

Springer Series in Advanced Manufacturing

Other titles in this series

Assembly Line Design
B. Rekiek and A. Delchambre

Advances in Design
H.A. ElMaraghy and W.H. ElMaraghy (Eds.)

Effective Resource Management in Manufacturing Systems:
Optimization Algorithms in Production Planning
M. Caramia and P. Dell’Olmo

Condition Monitoring and Control for Intelligent Manufacturing
L. Wang and R.X. Gao (Eds.)

William Ho and Ping Ji

Optimal Production
Planning for
PCB Assembly

With 41 Figures

123

William Ho, Ph.D.
Operations and Information

Management Group
Aston Business School
Aston University
Aston Triangle
Birmingham, B4 7ET
UK

Series Editor:
Professor D. T. Pham
Intelligent Systems Laboratory
WDA Centre of Enterprise in

Manufacturing Engineering
University of Wales Cardiff
PO Box 688
Newport Road
Cardiff, CF2 3ET
UK

Ping Ji, Ph.D.
Department of Industrial and

Systems Engineering
The Hong Kong Polytechnic

University
Hung Hom
Kowloon
Hong Kong

British Library Cataloguing in Publication Data
Ho, William

Optimal production planning for PCB assembly. - (Springer
series in advanced manufacturing)
1.Printed circuits industry - Production control
2.Production planning - Mathematical models 3.Printed
circuits - Design and construction
I.Title II.Ji, Ping
621.3’81531’0685

ISBN-13: 9781846284991
ISBN-10: 1846284996

Library of Congress Control Number: 2006933375

Springer Series in Advanced Manufacturing ISSN 1860-5168
ISBN-10: 1-84628-499-6 e-ISBN 1-84628-500-3 Printed on acid-free paper
ISBN-13: 978-1-84628-499-1

© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Preface

This book is written mainly for process planners in the electronics industry and for
those who are concerned with printed circuit board (PCB) assembly line efficiency.
We develop mathematical modeling techniques and heuristic solution approaches
to optimize some critical PCB assembly problems arising in the industry. Line
assignment, component allocation, component sequencing, and feeder arrangement
problems are optimized so that line efficiency can be improved.

In addition, this book is written for undergraduate and postgraduate students in
Operations Research and those who are interested in mathematical modeling
techniques. We formulate the above mentioned PCB assembly problems as various
types of mathematical models, including nonlinear and linear types. We also show
the transformation of the minimax type formulation into a minimization one as
well as the conversion of the nonlinear type formulation into a linear one. We
believe this is the first book to cover the application of mathematical modeling
techniques to PCB assembly problems extensively and successfully.

It is indisputable that PCBs play a vital role in our daily life. A wide variety of
our “necessities”, including personal computers, mobile phones and so on, use
PCBs. Due to the fact that the applicability of PCBs nowadays is increasing, one of
the crucial ways to increase a PCB company’s competitiveness is to minimize
production time so that products can be introduced to the market sooner. To attain
this goal, the component placement process must be optimized due to the fact that
it is generally the bottleneck of a PCB assembly line and dominates the line cycle
time. However, there is hardly a book covering this issue or studying PCB
assembly problems. This is our primary motivation for writing this book.

Component sequencing and feeder arrangement problems are two interrelated
issues for optimizing the component placement process. Therefore, in this book,
efforts are mainly made to study and solve these two problems in an appropriate
manner. According to the literature published in the past two decades, a prevalent
approach adopted by many researchers was to deal with the problems separately
for the sequential pick-and-place machine and the concurrent chip shooter
machine, which are the two placement machines to be studied in this book. This is
definitely not the best approach because machines performance depends heavily on
the position of the next component to be placed (i.e., the component sequencing

vi Preface

problem) and which feeder stores the next component to be picked up (i.e., the
feeder arrangement problem). Therefore, the problems should be integrated rather
than separated.

There are four objectives in this book. To tackle the real problem, the first
objective is to integrate the component sequencing and the feeder arrangement
problems for both the pick-and-place machine and the chip shooter machine. This
is a sophisticated approach but coincides with the actual situation. The second
objective is to optimize the component placement process using mathematical
modeling techniques. Mathematical models are constructed for the integrated
problems for both types of placement machines. Generally, it takes long
computational time to find a global optimal solution of a complex optimization
problem. So, developing an efficient and effective heuristic solution approach for
integrated problems is our third objective. Finally, the fourth objective is to
develop a prototype of the PCB assembly planning system. The system comprises
the line assignment problem, the component allocation problem, and the integrated
problems for both types of placement machines. It provides a user with an
interactive interface to PCB assembly planning. With the user friendly system,
process planners can get the solutions to the above planning problems easily and
quickly.

All the materials in this book come from our research project. Certainly,
financial support from The Hong Kong Polytechnic University and The Research
Grants Council of Hong Kong made the project possible. Therefore, we express
our sincere gratitude to these two organizations.

Furthermore, Dr. William Ho (one of the authors of this book) is genuinely
thankful to Dr. Ping Ji (another author) for his persistent guidance and assistance,
Madam Chun Fong Yeung for her continuous encouragement, and Miss Pui Ki
Wong for her love and concern. I acknowledge all parties once again from the
heart including those mentioned above together with those who helped me indeed
but missed thanking before.

Contents

1 Introduction .. 1
 1.1 PCB Assembly Process .. 1
 1.2 Assembly Equipment ... 2
 1.3 PCB Assembly Problems ... 3
 1.4 Scope of This Book .. 4

2 Optimization Techniques ... 7
 2.1 Introduction .. 7
 2.2 Mathematical Programming ... 7
 2.2.1 Linear Programming ... 8
 2.2.2 Integer Linear Programming... 8
 2.2.3 Nonlinear Programming.. 10
 2.3 Exact Algorithms.. 10
 2.3.1 Algorithms for Linear Programming .. 11
 2.3.1.1 The Simplex Algorithm... 11
 2.3.1.2 The Interior Point Algorithm....................................... 11
 2.3.2 Algorithms for Integer Linear Programming 11
 2.3.2.1 The Branch-and-Bound Algorithm.............................. 11
 2.3.2.2 The Cutting Plane Algorithm 12
 2.3.3 Algorithms for Nonlinear Programming................................... 12
 2.3.3.1 The Generalized Benders Algorithm........................... 12
 2.3.3.2 The Branch-and-Reduce Algorithm 13
 2.4 Metaheuristics .. 13
 2.4.1 Simulated Annealing... 14
 2.4.2 Tabu Search .. 15
 2.4.3 Genetic Algorithms... 15
 2.5 Commercial Packages .. 16
 2.5.1 BARON .. 17
 2.5.2 CPLEX.. 17
 2.5.3 Others.. 17
 2.6 Summary .. 17

viii Contents

3 The Sequential Pick-and-Place (PAP) Machine... 19
 3.1 Introduction .. 19
 3.2 Literature Review... 20
 3.2.1 The Component Sequencing Problem....................................... 20
 3.2.2 The Integrated Problem... 20
 3.3 Operating Sequence.. 22
 3.4 Notation.. 23
 3.5 Mathematical Models ... 24
 3.5.1 A Component Sequencing Model ... 24
 3.5.2 A Feeder Arrangement Model .. 26
 3.5.3 Integrated Mathematical Models .. 27
 3.5.4 Iterative Approach vs. Integrated Approach 33
 3.5.5 Computational Analysis.. 35
 3.5.5.1 Computing Complexity ... 35
 3.5.5.2 Computational Time.. 37
 3.6 Genetic Algorithms .. 37
 3.6.1 Encoding ... 40
 3.6.2 Improved Heuristics.. 41
 3.6.2.1 Nearest Neighbor Heuristic ... 41
 3.6.2.2 2-Opt Local Search Heuristic 41
 3.6.2.3 Iterated Swap Procedure.. 41
 3.6.3 Evaluation ... 42
 3.6.4 Selection.. 42
 3.6.5 Genetic Operations.. 43
 3.6.5.1 The Modified Order Crossover 44
 3.6.5.2 The Heuristic Mutation.. 44
 3.6.5.3 The Inversion Mutation ... 45
 3.6.6 Performance Analysis ... 45
 3.6.6.1 Comparison to Other Approaches 46
 3.6.6.2 Effect of Population Size... 47
 3.6.6.3 Comparison to Optimal Solution................................. 48
 3.6.6.4 Integrated Problem with Feeder Duplication............... 48
 3.7 Summary .. 50

4 The Concurrent Chip Shooter (CS) Machine ... 53
 4.1 Introduction .. 53
 4.2 Literature Review... 54
 4.2.1 The Component Sequencing Problem....................................... 54
 4.2.2 The Feeder Arrangement Problem.. 54
 4.2.3 The Integrated Problem... 54
 4.3 Operating Sequence ... 56
 4.4 Notation.. 64
 4.5 Mathematical Models ... 65
 4.5.1 A Component Sequencing Model ... 65
 4.5.2 A Feeder Arrangement Model .. 67
 4.5.3 Integrated Mathematical Models .. 69
 4.5.4 Iterative Approach vs. Integrated Approach 74

Contents ix

 4.5.5 Computational Analysis.. 77
 4.5.5.1 Computing Complexity ... 77
 4.5.5.2 Computational Time.. 77
 4.6 Genetic Algorithms .. 78
 4.6.1 Evaluation ... 78
 4.6.2 Performance Analysis ... 79
 4.6.2.1 Comparison to Other Approaches 79
 4.6.2.2 Effect of Population Size... 80
 4.6.2.3 Comparison to Optimal Solution................................. 81
 4.6.2.4 Integrated Problem with Feeder Duplication............... 82
 4.7 Summary .. 83

5 The Line Assignment and the Component Allocation Problems................ 85
 5.1 Introduction .. 85
 5.2 The Line Assignment Problem... 86
 5.2.1 A Mathematical Model ... 87
 5.2.2 A Genetic Algorithm... 89
 5.2.2.1 Initialization .. 91
 5.2.2.2 Evaluation.. 92
 5.2.2.3 Selection .. 92
 5.2.2.4 Crossover Operator.. 92
 5.2.2.5 Mutation Operator ... 93
 5.2.3 A Numerical Example... 93
 5.3 The Component Allocation Problem.. 98
 5.3.1 A Mathematical Model ... 100
 5.3.2 A Genetic Algorithm... 101
 5.3.2.1 Initialization .. 101
 5.3.2.2 Evaluation.. 102
 5.3.3 A Numerical Example... 102
 5.4 Summary .. 107

6 A Prototype of the Printed Circuit Board Assembly Planning System
(PCBAPS) .. 109

 6.1 The PCBAPS Framework... 109
 6.2 A Guide to Using the PCBAPS .. 109
 6.3 Graphical User Interfaces ... 110
 6.4 Summary .. 112

References .. 115

Index .. 119

1

Introduction

1.1 PCB Assembly Process

In today’s digital age, electronic products such as personal computers, mobile
phones, and audio-video equipment are ubiquitous. A common point of these
products is the application of the printed circuit board (PCB). Actually, a PCB
consists of a pattern of electrical traces etched from copper that is laminated on an
insulated base, which is typically rigid fiberglass. The PCB serves as the
interconnection device with electrical currents traveling on the board and the
different discrete electronic components that are essential to the functioning of an
electronic product. Components from a few hundred to some thousands can be
assembled on a single PCB.

The process of assembling electronic components on a PCB is called PCB
assembly. It can be classified into two categories: plated-through-hole (PTH)
technology and surface mount technology (SMT). For products where overall
board size is not a major concern, the PTH technology is applied. The components
are inserted into the holes drilled through the PCB. Then, the connections are
soldered on the underside of the PCB between the component lead and the PCB
pad. However, requirements from consumers, such as smaller product size and
greater function and reliability, have forced the SMT to replace the PTH
technology. The configuration and the size of surface mount components have
permitted mounting a large number of components on a single PCB.

The PCB assembly process in the SMT environment consists of five operations.
First of all, solder paste is applied where the components will be placed. Typically,
it is applied by screen printing. Then, it is followed by the placement operation. A
high-speed placement machine is used to mount small components such as chip
resistors on the PCB first. A flexible placement machine is then used to mount
large components such as integrated circuits (ICs) on the PCB. After all the
components have been assembled, the PCB is inspected for missing components.
Subsequently, the PCB is conveyed through an oven, which makes the solder paste
reflow and form the solder joints. Finally, the PCB must be cleaned to remove the
contaminants exposed during fabrication and assembly.

2 Optimal Production Planning for PCB Assembly

The PCB assembly line described above can be referred to as a single-sided
assembly, and it is designed for PCBs that need mounting on one side. On the other
hand, the assembly line must be redesigned if the PCBs need double-sided
mounting. In this situation, more additional placement machines are required to
mount the components on the other side of the PCB.

1.2 Assembly Equipment

There are mainly two types of placement machines in the SMT environment. Each
type of machine possesses its own peculiarities as well as the operation. The first
type of machine is called the sequential pick-and-place (PAP) machine. In this type
of machine, components of the same type are stored in a single stationary feeder,
whereas the PCB is secured on a fixed working table. During the placement
operation, the assembly head travels to pick up one component at a time from a
feeder, and then places it on the stationary board. The PAP machine can achieve
high accuracy. Moreover, it is suitable for operating with large components such as
ICs. The Fuji XP-241E machine belongs to this category.

The second type of machine is the concurrent chip shooter (CS) machine. It
possesses an X-Y table carrying a PCB, a feeder carrier with several feeders
holding components, and a rotary turret with multiple assembly heads to pick up
and place components. Each assembly head has several nozzles of different sizes.
A large nozzle is used to pick up and place large components. The major advantage
of the CS machine is its high speed because the pickup and placement operations
are performed concurrently. However, it is only preferable for operating with small
components such as chip resistors. Because the placement of smaller components
is given priority, this type of machine is arranged before the PAP machine in the
assembly line. The Fuji CP-732E machine belongs to this category.

Although both the PAP machine and the CS machine are SMT placement
machines, the configurations as well as the characteristics of both machines are
totally different. Table 1.1 summarizes the differences between these two types of
placement machines.

Table 1.1. Differences between the PAP and CS machines

The PAP machine The CS machine

Feeders Stationary Movable

PCB Stationary Movable

Number of assembly heads Single Multiple

Speed Moderate High

Assembly operation Sequential Concurrent

 Introduction 3

1.3 PCB Assembly Problems

PCB assembly planning consists of seven decision problems, which can be
classified into two closely related issues: setup management and process
optimization (Ellis et al., 2001). The meanings of the decision problems are
discussed below.

A. Setup management

Line assignment: assigning board types to assembly lines;
Machine grouping: grouping placement machines;
PCB grouping: grouping PCBs into families;
PCB sequencing: sequencing the production of PCBs.

B. Process optimization

Component allocation: allocating component types to placement machines;
Component sequencing: determining the sequence of component
placements;
Feeder arrangement: assigning component types to feeders at each machine.

Among the five assembly operations, component placement is generally the
most time-consuming (De Souza and Wu, 1995; Ong and Khoo, 1999; Ong and
Tan, 2002). In addition, it is frequently a bottleneck in an assembly line (Dikos et
al., 1997; Csaszar et al., 2000; Ong and Tan, 2002) and determines the line cycle
time (Wilhelm and Tarmy, 2003). Due to the large production volumes, a minor
reduction in cycle time will save significant production time. For example, to
produce 50,000 boards, a reduction of six seconds in cycle time will save 5,000
minutes, that is, more than 80 working hours. Therefore, to increase the efficiency
or minimize the cycle time of the line, the component placement process must be
optimized. Optimization of the component placement process includes two
interrelated problems: the component sequencing problem and the feeder
arrangement problem. So, the focus of this book is mainly confined to these
problems.

Generally, the component sequencing problem is akin to the traveling salesman
problem (TSP). This is the problem of finding the optimal placement order to visit
a set of components and return home with a minimum assembly distance or
assembly time for the PAP and the CS machines. On the other hand, the feeder
arrangement problem is very like the quadratic assignment problem (QAP). This is
the problem of determining the optimal arrangement to assign a set of component
types to feeders with a minimum assembly distance or assembly time for both
types of machines.

For the PTH technology, the sequence of the insertion operation in the auto-
insertion machine can be simply formulated as the TSP (Chan and Mercier, 1989),
and it is not necessary to consider the feeder arrangement problem. However, in
the SMT environment, the efficiency of the component placement process is also
dependent on a feeder to hold which types of components besides the pick and
placement sequence. If the arrangement of components to feeders is not done
carefully, even if the pick and placement sequencing is optimally solved, it can

4 Optimal Production Planning for PCB Assembly

cause significant deterioration in machines performance (Altinkemer et al., 2000).
So, certainly, the component sequencing problem as well as the feeder arrangement
problem should be solved simultaneously. And, this is what this book is going to
do.

1.4 Scope of This Book

In this book, four special tasks associated with the optimization of the component
placement process are performed. First of all, the component sequencing and the
feeder arrangement problems should be integrated rather than separated as many
researchers did. The integrated problem is extremely intricate because it is
somewhat similar to the combination of the TSP and the QAP; both of them belong
to NP-hard problems (Burkard et al., 1991; Freisleben and Merz, 1996a,b).

The second task is to build a mathematical model for the integrated problem. It
aims at obtaining the optimal sequence of component placements and the optimal
assignment of component types to feeders simultaneously for each type of
machine. It was revealed in Table 1.1 that the PAP machine is completely different
from the CS machine, especially in assembly operation. So, it is certain that the
mathematical model formulated for one machine type is not appropriate to another.
Besides, the feasibility of transforming mathematical models for both types of
machines into simpler form is also studied.

A PCB has hundreds of components to be placed. The computational time of
the mathematical models for integrated problems is tremendous. So, the third task
of this book is to develop a heuristic method to solve the integrated problem
efficiently and effectively to get a reasonably good solution in a reasonable time. In
particular, the genetic algorithm approach is studied due to its applicability as well
as flexibility.

The fourth task is to develop a prototype of the PCB assembly planning system.
The system comprises three levels in which the problems are closely related. After
different board types have been assigned to multiple assembly lines, that is, the line
assignment problem (Level 1), the components or the component types of the
board are allocated to multiple placement machines in a particular line, that is, the
component allocation problem (Level 2). At the last stage, Level 3, the component
sequencing problem and the feeder arrangement problem in each of the placement
machines are determined. The integration of these problems is regarded as a PCB
assembly planning system.

The structure of the book is organized as follows. In Chapter 2, a detailed
description of the optimization techniques used for solving PCB assembly
problems is presented. The techniques include mathematical programming,
commonly used exact algorithms, metaheuristics, and commercial packages.

In Chapter 3, the component sequencing and the feeder arrangement problems
for the PAP machine are studied. First of all, a comprehensive literature review is
presented to show how the previous researchers tackled the problems during the
past two decades. Several mathematical models, including the individual and the
integrated, are then formulated for the problems after the operation of the machine
is investigated thoroughly. In addition, two different approaches are compared with

 Introduction 5

respect to the capability of obtaining a global optimal solution. They are the
iterative approach (i.e., solving the individual mathematical models sequentially)
and the integrated approach (i.e., optimizing the integrated mathematical model).
The verification of the models is carried out by commercial packages, including
BARON and CPLEX. The complexity of the models is also compared to find the
best formulation that requires the least computational time to reach the global
optimum. Besides, a genetic algorithm hybridized with several improved heuristics
is developed to solve the problems simultaneously for the PAP machine. The
performance of the algorithm is compared with the approaches proposed by other
researchers and also compared with the optimal solution obtained by solving the
integrated mathematical models.

In Chapter 4, the content is similar to that in Chapter 3 except that the focus is
confined to the CS machine. Mathematical models are constructed for the
component sequencing and the feeder arrangement problems in advance. After
that, the genetic algorithm used to optimize the PAP machine performance is
modified so that it is desirable for the CS machine.

In Chapter 5, the line assignment and the component allocation problems are
studied. To optimize each of the problems, mathematical modeling and genetic
algorithms are applied. The procedure of the algorithms is described step by step
with the aid of numerical examples. Furthermore, the performance of the
algorithms is compared with the optimal solutions generated by solving the
mathematical models.

In Chapter 6, a prototype of the PCB assembly planning system (PCBAPS) is
developed. A guide to using the PCBAPS and graphical user interfaces of the
system are presented.

In summary, the objectives of this book are

to integrate the component sequencing and the feeder arrangement problems
for both the PAP and the CS machines,
to apply mathematical programming to the optimization of the component
placement process,
to develop a modern heuristic approach to the integrated problems, and
to develop a PCB assembly planning system.

2

Optimization Techniques

2.1 Introduction

There are mainly two approaches to optimizing PCB assembly problems. The first
one is to formulate the problems as mathematical models and then solve them to
optimality using exact algorithms or commercial packages. The second one is
simply to generate good solutions of the problems using metaheuristics. Although
the latter approach can generate solutions efficiently, no one knows how good the
solutions are unless the optimal solution is known in advance.

This chapter is organized in the following way: Section 2.2 presents several
types of mathematical programming in Operations Research, which can be applied
to PCB assembly problems. Section 2.3 and Section 2.4 survey commonly used
exact algorithms and metaheuristics, respectively. Section 2.5 describes the
commercial packages including those adopted in this book and some other
prevalently used ones. Finally, some remarks concerning this chapter are
summarized in Section 2.6.

2.2 Mathematical Programming

Many researchers used mathematical programming models in dealing with the
PCB assembly problems. A mathematical programming model is a mathematical
representation of the actual situation that may be used to make better decisions or
simply to understand the actual situation better (Winston and Venkataramanan,
2003). The common feature which mathematical programming models have is that
they all involve optimization (Williams, 1999). In PCB assembly problems,
optimization includes the minimization of something (e.g., setup time, placement
time, and so on) or the maximization of something (e.g., throughput, workload
balance, and so on), under certain constraints (e.g., machine capacity, available
production time, and so on).

In the following subsections, attention is confined to linear programming
models, integer linear programming models, and nonlinear programming models.

8 Optimal Production Planning for PCB Assembly

They are presented and studied because the component sequencing and the feeder
arrangement problems for the sequential pick-and-place machine (in Chapter 3)
and the concurrent chip shooter machine (in Chapter 4), and the line assignment
and the component allocation problems (in Chapter 5) can be formulated with these
types of models.

2.2.1 Linear Programming

A model is defined as linear program (LP) when the objective function and the
constraints involve linear expressions and the decision variables are continuous.
Comparatively, LP models are given so much attention in comparison with
nonlinear programming models because they are much easier to solve. The
transportation model, first described by Hitchcock in 1941, is a special class of LP
(Williams, 1999). Suppose that a number of suppliers (i = 1, 2, …, m) provides a
commodity to a number of customers (j = 1, 2, …, n). The transportation problem
is how to meet each customer’s requirement, dj, while not exceeding the capacity
of any supplier, si, at minimum cost, cij. By introducing variables xij to represent the
quantity of the commodity sent from supplier i to customer j, the transportation
model can be written as (Winston and Venkataramanan, 2003)

 Minimize z =
m

i

n

j
ijij xc

1 1

 (2.1)

subject to

i

n

j
ij sx

1

i = 1, 2, …, m (2.2)

m

i
jij dx

1

j = 1, 2, …, n (2.3)

 All xij� �0. (M2-1)

The objective function (2.1) is to minimize the total transportation cost.
Constraint set (2.2) is known as a supply or availability constraint, whereas
constraint set (2.3) is known as a demand or requirement constraint. M2-1 is
referred to as the transportation model. If the total supply equals total demand, then
the problem is said to be a balanced transportation problem. In this case, constraint
sets (2.2), and (2.3) are treated as both “=” instead of “ ” and “ ”, respectively.

2.2.2 Integer Linear Programming

Integer linear programming or integer programming (IP) is widely adopted as a
method of modeling because some variables are not continuous but integers in
many cases in real life. Actually, IP is a subset of LP, with an additional constraint
that some or all decision variables are restricted to integral values depending on the

 Optimization Techniques 9

type of IP. Generally, there are three types of IP. First, IP is called pure integer
linear programming if all variables must be integers. Second, IP is called mixed
integer linear programming if only some of the variables must be integers. Third,
IP is called binary integer linear programming if all the variables must be either 0
or 1 (Winston and Venkataramanan, 2003).

IP has important practical applications. However, it was pointed out that
computational experience with IP has been less than satisfactory (Taha, 2003).

The traveling salesman problem (TSP) is one of the most widely studied IP
problems. The TSP can be easily stated as follows. A salesman wants to visit n
distinct cities and then return home. He wants to determine the sequence of the
travel so that the overall travel distance is minimized while visiting each city not
more than once. Although the TSP is conceptually simple, it is difficult to obtain
an optimal solution. In an n-city situation, any permutation of n cities yields a
possible solution. As a consequence, n! possible tours must be evaluated in the
search space. By introducing variables xij to represent the tour of the salesman
travels from city i to city j, one of the common IP formulations for the TSP can be
written as (Winston and Venkataramanan, 2003)

 Minimize z =
n

i

n

ij
j

ijij xc
1 1

 (2.4)

subject to
n

i
ijx

1

 = 1 j = 1, 2, …, n; i j (2.5)

n

j
ijx

1

 = 1 i = 1, 2, …, n; i j (2.6)

 ui – uj + nxij n – 1 i, j = 2, 3, …, n; i j (2.7)

 All xij�=�0 or 1. All ui 0 and is a set of integers. (M2-2)

The distance between city i and city j is denoted as cij. The objective function
(2.4) is simply to minimize the total distance traveled in a tour. Constraint set (2.5)
ensures that the salesman arrives once at each city. Constraint set (2.6) ensures that
the salesman leaves each city once. Constraint set (2.7) is to avoid the presence of
a subtour.

The TSP formulated for the component sequencing problem is known as the
Euclidean TSP, in which the distance matrix c is expected to be symmetrical, that
is, cij = cji for all i, j, and to satisfy the triangle inequality, that is, cik cij + cjk for
all distinct i, j, k.

10 Optimal Production Planning for PCB Assembly

2.2.3 Nonlinear Programming

In the previous subsections, LP as well as IP has been studied. For an LP, the
objective is to minimize or maximize a linear function subject to linear constraints.
Although LP problems are very common and cover a wide range of problems, the
objective function may not be a linear function, or some of the constraints may not
be linear in a real-life situation. Such an optimization problem is called a nonlinear
programming (NLP) problem.

The quadratic assignment problem (QAP) is a generalization of the linear
assignment problem. The major difference between them is that the objective
function of the QAP is in a nonlinear expression. Therefore, it is comparatively
difficult to solve. The QAP can be described as follows. Consider a set of facilities
(i, k = 1, 2, …, n) placed uniquely in a set of locations (j, l = 1, 2, …, n). The
workflow intensity between each pair of facilities is aik while the distance between
each pair of locations is bjl. Also, a fixed cost cij associated with the placement of
facility i in location j is specified. The formulation of the QAP can be written as
(Burkard et al., 1991; Williams, 1999)

 Minimize z =
n

i

n

j

n

ik
k

n

jl
l

klijjlik xxba
1 1 1 1

 +
n

i

n

j
ijij xc

1 1

 (2.8)

subject to
n

i
ijx

1

 = 1 j = 1, 2, …, n (2.9)

n

j
ijx

1

 = 1 i = 1, 2, …, n (2.10)

 All xij�=�0 or 1. (M2-3)

The decision variables xij represent the placement of facility i in location j.
Often, the objective function (2.8) is to assign facilities to locations so that the
travel distance of material flow is minimized, while assuming that the cost of
assigning a facility does not depend upon the location, that is, cij = 0. Constraint set
(2.9) ensures that each location must be occupied by only one facility. Constraint
set (2.10) ensures that each facility must be assigned only to one location.

