assuming a (finite) number of electric dipoles 
at locations Yn, n = -N, ... , N. Let anP be the common dipole moment. 
Then, according to (2.44b), the nth dipole generates the electric far field pat-
tern 

En,oo(x) = an i~~o e- ikYn '& [x X (p X x)] . 

The whole array generates the far field pattern by superposition, i.e. 

. N 

Eoo(x) = z~~o x X (p X x) L an e-ikYn '& . 

n=-N 

This formula coincides with (1.3). 

The electromagnetic fields of a finite line current flowing along the straight 
line x = s e3, S E [-£, £], oflength 2£ and direction e3 can be modeled by the 
limiting process of an array, when the distance d between the elements tends to 
zeros and the number of elements to infinity. This leads to the determination 
of Hand E from the potential 

e 

u(x) = J I(s)ifJ(x,se3)ds 

-~ 

(2.50) 
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via 

H(x) = curl(u(x)e3) , E(x) = iW/-Lo u(x) e3 + 1. 'V(8u(X)j8x3) . 
(J' - 2WE 

The far field patterns are computed; using (2.44a)-(2.44d), by 

£ 

Eeo(x) = iW/-Lo [x x (e3 x x)] /I(S) e- iks:i:.e3 ds 
41f 

-£ 

£ 

= i~~o [x x (e3 x x)] / I(s) e-ikscosO ds, 

-£ 

£ 

Heo(x) = ik (x x e3) jI(s)e-ikS:i:.e3dS 
41f 

-£ 
e 

= ik (x x e3) /I(S) e-ikscosO ds. 
41f 

-£ 

2.11 Boundary Conditions on Interfaces 

(2.51) 

(2.52a) 

(2.52b) 

If we consider a situation in which a surface S separates two homogeneous 
media from each other, the constitutive parameters E, /-L and (J' are no longer 
continuous but piecewise continuous with finite jumps on S. While on both 
sides of S Maxwell's equations (2.5a)-(2.5d) hold, the presence of these jumps 
implies that the fields satisfy certain conditions on the surface. 

To derive the mathematical form of this behaviour (the boundary conditions) 
we apply the law of induction (2.1b) to a narrow rectangle-like surface C, 
containing the normal n to the surface S and whose long sides C+ and C_ 
are parallel to S and are on the opposite sides of it, cf. Figure 2.1. 

When we let the height of the narrow sides, AA' and BB', approach zero 
C+ and C_ approach a curve C on S, the surface integral gt JR B· v dS will 
vanish in the limit since the field remains finite (note, that the normal v is 
the normal to R lying in the tangential plane of S). Hence, the line integrals 
J c C + . t d£ and J c C - . t d£ must be equal. Since the curve C is arbitrary the 
integrands C + . t and c _ . t coincide on every arc C, i.e. 

n x c+ - n x c_ = 0 on S. (2.53) 

A similar argument holds for the magnetic field in (2.1a) if the current distri
bution :r = (J'c + .:Te remains finite. In this case, the same arguments lead to 
the boundary condition 
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A· 

Fig. 2.1. The derivation of the boundary conditions 

n x 1£+ - n x 1£_ = 0 on S. (2.54) 

If, however, the external current distribution is a surface current, i.e. if :1e 
is of the form :1e(x + Tn(x)) = .7s(X)O(T) for small T and xES and with 
tangential surface field .7s and CY is finite, then the surface integral I R :1e . v dS 
will tend to Ie .7s . v dC, and so the boundary condition is 

n x 1£+ - n x 1£_ =.7s on s. (2.55) 

We will call (2.53) and (2.54) or (2.55) the transmission boundary condi
tions. 

In many applications it is also important to consider the case in which the 
interface S is covered by a thin layer of very high conductivity, i.e. cy(x + 
Tn(x)) = CYs(X)O(T) for small T and XES and with surface conductivity 
CY s. If :1e remains finite then the surface integral I R :J . n dS will tend to 
IeCYse ·ndC+ Ie .7s ·ndC, i.e. 

n x 1£+ - n x 1£_ = CY s n x (e x n) +.7s on S. (2.56) 

We will call this the conductive boundary condition. This condition has 
been used (see e.g. [121],[122]) to model the sit~ation in which the field pene
trates the object only to a small depth. Thus this condition is closely related 
to the transmission conditions as well as to the impedance, or Leontovich, 
condition which we mention below. 
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A special and very important case is that of a perfectly conducting 
medium with boundary S. Such a medium is characterized by the fact that 
the electric field vanishes inside this medium, and (2.53) reduces to 

n x t:. = 0 on S (2.57) 

Another important case is the impedance- or Leontovich boundary con
dition 

n x 1-£ = A n x (t: x n) on S (2.58) 

which, under appropriate conditions, may be used as an approximation of the 
transmission conditions [120]. 

Finally, we specify the boundary conditions to the E- and H-modes de
rived Section 2.8. We assume that the surface S is an infinite cylinder in 
x3-direction with constant cross section. Furthermore, we assume that the 
volume current density j vanishes near the boundary S and that the surface 
current densities take the form J s = j ~e3 for the E-mode and J s = j s (n x e3) 
for the H-mode. We use the notation [v] := vl+ - vl_ for the jump of the func
tion v at the boundary. Also, we abbreviate (only for this table) (J' = (J - iWE. 

We list the boundary conditions in the following table. 

Bound. condo E-mode H-mode 

transmission [k2 uJ = 0 on S, [p, ~~ ] = 0 on S, 

[(J' ~~J = -js on S, [k2uJ = js on S, 

conductive [k 2uJ = 0 on S, [p, ~~ ] = 0 on S, 

- [(J' ~~l = (Jsk 2u + js, [k2 ] . au . u = (Js~WP,an +]s, 

impedance Ak2u+(J,au=_j onS an s , k2u - Aiwp,au = j on S an s , 

perfect 
u = 0 on S, ~~ = 0 on S. conductor 

2.12 Hertz Potentials and Classes of Solutions 

In this section we recall some of the most important classes of solutions of 
Maxwell's equations (2.13a)-(2.13d) in homogeneous, isotropic and source free 
media. We use the constructions with the Hertz potentials in the TM and TE 
modes described in Section 2.8. 

(A) Plane waves: 



2.12 Hertz Potentials 71 

First, we take Ae = 0, Am(x) = -1/(kwJL) exp(ik&: . x) a for some fixed 
vector a E «:::3 and unit vector &: E ~3. This results in plane waves: 

E(x) = (&: x a)eik&'''' , 

k' 'k" H(x) = -&: x (&: x a)e' 0''''. 
WJL 

The corresponding time dependent waves are 

£(x, t) = (&: x a) e-1mk &.", eiRek&.",-iwt , 

1£(x, t) = ~ &: x (&: x a) e-1mk &.", eiRek&.",-iwt. 
wp, 

(2.59a) 

(2.59b) 

The phase factor is constant on the planes Re k &: . x = wt + 0 traveling with 
velocity v = w/Rek (phase velocity) in the direction &:. For non-conductive 
media v = 1/..JiiE. We see that H = :J.L &: x E = Yo &: x E. The quantity 

k 
Yo := -

wJL 
(2.60) 

is called the intrinsic admittance of the medium which is equal to .JETii, 
for non-conductive media (see (2.30)). 

(B) Spherical waves: 

As a second class of solutions we take Ae = 0 and Am (x) = Y: ((J, ¢) An (kr) r X 
where r, (J, ¢ are the spherical polar coordinates of x and X denotes the co
ordinate vector in r-direction. ynm((J, ¢) = P;:"(cos(J) exp(im¢), Iml ::; n, 
n E No, denote the spherical harmonics where we have denoted the associated 
Legendre function of order n and degree m by Y:. By An we denote either 
the spherical Bessel function jn or the spherical Hankel functions h~l) 
or h~2) of the first and second kind, respectively, and order of n. We refer 
to [139, 50, 30] for an introduction into Bessel- and Hankel functions. Since 
Ynm((J, ¢) An (kr) are solutions of the Helmholtz equation (2.21) for r > 0 it is 
easily seen that Am satisfies the inhomogeneous vector Helmholtz equation 

The fields 

E(x) = iw JL curl [Ynm((J,¢) An(kr)rx] 

= -iwp,x x V'[Ynm((J,¢)An(kr)r] 

H(x) = -. l-curIE(x) = curl 2 [Y:'((J,¢) An(kr)rx] 
zw JL 

(2.61a) 

(2.61b) 

(2.61c) 

are called toroidal fields. Analogously, Am = 0 and Ae (x) = ynm ((J, ¢) An (kr) r X 
lead to spheroidal fields of the form 
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H(x) = (u - iw E) curl [Ynm(B, </» An(kr) r X], 

E(x) = 1. curlH(x) = curl 2 [Y;'(B,</>)An(kr)rx]. 
u- ZWE 

(2.62a) 

(2.62b) 

The fields with An = jn are smooth at the origin while the fields with An = 
h~1),(2) are singular at the origin. 

(C) Cylindrical waves: 

Electromagnetic waves in waveguides are described by using cylindrical co
ordinates p, </>, z. We set Ae = 0 and Am(x) = a exp(ij3z) An (",p) exp(in</» 
with constant vector a E ([:3 and j3 E lR where,.. = Jk2 - j32 (with Re,.. :::: 0 
and 1m,.. :::: 0). Here, An denotes one of the cylindrical Bessel functions 
I n or Hankel functions H~l), H~2) of the first and second kind, respectively, 
and of order n. Then An("'P) exp(in</» solves the two dimensional Helmholtz 
equation Llu + ,..2u = 0 for P > O. We arrive at the fields 

E(x) = -iw J.la x 'V [exp(ij3z) An (,..p) exp(in</»], (2.63a) 
1 

H(x) = -. -curlE(x) = curl 2 [exp(ij3z) An (,..p) exp(in</» a] (2.63b) 
ZWJ.l 

which are smooth at the line p = 0 only if An = I n. 

Now we check which of these special solutions of Maxwell's equations satisfy 
the radiation conditions (2.28) or (2.29a), (2.29b). We restrict ourselves to the 
case of k being real. 

From (2.31a), (2.31b) we conclude that a necessary (but not sufficient!) con
dition for the Silver-Muller radiation condition (2.29a), (2.29b) to hold is that 
the fields decay as l/r when r tends to infinity. From this we see that no 
plane or cylindrical wave satisfies the Silver-Muller radiation conditions (for 
the latter see Section 2.13!). 

From the asymptotic behaviour of the spherical Hankel functions 

h~1),(2)(t) = ~e±i(t-(n+l)71-;2) {1 + O(l/t)} ast-+oo (2.64a) 

~ h~1),(2) (t) = ~ e±i (t-mr /2) {1 + O(l/t)} as t -+ 00 (2.64b) 

. 1 
In(t) = t cos( t - (n + 1)7r /2){ 1 + O(l/t)} as t -+ 00 (2.64c) 

dd jn(t) = -~ sin(t - (n + 1)7r/2) {1 + O(l/t)} as t -+ 00.(2.64d) 
t t 

we conclude that only the spherical wave functions 

E( x) = iw J.l curl [Ynm ( B, </» h~l) ( kr) r x] 

H(x) = ~curlE(x) = cur1 2 [Ynffi(B,</»hf;)(kr) rx] 
. zWJ.l 
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and 

H(x) = (O'-iWE)CUrl [Ynm(B,¢)h~I)(kr)rx], 

E(x) = 1. curlH(x) == curl 2 [Y;:'(B,¢)h~I)(kr)rx] 
0' - ZW E 

satisfy the Silver-Muller radiation condition with far field patterns 

Eoo(B,¢) = i~J.t e-1I'(n+l)i/2 [:BY;:'(B,¢)¢- Si~B :¢Y;:'(B,¢)0] (2.65a) 

Hoo(B, ¢) = x x Eoo(B, ¢), (2.65b) 

and 

H (19 rI..) = 0' - iw E e-1I'(n+l)i/2 [~ym(B rI..):" __ 1_ ~ ym(B rI..) 0] 
00 , '+' k 819 n , '+' 'f' sin 19 8¢ n , '+' 

Eoo(B, ¢) = H 00(19, ¢) x x, 

respectively. 

2.13 Radiation Problems in Two Dimensions 

We have seen in the previous sections that the outgoing spherical waves and 
the fields generated by electric and magnetic dipoles satisfy the Silver-Muller 
radiation condition (2.29a), (2.29b) if k is real. As we mentioned above, this ra
diation condition describes the correct behaviour of the radiating fields gener
ated by sources lying in a compact set. If, however, the sources are distributed 
on an unbounded set e.g., along an infinite line, the fields decay more slowly. 
First we look at the cylindrical waves again for the special case where k is 
real and positive, f3 = 0, a = e3 and An = H~l). With cylindrical coordinates 
p, ¢, z we now have 

E(x) = -iWJ.te3 x \7 [H~l)(h:p) exp(in¢)], (2.66a) 

H(x) = -.l-curIE(x) = curl 2 [H~l)(h:p) exp(in¢) e3] (2.66b) 
utJ J.t 

We have seen that E and H do not satisfy the Silver-Muller radiation condi
tion (2.29a), (2.29b) since they are only bounded in x3-direction but do not 
decay to zero. We will now show that they satisfy a weaker form of the radia
tion condition in the (Xl, x2)-plane. Let us set u(p, ¢) = H~l) (h:p) exp(in¢). 
Then u satisfies the two dimensional Helmholtz equation 

Llu + h:2 U = 0 in]R2 \ {o} . (2.67) 

Furthermore, from the asymptotic behaviour of the Hankel functions 
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H(l)(t) = f! ei(t-n7r/2~7r/4) {I 
n 7rt + O(l/t) } as t --+ 00 (2.68a) 

~H(l)(t) = f! ei (t-n7r/2+ 7r/4) {I 
dt n 7rt + O(l/t) } as t --+ 00 (2.68b) 

we conclude that u satisfies the two dimensional Sommerfeld radiation 
condition o· 

oru(x) - iKU(X) = O(1/p3/2) asp--+oo (2.69) 

uniformly with respect to ¢ E [0, 27r]. 

Let U be any solution U of the Helmholtz equation (2.67) satisfying the radi
ation condition (2.69). Then it can be shown (see [29]) that U and \1u decay 
as 0(1/ vp). Furthermore, for 

E(x) = -iWf-le3 x \1u(p,¢) 

_. [~ ou(p, ¢) A _ ou(p, ¢) :..] 
- zw f-l P o¢ P op 'f' 

H(x) = -.l-curlE(x) = cur1 2 (u(p, ¢) e3) 
ZWf-l 

(2.70a) 

(2.70b) 

since div (e3u) = O. From this we conclude that the cylindrical waves E and 
H from (2.70a), (2.70b) satisfy the cylindrical Silver-Miiller radiation 
condition 

E(x) x jJ + :0 H(x) = 0(1/ p3/2) , p --+ 00, 

H(x) x jJ - YoE(x) = 0(1/p3/2) , p --+ 00, 

(2.71a) 

(2.71b) 

uniformly with respect to ¢ E [0, 7r]. Again, Yo = :J1. denotes the admittance 
from (2.30). 

The Sommerfeld radiation condition (2.69) implies that u and \1u have the 
asymptotic forms 

u(p, ¢) = eXPj;p) Uoo (¢) + 0(1/ p3/2) , p --+ 00 , (2.72a) 

ou(p, ¢) = ~ exp(iKp) (rI.) 0(1/ 3/2) 
op op vp Uoo 'f/ + p, p --+ 00 , 

=iKexpj;'P)Uoo (¢) + O(1/p3/2) , p--+oo, (2.72b) 

ou(p, ¢) exp(iKp) duoo (¢) O( / 3/2) P --+ 00, 

o¢ . vp d¢ + 1 P , (2.72c) 



2.13 Two Dimensions 75 

uniformly with respect to ¢. Again we call the non-radial function U oo the 
far field pattern of the scalar potential u. This asymptotic form of u yields 
immediately the corresponding asymptotic behaviour 

exp( iKp) . A 3/2 
E(x) = WJ.LK VP uoo (¢) c/> + 0(1/ P ), P -+ 00, (2.73a) 

H(x) = K2 expj;p) u oo (¢) e3 + 0(1/ p3/2) , p -+ 00, (2.73b) 

The vector fields 

are called the far field pattern of the two dimensional vector fields E and 
H. They satisfy also 

E(x) = expj;p) Eoo(¢) + 0(1/ p3/2) , p -+ 00, (2.74a) 

H(x) = Yo exp(iKp) H oo(¢) + 0(1/ p3/2) , p -+ 00, 

VP 
(2.74b) 

and 

o for all ¢, (2.75) 

compare with (2.32). 
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Optimization Theory for Antennas 

3.1 Introductory Remarks 

Considering the variety of physical forms antennas may take, it is understand
able, that the analysis of such electromagnetic devices traditionally proceeds 
by discussion of individual cases. We gave a preliminary discussion for arrays 
and line sources in Chapter 1. If one refers back to that chapter while read
ing the material of this one, he will see there the basic ideas that we treat 
systematically here in Chapter 3. We will take a general approach in order 
to construct a single setting in which we may treat a variety of situations 
including arrays and line sources. 

Regardless of the specific physical structure, mathematical questions arise 
from the desire to control and even optimize antenna performance through 
the manipulation of certain parameters. In addition to the obvious choice of 
"feeding", these parameters may include measures of structural properties 
as well. For example, in the case of arrays of elementary radiators, we have 
seen that these quantities may include, in addition to the feeding, parameters 
involving the number of elements, the general geometric form (e.g. linear, or 
circular), and the spacings between the radiators. Each concrete choice of 
antenna type determines the set of parameters which may be varied, although 
common to all is the idea of manipulating currents in or on the structure as 
a means of controlling the radiation characteristics. 

Optimization of course, implies some a priori measure of performance. Such 
performance criteria most often involve some numerical functional which de
pends explicitly on the asymptotic form of the electromagnetic field i.e., on 
the far field radiation pattern or on a related quantity. 1 Such was the case in 
the discussion of the directivity of arrays in Chapter 1. Classical examples of 
performance measures found frequently in the literature are directivity, gain, 

1 Important problems arise concerning the optimization of near-field quantities 
which may be treated by these methods. 
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signal-to-noise ratio, and various "quality factors". In Section 3.3 we will dis
cuss specific forms typically associated with different antenna types and con
figurations. But we remark here for the sake of emphasis, and we mention it 
later, that there is a significant question concerning choice of definitions. The 
problem is most easily illustrated in terms of a concrete example. 

For simplicity, consider a model of a simple dipole oscillator and its feeding 
mechanism. One may imagine a generator supplying an alternating current to 
the antenna establishing a current 'ljJ on the antenna r which in turn radiates 
an electromagnetic field whose far field pattern we denote, as before, by f. 
In any physical realization, there is a loss of power in the lines between the 
generator and the antenna r. There are apparently two points of view on how 
to define quantities such as the directivity or the gain. On the one hand, one 
looks at the system as a whole, and measures the gain in a given direction, 
X, by the ratio of power supplied by the generator, denoted by Pc, to the 
power in the far field in the direction x i.e. If (x W / Pc. Alternatively, one 
can isolate the antenna itself, consider the current 'ljJ as given, and measure 
the efficiency as If (x) 12/ 11'ljJ 112. If the latter choice is made, then of course the 
practical optimization problem has two stages, first the theoretical specifica
tion of an optimal choice of 'ljJ and then the practical specification of a method 
of producing such a current. Both viewpoints occur in the literature. 

In this book, we adopt the second point of view, called the source equa
tion problem by Rhodes [115], and consider the optimal choice of surface 
current on the antenna itself as our primary objective. We caution the reader, 
therefore, that the definitions of performance criteria which involve "input 
power", e.g. gain or quality factor, will consider the input power as the power 
in the surface current on the antenna structure itself. This view is certainly 
consistent with that often taken in discussions of aperture antennas [115]. 
Practical problems of producing the currents will not be completely ignored, 
however. We will address such problems by admitting a priori constraints 
which will define classes of admissible currents (as well as admissible choice of 
the other parameters of importance e.g., the spacing between array elements). 
The optimization problems considered here are thus constrained optimization 
problems. 

A moment's thought about our daily experience makes it obvious that we are 
familiar with the fact that antennas used in radio or television act in two 
apparently different ways. There is the antenna which broadcasts the signal 
and the antenna associated with the device which allows us to hear and/or 
see the transmitted signal. Our approach to the theory concentrates on the 
transmitting mode. We study the problem of finding optimal loadings for the 
antenna which optimize some characteristic of the radiated far field. 

However, the official IEEE definition of an antenna is 

That part of a transmitting or receiving system that is designed to 
radiate or receive electromagnetic waves. 
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Indeed, most antennas are considered to be able to act in both modes and, 
from the simple example with which we began, we can see that how they are 
treated depends on the particular situation. In either case, certain character
istics of an antenna are the same2 , in particular the radiation pattern and 
hence such characteristics as directivity or gain. 

The fact that the radiation pattern of a given antenna acting in either mode is 
the same depends on Green's Theorem from which we can derive the Lorentz 
Reciprocity Theorem for Maxwell's equations. We refer to the book [30] (in 
particular Section 6.6). 

Roughly speaking, the optimization problems addressed in the classical an
tenna theory literature fall into two categories. The first, which we may call 
the synthesis approach, specifies a desired far field pattern and asks for an 
admissible current that will produce such a far field. The second involves the 
choice of some performance criterion, in the form of a real valued functional 
associated intrinsically with the antenna, and asks for that current which 
optimizes the chosen functional. The first type has the character of an in
verse problem: given a desired output, find that input that will produce that 
output. Such inverse problems are, in general, not exactly solvable; they are 
called ill-posed and we will devote Chapter 4 to a discussion of such problems. 
Regardless of these distinctions, we can bring together all the optimization 
problems for antennas into a unified model which we describe in Section 3.2. 
As we will see, the use of constraints for such optimization problems is often 
crucial for a successful resolution. 

Our first goal is to formulate a general class of constrained optimization prob
lems into which, as a group, the particular antenna optimization problems 
fall. Formally, a constrained problem for minimizing a real valued functional 
over a set U is written as 

Minimize :J ( 1jJ ) over 1jJ E U . (3.1) 

When we describe general optimization problems in this and subsequent chap
ters, we denote by 1jJ the quantity which we can vary in the set U of admis
sible currents in order to optimize the functional. The element 1jJ as well 
as the set U depend of the particular antenna model. For example, in the 
case of an antenna array the set U consists of admissible feeding vectors 
a = (a_N' ... ,aN) E 1C2N +1 while in the case of a two or three dimensional 
solid body the set U consists of current distributions, which are scalar or vec
tor fields and thus elements from an infinitely dimensional function space. In 
principle, we also could think of 1jJ being the parametrization of the "shape" 
of the antenna or, for example, constitutive parameters. However, in this book 
we consider these parameters as being fixed and known. Despite the different 
nature of 1jJ in physical situations, we will call 1jJ the current. We will discuss 
the structure and typical examples of constraint sets U in Section 3.4 below. 

2 This may not be the case in certain antennas which contain certain non-reciprocal 
elements. 
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The performance functional.J which relates the feeding current, 'lj;, to the 
performance index .J ( 'lj;) depends on the particular goal. By choosing differ
ent criteria we will be able to cover all of the above mentioned optimization 
problems. In Section 3.2 we recall some basic facts from general optimization 
theory in Hilbert spaces, such as existence and uniqueness of optimal solu
tions, necessary optimality conditions and an approximation result. It is the 
purpose of this abstract setting to clarify the conditions on the performance 
functional .J and the set of constraints which are needed for the concrete 
applications. 

Often, .J will be a function of several terms which all depend on the current 
'lj;. The most important one is the far field f which in most of our applications 
depends linearly on 'lj;. It does not necessarily have to be a vector field but 
can as well be a scalar function as in the case of linear antenna array. The 
dependence of f on 'lj; is described by a map 'lj; I--t f which implicitly defines 
the far field operator K. In this map K the shape of the antenna as well 
as other "constitutive parameters" including such things as wave number, 
k, and boundary conditions are modeled. It will also be important to study 
the dependence of the optimal solution and/or the optimal value on such 
parameters. Even the linear problem with K depending linearly on 'lj; presents 
difficulties since, except in a handful of cases, we have no explicit knowledge 
of the operator K. We may, however deduce some important properties which 
we will collect in Section 3.3. Some examples, taken mainly from Chapter 1, 
illustrate the ideas. 

Then, in Section 3.4, we introduce some of the most important functionals 
.J, i.e. measures of antenna performance. We will then apply the general 
results of Section 3.2 by validating the general assumptions concerning the 
far field operator, K, its domain and range spaces, the constraint set, U, and 
the performance functional .J. In subsequent chapters we will show how this 
general analysis may be applied in the analysis of specific problems. 

3.2 The General Optimization Problem 

Keeping in mind that specific examples of functionals and constraints will be 
given in Section 3.4, we first present a general discussion of the structure of the 
optimization problem itself whose general form we repeat here for convenience: 

Minimize (or maximize) .J('lj;) subject to 'lj; E U. 

To be more specific, let X be a separable Hilbert space with norm 11·llx 
and let U c X be a subset. In the following, when we write "normed space" 
or "Hilbert space" we always mean "separable normed space" and "separable 
Hilbert space" , respectively, without always mentioning this explicitly. 

The set U will be called the class of admissible controls. We seek an element 
1/)0 E U for which .J('lj;0) is an absolute minimum (or maximum) over U. In 
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other words, in the case that we ask for a minimum, we seek a 'ljJ0 E U 
satisfying 

(3.2) 

We note that we can restrict ourselves. to minimization problems since maxi
mizing .:J('ljJ) is equivalent to minimizing -.:J('ljJ). 

3.2.1 Existence and Uniqueness 

In this subsection we will study the question of existence and uniqueness of 
the optimization problem (3.2) under mild assumptions on the functional :J 
and the set U. The existence results are applications of a general result due 
to Weierstrass which states that, in any topological space, any sequentially 
continuous functional attains its maxima and minima on any sequentially 
compact set. We will apply this result to the Hilbert space X equipped with 
the weak topology. We recall (see Definition A.51) that a functional.:J : X ---+ 
lR is called weakly sequentially continuous provided for every sequence 
{'ljJd~l converging weakly to an element 'ljJ E X we have 

Analogously, a set U C X is called weakly sequentially compact if every 
sequence {'ljJk}k=l C U contains a weak accumulation point in U. Then we 
can show a first existence result. 

Theorem 3.1. Assume that the functional.:J : X ---+ lR is weakly sequentially 
continuous on the Hilbert space X and that U C X is weakly sequentially 
compact. Then there exist'ljJ+ E U and'ljJ- E U such that 

.:J('ljJ-) = inf .:J('ljJ) and .:J('ljJ+) = sup .:J('ljJ). (3.3) 
,pEU ,pEU 

Proof: We restrict ourselves to the case of a minimization problem. By the 
definition of the infimum we can choose a sequence {'ljJdk=l C U such that 

lim .:J('ljJk) = inf :J('ljJ). 
k-+= ,pEU 

(At this point we do not exclude the possibility that the infimum is -00, i.e. 
we do not assume that .:J is bounded below.) The weak compactness of U 
yields the existence of a weakly convergent subsequence 'ljJkj -' 'ljJ-, j -+ 00, 

for some 'ljJ- E U. From the weak sequentially continuity of .:J we conclude 
that .:J('ljJkj) -+ :J('ljJ-) and thus .:J('ljJ-) = inf,pEU .:J('ljJ). 0 

As we will see later, some of the most important functionals are not weakly 
continuous. A careful reading of the previous proof shows that this assumption 
can be relaxed. It is useful to make the following definition: 
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Definition 3.2. The functional .:J is weakly sequentially lower semi
continuous on X provided for every sequence {~dk=l converging weakly 
to an element ~ E X we have 

(3.4) 

Analogously, we can define the weakly sequentially upper semi-continuity 
of .:J. 

Notice that a functional .:J is weakly sequentially upper semi-continuous if 
and only if -.:J has the analogous lower semi-continuity property. 

Then we have an existence theorem under the following relaxed assumptions. 

Theorem 3.3. Assume that the functional .:J : X --t ITt is weakly sequentially 
lower semi-continuous and that U c X is weakly sequentially compact. Then 
there exists a ~o E U such that 

.:J(~O) = inf .:J(~). 
'lj;EU 

(3.5) 

Analogously, the maximum is attained for weakly sequentially upper semi
continuous functions .:J. 

As we will show in Theorem 3.30, many of the specific functionals of interest to 
us are weakly lower sequentially semi-continuous or even weakly sequentially 
continuous mappings on X. As a first important example we consider convex 
functions and begin with a definition. 

Definition 3.4. Let X be a normed space. 

(a) A subset U C X is called convex if 

AX + (1 - A)y E U for all x, y E U and A E [0,1]. 

(b) Let U C X be a convex subset. A function .:J : U --t ITt is called uni
formly convex if there exists c > ° such that 

A.:J(~I) + (I-A) .:JC¢2) - .:J(A~l +(I-A)~2) > cA(I-A) 11~1 - ~2112 
(3.6) 

for all ~1' ~2 E U and A E [0,1]. 
(c) The function .:J is called convex if (3.6) holds for c = 0. 
(d) The function is called strictly convex if (3.6) holds strictly for c = ° 

i.e., 
.:J(A~l + (1 - A)~2) < A.:J(~l) + (1 - A) .:J(~2) 

for all ~1 =1= ~2 and A E (0,1). 

Then we have 

Theorem 3.5. Every continuous and convex functional .:J on a Hilbert space 
X is weakly sequentially lower semi-continuous. 
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Proof: Let the sequence {'¢'k}~l converge weakly to some '¢'O E X and 
assume, on the contrary, that 

Then there exists E > 0 and a subsequence {'¢'k j }:l of {'¢'k}k=l such that 

This implies that '¢'k j E A where 

The continuity and convexity of.J imply that A is closed and convex. Further
more, '¢'O 1:. A. The strict separation theorem (Theorem A.46 of the Appendix) 
yields the existence of c E ffi. and ¢ E X with 

Taking'¢' = '¢'k j yields 

and letting j tend to infinity yields Re ('¢'o, ¢ ) x < c ::; Re ('¢'o, ¢) x, a contra
diction. 0 

Remark: We caution the reader that the hypothesis of convexity is crucial 
to this result. In an infinite dimensional Hilbert space functionals which are 
continuous (with respect to the norm) are not necessarily weakly sequen
tially lower semi-continuous as can be seen by simply considering X = £2 and 
.J( '¢') = -ii'¢'iic2. Indeed, the sequence { '¢'(j)} of unit sequences (which consist 
of zeros except at the j -component where it is one) converges weakly to zero 
but .J ('¢'(j)) = -1. 

While these results insure that optimal solutions exist, there is no guarantee 
in general that such an optimal solution is unique. Indeed, several of the cost 
functionals we consider involve a quadratic form and simple examples show 
that such problems may well have multiple solutions. However, uniqueness 
holds if U is convex and .J is strictly convex. 

Theorem 3.6. Let U c X be convex and .J : U --+ ffi. be strictly convex. 
Then there exists at most one minimum of.J on U. 

Proof: Assume, on the contrary, that '¢'O E U and '¢'OO E U are two minima 
of.J on U. From the strict convexity we conclude that 
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where ':1* = inf'I/JEU J('I/;). Therefore, ('1/;0 +'1/;00) /2 yields a smaller value than 
the optimal solutions '1/;0 and '1/;00 which is impossible. 0 

Analogously to Theorem 3.5, closedness with respect to the norm-topology 
plus a convexity property yields weak sequential closedness. 

Theorem 3.7. Let U be a non-empty, closed, convex subset of a normed space 
X. Then the set U is weakly sequentially closed. If U is also bounded and X 
is a reflexive Banach space (e.g. a Hilbert space) then U is weakly sequentially 
compact. 

Proof: Suppose that the sequence {xd~l C U converges weakly to some 
Xo EX. Hence X*(Xk) --+ x*(xo) as k tends to infinity for any X* E X*. We 
wish to show that Xo E U. Suppose, on the contrary, that Xo tf:. U. Then, by 
Theorem A.46 there exists an x* E X* and a constant c E JR. such that 

Re [x*(xo)] < c :s:: Re [x*(x)] for all x E U. 

Substituting x = Xk E U into this chain of inequalities yields 

Re [x*(xo)] < c :s:: Re [X*(Xk)] for all kEN. 

For k --+ 00 this leads to the contradiction Re [x*(xo)] < c:S:: Re [x*(xo)]. 

Now let, in addition, U be bounded and X be a reflexive Banach space. Then 
any sequence {xd~l C U is bounded and, therefore, contains a weakly 
convergent subsequence by Theorem A.56. 0 

3.2.2 The Modeling of Constraints 

In this subsection we study more concrete realizations of the set U of con
straints. First we remark that, by Theorem 3.7, any convex, closed, and 
bounded set in a Hilbert space is weakly sequentially compact. This assump
tion is satisfied for many "simple" constraints as, e.g., power constraints or 
sign conditions. More complicated quantities as, e.g., the super-gain ratio (see 
below) can be rewritten in terms of inequalities of the form g('I/;) :s:: O. Com
bining these with the simple constraints leads to sets U of the form 

U = {'I/;EUo:gi('I/;):S::O, i=l, ... ,p} (3.7) 

where Uo C X describes the simple constraints. 

Theorem 3.8. Let X be a normed space, Uo C X weakly sequentially closed, 
and gi : X --+ JR., i = 1, ... , p, weakly sequentially lower semi-continuous 
functions. Then the set U, defined by (3.7), is weakly sequentially closed. If, 
in addition, Uo C X weakly sequentially compact, and X is reflexive then also 
U C X is weakly sequentially compact. 
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In particular, if X is a Hilbert space sets U of the form (3.7) are weakly 
sequentially compact by Theorem 3.7 and Theorem 3.5 if Uo c X is bounded, 
closed and convex, and all gi are continuous and convex. 

Proof: It suffices to show that sets of the form 

(for any i = 1, ... ,p) are weakly sequentially closed. Let {'¢d~l C U con
verge weakly to some '¢ EX. From the lower semi-continuity of gi we conclude 
that 0 2: liminfj--+oogi('¢kj) 2: gi('¢), i.e. '¢ E U. 0 

We will describe two types of sets Uo of elementary constraints. First, it is 
evident that practical considerations will prevent the creation of surface cur
rents with very large power. Thus, if the space X is L 2(r), we denote the 
currents again by '¢ and consider only surface currents satisfying a condition 
of the form Ir 1,¢(x)12 dB ::; M2 where M is a fixed constant. In this case, 

(3.8) 

This is a simple power constraint and defines a ball in X which is certainly a 
closed, bounded, and convex set. More generally, we could consider constraints 
described by uniformly convex inequalities. 

Lemma 3.9. Let X be a Hilbert space and g : X -----+ lR be uniformly convex 
and continuous. Then the set 

Uo = {'¢ EX: g('¢) ::; o} (3.9) 

is bounded, closed and convex and therefore weakly sequentially compact. 

Proof: The closedness and convexity of Uo follows immediately from, re
spectively, the continuity and convexity of g. It remains to show that Uo 
is a bounded set. To this end, fix '¢O E Uo and let 8 > 0 such that 
Ig(,¢) - g(,¢o) I ::; 1 for all '¢ satisfying II'¢ - '¢oll ::; 8. Define M := Ig('¢o)l- 1 
and observe that g('¢) 2: M for all '¢ E X with II'¢ - '¢oll ::; 8. Let '¢ E Uo, 
'¢ #- '¢o, be arbitrary and set >. = 8/ II'¢ - '¢O II. We consider two cases. If 
>. 2: ~ then II'¢ - '¢oll ::; 20. If >. ::; ~ then we use 1- >. 2: 1/2 and the uniform 
convexity and have 

since 

02: >.g(,¢) + (1 - >.)g(,¢o) 

2: g(>.'¢ + (1 - >')'¢o) + c>.(1- >.) II'¢ - '¢o112 

2: M + c>'(l - >.) II'¢ - '¢o112 = M + cO(l- >.) II'¢ - '¢oll 
cO 

2: M + 2 II'¢ - '¢oll 
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IIA7jJ + (1 - A)7jJO - 7jJo II 8. 

This proves that 

117jJ - 7jJoll < max{28, -2Mj(c8)} for all 7jJ E Uo 

and ends the proof. 0 

This lemma not only includes the case of (3.8) which we can rewrite as g(7jJ) = 
117jJlli - M2, but also others. For example, we may wish to bound both the 
energy in 7jJ and also its oscillations. One simple approach to this requirement 
is to choose some Sobolev space HS(r) (see Appendix, Section A.3.2) for 
X and specify a bound of the type 

Of a completely different nature are pointwise constraints on 7jJ in the case 
that X is some function space. We formulate this class of constraints only 
for the case where the underlying space is L2(r, C q) for some compact set 
r c IRd and q E N although it is possible to extend these considerations also 
to Sobolev spaces. L2 (r, c q) is the space of vector fields 'Ij; : r ----+ C q such 
that every component 7jJj of'lj; is in L2(r). 

Lemma 3.10. Let r c IRd and for each x E r let V (x) C C q be a closed and 
convex set such that Urea V(x) is bounded. Let Uo C L2(r, C q ) be defined by 

(3.10) 

Then Uo c L 2 (r,C q ) is convex, closed, and bounded in L 2(r,C q ) and thus 
weakly sequentially compact. 

Proof: The convexity of the set Uo follows immediately from the convexity of 
the individual sets V (x). To see that Uo is closed, suppose that {'Ij; k} ~1 c Uo 
is a sequence with 'lj;k --+ 'Ij; in L2 (r,C q ). Then there exists a subsequence, 
which we will again call {'Ij;k}~l which converges to the same function 'Ij; 
pointwise almost everywhere in r. Let No be the set of measure zero where 
this convergence fails, and let Nk be the set where 'lj;k(X) tf. V(x). Then 
N:= U{Nk : k = 0, I, ... } is a set of measure zero, and 'lj;k(X) E V(x) for all 
k 2: 0 and x rt- N. Since the set V(x) is closed, 'Ij;(x) E V(x) for all x rt- N. 
This proves that Uo is closed. The boundedness of the set Uo follows from the 
boundedness of Urea V(x). 0 

We remark that in order to guarantee that Uo =I- 0 it is necessary to impose 
some continuity properties on the set-valued mapping x f-i V(x) i.e., of a 
map from the set r to non-empty subsets of C q. 

Since set-valued mappings may not be familiar to the reader, we pause to 
introduce a definition and a background remark. The introduction of such 
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objects can be quite useful in optimization theory where they can be used 
effectively to study continuous dependence results and sensitivity results for 
the optimal solutions of parametrized problems. They are also crucial in the 
study of the existence of optimal solutions. From the point of view of applica
tions, they have been used with great effectiveness in the study of economic 
models and in the area of non-linear programming. Interested readers may 
consult, for example, [22] or [98]. 

In the single-valued case, there is a connection between the graph of the func
tion and its continuity properties. In dealing with the more general notion of 
set-valued mappings we may well need some notions of "smooth dependence" 
of the sets on the independent variables and it is most convenient to make 
these definitions in terms of the graph of the function. For these reasons we 
find it convenient to introduce a definition. 

Definition 3.11. Let r be a subset oj ~d and let P(C q ) be the set oj all 
subsets ojC q . Let Q: r -+ P(C q ) \ {0}. Then the graph ojQ, denoted by 
Gr(Q) is the set 

Gr(Q) := {(x,c) E r x C q : c E Q(x)}. (3.11) 

It is possible to put the structure of a metric space on the set P(C q ), called 
the Hausdorff metric, but we will not find it necessary to do this. It is enough 
for many purposes in optimization theory to require that this set Gr( Q) is, 
say, a closed subset of ~d x C q or that it is a Lebesgue measurable subset of 
this product space. Indeed, this latter requirement is the one used in the next 
result. Requirements of this type are necessary to guarantee that "selections" 
i.e., single valued functions c.p : r -+ C q with the property that c.p(x) E Q(x), 
have nice properties as, for example, continuity or integrability. Theorems of 
this type are called selection theorems (see e.g., [22]). 

With these ideas in hand we return to the set (3.10) and give some examples 
of the occurrence of this type of very general constraint. 

Example 3.12. Let r c ~d. 

(a) Let a+, a-, (3+, (3- : r -+ ~q be functions with values in ~q. The subset 
V (x) of C q defined by 

( ) ._ { q. aj(x) :S Rezj :S aj(x), . _ } 
Vx .- zEC . (3j(x):SImzj:S(3j(x),J-1, ... ,q 

is a hypercube in C q, i.e. an q-fold product of rectangles in C. 
(b) Let a : r -+ ~q and 

V(x) := {z E C q : IZjl :S aj(x), j = 1, ... ,q}. 

Then V (x) is ,a product of disks in C. 

(3.12a) 

(3.12b) 
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(c) Let 8 : r ---i-R and aj > 0, j = 1, ... , q, and 

(3.12c) 

From this example we see that the abstract constraint given by (3.10) in
cludes standard inequality constraints. The constraints in (b) and (c) can be 
summarized as V(x) = {z E C q : f3(z, x) :::; o} for some continuous function 
f3 : Cq x r ---i- R which is strictly convex with respect to z for every x E r. 

3.2.3 Extreme Points and Optimal Solutions 

It is very useful to have some general idea of the character of the optimal 
points of a given functional. In the case where we are interested in maxi
mization of a convex functional simple examples show that we have a useful 
characterization. For such an example, we need only turn to the maximization 
of the parabolic function f(x, y) = x 2 + y2 on disks or rectangles. We expect 
the solution of the maximization problem (3.1) to lie on the boundary of the 
constraint set U and, even more, to be an extreme point of U. For example, 
in the case that the domain is a rectangle in R2, at least one of the corner 
points will be a point where the quadratic function f takes on its maximum. 
More generally, we can introduce a useful definition: 

Definition 3.13. Let X be a normed space and U c X. Then 1jJ E U is an 
extreme point of U if there is no cp E X, cp =I- 0, such that 1jJ ± cp E U. 

In the case of a solid rectangle, it can easily be seen that the corner points 
are extreme points while, for the unit disk, all boundary points are extremal. 
Notice that both of these sets are closed, bounded, and convex. In the more 
general setting of an infinite dimensional Banach space, the existence of ex
tremal points can be guaranteed under similar circumstances by a theorem of 
Krein and Milman (see [48], p. 362). This theorem is one of the fundamental 
principles in functional analysis. 

In our present context that theorem asserts that any non-empty and "suffi
ciently compact" set has at least one extreme point. This fact will be quite 
useful to us when we discuss certain problems with constraint sets defined in 
terms of inequalities involving point values of given functions. It is also useful 
in treating the question of existence of optimal solutions as we will see below. 

While the notion of extreme points is defined only in terms of the linear struc
ture of the space X, it is interesting to note that the existence of an extreme 
point requires sufficiently strong topological assumptions on the set. This is 
the content of the Krein-Milman Theorem. Indeed, we have the following re
sult which is a simplified version of the statement given in [48]. 



3.2 The General Optimization Problem 89 

Theorem 3.14. Let X be a reflexive Banach space3 and suppose that a set 
U C X is non-empty and weakly sequentially compact. Then there exist ex
treme points of U. 

We note that reflexivity of the spaceor a stronger compactness property is 
needed for this theorem. In the following example, the set U is convex, closed, 
bounded, and even sequentially closed but has no extreme points. 

Example 3.15. Consider the unit ball 8 = B[O, 1] C Ll(a, b). Certainly no 
element in the interior B(O, 1) of 8 can be an extreme point nor can any 
point of the boundary. Indeed, choose fELl (a, b) to be any function with 
Ilfll£1 = 1. Let E be a set of positive measure on which f =1= a and let {El' E2 } 

be disjoint sets of positive measure such that El U E2 = E. Let XEi , i = 1,2, 
be the characteristic function of Ei . Define 

fXE 
fi := Ilf XE: II ' i = 1,2. 

Then, for each i, fi =1= f and Ilfill = 1 and so fi E 8 1 , i = 1,2, and 

IlfxEJh + IIfxE211h = fXEl + fXE2 = f XE = f, (3.13) 

since E = El U E 2 . Moreover, 

IlfxE111+llfxE211 = jlf(t)ldt+ jlf(t)ldt = jlf(t)ldt = 1, 
E, E2 E 

since El n E2 = 0. So (3.13) is a non-trivial convex combination of h, h E 8. 
Hence f is not an extreme point. We conclude that 8 c L1 (a, b) has no 
extreme points although it is convex, closed, bounded, and weakly sequentially 
compact. We remark that this example does not work in any of the LP spaces 
where 1 < p < 00 since the Banach spaces LP(a, b) for 1 < p < 00 are all 
reflexive in contrast to L1 (a, b). 

With these results from functional analysis, we can establish the promised 
theorem. Note that we consider the maximization of a convex functional rather 
than the minimization! 

Theorem 3.16. (a) Let X be a Hilbert space, U a bounded, closed, and convex 
subset, and let the functional .:J : U -+ lR be convex and weakly sequentially 
continuous. Then there exist optimal solutions of the optimization problem 

Maximize .:J('ljJ) subject to 'ljJ E U, (3.14) 

and the optimal value is attained at an extreme point of U. 

(b) If.:J : U ~ lR is strictly convex, U C X convex, and 'ljJ0 E U an optimal 
solution of problem (3.14), then'ljJ° is necessarily an extreme point of U. 

3 Again, we note ,that we always assume that the space is also separable. 
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Remark: In part (a) we claim that there exists an extreme point which is 
an optimal solution. This does not rule out the possibility that other solu
tions exist which are not extreme points of U. Simple examples from linear 
programming show that, indeed, such solutions can exist. If strict convex
ity holds, however, then part (b) of this theorem shows that every optimal 
solution must be an extreme point of U. 

Proof: (a) By Theorems 3.7 and 3.1 the set 

tP := {'Ij;0 E U : 'lj;0 is maximal for :J on U} (3.15) 

is not empty. We show, first, that tP is weakly sequentially compact. Since tP c 
U and U itself is closed, bounded, and convex, and thus weakly sequentially 
compact (Theorem 3.7), it is sufficient to show that tP is weakly sequentially 
closed. Indeed, consider a sequence {'Ij;dk'=l C tP which converges weakly to 
some'lj; E U. Since :J is weakly sequentially continuous, :J('Ij;k) converges to 
:J('Ij;). From :J('Ij;k) = sup:J(U) we conclude that also :J('Ij;) = sup:J(U), thus 
'Ij; E tP. From this fact it follows that the set tP is weakly sequentially compact. 
Theorem 3.14 asserts that there exist extreme points of tP. 

It remains to show that every extreme point of tP is also an extreme point 
of U. To prove this, let 'lj;0 E tP be an extreme point of tP. Let 'Ij; E X with 
'lj;0 ± 'Ij; E U. Then 

:J('Ij;0) = :J('Ij;o;'Ij; + 'lj;o;'Ij;) S ~:J('Ij;o+'Ij;)+~:J('Ij;o_'Ij;) S :J('Ij;0) , 

thus :J('Ij;0 + 'Ij;) = :J('Ij;0 - 'Ij;) = :J('Ij;0). Therefore, 'lj;0 ± 'Ij; E tP which implies 
that 'Ij; has to vanish since 1/,;0 is an extreme point of tP. Hence 'lj;0 is also an 
extreme point of U and part (a) is proved. 

We now turn to part (b). Let 'lj;0 E U be optimal and assume that 'lj;0 is not 
an extreme point of U. Then there exists a 'Ij; E X with 'Ij; i- 0 for which 
'lj;0 ± 'Ij; E U. Since the functional :J is strictly convex, we have the inequalities 

which is a contradiction. This proves the assertion of part (b), and the theorem 
is established. D 

For the case that U is the unit ball, the preceding result says that the optimal 
solution will be an extreme point of U. This is not necessarily the case for 
minimizing strictly convex functionals on bounded convex and closed sets. As 
a simple but relevant example of this latter statement consider the problem 
of feeding a single dipole so its far field matches a desired far field: 

Example 3.17. Let k > 0, y E ]R3, and f E L2(S2) be given and K : C ----+ 
C(S2) be defined by 
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(ICa) (x) = -iky·'" ae , X E 8 2 C lR.3 , a E <C . (3.16) 

The problem is to minimize the L2-norm of (ICa - f) with respect to lal :::; l. 
In this case, the cost functional is given by 

:rea) = IIICa - fll~2(S2) = r lae-iky.", - f(x)1 2 d8(x) lS2 
= 47f lal 2 - 87f Re [a c] + Ilfll~2(S2) 

= 47f la - cl 2 + Ilfll~2(S2) - 47f 1c1 2 , 

where c = 4; 1S2 exp(iky· x) f(x) d8(x). From this we conclude that aO = c 
is the unique minimum of :r on U = {z E <C : Izl :::; 1} if Icl < 1 which is in 
the interior of U. If Icl ;::::: 1 then the unique solution is aO = c/lcl which lies 
on the boundary of U. 

In order to illustrate the preceeding ideas, we consider, next, the particular 
types of constraint sets that we introduced in Subsection 3.2.2 and which 
we use in specific applications later in Chapter 7. In particular we look first 
at the case when the constraint set is given in terms of a finite number of 
inequalities involving real-valued functionals defined on X. In some sense, this 
is the classical case in optimization familiar from applications of non-linear 
programming. As a second example, we treat the case of pointwise constraints 
in the general form of so-called unilateral constraints, in which the conditions 
are given pointwise almost everywhere on the domain T. The nature of the 
extreme points is very different in these two cases as is the nature of the 
optimal solutions. 

We begin by taking the set U to be of the form 

U := {?j! EX: g(?j!) :::; O}, (3.17) 

where 9 : X --+ lR. is some continuous and uniformly convex function. Then we 
know from Lemma 3.9 that U is closed, convex, and bounded. More concretely, 
we could take g(?j!) = 11?j!11~ - 1 in which case U reduces to the unit ball in 
X. It is very easy to show that the extreme points of U are just the boundary 
points of U: 

Lemma 3.18. Let X be a Hilbert space, 9 : X --+ lR. continuous and strictly 
convex, and U given by {3.17}. Then the set ext U of extreme points of U 
coincides with the set, au, of boundary points, i. e. 

extU = au = {?j!EX:9(?j!)=O}. (3.18) 

Proof: Let ?j!E ext U and assume on the contrary that g(?j!) < O. From the 
continuity of ?j!we conclude that g(?j! ± 'P) :::; 0 for sufficiently small II'PII. This 
contradicts the assumption that ?j! is an extreme point. Conversely, suppose 
?j! E au and assume that there exists 'P E X with 'P i=- 0 and ?j! ± 'P E U i.e., 
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g( 'IjJ ± 'P) :S O. Then, since 9 is strictly convex, 0 = g( 'IjJ) = 9 ( '<P~<P + '<P-:;'P) < 
~g('IjJ + 'P) + ~g('IjJ - 'P) :S 0, which is a contradiction. This proves that 'IjJ is 
an extreme point. D 

We can conclude, in light of this result, that we can concentrate on finding 
optimal solutions which lie on the boundary of the constraint set i.e., for 
admissible functions on which the constraints are active. In particular, in the 
case that we take the simple but important example 

g('IjJ) := 11'ljJ11~ - 1, 

we can expect that we will obtain optimal solutions of unit norm in X. 

Let us contrast this situation with the case that the constraint sets U involve 
pointwise constraints such as, e.g. sign conditions on 'IjJ. We must first specify 
the underlying Hilbert space. For simplicity we take X = L2(r, ceq) where 
r c IRd , d = 2 or 3, is the C 2 -boundary of an open and bounded set with 
connected exterior. We then define the set U by 

U := {1/J E L2(r, ceq) : 1/J(x) E V(x) a.e. on r} (3.19) 

where x r-+ V(x) C ceq is some set-valued function defined for x E r. 
In applications to antenna theory, we will study specific choices of this set
valued map V. Here we wish to characterize the extreme points of the set 
U, defined by a set-valued function, under only a mild regularity condition. 
Specifically, we can prove: 

Lemma 3.19. Let the set-valued function x r-+ V(x) E ceq, defined on r, 
have a Lebesgue-measurable graph and define U by (3.1 g). Then 

ext U = {1/J E L2(r, ceq) : 1/J(x) E ext V(x) a.e. on r}. 

Proof: From the definition of an extreme point it is clear that the set on the 
right is contained in ext U. Now let 'IjJ be an extreme point of U and define 
the set-valued map 

W (x) : = {z ED: 1/J (x) ± z E V (x) } for x E r , 
where D is the poly-disk {z E ceq : IZjl :S 1, j = 1, ... ,q}. Then the graph 
Gr(W) of W is measurable since 

Gr(W) = (rxD) n Gr(V-1/J) n Gr('IjJ-V) 

and the graphs of ±(V - 1/J) are measurable in r x ceq. The proof will be 
complete if we can show that W(x) = {O} almost everywhere on r. 
Assume the contrary, that is, assume that there is a set of positive measure 
Ie r on which W(x) -=I- {O}. Using a measurable selection theorem (see [22]) 
we can choose a measurable function i.p, defined on r, with i.p(x) E W(x) and 
i.p(x) -=I- 0 for all x E I. Since this selection is bounded, i.p E L2(r, ceq), i.p -=j. 0, 
and 1/J ± i.p E U this contradicts the fact that 1/J E ext U, and the proof is 
complete. D 
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Example 3.20. Let the set Vex) be given as 

( ) ._ { q. aj(x) ::; Rezj ::; alex), . _ } 
V x .- z E C . f3j(x) ::; Imzj ::; f3j(x), J - 1, ... , q , (3.20a) 

or 
Vex) := {z E cq: f3(z,x)::; o} (3.20b) 

for some a±, f3± : r ---7 lRq and some continuous function f3 : Cq x r ---7 lR 
which is assumed to be strictly convex with respect to z for every x E r. 
Then the extreme points are those which satisfy 

Zj=aj(x)+if3j(x), j=l, ... ,q, O",pE{+,-}, or f3(z, x) =0, 

respectively, for almost all x E r. 

3.2.4 The Lagrange Multiplier Rule 

One of the important strategies in dealing with optimization problems is to 
develop necessary conditions for optimal solutions. As in the case of finite
dimensional constrained optimization problems, the use of the Lagrange mul
tiplier rule is often very convenient in this regard. Its formulation involves the 
derivatives of the cost functional :J : X ---7 lR and the functionals which de
scribe the constraint set, see Section A.7. We note that we consider here X as 
a Hilbert space over lR - even if it is, e.g., a space of complex-valued functions. 
The Frechet derivative of such a functional :J at 'lj;0 E X is described by 
the gradient 'V:J ( 'lj;0) E X through 

as iicpiix tends to zero. 

First, we prove a familiar necessary condition for an optimal solution in the 
form of a variational inequality. 

Lemma 3.21. Let X be a Hilbert space, U c X be convex and closed, and 
:J : X ---7 R Let 'lj;0 E U be a minimum of:J on U. Let :J be continuously 
Frechet differentiable in'lj;° with gradient 'V:J( 'lj;0) EX. Then 

(3.21) 

Proof: Let 'ljJ E U. Then 'lj;>-.:= 'lj;0+>"('lj;_'lj;0) E U for every>.. E (0,1]. Using 
the optimality of 'lj;0 we conclude that 

o ::; ~ [:J('lj;>-.) - :J('lj;0)] 

= Re ('V :J('lj;0),,'lj; - 'lj;0) x + ~ [:J('lj;>-.) - :J('lj;0) - Re ('V :J('lj;0) , 'lj;>-. - 'lj;0) x]. 
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Letting A tend to zero yields the desired inequality (3.21) since, by the differ
entiability of .1, 

as A tends to zero. 0 

For the Lagrange multiplier rule it is assumed that the set U can be described 
by equations or inequalities. We restrict ourselves to the case of inequalities, 
i.e. U c X is described as 

U = {'1j;EX:gj ('1j;)::; 0, j=l, ... ,m}, 

where 9 ; X ----t lR.m is some vector valued function (see (3.7)). We call 9 
Frechet differentiable if every component gj : X ----t lR. is differentiable. 

Theorem 3.22. Let X be a Hilbert space, .1 ; X ----t lR. and 9 : X ----t 
lR.m be continuously Frechet differentiable, and '1j;0 E X be a solution of the 
optimization problem 

Minimize .1 ( '1j; ) sub j ect to { '1j; E X and 
gj('1j;) ::; 0, j=l, ... ,m. 

(3.22) 

Let the following constraint qualification be satisfied: There exists {j; E X 
with 

(3.23) 

Then there exist Lagrange multipliers, i.e. real numbers PI, ... , Pm ~ 0, 
such that 

m 

V.1('1j;°) + LPjVgj ('1j;°) =0, and (3.24a) 
j=l 

(3.24b) 

Remarks: This theorem assumes the existence of an optimal solution which 
must be assured by different methods e.g., by Theorems 3.1 or 3.3. The ex
istence of Lagrange multipliers is only a necessary condition for '1j;0 to be 
optimal; in general, this condition is not sufficient. Maximization problems, 
where one wishes to maximize a functional .1 instead of to minimize it, are 
obviously converted into minimization problems just by replacing .1 with -.1. 
The corresponding Lagrange multiplier rule differs only in that the plus sign 
in (3.24a) is now replaced by a minus sign. 

The second condition (3.24b) implies that only multipliers Pj for active con
straints have to be introduced. Here a constraint gj ('1j;) ::; 0 is called active 
for '1j;0 if gj ('1j;0) = o. Indeed, if gj ('1j;0) < 0 then (3.24b) implies that Pj = O. 

The form (3.23) of the constraint qualification can be written differently by 
using active ant;! inactive constraints. Let A('1j;°) C {I, ... , m} be the set of 
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the active constraints for t/J0. Then (3.23) is equivalent to the existence of 

~ E X with 
Re(\lgj(t/J°),~)x < 0 foralljEA(t/J°). 

Indeed, for j ¢'. A( t/J0) we have that gj( t/J0) < 0 and the inequality in (3.23) is 

always satisfied if we choose ~ small enough. 

It will be useful to know that the constraint qualification (3.23), sometimes 
referred to as a generalized Slater condition, implies that there exist admissible 
functions on which the constraint is inactive. 

Lemma 3.23. Assume, that 9 is Prichet differentiable in some t/J0 EX, and 
that the constraint qualification (3.23) is satisfied for some ~ E X. There 
exists 1jj E X with 

gj (1jj) < 0, j = 1,2, ... , m. (3.25) 

Proof: For each integer j we consider the trivial identity 

gj(t/J0 + c~) = [gj(t/Jo + c~) - gj(t/J0) - Re (\lgj(t/J°),c~)x] 

+ c [gj(t/JO) + Re (\lgj(t/J°),~)x] + (1- c)gj(t/J°). 

If we set 

771(10) := . max Igj(t/JO + c~) - gj(t/J0) - Re (\lgj(t/JO), c~) xl and 
J=l, ... ,m 

772 := . max [gj(t/JO) + Re (\lgj(t/J°),~)x] < 0 
]=l, ... ,m 

then we can make the estimate 

gj(t/J°+c~)::; 771(c) + 10772 + 

= c [~ + 772 

<0 

(1 - c) gj(t/J0) 

+ (1 - c) gj (t/J0) < O. 
~ 

so 

The term in the bracket [ ... J is strictly less than zero for sufficiently small 
c > 0 since limc:-+o (771 (c) / c) = 0 by the definition of the derivative. This 

proves the lemma by taking 1jj = t/J0 + c~. 0 

Remark: As noted before, a constraint ofthe form Iit/Jllx ::; 1 can be rewritten 

as an inequality go(t/J) := Iit/JII~ - 1::; O. Since its gradient is \lgo(t/J°) = 2t/J° 
the constraint qualification (3.23) takes the form: 

There exists ~ E X with 
gj(t/J0) + Re(\lgj(t/J°),~)x < O,j=l, ... ,m, and (3.26) 
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The results collected in this subsection form the basis of much of the numerical 
computations that we make in the remaining part of the book. But it is 
important to reiterate a fundamental point. The use of Lagrange multipliers, 
or any other necessary condition is predicted on the fact that we know that 
an optimal solution exists. 

3.2.5 Methods of Finite Dimensional Approximation 

This subsection is devoted to a general method for the numerical treatment 
ofthe optimization problem (3.1). Again let X be a Hilbert space e.g., L2(r), 
and Xn C X a sequence of finite dimensional subspaces. Here, we make only 
the assumption that these subspaces are ultimately dense in X (see [73]), 
i.e. that Xn C X n+1 for all n and Un Xn is dense in X. 

There are many concrete ways to generate such an ultimately dense sequence 
of finite dimensional (and therefore closed) subspaces. Experience shows that 
particular problems suggest a particular choice of this sequence of subspaces, 
and that choice may well effect the convergence of the solutions of the finite 
dimensional problems to a solution of the full infinite dimensional one. For 
example, in the case X = L2(r) where r is the smooth boundary curve of a 
plane region, we can think of Xn as being spaces of trigonometric functions 
(with respect to the parameterization of the curve r), or spaces of continu
ous, piecewise polynomials (boundary elements). It is, however, also possible 
to use a family of linearly independent solutions of the underlying differen
tial equation without necessarily satisfying any additional (e.g., boundary) 
condition and which is complete or fundamental in the space X. We refer 
to Subsect'ion 5.5.2 for examples. These methods can be used to solve both, 
the boundary value problem and the optimization problem. We refer again to 
Subsection 5.5.2 and Chapter 7 for more details. 

Now we pose a finite dimensional version of the optimization problem (3.1): 

Minimize :J(1/J) subject to 1/J E Xn n U. (3.27) 

Before we prove the main theorem we need the following approximation result 
with respect to the sets Xn n U: 

Lemma 3.24. Let Xn C X be a sequence of subspaces such that Un Xn is 
dense in X and, furthermore, let U C X be a convex set with nonempty 

o A 

interior U. Then, for every 1/J E U there exists a sequence 1/Jn E Xn n U with 
1/Jn ---+ ,(j; in X. 

Proof: Fix some 1/Jl E U and define 1/J). .- ,(j; + A(1/Jl - ,(j;) for A E [O,lJ. 
. 0 

First we show that 1/J). E U for all A E (0, 1J. Indeed, let E > a be such that 
B(1/Jl , E) C U where again B(1/Jl , E) denotes the open ball with center 1/Jl and 
radius E. Then B(1/J)., fA) C U since if1/J E B(1/J).,EA) then we observe from 
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11~+~(7fJ-~)-7fJ111 = ~ II7fJA-7fJ11 

that ~ + t(7fJ -~) E B(7fJ1 , E) CU. Therefore, 

7fJ = .x[~+~(7fJ-~)] + (1-A)~ E U. 

Thus we have shown that ~+;, (7fJ1 -~) E U for every n EN. By the hypotheses 
of the lemma, for every n E N there exists mn E Nand 7fJmn E Xmn with 

We can also assume that {mn } is a strictly increasing sequence. Therefore, 
7fJmn E Xmn n U and 

which tends to zero as n tends to infinity. Setting 7fJp = 7fJmn E Xmn C Xp for 
mn :s:; p < m n+1 yields that 7fJp -+ ~ as p -+ 00. This ends the proof. 0 

We note that the assumption that U has interior points is crucial for the 
construction. Sets defined by pointwise constraints as e.g., in (3.10), may well 
have empty interiors in L2-spaces. This will require a different approximation 
scheme which we will discuss below. But first we continue with the main 
approximation result: 

Theorem 3.25. Assume that .:J : X ---+ IR is continuous and weakly lower 
sequentially semi-continuous, the set U is closed, convex, and bounded with 
nonempty interior. Assume, furthermore, that Xn C X, n = 1,2, ... , is a 
sequence of finite dimensional subspaces such that Xn C Xn+l for all nand 
Un Xn is dense in X. Then, there exists no E N such that Xn n U =I- 0 for all 
n 2: no, and the optimization problems (3.27) have optimal solutions for n 2: 
no· Furthermore, any sequence {7fJ~} :=1 C Xn n U of optimal solutions has 
weak accumulation points and every such weak accumulation point is optimal 
for the minimization of.:J on U. Finally, the optimal values .:J~ := min {.:J( 7fJ) : 
7fJ E Xn n U} converge to the optimal value.:J° := min{.:J(7fJ) : 7fJ E U}. 

Proof: From the previous lemma, it follows that Xn n U =I- 0 for sufficiently 
large n. Moreover, the existence of optimal solutions follows directly from the 
fact that xnnu is again weakly sequentially compact (and even compact since 
Xn is finite dimensional). Since {7fJ~}~=1 C U, and U is weakly sequentially 
compact, there exist weak accumulation points of {7fJ~} ~1' Let 7fJo E U be 
such a weak accumulation point and 7fJ~. ----' 7fJo weakly in X as j -+ 00. 

J 

Furthermore, let ~ E U be any optimal solution of (3.2) and ~n E (Xn n U) 
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with (/;n -+ (/; as n -+ 00. The existence of such a sequence is assured by the 
previous lemma. Then we consider the following chain of inequalities: 

::; lim sup J::j ::; li~ sup J ( (/;nj ) = J ((/;) = J O • 

)-+00 )-+00 

This shows that equality holds everywhere and, in particular, that 'ljJ0 is min
imal for J on U and J:; converges to J O as j tends to infinity. This implies 

J 

convergence of the sequence {J:;}~=I itself since it is monotonically non-
increasing. This ends the proof. 0 

Remark: Concerning the hypothesis on the functional J, we remark that the 
requirement that J be continuous is weaker than the alternative hypothesis 
that J be weakly continuous. While the proof here, mutatis mutandis, is valid 
in the case that J is weakly continuous, we use the weaker hypothesis. 

The approximation of the optimization problem formulated in (3.27) does not 
take into account the approximation of the functional J itself or of the con
straint set U. In practice, however, both the cost functional and the constraint 
set must be approximated as well. Thus one must consider the optimization 
problem 

Minimize In('ljJ) subject to 'ljJ E Un (3.28) 

where Un C Xn is some approximation of U C X and In : Xn ---+ lR is 
some approximation of the original functional J : X ---+ R The assertion 
of Theorem 3.25 remains true (with the same proof) if the following set of 
conditions is satisfied: 

(i) If'ljJn E Un, 'ljJn ----' 'ljJ weakly, then 'ljJ E U and liminfn-+oo In('ljJn) 2: J('ljJ); 
(ii) If'ljJn E Un, 'ljJn -+ 'ljJ strongly, then limn-+oo In('ljJn) = J('ljJ); 
(iii) Every Un is closed and convex and Un Un is bounded; 
(iv) For every 'ljJ E U there exist 'ljJn E Un with 'ljJn -+ 'ljJ. 

Before we investigate a different approximation scheme which does not re
quire that the constraint set has interior points, we recall the notion of an 
projection operator on a convex set. Let U C X be a closed and convex 
subset of a Hilbert space X. By Theorem A.I3, for every 'ljJ E X there exists 
a unique element P('ljJ) E U with IIP('ljJ) - 'ljJ11 ::; Ilip - 'ljJ11 for all ip E U. Also, 
P( 'ljJ) E U is uniquely determined by the variational inequality 

Re(P('ljJ)-'ljJ,P('ljJ)-ip)x::; 0 forallipEU. (3.29) 

This construction defines, in general, a nonlinear, continuous (even Lips
chitzian) operator P : X ---+ U c X. Indeed, substitute ipl = P('ljJ2) E U and 
ip2 = P( 'ljJI) E U in the inequalities 
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Re(P('lh)-'lh,P('¢d-CPl)::; 0 and Re('¢2-P('¢2),CP2-P('¢2))::; 0 

and add the results. This yields Re (P('¢l)-'¢l +'¢2-P(,¢2) , P( '¢d-P( '¢2)) ::; 
o and thus, by the Cauchy-Schwarz inequality, 

IIP('¢d - P('¢2)11~ ::; Re ('¢l - '¢2, P('¢l) - P('¢2)) 

::; IIP('¢l) - P('¢2)llx 11'¢1 - '¢211x . 

From this inequality we may conclude that IIP('¢d - P('¢2)llx ::; 11'¢1 - '¢211x 
and, in particular, that P is continuous. Also, we note that P( cp) = cP for all 
cP E U. 

We consider two examples to illustrate this idea of projection onto a convex 
set. 

Examples 3.26. 

(a) First, define U to be the ball with center 0 and radius R > o. Then 
P: X ----+ U c X is given by P('¢) = min{l, R/ II'¢II} '¢ for '¢ EX. This 
is easily seen by checking that the variational inequality is satisfied for this 
choice of P. To do this, let II'¢II ;:::: Rand cP E U and set ,(fJ = R,¢/II,¢II· 
Then 

Re (,¢-,(fJ, cP-,(fJ) = (l-R/II'¢II)Re (,¢, cP-,(fJ) 

= (1- R/ II'¢II) [Re (,¢, cp) - R II'¢II] ::; 0 

by the Cauchy-Schwarz inequality and Ilcpll ::; R. Therefore, ,(fJ = P('¢). 
(b) As a second example we consider sets with empty interior of the form 

(3.10), i.e. 

where V c Cq is a closed and convex set. Then, for every z E Cq there 
exists the unique best approximation Q(z) E V of z in V. By integrating 
the variational inequality at the point z = 'IjJ(x) with respect to x, it is 
immediately seen that the orthogonal projection P : L2(T, Cq) ----+ U c 
L2(T,Cq) is given by P('IjJ)(x) = Q('IjJ(x)) , x E T, 'IjJ E L2(T,Cq). 

The nonlinear projection mapping P allows us to rewrite the optimization 
problem (3.1) as an unconstrained problem in the form 

Minimize .:J (P( '¢)) on X . 

Furthermore, if we assume that U is bounded and contained in the ball with 
center 0 and radius R > 0 then it is easily seen that we can even add the 
additional constraint 11'¢llx ::; R, and so study the optimization problem 

Minimize .:J(P('¢)) subject to '¢ EX, 11,¢llx ::; R. (3.30) 

Indeed, the proof of the following lemma is very simple and left to the reader: 
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Lemma 3.27. If 'ljJ0 E X with 11'ljJ°llx ~ R solves (3.30) then P('ljJ°) E U 
is optimal for the minimization of .:J on U. If, on the other hand, 'ljJ0 E 
U is optimal for the minimization of .:J on U then 'ljJ0 also solves (3.30). 
Furthermore, the optimal values of both optimization problems coincide. 

We note that, in general, the performance functional .:J 0 P of (3.30) is no 
longer weakly sequentially lower semi-continuous since P is not weakly con
tinuous in general. Nevertheless, the form (3.30) now suggests the following 
approximation scheme: 

Minimize .:J(P('IjJ)) subject to 'IjJ E X n , 1I'ljJllx ~ R. (3.31) 

We can prove the following theorem in a manner analogous to the proof of 
Theorem 3.25. 

Theorem 3.28. Assume, as before, that .:J : X -----+ 1R is continuous and 
weakly sequentially lower semi-continuous and that the set U is closed, convex, 
and bounded with 1I'ljJllx ~ R for all 'IjJ E U. Assume, furthermore, that Xn C 

X, n = 1,2, ... , is a sequence of finite dimensional subspaces such that Xn C 
X n+1 for all n and Un Xn is dense in X. Then there exist optimal solutions of 
(3.31) for all n E N. If 'IjJ~ E Xn is optimal for (3.31) then {P('IjJ~)} :=1 C U 
contains weak accumulation points and every such weak accumulation point 
is optimal for the minimization of.:J on U. Again, the optimal values .:J:: := 

min{.:J(P('IjJ)) : 'IjJ E X n , 1I'ljJllx ~ R} converge to the optimal value .:J0 := 

min{.:J('IjJ) : 'IjJ E U}. 

Proof: The existence of optimal solutions follows directly from the fact that 
the performance functional is continuous and the constraint set {'IjJ E Xn : 
1I'ljJllx ~ R} is compact since it is a closed and bounded set in a finite dimen

sional space. Since {P('IjJ~)} :=1 C U and U is weakly compact there exist 

weak accumulation points of the sequence {P( 'IjJ~)} :=1' Let 'ljJ0 E U be such a 
weak accumulation point and P('IjJ~) --' 'ljJ0 weakly in X. Furthermore, again 

J 

let {f; E U be any optimal solution of (3.2) and {f;n E Xn be a sequence with 
II{f;nll ::; R and which converges to (f;. Then we consider the following chain of 
inequalities: 

.:J0 ~ .:J('ljJ0) ~ liminf .:J(P('IjJ~.)) = liminf.:J:: 
}-+oo J }-+oo J 

::; lim sup .:J::j ::; lim sup .:J (P( (f;nj )) = .:J (P( (f;)) 
}-+oo }-+oo 

The remaining parts of the proof are completed just as in the proof of Theo
rem 3.25. 0 

As before, in this theorem we have not taken into account the approximation 
of either .:J or of the set U. If we make the same assumptions (i) - (iv) 
as for problem (3.28), then we may consider the more realistic approximate 
optimization problem 
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Minimize In(PuJI/J)) subject to 'l/J E X n , 11'l/Jllx:::; R, (3.32) 

where PUn denotes the projection on Un and R is the radius of a ball containing 
the union Un Un. The assertion of Theorem 3.28 carries over to this case if 
we make the proper assumptions on Un and .:In. 

3.3 Far Field Patterns and Far Field Operators 

Up to this point, we have discussed constrained optimization problems in a 
very general way. Our ultimate goal is to apply the results of that discussion 
to problems of electromagnetic radiation. Our approach to such applications 
is to pose optimization problems in terms of functionals which relate the 
boundary data on a radiating structure to the far field pattern produced by 
that boundary data. In other words, the functionals to be optimized will be 
expressed in terms of the far field operator JC which maps the admissible 
boundary currents to the far field pattern. In Chapter 1 we studied simple 
antenna models and formulated the optimization problems in terms of far 
field operators. As we have seen in Chapter 2, formulas (2.31a), (2.31b) and 
(2. 72a )-( 2. 72c), far field patterns are intrinsically connected with the radiation 
of electromagnetic waves. Every change of the parameters of the system will 
evidently lead to a change of the far field. This dependence is what we model 
by the operator JC. 

We will restrict ourselves to the case where the geometry, the spacing, the wave 
number, and other constitutive parameters are fixed and only the current 'l/J is 
at our disposal. In most of these cases, the far field JC'l/J depends linearly on 'ljJ 
i.e., the far field operator JC is a linear operator defined on some linear space. 
In some important cases as e.g., the finite array case, this operator is explicitly 
given. However, in many other cases only some properties of this operator can 
be derived and the operator itself has to be computed numerically. Some 
examples will be given below. To cover a variety of practical situations with 
one theory we take JC to be simply a linear operator from some Hilbert space 
X over the field <C of complex numbers into the space C(Sd-l) of continuous 
functions on the unit sphere in ]R3 (if d = 3) or the unit circle in]R2 (if d = 2). 
We call JC'l/J the far field pattern corresponding to 'l/J. As typical examples for 
the space X we can take subspaces of the space C(r) of continuous functions 
on some compact set or, if we allow jumps, subspaces of L2(r). Again, we 
denote the elements of the space X by 'l/J. Analogously, without distinction 
in notation, C(Sd-l) could be either the space of continuous scalar functions 
f : ]Rd ::J Sd-l -----+ <C or be a space of continuous tangential vector fields 
f : ]Rd ::J Sd-l -----+ <cd, i.e. satisfy f(x) . x = 0 for all x E Sd-l C ]Rd. In 
either case, C(Sd-l) is a Banach space with respect to the norm 

IlfIIC(Sd-l) = ,max If(x)l, f E C(Sd-l) 
mESd - 1 

(3.33) 
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where lal denotes the complex modulus if a E e (a complex number) or lal 
denotes the vector norm lal = v,,£f=1IajI2 if a E eN (a complex vector). 
Notice that we will not distinguish typographically between scalar and vector 
far fields except in specific examples, as the nature of the far field will be 
evident from the context. 

We assume, furthermore, that the far field operator 

is also compact. This means that the image {JC7jJn}~=l C C(8d-l) of every 
bounded sequence {7jJn}~=l C X contains a subsequence which converges uni~ 
formly to some continuous function on 8d-l, see Section A.5 of the Appendix. 

As a first example we refer to the case of an array of 2N + 1 elements· at 
locations Yn E lR3 , n = -N, ... , N, as discussed in Chapter 1. In this case, JC 
is given by 

N 

(JCa)(x) = L ane-ikYn'&, xE82clR3,a=(a_N, ... ,aN)TEe2N+1. 
n=-N 

(3.34) 
We note that, for this example, the dependence of JC on the parameters k and 
Y n is explicit. Here we choose X to be the finite dimensional space e2N+ 1 , 

equipped with the usual Euclidean norm, and note that JCa E C(82 ) is a 
scalar function. This operator JC : e2N+1 -+ C(82 ) is certainly compact 
since X is finite dimensional. 

As a second example we refer to the case of a line source of arbitrary shape. 
In Subsections 1.5.1 and 1.5.2 we considered linear line sources and circular 
line sources, respectively. Their far field patterns have the general form 

Eoo(x) = Ixx(pxx)lj7jJ(y)e-ik&'Yd8(Y), xE82 , 

G 

where C E lR3 denotes the shape of the curve. The part 

f(x) = j 7jJ(y) e-ik&.y d8(y), x E 8 2 , 

G 

(3.35) 

is the line factor. In this example the operator JC can be either defined as 

or as 

(JC7jJ) (x) = f(x) = j 7jJ(y) e-ik&.y d8(y), x E 8 2 , 

G 

(3.36a) 

(JC7jJ) (x) Ixx(pxx)1 f(x) Ixx(pxx)1 j 7jJ(y)e- ik&·Y d8(y) , (3.36b) 

G 
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:i: E 8 2 , depending on whether one wants to formulate the quantities as direc
tivity or signal-to-noise ratio (see Section 3.4) in terms of the line factor or the 
far field. In any case, the operator lC is also given explicitly but through an 
integral instead of a finite sum. Here, X must be an infinite dimensional func
tion space as, e.g., a subspace of C(r) or of L2(r) or of some Sobolev space. 
In all these settings, the operator lC given by (3.36a) or (3.36b) is compact. 

As a third, and more general, case recall that we introduced the notion of the 
far field Eoo associated with any radiating solution of Maxwell's equations (see 
§ 2.9). In the cases where the generating sources lie outside the antenna as 
e.g., for the slot or reflector antennas, the components of the electromagnetic 
field must satisfy certain boundary conditions at the surface of the antenna. 
Typical boundary conditions were discussed previously in Section 2.11. In 
these cases, the currents 'ljJ enter at the right hand sides of the boundary 
conditions. The fact that the corresponding boundary value problems have 
unique solutions allows us, once again, to write the far field Eoo symbolically 
as lC'ljJ. In these cases, however, the operator lC is not known explicitly but 
is only described implicitly through, e.g., boundary integral equations (see 
Section 5.3 or Section 6.2). Nevertheless, our analysis of the far field patterns 
in Chapters 5 and 6 will show that Eoo is analytic, a fact which implies that 
the operator lC from X into C(8d - 1 ) is well defined. However, we still have to 
specify concretely the space X of admissible input currents, and this choice is 
dictated by the exterior boundary value problem or, more exactly, our proof 
of the existence and uniqueness theorem (see Theorem 6.8) for that problem. 
Indeed, the existence of the operator lC can be established only by such an 
existence and uniqueness proof, and its properties depend on the choice of 
space of boundary values. For all relevant cases, however, the operator lC is 
not only bounded but even compact. 

3.4 Measures of Antenna Performance 

Having looked carefully at the properties of the far field operator lC in the 
preceding section, we turn to the description of particular functionals that are 
traditionally of interest in the mathematical theory of antenna optimization. 
Our object is to specify the form of these functionals all of which involve the 
far field and to determine which of their properties as, for example, continuity 
or sequential upper-semicontinuity, properties that were discussed earlier in 
this chapter, are relevant to the various optimization problems. 

Traditional measures of antenna performance involve a number of scalar quan
tities including directivity, gain, and signal-to-noise ratio. Other criteria may 
also be useful-as, for example, in the classical Dolph-Tschebyscheff problem, 
the beam width and the side-lobe level. We have given precise definitions in 
Chapter 1 for the case of arrays and line sources. In this section, we will 
consider the analogous criteria for more general structures. They are usefully 



104 3 Optimization Theory for Antennas 

expressed in terms of the quantities that we have introduced in Chapter 2, 
namely far field patterns E oo , surface currents, and power Poo . In general it 
is not possible to express the far field pattern as a product of a single term 
representing a "reference source" and an "array factor". It is for this reason 
that we use the simple notation f to represent the actual far field Eoo. No 
problem occurs if one changes f to be a "factor" only, i.e. differs from Eoo by 
just a multiplicative factor which is independent of the feeding. Once again 
we write 'l/J for the current. 

We begin with the quantity called directivity (compare with the Defini
tion 1.1). 

Definition 3.29. The directivity of an antenna in a given direction x E 8 2 

is, as in (1.20), 

(3.37) 

The quantity 4~ IS2 If(x')12 d8 is the total power radiated into the far field, 
see Section 2.9. 

Using the representation (3.37) and the relation f = K'l/J, the directivity Df(x) 
may also be written as 

(3.38) 

Here, we indicate the feeding, 'l/J, instead of the far field pattern, f. 

The gain of an antenna, measured with respect to a given direction is usually 
defined as the ratio of the power radiated in that direction to the power 
field fed to the antenna. As there is always some dissipative loss and we are 
ignoring the questions of the efficiency of the feeding mechanism by which 
power fed to the antenna is converted into surface current 'l/J, we will use the 
term radiation efficiency (see (1.54a)) for the quantity 

G (x) = If(xW = I(K'l/J)(x)1 2 x E 8 2 , 

,p 11'l/J11~ 11'l/J11~' 
(3.39) 

and the corresponding maximal radiation efficiency max { G,p (x) : x E 8 2 }. 

In this context we consider 11'l/J11~ as a measure of the power fed to the antenna. 
The quantity G,p(x) coincides with the usual concept of gain only if all the 
power fed to the antenna were converted to surface current. 

Likewise, the concept of quality factor or, briefly, Q-factor, which has been 
introduced by various authors in various ways (see e.g., [115]), will be defined 
in this book as 

(3.40) 
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This definition is connected with the far field operator K in a fundamental 
way. Specifically, we can compute the norm of the operator K considered as 
a mapping between the Hilbert spaces X and L2(82) and find 

(3.41) 

and hence 
1 

J~~ Q,p = IIKI1 2 ' 
(3.42) 

The notions of directivity and radiation efficiency as given above by (3.37) and 
(3.39), respectively, represent an idealization of quantities that can actually 
be measured. It is more realistic to interpret measurements of the intensity 
in the far field as averages over (perhaps small) patches of the unit sphere. In 
particular, let a(x) denote the characteristic function of a measurable sector 
A of the unit sphere 8 2 Le., 

a(x) = {I, 
0, 

X EA, 
x~A. 

(3.43) 

Then we may generalize the concepts of directivity and radiation efficiency 
in a particular direction by replacing the expression If (x) 12 with an average 
over a sector containing the particular direction x: 

Then 

and 
Ila(K1P) 11~2(S2) 
Ilall~2(S2) 111P11~ , 

(3.44) 

(3.45) 

are, respectively, the generalized directivity and radiation efficiency in 
the sector characterized by a. We drop the index a in the notation when 
there is no chance of confusion. We remark that, if the sector is the entire 
unit sphere, then . 

1 
D,p,a = 1 and G,p,a = . 

47rQ,p 
(3.46) 

Thus the problem of maximizing the reciprocal of Q is a special case of max
imizing the radiation efficiency. If we define the operator aK : X ~ L2(82 ) 

by 
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(odC)'Ij;(x) := a(x) (K'Ij;) (x) , x E 8 2 , 'Ij; EX, (3.47) 

then the maximum radiation efficiency is given by 

(3.48) 

These definitions and examples will give the reader an idea of some of the 
possible intrinsic criteria that can be used to measure the performance of 
antennas. To these we may add other functionals which are commonly used 
in the problem of pattern synthesis. Thus, for example, if a particular far 
field pattern f is given, we may be asked to find the inputs which minimize 
the mean-square deviation from this pattern in which case the functional has 
the form J 1 (K'Ij;) (x) - f(xW d8, 'Ij; EX. (3.49) 

8 2 

We will consider the problem of pattern syntheses in a separate section. The 
following table shows the variety of such performance criteria or cost func
tionals that commonly occur, most of which we have already discussed. 

Performance Criterion Optimization Problem 

Pattern matching to desired f min. 
( continuous) 

Pattern matching to desired f min. 
( discrete) 
Power in a sector with weight a max. 

Signal to noise ratio max. 

Generalized signal to noise ratio max. 

Quality factor min. 

Radiation efficiency max. 

Jl('Ij;) = f821K'Ij; - f1 2d8, 

J2('Ij;) = L~ll(K'Ij;)(Xi) - f(Xi)12, 

J3('Ij;) = f82 a2IK'Ij;1 2d8, 

J4('Ij;) = 1 (K'Ij;) (x) 12 , 

r w21K'Ij;12d8 182 
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Performance Criterion Optimization Problem 

Generalized radiation efficiency max. 

Directivity max. 

Generalized directivity max. 

As we have seen in Section 3.2, for optimization problems the most important 
property of these functionals is their continuity with respect to the weak 
topology: 

Theorem 3.30. Let X be a Hilbert space, JC : X --+ 0(82) be compact, 
f E 0(82), a,w E LOO(82), and X,Xi E 82, i = 1, ... ,N. Again let 11·ll x be 
the norm on X and, for measurable and essentially bounded functions on 8 2 , 

let 11·11 be either the L2-norm or the Loo-norm in LOO(82). 

(a) The following functionals are weakly sequentially continuous on X: 

N 

.12(1/J) = L Wi I(JC1/J)(Xi) - f(xi)1 2 , 
i=l 

(3.50a) 

IlaJC1/J112 (3.50b) 
IlwJC1/J112 ' 

where Wi > 0 are given weight factors. For the latter two functionals .14 and 
.15 we assume, in addition, that the map 1/J f-t wJC1/J is one-to-one. Then .14 
and .15 are well defined on X \ {O}. 

(b) The following functionals are weakly sequentially lower semi-continuous on 
X\{O}, i.e.liminfn-+oo .1(1/Jn) 2': .1(1/J) for every sequence {1/Jn}~=l converging 
weakly to 1/J: 

I (JC1/J) (x) 12 

111/J11~ 

Again, for .16 we assume that JC is one-to-one. 

IlaJC1/J112 
111/J11~ . 
(3.50c) 
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Proof: We note that weak convergence 1/Jn -->. 1/J in X implies norm conver
gence IIJC1/Jn - JC1/JIIC(S2) -+ 0 by the compactness of JC. Furthermore, this 
implies also convergence with respect to the L 2 (82 )-norm since 8 2 has finite 
surface area. Therefore, also IlaJC1/Jn - aJC1/J11 and IlwJC1/Jn - wJC1/J11 converge 
to zero since both a and ware bounded. This proves part (a). 

For part (b) let {1jJn};:"=l converge to 1/J weakly in X. Then the numerators 
of .:17 and J8 converge to I(JC1/J)(x)1 2 and IlaJC1jJ11 2 , respectively. From Theo
rem 3.5 we note that lim infn-too II1/Jn II x ;:::: 111/J II x which proves part (b). 0 

All of the constraints on the surface current, 1/J, described in Subsection 3.2.2 
have been specified directly in terms of the functions 1/J. These are not the 
only types of constraints which define appropriate sets of admissible functions 
however. Indeed, as we have seen previously, the general inequality constraint 
g(1jJ) :::; 0 may involve the far field JC1jJ itself. Since one important requirement 
on the constraint set, U, is its compactness in an appropriate (often weak) 
topology, it is important that the functions gi which define U be weakly se
quentially lower semi-continuous. This means in particular that any of the 
functions J1, ... ,J6 analyzed in Theorem 3.30 can be used to define the con
straint set. We give an example. 

Example 3.31. It is possible, for example, to ask to maximize the power in 
a sector while attempting to keep the far field pattern close to a desired 
preassigned pattern. The resulting problem is, in some sense, a hybrid of the 
directivity and synthesis problems. In this case we consider the constrained 
problem 

Maximize J3 ( 1/J ) subject to 1jJ E U , (3.51) 

where 
(3.52) 

for some closed and .convex set Uo C X. Here, J1 and J3 refer to the 
functionals introduced in Theorem 3.30 i.e. J1(1jJ) = IIJC1jJ - fll~2(S2) and 

':h(1jJ) = IlaJC1/JII~2(S2)' The convexity of the set U follows easily from the 
convexity of J1 (see Lemma 3.32 below). Theorem 3.30 shows that J1 is 
weakly sequentially continuous and so the constraint set U is weakly sequen
tially closed in X. Note, however, that the set U is not bounded unless Uo is 
bounded. In order to ensure the existence of optimal solutions one has to add 
a further constraint in Uo. 

Likewise, a bound on the quality factor can be modeled by 

(3.53) 

which will result in the non-convex set U = {1/J EX: 111jJlli - '"Y IIJC1/J112 :::; o}. 
Also, pointwise constraints on the far field pattern can be important. For' 
example if a is the characteristic function of the sector in which power is to 
be focused, we .may impose a constraint on the far field of the form 
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l[l-a(x)]!(x)1 :; M for all x E 8 2 , (3.54) 

where M is a preassigned constant. The reader should recognize that this type 
of constraint differs significantly from the above form in that it describes an 
infinite number of scalar constraints. Nevertheless, this constraint can be used 
to describe a class of admissible control functions through the definition of 
g:X-+lRby 

g('¢) := sup 1[1- a(x)] (IC'¢) (x) 1 - M. 
fiJES 2 

(3.55) 

From the compactness of IC it is easily seen that this function g is weakly 
sequentially continuous and therefore also weakly sequentially lower semi
continuous. Furthermore, the function g is convex. Indeed, for any A E (0,1) 
we have 

g(A'¢ + (1- A)cp) = sup 1(1- a(x))[AIC'¢)(l- A)ICcp] I - M 
fiJES2 

:; sup IA(l - a(x))IC,¢1 + sup 1(1- A)(l - a(x))IC(cp)1 
fiJES2 fiJES2 

- AM (1- A)M 

= Ag('¢) + (1 - A) g(cp). 

However, the function g is not Frechet differentiable which makes it impossible 
to apply the Lagrange multiplier rule of Theorem 3.22. Although there exist 
versions of the Lagrange multiplier rule which require only weaker forms of 
differentiability as e.g., the existence of a Gateaux variation, a practical, and 
perhaps more satisfying approach, is to constrain the real and imaginary parts 
in the form 

l[l-a(x)]Re!(x)I:;!VI and l[l-a(x)]Im!(x)l:; NI forallxE82 , 

and use methods of linear programming with an infinite number of constraints 
(see, e.g., [111]). 

In order to apply the results on extreme points (Subsection 3.2.3) and the 
Lagrange-multiplier rule (Theorem 3.22) one must require further properties 
of the functionals .Jj which will in fact be satisfied in our applications. We 
assume that the operator IC : X -+ C(82 ) has the following properties: 

(AI) IC: X -+ C(82 ) is compact and one-to-one. In particular, IC is not the 
zero operator. 

(A2) IC'¢ E C(82 ) is an analytic function on 8 2 for every '¢ E X. 

Moreover, we will, take the function a E LOO(82 ) to be a real-valued, non
negative, and to have the property: 
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(A3) the support of 0:, i.e. the closed ::let 

A := n{AI c 8 2 : AI closed and 0: = 0 a.e. on 8 2 \ AI} 

contains an open set (relative<to 8 2 ). 

These three assumptions imply that for '0 =f. 0 the analytic function K'0 cannot 
even vanish on the support of 0:. Then we have: 

Lemma 3.32. Let K : X ~ 0(82 ) and 0: E Loo(82 ) satisfy the assumptions 
(Al), (A 2), and (A3), and let f E L2(82). 

(a) The functional 

is strictly convex and continuously Frechet differentiable with gradient 

'V:h('0) = 2K*[0:(o:K'0-f)] , '0EX, 

where K* : L2(82) -----+ X denotes the adjoint of the operator K considered 
as an operator from X into L2(82). 

(b) The functional 

:h('0) := I(K'0)(X) -1'1 2 , '0 E X with l' E <C, x E 8 2 fixed, 

is convex and continuously Frechet differentiable with gradient 

where p E X denotes the Riesz representation of the linear functional 
t.p f-t (Kt.p) (x), t.p EX, i. e. the unique element p E X with 

(Kt.p) (x) = (t.p,p)x for all t.p E X 

(see Theorem A.31 of the Appendix). 

Proof: Let).. E (0,1) and '01, '02 E X. By the binomial formula it is readily 
seen that 

31 ()..'01 + (1 - )..)'02) = 11)..(o:K'0l - f) + (1 - )..)(o:K'02 - f)11~2(S2) 

= )..llo:K'01 - fll~2(S2) + (1 - )..) Ilo:K'02 - fll~2(S2) 

- )..(1 -)..) 110:K('01 - '(2)11~2(S2) 
= ).. 31 ('0d + (1 - )..) 31 ('02) 

- )..(1 -)..) 110:K('01 - '(2)11~2(S2) . 

From this it follows that 31 ()..'01 + (1- )..)'02) ::::; )..31('01) + (1- )..)..11('02) and 
that equality h9lds if and only if o:K( '01 - '(2) vanishes almost everywhere on 
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8 2 . Since the support of a contains an open subset this implies that JC(1jJl -
1jJ2) vanishes almost everywhere on an open subset of 8 2 and thus, by the 
assumption (A2) and the unique continuation principle for analytic functions, 
K( 1jJl -1jJ2) = 0 on 8 2 • Finally, the injectivity of JC yields that 1jJl = 1jJ2 which 
ends the proof that ':h is strictly convex. 

The Frechet derivative of the function ':h has been computed in Example A.49 
(b) of the Appendix. This completes the proof of part (a) of the lemma. 

The proof of convexity of :72 follows the same argument as for the convexity 
of .II. The computation of the gradient of .12 is similar. Indeed, following the 
same method of computation as in Example A.49, we arrive at the interme
diate result that 

IJC(1jJ + <p)(X) 1'12 - 1 (JC1jJ) (x) - 1'12 = 2Re [((JC1jJ) (x) - 1') (JC<p)(x)] 

+ 1 (JC<p)(X)12 . 

The Riesz Representation Theorem A.31 yields existence of some unique p E 

X such that (JC<p) (x) = (<p, p) x for all <p E X and so we may write 

IJC(1jJ + <p)(x) - 1'12 -1(JC1jJ)(x)12 = 2Re ([(JC1jJ)(x)-I'] p, <p)x + I(JC<p)(x)1 2 . 

From this equation we deduce that the gradient of .12 is given by 

V.J2(1jJ) = 2 [(JC1jJ)(x) - 1'] p. (3.56) 

This completes the proof of part (b). 0 



4 

The Synthesis Problem 

4.1 Introductory Remarks 

The classical antenna synthesis problem is usually posed in one of two ways. 
The first addresses the problem of finding an aperture distribution which pro
duces a far field that duplicates, or at least approximates, a prescribed pat
tern. The second involves determining the location and feed characteristics of 
a finite array of elementary sources which produce a radiation pattern that re
alizes some general property. In the latter case, for example, one may be given 
only some general characteristics of the far field pattern that are of interest, 
say that the beam be very wide in a vertical direction while remaining very 
narrow in the horizontal direction. Our concern in this chapter is the first of 
these problems, that of pattern matching, which we will discuss within our 
general framework of optimization problems, and then illustrate with concrete 
examples. Again, we make no attempt to survey the literature which, on this 
particular problem, is vast. Although exceptions may be found, most of the 
investigations in the existing literature proceed by means of specific cases. We 
will give a more general approach. 

The concept of pattern matching usually treats specific requirements which 
effectively prescribe the far field pattern as a function of direction. In analyzing 
the pattern matching problem we meet almost immediately, the question of 
realizability, that is, whether it is possible to duplicate the desired pattern 
with the available input currents. Moreover, it may be required to match both 
the phase and amplitude of the far field, in which case we are dealing with 
what is called the field synthesis problem, or, in other cases simply the 
amplitude, the so-called power synthesis problem. It is this former problem 
on which we will concentrate. 

As in our earlier discussion, we consider the geometry and constitutive pa
rameters of the antenna to be fixed, ignore the specific feeding mechanism, 
and frame the problem strictly in terms of the surface current 'lj; E X on the 
antenna structure and the resulting far field pattern fEe (Sd-l ). They are 
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related to one another, as before, by a compact operator K, and the problem 
is essentially one of solving a Fredholm integral equation of the first 
kind 

K¢ = f. (4.1) 

If the function f belongs to the range of the operator K, we may ask for an 
exact solution, or an approximation of an exact solution, while in the case 
in which f fails to belong to the range of K (the case more typiCally met in 
applied problems) we must confront the more fundamental issue of deciding 
what should be meant by a "solution" and, only then, of finding appropriate 
techniques for its resolution. 

In even the most elementary examples the range of the far field operator 
consists of smooth functions, so that, for example, piecewise constant far fields 
are strictly unattainable. But even if two functions hand h are far field 
patterns of surface currents ¢1 and ¢2, respectively, and if h - h is small 
the corresponding difference ¢1 - ¢2 doesn't have to be small at all. The 
synthesis problem is thus an example from an important class of problems 
of mathematical physics called ill-posed. We will discuss the nature of such 
problems in the next section. 

To illustrate the ideas we will consider the case of the linear line source (see 
Subsection 1.5.1). The operator is then K : L2( -f, +f) -----+ L2( -1, +1), given 
by 

£ 

(K¢)(t) := J ¢(s) e-ikst ds, It I :::; 1. (4.2) 

-£ 

In Theorem 1.11 we have shown that K is one-to-one. It is obvious that 
the range R(K) consists of analytiC functions. Furthermore, the range is 
dense in L2( -1, +1). This follows from the fact that the L2-adjoint K* 
L2( -1, +1) -----+ L2( -f, +f) of K, which is given by 

1 

(K*cp)(t) := J cp(s) eikst ds, It I :::; f, 
-1 

is one-to-one since it is again the Fourier transform of an L2-function. 

(4.3) 

The ill-posed nature of the synthesis problem also introduces difficulties from 
the computational point of view, as we will see later, arising particularly 
from the way in which the data of the problem, by which we mean the desired 
pattern, is presented. If the far field is prescribed, not exactly, but only through 
a set of data points, then questions of numerical sensitivity will arise. In 
particular, we must know how errors in the specification of f will effect the 
solution ¢. 

Typically, there will also be certain physical constraints which it will be nec
essary to impose on the aperture distributions ¢. For example, undesirable 
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effects may be caused by highly oscillatory distributions and it is usually 
desirable to work in a setting in which such oscillations are restricted. These 
physically based demands are usually referred to as realizability conditions for 
the surface currents and will be represented in our framework, by requiring 
the aperture functions to lie in some appropriate subset U, of the input space 
X. We will refer to the constrained functions as "admissible". Under certain 
conditions, these realizability constraints will serve to regularize the originally 
ill-posed problem, while in others, they will dictate compromises that will have 
to be made between requirements for accuracy of the approximating functions 
and the demands of meeting such a priori constraints. 

4.2 Remarks on Ill-Posed Problems 

Our object in this section is to remind the reader of, rather than to instruct 
him on the nature and some of the issues related to problems which are called 
ill-posed in the sense of Hadamard [45] first delineated in 1902. For a relevant 
discussion of the details, we refer the reader to the recent monograph of Kirsch 
[67]. 
According to Hadamard, any reasonable mathematical formulation of a phys
ical problem leading to an equation of the form 

K'Ij! = j, ( 4.4) 

where j E Y and the operator K : X ----+ Yare given, X, Y normed linear 
spaces, which must satisfy the conditions: 

(1) The range of the operator K coincides with Y (solvability); 
(2) The operator K should be one-to-one on its domain, that is, K u = K v 

implies that u = v (uniqueness); and 
(3) The operator K should have a continuous inverse K- 1 defined on Y 

(stability) . 

A model with these properties was called well-posed by Hadamard. More
over, he illustrated, using the Cauchy problem for Laplace's equation, a prob
lem which did not have these properties. He gave the name ill-posed to this 
and to other problems which did not satisfy one or more of the conditions 
listed above. The ill-posed problems that we will discuss here are of the form 
(4.4) in which K is compact, as is usually the case in applied problems. In 
particular, the problems of greatest interest to us involve the compact far field 
operator !C. The operator in (4.2) is an example. Below, we will investigate 
this example in more detail. 

Since the 1902 paper of Hadamard, considerable attention has been paid to 
ill-posed problems as they are particularly important in a number of applied 
areas including geophysical problems, systems identification problems, and 
inverse scattering problems. Particularly important is the fundamental work of 
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Tikhonov, Ivanov, Lavrentiev, and Morozov (see [67] for detailed references). 
Our specific interest is the ill-posed nature of the antenna synthesis problem. 1 

As we will discover, properties of the the range of the far field operator will 
be crucial for its resolution. 

Under these circumstances, we need to confront the question of just what 
we mean when we say that we "solve" an ill-posed problem. Any notion of 
solution will clearly have to be the result of some compromise which can be 
dictated either by the mathematics, or the practical setting, or both. Thus in 
the case of the synthesis problem, we cannot necessarily realize the desired 
pattern exactly. Mathematically, we can only approximate the desired solu
tion; practically, while often the acceptable level of error can be met, that 
level is attained only with surface currents having undesirable characteristics 
which degrade the antenna performance. Below we discuss particular regular
ization schemes, including the method of quasi-solutions and the method of 
Tikhonov. 

In order to go further, we must be more precise about the properties of the 
range of the operator K. The goal is to describe a general setting within which 
to treat the operator equation 

K'ifJ = J. (4.5) 

Let X and Y be Hilbert spaces and let K : X -+ Y be a bounded linear 
operator whose range R(K) is not closed. Typically, K is a compact operator 
with infinite-dimensional range. Four situations can arise: 

(i) R(K) may be dense (so that the null-space N(K*) of the adjoint K* is 
{O}), and J E R(K); 

(ii) R(K) is dense, and J t/: R(K); 

(iii) The closure of R(K) is a proper subspace of Y (so that Y = R(K) EB 
R(K).l.)andJ E R(K)EBR(K).l.; 

(iv) The closure of R(K) is a proper subspace of Y, and J t/: R(K) EBR(K).l.. 

Certainly, in the first of these cases, equation (4.5) has a classical solution 
while in case (ii) we can only hope for an approximate solution. The linear 
line source is an example of this kind as we have seen above. 

An elegant treatment of linear ill-posed problems can be formulated by 
the use of the so-called singular value decomposition. We assume that 
K : X -+ Y is compact. Then the operator K* K is compact, self-adjoint 
and nonnegative; hence there exists an orthonormal system of eigenfunctions 
{'ifJn} in X corresponding to the positive eigenvalues J.L;, i.e. K* K'ifJn = J.L;'ifJn. 
Defining 'Pn := J.L:;;1 K'ifJn we arrive at 

1 The ill-posed nature of this problem was first recognized by Bouwkamp and 
De Bruijn[18] in 1945. Application of Tikhonov regularization was suggested by 
Dechamps and Cabayan[33]. 
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K'l/Jn = f.Ln <Pn and K* <Pn = f.Ln 'l/Jn , (4.6) 

and it is easy to see that {<Pn} forms an orthogonal system in Y. The positive 
numbers f.Ln are called the singular values of K. The set {'l/Jn; <Pn; f.Ln : n = 
1,2, ... } is called a singular system for K. In terms of this singular system, 
we may write, for any 'l/J EX, 

00 00 

n=l n=l 

where PN is the orthogonal projection onto the null-space N(K). Formula 
(4.7) is called the singular value decomposition of the element 'l/J. Because of 
the orthogonality of the 'l/Jn, we can write 

00 

11'l/J112 = 2]('l/J, 'l/Jn)12 + IIPN'l/J112. (4.8) 
n=l 

If K is one-to-one then PN'l/J = 0 and the set {'l/Jn : n E N} is a complete 
orthonormal system in X. 

From these remarks we can deduce a solvability condition for equation (4.5) 
first expounded by Picard. 

Theorem 4.1. The equation (4.5) has a solution for a given fEY if and 
only if 

f E N(K*)~ and (4.9) 

a the solution is given by 

00 1 
'l/J = L - (j,<Pn)'l/Jn 

n=l f.Ln 
(4.10) 

Proof: If 'l/J is a solution of (4.5) then, necessarily, (j, <p) = (K'l/J, <p) = 
( 'l/J, K* <p) = 0 for all <P E N (K*). The definition of a singular system yields 

and so (4.8) implies that 

00 1 2 L 2"1(j,<Pn)1 
n=l f.Ln 

00 

LI('l/J,'l/Jn)12 :::; 11'l/J112. 
n=l 

Conversely, if f is orthogonal to N(K*) and the condition (4.9) is satisfied, 
then the series 

00 1 
'l/J := L - (j, <Pn) 'l/Jn , 

n=l f.Ln 
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converges in X. Applying the operator K to both sides of this last equation 
yields 

00 1 00 

K1/J = L - (f, 'Pn) K'Pn = L(f, 'Pn) 'Pn· 
n=l fJ,n. n=l 

Comparing this with the singular value decomposition 

00 

. f = fo + L(f, 'Pn) 'Pn 
n=l 

for some fo E N(K*) proves the assertion since by assumption f E N(K*).L 
and so fo = o. 0 

Conditions (4.9) are known as Picard's criterion. IfN(K*) = {O}, then the 
range of K is dense and one is simply left with the second condition in (4.9) 
as the criterion for solvability of (4.5). This can be considered as an abstract 
smoothness condition since, in classical Fourier theory, the smoothness of a 
function is equivalent to a fast decay of its Fourier coefficients (or Fourier 
transform). We illustrate theses ideas by returning to the example of the 
linear line source. 

Example 4.2. In the case of a linear line source the operator K : L2( -£, £) --+ 
L2(-1,1) and its adjoint K* : £2(-1,1) --+ L2(-£,£) are given by (4.2) 
and (4.3), respectively. We compute K* K1/J by simply changing the order of 
integration: 

1 £ 

(K*K1/J)(t) = j j 1/J(T)e-ikTSdTeikstds 

-1-£ 

£ 

= 2j1/J(T) sink(t-T) dT 
k(t - T) 

-£ 

where the sinc-function is defined by 

£ 1 

j 1/J(T) j eiks(t-T)dsdT 

-£ -1 

£ 

2 j 1/J(T)sinc[k(t-T)]dT, Itl-:;.£, 
-£ 

. ._ {(Sins)/s,s#o, 
Slnc s .- 1 = 0 , s . 

A singular system of K consists of functions 1/Jn E L2( -£, +£), 'Pn E 

L 2 (-1,+1), and fJ,n > 0 with K1/Jn = /1n'Pn and K*'Pn = /1n1/Jn. Further
more, {1/Jn : n E N} and {'Pn : n E N} are complete orthonormal systems in 
L2 ( -£, +£) and L2 ( -1, + 1), respectively. The completeness follows from the 
injectivity of K and K*. Although there is no explicit expression of either 1/Jn 
or 'Pn, we can derive interesting and important properties of these functions. 
First, we note that 1/Jn has an extension to an analytic function on all of lR 
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by considering the eigenvalue equation K* K '¢n = f-l~ '¢n in all of ~, i.e. we 
extend '¢n(t) for It I > C by 

£ 

'¢n(t) := -;j'¢n(T)sinc[k(t-T)]dT, It I >C. 
f-ln 

-£ 

(4.11) 

Note that also '¢n E L2(~). In the following, our notation does not distinguish 
between the original function '¢n E L2( -C, +C) and its analytic extension 
'l/Jn E L2(~) given by (4.11). Furthermore, we define the auxiliary functions 
S, tJtn E L2(~) by 

S(t) 

and 

._ sinc (kt) = {sin(kt)j(kt) , t =f. 0, 
1, t = 0, 

tJtn(t) := {'¢n(t) , It I ::::: c, 
0, It I > C, 

and observe from (4.11) that '¢n is the weighted convolution 

2 
'l/Jn = 2 tJtn * S . 

f-ln 

Now we consider 'Pn = ..L K'¢n as a Fourier transform, i.e. 
i-'n 

£ 

'Pn(t) = ~ j 'l/Jn(s) e-ikst ds = 
f-ln 

-£ 

From the orthogonality of 'Pn we conclude that 

k 1 

j lin (S) lim (S) ds = k j lin (kt) lim(kt) dt 
-k -1 

1 

( 4.12) 

kf-lnf-lm j () -( ) = 2:;;:- 'Pn t 'Pm t dt kf-l; r5 (4.13) 
27r nm· 

-1 

Now we show that the functions {'¢n} enjoy a double orthogonality prop
erty: They are orthogonal not only in L2( -C, +C) but also in L2(~). First, if 
we take the Fourier transform of the convolution (4.12) then 

so that, by Plancherel's theorem (see, e.g. [145], p. 153), we have 
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If we compute the Fourier transform of S, 

00 

S(t) = _1_ J sin(ks) e-ist ds 
..j2if ks 

-00 

we may conclude that 

i.e. with (4.13), that 

-00 

~ E {I, It I < k, 
k V "2 0, It I > k , 

which proves the double orthogonality property.2. 

(4.15) 

We note that II'!fn Ili2(JR) is just the super-gain ratio (1.63) of '!fn. Indeed, from 
(4.15) we observe that 

Let us now return to the four different cases at the beginning of this section 
which characterize the range R(K) of the operator K. 
If we use Theorem 4.1, we can then make the simple observation that illus
trates ill-posed nature of the problem 

K'!f = f 

when K is compact and the range is infinite dimensional. Specifically, let '!f E 

X be the solution of the equation K'!f = f for the "unperturbed" right hand 
side fEY, and assume that i = f + J<pk denotes a (particular) perturbed 
right hand side. Then I J I represents the error in the data i.e., I J I = II f - ill· 
The solution ;f of the perturbed problem K;f = i, is given by 

2 The usefulness of double orthogonal systems for expansions of functions in terms 
of a common set of basis functions was studied carefully by Slepian and Pollak 
in a series of papers beginning with [124]. Rhodes [115] discusses their use in the 
synthesis problem and gives specific examples (see also Angell and Nashed [10]) 
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b 
'lj; + -'lj;k 

J.tk 

since K;[; = K'lj; + ~ K'lj;k = f + bi.pk = j. Therefore, the error 
Itk 

11;[; - 'lj;11 = ~ 
J.tk 

can be made arbitrarily large since J.tk -+ 0 as k tends to infinity. 

4.3 Regularization by Constraints 

Let us now look at the cases when f 1: R(K) i.e., when the equation K'lj; = f 
is not solvable. In light of Picard's criterion (Theorem 4.1), this is the generic 
case when f represents any approximation of the exact right hand side. In 
this case one is tempted to look at the least square solution of the equation 
in the following sense: 

Definition 4.3. A function f is a least-squares solution or quasi-solution 
of the operator equation 

K'lj; = f (4.16) 

provided 

inf{IIKu - fll : u E X} = IIK'lj; - fll . (4.17) 

Closely associated with the notion of quasi-solution, is that of a generalized 
inverse Kt f. Since 

IIKu - fl12 = IIKu - Pn fl1 2 + Ilf - Pn fl1 2 , 

where Pn is the orthogonal projector of Y onto R( K), it is clear that (4.17) 
holds if and only if f E R(K) + R(K)~, which is a dense set in Y. For such f 
the set of all least-squares solutions of (4.17), denoted by Sf, is a nonempty, 
closed, convex set (indeed Sf is the translate of N(K) by a fixed element of 
Sf) and hence has a unique element of minimal norm, denoted by Kt f. The 
generalized inverse Kt is thus an operator from R(K) + R(K)~ into X. 

In light of the following theorem, the use of this weaker concept of quasi
solution does not overcome the ill posedness of the problem. 

Theorem 4.4. Let K : X ~ Y be bounded and let fEY. The set of quasi
solutions is characterized by the set of solutions of the normal equation 

K*K'lj; = K*f (4.18) 

where again K* : Y ~ X denotes the adjoint of K. 
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Proof: Using the binomial theorem in the Hilbert space X we have that 

IIKu-fI1 2 - IIK~-fI12=2Re(K~-f,K(u-~)) + IIK(u-~)112 
= 2Re (K*(K~ - f), u -~) 

+ IIK(u - ~)112 (4.19) 

for all u,~ E X. 

First let ~ E X be a quasi-solution. Then the left hand side is non-negative. 
Fixing <p E'X and setting u = ~ + f<p for some f > 0, we conclude from (4.19) 
that 

2fRe (K*(K~ - f),<p) + f211K<p112 > O. 

Dividing by f and letting f tend to zero yields 

Re (K*(K~ -f), <p) ;::: o. 

This holds for every <p E X. From this (4.18) follows by substituting cp = 
-K*(K~ - f). 

Conversely suppose that (4.18) holds. Then the first term on the right hand 
side of (4.19) vanishes and thus IIKu - fl12 -IIK~ - fl12 ;::: O. This proves the 
theorem. 0 

We see from this result that quasi-solutions for a compact operator K are again 
characterized by the solutions of an operator equation with compact operator 
K* K. Therefore, even the quasi-solutions do not depend continuously on the 
right hand side. 

The situation is different when we impose additional constraints on the op
timization problem (4.17). Indeed, one of the fundamental observations of 
Tikhonov is that the restriction of the problem to a compact set insures that 
the problem becomes well-posed. The use of such a constraint may be viewed 
as the utilization of a priori information and has long been recognized to play 
a significant role in bringing about continuous dependence. The general result 
can be expressed as: 

Theorem 4.5. Let X and Y be separable Hilbert spaces and K : X ----+ Y be a 
linear, bounded operator which is one-to-one. Let C c X be weakly sequentially 
compact. Then K( C) is weakly sequentially compact and K- 1 : Y ~ K( C) ----+ 
X is weakly sequentially continuous. 

Proof: The compactness of K(C) is an immediate consequence of the fact 
that bounded linear operators map weakly convergent sequences into weakly 
convergent sequences. 

Let CPn E K(C) converge weakly to some <p E K(C) i.e., <Pn ----' <po Setting 
<Pn = K~n and cP = K~ we have K~n ----' K~. Since C is weakly sequentially 

00 0 0 

compact we can extract a subsequence {~nk} k=l with ~nk ----' ~ for some ~ E 
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C. This yields K'ljJnk -'- K -J; and thus K -J; = K'ljJ, i.e., -J; = 'ljJ. Moreover this 
argument holds for every weakly convergent subsequence and so we conclude 
that the sequence {'ljJn} itself converges weakly to 'ljJ which proves that 'ljJn = 
K-1rpn -'- 'ljJ = K-1rp. 0 

To see how this result is applied to optimization problems, let us first consider 
the simplest case: 

Minimize IIK'ljJ - fll subject to 'ljJ E X and 11'ljJ11 ~ M, (4.20) 

where NI is some a priori given positive number. For this constrained mini
mization problem, which we call the method of restricted quasi-solutions, 
it is possible to give necessary and sufficient conditions for the existence of an 
optimal solution of (4.20). 

Theorem 4.6. Let K be a bounded operator on X. For any constant M > 0, 
the optimization problem (4.20) has a solution 'ljJ0 EX. Moreover, if the range 
of K is dense in Y and Ilfll > inf{IIK'ljJ - fll : 'ljJ E X, 11'ljJ11 ~ M} > 0, then 
'ljJ0 is an optimal solution if and only if 11'ljJ°11 = M, and there exists a constant 
TJ > 0 such that 

(4.21a) 

i.e., 
(4.21b) 

Proof: Existence of an optimal solution follows directly from the general 
existence result, Theorem 3.1, since the ball of radius R is weakly compact 
by Theorem 3.7 and the functional 'ljJ I-t IIK'ljJ - fll is weakly lower semi
continuous as a (norm-) continuous and convex functional (Theorem 3.5). 

Now let Ilfll > J and let 'ljJ0 be any optimal solution. We write the constraint 
as the inequality h('ljJ) = 11'ljJ112 - M2 ~ 0 and note that the Frechet derivative 
2'ljJ° i=- 0 since we have assumed that J < Ilfll. Then there is a Lagrange 
multiplier TJ ~ 0 with 

( 4.22) 

and TJ(II'ljJ°112 - M2) = O. It remains to show that, in fact, TJ > O. 

Indeed, ifTJ = 0 then equation (4.22) becomes K*(K'ljJ°- f) = 0, which implies 
that K'ljJ° - f = 0 since we have assumed that the range of K is dense in Y. 
This contradicts the assumption that J > O. So we see that necessarily TJ > O. 

To prove the sufficiency of this condition, let TJ > 0 and suppose that 'ljJ0 E X 
with 11'ljJ°11 = M satisfies the equation (4.21). Let 'ljJ be any element of X, with 
11'ljJ11 ~ M. The binomial formula yields 
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IIK'if; - fll2 + 'fJ II 'if; 112 - IIK'if;6 - fl12 - 'fJ II 'if; ° 112 
= 2Re (K'if;° - f, K('if; - 'if;0)) + IIK('if; - 'if;°)112 + 2TJ Re ('if;0, 'if; - 'if;0) 

+ TJ 11'if; - 'if;°112 
=2Re(K*(K'if;°-f)+TJ'if;°,'if;-'if;°) + IIK('if;-'if;°)112 + TJIIK'if;-'if;°112 

" , v 
=0 

2: 0, 

from which we conclude that 

and the proof is complete. 0 

From this theorem we may again clearly observe the ill-posedness of the prob
lem. If we think of the right hand side g as being polluted, then, generically, 
the assumptions of the theorem are satisfied and the restricted quasi-solution 
satisfies 11'if;°11 = M which is as inaccurate as the measurements of g. However, 
by using this method we have retained stability of the solution in the weak 
topology. 

Theorem 4.7. Let {fn};;:"=l c Y converge to f and let 'if;~ with 11'if;~11 :=::: M be 
any restricted quasi-solution corresponding to fn) n = 1,2 .... Then there exist 
weak accumulation points of the sequence {'if;~};;:"=l' and every such weak accu
mulation point 'if;* is optimal for f. Furthermore, the optimal values converge, 
i.e. IIK'if;~ - fnll --+ IIK'if;* - fll· 
Proof: The existence of weak accumulation points follows again from Theo
rem A.58. Suppose that 'if;* is such an accumulation point. Then if the subse
quence {'if;~k}:l converges weakly to 'if;* we have 

and 
K'if;~k - fnk --' K'if;* - f· 

Let 'if;0 be any optimal solution corresponding to f. Then we have 

J:=::: IIK'if;* - fll :=::: liminf IIK'if;~k - fnk II :=::: lim sup IIK'if;~k - fnk II 
k-+oo k-+oo 

:=::: lim IIK'if;°-fnkll = IIK'if;°-fll = J, 
k-+oo 

which proves that 'if;* is optimal and that 

Since this equality holds for every subsequence it follows that 



4.3 Regularization by Constraints 125 

lim IIK'¢~ - fnll = J, 
n~oo 

and the proof is complete. D 

We note that a very similar result has been proven in already Section 3.3 
(Theorem 3.25). However, here we consider perturbations of the data f while 
in Section 3.3 we study finite dimensional approximations. 

Although it seems that we have not gained much by the introduction of the 
restricted quasi-solution, we point out that stability with respect to the weak 
topology of X can lead to a very strong result if we know a priori that the 
solution '¢ is "smooth" i.e., contained in a subspace X I C X such that the 
imbedding j : Xl Y X is compact. Instead of K : X ~ Y we consider 
rather KI := K 0 j : Xl ~ Y. Then weak convergence '¢n ---' '¢ in Xl 
implies norm convergence '¢n -+ '¢ in X since the imbedding operator j is 
compact. Therefore, by replacing the constraint 11,¢llx :::; M by a stronger 
one, 11'¢llx1 :::; M we retain stability with respect to the norm in X. We note 
that the adjoint of KI is given by Kr = j* 0 K* where j* : X ~ Xl denotes 
the adjoint of the imbedding j. Fortunately, in many cases it is not necessary 
to compute j* explicitly. Indeed, the variational equation (4.21a) takes the 
form 

or, taking the adjoint K* : Y ~ X, 

This equation can be exploited explicitly (see Example 4.11 below). 

Let us return to a more concrete setting. In Chapter 1 we have introduced 
the super-gain ratio '/A(rp) (see Definition 1.12 and (1.63)) and the qual
ity factor Q (see Definition 1.9 and (1.54b)) of a line source which have 
the form 11'¢11 2 / IIK,¢112. In the following optimization problem we investigate 
constraints on the (abstract) super-gain ratio: 

Minimize IIK'¢ - fll subject to II'¢II:::; M IIK'¢II , (4.23) 

where M > 0 is some given constraint. We assume that M> 1/ IIKII in order 
to insure that non-trivial elements '¢ satisfy the constraint. Indeed, by the 
definition of IIKII := sUP1/J#o IIK,¢II / II'¢II, we observe that there exists a'¢ -I- 0 
with IIK,¢II / II'¢II ?': l/M provided 1 < M IIKII. 

First we show existence of the optimization problem (4.23). 

Theorem 4.8. Let K : X ~ Y be compact and M IIKII > 1. Then there 
exists a solution 'ljJ0 of the constrained optimization problem (4.23). 
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Proof: Let R:= M(211fll + 1), and define the set U by 

U := {'¢ EX: II'¢II :5: R, II'¢II :5: MilK '¢II} . 

For,¢ tt U with II'¢II :5: M IIK'¢II, we have that II'¢II > R and thus 

IIK'¢ - fll 2: IIK,¢II - Ilfll 2: ~ 11'¢11-llfll > ~ -llfll = Ilfll + 1, 

so that '¢ cannot be optimal ('¢ = 0 has a smaller defect). The set U is clearly 
nonempty, bounded and in fact weakly sequentially compact. To see this, it 
suffices to show that this set is weakly closed. To this end, let {'¢n}~l C U, 
and suppose '¢n -' '¢. Then 

II'¢II :5: liminf II'¢nll :5: M lim inf IIK'¢nll = M IIK,¢II 
n--+oo n--+oo 

since K'¢n -+ K'¢ by the compactness of K. 

Furthermore, we note that the objective function is weakly continuous since 
K is compact. Therefore, Theorem 3.1 is applicable and yields existence of 
a solution '¢O E X of the optimization problem which is, in fact, in U. This 
completes the proof. 0 

If we now wish to apply the multiplier rule again we must compute the Frechet 
derivative ofthe constraint h('¢) = 11'¢11 2 _M21IK,¢112, which in fact is h'(,¢) = 
2['¢ - M2 K* K'¢]. 

Theorem 4.9. Let '¢O be some optimal solution of (4.23). Let the following 
constraint qualification be satisfied: 

(4.24) 

i. e. that '¢O is a so-called regular point. Then there exists TJ 2: 0 such that 
TJ(II,¢°112 - M21IK,¢oI12) = 0 and 

( 4.25) 

Under the additional assumption that K* is one-to-one and K '¢O -I- f, the 
Lagrange multiplier TJ is strictly positive and II'¢o II = MilK '¢O II. 

We remark that (4.24) is certainly satisfied if 11M2 is not an eigenvalue of 
K*K. 

We now consider perturbations of this optimization problem. Let {J n} ~=l C Y 
be a sequence with fn -+ f as n -+ 00, and for any integer n = 1,2, ... let 
'¢~ E X be an optimal solution corresponding to fn. Making the assumptions 
that 

(i) K* is one-to-one; 
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(ii) K'l,b~ # fn for n = 1,2, ... , and 
(iii) 'l,b~ - M2 K* K 'l,b~ # 0 for all n, 

then application of Theorem 4.9 asserts that 

11'l,b~11 = M IIK'l,b~II, n = 1,2, ... 

Moreover, the sequence {'l,b~}~=1 is bounded since we have 

11'l,b~11 = M IIK'l,b~11 ::::; M(IIK'l,b~ - fnll + Ilfnll) 
::::; M(IIKO - fnll + Ilfnll) = 2M Ilfnll . 

Since the sequence is bounded, there exist weak accumulation points. Suppose 
that 'l,b* is one such accumulation point and that 'l,bnk ----'" 'l,b*. Then, again, 
K'l,b~k -+ K'l,b* and thus, for some optimal 'l,b0 corresponding to f, 

Furthermore, 

that is 

J::::; IIK'l,b* - fll 
= IIK'l,b° - fll 

lim IIK'l,b~k - fnk II < lim IIK'l,b° - fnk II 
k-+oo k-+oo 

J, 

In particular, 'l,b* is optimal and the optimal values converge to the optimal 
value corresponding to f. 

If, for the weak accumulation point 'l,b*, the constraint qualification (4.24) is 
satisfied, K* is one-to-one and K'l,b* # f, then we have even convergence in 
norm since then 11'l,b*11 = M IIK'l,b*11 and so 

From this and the weak convergence, we conclude that 

that is, we have norm convergence of the 'l,b~k to 'l,b*. 

4.4 The Tikhonov Regularization 

The contribution of Tikhonov to the treatment of ill-posed problems, usu
ally called a "regularization" procedure, was to show that the addition of a 
non-negative functional to the original functional 11K 'l,b - f II will stabilize the 
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ill-posed problem. This contrasts with the method of the preceeding section 
which entails the adding of an a priori requirement that the optimal solution 
belong to a set which is compact in an appropriate topology. Usually, this is 
accomplished by the adding of a constraint, as was done in (4.20). Instead, 
Tikhonov introduced the constrairit as a penalization term into the func
tional itself. For example, rather than asking for a solution of the optimization 
problem 

Minimize IIK1/J - fll subject to 111/J11::; M, (4.26) 

we introduce a penalization parameter a > 0, and ask for the minimum of the 
unconstrained problem 

Minimize :J(1/J) := IIK1/J - fl12 + a 111/J112, 1/J EX. ( 4.27) 

We expect that the solution of this optimization problem converges to the so
lution of the equation K 1/J = f as a tends to zero. Some of the main properties 
of Tikhonov's method are collected in the following theorem. 

Theorem 4.10. Let K : X --+ Y be bounded. For every a > 0 there exists a 
unique minimum 1/Ja of:J defined by (4.27) on X. Furthermore, 1/Ja satisfies 
the normal equation 

a(1/Ja,cp)x + (K1/Ja-f,Kcp)y = 0 forallcpEX, (4.28a) 

or, using the adjoint K* : Y --+ X of K, 

a1/Ja + K* K1/Ja = K* f. (4.28b) 

If, in addition, K is one-to-one and 1/J E X is the (unique) solution of the 
equation K 1/J = f then 1/Ja -+ 1/J as a tends to zero. 

Finally, if 1/J E K* (Y) or 1/J E K* K (X), then there exists c > 0 with 

II1/Ja -1/J11 ::; c y'(i" or II1/Ja -1/J11 ::; c a, respectively. (4.29) 

Proof: Let {1/Jn}~=l c X be a minimizing sequence, i.e. :J(1/Jn) -+ J := 

inf{:J(cp) : cp E X}. We show that it is a Cauchy sequence and, therefore, 
converges. Application of the binomial formula yields 

:J(1/Jn) + :J(1/Jm) = 2:J (~(1/Jn + 1/Jm)) + ~ IIK(1/Jn -1/Jm)112 

a 2 
+ "2 II1/Jn -1/Jmll 

a 2 
? 2J + "2 II1/Jn -1/Jm II . 

The left hand side converges to 2J as n, m tend to infinity. This shows that 
{1/Jn}r is a Cauchy sequence and thus convergent. Let 1/Ja = limn-+oo 1/Jn. 
From the continuity of:J we conclude that :J(1/Jn) -+ :J(1/Ja), i.e. :J(1/Ja) = J. 
This proves the existence of a minimum of :J. 
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Now we use the following formula (see proof of Theorem 4.6): 

..J('l/J) - ..J('l/JCi) = 2Re (K'lj/' - j,K('l/J - 'liP)) + 2aRe ('l/JCi,'l/J - 'l/JCi) 

+ IIK('l/J - 'l/JCi)11 2 + a 1I'l/J - 'l/JCi 1l2 
= 2Re (K*(K'l/JCi - f) + a'l/JCi, 'l/J - 'l/JCi) 

+ IIK('l/J - 'l/JCi)11 2 + a 1I'l/J - 'l/JCi 112 

for all 'l/J E X. From this, the equivalence of the normal equation (4.28b) with 
the minimization problem for ..J is shown exactly as in the proof of Theorem 
4.6. Finally, we show that aI + K* K is one-to-one for every a > O. Let 
a'l/J + K* K'l/J = O. Multiplication by 'l/J yields a('l/J, 'l/J) + (K'l/J, K'l/J) = 0, i.e. 
'l/J = O. This proves the first part of the theorem. 

Now we study the convergence properties of the solutions 'l/JCi as a tends to 
zero. Assume that K is one-to-one and K'l/J = f. From (4.28b) we see that 

and thus by multiplication by 'l/Ja - 'l/J: 

Let us first consider the case where 'l/J E K*(Y), i.e, 'l/J = K*z for some z E Y. 
Then (4.30) becomes 

a II'l/JCi - 'l/J112 + IIK('l/JCi - 'l/J)11 2 = -a(z, K('l/JCi - 'l/J)) 

::; a Ilzll IIK('l/JCi - 'l/J)II . (4.31) 

From this we conclude, first, that IIK('l/JCi - 'l/J)II ::; a Ilzll and, second, that 

i.e. II'l/JCi - 'l/JII ::; fo Ilzll which proves the first estimate in (4.29). 

Now let 'l/J = K* Kv for some vEX. We set cp := Kv. From (4.28b) we see 
that 'l/JCi = K*cpCi where cpci := ± K( 'l/J - 'l/Jci). In terms of cp and cpa the normal 
equation (4.28b) takes the form 

a K* cpci + K* K K* (cpci - cp) = 0, 

i.e. 
a cpci + K K* (cpci - cp) = Pci 

for some Pci E N(K*). As above, we subtract acp on both sides and multiply 
with cpa - cpo This yields 

a IlcpCi - cpl12 + IIK*(cpCi _ cp)112 = (PCi,cpci _ cp) 

= (Pci' cpci - cp) 

a (cp, cpci _ cp) 

a (v, K*(cpCi - cp)) . 
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The term (Pa, cpa - cp) vanishes since Pa E N(K*) = R(K).L and cpa - cp E 

R(K). The Cauchy-Schwarz inequality yields 

II'lj!a - 'lj!11 = IIK*(cpa - cp)11 ~ a Ilvll 

which proves the second estimate of (4.29). 

Convergence 'lj!a -+ 'lj! without any assumed regularity On 'lj! is proven by a 
density argument. Indeed, we have just shown that 

(a! + K* K)-l K* K'lj! --+ 'lj! for all 'lj! E K*(Y) , 

i.e. pointwise convergence of the operators On the dense set K* (Y). Further
more, from the optimality of'lj!a we conclude that 

i.e., II'lj!a II ::; 11'lj!11 for every a > 0 and 'lj! E X. This shows that the 
operators (a! + K* K)-l K* K are uniformly bounded with respect to a. 
Therefore, we have shown that: (i) there exists a constant c ::::: 1 with 
II(a! +K*K)-lK*KII ~ cfor all a and, (ii) , (a! +K*K)-lK*K'lj! --+ 'lj! for 
all 'lj! E K* (Y). This implies convergence for all 'lj! EX. 3 Indeed, let 'lj! E X 

and c > 0 be arbitrary. Choose first ,(fJ E K*(Y) with 11'lj! - ,(fJllx ::; c/(3c) and 

then aD > 0 such that Ila! + K* K)-l K* K,(fJ -,(fJ1ix ~ c/3 for all a ::; aD· 
Then, by the triangle inequality, 

II(a! + K* K)-l K* K'lj! - 'lj!llx ::; II(a! + K* K)-l K* K('lj! - ,(fJ)llx 
+ II(a! + K* K)-l K* K,(fJ - ,(fJllx 

+ 11,(fJ-'lj!llx 

::; c/3 + c/3 + c/(3c) < c for all a ::; aD. 