2.3 Exact Algorithms

A set of fixed computational rules for solving a particular class of problems or
models is known as an algorithm. It applies the rules repetitively to the problem or
the model, each iteration moves the solution closer to the optimum. In Operations
Research, there does not exist an algorithm that solves all types of mathematical
models. For example, the simplex algorithm is the general method for solving LP

 Optimization Techniques 11

models, whereas the branch-and-bound algorithm is the general technique for
solving IP models.

2.3.1 Algorithms for Linear Programming

Finding an optimal solution to an LP model can be regarded as assigning values to
the decision variables so that the specified objective is achieved and the constraints
are not violated. In the following, two commonly used algorithms for solving the
LP models are discussed: the simplex algorithm and the interior point algorithm.

2.3.1.1 The Simplex Algorithm
The simplex algorithm has proved highly efficient in practice and therefore was
widely adopted in commercial optimization packages for solving any LP model
(Jensen and Bard, 2003). Its development was based on the graphical method that
the optimal solution is always associated with a corner point of the solution space.
The idea of the simplex algorithm is to move the solution to a new corner that has
the potential to improve the value of the objective function in each iteration. The
process terminates when the optimal solution is found (Taha, 2003).

2.3.1.2 The Interior Point Algorithm
The simplex algorithm searches for the optimal solution along the corner points of
the solution space, whereas the interior point algorithm looks for the optimum
through the interior of the feasible region (Jensen and Bard, 2003). The interior
point algorithm has theoretical importance that it provides a bound on the
computational effort required to solve a problem that is a polynomial function of
its size. But, there is no polynomial bound available in the simplex algorithm
(Carter and Price, 2001; Jensen and Bard, 2003).

2.3.2 Algorithms for Integer Linear Programming

Unlike LP with the simplex algorithm, a good IP algorithm for a very wide class of
IP problems has not been developed (Williams, 1999). Different algorithms are
good with different types of problem. Generally, IP algorithms are based on
exploiting the tremendous computational success of LP. Thus, before applying an
IP algorithm, the integer restriction on the problem should be relaxed first to form
an LP model. Starting from the continuous optimum point obtained from the LP
model, integer constraints are incorporated repeatedly to modify the LP solution
space in a manner that will eventually render the optimum extreme point satisfying
the integer requirements.

2.3.2.1 The Branch-and-Bound Algorithm
In practice, the branch-and-bound (B&B) algorithm is widely used for solving IP
models, especially mixed integer linear programming (MIP) models (Williams,
1999). The idea of the B&B algorithm is to perform the enumeration efficiently so
that not all combinations of decision variables must be examined. Sometimes, the
terms “implicit enumeration”, “tree search”, and “strategic partitioning” are used
depending on the implementation of the algorithm (Jensen and Bard, 2003).

12 Optimal Production Planning for PCB Assembly

The B&B algorithm starts with solving an IP model as an LP model by relaxing
the integrality conditions. In case the resultant LP solution or the continuous
optimum is an integer, this solution will also be the integer optimum. Otherwise,
the B&B algorithm sets up lower and upper bounds for the optimal solution. The
branching strategy repetitively decreases the upper bound and increases the lower
bound. The process terminates, provided that the processing list is empty (Castillo
et al., 2002).

2.3.2.2 The Cutting Plane Algorithm
As with the B&B algorithm for solving IP models, the cutting plane algorithm
relaxes the integrality requirements of the IP models and solves the resultant LP.
But rather than repetitively imposing restrictions on the fractional variables, as is
done in the B&B algorithm, extra constraints (i.e., cutting planes) are
systematically added to the model, and the model is then resolved. The new
solution to the further constrained model may or may not be an integer. By
continuing the process until an integer solution is found or the model is shown to
be infeasible, the IP model can be solved (Williams, 1999; Jensen and Bard, 2003).

2.3.3 Algorithms for Nonlinear Programming

The quadratic assignment problem (QAP), as shown in Section 2.2.3, belongs to
the NLP model because there is a nonlinear expression in the objective function. In
addition, the QAP is a binary NLP model as the decision variable is either 0 or 1.
But, if an NLP model consists of both integer and continuous variables, it is
regarded as mixed integer nonlinear programming model (MINLP). In this book,
the integrated problem for the concurrent chip shooter machine will be formulated
as this type of model. Therefore, the algorithms for solving the MINLP models are
discussed.

Actually, the MINLP problems are the most difficult optimization problems of
all. They combine all the difficulties of both the MIP as well as the NLP. Also,
they do not have the properties of the MIP or the NLP. For example, a local
minimum is equivalent to the global minimum for convex NLP problems. But this
result does not hold for MINLP problems. Therefore, MINLP problems belong to
the class of NP-complete problems (Kallrath, 1999).

There are two categories of MINLP problems: convex and nonconvex. In the
following, the generalized benders decomposition, an algorithm for solving convex
MINLP problems, and the branch-and-reduce algorithm, an algorithm for
optimizing nonconvex MINLP problems, are described in brief.

2.3.3.1 The Generalized Benders Algorithm
In the generalized benders decomposition, two sequences of updated upper and
lower bounds are generated. The upper bounds correspond to solving subproblems
in continuous variables by fixing the integer variables, while the lower bounds are
based on duality theory. The algorithm terminates if the lower and the upper
bounds equal or cross each other (Floudas, 2000).

 Optimization Techniques 13

2.3.3.2 The Branch-and-Reduce Algorithm
The branch-and-reduce algorithm is the extended version of the B&B algorithm for
optimizing nonconvex MINLP problems in which valid convex underestimating
NLPs can be constructed for the nonconvex relaxation. Due to the fact that
nonconvex NLPs must be underestimated at each node, convergence can be
achieved only if the continuous variables are branched. A number of tests are
suggested to speed up the reduction of the solution space, including the optimality-
based range reduction tests and the feasibility-based range reduction tests (Floudas,
2000; Tawarmalani and Sahinidis, 2002).

2.4 Metaheuristics

For many exact algorithms, the computational effort required is an exponential
function of the problem size. In a sense, therefore, it may be necessary to abandon
the search for the optimal solution using the exact algorithms and simply seek a
good solution in a reasonable computational time using heuristics. In Operations
Research, the term “heuristic” refers to the methods for the problem under study,
based on rule of thumb, common sense, or adaptations of exact methods for
simpler models. They are used to find reasonable solutions when the problems are
complex and difficult to solve. In optimization, a heuristic method refers to a
practical and quick method based on strategies that are likely to (but not
guaranteed to) lead to a solution that is approximately optimal or near-optimal
(Murty, 1995).

Heuristics can be classified as either constructive (greedy) heuristics or as local
search heuristics (Walser, 1999). First, greedy heuristics, such as the nearest
neighbor heuristic, simply list all the feasible solutions of the problem under study,
evaluate their objective functions, and pick the best as the output of the model.
This approach of complete enumeration is likely to be grossly inefficient especially
when the number of possible solutions to the problem is vast. So, greedy heuristics
are not desirable for solving combinatorial optimization problems, and conversely,
local search heuristics are more suitable.

Second, local search heuristics, such as the 2-opt local search heuristic, are
based on the concept of exploring the vicinity of the current solution. Neighboring
solutions are generated by a move-generation mechanism. If the generated
neighbor has a better objective value, it becomes a new current solution, or
otherwise the current solution is retained. The process is iterated until there is no
possibility of improvement in the neighboring solution. The method then
terminates at a point called local optimum, which may be far from any global
optimum, as shown in Figure 2.1. This is one of the disadvantages of simple local
search methods.

14 Optimal Production Planning for PCB Assembly

Figure 2.1. Global and local optimum

To avoid getting trapped at a local optimum, a number of conceptual metalevel
strategies have been developed for local search heuristics. These strategies are
referred to as metaheuristics (Osman and Kelly, 1996). A metaheuristic is an
iterative generation process that guides a subordinate or simple heuristic by
combining intelligence, biological evolution, neural systems, and statistical
mechanics for exploring and exploiting the search spaces using learning strategies
to structure information to find near-optimal solutions efficiently. The families of
metaheuristics include genetic algorithms, the greedy random adaptive search
procedure, problem-space search, neural networks, simulated annealing, tabu
search, threshold algorithms, and their hybrids.

In the following subsections, three metaheuristics will be described briefly.
These three approaches are very general and applicable to a wide range of
problems, while yielding reasonable performance in terms of speed and good
performance in terms of the quality of the solutions generated. In addition, the
Committee on the Next Decade of Operations Research has singled out these
approaches as “extremely promising” for the future treatment of practical
applications (Glover et al., 1993). They are simulated annealing (SA), tabu search
(TS), and genetic algorithms (GAs).

2.4.1 Simulated Annealing

Simulated annealing (SA), introduced by Kirkpatrick, Gelatt, and Vecchi in 1983,
is a technique combining the concepts of statistical mechanics. SA is based on an
analogy between the annealing process and the technique of solving the
combinatorial optimization problem. SA starts with an initial solution and
repeatedly generates a neighbor solution. A neighbor solution is always accepted if
there is an improvement in the objective value. However, if it is worse, the solution
may be accepted and this acceptance will depend on the control parameter
(temperature). To apply SA to a practical problem, there are several choices to be
made. The choices can be divided into two main categories: problem-specific and
generic. Table 2.1 illustrates the several choices (Johnson et al., 1989; Rayward et
al., 1993; Osman and Kelly, 1996).

Objective value

Iterations

Local

Global

 Optimization Techniques 15

Table 2.1. Choices to be made in implementing simulated annealing

Problem-specific: - What is the solution representation?

 - What is the objective function?

 - What are the neighborhood generation mechanisms?

 - How do we determine an initial solution?

Generic: - How do we determine an initial temperature?

 - What is the temperature update rule?

 - How many iterations must be performed at each temperature?

 - What is the stopping criterion?

2.4.2 Tabu Search

Tabu search (TS) was developed by Glover and Hansen in 1986 for solving
combinatorial optimization problems. TS, like SA, is based on local search
heuristics with local-optima avoidance, but in a deterministic way which tries to
model human memory processes. In other words, TS is an iterative metaheuristic
search procedure combining the concepts of artificial intelligence.

TS starts with an initial current solution, which can be generated randomly.
Then, the method generates a list of all neighborhood solutions, which is known as
the candidate list, from the current solution. Next, all solutions in the candidate list
are evaluated, and the best solution from the candidate list will be selected.
Sometimes, the best solution may not be selected if the solution is in the tabu
memory lists. The lists can be divided into two parts, which are recency (short-
term) memory, and frequency (long-term) memory. Both memories are responsible
for recording the history of the search, and especially the moves, called attributes,
have participated in generating past solutions. The mechanism attempts to avoid
the cycling behavior of the method. If the selection is forbidden (tabu), the method
proceeds to select the second best solution in the candidate list as the new current
solution. On the other hand, if the current solution is better than the specified
aspiration level or best fitness value found so far, the solution’s tabu status is
overridden and the solution is still admissible as the next current solution. The
current best solution is updated if necessary, and then a new list of candidate
solutions is generated around the new current solution. The procedure continues
until the stopping criteria are satisfied (Glover et al., 1993; Glover and Laguna,
1997).

2.4.3 Genetic Algorithms

Genetic algorithms (GAs) were developed by Holland in the 1960s. Only recently,
their potential for solving combinatorial optimization problems has been explored.
Similar to SA and TS, GAs can avoid getting trapped in a local optimum by the aid
of one of the genetic operators called mutation. Actually, the basic idea of GAs is
to maintain a population of candidate solutions that evolves under selective

16 Optimal Production Planning for PCB Assembly

pressure. Hence, they can be viewed as a class of local search based on a solution-
generation mechanism operating on attributes of a set of solutions rather than
attributes of a single solution by the move-generation mechanism of the local
search methods, like SA and TS (Osman and Kelly, 1996). As GA is selected as a
heuristic method to solve the problems in this book, it will be described more
thoroughly in the following chapters.

In recent years, many researchers discovered that a simple GA was not
desirable for solving combinatorial optimization problems with a large problem
size. Therefore, they incorporated local search heuristics into the GA, which is
called the genetic local search (GLS), for solving the TSP (Freisleben and Merz,
1996a,b) and the QAP (Huntley and Brown, 1996; Ahuja et al., 2000).
Experimental results showed that the GLS could solve the TSP and the QAP
effectively. For instance, it was found that the GLS obtained the optimal solution
for a TSP with 1,400 cities after 200 iterations (Freisleben and Merz, 1996b).

Commonly used local search heuristics can be classified into three main
categories: 2-opt, 3-opt, and Lin-Kernighan (LK). For the 2-opt local search
heuristic, a neighboring solution is obtained from the current solution by deleting
two edges, reversing and reconnecting the two resultant paths in a different way to
form a new tour. For the 3-opt local search heuristic, three edges are deleted
instead of two. The resultant paths are combined in the best possible way. 3-opt is
much more effective than 2-opt, though the size of the neighborhood is larger, and
hence more time-consuming to search. To improve 3-opt further, Lin and
Kernighan developed a sophisticated edge exchange procedure where the number
of edges to be exchanged is variable (Reinelt, 1994).

2.5 Commercial Packages

It is worth writing very sophisticated and efficient computer programs for
algorithms when they are used frequently for solving many different models. Such
programs, usually consisting of a number of algorithms collected together, are
called a “package” of computer routines. Many such package programs are
available commercially for solving mathematical programming models. When a
mathematical programming model is built, it is usually worth using an existing
package to solve it rather than getting diverted onto the task of programming the
computer to solve the model oneself (Williams, 1999).

In this book, integrated problems for the sequential pick-and-place machine and
the concurrent chip shooter machine are formulated as integer nonlinear
programming models presented in Chapter 3 and Chapter 4, respectively. Then,
each of the models is equivalently converted into an integer linear programming
model. To verify the models, two commercial packages are used. First, BARON is
adopted to solve integer nonlinear programming models, whereas CPLEX is used
for optimizing integer linear programming models. In the following, the
characteristics and the working principles of both commercial packages are
described briefly. In addition, some existing commercial packages not used in this
book are discussed.

 Optimization Techniques 17

2.5.1 BARON

BARON is a computational system for solving nonconvex optimization models to
global optimality. Purely continuous NLP models, purely integer NLP models, and
MINLP models can be solved with the software. This is the reason why it is
adopted to solve the integer nonlinear programming models presented in Chapter 3
and Chapter 4. BARON combines constraint propagation, interval analysis, and
duality for efficient range reduction with rigorous relaxation constructed by
enlarging the feasible region and/or underestimating the objective function.

2.5.2 CPLEX

CPLEX is used as an integer linear programming solver in this book because it is
powerful in solving LP and MIP problems. For problems with integer variables,
CPLEX uses a branch-and-bound search with modern algorithmic features, such as
cuts and heuristics, to solve a series of LP subproblems. Because a single MIP
generates many LP subproblems, even a small MIP can be very computationally
intensive and requires significant amounts of physical memory.

2.5.3 Others

Nowadays, there are numerous commercial packages available for tackling
different types of mathematical programming problems. For instance, apart from
BARON, DICOPT is a framework for solving MINLP models using standard MIP
and NLP solvers to solve MIP and NLP subproblems generated by the algorithm.
SBB is another MINLP solver. It is based on a combination of the standard B&B
algorithm and some of the standard NLP solvers for subproblems.

On the other hand, except for CPLEX, LINDO is also widely used as an MIP
solver. The base version includes primal and dual simplex solvers. For models with
integer restrictions, LINDO includes an exceptional integer solver with default
settings selected to work well on broad classes of integer models. OSL includes a
set of stand-alone solvers for the MIP problem. A branch-and-bound technique is
used for MIP, whereas the simplex algorithm is used to solve LP subproblems.

2.6 Summary

Various optimization techniques appropriate for the PCB assembly problems have
been discussed in this chapter. Some remarks concerning these techniques are
summarized as follows:

1. PCB assembly problems can be formulated as different types of
mathematical programming models, including linear programming, integer
linear programming, and nonlinear programming models.

2. An algorithm does not exist that solves all types of mathematical models.
For instance, the simplex algorithm is the general method for solving linear
programming models but not integer linear programming models.

18 Optimal Production Planning for PCB Assembly

3. Simulated annealing, tabu search, and the genetic algorithms (GAs) are
commonly used metaheuristics. Note that each metaheuristic possesses its
own characteristics and there is no special one that is acknowledged as the
best.

4. GAs will be adopted to solve integrated problems for both types of
placement machines, the line assignment problem, and the component
allocation problem. The reason is that GAs have been applied successfully
in a wide variety of optimization problems such as the TSP, the QAP, and
the minimum spanning tree problem (Gen and Cheng, 1997). In addition,
the merits of GAs, including simplicity, ease of operation, and flexibility,
are the encouraging factors for applying it.

5. BARON and CPLEX are commercial packages used to solve integer
nonlinear programming models and integer linear programming models to
be formulated in this book, respectively.

In the next chapter, the component sequencing problem and the feeder
arrangement problem are studied for the sequential pick-and-place machine. Each
of the problems is formulated as an individual mathematical model first. Because
of their inseparable relationship, one cannot be solved unless the solution of the
other one is obtained beforehand. Therefore, two mathematical models in nonlinear
form are constructed for the integrated problem. The nonlinear programming
models are also converted equivalently into two linear programming models. These
models are compared in terms of computing complexity as well as the
computational time taken for obtaining the global optimal solution. To achieve this
goal, BARON and CPLEX are used. Besides applying mathematical modeling, a
genetic algorithm incorporating several improved heuristics is developed.

3

The Sequential Pick-and-Place (PAP) Machine

3.1 Introduction

Mathematical modeling is a powerful tool in today’s life. Without applying it, the
optimal solution of a particular problem cannot be obtained. Although heuristic
methods and simulation are alternative tools for solving a problem, no one can
assure that the solution generated using these tools is optimal or even knows how
good the solution is before the optimal solution has been found. In this chapter,
mathematical modeling is applied to optimize the performance of the sequential
pick-and-place (PAP) machine so that the highest throughput can be achieved.

The placement head, which is the only movable mechanism in this type of
machine, has to move to a feeder, pick up a component from the feeder, move to
the desired location on the PCB, and place the component there to assemble a
component. The distance traveled by the placement head or the placement time is
dependent on the position of the next component to be placed (i.e., the component
sequencing problem) together with which feeder stores the next component to be
picked up (i.e., the feeder arrangement problem). So, to optimize the performance
of the PAP machine, both problems should be considered and solved
simultaneously.

This chapter is organized as follows. First of all, Section 3.2 presents a
comprehensive review of how previous researchers attempted to solve the
component sequencing and the feeder arrangement problems for the PAP machine.
Section 3.3 describes the operating sequence of the PAP machine. Section 3.4
summarizes all notation adopted in the mathematical models presented in this
chapter. Section 3.5 presents both individual and integrated models for the
problems and examines whether the iterative approach (i.e., sequentially solving
individual models) can yield the global optimal solution of the integrated approach.
In addition, all integrated models are compared in terms of computing complexity
as well as computational time spent to reach the global optimum. Section 3.6
develops a genetic algorithm (GA) incorporating several improved heuristics to
solve the integrated problem for the PAP machine. Performance of the algorithm
will be studied and compared with that of other researchers. Finally, some remarks
are summarized in Section 3.7.

20 Optimal Production Planning for PCB Assembly

3.2 Literature Review

As mentioned earlier, the PAP machine performance is dependent on both the
component sequencing and the feeder arrangement problems. So, certainly, both
problems should be taken into consideration simultaneously. Nevertheless, many
researchers studied the individual problems and/or solved the problems separately.

3.2.1 The Component Sequencing Problem

Ball and Magazine (1988) were the first researchers to study the component
sequencing problem for the sequential PAP machine. The assumption was that the
feeder arrangement was given. The problem was modeled as the rural postman
problem. A heuristic approach was then used to solve the problem, which assured
that the solution was optimal if the movement of the assembly head was rectilinear.

3.2.2 The Integrated Problem

Ji et al. (1992) studied the component sequencing and the feeder arrangement
problems for the PAP machine. In their approach, the authors separated the pickup
operation from the placement operation. They first modeled the component
sequencing problem as a linear assignment problem with an assumption that the
feeder arrangement was provided. Then, they formulated the feeder arrangement
problem as a linear assignment problem again. They adopted the existing linear
programming algorithms and the heuristic methods to solve the component
sequencing model and the feeder arrangement model, respectively.

Foulds and Hamacher (1993) determined the sequence of component
placements and the assignment of component types to feeders for the PAP machine
to minimize the total cost of placement head travel in assembling all components
on a board. The feeder arrangement problem, which was formulated as a number of
one-facility location models, was solved first. Then, the component sequencing
problem, which was formulated as the TSP, was solved. Because it was proved that
both the individual problems are NP-hard, the authors developed a heuristic
method to tackle the problems separately.

Leu et al. (1993) studied the component sequencing and the feeder arrangement
problems simultaneously for three types of PCB assembly machines, including the
insertion machine, the PAP machine, and the CS machine. The authors presented a
GA to solve the problems for the three types of machines. The genetic operations
adopted in the GA included the crossover, the mutation, the inversion, and the
rotation.

Francis et al. (1994) studied the component sequencing and the feeder
arrangement problems for the PAP machine. The component sequencing problem
was formulated as the TSP with a special structure to minimize the total assembly
time. A heuristic method called the “clock sequence” was developed to solve the
problem. Once the sequence of component placements was obtained, the feeder
arrangement problem was also known with reference to the placement sequence.

Kumar and Li (1995) studied the component sequencing and the feeder
arrangement problems for the PAP machine. The authors formulated the problems

The Sequential Pick-and-Place (PAP) Machine 21

as a quadratic programming model. However, it was unable to find the first
component and therefore could not calculate the distance between the starting point
and the first component. Besides, the authors did not solve it because they found
that the model was computationally intractable. Therefore, they solved the
problems separately. First, the component sequencing problem was referred to as
the TSP. The nearest neighbor, the nearest insertion, the furthest insertion, and
random generation were used to generate an initial placement sequence. Then, the
2-opt, the 3-opt, and the or-opt heuristics were used to improve the placement
sequence. Second, the feeder arrangement problem was referred to as a minimum
weight matching problem. They used commercial software to obtain an optimal
solution for the problem.

Broad et al. (1996) agreed that the component sequencing and the feeder
arrangement problems for the PAP machine should be simultaneously solved as
they are interrelated. The authors therefore formulated the integrated problem as an
integer linear programming model. However, the solution generated might be
infeasible because the subtour elimination constraint was not included in the
model. Besides, the sequence of placement head movements was still unknown
after a solution had been generated. This could be solved provided that the starting
point and the finishing point were given.

Egbelu et al. (1996) studied the component sequencing and the feeder
arrangement problems for the PAP machine to reduce assembly cycle time. Four
different robotic assembly cell designs were investigated, and several heuristic
procedures were presented to obtain solutions of the designs or the models. In the
heuristic procedures, the feeder arrangement problem modeled as the QAP was
solved first using the cutting plane algorithm and the exchange algorithm. Then,
the component sequencing problem was formulated as the TSP. The furthest
insertion algorithm and the 3-opt algorithm were adopted to solve the problem.

Magyar et al. (1999) developed several local search heuristics to solve the
component sequencing and the feeder arrangement problems separately for the
PAP machine. The authors first determined the feeder arrangement and then the
sequence of component placements to maximize the throughput of the machine.

Ong and Khoo (1999) developed a GA to determine the sequence of component
placements and the arrangement of component types to feeders simultaneously for
the PAP machine. The objective of the approach was to minimize the total travel
distance of the placement head. The genetic operations adopted in the GA were the
crossover, the mutation, and the inversion. In their approach, components of the
same type could be stored in more than one feeder.

Deo et al. (2002) also studied the component sequencing and the feeder
arrangement problems for the PAP machine. Although an integer linear
programming model was formulated for the integrated problem, the model had two
drawbacks. The distance between the starting point and the first component was
not included, and also the solution generated might be infeasible due to the
occurrence of a subtour. Instead of verifying the model, the authors applied a GA
to solve the problems simultaneously. The genetic operations adopted in the GA
were the crossover and the mutation.

22 Optimal Production Planning for PCB Assembly

3.3 Operating Sequence

The sequential PAP machine can achieve high accuracy and is suitable for
operating with large components such as ICs. The Fuji XP-241E machine belongs
to the class of PAP machines. In this type of placement machine, an image camera
is installed on the placement head. The head can therefore move directly from the
pickup points (i.e., the stationary feeders) to the placement points (i.e., the position
of components on the PCB) without a stop for part image acquisition.

The operating sequence of the PAP machine is described as follows. At the
beginning, the placement head starts from its original location or starting point,
moves to a feeder that carries components, and picks up a component from the
feeder. Then, it moves to the desired placement location on the stationary board,
and places it there. After that, the head moves back to the previous feeder, if the
next component is the same type as the previous one, or moves to another feeder, if
it is different from the previous one, to pick up the next component and repeats the
operating procedure. After completing all component placements on a board, the
head returns to its original location, and waits for the next board to be assembled,
as shown in Figure 3.1 for 10 components.

Figure 3.1. The assembly sequence of the placement head

Head movement
sequence number

Component
number

Component
type

Feeder number 4 5 6

(6) (2) (3)

Starting
point

(1)

1

2

3

4

5

(5)

(4)

(1)

(6)

1

2

3

(4)

(5)

(1)

(3)

6

7

8

9

10

(5)

(4)

(3)

(2)

1

2

3
4

5
6

7

8

9

11

12

13

14

15

16

17

18

19

20

21

10

The Sequential Pick-and-Place (PAP) Machine 23

Consider a board with 10 components of six types that requires assembly using
the PAP machine, as illustrated in Figure 3.1. The number inside the bracket
represents the component type. For example, component 1 or c1 is of type 6.
Furthermore, each of the component types is assigned to a feeder. For instance,
component type 4 is stored in feeder 1 or f1. If the sequence of placements starts
with component 2, then components 3, 9, 4, 5, 10, 8, 7, 6, and finally component 1,
then the entire assembly sequence of the placement head will be starting point f3

c2 f3 c3 f2 c9 f2 c4 f1 c5 f1 c10 f6 c8 f6 c7

f5 c6 f4 c1 starting point.

3.4 Notation

Although the operating sequence of the PAP machine is easy to describe verbally,
it is hard and complex to find the shortest distance traveled by the placement head
for assembling all components on the PCB. The reason is that the distance is
dependent on the position of the next component to be placed, that is, the
component sequencing problem together with which feeder stores the next
component to be picked up, that is, the feeder arrangement problem. So, the
problems of the component sequencing as well as the feeder arrangement should be
studied and solved simultaneously to optimize the performance of the PAP
machine. To achieve this goal, mathematical modeling must be applied. Because
there are many variables adopted in the mathematical models presented in the
following section, the interpretation of the notation is summarized here.

Consider a PCB to be assembled by a PAP machine. The PCB has n
components with different types. Each of the component types must be stored in
a feeder. But a feeder can store only a unique type of component. Because a
component type must be assigned to a feeder, feeders are needed to store types
of components. The objective of the integrated problem for the PAP machine is to
minimize the total travel distance of the placement head, which includes the
distance from the starting point to a feeder at the beginning (i.e., d0l), the distances
from a feeder to a component’s position on the PCB (i.e., dlj), the distances from a
component’s position to a feeder (i.e., dil), and the distance from the last
component’s position to the starting point (i.e., di0). Note that the starting point can
be referred to as component 0 (i.e., i, j = 0). The notation used in both individual
and integrated models has been summarized in Table 3.1.

24 Optimal Production Planning for PCB Assembly

Table 3.1. Notation

Indexes:

i, j: components (i, j = 0, 1, …, n).

t: component types (t = 1, 2, …,).

l: feeders (l = 1, 2, …,).

p: placement order or placement position (p = 1, 2, …, n).

Distances:

d0l: distance traveled from starting point to feeder l.

dlj: distance traveled from feeder l to the position of component j on the PCB.

dil: distance traveled from the position of component i to feeder l.

di0: distance traveled from the position of component i to starting point.