This estimate implies convergence for every 'lj! EX. D 

The assumptions 'lj! E K*(Y) or 'lj! E K* K(X) are smoothness assumptions 
on the solution 'lj! since in concrete examples (see, e.g., Example 4.11) the 
operator K* and K* K are smoothing in the sense that the ranges of both of 
these operators contain only functions of greater regularity then those in X. 

We will illustrate this method by an example, originally investigated by 
Tikhonov [135]. 

Example 4.11. We consider the following integral equation of the first kind: 

3 This is actually one part of the Theorem of Banach-Steinhaus (see [145]). 
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1 J g(t, s) 'l/J(s) ds = f(t), t E [a, b], (4.32) 

o 

where 9 : [a, b] x [0, 1] ~ ffi. and f : [a, b] ~ ffi. are continuous functions. 
The operator K is therefore defined by 

1 

(K'l/J)(t) := J g(t,s) 'l/J(s) ds t E [a,b]. 
o 

For X and Y we take the Sobolev space X = H1(0, 1) and Y := £2(a,b), 
respectively (see Definition A.20). The operator K, considered as an opera
tor from £2(0,1) into £2(a, b) is compact by Theorem A.38. Since H1(0, 1) 
is boundedly (even compactly) imbedded in £2(0,1) the operator K is also 
compact considered as an operator from H1(0, 1) into £2(a, b). The Tikhonov 
functional J and the normal equation for the minimum 'l/JO! E H1(0, 1) of J 
take the form 

1 

J('l/J) = IIK'l/J - flli2(a,b) + Q J ['l/J(t)2 + 'l/J'(t)2] dt, 'l/J E H1(0, 1), 

o 

(K'l/JO!-f,K<p)£2(a,b) + Q('l/JO!,<p)x = ° for all<pE H1(0,I), 

respectively. We rewrite the last equation as 

(K*(K'l/JO!-f),<P)£2(O,l) + Q('l/J0!,<P)L2(O,1) + Q(('l/JO!)',<P')£2(O,l) = ° 
for all <p E H1(0, 1), where K* : £2(a, b) ~ £2(0,1) is the £2-adjoint of K, 
i.e. 

b 

(K*'l/J)(t) := J g(s,t)'l/J(s)ds, tE [0,1]. 
a 

From the Fundamental Lemma of the Calculus of Variations (Lemma 4.12 
below) we conclude that even 'l/JO! E H2(0, 1). Furthermore, it follows from the 
Fundamental Lemma that ft'l/JO!(O) = ft'l/JO!(I) = ° and 

K*(K'l/JO! - f) + Q'l/JO! - Q !22'l/J0! = 0, 

i.e. 'l/JO! E H2(0, 1) solves an integro-differential equation. Note that, from 
the smoothness of the kernel g, the term K* (K 'l/JO! - f) is continuous. so that 
the solution 'l/JO! is even twice continuously differentiable on [0,1]. 

Lemma 4.12. Let g, hE £2(0,1) and 

(9,<P)£2(O,1) + (h,<P')L2(O,1) = ° forall<pEH 1 (0,I). (4.33) 

Then h E H1(0, 1), h(O) = h(I) = 0, and 9 = h'. 
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Proof: Define h(t) := I~ g(s) ds, t E [0,1]. Then h E Hl(O, 1) and h(O) = 0 

and h' = g. We will show that h = hand h(1) = O. 

Substitution of 9 = h' in (4.33) and integration by parts of the first term 
yields 

o = (h', <p) £2(0,1) + (h, <p') L2(0,1) 

= h(l)<p(l) - (h, <p') £2(0,1) + (h, <P')£2(O,I), (4.34) 

for all <p E HI(O, 1). Now we substitute <pet) := - It1[h(s) - h(s)] ds into this 

equation. From <p(1) = 0 and <p' = h - h we conclude that Ilh - hlli2(0,I) = 0, 

i.e. h = h. Since (4.34) holds for all <p E HI (0,1) we see, finally, that h(l) = O. 
D 

The previous theorem assumes that the right hand side f is known exactly, i.e. 
without noise. In this unrealistic case, a should be taken as small as possible, 
ideally a = O. In general, however, one knows only an approximation J'i E Y 
of f and the noise level 0 with Ilf" - fll ::; o. Therefore, instead of computing 
'lj;CI: from (4.28) we compute 'lj;",CI: from 

( 4.35) 

The error is decomposed and then estimated by 

( 4.36) 

The first term compares solutions for equation (4.35) with right hand sides 
K* f" and K* f, while the second term is independent of the noise 0 and has 
-been studied in the previous theorem. 

In order to estimate the first term we have to compute a bound on the norm 
II (a! + K* K)-1 K*II. If <p E X is the solution of 

a <p + K* K <p = K* h for some hEY 

then, since <p is the minimum of .J('lj;) = a 11'lj;112 + IIK'lj; - hl1 2 on X, 

a 11<p112 ::; a 11<p112 + IIK<p - hl1 2 ::; 0011011 2 + IIKO - hl1 2 = Ilh11 2 . 

This proves 11<p11 ::; Ilhll Iva and thus 

We have derived the following basic estimate 
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1\'Ij!0,Q - 'lj!11 ~ II(aJ + K* K)-lK*(f° - f)11 + II'Ij!Q - 'lj!11 

~ :a + IW' - 'lj!11· (4.37) 

In the case 'Ij! E K* (Y) we conclude that 

(4.38) 

This estimate suggests the choice a = a( 8) = Cl 8 for some Cl > O. Indeed, 
a = 8jc is the minimum of the right hand side of (4.38) considered as a 
function of a. With this choice of a(8) the error is 

( 4.39) 

for some c> O. In the case 'Ij! E K* K(X) we conclude from (4.37) that 

( 4.40) 

which leads to a = a( 8) = c2 82/ 3 . With this choice of a( 8) the error is 

(4.41 ) 

These choices of the regularization parameter a can be made a priori, i.e. 
before starting the computation. It is convenient, however, to determine a a 
posteriori, i.e. during the computational process. A common method is Mo
rozov's discrepancy principle, which determines a = a( 8) > 0 such that 
the corresponding 'lj!0,Q of (4.35) satisfies 

IIK'Ij!°,Q - fOil = T8 ( 4.42) 

where T > 1 is some fixed parameter. For more on this principle we refer to 
[67] or the original literature [101, 102] and, for modifications, [37, 116]. 

4.5 The Synthesis Problem for the Finite Linear Line 
Source 

In this section we apply the theoretical results of the previous sections to the 
synthesis problem for the linear line source. The application of the regular
ization methods lead, via the normal equations, to the numerical problem of 
solving a Fredholm integral equation of the second kind. It will therefore be 
useful to devote a subsection (Subsection 4.5.2) to the Nystrom method before 
studying the normal equations. In the final subsection we return to specific 
examples of synthesis problems which have been discussed in the literature. 
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4.5.1 Basic Equations 

We will consider not only the case of the operator K : L2( -C, +C) ---+ 
0[-1, +1] given by (4.2) but allow the operator to have the more general 
form 

I: 

(K'lj;)(t) := a(t) J 'lj;(s) e-ikts ds, It I :::; 1, (4.43) 

-I: 

where k = 27r / A is the wave number, A > 0 the wave length, and a E 0[-1, + 1] 
positive on (-1, +1). We think of a == 1 or a(t) = Vf=t2, It I :::; 1, as the 
particularly interesting cases. 

The synthesis problem leads to the integral equation K'lj; = f i.e., 

I: 

a(t) J 'lj;(s) e-ikts ds = f(t) , It I :::; l. 
-I: 

All the methods of regularization described in Sections 4.3 and 4.4 lead to 
equations of the type 

r]'lf; + K* K'lj; = pK* f. 

A simple change of the order of integration shows that the operators K* and 
K* K are given by 

1 

(K*g)(t) = J g(s)a(s)eiktsds, It I :::; c, 
-1 

I: 

(K*K'lj;)(t) = J'lj;(s)a(t-s)dS, It I :::;C, where 

-I: 

1 

a(T) = J a(s)2eiksT ds, T E JR. 
-1 

For the special cases a == 1 and a( s) = v'f=S2 the kernel a takes the forms 

a(T) = 2sinc (kT) and a(T) = (k!)3 [sin(kT) - (kT) cos(kT)] , respectively. 

The function a is always analytic on R 
We are thus led to the problem of solving Fredholm integral equations 

of the second kind. Only in very special cases such integral equations can be 
solved explicitly but in most cases one is forced to apply numerical methods 
for their solution. We turn to this problem in the next subsection of this part. 
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4.5.2 The Nystrom Method 

In this subsection we study Fredholm integral equations of the second kind in 
the form 

b 

'ljJ(t) + ! g(t, s)'ljJ(s) ds = h(t), tE [a,b]' (4.44) 

a 

where 9 : [a, bj x [a, bj --+ <e and h : [a, bj --+ <e are continuous functions. In 
the Nystrom method one replaces the integral by some quadrature rule of the 
kind which we discussed in Subsection 1.5.3: 

b n 

I(cp) := ! cp(s) ds ::::J Qn(CP) := L wJn) cp(t;n») (4.45) 
a j=l 

for given nodes tj = t;n) E [a, bj and weights Wj = wJn) E JR., j = 1, ... ,n. 

The Nystrom method replaces the integral equation (4.44) by 

n 

'ljJ(n)(t) + LWjg(t,tj)'ljJ(n)(tj) = h(t), tE[a,bj. (4.46) 
j=l 

Note that this is still an equation for the function 'ljJ(n). However, it is equiv
alent to the finite linear system 

n 

'ljJ(n)(tp) + LWjg(tp,tj)'ljJ(n)(tj) = h(tp), p=l, ... ,n, (4.47) 
j=l 

in the sense that with any solution ('ljJj)''J=l E <en of (4.47) the Nystrom 
interpolant 

n 

¢(n)(t) := h(t) - LWj g(t,tj) 'ljJj , t E [a,b], (4.48) 
j=l 

defines a solution of (4.46). The convergence analysis for the Nystrom method 
can be found in, e.g., [74j. The error 11'ljJ(n) - 'ljJllc[a,bl depends on the smooth
ness of the solution 'ljJ and the quadrature rule. In particular, the following 
result is well known. 

Theorem 4.13. Assume the quadrature formulae (4.45) to be convergent for 
every continuous function cp. Assume, furthermore, that the integral equation 
(4.44) is uniquely solvable for every h E C[a, bj. Then, for sufficiently large 
n, the equations (4.46) are uniquely solvable in C[a, bj. For the solutions 'ljJ of 
(4.44) and'ljJ(n) of (4.46) we have the error estimate 

11'ljJ(n)-'ljJllc[a,bl < ca~~bl(Qn-I)(g(t,·)'ljJ)I, n~no, (4.49) 

for some c> o. ' 
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We illustrate this result by considering three examples of quadrature formulae 
which correspond to the examples of Subsection 1.5.3. 

First, assume that g : ~ X ~ ----+ C and h : ~ ----+ C are analytic and 
27T-periodic. For g we assume this .with respect to both variables. We study 
the integral equation 

27f 

'lj!(t) + J g(t,S) 'lj!(s) ds h(t) , t E [0,27T]. ( 4.50) 

° 
As indicated in Subsection 1.5.3, we should take the trapezoidal rule, i.e. 
n = 2N, Wj = 7TIN, and tj = j7TIN for j = 0, ... , 2N - 1. Assume again, 
that the integral equation (4.50) has a unique periodic solution 'lj! E C[0,27T] 
for every periodic function h E C[O, 27T]. The integral equation (4.50) yields 
immediately that for analytic functions h, the solution 'lj! is necessarily also 
analytic. Therefore, for analytic functions h, the application of Theorems 1.17 
and 4.13 yields exponential order of convergence: 

< c 
- e<rN - 1 ' 

N:;:::No , (4.51) 

for some c > ° and (J' > 0. 

The assumption of periodicity is satisfied for closed loop antennas. For open 
line sources, the functions g and h fail to be periodic. In this case, the Gauss
Legendre method 

1 

J tp(t) dt ~ 
n 

(4.52) 

-1 

is better suitable where we take tj as the zeros of the Legendre polynomial 
Pn which are all simple and lie in the interval (-1,1). The weights Wj are 
known to be strictly positive. Then an analogous error estimate (4.51) holds 
for analytic data g and h. 

As a third example of a quadrature rule we had applied the trapezoidal rule 
to the transformed integral 

b 27f J tp(s) ds = J ljJ(t) dt with ljJ(t) = w'(t) tp(w(t)) , 0::::: t ::::: 27T. (4.53) 
a 0 

Here, the function w : [0,27T] ----+ [a, b] is chosen to be bijective, strictly 
monotonically increasing and infinitely often differentiable with derivatives 

w(j)(O) = W(j)(27T) = 0, j=1, ... ,p-1, 

for some odd p :;::: 3. Application of (1.83) and Theorem 4.13 then yields the 
order p - 2 of convergence: 
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C 

Np-2 ' N~No, (4.54) 

for some c > 0 provided 9 and h are smooth enough. 

In the following subsection we will apply the Nystrom method to the integral 
equations which arose in Sections 4.3 and 4.4. We note that all of the theo
retical results remain valid if the right hand side h in (4.46) is replaced by 
a function hn provided Ilhn - hllC[a,b] ~ 0 as n ~ 00. The error estimates 
(4.49), (4.51), and (4.54) have to be replaced by 

11'Ij!(n) - 'lj!llc[a,b] ::; c [a~~bl (Qn - I) (g(t, .) 'Ij!) I + Ilhn - hllc[a,b]] (4.55a) 

11'Ij!(N) - 'lj!11C[o,27r] ::; eaNc _ 1 
c' 

if IIhN - hllC[o,27r] ::; eaN _ 1 ' (4.55b) 

Il o,,(N) _ 0"11 < _c_ 
'f/ 'f/ C[a,b] - NP-2 

c' 
if IlhN - hIIC[a,b] ::; NP-2 . (4.55c) 

4.5.3 Numerical Solution of the Normal Equations 

First, we observe that the normal equations (4.21), (4.25), and (4.28b), for 
the restricted quasi-solution, the restriction on the super-gain ratio, and the 
Tikhonov regularization all take the form rJ'Ij! + K* K'Ij! = pK* f, i.e. 

£ 1 

rJ'Ij!(t) + J 'Ij!(s) a(t - s) ds = p J f(s) eikst ds, It I ::; C, ( 4.56) 

-£ -1 

with different meanings of rJ i- 0 and p. With g(t, s) := a(t - s) and 
h(t) := J~1 f(s) a(s) eikst ds the equation takes the form (4.44) (after an obvi
ous division by rJ). For the Nystrom method we use the Gauss-Legendre rule, 
i.e. 

£ 1 n J rp(s)ds = C J rp(TC)dT ~ CLWjrp(tjC) 
_£ -1 J=1 

where Wj, tj E (-1, + 1) are the Gauss-Legendre weights for the interval 
(-1, +1). 
In the cases where h(t) can not be computed analytically we approximate the 
integral also by the Gauss-Legendre rule, i.e. 

1 

h(t) := J f(s) a(s) eikst ds ~ hn(t) := 

-1 

n 

L Wj f(tj) a(tj) eiktjt . 

j=1 

(In the case a(t) = .;r=tz one should the Gauss-Tschebycheff rule instead 
which takes a as a weight function.) The Nystrom equations (4.46) and (4.47) 
take the form 
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n 

7]'Ij;(n)(te) + £LWj'lj;(n)(tj£)a[£(t-tj)] = phn(te) , Itl:::; 1, (4.57a) 
j=l 
n 

7]'Ij;(n) (tp£) + £ L Wj 'Ij;(n) (tj£).a [£(tp - tj)] = P hn(tp£) , 
j=l 

(4.57b) 

for p = 1, ... ,n, respectively. In the case where h(t) can be computed analyt
ically, we replace hn by h in equation (4.57b). 

In the form (4.57b) the corresponding matrix is not symmetric although the 
integral equation (4.56) has a symmetric kernel. Therefore, we set 'lj;j := 

Jnwj'lj;(n)(tj£), j = 1, ... ,n, and multiply equation (4.57b) by Jnwp. This 
yields 

7]'¢ + A'¢ = T, ( 4.58) 

for the vector '¢ = ('Ij;j)j=l E en with the symmetric matrix A and vector T 
whose entries are given by 

Ap,j := £a[£(tp-tj)] JWpWj and Tp := pJnwphn(tpR.). (4.59) 

The norm 11'Ij;lIi2(-C,H) and the defect IIK'Ij; - 11Ii2(-1,+1) are replaced by the 
discrete forms 

11'Ij;lli2( -£,H) ~ R. t Wj 1'Ij;(n) (tj) 12 = ~ t l'Ij;j 12 , 
j=l j=l 

IIK'Ij; - 11Ii2(-1,+1) = IIK'Ij;lli2(-1,+1) - 2Re(K'Ij;,J)£2(-1,+1) + 1111Ii2(-1,+1) 
= (p - 2) (h, 'lj;h2(-c,+C) - 7] 11'Ij;lli2(-C,H) + 1111Ii2(-1,+1) 

R.(p - 2) ~ _ 7]£ ~ 2 2 
~ n L..- 'lj;j Tj - -;: L..-1'Ij;jl + 11111£2(-1,+1) , 

p j=l j=l 

where we have multiplied the normal equation 'TJ 'Ij; + K* K'Ij; = p K* 1 = ph 
by'lj; and substituted 1I'Ij;lli2(-1,+1). 

4.5.4 Applications of the Regularization Techniques 

As a first example we implement the method of restricted quasi-solutions 
(4.20), i.e. we have to solve the normal equation (4.21b) 

7] 'lj;0 + K* K 'lj;0 = K* 1 , (4.60) 

and have to determine 7] > 0 such that 11'Ij;°II£2(-C,+C) = M. 

We consider two special examples. In the first one, the equation K'Ij; = 1 is 
solvable in contrast to the second example where it is not. In both cases the 
operator K is giyen by (4.43) for a:= 1 i.e., 
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£ 

(K'ljJ)(t) .- J 'ljJ(s) e-ikts ds, It I :::; 1. 

-£ 

At the end we show for one of these· examples that the results exhibit no 
significant numerical change if we replace a == 1 by a(t) = ~. 
In the first example we take fl (t) = (K'ljJ1) (t), It I :::; 1, with 'ljJ1 (s) = sin(1Ts/i), 
lsi:::; i, i.e. 

fl(t) = (K'ljJ1)(t) = if (sinc [1T + kit)] - sinc [1T - kit)]), It I :::; 1. 

For the computation of h1(t) = (K* fl)(t) we use the Gauss-Legendre quadra
ture rule. 

In the second example we take the function considered by Rhodes [114]. Let 
the original function g given by 

((}) := {1/ cos (), (}1 :::; () ;:; (}2, 
go, otherwlse, 

with (}1 = 151T /180 and (}2 = 751T /180. This transforms into 

12(t) = {l/t, tt :::; t ~ t2, It I :::; 1, 
0, otherwlse, 

with tt = cos (}2 and t2 = cos (}1. Here, h2 = K* 12 is given by 

t2 

h2(t) = (K* 12)(t) = J ~ eikst ds, It I :::; i, 
tl 

which has also to be computed numerically by the Gauss-Legendre rule (4.52) 
after transforming the interval (t1' t2) onto (-1, +1). 

Figure 4.1 shows the graphs of the discrete versions of TJ M II'ljJII£2(-£,£) and 

TJ MilK 'ljJ - fl11L2( -1,+1) forC = 1 and wave length A = 2 for the first example. 
Here we denote be 'ljJ the solution of (4.60) where added 10% random noise 
on fl. 
Then we determine TJ with II'ljJII£2( -1,+1) = M by the Regula Falsi. For M = 0.5 
and M = 1.5 we computed TJ ~ 1.27 and TJ ~ 2.34 * 10-5 , respectively. 
The corresponding plots of fl and K'ljJ° and optimal currents are shown in 
Figures 4.2 and 4.3, respectively. We note that the "true" current 'ljJ°(t) = 
sin( 1T s / i) has norm 1. This explains why the plots for fl and K'ljJ° in the 
left of Figure 4.3 are indistinguishable. The Figures 4.4 - 4.6 correspond to 
Figures 4.1 - 4.3 but this time as a second example, 0 = 0, and M = 1 and 
M = 3. The corresponding values of the Lagrange multipliers are TJ ~ 0.25 
and TJ ~ 0.0057, respectively. 
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Fig. 4.1. T/ 1-+ 11'1,0011 and T/ 1-+ IIK'ljl° - hll for the first example and 10% noise 

15,----~~--~--__r--~--~--~--__, 

0.6 

0.' 
0.5 

02 

-05 
-0.4 

-0.6 

-0.' 

Fig. 4.2. 1m h, 1m K 'IjI0 and Re 'IjI0, 'IjI! for the first example, 10% noise and M = 0.5 
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Fig. 4.3. Imh, ImK'ljl° (indistinguishable) and Re'ljl°, 'IjI! for the first example, 
10% noise and M = 1.5 
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Fig. 4.4. Tf r-t 11'lji11 and Tf r-t IIK'lji - gil for the second example (no noise) 
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Fig. 4.5. 12, ReK'lji° and Re'lji°, Im'lji° for the second example and M = 1, no noise 
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Fig. 4.6. 12, Re K'lji° and Re 'lji0, Im'lji° for the second example and M = 3, no noise 
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The second method which we have studied in Section 4.3 is to minimize 
IIK7,b - 111£2(-1,+1) subject to a constraint on the super-gain ratio, i.e. sub

ject to 117,b11£2(-e,H) ::::: M IIK7,bII£2(-l,+l) for some M > II IIKII. We have now 
to solve equation (4.25) instead of (4.21) and have to determine TJ > 0 from 
the equation 117,b11£2(-e,H) = M IIK7,bII£2(-l,+l)' Equation (4.25) differs from 
(4.21) only in the term involving K* K 7,b, i.e. we must replace K* K in (4.21) 
and A in (4.59) by (1 - TJM2)K* K and (1 - TJM2)A, respectively. In Fig
ure 4.7 we show the discrete version of TJ 1-+ 117,b11£2(-e,H) I IIK7,bII£2(-l,+1) ~ 

l'¢I/V-?,b*A,¢ and IIK7,b-hll£2(-l,+l) for the second example, wave length 
A = 2, and M = 1.1. We determine the Lagrange multiplier as TJ ~ 0.041 
show plots of h, K 7,b and the corresponding current in Figure 4.8. 

°0:----------:-0.=--05 --------:!Ol .. 
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~:-------~005~---~ 

'" 
Fig. 4.7. rJ r-+ II'¢II / IIK,¢II and rJ r-+ IIK'¢ - gil for M = 1.1 

Finally, we may consider this last example also for the case where K is given 
by 

e 

(K7,b)(t) := J1=t2 J 7,b(s) e- ikts ds, It I ::::: 1. 

-e 

Again, A = 2 and M = 1.1. The result is shown in Figure 4.9. 
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Fig. 4.8. 12, ReK'ljJ° and Re'ljJ°, Im'ljJ° for the second example and !vI = 1.1, no 
noise 
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Fig. 4.9. The same as in Figure 4.8 but for the operator K with a(t) = Vf=t2 
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Boundary Value Problems for the 
Two-Dimensional Helmholtz Equation 

It is the aim of this chapter to introduce the reader to the mathematical theory 
of boundary value problems. A typical boundary value problem consists of a 
differential equation which the unknown field has to satisfy in some region D, 
certain boundary conditions on the boundary 8D of D and a decay condition 
at infinity if D is unbounded. In electromagnetic theory we study the Maxwell 
equations for the time-harmonic case (2.13a)-(2.13d) from Section 2.7 with 
the boundary conditions specified in Section 2.11, and the radiation condition 
of Section 2.9. We will treat the corresponding boundary value problems for 
Maxwell's equations in the next Chapter 6. Here, as an introduction, we will 
consider the important E- and H-modes introduced in Section 2.8. We do 
not try to be exhaustive but rather present the basic ideas of the integral 
equation method. 1 We start by considering smooth boundary data, which 
allows us to apply the classical Green's theorems. For a rigorous study of 
boundary integral equation methods for Helmholtz and Maxwell equations 
and the proofs of the theorems we refer the reader to [29]. In Section 5.4 
we will then sketch an approach for £2-boundary data. These non-smooth 
boundary data are important for studying questions of existence of optimal 
solutions of antenna problems. 

5.1 Introduction and Formulation of the Problems 

In this chapter we will study the following two model problems which cor
respond to the E- and H-mode for impedance and perfectly conducting 

1 We have seen in Chapter 1 that the analysis of arrays assumes either that the 
spacing of elements is chosen so that mutual coupling effects are very small or 
that the question is ignored. It is important to emphasize that the appropriate use 
of integral equations automatically include such effects. Moreover, by the use of 
boundary integral equation methods the dimension of the space to be discretized 
for numerical simulations is reduced by one. 
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boundary conditions (cf. Section 2.11). We restrict ourselves to the physi
cally most important case: that the antenna, described by an infinite cylinder 
in x3-direction is imbedded in free space. 

Let D C ]R2 be a bounded region with connected exterior DC := ]R2 \ [2 and 
smooth boundary aD. By the latter we mean aD E C2 in the sense defined, 
e.g., in [29]. We denote by n(x) the unit normal vector in x E aD directed into 
the exterior of D. Let k > 0 be given. We recall from (2.15) that, in physically 
relevant situations, k is the free space wave number k = Wy'JLoEO. Furthermore, 
let g and A be continuous functions on aD. We set DR := {x E DC : Ixl < R} 
for sufficiently large R > 0 to ensure that D is contained in the disc of radius 
R. 

We begin with the impedance problem in the E- or H-mode, see Sec
tion 2.11: 

Determine u E C2(DC) n C(Dc) such that 

and au - + Au an g on aD, 

and u satisfies the radiation condition 

au ( 1 ) ar - ik u = 0 r3/ 2 for r = Ixl -+ 00. 

(5.la) 

(5.lb) 

(5.lc) 

For a perfectly conducting antenna, the E-mode leads to the Dirichlet prob
lem and the H-mode to the Neumann problem in the exterior of D. Since 
the Neumann problem is a special case of the impedance problem (set A = 0 
in (5.la)-(5.lc)) it remains to formulate the Dirichlet problem: 

Determine u E C2(DC) n C(DC) such that 

and 
u = g on aD, 

and u satisfies the radiation condition (5.lc). 

(5.2a) 

(5.2b) 

The formulation of the impedance boundary value problem needs a (techni
cal) explanation. Since we did not require that the solution is continuously 
differentiable up to the boundary, we must explain in which sense the bound
ary condition has to be understood. The notion of "parallel curves" is very 
illustrative (see, for example, [99]: 
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Definition 5.1. Let 9 E C(oQ). The function U E C 1 (QC) is said to assume 
the Neumann boundary value au/an = 9 on oQ in the sense of uniform 
convergence along the normal if 

lim In(x).V'u(x+tn(x))-g(x)1 = 0 uniformlyinxEoQ. (5.3) 
t~o+ . 

Introducing the notation Ut(x) := u(x+tn(x)) and V'Ut(x):= V'u(x+tn(x)) 
for sufficiently small It I we can formulate the boundary condition au/an = 9 
on oQ as 

lin· V'Ut - gllc(iW) -+ 0 as t -+ 0+, (5.4) 

where Ilgllc(an) := max Ig(x)1 denotes the canonical norm in C(oQ). The 
mEan 

impedance boundary condition (5.1b) may now be understood as 

lim lin· V'Ut + AU - gllc(an) = O. 
t~O+ 

For brevity, we use the notation 

u(x)I±:= lim Ut(x) , 
t~O± 

V'u(x)I±:= lim V'Ut(x) , 
t~O± 

OU(x) I . 
-<::.- := hm n(x)· V'Ut(x). 

un ± t~O± 

(5.5) 

(5.6a) 

(5.6b) 

(5.6c) 

Before we discuss existence and uniqueness of these boundary value problems 
we recall the basic representation theorems for solutions of the Helmholtz 
equation. For a proof we refer to [29]. The two dimensional fundamental so
lution of the Helmholtz equation is given by 

where H61) denotes the Hankel function of the first type and order O. 

Theorem 5.2. (Representation Theorem) 

(5.7) 

Let Q C ]R2 be an open bounded set with exterior QC := ]R2 \ Q, and with 
the unit normal vector n( x) be directed into the exterior QC. Let k E C with 
Re k ::::: 0 and 1m k ::::: O. 

(a) Ifu E C2(Q)nC(Q) is a solution of the Helmholtz equation Lu+k2u = 0 
in Q which possesses Neumann boundary data in the sense of (5.4), then we 
have 

(5.8a) 
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(b) Ifu E C2 (.Qc)nC(stC ) be a solution of the Helmholtz equation 6u+k2u = 0 
in .Qc which possesses Neumann boundary data in the sense of (5.4) and 
satisfies the radiation condition (5.lc), then we have 

J {cJ>( ) 8u(y) _ ( ) 8cJ>(x, y)} df( ) = {-u(x), x E .Qc, (5.8b) 
x, y 8n u y 8n(y) y 0, x E n. 

an 

Remark: Actually, the proof in [29] is only given for u E C2 (.Q) n C1 (D) or 
u E C2(DC) n C1(Dc), respectively. But an application of this result in the 
region bounded by the curves {x + tan (x) : x E 8D} where a = +1 or -1 
respectively leads to the desired result when t tends to zero. For more details 
on the concept of parallel curves we refer the reader to [74] and [99]. 

This representation theorem has several important implications. First, we con
clude from the analyticity of the kernel in (5.8a) that every C2 _ solution of 
the Helmholtz equation is even analytic. Second, from the asymptotic be
haviour of the Hankel function (cf. (2.68a), (2.68b)) we find the following 
representation of the far field pattern: 

Theorem 5.3. Let u E C2(DC) n C(Dc) be a radiating solution of the 
Helmholtz equation in DC which assumes Neumann boundary data in sense 
of (5.4). Then 

eikr 
{ (I)} u(x) = vr uoo(x) + 0;: , r = Ixl ---7 00 , (5.9) 

uniformly in x = x / r E Sl. The far field pattern U oo has the representation 

J { 8 'k' 'k' 8u(y)} uoo(x) = 'Y u(y) __ e-z f£'Y - e-z f£.y -- d£(y) , 
8n(y) 8n 

XE S\ 
an 

(5.10) 
with'Y = exp(i1r/4)/.J81rk. Moreover, the far field pattern U oo is an analytic 
function on the unit circle. 

5.2 Rellich's Lemma and Uniqueness 

The following lemma describes a fundamental difference between solutions 
of the Helmholtz equation 6u + k2u = 0 for real k > 0 and those of the 
Laplace equation 6u = O. It is well known that there exist solutions of the 
Laplace equation which decay as l/rm for r ---7 00 for any mEN (e.g. the 
function u(r, ¢) = r-m cos(m¢)). This situation cannot occur for solutions of 
the Helmholtzequation for real and positive k as was shown by Rellich [113]: 
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Lemma 5.4. (Rellich) 

Let k > 0 be real and assume that u is a solution of the Helmholtz equation 
6u + k2u = 0 in the region {x E 1R2 : Ixl > R} for some R > o. Assume that 

lim J lu(x)12 de = o. 
r-+oo 

(5.11 ) 

l"'l=r 

Then u vanishes for Ixl > R. 

For a proof we refer to [30], Lemma 2.11. This lemma implies that, for real 
k > 0, the mapping u H U oo is one-to-one: U oo = 0 implies that u(x) = 
O(1/r3 / 2 ). Thus condition (5.11) of Rellich's lemma is satisfied, and u must 
vanish. 

Before we turn to the question of uniqueness of solutions for the boundary 
value problems, we state another implication (cf. [30], Theorem 2.12): 

Theorem 5.5. Let u E C2 (DC) n C(Dc) be a radiating solution of the 
Helmholtz equation in DC which possesses Neumann boundary data in sense 
of (5·4)· Assume that 

(5.12) 

Then u = 0 in DC. 

Proof: The binomial theorem yields 

(5.13) 
and this tends to zero by the radiation condition as R -+ 00. By Green's first 
theorem applied in the region DR = {x E DC : Ixl < R} we have that 

and thus 

1m J ufJu d£ 
fJr 

Ixl=R 

Substituting this into (5.13) yields 

J J [I VuI2 - k21u12] dx (5.14) 

DR 

2k 1m J u ~~ d£ < 0 
an 



150 5 BVP for the Helmholtz Equation 

and thus lim J lul 2d£ = O. Rellich's Lemma yields u == 0 outside any 
R--+=lxl=R 

ball containing n in its interior. Finally, analytic continuation yields that u 
vanishes everywhere. 0 

The uniqueness of solutions of the Dirichlet and impedance boundary value 
problems follows (almost) immediately: 

Theorem 5.6. Let be k > 0 and A E C(an) such that ImA 2:: 0 on an. 2 

Then the impedance boundary value problem (5.1a)-(5.1c) has at most one 
solution. 

Proof: Let u be the difference of two solutions. Then u solves the impedance 
problem with g = O. Making use of the boundary condition yields 

Taking the imaginary part and applying the preceding theorem yields the 
assertion. 0 

The Dirichlet problem seems to be even simpler since the integral Jan fi ~~ d£ 
vanishes if, again, u denotes the difference of two solutions. For the Dirichlet 
problem, however, we have not assumed that the normal derivative exists in 
the sense of uniform convergence along the normal. Theorem 5.5 is therefore 
not directly applicable. This problem can be overcome by applying a regularity 
result as in [29], Theorem 3.27, or proving the identity (5.14) (for the case 
u == 0 on an) directly with the following result, originally due to E. Heinz, 
see [42J. 

Lemma 5.7. Let u E C2(~2 \ n) n C(~2 \ n) be a solution of the Helmholtz 
equation in ~2 \ n with u = 0 on an. Define again DR := {x E n c : Ixl < R} 
for sufficiently large R. Then 'Vu E L2(nR ) and 

J J [1'VuI2 - k21u12] dx J au ar fid£. 
DR Ixl=R 

For a proof we refer to [30], Lemma 3.8. 

Theorem 5.8. Let k > 0 and u E C2 (nC) n C(nc) be a radiating solution of 
the Helmholtz equation with ulan = O. Then u has to vanish in nc. 

2 This condition on 1m A is associated with the physical phenomenon of lossy media. 
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5.3 Existence by the Boundary Integral Equation 
Method 

In this section we will prove existence of a solution for smooth boundary data 
>.. and g. In contrast to Section 5.4 where we treat L2 -boundary data in this 
section we restrict ourselves to Holder continuous functions: 

Definition 5.9. Let a E (0,1] and G C ~2 be a set. The space CO''''(G) 
of bounded, uniformly Holder continuous functions of order a consists of all 
bounded functions f E C( G) for which a constant c > ° exists such that 

If(x)-f(y)1 :::; clx-yl'" forallx,yEG. 

CO,,,, (G) is a Banach space with respect to the norm 

If(x) - f(y)1 
IlflleD,a(G) := sup If(x)1 + sup I I'" 

xEG xi-y x - Y 

In the integral equation method one searches for the solution in form of a 
single or double layer potentials. Let again 

(5.15) 

be the fundamental solution of the two dimensional Helmholtz equation. Given 
an integrable function <p on 8[2 the functions 

u(x):= J <p(y) 1J(x, y) d£(y) , x E ~2 \ 8[2, 

an 

v(x):= J Ip(y) 8n~y) 1J(x, y) d£(y) , x E ~2 \ 8[2, 

an 

(5.16a) 

(5.16b) 

are called single and double layer potentials, respectively, with density <po 
They are solutions of the Helmholtz equations and satisfy the radiation con
dition (5.1c). They are, however, not continuously differentiable when passing 
through 8[2. Their traces are given by the following theorem which we formu
late for uniformly Holder continuous densities <po These relations are usually 
referred to as the jump relations for the single and double layer operators. 

Theorem 5.10. Assume that <p E CO''''(8[2) for some a E (0,1]. 

(a) The single layer potential u can be extended to all of ~2 as a uniformly 
Holder continuous function having boundary values given by 

u(x)l± = J <p(y)1J(x,y)d£(y) , xE8[2. 

an 
(5.17a) 

Here, u(x)l± is the limit from the exterior and interior, respectively, as 
defined in (5. 6a)-(5. 6c). The integral exists as an improper integral. 
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(b) The first derivatives of the single layer potential u can be extended from n 
to n and from n c to n c as uniformly Holder continuous having boundary 
values 

'Vu(x)± = =F~c,o(x)n(x)+ J c,o(Y)'VxtP(x,y)dl!(y) , xEan. 

en 
(5.17b) 

The integral exists in the sense of the Cauchy principal value.3 

(c) The double layer potential v can be extended from n to n and from n c to 
n c as uniformly continuous functions having boundary values 

v(x)l± = ±~c,o(x) + J c,o(y) an~y) tP(x, y) d£(y) , 
en 

x E an. (5.17c) 

The integral exists as an improper integral. 

(d) For the normal derivative of the double layer potential v we have 

lim n(x)· {'Vv(x + tn(x») - 'Vv(x - tn(x»)} = 0 
t-+O+ 

uniformly in x E an. Furthermore, there exists c > 0 with 

IIullco''''(1R2) :::; c IIc,ollco,,,,(an) , 

II'Vullco,"'(n) :::; c IIc,ollco,,,,(an) , 

II'Vullco,"'(nC) :::; c IIc,ollco,"'(an) , 

IIvllco,"'(n) :::; c IIc,ollco,"'(an) , 

IIvllco,,,,(nC) :::; c IIc,ollco,,,,(an) , 

(5.17d) 

(5.18a) 

(5.18b) 

(5.18c) 

(5.18d) 

(5.18e) 

For a proof of this theorem we refer to [29], Theorems 2.12, 2.16, 2.17, 2.23. 

The integrals which appear in (5.17a)-(5.17c) each define a linear operator 
in the space of Holder continuous functions defined on the boundary aD. 
Specifically, we define the boundary operators S, D, and D' by 

(Sc,o)(x) := J c,o(y) tP(x, y) d£(y) , x E an, 

an 

(Dc,o)(x):= J c,o(y) an~y) tP(x, y) d£(y) , x E an, 
an 

(D'c,o)(x):= J c,o(y) an~x) tP(x, y) d£(y) , x E an. 
an 

(5.19a) 

(5.19b) 

(5.19c) 

3 The notion of the Cauchy principal value extends the ordinary notion of improper 
integrals to functions on lR or curves' which have singularities of order 1ft. We 
refer to [137] for an introduction and an application to integral equations. 



5.3 Existence 153 

For C2 -boundaries, these operators are compact: 

Theorem 5.11. The boundary operators S, D and D' are well defined and 
compact as operators from CO,O'. (aD) into itself. 

Now we turn to the question of existence of solutions to the impedance and 
Dirichlet boundary problem. We start with the Dirichlet problem and make 
the assumption that the solution u can be written as combination of a single 
and double layer potential: 

u(x) = J <p(y) [an~y)qJ(X'Y) - ikqJ(X,y)] d£(y) , XE]R2\aD. 

an 
(5.20) 

This form of u satisfies both the Helmholtz equation and the radiation con
dition. By Theorem 5.10 we see that ul+ = g on aD if and only if the density 
<p E CO,O'. (aD) solves the boundary integral equation 

~<p(X) + J <p(y) [an~y)qJ(X,y) - ikqJ(X,y)] d£(y) g(X), x E aD, 

an 
(5.21) 

or in operator notation 

1 "2 <p + D<p - ik S<p = g. (5.22) 

This equation is a Fredholm equation of the second kind in CO,O'. (aD) since 
the operators D and S are compact. By the Theorem of Riesz (Theorem A.40) 
existence of a solution of this integral equation (5.22) follows once uniqueness 
is shown. Therefore, let <p E Co,O'.(aD) be the difference of two solutions of 
(5.22). Then <p solves this integral equation with g = O. Define u by formula 
(5.20). Then u solves the Helmholtz equation in ]R2 \ aD and the radiation 
condition as r -+ 00. Furthermore, ul+ = ~<P + D<p - ik S<p = 0 since <p solves 
(5.22) for g = O. The uniqueness result of Theorem 5.8 then shows that u = 0 
in DC. 

Now we compute the jumps of u and au/an at the boundary aD using The
orem 5.10 again: 

-ul_ = ul+ -ul_ = <p and aul aul aul . - - = - - - = zk <p. (5.23) 
an_ an+ an_ 

The trace of the normal derivative has to be understood in the sense of uniform 
convergence along the normal. Eliminating <p from these equations leads to 
an impedance boundary condition for u in D: 

aul . an_ - zkul_ = 0 onaD. 
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Now we apply Green's first formula for u and u in n and make use of the 
boundary condition. These computations yield 

Taking the imaginary part gives ul_ = 0 and, from (5.23), 'P = O. Thus we 
have proven: 

Theorem 5.12. The Dirichlet problem (5.1) has a unique solution for every 
k > 0 and g E CO,Ct(an). The solution can be represented in the form (5.20) 
where 'P E CO,Ct(an) is the unique solution of (5.22). 

Having solved the Dirichlet problem by the integral equation method we can 
compute the far field pattern U oo of the solution by the ansatz and the asymp
totic behaviour of the Hankel functions (cf. (2.68a), (2.68b)). This gives 

uoo(x) = I J 'P(Y) [an~y) e- ikfiJ .y - ike- ikfiJ .y] d£(y) , x E 8 1 , (5.24) 

an 

The situation is more complicated for the impedance problem. This is due to 
the fact that the normal derivative of the double layer potential does not exist 
for Holder continuous densities, not even in the sense of uniform convergence. 
It does exist, however, for Holder continuously differentiable functions. There 
are different possibilities to introduce the Holder space C1,Ct(an) of Holder 
continuously differentiable functions. Instead of using local coordinates as, e.g. 
in [30] (Section 6.3 for surfaces), we prefer the following approach which we 
will extend to surfaces in lP1.3 in the next chapter. We begin with the spaces 
CT(an) and c~,Ct(an) of tangential vector fields defined as 

CT(an) := {a: an --t c2 : aj E c(an), j = 1,2, a(x) . n(x) = 0 on an}, 

c~Ct(an) := {a E CT(an) : aj E cO,Ct(an), j = 1, 2}. 

We recall that a function f : an --+ C is continuously differentiable if there 
exists a tangential vector field Grad f E CT (an) such that 

lim ~ If(x + ta(x)) - f(x) - t Gradf(x) . a(x)1 = 0, 
t--+O t 

for all tangential vector fields a E CT(an). The vector field Gradf is called 
the tangential gradient of f. 

Definition 5.13. Let a E (0,1]. The space C1,Ct(an) consists of all functions 
f E C(an) which are continuously differentiable on an and whose tangential 
gradients Gradf,are Holder continuous of order a, i.e. Gradf E c~,Ct(an). 
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The space C 1,,,, (8D) is also a Banach space with respect to the canonical norm 

Ilfllc1,<>(a.o) := Ilfllco,<>(o.o) + IIGradfllc~'<>(a.o) . 

Also, the imbeddings j : CO,"'(8D) ~ C(8D) and C 1,"'(8D) -+ CO,"'(80) 
are compact. For the proofs of these facts we refer to [29, p.38]. 

For densities r..p E C1 ,"'(8D) the following holds: 

Theorem 5.14. Let r..p E C 1''''(80) for some a E (0,1]. Then the double layer 
potential v and its first derivatives can be continuously extended from D to 0 
and from DC to Dc with boundary values 

8vj8nl+ = 8vj8nl_· (5.25) 

The operator T, defined by Tr..p := 8vj8n, i.e. 

8 J 8 Tr..p(x) := 8n r..p(y) 8n(y/(x, y) d£(y) , x E80, (5.26) 

a.o 

is well defined and bounded as an operator from C 1 ,"'(8D) into CO''''(80). 

The operator D from (5.19aj is bounded from CO''''(80) into C1 ,"'(80). 

For a proof we refer to [29], Theorems 2.23 and 2.30. For the following we 
observe that we can easily compute the L2 -adjoints of the boundary operators 
S, D, D' and T. By (-, ·)£2(a.o) we denote the L2-inner product. 

Theorem 5.15. For an operator K in some function space we denote by K 
the complex conjugate of K, i.e. Kr..p := K<j5. Then we have 

(aj (Dr..p,'l/Jh2(a.o) = (r..p,D''l/J)£2(a.o) for all 'l/J,r..p E CO,"'(80), i.e. D and D' 
are L2 - adjoint of each other. 

(bj (Sr..p, 'l/J)£2(a.o) = (r..p, S'l/J) £2 (a.o) for all 'l/J, r..p E CO,"'(80), i.e. Sand S are 
P-adjoint of each other. 
- 1 -

(cj (Tr..p, 'l/J)£2(a.o) = (r..p, T'l/J) £2 (a.o) for all 'l/J, r..p E C ''''(80), i.e. T and T 
are L2-adjoint of each other. 

Parts (a) and (b) are easily seen by changing the order of integration. For this 
and for part (c) we refer to [30]. 

Having established the definitions of these operators we now continue with the 
impedance boundary value problem (5.2), (5.1c) where we now assume that 
), E CO,"'(8D). We start by looking for solutions in the form of a combination 
of a single and double layer potential, but one slightly different than for the 
Dirichlet problem: 

u(x) = J [(DD'r..p)(y) 8n~y)qJ(x,y) -ikr..p(y)qJ(X,y)] d£(y) , (5.27) 

a.o 
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for x E ~2 \ oQ with some density cp E Co,c< (oQ). This form of u again satisfies 
the Helmholtz equation and the radiation condition. The density of the single 
layer part is -ikcp, for the double layer part it is DD'cp and thus in C1'C«oQ) 
by Theorem 5.14. By Theorems 5.10 and 5.14 we see that ou/ onl+ + A ul+ = 9 
on oQ if and only if the density cp E CO'C«oQ) solves the boundary integral 
equation 

-, ik ,A - , - , 
TDDcp + 2CP - ikDcp + iDDcp + ADDDcp - ikAScp = g. (5.28) 

This equation looks complicated. But we see that it is also a Fredholm equa
tion of the second kind since the operators T D D', D', D D', D D D', and 
S are all compact in CO,C< (oQ). Again, we have to prove uniqueness. Let 
cp E Co'c«oQ) be a solution of (5.28) for 9 = o. Define u by (5.27). Then u 
solves the exterior impedance problem (5.2), (5.lc) with homogeneous bound
ary data 9 = o. If uniqueness holds for the boundary value problem itself (e.g. 
if 1m A 2: 0 on oQ by Theorem 5.6), we conclude that u vanishes in QC. Again 
we calculate the jumps with Theorems 5.10 and 5.14 

-ul_ = ul+ - ul_ = DD'cp and - - " r _ ou I ~ ou I - ou I =,;k If) • 

on _ on + on_ 
(5.29) 

Applying the operator DD' to the second equation we arrive at the nonlocal 
boundary condition 

Multiplication with au/onl_, integration over oQ and using of the fact that 

D and D' are L2-adjoint, yields (the traces are taken from the interior) 

liD' ou 112 = ik J u au d£ = ik /] [1V'uI2 - k21u12] dx. 
on £2(an) on 

an n 

Taking the real part yields 0 = D'~~ = -ikD'cp on oQ and thus also ul_ = 0 
by (5.29). The ansatz reduces to u(x) = -ik J cp(y)ifJ(x,y)d£(y) and thus 

an 
o = ul_ = -ik Scp. The integral equation (5.28) finally shows that cp = O. 
Thus we have proven: 

Theorem 5.16. Suppose that there exists at most one solution for the impedance 
problem (5.2), (5.lc) for k > 0 and impedance A E Co'c«oQ) (e.g. iflmA 2: 0 
on oQ). Then the integral equation (5.28) has a unique solution for every 
9 E CO,C< (oQ). Furthermore the solution of the original boundary value prob
lem can be represented in the form (5.27) where cp E CO'C«oQ) is the unique 
solution of {5.28}. 
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Again, having solved the impedance problem by this integral equation method 
we can compute the far field pattern U oo of the solution by the ansatz (5.27) 
as 

ik r.p(y) e -ikre. y ] d£(y) , 

(5.30) 

Remark: For numerical algorithms, one usually works with the "plain" dou
ble layer approach for the Dirichlet problem and the single layer ansatz for the 
impedance problem. Then it is well known that the resulting integral equa
tions are not uniquely solvable if k 2 is an eigenvalue of -6 in [2 for Neumann
or Dirichlet boundary conditions, respectively. But these eigenvalues are dis
crete and numerical experiments showed that no numerical problems occur as 
long as one does not approach these eigenvalues too closely. 

We finish this section by introducing the solution operator and the far 
field operator of the Dirichlet and impedance boundary problems. 

Theorem 5.17. (a) Let A c [2c be any compact subset of [2C and A E 

0°''''(8[2). Then the solution operators LD : 0°,"'(8[2) -+ O(A) and 121 : 
0°''''(8[2) -+ O(A) for the Dirichlet and impedance boundary value prob
lems, respectively, are defined by 9 I-t UiA, where u satisfies the Dirichlet or 
impedance boundary value problem (5.1) or (5.2), (5.1c), respectively. They 
are well-defined and bounded. 

(b) The far field operators /CD: 0°,"'(8[2) -+ 0(81 ) and /C1 : 0°,"'(8[2) -+ 
0(81) for the Dirichlet and impedance boundary value problems, respectively, 
are defined by 9 I-t u oo , where u satisfies the Dirichlet or impedance boundary 
value problem (5.1) or (5.2), (5.1c), respectively. They are well defined and 
bounded. 

Proof: The representations (5.20) and (5.27) define operators from 0°,"'(8[2) 
into C(A) which are bounded. Since the equations (5.22) and (5.28) define 
isomorphisms in 0°''''(8[2) part (a) follows. The far field patterns are given 
by (5.24) and (5.30), respectively, which also define bounded operators from 
0°''''(8[2) into 0(81 ). This proves the theorem. D 

5.4 L2 -Boundary Data 

In many applications it is important to allow the boundary data 9 or the 
impedance A to have "jumps" or even more complicated discontinuities. For 
the important question of existence of solutions of antenna problems (see 
Chapter 3) it is 'useful to take, e.g., 9 E L2(8[2). Then the meaning of the 
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Dirichlet and Neumann boundary condition has to be clarified. There are 
a number of equivalent definitions (variational formulations, parallel curves). 
We refer to [66], [9] for a comprehensive study of these notions. In this chapter 
we follow an approach which is based on the notion of parallel curves which we 
have introduced already to overconie the difficulty with the differentiability of 
u up to the boundary. It is very natural to replace the norm 11·llc(a.o) in (5.5) 
by the L2-norm if the boundary data is to be taken in L2(oD). Then it can 
be shown that all of the uniqueness- and existence results of Sections 5.2 and 
5.3 carryover. We will only sketch the approach. 

Our final goal is to show that the solution operators .cD, .cJ and the far field 
operators KD , KJ of Theorem 5.17 possess extensions to bounded operators 
from L2(oD) into C(A) and C(Sl), respectively. 

First, we formulate the Dirichlet and impedance problems for g E L2(oD) 
and A E Loo(oD). We recall the definitions of Ut(x) := u(x + tn(x)) and 
VUt(x) := Vu(x+tn(x)) for sufficiently smalliti. We start with the Dirichlet 
problem: 

Determine U E C 2 (DC) such that 

6u + k2u = 0 in DC, 

IIUt - gllp(a.o) -+ 0 as t ---+ 0+, 

and u satisfies the radiation condition 

ou ( 1 ) or - ik u = 0 r 3 / 2 as r = Ixl ---+ CXJ 

uniformly in x := x/r. 

The impedance problem is to determine u E C 2 (DC) such that 

6u + k2u = 0 in DC, 

and 
lin· VUt + AUt - gllp(a.o) -+ 0 as t ---+ 0+ , 

and U satisfies the radiation condition (5.31c). 

(5.31a) 

(5.31b) 

(5.31c) 

(5.32a) 

(5.32b) 

In the following, once again we write U = g on oD and ou/on+Au = g on oD 
for (5.31b) and (5.32b), respectively, and say that the boundary data exist in 
the L2-sense. 

Then it can be shown that Theorem 5.5 holds if both, the Dirichlet boundary 
data u and the Neumann boundary data ou/on exist in the L2-sense. Also, 
the uniqueness Theorems 5.6 and 5.8 can be carried over to the L2-case. 

For the question of existence we first recall that the single and double layer 
potentials u and v from (5.16a), (5.16b) exist also for 'P E L2(oD). The 
operators S, D, D' and its L2-adjoints are compact operators in cO,a(oD) 
as we have seen in the previous section. By the following theorem of Lax (see 
[57, 30]) we see that they are also bounded in L2(oD): 
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Theorem 5.18. Assume that T : Xl -----+ X 2 is a bounded operator between 
normed spaces Xl and X 2. Let (., -) be inner products in Xl and X 2. We 
denote the corresponding norms by IIxllH := ~.4 Assume, furthermore, 

J 

that the adjoint T* : X 2 -----+ Xl with respect to (-,.) is also bounded in the 
norms of Xl and X 2. Then T and T* can be uniquely extended to bounded 
operators T : HI -----+ H2 and T* : H2 -----+ HI, respectively, where H j , j = 1,2, 
is the completion of Xj with respect to II·II H . 

J 

IfT and T* are isomorphisms from Xl onto X 2 and X 2 onto Xl, respectively, 
then also T and T* are isomorphisms between HI and H2. 

Proof: The boundedness of T and T* with respect to II·IIH has been sho~n 
J 

in, e.g., [30], Theorem 3.5. Therefore, the existence ofthe bounded extensions 
T : HI +---+ H2 : T* are guaranteed. 

Assume that T and T* are isomorphisms between Xl and X 2. Then T- 1 and 
(T*) -1 satisfy the assumptions of the theorem as well and, therefore, can be 
extended to bounded operators between HI and H 2 . It is easy to see that 
these extensions are the inverses of T and T*, respectively. D 

Kersten [62] used this theorem to extend the jump conditions (5.17) for single
and double layers with L2_ densities. They hold in the following sense: 

Ilu±t - 8cpIIL2(an) -----+ 0, 

lin· '\7u±t ± cP - D'CPII£2(an) -----+ 0, 

IIV±t 4= cP - Dcpll£2(an) -----+ 0, 

lin· '\7v+t - n· '\7v-tll£2(an) -----+ 0, 

t-+O+ 

t-+O+ 

t -+ 0+, 

t-+O+. 

(5.33a) 

(5.33b) 

(5.33c) 

(5.33d) 

With these tools it is possible to carryover the integral equation method of 
Section 5.3 to the case where g E L2(8D) and..\ E LOO(8D). In particular, the 
integral equations (5.22) and (5.28) are uniquely solvable (the latter provided 
1m ..\ (x) 2: 0 almost everywhere on 8D) for every g E L2 (8D). We summarize 
the results in the following theorem. 

Theorem 5.19. Let be ..\ E LOO(8D) with Im..\(x) 2: 0 almost everywhere 
on 8D. Then the Dirichlet and the impedance boundary value problems are 
uniquely solvable for every g E L2 (8D). The solution operators 'cD and ,C I 
and the far field operators I( D and I( I from Theorem 5.17 possess extensions 
to linear bounded operators from L2(8D) into C(A) and from L2(8D) into 
C(81 ), respectively. 

Moreover, the operators I( = I(D and I( = I(I are one-to-one with dense 
ranges in C(81 ), and the images I(g, 9 E L2(8D), are analytic functions on 
the unit circle. 

4 Our notation does not distinguish between the inner product or norms in Xl and 
X2 • 



160 5 BVP for the Helmholtz Equation 

Proof: We sketch only the proofs of the last assertions. Injectivity is again an 
immediate consequence of Rellich's Lemma 5.4 and analytic continuation. The 
fact that far field patterns Kh are analytic functions has been noticed before 
in Theorem 5.9. For the denseness of the ranges of KD and KI we recall the 
approximation theorem of Weierstrass. It states that for every function 
1 E C(81) and every € > 0 there exists N E Nand a-N, ... , aN E <C such 
that 

II f an'l/Jn - 111 ::; €, 

n=-N C(S1) 

where 'l/Jn(B) := exp(inB), n E Z. Here we have identified C(81) with the 
space of continuous periodic functions on [0, 21f]. Now we observe that IN := 

2::=-N an 'l/Jn is the far field pattern of 

uN(r,B) := I¥ f anH~1)(kr)ein(IJ+7r/2)+i7r/4, 
n=-N 

where H~1) denotes the Hankel function of first kind and order n (see 
Section 2.13). Defining 9 by 9 := uNloSl for the Dirichlet problem and 9 := 
(ouN/on + AUN)lon for the impedance problem yields Kg = IN and thus 
IIKg - lllc(s1) ::; f. 0 

Example 5.20. In this example we want to demonstrate the use of parallel 
curves for the simple, but important, example of a boundary value problem 
where Q is a disk ofradius R with boundary r R = {x E]R2 : Ixl = R}. First, 
expand the boundary function 9 E L2(rR ) in a Fourier series 

g( B) = I: an einl!, 0::; B ::; 21f , (5.34) 
nEZ 

where the convergence is understood in the L2-sense i.e., 

27r 2 

J g( B) - I: an einl! dB ---+ 0 as N ---7 00 . 

o InlSN 

Formally, the solution of the exterior Dirichlet problem (5.2) is given by 

u(r,B) = '" an H(1)(kr)einlJ , r> R, 0::; B::; 21f. 
~ H(1) (kR) n 
nEZ n 

(5.35) 

It is the aim of this example to show that this form of U is indeed the weak 
solution of the exterior Dirichlet problem in the sense introduced above. 

First, we note that 

uN(r,B) = I: an H(1)(kr)einl! r > R, 0::; B::; 21f, 
InlSN H~1) (kR) n , 



5.4 £2-Boundary Data 161 

is a classical solution of the exterior Dirichlet boundary value problem with 
boundary data 

gN(()) = L aneinO , 0:::; e:::; 271". 
Inl::;N 

Furthermore, using the asymptotic behaviour of the Hankel functions for large 
orders (see [1]), 

H~l)(t) = (n~/)! (~)n[I + O(I/n)] asn-+oo, (5.36) 

uniformly on compact subset of (0, (0), we see that for R < a :::; r :::; b, 

for all () E [0,271"] and R < a :::; r :::; b. Therefore, the series for u converges 
uniformly on compact subsets of {x E ]R2 : Ixl > R}. The same arguments 
hold also for any derivative of u. From this and the continuous dependence re
sult for classical solutions (see Theorem 5.17) we conclude that u is a classical 
solution of the exterior Dirichlet problem in the region {x E ]R2 : Ixl > R+ E} 

with boundary data ulrR+€ for every E > O. In particular, this implies that 
u E C2(DC), that it satisfies the Helmholtz equation (5.3Ia) and the radiation 
condition (5.3Ic). It remains to show that it satisfies the boundary condition 
(5.3Ib) as well. But 

Ut(()) = u(R + t, ()) 

so that 

We note that, for every fixed nEZ, 

(5.37a) 

and there exists c> 0 with 



162 5 BVP for the Helmholtz Equation 

1 

HAl) (k(R + t)) 1 < c 1~llnl ::; c 
HAl) (kR) - R + t 

I.e. 

--~---"--1 < c+1 
1 

HAI)(k(R+ t)) 1 

HAl) (kR) -
(5.37b) 

for all t E [0, 1] and n E Z. 

These two properties yield convergence IIUt - gIIL2(rR) ---+ 0 as t ---+ 0 by 
standard arguments. Indeed, let E > 0 and choose N so large such that 

Then we split 

for all t > O. Now we choose (j > 0 such that 

L lanI2IHAI)~~)(R+t)) _11
2 

::; E for all 0 < t::; (j. 
Inl:SN Hn (kR) 47f 

Then IIUt - glli2(rR) ::; E for all 0 < t ::; (j which proves that the boundary 
condition (5.31b) is satisfied in the £2-sense. 

We finish this example with the remarks that the solution of the exterior 
impedance problem for the circle with constant impedance A E rc with 1m A 2:': 
o is given by 

for r > R, 0 ::; () ::; 27f, and that the far field patterns U oo for the Dirichlet 
and impedance problem are given by 

respectively, where "y = ..j2/(7fk) exp( -i7f /4). 
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As we see immediately from the definition, the impedance boundary value 
problem reduces to the Neumann problem for A = O. Moreover, from the inte
gral equation (5.28) we observe that the solution 'P = 'P).. of (5.28) converges 
to the solution 'Po corresponding to the Neumann problem as A tends to zero. 
Indeed, we may rewrite (5.28) in the form 

with 

A = i~ I - ik D' + T D D' and B = ~ D D' + D D D' - ikS. 

It is easy to see that the operator A-I A B tends to zero in the operator norm 
(either in the Holder space Co,o: (8D) or in L2 (8D)) as A tends to zero. An 
application of the perturbation lemma (Theorem A.39 of the Appendix) yields 
an estimate of the form 

On the other hand, writing the impedance boundary condition in the form 

8uE 8 
-E 8n + U E = 9 on D, 

one can ask the same question of convergence as E tends to zero. Note that, 
in contrast to the case A -+ 0 in (5.1b), the case E -+ 0 leads to a singular 
perturbation problem since the solution U E corresponding to E > 0 is more 
regular than the solution corresponding to E = o. Nevertheless, it has been 
shown in [65] that U E converges in L2(8D) to Uo for every 9 E L2(8D). Fur
thermore, rates of convergence can be given which depend on the smoothness 
of the boundary data g. 

5.5 Numerical Methods 

We now turn to a description of some numerical methods for computing the 
far field patterns of antenna problems for given boundary data. Numerical 
methods for solving boundary value problems in exterior domains fall into (at 
least) four groups. 

The integral equations derived in the last section could be solved either 
by Nystrom methods or by boundary element methods. In Subsec
tion 5.5.1 we will recall the Nystrom method (see the earlier Subsection 4.5.2), 
but now applied to integrals with weakly singular kernels. This provides a very 
accurate and fast numerical algorithm provided the data are smooth. In par
ticular, if the boundary 8D, the impedance, and the feeding 9 are analytic 
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the method is known to converge with exponential order of convergence (see 
Subsection 5.5.l. 

In Subsection 5.5.2 we present a rather simple method based on the observa
tion that the solution of the antenna problem for circular cross sections can 
be expressed in a series of circular wave functions. Although this is not true 
for the non-circular case we still know that every solution can approximated 
(in a sense to be made clear later) by sums of circular wave functions. The 
coefficients of the sum are determined by the boundary condition and leads 
to least squares problems. 

A variety of finite element and finite difference methods have been 
employed also for exterior boundary value problems. One class of methods 
uses expanding grids (cf. [77, 43)). In these methods R is taken sufficiently 
large that a simple boundary condition on the circle rR of radius R (e.g. 
au/ar - iku = ° on r R ) generates an accurate approximation to u. Methods 
of this type do not provide direct approximations to the far-field pattern of 
the solution, although far-field patterns can be deduced using the near-field. 
At the end of this section we will describe one such method which has received 
much attention. 

A forth class of methods are sometimes called hybrid methods. In order to 
avoid expanding grids in finite element or finite difference methods, Masmoudi 
[95] suggests an approach which first reduces the exterior boundary value 
problem to an interior boundary value problem in the disk DR of radius R 
with a nonlocal boundary condition on its boundary r R , and then uses a finite 
element method to approximate the field u on DR. 

As a related, but different, method for each function 'Pj from a (finite) set 
of linearly independent functions on rR one can solve the boundary value 
problem in the region between a[2 and rR with boundary data g and 'Pj by a 
standard finite element method. Then one solves the boundary value problem 
outside the circle with boundary data 'Pj. If we choose for 'Pj trigonometric 
polynomials this can be done explicitly. An appropriate linear combination 
will guarantee that both of the Cauchy data (almost) coincide on r R and, 
therefore, gives approximation of the exact solution. This method is particu
larly suitable for non-homogeneous media. 

In a more general approach, the finite element method and a boundary el
ement method can be combined. We refer to [70, 58, 91, 92, 44] for various 
modifications of this idea. 

For further reading we refer to the monograph [54] which is solely devoted to 
Finite Element methods for the Helmholtz equation. 

5.5.1 Nystrom's Method for Periodic Weakly 
Singular Kernels 

We have introduced the Nystrom Method earlier in Subsection 4.5.2 and ap
plied it to the linear line source in Subsection 4.5.4. We now wish to indicate 



5.5 Numerical Methods 165 

the application of the method to quadrature problems in which the integral 
contains a weakly singular kernel. Our presentation will follow the one in the 
monograph of Colton and Kress [30]. 

In the previous application, the kernels of the integral equations were smooth 
- even analytic in the case of the linear line source. In the boundary integral 
equation methods where one solves the integral equations (5.22) and (5.28) 
numerically the kernels have a weak singularity of logarithmic type. For the 
following we restrict ourselves to the Dirichlet boundary value problem and a 
numerical solution of equation (5.22). 

We assume that the boundary an possesses a regular analytic and periodic 
(with period 2n) parametric representation of the form . 

x = x(t) = (Xl(t) , X2(t)) , 0::; t ::; 2n, (5.40) 

satisfying Ix(t)1 := VXl(t)2 + X2(t)2 > 0 on [0, 2n]. Then, using izH6l)(z) = 

-Hil)(z), we transform (5.21) into the parametric form 

211" 

1/J(t) - J{L(t,S)+ikM(t,S)}1/J(S)dS = g(t) , 0::;t::;2n, (5.41) 

o 

where we have set 1/J(t) = <p(x(t)), g(t) = 2g(x(t)), 

L(t, s) := i~ {X2(S) [Xl(S) - Xl(t)] - Xl(S) [X2(S) - X2(t)] } 

Hil) (k Ix(t) - x(s)l) 
Ix(t) - x(s)1 

M(t, s) := ~ H6l) (k Ix(t) - x(s)l) Ix(t)1 

for t =1= s. From the behaviour of the Neumann function near the origin we see 
that the kernels Land M have logarithmic singularities at t = s. Hence, for 
an optimal numerical treatment, we follow Martensen [93] and Kussmaul [78] 
and split the kernels into two parts 

( t - s) L(t, s) = Ll(t, s) In 4 sin2 -2- + L2(t, s), 

( t - s) M(t,s)=Ml(t,s)ln 4sin2 - 2- + M2(t,S), 

where 
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L 1(t, s) := 2~ {X2(S) [Xl(S) - Xl(t)] - Xl(S) [X2(S) - X2(t)] } . 

J1 (k Ix(t) - x(s)l) 
Ix(t) - x(s)1 

- ( t - s) L2 (t, s) := L(t, s) - L 1(t, s) In 4 sin2 -2- , 

M1 (t,s) :=-2~Jo(klx(t)-x(s)1) Ix(t)l, 

( t - s) M2 (t, s) := M(t, s) - M 1(t, s) In 4 sin2 -2- . 

The kernels L 1 , L 2, M1 , M2 turn out to be analytic with values on the diag
onal: 

L 1 (t,t) = 0, L2 (t,t) = L(t,t) 

1 . 
M1(t,t) = -27r Ix(t)l, M2 (t,t) 

for 0 :::; t :::; 27r. Hence, we must solve an integral equation of the form 

J27r (t -s) r27r 
1jJ(t) - K 1(t, s) In 4 sin2 -2-- 1jJ(s) ds + Jo K 2 (t, s) 1jJ(s) ds = g(t) , 

o 
(5.42) 

for 0 :::; t :::; 27r with K j = L j + ikM,j, j = 1,2. As we have seen in Sub
section 4.5.2, the Nystrom method replaces the integral by an appropriately 
chosen quadrature formula. Since the integrand of the second integral is an
alytic and 27r-periodic, the ordinary trapezoidal rule with equi-distant grid 
points tr) := 7rj IN, for j = 0, ... , 2N -1, is optimal. This yields an approx
imation of the form 

27r 

J f(s)ds ~ (5.43) 

o 

One constructs the analogous formula for the first integral by replacing the 
smooth factor of the integrand by its trigonometric interpolation. This yields 

with 
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j = 0, ... , 2N -1. In the Nystrom method the integral equation (5.42) is then 
replaced by the equation 

2N-l 

'!f;(N)(t) - L {Rr)(t) Kl (t, tjN») + ~ K2(t, tr») } '!f;(tr») g(t) 
j=O 

(5.45) 
for ° ::; t ::; 21f. This equation reduces to a finite dimensional system if we sub
stitute t = t~N), i = 0, ... , 2N -1. With '!f;i := '!f;(t~N») this finite dimensional 
approximation is 

for i = 0, ... , 2N - 1, where 

for £ = 0, ... , 2N - 1. 

N-l 
_ 27f L ~ cos mfhr 

N m N 
m=l 

If, now, '!f;i, i = 0, ... , 2N - 1, is a solution of (5.46) and one defines the 
function '!f;(N) by 

2N-l 

'!f;(N) (t) := L {Rr) (t) Kl (t, tr») + ~ K2 (t, tjN») } '!f;j + g(t) , (5.47) 
j=O 

° ::; t ::; 21f, then '!f;(N) solves (5.45). Therefore, this last formula provides a 
natural interpolation of the values '!f;j, j = 0, ... , 2N - 1. For the solution of 
the large system (5.46) we recommend the use of fast iterative methods such 
as multi-grid f'olvers, cf. [76]. 

To show that this method is, in fact, one which yields approximations to the 
actual solution, we must prove that '!f;(N) ---+ '!f; as N ---+ 00 in a suitable norm, 
and preferably do so in a way that the rate of convergence is established. 
Indeed, the following convergence theorem can be proven (cf. [76]): 

Theorem 5.21. Let [2 C ]R2 be a bounded region with connected exterior and 
with 8[2 be analytic. 

(a) Let g E cm(8[2) for some mEN i.e., g E C;,;,..[0,21f] where C;,;,..[O, 27f] 
denotes the space of 21f-periodic m times continuously differentiable func
tions. Then equation (5.46) is uniquely solvable for all sufficiently large N 
and there exists c > ° independent of Nand g with 

11'!f;(N) - '!f;llc(BJ?) ::; ;;m Ilg(m) Ilc(BJ?) . (5.48a) 
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(b) If g is analytic on as?, then ther'e exists c > ° and Ij > 0, both independent 
of N, with 

(5.48b) 

Having computed the density 1jJ from (5.42) we can calculate the far field 
pattern U oo by formula (5.24). Using the parametrization x = x(t), ° :::; t :::; 
2n, again we have: 

uoo(t) = 127r U(t, s) 1jJ(s) ds, 0:::; t :::; 2n, (5.49) 

where 

U(t, s) = -iklj [(X2(S) cost - Xl(S) sint) + /x(s)1] e-ik(xds) cost+X2(S) sint) 

for t, s E [O,2n]. The error estimates from Theorem 5.21 carryover to esti
mates in the fields (u (N) - u) / K and to the far field patterns u~) - Uoo . 

As we see from this result this Nystrom method is particularly fast for smooth 
data. Nevertheless, the Nystrom method can be modified to treat also bound
ary value problems in domains with corners. We refer to [75] for more details. 

5.5.2 Complete Families of Solutions 

Now we turn back to the Helmholtz equation (5.1a) in an exterior domain in 
JR2 : 

(5.50) 

The method for solving boundary value problems which we will describe in this 
subsection is based on the construction of families of special radiating solu
tions of (5.50) with the property that any radiating solution of the Helmholtz 
equation can be approximated arbitrarily well by finite linear combinations 
of this family. At the moment, we do not give a precise meaning of this ap
proximation property but will call such a family of solutions a complete 
family. The advantage of such an approach is obvious: Every linear combina
tion satisfies the Helmholtz equation exactly. Moreover, the corresponding far 
field pattern of the approximation is given explicitly by the known far field 
patterns of the members of this family. The coefficients of the combination 
have to be determined by the boundary condition which can only be satisfied 
approximately with a finite linear combination. 

The general idea of the method seems to have originated with Collatz [25, 
26], (see also the book of Miranda [99]) and even earlier work of Rayleigh 
[131]. For the Helmholtz equation, specific work has been done by Muller and 
Kersten [106], Limie [82, 83]' and Kersten [64]. These families have been used 
in some inverse shape identification problems by Angell and Kleinman [8], 
Angell, Kleinmil;n and Roach [11], and Angell, Jiang, and Kleinman [4]. Even 
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earlier, for the electromagnetic case, the ideas were used systematically by 
Calderon [21] and later by Miiller [104] and in the thesis of Fast [40]. For 
parabolic equations the method was used by Collatz and for the Stefan and 
inverse Stefan problem by Lozano and Reemtsen [87] and by Reemtsen and 
Kirsch [112]. We will come back to applications of this method to optimization 
problems in Chapter 7. 

We make the general assumption that the boundary of the domain D, 8D, is 
smooth enough to apply the results of Section 5.3. In particular, we assume 
and that the boundary value problems are uniquely solvable for every g. 

We begin by introducing two families of radiating solutions which seem to be 
particularly appropriate for the Helmholtz equation. Define the following sets 
C1 and C2 of functions by 

C1 := {H~)(kr)eime: m E Z}, (5.51a) 

C2 := { qi(x, xm) : m E Z} . (5.51b) 

Here, H~) denotes the Hankel function of first kind and order m and 
qi(x,y) = ~Hb1)(klx - yl) the fundamental solution of the Helmholtz equa
tion. The "ficticious" source points Xm E D are assumed to be distinct and 
lie in the interior D. Also, we assume that the origin is contained in D. 

We first address the question of linear independence of these functions re
stricted to the boundary 8D: 

Theorem 5.22. Any finite subset {vm : Iml ::; N} c C where C = C1 or 
C = C2 is linearly independent on 8D i.e., I:lml:5N am vm(x) = 0 for x E 8[2 
implies that am = 0 for all m. 

Proof: Assume that the solution v of the Helmholtz equation, defined by 

N 

v(x):= L am Vm(X) , X E ][~? \ 8D, 
m=-N 

vanishes on 8D. Since v is a radiating solution, v vanishes in the exterior 
]R2 \ D according to the uniqueness theorem (Theorem 5.8). 

Ifvm(x) = H~)(kr)exp(ime) then am = 0 since, for sufficiently large R, 0 = 
v(R,e) = I::'=_NamH~)(kR)exp(ime) is a Fourier sum and H~)(kR) =I 0 

for any m. In the case vm(x) = Hb1)(klx - xml) we can analytically continue 

the function v(x) = ~ I::'=_NamHb1)(klx - xml) to]R2 \ {xm: Iml::; N}. 
Since v vanishes identically, the limit x -+ Xe yields ae = o. Therefore, in this 
case, as well, ae = 0 for all C. D 

We make the following further assumption on the set {xm : m E Z} C [2 of 
source points: 
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For any solution u of the Helmholtz equation in the interior domain 
n, the vanishing u(xm) = 0 for all mE Z implies that u vanishes in 
all of n. 

Before proving completeness of the two families C1 and C2 , we check that sets 
of points Xm with this property in fact exist. 

Lemma 5.23. Let ten be a closed analytic curve whose interior, 0 is 
completely contained in n i.e., the closure of 0 is contained in n. Then, if k 2 

is not a Dirichlet eigenvalue for 0, any countable set of infinitely many points 
Xm E t has the required property i.e., for any solution u of the Helmholtz 
equation in n, u(xm) = 0 for all m implies that u vanishes in all of n. 
Proof: Let u be a solution of £::"u + k2u = 0 in n such that U(xm) = 0 for 
all m. Since t is analytic, u must vanish on t by the identity theorem for 
analytic functions. Since k 2 is not a Dirichlet eigenvalue u has to vanish in 
the interior, 0, of t. Then also u = 0 in n by analytic continuation. 0 

This assumption on the sources Xm is needed for the next theorem which 
states that certain traces of functions in Cj are complete in L 2 (an), i.e. the 
set of all finite linear combinations is dense. 

Theorem 5.24. Let a E JR., A E LOO(an) with a·lmA:::: 0 almost everywhere 
on an and lal + IA(x)1 > 0 almost everywhere on an. The sets 

8 j := {a ~~ + Avian: v E spancj } 

are dense in L2(an) for j = 1 and j = 2. 

Proof: First, we discuss the case of 8 2 . We use the fact that a subspace 
is dense in L2(an) if, and only if, its orthogonal complement is {O}, see 
Definition A.lO. Therefore, let g E L2(an) be such that g is orthogonal to 82 , 

i.e. 

o for all m E Z. (5.52) 

We define the function u by 

Then u is a solution of the Helmholtz equation and u(xm) = 0 for all m. 
Therefore u(x) = 0 for all x E n by the assumption on the sources Xm. Using 
the L2-jump conditions (5.33a)-(5.33d) we conclude that 
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lim lIu+t - U-t a gll£2(8{J) = 0, t-+O+ 
lim lin· V'U+t - n· V'U-t + >.gll£2(8{J) = O. t-+O+ 

Since U = 0 in n we have the estimate 

II>' Ut + an· V'utll£2(8{J) 

= 1I>'(u+t - U-t - ag) + a(n· V'u+t - n· V'u-t + >.g)II£2(8{J) 
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(5.54a) 

(5.54b) 

~ 11>'IILOO(8{J) Ilu+t - U-t - agll£2(8{J) + lallln· V'u+t - n· V'u-t + >.gll£2(8{J) . 

Hence, using the jump relations (5.54a), (5.54b) we see that 

lim II>' Ut + an· V'utlb(8{J) = O. t-+O+ 

Therefore, U satisfies a homogeneous exterior impedance problem with bound
ary condition au/an + (>./a) U = 0 on an (or a Dirichlet problem if a = 0). 
The uniqueness theorem (Theorem 5.19) also shows that U = 0 in nco It 
follows from the jump relations (5.54a), (5.54b) that 9 = O. This proves the 
denseness of B2 • 

Let now 9 E L2(an) such that g is orthogonal to B1 , i.e. 

Jg(y)[aaH;~(Y)+>'H~)(Y)lde(y) = 0 forallmEZ. (5.55) 
8{J 

We define U by equation (5.53) again. The addition formula (cf. [1]) 

00 

H~l)(k Ix - yl) = L Jm(k Ixl) H~)(k Iyl) eim(8-,p) , Ixl < Iyl, (5.56) 
m=-oo 

where () and 'l/J are the arguments of x and y, respectively, then shows that u 
vanishes in a small disc with center 0 contained in n. By unique continuation 
u vanishes in all of n. Now we proceed as in the first case above. This ends 
the proof. D 

Remarks: Many extensions of these completeness results are available. In 
particular we refer the reader to the following particular extensions. 

(a) These denseness results could be proved in Sobolev spaces by the same 
methods (cf. Limic [82, 83] who proved them for the Neumann and Dirich
let problems in H- 1/ 2 (an) and H 1/ 2 (an), respectively). In the proof one 
replaces the inner product J8{J 9 !ide by the dual bracket (g, hh/2 for 
9 E H- 1/ 2 (an) and h E H 1/ 2 (an). 

(b) Kersten [63, 64] has even proven the completeness of Bj in C(an) and 
for the case that an admits corners. For this case one has to investigate 
potentials with densities in the dual space of C(an), i.e. for potentials of 
the form J8{J fP(x, y) dp,(y) with Borel measures p, on an. 
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( c) For interior regions Q and the special family 

Still [129] has proven error estimates of the approximation error. In par
ticular, if 8Q is smooth enough and h E CP,Q(8Q) for some pEN and 
a E (0,1]' then there exists c> 0 with 

c 
inf{lIvN - ulIC(TIl : VN E EN} < NP+Q· 

Now we show that the sets C1 and C2 , given by (5.51a) and (5.51b), themselves 
are complete in the following sense. 

Theorem 5.25. Let u be any radiating solution of the Helmholtz equation 
(5.50) in QC and K be any compact set in QC. Then there is a sequence 
{ un} C span C, where C = C1 or C = C2 , which converges uniformly to u 
in K. Furthermore, {Un} can be chosen so that the far field patterns of Un 
converge to the far field pattern of u, uniformly on the unit circle. 

Proof: Without loss of generality we assume that u is continuous up to the 
boundary 8Q. (Otherwise choose Q' with C2 -boundary 8Q' such that Q c 
Q' and K is contained in the exterior of Q'. Then u is continuous up to the 
boundary 8Q'.) By Theorem 5.19 we know that the solution ulK and the far 
field pattern U oo of the exterior Dirichlet problem depend continuously on the 
boundary data ulan with respect to the L2-norm. This means that there 
exists a constant c > 0 with 

(5.57) 

for all radiating solutions v. By Lemma 5.24 with a = 0 and A == 1, there 
exists a sequence {un} C spanC with II(un - u)lanll£2(anl -+ 0 as n tends to 
infinity. With v = Un - u in (5.57) the conclusion of the theorem follows. 0 

This last theorem suggests a method for the numerical calculation of the 
solution to the boundary value problem (5.2). In order to give the idea most 
clearly we restrict ourselves to the Dirichlet case (5.2). 

Specifically, since finite sums of the form 

N N 

L am H$/;l(kr) eim() and L am iP(x, x m) (5.58) 
m=-N m=-N 

are radiating solutions of the Helmholtz equation we approximate a solution 
of the boundary value problem by determining the unknown coefficients, am, 
so that the error in the boundary condition is minimized. Thus, if 11·11 is any 
norm on C(8Q) we pose the following minimization problem: 



5.5 Numerical Methods 173 

Minimize Ilm~N am Vm - gil subject to am E C, Iml:::; N. (5.59) 

Here, either vm(x) = Hg)(kr)eimIJ or v~(x) = <p(x,xm) restricted to the 
boundary aD. We can now prove the following theorem: 

Theorem 5.26. 

(a) For every N EN there exists a solution a(N) E C2N+1 of (5. 59}. 
(b) If 11·11 = 11'11£2(an) then the solution is unique. 
(c) Let u be the (weak) solution of the boundary value problem (5.2) and 

N 

UN L a~)vm 
m=-N 

where a(N) E C2N+1 is the solution of (5.59) for 11·11 = 11'11£2(an)' Then 
UN ---+ U as N ---+ 00 uniformly on every compact subset K c DC. Fur
thermore, the corresponding far field patterns UN,oo also converge to U oo 
uniformly on the unit circle 8 1 , and there exists a constant c > 0 with 

II(uN - u)IKIIC(K) + IluN,oo - uoollc(an) 

:::; c inf{llvNlan - gll£2(an) : VN E C}. 

Proof: For N E N we define the operator LN : C2N+1 ----+ C(aD) by 

N 

(LNa)(x):= L am Vm(X) , x E aD. 
n=-N 

The problem (5.59) is then written as the problem of minimizing IILNa - gil 
on C2N+1 or, if we define the range space R(LN) of LN by R(LN) = {w = 
LNa : a E C2N+1 }, as that of minimizing Ilw - gil subject to w E R(LN)' 

First we note that LN is one-to-one, which is just a reformulation of the linear 
independence of the functions Vm Ian which was established in Theorem 5.22. 
Second, we note that R(LN) is finite dimensional (with dimension 2N + 1) 
and is therefore closed. We define 

(a) Let {wm} C R(LN) be a minimizing sequence, i.e. a sequence with the 
property that Ilwm - gil ---+ I N as m tends to infinity. In particular, the se
quence {wm} is bounded. Since R(LN) is finite dimensional, it contains a 
convergent subsequence by the theorem of Bolzano-Weierstrass: w mj ---+ 'Ii! as 
j ---+ 00. Then 'Ii! E R(LN) and, by the continuity of the norm, 1I'Ii! - gil = IN. 
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(b ) (Uniqueness of minima) Let a, b E C2N + 1 both be minima. Set c .
(a + b) /2. Then, by the parallelogram equality 

Ilf + hll~2(8fl) + Ilf - hll~2(an) = 21Ifll~2(an) + 21Ihll~2(an)' (5.60) 

we conclude that 

IN::; IILNc-gll~2(an) = 11~(LNa-g)+~(LNb-9)112 
£2(an) 

1 2 1 2 1 2 
= 2"IILNa - gll£2(an) + 2"IILNb - gll£2(an) 411LN(a - b)II£2(an) 

1 2 
= I N - 411LN(a - b)II£2(an) . 

This yields LN(a - b) = 0, thus a = b by the injectivity of LN. 

(c) The continuous dependence result of Theorem 5.19 yields the existence of 
c> 0 with 

for all N since ulan = g. It remains to show that IN tends to zero if N tends 
to infinity. Let E > O. By Theorem 5.24 we can find N E Nand VN E R(LN ), 

with I N ::; IlvNlan - gll£2(an) ::; E. This proves part (c) and completes the 
proof of the theorem. 0 

One is tempted to apply the general results of Subsections 3.2.1 and 3.2.5 on 
existence and approximation. In our case, however, we study an unconstrained 
minimization problem i.e., one of the main assumptions of those theorems is 
not satisfied. Indeed, in general, the coefficients ac:!) of the optimal solution 
UN do not converge unless the Rayleigh hypothesis is satisfied. It is well 
known that the solution of the three-dimensional exterior Helmholtz equa
tion can be written as a convergent series of spherical harmonics outside the 
smallest sphere containing the set D. The Raleigh hypothesis in this case is 
simply that this expansion is valid up to and on the boundary aD. For some 
situations this is false, in others, true. We refer to [97] for further details. 

5.5.3 Finite Element Methods for Absorbing 
Boundary Conditions 

For boundary value problems in bounded domains, the finite element method 
is probably the best known numerical method of all. Its advantages lie in its 
broad range of applicability, the low regularity requirements on the data, and 
the sparseness of the resulting finite system. 

Before we describe its application to the exterior Dirichlet boundary value 
problem we first recall the idea of the finite element method for the simplest 
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case of the Dirichlet boundary value problem in a bounded domain, namely 
the determination of a solution u in some bounded domain D C ]R2 with 

Llu + k2u = 0 in D, and u = g on aD. (5.61) 

The finite element method is based on the variational formulation of the prob
lem which we describe first. Assuming that u is a solution of (5.27), multiply
ing the Helmholtz equation by any function cf> E C1(D) with cf>laD = 0 and 
integrating over D we have, trivially, that 

o = f f (Llu + k2u) cf>dx. 
D 

Green's first theorem yields 

f f (\7u. \7cf> - k2ucf» dx 0, (5.62) 

D 

where we have used the assumption that cf> vanishes on aD. Next, we choose 
an arbitrary extension g of g to D and write u in the form u = v + g where 
now VlaD = O. Substituting this form of u into (5.62) and replacing cf> by its 
complex conjugate yields 

f f (\7v . \7(j) - k2v (j)) dx - f f (\7g. \7(j) - k2g(j)) dx 
D D 

or, adding and subtracting vcf>, 

- f f (\7g. \7(j) - k2 g(j)) dx 
D D D 

(5.63) 
for all functions cf> E X where 

X:= {cf>EC1(D):cf>laD=0}. (5.64) 

Clearly the first integral in (5.63) defines an inner product on X with corre
sponding norm 

11cf>llx = f f (1\7cf>1 2 + 1cf>1 2 ) dx. (5.65) 

D 

The right hand side of (5.63) defines a bounded anti-linear functiona15 

£(cf» := - ff(\7g· \7(j)-k2g(j)) dx, cf>EX. 
D 

5 A functional £ : X -+ C is called anti-linear if ¢ >-+ £( ¢) is linear 
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Indeed, boundedness follows from the Cauchy-Schwarz inequality, 

1£(1))1 ~ 11\71>II£2(D) II\7gjl£2(D) + k2111>11£2(D) Ilo9ll£2(D) 

~ 111>llx [11\709ll£2(D) + k21Io9ll£2(D)] for all 1> EX. 

Ignoring for a moment the second integral on the left hand side of (5.63) let 
us find v E X with 

(v,1»x = £(1)) for all 1> EX. 

Were X a Hilbert space i.e., a complete inner product space, the Theorem A.31 
of Riesz-Fischer would yield the existence of a unique element rEX with 
(r,1»x = £(1)) for all 1> E X. Since X, equipped with this norm given by (5.65) 
is not complete, we construct its completion with respect to that norm (see 
Theorem A.7 of the Appendix). In fact, the resulting complete inner product 
space is exactly the Sobolev space H"J (D) defined after Definition A.20. 

The functional £ can then be extended to a bounded functional on HJ(D) , and 
the Theorem A.31 of Riesz-Fischer yields the existence of a unique r E H"J (D) 
with (r, 1>h = £(1)) for all 1> E H"J(D). By the same arguments it can be shown 
that there exists a linear bounded operator K from H"J (D) into itself with 

11 v(jjdx = (Kv,1»x forallv,1>EHS(D). 

D 

Therefore, the variational equation (5.63) is equivalent to 

v - (k2 + 1) K v = r in H J( D) . (5.66) 

Using Rellich's imbedding theorem one can show that K is compact in H"J(D). 
Therefore, the Theorem of Riesz (Theorem A.40 ofthe Appendix) is applicable 
to this equation. In particular, existence of a unique solution v E H"J (D) 
is guaranteed if the homogeneous equation (i.e. the equation for r = 0 or, 
equivalently, g = 0) admits only the trivial solution v = O. 

For the numerical treatment of the variational equation (5.63) one chooses a 
family of ultimately dense subspaces Xn C H"J(D) (see Subsection 3.2.5) 
and determines Vn E Xn such that 

11 (\7Vn . \7(jj - k2vn (jj) dx = - 11 (\709' \7(jj - k209(jj) dx (5.67) 

D D 

for all functions 1> E Xn. By repeating the above arguments for Xn instead of 
H"J (D) it can be shown that this variational equation can be written in the 
form 
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where Pn : HJ{D) ---t Xn denotes the orthogonal projection operator onto 
X n. This equation is uniquely solvable in Xn provided the homogeneous equa
tion (5.63) admits only the trivial solution v = 0 [54]. This gives a general 
description of the variational approach. 

In the finite element method itself, one usually chooses Xn to be a space of 
functions which enjoy a certain global smoothness property i.e., a subspace 
of some CP(D), and are locally polynomials of certain fixed order. To be 
more specific we start with a subdivision of the region D into non-overlapping 
quadrilaterals and/or triangles Ti (with straight or curvilinear boundaries) 
which are called finite elements. We assume that 

i.e., the elements form an exact partition of D. For given p, q E N we define 
the finite element spaces Sh,q by 

where Pq(T) denotes the space of polynomials in two independent variables 
of degree at most q on the set T C ]R2. By h we denote the maximal diameter 
of all elements Ti. In the variational equation (5.67) we take Xn = Sh,q. The 
triangulation is assumed to satisfy the standard finite element geometrical 
constraints [24] and to be non-degenerate in the sense of Scott [119]. 

Example 5.27. As an example we consider a triangulation of D into n triangles 
with degree zero of smoothness and order one i.e. 

S~,l := {v E C(D) : viTi linear for every i = 1, ... ,n} . 

We denote by Xl, ••• , XN those nodes of the triangulation which lie strictly 
in the interior D. Then dim Xn = N, and a basis of Xn is given by the 
"hat functions" cPj which vanish at all of the grid points except at Xj where 
cPj(Xj) = 1. Making an ansatz of the form 

N 

Vn = LajcPj 
j=l 

for the solution Vn E S~,l of the variation equation (5.67), and testing this 
equation with cP = cPe, yields the finite algebraic system 

N 

?:aj !!CV'cP~.V'cPe-k2cPjcP£)dX = - !!(V'g.V'cP£-k2gcPe)dX (5.68) 
3=1 D D 

for all e = 1, ... ,N. We note that the coefficients 
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a£j := f f (\11>j . \11>£ - k2 1>j (fi) dx, .e,j = 1, ... , N, 
D 

vanish for those .e and j whenever the supports of 1>j and 1>£ are disjoint. The 
hermitian matrix (ac,j) is therefore a band-structured matrix which makes 
the numerical treatment of the linear system accessible by a number of fast 
algorithms. We note, however, that the matrix fails to be positive definite. 

Now we turn to the exterior Dirichlet boundary value problem (5.2) in con
trast to the treatment of the interior problem we have just discussed. The 
boundary data 9 is again given. The methods to be described below introduce 
an artificial domain containing n in its interior. For simplicity, we take this to 
be a disc of sufficiently large radius R and boundary r R = {x E ~2 : Ixl = R}. 
Again, we denote by DR := {x E nc : Ixl < R} the region between on and 
rR. The simplest approximation of the solution u of the exterior Dirichlet 
problem (5.2) is to replace the radiation condition (5.1c) by the boundary 
condition of impedance type 

au 
- ik u = 0 on rR . or (5.69) 

Doing so leads to a boundary value problem in the bounded domain DR. Its 
variational form is easily derived by multiplying the Helmholtz equation by 
1>(x) for some 1> E C1(DR) with 1>laD = 0, integrating over DR, and using 
Green's first theorem. This results in 

ff(\1u.\1¢ - k2 u¢)dx = - f ¢~~d.e. (5.70) 

DR 1:vI=R 

Using the boundary condition (5.69) leads to 

f f (\1u· \1¢ - k 2 u¢) dx = -ik f u¢d.e. (5.7l) 

DR 1:vI=R 

It can be shown that the sesquilinear form 

(u,1» M f u¢d.e 

1:vI=R 

is bounded on Hl(DR) x Hl(DR) so that the variational form (5.71) is well
defined in the space H6i(DR) which is the completion of the space {1> E 

C1(DR) : 1>laD = o} with respect to the norm 111>II H 1(DR). As above we 
extend 9 to a function g E Hl(DR) with g = 0 on rR and split u in the form 
u = v + g with some v E H6i(DR). Then, (5.71) is transformed into 
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jjc'Vv.'V¢ - k2 v¢)dx + j v¢d€ j j ('Vg. 'V¢ - k2 g ¢) dx (5.72) 

DR Iml=R DR 

for all ¢ E H6i(DR). 

For the numerical approximation we proceed as in the approach above and 
replace H6i(DR) by finite element spaces. Again, the order of convergence 
Un -t u depend on the smoothness of the solution u and the approximation 
properties of the finite element spaces, see e.g., [54]. 

Because of the slow decay of u and au/ar - iku, considerable amount work 
has been published which seeks to improve the boundary condition (5.69) by 
using higher order approximations of the field. We do not want to go into 
details here and instead refer to the literature (see [54] for an overview). 

A fairly recent and very successful approach is the Perfectly Matched Layer 
Method (PML method) in which the differential equation is changed outside 
of some disk {x : Ixl ;:::: R} in such a way that the solution it of the new problem 
coincides with the original solution u inside this disc but decays exponentially 
as r tends to infinity. Then the simple Dirichlet boundary condition it = 0 
on TR1 for some Rl > R will lead to a good approximation of u. In our 
elementary presentation we follow the work of Collino and Monk ([28]). The 
basic idea of the PML method can be derived from the series expansion of the 
field u in the form (see Example 5.20) 

u(r,e) = LUnH~l)(kr)eine, r;:::: R, 0:::; e:::; 211", 
nEZ 

where R is again such that [2 is contained in the open disc of radius R. We 
note that H~l)(kr) behaves asymptotically as 

H~l)(kr) = {£e-i7r/4-in7r/2exPj;r) [1 + o(~)] asr -t 00, 

(see (2.68a)). For Imk > 0, this form shows exponential order of convergence 
as r tends to infinity (in contrast to the case where k is real). We choose 
Rl > R and an arbitrary real valued function i/J E Cl(JR.) with i/J(s) > 0 
for s E (R, R 1 ) and i/J(s) = 0 for s 1. [R, Rl]. With the (complex) change of 
variable 

r 

p = p(r) = r + ir j i/J(s)ds, r > 0, 

R 

we observe that p(r) = r for r :::; Rand p(r) = ar for r ;:::: Rl where a := 

1 + i J:1 i/J(s) ds has positive imaginary part. Defining 

_ . {L Un H~l) (kp(r)) eine , 
u(r, e) = nEZ 

,u(r,e), 

r ;:::: R, 0:::; e :::; 211" , 
(5.73) 

r < R, 0:::; e :::; 211" , 
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we observe that u coincides with u for r ::; Rand 

u( r, (J) = L Un HAl) (kar) ein!! for r "2 R l , 0::; (J ::; 21r . 
nEZ 

(5.74) 

In contrast to u, the function u decays exponentially to zero as r tends to 
infinity since 1m a > o. It remains to derive the differential equation for u. In 
polar coordinates (p, (J) the original Helmholtz equation takes the form 

1 a (pau) + 1 a2u + k2u = o. p ap ap p2 a(J2 

With the substitution p = p(r) we have 

a 1 a 
ap pl(r) or· 

Therefore, the Helmholtz equation in terms of u takes the form 

1 a (p au) 1 a2u 2-
P p' or p' or + p2 a(J2 + k u = 0, 

i.e. 

~ ~ ( () au) _1_ a2u k2p(r) p'(r) - _ 0 
,;, a r r ,;, + () 2 ';'(J2 + u - , rur ur arru r 

(5.75) 

where a( r) = p( r) / (r p' (r)). We can write this also in Cartesian coordinates 
using 

as 

a 
or 

where 

a .(Ja 
cos(J~ + sm ~ 

UXl UX2 
and 

a 
a(J 

.(Ja a -rsm - + rcos(J~ 
aXl UX2 

div (A(x) \7u(x)) + k2 c(x) u(x) = 0, (5.76) 

A(x) = (a(r) cos2 (J + sin2 (J/a(r) cos (J sin (J [a(r) -l/a(r)]) I and 
cos (J sin (J [a(r) -l/a(r)] a(r)sin2(J+cos2B/a(r) (r,!!)=re 

So far, the exterior boundary value problem (5.2) and the problem of finding 
u which satisfies (5.76) in [2c with u = 9 on 0[2, and which has an expansion 
in the form of (5.74) are completely equivalent. Now we find an approximate 
solution by choosing R2 > R l , defining the region DR2 := {x E [2c : Ixl < 
R2 }, and considering the Dirichlet problem in D R2 with boundary data u = 9 
on 0[2 and u = 0 on rR2 . This problem can easily be solved by any standard 
finite element package. For more details, in particular error estimates as R2 --+ 
00, we refer to [28, 80]. 
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5.5.4 Hybrid Methods 

The so-called hybrid methods also reduce the Dirichlet boundary value prob
lem for the unbounded domain [2c to one on the bounded domain DR but 
take a different approach to incorporating the influence of the field exterior to 
rR. We start again with the variational equation (5.70). To incorporate the 
radiation condition, we introduce the Dirichlet-to-Neumann operator A 
as follows: 

For every 'I/; E COO(rR) let u'1jJ be the unique solution of the exterior Dirichlet 
problem in]R2 \ DR with boundary condition u'1jJ = 'I/; on rR. By Example 5.20 
u'1jJ has the expansion 

( Il) _ '"' an H(l) (k ) inO u'1jJ r, u - L.J (1) n r e , 
nEZ Hn (kR) 

r > R, 0::::; 0 ::::; 21r , 

where '1/;(0) = LnEZ an exp(inO). We define A'I/; as the normal derivative of u'1jJ 
on r R which we can compute explicitly: 

(A'I/;) (0) := aU'1jJ;r, 0) I = kLan (H~l:t(kR) einO , 0::::; 0 ::::; 21r. 
r r=R nEZ Hn (kR) 

Certainly, if U is a radiating solution of the Helmholtz equation in ]R2 \ [2 then 
au/arlrR = Auirw We substitute this result into (5.70) and find that 

!!C'Vu.V'¢ - k2 u¢)dx = - ! ¢AUd£ (5.77) 

DR i"'i=R 

for all ¢ with ¢ian = o. It can be shown (see [69]) that the sesquilinear form 

(¢, u) r--+ ! ¢Aud£ 

i"'i=R 

is bounded on H1(DR) x H1(DR) so that the variational form (5.77) is well 
defined in the space H6i(DR) which is the completion of the space {¢ E 

C1 (DR) : ¢ian = O} with respect to the norm ii¢ii H l(DR ). As above we 
extend g to a function g E H1 (DR) with g = 0 on r R and split u in the form 
u = v + g with some v E H6i(DR). Then, (5.77) is transformed into 

!!(V'v.V'¢ - k 2 v¢)dx + ! ¢Avd£ ! ! (V'g . V'¢ - k 2 g ¢) dx 

DR i"'i=R DR 

for all ¢ E H6JDR). 

For the numerical approximation we proceed as in the approach above and 
replace H6i(DR) by finite element spaces Sh C H6i(DR). In addition, we 
truncate the Dirichlet-to-Neumann operator and define 
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(A 01')(0) k '" ( (.)) (HA1))'(kR) inO 0 0 
N'P := 21l' ~ g, exp m· £2 (rR) (1) e, ::;::; 21l'. 

JnJ:"ON Hn (kR) 

The finite dimensional problem then is to determine Vh,N E Sh such that 

!!(VVh,N.V,¢-k2Vh,N(f)dx+ J ,¢ANVh,Nd£ = !!C\l[j·V,¢-k2[j,¢)dX 

DR JmJ=R DR 

for all ¢ E Sh. For a detailed error analysis we refer to [69]. 

The main problem in implementing this particular method is to compute the 
non-local boundary condition in (5.77) with sufficient accuracy. In addition, 
the unusual boundary conditions means that standard finite element packages 
cannot be used easily, and the matrix A = (a£j) for the discrete problem con
tains a dense submatrix. The following method avoids these disadvantages by 
decoupling the interior and the exterior problem using an auxiliary function '!jJ 
on rR which has then to be determined by demanding approximate continuity 
of u and au/ar on rR. The method, is motivated by the work of Bramble and 
Pasciak [19, 20] on Laplace's equation. It shares the advantages of the Bram
ble and Pasciak method and allows us both to use a simple Hankel function 
expansion of the scattered field outside DR and to use any suitable standard 
finite element method to approximate the problem in DR. For example, the 
iterative techniques of [17] can be used to implement a fast Helmholtz equa
tion solver on the bounded domain DR. Another advantage of the analysis is 
that, following the ideas of Bramble [19], we can suggest an efficient method 
for matching the solutions across r R using the conjugate gradient method. 

The analysis carried out in [69] for the case of an inhomogeneous medium 
shows that there is no stability constraint involving the mesh size h for the 
interior finite elements and the order N of the exterior Hankel function basis. 
This is unexpected in view of the analysis of Bramble [19] and of Bramble and 
Pasciak [20] but is due to the special spaces we use. 

To illustrate this method we consider the following boundary value problems 
for DR and ]R2 \ DR: 

Given'!jJ E C(af?), determine the solution Wi = Wi('!jJ) of 

6Wi + k2wi = 0 in DR, 

Wi = 0 on af?, 
aWi 
ar + ik Wi = '!jJ on r R, 

and the solution We = we('!jJ) of 
2 2 -6we + k We = 0 in]R \ DR, 

aWe + ik we = '!jJ on r R , ar 
a;e _ ik we = 0 (r- 3/2) as r -+ (Xl . 

(5.78a) 

(5.78b) 

(5. 78c) 

(5.79a) 

(5.79b) 

(5.79c) 
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Furthermore, we define the function v by the solution of the problem 

6.v + k2v = 0 in DR, (5.80a) 

v = f on 8n, (5.80b) 

8v 
ikv = 0 on rR. (5.80c) 

8r + 

The solutions have to be understood in the variational sense, as in the case of 
the Dirichlet problem above. For example, multiplication of (5.78a) by some 
¢ E C1 (DR) with ¢I&n = 0, integration over DR, and applying Green's first 
formula yields 

11c'VWi.V¢-k2Wi¢)dX + ik 1 wi¢dR = 1 'IjJ¢dR. (5.81 ) 

D ~ ~ 

which defines the variational solution Wi if we allow the solution Wi and the 
test function ¢ to be in the Sobolev space H6i(DR) defined above. The solution 
v of (5.80a)-(5.80c) is defined analogously by 

11 (Vv· V¢ - k2v¢) dx + ik 1 v¢dR o (5.82) 

D rR 

for all ¢ E H6i(DR)' 
Rather than using the variational formulation for the exterior problem (5.79a)
(5.79c), we will instead use the fact that the concepts of the variational solu
tion and parallel curves as presented in Section 5.4 are equivalent. Therefore, 
by Example 5.20, the solution We has the representation in the form 

00 

where 'IjJ(B) = L: an exp(inB). 
n=l 

We then define the function u = u( 'IjJ) by 

() {we(x), 
ux = Wi(X)+V(x), 

for Ixi > R, 
for x E DR. 

(5.83) 

(5.84) 

We remark that, from our construction, 8uj8r + iku is continuous across rR. 
Thus we need to choose 'IjJ to make u continuous across r R, and so it is easy to 
see that u solves the exterior Dirichlet boundary value problem (5.2) provided 
'IjJ satisfies the equation: 

(5.85) 
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Analogous arguments as in [69] prove the equivalence of this equation with 
the boundary value problem (5.2). In particular, this approach can be used 
to show existence and uniqueness of HI-solutions of (5.2). 

For the approximate computation of Wi, we use a standard finite element 
space on a triangulation of DR as introduced above. By h we denote again 
the maximal diameter of all elements Ti. Let Sh C HI(DR) denote the finite 
element space of those elements ¢h with ¢hlan = O. 

Now we define wf E Sh and vh E Sh as the usual finite element solution of 
(5.81), (5.82), e.g. 

(5.86) 

for all ¢h E Sh. The element vh is defined analogously. 

For the approximate computation of We we truncate the series representation 
(5.83). This is equivalent to taking 'IjJ from the subspace 

(5.87) 

for some N E N. For 'IjJ E SN we compute We explicitly as 

for r > Rand 0 ::; e ::; 2n. In a manner analogous to the definition of u('IjJ) 
we define the function uh by 

h() {We(X), 
u x = wf(x) + vh(x) , 

for Ixl > R, 
for x E DR. 

and take 'IjJ from the finite dimensional space SN. Equation (5.85) is then 
replaced by the finite dimensional problem to determine 'IjJ E SN such that 

(5.88) 

where PN : L 2(rR) -t SN is the orthogonal projection onto SN. For more 
details on this method, in particular error estimates in scales of Sobolev spaces, 
we refer to the original paper [70]. 
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Boundary Value Problems for Maxwell's 
Equations 

This chapter is devoted to the mathematical investigation of a particular 
boundary value problem for Maxwell's equation. We consider the time har
monic case, i.e. the equations (2.13a)-(2.13d), for the homogeneous and non
conducting case, i.e. when the permittivity and permeability, c: and fL, are 
constant and the conductivity a = O. We restrict ourselves to the boundary 
condition n x H = h on an. For more complicated situations, in particular 
for the Leontovich (or impedance) and conductive boundary conditions we 
refer to [29], [5]. 

The organization of this chapter is similar to the preceeding one. We begin 
with a suitable representation theorem for solutions of Maxwell's equation, 
show uniqueness of radiating solutions and present an outline of the classical 
existence theory through the systematic use of vector potentials. The power 
radiated at infinity is given by the far field pattern as we have seen in 2.35. 
The unique solvability of the exterior boundary value problem defines the far 
field operator F which maps the boundary data onto the far field pattern. 
At the end of this chapter we show that this operator can be extended to 
on operator acting on L2-functions defined on the boundary an. This makes 
it possible to apply the results on existence and uniqueness of optimization 
problems of Chapter 3. 

6.1 Introduction and Formulation of the Problem 

Let E and H denote the electric and magnetic field, respectively, for the time 
harmonic case in vacuo. As we showed in (2.13a)-(2.13d), these fields satisfy 
Maxwell's equation in the form 

curl H = -iwc: E 

curlE = iWfLH 

The equations div E = 0 and div H = 0 follow immediately from these equa
tions since we consider only homogeneous media. 
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These field equations must be satisfied outside of the domain il which de
notes the radiating structure. On boundary 8il of il we impose the boundary 
condition 

n x H = h On 8il, 

where n(x) denotes the unit normal vector at x E 8il, directed into the 
exterior of il and h is the electric current density. 1 

In addition, E and H have to satisfy the Silver-Muller radiation condition 

with admittance Yo = ~. Solutions of the field equations which satisfy 
this asymptotic condition will be called radiating solutions or radiating fields. 

For the precise mathematical setting we need spaces of vector fields on 8il. 
By CT(8il) we denote the space of continuous tangential vector fields i.e., 

CT(8il) = {a: 8il --+ C3 : aj E C(8il), j = 1,2,3, a· n = 0 On 8il}. 

Given a tangential field h E CT(8il) the boundary value problem is to find 
the vector fields E, H E C 1 (]R3 \ il) n C(]R3 \ il) which satisfy 

Exx + ~H 
Yo 

curlH + iWE E = 0 in ]R3 \ il, 

curlE - iW/-LH=o III ]R3\il, 

n x H = h On 8il, 

(6.1a) 

(6.1b) 

(6.1c) 

o (r~ ), r --+ 00, uniformly with respect to x = x/r. 

(6.1d) 
Before we study this boundary value problem in more detail, we recall the 
Stratton-Chu formula (see [29, 53]). Let k := wVfi£ be the wave number for 
the case (J = 0, and 

cfJ(x,y) 
._ exp(iklx - yl) 

47flx - yl 

be the fundamental solution of the 3-dimensional Helmholtz equation. Then 
we have 

Theorem 6.1. Assume that il E ]R3 is a bounded domain with C 2 -boundary 
8il and with unit normal vector n on 8il directed into the exterior of il. 
Let E, H E C 1 (]R3 \ il) n C(]R3 \ il) be a radiating solution of the Maxwell 
equations 

1 For convenience we will assume, throughout, that the boundary is C 2 although 
much weaker assumptions can be made (see e.g. [100] who treats Lipschitz sur
faces). 
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in ]R3 \ st, 
in ]R3 \ st. 

E(x) = curl J n(y) x E(y) <J>(x, y) dS(y) (6.2a) 

an 

- ~ curl 2 J n(y) x H(y) <J>(x, y) dS(y) , 
ZWE 

an 

H(x) = curl J n(y) x H(y) <J>(x, y) dS(y) (6.2b) 

an 

+ ~ curl 2 J n(y) x E(y) <J>(x, y) dS(y) 
zWJ-l 

an 

for x E ]R3 \ st. 

Proof: Define the modified fields E and if by E = vIE E and if = y7i H. 
Then E and if satisfy curl E - ikif = 0 and curl if + ikE = 0 and the 
radiation condition 

- - ( 1 ) E x x + H = 0 r2 ' r -t 00. 

In this symmetric form, the Stratton-Chu formula has been proven in, e.g., 
Colton/Kress[29] : 

E(x) = curl J n(y) x E(y) <J>(x, y) dS(y) 
an 

- i~ curl 2 J n(y) x if(y) <J>(x, y) dS(y) , 
an 

if(x) = curl J n(y) x if(y) <J>(x, y) dS(y) 

an 

+ i~ curl 2 J n(y) x E(y) <J>(x, y) dS(y) , 
an 

x rf: st. Substituting the form of E and if yields the assertion. D 

From this formula we draw the following conclusions: 

Every component Ej and H j of the fields satisfies the scalar Helmholtz equa
tion 
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Llu + k2u = 0 in ]R3 \ D . 

In particular, the fields E and H are analytic functions in ]R3 \ D. Also, we 
can derive the far field patterns of E and H from the asymptotic form of the 
fundamental solution if! (compare with (2.42a)): 

r = Ixl-t 00, 

uniformly with respect to yE 8D and x = xlr E 82 . We have: 

Theorem 6.2. Let the assumption of the previous theorem be satisfied. Then 
E and H have the form 

(6.3a) 

(6.3b) 

uniformly with respect to x = x IrE 8 2 , where 

Eoo(x) = ~~ x x J {[n(y) x E(y)] + ~o [(n(y) x H(y)) x x]} e-ik:iJ.y d8(y) , 

an 

Hoo(x) = :~ x x J {~o [n(by) x H(y) - [(n(y) x E(y) x X]} e-ik:iJ.y d8(y) , 

an 

for x E 8 2 . Furthermore, Hoo = x x Eoo and X· Eoo = X· Hoo = O. 

Proof: For a constant vector a E (:3 we derive 

ik eikr { ., curl x [a if! (x , y)] = - - e-tkrv·y(x x a) 
47l" r + 0 (~)} 
k2 eikr { ., ( 1) } curl; [aif!(x, y)] = 47l" ----;:- e-tkrv·y[x x (a x x)] + 0 -:;. 

(6.4a) 

(6.4b) 

as r = Ixl -t 00 uniformly with respect to y E 8D and x = xlr E 8 2 . 

Substituting (6.4a) , (6.4b) into (6.2a), (6.2b) the conclusion follows easily. 
o 

6.2 Uniqueness and Existence 

The following theorem is the basis of the uniqueness theorem. For a proof we 
refer to [30]. 
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Theorem 6.3. Assume that n E ]R3 is a bounded domain with C 2 -boundary 
an such the unit normal vector n on an is directed into the exterior. Let 
E, H E C 1 (]R3 \ n) nC(]R3 \ n) be radiating solutions of the Maxwell equations 

If 

curl H + iwc E == 0 in ]R3 \ n, 
curlE - iWfLH = 0 in ]R3 \ n. 

Re J [n(y) x E(y)] . H(y) dS(y) < 0 

an 

then E == H == 0 in 1R3 \ n. 
From this we conclude immediately 

(6.5) 

Theorem 6.4. There exists at most one solution of the boundary value prob
lem {6.1}. 

Now we turn to the problem of existence. Motivated by the representation 
(6.2a), (6.2b) we make the assumption that H has the form 

H(x) = curl J a(y) <J>(x, y) dS(y)+iry curl 2 J n(y)x(S5a)(y) <J>(x, y) dS(y) 

an an 
(6.6) 

for some density a E CT(an) and a real parameter ry E R Here, So denotes 
the single layer operator 

So<p(x) = J 47rix1_ yi <p(y) dS(y) , x E an, (6.7) 
an 

corresponding to k = O. We note that So is selfadjoint in L2 (an), and maps 
CO,"'(an) compactly into C1,"'(an) (see Theorem 5.14 which holds also in 
]R3). In the equation (6.6) we apply the operator S5 to each component aj of 
a. 

The choice of the correct space of functions a E CT(an) is more delicate 
than in the scalar case. In particular it is necessary to introduce the concept 
of the surface divergence of tangential vector fields. For a continuously 
differentiable (scalar) function <p on an the surface gradient Grad <p E CT(an) 
is defined by the (uniquely existing) tangential vector field Grad <p E CT ( an) 
with 

lim ~ l<p(x + th(x)) - <p(x) - t Grad <p(x) . h(x)1 = 0 
t--+O t 

for every vector field h E CT ( an) (cf. Section 5.3). We define the surface 
divergence by Gauss' theorem: 
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Definition 6.5. A tangential vector field a E CT(OQ) has a weak surface 
divergence, if there exists a continuous scalar function, Diva E C( oQ), such 
that 

for all <p E C1 (oQ). 

j <pDivad8 

an 
- j Grad<p' adS 

an 
(6.8) 

It is easily seen by a denseness argument that the surface divergence is unique 
if it exists. 

For any continuous vector field E defined in a neighborhood U = {x + tn( x) : 
x E oQ, 0 < t < to} for which the normal component of curl E is continuous 
in U it can be shown (see [29]) that the surface divergence of n x E exists 
and is given by 

Div (n x E) = - n . curl E on oQ . (6.9) 

We define the space CD (oJ2) and the corresponding space of Holder continuous 
functions (see Appendix, Section A.2) by 

CD(OJ2) = {a E CT (oJ2): Diva E C(oJ2)} , 

C~'" (oJ2) = {a E c!i;'" (oQ) : Diva E Co,,,, (oJ2)} 

with their canonical norms 

IlallcDcan) = IlallcTcan) + IIDivallccan) , 

Iiallc~"'can) = Iiallcg:"'can) + IIDivallco,<>can) . 

(6.lOa) 

(6.lOb) 

Before we use the equation (6.6) to prove existence, we state the jump condi
tions for the vector potential (see [29]): 

Theorem 6.6. For given a E c!i;"'(oJ2) we define the vector potential 

F(x) := j a(y)tJ>(x,y)dS(y) , xtf-oQ. (6.11) 

an 

Then F and its first derivatives can be uniformly Holder-continuously extended 
from J2 to Q and from ~3 \ J2 to ~3 \ Q with limiting values 

F(x)l± = j a(y) tJ>(x, y) dS(y) , x E oQ, (6.12a) 

an 

divF(x)I±= j'VxtJ>(x,y).a(Y)dS(Y), XEoJ2, (6.12b) 

an 

curIF(x)l± = =t= ~ n(x) x a(x) + j 'VxtJ>(x, y) x a(y) dS(y) , (6.12c) 

an 
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x E an, where F(x)l± = lim F(x ± cn(x)). Analogous relations hold for 
10-+0 

div F(x)l± and curlF(x)I±. 
For a E c~Ot(an), curl 2 F can also be uniformly Holder-continuously ex
tended from n to n and from ]R3 \ n to ]R3 \ f2 with limiting values 

cUrl 2F(x)l± = =F~n(x)Diva(x)+k2F(X)+ J V'x<P(x,y)Diva(y)dS(y) , 
an 

x E an. Furthermore, there exists c > 0 with 

IWlleo.acG) :::; c Iialleo.a(an) , 

Iidiv Flleo.acG) :::; c lIalleo.a(an) , 

IlcurlFlleo.acG) :::; c Iialleo.a(an) , 

Ilcur1 2 Flleo.a(G) :::; c Iialle~a(an) , 

where G = n or G =]R3 \ n. 

(6.12d) 

A proof of (6.12a)-(6.12c) can be found in [30]. For curl 2 F we note that, for 
x 1'- an, 

curl 2 F = -i1F + V'div F = k2 F + V'div F 

and 

div F(x) = J V' x<p(x, y) . a(y) dS(y) 

an 

= J <p(x, y) Div a(y) dS(y). 
an 

-J V'y<P(x,y) ·a(y)dS(y) 

an 

The jump conditions (5.17b) for the derivatives of the single layer potential 
yield equation (6.12d). 0 

We note that for a E c~Ot(an) 

n(x)xcurlF(x)l± 

and 

± ~a(x) +n(x)x J V'x<P(x,y)xa(y)dS(y) (6.13a) 

an 

n(x)xcur1 2F(x)l± = k2n(x)xF(x)+n(x)x J V'x<P(x,y)Diva(y)dS(y) , 
an 

(6.13b) 
for x E an. The right hand sides of these two relations define two boundary 
operators M, N : p~Ot(an) --+ c~Ot(an) by 
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(Ma)(x):= n(x) X! \1x<P(x,y) X a(y)dS(y) , 

aD 

(Na)(x) := k2 n(x) X ! <P(x, y)a(y) dS(y) 
·aD 

+ n(x) X ! \1x<P(x,y) Diva(y) dS(y) 
aD 

(6.14a) 

(6.14b) 

for x E 8[2. Both are well-defined and bounded. The operator M is even 
compact as is proven in [30). (Note that the operator N used here corresponds 
to the map a I-t N(a X n) in [30).) 

The representation of H in equation (6.6) involves two vector potentials with 
densities a E C~O:(8[2) and iTJn X S5a, respectively. Therefore, (6.6) satis
fies the boundary condition (6.1c) if and only if a E C~O:(8[2) satisfies the 
equation 

1 . 
2a + Ma + zTJN(n X S5a) = h. (6.15) 

From the mapping properties of S5 (see Theorem 5.14) we note that a I-t 

n x S5a is compact from C~O:(8[2) into itself. Therefore, the equation (6.15) 
is of the form 

a + Ka = 2h 

with some compact operator K : C~O:(8[2) ~ C~O:(8[2). By the Riesz the
ory, existence follows from uniqueness, see Theorem A.40. To prove unique
ness2 assume that a E C~O:(8[2) solves (6.15) for h = o. Define H by (6.6) 
and E by E = - ;" curlH. Then n x H = 0 on 8[2. The uniqueness result 
yields H == E == 0 in ~3 \ [2. From Theorem 6.6 we conclude that 

n x HI_ = n x HI_ - n x HI+ = -a, 

n x curl HI_ = n x curl HI_ - n x curlHI+ = -iTJk2n x S5a. 

Hence, from Gauss' theorem we have 

iTJk2!ISoaI2dS=iTJk2!a'S5adS = ![nxHI_J·curIHdS 
aD aD aD 

= !! [lcurlHl2 - k21HI2J dx. 
D 

Taking the imaginary part yields Soa = 0 and hence a = 0 since So is 
one-to-one. Thus we have shown that equation (6.15) has a unique solution 

2 We emphasize that here, as earlier when we treated the scalar case, we are con
cerned with the uniqueness of solutions of the integral equation (6.15) and not 
with the unique solvability of the original boundary value problem (6.1). 
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a E c~CY.(an) for every h E c~CY.(an). In other words, the operator ~ 1+ 
M + iT] N( n x S5) is an isomorphism from C~CY. (an) onto itself. 

From the equation (6.6) and the asymptotic forms (6.4a) , (6.4b) we observe 
that the far field pattern H 00 of H is given by 

1 J 'k' Hoo(x) = -y, x x a(y) e-' ",.y dS(y) 
411' 0 

an 

+ 4;~o x x J [n(y) x (Sga)(y)] x xe-ikx,y dS(y) , 

an 

(6.16) 

The operator a ~ Hoo from c~CY.(an) into CT (S2) is certainly compact. The 
preceeding analysis can be summarized in the following theorem: 

Theorem 6.7. For every h E c~CY.(an) the boundary value problem (6.1a)
(6:1d) has a unique solution E, H E C1 (JR3 \ n) n C(JR3 \ n). The operator 
K: C~a(an) ---+ CT(S2), h ~ H oo , is well-defined and compact. Here, Hoo 
is the far field pattern corresponding to the solution of the boundary value 
problem (6.1a)-(6.1d) with boundary values h. 

6.3 L2 -Boundary Data 

As we have seen in Chapter 3, for optimization problems it is desirable to work 
in Hilbert spaces of functions. It is our aim to extend the compact operator 
K : C~a(an) -+ CT (S2) to one from L~(an) into CT(S2). Here, LHan) is 
defined by 

L~(an) = {a: an -+ c3 : aj E L2(an), j = 1,2,3, a· n = 0 a.e. on an} . 

As we have seen in the previous section the operator K is the composition of 
the operators [~I +M +iT]N(nxS5)r1 and a ~ Hoo where Hoo is given by 
the form (6.16). The integral in (6.16) is also well defined for L2-vector fields 
a E L~(an), and a ~ Hoo is certainly compact from L~(an) into CT (S2). 

Therefore, it suffices to show that [~I + M + iT] N(n x S5)r1 has a bounded 
extension in L~(an). To show this we will again use Theorem 5.18 due to 
Lax. We apply that theorem to show that M and N(n x S5) are compact in 
L~(an). Let us first consider M. By changing the orders of integration we 
see that the adjoint operator M' of M with respect to the bilinear form 

(a, b) := J a·bdS 

an 

is given by M' = RMR where Ra = axn. Since M is compact in c~,a(an) so 

is M' and thus also the L2-adjoint M* = !vI' where Ma = Mo'. Application 
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of Theorem 5.18 to X = Y = C~a(oS!) yields that M is also compact in 
L~(os!). 

The operator N consists of two parts. The first part is _k2 RS which is com
pact in CT(oS!) by Theorem 5.11 and thus in L~(os!) by Theorem 5.18. To 
study the second part we consider·the auxiliary operator 

(K<p) (x) := n(x) x J \lxifJ(x,y)<p(y)dS(y) , xEoS!. 

aJ! 

By Theorem 5.10 this operator is bounded from CO,a(oS!) into C~,a(oS!). Its 
adjoint with respect to (', .) is given by 

(K'<p) (x) := J [n(y) x a(y)] . \lyifJ(x, y) dS(y) , x E oS!, 

aJ! 

which is, by Theorem 6.6, bounded from C~a(oS!) into cO,a(oS!). Therefore, 
K* is also bounded and application of Theorem 5.18 to X = CO,a(oS!) and 
Y = C~,a(oS!) yields that K is bounded from L2(OS!) to L~(os!). 
Since the single layer operator, So, is compact in L~(os!) it remains to prove 
that the operator A : a f--7 Div (n x Soa) is bounded from L~(os!) into 
L2(OS!). From the mapping properties of So we observe that A is bounded 
from C~a(oS!) into CO,a(oS!). Then using Div (n x u) = -n· curl u and 
(6.12c) we conclude that 

(Aa)(x) = Div (nxSoa) (x) = -n(x)· J \l xifJ(x, y)xa(y) dS(y) , x E as!. 

an 
Changing the orders of integration yields 

(A' <p)(x) = J \l yifJ(x, y) x n(y) <p(y) dS(y) , x E as!. 

an 

This operator is bounded from CO,a(oS!) into C~a(oS!) since A' - K is com
pact. Finally, application of Theorem 5.18 yields that the operator A has a 
bounded extension from L~(os!) into L2(OS!). Summarizing the results we 
have shown the first part of the following theorem: 

Theorem 6.8. The operator K : C~a(oS!) --+ CT (S2) has a bounded ex
tension from L~(on) into CT(oS!). It is the composition of the isomorphism 

[~I + M + irJN(n x sg)r1 in L~(os!) and the compact operator a f--7 Hoc 
from L~(os!) into CT(OS!). Furthermore, the range of K is dense in CT(S2) 
and consists of analytic functions on S2. 

Proof: It remains to prove the second part of the theorem concerning density 
of the range. But this is shown exactly the same way as in the proof of The
orem 5.19. One replaces the trigonometric sum 2:.~=-N aneint by the sum of 

spherical harmonics 2:.~=0 2:.:=-n anmYnffi(O, ¢) and argues as before. 0 



7 

Some Particular Optimization Problems 

In this chapter, we will study several particular optimization problems which 
are of interest in antenna design. Of course, one such problem is the synthesis 
problem that we have discussed in Chapter 4. Here, we will treat (for the most 
part) problems in which the objective functionals describe intrinsic character
istics of the far field pattern as, for example, gain, directivity, or measures 
of efficiency, rather than the problem of finding the best approximation to a 
given far field pattern. 

Thus we will discuss such problems as the problem of maximizing power in 
a given sector (or perhaps in a fixed direction) under various types of con
straints, and treat this problem for some concrete cases of continuous sources. 
We also treat the problem of optimizing the signal-to-noise ratio of an an
tenna, as well as a particular special case what we term the "null-placement" 
problem, in which we attempt to constrain side-lobes in particular directions 
while optimizing some appropriate measure of performance for the antenna. 
As concrete examples of the application of the general results, we will present 
the particular cases of the finite line source and the circular loop. 

7.1 General Assumptions 

While we have studied quite general optimization problems in Chapter 3 and 
the application of the general techniques developed there to synthesis prob
lems in Chapter 4, the present section is devoted to the maximization of the 
radiated power with respect to the surface current which we again denote by 
'ljJ. The general results of Chapter 3 are specialized here in that the optimality 
criteria .:J as well as the constraint set U is specified. It follows, in particular, 
that the general results of Chapter 3 guarantee the existence of an optimal 
solution for this problem. However, due to the particular nature of the per
formance criterion, we are able to derive some interesting characterizations of 
the optimal surface currents depending on the choice of the constraint sets U 
and it is this aspect of the theory upon which we concentrate. 
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Let the elements, 'ljJ, from a complex Hilbert space X, describe the feeding of 
the antenna. As in the Chapter 3, our notation does not distinguish between 
scalar and vector quantities. We assume only that the operator K : X -t 
C(Sd-1) has the following properties: 

(AI) K : X -t C(Sd-1) is compaCt and one-to-one. In particular, lC is not 
identically zero. 

(A2) K'ljJ is an analytic function on Sd-1 for every 'ljJ EX. 

Furthermore, we will take U c X to be a non-empty, bounded, closed, and 
convex set and the function a E L oo (Sd-1) to be a real-valued, and non
negative with the property: 

(A3) The support of a, i.e. the closed set 

A := n{A c Sd-1 : A closed and a = 0 a.e. on Sd-1 \ A} 

contains an open set (relative to Sd-1). 

We may think of a being the characteristic function of some subset A c Sd-1 
with positive measure. These three assumptions imply that for 'ljJ =1= 0 the 
analytic function K'ljJ cannot even vanish on the support of a. As in Section 3.4 
we define the radiated power in a sector by1 

:Ji('ljJ):= J a(x)2 I (lC'ljJ) (x) 12 ds(x) = IlaK'ljJlli2(Sd-l)' 'ljJ EX, (7.1) 
Sd-l 

and consider the optimization problem 

Maximize :1! ('ljJ) = Iia lC'ljJlli2(Sd-l) subject to 'ljJ E U. (7.2) 

We will also consider the maximization of 

m 

:h('ljJ) := L Wj I (lC'ljJ) (Xj) 12 , 'ljJ EX, (7.3) 
j=l 

subject to 'ljJ E U where Wj > 0 are some positive weight factors. 

Solutions'ljJ° E U of these optimization problems exist according to the general 
existence Theorem 3.1 since U is weakly sequentially compact (Theorem 3.7) 
and :Ji, :h are weakly sequentially continuous (Theorem 3.30). We note that 
the optimal value :h('ljJ°) is positive whenever U =1= {OJ. We make the general 
assumption that the optimal values are positive. 

Our present interest is in the problem of finding characterizations of the op
timal solutions which will be helpful in actual computations. An important 
property of :h which is useful in reaching that goal is its strict convexity, i.e. 

1 In this section we write ds for both the differential dS in the case of surface 
integrals in ]R3 and for d£ in the case of line integrals in ]R2. 
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We summarize some of the most important properties of these functionals by 
recalling the result of Theorem 3.32: 

Lemma 7.1. Let K : X -7 C(Sd-l) and c¥ E Loo(Sd-l) satisfy the assump
tions (Ai), (A 2), and (A3), and let f E L2(Sd-l). 

(a) The functional 

is strictly convex and continuously Frechet differentiable with gradient 

where K* : L2 (Sd-l) -7 X denotes the adjoint of the operator K considered 
as an operator from X into L2(Sd-l). 

(b) The functional 

.J('ljJ) := I(K'ljJ)(x)1 2 , 'ljJ EX, with x E Sd-l fixed, 

is convex and continuously Frechet differentiable with gradient 

"V .J('ljJ) = 2 (K'ljJ) (x) p 

where p E X denotes the Riesz representation of the linear functional 
rp f--t (Krp) (x), rp EX, i. e. the unique element p E X with 

(Krp) (x) = (rp,p)x for all rp EX. (7.4) 

7.2 Maximization of Power 

We start with a problem which is closely related to maximizing directivity, 
namely that of maximizing the radiated power in a preassigned angular sec
tor of the far field. This sector is described by introducing the characteristic 
function, C¥, of a patch on the unit sphere. As we shall see, for simple power 
constraints this problem leads to an eigenvalue problem for its far field oper
ator K and is accessible to numerical treatment by introducing appropriate 
approximation finite-dimensional problems. 

As in our general discussion in Chapter 3, it is possible, at least formally, to 
consider the problem of maximizing the radiated power in one or more discrete 
directions, Xl, ... , xm , as a special case by using o-functions. The reader may 
wish to consult Section 3.4 as background. Again, we remark that a rigorous 
mathematical.treatment would involve the use of distributions in the sense of 
L. Schwartz which is beyond the scope of the present book. 