Subtour elimination constraint:

ui: placement order of component i.

Decision variables:

ijx = 1 if component i is placed immediately prior to component j; 0 otherwise.

ipx = 1 if component i is placed in the pth position; 0 otherwise.

lt j
y = 1 if component j with component type t is stored in feeder l; 0 otherwise.

3.5 Mathematical Models

In the following subsections, individual component sequencing and feeder
arrangement problems are constructed in advance. It is then followed by the
formulation of the integrated mathematical models. To determine the best way to
optimize the performance of the PAP machine, the iterative and the integrated
approaches are compared. Furthermore, a computational analysis of all integrated
models, including the nonlinear and linear types, is carried out.

3.5.1 A Component Sequencing Model

Suppose that the assignment of component types to feeders (i.e., the feeder
arrangement problem) is solved beforehand. Then, the component sequencing
model can be formulated to find the minimal distance traveled by the placement
head for assembling all components on the PCB. To achieve this goal, a decision
variable is defined as

otherwise0

,component prior toyimmediatelplacediscomponent if1 ji
xij

The Sequential Pick-and-Place (PAP) Machine 25

Actually, the component sequencing problem is somewhat similar to the
traveling salesman problem (TSP) except for the objective function. For the TSP,

the objective is simply to minimize
n

i

n

ij
j ijij xc

1
1 , where cij is the distance

between cities i and j. For the PAP machine, the objective is not to minimize the
distance between components i and j because the placement head is unable to place
the next component on the PCB immediately without picking up a component from
a feeder first. Therefore, the objective for the PAP machine should be to minimize
the summation of different distances, including

The distance between the position of component i on the PCB and feeder l
(if i = 0, it is the distance between the starting point at the beginning and
feeder l);
The distance between feeder l and the position of the next component j;
The distance between the position of the last component i and the starting
point at the end.

For example, if the sequence of component placements starts with component 2
and finishes with component 1, as shown in Figure 3.1, then both decision
variables x02 and x10 are equal to 1. As mentioned before, it is assumed that the
feeder arrangement problem is solved beforehand. If the type of component 2 is
stored in feeder 3, then the placement head travels from the starting point to feeder
3 initially to pick up a component, and then moves from feeder 3 to the position of
component 2 to place the component. So, the distances for assembling component
2 include the distance from the starting point to feeder 3 (i.e., dil = d03) and the
distance from feeder 3 to the position of component 2 (i.e., dlj = d32). The idea of
calculating the distances for assembling the remaining (n 1) components is the
same. Besides, the distance for the placement head to return from the position of
the last component to the starting point should be included (i.e., di0 = d10). The
mathematical model for the component sequencing problem can be formulated as

 Minimize z =
n

i

n

ij
j

n

i
iiij

l
ljil xdxdd

0 1 1
00

1

 (3.1)

subject to
n

i
ijx

0

1 for j = 0, 1, …, n; i�j (3.2)

n

j
ijx

0

1 for i = 0, 1, …, n; i�j (3.3)

 1nnxuu ijji for i, j = 1, 2, …, n; i�j (3.4)

 All xij = 0 or 1. All ui 0 and is a set of integers. (M3-1)

26 Optimal Production Planning for PCB Assembly

In M3-1, the objective function (3.1) is to minimize the total travel distance of
the placement head. If the moving speed of the placement head is incorporated,
then the objective can be to minimize the total placement time for assembling all
components on the PCB. Constraint set (3.2) ensures that exactly one component
must be placed immediately before component j. Constraint set (3.3) ensures that
exactly one component must be placed immediately after component i. Although
the solution drawn satisfies both constraint sets (3.2) and (3.3), it may still be
infeasible due to the occurrence of subtours. Therefore, constraint set (3.4) is added
to eliminate subtours. Because the starting point must be visited first, it is
redundant to include i and/or j = 0 in constraint set (3.4). This is very similar to the
classic TSP except that the placement head has to pick up a component from a
feeder before placing the component to its position.

According to Section 3.2, it was noticed that researchers formulated the
component sequencing problem for the PAP machine as the TSP. The major
advantage is that the computational effort is less because the mathematical model
contains only one set of decision variables (i.e., xij). However, an assumption must
be made for this approach. The assumption is that the feeder arrangement is
predetermined. Because both problems are interrelated and dependent, they should
be solved simultaneously rather than separately.

3.5.2 A Feeder Arrangement Model

If the component placement sequence is known, that is, xij in M3-1 is known, we
need to arrange a component type to a feeder, and this is the second problem to be
studied, called the feeder arrangement problem. It is to assign the component types
to feeders so that the total distance traveled by the placement head is minimized.
To achieve this goal, a decision variable is defined as

otherwise0

,feeder in storediscomponent of typecomponent if1 ljt
y lt j

As explained earlier, the number of component types is equivalent to that of
feeders. Therefore, the mathematical model for the feeder arrangement problem is
somewhat similar to the quadratic assignment problem (QAP) except the objective
function. Similar to that in the component sequencing model, the objective is to
minimize the total distance traveled by the placement head. Using the same
example in Figure 3.1, component 2 is of type 1 (i.e., tj = t2 = 1), whereas
component type 1 is stored in feeder 3. So, the decision variable y13 is 1. Besides, it
is assumed that the sequence of component placements (i.e., xij) is predetermined.
Suppose that both decision variables x02 and x10 are equal to 1, which means that
component 2 and component 1 are placed first and last, respectively. In this
situation, the placement head starts traveling from the starting point to feeder 3 to
pick up a component of type 1 and then travels from feeder 3 to the position of
component 2 to place the component. Therefore, the distances traveled are the
summation of d03 and d32. Because the placement head must return to its starting

The Sequential Pick-and-Place (PAP) Machine 27

point after assembling all components on the PCB, the distance d10 must be taken
into consideration. The feeder arrangement model can be formulated as

 Minimize z =
n

i

n

ij
j t

ilt
l

ljil dydd
j

0 1 1
0

1

 (3.5)

subject to

t
tly

1

1 for l = 1, 2, …,� (3.6)

l
tly

1

1 for t = 1, 2, …,� (3.7)

 All ytl = 0 or 1. (M3-2)

In M3-2, the objective function (3.5) is to calculate the total distance traveled
by the placement head for assembling all components. Constraint set (3.6) ensures
that exactly one component type is stored in one feeder. Constraint set (3.7)
ensures that exactly one feeder holds one component type.

3.5.3 Integrated Mathematical Models

Before solving M3-1, it is essential to obtain the solution of the feeder arrangement
problem (i.e., M3-2) first. On the other hand, M3-2 cannot be solved until the
solution of the component sequencing problem (i.e., M3-1) is known. There is no
doubt that the component sequencing problem and the feeder arrangement problem
are interrelated. Moreover, the objective function in M3-1 and M3-2 is to minimize
the total distance traveled by the placement head. Note that the amount of distance
traveled is dependent on the position of the next component to be placed together
with which feeder stores the next component to be picked up. Therefore, to obtain
the optimal solution, a model which integrates both problems should be built. Here,
two integer nonlinear programming models are constructed for the integrated
problem first. Each of them is then converted into an integer linear programming
model.

A pure integer nonlinear programming model for the integrated problem can be
formulated as

 Minimize z =
n

i

n

ij
j t

n

i
iiltij

l
ljil xdyxdd

j

0 1 1 1
00

1

 (3.8)

28 Optimal Production Planning for PCB Assembly

subject to
n

i
ijx

0

1 for j = 0, 1, …, n; i�j (3.9)

n

j
ijx

0

1 for i = 0, 1, …, n; i�j (3.10)

 1nnxuu ijji for i, j = 1, 2, …, n; i�j (3.11)

t
tly

1

1 for l = 1, 2, …, (3.12)

l
tly

1

1 for t = 1, 2, …, (3.13)

 All xij and ytl = 0 or 1. All ui 0 and is a set of integers. (M3-3)

Because there is a nonlinear term xij lt j
y in the objective function and the model

contains both binary variables (i.e., xij and ytl = 0 or 1) as well as integer variables
(i.e., ui = 1, 2, …, n), M3-3 can be regarded as a pure integer nonlinear
programming model. The objective function (3.8) calculates the total travel
distance of the placement head, whereas the interpretation of constraint sets (3.9) to
(3.13) was mentioned in M3-1 and M3-2.

Because the decision variable xij is used, the solutions generated may form
subtours, if the constraint set (3.11) in M3-3 is not incorporated. For example, the
decision variables for the 10-component problem are x02 = x23 = x39 = x94 = x45 = x50

= x10,8 = x87 = x76 = x61 = x1,10 = 1. In this case, two subtours are formed:
1st subtour: starting point c2 c3 c9 c4 c5 starting point;
2nd subtour: c10 c8 c7 c6 c1 c10.
Note in the first subtour that the placement head moves back to the starting

point after placing component 5 or c5. Moreover, there is no indication which
component is placed next after assembling all components in the first subtour. So,
the above solution is unacceptable, and the constraint set (3.11) must be included.

Although the constraint set (3.11) can guarantee that the solution generated is
feasible, it increases the complexity of the model as there are n(n – 1) constraints in
this subtour elimination constraint. To reduce the burden of the model, it is
essential to find a way to replace the bulky constraint. Here, M3-3 is remodeled or
the constraint set (3.11) in M3-3 is discarded using another decision variable xip

instead of xij. The interpretation of xip is that

otherwise0

position,th in theplacediscomponent if1 pi
xip

The Sequential Pick-and-Place (PAP) Machine 29

The idea is to assign n components to n positions, which means that there are
totally n2 decision variables in which only n variables are 1 and all others are 0.
Because each component must be placed in exactly one position, no subtour will
appear in this situation. Referring to Figure 3.1, x21 (i.e., component 2 in the first
position) and x32 (i.e., component 3 in the second position) are both 1 because
component 2 and component 3 are placed first and second, respectively.

A binary integer nonlinear programming model can be formulated as

 Minimize z =
n

j t l
ltjljl j

yxdd
1 1 1

10

ltpjip

n

i

n

ij
j

n

p t l
ljil j

yxxdd 1,
1 1

1

1 1 1

n

i
ini xd

1
0 (3.14)

subject to
n

i
ipx

1

1 for p = 1, 2, …, n (3.15)

n

p
ipx

1

1 for i = 1, 2, …, n (3.16)

t
tly

1

1 for l = 1, 2, …, (3.17)

l
tly

1

1 for t = 1, 2, …, (3.18)

 All xip and ytl = 0 or 1. (M3-4)

Because there are nonlinear terms ltj j
yx 1 and ltpjip j

yxx 1, in the objective

function and the model contains only binary variables (i.e., xip and ytl = 0 or 1),
M3-4 can be regarded as a binary integer nonlinear programming model. The
objective function (3.14) calculates the total distance traveled by the placement
head. Constraint set (3.15) ensures that exactly one component is placed in one
position. Constraint set (3.16) ensures that one position has exactly one component
placed. Constraint set (3.17) ensures that exactly one component type is stored in
one feeder. Constraint set (3.18) ensures that exactly one feeder holds one
component type.

30 Optimal Production Planning for PCB Assembly

Because M3-3 and M3-4 contain only nonlinear functions in the form of
products of binary variables, they can be reformulated as linear programming
models by implementing the following steps:

Introducing a binary variable w to replace the product term xy;
Using the extra constraints: w x, w y, and w x + y – 1 to reflect the
logical condition: w = 1 if and only if x = 1 and y = 1.

For M3-3, the nonlinear term in the objective function can be rewritten as a
linear one by introducing an extra binary variable wijl as well as three extra
constraint sets. The interpretation of the decision variable wijl is

otherwise0

,feeder in storediscomponent of typethe

andcomponent after just placed iscomponent if1

lj

ij

wijl

M3-3 can be converted into a linear programming model as

 Minimize z =
n

i

n

ij
j

n

i
iiijl

l
ljil xdwdd

0 1 1
00

1

 (3.19)

subject to
n

i
ijx

0

1 for j = 0, 1, …, n; i�j (3.20)

n

j
ijx

0

1 for i = 0, 1, …, n; i�j (3.21)

 1nnxuu ijji for i, j = 1, 2, …, n; i�j (3.22)

t
tly

1

1 for l = 1, 2, …, (3.23)

l
tly

1

1 for t = 1, 2, …, (3.24)

The Sequential Pick-and-Place (PAP) Machine 31

ijijl xw for i = 0, 1, …, n;

for j = 1, 2, …, n; i�j;
for l = 1, 2, …, (3.25)

ltijl j
yw for i = 0, 1, …, n;

for j = 1, 2, …, n; i�j;
for l, t = 1, 2, …, (3.26)

1ltijijl j
yxw for i = 0, 1, …, n;

for j = 1, 2, …, n; i�j;
for l, t = 1, 2, …, (3.27)

 All xij, ytl, and wijl = 0 or 1. All ui 0 and is a set of integers. (M3-5)

Because all the polynomial expressions are converted into linear expressions in
M3-5, it can be regarded as a pure integer linear programming model. In M3-5,
objective function (3.19) and constraint sets (3.25) to (3.27) are the linear
expression of the objective function (3.8) of M3-3. The interpretation of the
constraint sets (3.20) to (3.24) in M3-5 is the same as that of the constraint sets
(3.9) to (3.13) in M3-3.

Similarly, M3-4 can be reformulated to a linear programming model. In the
objective function (3.14) of M3-4, the first nonlinear term (i.e., ltj j

yx 1) is in the

form of products of two binary variables. Therefore, it can be rewritten as a linear
term by introducing an extra binary variable wj1l as well as three extra constraint
sets. The interpretation of the decision variable wj1l is

otherwise0

,feeder in storediscomponent of typethe

andfirst placediscomponent if1

1 lj

j

w lj

However, in the objective function (3.14) of M3-4, the second nonlinear term
(i.e., ltpjip j

yxx 1,) is in the form of products of three binary variables. So, the

steps for converting it into linear type need to be modified in this case. The major
difference is that four instead of three extra constraints are introduced. Similarly, a
decision variable wij(p+1)l is introduced. The decision variable wij(p+1)l is defined as

otherwise0

,feeder in storedisposition 1)th (in theplacedcomponent

of typetheandcomponent after just placediscomponent if1

)1(lpj

ij

w lpij

32 Optimal Production Planning for PCB Assembly

M3-4 can be converted into a linear programming model as

 Minimize z =
n

j t l
ljljl wdd

1 1 1
10

lpij

n

i

n

ij
j

n

p t l
ljil wdd)1(

1 1

1

1 1 1

n

i
ini xd

1
0 (3.28)

subject to
n

i
ipx

1

1 for p = 1, 2, …, n (3.29)

n

p
ipx

1

1 for i = 1, 2, …, n (3.30)

t
tly

1

1 for l = 1, 2, …, (3.31)

l
tly

1

1 for t = 1, 2, …, (3.32)

11 jlj xw for j = 1, 2, …, n;

for l = 1, 2, …, (3.33)

ltlj j
yw 1 for j = 1, 2, …, n;

for l, t = 1, 2, …, (3.34)

 111 ltjlj j
yxw for j = 1, 2, …, n;

for l, t = 1, 2, …, (3.35)

iplpij xw)1(for i, j = 1, 2, …, n; i�j;

for p = 1, 2, …, n – 1;
for l = 1, 2, …, (3.36)

1,)1(pjlpij xw for i, j = 1, 2, …, n; i�j;

for p = 1, 2, …, n – 1;
for l = 1, 2, …, (3.37)

ltlpij j
yw)1(for i, j = 1, 2, …, n; i�j;

for p = 1, 2, …, n – 1;
for l, t = 1, 2, …, (3.38)

The Sequential Pick-and-Place (PAP) Machine 33

 21,)1(ltpjiplpij j
yxxw for i, j = 1, 2, …, n; i�j;

for p = 1, 2, …, n – 1;
for l, t = 1, 2, …, (3.39)

 All xip, ytl, wj1l, and wij(p+1)l = 0 or 1. (M3-6)

Because all the polynomial expressions are converted into linear ones in M3-6,
it can be regarded as a binary integer linear programming model. In M3-6,
constraint sets (3.33) to (3.35) and the first term in the objective function (3.28) are
the linear expression of the first term in the objective function (3.14) of M3-4.
Furthermore, constraint sets (3.36) to (3.39) and the second term in the objective
function (3.28) are the linear expression of the second term in the objective
function (3.14) of M3-4. The interpretation of the constraint sets (3.29) to (3.32) in
M3-6 is the same as that of the constraint sets (3.15) to (3.18) in M3-4.

3.5.4 Iterative Approach vs. Integrated Approach

According to the literature discussed in Section 3.2, the most prevalent approach is
to solve the component sequencing and the feeder arrangement problems for the
PAP machine individually rather than simultaneously. For instance, the component
sequencing problem is tackled in advance, followed by the feeder arrangement
problem with respect to the placement sequence. One of the motivating factors for
adopting this iterative approach is its simplicity as only one single problem instead
of two is focused on at a time. Nevertheless, the question is, Can this approach
generate the optimal solution of the original problem? To answer this critical
question, an investigation on the effectiveness of the iterative approach is carried
out. The results of this comparison, definitely, provide valid evidence to answer the
above query, and most importantly, direct us to an appropriate way (i.e., integrated
or iterative?) of optimizing the machine performance.

An iterative approach, as illustrated in Figure 3.2, is going to be studied in
which the component sequencing model (i.e., M3-1) is solved beforehand while
assuming that the feeder arrangement, generated randomly, is predetermined. After
that, the feeder arrangement model (i.e., M3-2) is solved based on the optimal
sequence of component placements to find the minimum travel distance for
assembling the four components on the PCB. The data of the four-component
problem are listed in Table 3.2; the coordinates of the starting point are (0, 0). If
there is an improvement in the solution’s quality, the above procedure will be
repeated. The final best solution obtained by the approach is compared with the
global optimal solutions generated by solving any one of the integrated models
(i.e., M3-3 to M3-6).

34 Optimal Production Planning for PCB Assembly

Figure 3.2. An iterative approach

Table 3.2. Data of the four-component problem

Components

(i)

Types

(ti)

Coordinates (mm)

x y

Feeders

(l)

Coordinates (mm)

x y

0 N/A 0 0 1 10 30

1 4 30 40 2 10 20

2 3 30 60 3 20 10

3 1 50 20 4 30 10

4 2 50 40

Suppose that the assignment of component types to feeders is generated
arbitrarily so that component types 1, 3, 2, and 4 are stored in feeders 1, 2, 3, and 4,
respectively (i.e., y11 = y32 = y23 = y44 = 1). In this case, the procedure is repeated
two times more (i.e., totally three iterations). The solutions together with the
objective value in each of the three iterations are summarized in Table 3.3.

The component sequencing
model (M3-1)

The feeder arrangement model
(M3-2)

Optimal placement sequence

Optimal feeder arrangement

Any improvement?
Yes

Initial feeder arrangement

Output the best solution

No

The Sequential Pick-and-Place (PAP) Machine 35

Table 3.3. Best solutions obtained in each iteration of the iterative approach

Model Solutions Objective value

1st iteration: M3-1 x10 = x31 = x42 = x23 = x04 = 1 333.88 mm

M3-2 y31 = y12 = y23 = y44 = 1 329.16 mm

2nd iteration: M3-1 x20 = x31 = x12 = x43 = x04 = 1 327.37 mm

M3-2 y31 = y22 = y43 = y14 = 1 314.24 mm

3rd iteration: M3-1 x30 = x01 = x12 = x43 = x24 = 1 314.11 mm

M3-2 y31 = y22 = y43 = y14 = 1 314.11 mm

The objective value remains the same as 314.11 mm after the third iteration,
and the procedure is therefore terminated. Although the individual models are
solved sequentially several times, this iterative approach cannot generate the global
optimal solution of the integrated problem. The optimal assembly sequence of the
placement head is as follows: starting point f3 c3 f4 c4 f2 c2 f1

c1 starting point, whereas the total distance traveled by the placement head is
310.26 mm. Note that all four integrated models (i.e., M3-3 to M3-6) generate the
same solution of the four-component problem. Therefore, it is proved that the
iterative approach widely adopted by many researchers cannot guarantee that the
solution is globally optimal.

Besides, note that the initial feeder arrangement plays a vital role in the
approach. If the initial feeder arrangement is not done carefully, even if the
component sequencing problem is solved to optimality, it could result in poor
performance. According to the above observations, it is concluded that the
component sequencing and the feeder arrangement problems must be integrated to
optimize the PAP machine performance.

3.5.5 Computational Analysis

The solutions of the four integrated models (i.e., M3-3 to M3-6) are exactly the
same due to their equivalent physical meanings. This gives rise to a question:
Which model has the best performance? In general, a linear programming model is
better than a nonlinear programming model, as we discussed in Chapter 2. Here in
either linear programming or nonlinear programming, we have formulated two
models for each of them. Therefore, to find the best among the four models, we can
first compare the models in each class (i.e., M3-3 vs. M3-4, and M3-5 vs. M3-6) in
terms of computing complexity. Then, the models with less complexity in each
class are compared with respect to computational time (e.g., M3-4 vs. M3-5). The
model regarded as the best requires less time for computation.

3.5.5.1 Computing Complexity
To examine the complexity of the models, it is essential to find the numbers of
variables and constraints in each of the models. In M3-3, it can be seen that the
model is very sophisticated. The objective function is nonlinear, and also its

36 Optimal Production Planning for PCB Assembly

enumeration is huge. M3-3 has (n2 + n + 2) binary variables, n integer variables,
and (n2 + n + 2 + 2) constraints. In the objective function (3.8), the terms are n +
n (n – 1) + n or n2 + n. After adopting another decision variable (i.e., xip) in M3-
4, the bulky subtour elimination constraint disappears. Therefore, the complexity
of M3-4 is lower than that of M3-3 because both numbers of variables and
constraints are reduced significantly. M3-4 has only (n2 + 2) binary variables and
(2n + 2) constraints.

For M3-5, although the model becomes linear, the numbers of variables and
constraints are much greater than those in M3-3. For the number of variables, n2

of wijl are introduced in M3-5 besides (n2 + n + 2) binary variables and n integer
variables. For the number of constraints, besides (n2 + n + 2 + 2) constraints, M3-
5 has 3n2 constraints more for constraint sets (3.25) to (3.27). Because there are
two nonlinear terms in the objective function (3.14) in M3-4, two additional
decision variables and seven extra constraints are necessary to convert it into the
equivalent linear programming model, M3-6. As a result, M3-6 becomes enormous
and very complex. Both numbers of variables and constraints are even much
greater than those in M3-5. For the number of binary variables, n of wj1l and n(n –
1)2 of wij(p+1)l are introduced in M3-6 besides (n2 + 2) binary variables. For the
number of constraints, M3-6 has 3n + 4n(n – 1)2 constraints more in which there
are 3n constraints for constraint sets (3.33) to (3.35) and 4n(n – 1)2 constraints
for constraint sets (3.36) to (3.39), besides (2n + 2) constraints. The numbers of
variables and constraints in the nonlinear programming models (i.e., M3-3 and M3-
4) and the linear programming models (i.e., M3-5 and M3-6) are listed in Table 3.4
and Table 3.5, respectively.

Table 3.4. Numbers of variables and constraints in M3-3 and M3-4

 M3-3 M3-4

No. of variables n2 + 2n + 2 n2 + 2

No. of constraints n2 + n + 2 + 2 2n + 2

Table 3.5. Numbers of variables and constraints in M3-5 and M3-6

 M3-5 M3-6

No. of variables (n2 + 2n + 2) + n2 (n2 + 2) + n + n(n – 1)2

No. of constraints (n2 + n + 2 + 2) + 3n2 (2n + 2) + 3n + 4n(n – 1)2

For a realistically sized problem of 100 components and 10 component types,
M3-3 has 10,300 variables and 10,122 constraints. Comparatively, M3-4 is a better
nonlinear programming formulation because it consists of 10,100 variables
together with 220 constraints. For the linear programming formulation, M3-5 is
much more desirable than M3-6. M3-5 has 110,300 variables and 310,122
constraints. However, both numbers of variables and constraints in M3-6 are much

The Sequential Pick-and-Place (PAP) Machine 37

greater. It has 9,812,100 variables as well as 39,207,220 constraints! So, the model
may not be solved to optimality in a reasonable time.

3.5.5.2 Computational Time
Because M3-4 and M3-5 are better nonlinear and linear formulations in terms of
complexity, respectively, these two models are solved to global optimality using
BARON and CPLEX. By these two commercial packages, the models are tested by
several small examples, and both have the same solutions of the same examples.
According to Table 3.6, it is found that the pure integer linear programming model
(i.e., M3-5) is more desirable than the binary integer nonlinear programming model
(i.e., M3-4) in terms of the amount of computational time spent. For instance, it
only requires 10½ hours by CPLEX to solve M3-5 to optimality with eight
components and eight types. But it takes more than 15 days by BARON to solve
M3-4 to optimality with the same problem size. Therefore, M3-5 is the best
mathematical model for the integrated problem for the PAP machine.

Although both models can obtain the global optimum, both of them are not
efficient approaches because the computational time grows exponentially with
problem size, as seen in Table 3.6.

Table 3.6. Computational time spent in solving M3-4 and M3-5

Numbers of
components and

types

Optimal solution
CPU time (hh:mm:ss) by

BARON for M3-4

Optimal solution
CPU time (hh:mm:ss) by

CPLEX for M3-5

4 4 0.31 second 0.16 second

5 5 00:00:04 00:00:01

6 6 00:01:52 00:00:41

7 7 01:21:39 00:02:26

8 8 379:02:50 10:30:51

3.6 Genetic Algorithms

Various types of mathematical models have been formulated for the integrated
problem. These include the pure integer nonlinear programming model, the binary
integer nonlinear programming model, the pure integer linear programming model,
and the binary integer linear programming model. Because both the integer
nonlinear and the integer linear programming models are among the class of
theoretically difficult problems (NP-complete) (Kallrath, 1999), the integrated
problem is therefore NP-complete. Solving it can be a challenging task because it
requires an extremely long time to find the global optimum, as shown in Section
3.5.5.2. To solve the models efficiently, it is necessary to develop a heuristic
method.

38 Optimal Production Planning for PCB Assembly

Figure 3.3. The flowchart of the HGA

Generate initial chromosomes (parents):
- NNH for the 1st link;
- Random generation for the 2nd link.

Terminate?

Output the best solution

Yes

No

Input GA parameters

Select parents by the roulette wheel method

The modified
order crossover

The heuristic
mutation

The inversion
mutation

Measure fitness of parents

Improve parents:
- ISP for the 1st link;
- 2-opt local search for the 2nd link.

Improve new chromosomes (offspring):
- ISP for the 1st link;
- 2-opt local search for the 2nd link.

Measure fitness of offspring and compare
with parents

Retain the best population of chromosomes

The Sequential Pick-and-Place (PAP) Machine 39

Moreover, a particular mathematical model is limited to finding the solution for
a single type of placement machine. The integrated models for the PAP machine
are inappropriate for the CS machine. To eliminate this limitation, it is desirable to
develop a flexible method, which is capable of solving the integrated problem for
different types of placement machines.

To fulfil the above criteria, a GA is developed. Ideas of the general GAs are
described thoroughly in Goldberg (1989). One of the advantages of GAs is their
great level of flexibility (Davis, 1991; Mitchell, 1996). They can be hybridized
with other heuristics to improve the solution further. Because several improved
heuristics are hybridized with the GA, the algorithm developed is called the hybrid
GA (HGA).

The idea of the HGA, as shown in Figure 3.3, for the integrated problem is
described as follows. After the parameters such as the iteration number, the
population size, the crossover rate, and the mutation rate, have been set, the HGA
generates the initial chromosomes (i.e., solutions) for the integrated problem. Each
chromosome contains two links. The first link representing the sequence of
component placements is generated using the nearest neighbor heuristic (NNH).
The second link indicating the feeder arrangement is generated randomly. After
that, a new improved heuristic, called the iterated swap procedure (ISP), is
performed on the first link, and the 2-opt local search heuristic is applied to the
second link. Each chromosome is then measured by an evaluation function. The
roulette wheel selection operation is adopted to select some chromosomes for the
genetic operations, including the modified order crossover, the heuristic mutation,
and the inversion mutation. After an offspring is produced, the first link is
improved by the ISP, and the second link is improved by the 2-opt local search
heuristic. The fitness of the offspring will be measured, and it may become a
member of the population if it possesses relatively good quality. These steps form
an iteration, and then the roulette wheel selection is performed again to start the
next iteration. The HGA will not stop unless the predetermined number of
iterations is conducted. The detailed algorithm is discussed in the following
subsections.

The procedure of the HGA for the integrated problem is listed as follows:
Step 1: Set the GA parameters, including the population size (psize), the number

of iterations (itno), the crossover rate (cr), and the mutation rate (mr).
Step 2: Generate psize initial chromosomes with two-link encoding discussed in

Section 3.6.1. For each chromosome, the first link is generated by the
nearest neighbor heuristic (NNH) as shown in Section 3.6.2.1, and the
second link is generated randomly.

Step 3: The 2-opt local search heuristic presented in Section 3.6.2.2 is
performed on the second link for each initial chromosome.

Step 4: The iterated swap procedure (ISP) addressed in Section 3.6.2.3 is
performed on the first link for each initial chromosome.

Step 5: Evaluate the fitness value eval(Xh) for all chromosomes in the
population, as illustrated in Section 3.6.3 for the PAP machine.

Step 6: Follow the selection procedure in Section 3.6.4 to select chromosomes
to perform the modified order crossover operation in Section 3.6.5.1.

40 Optimal Production Planning for PCB Assembly

Step 7: Follow the selection procedure to select chromosomes to perform the
heuristic mutation operation in Section 3.6.5.2.

Step 8: Follow the selection procedure to select chromosomes to perform the
inversion mutation operation in Section 3.6.5.3.

Step 9: The 2-opt local search heuristic is performed on the second link for each
offspring generated in Steps 6, 7, and 8.

Step 10: The ISP is performed on the first link for each offspring generated in
Steps 6, 7, and 8.

Step 11: Compare all offspring with the chromosomes in the population by the
fitness values eval(Xh). Retain the best psize chromosomes in the
population.

Step 12: Determine the best chromosome at each iteration. Repeat Step 6 to Step
12 until itno iterations are performed.

3.6.1 Encoding

The first decision needs to be made when implementing GAs is which
representation of the chromosomes (i.e., encoding) is designed. Generally, the
binary representation is adopted in which the building blocks or the genes are 0 or
1. On the other hand, the matrix representation can be adopted if the solutions of
the problems are in table form such as the transportation model (i.e., M2-1). In this
book, the path representation is selected to encode the solutions of the integrated
problem for both types of placement machines.

For the component sequencing problem, the idea of the path representation is
that the components are listed in the order in which they are placed. Consider a
PCB with 10 components of six types. If the sequence of placements starts with
component 1, then components 2, 3, 4, 5, 10, 9, 8, 7, and finally component 6, its
sequence can be represented as (1 2 3 4 5 10 9 8 7 6). For the feeder arrangement
problem, the idea of the path representation is that the component types are listed
in the location in which they are assigned. If the feeder arrangement is represented
by (6 5 1 3 4 2), it means that the component type 6 is stored in feeder 1, the
component type 5 is stored in feeder 2, and so on.

Because the component sequencing and the feeder arrangement problems are
considered simultaneously, a chromosome should include both path
representations. A chromosome with a two-link representation is illustrated in
Figure 3.4, in which Link 1, or the first link, represents the sequence of component
placements, whereas Link 2, or the second link, represents the assignment of
component types to feeders.

Assembly sequence 1 2 3 4 5 6 7 8 9 10
Component number 1 2 3 4 5 10 9 8 7 6

 Link 1

Component type 6 5 1 3 4 2
Feeder 1 2 3 4 5 6

 Link 2

Figure 3.4. The two-link representation for a chromosome

The Sequential Pick-and-Place (PAP) Machine 41

3.6.2 Improved Heuristics

Solving the component sequencing and the feeder arrangement problems
concurrently is extremely sophisticated as the integrated problem is akin to the
combination of the TSP and the QAP. In addition, some researchers discovered
that a simple GA was not desirable for solving combinatorial optimization
problems with a large problem size (Freisleben and Merz, 1996a,b). So, it is
necessary to develop an improved heuristic. In the HGA, three types of heuristics
are adopted to improve the solution, including the nearest neighbor heuristic
(NNH), the 2-opt local search heuristic, and the iterated swap procedure (ISP).

3.6.2.1 Nearest Neighbor Heuristic
The NNH is used to generate an initial solution only for the first link, which is the
sequence of component placements. The principle of the NNH is to start with the
first component randomly, then to select the next component as close as possible to
the previous one from those unselected components to form the placement
sequence until all components are selected.

3.6.2.2 2-Opt Local Search Heuristic
Compared with the total number of components on a PCB, the number of
component types is much fewer. Therefore, it is desirable to perform the 2-opt
local search heuristic only for the second link, that is, the feeder arrangement. The
principle of this heuristic is very straightforward. For one parent, all possible two
swaps are examined to generate offspring and the best offspring will replace the
parent if it has higher quality. The process will not stop until there is no further
improvement in the quality of the solution.

3.6.2.3 Iterated Swap Procedure
The computational effort will be high if the 2-opt local search is performed for the
first link, which is the sequence of component placements, because the number of
components is quite large, normally several hundreds. As a consequence, a “fast”
improved heuristic is developed, which is called the iterated swap procedure (ISP).
The ISP, as illustrated in Figure 3.5, is performed for the first link of each initial
solution generated by the NNH as well as each offspring generated by the three
genetic operators. The procedure of the ISP is as follows:
Step 1: Select two genes randomly from the first link of a parent.
Step 2: Exchange the positions of the two genes to form an offspring.�
Step 3: Swap the neighbors of the two genes to form four more offspring.
Step 4: Evaluate all offspring and find the best one.
Step 5: If the best offspring is better than the parent, replace the parent with the

best offspring and go back to Step 1; otherwise, stop.

42 Optimal Production Planning for PCB Assembly

Select two genes randomly

Parent: 1 2 3 4 5 6 7 8 9 10

Offspring 1: 1 2 8 4 5 6 7 3 9 10

Offspring 2: 1 8 2 4 5 6 7 3 9 10

Offspring 3: 1 2 4 8 5 6 7 3 9 10

Offspring 4: 1 2 8 4 5 6 3 7 9 10

Offspring 5: 1 2 8 4 5 6 7 9 3 10

Figure 3.5. The iterated swap procedure

3.6.3 Evaluation

The objective function of an optimization problem can be used for evaluation. Its
goal is to find the objective value or fitness value of a solution of the problem.
Without evaluation, it is impossible to compare and then find the best solution.
Therefore, evaluation is often regarded as the most important element of GAs. The
fitness function or evaluation for the PAP machine is described in the following.

For the PAP machine, the fitness function used is the total travel distance of the
placement head. This function calculates the distance from the starting point to a
feeder at the beginning, the distance from a feeder to a component’s position, the
distance from a component’s position to a feeder, and the distance from the last
component’s position to the starting point at the end. Let eval(Xh) be the fitness
function for chromosome Xh in the integrated problem, and let D(a, b) be the
distance from point a to point b; then,

 eval(Xh) =),()1(,),()1(,
1

11

ocDifcDcifDfoD n

n

i
i

n

i
i

where
n is the number of components,
f(i) is the feeder location for the ith component,
ci is the location in the board for the ith component, and
o is the starting point.
Here, f(i) represents the feeder location for the ith component. For example,

component 3 is stored in feeder 1, so f(3) = 1, that is, f1.

3.6.4 Selection

The roulette wheel selection operation (Goldberg, 1989) is adopted to choose some
chromosomes to undergo genetic operations. The approach is based on an

The Sequential Pick-and-Place (PAP) Machine 43

observation that a roulette wheel has a section allocated for each chromosome in
the population, and the size of each section is proportional to the chromosome’s
fitness. The fitter the chromosome, the higher the probability of being selected. It is
true that the roulette wheel selection mechanism chooses chromosomes
probabilistically, instead of deterministically. For example, although one
chromosome has the highest fitness, there is no guarantee it will be selected. The
only certain thing is that, on average, a chromosome will be chosen with the
probability proportional to its fitness. Suppose that the population size is psize;
then the selection procedure is as follows:
Step 1: Calculate the total fitness of the population:

 F =
psize

h
hXeval

1

)(

Step 2: Calculate the selection probability ph for each chromosome Xh:

 ph =
)1(

)(

psizeF

XevalF h , h = 1, 2, ..., psize

Step 3: Calculate the cumulative probability qh for each chromosome Xh:

 qh =
h

j
jp

1

, h = 1, 2, …, psize

Step 4: Generate a random number r in the range (0, 1].
Step 5: If qh-1 < r qh, then chromosome Xh is selected.

3.6.5 Genetic Operations

The genetic search progress is obtained by two essential genetic operations:
exploitation (or intensification) and exploration (or diversification). Generally, the
crossover operator exploits a better solution, whereas the mutation operator
explores a wider search space. The genetic operators used in the algorithm for
integrated problems are one crossover and two mutations, which are called the
heuristic mutation and the inversion mutation, respectively. Two links in a
chromosome are required to perform these genetic operations. The number of
chromosomes selected to perform the crossover and the mutation operations
depends on the crossover rate and the mutation rate, respectively, which are
predetermined by the GA user. Let crossno and mut denote the numbers of
chromosomes selected to undergo the crossover and the mutation, respectively;

then crossno = round(cr psize�� and mut = round(mr � psize), where cr is the
crossover rate, and mr is the mutation rate. Because a pair of chromosomes is
required to undergo the crossover operation, the number of pairs of chromosomes,
denoted as cross, is an integer, so

cross =
otherwise

2
1

even is if
2

crossno

crossnocrossno

44 Optimal Production Planning for PCB Assembly

3.6.5.1 The Modified Order Crossover
As shown in Figures 3.6 and 3.7, the crossover operator adopted in the HGA is a
modified version of the classical order crossover operator, and two offspring will
be generated each time. The procedure of the modified order crossover operation is
as follows:
Step 1: Select a substring from the first parent randomly.
Step 2: Produce a protochild by copying the substring into the corresponding

positions in the protochild.
Step 3: Find the gene right prior to the first gene of the substring from the

second parent. If the gene is one of the genes in the substring, go to Step
4. Otherwise, place it in front of the substring in the protochild.�

Step 4: Find the gene right behind the last gene of the substring from the second
parent. If the gene is one of the genes in the substring, go to Step 5.
Otherwise, place it just after the substring in the protochild.

Step 5: Delete those genes that are already in the protochild from the second
parent. The resulting genes, that is, the genes not yet in the protochild,
form a sequence.

Step 6: Place the genes into the unfilled positions of the protochild from left to
right according to the resulting sequence of genes in Step 5 to produce
an offspring, as illustrated in Figure 3.6.

Step 7: Repeat Step 1 to Step 6 to produce the second offspring by exchanging
the two parents, as shown in Figure 3.7.

 Selected substring

Parent 1: 1 2 3 4 5 6 7 8 9 10

Parent 2: 6 8 1 9 10 4 5 2 7 3

Offspring 1: 8 1 10 4 5 6 7 3 9 2

Figure 3.6. The modified order crossover operator (Offspring 1)

 Selected substring

Parent 2: 6 8 1 9 10 4 5 2 7 3

Parent 1: 1 2 3 4 5 6 7 8 9 10

Offspring 2: 1 2 8 9 10 4 5 6 3 7

Figure 3.7. The modified order crossover operator (Offspring 2)

3.6.5.2 The Heuristic Mutation
A heuristic mutation (Gen and Cheng, 1997) is designed with the neighborhood
technique to produce a better offspring. A set of chromosomes transformed from a
parent by exchanging some genes is regarded as the neighborhood. Only the best
one in the neighborhood is used as the offspring produced by the mutation.
However, the purpose of the mutation operation is to promote diversity of the

The Sequential Pick-and-Place (PAP) Machine 45

population. Therefore, it is necessary to change the original heuristic mutation for
the integrated problem. The modification, as illustrated in Figure 3.8, is that all
neighbors generated are used as offspring. The procedure of the heuristic mutation
operation is as follows:
Step 1: Pick up three genes in a parent at random.
Step 2: Generate neighbors for all possible permutations of the selected genes,

and all neighbors generated are regarded as offspring.

Select three genes at random

Parent: 1 2 3 4 5 6 7 8 9 10

Offspring 1: 1 2 3 4 5 8 7 6 9 10

Offspring 2: 1 2 6 4 5 3 7 8 9 10

Offspring 3: 1 2 6 4 5 8 7 3 9 10

Offspring 4: 1 2 8 4 5 3 7 6 9 10

Offspring 5: 1 2 8 4 5 6 7 3 9 10

Figure 3.8. The heuristic mutation operator

3.6.5.3 The Inversion Mutation
The inversion operator, shown in Figure 3.9, selects a substring from a parent and
flips it to form an offspring. However, the inversion operator operates with only
one chromosome, so it is similar to the heuristic mutation and thus lacks the
interchange of characteristics between chromosomes. So, the inversion operator is
a mutation operation, which is used to increase the diversity of the population
rather than to enhance the quality of the population.

 Selected substring

Parent: 1 2 3 4 5 6 7 8 9 10

Offspring: 1 2 3 7 6 5 4 8 9 10

Figure 3.9. The inversion mutation operator

3.6.6 Performance Analysis

The performance of the HGA is evaluated using the PCB example in Leu et al.
(1993). The example has 200 components with 10 different component types. The
parameters of the HGA for the integrated problem for the PAP machine are preset
as psize = 25, itno = 3000, cr = 0.4, and mr = 0.2. Therefore, five pairs of
chromosomes are selected to perform the modified order crossover operation,
whereas five chromosomes perform the heuristic mutation and the inversion
operation. The total number of offspring produced per iteration will be 40, 10 from

46 Optimal Production Planning for PCB Assembly

the modified order crossover operation, 25 from the heuristic mutation operation,
and 5 from the inversion mutation operation.

3.6.6.1 Comparison to Other Approaches
The performance of the HGA is shown in Figure 3.10, whereas the comparison
between the results obtained from the HGA and those obtained from other
researchers (Leu et al., 1993; Ong and Khoo, 1999) is shown in Table 3.7. It is
found that the performance of the HGA is superior. First, the best chromosome
(6,275.4 cm) in the initial population obtained by the HGA is better than those of
the simple GAs (both larger than 6,900 cm). Second, the HGA can obtain a better
solution with a smaller population size, only 25, whereas the other two used 100.
Third, the HGA can obtain a better solution with a smaller population size and also
with fewer iterations, 3,000 vs. 6,150. Finally and the most important, the HGA
obtained a better solution than any previous methods, 5,660.5 cm vs. 5,673.7 cm or
6,129 cm.

Figure 3.10. The minimum travel distance at each iteration

0 500 1000 1500 2000 2500 3000
5600

5700

5800

5900

6000

6100

6200

6300

Iteration number

Total travel distance (cm)

The Sequential Pick-and-Place (PAP) Machine 47

Table 3.7. A comparison of the experimental results for the PAP machine

Leu et al.
(1993)

Ong and Khoo
(1999)

HGA

Best one in the initial solution (cm) About 6,950 6,952.2 6,275.4

Population size 100 100 25

Iteration number 6,150 6,150 3,000

Final best solution (cm) About 6,129 5,673.7 5,660.5

3.6.6.2 Effect of Population Size
Population size is the number of chromosomes in the population. A chromosome
represents a point in the search space. Therefore, a larger population size means
more search points. The more the search points, the higher the chance of finding
the optimal solution. However, a larger population size needs longer computational
time and more computer storage space. To identify the effect of population size,
the HGA program was run with the above 200-component problem using three
different population sizes: 5, 25, and 50. The effect of population size on the 200-
component problem is shown in Figure 3.11.

Figure 3.11. The effect of population size for the PAP machine

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
5600

5700

5800

5900

6000

6100

6200

6300

6400

Iteration number

Total travel distance (cm)

Population size = 5

Population size = 25

Population size = 50

48 Optimal Production Planning for PCB Assembly

It can be seen from Figure 3.11 that the curve representing the population size
of 50 is lower than those representing the population sizes of 5 and 25. This
phenomenon shows that the HGA with a large population size can obtain a better
final solution. This may be due to the fact that more offspring are produced at each
iteration. The effect of different population sizes on the 200-component problem is
summarized in Table 3.8.

Table 3.8. A comparison of different population sizes for the PAP machine

Population size 5 25 50

Best one in the initial population (cm) 6,374 6,275 6,285

Final best solution (cm) 5,661 5,655 5,651

Iteration number 4,835 4,923 4,984

3.6.6.3 Comparison to Optimal Solution
In Section 3.5.5.2, several sizes of problems are solved to optimality. In this
section, the performance of the HGA is examined and compared with the optimal
solution. It is found that the HGA achieves the optimal solution for all problems.
As shown in Table 3.9, the longest computational time spent is only nine seconds
for the eight-component problem. It shows that the HGA takes much less time.
However, there is no guarantee that the solution generated is globally optimal
because the HGA is a heuristic method.

Table 3.9. Comparisons of the HGA with BARON and CPLEX for the PAP machine

Numbers of
components

and types

Optimal solution
CPU time (hh:mm:ss) by

BARON for M3-4

Optimal solution
CPU time (hh:mm:ss) by

CPLEX for M3-5

Best solution
CPU time

(hh:mm:ss) by
HGA

4 4 0.31 second 0.16 second 0.15 second

5 5 00:00:04 00:00:01 0.90 second

6 6 00:01:52 00:00:41 00:00:04

7 7 01:21:39 00:02:26 00:00:06

8 8 379:02:50 10:30:51 00:00:09

3.6.6.4 Integrated Problem with Feeder Duplication
In the integrated problem, the number of feeders supplied is exactly the same as the
number of component types required. But, in real-life situations, the number of
feeders available may be greater, so components of the same type can be stored in
more than one feeder. In this case, the feeder arrangement problem no longer
belongs to the category of a 1-to-1 assignment problem. Also, besides the
component sequencing and the feeder arrangement problems, it is necessary to
determine the feeder from which a component should be retrieved because more

The Sequential Pick-and-Place (PAP) Machine 49

than one feeder hold the same type of component, that is, the component retrieval
problem.

When a component type is assigned to two feeders, a retrieval plan must be set
up to determine the feeder from which a component should be retrieved. If a
component is stored in two feeders, it should be retrieved from a feeder so that the
distances traveled by the placement head are minimized. For example, the
component type of component j or cj is stored in two feeders, feeder r or fr and
feeder s or fs, whereas component i or ci is placed just prior to cj. It is necessary to
calculate the amount of distance, D, traveled by the placement head, and then
select a feeder for component retrieval that incurs a shorter travel distance as
follows:

If D(ci, fr) + D(fr, cj) D(ci, fs) + D(fs, cj), then retrieve from fr.
If D(ci, fr) + D(fr, cj) D(ci, fs) + D(fs, cj), then retrieve from fs.
In case D(ci, fr) + D(fr, cj) = D(ci, fs) + D(fs, cj), select a feeder for retrieval
arbitrarily.

The performance of the HGA for solving the component sequencing, the feeder
arrangement, and the component retrieval problems simultaneously is evaluated by
use of the 200-component problem (Leu et al., 1993) again in which three surplus
feeders are available. In this case, three types of components can be assigned to
two feeders. In the 200-component problem, component types 2, 6, and 8 are the
most frequently used. These three types of components can therefore be stored in
two feeders.

The performance of the HGA for the three problems is shown in Figure 3.12,
and its result is listed in Table 3.10. It is found that the solution is even better if the
number of feeders available is more than that of component types required. The
best solution generated by the HGA after 1,000 iterations is just 4,855.5 cm for the
case with three surplus feeders. Because the three most frequently used component
types are assigned to more than one feeder, they can be retrieved from a closer
feeder. So, the total distance traveled by the placement head can be reduced.

Table 3.10. A comparison of HGAs for the PAP machine

HGA HGA

Number of surplus feeders N/A 3

Population size 25 25

Iteration number 3,000 1,000

Final best solution (cm) 5,660.5 4,855.5

50 Optimal Production Planning for PCB Assembly

Figure 3.12. The performance of the HGA for the integrated problem with feeder
duplication for the PAP machine

3.7 Summary

In this chapter, the focus is confined to the optimization of the PAP machine
performance. First, various types of mathematical models have been formulated to
find the global optimal solution. Second, a HGA has been developed to obtain the
near-optimal solution. Some remarks are summarized in the following.

1. The component sequencing and the feeder arrangement problems are
interrelated and inseparable. One cannot be solved unless the solution of the
other one is obtained beforehand.

2. The iterative approach that sequentially solves the individual component
sequencing and feeder arrangement models, adopted by many researchers,
is not the best way to optimize the PAP machine performance. The
approach cannot guarantee that the solution is globally optimal.

3. Due to their close relationship, two integer nonlinear programming models
were formulated to solve the integrated problem for the PAP machine. It is
feasible to convert the integer nonlinear programming models into integer
linear programming models equivalently.

4. All four mathematical models were verified using commercial packages,
and all of them generated the same optimal solutions of the same problems.

0 100 200 300 400 500 600 700 800 900 1000
4800

4900

5000

5100

5200

5300

5400

5500

5600

Iteration number

Total travel distance (cm)

The Sequential Pick-and-Place (PAP) Machine 51

5. Different types of models took different times for computation. In terms of
the amount of computational time spent, the linear type model is more
desirable.

6. Although the optimal solution can be found using commercial packages, it
was proved that the computational time grows exponentially with problem
size.

7. After the genetic algorithm was combined with several improved heuristics,
the algorithm gave a better solution using fewer number of iterations
compared with other approaches.

8. The algorithm with a larger population size can obtain a better final
solution, but, at the same time, it requires more computational time.

9. Although the algorithm cannot guarantee obtaining the optimal solution, it
was proved that the HGA can reach the global optimum of several problems
with small sizes quickly.

10. The solution was even better when component types could be stored in
more than one feeder.

Chapter 4 will study the component sequencing problem and the feeder
arrangement problem for another type of placement machine called the concurrent
chip shooter (CS) machine. Similar to that in Chapter 3, mathematical models are
constructed for the problems first. The computing complexity and the
computational time of the integrated models are studied, and then are followed by
the HGA for the integrated problem.

4

The Concurrent Chip Shooter (CS) Machine

4.1 Introduction

There are normally different sizes of components on a PCB. The sequential PAP
machine, studied in the former chapter, assembles large components such as ICs,
whereas the concurrent chip shooter (CS) machine, the focus in this chapter, picks
up and places small components including chip resistors on the PCB. To optimize
the component placement process, the performance of both types of placement
machines should therefore be considered. In this chapter, mathematical modeling is
adopted to optimize the CS machine performance so that the highest productivity
can be achieved. In the CS machine, the assembly time is dependent on three
movable mechanisms: the movement of the X-Y table or the PCB (i.e., the
component sequencing problem), the movement of the feeder carrier (i.e., the
feeder arrangement problem), and the movement of the turret. Naturally, it is more
difficult than that of the PAP machine. Besides, the component sequencing
problem and the feeder arrangement problem should definitely be studied and
solved simultaneously for the machine. Furthermore, the hybrid genetic algorithm
(HGA), as presented in Chapter 3, is modified to deal with the integrated problem
for the CS machine.

The organization of this chapter is as follows: Section 4.2 presents a
comprehensive review of the way previous researchers tackled the component
sequencing and the feeder arrangement problems for the CS machine. Section 4.3
describes the operating sequence of the CS machine in detail with the aid of an
example. Section 4.4 summarizes the interpretation of all notation used in the
mathematical models. Section 4.5 presents both individual and integrated models
for the problems and examines whether the iterative approach (i.e., sequentially
solving individual models) can yield the global optimal solution of the integrated
approach. In addition, all integrated models are compared in terms of computing
complexity as well as computational time spent to reach the global optimum.
Section 4.6 shows the modification of the HGA developed in the previous chapter
for solving the integrated problem for the CS machine. Performance of the
algorithm will be studied and compared with that of other researchers. Finally,
some remarks are listed in Section 4.7.

54 Optimal Production Planning for PCB Assembly

4.2 Literature Review

The CS machine is another type of SMT placement machine to be studied in this
book. Unlike the configuration of the PAP machine, the CS machine consists of
three movable mechanisms: a feeder carrier holding components, a rotary turret
with multiple assembly heads, and an X-Y table carrying a PCB. During assembly,
the three mechanisms move at the same time. So, certainly, the assembly time of
the machine is dependent on these three mechanisms. Nevertheless, many
researchers studied the machine performance separately. Generally, they
formulated the movement of the X-Y table (i.e., the component sequencing
problem) as the TSP, and the movement of the feeder carrier (i.e., the feeder
arrangement problem) as the QAP. Then, the problems were solved individually.

4.2.1 The Component Sequencing Problem

De Souza and Wu (1994) studied the component sequencing problem only for the
CS machine. A knowledge-based component placement system (CPS),
incorporated with TSP algorithms, was developed to solve the problem. The
objective was to minimize the total travel distance of the X-Y table. Furthermore,
De Souza and Wu (1995) pointed out that the CPS is more practical and effective
compared with the machine proprietary algorithm.

Moyer and Gupta (1997) agreed that the component sequencing problem for the
CS machine could be formulated as the TSP provided that the locations of the
components on the board were assigned prior to the determination of the placement
sequence. The board sequencing heuristic (BSH) was developed to solve the
problem. The idea of the BSH was to rearrange the placement order by swapping a
pair of components in the current tour to obtain a better solution.

4.2.2 The Feeder Arrangement Problem

Moyer and Gupta (1996a) studied the feeder arrangement problem only for the CS
machine based on the assumption that the sequence of component placements was
predetermined. The problem was formulated as the QAP. Two heuristic methods
were proposed to solve the problem.

Dikos et al. (1997) also formulated the feeder arrangement problem for the CS
machine as the QAP, and made an assumption that an optimal component
placement sequence was first specified. The authors employed GAs to find a near-
optimal solution for the problem.

Klomp et al. (2000) treated the problem of determining an optimal feeder
arrangement for a line of CS machines as finding the shortest Hamiltonian path. An
insertion heuristic and a local search heuristic were employed to solve the problem.

4.2.3 The Integrated Problem

Bard et al. (1994) used an iterative two-step heuristic approach to determine the
component placement sequence, the feeder arrangement, and the retrieval plan for
the CS machine. Initially, a placement sequence was generated with the weighted

The Concurrent Chip Shooter (CS) Machine 55

nearest neighbor heuristic, whereas the remaining two problems were then
formulated as an integer quadratic programming model and solved with a
Lagrangian relaxation scheme. In the final step, the previous feeder arrangement
was used to update the placement sequence, and the entire process was repeated.

Moyer and Gupta (1996b) developed a heuristic approach to solve the
component sequencing and the feeder arrangement problems separately for the CS
machine. In the algorithm, the nearest neighbor heuristic was applied to generate
an initial placement sequence first. The pairwise exchange method was then
applied to improve the initial solution. Following that, the feeder arrangement was
generated randomly. Similarly, the pairwise exchange method was applied to
improve the initial feeder arrangement.