Our discussion begins with a consideration of the constrained problem with a 
simple power co:o.straints on the input functions. 
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7.2.1 Input Power Constraints 

We begin by taking the set U to be of the form 

U := {~E X : g(~) :S o} (7.5) 

where 9 : X -t lR is some continuous and uniformly convex function. Then we 
know from Lemma 3.9 that U is closed, convex and bounded.2 Recall that we 
have identified the extreme points of U as just the boundary points of U in 
Lemma 3.18. 

For the particular choice of U given by (7.5) the optimization problem (7.2) 
becomes 

Maximize IlaK~II~2(Sd-l) subject to ~ E X and g(~):S o. 

Since the set of extreme points coincides with the boundary of the constraint 
set, the optimal solutions ~o necessarily satisfy g( ~O) = 0 by Theorem 3.16. 
Therefore, we can apply the Lagrange multiplier rule of Theorem 3.22 provided 
the function 9 is continuously Fn3chet differentiable and \7 g( ~O) -I- o. 
As an example we consider g(~) = 11~11i- - 1 and observe, from the binomial 
theorem, that 

g(~+ip) - g(~) = 2Re(~,ip)x + 11'P11i-

and thus \7g(~) = 2~. 
The application of the Lagrange multiplier rule, under the current hypothesis 
that a E L'x> (Sd-l ), then insures that for any optimal solution ~o of this 
optimization problem with \7 g( ~O) -I- 0 there exists A E lR, A :::: 0, (the 
Lagrange multiplier) such that 

(7.6) 

The particular example U = {~ EX: 11~llx :S I} is frequently met in practice 
as it has the interpretation of limiting input power to the antenna. For this 
important case, (7.6) leads (after replacing A by A/2) to the eigenvalue problem 

(7.7) 

for the compact, self-adjoint and positive definite operator K*a2K in X. We 
observe that A = IlaK~oll~2(Sd_l). We can summarize this particular but 
important case as follows: 

2 As an example we could take g('IjJ) = 1I'IjJ11~ -1 in which case U is simply the unit 
ball in X. 
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Theorem 7.2. Let the assumptions (Al)-(A2) be satisfied. The maximum 

of .J('¢) = \\oK'¢\\i2(Sd-l) on the set U = {'¢ EX: \\'¢\\x :::; I} is 
equivalent to finding the maximal eigenvalue and a corresponding eigenvec
tor of the compact, self-adjoint and positive definite operator K,* 0;2 K, on X. 
More precisely, for every solution '¢O E U of the optimization problem it is 
\\,¢O\\x = 1 and the optimal value A = \\0;K,,¢O\\i2(Sd-l) is the largest eigen
value of K,*0;2K, : X -+ X and '¢O a corresponding eigenvector. On the other 
hand, if A > 0 is the largest eigenvalue of K,* 0;2 K, and '¢O a corresponding 
eigenvector, normalized to \\,¢O\\x = 1, then '¢O solves the optimization prob
lem with optimal value A. 

Proof: In light of our previous discussion it remains to prove the second 
assertion. Let 

Al ?: A2 ?: ... > 0 

be the ordered sequence of the eigenvalues of K,* 0;2 K, with corresponding nor
malized eigenvectors '¢n EX, n = 1,2, ... Let '¢ E X be arbitrary with 
\\'¢\\x = 1. Then,¢ has a representation in the form 

00 

'¢ = '¢o + I)'¢,'¢n)x'¢n 
n=1 

for some '¢O with K* (0;2 K '¢o) = 0 and 

n=1 
00 

:::; Al 2::1('¢,'¢n)xI 2 :::; Al \\'¢\\~ AI. 
n=1 

Finally, the choice '¢ = '¢1 yields \\0; K,,¢I\Ii2(Sd-l) = AI. D 

This theorem shows that the question of uniqueness of an optimal solution is 
closely related to the multiplicity of the largest eigenvalue of K,* 0;2 K,. Since 
this operator is compact we know from the theorem of Riesz (see A.40) that 
there exist only finitely many linear independent eigenvectors '¢f, ... ,'¢'N E X 
corresponding to AI. Therefore, the set if> of all optimal solutions in this case 
is given by 

For the numerical computations, one restricts the maximization of .J to fi
nite dimensional subspaces Xn of X, which can be accomplished by applying 
Theorem 3.25. 
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Theorem 7.3. Let the assumptions (Al)~(A2) be satisfied. Assume, further
more, that Xn C X is an ultimately dense sequence of finite dimensional 
subspaces. Finding the maximum value of .:J('ljJ) = IIQ:K'ljJII~2(Sd-1) on the 

set Un = {'ljJ E Xn : 11'ljJllx ::; I} and the .optimal salutian is equiv
alent to finding the maximal eigenvalue An and a carrespanding narmal
ized eigenvector 'ljJ~ E Xn .of the self-adjaint and positive definite operatar 
PnK*Q:2 K\xn : Xn -+ Xn where Pn : X -+ Xn denates the arthaganal pro
jectian .onto X n . Furthermore, any sequence 'ljJ~ E Un .of optimal salutions 
has accumulation points and every such accumulatian point is optimal far the 
maximization af.:J on U = {'ljJ EX: 11'ljJllx ::; I}, i.e. an eigenfunctian .of 
JC* Q:2 K corresponding ta the largest eigenvalue A. Finally, An canverges ta A 
as n -+ 00. 

Proof: We set Kn := K\xn and apply the previous theorem to Xn and Kn in 
place of X and JC, respectively. We note that JC~ = PnK since 

for all 'ljJn E Xn and ¢ E L2(Sd-1). Application of Theorem 3.25 shows that 
any sequence 'ljJ~ E Un of optimal solutions has weak accumulation points, and 
every such weak accumulation point 'ljJ0 is optimal. In particular, 11'ljJ°llx = 1. It 
remains to show that every weak convergent sequence 'ljJ~ E Xn of normalized 
optimal solutions is also convergent with respect to the norm. Let {'ljJ~} be 
weakly convergent to 'ljJ0. Then 11'ljJ~llx = 11'ljJ°llx = 1 and we conclude that 

11'ljJ~ _ 'ljJ°II~ = 11'ljJ~II~ + 11'ljJ°II~ - 2Re ('ljJ~,'ljJO)x 

=2[1-Re('ljJ~,'ljJO)x] ---t 2[1-Re('ljJ°,'ljJ°)x] 0 

as n tends to infinity. D 

Remark: We note that, in principle, it makes no difference if we first discretize 
the problem, i.e. restrict the objective function to the finite dimensional sub
space, and then apply the multiplier rule to the finite dimensional system or 
apply, first, the multiplier rule to the infinite dimensional system and then 
use the projection method to solve the finite dimensional eigenvalue problem. 

In the remaining part of this subsection we study the maximization of the 
power intensities in given directions Xj E Sd-1, j = 1, ... , m, on constraint 
sets U of the form (7.5). In this case, the performance functional is given by 
(7.3), i.e. 

m 

.:J('ljJ) := L Wj I(K'ljJ)(xj)1 2 , 'ljJ EX, (7.8) 
j=l 

where Wj > 0 are given weights and K : X -+ C(Sd-1) satisfies the condition 
(AI), i.e. is compact and one-to-one. We note that this case can formally be 
subsumed under the previous one by defining Q: as a sum of delta-functions: 
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m 

a(x) := L foj 8(lx - Xjl). 
j=l 

By Lemma 7.1 the functional .J is still convex (but no longer strictly convex) 
and is differentiable. Its Frechet derivative is 

m 

\l.J('Ij;) = 2 LWj (JC'Ij;)(Xj)Pj 
j=l 

where the Pj E X are defined by the Riesz representation of the bounded 
linear functional cP H (JCcp) (Xj), cp E X, i.e. for each j = 1,2, ... ,m, the 
element Pj E X is the unique element of X for which 

By Theorem 3.16 there exist solutions of the optimization problem 

m 

Maximize L Wj I(JC'Ij;)(xj)12 subject to 'Ij; E U, 
j=l 

(7.9) 

(7.10) 

and at least one solution is attained at an extreme point of U. Application of 
the Lagrange multiplier rule (Theorem 3.22) yields: 

Theorem 7.4. Let Xj E Sd-1, j = 1, ... , m, and JC : X -t C(Sd-1) be 
compact and one-to-one. Furthermore, let 9 : X -t JR be uniformly convex 
and continuously differentiable. Then there exist optimal solutions of (7.10) 
where U = {'Ij; EX: g('Ij;) :s:; O}. Furthermore, for any optimal solution 'lj;0 
with \l g( 'lj;0) -=f 0 of this optimization problem there exists ,\ E JR, ,\ ~ 0, with 

m 

LWj (JC'Ij;°)(Xj)Pj - ,\ \lg('Ij;0) = O. 
j=l 

(7.11) 

Again, the Pj E X are given by the Riesz representation of the mapping 
cP H (lCcp) (Xj), cp E X. If the optimal value "L,7'=1 Wj 1(1C'Ij;°)(xj)12 > 0 the 
multiplier ,\ is strictly positive and 9 ( 'lj;0) = O. 

Proof (of the last assertion): We know from the multiplier rule that ,\ g( 'lj;0) = 
0, i.e. ,\ or g('Ij;0) vanishes - or both. Assume that ,\ = O. Then (7.11) yields 

m 

LWj(JC'Ij;°)(Xj)Pj = O. 
j=l 

Multiplication of this equation by 'lj;0 and using (7.9) leads to 
"L,7'=1 Wj 1 (JC'Ij;0)(Xj) 12 = 0 which contradicts the assumption. Therefore, ,\ > 
o and thus also g( 'lj;0) = o. 0 
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In the particular case that U is the unit ball in X we have that V g( 'ljJ) = 2 'ljJ 
and the multiplier rule (7.11) simplifies to 

m 

2:wj(K'ljJ°)(xj)Pj = A'ljJ°. 
j=l 

(7.12) 

Therefore, 'ljJ0 is a linear combination of the Pj, j = 1, ... , m. If we make the 
ansatz 

m 

'ljJ0 = 2:aj VW;Pj 
j=l 

for some aj E e, equation (7.12) leads to the eigenvalue problem M a = Aa 
for the Hermitian matrix M E emxm given by 

Mij = VWiwj(Kpj)(Xi) = VWiWj(Pj,Pi)x, i,j=l, ... ,m. (7.13) 

Multiplication of (7.12) by 'ljJ0 then leads to A = 2:}:1 Wj I(K'ljJ°)(xj)1 2 . We 
have therefore to determine the largest eigenvalue of M and the corresponding 
eigenvector a E em, normalized such that 112:}:1 aj VWJpjllx = l. 
Computations for this particular constrained problem are completely anal
ogous to the previous computations. Instead of repeating that analysis in 
concrete examples e.g., for the line source, we turn to the consideration of 
problems in which the constraints themselves are described by pointwise con
ditions. We analyze the general situation first, and then illustrate by applying 
the results to the line source in·§7.2.3. 

7.2.2 Pointwise Constraints on Inputs 

For this analysis we take the Hilbert space X = L2(r) for some curve or 
surface r c lRd , and restrict ourselves to the case where L2(r) consists of 
complex-valued but scalar functions. The case of vector fields as occurs in the 
study of boundary controls for Maxwell's equations can be treated in a similar 
fashion. We consider the power optimization problem with cost functional 
J('ljJ) = IlaK'ljJII~2(Sd-1) only, i.e., 

Maximize J('ljJ) = lIaK'ljJII~2(Sd-1) subject to'ljJE U, (7.14) 

where the the set U of constraints is given as in (3.10) by 

U = {'ljJ E L2(r) : 'ljJ(x) E V(x) a.e. on r}, 

for V(x) c e closed and convex for each x, and the set UVEr V(x) bounded 
with the graph of V measurable. We have seen that optimal solutions 'ljJ0 exist 
and are necessarily extreme points since the functional J is strictly convex. 
Therefore, 'ljJ°(x) E ext V(x) for almost all x E r. Application of Lemma 3.21 
and Lemma 7.1 yields 
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Re J v(x) ['P(x) - 1jJO(x)] ds(x) ::; 0 for all 'P with 'P(x) E V(x) (7.15) 

r 

for almost all x E r where we have set v := K*(a2K1jJO) E L2(r). From this 
inequality we may conclude that the optimal solution satisfies the pointwise 
inequality 

Re {v(x) [z - 1jJO(x)]} ::; 0 for all z E V(x) and almost all x E r. (7.16) 

Indeed, suppose that (7.16) fails to hold. Then there is a set I c r of positive 
measure such that the sets 

W(x) := {z E V(x) : Re { v(x) [z - 1jJO(x)] } > 0 } 

are non-empty for all x E I. The graph of W is measurable. Therefore, by 
a measurable selection theorem (see the remarks following Definition 3.11, or 
[22]), there exists a measurable function 'P : I ~ C with 'P(x) E W(x) a.e. 
on I. We extend 'P by setting 'P(x) = 1jJO(x) for x E r \ I. Then 'P E L2(r) 
and 'P(x) E V(x) a.e. and Re {v(x) ['P(x) - 1jJO(x)]} 20 on r and is strictly 
positive on a set of positive measure. Integration yields Re (v, 'P-1jJo) P(r) > 0 

which contradicts (7.15). 

We point out that the variational inequality (7.16) not only yields the extremal 
property of 1jJO(x) for almost all x E r but, in some cases, even more. Let us 
consider the special case, where V = V (x) is constant with respect to x and, 
in particular, is either a rectangle or a disc in C and that the set r c ]R2 is 
the analytic boundary of some plane region [l C ]R2 with connected exterior. 
Then, 1jJO(x) is an extreme point of V for almost all x E r. We will need a 
further assumption on the operator K : L2(r) ~ C(Sd-l) which we formulate 
in terms of its L2-adjoint K*: L2(Sd-l) ~ L2(r) as: 

(A4) K*'P is analytic on the analytic curve r c]R2 for every 'P E L2(Sd-l). 

The assumption (A4) and the variational formula (7.16) now yield a finite 
bang-bang principle: 

Theorem 7.5. Let 1jJo be a solution of (7.14) and let the assumptions (A1)
(A4) hold (for d = 2). Again, set v := K*(a2K1jJO) on r. 

(a) If V c C is a disc with center 0 and radius R then 1jJo coincides a. e. with 
the piecewise continuous function 

~(x) = Rsign v(x), 

where signz = z/Izl denotes the sign of z E C, z #- o. 
(b) If V c C is the rectangle V = [a_,a+l +i[L,b+l then 1jJo coincides a.e. 

with the piecewise continuous function ~ given by 

Re~(x) = {a_, Rev(x) > 0, 
a+ , Re v (x) < 0 , 

1m ~ (x) = {L, 1m v (x) > 0 , 
b+,Imv(x) <0. 
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Proof: (a) Substituting z = Rsign v(x) into equation (7.16) yields 

R Iv(x)1 s:; Re {v(x) 'ljI°(x)} for almost all x E r. 
From this we conclude 

o < 1'ljI°(x) - Rsignv(x)1 2 = 1'ljI°(xW + R2 
2R -

Iv(x)1 Re {v(x) 'ljI°(x)} 

s:; 2R2 - 2R2 = 0 

almost everywhere. 

(b) Substituting z = t+iIm'ljl°(x) and z = Re'ljl°(x)+is into equation (7.16) 
yields 

Rev(x) [t - Re'ljl°(x)] s:; 0 and 1m v(x) [s - Im'ljl°(x)] s:; 0 

for all t E [a_, a+ land s E [L, b+ 1 from which the assertion follows. 0 

7.2.3 Numerical Simulations 

In this subsection we study optimization problems for two particular cases 
and present numerical results. 

As a first example we consider a circular line source. In the plane of the 
line source of radius a the operator K takes the form (see Subsection 1.5.2) 

211" 

(K'ljI)(¢) = J 'ljI(s) e-ikacos(¢-s) ds, 0 s:; ¢ s:; 21f. 

o 

Then we consider the problem: 

211" 

Maximize J a(¢) I (K'ljI)(¢) 12 d¢ 
o 

211" 

subject to 'ljI E L2(0, 21f), J 1'ljI(t) 12 dt < l. 

o 

For the finite dimensional approximations we restrict 'ljI to lie in 

Xn = span {eijt : 111 s:; n} . 

Using the Jacobi-Anger expansion (1.14) we can represent K'ljI as a Fourier 
series in the form 

(K'ljI)(¢) = 21fL'ljIm(-i)mJm(ka)eim¢, 0S:;¢S:;21f, 
mET. 
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where 
27r 

'¢m = 2~ 1 ,¢(t) e- imt dt, mE If" 

o 

are the Fourier coefficients of'¢ E L2(0,2n). 

Example 7.6. As a particular case we take a to the characteristic function of 
the interval [aI, a2] C [0,2n] where a1 < a2. Then the optimization problem 
has the form: 

0<2 

Maximize 11 (K'¢)(¢) 12 d¢ 

0<1 

27r 

subject to '¢ E L 2 (0, 2n), 1 1,¢(t)12 dt < l. 

o 

For the application of Theorem 7.3 we have to compute the operator PnK*a2 K. 
Analogously to K the operator K*a2 K is given by 

i(m-C)0<2 i(m-£)O<l 

(K*a2 K,¢)(t) = 2n L '¢m i m- C Jm(ka) J£(ka) e i (m-_e £) eiRt 

£,mEZ 

(in the case £ = m the fraction has to be replaced by a2 - ad. Therefore, 
the finite dimensional operator PnK*a2 Kix is represented by the matrix 
A = (a£m) E c(2n+1)x(2n+1) where n 

The plots of Figure 7.1 show IK'¢ol of the numerical calculations for the an
gular sector [0, n / 4] and wave lengths A = 1 and A = n, respectively. 

Having treated the circular line source we now turn the case of a linear line 
source oflength 2£ along the e3-axis and polarization vector p = e3. We have 
seen in Sections 1.5 and 4.5 that the electric far field pattern for a linear line 
source can be written as (see (1.49)) 

(7.17) 

in which case the far field operator K: L2(_£,£) ~ C[-l,+l] is 
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Fig. 7.1. Plots of IK,¢ol for wave lengths). = 1 and), = 'If 

£ 

(K7/J)(t) = V1=t2 J 7/J(s) e-ikts ds, It I :::; 1, (7.18) 

-£ 

where we have made the substitution t = cos e. In particular, we note that 
the far field is independent of the angular variable ¢ E [0, 27r]. The adjoint of 
the far field operator is then given by 

1 

(K*<p)(t) = J ~ <p(S) eikts ds, It I :::; £. (7.19) 

-1 

Again let A C Sd-1 be some subset of the sphere which is open relative to 
Sd-1. We study the following optimization problems corresponding to (7.1) 
and (7.3) for U = {7/J EX: 117/Jllx :::; I}: 

and 

Maximize 

subject to 

m 

J I(K7/J)(coseWds 
A 

117/J11~2(_£,£) < 1, 

m 

(7.20a) 

maximize L Wj IE oo(xj)12 L Wj I(K7/J)(cosej)1 2 (7.20b) 
j=l j=1 

subject to 

where Xj E Sd-l and Wj > 0 are given and (ej , ¢j) E [0,7r] X [0,27r) are the 
polar coordinates of x j, j = 1, ... , m. 

Let us first study (7.20a). For this, let 0: be the characteristic function of the 
patch A, parametrized in spherical polar coordinates (e, ¢). We compute 
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7r 27r 1 I(K'ljI)(cosB)12ds = 1 1 a(B,¢) d¢ I(K'ljI)(cosB)12 sinBdB 
A 0 0 

1 

= 1 &(t)21(K'ljI)(tW dt = 11& K'ljIII~2(-I,+l) , 

-1 

where &(t)2 = J~7r a(arccost, ¢) d¢, It I :::; 1. The total power corresponds to 

a == 1 i.e., & == v'27f. 
The maximization problem (7.20a) is therefore equivalent to: 

Maximize II&K'ljIlli2(-1,1) subject to 11'ljI11£2(-C,C):::; 1. (7.21) 

We want to apply Theorem 7.2 to K = K: L2( -i!,i!) --+ C[-l, 1] and to do so 
we must compute the operator K*(&2 K). Using the form of the adjoint K* 
(7.19) we see easily by interchanging the orders of integration that 

C 

(K*o?K'ljI)(t) = 1 'ljI(s)A(t-s)ds, It I :::;i!, (7.22) 

with kernel 

-c 

1 

A(T) = 1(1- s2) &(s)2 eiksT ds, T E JR. 

-1 

As remarked before, the case a == 1 corresponds to &2 == 21T and 

C 

(7.23) 

(K*K'ljI)(t) = 1 'ljI(s)a(t-s)ds, It I :::;i!, (7.24) 

-c 

where the kernel was formed, already in Section 4.5, to have the form 

11 ·k 81T [sin(kT) ] a(T) = 21T (1 - s2) e" ST ds = -- - cos(kT) , 
(kT)2 kT 

T E JR. 

-1 

(7.25) 
Therefore, we must find the largest eigenvalue ,\ and a corresponding normal
ized eigenfunction 'ljI of the eigenvalue problem 

+1 

,\'ljI(t) = 1 A(t-s)'ljI(s)ds, It I :::; l. (7.26) 

-1 

For the numerical computation we use the Nystrom method and replace the 
integral by a quap.rature rule of the form 
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+1 n J f(s)ds ~ ~qj f(Sj) 
-1 )=1 

(7.27) 

where Sj and qj are the Gauss-Legendre nodes and weights, respectively. Sub
stituting t = Si in (7.26) leads to the approximate equation 

n 

)..'lj;(n)(Si) = LqjA(Si-Sj)'lj;(n)(Sj), i=l, ... ,n. (7.28) 
j=1 

Since the matrix of this equation is not Hermitian we symmetrize by multi
plying the equation by y7ii and setting 'lj;j := yIIij'lj;(n) (Sj), j = 1, ... , n. The 
eigenvalue problem then becomes 

n 

)..'lj;i = L,)qjqiA(Si-Sj)'lj;j, i=l, ... ,n, (7.29) 
j=l 

for the Hermitian matrix Mij = ..jqj qi A(Si - Sj), i,j = 1, ... , n. 

Before we present actual numerical results we consider the second of the op
timization problems, (7.20b). We can assume without loss of generality that 
Bj E (0,7r) since otherwise (K'lj;)(cosBj) = 0 and the corresponding term 
would not appear in the cost functional. 

In order to apply the Lagrange multiplier rule of Theorem 7.4 we need to 
compute the Riesz representation of the functional 'lj; f-t (K'lj;) (cos Bj ), 'lj; E 
L2(-£,£), j = 1, ... ,m. But this is obvious since 

£ 

(K'lj;) (cos Bj ) = sin Bj J 'lj;( s) e-iks cos OJ ds = ('lj;, Pj )£2( _£,£) 

-£ 

(7.30) 

with Pj (s) = sin Bj exp(iks cos Bj ), S E (-£, e). For pairwise different Bj these 
functions are linearly independent, and therefore, we can apply Theorem 7.4. 
In particular, 11'lj;°1l£2(-£,£) = 1, and the optimal function 'lj;0 has the form 

m m 

'lj;°(s) = Laj-vwJpj(s) = Laj-vwJsinBjeikSCOSOj for some aj EC 
j=1 j=1 

where a = (aj) E Cm is an eigenvector of the matrix lVI E cmxm given by 

£ 

M /"iil1Il () /"iil1Il . B . B J iks(cos Ov-cos 01") d l/" = yWl/W" Pl/'P" £2(_£,£) = yWl/W" sIn l/ sIn" e S 

-£ 

. . sin [kIZ( cos Bl/ - cos B,,)] 
= 2£..jwl/w" smBl/ smB" kfi( B B ) 

~ cos l/ - cos " 
(7.31 ) 
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which corresponds to the largest eigenvalue Amax and is normalized to lal 2 = 
1/ Am ax . K'lj;° is given by 

o _ ~;:... • sin [kC(cos OJ - t)] 
(K'lj; )(t) - 2Cv1-t~ ~ajfojsmOj kC(cosOj-t) , Itl::;l. 

Example 7.7. We now make some particular choices in the case of the linear 
line source. We compare the. optimization problems (7.20a) and (7.20b) for 
the same values of 01 , O2 and for a fixed wave number k. 

Specifically, we consider (7.20a) for the case where A consists of two separate 
strips, i.e., 

j = 1 or 2, 
(7.32) 

and ej > 0 is chosen such that the areas of the corresponding strips A j , 

j = 1,2, are equal. This leads to ej = 1/(sinOjsin6j ), j = 1,2. Then we have 
that 

{
ej , It-cOsOjCOS6jl ::; sinOjsin6j, 

a(t)2 = 27r ~ ~ 
0, otherwise. 

j = 1 or 2, 

For this case the kernel A from (7.23) takes the specific form 

1 2 tj+Ll j 

A(T) = j(1_s2)a(s)2 eikSTdS = 27rLej j (1_s2)eikST ds 

-1 J=l tj-Ll j 

and can be computed explicitly. We denote the optimal value for this problem 
by 'l/J~. 

Turning to the study of the optimization problem (7.20b) for m = 2 and 
Wj = 1, j = 1,2 we use the same values of OJ and k. Then the matrix M from 
(7.31) takes the form 

S =. . sin [kC( cos 01 - cos O2 )] 
with sm 01 sm O2 kC( 0 0)· cos 1-COS 2 

The eigenvalues are given by 

C (sin2 01 + sin2 O2) ± C J 4S2 + (sin2 01 - sin2 O2)2 , 

and the larger of these, Amax, is the one with the plus sign. If a E ]R;.2 is the 
eigenvector corresponding to Am ax , normalized to I a 12 = 1/ Amax, then the 
optimal solution 'l/J'b of (7 .20b) is given by 

2 

'l/J'b(s) = LajsinOjexp(ikscosOj) , lsi ::;C, 
j=l 
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and 

o _ ~ ~ . sin [k.e(cosOJ - t)] 
(K'¢b)(t) - 2£v1-t~ ~ajsmOj k.e(cosOj-t) , Itl::;l. 

For the following numerical computations we take the wave number k = 101f 
(Le. wave length 21f/k = 0.2), the length ofthe line source.e = 1, the width of 
the strips 81 = 82 = 100 , and several values of 01 and O2 , We use the notation 

2 

Ja('¢) = II&K'¢lli2(Sl) and Jb('¢) = L I(K'¢~)(cosOj)12. 
j=l 

Ja ('¢~) Ja ('¢'b) Jb('¢~) Jb ('¢'b) 

01 = 300 

16.9 10.6 0.29 0.51 
O2 = 1500 

01 = 3F 17.7 11.1 0.30 0.53 
O2 = 1500 

01 = 500 

36.4 25.8 0.37 1.17 
O2 = 1500 

Plots of IK'¢~I and IK'¢'b1 for these examples are shown in Figure 7.2 - 7.4. 

0' 0.6 

0' 

03 

02 

Fig. 7.2. IK1jJ~1 and I K1jJb' I for 01 = 30°, O2 = 150° 
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We note that only in the case where (h and (}2 are symmetric with respect to 
7r /2 we observe two beams. In all other cases the optimal pattern shows only 
one beam which is centered around the angle closest to 7r /2. 

7.3 The Null-Placement Problem 

In the previous discussions of the maximization of power in a sector of the 
far field, or of the directivity in a prescribed direction, little attention was 
paid to the question how the radiation pattern is affected by the designer's 
attempt to optimize the cost functional. We have mentioned, however, that 
it is possible to achieve highly directive patterns but at the cost of high (and 
undesirable) side lobe patterns. For the case of arrays, this was precisely the 
problem studied by Dolph [34] which we described in Chapter 1. We will 
return to a different approach to that problem again in Chapter 8. 
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Likewise, in the synthesis problem, far field patterns may be matched to within 
any desired degree of error, but only at the sacrifice of directivity or gain as 
was discussed by Taylor [133] and described previously in Chapter 4. An 
interesting analysis of the cost to the antenna design of producing a highly 
focused main beam may be found in the recent paper of Margetis et al. [89]. 

Yet another important class of problems are those for which we desire to 
maintain, or even optimize, the gain in a specific direction while controlling 
the far field pattern only in certain other preassigned directions. There are 
often sources of radiation, environmental or artificial, which come from a 
particular direction and interfere with the ability of the antenna to maintain 
its desirable performance. Often this interference appears after a desirable 
far field pattern has been established which is "efficient" as measured by a 
particular cost functional J. What is wanted is to change the feedings to the 
antenna in such a way that the side lobes in the direction of the interfering 
signal are very low (the "placement of nulls") while maintaining, as closely 
as possible, the main beam characteristics e.g., the maximum power over the 
main beam sector, or the beam width. 

Problems of this type arise, in practice, in communication problems where it is 
desirable to maintain gain in the direction of a remote antenna while reducing 
either localized interference due to background noise or to jamming originating 
from other known directions. Similar problems arise in radio astronomy. 

Such problems are likewise optimization problems with constraints; but here 
the restrictions are to be imposed only over certain sectors of the far field, 
thereby allowing the radiation pattern in other directions to behave as nec
essary in order to contribute to the desired main beam performance. The 
particular mathematical formulation depends on the specific form of the cost 
functional to be optimized and on how the constraints are modeled. We discuss 
some typical models here to illustrate the flexibility of the general approach we 
have developed. In particular, we will consider two types of problems. It will 
be clear that similar problems may addressed with the techniques presented 
in this section. 

In the first type of problem, we wish to maximize some functional related to 
the radiated power in some prescribed directions while keeping the radiated 
power small in some other, different, directions. 

In the second problem we wish to modify an existing (and ostensibly desirable) 
far field pattern to reduce side lobes at prescribed locations or in specified 
sectors of the far field, while preserving as closely as possible the existing 
pattern outside these given positions. 

As before, we assume that the operator JC : X ---t C(Sd-l) is a compact 
operator which satisfies the conditions (AI) and (A2) from the beginning of 
this chapter. . 

We begin with the first class of problems. 
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7.3.1 Maximization of Power with Prescribed Nulls 

We will investigate the problem of maximizing the functional 

J('IjJ) := J 1 (K'IjJ) (X) 12 ds =. J a(x)21(K'IjJ)(x)12 ds (7.33) 

A Sd-l 

subject to the usual input power constraint 11'ljJ11~ :::; 1. Again, a is the char
acteristic function of A C Sd-I. For the additional constraints we choose {3 to 
be the characteristic function of a set B C Sd-I which is disjoint from the set 
A and which describes the main beam sector (or at most has an intersection 
with A of measure zero). Furthermore, we require that both sets A and B con
tain open subsets of Sd-I. Notice that if it is necessary to put a constraint on 
the entire region outside the main beam sector, then we may take (3 = 1 - a. 

Specifically, we consider the constraint either 

(a) in integral form: 

g('IjJ) := J (3(x)21(K'IjJ)(xW ds - c2 < 0 

Sd-l 

or 

(b) in pointwise form: 

m 

g('IjJ) .- I: Wj I(K'IjJ)(xjW - c2 < 0 
j=O 

(7.34) 

(7.35) 

where c is a prescribed (possibly small) positive constant. If we denote the 
constraint set, as before, by U then 

U = {'ljJEX:II'ljJllx:::;landg('IjJ):::;O}. (7.36) 

We note that this set is clearly bounded as a subset of the unit ball. It is 
both a convex set, since g is convex by Lemma 3.32 (a), and a closed set in 
X as can be checked easily using the continuity of the operator K. Hence 
the general existence theorem (Theorem 3.3) concerning the maximum of the 
weakly sequentially continuous functional J over a closed and bounded convex 
set guarantees the existence of an optimal solution 'ljJ0. Many problems can 
be framed in this general context. In particular, we can easily see the close 
relationship with the classical Dolph problem in which the main beam width 
and power in the prescribed direction are specified and we constrain the side
lobe level outside the main beam direction. In this classical case, the side-lobe 
constraint can be written as 

maxlf(x)1 < c, 
:ilEB 
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a pointwise constraint where c is an arbitrarily assigned constant. The present 
context suggests that we write the side-lobe constraint as a mean-square con
straint, i.e. 

IIfIIL2(8) :::; c. 

Indeed, we will refer to the problem with this L2-constraint as the General
ized Dolph Problem [13] and will analyze it in Chapter 8. 

Let us start with the constraints given in integral form. The problem in this 
case can be treated by using the Lagrange Multiplier Rule as formulated in 
Theorem 3.22, where we write the norm constraint in terms of a function 
h: X -t JR, given by h('ljJ) := 11'ljJ11~ -1. The computations done in Section 7.1 
(specifically Lemma 7.1) show that .:1, 9 and hare Frechet differentiable with 
gradients given by 

\1 .:1 ( 'ljJ) = 2 K* ( a2 K'ljJ) , 

\lg('ljJ) = 2K*(j32K'ljJ) , 

\lh('ljJ) = 2'ljJ. 

(7.37a) 

(7.37b) 

(7.37c) 

The Lagrange Multiplier Rule implies that there exist multipliers p 2: 0 and 
J.L 2: 0 such that 

\l.:1('ljJ0) _p\lg('ljJ0) - J.L\lh('ljJ°) =0, 

pg('ljJ0) = 0, 

J.L h('ljJ°) = 0, 

provided the constraint qualifications hold i.e., for some 'ljJ E X 

and 

(7.38a) 

(7.38b) 

(7.38c) 

(7.39a) 

(7.39b) 

To show that the inequalities (7.39a) and (7.39b) hold for some choice of 
'ljJ EX, we consider the specific forms of the functions 9 and h. In particular 
we need to show that, for some 'ljJ, 

(7.40a) 

and 
(7.40b) 

To do this, we consider functions of the form 'ljJ = -v'ljJ° for some v > O. For 
such functions the two constraint qualifications reduce to 

which are certainly valid for every v > 0 since 'ljJ0 =I- 0 and j3 K'ljJ° =I- o. 
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It now follows from the theorem on Lagrange multipliers that there exist 
constants p 2 0 and Jl 2 0, for which the optimal solution, 'lj;0, necessarily 
satisfies the equations 

-K*(a2K'lj;°) + pK*(f32 K'lj;°) + Jl'lj;0 = 0, 

p ( IIf3K'lj;°lli2(Sd-l) - c2) = 0, 

Jl (11'lj;°II1: - 1) = o. 

(7.4la) 

(7.4lb) 

(7.4lc) 

We now examine this set of necessary conditions. First, let us consider the 
norm constraint (7.4lc): either it is active or not. Suppose that it is not 
active. Then we must take Jl = 0 and the equation for the optimal solution 
becomes 

K*(a2K'lj;°) - pK*(f32K'lj;°) = 0 

from which it follows that, for all 'lj; EX, 

or 
((a2 - p(32)K'lj;o,K'lj;)x = 0 for all 'lj; EX. 

We make now the assumption that, in addition to (Al)-(A3) there exists an 
open (relative to Sd-l) set (') with (') c (supp a) \ (supp (3). Furthermore, we 
assume that the range of K is dense in L2(Sd-l). Then we conclude that 

In particular, this last equation must hold for 

which yields 

{ K'lj;O in ('), 
'P = 0 in Sd-l \ (') , 

J a2IK'lj;°12ds = O. 
() 

Assumptions (AI) and (A2) yield 'lj;0 = 0 on X as before. 

We conclude that the norm constraint (7.4lc) is always active and therefore 
that Jl must be strictly positive. Now, with regard to (7.4la) let us first assume 
that the constraint (7.4lb) is not active i.e., that IIf3K'lj;°II£2(Sd-l) < c. Then 
the second equation implies that p = 0 and the first equation becomes 

which is just the eigenvalue problem for the operator K* a 2 K. 

Therefore, we have restricted the class of all possible solutions of the optimiza
tion problem. Eitp.er they can be eigenfunctions 'lj;j of K*a2 K, normalized by 
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requiring l17f!j Ilx = 1, and with the additional property II,6K7f!j 11£2(Sd-l) < C, 

or they can be solutions 7f! of the set of equations 

-K*(o?K7f!) + pK*(,62 K7f!) + JL7f! = 0, 

II,6K7f!lli2(Sd-') = c2 , 

117f!11~ = 1. 

(7.42a) 

(7.42b) 

(7.42c) 

For every p > 0 we can consider (7.42a) as an eigenvalue equation for the 
compact operator K* (a2 K7f!) - p K* (,62 K 7f!). Therefore, we have to find p > 0 
such that the normalized eigenfunctions 7f! satisfy 11,6 K7f!IIL2(Sd-') = c. 

Before proceeding to a particular example, we remark that we can treat the 
case where J has the form 

m 

J(7f!) = I:wjl(K7f!)(xjW, 7f!EX, 
j=1 

by the same method. The only difference is the form of the Frechet derivative 

m 

VJ(7f!) = 2I:Wj(K7f!)(xj)Pj, 
j=1 

where Pj E X is the Riesz representation of the functional 'P H (K'P)(xj), 
'P E X. We will not treat this case below; both the theory and computational 
methods can be developed following the methods already presented. 

7.3.2 A Particular Example - The Line Source 

As a particular example of the preceeding analysis, we consider the linear line 
source and will use the same notation as in Subsection 7.3.1. We choose this 
particular example because of its close association with finite linear arrays 
also discussed in [89]; indeed we show that the techniques developed here lead 
to the same result reported by these authors. 

Specifically, using the material we developed in the preceding copy, we consider 
the line source and study the optimization problem in which there is a single 
direction in which we wish to maximize the power. At the same time, we keep 
the constraints in the form (7.36), so that the available surface current power 
is bounded (by 1) and we wish to create very low side lobes in a sector of the 
far field which does not include the main beam direction. We have then the 
optimization problem: 

for fixed Xo E Sd-1, 
maxImIze I(K7f!)(xoW 

subject to 
117f!lli < 1 and 11,6 K7f!II£2(Sd-') < c. 
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For this problem, as before, the constraint qualifications are satisfied and 
we may invoke the Lagrange Multiplier Rule. With respect to the particular 
case of the line source, recall that, writing the spherical coordinates of Xo 
as (()o,¢o) E [0,7f] x (0, 27f), we can introduce the operator K : £2(-£,£) ---+ 
£2( -1,1) by 

£ 

(K'I(;)(t) = J1=t2 J 'I(;(s)e-ikstds, It I :::: 1, 

-£ 

so that the optimization problem is to 

maximize .1('1(;) = I (K'I(;) (cos ()0)12 , 

subject to 

- ( 2 ) 1/2 where (3(t):= fo 7f (3(arccost, ¢)2 d¢ , It I :::: l. 

(7.43a) 

(7.43b) 

We see that (K'I(;)(cos()o) = ('I(;,P)£2(-£,£) where p(s) = sin()o exp(ikscos()o), 
lsi :::: £. Since, by Lemma 7.1, the gradient of .1 is given by 'V .1('1(;) = 
2 (K 'ljJ) (cos ()o) P the optimal solution '1(;0 of (7.43) necessarily satisfies the La
grange equations 

(7.44a) 

(7.44b) 

(7.44c) 

We note that at least one of the constraints must be active, for if not, then 
necessarily both p and f-t must vanish and (7.44a) must reduce to p = ° since 
(K'I(;°)(cos()o) -=1= 0. This is impossible under the hypothesis of the problem. 

A phase change does not alter the optimality property of '1(;0. If we divide 
(7.44a) by (K'I(;°) (cos ()o) and define 

'1(;0 (K'I(;°)(cos()o) 
I (K '1(;0)( cos ()o) I ' 

and replace ~o, p, and jj by '1(;0, p, and f-t again, we arrive at the system 

(7.45a) 

(7.45b) 

(7.45c) 
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We noted above that at least one of the constraints (7.45b) and (7.45c) must be 
active. Suppose first that the constraint (7.45b) governing the null directions 
is inactive. Then p must be zero and the multiplier equation, together with 
the active norm constraint, allows us to compute the solution. Indeed, in this 
case, tf;0 is a multiple of p, and since 11tf;°llp( -R,R) = 1, this function must be 

tf;°(s) = _1_ eiks cos 1:10 for s E [-f,f]. 
V?1 

(7.46) 

If, on the other hand, the norm constraint is inactive, then J-L = 0 and the 
multiplier equation becomes 

1 
-p 
p 

(7.47) 

which is an integral equation of the first kind for tf;0. This equation is not 
solvable in L2(-f,f). Indeed, we have (see (7.22)) 

with 

R 

(K*jJ2Ktf;)(t) = !b(t-8)tf;(S)dS, Itl~f, 
-R 

1 

b(T) = ! (1- 82 ) j3(s)2 eiksT ds, T E ~, 
-1 

which is the Fourier transform h( -kT) of 

h(s) := {(1-s2)j3(s)2, lsi ~ 1, 
. 0, lsi> 1. 

Since h E j") C~) we know that B( T) -+ 0 as ITI tends to infinity, which implies 
that (K*(32Ktf;)(t) -+ 0 as It I tends to infinity, and this is a contradiction to 
the fact that Ip(t)1 is constant. Therefore, the norm constraint (7.45c) must 
be active. 

If both constraints are active, then (7.45a) becomes the Fredholm integral 
equation of the second kind 

1 
-p, 
P 

(7.48) 

where ry = J-L/ p. This is the result cited in [89]. The parameters ry and p must 
be determined in such a way that the solution tf;0 = tf;°b, p) E L2( -f, f) of 
(7.48) satisfies the equations IIj3Ktf;°IlL2(-1,1) = c and 1Itf;°IlL2(-€,€) = 1. For 
every ry > 0 and p > 0, the solution of (7.48) exists and is unique. Uniqueness 
holds as can be seen immediately by multiplying the homogeneous equation by 



7.3 The Null-Placement Problem 219 

'ljJ0 thereby obtaining II,8K'ljJ°lli2 (-1,1) + 'Y 11'ljJ°11~2(_£,£) = 0 and thus 'ljJ0 = o. 
Fredholm's alternative can now be used, much as in Section 4.5, to prove the 
existence of a solution. 

We can reduce the problem to determine only one parameter. Indeed, we 
observe that the solution 'ljJ0 of (7.48) is given by 'ljJ0 = 'ljJ0o / p where 'ljJ0o = 'IjJ~o 
solves 

[K* ,82 K + 'Y I] 'ljJ0o = p. (7.49a) 

We thus have to determine p and 'Y such that 

pc 

The equation 

o (7.49b) 

is one equation for the unknown parameter 'Y. 

It should be pointed out here that we cannot make the far field pattern vanish 
on all of the set B because of the analyticity of the far field pattern. Indeed, 
the assumption that the set B contains an open set would force the far field 
pattern to vanish everywhere if it vanished on all of B. This observation raises 
the question of whether we can force nulls at a discrete set of points. This 
question is addressed by considering the problem with pointwise constraints 
which we will do in the next subsection. 

Example 'l.B. We finish this part by presenting a numerical example for which 
(3 is the characteristic function of the strip ([0, n /3] U [2n /3, nJ) x [0,2n] i.e. 

,8 has the form 

,8( cos e) = {v'27f, 
0, 

e E [0, n /3] U [2n /3, n] , 
otherwise. 

Furthermore, we take f = 1 and cos eo = o. In this case, the Riesz represen
tation is p == 1. We solved (7.49b) for 'Y by the Regula falsi. For the wave 
length A = 2 and levels c = 0.1 and c = 0.5 we show in Figure 7.5 the plots 
of If I = IK'ljJ°1 in comparison to the pattern If I corresponding to the uniform 
feeding'IjJ == 1/J2. 

7.3.3 Pointwise Constraints 

We go back to the general case where we wish to maximize the power in a 
given sector, subject to the usual norm constraint, but now with the constraint 
(see (7.35) above), 
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Fig. 7.5. >. = 2: 8 I-t If(8)1 for 7j; == 1/0 (left) and for 7j;0 corresponding to c = 0.5 
(center) and c = 0.1 (right) 

m 

g('ljJ) := L Wj I (K'ljJ)(xjW - c2 ::::;. 0, 
j=O 

(7.50) 

The constraint qualifications are checked as before, and we will not do the 
details here. Recall, moreover, that we have computed the Frechet differential 
of the functional 9 in Section 7.2 and have seen that the gradient is 

m 

V'g('ljJ) = 2 L Wj [(K'ljJ) (Xj)] Pj, 
j=1 

where the Pj are given by the Riesz Representation Theorem, 

The multiplier equations then have the form 

m 

-K*(a2K'ljJ°) + P LWj(K'ljJ°)(xj)Pj + J-l'ljJ0 = 0, 
j=1 

p (t, wjl(X:,p°)(xj)I' - c' ) ~ 0, 

J-l (11'ljJ°II~ - 1) = o. 

(7.51 ) 

(7.52a) 

(7.52b) 

(7.52c) 

As in the preceeding section, it is necessary to consider the three cases where 
one or more of the constraints is active. But now different arguments are 
needed to handle the new situation. In the case that the first constraint is in
active, p has to vanish and the problem reduces to the now familiar eigenvalue 
problem for the operator K* a 2 K. If t.he first is active, but the norm constraint 
is not, then J-l= 0 and the problem becomes 

m 

K*(a2K'ljJ°) = P L Wj (K'ljJ°) (Xj) Pj . 
j=1 
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It can be shown that this case cannot occur if the range of JC is dense in 
C(Sd-1). Indeed, multiplication of this equation by some cp E X yields 

m 

(aJC'ljJo, aJCcp) £2(Sd-l) = P L Wj (JC'ljJ0) (Xj) (JCcp)(Xj). 
j=l 

Now, assuming cpa i= 0, we choose cp E X such that (JCCP)(Xj) is small for all j 
but JCcp is close to JC'ljJ0 with respect to the L2-norm. A careful analysis leads 
to a contradiction (see proof of Theorem 7.12 below). Thus cpa = 0 which 
clearly is not optimal. 

The final case is the one in which both constraints are active so that both 
multipliers in (7.52a)-(7.52c) must be found: For each p > 0 we determine 
the eigenvalues J-Lj = J-Lj (p) and normalized eigenfunctions 'ljJj = 'ljJj (p) of the 
operator 

m 

JC*a2 JC - P LWj(JC')(Xj)Pj 
j=l 

and there determine P such that g( 'ljJj) = o. 

7.3.4 Minimization of Pattern Perturbation 

In the preceeding three subsections we have considered the maximization of 
power in one direction while minimizing it in other prescribed regions of the far 
field. We now turn to the second problem. For this problem we wish to modify 
an existing (and ostensibly desirable) far field pattern to reduce side lobes at 
prescribed locations or in specified sectors of the far field, while preserving 
as closely as possible the existing pattern outside these given positions. In 
this way, one attempts to preserve (to the extent possible) desirable pattern 
characteristics as, for example, gain and beam width. The problem has been 
addressed by [123], [128] and [79] (see also [52]). 

In our context, the problem is to minimize the functional 

(7.53) 

where the function a is the characteristic function of the part A C Sd-1 of the 
far field which is to be preserved. Then the sector B C Sd-1 where we wish 
to minimize the pattern is described by the characteristic function (3 which 
can, e.g., be 1 - a. As usual, we impose a power bound on the inputs to the 
antenna ii'IjJii x :::; l. 
As in the previous case, we take the constraints either 

(a) in integral form: 

g('IjJ) .- J (3(x)2i(JC'IjJ)(x)i2 ds(x) - c2 < 0, (7.54) 

Sd-l 
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or 

(b) in pointwise form: 

m 

g(1j;) .- L Wj I(K1j;)(xjW - c2 < 0, 
j=1 

where again c> 0 is a preassigned constant. 

(7.55) 

Rather than discussing this problem first for the integral constraints (7.54) 
and then for the pointwise case (7.55) as we did in the previous section, we 
will present an analysis of a problem containing the two types of constraints. 

Let us denote the given far field by r. We are interested in the case for which 
r has been established and is the pattern we wish to maintain as closely as 
possible in the mean-square sense. Thus, the function r is in the range of the 
compact operator K, i.e., Kcpo = r for some cpo E X, and consequently the 
trivial estimate 

shows that by making 111j; - cpollx small, we make only small perturbations 
in the far field3 . Moreover, let us suppose, as if often the case, that we insist 
on maintaining the same level of power in the direction eo of the main beam, 
that is we want to impose the particular constraint 

If we denote the sector (connected or not) of the far field where we wish 
to minimize the side lobe level by B, and its characteristic function by (3 as 
before, then we may take 

(7.56) 

as the cost functional and pose the optimization problem: 

Minimize .:J(1j;) subject to I (K1j;)(xo) I = c. (7.57) 

Here the constant c is just defined by the absolute value of the given far field 
i.e., c = Ir(xo)1 = I(KcpO)(xo)1 and p, > 0 is a coupling parameter. The 
corresponding problem for finite arrays was discussed e.g., by Shore [123] as 
well as in [128]. The problem is related to problems of adaptive antenna arrays 
which are discussed recently in [109]. Most ofthese applications are subsumed 
here. 

3 Recall that the quality factor of an antenna, as defined earlier (see (3.40)) is 
related to the norm IllCll, by inf<pEx Q( cp) = IllCll-2, and so the gain of the antenna 
is bounded by IllC112. In so far as the far field operator intrinsically models the 
physical character of the radiating structure, we see clearly that the gain is limited 
by the physical nature of the radiating structure. 



7.3 The Null-Placement Problem 223 

One should, of course, start with the problem of the existence of an optimal 
solution. We note that the functional .:J is uniformly convex. Indeed, the 
binomial formula yields immediately uniform convexity of the first term while 
application of Lemma 7.1 yields convexity of the second term. On the other 
hand, the admissible set U, given by 

U = {'lj!EX: I (K'lj!) (xo) I =c}, 

fails to be either convex or bounded. However, this set is still weakly se
quentially closed due to the compactness of K : X -+ C(Sd-l). Therefore, 
the general existence Theorem 3.3 is applicable and yields the existence of 
optimal solutions 'lj!0 E U of (7.57). 

Knowing that solutions exist, we now discuss the use of necessary conditions 
for this constrained minimization problem and apply the Lagrange multiplier 
rule to (7.57). To find the correct form for the multiplier rule, we must, as 

usual, compute the Frechet derivatives of the functional .:J and of the con
straint function h('lj!) := I (K'lj!)(xo)12 - c2. We have done this in the previous 
subsections, and using those results it follows that there exists a multiplier 
p E lR for which the optimal solution, 'lj!0 must satisfy 

(7.58) 

where p is given by the Riesz representation of the map <p I-t (K<p)(xo). 

This last equation (7.58) we can rewrite as an operator equation of Fredholm 
type, namely 

[/-t I + K*,62 K ] 'lj!0 = /-t <po - V P , 

where the (complex) parameter v is just 

(7.59) 

(7.60) 

Linearity of the equation (7.59) allows us to split the problem into simpler 
parts 

[/-t I + K*,62 K ] 'lj! = /-t <po and 

[/-t I + K*,62 K ] 'lj! = p 

(7.61a) 

(7.61b) 

whose solutions we denote, respectively, by 'lj!l and 'lj!2. Then the solution of 
(7.59) is given by 

'lj!0 = 'lj!l - v'lj!2' 

Our problem then reduces to finding appropriate values of the parameter v 
which is related to the unknown Lagrange multiplier p E lR by (7.60). It is 
here that we use the constraint equation I(K'lj!°)(xo)1 = c. To this end, let us 
define Zl and Z2 by 

Zl' := (K'lj!d(xo) and Z2 .- (K'lj!2) (xo) . (7.62) 
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Then the constraint equation l(lC'l,b°)(xo)1 = c can obviously be rewritten as 
IZ1 - v z21 = c. Recalling the definition (7.60) of v, it follows that 1I satisfies 
the relation 1I = P (Z1 - 1I Z2) which can be solved for 1I yielding 

1I = PZ1 
1 + PZ2 

We now use the definition of 'l,b2 as a solution of (7.61b) to find that we can 
write 

Z2 = (lC'l,b2)(XO) = ('l,b2,p)X = ('l,b2, (/11 + lC*(32lC)'l,b2) X 

= J1 II'l,b211i + 11(3 lC'l,b2 II~2(Sd-1) . (7.63) 

We see that Z2 is real-valued and strictly positive. Substituting the form of 
1I, the constraint relation I Z1 - 1I z21 = c can then be rewritten as 11 + P z21 = 
IZ11/c, i.e., 

p = ~ [.~ - 1] 
Z2 C 

or p = -~ [~ + 1] . 
Z2 C 

This results in 
Z1 ( C ) 

1I± = Z2 1 ± ~ . (7.64) 

Since Z1 and Z2 are known from the solutions of (7.61a), (7.61b) we find that 
there are two solutions of the multiplier rule which are candidates for the 
optimal solution of the original problem, namely 

(7.65) 

We remark that this general analysis does not depend on any specific form of 
the antenna. However, to proceed to numerical results, we need to find specific 
forms for the operator lC and the function p whose existence is given by the 
Riesz theorem. 

Example 7.9. Returning to Example 7.6, consider a circular line source of 
radius a > O. Let 'Po be the solution determined in Example 7.6, i.e. the 
solution of the problem of maximizing the power J:1

2 IK 'P1 2 ds subject to 

II'PIIL2(O,27C) ::; 1. 

We choose (3 to be the characteristic function of some interval [(31, (32] C [0,21f] 
which is disjoint of (Q1,Q2). The operator K*(32K has then the same form as 
the operator K*Q2K, i.e. 

( K* (32 K'l,b ) ( t) o ::; t ::; 21f , 

where 
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271" 

'l/Jm = 2~ J 'I/J(t) e- imt dt, mE Z, 
o 

are the Fourier coefficients of 'I/J E L2 (0, 21f) and 

As a particular numerical experiment we take [aI, a2] = [0, 1f /4], eo = (al + 
(2)/2 = 1f/8, and A = 1 (Figure 7.6) or A = 1f (Figure 7.7), respectively, as in 
Example 7.6. The left plot shows the far field pattern without placing nulls 
(compare with Figure 7.1). The table below the plots show the parameter 
values for each run. For comparison, in the first column we have taken the 
maximal value max{llaKCPIIi,2(O,271") : Ilcpll£2(O,271") :::; I} without placing nulls 
as the reference pattern (see also Figure 7.1). 

null sector: [120°, 150°] [120°, 300°] 

f.t 1 1 

radiated power in [0°,45°] 2.3949 2.3673 2.2344 

Fig. 7.6. Parameters for Null Placement Problem, .A = 1 
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null sector: [120° , 300°] [120°,300°] 

/-L 3 1 

radiated power in [0°,45°] 4.4750 4.3988 4.3813 

Fig. 7.7. Parameters for Null Placement Problem, A = 1f 

7.4 The Optimization of Signal-to-Noise Ratio and 
Directivity 

We now turn to a consideration of the problem of optimizing the signal-to
noise ratio subject to a constraint on the Q-factor (see Section 3.4): 

For fixed Xo E Sd-l, 

maximize SNR(xo) .- (P) 

over the set 

(7.66) 

In the definition of the signal-to-noise ratio, w represents the noise distribution 
whose support is assumed to contain a set open relative to Sd-l. Furthermore, 
we assume that the operator K : X -+ C(Sd-l) defined on some Hilbert space 
X satisfies the conditions (AI )-( A2) from the beginning of this chapter. Again, 
we think of X being a space of functions defined on the structure r. 
The denominator of the signal-to-noise ratio SNR(xo) vanishes only if the 
function wK'l/; vanishes almost everywhere on Sd-l. Our assumptions (AI), 
(A2) on the operator K, specifically those which guarantee that K'l/; is analytic, 
prevent this from occurring for any 'l/; ¥ O. We write the numerator in the form 
(K'l/;)(xo) = ('l/;,p)x, 'l/; E X, where p E X denotes the Riesz representation of 
'l/; e-t (K'l/;)(xo): 
As before, we will find it convenient to denote the set of functions satisfying the 
constraint (7.66) by U. We note that, in contrast to most of our optimization 
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problems discussed so far, this set in neither convex nor bounded. Therefore, 
our general results on existence are not directly applicable. 

For each fixed value Xo E Sd-l, the signal-to-noise ratio, SNR, defines a 
functional of'l/J which we denote by SNR( 'l/J). Hopefully this abuse of notation 
will cause no confusion. 

7.4.1 The Existence of Optimal Solutions 

The basic existence result for the maximization of the functional 

SNR('l/J) 

on the set 

1 (K'l/J) (xo) 12 

.- Ilw K'l/JII~2(Sd-1) 

U := {'l/JEX:Q('l/J) :::; c} 
where Q is defined by (7.66) can be stated succinctly as: 

(7.67a) 

(7.67b) 

Theorem 7.10. If there is any non-trivial 'l/J E X satisfying the constraint 

:::; c, (7.68) 

then VO : = sup { SNR( 'l/J) : 'l/J i- 0, Q ( 'l/J) :::; c} is finite and there exists some 
admissible 'l/J0 E X such that SNR( 'l/J0) = VO i. e., problem (P) is solvable. 

Proof: The operator K : X --+ C(Sd-l) C L2(Sd-l) is compact. By the 
definition of vO, there exists a maximizing sequence, 

such that Q('l/Jn) :::; c, for all n = 1,2, ... , and for which 

Note that we have not excluded the possibility that VO = 00. 

Our next observation is that both SNR and Q are homogeneous of degree 
zero i.e., SNR(z'l/J) = SNR('l/J), and Q(z'l/J) = Q('l/J) for any z E C and 'l/J i- O. 
With this observation, we can replace the functions 'l/Jn by the functions "jjn := 

'l/Jn/ II'l/Jnllx of unit norm. Then 

Since the unit ball is weakly compact in a Hilbert space, we can assume that 
there exists a subsequence of {"jjn} which we again denote by {"jjn} which 
converges weakly in X to some function 'l/J0 E X with norm 11'l/J°llx :::; 1. It 
follows from the yompactness of the operator K having range in C(Sd-l), that 
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K¢n --+ K'l/f uniformly on Sd-l as n -+ 00. (7.69) 

In fact, along this normalized maximizing sequence we have 

which implies that 

(7.70) 

since also K ¢n -+ K 'ljJ0 in L2 (Sd-l ). Thus, in particular, 'ljJ0 i= 0 and, more-
over, 

so that 'ljJ0 E U. 

Now the uniform convergence in (7.69) implies convergence of the functions 
wK¢n in L2(Sd-l) and in particular, IlwK¢nll£2(Sd-') -+ IlwK'ljJ°IIL2(Sd-1)' 
Therefore, Ilw K'ljJ° II £2 (Sd-l ) > 0, since otherwise, the analytic function K'ljJ° 
would necessarily vanish on the support of wand therefore, by analytic con
tinuation, everywhere on Sd-l by virtue of our assumption that the support 
contains an open set. This would contradict the fact that 'ljJ0 i= 0 (see (7.70)). 

Finally, by the weak sequential continuity of the functional SNR (see 3.30), 

In particular, VO = SNR('ljJ°) < 00, and the proof is complete. 0 

Remark: We should say something concerning the hypothesis that the set of 
admissible inputs, U, is non-empty. Recall, as remarked in Chapter 3, equation 
(3.42), that inf,pEx Q('IjJ) = 1/ IIKI12. Hence, for every c > 1/ IIKI12 there exists 
a function ¢ E X with norm 1 such that Q(¢) < c. For these values of c the 
set U is non-empty. 

7.4.2 Necessary Conditions 

We are now interested in developing necessary conditions for this problem in 
the form of a Lagrange Multiplier rule just as we have done with the other 
problems discussed in the preceeding sections of this chapter. To do so, it 
is necessary to make a further assumption. For its formulation we recall that 
p E X denotes the Riesz representation ofthe functional 'IjJ I-t (K 'IjJ ) (xo). Then 
we require that 

(A5) K*(w2K'ljJ°) tI- span {p}, i.e. K*(w2K'ljJ°) is not a multiple of p. 
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We remark that we have discussed similar situations in Chapter 1. In partic
ular, we can give a condition which will guarantee that (A5) is satisfied. 

Lemma 7.11. If the range of the operator J( ; X -+ C(Sd-l) is dense in 
C(Sd-l) then (A5) is satisfied. 

Proof: Assume, on the contrary, that J(*(w2J('ljJ0) = IkP for some Ik E C. We 
note that Ik =I: 0 since IlwJ('ljJ°II£2(Sd-l) > O. Multiplication with any rp E X 
yields 

Let 'Y be a continuous function on Sd-l such that 11k'Y(xo) I = 1 and 
I (wJ('ljJ°, w'Y) £2(Sd-l) I < 1/3. Since the range of J( is dense we can find rp E X 
with 

Then 

1 = 11k'Y(xo)I ~ Ilkl!'Y(xo) - (J(rp)(xo) I + Ilkll(J(rp)(xo)1 

~ IlklllJ(rp - 'YIIC(Sd-l) + I (wJ('ljJ°,wJ(rp) £2(Sd-l) I 
1 

~"3 + I (wJ('ljJ°,w'Y) L2(Sd-l) I + IlwJ('ljJ°II£2(Sd-l)llw(J(rp - 'Y)II£2(Sd-l) 

< 1, 

a contradiction! This ends the proof. 0 

The preceeding lemma is useful as there are a number of situations in which we 
can verify that the range of K is indeed dense, see for example [30, Theorem 
5.17]. We begin the discussion of the necessary conditions by rewriting the 
constraint (7.68) in the form 

(7.71) 

The first observation that we make is that .the constraint is active on any 
optimal solution. 

Theorem 7.12. Let'ljJ° E U be an optimal solution of the problem (P). Then, 
under the assumption (A5) necessarily, g('ljJ0) = 0, i.e. Q('ljJ0) = c. 

Proof: Assume that Q( 'ljJ0) < c. We use the Fn3chet derivative of the 
SNR-functiorial. Recalling the results of Lemma 3.32 the usual computation 
shows that the Frechet derivative of SNR is given by 
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SNR'('ljJD)<p = 2Re [('ljJo,P)2X (<p,p)x] _ Vo 2Re(wJC<p,w~'ljJO)£2(Sd-1) 
Ilw JC'ljJ°II£2(Sd-l) IIw JC'ljJ0 IIL2(Sd-1) 

= 22 Re(<p, ('ljJ°,p)xp-VDJC*W2JC'ljJ0) 
II wJC'ljJ°liL2(Sd-l) . 

where VO = SNR('ljJ°). By assumption (A5) and the facts that ('ljJ°,p)x 
(JC'ljJ0) (:1:0) =1= 0 and VO =1= 0 we conclude that ('ljJ°,p)x p - VO JCw2 JC'ljJ0 =1= O. 
Therefore, there exists <p E X with the property that SNR'('ljJ°)<p > 0 and 
thus SNR( 'ljJ0 + E<p) > SNR( 'ljJ0) for sufficiently small E > O. Moreover, since 
the constraint functional Q is continuous, Q('ljJ°+E<p) :::; c for sufficiently small 
E > 0, so that 'ljJ0 + E<P is admissible. We may conclude that the function 'ljJ0 is 
not optimal, which is a contradiction, and the proof is complete. 0 

As before, we will use the Lagrange multiplier rule (Theorem 3.22) to calcu
late solutions of the problem and, to do so, we will require that a constraint 
qualification is satisfied. It is necessary to impose the further, but quite mild 
condition, that 

(A6) The constant lie is not an eigenvalue of the operator JC*JC. 

Remark: As the operator JC* JC is compact and therefore has a discrete spec
trum, it is possible to arrange the constraint so that (A6) is satisfied provided 
we have some specific information on the operator JC whose spectrum depends, 
of course, on the particular choice of X. 

As the constraint function g, given in (7.71), is 

we need to check that the generalized Slater condition: 

there exists a <p E X such that g('ljJD) + g'('ljJD)<p < 0 (7.72) 

is satisfied where again g' is the Frechet derivative of g. However, from 
Lemma 7.1 and the fact that the constraint is active at an optimal solution, 
we may rewrite the left-hand side of the equality (7.72) in the form 

g('ljJD) + g'('ljJ°)<p=2Re(<p,'ljJ°)x - 2cRe(JC<pJC'ljJ°)£2(Sd-l) 

= 2eRe (rf' e-1'IjJ0 - JC* JC'ljJ0) x 

which does not vanish identically by assumption (A6). Hence for some <p =1= 0 
we see that (7.72) is satisfied. 

We have already computed the Frechet derivative of the SNR functional, and 
so we have the gradients of both the objective and constraint functionals. With 
these gradients in hand we may write the Lagrange necessary conditions for 
this constrained problem as follows, where A 2:: 0 and a:= IIwJC'ljJDII~2(Sd_1): 
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(7.73) 

i.e. 

(7.74) 

We first observe that it is not possible for the multiplier A to vanish. Indeed, 
were this to be the case, then the optimal solution 'l/J0 would have to satisfy 
the equation 

vOJC*w2 JC'l/J0 = ('l/J°,p)xp. 

But the condition (A5), the fact that ('l/J°,p)x = (JC'l/J°)(x) =f. 0, and VO =f. 0 
rule this out. Thus the mUltiplier A is strictly positive. 

Knowing then that A > 0, we then go back to equation (7.74), multiply by 
a/va, set p = Aa/vo, and obtain 

(7.75) 

We may, by introducing the function ;j;0 defined by 

reformulate the equation (7.75) together with the constraint g( ;j;0) = 0 as a 
non-linear system for ;j;0 and p 

p[1 - cJC*JC];j;° + JC*w2 JC;j;0 = p, 

(;j;o, (1 cJC* JC);j;o) x = o. 
(7.76a) 

(7. 76b) 

It is this last pair of equations that we use as the necessary conditions for the 
optimal solution and which we will treat numerically in the next two sections. 
Numerical treatment will require that we can compute the Riesz functional p. 
Fortunately, for specific situations the form of the Riesz functional p can be 
given concretely (see Example 7.15 below). 

7.4.3 The Finite Dimensional Problems 

Having established the existence of optimal solutions for the constrained 
SNR-problem as well as the necessary conditions for the infinite dimensional 
problem, we turn now to the question of finite-dimensional approximations 
to the optimal solutions. We follow the discussion in Section 3.2 where we 
introduced a general theory of approximation using the notion of a family of 
ultimately dense subspaces {Xn}~=l' i.e. subspaces Xn C X with X n+1 C Xn 
for all n such that Un Xn is dense in X. 