Sohn and Park (1996) studied the component sequencing and the feeder
arrangement problems for the CS machine. They pointed out that it was difficult to
solve the problems concurrently. Therefore, they focused on the machine with only
one assembly head instead of multiple heads, and formulated the integrated
problem as a mixed integer nonlinear programming model. For the machine with
one head, the component sequencing problem was modeled as the TSP, whereas
the feeder arrangement problem was formulated as the QAP. Then, a heuristic
approach, similar to that developed by Leipälä and Nevalainen (1989), was applied
to solve the problems separately.

Yeo et al. (1996) developed a rule-based frame system to generate the feeder
arrangement first and then the component placement sequence for the CS machine.
The approach was based on the one-pitch incremental feeder heuristic and the
nearest neighbor heuristic.

Crama et al. (1997) proposed a solution procedure to tackle the component
sequencing, the feeder arrangement, and the component retrieval problems for the
CS machine. The authors stated that the individual problems are already very hard
in terms of computational complexity, so they solved the problems individually
and heuristically. The feeder arrangement problem was heuristically solved first,
and then the remaining two problems were solved using constructive heuristics and
local search methods.

Ellis et al. (2001) developed a heuristic approach to determine the component
placement sequence and the feeder arrangement for the CS machine. The nearest
neighbor heuristic was used to generate the initial placement sequence first, and
then the QAP greedy heuristic was used to generate the initial feeder arrangement.
The 2-opt local search heuristic was adopted to improve both types of initial
solutions.

Ong and Tan (2002) developed a GA incorporated with different types of
crossover and mutation operations to determine the sequence of component
placements on a PCB and the arrangement of component types to feeders
simultaneously for the CS machine. The objective of the approach was to minimize
the total assembly time.

Wilhelm and Tarmy (2003) also applied a set of heuristics to tackle the
integrated problem for the CS machine. Each component type was assigned to a
feeder first. Then, the sequence of component placements was determined by
solving an asymmetrical TSP.

56 Optimal Production Planning for PCB Assembly

4.3 Operating Sequence

The Fuji CP-732E machine belongs to the class of CS machines. It is a concurrent
type because the feeder carrier, the X-Y table, and the turret move simultaneously
during assembly. The turret is equipped with multiple windmill-style nozzle
holders, called assembly heads, each of which can be fitted with up to six nozzles.
During the pickup operation, the machines can index to the appropriate nozzle size
for each component to achieve high-accuracy placement. The major advantage of
the CS machine is its high speed; it can achieve a maximum placing speed of 0.068
second per shot.

As illustrated from the top to the bottom in Figure 4.1, a CS machine has a
movable feeder carrier holding components, a rotary turret with multiple assembly
heads (usually 10 or 12), and a movable X-Y table carrying a PCB. Each assembly
head has several (normally five) nozzles of different sizes. A large nozzle is used
to pick up and place large components.

The operating sequence of the CS machine is described as follows. As the first
board of a batch enters the machine, the first nozzle of the turret picks up a
component from a feeder. Then the turret indexes one step and the next nozzle
picks up the second component. After that, the turret indexes again to pick up the
next component, and so on. At the same moment, the PCB is moved to the
placement location waiting for the first component to be placed on the board.
When the sixth component is being picked up, if the turret has 10 heads, the first
component is being placed on the board at the same time. These operations
continue so that the turret indexes one step, the feeder carrier moves to the location
containing the next pickup component, and the X-Y table moves to the next
placement location. In the assembly of the last five components, there is no need to
pick up components for the board being assembled. However, the nozzles of the
turret can pick up the first five components for the next board to be assembled, if
necessary. For the first few components assembled in a batch of PCBs, there are
only pickup movements and no placement movement. For the last few components
of the same batch, there are only placement movements and no pickup movement.
Therefore, if the quantity of PCB in a batch is very large, these boundary effects
can be neglected (Leu et al., 1993).

The Concurrent Chip Shooter (CS) Machine 57

Figure 4.1. The schematic diagram of the CS machine

The operation of the CS machine is more sophisticated than that of the PAP
machine, so a detailed description of its operation is provided in the following with
the aid of an example. Consider a board with 10 components of six types that
requires assembly using the CS machine, as illustrated in Figure 4.1. The number
inside the bracket represents the component type. For instance, component 1 or c1

is of type 6. Furthermore, each of the component types is assigned to a feeder. For
instance, component type 6 is stored in feeder 1 or f1. If the sequence of placements
starts with component 1, then components 2, 3, 4, 5, 10, 9, 8, 7, and finally
component 6, then the entire assembly sequence of the CS machine is as follows:

1. f1 is moved to the pickup location (PUL).
2. The first nozzle picks up a component of type 6, as shown in Figure 4.2.

Figure 4.2. The schematic diagram of assembly sequence number 2

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

Component number

Turret

Feeder number

Assembly head

X

Y

X

Pickup location
Component type

Placement location

Component type

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

(6) (5) (1) (4) (3)

(5) (1) (3) (2) (4)

c6 c7 c8 c9 c10

c5c4c3c2c1

58 Optimal Production Planning for PCB Assembly

3. The turret rotates one step.
4. f2 is moved to the PUL.
5. The second nozzle picks up a component of type 5, as shown in Figure 4.3.

Figure 4.3. The schematic diagram of assembly sequence number 5

6. The turret rotates one step.
7. f3 is moved to the PUL.
8. The third nozzle picks up a component of type 1, as shown in Figure 4.4.

Figure 4.4. The schematic diagram of assembly sequence number 8

9. The turret rotates one step.
10. f4 is moved to the PUL.
11. c1 is moved to the placement location (PL).
12. When the fourth nozzle is picking up a component of type 3, c1 is being

placed, as shown in Figure 4.5.

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

(6)

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

(5)

(6)

The Concurrent Chip Shooter (CS) Machine 59

Figure 4.5. The schematic diagram of assembly sequence number 12

13. The turret rotates one step.
14. f5 is moved to the PUL.
15. c2 is moved to the PL.
16. When the fifth nozzle is picking up a component of type 4, c2 is being

placed, as shown in Figure 4.6.

Figure 4.6. The schematic diagram of assembly sequence number 16

17. The turret rotates one step.
18. f6 is moved to the PUL.
19. c3 is moved to the PL.
20. When the sixth nozzle is picking up a component of type 2, c3 is being

placed, as shown in Figure 4.7.

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

(1)

(5)

(6) (5) (1) (4) (3)

(5) (1) (3) (2) (4)

c6 c7 c8 c9 c10

c5c4c3c2c1

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

(3)

(1)

c1 (5) (1) (4) (3)

(5) (1) (3) (2) (4)

c6 c7 c8 c9 c10

c5c4c3c2

60 Optimal Production Planning for PCB Assembly

Figure 4.7. The schematic diagram of assembly sequence number 20

21. The turret rotates one step.
22. f5 is moved to the PUL.
23. c4 is moved to the PL.
24. When the seventh nozzle is picking up a component of type 4, c4 is being

placed, as shown in Figure 4.8.

Figure 4.8. The schematic diagram of assembly sequence number 24

25. The turret rotates one step.
26. f4 is moved to the PUL.
27. c5 is moved to the PL.
28. When the eighth nozzle is picking up a component of type 3, c5 is being

placed, as shown in Figure 4.9.

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

(2)

(4)

c1 c2 c3 (4) (3)

(5) (1) (3) (2) (4)

c6 c7 c8 c9 c10

c5c4

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

(4)

(3)

c1 c2 (1) (4) (3)

(5) (1) (3) (2) (4)

c6 c7 c8 c9 c10

c5c4c3

The Concurrent Chip Shooter (CS) Machine 61

Figure 4.9. The schematic diagram of assembly sequence number 28

29. The turret rotates one step.
30. f3 is moved to the PUL.
31. c10 is moved to the PL.
32. When the ninth nozzle is picking up a component of type 1, c10 is being

placed, as shown in Figure 4.10.

Figure 4.10. The schematic diagram of assembly sequence number 32

33. The turret rotates one step.
34. f2 is moved to the PUL.
35. c9 is moved to the PL.
36. When the tenth nozzle is picking up a component of type 5, c9 is being

placed, as shown in Figure 4.11.

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

(4)

(2)

c1 c2 c3 (4) c4

(5) (1) (3) (2) (4)

c6 c7 c8 c9 c10

c5

(3)

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

c1 c2 c3 c5c4

(5) (1) (3) (2) (4)

c6 c7 c8 c9 c10

(4)

62 Optimal Production Planning for PCB Assembly

Figure 4.11. The schematic diagram of assembly sequence number 36

37. The turret rotates one step.
38. c8 is moved to the PL.
39. The eighth nozzle places c8, as shown in Figure 4.12.

Figure 4.12. The schematic diagram of assembly sequence number 39

40. The turret rotates one step.
41. c7 is moved to the PL.
42. The ninth nozzle places c7, as shown in Figure 4.13.

(5) (6) (1) (3) (4) (2)

f2f1 f3 f4 f5 f6

c1 c2 c3 c5c4

(5) (1) (3) c10(4)

c6 c7 c8 c9

(1)

(3)

c1 c2 c3 c5c4

(5) (1) (3) c10c9

c6 c7 c8

(5)

(1)

The Concurrent Chip Shooter (CS) Machine 63

Figure 4.13. The schematic diagram of assembly sequence number 42

43. The turret rotates one step.
44. c6 is moved to the PL.
45. The tenth nozzle places c6, as shown in Figure 4.14.

Figure 4.14. The schematic diagram of assembly sequence number 45

Note that all mechanisms, including the feeder carrier, the turret, and the X-Y
table, move concurrently during the assembly of each component, except the first
few and the last few components. For the first few components assembled on the
PCB, there are only pickup movements and no placement movement. For the last
few components of the same board, there are only placement movements and no
pickup movement. However, these boundary effects can be neglected provided that
the number of the components to be placed is very large or the batch size is very
large (Leu et al., 1993).

c1 c2 c3 c5c4

(5) (1) c8 c10c9

c6 c7

(5)

c1 c2 c3 c5c4

(5) c7 c8 c10c9

c6

64 Optimal Production Planning for PCB Assembly

4.4 Notation

Before formulating the individual and the integrated mathematical models, the
meaning of the notation is explained first in this section. If there are g components
between the pickup location and the placement location, then there are (2g + 2)
assembly heads in the rotary turret. Each of the PCBs in the batch has n
components with different types. Besides, each of the component types must be
stored in a feeder, but a feeder can only hold a unique type of component, so
feeders are needed to hold types of components.

Three mechanisms of the CS machine move at different speeds, so the travel
time of the PCB or the X-Y table (i.e., C1ij), the travel time of the feeder carrier
(i.e., C2rs), and the indexing time of the turret (i.e., C3) are different from each
other. These three times can be calculated as follows:

C1ij = time used by the X-Y table for traveling from component i (location) to
component j (location).

=
y

ij

x

ij

V

YY

V

XX ||
,

||
max .

C2rs = time used by the feeder carrier for traveling from feeder r to feeder s.

=
f

rs

V

XX
.

C3 = time used by the turret for rotating one step,
where

Xi and Xj are the x-coordinates of components i and j, respectively,
Yi and Yj are the y-coordinates of components i and j, respectively,
Vx and Vy are speeds of the X-Y table in the x and y directions, respectively,
Xr and Xs are the x-coordinates of the feeders r and s, respectively, and
Vf is the speed of the feeder carrier.

The longest one among the three times in one step is called the dominating
time. So, for the CS machine, the objective of the integrated problem is obviously
to minimize the total assembly time, which is the summation of all dominating
times of components so that the highest productivity of the machine can be
achieved. The notation used in the models is summarized in Table 4.1.

The Concurrent Chip Shooter (CS) Machine 65

Table 4.1. Notation

Indexes:

i, j: components (i, j = 1, 2, …, n).

t: component types (t = 1, 2, …,).

r, s: feeders (r, s = 1, 2, …,).

p: placement order or placement position (p = 1, 2, …, n).

Travel times:

C1ij: travel time of the X-Y table.

C2rs: travel time of the feeder carrier.

C3: indexing time of the turret.

Tp: the longest travel time among three for assembling the pth component.

Feeder constraint:

g: number of components between the pickup and the placement locations.

Decision variables:

xip = 1 if component i is placed in the pth position; 0 otherwise.

rti
y = 1 if component i with component type t is stored in feeder r; 0 otherwise.

4.5 Mathematical Models

Similar to that for the PAP machine, mathematical modeling is applied to optimize
the performance of the CS machine. In the following subsections, individual
component sequencing and feeder arrangement problems are constructed in
advance. After that, several integrated models, including nonlinear and linear
types, are constructed. To determine the best way to optimize machine
performance, the iterative approach is compared with the integrated one with
respect to the capability of obtaining a global optimal solution. In addition, the
computational analysis of all integrated models is carried out.

4.5.1 A Component Sequencing Model

Assuming that the feeder arrangement problem is solved beforehand, the
component sequencing problem is frequently formulated as the TSP for finding the
placement order of components on a PCB so that the total travel distance or time of
the X-Y table is minimized. In the TSP model, a decision variable, xij, is normally
used to indicate that component i is placed immediately before component j if xij =
1. However, subtours may be formed, and thus the bulky subtour elimination
constraints are essential in the model, as discussed in Chapter 3. Here, xip instead of
xij is used as the decision variable. The interpretation of xip is that

66 Optimal Production Planning for PCB Assembly

otherwise0

position,th in theplacediscomponent if1 pi
xip

The idea is to assign n components to n positions, which means that there are
totally n2 decision variables in which only n variables are 1 and all others are 0.
Each component must be placed in exactly one position, so no subtour will appear
in this situation. If component 1 and component 2 are placed first and second,
respectively, then x11 (i.e., component 1 in the first position) and x22 (i.e.,
component 2 in the second position) are both 1.

For the component sequencing model, only xip is incorporated, whereas the
assignment of component types to feeders (i.e., rti

y) is predetermined. After the

feeder arrangement has been generated, the objective function of the model can
then be constructed as

3,2,1maxMinimize
1

1,,
11

,1,
1

CxxCxxCz
n

i
gpjgpirs

n

ij
j

n

i
pjpiij

n

ij
j

for p = 1, 2, …, n

The above objective function is to minimize the summation of all dominating
times among C1ij, C2rs, and C3 of the components. First of all, C1ij calculates the
time used by the X-Y table for traveling from the position of component i on the
PCB to the position of component j, which is placed in the pth position. As
described earlier, one nozzle is placing a component on the PCB while another
nozzle is picking up another component from a feeder at the same time. Here,
when the pth component is being placed, the type of another component to be
placed in the (p + g + 1)th position is being picked up from a feeder. It is assumed
that the types of the (p + g)th and the (p + g + 1)th components are stored in
feeders r and s, respectively. So, C2rs calculates the time used by the feeder carrier
for traveling from feeder r to feeder s. Third, C3 is the indexing time of the turret.

After introducing Tp, which is the dominating time for assembling the pth
component, and incorporating the constraint sets for determining the sequence of
component placements, the mathematical model for the component sequencing
problem can be represented as

 Minimize z =
n

p
pT

1

 (4.1)

subject to

01
1

,1,
1

n

i
pjpi

n

ij
j

ijp xxCT for p = 1, 2, …, n (4.2)

The Concurrent Chip Shooter (CS) Machine 67

 02
1

1,,
1

n

i
gpjgpi

n

ij
j

rsp xxCT for p = 1, 2, …, n (4.3)

03CTp for p = 1, 2, …, n (4.4)

n

i
ipx

1

1 for p = 1, 2, …, n (4.5)

n

p
ipx

1

1 for i = 1, 2, …, n (4.6)

 All xip = 0 or 1; Tp 0 and is a set of integers. (M4-1)

Constraint set (4.2) is to calculate the travel time of the X-Y table for
assembling the pth component. Constraint set (4.3) is to calculate the travel time of
the feeder carrier for assembling the pth component. Constraint set (4.4) is the
indexing time of the turret. For example, when p = 1, if T1 5, T1 4, and T1 3 in
constraint sets (4.2), (4.3), and (4.4), respectively, then T1 will become 5 to satisfy
all constraints. This is the idea of obtaining the value of Tp. Besides, constraint set
(4.5) is to guarantee that exactly one component is placed in one position, and
constraint set (4.6) is to guarantee that one position has exactly one component
placed.

The assembly time of the CS machine is dependent on all the C1ij, C2rs, and C3.
These three travel times must be incorporated together in the objective function of
the component sequencing model. Focusing only on the travel time of the X-Y
table cannot represent the actual situation, and therefore the TSP may not be
desirable for the component sequencing problem.

4.5.2 A Feeder Arrangement Model

Assuming that the sequence of component placements is predetermined, some
researchers formulated the feeder arrangement problem as the QAP for assigning
the component types to feeders so that the number of feeder carrier’s movements
or the total travel time of the feeder carrier is minimized. As in the component
sequencing model, the travel times of the X-Y table and the feeder carrier and the
indexing time of the turret should be considered simultaneously in the feeder
arrangement model. So, the QAP may not be desirable in this case.

In the model, only rti
y is incorporated, whereas the sequence of component

placements (i.e., xip) is known in advance. It is to determine which component type
is stored in which feeder. It is assumed that the number of feeders available is
equivalent to that of component types required, so a single component type can
only be assigned to a feeder. The interpretation of rti

y is that

68 Optimal Production Planning for PCB Assembly

otherwise0

,feeder in storediscomponent of typecomponent if1 rit
y rti

After xip has been known, the objective function of the feeder arrangement
model is constructed as

3,2,1maxMinimize
1 1 1 1 1

CyyCCz
n

i

n

ij
j t r s

strtrsij ji

for p = 1, 2, …, n

The above objective function calculates the total assembly time for assembling
all components on a PCB. It is the summation of all dominating times among C1ij,
C2rs, and C3 of the components. The placement order of each component is known,
so the times used by the X-Y table for traveling from the position of component i
to that of component j (i.e., C1ij) can be obtained directly. Note that the index j in
C1ij refers to component j to be placed in the pth position. When the position of the
pth component is being moved to the placement location, the feeder holding the
type of component to be placed in the (p + g + 1)th position is being moved to the
pickup location. Here, the indexes i and j in C2rs refer to components i and j,
respectively. Also, component j is placed in the (p + g + 1)th position, and
component i is placed immediately prior to component j. If the type of component i
(i.e., ti) is stored in feeder r and the type of component j (i.e., tj) is assigned to
feeder s, C2rs is equivalent to the time used by the feeder carrier to travel from
feeder r to feeder s.

By introducing Tp and incorporating the constraint sets for determining the
assignment of component types to feeders, the mathematical model for the feeder
arrangement problem can be formulated as

 Minimize z =
n

p
pT

1

 (4.7)

subject to
 01ijp CT for p = 1, 2, …, n (4.8)

 02
1 1 1 1 1

n

i

n

ij
j t r s

strtrsp ji
yyCT for p = 1, 2, …, n (4.9)

 03CTp for p = 1, 2, …, n (4.10)

The Concurrent Chip Shooter (CS) Machine 69

t
try

1

1 for r = 1, 2, …, (4.11)

r
try

1

1 for t = 1, 2, …, (4.12)

 All ytr = 0 or 1; Tp 0 and is a set of integers. (M4-2)

Similar to M4-1, the minimax type objective function is transformed into a
simple objective function (4.7) while subject to three constraint sets (4.8), (4.9),
and (4.10) in M4-2. Constraint set (4.11) ensures that exactly one component type
is stored in one feeder. Constraint set (4.12) ensures that exactly one feeder holds
one component type.

4.5.3 Integrated Mathematical Models

Before solving the component sequencing model (i.e., M4-1), it is essential to
obtain the solution of the feeder arrangement problem (i.e., M4-2) first. On the
other hand, M4-2 cannot be solved until the solution of M4-1 is known. Therefore,
there is no doubt that the component sequencing and the feeder arrangement
problems are interrelated, and it is more suitable to consider the two problems
simultaneously rather than separately, as many researchers did.

Consider a PCB to be assembled by the CS machine. The problem here is to
determine the placement order of components (i.e., xip) and to assign component
types to feeders (i.e., rti

y) at the same time so that the total assembly time (i.e., z)

is minimized. The X-Y table, the feeder carrier, and the turret move
simultaneously, so the three travel times of these movable mechanisms need to be
taken into consideration. The longest travel time among the three, that is, the
dominating time, is the assembly time of the component. The summation of all
dominating times of the components on the PCB is the total assembly time. The
movements of the two faster mechanisms need to wait until the slowest movement
has been completed. For example, if the travel time of the feeder carrier is the
longest for assembling a particular component, then obviously it becomes the
assembly time of that component. The turret and the X-Y table will delay for a
while. Also, there is no pickup and placement operation until the next feeder which
holds the next required component type has been moved to the pickup location.
This leads to the time lag between each component’s pickup and placement.

First, to obtain the value of C1ij (i.e., the travel time of the X-Y table), the
placement order of components must be known beforehand. For example, C1ij is
the time used by the X-Y table to travel from the position of component i on the
PCB to the position of component j if component i is placed in the (p – 1)th
position followed by component j. If component 1 is placed first (i.e., x11) followed
by component 2 (i.e., x22), then the travel time is C112. Therefore, the travel time of
the X-Y table for assembling the pth component is

70 Optimal Production Planning for PCB Assembly

n

i
pjpiij

n

ij
j

xxC
1

,1,
1

1

Comparatively, it is difficult to obtain the value of C2rs (i.e., the travel time of
the feeder carrier). The assignment of component types to feeders and also the
placement order of components must be known in advance to calculate C2rs. When
the pth component is being moved to the placement location, the feeder holding the
type of (p + g + 1)th component is being moved to the pickup location. The pickup
and placement operations take place when the movements have been finished. For
example, C2rs is the time used by the feeder carrier to travel from feeder r to feeder
s if the type of component i placed in the (p + g)th position is stored in feeder r and
the type of component j placed in the (p + g + 1)th position is stored in feeder s.
Consider the 10-component problem in Figure 4.6, in which g equals to 2. While
the X-Y table is moving from the position of c1 to the position of c2, if p = 2, the
feeder carrier is moving from f4 [because it holds the type of component 4 to be
placed in the (p + g)th position or the fourth position] to f5 [because it holds the
type of component 5 to be placed in the (p + g + 1)th position or the fifth position].
Therefore, the travel time of the feeder carrier for assembling the pth component is

n

i

n

ij
j

strtgpjgpirs
t r s

ji
yyxxC

1 1
1,,

1 1 1

2

The indexing time of the turret is a constant, so the value of C3 remains the
same for the assembly of every component on the PCB. For the integrated model,
the objective is to minimize the summation of all dominating times among C1ij,
C2rs, and C3 of all components on the PCB. So, the integrated model can be
formulated as

zMinimize

3,2,1max
1 1

1,,
1 1 11

,1,
1

CyyxxCxxC
n

i

n

ij
j

strtgpjgpirs
t r s

n

i
pjpiij

n

ij
j

ji

for p = 1, 2, …, n (4.13)
subject to

n

i
ipx

1

1 for p = 1, 2, …, n (4.14)

n

p
ipx

1

1 for i = 1, 2, …, n (4.15)

The Concurrent Chip Shooter (CS) Machine 71

t
try

1

1 for r = 1, 2, …, (4.16)

r
try

1

1 for t = 1, 2, …, (4.17)

 All xip and ytr = 0 or 1. (M4-3)

The objective function (4.13) is a minimax type formulation. After
incorporating Tp and adding the constraints for determining the placement order of
components and the assignment of component types to feeders, the mathematical
model for the integrated problem in the form of minimization is formulated as

 Minimize z =
n

p
pT

1

 (4.18)

subject to

 01
1

,1,
1

n

i
pjpi

n

ij
j

ijp xxCT for p = 1, 2, …, n (4.19)

 02
1 1

1,,
1 1 1

n

i

n

ij
j

strtgpjgpirs
t r s

p ji
yyxxCT

for p = 1, 2, …, n (4.20)

 03CTp for p = 1, 2, …, n (4.21)

n

i
ipx

1

1 for p = 1, 2, …, n (4.22)

n

p
ipx

1

1 for i = 1, 2, …, n (4.23)

t
try

1

1 for r = 1, 2, …, (4.24)

r
try

1

1 for t = 1, 2, …, (4.25)

 All xip and ytr = 0 or 1; Tp 0 and is a set of integers. (M4-4)

72 Optimal Production Planning for PCB Assembly

There is a nonlinear expression in each of the constraint sets (4.19) and (4.20),
and the model contains both binary variables (i.e., xip and ytr = 0 or 1) and integer
variables (i.e., Tp), so the above mathematical programming formulation can be
regarded as a pure integer nonlinear programming model. The objective function
(4.18) calculates the total assembly time. Constraint set (4.19) is to calculate the
travel time of the X-Y table. Constraint set (4.20) is to calculate the travel time of
the feeder carrier. Constraint set (4.21) is the turret indexing time. The
interpretation of constraint sets (4.22) to (4.25) was mentioned in M4-1 and M4-2.

Note that M4-4 is very complex and very challenging because we have to
consider both the component sequencing and the feeder arrangement problems
simultaneously. Nevertheless, the complexity of the model is reduced provided that
some assumptions are made. First, if the travel speed of the X-Y table is assumed
to be much slower than the other two, including the feeder carrier’s travel speed
and the turret indexing speed, then C1ij is always the dominating time, and C2rs

together with C3 can be neglected. Therefore, we can simply solve the model as
the TSP for finding the minimum C1ij. Second, the model’s complexity can also be
reduced if the travel speed of the feeder carrier is supposed to be much slower than
the other two. In this case, we can simply treat the problem as finding the
minimum C2rs. However, in general, the travel speeds of both the X-Y table and
the feeder carrier are different, and no one of them is much slower than the other
one; therefore, the component sequencing problem and the feeder arrangement
problem should be considered at the same time.

The nonlinear terms in the constraint sets (4.19) and (4.20) are in the form of
products of binary variables, so M4-4 can be reformulated as a linear one by
implementing the following steps:

Replace the product term xy by a binary variable w;
Impose the logical condition: w = 1 if and only if x = 1 and y = 1 by means
of the extra constraints: w x, w y, and w x + y – 1.

In the constraint set (4.19) of M4-4, the nonlinear term is in the form of
products of two binary variables. Therefore, it can be rewritten as a linear
constraint by introducing an extra binary variable wijp as well as three extra
constraint sets. The interpretation of the decision variable wijp is

otherwise0

position,th in theplacediscomponent

andcomponent after just placediscomponent if1

pj

ij

wijp

However, in the constraint set (4.20) of M4-4, the nonlinear term is in the form
of products of four binary variables. So, the steps for converting it into a linear
type need to be modified in this case. The major difference is that five instead of
three extra constraints are introduced. Similar to that for the constraint set (4.19), a
decision variable wij(p+g+1)rs is introduced:

The Concurrent Chip Shooter (CS) Machine 73

otherwise0

,feederinstoredisposition th)1(in theplacedcomponent

of type theandfeederinstorediscomponent of type theif1

)1(sgpj

ri

w rsgpij

The mathematical model for the integrated problem in the form of a linear
function can be formulated as

 Minimize z =
n

p
pT

1

 (4.26)

subject to

 01
1 1

n

i
ijp

n

ij
j

ijp wCT for p = 1, 2, …, n (4.27)

 02
1 1 1 1

)1(

n

i

n

ij
j r s

rsgpijrsp wCT for p = 1, 2, …, n (4.28)

 03CTp for p = 1, 2, …, n (4.29)

n

i
ipx

1

1 for p = 1, 2, …, n (4.30)

n

p
ipx

1

1 for i = 1, 2, …, n (4.31)

t
try

1

1 for r = 1, 2, …, (4.32)

r
try

1

1 for t = 1, 2, …,� (4.33)

1, piijp xw for i, j, p = 1, 2, …, n; i�j (4.34)

jpijp xw for i, j, p = 1, 2, …, n; i�j (4.35)

 11, jppiijp xxw for i, j, p = 1, 2, …, n; i�j (4.36)

74 Optimal Production Planning for PCB Assembly

gpirsgpij xw ,)1(for i, j, p = 1, 2, …, n; i�j;

for r, s = 1, 2, …, (4.37)

1,)1(gpjrsgpij xw for i, j, p = 1, 2, …, n; i�j;

for r, s = 1, 2, …, (4.38)

rtrsgpij i
yw)1(for i, j, p = 1, 2, …, n; i�j;

for r, s = 1, 2, …, (4.39)

strsgpij j
yw)1(for i, j, p = 1, 2, …, n; i�j;

for r, s = 1, 2, …, (4.40)

1,,)1(gpjgpirsgpij xxw

3strt ji
yy for i, j, p = 1, 2, …, n; i�j;

for r, s = 1, 2, …, (4.41)

 All xip, ytr, wijp, and wij(p+g+1)rs = 0 or 1; Tp 0 and is a set of integers.
(M4-5)

In M4-5, constraint sets (4.27) and (4.34) to (4.36) are the linear expression of
the constraint set (4.19). They calculate the time taken by the X-Y table to
assemble the pth component. Besides, constraint sets (4.28) and (4.37) to (4.41) are
the linear expression of the constraint set (4.20). They calculate the time spent by
the feeder carrier to assemble the pth component. The interpretation of the
objective function and the remaining constraint sets can be found in M4-4.

4.5.4 Iterative Approach vs. Integrated Approach

There is no doubt that the component sequencing and the feeder arrangement
problems are closely related. Nevertheless, according to the literature discussed in
Section 4.2, solving the problems for the CS machine individually rather than
simultaneously is still prevalent. For example, the feeder arrangement problem is
tackled in advance, followed by the component sequencing problem with respect to
the optimal assignment of component types to feeders. If there is improvement in
the solution’s quality, the individual problems or mathematical models are solved
repeatedly.

The iterative approach is comparatively easy to solve as only one single
problem instead of two is focused on at a time. However, Altinkemer et al. (2000)
pointed out that both problems should be considered and solved simultaneously,
otherwise poor performance can result. To examine this and prove that the iterative
approach may not generate a global optimal solution, an investigation of the
effectiveness of the iterative approach was carried out.

In the following, an iterative approach, as illustrated in Figure 4.15, is applied
to optimize the CS machine performance. The approach is similar to that proposed

The Concurrent Chip Shooter (CS) Machine 75

in Section 3.5.4 (refer to Chapter 3), except that the feeder arrangement model (i.e.,
M4-2) is solved first here while assuming that the placement sequence, generated
randomly, is obtained beforehand. After that, the component sequencing model
(i.e., M4-1) is solved based on the optimal assignment of component types to
feeders to find the minimum assembly time for assembling the four components on
the PCB. This procedure forms one iteration and will continue unless there is no
further improvement in the quality of the solution. The effectiveness of this
iterative approach is then examined by comparing its final best solution with the
global optimal solution generated by solving any one of the integrated models (i.e.,
M4-4 and M4-5). The comparison directs us to the best way (i.e., integrated or
iterative?) for optimizing the CS machine performance.

The data of the four-component problem are listed in Table 4.2. The indexing
time of the turret (i.e., C3) is 0.25 second per step. The number of components
between the pickup and the placement locations (i.e., g) is 2. The X-Y table moves
simultaneously and independently in the x and y directions, so the Chebyshev
metric is adopted. Herein, the table’s speed in both x and y directions (i.e., Vx and
Vy) is 60 mm/s. The linear speed of the feeder carrier (i.e., Vf) is also 60 mm/s.

Figure 4.15. An iterative approach

The feeder arrangement model
(M4-2)

The component sequencing
model (M4-1)

Optimal feeder arrangement

Optimal placement sequence

Any improvement?
Yes

Initial placement sequence

Output the best solution

No

76 Optimal Production Planning for PCB Assembly

Table 4.2. Data of the four-component problem

Components

(i)

Types

(ti)

Coordinates (mm)

x y

Feeders

(r)

Coordinates (mm)

x y

1 4 10 40 1 10 10

2 3 30 70 2 30 10

3 1 50 50 3 50 10

4 2 70 60 4 70 10

Suppose that an initial placement sequence is generated arbitrarily that starts
with component 1, then components 4, 2, and finally component 3 (i.e., x11 = x42 =
x23 = x34 = 1). Based on this initial placement sequence, the optimal feeder
arrangement can be obtained by solving M4-2. In this case, the optimal assignment
of component types to feeders is that component types 4, 3, 2, and 1 are stored in
feeders 1, 2, 3, and 4, and the total placement time is 2.67 seconds. Using the
optimal feeder arrangement, the optimal placement sequence can then be found by
solving M4-1. Surprisingly, note that the optimal placement sequence starts with
component 1, components 4, 2, and finally component 3, which is exactly the same
as the initial one. Because there is no further improvement in the objective value,
the above procedure is terminated. Although the individual models are solved
sequentially, the approach cannot generate the global optimal solution of the
integrated models (i.e., M4-4 and M4-5). The optimal sequence of component
placements is x21 = x12 = x43 = x34 = 1, whereas the optimal feeder arrangement is
y41 = y22 = y13 = y34 = 1. The minimum placement time is 2.16 seconds. Table 4.3
illustrates the calculation of the placement times for the global optimal solution.

Table 4.3. Calculation of the three travel times of the global optimal solution

C1ij C2rs C3 Tp

p = 1 C132 = 0.33 C223 = 0.33 0.25 0.33

p = 2 C121 = 0.50 C234 = 0.33 0.25 0.50

p = 3 C114 = 1.00 C241 = 1.00 0.25 1.00

p = 4 C143 = 0.33 C212 = 0.33 0.25 0.33

As a consequence, it is proved that the iterative approach widely adopted by
many researchers is not the best way because it cannot guarantee that the solution
is globally optimal. Besides, note from the above experiment that the initial
placement sequence plays a vital role in the approach. If the initial placement
sequence is not done carefully, even if the feeder arrangement problem is solved to
optimality, it could result in poor performance. According to the above
observations, it is concluded that the component sequencing and the feeder
arrangement problems must be integrated rather than separated to optimize the CS
machine performance or find the shortest placement time.

The Concurrent Chip Shooter (CS) Machine 77

4.5.5 Computational Analysis

Although the formulations of M4-4 and M4-5 are different, the objective values of
both models are the same due to their equivalent physical meanings. In this section,
the computing complexity of the models is studied first. The numbers of variables
and constraints of the models are listed. After that, the computational time spent in
solving the models with different problem sizes is presented.

4.5.5.1 Computing Complexity
The complexity of a model increases when the numbers of variables and
constraints increase. Generally, a complex model is more difficult to solve and
takes more time for computation. Therefore, the amount of computational time
spent is directly proportional to the complexity of a model. The numbers of
variables and constraints in each of M4-4 and M4-5 are listed in Table 4.4.

M4-4 has (n2 + 2) binary variables, n integer variables, and (5n + 2)
constraints. In each of the constraint sets (4.19) and (4.20), the terms are n(n – 1)
and n 2(n – 1), respectively. For a realistically sized problem of 100 components
and 10 component types, M4-4 has 10,100 binary variables, 100 integer variables,
and 520 constraints. In addition, M4-4 has 9,900 and 990,000 terms in each of the
constraint sets (4.19) and (4.20), respectively!

Although M4-5 becomes linear, both numbers of variables and constraints
increase greatly. For the number of binary variables, n2(n – 1) of wijp and n2 2(n –
1) of wij(p+g+1)rs are introduced in M4-5 besides (n2 + 2) binary variables and n
integer variables. For the number of constraints, besides (5n + 2) constraints, M4-
5 has [3n2(n – 1)] + [5n2 2(n – 1)] constraints more in which there are [3n2(n – 1)]
constraints for constraint sets (4.34) to (4.36) and there are [5n2 2(n – 1)]
constraints for constraint sets (4.37) to (4.41). For a realistically sized problem of
100 components and 10 component types, M4-5 has 100,000,200 variables, and
497,970,520 constraints.

Table 4.4. Numbers of variables and constraints in M4-4 and M4-5

M4-4 M4-5

No. of variables n2 + 2 + n (n2 + 2 + n) + [n2(n – 1)] + [n2 2(n – 1)]

No. of constraints 5n + 2 (5n + 2) + [3n2(n – 1)] + [5n2 2(n – 1)]

4.5.5.2 Computational Time
BARON and CPLEX are adopted to verify the integer nonlinear programming
model (i.e., M4-4) and the integer linear programming model (i.e., M4-5),
respectively. By these two commercial packages, both M4-4 and M4-5 are tested
by several small examples, and both are correct. According to Table 4.5, it is found
that M4-4 is better than M4-5 in terms of the amount of computational time spent
to obtain the global optimum. For example, it only takes 14½ hours by BARON to
solve M4-4 with the example of eight components and eight types to optimality.
However, it takes more than 13 days by CPLEX to solve M4-5 for the same
problem to optimality.

78 Optimal Production Planning for PCB Assembly

Although both models can obtain the global optimum, they are not efficient
approaches because the computational time grows exponentially with the problem
size, as seen in Table 4.5.

Table 4.5. Computational time spent in solving M4-4 and M4-5

Numbers of
components and

types

Optimal solution
CPU time (hh:mm:ss) by

BARON for M4-4

Optimal solution
CPU time (hh:mm:ss) by

CPLEX for M4-5

4 4 00:00:01 00:00:01

5 5 00:00:14 00:00:20

6 6 00:02:27 00:07:19

7 7 00:47:20 04:37:39

8 8 14:30:25 328:07:51

4.6 Genetic Algorithms

Two types of mathematical models have been formulated for the integrated
problem, including the pure integer nonlinear programming and the pure integer
linear programming models. Because both types of models are among the class of
theoretically difficult problems (NP-complete) (Kallrath, 1999), the integrated
problem is therefore NP-complete. Solving it can be a challenging task because it
requires an extremely long time to find the global optimum, as shown in Section
4.5.5.2. To solve the models efficiently, it is necessary to apply a heuristic method.

The HGA presented in the previous chapter is adopted here to solve the
integrated problem for the CS machine. Actually, the algorithm is so flexible that it
can be modified to optimize different types of placement machines. The only
modification is the evaluation function. So, the evaluation function for the CS
machine is discussed only in this section, whereas for the remaining elements of
the HGA, refer to Chapter 3.

4.6.1 Evaluation

The objective of the integrated problem for the CS machine is to minimize the total
placement time for assembling all electronic components on a PCB. So certainly,
the fitness function for the CS machine should be the total placement time, which
is the summation of all dominating times of components because the three
mechanisms of the machine move at different speeds: the travel time of the PCB or
the X-Y table, the travel time of the feeder carrier, and the indexing time of the
turret. The longest among the three is the dominating time needed in the assembly
of the component. Let Ti�be the time needed for the placement of component i and
eval(Xh) be the total placement time or the fitness function for chromosome Xh in
the integrated problem. Then,

The Concurrent Chip Shooter (CS) Machine 79

 Ti = 321 ,)1(),(,)(),1(max tgifgifticict

 eval(Xh) =
n

i
iT

1

where
t1(a, b) is the travel time of the X-Y table from component a to component b

t1(a, b) =
y

ab

x

ab

V

yy

V

xx ||
,

||
max for the Chebyshev metric

Vx and Vy are the speeds of the X-Y table in the x and y directions, respectively
t2(u, v) is the travel time of the feeder carrier from feeder u to feeder v

t2(u, v) =
f

uv

V

xx

Vf is the speed of the feeder carrier
t3 is the indexing time of the turret
n is the number of components
c(i) is the location in the board for the ith component
f(i) is the feeder location for the ith component type
g is the number of components in the gap between the pickup component and

the placement component in the turret, and normally, g = 5 or 6
In the above expression, c(i – 1) = c(n) when i = 1. When f(l) has l > n, where l

= i + g or i + g + 1, f(l) is replaced by f(l – n), which represents the initial g
components of the next board in the batch.

4.6.2 Performance Analysis

The performance of the HGA for the CS machine is evaluated using the PCB
example in Leu et al. (1993). The example has 50 components with 10 different
types. The parameters of the HGA for the integrated problem for the CS machine
are preset as psize = 25, itno = 1000, cr = 0.4, and mr = 0.2. Therefore, five pairs of
chromosome are selected to perform the modified order crossover operation,
whereas five chromosomes perform the heuristic mutation and the inversion
operation. The total number of offspring produced per iteration will be 40, 10 from
the modified order crossover operation, 25 from the heuristic mutation operation,
and 5 from the inversion mutation operation.

4.6.2.1 Comparison to Other Approaches
The performance of the HGA is shown in Figure 4.16, whereas the comparison
between the results obtained from the HGA and those obtained from other
researchers (Leu et al., 1993; Ong and Tan 2002) is shown in Table 4.6. According
to Table 4.6, the performance of the HGA is superior to that of the simple GAs
used in Leu et al. (1993) and Ong and Tan (2002) in three aspects. First, the best
chromosome (30 seconds) in the initial population obtained by the HGA is better
than that of the simple GAs (both more than 60 seconds). Second, the HGA can
yield a better solution with fewer iterations, 323 vs. 1,750 or 5,000. Finally and the

80 Optimal Production Planning for PCB Assembly

most important, the HGA gave a better solution than the previous methods, 26
seconds vs. 51.5 seconds or 26.9 seconds.

Table 4.6. A comparison of the experimental results for the CS machine

Leu et al.
(1993)

Ong and Tan
(2002)

HGA

Best one in the initial solution (s) 70 About 60 30

Population size 100 10 25

Iteration number About 1,750 5,000 323

Final best solution (s) About 51.5 26.9 26

Figure 4.16. The minimum assembly time at each iteration

4.6.2.2 Effect of Population Size
To identify the effect of population size, the HGA program was run with the above
50-component problem using three different population sizes: 5, 25, and 50. It can
be seen from Figure 4.17 that the HGA with population size of 50 obtains a better
chromosome in the initial population, and also it requires a fewer number of
iterations to obtain a better final solution. This may be due to the fact that more
offspring are produced at each iteration. There are totally 80 offspring (20 from the
modified order crossover operation, 50 from the heuristic mutation operation, and
10 from the inversion mutation operation) produced at each iteration. However,

0 100 200 300 400 500 600 700 800 900 1000
25.5

26

26.5

27

27.5

28

28.5

29

29.5

30

Iteration number

Total assembly time (s)

The Concurrent Chip Shooter (CS) Machine 81

there are only eight offspring (two from the modified order crossover operation,
five from the heuristic mutation operation, and one from the inversion mutation
operation) produced at each iteration if the population size is five. The effect of
different population sizes on the 50-component problem is summarized in Table
4.7.

Figure 4.17. The effect of population size for the CS machine

Table 4.7. A comparison of different population sizes for the CS machine

Population size 5 25 50

Best one in the initial population (s) 34 30 28.83

Final Best Solution (s) 26 26 25.5

Iteration number 510 323 283

4.6.2.3 Comparison to Optimal Solution
In Section 4.5.5.2, several sizes of problems are solved to optimality. In this
section, the performance of the HGA is examined and compared with the optimal
solution. It is found that the HGA achieves the optimal solution for all problems.
As shown in Table 4.8, the longest computational time spent is only five seconds
for the eight-component problem. It shows that the HGA takes much less time, but,
there is no guarantee that the optimal solution can be generated because the HGA
is simply a heuristic method.

0 100 200 300 400 500 600 700 800 900 1000
25

26

27

28

29

30

31

32

33

34

Iteration number

Total assembly time (s)

Population size = 5

Population size = 25

Population size = 50

82 Optimal Production Planning for PCB Assembly

Table 4.8. Comparisons of the HGA with BARON and CPLEX for the CS machine

Numbers of
components

and types

Optimal solution
CPU time (hh:mm:ss) by

BARON for M4-4

Optimal solution
CPU time (hh:mm:ss) by

CPLEX for M4-5

Best solution
CPU time

(hh:mm:ss) by
HGA

4 4 00:00:01 00:00:01 0.15 second

5 5 00:00:14 00:00:20 0.40 second

6 6 00:02:27 00:07:19 00:00:01

7 7 00:47:20 04:37:39 00:00:03

8 8 14:30:25 328:07:51 00:00:05

4.6.2.4 Integrated Problem with Feeder Duplication
In this section, besides the component sequencing and the feeder arrangement
problems, an additional optimization problem is also considered for the CS
machine. It is due to the fact that some components of same types may be in
hundreds or even more. The movement of the feeder carrier can be reduced if two
feeders are arranged for holding such frequently used component types. As a
consequence, assembly time can be minimized. If some component types are
assigned to two feeders, it is then necessary to determine from which feeder a
component should be retrieved, that is, the component retrieval problem. So, the
problem we face in this section is to solve the component sequencing, the feeder
arrangement, and the component retrieval problems simultaneously for the CS
machine.

When a component type is assigned to two feeders, a retrieval plan must be set
up to determine from which feeder a component should be retrieved. The retrieval
plan is similar to the NNH. For the first component, if its type is stored in two
feeders, then select a feeder randomly. But if the types of the remaining
components are stored in two feeders, then select the feeders as close as possible to
the previous ones so that the movements of the feeder carrier are minimized. For
example, if a component type is stored in two feeders, say v1 and v2, and the
previous feeder to be visited is u, then select v1 if uvuv xxxx 21 , or select

v2 provided that uvuv xxxx 21 . When uvuv xxxx 21 , then select a

feeder randomly.
The performance of the HGA for solving the component sequencing, the feeder

arrangement, and the component retrieval problems simultaneously is evaluated by
use of the 50-component problem (Leu et al., 1993) again in which three surplus
feeders are available. In this case, three types of components can be assigned to
two feeders. According to the 50-component problem, component types 4, 9, and
10 are the most frequently used; these three types of components can therefore be
stored in two feeders.

The performance of the HGA for the three problems is shown in Figure 4.18,
and its result is listed in Table 4.9. It is found that the solution is even better if the
number of feeders available is more than that of component types required, 25

The Concurrent Chip Shooter (CS) Machine 83

seconds vs. 26 seconds. Because the three most frequently used component types
are assigned to more than one feeder, they can be retrieved from a closer feeder
according to the retrieval plan. So, the travel time of the feeder carrier can be
shortened. As a result, the total assembly time can be minimized, too.

Figure 4.18. The performance of the HGA for the integrated problem with feeder
duplication for the CS machine

Table 4.9. A comparison of the HGAs for the CS machine

HGA HGA

Number of surplus feeders N/A 3

Population size 25 25

Iteration number 323 685

Final best solution (s) 26 25

4.7 Summary

In this chapter, the optimization of the CS machine performance is studied
thoroughly and successfully. Mathematical modeling has been applied, and also a
HGA has been used to solve the component sequencing and the feeder arrangement
problems. Some remarks are summarized in the following.

0 100 200 300 400 500 600 700 800 900 1000
24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

Iteration number

Total assembly time (s)

84 Optimal Production Planning for PCB Assembly

1. Due to the CS machine’s configuration, the travel time of the X-Y table, the
travel time of the feeder carrier, and the indexing time of the turret must be
considered simultaneously. The TSP and the QAP are therefore not suitable
for the individual component sequencing and feeder arrangement models,
respectively.

2. The component sequencing and the feeder arrangement problems are
interrelated and inseparable. Each of the individual component sequencing
and feeder arrangement models cannot be solved unless the solution of the
other one is predetermined in advance.

3. The iterative approach, that is, sequentially solving the individual
component sequencing and feeder arrangement models, adopted by many
researchers, is not the best way to optimize the CS machine performance.
The approach cannot guarantee that the solution is globally optimal.

4. Two mathematical models were formulated for the integrated problem,
which considers simultaneously both the component sequencing problem
and the feeder arrangement problem.

5. For integrated models, although the integer nonlinear programming model
can be converted into the integer linear programming model equivalently,
both numbers of variables and constraints increase significantly.

6. The nonlinear and the linear programming models were verified using
commercial packages, and both of them generated the same optimal
solutions of the same problems.

7. Different types of models took different times for computation. In terms of
the amount of computational time spent in solving the model to global
optimality, the integer nonlinear type is more desirable.

8. Although the optimal solution can be found using commercial packages, it
was proved that the computational time grows exponentially with problem
size.

9. The HGA developed for solving the integrated problem for the PAP
machine can be modified easily to solve that for the CS machine. The only
modification that needs to be made is the evaluation function.

10. The HGA proved superior to the simple GAs proposed by other researchers
in terms of effectiveness as well as efficiency.

11. The algorithm with larger population size can yield a better final solution,
but, at the same time, it requires more computational time.

12. Although the algorithm cannot guarantee obtaining the optimal solution, it
was proved that the HGA can reach the global optimum of several problems
with small sizes quickly.

13. The solution was even better when component types could be stored in
more than one feeder.

In the next chapter, the focus is confined to another two PCB assembly
problems called the line assignment problem and the component allocation
problem. Similar to that in Chapter 3 and Chapter 4, mathematical modeling and
the heuristic method are adopted to optimize the problems.

5

The Line Assignment and the Component Allocation
Problems

5.1 Introduction

One of the objectives in this book is to develop a prototype of the PCB assembly
planning system to be discussed in Chapter 6. The system, as shown in Figure 5.1,
comprises three levels in which the problems are closely related. After different
board types have been assigned to multiple assembly lines, that is, the line
assignment problem (Level 1), the components or the component types of the

Figure 5.1. Overall structure of a PCB assembly planning system

Level 1

Assigning of boards to lines

Level 2

Assigning of component types to
machines in a line

Level 3

Assigning of
component

types to
feeders in a

machine

Sequencing
of component
placements in

a machine

86 Optimal Production Planning for PCB Assembly

board are allocated to multiple placement machines in a particular line, that is, the
component allocation problem (Level 2). At the last stage, Level 3, the component
sequencing problem and the feeder arrangement problem in each of the placement
machines are determined. The integration of these problems is regarded as a PCB
assembly planning system.

The integrated problems for both types of machines (i.e., Level 3) have been
studied thoroughly in the previous chapters (refer to Chapter 3 and Chapter 4), so
only the remaining two problems (i.e., Levels 1 and 2) are covered in this chapter.
In Section 5.2 and Section 5.3, attention will be confined to several areas for the
line assignment problem as well as the component allocation problem,
respectively. The mathematical models are formulated for the problems first,
followed by the solution approaches for solving them with numerical examples.
Last, some remarks concerning this chapter are summarized in Section 5.4.

5.2 The Line Assignment Problem

Comparatively, the number of research projects on the line assignment problem is
few. Rajkumar and Narendran (1997) presented a similarity-based heuristic to
assign a given set of PCBs to any assembly machine among an available set of
identical assembly machines, with the twin objectives of minimizing the makespan
and balancing the load.

Hillier and Brandeau (1998) formulated an integer linear programming model
for assigning the boards and components to the machines and manual process so as
to minimize the total cost for PCB and component setup. An optimal solution
technique was developed for the single-machine case and for the multimachine
case where boards were not allowed to be set up on more than one process. Also, a
heuristic approach was developed to obtain a near-optimal solution.

Balakrishnan and Vanderbeck (1999) developed an integer linear programming
model that minimized the setup costs of the placement machines while ensuring
that the total processing workload on each line did not exceed a predetermined
limit. The model was to assign product families to parallel surface mount assembly
lines. An optimization-based method incorporated with the initial product
assignment heuristic, the column generation, and the lower bound procedures, was
adopted to obtain a near-optimal solution.

Hillier and Brandeau (2001) formulated an integer linear programming model
for assigning boards and components to the machines and manual process to
minimize the production cost while at the same time balancing machine workloads.
The machine capacity was also taken into consideration. A heuristic called the cost
minimizing workload balancing was developed to generate the upper bounds. The
branch-and-bound method was used to find the optimal solutions of small and
medium-sized problems.

Ellis and Bhoja (2002) formulated the line assignment problem as a mixed
integer linear programming model to minimize the total assembly time, including
the setup time and the processing time for each of the board types. The problem
was then solved using problem decomposition along with the branch-and-bound
algorithm.

The Line Assignment and the Component Allocation Problems 87

According to the above literature, all of them focused on the problem with a
small production volume and a high variety of board types. In such a situation,
boards of same type can only be assigned to a single assembly line so that the setup
time is minimized. However, up to now, no researcher has studied the problem in a
high-volume environment. So, it is believed that we are the first to investigate this.

A PCB manufacturing company may have several SMT production lines. It
receives production orders for many distinct products every month. The production
volume for each type of product is high. The scheduler has to determine which
product to produce on which line and also the quantity of the product to be
produced on the line so that the production cost is minimized. A product may be
produced on one line only, or more than one lines, depending on the product order
and the availability of the production lines. The line configurations are different
from each other. Figure 5.2 shows n board types to be assigned to three assembly
lines.

Figure 5.2. An example of the line assignment problem

If these three lines are assigned to produce a product, the times required by
these three lines to produce one unit of the product are not identical, neither are the
efficiency nor the cost.

The assignment of board types to multiple SMT production lines is addressed
as a line assignment problem (i.e., Level 1). Here, the problem is formulated as the
generalized transportation problem (GTP). Actually, the GTP is an extension of the
linear transportation problem, which is one of the famous linear programming
models, as discussed in Section 2.2.1. The GTP (Balas and Ivanescu, 1964; Lourie,
1964) or the machine loading problem (Eisemann, 1964), proposed by Ferguson
and Dantzig (1956), has been studied for a long time because of its wide
applicability (Eisemann, 1964; Ji et al., 1994).

5.2.1 A Mathematical Model

The line assignment problem is formulated as the GTP. The mathematical model of
the GTP assumes that m SMT production lines are available for the production of n

Board type 1 Board type 2 Board type n …

PAPCS PAP PAP Line 1:

CS CS PAP PAP Line 2:

CS CS CS PAP Line 3:

Assign board types to assembly lines

88 Optimal Production Planning for PCB Assembly

types of products. Here, production means that each product is processed using a
single line instead of using a specified sequence of lines. Furthermore, a product
can be produced using any line. When line i is assigned to produce product j, it
requires aij (> 0) hours and costs cij (> 0) dollars for one unit j. Besides, line i has a
maximum of ti hours available for production, and product j has a volume
requirement of sj. The problem here is to determine the quantity xij of product j to
be produced on line i to minimize the total production cost. A pure integer linear
programming model can be formulated as�

m

i

n

j
ijij xcz

1 1

Minimize (5.1)

subject to
n

j
iijij txa

1

 for i = 1, 2, …, m (5.2)

m

i
jij sx

1

 for j = 1, 2, …, n (5.3)

 xij 0 and is a set of integers. (M5-1)

The objective function (5.1) is to minimize the total production cost. Constraint
set (5.2) is due to the limited available time, which means that each line must be
operated within the fixed time period. Constraint set (5.3) is from the product
volume requirement. M5-1 is referred to as the GTP.

Table 5.1 below shows a GTP tableau, which has four SMT production lines
and five types of products. The northwest corner in cell (i, j) indicates the unit time
aij, and the northeast corner represents the unit cost cij. For example, in cell (1, 1),
a11 is 5 and c11 is 3.