We assume that there exists an optimal solution 'l/J0 of (P). Furthermore, we 
require that Assumptions (A5) and (A6) hold. Recall, that we have shown 
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that the constraint is active at the optimal solution 1jJo, that is, Q( 1jJO) = c 
(see Theorem 7.12). 

We now replace the original problem (P) by the problem (Pn ) given by 

(Pn) Maximize SNR(1jJ) subject to 1jJ E Xn \ {O}, Q(1jJ) S; c. 

It is easy to show that this finite dimensional problem has a solution for n 
sufficiently large. 

Theorem 7.13. If there exists a strictly feasible input i.e., Q(cpo) < c for 
some CPo E X then there exists an integer no such that the problem (Pn) has 
a solution 1jJ~ E Xn for every integer n ::::: no. 

Proof: Since the family of finite dimensional subspaces {Xn}~=l is ultimately 
dense in X, and the functional Q : X -+ lR is continuous, there exists an 
integer no and functions 1jJn E X n, n::::: no, with Q(1jJn) S; c. This means that, 
for n sufficiently large, there exists feasible points in the subspace X n . As in 
the existence Theorem 7.10, we can use the homogeneity of the functionals 
SNR and Q to show that we can restrict ourselves to those 1jJ E Xn with 
111jJllx = 1, and the existence of optimal solutions for the problem (Pn ) follows 
immediately. 0 

We may now show that the sequence of functions {1jJ~}~=no' each element of 
which is an optimal solution of the corresponding problem (Pn ), has accumu
lation points, each of which is an optimal solution of the original problem. 
We state this result precisely in the next theorem where we will denote the 
optimal values of the finite dimensional problems by v~. 

Theorem 7.14. Let {1jJ~}~no be a sequence of solutions to the problems (Pn) 
satisfying (without loss of generality) 111jJ~llx = 1. Then this sequence has 
accumulation points and every such accumulation point is an optimal solution 
for the problem (P). 

Proof: Again, we start with the weak compactness of the unit ball in the 
Hilbert space X. From this fact, we see that the sequence {1jJ~}~=no indeed 
has weak accumulation points. Let 1jJo be such an accumulation point and 
suppose that the subsequence {1jJne }bl converges weakly to 1jJo. Since the 
operator K is compact on X and the unit ball is closed in the weak topology, 
111j;°llx S; 1 and 11K(1jJ~e -1jJO)llc(Sd-l) -+ 0 as e -+ 00. Indeed, 1jJo is admissible 
for (P) since 

(7.77) 
We now show that the accumulation point 1jJo is optimal for (P). To do so, 

consider any optimal solution of (P), say ,(j; with 11,(j;llx = 1. Then, since the 

constraint Q is a?tive, we have IIK,(j;II~2(Sd-l) = l/c. We construct an auxiliary 
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sequence of strictly feasible functions -0c E X nl such that -0c ~ -0. Indeed, for 
any 'P E X we have for the derivative 

Therefore, under the assumption (A6) we can choose 'P E X with Q'(-0)'P < o. 
By choosing 11'Pllx small enough we can assume that 'PR := -0 + ~'P satisfy 
Q( 'PR) < c for all C = 1,2, ... 

Now, since the family of finite dimensional subspaces is ultimately dense, for 
all C = 1,2, ... there exists -0c E X nl with l1-0c - 'PRllx ~ 1/£. Since 'PR is 
strictly feasible, -0c E Xn£ can be chosen such that also Q(-0c) ~ c. Then 
-0c E X nl are admissible for (Pnl ) and -0c ~ -0 as C tends to infinity. 

Now, since 'ljJ0 is admissible, we have 

Vo ~ SNR( 'ljJ0) = lim SNR( 'ljJ~l) = lim V~l 
C-too C-too 

~ lim SNR( -0RJ = SNR( -0) = vo. 
C-too 

Hence SNR( 'ljJ0) = vO, and the accumulation point 'ljJ0 is therefore optimal as 
claimed. Moreover limc-too V~l = vo. 

In fact, the constraint described by the functional Q is active at 'ljJ0 as we have 
seen in Theorem 7.12 so that, since 11'ljJ°llx ~ 1, we have the estimate 

1 ~ 11'ljJ°II~ = c IIK'ljJ°lli2(Sd-l) = c c~ IIK'ljJ~elli2(Sd-l) 

~ lim 11'ljJ~lll~ = 1, C-too 

hence 11'ljJ°llx = 1. Moreover, we can show that the sequence 'ljJ~£ ~ 'ljJ0 con
verges not only weakly in X but even strongly. Indeed, using the binomial 
theorem, 

This completes the proof. 0 

We can now apply the Lagrange multiplier rule to the optimization problem 
(P). We assume from now on that the sequence {'ljJ~} of solutions of (Pn) 
converge to a solution 'ljJ0 of (P). We introduce the orthogonal projection 
operator Pn : X ~ Xn by ('P, 'ljJn)X = (Pn'P, 'ljJn)X for all 'P E X and 'ljJ E X n· 
First, we have to check the generalized Slater condition (7.72) holds for the 
finite dimensional problems. We have for 'ljJn E Xn 
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g('Ij;~) + gl('Ij;~)'Ij;n~g'('Ij;~)'Ij;n = 2Re('Ij;~-cK*K'Ij;~,'Ij;n)x 

= 2Re ('Ij;~ - cPnK*K'Ij;~, 'lj;n)x, 

Under the assumption (A6) there exists 'Ij; E X such that 
Re ('Ij;0 - cK*K'Ij;°, 'Ij;) x < O. With 'lj;n = Pn'lj; we have 

g('Ij;~) + g'('Ij;~)'Ij;n~2Re('Ij;~-cPnK*K'Ij;~,'Ij;n)x 
= 2Re ('Ij;~ - cPnK*K'Ij;~, 'Ij;)x 

= 2Re('Ij;°-cK*K'Ij;°, 'Ij;)x + 2Re('Ij;~-'Ij;o,'Ij;)x 

- 2cRe (PnK*K'Ij;~ - K*K'Ij;°, 'Ij;)x' 

Now we observe that the last two terms tend to zero as n tends to infinity. 
Therefore, the generalized Slater condition (7.72) is satisfied for sufficiently 
large n. 

Noting that the adjoint of Kn = Klxn is given by PnK* application of the 
multiplier rule just as in the derivation of (7.76a), (7.76b) yields the existence 
of Pn 2: 0 with 

Pn[1 -cPnK*K]~~ + PnK*W2K~~ = Pnp, 

(~~, (I - cPnK*K)~~)x = O. 

We note, however, that the discrete form of (A5), i.e., 

(7.78a) 

(7.78b) 

is never satisfied. Indeed, the operator PnK*w2Klxn from the finite dimen
sional space Xn into itself is one-to-one (since PnK*(w2K'Ij;n) = 0 implies that 
IlwK'Ij;nIIL2(Sd-l) = 0 and thus 'lj;n = 0) and therefore onto (i.e. surjective). 

Therefore, we can not guarantee that 'Ij;~ is active or Pn > O. Nevertheless, we 
can proceed as in the original problem: If Pn > 0 then the optimal solution 
'Ij;~ E Un satisfies the system (7.78a), (7.78b). If Pn = 0 then 'Ij;~ E Un satisfies 
the equation 

(7. 78c) 

For the solution of this equation we have to check that the constraint Q('Ij;~) ~ 
c is satisfied. 

We want to illustrate the use of the multiplier equation for the case where the 
operator K is given by feeding a line source. 

Example 7.15. For the linear line source we have seen in Section 4.5, and 
likewise in Subsection 7.3.2, that 

R 

(K'Ij;)(t) a(t) J 'Ij;(s) e-ikts ds, It I ~ 1, 

-c 
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where a E C[-l, 1] is positive on (-1,1). We think of a == lor a(t) = .Jf=t2. 
Therefore, (K'I(;)(TO) = ('I(;,p)P(-"-,"-) with p(s) = a(TO) exp(ikTos), lsi:::;: e. In 
Section 4.5 we have computed 

"-
(K* K'I(;)(t) = f a(t - s) 'I(;(s) ds, It I :::;: e, 

-"-

where 
1 

a(T) f a(s)2eiksT ds, T E~, 
-1 

and, analogously, 

with 

"-

(K*w2 K'I(;)(t) f b(t-s)'I(;(s)ds, It I :::;:e, 
-"-

1 

b(T) = f w(s)2a(s)2eiksT ds, T E~. 
-1 

Therefore, equation (7.76a) takes the form 

"- "-
p'l(;°(t) - pc f a(t-s) 'l(;°(s) ds + f b(t-s) 'l(;°(s) ds 

-"- -"-

for It I :::;: e where we wrote '1(;0 for ;(;0. 

For every p > 0 this is a Fredholm integral equation of the second kind. If 
the homogeneous system has only the trivial solution 'I(; == 0 then (7.79) has 
a unique solution '1(;0 = 'l(;p 4 . We determine p > 0 such that 'l(;p satisfies also 
(7.76b), i.e., 

To solve the equation (7.79) we rely on a numerical procedure and so need 
to make a finite dimensional approximation. We normalize and set e = 1. For 
the subspace Xn we take the space of all (algebraic) polynomials of order at 
most n, i.e. Xn = Pn. As an orthonormal basis in Xn we take the Legendre 
polynomials L j , j = 0, ... ,n, normalized to IILj IIp( -1,1) = 1. 

We now derive the projected equation corresponding to (7.79). We make the 
ansatz 

4 This result is part of the Riesz Theory (see Theorem A.40) 
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n 

'ljJ~ = 2:= Xj Lj for some O:j E C, 
j=O 

replace 'ljJ0 by 'ljJ~ in (7.79), multiply (7.79) by Lk(t) and integrate. This yields 
the approximate equation 

n 1 nil 

P2:=Xj j Lj(t)Lk(t)dt- 2:=Xj j j[pca(t-s)-b(t-s)] Lj(s) Lk(t)dsdt 
)=0 -1 )=0 -1-1 

1 

= 0:(70) j eiktro Lk(t) dt. 

-1 

This equation holds for every k = 0, ... , n. Using the orthogonality of {Lk } 

and the abbreviations 

1 1 

Akm := j j a(t-s)Lm(s)Lk(t)dsdt, 
-1-1 

1 1 1 

Bkm:= j j b(t-s)Lm(s)Lk(t)dsdt, 
-1-1 

Yk .- 0:(70) j eiktro Lk(t) dt 

-1 

for k, m = 0, ... ,n, we may rewrite this last equation as 

p (1 - cA)x + B x = Y where x = (Xj )']=0 and Y = (Yj )']=0' (7.80) 

Although this is a finite linear system, the vector Y E Cn + 1 and the matrices 
A, B E c(n+l)x(n+l) still have entries which must be evaluated numerically 
by quadrature formulae. It is convenient to take the Gauss-Legendre formula, 
i.e. replace Yk and Akm , Bkm by 

n 

Yk ~ 0:(70) 2:= Wj eiktjro Lk(tj) , j = 0, ... , n, 
j=O 

n 

Akm ~ 2:= Wi Wj a(ti - tj) Lm(tj) Lk(ti) , k, m = 0, ... , n, 
i,j=O 

and analogously for B. Here, ti E (-1, 1) and Wi E ~ are the Gauss-Legendre 
nodes and weights, respectively. We define the matrix lP' E ~(n+1)x(n+1) by 
lP'mj := ..jWj Lm(tj) and note that lP' is orthogonal since 

n 

(lP'lP'T)km = 2:= Wj Lm(tj) Lk(tj ) 
j=O 

1 

= j Lm(t) Lk(t) dt 
-1 
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With rj = y'Wjex(To)exp(iktjTo) and A'ij = ...jwiWja(ti - tj) and Hij = 
...jWiWj b( ti - tj) we write 

n n 

i=O i,j=O 

and analogously for B. 

Therefore, the equation (7.80) leads to the matrix equation 

where x E <e(n+1) x (n+1) is the approximation of x E <e(n+1)x(n+l) due to the 
replacements of Yk, Akm , and Bkm by the Gauss-Legendre formulae. Finally, 
we set 

and note that lP x = x. This yields 

p(lP-clPA) X + lPBx lPr 

or, since lP has full rank, 

p(I-cA)x + Hx r. (7.81) 

The approximate solution is then given by 

n n 

'ljJ~ = LXj Lj = L(lPx)j L j . 
j=O j=O 

We compare this system with the one which has been derived by using the 
Nystrom method for solving (7.79) (see Subsection 4.5.3 for the synthesis 
problem). The matrix H and the right hand side coincide with the ones from 
the Nystrom method. For the approximate solution 'ljJ~ we have 

n 

-/Wk'ljJ~(tk) ~ L-/WkLj(tk) (lPx)j = (lPTlPx)k = Xk 
j=O 

which corresponds to the solution of (4.58). Therefore, the projection and 
the Nystrom method coincide for this particular choice of basis function and 
numerical evaluation of the matrix elements. 

For the following example we have taken ex == 1, £ = 1, W to be the characteris
tic function of [0,60°] U [120°,180°]' TO = cos(900) = 0, A = 1 and A = Jr, and 
some values of c > o. The optimal signal-to-noise ratios and the corresponding 
values of p are listed in the following table. 
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).=1 ).=7f 

C vol p Vo P 

1 1/ IIAII > I! 5.552 1.4230e -1 
1.1 456 1. 1586e - 2 5.985 1.2285e -1 
2 1212 1. 196ge - 3 9.378 3.8238e - 2 
3 1907 2.8354e - 4 10.973 5.331ge - 3 
5 2262 3.8725e - 5 11.528 1.6996e - 3 
10 2576 1.731Oe - 5 12.209 8.9858e - 4 
15 2805 1.2331e - 5 12.693 6.7294e - 4 
20 3008 9.8453e - 6 13.010 5.5562e - 4 

The following plots show the far field patterns IK,¢oI2 for c = 3 and wave 
lengths A = 1 and A = 7f, respectively. We have normalized '¢O such that 

11,¢°11£2(-1,1) = 1. 

0.7 

0.5 

0.3 

02 

0 
0 0.5 2.5 35 3S 

Fig. 7.8. Plots of IK'ljJ°12 for wave lengths), = 1 and), = 1T, respectively, and c = 3 
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Conflicting Objectives: The Vector 
Optimization Problem 

8.1 Introduction 

In Chapter 3 we developed a coherent approach to the problem of determining 
optimal antenna feedings. By formulating various measures of performance as 
real-valued functionals defined in appropriate function spaces, we systemati
cally used the methods of functional analysis and optimization theory. This 
approach allows us to study the existence and properties of optimal solutions 
as well as computational procedures for the numerical approximation of these 
solutions in particular cases. We provided examples of such concrete analyses, 
including computational results in Chapters 4 and 7. 

The analysis presented in those chapters is restricted to problems for which 
there is a single design criterion or cost functional. However typical problems 
which arise in antenna design require us to consider, simultaneously, several, 
often conflicting, goals. It has long been recognized, for example, that the 
narrow focusing of the main beam of an antenna has the concomitant effect 
of increasing near-field power or the side-lobe level. In his classic 1946 paper 
[34], Dolph explicitly mentions such trade-offs: 

"In many applications it is more important to sacrifice some gain and 
beam width in order to achieve low-level side lobes. Several schemes 
have been suggested as a means of accomplishing this." 

He proceeds to describe the "binomial feeding" which reduces the side lobes, 
as well as the method introduced by Schelkunoff [118). Dolph viewed his own 
contribution as a "third means of improving the pattern of linear arrays" . 

The approach used most often in such situations is to select one of the several 
performance measures as the primary goal to be optimized, and set arbitrary 
but practical levels for the others, thereby introducing equality or inequality 
constraints. The problem is then treated as an ordinary constrained mini
mization or maximization problem. The treatment of constrained optimiza
tion problems was illustrated by the examples in Chapters 4 and 7. In one 
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case, we introduced a constraint on the power available to the antenna by 
considering surface currents which are bounded in some appropriate norm; in 
another, we required the so-called quality factor i.e. the ratio of input power 
to far field power, both measured relative to perhaps different function-space 
norms, to be bounded. 

In this chapter we take another approach to antenna design problems: the 
approach of multi-criteria optimization. Multi-criteria optimization concerns 
the simultaneous optimization of several distinct criteria over a set of inputs 
which are perhaps subject to prescribed constraints. Without loss of generality 
we assume that all criteria are to be minimized. In such problems, we search 
for so-called Pareto points, namely points for which any perturbation of their 
components causes at least one of the several objective functionals to increase. 
We will make this rough definition precise in the next section. 

While well known in other applied fields, these techniques have only recently 
been applied to problems of antenna design [6], [12], [141], and [140J. We have 
also compared the application of these techniques to the results obtained from 
the single criterion treatment of the null-placement problem in [7J. The sub
ject of multi-criteria optimization has been most thoroughly developed in the 
literature of mathematical economics and is most often associated there with 
the names of Walras and Pareto. It was the latter who introduced the basic 
notions in the late 1890's. The interested reader may consult the review article 
of Stadler [126J for historical background and the article of Dauer and Stadler 
[31J for more recent developments. Applications to problems in mechanical en
gineering are described in [127J which has an extensive bibliography. A more 
complete mathematical reference is the book of Jahn [56J. 

For those readers who are not familiar with the basic ideas of vector opti
mization we refer to the last section of the mathematical appendix where we 
present the necessary background material including general conditions in
suring the existence of Pareto points and necessary conditions in the form of 
a multiplier rule. Section 8.2 will be dedicated to the case of arrays and, in 
particular, an analysis of the Dolph problem from the point of view of vector 
optimization following the lines of [13J. Section 8.3 studies the simultaneous 
maximization of power in two angular sectors for the case of the linear line 
source. Section 8.4 contains an analysis and numerical results for the signal
to-noise ratio problem first treated as a multi-criteria optimization problem 
in [6J. The multi-criterion problem for optimal power has been investigated 
computationally in [60J. 

8.2 General Multi-criteria Optimization Problems 

In previous chapters we have dealt with optimization of real-valued cost func
tions. The present chapter is devoted to multi-criteria optimization problems 
and we discuss this general optimization problem here in order to prepare 
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for the concrete examples which we study in this chapter just as we did with 
Section 3.2 of Chapter 3. 

The general form of the multi-criteria optimization problem can be 
stated in terms of a vector-valued function F. Specifically, given a Hilbert 
space X over IF, a subset U c X, an ordered Banach space Z, and a map 

F : U -----t Z, (8.1) 

the optimization problem is to find 'ljJ0 E U, such that 

(8.2) 

Since the values F('ljJ) E Z, it is necessary to interpret the inequality sign in 
the relation (8.2). This inequality is defined in terms of the order cone A 
which defines a partial order in the ordered vector space Z. All the perti
nent definitions and results leading up to this formulation may be found in 
Section A.9 of the Appendix which the reader should consult. In particular, 
(8.2) is the short form for F('ljJ) - F('/;;o) E A for all 'ljJ E U. 
We can illustrate the idea by looking at the following example 

Example 8.1. Let X = ]R2, U C X be the unit disk, and take Z = ]R2 ordered 
by the standard order cone A = {x E ]R2 : Xl ::::: 0, X2 ::::: O} (see Definition 
A.25 in the Appendix). Define:F: U --+]R2 by:F(x) := (Xl - 3,X2 - 3)T. 
Then :F maps the disk U onto B[zo, l] = {z E ]R2 : liz - zoll ~ 1} where 
Zo := (3,3) T by a simple translation and we are looking for all Xo E U 
such that :F(XO) <A :F(y) for all y E U. A simple sketch will convince the 
reader that these solutions of the multi-criteria problem are just the points 
on the boundary of U which lie in the third quadrant (see the Figure 8.1 and 
Example 8.3 below). 

This example illustrates the basic idea which we will make precise in a mo
ment: our objective is to use the ordering in the range of a vector-valued 
function :F : U --+ ]R2, to find points which are desirable in the sense that, by 
a choice of a different input from U, we cannot simultaneously improve both 
the components of the vector criterion. We shall call points with this property, 
minimal points of the range of :F; the pre-image of a minimal point is what 
is usually called a Pareto point for :F. 

In the applications that we consider in this chapter, we will need to work in 
a much broader setting and now turn to the appropriate generalization. 

8.2.1 Minimal Elements and Pareto Points 

In problems of vector optimization we are interested in minimal elements 
relative to a given order cone. The needed preliminary definitions may be 
found in Section A.9 of the Appendix. 
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Fig. 8.1. The Vector Map :F 

Definition 8.2. Let S -=1= (/) be a subset of an ordered real vector space Z. 
Then XO E S is a minimal element of S provided xES and x <A XO 

implies x = xo. 

We can write this briefly as (XO - A) n S = {XO} where we use the obvious 
notation 

XO - A = {XO - x : x E A} . (8.3) 

We mention two examples here. We first return to Example 8.1: 

Example 8.3. In the case of the unit disk U, we see that that minimal points 
with respect to the standard order cone in ]R2 are just the points on the 
boundary that lie in the third quadrant. Indeed, if we have a point x = 
(Xl, X2) T E ]R2, with Xl ::; 0, X2 ::; 0, and Ilxll = 1 then, for any y = (Yl, Y2) T E 
]R2 with Yl < Xl ::; ° and Y2 < X2 ::; ° we have IXil < IYil, i = 1,2, so that 
Ilyll 2: 1 and therefore y ~ U. Hence all such points x in the third quadrant 
and on the boundary of U are minimal. 

The previous example is one in which the set of minimal points is bounded. 
However this is not necessarily the case. Let us look at the example of the 
region in the first quadrant of ]R2 lying above the graph of the hyperbola 
X1X2 = 1. 

Example 8.4. Let Z =]R2 with A = {(Xl,X2) E]R2: Xl 2: 0, X2 2: o} as order 
cone. Let S = {(Xl, X2) E ]R2 : Xl 2: 0, X2 2: 0, X1X2 2: I}. Then all points of 
the set 

{(Xl,X2) E S: X1X2 = I} 

are minimal and the set of minimal points is unbounded. 
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The minimal points are always boundary points if the ordered vector space Z 
is equipped with a topology: 

Theorem 8.5. Let Z be an ordered real Banach space with order cone A and 
S c Z be non-empty. Then the set, M, of minimal points of S is a subset of 
the boundary of S i.e., Me 8S. 

Proof: Assume, on the contrary, that there exists y E M \ 8S. Let z E A 
be non-zero. Then, since y E int(S), there exists p > 0 with y - pz E S. 
Furthermore, pz E A. It follows that y i=- y - pz E S n (y - A). But since y is 
assumed to be minimal, we have, according to the definition, that Sn(y-A) = 
{y}, which is a contradiction. 0 

In order to develop conditions guaranteeing that a set contains minimal points, 
we need to introduce the concept of a polar cone. To this end, let Z be a real 
Banach space with dual Z*. Thus Z* is the set of all continuous linear maps 
z* : Z --+ R Again, denote the action of an element z* E Z* on z E Z by 
z*(z). For an arbitrary set S c Z we have 

Definition 8.6. Let S c Z. The polar of the set S is defined to be 

SP := {z* E Z*: z*(z)::; 0 for all z E S}. (8.4) 

Note that, by linearity of z*, the set SP is a convex cone in Z* regardless of 
the nature of the set S. We will refer to SP as the polar cone of S. We note 
that the polar cone AP of the normal order cone A = {x E ]Rn : Xj ;:::: 0, j = 
1,2, ... , n} is just given by -A = {x E ]Rn : Xj ::; 0, j = 1,2, ... , n}. 

We can now prove a theorem that guarantees the existence of minimal points 
under conditions of wide applicability. 

Theorem 8.7. Let Z be an ordered real Banach space with a non-trivial closed 
convex order cone A. Suppose that int(AP) i=- 0. Then every compact subset S 
of Z contains minimal points. 

Proof: Let z* E int(AP). Then z*(z) < 0 for all z E A \ {O}. Indeed, if 
z*(z) = 0 for some z E A \ {O} then, by the Hahn-Banach Theorem (see 
A.41) there exists z* E Z* with z*(z) = 1 and thus (z* +I:'z*)(z) = I:' > O. But 
z* + I:'z* E AP for sufficiently small I:' > 0, a contradiction. Therefore, z* (z) < 0 
for all z E A \ {O}. In particular, z* i=- O. 

Now, for the given z*, consider the map 

z 1--7 z* (z) , z E S, 

of S --+ R By continuity and compactness this map has a maximum on S, 
say at ZO E S, i.e., 

z*(ZO) > z*(z) for all z E S. (8.5) 
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Now assume that there exists z E S with z =1= ZO and z <A zoo Then ZO - z E 
A \ {O} and thus z*(ZO - z) < 0, a contradiction to (8.5). 0 

Remark: In the applications that we have discussed earlier in this book, the 
space Z = ~n and the usual order cone indeed satisfies the conditions of this 
theorem while the polar cone likewise has a non-empty interior. 

It may well happen, particularly in the case when the set S is the range of 
some mapping into Z, that the set is neither closed nor bounded. In such a 
case, we need a weaker condition. 

Theorem 8.8. Let Z be an ordered real Banach space with a non-trivial closed 
convex order cone A. Suppose that int(AP) =1= 0 and that S c Z. Then if, for 
some z E Z, 

Sz = (z - A) n (S + A) = {s + y : s E S, YEA, s + y <A z} , (8.6) 

is nonempty and compact, then S contains a minimal point. 

Proof: Since, by hypothesis, Sz is compact, it contains a minimal point by 
the previous theorem. Suppose that ZO is such a minimal point for Sz. Then, 
by definition, 

(8.7) 

We have to show that ZO E Sand (ZO - A) n S = {ZO}. Since ZO E Sz we 
have ZO E z + A for some z E S. But then, z E ZO - A c z - A and z E Sz. 
By (8.7), ZO = z E S follows. We may take now any xES n (ZO - A). Then 
x E ZO - A and also ZO E z - A since ZO E Sz. By adding these inclusions we 
get x E z - A, i.e. x E (ZO - A) n Sz = {ZO}. Thus ZO is also minimal for S. 
o 

The general multi-criteria optimization problem can now be formulated as 
follows: 

Given a linear space1 X and an ordered real Banach space Z, let 
U c X and suppose F : U --+ Z. Find XO E U such that F(xO) is a 
minimal element of F(U). 

We can now give a precise definition of what is meant by a Pareto optimal 
point relative to a specific vector-valued criteria function, F : U --+ Z for 
U eX, a vector space, and Z an ordered real Banach space. 

Definition 8.9. A point XO E U is said to be Pareto optimal relative to the 
vector-valued function F provided F(xO) is minimal with respect to F(U). 

The term Pareto optimal is chosen here for historical reasons. Other terms 
have been used frequently including "non-inferior solutions", "non-dominated 

1 In our applications, X will be a separable Hilbert space. 
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solutions," and "efficient solutions." Some of these terms may be more infor
mative in that they better suggest the property which characterizes Pareto 
points, namely that we cannot lower one of the component values by moving 
from that point without strictly increasing at least one of the other compo
nents of the criteria vector. In general Pareto points are not unique since 
minimal points are not unique. 

We remark that it is seldom the case that there exists some point that will 
minimize all components of the vector criterion simultaneously, nor is it nec
essarily true that standard scalar optimization methods can be used to find 
the Pareto set. In particular, it is not generally the case that the minimiza
tion of one criterion subject to inequality constraints on the others will yield 
a Pareto point. 

Applications of Theorems 8.7 and 8.8 to S = F(U) immediately yield the 
following result. 

Theorem 8.10. Let X be a real or complex Banach space and Z a real ordered 
Banach space with a non-trivial closed convex order cone A. Suppose that 
int(AP) -=I- 0 and that U c X. 

(a) If F(U) is compact, then U contains Pareto points. 
(b) If F : U -+ Z is such that, for some z E Z, 

Sz = (z - A) n (F(U) + A) (8.8) 

= {FCx) +y: x E U, YEA, F(x) +y <A z} (8.9) 

is nonempty and compact, then there exist Pareto points of F in U. 

The compactness of F(U) often follows if F is completely continuous. 

Definition 8.11. Let X and Z be a pair of Banach spaces, and a set U C X. 
A map F : U -+ Z is called completely c·ontinuous provided F maps weakly 
convergent sequences into norm convergent sequences. 

We note that if Z = ~ this notion coincides with the definition of weak 
sequential continuity of a map. 

Theorem 8.12. If X is a reflexive Banach space, U C X a closed, bounded, 
and convex set, and F is completely continuous, then F(U) is compact in Z. 

Proof: Since X is reflexive, Alaoglu's Theorem (Theorem A.56) and Theo
rem A.58 show that the set U is weakly sequentially compact. Then F(U) is 
compact by the complete continuity of F. 0 

We now wish to recall the ideas of a weak minimal point and a weak Pareto 
point. The concept of a weak minimal point and the corresponding notion 
of weak Pareto point are particularly important in studying the convergence 
approximation methods as we will explain presently. 
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Definition 8.13. Let Z be an ordered real Banach space with order cone A 
having a non-empty interior. Then ZO ESC Z is called a weak minimal 
point of S provided 

(ZO - int (A)) n S = 0. (8.10) 

If X is a Banach space and U eX, then XO E U is called a weak Pareto 
point for F : U ~ Z provided F(xO) is a weak minimal point of the set 
F(U) C Z i.e., 

(F(xO) - int (A)) n F(U) = 0. 

Remark: In the subsequent discussion we will often refer to Pareto points as 
strong Pareto points to distinguish them from weak Pareto points. 

Let us look at a pair of examples. 

Example 8.14. 
We consider the space ]R2 with the standard order. The order cone is just 
A = {x E ]R2 : Xl ?:: 0, X2 ?:: o} which has interior int (A) = {x E ]R2 : Xl > 
0, X2 > o}. Now let 

S = {x E ]R2 : ° ::; Xl ::; 1, Xl ::; X2 ::; I} . 

We fix any point of the form (0, X2) with ° ::; X2 ::; 1. Then the set 

(0,X2) - int (A) = {Y E]R2 : YI < 0, Y2 < X2} 

does not meet S since, in particular, YI < 0. Hence the set M = {x E ]R2 : 

Xl = 0, ° ::; X2 ::; I} is the set of weak minimal points. Note that, in this 
example, the only minimal point is (0,0) as Figure 8.2 illustrates. (The shaded 
region in each represents a portion of (0, X2) - A.) 

The concept of a weak minimal point and the corresponding notion of weak 
Pareto point are particularly important in studying the convergence approxi
mation methods. The hope is that by introducing finite dimensional approxi
mation problems of sufficiently large dimension n, we obtain numerical solu
tions which approximate minimal solutions of the original problem. However, 
we can usually only guarantee that the solution of the finite dimensional prob
lem is at most a weak Pareto point. 

If we are in the situation described in Theorem 8.10 we can state the following 
approximation result. 

Theorem 8.15. Let U be a closed, bounded, and convex subset of a reflexive 
Banach space X. Let {Xn} ~=l be a sequence of subspaces of the Banach space 
X such that Un(UnXn) is dense in U. Assume that F: U ~ Z is completely 
continuous and let x~ E (UnXn), n = 1,2, ... , be a sequence of Pareto points 
for F on Un X n . Then the sequence has weak accumulation points and every 
weak accumulation point of this sequence is a weak Pareto point for F on u. 
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-{l.S 

Fig. 8.2. Weak and Strong Minimal Points of S 

Proof: Let Un = Un X n . Since U is weakly compact and x~ E Un, the 
sequence must have at least one weak accumulation point XO E U. Suppose 
this point is not a weak Pareto point. Then there must be a point Z E F(U) 
such that F(xO) - Z E int (A). Let x E U be such that F(x) = Z. Since Un Un 
is dense in U, it follows that there is a sequence {Xn}~=l with xn E Un for all 
n and x = limn--+oo xn. Since F is a completely continuous map, 

Hence, for m a sufficiently large integer, F(x~) - F(xm ) E int (A), and this 
contradicts the assumption that x~ is a minimal solution of the finite dimen
sional problem in Um. Therefore, XO is a weak minimal solution and the proof 
is complete. 0 

Remark: The assumption that Un (U n Xn) is dense in U is satisfied, e.g., if 
° Un Xn is dense in X and the interior U of U is non-empty, see Lemma 3.24. 

8.2.2 The Lagrange Multiplier Rule 

As it is well known from the optimization of scalar functions, the Lagrange 
multiplier rule often helps to compute the optimal solutions. We continue 
with a necessary condition in the form of a Lagrange multiplier rule for vector 
optimization problems and restrict ourselves to the special cases which are 
needed to treat the specific problems discussed in Section 8.3 and 8.4 below. 
A more general statement, as well as the proof, can be found in the book of 
Kirsch, Warth and Werner [71]. 

Theorem 8.16. Let X be a Hilbert space satisfying the hypotheses of The
orem 8.10 and ,assume that jRn is ordered by the usual order cone. Let 
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:F : X -+ ]Rn be Fhichet differentiable while 9 : X -+ lR.m is continuously 
Frechet differentiable. Let U := {x EX: gj(x) :::; 0, j = 1,2, ... , m}. Sup
pose that XO E U is a weak Pareto point for :F on U. Then there exists exist 
'f/ = ('f/I, ... ,'f/n) T E lR.~o and P = (PI, ... ,Pm) T E lR.;"o, not vanishing simul-
taneously, such that - -

Pjgj = ° for all j = 1, ... ,m, (8.11a) 

and 
n m 

(8.11b) 
i=l j=l 

Moreover, ('f/1,"" 'f/n) =I=- (0, ... ,0) if the following constraint qualification 
is satisfied: 

The gradients 'Vgj(XO) , j = 1, ... , m, are linearly independent. (8.12) 

We point out that in general the conditions (8.11) are only necessary for 
optimality. However, if all of the functions Fi and gj are convex then they are 
also sufficient: 

Theorem 8.17. Let X be a Hilbert space satisfying the hypotheses of The
orem 8.10 and assume that lR.n is ordered by the usual order cone. Let 
:F : X -+ lR.n and 9 : X -+ lR.m be Frechet differentiable and let every com
ponent Fi : X -+ lR. and gj : X -+ lR. be convex. Again set U := {x EX: 
gi(X) :::; 0, i = 1,2, ... ,m}. Suppose that there exists XO E U and'f/ E lR.~o 
and P E lR.~o such that (8.11) holds. -

If'f/ =I=- 0, i.e. at least one 'f/i > 0, then XO is a weak Pareto point of:F on U. 
If 'f/i > ° for all i = 1, ... ,n, then XO is a strong Pareto point. 

Proof: It is well known that the convexity of a differentiable map Fi is equiv
alent to the inequality 

Fi(X) - Fi(XO) 2 Re ('V Fi(XO), x - XO) x' i = 1, ... , n, 

for all x E X and, analogously, 

for all x E X.We multiply these inequalities by 'f/i 2 ° and Pj 2 0, respectively, 
and sum the resulting inequalities. This yields 

n m 

i=l j=l 



i.e. for X E U 
n 

i=l 
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m 

j=l 

n n 

m 

- LPj gj(x) > 0 
j=l 

L 'lJi Fi(X) ;:::: L 'lJi Fi(XO) for all x E U. 
i=l i=l 

Now let 1J # 0 and assume on the contrary that XO is not a weak Pareto 
point of:F on U. Then there exists x E U such that Fi(X) < Fi(XO) for all 
i = I, ... , n. Since 1Ji ;:::: 0 for all i and strictly positive for some i we conclude 
that 

n n 

i=l i=l 

a contradiction. 

Now let 1Ji > 0 for all i and assume, on the contrary, that XO is not a strong 
Pareto point of:F on U. Then there exists x E U such that Fi(X) ::::; Fi(xO) 
for all i = I, ... ,n, and strict inequality holds for some i. This yields a con
tradiction as before. 0 

8.2.3 Scalarization 

We remark that under the assumptions of the previous theorem all weak 
Pareto points are obtained by minimizing the scalar function 

n 

.J(x) := L 1Ji Fi(X) over U 
i=l 

for some 1Ji ;:::: 0 with L:~=1 1Ji > 0 and all strong Pareto points are obtained 
by minimizing .J for some 1Ji > 0, i = I, ... ,n. 

The term scalarization refers to the replacement of a multi-criteria optimiza
tion problem with one having a scalar, real-valued cost functional whose solu
tions are closely related to, if not identical with, the solutions of the original 
multi-criteria problem. Such a replacement is of great use for computational 
purposes since the algorithms for scalar optimization are highly developed. 

We start again with a map :F from a real or complex Banach space into a real 
ordered Banach space Z with a non-trivial closed convex order cone A. While 
there are many possible methods of scalarizing the minimization of :F on some 
given set U of constraints, and we concentrate on one, linear scalarization2 , 

2 Other methods include, for example, quadratic scalarization, in which the multi
criteria objective function is replaced by a weighted L2-norm of the components 
of F with positive weights. The scalar optimization problem in this case becomes 
one of minimal Ilorm. 
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in which the scalar objective function is of the form x 1-+ £(F(x)) where £ is 
some element from the dual cone A * := - AP of A. For example, in the case 
that Z = ~n, the scalar objective is simply 

n 

.:J(x) := 2:>7i Fi(X) , 
i=l 

where it is usual to take rJi 2: 0, i = 1,2, ... , n with L~=l rJi = 1. In this 
case rJ E ~n represents a probability distribution over the components of the 
vector function F. 
On the one hand, it is true that we obtain Pareto points by minimizing such a 
scalarized problem. On the other, it may well be, as examples show, that there 
are Pareto points for the original problem which are not found by minimizing a 
particular scalarized problem. To do so, we need to know that additional con
ditions are satisfied. The situation is described more precisely in the following 
two results whose proofs may be found in the book of Jahn [56]. 

Theorem 8.18. Let X and Z be Banach spaces and let F : X ----+ Z where 
Z is ordered with order cone A. Let £ E A* \ {O}. Then every point XO E X 
which minimizes x 1-+ £ (F( x)) on some set U is a Pareto point for the vector 
function F on U. 

Theorem 8.19. Let X and Z be Banach spaces and let F : X ----+ Z where 
Z is ordered with order cone A. Assume that XO is a Pareto point for F on 
some set U. Then if the set F(U) + A is convex, there exists a £ E A* \ {O} 
such that XO is a point at which the mapping x 1-+ £(F(x)) takes its absolute 
minimum. 

There are explicit conditions known which guarantee that F(U) + A is convex, 
which are given in Jahn [56]. 

As our applications involve a finite dimensional range space Z = lE.n , we use 
scalarization in the form of a Lagrange multiplier rule as set out in Theorem 
8.16. The cOildition that the components, Fi of the vector cost function are 
each convex leads to the sufficiency result given in Theorem 8.10, so that the 
application of the latter theorem gives a test that a point be a Pareto point 
for the original multi-criteria problem. 

8.3 The Multi-criteria Dolph Problem for Arrays 

In this section we return to the problem of an array of 2n + 1 uniformly 
spaced Co-linear radiating dipoles located symmetrically along the z-axis of 
a three dimensional Cartesian coordinate system. In Subsection 1.4.2 we an
alyzed the problem as a constrained optimization problem. Here, we confront 
the question raised by Dolph by adopting the viewpoint of multi-criteria opti
mization. In order to treat the problem analytically, we will find it convenient 
to reformulate it. 
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8.3.1 The Weak Dolph Problem 

Recall from Chapter 1 that the radiation pattern of a dipole array is entirely 
determined by the magnitude of the array factor, fee), 

n 

fee) = '"""' a e -ikdn cos 0 
~ n , (8.13) 

n=-n 

In the case of cophasal, symmetric excitations, i.e. an = a-n, n = 1,2, ... ,n, 
the an may be considered real, and the expression (8.13) for the array factor 
may be written in the form: 

n 

fee) = ao + 2 Lancos(kdncose). (8.14) 
n=l 

Moreover, since the array factor is symmetric with respect to e ~,i.e., 

f(7f/2 + e) = f(7f/2 - e), 0 ::::; e ::::; 7f, we may restrict consideration to the 
interval [0, 7f /2]. 

Recalling that the set Tn is defined by 

Tn := {ao + 2 ~ an cos( nkd cos e) : an E IR } , (8.15) 

the single objective constrained Dolph-Tschebyscheff Problem is: 

Minimize max,lf(e)1 
(PDT) 0::;0::;0 

Subject to f E Tn, fee) = 0, f(7f/2) = 1, 

where the main beam is to be 1 at 7f /2 and e < 7f /2 determines the beam
width. 

In the present setting of multi-criteria optimization, we will find it helpful 
to modify this problem by introducing what we will call the Weak Dolph 
Problem, (Pw), for which we seek to minimize the total side-lobe power as 
follows: 

For e E (0, 7f /2) given, 

(Pw) 

e 
Minimize J e-<Y(e-o) If(e)1 2 de 

o 
Subject to f E Tn, fee) = 0, f(7f/2) = 1. 

Here, (J 2 0 denotes a weight factor. In the case (J = 0 the integral is just the 
ordinary L2-norm of the array factor on the interval [0, fJ]. If (J > 0 portions 
of this interval dose to e have stronger weights than those close to O. 
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One obvious question is the relationship between the array patterns obtained 
by optimizing this new criterion and those of the original Dolph problem. To 
do this, we introduce the functions W n , n = 1, ... ,n, by 

wn(B) := cos(nkdcosB) - cos(nkdcosB). (8.16) 

Expanding f E Tn in the form 

guarantees that f(e) = O. Consequently, introducing the n x n symmetric 
matrix W whose entries are given by 

(J 

Wnm := j wn(B) wm(B) e-a({J-() dB, 

o 

the vector valued function 

(8.17) 

(8.18) 

and b = w(7f /2), we note that (PDT) and (Pw) can be written in the forms 

(PDT) Minimize maxJaTw(B) I subjectto aElRn, aTb=I, 
O~()~() 

and 

(Pw) Minimize aTWa subjectto aElRn, aTb=I, 

respectively. Since W is positive definite, as can be easily checked, we are 
able to estimate the magnitudes of the side-lobes with respect to both of the 
norms. Indeed, using the Cauchy-Schwarz inequality with the Euclidean norm 
11·112 we have 

where Amin denotes the smallest eigenvalue of W. The reverse estimate follows 
directly from 

{J (J 

aTwa=je-a({J-() If(B)1 2 dB :::; max,lf(B)1 2 je-a({J-()dB 
o<()<() o - - 0 

2,1 " 2 
= maxJf(B)1 B ~ [1 - exp( -uB)] < B max,lf(B)1 

O~()~() uB O~()~() 

= e maxJa T w(B)1 2 

O~iI~() 
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Here we used the inequality [1 - exp( -t)] It :::; 1 for all t 2::: O. Therefore, 
measuring the magnitude of the side-lobes in (PDT) and (Pw) is an equivalent 
task3 . We call (Pw) the weak Dolph problem since the constant cl Amin is very 
large (growing exponentially with respect to n) due to the smallness of the 
smallest eigenvalue Amin. 

Also, since W is symmetric and positive definite, the quadratic programming 
problem (Pw) has a unique optimal solution given by 

(8.19) 

with minimal value 
(8.20) 

(see Hestenes [47]). 

Example 8.20. In this example we compare the array pattern for the optimal 
Dolph-Tschebyscheff solution JnT of (PDT) with that of the optimal pattern 
Jfv of (Pw) for three choices of the weight factor (J. 

Figure 8.3 shows the results for n = 3, fj = ~ . ~ and inter-element spacings 
d = Aj2 (left) and d = 2 . Aj3 (right). The solid line represent the (absolute 
value of the) classical Dolph-Tschebyscheff arrays JnT , while the dashed line 
the optimal arrays Jfv for problem (Pw) with weight factor (J = O. 

Comparison of the results for pointwise side-lobe constraints with the £2 
constraint shows that while in the case of £2-minimization, the first side
lobe may be larger than the corresponding side-lobe for the problem (Pw). 
Subsequent side-lobes, are, however, lower. In Figures 8.4 and 8.5 we show 
the optimal patterns for weight factors (J = 3 and (J = 5, respectively, for 
the same configuration as before. We note that (J = 3 produces results which 
are almost indistinguishable from the Dolph-Tschebyscheff solution while the 
choice (J = 5 seems to be too large for small spacings. 

8.3.2 Two Multi-criteria Versions 

In contrast to this formulation as a constrained minimization problem, we con
sider here the multi-criteria version of the Weak Dolph Problem. Following 
Dolph's comments quoted above, we recognize three conflicting performance 
criteria: It is desirable to synthesize a pattern with minimal side-lobes and, at 
the same time,a maximal height for the main lobe and minimal beam-width. 

3 This does not mean that the optimal solutions coincide. However, it assures that 
if the value of (PDT) is small then so is the value of (Pw) and vice versa. 
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00 

Fig. 8.3. Optimal Array Patterns for (T = 0 

Fig. 8.4. Optimal Array Patterns for (T = 3 

Fig. 8.5. Optimal Array Patterns for (T = 5 

Yet we know from our earlier analysis that maximization of the main beam 
power also increases the power in the side-lobes. 

First, we consider the requirements to simultaneously minimize the side-lobes 
and maximize the height of the main lobe. We define two performance indices, 
the first by 
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(S.21a) 

where, as in (S.lS), bn = w n Crr/2) = 1- cos(nkdcosB), and the second by 

fJ 

F 2(a) := (V2 J e-rr(fJ-lJ) 11(e)12 de = (V2 a TWa, 

o 

(S.21b) 

the matrix elements Wnm again being given by (S.17). The vector criterion is 
then 

(S.21c) 

where A is some suitable admissible set of feeding coefficients. Note that FI 
was used in describing the constraint in the original formulation of the prob
lem. The positive weights (VI and (V2 may be chosen in various ways. For the 
numerical results we give in Example S.23 below, we will use them to normalize 
the calculations relative to the uniform feeding. This normalization will allow 
us to make appropriate comparisons of different methods in a meaningful way. 

In this formulation, we are asked to find the set of Pareto points for the 
criterion as explained above. We now apply the results of Subsection S.2 to the 
multi-criteria Dolph problem (S.21). If we consider the unconstrained case, i.e., 
A = ]Rn, then there is a unique (up to a multiple constant) Pareto point which 
coincides with the earlier result (S.19). This is the content of the following 
theorem. 

Theorem 8.21. Let A =]Rn and:F: ]Rn -t]R2 be given by (8. 21 a}, (8.21b). 
Then aD =1= 0 is Pareto minimal if and only if 

aD = 'f/ W-Ib for some 'f/ =1= o. 

Proof: Let aD =1= 0 be a Pareto point and note first that b TaD =1= 0 for, if the 
contrary were true, then b T aD = 0 so that FI (aD) = - (VI (aD T b) 2 = 0 and 
we conclude that FI(O) = FI(aD) and F2(0) = 0 < F2(aD) so that aD cannot 
be a Pareto point. 

Since b TaD =1= 0, it follows that 

(S.22) 

is optimal for the Weak Dolph Problem (Pw). Indeed, let a E ]Rn satisfy 
a Tb = 1. Then 

Since aD is a Pareto point by assumption, it follows that 

i.e., 
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(bT a D)2aTWa;:::: aDTWaD, 

or, using (8.22), a TWa;:::: aT Wa. From this inequality and the equation 
F1(a) = Fl(a), the optimality of a for (Pw) follows .. 

The uniqueness of the optimal solution for (Pw) then implies that 

(8.23) 

i.e., 
aD = 17 W - 1b with 17 = (bT aD) [bTW-1br1 =I O. 

Conversely, let aD := 17 W-1b for some 17 =I O. First, we observe that b TaD = 
17 b TW-1b =I 0 and thus, by (8.19), 

, 1 D a := --a = 
bT aD 

is the (unique) optimal solution of (Pw). 

Now let a E ]Rn with 
:F(a) ::; :F(aD). 

We need to show that this inequality implies :F(a) = :F(aD). From 

we conclude that b T a =I o. Therefore, 

ii 1 
.- bT a a 

is admissible for (Pw) and thus 

I.e. 

1 T T T 
T 2 a Wa = ii Wii > a Wa 

(b a) 

( bT aD)2 aTWa ;:::: aDTWaD, 
bT a 

or, since CYl(bT aD)2 = -Fl(aD)::; -Fl(a) = CYl(bT a)2, that 

(8.24) 

(8.25) 

This shows that F2(a) ;:::: F2(aD) which, together with the assumption (8.24), 
implies F2(a) = F2(aD). 
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To show that F1(aO) = Fl(a) we observe that now equality holds in (8.25). 
From this and the positive definiteness of W we conclude that b T a = b T aO 
since aoTWao > o. This ends the proof for the unconstrained case. 0 

TUrning now to the constrained problem, let A be given by 
\ 

A := {a E ]Rn : lIall2 :::; c} for some c > 0 (8.26) 

where again 11.11 2 denotes the Euclidean norm in ]Rn. Existence of Pareto points 
is assured by Theorem 8.10 since A is clearly compact and therefore so is 
:F(A) C ]R2. 

We now wish to apply the following multiplier rule which is a direct corollary 
of Theorem 8.16. 

Theorem 8.22. Let A be defined by (8.26) and d < A. Then the functional 
:F given by (8.21) admits Pareto points, and for every such Pareto point aO 
there exist multipliers 'fJl, 'fJ2, P 2: 0 such that 

(i) 'fJl + 'fJ2 > 0, 
(ii) p (liaoll - c) = 0, and 
(iii) -'fJl (b Tao) b + 'fJ2 Wao + p aO = O. 

We now use conditions (i) - (iii) to identify the set of Pareto points for the 
constrained problem. First, we note that with aO also -aD is optimal. We 
restrict ourselves to the consideration of aO with b T aO 2: 0 and aO #- o. Also, 
we note that b Tao #- 0 since otherwise, for t #- 0, It I < 1, 

and IltaOl1 :::; Ilaoll :::; c which contradicts the optimality of aD. Therefore, we 
can replace 'fJj 2: 0 by 'fJj/(bT aD) 2: 0, j = 1,2,3, and have that (i) and (ii) 
hold and 

-'fJlb + 'fJ2Wao + paD = O. 

We discuss three cases. 

Case 1: p = O. From (8.27) it follows that 

WaD = 'fJl b 
'fJ2 

(8.27) 

since 'fJ2 > 0 (otherwise b = 0 by (8.27) and (i)). Therefore the line segment 

(8.28) 

is a subset of the set of all critical points. 

Case 2: p> 0 and 'fJ2 = o. Then Ilaoll = c and aO = 'fJI/ pb by (8.27). Hence 
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° C b a = 1fbii (8.29) 

is the only candidate for a Pareto point in this case. 

Case 3: P > 0 and 'T/2 > O. Then again Ilaoll = c and (W + T3/'T/2 I) aO = 

'T/d'T/2 b by (8.27). Let T = p/'T/2 and a be the solution of 

(W +TI)a = b. 

(note that a unique solution exists since W, and hence W + TI, is positive 
definite.) Then the vector 

c , 

Iiall a 

is optimal and so the set S2 given by 

is also a subset of the set of critical points. 

Combining these sets, we conclude that the set 

contains all Pareto points with b Tao :::: O. Finally, we observe that 

and 

)~~ CI(W + ~I)-lbll (W + TI)-lb) = II~II b, 

(8.30) 

(8.31 ) 

and hence the set of Pareto points is a subset of a connected one parameter 
family of points of ]Rn, i.e. a curve aO = aO (T) in ]Rn. 

We illustrate the results of the preceeding analysis with several computations 
whose results are given in the following graphs. For these results, we use 
specific weights ctl and ct2 in the definition of the vector cost functional (8.21a) 
and (8.21b). Specifically, we take . 

and 

f(7r/2) 
Ifu(7r/2)1 

(8.32a) 

(8.32b) 

where au := (1,1, .. , ,1) T /.;n. Otherwise said, we normalize the vector cri
teria using the uniform feeding as the reference point. 
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o.~.,,~ -------;---'------...-.,.! 

Fig. 8.6. Set of Pareto values of Example 8.23 (3 elements) 

Example 8.23. As a first example we consider the configuration of the Weak 
Dolph Problem from Example 8.20 again, i.e. n = 3, d = ),,/2, and iJ = ~ . i. 
As the weight factor we choose a = 3, motivated by Example 8.20. 

For this configuration (and c = 1) we computed now the Pareto points a = 
a(T) of S and the corresponding values F(a(T)). The curve T f-t F(a(T)) in 
]R2 is given in Figure 8.6 (left) and consists oftwo parts. They correspond to Sl 
and S2: The diamond corresponds to parameter T = ° in S2, i.e. to the feeding 
a = IIW-1bll-1w-1b. The straight line joining the diamond with the origin 
are the function values corresponding to Sl. At the other end of the curve, 
the square marks the value corresponding to T = 00 in S2, i.e. to the feeding 
a = Ilbll-1b. In the right part of Figure 8.6, part of the same graph is shown in 
a different scale. The circle marks the point (-1,1) which corresponds to the 
uniform feeding. We note that, for this example, the uniform feeding produces 
an array which is "almost" Pareto optimal. 

Figure 8.7 shows a second example for the same spacing d and beam-width 
but n = 5 elements. Here we see clearly, that the uniform feeding is not even 
close to optimal. 

A second possibility to treat the Dolph problem as a vector optimization prob
lem is to simultaneously minimize the beam-width 2( 1f /2 - iJ) and the side
lobes while requiring that the height of the main lobe be normalized to One. 
In our formulation, iJ and the feeding coefficients an are the unknowns, and 
the vector optimization problem is formulated as 

Minimize 
subject to 

F(iJ, a) 
iJ E [0, 1f /2], a E ]Rn, b( iJ) T a = 1 
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Fig. 8.7. Set of Pareto values of Example 8.23 (5 elements) 

where 

and 
A 7r A A T A 

F1 (8,a) = 2"-8, F2 (8,a) = a W(8)a. (8.33) 

The vector-valued and matrix-valued, respectively, functions b(e) and W(e) 
are defined by 

bm(e) = 1 - cos(mkdcose) , m = 1, ... , n, 

and, for C, m = 1, ... ,n, 

(j ~ 
W(e)Pm = J e-u (&-&) [cos (Ckd cos 8) - cos(Ckdcose)]. 

a 

. [cos (mkd cos 8) - cos(mkdcose)] d8. 

Obviously, (eD, aD) = (0, aD) with any aD E lli,n such that b(O) T aD = 1 is 
Pareto optimal since F2 (0, aD) = 0. On the other hand, there exists no a such 
that (7r /2, a) is even admissible since b( 7r /2) = O. In addition to the extreme 
situation e = ° there exist Pareto points: 

Theorem 8.24. There exist Pareto points of (Pvec ) with e > 0. If d < A then 

all of the Pareto points aD with eD E (0, 7r /2) necessary have the form 

(8.34) 

The values of:F lie on the curve parametrized by e 
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Proof: First, we note that W(8) and b(8) depend continuously on 8 on the 
interval [0,1f/2]. Since W(8) is positive definite for every 8 E (0,1f/2] we 
conclude that W(8) is uniformly positive definite on [c-,1f/2] for every c- > 0, 
i.e. there exists "/ = ,,/(c-) > 0 with a TW(8)a ;::: "/ IIal\2 for all a E ~n and all 
8 E [c-, 1f /2]. To show existence of Pareto points we apply Theorem 8.10 and 
so have to prove compactness of the set 

T:= {:F(O,a) E ~2: 0::; 0::; 1f/2, b(O)T a = 1, Fl(O,a)::; Zl, F2(0,a) ::; Z2} 

for some (Zl' Z2) E ~2. We choose Zl E (0,1f/2) and Z2 > O. The set Tis 
certainly bounded since 0 ::; Fl (0, a) ::; Zl and 0 ::; F2 (0, a) ::; Z2 for all 
:F(O, a) E T. To verify that T is closed let :F(Oj, aj) --+ U, j --+ 00. Then Ul ::; 

Zl < 1f /2, i.e. Fl (OJ, aj) --+ Ul implies OJ --+ 0 := 1f /2 - Ul > O. The second 
component yields aJW(Oj)aj --+ U2, j --+ 00. We have OJ ;::: c-:= 0/2 > 0 for 

sufficiently large j. From the estimate ,,/(c) l\ajl12 ::; aJW(Oj)aj we conclude 
that the sequence {aj} is bounded and contains a convergent subsequence, 
again denoted by {aj}, i.e. aj --+ a for some a E ~n. Finally, the continuity 
of Wand b yields b(O)T a = 1 and a TW(O)a = U2. This, together with the 
definition of 0, yields the closedness of T. Therefore, :F has Pareto points 
(0°, aO) with 0° > 0 since Fl (0°, aO) ::; Zl < 1f /2. 

Now let (0°, aO) be a Pareto point with 0° =I=- 0, 1f /2. We note that (Pvec ) 

has the form in which the Lagrange multiplier rule of Theorem 8.16 can be 
applied. This yields existence of 'TIl, 'TI2, P E ~ with 'TIl + 'TI2 > 0 and 

-'TIl + 'TI2aoTW'(I~0)aO + pb'(OO)T aO = 0, 

2 'TI2 W(OO)aO + p b(8°) = O. 

(8.35a) 

(8.35b) 

We note that 'TI2 > 0 since otherwise also p =I=- 0 and thus b(OO) = 0 which can 
only happen for the 0° = 1f/2 which we excluded. Indeed, from bl(OO) = 0 
we note that kdcosO° = 21fm for some m, i.e. ~ cos8° = m. From d/)... < 1 

this is only possible for cos 8° = 0, i.e. 0° = 1f /2. Therefore, aO has the 
form aO = TW(OO)-lb(OO) with T = -p/(2'T12) E R We determine T by the 
normalization b( 0°) T a O = 1 which yields the form (8.34). This ends the proof. 
D 

We remark that (8.34) has the same form as the solution of the Weak Dolph 
Problem (Pw) for fixed 0° E (0, 1f /2). This result confirms that, in the multi
criteria setting, just as observed in Dolph's original paper, there are equivalent 
formulations of the optimization problem. 

From (8.34) we can easily show that 

. 1 
hm, , , = 0 and 
0-+0 b(8)TW(8)-lb(e) 

1. 1 
1m, , ,=00. 

0-+7r/2 b(e)TW(e)-lb(e) 
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Indeed, defining a = Ilb(O)1122 b(O) we note that a Tb(O) = 1 and thus from 
the optimality of a O and (8.20) 

1 1 

Ilb(O)II~ b(O) TW(O)b(O) 

< Ilb(~)II~ IIW(O)II 

which tends to zero as 0 -+ 0 since W(O) = O. The second limit is seen by the 
observation that 

)im [b(O) TW(O)-lb(O)] = 0 
O--+7r /2 

since b(1f/2) = 0 and W(1f/2) is regular. 

Let us conclude by recapping the discussion of this section. In contrast with 
the standard approach of Dolph in which feeding coefficients are sought to 
minimize the peak side-lobe power under the constraint of fixed beam width 
and peak main beam power, we consider both the side-lobe power and the 
main beam power or the side-lobe power and the beam width as quantities to 
be optimized. The mathematical theory provides conditions for computing the 
feeding coefficients which are Pareto optimal. The set of Pareto points in this 
case then gives a tradeoff curve for the Dolph array which shows exactly what 
price is paid in main beam power level reduction for a desired decrease in side
lobe power. Such curves or surfaces in higher dimensions, should be valuable 
information for the antenna designer. The mathematical tools are available to 
treat objective functionals of higher dimension as well. In the next sections, 
we apply these ideas to more complicated problems and illustrate the method 
with numerical results. 

8.4 Null Placement Problems and Super-gain 

In Section 7.2 we considered several problems which relate to the need to feed 
an antenna so that the radiated power is maximized either over a continuous 
sector, or in one or more specific directions. We can write this constrained 
optimization problem as (see (7.2» 

Maximize IloX'l,bII~2(Sd-l) subject to 'I,b E U. (8.36) 

The set U represents constraints and we have considered, among others, the 
simple norm constraint 11'l,bllx :::; l. 
One might hope that by maximizing the power in a given sector of the far field 
by choosing some optimal feeding 'l,b0 E U, the power over the complementary 
portion of Sd-l is thereby minimized. The numerical results in the work of 
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Fast [40] show that this hope is frustrated. Con~idering the examples of array 
patterns in Section 1.2, this should come as no surprise. 

While the Dolph problem, as we have treated it, involves both an integral func
tional and a point-evaluation functional, we turn now to vector criteria whose 
components involve various integral functionals which have been individually 
discussed in Chapters 3, 4, and 7. Some of the constrained optimization prob
lems studied earlier can be studied now as multi-criteria problems. Four of 
the possibilities are listed in the table below using our familiar notation. 

Problem Description Vector Criterion 

I Minimal pattern deviation :F = (1Ia[K'l/J - r]112, II;3K~pI12) T 

with null placement 

II Maximum directed power :F = (-llaK'l/J112, II;3K'l/J112) T 

with null placement 

III Maximum directed power :F = (-llaK'l/J112 , 11'l/J112 IIIK'l/J112) T 

with minimal super-gain 

IV Maximum directed power :F = (-llaK'l/J112, 11;37C1jJI12, 1I1~~11~2) T 

with null placement and 
minimal super-gain 

For example in Subsection 7.3.1 we considered the problem of maximizing 
the power in a pre~cribed sector with constraints on the power in another, 
non-intersecting, sector i.e., for some prescribed constant c > 0, 11;37C'l/J11 ::; c. 
We suggest that, as in the multi-criteria Dolph problem, since it is difficult 
to set the constraint level a priori, we pose the problem as a constrained 
multi-criteria problem. 

To do so, we select a sector, A, in which we wish to maximize the far field 
power and a sector (or sectors), B, in which we wish to minimize that power. 
We can interpret this latter choice as specifying the directions in which we 
desire to "place nulls". We then write the constrained multi-criteria problem 
as: 

Minimize 
(8.37) 

subject to 11'l/Jllx < 1. 

The weighting functions a and ;3 specify the different directions in which we 
want to maximize and minimize power, respectively. We can think of a and ,6 
to be the characteristic functions of the sections A and B, respectively. In what 
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follows we require only that a, f3 E Loo(Sd-l) are real-valued.4 Formulated in 
this way, we see that this problem (8.37) is one form of the null placement 
problem that we studied in Section 7.3. 

This, of course, is only one possible problem that we can study. Indeed, since 
it is closely related to the Dolph problem already treated, we would rather 
turn to two of the other problems that are listed in the table. 

Before doing so we should make clear the underlying assumptions that will be 
in force throughout this section. As is Chapter 7, we make the assumptions 
(AI), (A2), and (A5), so that the compact far field operator is one-to-one with 
dense range, the functions in the range being analytic. Moreover, we assume 
an extended form of (A3), namely that the supports of the functions a and f3 
each contain an open set, 00'. and 0{3 respectively, with 00'. n 0{3 = 0. 
To begin, let us consider the first problem in the table, namely that of placing 
low power in some prescribed sector of the far field, while preserving a nominal 
signal as much as possible in another. This is the problem which we initially 
treated in Subsection 7.3.4 and for which we gave concrete numerical results 
in Example 7.9 for the special case of the circular line source. 

8.4.1 Minimal Pattern Deviation 

The multi-criteria version of this optimization problem is that of finding 
Pareto points for the objective function 

Since the given far field pattern is in the range of JC we have JC,(j; = r and so 
it is reasonable to take the norm constraint 11~llx ::; c where c::; 11,(j;llx. 
The question of existence of Pareto points is trivial: Obviously, ~o = 0 and 
~o = ,(j; are Pareto points since they yield F2 (~O) = 0 and FI (~O) = 0, 
respectively. It is the task to determine all Pareto points. We observe that 
the functionals Fj , j = 1,2, are convex by Lemma 3.32 as is the constraint 
functional g(~) = II~II~ - c2 . Therefore, the necessary optimality conditions 
from Theorem 8.16 are also sufficient by Theorem 8.17. In order to apply the 
theorems we need to compute the gradients of the component functionals. By 
Lemma 3.32 the gradients of FI(~) = Ila(JC~ - r)II~2(Sd-l) and F2(~) = 
IIf3JC~II~2(Sd-l) are given by 

(8.38) 

Moreover, the constraint function g(~) = II~II~ _c2 has gradient \l g(~) = 2~. 

4 Recall that, because of the analyticity of the far field, it is not possible to re
quire that the far field actually vanish on a subset of Sd-l with an accumulation 
point. The formulation here lowers the far field power in those directions and, as 
numerical results demonstrate, lowers the power substantially. 
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We exclude the obvious Pareto points 'l/J0 = 0 and 'l/J0 = "j; from the subse
quent discussion. From Theorem S.17 all weak Pareto points are given by the 
solutions of the equations 

(S.39a) 

and 
(S.39b) 

for some 7]1,7]2, P 2': 0 with 7]1 + 7]2 > o. The strong Pareto points correspond 
to choices 7]1 > 0 and 7]2 > O. In the discussion of (S.39a), (S.39b) we consider 
first the case 7]1 = O. Then (S.39a) reduces to 

7]2K*f32K'l/J° + p'I/J0 = O. 

Multiplication of this equation by 'l/J0 yields 

i.e. both terms have to vanish separately. We note that 7]2 > 0, i.e. f3K'l/J° = O. 
Since K'l/J° is analytic and K is one-to-one this leads to the case 'l/J0 = o. 
Now let 'f)1 > O. By dividing (S.39a) by 'f)1 + 'f)2 we observe that the pair of 
equations (S.39a), (S.39b) has the form 

p = 0 or 1l'I/J°llx = c 

where 'f) = 'f)1/('f)1 + 'f)2). We show the following lemma: 

(S.40b) 

Lemma 8.25. Assume that"j; =f. O. For all 'f) E (0,1] there exist unique p > 0 
and 'l/J0 E X (depending on 'f)) which solve (8.40a) and 1I'l/J°llx = c. 