Table 5.1. A generalized transportation problem

Product j
Line i 1 2 3 4 5 ti

5 3 2 6 2 6 5 7 6 4 1
x11 x12 x13 x14 x15 48000

2 6 7 5 8 6 7 15 6 8 2
x21 x22 x23 x24 x25 48000

4 5 2 3 2 10 1 6 6 7 3
x31 x32 x33 x34 x35 48000

3 4 2 4 4 7 5 8 2 9 4
x41 x42 x43 x44 x45 48000

sj 12000 8000 10000 8000 6000

The Line Assignment and the Component Allocation Problems 89

Many researchers presented a number of methods to solve the GTP. Lourie
(1964) used the stepping stone algorithm associated with altering topology to solve
the GTP. Eisemann (1964) proposed a generalized stepping stone algorithm, which
is the extension of the loop technique of the stepping stone method for the
Hitchcock transportation problem. Balas (1966) adopted the ideas underlying the
usual stepping stone algorithm to specialize the dual method and the poly-�
technique for the GTP. Balachandran and Thompson (1975a–d) studied an operator
theory of parametric programming for the problem. Besides, Thompson and Sethi
(1986) developed a pivot and probe algorithm (PAPA) to solve an uncapacitated
GTP with some side constraints. Ji et al. (1994) developed an algorithm for the
dual form of the GTP from the idea of the revised simplex method. It was found
that the performance of the algorithm is much better. However, all of these
algorithms are based on the linear programming model of the GTP and the integer
solution requirement is relaxed. Therefore, a heuristic approach is developed to
solve M5-1 efficiently.

5.2.2 A Genetic Algorithm

Similar to that for the integrated problems for both types of placement machines in
Level 3, a GA is adopted to deal with the line assignment problem in Level 1 or
M5-1. However, because the type of encoding for the problem is different from
that for the integrated problems, a tailor-made GA is developed and explained in
the following.

The general structure of a GA for the line assignment problem is illustrated in
Figure 5.3. The GA starts with an initial population in which the chromosomes are
generated randomly. The fitness of chromosomes is then measured using the
objective function of the model. Roulette wheel selection operation is performed to
select some chromosomes for the next procedure, called genetic operations. These
operations consist of crossover and mutation. However, the techniques applied are
not the common type. The genetic operations, including those used in Chapters 3
and 4 (i.e., the modified order crossover, the heuristic mutation, and the inversion
mutation), are not suitable because the representation of the chromosomes in the
line assignment problem is in the form of a matrix instead of a path representation.
After the offspring is produced, their fitness will be measured and may become a
member of population if it possesses a relatively good “quality”. A new roulette
wheel is then performed. These procedures form a cycle and the cycle will not be
terminated until the predetermined number of iterations is conducted.

90 Optimal Production Planning for PCB Assembly

Figure 5.3. The general structure of the genetic algorithm

Terminate?

Output the best solution

Yes

No

Input GA parameters

Select parents by the
roulette wheel method

Crossover
operation

Mutation
operation

Measure fitness of
offspring and

compare with parents

Generate initial
chromosomes (parents)

Measure fitness of
parents

Retain the best
population of
chromosomes

The Line Assignment and the Component Allocation Problems 91

The procedure of the GA for the line assignment problem is as follows:
Step 1: Set the GA parameters, including the population size (psize), the number

of iterations (itno), the crossover rate (cr), and the mutation rate (mr).
Step 2: Generate psize initial chromosomes using the initialization procedure to

be discussed in Section 5.2.2.1.
Step 3: Evaluate the fitness value eval(Xh) for all chromosomes in the

population to be addressed in Section 5.2.2.2.
Step 4: Follow the selection procedure in Section 5.2.2.3 to select chromosomes

to perform the crossover operation in Section 5.2.2.4.
Step 5: Follow the selection procedure to select chromosomes to perform the

mutation operation in Section 5.2.2.5.
Step 6: Compare all offspring, including the chromosomes generated from both

the crossover and the mutation operations, with the chromosomes in the
population by the fitness values eval(Xh). Retain the best psize
chromosomes in the population.

Step 7: Determine the best chromosome at each iteration. Repeat Step 4 to Step
7 until itno iterations are performed.

The GA for the line assignment problem is proposed in the following. Here, a
matrix is used to represent a chromosome in the GA:

mnmm

n

n

h

xxx

xxx

xxx

X

21

22221

11211

5.2.2.1 Initialization
The following initialization procedure is used to generate a feasible chromosome
for the line assignment problem represented by model M5-1.
Step 1: Select a random number k from set , = {1, 2, ..., mn}.�
Step 2: Calculate the corresponding row and column numbers i and j by

i = (k – 1) / n + 1 and j = (k – 1) mod n + 1.
Step 3: Assign the available amount of units to xij:

xij = min (
ij

i

a

t
, sj).

Step 4: Update ti and sj:
ti = ti – xij aij; sj = sj – xij; and delete k from .�

Step 5: Repeat Step 1 to Step 4 until becomes empty.
The above initialization procedure should be repeated psize times to generate

psize chromosomes for the problem. All chromosomes generated from the above
steps are in the form of a matrix. Because the chromosomes satisfy constraint sets
(5.2) and (5.3), they are feasible but may not be optimal to the line assignment
problem.

92 Optimal Production Planning for PCB Assembly

5.2.2.2 Evaluation
In a GA, both parent and offspring chromosomes must be evaluated by some
measures of fitness. In the line assignment problem, the objective function (5.1) is
used to measure the fitness. Let eval(Xh) be the fitness function for chromosome Xh

(h = 1, 2, …, psize) in the problem; then the fitness function for the problem is

eval(Xh) =
m

i

n

j
ijij xc

1 1

5.2.2.3 Selection
The roulette wheel approach is applied to choose some chromosomes
probabilistically instead of deterministically for performing the genetic operations.
The selection procedure has been discussed in Section 3.6.4 (in Chapter 3).

5.2.2.4 Crossover Operator
Step 1: Implement the selection procedure twice to choose a pair of

chromosomes, X1 = (1
ijx) and X2 = (2

ijx), from the population to perform

the crossover operation.
Step 2: Create two temporary matrices, D = (dij) and R = (rij), as follows:

dij = (1
ijx + 2

ijx) / 2 and rij = (1
ijx + 2

ijx) mod 2.

Step 3: Divide matrix R into two matrices R1 = (1
ijr) and R2 = (2

ijr) so that

R = R1 + R2 and
n

j
ijr

1

1 =
n

j
ijr

1

2 =
n

j
ijr

12

1
 for i = 1, 2, ..., m�

m

i
ijr

1

1 =
m

i
ijr

1

2 =
m

i
ijr

12

1
 for j = 1, 2, ..., n�

Step 4: Produce two offspring, X1' and X2', as follows:
X1' = D + R1 and X2' = D + R2

The offspring generated from the crossover operation are still feasible for M5-

1. Note that ijijijij rdxx 221 , where rij = 0 if (21
ijij xx) is even, and rij = 1 if

(21
ijij xx) is odd. On the other hand, for any column j,

m

i ij

m

i ij xx
1

2

1

1 ,

therefore
m

i ij

m

i ij

m

i ij rdx
111

1 22 , that is,

m

i

m

i ij

m

i ij

m

i ij Xrdx
1 1111

1

2

1
. Therefore, it can be concluded that the

offspring (X1' or X2') is feasible for M5-1. Besides, a
m

i ijr
1

 (j = 1, 2, …, n)

should be an even number because both
m

i ijx
1

1 and
m

i ijd
1

are integers; then

m

i ijr
12

1
has to be an integer.

The Line Assignment and the Component Allocation Problems 93

5.2.2.5 Mutation Operator
Step 1: Implement the selection procedure to select a chromosome.
Step 2: Extract a submatrix Y from the parent matrix by randomly selecting m

rows and n columns.
Step 3: Reallocate the submatrix Y. Use the initialization procedure in Section

5.2.2.1 to assign new values to the submatrix so that all constraints are
satisfied.

Step 4: Create an offspring by replacing the appropriate elements of the parent
matrix with the new elements from the reallocated submatrix Y.

5.2.3 A Numerical Example

The GTP example in Table 5.1 is used to illustrate how the GA works. A pure
integer linear programming model for the problem in the form of M5-1 can be
formulated as

 Minimize 3 x11 + 6 x12 + 6 x13 + 7 x14 + 4 x15

 + 6 x21 + 5 x22 + 6 x23 + 15 x24 + 8 x25

 + 5 x31 + 3 x32 + 10 x33 + 6 x34 + 7 x35

 + 4 x41 + 4 x42 + 7 x43 + 8 x44 + 9 x45

subject to

 5 x11 + 2 x12 + 2 x13 + 5 x14 + 6 x15 48,000

 2 x21 + 7 x22 + 8 x23 + 7 x24 + 6 x25 48,000

 4 x31 + 2 x32 + 2 x33 + x34 + 6 x35 48,000

 3 x41 + 2 x42 + 4 x43 + 5 x44 + 2 x45 48,000

 x11 + x21 + x31 + x41 = 12,000

 x12 + x22 + x32 + x42 = 8,000

 x13 + x23 + x33 + x43 = 10,000

 x14 + x24 + x34 + x44 = 8,000

 x15 + x25 + x35 + x45 = 6,000

 xij �0 and is a set of integers. (M5-2)

As mentioned before, there are seven steps in the GA for solving the line
assignment problem and finding the minimum production cost. The first iteration is
described in detail to demonstrate how the GA works. The steps are as follows:

94 Optimal Production Planning for PCB Assembly

Step 1: In this case, psize = 25, itno = 1000, cr = 0.4, and mr = 0.3. Therefore,
the number of pairs of chromosomes selected to undergo the crossover
operation (i.e., cross) = 5, and the number of chromosomes selected to
undergo the mutation operation (i.e., mut) = 8.

Step 2: Generate 25 initial chromosomes using the initialization procedure in
Section 5.2.2.1. One initial chromosome is generated as follows:

Step 2.1: Select a random number k from set , = {1, 2, ..., 20�.�
For example, k = 8.

Step 2.2: Calculate the corresponding row i and column j by
i = (8 – 1) / 5 + 1 = 2; j = (8 – 1) mod 5 + 1 = 3.

Step 2.3: Assign the available amount of units to x23:

x23 = min (
23

2

a

t
, s3) = min (6000, 10000) = 6000.

Step 2.4: Now, update t2 and s3 and delete k = 8 from set :
t2 = 48,000 – 6,000 × 8 = 0; s3 = 10,000 – 6,000 = 4,000.

Repeat the above procedure (Step 2.1 to Step 2.4) until becomes
empty, and the initial chromosome is obtained as

X1 =

00400005600

60008000000

00600000

00080006400

Similarly, the remaining 24 chromosomes can be generated by following
the above procedure.

Step 3: Evaluate the fitness value eval(Xh) for all 25 chromosomes in the
population. Here, the fitness value for X1 is
eval(X1) = 6,400 3 + 8,000 6 + 6,000 6 + 8,000 6 + 6,000 7

+ 5,600 4 + 4,000 7 = 243,600
Also the fitness values of all initial chromosomes are as follows:

eval(X1)=243600 eval(X6)=272500 eval(X11)=248500 eval(X16)=228800 eval(X21)=266000

eval(X2)=271200 eval(X7)=276000 eval(X12)=293200 eval(X17)=291600 eval(X22)=264400

eval(X3)=253000 eval(X8)=204000 eval(X13)=250000 eval(X18)=274000 eval(X23)=331600

eval(X4)=235000 eval(X9)=306000 eval(X14)=277000 eval(X19)=331600 eval(X24)=276000

eval(X5)=276000 eval(X10)=312800 eval(X15)=266000 eval(X20)=244400 eval(X25)=295000

Step 4: Five (cross = 5) pairs of chromosomes (or say 10 chromosomes) are
selected to perform the crossover operation. To select the chromosomes,
the following procedure is implemented:
Step 4.1: Calculate the total fitness for the 25 chromosomes:

F =
25

1

)(
h

hXeval = 6,788,200�

The Line Assignment and the Component Allocation Problems 95

Step 4.2: Calculate the selection probability ph for each chromosome:

ph =
)1(

)(

psizeF

XevalF h , h = 1, 2, ..., 25

The selection probability ph for chromosome Xh are
p1 = 0.0402 p6 = 0.0400 p11 = 0.0401 p16 = 0.0403 p21 = 0.0400

p2 = 0.0400 p7 = 0.0400 p12 = 0.0399 p17 = 0.0399 p22 = 0.0400

p3 = 0.0401 p8 = 0.0404 p13 = 0.0401 p18 = 0.0400 p23 = 0.0396

p4 = 0.0402 p9 = 0.0398 p14 = 0.0400 p19 = 0.0396 p24 = 0.0400

p5 = 0.0400 p10 = 0.0397 p15 = 0.0400 p20 = 0.0402 p25 = 0.0399

Step 4.3: Calculate the cumulative probability qh for each chromosome:

qh =
h

j
jp

1

, h = 1, 2, ..., 25�

The cumulative probability qh for chromosome Xh are
q1 = 0.0402 q6 = 0.2405 q11 = 0.4405 q16 = 0.6408 q21 = 0.8405

q2 = 0.0802 q7 = 0.2805 q12 = 0.4804 q17 = 0.6807 q22 = 0.8805

q3 = 0.1203 q8 = 0.3209 q13 = 0.5205 q18 = 0.7207 q23 = 0.9202

q4 = 0.1605 q9 = 0.3607 q14 = 0.5605 q19 = 0.7603 q24 = 0.9601

q5 = 0.2005 q10 = 0.4004 q15 = 0.6005 q20 = 0.8005 q25 = 1.0000

Step 4.4: If the first two random numbers are 0.0218 and 0.8782, then
X1 and X22 are selected as the first pair of chromosomes
(totally five pairs) to perform the crossover operation (refer to
Section 5.2.2.4). Here,

X1 =

00400005600

60008000000

00600000

00080006400

X22 =

60002400080000

000012000

00000

056001000000

Create two temporary matrices, D = (dij) and R = (rij).

D =

30001200200040002800

30004000006000

00300000

02800500040003200

96 Optimal Production Planning for PCB Assembly

R =

00000

00000

00000

00000

In this case, note that there is no “1” in matrix R. Therefore,
two offspring X1'and X22' are the same:

X1' and X22' =

30001200200040002800

30004000006000

00300000

02800500040003200

Step 5: Eight chromosomes are selected to perform the mutation operation.
Assume X1 is one of the chromosomes selected as a parent for mutation
(refer to Section 5.2.2.5); then,

X1 =

00400005600

60008000000

00600000

00080006400

Randomly select rows 1 and 4, columns 1 and 3. The corresponding
submatrix Y and the reallocated submatrix are
Corresponding submatrix Y Reallocated submatrix

40005600

06400

07200

40004800

Replacing the reallocated submatrix into X1, the new offspring is

X1'' =

00007200

60008000000

00600000

00400080004800

Step 6: Calculate the fitness values for all offspring (totally 18), and compare
them with the parents in the population. In this case, the fitness values of
the three offspring are X1' = X22' = 254,000, and X1'' = 241,200. So, X1',
X22', and X1'' will replace parents X19, X23, and X10 because these three
parents are the worst in the population.

Step 7: The best chromosome for the first iteration is X8 because it has the
smallest fitness value. Repeat Step 4 to Step 7 until 1,000 iterations are
performed.

After 1,000 iterations, the best solution is shown in Table 5.2 with the
production cost of 203,200. Although the GA cannot guarantee that the optimal
solution can be found, the best solution obtained by the GA for this specific
problem is optimal. The optimal integer solution is generated from a commercial
package, CPLEX, by solving the pure integer linear programming model, M5-2.

The Line Assignment and the Component Allocation Problems 97

Table 5.2. The best chromosome after 1,000 iterations for M5-2

 x11 = 800 x12 = 0 x13 = 4,000 x14 = 0 x15 = 6,000

 x21 = 0 x22 = 0 x23 = 6,000 x24 = 0 x25 = 0

 x31 = 0 x32 = 8,000 x33 = 0 x34 = 8,000 x35 = 0

 x41 = 11,200 x42 = 0 x43 = 0 x44 = 0 x45 = 0

Total production cost = 203,200

Figure 5.4. The minimum production cost at each iteration

The performance of the GA is shown in Figure 5.4. From the graph, it can be
noticed that the objective value drops sharply at the first 90 iterations. Because the
population size (psize) is small, only 25, the GA can only produce some not-so-
good chromosomes at the beginning. Later, the GA generates good offspring
quickly from those highly fit parents. This phenomenon is called rapid
convergence. When the objective reaches the best solution (i.e., 203,200), the
curve levels off because the best solution is already the optimal solution.

0 100 200 300 400 500 600 700 800 900 1000
203200

203300

203400

203500

203600

203700

203800

203900

204000

Iteration number

Production cost

98 Optimal Production Planning for PCB Assembly

5.3 The Component Allocation Problem

Here, the last element of the PCB assembly planning system is discussed. There
were a number of researchers focusing on the component allocation problem. Ben-
Arieh and Dror (1990) studied the problem of assigning components to insertion
machines. An integer linear programming model was formulated for the problem to
maximize the output. The problem was divided into two cases: the same
component can be assigned to only a single machine, and the same component can
be assigned to more than one machine. Two heuristic approaches were applied to
solve the problem.

Crama et al. (1990) focused on the assembly of a single type of PCB in a line
of PAP machines. A mixed integer linear programming model was formulated for
the component allocation problem to minimize the workload of the bottleneck
machine. A heuristic approach was developed to solve the problem.

Brandeau and Billington (1991) studied the component allocation problem for a
set of capacitated insertion machines. The authors formulated the problem as a
mixed integer linear programming model to minimize the total setup and
processing costs for assembling all boards. It was assumed that the setup and the
processing costs, by machine, were the same over all boards and components. Two
and four different heuristic approaches were developed to solve the problem with
single and multiple machines, respectively.

Klincewicz and Rajan (1994) formulated an integer linear programming model
for the component allocation problem. The problem was to determine which
components should be assigned to each robotic work cell to minimize the number
of visits by circuit boards to work cells. Two heuristic approaches, based on the so-
called greedy random adaptive search procedures (GRASP), were adopted to solve
the problem. With GRASP, the local search heuristic was replicated many times
with different starting points. The best result was then kept as the solution.

Günther et al. (1996) presented a mixed integer linear programming model for
two PCB assembly problems. The main objective was to minimize the setup time.
The problem first concerned the grouping of jobs for processing at the same
assembly station. Following that, the problem was to allocate components among
various identical assembly stations while taking production time and number of
feeders available into consideration. A heuristic solution procedure was developed
to solve the problem.

Ammons et al. (1997) considered the problem of assigning component types to
multiple nonidentical assembly machines. A mixed integer linear programming
model was formulated for the problem to balance the workload. Two alternative
solution approaches were presented. First, a list-processing-based heuristic was
used to solve the problem in the PTH line. Second, a linear-programming-based
branch-and-bound heuristic was used to solve the problem in the SMT line.

Gronalt et al. (1997) formulated a mixed integer linear programming model for
the component allocation problem to minimize total production time. A heuristic
solution procedure was developed to solve the problem. First, the component setup
was determined for a given sequence of board types to be processed on a single
placement machine by applying a modification of the so-called “keep component

The Line Assignment and the Component Allocation Problems 99

needed soonest” policy. Next, components were assigned to feeders of the
placement machine.

Lapierre et al. (2000) studied the problem of allocating and arranging
components on several PAP machines, while considering a different assembly time
if components were located at different feeders. A mixed integer linear
programming model was formulated for the problem to balance the workload
among the placement machines. The Lagrangian relaxation algorithm was used to
transfer the constraints into the objective function and to generate a lower bound
for the optimal solution.

Ji et al. (2001) studied the problem of allocating components to a PCB
assembly line, which had several nonidentical placement machines in series. The
authors pointed out that the unit assembly times were the same for the same
component with the same machine, but assembly times for different machines in
the line were not the same. A minimax type integer linear programming model to
minimize the cycle time of the assembly line was formulated. The model was
proved to be NP-complete, so a GA was used to solve the problem.

Sze et al. (2001) formulated several integer linear programming models to
obtain the best assignment of components to several nonidentical placement
machines in a PCB assembly line. The placement times by different machines
varied for the same type of components. The objective of the models was to
minimize the cycle time of the assembly line. A numerical example was provided
to illustrate the models and was solved by a commercial package.

Wan and Ji (2001) discussed the component allocation problem for multiple
nonidentical assembly machines in an SMT line. An integer linear programming
model was formulated. The objective was to minimize the cycle time of the
assembly line. A tabu search heuristic was used to solve the problem.

Although there were a number of research projects on the component allocation
problem (i.e., Level 2), only a few of them focused on the problem for multiple
machines. Moreover, these researchers assumed that the component processing
times are identical even for different types of placement machines. But actually,
different machines have different unit assembly times for the same kind of surface
mount components. Therefore, the component allocation problem has not been
studied thoroughly yet.

After board types have been assigned to production lines or the line assignment
problem has been solved, components on the board should be grouped and
allocated to appropriate machines to achieve better line performance in terms of
cycle time. Due to the various configurations of machines, different machines have
different unit assembly times for the same type of surface mount components.
Actually, there is an occasion that a machine cannot handle a particular type of
component. In this case, the unit assembly time should be assigned to be infinite
(�). Figure 5.5 shows n component types to be allocated to four placement
machines in a line.

100 Optimal Production Planning for PCB Assembly

Figure 5.5. An example of the component allocation problem

5.3.1 A Mathematical Model

Suppose that m nonidentical placement machines are in an SMT production line
and a board with n types of surface mount components is going to be assembled on
that line. It requires tij time per unit to place if component type j is assigned to
machine i. By introducing si to denote the setup time for machine i and cj for the
quantity of component type j, respectively, the above component allocation
problem with the objective of minimizing the cycle time can be formulated as

n

j
ijiji xtsz

1

maxMinimize for i = 1, 2, …, m (5.4)

subject to
m

i
jij cx

1

 for j = 1, 2, …, n (5.5)

 xij 0 and is a set of integers. (M5-3)

The decision variable xij is introduced to indicate the number of component
type j to be assembled on machine i. The objective function (5.4) is to minimize
the assembly time for the machine with the largest assembly time, including the
machine setup time, that is, the cycle time. As usual, the cycle time is defined as
the maximum assembly time among all the placement machines in a line.
Constraint set (5.5) is to guarantee that all of the components will be assembled.

Consider seven types of components that must be allocated to three different
placement machines, as shown in Table 5.3. The northeast corner in cell (i, j)
indicates the unit assembly time tij (The time unit is 0.1 second in the table). For
example, in cell (1, 1), t11 is 0.3 second. If a machine cannot handle a particular
type of component, the unit assembly time is assigned to be infinite (�).

Component
type 1

Component
type 2

Component
type n

Board type 1
consists of

PAPCS PAP PAP Line 1:

Assign component types to machines

…

The Line Assignment and the Component Allocation Problems 101

Table 5.3. A component allocation problem

Component Type j
Machine i 1 2 3 4 5 6 7

Setup
Time si

 3 7 7 5 � � �1
x11 x12 x13 x14 x15 x16 x17 110

 7 12 15 16 15 15 21 2
x21 x22 x23 x24 x25 x26 x27 147

 23 38 35 35 27 33 43 3
x31 x32 x33 x34 x35 x36 x37 147

No. of cj 324 37 12 5 7 5 4

Formulation M5-3 is a minimax type integer linear programming model. The
complexity of a minimax type problem was discussed in Yu and Kouvelis (1993).
Yu and Kouvelis proved that the minimax assignment problem is NP-hard.
However, the data structure in M5-3 is similar to but not exactly the same as the
minimax assignment problem. Actually, M5-3 is more difficult than the minimax
assignment problem in two aspects. First, the decision variables xij in the minimax
assignment problem must be either 0 or 1, and the number of jobs should be equal
to the number of tasks (i.e., n = m). However, the decision variables can be any
nonnegative integer value rather than just 0 or 1, and n m in M5-3. Second, the
objective of the minimax assignment problem is to minimize only the maximum xij,
whereas the objective of M5-3 is to minimize the maximum summation of tijxij, let
alone the component sij. Therefore, M5-3 is a typical general integer linear
programming model, and it belongs to an NP-complete problem because
Papadimitriou concluded that a general integer linear programming model is NP-
complete (Papadimitriou, 1981). As a consequence, it is necessary to adopt a
heuristic algorithm to solve the problem.

5.3.2 A Genetic Algorithm

As for the line assignment problem, a GA is applied to deal with the component
allocation problem in Level 2 or M5-3, too. Actually, the general structure and the
procedure of the GA for the component allocation problem are the same as those
for the line assignment problem, as discussed in Section 5.2.2. The major
differences are the way of initializing a feasible chromosome or initialization and
the method of evaluating a chromosome or evaluation. Therefore, only the
initialization and the evaluation are discussed in the following. For the remaining
elements, such as the selection, the crossover operator, and the mutation operator,
refer to Section 5.2.2.

5.3.2.1 Initialization
The procedure for generating a feasible initial chromosome for the component
allocation problem represented by M5-3 is as follows:

102 Optimal Production Planning for PCB Assembly

Step 1: Assign an integer number to bi randomly, so that
n

j
j

m

i
i cb

11

.�

Step 2 Select a random number k from set , = {1, 2, ..., mn}.�
Step 3: Calculate the corresponding row and column numbers i and j by

i = (k – 1) / n + 1 and j = (k – 1) mod n + 1.
Step 4: Assign the available amount of units to xij:

xij = min (bi, cj).
Step 5: Update bi and cj:

bi = bi – xij; cj = cj – xij; and delete k from .�
Step 6: Repeat Step 2 to Step 5 until becomes empty.

The above initialization procedure should be repeated psize times to generate
psize chromosomes for the problem. All chromosomes generated from the above
steps are in the form of a matrix. The chromosomes satisfy the constraint sets (5.5),
so they are feasible but may not be optimal to the component allocation problem.

5.3.2.2 Evaluation
In the GA, the objective function of M5-3 is used for evaluation for the component
allocation problem. Let eval(Xh) be the fitness function for chromosome Xh in the
problem; then the fitness function for the problem is

 eval(Xh) =
n

j
ijiji xts

1

max for i = 1, 2, …, m

5.3.3 A Numerical Example

The example in Table 5.3 is used to illustrate how the GA works. A minimax type
integer linear programming model for the problem can be formulated as

; 433327 53 53 83 32147

; 211515 61 51 21 7147

; 00009 00009 00009 5 7 7 3110

maxMin

37363534333231

27262524232221

17161514131211

xxxxxxx

xxxxxxx

xxxxxxx

subject to

x11 + x21 + x31 = 324

x12 + x22 + x32 = 37

x13 + x23 + x33 = 12

x14 + x24 + x34 = 5

x15 + x25 + x35 = 7

The Line Assignment and the Component Allocation Problems 103

x16 + x26 + x36 = 5

x17 + x27 + x37 = 4

xij �0 and is a set of integers. (M5-4)

There are seven steps in the GA for solving the component allocation problem
and finding the minimum cycle time. The first iteration is described in the
following to demonstrate how the GA works.
Step 1: In this case, psize = 25, itno = 1000, cr = 0.4, and mr = 0.3. Therefore,

cross = 5, and mut = 8.
Step 2: Generate 25 initial chromosomes by following the initialization

procedure in Section 5.3.2.1. For instance, one initial chromosome is
generated as follows:
Step 2.1: Assign an integer number to bi randomly, say

bi = {374, 4, 16�, so that 394
3

1

7

1i j
ji cb .

In this case, bi represents the total number of components for
machine i to assemble. For example, there are totally 374
components allocated to machine 1, and so on.

Step 2.2: Select a random number k from set , = {1, 2, ..., 21�.�
For example, k = 4.

Step 2.3: Calculate the corresponding row i and column j by
i = (4 – 1) / 7 + 1 = 1; j = (4 – 1) mod 7 + 1 = 4.

Step 2.4: Assign the available amount of units to x14:
x14 = min (b1, c4) = min (374, 5) = 5.

Step 2.5: Now, update b1 and c4 and delete k = 4 from set :
b1 = 374 – 5 = 369; c4 = 5 – 5 = 0.

Repeat the above procedure (Step 2.2 to Step 2.5) until becomes
empty, and the initial chromosome is obtained as

X1 =

40001200

0400000

0175037324

Similarly, the remaining 24 chromosomes can be generated by following
the above procedure.