Proof: First we recall that the density of the range of K in L2(Sd-1) is 
equivalent to the injectivity of the adjoint K*. 
We fix 'f) E (0,1] and note that for all p > 0 the second kind equation (S.40a) 
has a unique solution 'l/Jp, i.e. 'l/Jp solves 

The function 'f)0:2 + (1- 'f)) 132 is non-negative. We set '"Y = V'f) 0:2 + (1 - 'f)) /32 
for convenience and show that the mapping p ~ II'l/Jpllx is continuous and 
strictly decreasing for p > 0 with 

II II . II II {oo , if'f) < 1 , 
J~~ 'l/Jp x = 0 and !l!fo 'l/Jp x = 11"j;llx, if'f) = 1. 

An application of the Intermediate Value Theorem will then yield the asser
tion. 
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Multiplication of (8.41) with 'l/Jp yields 

ihK 'l/Jpiii2(Sd-l) + pii'I/Jpii~ = 'I7(K*o?r,'l/Jp)x :::; 'l7iilC*o?riixii'I/Jpiix, 

from which it follows that pii'I/Jpii~ :::; 'l7iilC*a2 riixii'I/Jpiix and thus 

'l7iilC*a2 riix 
ii'I/Jpiix < ----+ 0 

P 
(8.42) 

as P tends to infinity. 

Now let Pl, P2 > 0 and subtract the equations (8.41) for (Pl, 'l/Jl) and (p2, 'l/J2) 
where we write 'l/Jj = 'l/JPj' j = 1,2. This yields 

Multiplication by 'l/Jl - 'l/J2 leads to the equation 

and thus 

i.e. 

Plii1/Jl - 'l/J2iix :::; iP2 - Pliii'I/J2iix :::; iP2 - Pli 'l7iilC*a2 riix 
P2 

by (8.42). This inequality shows that P f-t ii'I/Jpiix is continuous. 

Now take P2 > Pl > O. We note that 'l/J2 "I- 0 by (8.41) and the fact that 
'17 lC* a2 lC,(/J "I- 0 by the assumption that ,(/J "I- O. Therefore, (8.43) yields 'l/Jl "I
'l/J2. From (8.44) we conclude that ('l/J2,'l/Jl - 'l/J2)X > 0 i.e. that 

Therefore ii'I/J2iix < ii 'l/JIiI x , i.e. the map P f-t ii'I/Jpiix is strictly monotone 
decreasing. 

It remains to compute limp--+oo ii'I/Jp iix. Let {Pj} be any sequence in lR>o con
verging to zero with corresponding sequence {'l/Jj }. Assume that limj--+oo ii'I/Jj iix < 
00. Then there exists a weakly converging subsequence of {'l/Jj} with 'l/Jj ----' 'I/J 
for some 'I/J. The compactness of lC guarantees that lC*"',PlC'l/Jj -+ lC*"PlC'I/J in 
L2(Sd-l) and thus lC*"'(2lC'I/J = 'l7lC*a2lC,(/J by (8.41), i.e. 

(8.45) 

First let '17 = L Then we multiply (8.45) by 1/J-,(/J, arrive at iiaJC(1/J-,(/J)ii 2 = 0, 
and 1/J = ,(/J follows by now familiar arguments. We show norm convergence 
1/Jj -+ ,(/J by writing (8.41) for P = 0 in the form 
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IlexK(1}Ij -~)11~2(Sd-l) + Pj 111}Ij -~II~ = -Pj (~, 1}Ij -~)X 
:::: Pj I (~, 1}Ij - ~) x I ' 

and thus 

111}Ij-~II~:::: 1(~,1}Ij-~)xl --+ 0 

as j tends to infinity by the weak convergence 1}Ij ---'- ~. 
Now let T] < 1. Since K* is one-to-one we can write (8.45) in the form 

Restricting this equation to some open set 0 C (supp,8 \ supp ex) yields 
,82K1}I = 0 on 0, i.e. 1}1 = 0 by the analyticity of K1}I and the injectivity 
of K. This contradicts the monotonicity of P ~ 111}Iplix and ends the proof of 
the lemma. 0 

We note from the previous proof that the assumption that K has dense range in 
L2(Sd-l) has been needed only to derive (8.45) i.e. to assure that 111}Iplix ---+ CXl 

as P tends to zero in the case T] < 1. 

This lemma shows again that the solution set of (8.39a), (8.39b) forms a 
one-dimensional manifold parametrized by T] E (0,1]. 

We now turn to the finite dimensional approximation. Once again, let {Xn} 
be a sequence of finite dimensional subspaces such that U~ Xn is dense in X. 
We note by Lemma 3.24 that Un (U n Xn) is dense in U where U is the ball 
of radius 1 in X in our particular case. The finite dimensional problem is now 
formulated as: 

Find Pareto points of 

F(1}I) = (1Iex(K1}I - r)lli2(Sd-l)' II,8K1}I1Ii2(Sd-l)) T (8.46) 
Subject to 1}1 E X n , 111}I1Ix :::: c. 

Note that we have not approximated either r or K. Therefore, this problem 
has exactly the same form as before with X replaced by the finite dimensional 
space X n. The operator Klxn : Xn ---+ L2(Sd-l) is still one-to-one, the images 
K1}I are still analytic on Sd-l but the range of Klxn is no longer dense in 
L2(Sd-l). Let Pn : X ---+ Xn be the orthogonal projection from X onto X n. 
It is characterized by (1}In,Pn;j;)x = (1}In,;j;)x for all;j; E X and 1}In E X n· 
From 

(K1}In'CP)£2(Sd-l) = (1}In,K*cp)x = (1}In,PnK*cp)x 

for all 1}In E Xn and cp E L2(Sd-l) we observe that the adjoint (KlxJ* 
L2(Sd-l) ---+ Xn Qf Klxn : Xn ---+ L2(Sd-l) is given by PnK*. 



268 8 Conflicting Objectives 

Let 'IjJ~ #- 0 be a Pareto point of (8.46). In this case the Lagrange multiplier 
equations (8.40a), (8.40b) take the form 

(8.47a) 

p = 0 or 11'IjJ~llx = c. (8.47b) 

for TJ E [0,1]. Equation (8.47a) is just equation (8.40a) projected onto X n · 

Again, TJ #- 0 since otherwise PnK*f32K'IjJ~ + p'IjJ~ = O. Multiplication with 'IjJ~ 
yields IIf3K'IjJ~ 1I12(sd-l) + plI'IjJ~ IIx = 0 and thus 'IjJ~ = O. 

The operator 'ljJn M PnK* (TJa2 + (1 - TJ)f32)K'ljJn from Xn into itself is one
to-one as before and therefore onto since Xn is finite dimensional. This is the 
basic difference from the infinite dimensional case! Again, if PnK*a2K~ #- 0 
then, for every fixed TJ E (0,1], the mapping p M 1I'IjJ~lIx is continuous and 
strictly monotonically decreasing with limp --+oo 1I'IjJ~lIx = o. Furthermore, 'IjJ~ 

converges to the solution ;(In E Xn of 

as p tends to zero. From this we conclude that the solution set of (8.47a), 
(8.47b) again consists of a one-dimensional manifold parametrized by TJ E 
(0,1]. If c 2:: II;(Jnllx the solution (p, 'IjJ~) is given by (p, 'IjJ~) = (0, ;(In). If c < 
II;(Jn IIx the solution (p, 'IjJ~) is given by the unique solution of (8.47a) and 
1I'IjJ~lIx = c. 
Example 8.26. In the case of a circular loop we take X = L2(0, 21T) and use 
polar coordinates. Thus it is natural to take Fourier polynomials in order 
to replace the problem with an approximate one which is finite dimensional. 
Moreover, we assume that the sets A and B are disjoint intervals [0'.1,0'.2] c 
[0,21T] and [131,132] C [0,21T] which correspond to the sections in which we wish 
to match the given far field pattern and to place nulls, respectively. 

We first recall the continuous version of the problem as 

Minimi," (}K,~(t) _ 1"(t)I' dt, }K,p(t) I' dt) T 

27r 2 

Subjectto 'ljJEL2 (0,21T), fl'IjJ(s)1 ds:;'c2 . 
o 

Any function 'IjJ E L2(0, 21T) can be represented by its Fourier series 

00 

'IjJ(s) = L 'ljJm eims , 0 < s < 21T, 
m=-oo 

with Fourier coefficients 

(8.48) 

(8.49a) 
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mEZ. (S.49b) 

Therefore, it is appropriate to truncate the series in order to derive the finite 
dimensional problems. Therefore, defining the (2n+1)-dimensional space Xn 
by Xn = span { eims : Iml ~ n} be arrive at the approximated problem 

M;n;mizc (}K,,(t) - l"(t)I' dt, l IK,,(t)I' dt) T 

271" 2 
Subject to 1j; E X n , J 11j;(s) I ds ~ c2 . 

o 

(S.50) 

We note that the orthogonal projection operator Pn is just the truncation 
operator. 

For the circular line source of radius a, as in Subsection 7.2.3, the operator JC 
has the form 

K1j;(t) 

271" J 1j;(s) e-ikacos(t-s) ds, 0 < t < 21T. 

o 

As before, we can use the Jacobi-Anger formula 

eiZCOST = L(-i)mJm(z)eimT , 
mEZ 

to compute the Fourier series of JC1j; as 

K1j;(t) = 21T L 1j;m i m Jm(ka) eimt , 0 < t < 21T. 
mEZ 

Setting ,2 = 0:2 + 7)/32 as before, we compute 

271" 

(JC*,2JC1j;)(t) = J ,2(S) JC1j;(s) eikacos(t-s) ds 

o 
271" 

= 21T L 1j;m i m Jm(ka) J ,2(S) eimseikacos(t-s) ds 

mEZ 0 

and thus, for 1j; E X n , 

'"' '"' a 0/' eimt ~ ~ f,m'f"m 

11'1~n Iml~n 

(8.51 ) 

(S.52) 
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where 

211" 

af,m 27rim - f Jm(ka) Jf(ka) J 'Y2 (s)ei(m-f)Sds, i!,mEZ. 

o 

Analogously, K* a2 rand PnK* a2 r are computed as 

211" 

(K*a2 r)(t) = J a2(s) r(s) eikacos(t-s) ds 

o 
"'2 

= L f::n (_i)m Jm(ka) eimt J r(s) e-ims ds, O:s; t :s; 27r, 

mEZ "'1 

"'2 

(PnK*a2 r)(t) = L f::n (_i)m Jm(ka) eimt J r(s) e-ims ds, O:S; t :s; 27r, 
[m[:Sn "'1 

respectively. We know from Theorem 8.15 that every weak accumulation point 
of any sequence {7,b~} of Pareto points 7,b~ of (8.50) is a weak Pareto point of 
(8.48) . 

For a numerical simulation we considered again Example 7.6. The desired 
far field is given by r = K,(j; which is the optimal solution of the problem 
to maximize power in the angular section [0, 7r / 4]. Plots of IK,(j; I = I r I for 
wave lengths). = 1 and), = 7r are shown in Figure 8.8. We take the interval 
[aI, a2] = [-7r /16, 7r /4+7r /16] to match r and the interval [131,132] = [-7r /8,5· 
7r /8] to place nulls. Figures 8.9 and 8.10 correspond to wave lengths). = 1 
and), = 7r, respectively. We first plot the graphs of TJ 1-+ IK7,b°1 and then 
show the patterns IK7,b°1 for two particular values of TJ. The first one is small 
which results in a Pareto point for which the second component is small. The 
distance to r, however, is large. The second value of TJ is close to one, and 
we observe that now the first component is small, i.e. K7,b° is close to r, but 
there are considerably larger side lobes. 

8.4.2 Power and Super-gain 

We now turn to the third problem in the table in which we wish to maximize 
the power in a preassigned sector of the far field while simultaneously minimiz
ing the super"gain. We should recall that we have discussed the notion of the 
super-gain ratio in Subsections 1.5.2 and 1.5.3 where we considered the linear 
and circular lin~ sources respectively. We actually proved there that in either 
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Fig. 8.8. Plots of Irl for wave lengths A = 1 (left) and A = 7r (right). 
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Fig. 8.9. Plots of TJ >-+ IK1/!°1 (left) and the far fields IK~I and IK1/!°1 for wave length 
A = 1 corresponding to TJ = 0.2 and 0.6, respectively. 
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Fig. 8.10. Plots of 7) >--+ IK,¢ol (left) and the far fields IK~I and IK,¢ol for wave 
length A = 7r corresponding to 7) = 0.2 and 0.9, respectively. 

case, the super-gain ratio, f'>- ('ljJ) as defined by Taylor [133] is proportional to 
the expression given in terms of the far field operator: 

AII'ljJII~ (8.53) 

where A is the particular wave-length the proportionality constant being de
pendent on the particular antenna. In the case of the linear line source, 
X = L2( -.e, .e), while in the case of the circular line source X = L2(sa) 
where sa is the circle of radius a. 5 These examples led us, in Chapter 3 (cf. 
Section 3.4) to introduce the functional 

5 In particular calculations, we must be careful to remember that lI'¢IIL2(sa) 

a lI'¢IIL2(O.27C) 
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which we called the gain of the antenna. This is something of an abuse of lan
guage since, given a particular antenna structure, the super-gain is a function 
of the distribution '¢. 

We should also remember that the idea of a super-gain distribution is a relative 
one. Any current distribution for which· the gain exceeds that of the the gain 
associated with the uniform distribution '¢u == 1 is called a super-gain antenna. 
Once again, let us quote Taylor: 

"The answer to the question of how large a value of "(/"(u can be 
tolerated in a particular situation will depend on many factors ... . 
It seems reasonable, however, to look upon source distributions for 
which,,( exceeds "(U by a factor of ten or more with extreme caution." 

The analysis here will show that the use of multi-criteria techniques gives 
some insight into this comment. 

Since we want to control the super-gain ratio while focusing the far field power 
which are conflicting goals, we can pose a multi-criteria optimization problem 
as in the entry III of the table. 

(8.54) 

Our first task is to check that Pareto points exist and to do this, we verify 
that the hypotheses of part (b) of Theorem 8.8 are satisfied. To this end, let 
R := {.1="( '¢) : 0 < 11,¢llx ::; I}, and consider the sets 

Rz = (z - A) n (R + A) , z E ]R2 , (8.55) 

where, as usual, A is the standard order cone in ]R2, i.e. 

By Theorem 8.8 Pareto points of (8.54) exist provided that for some z E ]R2 

the set Rz C ]R2 is non-empty and compact. These conditions are proven in 
the following theorem. 

Theorem 8.27. Assume that the far field operator, K, is compact, one-to
one, and that K'¢ E C(Sd-l) is analytic for all '¢ EX. Let z = .1="(;jJ) E ]R.2 

for some ;jJ E X such that 11;jJllx = 1. Then the set Rz is non-empty and 
compact and hence the problem (8.54) has Pareto points. 

Proof: First we note that z = .1="(;jJ) E Rz i.e., Rz i- 0. To see that this 
section is bounded, let z E R z. Then 
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for some 7/J E X such that 0 < 117/Jllx S; 1 and UI, U2 ::::: O. Hence ZI S; ZI· 

On the other hand, by the continuity of K, there exists a constant c > 0 with 
IlaK7/JII£2(Sd-l) S; c for all 7/J satisfying 0 < 117/Jllx S; 1, i.e., -c2 S; ZI S; ZI. 

Analogously, 0 S; Z2 S; Z2, and so it is clear that the set Rz is bounded. 

In order to show that the set Rz is closed, let ZO be a limit point of a sequence 
in R z. Then there exist sequences {7/Jj }~I c X with 0 < II7/Jj Ilx S; 1 and 

{ uij)} ~ l' and {u~)} ~ I both in lR::::o such that 

Since {7/Jj}~1 c X is bounded, we may assume that this sequence converges 
weakly to some element, i.e., 7/Jj ----' 7/Jo. Moreover, since K : X -+ L2(Sd-l) 
is, by hypothesis, a compact operator we have K7/Jj -+ K7/Jo in L2(Sd-l) as 
j -+ 00. We claim, first, that 7/Jo -I- O. To see this, note that -llaK7/Jj Ili2(Sd-l) + 
uP) -+ zf· Then uij) -+ u~:= zf + IlaK7/Joll1,2(Sd-l)::::: O. Hence, since also 

or 
IlaK~lli2(Sd-l) + uP) S; IlaK7/Jj 111,2(Sd-l) , 

for all j = 1,2, ... , we conclude that 

By analyticity of K~, we may conclude as we have done several times be
fore, K~ -I- 0 and thus 1/Jo -I- O. Note that we have also shown in this ar

gument, that -llaK7/Jjll1,2(Sd-l) + uij) -+ -llaK7/Joll1,2(Sd-l) + u~, i.e. zf = 
-llaK1/Jolli2(Sd-l) + u~. 
Now, consider the second component of F. By choice of zO, we have that 

F2 (7/Jj) + u~j) -+ z2 as j -+ 00, where the u~j) ::::: O. We first show that we can 

find at least a subsequence of the u~j) which converges. Indeed, this follows 

from 0 S; u~) S; F2 (7/Jj ) + u~j) and the convergence F2 (7/Jj) + u~) -+ Z2. Hence, 
we can find a further subsequence such that (renaming the subsequence if 

necessary) u~j) -+ U2. Note that this limit u2 ::::: O. 
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We now define 8 E ]R by the equation 

It remains to show that 8 ~ O. But this .follows from 

since 

8 = z~- [ II¢~II~ + U 2] ~ z~-liminf [ II¢~II~ + u~j)] = o. 
IllC¢o 11£2(Sd-l) J-+OO IllC¢j 11£2(Sd-l) 

It follows that Zo E Rz = (z - A) n (R + A). This shows that the section Rz 
is closed. Hence the set Rz is compact in ]R2 and therefore there exist Pareto 
points for the problem (8.54). 0 

Now we wish to apply the necessary conditions to this problem. Again, the 
Frechet derivatives may be calculated using the results in Section 3.4. Those 
results yield 

V' F l (¢) = -2lC*a2lC(¢), (8.56a) 

V' F2(¢) = IllC¢11 42 [lIlC¢lli 2 (Sd-l) ¢ - II¢II~ lC*lC¢]· 
£2(Sd-l) 

(8.56b) 

where again Q(¢) = 11¢11~/lllC¢lli2(Sd-l)" 

Now we turn to the application of the Lagrange Multiplier Rule. If we assume 
that ¢o i= 0 is a Pareto point for the problem, then the constraint qualification 
(8.12) is satisfied. The Lagrange Multiplier Rule of Theorem 8.16 guarantees 
the existence of multipliers, 'TIl, 'TI2, P ~ 0 with 'TIl + 'TI2 > 0, such that 

lC* 2lCn/,o 'TI2 -'TIl a 'I-' + IllCn /,oI12 
'I-' £2(Sd-l) 

Suppose, first, that p = O. Multiplication with ¢o yields, by the definition of 
Q(¢O), 

= -'TI11I alC¢olli2(Sd-1) 

which implies that IlalC¢oll£2(Sd-l) = 0 or 'TIl = O. 
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In the former case we see, by the usual arguments, that 'ljJ0 = ° which is a 
contradiction. Therefore, we must have 'T]1 = 0, and this implies that 'T]2 > ° 
since 'T]1 + 'T]2 > 0. Consequently, 

where again 
Ilv)OII~ Q('ljJ0) = 

IIJC'ljJ°1112(sd-l) . 

(8.58a) 

(8.58b) 

We note that (8.58a) is an eigenvalue problem for the self-adjoint operator 
JC*JC with eigenvalue A = I/Q('ljJ°) and eigenfunction 'ljJ0. If, on the other 
hand, 'ljJ0 is a normalized eigenfunction of (8.58a) with eigenvalue A, then we 
multiply (8.58a) by 'ljJ0 and arrive at 

A -IIJC'ljJ°1112(sd-l) = 0, 

i.e. I/A = Q('ljJ0) and 'ljJ0 solves (8.58a), (8.58b). 

Suppose, on the other hand, that p > 0. Then the inequality constraint is 
active, i.e. 11'ljJ°llx = 1 and equation (8.57) becomes 

Dividing this equation by 'T]1 + 'T]2 and setting 'T] = 'T]2/('T]1 + 'T]2), we find that 
the Pareto point must satisfy the system: 

(8.60a) 

1, (8.60b) 

and 

(8.60c) 

and these equations serve as the necessary conditions for the Pareto point. 

Example 8.28. As a particular example, we consider again the circular line 
source of Example 7.9 (see also Example 7.6). 0: is the characteristic function 
ofthe interval [0:1,0:2] c [0, 21f]. Then JC* JC and JC* 0:2 JC are given, respectively, 
by 

mEZ 

(JC*0:2JC'ljJ)(t) = L Acm'ljJmeiCt, O::::;t::::;21f, 
C,mEZ 

where 
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271" 

'l/Jm = 2~ J'l/J(t)e-imtdt, mE Z, 

o 
are the Fourier coefficients of 'l/J E L 2 (0, 21f) and 

Afm 21fim-£ Jm(ka) J.e(ka) i (m _ .e) ,.e =I- m, { 
ei(m-f)a2 _ ei(m-f)a1 

21f Jm (ka)2 (a2 - (1), .e = m. 

Truncating (S.60a)-(S.60c) results in the following finite dimensional system6 

[ (1 - 1]) A + 1] Q2 D] x = (1]2 Q + p) x , 
1]1 + 1]2 

Ilxll = 1, and x*Dx = l/Q. 

(S.61a) 

(S.61b) 

This is a parametric eigenvalue problem: For every (fixed) parameter 1] E [0,1] 
find a parameter Q > 0 such that the normalized eigenvector x = x(Q) of 
(S.61a) satisfies also (S.61 b). For the particular case [aI, a2] = [21f /9, 1f /3] and 
A = a and the three largest eigenvalues the set of Pareto-critical points are 
plotted in Figure S.l1. We observe that also values which correspond to the 
largest eigenvalues are candidates for Pareto optima - a fact which we were 
not able to prove. The marked points in Figure S.l1 correspond to 1] = 99/100 
(right mark) and 1] = 0 (left mark). Their factors are plotted in Figure S.12. 
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Fig. 8.11. The set of Pareto-critical points of Example 8.28 

6 where we write a; instead of 'lj;0 
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Fig. 8.12. The factors corresponding to the marks in Figure 8.11 

8.5 The Signal-to-noise Ratio Problem 

8.5.1 Formulation of the Problem and Existence of Pareto Points 

We now return to the signal-to-noise ratio problem which we introduced in 
Section 1.3 and analyzed further in Section 7.4. There, we considered the con
strained problem of maximizing the SNR-functional subject to a preassigned 
bound on the quality factor Q. Now we are prepared to treat the problem as 
one of multi-criteria optimization. 

First, we remind the reader that quality factor, Q, played an important role 
in the synthesis problem in Chapter 4. One problem treated there was the 
optimization problem with objective f~nctional 

:J('lj;) J I(JC'lj;)(x) - fo(x)12 ds = IIJC'lj; - folli2(sd-l) ' (8.62a) 

Sd-l 

which is to be minimized. 

The situation is much as that in the previous section. Good approximations 
to the desired antenna pattern, fo, in this mean-square sense can be realized 
only by producing unacceptable levels of the "quality factor" , 

(8.62b) 

In Section 4.3 we studied the synthesis problem by constraining Q('lj;). In the 
present context, the appropriate compromises can be studied by identifying 
the Pareto points for the vector criterion 

(8.63) 
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subject to the power constraint 

\\'lj;\\x ::::: 1. (8.64) 

In fact, the existence of Pareto points for this problem is guaranteed by the 
following result: 

Theorem 8.29. The map :F : X -+ JR.2 is completely continuous and hence 
Pareto points exist. 

Proof: Since the relatively compact sets in JR.2 are the bounded sets, it suffices 
to check that :F maps bounded sets into bounded sets. But this property of 
:F follows immediately from the compactness of the operator K. 0 

Our main interest in this section however is the more difficult problem of 
optimizing the signal-to-noise ratio (SNR) in a given fixed direction x E Sd-I. 
We recall that the SNR is defined by 

(8.65) 

where the function w E £,,)0 (Sd-I) is non-zero on a set T of positive measure. 
The optimization problem studied in §7.4 (see also [72] and [12]) is 

Maximize SNR('lj;) subject to \\'lj;\\x::::: 1 and Q('lj;) ::::: c, (8.66) 

where Q('lj;) is given by (8.62b), and c> 0 is a fixed constant. 

We make the same assumptions as at the beginning of Chapter 7, namely that 

(AI) K : X -+ C(Sd-l) is compact and one-to-one. In particular, K is not 
identically zero. 

(A2) K'lj; E C(Sd-l) is an analytic function on Sd-I for every 'lj; E X. 

However, we now consider, not the constrained problem (8.66), but rather the 
vector valued optimization problem 

M · " ~(nl.) ( - SNR( 'lj; ) ) llllmlze .r '!-':= Q('lj;) subject to 'lj; # o. (8.67) 

In order to prove that Pareto points for the problem (8.67) exist we will again 
use Theorem 8.10. This requires that, for some z E JR.2, the set 

(8.68) 

is compact in JR.2. First, we show that Sz is bounded. Assume on the contrary 
that there exist sequences {'lj;j} C X and {u (j)} c JR.So with 'lj;j # 0 and 

:F('lj;j) + u(j) ::::: z and SNR('lj;j) + u~j) -+ -00 as j te;ds to infinity. (Note 
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that always Q( 'lj;j) + uV) 2: 0.) Since :F is scale invariant i.e. for any scalar 
pEe \ {O} we have :F(p'lj;) = :F('Ij;) , we can assume that I/'Ij;jl/x = 1 and thus 
{'Ij;j} contains a weak limit point. Without loss of generality we assume that 
'lj;j -' 'Ij; weakly in X for some 'Ij; E X. From Q('Ij;j) = l/IIK'Ij;jl/~ :::; Z2 and 
the compactness of K we conclude that K'Ij; =1= 0 and thus 'Ij; =1= O. Since K is 
also compact as a map into C(Sd-l) we have (K'Ij;j)(x) -+ (K'Ij;)(x) and thus 

SNR('Ij;j) -+ SNR('Ij;). This contradicts the assumption that SNR('Ij;j)+uij ) -+ 
-00. 

By essentially the same arguments we can show that Sz is closed. Indeed, 
let again Nj} eX, {u(j)} c ~3.o with 'lj;j =1= 0 and :F('Ij;j) + u(j) :::; z and 

:F('Ij;j) + uCi) -+ ZO E ~2. Again~ we can assume that II'Ij;jllx = 1 and thus 
'lj;j -' 'Ij; weakly in X for some 'Ij; E X with 11'Ij;llx :::; 1. The facts that 'Ij; =1= 0 
and SNR( 'lj;j) -+ SNR( 'Ij;) follow as above. Therefore, also {uij)} contains an 

accumulation point, i.e, without loss of generality uij) -+ Ul. 

Finally, we set U2 := Z2 - Q( 'Ij;) and have to show that U2 2: O. This follows 
from 

U2=Z2 -

= Z2 -

which means that ZO E Sz. Hence the set Sz is closed. Application of Theo
rem 8.10 yields: 

Corollary 8.30. Under the assumption of the previous theorem there exist 
Pareto points of {8.67}. 

8.5.2 The Lagrange Multiplier Rule 

Now we will apply Theorem 8.16 to the optimization problem (8.67) and will 
use the resulting equations to compute the set of all "critical points" which, 
as in the case of a single cost functional, contains the set of Pareto points. 
Much of the necessary work has already been done. Indeed, we already have 
computed the Fn§Chet derivatives of SNR and Q at 'lj;0 E X in Section 3.4. 
Using the Riesz representation p E X of the functional 'Ij; f-t (K'Ij;)(x), i.e. 

(K'Ij;) (x) = ('Ij;,p)x for all 'Ij; EX, 

we can write the gradients in the form 
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\7SNR('ljJ°) = 24 [llwJC'ljJ°11~2(Sd-1) ('ljJ°,p)x P 
IlwJC'ljJ° 11£2(Sd-l) 

_ I(JC'ljJ°)(x)12 JC*w2JC'ljJO] , 

\7Q('ljJ0) = IIJC'ljJ0 llt2(Sd-1) [IIJC'ljJ01I~2(Sd-1) 'ljJ0 - 11'ljJ°II~ JC*JC'ljJO]. 

Let 'ljJ0 be a Pareto point. Application of Theorem 8.16 yields the existence of 
multipliers '171, '172::::: 0 with '171 +'172> 0 and -'171 \7SNR('ljJ°) + '172 \7Q('ljJ0) = 0, 
i.e. 

or 
'171 I(JC'ljJo~(x)12 JC*(w2JC'ljJ0) + 

IlwJC'ljJ° IIL2(Sd-l) 
'172 'ljJ0 _ 

IIJC'ljJ°11~2(Sd-1 ) 

_ '172 QoJC* JC'ljJ0 
IIJC'ljJ°11~2(Sd-1 ) 

'171 ('ljJ0, p)x 
2 P 

IlwJC'ljJ° II £2(Sd-l) 

where Qo = 11'ljJ°II~ / IIJC'ljJ°11~2(Sd-1). 
Now we distinguish between two cases: 

Case 1: '171 (JC'ljJ°)(X) = o. Then JC*JC'ljJ0 = do 'ljJ0, i.e. l/Qo is an eigenvalue of 
JC* JC with eigenfunction 'ljJ0. 

Case 2: '171 > 0 and (JC'ljJ°)(x) =f:. o. We then set 

Then the function 'ljJ0o is also Pareto optimal and (JC'ljJ00) (x) = IlwJC'ljJooll~2(Sd-1)' 
thus SNR(h) = IlwJC'ljJooll~2(Sd-1)' and 

JC*(w2JC'ljJ00) + TJ'ljJ°o - TJQoJC*JC'ljJ°o = P inX. (8.69) 

Therefore we see that if 'ljJ0o is a Pareto point of (8.67) which is normalized so 
that (JC'ljJ00)(x) = IlwJC'ljJooll~2(Sd-1) then there exists '17 ::::: 0 with (8.69) where 

Qo = II'ljJooll~ / IIJC'ljJooll~2(Sd-1). 
If, on the other hand, 'ljJ0o solves (8.69) for some Qo and '17 > 0 then 

(JC'ljJ00)(X) = ('ljJ0o,p)x 

= IlwJC'ljJooll~2(Sd-1) + '17 II'ljJooll~ - '17 Qo IIJC'ljJooll~2(Sd-1)' 
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i.e, 

Hence 
( V'n',OO)(~) II V'n"ooI12 /\.-'f' ..., = W/\.-'f' L2(Sd-l) (8.70a) 

is equivalent to 
(8.70b) 

Equations (8.69) and (8.70) describe a one-parameter family of critical points 
which contains the set of Pareto points as well as the weak Pareto points. 

8.5.3 An Example 

We illustrate this approach which uses the necessary optimality conditions 
with a numerical example (c.f. Section 7.4 for the related example and nu
merical results for the problem where Q is fixed and SNR is to be maximized). 

We consider the case where w is the characteristic function of a portion of the 
unit circle, e.g. if 0 :::; tl < t2 :::; 21f, 

w(t) = {1,iftl:::;~:::;t2' 
0, otherwIse. 

As an example, we take for K the particular far field operator for the circular 
line source of radius 1. Let (e,1;) are the spherical polar coordinates of x and 

211" 

(K'IjJ)(e) := J 'IjJ(s)e-ikscosfids, 0:::; e:::; 21f. (8.71) 

o 

Then p( s) = exp( iks cos eo) is the Riesz representation of'IjJ r-+ (K 'IjJ) (xo). Let 

00 

'IjJ(s):= L Xj eijs . 
j=-oo 

Then 

00 211" 

(K'IjJ)(t) = . L Xj J eijs e-ikcos(t-s) ds 
)=-00 0 

00 

21f L 
j=-oo 

where we have used the Jacobi-Anger expansion (see ([90])) 

00 

e-ikcoST = L (_i)n In(k) einT . 
n==-(X) 
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The operator K can be represented as an infinite diagonal matrix with ele
ments 21f ( -i)j Jj (k), K* K is diagonal with elements dj := 41f2 Jj (k)2 and 

00 t2 

K*(w2 K'IjJ)(t) = 21f . L Xj ('-:'i)j Jj(k) J eijs eikcos(t-s) ds 
. J=-OO h 

where the coefficients aRj are defined by 

t2 

aRj = 21f (-i)j Jj (k) if. JR(k) J ei(j-R)s ds 

h 

= {21fiR- j Jg(k) JR(k) i(j=-f.) (ei(j-R)t 2 - ei(j-f.)t1 ) , ~f ~ =1= C, 
21f Jj(k) (t2 - h), If J = C. 

We project equation (8.69) onto the finite dimensional space Xn = span {eijt : 
Ijl :::; n}. Then equations (8.69) and (8.70) take the discretized form 

(A + iiI - iiQo D) x = rand IIxl1 2 - Qox* Dx = 0 

where I is the identity matrix, 

D :=diag (dj : Ijl :::; n) with dj := 41f2 Jj (k)2, 

A := (aRj)R,j=-n, ... ,n, and Tj := i j Jj(k) e-ijOo . 

(8.72) 

We have carried out specific computations for this example with the specific 
choice of parameters k = 6, h = 400 , t2 = 140°, eo = 900 and n = 32. For 
large ranges of T) (from .1 to 10) we computed, by a simple bisection method, 
all zeros of the function cp( Qo) := Ilx11 2 / (x* Dx) - Qo, where x solves the first 
equation of (8.72) for Qo. The numerical results show that, for every fixed 
value of T), the function cp( Qo) has several zeros which correspond to local 
Pareto points. In Figure 8.13, left, for 100 values of T) between 0.1 and 10 we 
marked the values (-SNR(x), Q(x)) for the smallest and the second smallest 
zero of cpo The right plot of Figure 8.13 shows a section of the same plot. 

The following table lists some values of T) ranging between 0.1 and 10, together 
with corresponding values of SNR and Qo. 
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Fig. 8.13. Pareto points (lower branch) and other critical points (upper branch) 

fj SNR Qo fj SNR Qo 

0.1 478 0.219 5.0 3.24 0.200 
0.5 109 0.215 5.5 2.89 0.199 
1.0 40.2 0.213 6.0 2.53 0.198 
1.5 20.8 0.210 6.5 2.24 0.197 
2.0 13.3 0.208 7.0 2.09 0.196 
2.5 9.27 0.207 7.5 1.90 0.196 
3.0 6.95 0.205 8.0 1.74 0.195 
3.5 5.49 0.203 8.5 1.61 0.194 
4.0 4.52 0.202 9.0 1.50 0.194 
4.5 3.84 0.201 10. 1.33 0.193 

As we have seen above, the value of Qo is bounded below by 1/ fl-max where 
fl-max is the largest eigenvalue of JC* JC. In our example 1/ fl-max = 0.1822. 

We note, finally, that this lower branch shows relatively wide variation in the 
value of SNR for very small changes in the value of the quality factor Q. This 
indicates that one should be able to achieve relatively high values of SNR 
without an appreciable degradation of the quality factor. 
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Appendix 

A.I Introduction 

In this appendix we have collected some mathematical facts that we believe 
will be useful to the reader; a quick summary of some facts from real and 
functional analysis that we have used in this monograph. We would, of course, 
like to make this book as self-contained as possible. It is not possible to give 
a complete overview, with or without proofs, of all the mathematical facts 
that we have used; to do so would require another volume. There are plenty 
of very good sources to which we can refer the reader in full confidence that 
those books contain all the necessary details and are clearly written. 

In particular, while not intending to ignore many excellent texts, we have two 
classics in mind. First, the engineering community has been fortunate to have 
available, since the early 1970's, the book of A. Naylor and G. Sell [108]. It has 
the advantage of providing many concrete engineering examples to illustrate 
the application of the different topics. The other, is the now classic book of 
David G. Luenberger [88]. Luenberger's book has been used by generations of 
students, in disparate fields, who have need of a good foundation in functional 
analysis. For those who simply want to look up a particular result, we have 
also cited the books of Yosida [145] and the first volume of Dunford and 
Schwartz [36]. 

So we will try, mostly by examples, to remind the reader of some of the 
basic facts that form the basis of our exposition. There are many spots in 
the text that refer specifically to the appendix for a precise formulation of 
some results; those will all be found here. As we progress to less standard 
material, we will put in more details. Indeed, the final portion of the appendix 
is devoted to ordered vector spaces and Pareto optimality, a subject that does 
not commonly appear in the basic texts. There we provide more detail. 

It is our hope that the material gathered here will SUbstantially aid whose 
who have been so kind as to look into our book. 



286 A Appendix 

A.2 Basic Notions and Examples 

We start by assuming that the reader is familiar with the basic definition of 
vector spaces over the real and complex fields, and that the notions of norm 
and inner product on a vector space are likewise familiar. We call the elements 
in the vector space vectors. 

In a pre-Hilbert space, that is, in a vector space with an inner product which 
is, by definition, homogeneous with respect to the first argument, we recall 
that the inner product is associated in a natural way with a norm according 
to the equation (x,x) = Ilx11 2 . 

Of course, lRn and en are examples of pre-Hilbert spaces, but our main concern 
is with infinite dimensional function spaces. Let us give some quick examples. 
In all of them we use IF to stand for either lR or e. 
Examples A.1. 

(a) Let C[a, b] be the space of all continuous IF-valued functions defined on 
the closed bounded interval [a, b] c R Then C[a, b] is a vector space over 
IF. Moreover, we can define a norm on this space by 

IIxli oo := sup Ix(t)l, for x E C[a,b]. 
a~t9 

(A.l) 

(b) Look at the same vector space, but this time, introduce an inner product 
on the space by taking 

b 

(x,y)p J x(t) y(t) dt, x, Y E C[a, b]. (A.2a) 

a 

Then C[a, b] is a pre-Hilbert space and the inner product then defines the 
corresponding norm which we write as 

b 

v(x,x)p J Ix(t)12 dt, x E C[a, b]. (A.2b) 

a 

(c) Let mEN and a E (0,1]. We define the spaces Cm[a,b] and Cm,a[a,b] by 

Cm[a,b] := {x E C[a,b] : x(k) E C[a,b] , 1:::; k:::; m} (A.3a) 

and 

{ Ix(m)(t) - x(m)(s)1 } 
Cm,a[a; b]:= x E Cm[a, b] : sup < 00 

tops It - sla (A.3b) 

and we equip, them, respectively, with norms 
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(A.3c) 

and 

Ilxllcm •a := Ilxllcm + sup Ix(m)(t) - x(m)(s)1 . 
soft It - sic> 

(A.3d) 

Here we denote by x(k) the kth derivative of the function x. 

(d) We give here an example of a vector space of infinite sequences which we 
will call Co over IF. This space is defined by 

Co := {{Xd~=l C IF: lim Xk = o} , 
k-too 

and is a normed space with respect to the norm 

Ilxll := sup IXkl· 
kEN 

(A.4a) 

(A.4b) 

(e) Finally, we mention the vector spaces of p-summable sequences in IF which 
are denoted by PT. We will restrict ourselves to indices 1 :::; p :::; 00. These 
spaces are defined by 

for which we define the norm as 

and in the case p = 00, by 

equipped with the norm 

Ilxll oo := sup IXkl. 
kEN 

(A.5a) 

(A.5b) 

(A.5c) 

(A.5d) 

Note that the space Co C £00. We note that these spaces are all normed 
spaces but that £2 is a pre-Hilbert space when we define an inner product 
by 

00 
(x,Y)e 2 .- L Xk1h, where x = {Xk}k=l, y = {ydk=l' (A.5e) 

k=l 
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Once we have a norm, then we can define the open and closed balls with radius 
r and center Xo EX, respectively, by 

B(xo,r) := {x EX: IIx - xoll < r}, and 

B[xo, r] := {x EX: IIx - xoll ::::; r} . 

(A.6a) 

(A.6b) 

These definitions make it easier to define some standard topological ideas 
as, for example, that of bounded set or those of closed or open sets and of 
convergence. 

Definition A.2. Let X be a normed space over the field IF' = lR. or <C. 

(a) A subset M c X is called bounded if there exists r > 0 with M c 
B(x, r). The set M c X is called open if for every x E M there exists 
f > 0 such that B(x, f) C M. The set M C X is called closed if the 
complement X \ M is open. 

(b) A sequence {xdk=l C X is called bounded if there exists c > 0 such that 
Ilxkll ::::; c for all k. The sequence {Xk}k'~=l C X is called norm convergent 
if there exists x E X such that Ilx - Xk II converges to zero in R We denote 
the limit by x = limk--+oo Xk, or we write Xk --+ x as k --+ 00. The sequence 
{Xk}~l C X is called a Cauchy sequence if for every f > 0 there exists 
N E N with Ilxm - xkll < f for all m, k 2: N. 

(c) Let {Xk}k=l C X be a sequence. x E X is called an accumulation point 
if there exists a subsequence {ak n } ;;:"=1 that converges to x. 

(d) A set M C X is called compact if every sequence in M has an accumu-
lation point in M. 

We can make these definitions concrete by the following specific example. 

Example A.S. Let X = 0[0,1] over lR. and Xk(t) = tk, t E [0,1]' kENo The 
sequence {Xd~l converges to zero with respect to the Euclidean norm 11·11£2 
introduced in (A.2b). With respect to the supremum norm 11.11 00 of (A.l), 
however, the sequence does not converge to zero since Ilxklloo = 1 for all k. In 
fact, the sequence does not even have an accumulation point. This shows that 
the closed, bounded set B[O, 1] = {x E 0[0,1] : Ilxll oo ::::; I} is not compact. 

It is easy to prove that a set M is closed if and only if the limit of every 
convergent sequence {Xk}k=l eM also belongs to M. 

Definition A.4. 

(a) The sets 

intM ° M .- {x EM: there exists f > 0 with B(x, f) eM} 

and 

dM= M := {x EX: 3{xdk=1 eM with x = lim xd 
k--+oo 

are called the interior and closure, respectively, of M. 
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(b) The set M c X is called dense in X 'if M = X. 

As we have seen in Example A.3, in general the topological properties of a 
set depend on the norm in X, except in the case of finite dimensional spaces 
where there is essentially only one norm topology or, put another way, only 
one notion of convergence. More precisely, one can show that, in either ~n or 
en, if 11·111 and 11·112 are two given norms, then these norms are equivalent in 
the sense that there exist constants C2 ;:::: Cl > ° with 

In other words, every ball with respect to 11·111 contains a ball with respect to 
11.11 2 and vice versa. Further properties are collected in the following theorem. 

Theorem A.5. Let X be a normed space over IF and M c X be a subset. 
_ 0 

(a) M is closed if and only if M = M, and M is open if and only if M = M. 
o _ 

(b) If M =1= X is a linear subspace, then M = 0, and M is also a linear 
subspace. 

(c) In finite dimensional spaces, every subspace is closed. 
(d) Every compact set is closed and bounded. In finite dimensional spaces, the 

reverse is also true (Theorem of Bolzano- Weierstrass): In a finite dimen
sional normed space, every closed and bounded set is compact. 

A crucial property of the set of real numbers is its completeness. It is also a 
necessary assumption for many results in functional analysis. 

Definition A.6. (Banach Space, Hilbert Space) 

A normed space X over IF is called complete or a Banach space if every 
Cauchy sequence converges in X. A complete pre-Hilbert space is called a 
Hilbert space. 

The spaces en and ~n are Hilbert spaces with respect to their canonical inner 
products. The space C[a, bJ is not complete with respect to the inner product 
(-, ')£2 of (A.2a)! As an example, we consider the sequence Xk(t) = t k for 
OS; t S; 1 and Xk(t) = 1 for 1 S; t S; 2. Then {xdk=l is a Cauchy sequence 
in C[O, 2J but does not converge in C[0,2J with respect to (', ')£2 since, with 
respect to the L2 -norm, it converges to the function 

X(t) = {O, t < 1, 
1,t?:1, 

which is not continuous. The space (C[a, b], 11·11 (0)' however, is a Banach space. 

Every normed space or pre-Hilbert space X can be "completed," i.e., there 
exists a "smallest" Banach or Hilbert space X, respectively, that extends X 
(i.e., Ilxllx = Ilxllx or (x,Y)x = (x,y)x, respectively, for all x,y E X). More 
precisely, we hav~ the following result. 
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Theorem A.7. Let X be a normed space with norm 11·llx' There exists a 
Banach space (X, 11·llx ) and an injective (i.e. one-to-one) linear operator j : 
X -t X such that 

(i) The range j(X) C X is dense in X, and 
(ii) llixllx = II xlix for all x E X, i.e., j preserves the norm. 

Furthermore, X is uniquely determined in the sense that if X is a second space 
with properties (i) and (ii) with respect to a linear operator], then the operator 
] r 1 : j(X) -+ ](X) has an extension to a norm-preserving isomorphism 
from X onto X. In other words, X and X can be identified. 

If X is a pre-Hilbert space then X is a Hilbert space, and the operator j is 
unitary in the sense that (jx,jy)x = (x,Y)x for all x,y E X. 

Example A.B. As an example, we consider the completion of the pre-Hilbert 
space C[a, b] with respect to the norm of the inner product 

b 

(X,Y)L2(a,b) = J X(t)y(t)dt, X,y E C[a,b]. 

a 

This completion is denoted by L2(a, b). We note that this definition of L2(a, b) 
is of purely functional analytic character. The advantage of this definition is 
obvious: The space L2(a, b) is complete (i.e. a Hilbert space) and contains 
C[a, b] as a dense subspace. An equivalent and more direct approach uses the 
Lebesgue integration theory and will be sketched in the next section. 

Definition A.9. (Separable Space)The normed space X is called separable 
if there exists a countable dense subset M eX, i. e., if there exist M and a 
bijective mapping j : N -t M with M = X. 

The spaces en, lRn , L2(a,b), and C[a,b] are all separable. For the first two 
examples, let M consist of all vectors with rational coefficients; for the latter 
examples, take polynomials with rational coefficients. 

Definition A.IO. (Orthogonal Complement)Let X be a pre-Hilbert space 
(over IF = lR or C). 

(a) Two elements x and yare called orthogonal if (x, y) = o. 
(b) Let M C X be a subset. The set 

M.l := {x EX: (x, y) = 0 for all y E M} 

is called the orthogonal complement of M. 

M.l is always a closed subspace and M C (M.l).l. Furthermore, A C B 
implies that B.l C A.l. 

The following theorem is a fundamental result in Hilbert space theory and 
relies heavily on the completeness property. 
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Theorem A.11. (Projection Theorem) 

Let X be a Hilbert space and V c X be a closed subspace. Then V = (V 1- ) 1- . 

Every x E X possesses a unique decomposition of the form x = v + w, where 
v E V and w E V 1-. The operator P : X -+ V, X t-+ v, is called the orthogo
nal projection operator onto V and has the properties 

(a) Pv = v for v E V, i. e., p 2 = P; 
(b) Ilx - Pxll :::; Ilx - vii for all v E V. 

This means that Px E V is the best approximation of x E X in the closed 
subspace V. 

There exists a generalization of this result to best approximations in convex 
sets. First, we recall the definition of a convex set. 

Definition A.12. A subset U C X of a vector space X is called convex if 

AX + (1 - A)y E U for all x, y E U and A E [0,1]. 

Theorem A.13. Let X be a Hilbert space and U C X be a closed convex set. 
Then, for every x E X there exists a unique u E U such that Ilx-ull :::; Ilx-ull 
for all u E U. Furthermore, u E U is characterized by the variational inequality 

Re (u - x, U - u) :::; 0 for all u E U . 

Proof: Note that [ := inf Ilu - xii :::=: 0 so that the function u -+ Ilu - xii is 
uEU 

bounded below on U. Let u(l), u(2), .. , be a sequence of points of U such that 
limi--+oo Ilx - u(i) II = L Then, by the parallelogram equality, 

Ilu(i) - u(j)112 = II(u(i) - x) - (u(j) - x)11 2 

= 21Iu(i) - xl1 2 + 21Iu(j) - xl1 2 - 411 ~ (u(i) + u(j)) _ xl1
2 

Since U is convex, Hu(i) + u(j)) E U so that II ~(u(i) + u(j)) - xii:::=: L Hence 

Ilu(i) - u(j) 112 :::; 21Iu(i) - xl1 2 + 2I1u(j) - xl1 2 - 4 [2. 

As i, j -+ 00, we have 21Iu(i) -x11 2 +21Iu(j) -x11 2 -4 [2 -+ O. Thus, {uU) }~l is 
a Cauchy sequence and has a limit point u. Since U is closed, u E U. Moreover, 
since the function u -+ Ilu - xii is a continuous function from H -+ JR., 

[ = lim Ilu(j) - xii = Ilu - xii· 
J--+OO 

In order to show uniqueness of the point with minimal norm, suppose that 
there were two points, u, v E U, u -=I- v, such that Ilu-xll = Ilv-xll = L Then, 
again by the parallelogram equality, 
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0< lIu-vl1 2 = 211u-x1l 2 + 211v-x1l 2 - 411~(U+V)_XI12 

= 2t2 + 2t2 _ 411~(U+V) _XI12, 

so that 4 t 2 > 411 !(u + v) - xl1 2 
or II !(u + v) - xii < t which would give a 

vector in U whose distance to x is less than the infimum t. 0 

A.3 The Lebesgue Integral and Function Spaces 

A.3.1 The Lebesgue Integral 

There are several ways to introduce the idea of the Lebesgue integral and the 
primary reason for doing so in applied analysis is that its behavior with respect 
to limiting operations is significantly better than that of the classical Riemann 
integral. We cannot pretend to give a treatment of the Lebesgue integral here. 
Rather, we give just some basic definitions and statements of results which 
illustrate this advantage and which explain the use of the integral in the text. 
We do not prove any of the results but refer to, e.g. the monograph [142]. 

We will confine our discussion to the real line, JR, and start with a simple 
definition. 

Definition A.14. A subset N c JR is said to have measure zero provided 
that, for any E > 0 the set N can be covered by a finite or countably infinite 
set of intervals whose total length does not exceed E. We call these sets also 
zero sets. 

In what follows, the behavior of functions on sets of measure zero are ignored, 
as that behavior is not important with respect to the integral. A simple ex
ample of such a set is a set containing finite or count ably many points of 
lR. 

Now, given a finite (or infinite) interval (a, b) C JR, we consider the class 
of step functions <p which are piecewise constant functions, i.e. for which 
finitely many subintervals Ik C (a, b), k = 1, ... ,p, and constants Ck, k = 
1, ... ,p, exist with I j n Ik = (/) for j =I- k and (a, b) = U1=1 Ik and 

( ) {
Ck' t Elk, k = 1, ... ,p, 

<p t := 
0, otherwise. 

Obviously, the Lebesgue integral of f is defined by 

b 

J <p(t) dt 
a 
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From this definition it is clear that it does not matter to which of the subin
tervals the discontinuities belong. 

One first looks at pointwise convergence of functions. 

Definition A.15. Let {rpk}k'=1 be a sequence of functions. 

(a) This sequence is said to be monotonically decreasing, if rpH1 (t) ::; 
rpk(t) for all kEN and all t E (a, b) \N, where N is a set of measure zero. 

(b) This sequence is said to converge almost everywhere in (a, b) to the 
function rp provided that rpk(t) -+ rp(t) for all t E (a, b) \ N, where N is a 
set of measure zero. 

(c) A function f: (a, b) -+ lR is called (Lebesgue-) measurable if there exists 
a sequence of step functions which converge to f almost everywhere. 

It can be shown that sums, differences, products, and scalar mUltiples of mea
surable functions are again measurable. For step functions we have two very 
simple results (the proofs of which are, however, not simple at all): 

Proposition A.16. Let {rpk}k'=l be a sequence of step functions. 

(a) If this sequence converges monotonically to 0 almost everywhere, the se
quence of values of the corresponding integrals converges to o. 

(b) If this sequence is increasing and has integrals which are bounded by a sin
gle bound, then the sequence of step functions converges almost everywhere 
to a finite limit f. 

From this last proposition, it makes sense to define the Lebesgue integral 
of such a limiting function in terms of the limits of the integrals. Indeed, since 
the integrals of the step functions all have a common bound and since they 
are increasing, these numbers converge to a finite limit and so we make the 
definition: 

b b 

J f(t) dt := lim J rpk(t) dt. 
k--+oo 

a a 

In order for this definition to make sense, we must of course check that the 
value of the integral is independent of the choice of sequence of step functions 
converging almost everywhere to the function f. It is possible, with little 
effort, to verify this fact. 

We note that, from this definition, it is immediate that the integral is additive 
in the sense that 

b b b 

J [J(t) + g(t)] dt J f(t)dt + J g(t)dt. 
a a a 

This construction effectively extends the definition of the integral to the class 
of functions whish are limits of increasing sequences of step functions. The 
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next step is to extend the integral to functions which can be written as dif
ferences of functions of this latter class. Given two such functions, fr and 12, 
we define 

b b b 

J [fret) - 12 (t)] dt := J fr(t)dt - J h(t)dt. 

a a a 

From the additivity of the integral defined before, it is easy to see that if gl 
and g2 are such that fret) - h(t) = gl(t) - g2(t) almost everywhere, then 

b b J [fret) - 12 (t)] dt = J [gl(t) - g2(t)] dt. 

a a 

The functions for which his integral are defined are called integrable (in the 
sense of Lebesgue) or summable. 

A complex-valued functions f : (a, b) -+ C is said to be integrable if its real
and imaginary parts are integrable and we obviously define 

b b b 

J f (t) dt = J Re f (t) dt + i J 1m f (t) dt . 

a a a 

The basic properties of the Lebesgue integral are given next. 

Theorem A.17. The set of (real or complex valued) integrable functions is 
a vector space over lR or C, respectively. Moreover, if f, defined on (a, c) is 
integrable over (a, b) and also integrable over (b,c) for some b E (a, c) then it 
is integrable over the interval (a, c) and 

c b c 

J f (t) dt = J f (t) dt + J f (t) dt . 

a a b 

Furthermore, it is absolutely integrable in the sense that, if f is integrable, 
then so is ifi and the triangle inequality holds 

c c 

J f ( t) dt :::; J I f ( t ) I dt . 

a a 

Finally, for every integrable function, there exists a sequence of step functions 
{'PkHo=l such that 'Pk(t) -+ f(t) almost everywhere and 
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One can show that, if a function is integrable in the sense of Riemann, then 
it is integrable in the sense of Lebesgue and that the values of the integrals 
coincide. What is particularly important about the Lebesgue integral is its 
behavior with respect to convergence of functions. There are two main results 
which deal with sequences of integrable functions (not just step functions). 

Theorem A.lS. (Beppo-Levi) 

Every increasing sequence {fn}~l of integrable functions on the interval (a, b) 
whose integrals have a common bound, converges almost everywhere to an 
integrable function f and 

b b 

J f(t) dt lim J fn(t) dt. 
n--+oo 

a a 

It is a corollary of this theorem that J: I f (t) I dt = 0 if and only if f (t) = 0 
almost everywhere in (a, b). 

Finally, we have the most often used convergence result which we have used 
several times in the text. Note that there is no a priori assumption that the 
limit function in this theorem is integrable. 

Theorem A.l9. (Lebesgue Dominated Convergence Theorem) 

Let {fn}~=l be a sequence of integrable functions on the interval (a, b) which 
converge almost everywhere to a function f. Suppose further than there exists 
an integrable function g such that for almost all t E (a, b) , 

Ifn(t)1 ::::; g(t) for all n, 

then the function f is integrable and 

b b J f(t) dt lim J fn(t) dt. 
n--+oo 

a a 

A.3.2 Sobolev Spaces 

Using the Lebesgue integration theory we can now define the space L2(a, b) 
as follows. First, we define the vector space 

L2(a, b) := {x: (a, b) -t C : x is measurable and Ixl2 integrable}, 

Then L2(a, b) is a vector space since, for x, y E L2(a, b) and a E C, x + y and 
ax are also measurable and ax, x + y E L2(a, b), the latter by the binomial 
theorem Ix(t) + y(t)12 ::::; 2Ix(t)12 + 2Iy(t)12. We define a sesquilinear form on 
L2(a, b) by 
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b 

(X,y) := J x(t) y(t) dt, x,y E £2(a, b). 
a 

(-,.) is not an inner product on £2(a, b) since (x, x) = 0 only implies that x 
vanishes almost everywhere, i.e., that x EN, where N is defined by 

N := {x E £2(a, b) : x(t) = 0 a.e. on (a,b)}. 

Now we define L2(a, b) as the factor space 

and equip L2(a, b) with the inner product 

b 

([x], [yJ) £2 := J x(t) y(t) dt, x E [x], Y E [y]. 
a 

Here, [x], [y] E L2(a, b) are equivalence classes of functions in £2(a, b), i.e. 
[x] = {z E £2(a, b) : z - x EN}. Then it can be shown that this definition 
is well-defined and yields an inner product on L2(a, b). From now on, we will 
write x E L2(a, b) instead of x E [x] E L2(a, b). Furthermore, it can be shown 
that L2(a, b), defined in this way, is complete and contains O[a, b] as a dense 
subspace. Therefore, it is the completion of O[a, b] with respect to the inner 
product (.,.) as it was defined in Example A.S. 

In an analogous way, the spaces LP (a, b) for p 2': 1 can be defined by the two 
equivalent ways indicated above. In particular, it is the completion of O[a, b] 
with respect to the norm 

The space LOO(a, b), however, has to be defined by the (Lebesgue) integration 
theory as follows: As we did it for L2(a, b), we define first the space M(a, b) of 
all functions, defined on the interval (a, b), taking values in C and measurable 
with respect to Lebesgue measure such that the essential supremum of x 
is finite. The essential supremum of Ixl is defined by 

esssuplxl:= inf{m:Jx(t)J::::ma.e.on(a,b)}. (A.7a) 

Thus the essential supremum is the least number m such that the inequality 
J x (t) J :::: m holds except on a set of measure zero. 

Again, we set N := {x E M(a, b) : x(t) = 0 a.e. on (a, b)} and define the 
space UXJ(a, b) as the set of equivalence classes of functions of M(a, b), i.e. 
LOO(a, b) = M(a, b)jN. We equip LOO(a, b) with norm 
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II[x]lloo := esssup Ixl for any x E [x]. (A.7b) 

Again, we identify the equivalence class [x] with x. With this definition, it can 
be shown that LOO(a, b) is a Banach space which contains C[a, b] as a closed 
proper subspace. 

We now turn to the definition of Sobolev spaces. Again, there are different 
equivalent definitions. Instead of using distributional derivatives we again de
fine them as the completion of spaces of smooth functions with respect to an 
integral norm using Theorem A.7: 

Definition A.20. Let dEN, and D C IRd an open and bounded set. For 
every multi-index q = (ql,"" qd) ENg we define the differential operator 

(a) For every mEN the space cm(D) is defined as the space of m-times 
in D continuously differentiable functions x : D --+ C such that Dq can be 
extended to uniformly continuous functions on D for every multi-index q E Nd 

with ql + ... + qd :::; m. 

(b) For every mEN the Sobolev space Hm(D) is defined as the completion 
of Cm(D) with respect to norm, induced by the inner product 

(x, Y)H"'(fJ) = (x, Y)£2(fJ) + 2: (Dqx, D qY)£2(fJ) , x, Y E Cm(D) , (A.8) 
iqi:S;m 

where Iql = ql + ... + qd and the L2-inner product is defined as 

(x, Y)£2(fJ) = J J x(t) y(t) dt. 

fJ 

In the one-dimensional case, when D = (a, b) is an interval, the induced norm 

is equivalent to the norm 

Therefore, the Sobolev space Hm (a, b) can also be characterized as 

HP(a, b) = {x E C(p-l) [a, b] : x(p-l)(t) = x(p-l)(a) + J: z(s) dS,} . (A.9) 
. a :::; t :::; b, for some z E L2 (a, b) 
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z is the generalized derivative of x of order m for which one write, of course, 
x(m). Rellich's imbedding theorem states that the Sobolev space Hm(D) 
is compactly imbedded in the Sobolev space Hn(D) whenever n < m and the 
domain D is "smooth enough" I 

We also define the Sobolev space HJ(D) of generalized functions with zero
boundary conditions as the completion of {x E C I (D) : x = 0 on oD} with 
respect to the HI-norm. 

It can be shown that the trace operator 'Yo : C(D) --7 C(oD) which maps 
a continuous function x on D onto the restriction on the boundary oD has 
a bounded extension from HI(D) into L2(oD). The range of this extension 
'Yo : HI(D) --7 L2(oD) is denoted by H I /2(oD) and is equipped with the 
norm 

It's dual space is denoted by H-I/2(oD). If oD is smooth enough, these space 
and, more generally, the spaces HS (oD) for real values of s can be defined 
via local coordinates and the Fourier transform. The standard reference to 
Sobolev spaces is [3]. For an equivalent definition for smooth closed curves see 
also [74]. 

AA Orthonormal Systems 

In this section, let X always be a separable Hilbert space over the field IF = lR 
or C. 

Definition A.21. (Orthonormal System) 

A countable set of elements A = {Xk : kEN} is called an orthonormal 
system if 

(i) (Xk,Xj) =Oforallk=/=j and 
(ii) Ilxkll = 1 for all kEN. 

A is called a complete or a maximal orthonormal system if, in addition, 
there is no orthonormal system, B, with A c B and A =/= B. 

One can show using Zorn's Lemma (see [61]) that every separable Hilbert 
space possesses a maximal orthonormal system. Furthermore, it is well-known 
from linear algebra that every countable set of linearly independent elements 
of X can be ortho-normalized. The algorithm for doing so is called the Gram
Schmidt Orthogonalization Process. 

For any set A c X, let 

1 This latter assumption holds, e.g., if [l satisfies a cone condition (see [3]). 
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spanA := {t CXk Xk : CXk ElF, Xk E A, n E N} (A.10) 
k=l 

be the subspace of X spanned by A. 

Theorem A.22. Let A = {Xk : k = 1,2,3, ... } be an orthonormal system. 
Then: 

(a) Every finite subset of A is linearly independent. 
(b) If A is finite, i.e., A = {Xk : k = 1,2, ... ,n}, then for every x E X there 

exist uniquely determined coefficients CXk ElF, k = 1, ... ,n, such that 

(A.1l) 

The coefficients CXk are given by CXk = (x, Xk) for k = 1, ... , n and are 
called the (generalized) Fourier coefficients of x with respect to the 
orthonormal system A. 

(c) For every x EX, the following Bessel inequality holds: 

00 

L I(X,Xk)1 2 ::::: Ilx112. (A.12) 
k=l 

In particular, the series converges in lR. 
(d) A is complete if and only if span A is dense in X. 
(e) A is complete if and only if for all x E X Parseval's equation holds: 

00 

L I(x, xk)1 2 = Ilx112. (A.13) 
k=l 

(f) A is complete if and only if every x E X has a (generalized) Fourier 
expansion of the form 

x (A.14) 

where the convergence is understood in the norm of X. In this case, Par
seval's equation holds in the following more general form: 

00 

(x,y) = L(X,Xk)(y,Xk). (A.15) 
k=l 

This important theorem includes, as special examples, the classical Fourier 
expansion of periodic functions and the expansion with respect to orthogonal 
polynomials. We recall these two examples. 
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Example A.23. (Fourier Expansion) 
(a) The functions Xk(t) := exp(ikt)/V21r, k E Z, form a complete system 
of orthonormal functions in L2(0,27f) over C. By part (f) of the previous 
theorem, every function x E L2(0, 27f) has an expansion of the form 

00 211" 

x(t) = :7f L eikt J xes) e-iksds, 
k=-oo 0 

where the convergence is understood in the sense of L2, i.e., 

211" N 211" 2 

Jlx(t) - 2~ L eikt J xes) e-ikSdsl dt -+ 0 
o k=-M 0 

as M, N tend to infinity. For smooth periodic functions uniform convergence 
can also be shown. 

(b) The Legendre polynomials Pk , k = 0,1, ... , form a maximal orthonor
mal system in L2( -1,1). They are defined by 

with normalizing constants 

/k 
,j2k+1_1_ 

2 k! 2k . 

We refer to [50] for details. 

Other important examples will be given later. 

A.5 Linear Bounded and Compact Operators 

For this section, let X and Y always be normed spaces and A : X -+ Y be a 
linear operator. 

Definition A.24. (Boundedness, Norm of A) 

The linear operator A is called bounded if there exists c > 0 such that 

IIAxl1 ::; c Ilxll for all x EX. 

The smallest of these constants is called the norm of A, i.e., 

IIAxl1 
IIAII := !~~ W' (A.16) 
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Theorem A.25. The following assertions are equivalent: 

(a) A is bounded. 
(b) A is continuous at x = 0, i.e., Xj --+ 0 implies that AXj --+ O. 
(c) A is continuous for every x E X. 

The space £(X, Y) of all linear bounded mappings from X to Y with the 
operator norm is a normed space, i.e., the operator norm has the usual prop
erties of a norm as well as the following: Let B E £(X, Y) and A E £(Y, Z), 
then AB E £(X,Z) and IIABII:::; IIAIIIIBIi. 
Integral operators are the most important examples for our purposes. 

Theorem A.26. (a) Let k E L2 (( c, d) x ( a, b)). The operator 

b 

(Ax)(t) := j k(t, s) x(s) ds, t E (c, d), x E L2(a, b), 

a 

(A.17) 

is well-defined, linear, and bounded from L2 (a, b) into L2 (c, d). Furthermore, 

d b 

IIAIIL2 :::; j jlk(t,s)1 dsdt. 

c a 

(b) Let k be continuous on [c, d] x [a, b]. Then A is also well-defined, linear, 
and bounded from C[a, b] into C[c, d] and 

b 

IIAlloo = max j Ik(t, s)1 ds. 
tE[c,d] 

a 

We can extend this theorem to integral operators with weakly singular kernels. 
We recall that a kernel k is called weakly singular on [a, b] x [a, b] if k is 
defined and continuous for all t, s E [a, b], t =1= s, and there exist constants 
c> 0 and a E [0,1) such that 

Ik(t, s)1 :::; cit - sl-<> for all t, s E [a, b], t =1= s. 

Theorem A.27. Let k be weakly singular on [a, b] x [a, b]. Then the integral 
operator A, defined by (A. 11) for [c, d] = [a, b], is well-defined and bounded as 
an operator in L2(a, b) as well as in C[a, b]. 

The statement of this last theorem suggests that if we have a bounded linear 
operator defined on a normed linear space, it is possible to extend this operator 
to the completion of that space. Indeed, we can state the following theorem 
which makes this statement precise. 
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Theorem A.28. Let X and Y be normed spaces with completions X and 
Y respectively, and suppose that A E £(X, Y). Then there exists a unique 
extension A E £()(, Y) with I/AII = IIAII. 
For the special case Y= IF, we denote by X* := £(X, IF) the dual space 
of X. Analogously, the space X**:= (X*)* is called the bidual of X. The 
canonical embedding j : X -+ X**, defined by 

(jx)x* := x*(x) , x EX, x* E X* , 

is linear, bounded, one-to-one, and satisfies lUx II = Ilxll for all x E X. For the 
latter property, one needs the Hahn-Banach Theorem (in particular Corol
lary A.42 below). 

We pause to give two examples of Banach spaces and their duals. 

Examples A.29. (a) Let p E [1, (0) and T E ]Rd some measurable set. Then 
an important result from integration theory states that the dual of V(T) is 
isomorphic to Lq(T) where q = 00 ifp = 1, and q is determined by 1/p+1/q = 
1 if p E (1, (0). The dual form is given by 

(x*,x) = J x*(t)x(t)dt, XEV(T), x*EU(T). 

r 

(b) We look at the example ofthe Banach space Co (see (A.4a)) over R Assume 
that x* E Co and let e(k) be the usual unit vectors. Then, for any x E co, 

n 

lim '"' Xk e(k) = x, 
n-too~ 

k=1 

and by continuity of the functional x*, 

lim (t Xk x* (e(k»)) . 
n-too 

k=1 

For simplicity, define ~k := x*(e(k»), kEN, and define the sequence 

{x~N)}:1 c Co of elements in Co by 

{ 
I~kl . 

xr):= T,;' If k :::; N and ~k -=1= 0, 

o , if k > N or ~k = 0 . 

Then Ilx(N)II:::; 1 and Ilx*llco = sup Ix*(x)1 2: Ix*(x(N»)1 = L~=11~kl. Let
IIxl19 

ting N -+ 00, it follows that y := {~d~1 E £1 and that Ilyllcl = L~=1 I~kl :::; 
Ilx* Ilea' 
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Conversely, if Y = {Yk}k::1 E £1, then for any X= {Xk}k::1 E Co, 

and so y defines an element x* E Co and, moreover, IIx*llco :::; Ilyiltl. 
This computation shows that f1 is the dual space of Co. 

Definition A.30. (Reflexive Space) 

The normed space X is called reflexive if the canonical embedding, j, is onto, 
i.e., a norm-preserving isomorphism from X onto the bidual space X**. 

The following important result gives a characterization of X* in Hilbert 
spaces. 

Theorem A.31. (Riesz-Fischer) 

Let X be a Hilbert space. For every x EX, the functional x* (y) := (y, x), Y E 
X, defines a linear bounded mapping from X to IF, i. e., x* E X* . Furthermore, 
for every x* E X* there exists one and only one x E X with x* (y) = (y, x) 
for all y E X and 

Ilxll = IIx*11 := sup Ix*(y)1 . 
#0 Ilyll 

It is instructive to look at a concrete example. 

Example A.32. Consider the complex Hilbert space £2( -1T, 1T). Then, the 
Riesz-Fischer theorem says that, for a given x* E (£2 ( -1T, 1T) r, there is a 
unique x E £2(-1T,1T) such that, for all y E L2(-1T,1T), we have 

7r 

x*(y) = J y(t)x(t)dt. 

-7r 

The Riesz-Fischer Theorem implies that every Hilbert space is reflexive. It 
also yields the existence of a unique adjoint operator for every linear bounded 
operator A : X --+ Y. 

Theorem A.33. (Adjoint Operator) 

Let A : X --+ Y be a linear and bounded operator between Hilbert spaces. 
Then there exists one and only one linear bounded operator A * : Y --+ X 
with the property 

(Ax, y)y = (x, A*y)x for all x E X, Y E Y. 

This operator A* : Y --+ X is called the adjoint operator to A. For X = Y, 
the operator A is ~alled self-adjoint if A* = A. 
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Example A.34. (a) Let X = £2(a, b), Y = £2(c, d), and k E £2 ((c, d) x (a, b)). 
The adjoint A * of the integral operator 

b 

(Ax)(t) J k(t, s) x(s) ds, t E (c, d), x E £2(a, b) , 

a 

is given by 

d 

(A*y)(t) J k(s,t)y(s)ds, t E (a, b), y E £2(c, d). 

c 

(b) Let the space X = era, b] of continuous function over C be supplied with 
the £2-inner product. Define f, g : era, b] -t ~ by 

b 

f(x) := J x(t) dt and g(x):= x(a) for x E era, b]. 
a 

Both f and g are linear. However f is bounded while g is unbounded. Accord
ing to Theorem A.28 there is an extension of f to a bounded linear functional 
(also denoted by f) on £2(a,b), i.e., f E (£2(a,b))*. By Theorem A.33, we 
can identify (£2 (a, b)) * with £2 ( a, b) itself. For the given f, the representation 
function is just the constant function 1 since f(x) = (x, 1)£2 for x E £2(a, b). 
The adjoint of f is calculated by 

b 

f(x)·y = J x(t)ydt = (X,y)L2 = (x,f*(Y))£2 
a 

for all x E £2(a, b) and y E C. Therefore, f*(y) E £2(a, b) is the constant 
function with value y. 

(c) Let X be the Sobolev space Hl(a, b), i.e., the space of £2-functions that 
possess generalized £2-derivatives: 

Hl(a, b) := {x E £2(a, b) : there exists ~ E IF and y E £2(a, b) with}. 
x(t) = a + fa y(s) ds for t E (a, b) 

We denote the generalized derivative y E £2(a, b) by x'. We observe that 
Hl(a, b) c era, b] with bounded embedding. As an inner product in Hl(a, b), 
we define 

(x, y) Hi := x(a) y(a) + (x', Y')£2, x, Y E Hl(a, b). 

Now let Y = £2(a,b) and A: Hl(a,b) -----+ £2(a,b) be the operator x J-7 x' 
for x E Hl(a, b). Then A is well-defined, linear, and bounded. It is easily seen 
that the adjoint of A is given by 
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t 

(A*y)(t) J y(s) ds, t E (a, b), y E L2(a, b). 

a 

For the remaining part of this section, we will assume that X and Yare 
normed spaces and K : X -+ Y a linear and bounded operator. 

Definition A.35. (Compact Operator) 

The operator K : X -+ Y is called compact if it maps every bounded set S 
into a relatively compact set K(S). 

We recall that a set M c Y is called relatively compact if every bounded 
sequence {Yj}~l eM has an accumulation point in M, i.e., if the closure M 
is compact. 

From the definition we see that a compact operator is automatically bounded. 
The converse statement is, however, true if and only if the space X is finite 
dimensional. 

Theorem A.36. 

(a) If X is finite dimensional, and Y a normed space then every linear operator 
K : X -+ Y is compact. 

(b) Let X be a normed space. Then the identity operator I : X -+ X is compact 
if and only if X is finite dimensional. 

The set of all compact operators from X into Y is a closed subspace of £(X, Y) 
and is even invariant with respect to composition with a bounded linear op
erator in the sense given in the following theorem. 

Theorem A.37. 

(a) If Kl and K2 are compact operators from X into Y, then so are Kl +K2 
and >'K 1 for every>. ElF. 

(b) Let Kn : X ---+ Y be a sequence of compact operators between Banach 
spaces X and Y. Let K : X ---+ Y be bounded, and let Kn converge to K 
in the operator norm, i.e., 

11K - KII = IIKn x - Kxll 
n !~~ Ilxll ---+ 0, 

as n -+ 00. 

Then K is also compact. 
(c) If L E £(X, Y) and K E £(Y, Z), and L or K is compact, then KL is 

also compact. 
(d) Let An E £(X, Y) be pointwise convergent to some A E £(X, Y), i.e., 

Anx -+ Ax for all x EX. If K : Z -+ X is compact, then IIAnK - A KII -+ 
0, i.e., the operators AnK converge to AK in the operator norm. 
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The integral operators give important examples of compact operators. 

Theorem A.38. 

(a) Let k E L2((c,d) x (a,b)). The operator K: L2(a, b) ---+ L2(C, d), defined 
by 

b 

(Kx)(t) := J k(t, s) xes) ds, t E (c, d), x E L2(a, b), (A.I8) 

a 

is compact from L2(a, b) into L2(c, d). 
(b) Let k be continuous on [c, d] x [a, b] or weakly singular on [a, b] x [a, b] (in 

this case [c,d] = [a,b]). Then K defined by (A.18) is also compact as an 
operator from C[a, b] into C[c, d]. 

We will now study equations of the form 

x - Kx = y, (A.I9) 

where the linear operator K : X ---+ X is either small or compact. The first the
orem is sometimes referred to as the perturbation theorem and is related 
to the Neumann series. 

Theorem A.39. Let X be a Banach space and K : X ---+ X be a linear 
operator such IIKII < 1. Then the limit 

n 

S := lim'" K n 
n-+oo~ 

j=O 

(A.20a) 

exists in the norm of C(X, X) and S E C(X, X) is the inverse of I - K. 
Furthermore, 

1 
11(1 - K)-lll :::; I-IIKII (A.20b) 

The following theorem extends the well-known existence results for finite lin
ear systems of n equations and n variables to compact perturbations of the 
identity. 

Theorem AAO. (Riesz) 

Let X be a normed space and K : X ---+ X be a linear compact operator. 

(a) The nullspace N(I - K) = {x EX: x = K x} is finite-dimensional and 
the range (I - K) (X) is closed in X. 

(b) If I - K is one-to-one, then I - K is also surjective, and the inverse (I -
K) -1 is bounded. In other words, if the homogeneous equation x - K x = 0 
admits only the trivial solution x = 0, then the inhomogeneous equation 
x - K x = y is uniquely solvable for every y E X and the solution x depends 
continuously on y. 
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A.6 The Hahn-Banach Theorem 

The Hahn-Banach Theorem has been called the most important theorem of 
Functional Analysis for the study of optimization problems. The theorem 
can be stated in two apparently different forms, the extension form and the 
geometric form. Each of these forms has several important corollaries so that 
in a certain sense, when one refers to the Hahn-Banach Theorem, one refers 
to an entire set of results and uses the particular version appropriate to the 
particular application. Indeed, we have used both forms in this book. The 
theorem is true in very general settings, far more general than the versions 
stated here. But these versions are those which are particularly useful to us. 

The extension form of the Hahn-Banach Theorem is concerned with the ex
tension of a bounded linear functional, defined on a proper subspace V of 
a normed space X, to a linear functional defined on the entire space with
out increasing the norm of the linear functional. The norm of an element 
x E V is the same as its norm with respect to the entire Banach space, i.e., 
Ilxllv = Ilxll x · Moreover, if we have a bounded linear functional defined on 
such a subspace V, then x* E V* and 

* Ix*(y)1 
Ilx Ilv* := sup -11-11- . 

yEV y X 

The precise statement of the extension result is the following. 

Theorem A.41. (Hahn-Banach) 

Let X be a normed linear space over IF = JR or C, and let x* be a bounded 
linear functional defined on a closed subspace V of X with V "I X. Then x* 
has an extension :i;* E X*, i. e., :i;* (x) = x* (x) for all x E V, which satisfies 
Ilx*llv* = ll:i;*llx* . 

The first important fact to follow from this theorem is that there are non
zero elements of X* and, in fact, sufficiently many to separate points. 

Corollary A.42. 
Let X be a Banach space over IF. 

(a) For every x E X, x"l 0, there is an x* E X*, x* "1O, such that x*(x) = 
Ilx*llx* Ilxllx· 

(b) For any x, y E X, x "I y, there exists a functional x* E X* such that 
x*(x) "I x*(y). 

The first claim of the corollary is easily established if we consider the one
dimensional subspace V = span{x}, and define x*(ax) := a Ilxll. Then 
Ilx* II v* = 1 and so x* has an extension to all of X of unit norm. 

The second part follows easily from the first by looking at the non-zero element 
x-yEX. 0 
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In order for us to set the stage for the geometric form of the Hahn-Banach 
Theorem, we need the definition of a hyperplane. 

Definition A.43: Let X be a normed space and V C X a subspace. 

(a) Any set of the form Xo + V :~ {xo + v : v E V} with Xo E X is called a 
linear manifold in X. 

(b) Any linear manifold Xo + V is called a hyperplane provided there is no 
subspace W C X with V ~ W ~ X. 

(c) In the case that V is a closed subspace, we refer to the linear manifolds as 
closed linear manifolds. 

Example A.44. If X = JR.n considered as a real vector space, A E JR.mxn a 
matrix where m :::; n, and b E JR.m then M = {x E JR.n : Ax = b} is a closed 
linear manifold. In JR.2 this can be a point (if m = n = 2 and A regular) or a 
line or all of JR.2. For general n = 3 and m = 1 the linear manifold M reduces 
to M = {x E JR.3 : aT x = b} where a E JR.3. If a i- n then M describes a 
plane in JR.3 in normal form 

From this simple example, we can see that there is an intimate connection 
between the geometric notion of a closed hyperplane and that of a non-zero 
bounded linear functional on X. Indeed, we have a correspondence between 
the two described in the next proposition. 

Proposition A.45. 
If x* E X* and x* i- 0, and c E 1F then the set H := {x EX: x*(x) = c} 
is a closed hyperplane in X. Conversely, if H is a closed hyperplane in X, 
then there exist a linear functional x* E X* and a constant c E 1F such that 
H = {x EX: x* (x) = c}. 

For any closed hyperplane, H, we can normalize c so that c E R Even more, 
if 0 ~ H, then c i- 0 and we can normalize further by taking :i;* = x* / c so 
that the equation defining the closed hyperplane is :i;* (x) = l. 
In the case that the normed space X is over 1F = JR., i.e., is a real normed linear 
space, the hyperplane H determines open and closed half-spaces, namely: 

and 

H-:;.c .- {x EX: x*(x) :::; c}, and H<c := {x EX: x*(x) < c}, 
(A.21a) 

H;::.c := {x EX: x*(x) ;::: c}, and H>c := {x EX: x*(x) > c}. 
(A.21b) 

The use of the term half-space is justified by the observation that 

{x EX: x*(x) :::; c} U {x EX: x*(x) ;::: c} = X, 
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and 
{x EX: x*(x) ::; c} n {x EX: X*(X) :::: c} = H. 

We remark that of the half-spaces defined in (A.21), the half- spaces H-:;.c and 
H::;:.c are closed while the others are ope~. This observation follows immediately 
from the fact that the functional x* is continuous. 

With these ideas in hand, we can state the basic geometric form of the Hahn
Banach theorem which is also called the strict separation theorem. 

Theorem A.46. (Strict Separation Theorem) 

Let X be a normed space over IF, K c X be a closed convex set, and Xo E 

X \ K. Then there exists a closed hyperplane H := {x EX: x* (x) = c} with 
x* -I=- 0 and c E lR such that 

Re [x*(xo)] < c ::; Re [x*(x)] for all x E K. 

Remark: If K is a closed subspace we can replace x by AX in this inequality 
(for any A E IF) from which it easily follows that even x*(x) = 0 for all x E K. 
In this case c = 0 can be chosen. 

Example A.47. 
As an example we consider the solvability of a linear system to determine 
x E X such that 

x'k(x) = ak, k= 1,2, ... ,n, (A.22) 

where x'k E X*, and ak E e are given. Define a map T : X -+ en by 

T(x) := (xi (x) , ... , x~(x)) T, x EX. 

Let R = T(X) denote the range of T and note that R is a finite-dimensional 
subspace of en of dimension n and therefore closed. 

We claim that the system is solvable, i.e. a = (aI, a2, ... , an) T E R, if and 
only if, the following condition (C) holds: 

For every vector (AI,A2, ... ,An)T E en with L~=IAkX'k = 0 we have that 
L~=l Ak ak = O. 

Indeed, suppose that this condition (C) holds but the system (A.22) is not 
solvable. Then a rf- R. It follows from the Hahn-Banach Theorem A.46 that 
there exists an element y* E en such that y* (a) < 0 and y* (y) = 0 for all 
y E R. Since y* can be represented by an vector ofthe form (AI, A2, ... , An) T E 
en, this means that 

00 

y(y) = LAkYk o for all y E Rand yea) 
k=l 
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which contradicts the condition. 

Conversely, suppose that the system (A.22) is solvable, and that for all A E Cn 

we have that L:~=l Ak x'k = O. Then a E R so that there exists an x E X such 
that T(x) = a, i.e. x'k(x) = ak for all k = 1, ... , n. Therefore, 

00 00 

o = LAkx'k(X) = LAkak, 
k=l k=l 

which shows that the condition (C) is satisfied. 

A.7 The Frechet Derivative 

In this section, we will briefly recall some of the most important results for 
nonlinear mappings between normed spaces. The notions of continuity and 
differentiability carryover in a very natural way. 

Definition A.48. Let X and Y be normed spaces over the field IF = lR or C, 
U C X an open subset, x E U, and T : X ~ U -t Y be a (possibly nonlinear) 
mapping. 

(a) T is called continuous in x if for every E > 0 there exists Ii > 0 such that 
IIT(x) - T(x)11 :S E for all x E U with Ilx - xii :S Ii. 

(b) T is called Frechet differentiable at x if there exists a linear bounded 
operator A : X -t Y (depending on x) such that 

k~ II~II IIT(x + h) - T(x) - Ahll o. (A.23) 

We write T'(x) := A. In particular, T'(x) E £(X, Y). 
(c) The mapping T is called continuously Frechet differentiable for x E U 

if T is P;echet differentiable in a neighborhood V of x and the mapping 
T' : V -t £(X, Y) is continuous in x. 

Continuity and differentiability of a mapping depend on the norms in X and 
Y, in contrast to the finite-dimensional case. IfT is differentiable in x, then the 
linear bounded mapping A in part (b) of Definition A.48 is unique. There
fore, T'(x) := A is well-defined. If T is differentiable in x, then T is also 
continuous in x. In the finite-dimensional case X = lFn and Y = lFm , the 
linear bounded mapping T'(x) is given by the Jacobian (with respect to the 
Cartesian coordinates). 

We should remark that it is often the case in the applications as those we have 
considered in this book, we are confronted with the situation that the map 
T : X -t Y maps a complex Banach space X into a real Banach space Y. In 
particular, it is often the case that Y = lR considered as a vector space over 
itself. Difficulties arise in this situation because of the definition of linearity of 
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the operator T' (x) : X -7 Y. In this situation, one considers the space X as 
a real vector space by restricting the field of scalars. If we denote this space 
by XjR, then there exists a linear map T'(x) : XjR -7 Y, with 

IIT(x + h) - T(x) - T'(x) hI! 
II hI! 

--7 0, as Ilhll -7 o. 

Example A.49. 

(a) Let f : [e, dj x [a, bj x <C -7 <C be continuous and continuously differentiable 
with respect to the third argument. Let the mapping T : C[a, bj -7 C[e, dj 
be defined by 

b 

T(x)(t)·- jf(t,s,X(S))dS, tE[e,d], xEC[a,bj. 
a 

Then T is continuously Frechet differentiable with derivative 

b 

(T'(x)z)(t) = J :xf(t,s,x(s))z(s)ds, tE[e,d], x,zEC[a,bj. 
a 

(b) Let X and Y be Hilbert spaces over JF and let K : X -7 Y be a bounded 
linear operator and fix y E Y. Define T : X -7 lR by 

T(x) = IIKx-yIl2, xEX. 

Then 

T'(x) h = 2Re (Kx - y, Kh) 2 Re (K* (K x - y), h), x, hEX. 

Indeed, by the Binomial Theorem 

T(x + h) - T(x) = IIK(x + h) - Yll2 -IIKx _ Yll2 

= 2Re(Kx - y,Kh) + IIhll2 

= 2Re (K* (Kx - y), h) + IIh1l 2 , 

and the map T'(x) : XjR -7lR defined by h H- 2Re (K* (Kx - y), h) is linear. 

The following theorem collects further properties of the Frechet derivative. 

Theorem A.50. 

(a) Let T, S : X => U -7 Y be Frechet differentiable for x E U. Then T + S 
and AT are also Frechet differentiable for all A E JF and 

(T + S)'(x) = T'(x) + S'(x) , ( AT)' ( x ) = A T' ( x) . 
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(b) Chain rule: Let T : X :J U --+ V C Y and S : Y :J V --+ Z be Frechet 
differentiable for x E U and T(x) E V, respectively. Then ST is also 
Frechet differentiable in x and 

(ST)'(x) = S'(T(x)) T'(x) E C(X,Z). 
'---v--' '-v-' 

EL.:(Y,Z) EL.:(X,Y) 

(c) Special case: If T : X --+ Y is Frechet differentiable for x E X, then so 
is 'Ij; : IF --+ Y, defined by 'Ij;(t) := T(tx), t E IF, for every point t E IF 
and 'Ij;'(t) = T'(tx)x E Y. Note that originally 'Ij;'(t) E C(lF, Y). In this 
case, one identifies the linear mapping 'Ij;'(t) : IF --+ Y with its generating 
element 'Ij;'(t) E Y. 

A.8 Weak Convergence 

The familiar theorem that aeontinuous functional on a compact set achieves 
both its maximum and minimum values is only useful if there are enough sets 
which are compact. Unfortunately, the usual definition of (sequential) com
pactness which involves norm convergence is only valid in finite dimensional 
spaces. The requirement that a set be weakly sequentially compact or weak*
sequentially compact are much less restrictive, and therefore useful in many 
infinite dimensional contexts. 

Given a normed space X and its dual space X*, a sequence {xn } ~=l C X 
is said to converge strongly, or with respect to the norm, to the point 
x E X provided IIx - xnll --+ 0 as n --+ ex) (see Definition A.2. For optimization 
problems, the weak convergence is important. 

Definition A.51. Let X be a normed space. 

(a) A sequence {Xn}~=l C X is said to converge weakly (or converge in the 
weak topology) to x E X provided x*(xn) --+ x*(x) for all x* E X*. Weak 
convergence is often denoted by Xn ----'. x. 

(b) A set U C X is called weakly sequentially closed, if the limit point of 
every weakly convergent sequence {xn} ~= 1 C U belongs to U. 

(c) A set U C X is called weakly sequentially compact, if every sequence 
{Xn}~=l C U contains a weakly convergent subsequence such that its limit 
point belongs to U. 

(d) A functional .J : X --+ lR is called weakly sequentially continuous 
provided for every sequence {'Ij;dk'=l converging weakly to an element 'Ij; E 
X we have 

Using the characterization of the dual space, H*, of a Hilbert space H given 
by the theorem of Riesz-Fischer (Theorem A.31), we can express weak conver
gence in terms of the inner product. In this context, using the inner product 
on the Hilbert sPl1ce, we can write: 
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(Xn' x*) ----+ (x, x*) for all x* E H, 

where (.,.) is the given inner product on H. 

It is clear that any strongly convergent sequence is weakly convergent since 
we have the obvious inequality . 

Ix*(x) - x*(xn)1 < Ilx*llx*llx - xnllx. 

Example A.52. Consider the Hilbert space £2 of sequences x = (Xl, X2,"')' 
Xk E <e, with 2:%:1 IXkl2 < 00. The standard basis vectors 
e(n) := (0,0, ... ,0,1,0, ... ), n = 1,2, ... , where the only non-zero entry, 1, 
occurs in the nth position, lie in the unit ball B[O, 1] of £2. However there is 
no convergent subsequence since Ile(m) - e(n) II = v'2 for m of- n. In particular, 
the sequence itself does not converge. Now, choose any x E £2. Then, we know 
by the definition that 2:%"=1 IXkl2 < 00, so that Xk -+ ° as k -+ 00. For any k, 
the inner product (e(k), x) = Xk and so, for any x E £2, we have (e(n) , x) -+ ° 
as n -+ 00. Hence e(n) ->. ° weakly in £2. 

Remark: This example presents a definite contrast to the situation for ]Rn 

and <en. There, the unit ball is closed and bounded and such sets are compact 
according to the Bolzano-Weierstrass Theorem. In fact, compactness of the 
unit ball characterizes finite dimensional spaces as we have seen in Theorem 
A.5. Also, we note that in finite dimensional spaces weak and norm conver
gence are the same. Indeed, if x(k) ->. x in <en, then x~) = (x(k), e(m)) -+ 
(x, e(m)) = Xm for every m = 1,2, ... ,n. Therefore, all components of x 
converge in <e which implies norm convergence of {x(k)}k=l to x in any norm 
on <en. 

Example A.52 makes it clear that weak convergence of a sequence does not 
imply that the sequence converges in norm. On the other hand, given a weakly 
convergent sequence in a Banach space, we can construct a new sequence of 
points, using the elements of the original one, which converges in norm to the 
weak limit. The result is due to Mazur. 

Theorem A.53. Let X be a real Banach space and {Xn}~=l C X a sequence 
which converges weakly to x EX. Then there exists a system of real numbers 
<Yk,i :::: 0, i = 1,2, ... , k, k = 1,2, ... , with 2:7=1 <Yk,i = 1, such that, 

k 

Yk = L <Yk,i Xi , and Yk -+ X , 
i=l 

or equivalently, IIYk - xii -+ 0, as k -+ 00. 
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Besides the notion of weak convergence, sometimes the idea of weak*-conver
gence is also useful in optimization problems. 

In order to understand the situation in Banach or Hilbert space, we recall 
the construction of the bidual X**. We may, of course, consider the weak 
convergence in X* as we did with the pair {X, X*}, but it turns out to be more 
fruitful to consider a type of convergence defined, not by all the functionals 
in X**, but only by the functionals in that space generated by the elements 
x E X C X**. This is possible since the canonical embedding j ; X -+ X** 
has a range, j (X) C X** which is an isometric copy of X so that we may 
consider X C X**. In other words, we consider only functionals in X**, of 
the form x** (x*) ;= x* (x), x* E X*, for each x EX. Weak convergence in 
X* with respect to these particular functions is called weak* -convergence. 
Precisely, 

Definition A.54. A sequence of elements {X~}~=l C X* is said to converge 
in the weak* sense to x* E X* provided, x~ (x) -+ x* (x), for every x EX. The 
definitions of weak*-sequential closedness or weak*-sequential compactness of 
a set is defined just as in Definition A. 51. 

Example A.55. Consider the Banach space, co, of all infinite sequences of real 
numbers {Xk}k'=l such that Xk -+ 0 as k -+ 00, and with norm Ilxll ;= 

maxkEN IXkl. The dual space Co = C1 as we have seen in Example A.29. One 
can show, by arguments similar to those in that example that the dual space 
of £1 is Coo. So the bidual co* = (£1)* = Coo. Let e(n) be the usual sequence 
with 1 in the nth entry and zeros elsewhere, and take x~ = e(n). Then x~ -+ 0 
in the weak*-sense of Definition A.54, but x~ does not converge weakly to 0 
since, for x** = (1,1,1, ... ,1, ... ) E Coo we have x**(x~) = (e(n),x**) = 1 
for all n E N. 

The fact that the unit ball in the dual of a Banach space is compact with 
respect to weak*-convergence is due to Alaoglu (see [145]). We formulate it 
in the following way. 

Theorem A.56. Let X be a Banach space. 2 Then every bounded sequence 
{xi,} C X* in X* contains a weak*-convergent subsequence. 

We apply this result to bounded sequences in p(r) for p E (1,00] (including 
p = (0) by noting that LP(r) is the dual of Lq(r) with l/p + l/q = 1 (where 
p = 00 belongs to q = 1). The dual form is given by the extension of the 
L2-inner product 

(x*,x) 

see Example A.29. 

J x*(t) x(t) dt, x E U(r), x* E LP(r) , 

r 

2 Note that we always assume that the spaces are separable. 
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Corollary A.57. Let r c jRd be some Lebesgue measurable set, p E (1,00] 
and q E [1,00) such that l/p + l/q = 1. Then every bounded sequence 
{xUk=l C U(r) contains a subsequence {XkJ~l and some x* E U(r) 
such that J xkj(t)x(t)dt --+ J x*(t)x(t)dt, j-+oo, 

r r 
for all x E Lq(r). 

What is particularly important for our work is the following result for a re
flexive Banach space (and hence for a Hilbert space). We recall that a Banach 
space is reflexive if it is isometrically isomorphic to its bidual under the canon
ical embedding. 

Theorem A.58. Let X be a (separable) reflexive Banach space or, in par
ticular, a Hilbert space. Then the unit ball B[O, 1] C X is weakly sequentially 
compact. 

Remark: This result follows immediately from Theorem A.56 and the defi
nition of reflexivity which says that, under the canonical imbedding, X and 
X** are isometrically isomorphic. 

A.9 Partial Orderings 

This section contains the basic definitions and properties needed for the ma
terial in Chapter 8. The exposition is somewhat formal in the interest of 
efficiency, but we give illustrations of the main points throughout in order to 
aid the reader's understanding. 

We present the results in the setting of a real or complex vector (linear) space. 
It is possible to develop the theory in a significantly more general setting, but 
there is not real need here for such generality. On the other hand, the reader 
may always be more concrete and replace the general vector space with jRn. 

Whatever setting is chosen, the motivation is always the same; we are in
terested in being able to compare the efficiency of different choices of inputs 
(or strategies) when there are several performance indices which need to be 
considered. In the scalar case i.e., when there is only one real-valued perfor
mance index, we work in the vector space jR which has a natural order, and 
the comparison between two choices of strategy is simple. In the more general 
case, we must leave this familiar ground. 

In general, it is not possible to impose a concrete total ordering3 and we must 
content ourselves with a so-called partial ordering. 

3 There is a statement, due to Zermelo, that any set can be well-ordered. This 
statement has the nature of an existence theorem and gives no practical way to 
produce such an ordering. Indeed the statement is equivalent to the famous Axiom 
of Choice. (See [61]). 
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To be more precise, we start with the definition of a general relation on an 
arbitrary set. 

Definition A.59. Let S be any set and P a relation defined on S i.e., P is a 
subset of the set of all ordered pairs of elements (Sl' S2) E S x S. Then we say 
that Sl precedes S2 if the ordered pair (Sl' S2) E P. We will use the notation 
Sl -< S2 if (Sl' S2) E P. 

Given such a relation (and we have introduced the word "precedes" advisedly) 
it may have certain properties. In particular, it may have the properties that 
make it suitable for us to use as a (partial) ordering. 

Definition A.60. Given a set S and a relation -< defined as above, we say 
that -< defines a partial ordering of the set S provided: 

(i) for all s E S, s -< s (reflexivity), 
(ii) if 81, S2 E S and both Sl -< S2 and S2 -< Sl then Sl 

symmetry), 
(iii) if Sl, S2, S3 E S and if Sl -< S2 and S2 -< S3, then Sl -< S3 

= S2 (anti-

(transitivity) . 

Otherwise said, a relation -< is a partial ordering on S if it is a reflexive, 
anti-symmetric, and transitive relation defined on S. 

We should point out that the usual ordering on lR is a partial ordering of 
that set. It is in fact more than that since any two elements are related, one 
being less than the other. In this case we have a total- or well-ordering. 
The difference is that, with a partial ordering, not every two elements are 
necessarily comparable. 

The notion of a partial ordering is independent of the nature of the set S. 
However, in our applications we work in a vector space, Z, and we want to 
find a systematic way to impose a partial ordering on it. We first introduce the 
notion of a cone. This definition is dependent only on the algebraic structure 
of the vector space. 

Definition A.61. Let Z be a real linear space, and let A c Z be non-empty. 
Then A is called a cone with vertex 0 E Z provided that for every z E A, 
and..\ > 0 we have ..\ z E A. 

We will find that it is useful to use the standard notation -A := {-z : z E A}. 

It is easily seen that the set {O} C Z satisfies the definition of a cone. On the 
other hand, the entire vector space Z is also a cone and that instance is trivial 
as well. We are obviously interested in less trivial cases, for example the set 
A C lR defined by 

A := R:::o, (A.24) 

which is clearly a non-trivial cone in R Indeed, it generates the usual ordering 
in lR as will become clear below. 

More important for our work is the generalization of (A.24) given by 
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A := lR~o := {x E lRn : Xj ~ 0, j = 1,2, ... ,n} (A.25) 

which we will refer to as the usual order cone in lRn. The cone A is just the 
first quadrant in the case that n = 2. 

We isolate two properties that a cone may have since each one, separately, 
relates to one of the defining properties of a partial order. 

Definition A.62. A cone A c Z with vertex 0 is called non-trivial provided 
A -=I- {O} and A -=I- Z. The cone is called line-free provided 0 E A and An 
(-A) = {O}. 

It is easy to see that the cone described above in (A.25), namely A := {x E 

lRn : Xj ::; 0, j = 1,2, ... ,n} is non-trivial and is line-free. Indeed, one need 
only notice that -A is just {x E lRn : Xj ::; 0, j = 1,2, ... ,n}. 

Example A.63. The set A := lR>o is also a cone, is still convex, but does not 
contain the origin. In lR2 the set 

is an example of a cone that is not convex. Moreover, it fails to be line-free 
since it contains a line, namely the line Xl = o. 

The point of introducing these definitions is to show that a cone, with these 
properties, can be used to define a partial ordering in Z. Indeed, given a cone 
A with vertex 0, we may define a binary relation -< by 

x -< y provided y - x EA. (A.26) 

With this definition -< we can easily check that this binary relation is a partial 
ordering of the vector space Z provided A is convex, contains the origin, and 
is line free. 

(a) If 0 E A, then -< is reflexive. This follows from the observation that for 
any x E Z, x - x = 0 E A which implies that x -< x. 

(b) If A is convex then -< is transitive, for if x, y, z E Z, and if x -< y and 
y -< z then y - x E A and z - YEA. Since A is convex, 

1 1 
2(y-x) + 2(z-y) E A, 

and so ~(z - x) E A from which it follows that z - x E A. Hence x -< z. 
(c) If A is line-free, then -< is antisymmetric. Indeed, if x -< y and y -< x then 

y - x E An (-A) = {O} so that x = y. 

To summarize, these three observations show that the following theorem is 
true. 
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Theorem A.64. If Z is a linear space and A c Z is a line-free, convex cone 
with 0 E A, then the binary relation -< defined by 

x -< Y if and only if y - x E A , 

defines a partial order on the vector space Z. 

There is also the partial converse of this theorem. If -< is a partial order on X 
which respects the operations. Le. x -< y =? x + z -< y + z and AX -< AY for all 
x, y, z E X and A > 0 then A := {x EX: 0 -< x} is a line-free, convex cone, 
and contains O. This is easily proven by arguments similar to those above. 

This leads to the following standard terminology: 

Definition A.65. A pair {Z, -<} where Z is a real linear space and -< is a 
partial order defined on Z is called an ordered vector space. The cone 
which induces the partial order is called the order cone. We write <A in 
place of -< to emphasize the relationship. 

We conclude this section by giving some further examples. 

Example A.66. Let Z = £2(0,1), and choose 

A = {x E £2(0,1) : x(t) 2: 0 almost everywhere in [0, In . 
Then A is a cone which contains 0, is line-free, and is convex. Indeed, it is 
easy to convince oneself that A is a line-free cone. However to check that it 
is convex some care is needed. Let X,y E £2(0,1) and let N(x) and N(y) be 
the two sets of measure zero where x and y respectively do not satisfy the 
pointwise equality of the definition of the cone. Then N(x) U N(y) is also of 
measure zero so that, for any A E [0,1], z := (1 - A)X + AY is non-negative on 
[0,1] \ [N(x) U N(y)]. Hence, z E A. 

Notice that, with this order cone, the functions x(t) = t and y(t) = t 2 are 
comparable and y <A x. On the other hand, the functions x(t) = t and 
y(t) = cos(7rt) are not comparable with respect to <A. 

Example A.67. Let Z = S£n(lRn), the set of symmetric n x n real matrices, 
and let A = {A E S£n(lRn) : x T Ax 2: 0 for all x E ]Rn} be the set of all 
positive semidefinite matrices. Then A is a convex, line-free cone and 0 E A 
as the reader can check. 



References 

1. M. ABRAMOWITZ, AND I. A. STEGUN, Handbook of Mathematical Functions, 
Dover, 1970. 

2. N.I. ACHIESER, Theory of Approximation, Ungar, 1956. 
3. R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975. 
4. T. S. ANGELL, X. JIANG, AND R. E. KLEINMAN, On a numerical method for 

inverse acoustic scattering. Inverse Problems 13 (1997), 531-545. 
5. T. S. ANGELL, AND A. KIRSCH, The conductive boundary condition for 

Maxwell's equations. SIAM J. Appl. Math. 52 (1992), 1597-1610. 
6. T. S. ANGELL, AND A. KIRSCH, Multicriteria optimization in antenna problems. 

Math. Meth. in the Appl. Sciences 15 (1992), 647-660. 
7. T. S. ANGELL, AND A. KIRSCH, Optimization of radiating fields and the ex

ample of null-placement. In: Analytical and Computational Methods in Scatter
ing and Applied Mathematics, F. Santosa and I. Stakgold, eds., Chapman and 
Hall/CRC Press, Boca Raton, FL, 2000. 

8. T. S. ANGELL, AND R. E. KLEINMAN, Generalized exterior boundary-value 
problems and optimization for the Helmholtz equation. J. Optim. Theory Appl. 
37 (1982), 469-497. 

9. T. S. ANGELL, AND R. E. KLEINMAN, The Helmholtz equation with L2 -
-boundary values. SIAM J. Math. Anal. 16 (1985), 259-278. 

10. T. S. ANGELL, AND M. Z. NASHED, Operator theoretic and computational 
aspects of ill-posed problems in antenna theory. In: International Symposium 
of Mathematical Theory of Networks and Systems 3 P. Dewilde, ed., Western 
Periodicals Co., Los Angeles, 1979. 

11. T. S. ANGELL, R. E. KLEINMAN, AND G. F. ROACH, An inverse transmission 
problem for the Helmholtz equation, Inverse Problems 3 (1987), 149-180. 

12. T. S. ANGELL, A. KIRSCH, AND R. E. KLEINMAN, Antenna control and opti
mization. Proc. IEEE 79 (1991), 1559-1568. 

13. T. S. ANGELL, R. E. KLEINMAN, AND A. KIRSCH, Multicriteria optimization 
in arrays. Proceedings Journees Internationales de Nice sur les Antennes, Nice, 
France 199.2. 

14. J. P. AUBIN, AND A. CELLINA, Differential Inclusions; Set- Valued Maps and 
Viability Theory, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986. 

15. K. AZIS, AND R. B. KELLOGG, Finite element analysis of a scattering problem. 
Math. Comp.'37 (1981), 261-272. 



320 References 

16. C. A. BALANIS, Antenna Theory: Analysis and Design, 2nd. ed., John Wiley & 
Sons, Inc., New York, 1997. 

17. A. BAYLIS, C. GOLDSTEIN, AND E. TURKEL, Preconditioned conjugate gradient 
methods for the Helmholtz equation. In: Elliptic Problem Solvers II, G. Birkhoff 
and A. Schoenstadt, eds., Orlando, 1984, Academic Press, 233-243. 

18. C. J. BOUWKAMP, AND N. G. DE BRUIJN, The problem of optimum current 
distribution. Philips Res. Rep. 1 (1945-46), 135-158. 

19. J. H. BRAMBLE, The Lagrange multiplier method for Dirichlet's problem. Math. 
Compo 37 (1981),1-11. 

20. J. H. BRAMBLE, AND J. E. PASCIAK, A new computational approach for the 
linearized scalar potential formulation of the magnetostatic field problem. IEEE 
Trans. on Magnetics MAG-18 (1982), 357-361. 

21. A. CALDERON, Multiple expansion of radiation fields. J. Rat. Mech. Anal. 3 
(1954), 523-537. 

22. L. CESARI, Optimization-Theory and Applications, Springer-Verlag, Berlin, 
Heidelberg, New York, 1983. 

23. M. CESSENAT, Mathematical Methods in Electromagnetism: Linear Theory and 
Applications, World Scientific, Singapore, 1996. 

24. P. G. CIARLET, The Finite Element Method for Elliptic Problems, vol. 4 of 
Studies in Mathematics and It's Applications, Elsevier North-Holland, New 
York,1978. 

25. L. COLLATZ, Approximation in partial differential equations. In: On Numerical 
Approximation, R. E. Langer, ed., Madison, 1959, University of Wisconsin Press, 
413-422. 

26. L. COLLATZ, The Numerical Treatment of Differential Equations, Springer
Verlag, Berlin, Heidelberg, New-York, 1960. 

27. R. E. COLLIN, AND F. J. ZUCKER, Antenna Theory: Part I, McGraw-Hill Book 
Company, New York, St. Louis, San Francisco, 1969 

28. F. COLLINO, AND P. MONK, The perfectly matched layer in curvilinear coordi
nates, Technical Report 3049, INRIA, 1996. 

29. D. COLTON, AND R. KRESS, Integral Equation Methods in Scattering Theory, 
John Wiley & Sons, New York, 1983. 

30. D. COLTON, AND R. KRESS, Inverse Acoustic and Electromagnetic Scattering, 
Springer-Verlag, Berlin, Heidelberg, New York, 2nd. edition, 1998. 

31. J. P. DAUER, AND W. STADLER, A survey of vector optimization in infinite 
dimensional spaces, II. J. Optim. Theory Appl. 51 (1986), 205-241. 

32. PH. J. DAVIS, AND P. RABINOWITZ, Methods of Numerical Integration, Aca
demic Press, New York, 1975. 

33. G. A. DESCHAMPS, AND H. S. CABAYAN, Antenna synthesis and solution of in
verse problems by regularization methods. IEEE Trans. Anten. Proc. 20 (1972), 
268-274. 

34. C. L. DOLPH, A current distribution for broadside arrays which optimizes the 
relationship between beam width and side-lobe level. Proc. IRE 34 (1946), 
335-348. 

35. D. G. DUDLEY, The Mathematical Foundations for Electromagnetic Theory, 
IEEE Press; New Jersey, 2001. 

36. N. DUNFORD, AND J. SCHWARTZ, Linear Operators, Part I, John Wiley & Sons, 
New York, London, Sydney, 1957, 



References 321 

37. H. ENGL, Discrepancy principles for Tikhonov regularization of ill-posed prob
lems leading to optimal convergence rates. J. Optim. Theory Appl. 52 (1987), 
209-215. 

38. R. L. FANTE, AND J. T. MAYHAN, Bounds on the electric field outside a radi
ating system. IEEE Trans. Antennas Prop. 16 (1968), 712-717. 

39. R. L. FANTE, AND J. T. MAYHAN, Bounds on the electric field outside a radi
ating system-II. IEEE Trans. Antennas Prop. 18 (1970), 64-68. 

40. S. FAST, An Optimization Method for Solving a Radiation Direction Problem, 
Ph.D. Thesis, Department of Mathematical Sciences, University of Delaware, 
Newark, DE, 1988. 

41. D. GILBARG, AND N. S. TRUDINGER, Elliptic Partial Differential Equations of 
Second Order, Springer-Verlag, Berlin, Heidelberg, New York, 1977. 

42. B. GIESEKE, Zum Dirichletschen Prinzip fiir selbstadjungierte elliptische Dif
ferentialoperatoren. Math. Z. 68 (1964), 54-62. 

43. C. 1. GOLDSTEIN, The finite element method with non-uniform mesh sizes ap
plied to the exterior Helmholtz problem. Numer. Math. 38 (1981), 61-82. 

44. C. 1. GOLDSTEIN, The solution of exterior interface problems using a variational 
method with Lagrange multipliers. J. Math. Anal. and Appl. 97 (1983), 480-
508. 

45. J. HADAMARD, Lectures on the Cauchy Problem in Linear Partial Differential 
Equations, Yale University Press, New Haven, 1923. 

46. R. E. HARRINGTON, AND J. R. MAUTZ, An impedance sheet approximation for 
thin dielectric shells. IEEE Trans. Ant. Prop. 23 (1975), 531-534. 

47. M. R. HESTENES, Optimization Theory. The Finite Dimensional Case., J. Wiley 
& Sons. New York, London, Sydney, Toronto, 1975. 

48. H. HEUSER, Funktionalanalysis, Teubner-Verlag, Stuttgart, 1992. 
49. H. HEUSER, Lehrbuch der Analysis, Band 2, Teubner-Verlag, Stuttgart, 2000. 
50. H. HOCHSTADT, The Functions of Mathematical Physics, John Wiley & Sons, 

New York, London, Sydney, 1971. 
51. R. B. HOLMES, Geometric Functional Analysis and it Applications, Springer

Verlag, Berlin, Heidelberg, New York, 1975. 
52. S. R. HOLSTON, Optimization of multiple antenna array performance measures 

using a multicriteria approach. IEEE Trans Antennas Prop., submitted for pub
lication. 

53. G. C. HSIAO, Mathematical foundations for the boundary-field equation meth
ods in acoustic and electromagnetic scattering. In: Analytical and Computational 
Methods in Scattering and Applied Mathematics, F. Santosa and I. Stakgold eds., 
Chapman and Hall/CRC, Boca Raton, London, New York, Washington, D.C., 
2000. 

54. F. IHLENBURG, Finite Element Analysis of Acoustic Scattering, Springer Verlag, 
New York, 1998. 

55. V. K. IVANOV, On linear problems which are not well-posed. Soviet Math. Dokl. 
4 (1962), 981-983 (English translation). 

56. J. JAHN, Mathematical Vector Optimization in Partially Ordered Linear Spaces, 
Peter Lang, Frankfurt, 1986. 

57. K. JORGENS, Linear Integral Operators, Teubner-Verlag, Pittman Press, Lon
don, 1982. 

58. C. JOHNSON,,AND J. NEDELEC, On the coupling of the boundary integral and 
finite element methods. Math. Compo 35 (1980), 1063-1079. 



322 References 

59. D. S. JONES, Methods in Electromagnetic Wave Propagation, 2nd. ed., Claren
don Press, Oxford, 1994. 

60. A. JUSCHKE, J. JAHN, AND A. KIRSCH, A bicriterial optimization problem of 
antenna design. Compo Optimiz. Appl. 7 (1997), 261-276. 

61. J. L. KELLEY, General Topology. 'Springer Verlag, Berlin, Heidelberg, New York, 
1991. 

62. H. KERSTEN, Grenz- und Sprungrelationen fur Potentiale mit quadratsummier
barer Dichte. Resultate d. Math. 3 (1980), 17-24. 

63. H. KERSTEN, Die C-Vollstandigkeit partikuliirer Losungssysteme der 
Schwingungsgleichung l1U + k2 U = O. Res. d. Math. 4 (1981), 155-170. 

64. H. KERSTEN, Ein neuer Zugang zum ersten Randwert-Problem der 
Schwingungsgleichung in Gebieten mit nicht-glattem Rand. Habilitation the
sis, Aachen, 1983. 

65. A. KIRSCH, The Robin problem for the Helmholtz equation as a singular per
turbation problem. Numer. Funct. Anal. and Optimiz. 8 (1985), 1-20. 

66. A. KIRSCH, Remarks on some notions of weak solutions for the Helmholtz equa
tion. Appl. Anal. 47 (1992), 7-24. 

67. A. KIRSCH, An Introduction to the Mathematical Theory of Inverse Problems, 
Springer-Verlag, Berlin, Heidelberg, New York, 1996. 

68. A. KIRSCH, Characterization of the scattering obstacle by the spectral data of 
the far field operator. Inverse Problems 14 (1998), 1489-1512. 

69. A. KIRSCH, AND P. MONK, Convergence analysis of a coupled finite element 
and spectral method in acoustic scattering. IMA J. Numer. Anal. 10 (1990), 
425-447. 

70. A. KIRSCH, AND P. MONK, An analysis of the coupling of finite element and 
Nystrom methods in acoustic scattering. IMA J. Numer. Anal. 14 (1994), 523-
544. 

71. A. KIRSCH, W. WARTH, AND J. WERNER, Notwendige Optimalitiitsbedingungen 
und ihre Anwendung Lecture Notes In Economics And Mathematical Systems 
v. 152, Springer Verlag, Berlin, Heidelberg, New York, 1978. 

72. A. KIRSCH, AND P. WILDE, The optimization of directivity and signal-to-noise 
ratio of an arbitrary antenna array. Math. Meth. Appl. Sci. 10 (1988), 153-164. 

73. M. A. KRASNOSEL'SKII, G. M. VAl NIKKO , P .P. ZABREIKO, YA. B. RUTITSKII, 
AND V. YA. STETSENKO, Approximate Solution of Operator Equations (English 
translation), Wolters-Noordhoff Publishing Company, Groningen, 1972. 

74. R. KRESS, Linear Integral Equations, Springer-Verlag, Berlin, Heidelberg, New 
York, (2nd edition), 1999. 

75. R. KRESS, A Nystrom method for boundary integral equations in domains with 
corners. Numer. Math. 58 (1990), 145-161. 

76. R. KRESS, Numerical Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 
1998. 

77. A. KRIEGSMANN, AND C. S. MORAWETZ, Solving the Helmholtz equation for 
exterior problems with variable index of refraction:!' SIAM J. Sci. Stat. Comput 
1 (1980), 371-385. 

78. R. KUSSMAUL, Ein numerisches Verfahren zur Losung des Neumannschen 
Aussenraumproblems fUr die Helmholtzsche Schwingungsgleichung. Computing 
4 (1969), 246-273. 

79. P. KWOK, AND P. BRANDON, Maximisation of signal/noise ratio in arrays with 
broadened zero., Electron. Lett.16 (1980), 60-62. 



References 323 

80. M. LASSAS, AND E. SOMERSALO, On the existence and convergence of the so
lution of the PML equations. Preprint, 1997. 

81. E. LEPELLARS, AND T. S. ANGELL, A multicriteria optimization problem for a 
circular array of dipoles. to appear. 

82. N. LIMIC, Galerkin-Petrov method for Helmholtz equation exterior problems. 
Glasnik Matematicki 16 (1981), 245-260. 

83. N. LIMIC, The exterior Neumann problem for the Helmholtz equation. Glasnik 
Matematicki 16 (1981), 51-64. 

84. 1. V. LINDELL, Methods for Electromagnetic Field Analysis, IEEE Press, New 
Jersey, 1995. 

85. Y. T. Lo, S. W. LEE, AND Q. H. LEE, Optimization of directivity and signal
to-noise ratio of an arbitrary antenna array. Proc. IEEE 54 (1966), 1033-1045. 

86. P. LORRAIN, D. R. CORSON, AND F. LORRAIN, Electromagnetic Fields and 
Waves, Freeman and Company, New York, 1988. 

87. C. F. LOZANO, AND R. REEMTSEN, On a Stefan problem with an emerging free 
boundary. Num. Heat Transfer 4 (1981), 239-245. 

88. D. G. LUENBERGER, Optimization by Vector Space Methods, John Wiley & 
Sons, New York, 1969. 

89. D. MARGETIS, G. FIKORIS, J. M. MYERS, AND T. T. Wu, Highly directive 
current distributions: General theory. Physical Review E 58 (1998), 2531-2547. 

90. W. MAGNUS, AND F. OBERHETTINGER, Formulas and Theorems for the Func
tions of Mathematical Physics, J. Wermer tr., Chelsea Publishing Col, New 
York,1954. 

91. R. MACCAMY, AND S. MARIN, A finite element method for exterior interface 
problems. Internat. J. Math €1 Math. Sci. 3 (1980),311-350. 

92. S. MARIN, Computing scattering amplitudes for arbitrary cylinders under inci
dent plane waves. lEE Trans. on AP AP-30 (1982), 1045-1049. 

93. E. MARTENSEN, Uber eine Methode zum riiumlichen Neumannschen Problem 
mit einer Anwendung auf torusartige Berandungen. Acta Math. 109 (1963), 
75-135. 

94. E. MARTENSEN, Potentialtheorie, B. G. Teubner, Stuttgart, 1968. 
95. M. MASMOUDI, Numerical solutions for exterior problems. Numer. Math. 51 

(1987), 87-101. 
96. V. P. MIKHAILOV, On the boundary values of solutions of elliptic equation. 

Applied Math. Optimization 6 (1980), 193-199. 
97. R. F. MILLAR, The Raleigh hypothesis and a related least squares solution to 

scattering problems for periodic surfaces and other scatterers. Radio Science 8 
(1973),785-796. 

98. M. MINoux, Mathematical Programming: Theory and Algorithms, John Wiley 
& Sons, 1986. 

99. C. MIRANDA, Partial Differential Equations of Elliptic Type, 2nd. edition, 
Springer Verlag, Berlin, 1970. 

100. P. MONK, Finite Element Methods for Maxwell's Equations, Oxford University 
Press, Oxford, 2003. 

101. V. A. MORozov, Choice of parameter for the solution of functional equations 
by the regularization method. Sov. Math. Dokl. 8 (1967), 1000-1003. 

102. V. A. MOROZOV, The error principle in the solution of operational equations by 
the regularization method. USSR Comput. Math. Math. Phys. 8 (1968), 63-87. 

103. C. MULLER, Radiation patterns and radiation fields. J. Rat. Mech. Anal. 4 
(1955), 235-246. 



324 References 

104. C. MULLER, Boundary values and diffraction problems. Symposium Mathemat
ica 18 (1976), 354-367. 

105. C. MULLER, Foundations of the Mathematical Theory of Electromagnetic 
Waves, Springer-Verlag, Berlin, Heidelberg, New York, 1969. 

106. C. MULLER, AND H. KERSTEN,Zwei Klassen voIlstandiger Funktionensysteme 
zur Behandlung der Randwertaufgaben der Schwingungsgleichung i1U + k2 U = 
O. Math. Meth. in the Appl. Sci. 2 (1980), 48-67. 

107. M. Z. NASHED, Generalized inverses, normal solvability, and iteration for sin
gular operator equations. in Nonlinear Functional Analysis and Applications L. 
B. RaIl, ed., 311-359, Academic Press, New York, 1971. 

108. A. W. NAYLOR, AND G. R. SELL, Linear Operator Theory in Engineering 
and Science, Springer Applied Mathematical Sciences Series, Vol. 40, Springer 
Verlag, Berlin, Heidelberg, New York, 2000. 

109. E. NICOLAU, AND D. SAHARIA, Adaptive Arrays, Elsevier, Amsterdam, Osford, 
New York, Tokyo, 1989. 

110. A. G. RAMM, Optimal solution of the problem of linear antenna synthesis. 
Sov. Phys. Dokl. 13 (1968), 546-54. 

111. R. REEMTSEN, AND S. GORNER, Numerical Methods for Semi-Infinite 
Programming: A Survey. In: Semi-Infinite Programming, R. Reemtsen and 
Riickmann eds., 1998, Kluwer Academic Publishers, 195-275. 

112. R. REEMTSEN, AND A. KIRSCH, A method for the numerical solution of the 
one-dimensional inverse Stefan problem. Numer. Math. 45 (1984), 253-273. 

113. F. RELLICH, Uber das asymptotische Verhalten der Losungen von i1U+AU = 0 
in unendlichen Gebieten. Jber. Deutsch. Math. Verein. 53 (1943), 57-65. 

114. D. R. RHODES, The optimum line source for the best mean-square approx
imation to a given radiation pattern. IEEE Trans. Antennas Prop 11 (1963), 
440-446. 

115. D. R. RHODES, Synthesis of Planar Antenna Sources, Clarendon Press, Oxford, 
1974. 

116. G. SANTHOSH, AND M. THAMBAN NAIR, A class of discrepancy principles for 
the simplified regularization of ill-posed problems. J. Austr. Math. Soc. Ser. B 
36, (1995), 242-248. 

117. A. H. SCHATZ, An observation concerning Ritz-Galerkin methods with indef
inite bilinear forms. Math. Compo 28 (1974), 959-962. 

118. S. A. SCHELKUNOFF, A mathematical theory of arrays. Bell Sys. Tech. Jour. 
22 (1943), 80-107. 

119. R. SCOTT, Interpolated boundary conditions in the finite element method. 
SIAM J. Numer. Anal. 12 (1975), 404-427. 

120. T. B. A. SENIOR, Impedance boundary conditions for imperfectly conducting 
surfaces. Appl. Sci. Res. B, 8 (1960), 418-436. 

121. T. B. A. SENIOR, Backscattering from resistive strips. IEEE Trans. Ant. Prop. 
27 (1979), 808-813. 

122. T. B. A. SENIOR, AND M. NAOR, Low frequency scattering by a resistive strip. 
IEEE Trans. Ant. Prop. 32 (1984), 272-275. 

123. R. A. SHORE, Sidelobe sector nulling with minimized weight perturbations, 
RADC-TR-86~40, ROme Air Development Center, Airforce Systems Com
mand, (1985). 

124. D. SLEPIAN, AND H. O. POLLAK, Prolate spheroidal wave functions, Fourier 
analysis and uncer,tainty-I. Bell Syst. Tech. J. 40 (1961), 43-64. 



References 325 

125. A. Sommerfeld, Partial Differential Equations in Physics, Academic Press, New 
York, 1957. 

126. W. STADLER, A survey of multicriteria optimization or the vector maximiza
tion problem, I. J. Optim. Theory Appl. 29 (1979), 1-52. 

127. W. STADLER, Multicriteria optimization in mechanics (a survey). Appl. Mech. 
Rev. 37 (1984), 277-286. 

128. H. STEYSKAL, Synthesis of antenna patterns with prescribed nulls. IEEE 
Trans. Antennas Propag. AP-30 (1982), 273-279. 

129. G. STILL, On density and approximation properties of special solutions of the 
Helmholtz equation. ZAMM 72 (1992), 277-290. 

130. J. A. STRATTON, Electromagnetic Theory, McGraw Hill, New York, London, 
1941. 

131. J. W. STRUTT (LORD RAYLEIGH), On the dynamical theory of gratings. Proc. 
Roy.Soc. 79 (1907), 339-416. 

132. W. L. STUTZMAN, AND G. A. THIELE, Antenna Theory and Design, 2nd. ed., 
John Wiley & Sons, Inc., New York, 1998. 

133. T. T. TAYLOR, Design of line-source antennas for narrow beamwidth and low 
side lobes. IRE Trans. Antennas Prop. 3 (1955), 16-28. 

134. A. N. TIKHONOV, On the stability of inverse problems. Dokl. Akad. Nauk SSSR 
39 (1943), 195-198 (in Russian). 

135. A. N. TIKHONOV, Regularization of incorrectly posed problems. Sov. Math. 
Doklady 4 (1963), 1624-1627. 

136. F. TREVES, Topological Vector Spaces, Distributions and Kernels, Academic 
Press, New York, 1967. 

137. F. G. TRICOMI, Integral Equations, Wiley Interscience, New York, London, 
Sydney, 1967. 

138. M. M. VAINBERG, Variational Methods for the Study of Nonlinear Operators, 
Holden-Day, San Francisco, 1964. 

139. G. N. WATSON, A Treatise on the Theory of Bessel Functions, Cambridge 
University Press, Cambridge, 1966. 

140. D. S. WElLE, AND E. MlCHIELSSEN, Integer coded Pareto genetic algorithm 
design of antenna arrys. Electronics Letters32 (1996), 1744-1755. 

141. D. S. WElLE, E. MICHIELSSEN, AND D. E. GOLDBERG, Genetic algorithm 
design of Pareto optimal broad band microwave absorbers. IEEE Trans. Elec
tromag. Compat. 45 (1996), 518-524. 

142. L. WHEEDEN AND A. ZYGMUND, Measure and Integral; An Introduction to 
Real Analysis, Marcel Decker Inc., New York, Basel 1977. 

143. E. T. WHITTAKER, A History of the Theories of Aether and Electricity from 
the Age of Descartes to the Close of the Nineteenth Century, T. Nelson, New 
York, 1951. 

144. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, 
Oxford, 1965. 

145. K. YOSIDA, Functional Analysis, 6th. ed., Springer Verlag, Berlin Heidelberg 
New York, 1980. 



Index 

C(Sd-l),101 

Cm (TI),297 
C 1'C«8fl),155 
CT(8fl), 154 
c~,a(8fl), 154 
HJ(fl),298 
H m (fl),297 
W(8fl),298 
H- 1/ 2 (8D),l71 
H- 1 / 2 (8fl), 298 
Hl/2(8D),171 
Hl/2(8fl), 298 
L2(r, C q), 86 
L oo (a, b), 296 
P(a, b), 296 

accumulation point, 288 
admissible, 115 
admissible controls, 80 
admittance, 62, 71 
Ampere's Law, 51 
anti-linear functional, 175 
array 

broadside, 3 
circular, 2, 10 
end-fire, 4 
linear, 2 
linear broadside, 17 
uniform, 4 
uniformly fed broadside, 18 

array factor, 3 
artificial domain, 178 

Banach space, 101, 289 

bang-bang principle, 203 
beam-width, 5 
Bessel function, 11 

cylindrical, 72 
spherical, 71 

Bessel inequality, 299 
bidual space, 302 
boundary condition 

conductive, 69 
impedance, 70, 147, 153, 178 
Leontovich, 70 
nonlocal, 156, 182 
table, 70 
transmission, 69 

boundary data in L2-sense, 158 
boundary element method, 163 
boundary value problem 

Dirichlet, 146, 150 
Dirichlet, for disk, 160 
impedance, 146, 150, 155 
Neumann, 146 

bounded set, 288 

Calculus of Variations, fundamental 
Lemma, 131 

Cauchy principal value, 152 
chain rule, 311 
characteristic function, 105 
charge distribution, 50 
closed set, 288 
closure of set, 288 
compact set, 288 
complete family, 168 

of solutions, 170 



328 Index 

complete space, 289 
conductivity, 53 
cone, 316 

line-free cone, 316 
order cone, 316, 317 

constant feeding, 11 
constitutive relations, 51 
constraint 

active, 94 
inactive, 94 

constraint qualification, 94, 126, 214, 
248 

continuous function 
completely, 245 

continuous mapping, 310 
convergence 

almost everywhere, 293 
pointwise, 305 
strong, 312 
weak,312 

convex function, 82 
strictly, 82, 196 
uniformly, 82 

convex set, 82, 291 
cost functional, 106 
current, 50 
current distribution 

magnetic, 64 
cylindrical wave, 72 

dense set, 289 
dielectric constant, 51 
dielectrics, 53 
dipole, 2 

electric, 64, 65 
magnetic, 65 

directivity, 10, 15, 104 
generalized, 105 
geometric, 15 

Dirichlet-to-Neumann operator, 181 
Dolph problem, 24 

generalized, 214 
Dolph-Tschebyscheff Problem, 251 
double orthogonality property, 119 
dual space, 298, 302 

of C(8Q), 171 

E-mode, 59, 146 
efficiency index, 18, 28 

eigenvalue, 199 
eigenvalue problem, 198 

generalized, 19 
eigenvector, 199 
essential supremum, 296 
extreme point, 88 

family of radiating solutions, 169 
far field operator, 80, 101, 157 

Dirichlet boundary problem, 157 
impedance boundary problem, 157 

far field pattern, 62, 75, 101, 148 
feeding distribution 

binomial, 8 
triangular, 8 

field 
electric, 50 
magnetic, 50 

finite difference method, 164 
finite element method, 164, 174 
finite element space, 177 
Fourier coefficient, 299 
Fourier expansion, 299 
Fourier transform, 32, 114 
Frechet derivative, 93 
Frechet differentiable, 94, 197, 310 

gain, 104 
Gauss' Electric Law, 51 
Gauss' Magnetic Law, 51 
Gauss-Legendre formula, 236 
Gauss-Legendre method, 45, 136, 137 
Gauss-Tschebycheff met,hod, 137 
generalized inverse, 121 
gradient, 93, 197 

tangential, 154 
grating lobe, 4 
Green's first formula, 154 
Green's first theorem, 175 

H-mode, 60, 146 
Holder continuity of derivative, 154 
Holder continuous function, 151, 190 
half-space, 308 
Hankel function, 73, 147, 160 

asymptotic behaviour, 161 
cylindrical, 72 
spherical, 71 

Helmholtz equation, 57 
fundamental solution, 63 



fundamental solution in three 
dimensions, 186 

fundamental solution in two 
dimensions, 147 

in three dimensions, 59 
in two dimensions, 73 

Hertz potential 
electric, 59 
magnetic, 59 

Hilbert space, 289 
pre-Hilbert space, 286 
separable, 80 

homogeneous medium, 52 
Householder transformation, 21 
hybrid method, 164 
hyperplane, 308 

ill-posed, 114, 115 
imbedding, 125, 155 
induction 

electric, 50 
magnetic, 50 

input power, 198 
integrable function, 294 

absolutely, 294 
integral equation 

Fredholm, of first kind, 114 
Fredholm, of second kind, 134 

integro-differential equation, 131 
inter-element spacing, 3 
interior of set, 288 

Jacobi-Anger expansion, 11, 12, 38, 204 
Joule heat, 56 
jump conditions, 151, 159 

of vector potential, 190 

Lagrange multiplier rule, 94, 126, 247 
Law of Induction, 51 
least-squares solution, 121 
Lebesgue integral, 293 
Legendre polynomial, 45, 136, 235, 300 
line current, 26 
line factor, 27, 30 

asymptotic behaviour, 41 
line source 

circular, 204 
linear, 205 

linear manifold, 307 

Index 329 

logarithmic singularity, 165 

magnetic permeability, 52 
main lobe, 4 
Maxwell's equations 

in differential form, 52 
in integral form, 51 

measurable function, 293 
measure zero, 292 
method of stationary phase, 39 
minimal point, 241 

weak,246 
minimizing sequence, 173 
MKS-system, 50 
monotonically decreasing, 293 
Morozov's discrepancy principle, 133 
multi-criteria optimization problem, 241 
multi-criteria version, 253 
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