Step 3: Evaluate the fitness value eval(Xh) for all 25 chromosomes in the
population. Here, the fitness value for X1 is

eval(X1) =

147592

14760

110721256

max = 721,366

104 Optimal Production Planning for PCB Assembly

Also the fitness values of all initial chromosomes are as follows:
eval(X1)=721366 eval(X6)=1287 eval(X11)=360596 eval(X16)=450164 eval(X21)=810525

eval(X2)=270110 eval(X7)=990654 eval(X12)=361128 eval(X17)=1081270 eval(X22)=631335

eval(X3)=990972 eval(X8)=9751 eval(X13)=4051 eval(X18)=810776 eval(X23)=450837

eval(X4)=810713 eval(X9)=5846 eval(X14)=450164 eval(X19)=1261002 eval(X24)=361341

eval(X5)=811303 eval(X10)=450180 eval(X15)=1351351 eval(X20)=630801 eval(X25)=2432

Step 4: Five (cross = 5) pairs of chromosomes (or say 10 chromosomes) are
selected to perform the crossover operation. The procedure of the
roulette wheel approach for selection is as follows:
Step 4.1: Calculate the total fitness for the 25 chromosomes:

F =
25

1

)(
h

hXeval = 14,079,955

Step 4.2: Calculate the selection probability ph for each chromosome:

ph =
)1(

)(

psizeF

XevalF h , h = 1, 2, ..., 25

The selection probability ph for chromosome Xh are
p1 = 0.0395 p6 = 0.0417 p11 = 0.0406 p16 = 0.0403 p21 = 0.0393

p2 = 0.0409 p7 = 0.0387 p12 = 0.0406 p17 = 0.0385 p22 = 0.0398

p3 = 0.0387 p8 = 0.0416 p13 = 0.0417 p18 = 0.0393 p23 = 0.0403

p4 = 0.0393 p9 = 0.0416 p14 = 0.0403 p19 = 0.0379 p24 = 0.0406

p5 = 0.0393 p10 = 0.0403 p15 = 0.0377 p20 = 0.0398 p25 = 0.0417

Step 4.3: Calculate the cumulative probability qh for each chromosome:

qh =
h

j
jp

1

, h = 1, 2, ..., 25�

The cumulative probability qh for chromosome Xh are
q1 = 0.0395 q6 = 0.2394 q11 = 0.4422 q16 = 0.6428 q21 = 0.8376

q2 = 0.0804 q7 = 0.2781 q12 = 0.4828 q17 = 0.6813 q22 = 0.8774

q3 = 0.1191 q8 = 0.3197 q13 = 0.5245 q18 = 0.7206 q23 = 0.9177

q4 = 0.1584 q9 = 0.3613 q14 = 0.5648 q19 = 0.7585 q24 = 0.9583

q5 = 0.1977 q10 = 0.4016 q15 = 0.6025 q20 = 0.7983 q25 = 1.0000

Step 4.4: Generate a number r, ranging from 0 to 1, 10 times randomly
to select 10 chromosomes from the population. If the first two
random numbers are 0.8912 and 0.4881, for example, then
X23 and X13 are selected as the first pair of chromosomes to
perform the crossover operation. Here,

The Line Assignment and the Component Allocation Problems 105

X23 =

400012050

007003740

050500234

X13 =

0005037101

457012077

000000146

Create two temporary matrices, D = (dij) and R = (rij).

D =

200261875

227061858

020200190

R =

0001011

0100011

0101000

Then divide R into R1 and R2 as follows:

R1 =

0000001

0100010

0001000

R2 =

0001010

0000001

0100000

R1 and R2 must have the same total number of 1’s in each
column. Therefore, two offspring X23'and X13' are

X23' =

200261876

237061958

020300190

X13' =

200361975

227061859

030200190

Step 5: Assume that X23 is one of the eight chromosomes selected as a parent to
perform the mutation operation; then,

X23 =

400012050

007003740

050500234

Randomly select rows 1, 2, and 3, columns 2 and 3. The corresponding
submatrix Y and the reallocated submatrix are

106 Optimal Production Planning for PCB Assembly

Corresponding submatrix Y Reallocated submatrix

120

037

00

30

50

437

Replacing the reallocated submatrix into X23, the new offspring is

X23'' =

40003050

00705040

0505437234

Step 6: Calculate the fitness values for all offspring (totally 18), and compare
them with the parents in the population. In this case, the fitness values of
the three offspring are X23' = 180,695, X13' = 270,690, and X23'' =
451,124. So, X23', X13', and X23'' will replace parents X15, X19, and X17

because these three parents are the worst in the population.
Step 7: The best chromosome for the first iteration is X6 because it has the

smallest fitness value. Repeat Step 4 to Step 7 until 1,000 iterations are
performed.

After 1,000 iterations, the best solution is shown in Table 5.4 with the cycle
time of 978 (i.e., 97.8 seconds). The solution obtained for this specific problem is
good because it has a less than 1% error. The optimal integer solution shown in
Table 5.5 is generated from a commercial package, CPLEX, by solving the
minimax type integer linear programming model, M5-4.

Table 5.4. The best chromosome after 1,000 iterations for M5-4

 x11 = 276 x12 = 0 x13 = 4 x14 = 2 x15 = 0 x16 = 0 x17 = 0

 x21 = 45 x22 = 37 x23 = 1 x24 = 0 x25 = 0 x26 = 1 x27 = 2

 x31 = 3 x32 = 0 x33 = 7 x34 = 3 x35 = 7 x36 = 4 x37 = 2

Total cycle time = 97.8

Table 5.5. The optimal solution

 x11 = 274 x12 = 0 x13 = 2 x14 = 5 x15 = 0 x16 = 0 x17 = 0

 x21 = 50 x22 = 37 x23 = 1 x24 = 0 x25 = 1 x26 = 0 x27 = 0

 x31 = 0 x32 = 0 x33 = 9 x34 = 0 x35 = 6 x36 = 5 x37 = 4

Total cycle time = 97.1

The Line Assignment and the Component Allocation Problems 107

Figure 5.6. The minimum cycle time at each iteration

The performance of the GA is shown in Figure 5.6. From the graph, it can be
noticed that the solution improves significantly at the first 30 iterations. After that,
the curve becomes horizontal until around the 700th iteration. Finally, the curve
levels off after the GA obtains the best solution of 978 (i.e., 97.8 seconds) at about
the 800th iteration.

5.4 Summary

The line assignment and the component allocation problems are tackled in this
chapter. To optimize each of the PCB assembly problems, both mathematical
modeling and heuristic methods have been applied. Some observations concerning
these problems are made:

1. None of the researchers have focused on the line assignment problem
arising in a high-volume production environment.

2. The generalized transportation problem was formulated as the line
assignment problem to minimize the total production cost.

3. Although there were a number of research projects on the component
allocation problem, only a few of them focused on the problem for multiple
machines.

0 100 200 300 400 500 600 700 800 900 1000
950

1000

1050

1100

1150

1200

1250

1300

Iteration number

Cycle time

108 Optimal Production Planning for PCB Assembly

4. Besides, these researchers assumed that component processing times are
identical even for different types of placement machines. This does not
coincide with the real-life situation.

5. Genetic algorithms developed to solve the line assignment and the
component allocation problems are different from those for the integrated
problems because the matrix instead of the path representation is used.

The next chapter will develop a prototype of the “Printed Circuit Board
Assembly Planning System” (PCBAPS).

6

A Prototype of the Printed Circuit Board Assembly
Planning System (PCBAPS)

6.1 The PCBAPS Framework

A prototype of the “Printed Circuit Board Assembly Planning System” (PCBAPS)
is developed in this chapter. As mentioned in Section 5.1 (in Chapter 5), the
PCBAPS includes three levels of PCB assembly problems. Level 1 is the line
assignment problem, and Level 2 is the component allocation problem. Level 3
consists of the integrated problems (i.e., solving the component sequencing and the
feeder arrangement problems simultaneously) for the PAP and the CS machines.
The algorithms for solving the problems on all levels have been presented
thoroughly in the previous chapters.

The PCBAPS is a program written by a computer language, Matlab. It is
developed with some interfaces between a user and the system. The PCBAPS can
be launched after typing the “PCBAPS” in the Matlab Command Window.

6.2 A Guide to Using the PCBAPS

The overall procedure for using the PCBAPS can be simply described as follows:

1. Select a specific problem to be solved.
2. Input the data for the problem to be solved.
3. Input the GA parameters.
4. Execute the programs.
5. The PCBAPS uses the GAs developed in Sections 5.2.2 and 5.3.2 to solve

the line assignment problem and the component allocation problem,
respectively. Besides, the system uses the HGAs in Sections 3.6 and 4.6 to
solve the integrated problems for the PAP machine and the CS machine,
respectively.

6. Obtain the results of the problems, including the solutions in Tables 5.2 and
5.4 and the performance of the system in Figures 5.4 and 5.6.

110 Optimal Production Planning for PCB Assembly

6.3 Graphical User Interfaces

After typing “PCBAPS” in the Matlab Command Window, a graphical user
interface (GUI) figure will appear, as shown in Figure 6.1. It is for the users to
select a specific problem to be solved. For example, click the “LAP” button if the
users want to solve the line assignment problem. “CAP” refers to the component
allocation problem, whereas “CSP and FAP” represent the component sequencing
problem and the feeder arrangement problem (i.e., the integrated problem).

Figure 6.1. Problem input interface

As mentioned earlier, two types of placement machines are considered in the
integrated problem. Therefore, another GUI figure, as shown in Figure 6.2, appears
when the users click the “CSP and FAP” button. It is mainly for the users to select
a specific type of placement machine to be considered, including the pick-and-
place machine as well as the chip shooter machine.

 A Prototype of the Printed Circuit Board Assembly Planning System (PCBAPS) 111

Figure 6.2. Machine input interface

After selecting a problem to be solved, the users have to prepare the data to
input to the system. Actually, there are two ways to input data, as illustrated in
Figure 6.3. One is to input the data by screen input. The second type is to retrieve
the data from a data file. Generally, a problem with the same sets of data may need
to be solved several times. So, this type of input method can save users a lot of
time for inputting the same sets of data again and again.

Figure 6.3. Data input interface

112 Optimal Production Planning for PCB Assembly

Then, it is necessary for users to input the GA parameters to the system, as
shown in Figure 6.4. The parameters include the population size (psize), the
number of iterations (itno), the crossover rate (cr), and the mutation rate (mr). In
general, it is very difficult to find the best setting of the GA parameters. A good
setting can be achieved using the trial-and-error method. If the setting of the GA
parameters is confirmed, users can click the “Run” button. After pressing it, the
system uses the GA or the HGA to solve the problem to be selected.

Figure 6.4. GA parameters input interface

The system terminates if the number of iterations is conducted. Two types of
output will be generated. The first type is the best solution of the problem, like
those in Tables 5.2 and 5.4. The second type is the performance of the system, like
those in Figures 5.4 and 5.6.

6.4 Summary

A prototype of the “Printed Circuit Board Assembly Planning System” (PCBAPS)
has been developed in this chapter. The PCBAPS uses genetic algorithms to solve
the line assignment problem, the component allocation problem, and the integrated
problems for both types of placement machines. Some observations are made after
the system has been developed:

1. Genetic algorithms are so flexible that they can be applied to solve three
different types of PCB assembly problems effectively.

2. The problems on three levels are simple to describe but are very complex to
solve. However, with the input by users, the PCBAPS can perform planning
tasks quickly.

 A Prototype of the Printed Circuit Board Assembly Planning System (PCBAPS) 113

3. The PCBAPS provides users friendly interfaces and aids the process planner
in determining the assignment of product types to assembly lines, the
allocation of component types to placement machines in an assembly line,
and the sequence of component placements and the feeder arrangement.

References

Ahuja RK, Orlin JB, Tiwari A (2000) A greedy genetic algorithm for the quadratic
assignment problem. Computers & Operations Research 27:917–934

Altinkemer K, Kazaz B, Köksalan M, Moskowitz H (2000) Optimization of printed circuit
board manufacturing: integrated modeling and algorithms. European Journal of
Operational Research 124:409–421

Ammons JC, Carlyle M, Cranmer L, DePuy G, Ellis K, McGinnis LF, Tovey CA, Xu H
(1997) Component allocation to balance workload in printed circuit card assembly
systems. IIE Transactions 29:265–275

Balachandran V, Thompson GL (1975a) An operator theory of parametric programming for
the generalized transportation problem: I. basic theory. Naval Research Logistics 22:79–
100

Balachandran V, Thompson GL (1975b) An operator theory of parametric programming for
the generalized transportation problem: II. rim, cost and bound operators. Naval
Research Logistics 22:101–126

Balachandran V, Thompson GL (1975c) An operator theory of parametric programming for
the generalized transportation problem: III. weight operators. Naval Research Logistics
22:297–316

Balachandran V, Thompson GL (1975d) An operator theory of parametric programming for
the generalized transportation problem: IV. global operators. Naval Research Logistics
22:317–340

Balakrishnan A, Vanderbeck F (1999) A tactical planning model for mixed-model
electronics assembly operations. Operations Research 47:395–409

Balas E, Ivanescu PL (1964) On the generalized transportation problem. Management
Science 11:188–202

Balas E (1966) The dual method for the generalized transportation problem. Management
Science 12:555–568

Ball MO, Magazine MJ (1988) Sequencing of insertions in printed circuit board assembly.
Operations Research 36:192–201

Bard JF, Clayton RW, Feo TA (1994) Machine setup and component placement in printed
circuit board assembly. International Journal of Flexible Manufacturing Systems 6:5–31

Ben-Arieh D, Dror M (1990) Part assignment to electronic insertion machines: two machine
case. International Journal of Production Research 28:1317–1327

Brandeau ML, Billington CA (1991) Design of manufacturing cells: operation assignment in
printed circuit board manufacturing. Journal of Intelligent Manufacturing 2:95–106

Broad K, Mason A, Rönnqvist M, Frater M (1996) Optimal robotic component placement.
Journal of the Operational Research Society 47:1343–1354

116 References

Burkard RE, Karisch SE, Rendl F (1991) QAPLIB – a quadratic assignment problem
library. European Journal of Operational Research 55:115–119

Carter MW, Price CC (2001) Operations Research: A Practical Introduction. CRC Press,
Boca Raton

Castillo E, Conejo AJ, Pedregal P, Garciá R, Alguacil N (2002) Building and Solving
Mathematical Programming Models in Engineering and Science. Wiley, New York

Chan D, Mercier D (1989) IC insertion: an application of the travelling salesman problem.
International Journal of Production Research 27:1837–1841

Crama Y, Kolen AWJ, Oerlemans AG, Spieksma FCR (1990) Throughput rate optimization
in the automated assembly of printed circuit boards. Annals of Operations Research
26:455–480

Crama Y, Flippo O, Klundert JVD, Spieksma FCR (1997) The assembly of printed circuit
boards: a case with multiple machines and multiple board types. European Journal of
Operational Research 98:457–472

Csaszar P, Tirpak TM, Nelson PC (2000) Optimization of a high-speed placement machine
using tabu search algorithms. Annals of Operations Research 96:125–147

Davis L (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York
Deo S, Javadpour R, Knapp GM (2002) Multiple setup PCB assembly planning using

genetic algorithms. Computers & Industrial Engineering 42:1–16
De Souza R, Wu LJ (1994) CPS: a productivity tool for component placement in multi-head

concurrent operation PCBA machines. Journal of Electronics Manufacturing 4:71–79
De Souza R, Wu LJ (1995) Intelligent optimization of component onsertion in multi-head

concurrent operation PCBA machines. Journal of Intelligent Manufacturing 6:235–243
Dikos A, Nelson PC, Tirpak TM, Wang W (1997) Optimization of high-mix printed circuit

card assembly using genetic algorithms. Annals of Operations Research 75:303–324
Egbelu PJ, Wu CT, Pilgaonkar R (1996) Robotic assembly of printed circuit boards with

component feeder location consideration. Production Planning & Control 7:162–175
Eisemann K (1964) The generalized stepping stone method for the machine loading model.

Management Science 11:154–176
Ellis KP, Vittes FJ, Kobza JE (2001) Optimizing the performance of a surface mount

placement machine. IEEE Transactions on Electronics Packaging Manufacturing
24:160–170

Ellis KP, Bhoja S (2002) Optimization of the assignment of circuit cards to assembly lines
in electronics assembly. International Journal of Production Research 40:2609–2631

Ferguson AR, Dantzig GB (1956) The allocation of aircraft to routes - an example of linear
programming under uncertain demand. Management Science 3:45–73

Floudas CA (2000) Deterministic Global Optimization: Theory, Methods and Applications.
Kluwer Academic, Dordrecht

Foulds LR, Hamacher HW (1993) Optimal bin location and sequencing in printed circuit
board assembly. European Journal of Operational Research 66:279–290

Francis RL, Hamacher HW, Lee CY, Yeralan S (1994) Finding placement sequences and
bin locations for cartesian robots. IIE Transactions 26:47–59

Freisleben B, Merz P (1996a) A genetic local search algorithm for solving symmetric and
asymmetric traveling salesman problems. In: Proceedings of the 1996 IEEE
International Conference on Evolutionary Computation. Nagoya, Japan, pp 616–621

Freisleben B, Merz P (1996b) New genetic local search operators for the traveling salesman
problem. In: Proceedings of the 4th Conference on Parallel Problems Solving from
Nature. Springer, pp 890–900

Gen M, Cheng R (1997) Genetic Algorithms and Engineering Design. Wiley, New York
Glover F, Taillard E, Werra DD (1993) A user’s guide to tabu search. Annals of Operations

Research 41:3–28
Glover F, Laguna M (1997) Tabu Search. Kluwer Academic, Boston

 References 117

Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, New York

Gronalt M, Grunow M, Günther HO, Zeller R (1997) A heuristic for component switching
on SMT placement machines. International Journal of Production Economics 53:181–
190

Günther HO, Gronalt M, Piller F (1996) Component kitting in semi-automated printed
circuit board assembly. International Journal of Production Economics 43:213–226

Hillier MS, Brandeau ML (1998) Optimal component assignment and board grouping in
printed circuit board manufacturing. Operations Research 46:675–689

Hillier MS, Brandeau ML (2001) Cost minimization and workload balancing in printed
circuit board assembly. IIE Transactions 33:547–557

Huntley CL, Brown DE (1996) Parallel genetic algorithms with local search. Computers &
Operations Research 23:559–571

Jensen PA, Bard JF (2003) Operations Research: Models and Methods. Wiley, New York
Ji P, Wong YS, Loh HT, Lee LC (1994) SMT production scheduling: a generalized

transportation approach. International Journal of Production Research 32:2323–2333
Ji P, Sze MT, Lee WB (2001) A genetic algorithm of determining cycle time for printed

circuit board assembly lines. European Journal of Operational Research 128:175–184
Ji Z, Leu MC, Wong H (1992) Application of linear assignment model for planning of

robotic printed circuit board assembly. Journal of Electronic Packaging 114:455–460
Johnson DS, Aragon CR, McGeoch LA, Schevon C (1989) Optimization by simulated

annealing: an experimental evaluation; Part 1, graph partitioning. Operations Research
37:865–892

Kallrath J (1999) Mixed-integer nonlinear programming applications. In: Ciriani TA,
Gliozzi S, Johnson EL, Tadei R (eds.) Operational Research in Industry. Macmillan,
Hampshire, pp 42–76

Klincewicz JG, Rajan A (1994) Using GRASP to solve the component grouping problem.
Naval Research Logistics 41:893–912

Klomp C, Klundert JVD, Spieksma FCR, Voogt S (2000) The feeder rack assignment
problem in PCB assembly: a case study. International Journal of Production Economics
64:399–407

Kumar R, Li H (1995) Integer programming approach to printed circuit board assembly time
optimization. IEEE Transactions on Components, Packaging, and Manufacturing
Technology – Part B 18:720–727

Lapierre SD, Debargis L, Soumis F (2000) Balancing printed circuit board assembly line
systems. International Journal of Production Research 38:3899–3911

Leipälä T, Nevalainen O (1989) Optimization of the movements of a component placement
machine. European Journal of Operational Research 38:167–177

Leu MC, Wong H, Ji Z (1993) Planning of component placement/insertion sequence and
feeder setup in PCB assembly using genetic algorithm. Journal of Electronic Packaging
115:424–432

Lourie JR (1964) Topology and computation of the generalized transportation problem.
Management Science 11:177–187

Magyar G, Johnsson M, Nevalainen O (1999) On solving single machine optimization
problems in electronics assembly. Journal of Electronics Manufacturing 9:249–267

Mettala EG, Egbelu PJ (1989) Alternative approaches to sequencing robot moves for PCB
assembly. International Journal of Computer Integrated Manufacturing 2:243–256

Mitchell M (1996) Introduction to Genetic Algorithms. MIT Press, London
Moyer LK, Gupta SM (1996a) SMT feeder slot assignment for predetermined component

placement paths. Journal of Electronics Manufacturing 6:173–192
Moyer LK, Gupta SM (1996b) Simultaneous component sequencing and feeder assignment

for high speed chip shooter machines. Journal of Electronics Manufacturing 6:271–305

118 References

Moyer LK, Gupta SM (1997) An efficient assembly sequencing heuristic for printed circuit
board configurations. Journal of Electronics Manufacturing 7:143–160

Murty KG (1995) Operations Research: Deterministic Optimization Models. Prentice Hall,
New Jersey

Ong NS, Khoo LP (1999) Genetic algorithm approach in PCB assembly. Integrated
Manufacturing Systems 10:256–265

Ong NS, Tan WC (2002) Sequence placement planning for high-speed PCB assembly
machine. Integrated Manufacturing Systems 13:35–46

Osman IH, Kelly JP (1996) Meta-Heuristics: Theory & Applications. Kluwer Academic,
Boston

Papadimitriou CH (1981) On the complexity of integer programming. Journal of the
Association for Computing Machinery 28:765–768

Rajkumar K, Narendran TT (1997) A bi-criteria model for loading on PCB assembly
machines. Production Planning & Control 8:743–752

Rayward SVJ, Warren FB, Reeves CR (1993) Modern Heuristic Techniques for
Combinatorial Problems. Oxford, New York

Reinelt G (1994) The Traveling Salesman: Computational Solutions for TSP Applications.
Springer, New York

Sohn J, Park S (1996) Efficient operation of a surface mounting machine with a multihead
turret. International Journal of Production Research 34:1131–1143

Sze MT, Ji P, Lee WB (2001) Modeling the component assignment problem in PCB
assembly. Assembly Automation 21:55–60

Taha HA (2003) Operations Research: An Introduction. Prentice Hall, New Jersey
Tawarmalani M, Sahinidis NV (2002) Convexification and Global Optimization in

Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software,
and Applications. Kluwer Academic, Dordrecht

Thompson GL, Sethi AP (1986) Solution of constrained generalized transportation problems
using the pivot and probe algorithm. Computers & Operations Research 13:1–9

Walser JP (1999) Integer Optimization by Local Search: A Domain-Independent Approach.
Springer, New York

Wan YF, Ji P (2001) A tabu search heuristic for the component assignment problem in PCB
assembly. Assembly Automation 21:236–240

Wilhelm WE, Tarmy PK (2003) Circuit card assembly on tandem turret-type placement
machines. IIE Transactions 35:627–645

Williams HP (1999) Model Building in Mathematical Programming. Wiley, New York
Winston WL, Venkataramanan M (2003) Introduction to Mathematical Programming:

Operations Research. Brooks/Cole-Thomson Learning, California
Yeo SH, Low CW, Yong KH (1996) A rule-based frame system for concurrent assembly

machines. International Journal of Advanced Manufacturing Technology 12:370–376
Yu G, Kouvelis P (1993) Complexity results for a class of min-max problems with robust

optimization applications. In: Paradalos PM (ed.) Complexity in Numerical
Optimization. World Scientific Publishing, Singapore, pp 501–511

Index

A

Algorithms, branch-and-bound (B&B)
algorithm 11
branch-and-reduce algorithm 12
cutting plane algorithm 12
generalized benders algorithm 12
genetic algorithms (GAs) 14, 15,

37, 78, 89
hybrid genetic algorithm (HGA) 39
interior point algorithm 11
Lagrangian relaxation algorithm 99
pivot and probe algorithm (PAPA)

89
simplex algorithm 11
stepping stone algorithm 89

Assembly heads 54

B

BARON 16
Board sequencing heuristic (BSH) 54
Branch-and-bound (B&B) algorithm

11
Branch-and-reduce algorithm 12

C

Chebyshev metric 75
Chip shooter (CS) machine 2
Chromosome, two-link representation

40

Clock sequence 20
Component allocation problems 86,

98, 100
crossover operator 92
genetic algorithm 89, 101
mutation operator 93

Component placement system (CPS)
54

Component sequencing 20
Computational time 37
Concurrent chip shooter (CS) machine

53
feeder arrangement model 67
feeders duplication 82
genetic algorithms 78
integrated approach 74
iterative approach 74
population size 80

CPLEX 16
Crossover operator 43, 92
Cutting plane algorithm 12

D

Data input interface 111
DICOPT 17

E

Encoding 40
Exploitation (intensification) 43
Exploration (diversification) 43

120 Index

F

Feeder arrangement model 26, 67
Feeders duplication 48, 82

G

Generalized benders algorithm 12
Generalized transportation problem

(GTP) 87, 88
Genetic algorithms (GAs) 14, 15, 37,

78, 89
hybrid (HGA) 39
parameters input interface 112

Genetic local search (GLS) 16
Genetic operations 42
Global optimum 13
Graphical user interfaces 110
Greedy random adaptive search

procedures (GRASP) 98

H

Heuristics 13
2-opt local search 41
board sequencing heuristic (BSH)

54
meta-heuristics 13
nearest neighbor heuristic (NNH)

39, 41
Hybrid genetic algorithm (HGA) 39

flowchart 38

I

Implicit enumeration 11
Integer linear programming model,

PCB 86
Integer programming (IP) 8
Integrated approach 33, 74
Integrated circuits (ICs) 1
Interior point algorithm 11
Inversion mutation 45
Iterated swap procedure (ISP) 39, 41
Iterative approach 33, 74

L

Lagrangian relaxation algorithm 99
Line assignment 86
Linear programming (LP) 8
Lin-Kernighan (LK) 16
Local optimum 13

M

Machine input interface 111
Meta-heuristics 13
Minimax type integer linear

programming model 99
Minimax type objective function 69
Mixed integer linear programming

(MIP) models 11
Mixed integer nonlinear programming

(MINLP) model 12
Mutation operator 93

N

Nearest neighbor heuristic (NNH) 39,
41

Neighborhood technique 44
Non-convex relaxation 13
Nonlinear programming (NLP) 10
NP-complete 37, 99, 101

P

PCB assembly planning system 86
Pick-and-place (PAP) machine 2
Pick-up location (PUL) 57
Pivot and probe algorithm (PAPA) 89
Placement head 19

assembly sequence 22
Plated-through-hole (PTH)

technology 1
Population diversity 44
Population size 46, 80
Printed circuit board (PCB) 1
Printed circuit board assembly

planning system (PCBAPS) 109
Problem input interface 110

Index 121

Q

Quadratic assignment problem (QAP)
10, 12, 26

R

Roulette wheel selection operation 42

S

Sequential pick-and-place (PAP)
machine 19
component sequencing 20
encoding 40
feeder arrangement model 26
feeders duplication 48
genetic algorithms 37

genetic operations 42
integrated approach 33
inversion mutation 43
iterated swap procedure 39
iterative approach 33
nearest neighbor heuristic 41
population size 46

Simplex algorithm 11
Simulated annealing (SA) 14
Stepping stone algorithm 89
Strategic partitioning 11
Surface mount technology (SMT) 1

T

Tabu search (TS) 14, 15
Traveling salesman problem (TSP) 3
Tree search 11

