


IET CONTROL, ROBOTICS AND SENSORS SERIES 103

Open Resonator Microwave
Sensor Systems for
Industrial Gauging



The IET International Book Series on Sensors

IET International Book Series on Sensing—Call for Authors
The use of sensors has increased dramatically in all industries. They are fundamental in a wide
range of applications from communication to monitoring, remote operation, process control,
precision and safety, and robotics and automation. These developments have brought new
challenges such as demands for robustness and reliability in networks, security in the
communications interface, and close management of energy consumption. This Book Series
covers the research and applications of sensor technologies in the fields of ICTs, security,
tracking, detection, monitoring, control and automation, robotics, machine learning, smart
technologies, production and manufacturing, photonics, environment, energy, and transport.
Book Series Editorial Board

• Dr. Hartmut Brauer, Technische Universität Ilmenau, Germany
• Prof. Nathan Ida, University of Akron, USA
• Prof. Edward Sazonov, University of Alabama, USA
• Prof Desineni ‘‘Subbaram’’ Naidu, University of Minnesota Duluth, USA
• Prof. Wuqiang Yang, University of Manchester, UK
• Prof. Sherali Zeadally, University of Kentucky, USA

Proposals for coherently integrated international multi-authored edited or co-authored
handbooks and research monographs will be considered for this Book Series. Each proposal
will be reviewed by the IET Book Series Editorial Board members with additional external
reviews from independent reviewers. Please email your book proposal to: vmoliere@theiet.org
or author_support@theiet.org.



Open Resonator Microwave
Sensor Systems for
Industrial Gauging
A practical design approach

Nathan Ida

The Institution of Engineering and Technology



Published by The Institution of Engineering and Technology, London, United Kingdom

The Institution of Engineering and Technology is registered as a Charity in England &
Wales (no. 211014) and Scotland (no. SC038698).

† The Institution of Engineering and Technology 2018

First published 2018

This publication is copyright under the Berne Convention and the Universal Copyright
Convention. All rights reserved. Apart from any fair dealing for the purposes of research
or private study, or criticism or review, as permitted under the Copyright, Designs and
Patents Act 1988, this publication may be reproduced, stored or transmitted, in any
form or by any means, only with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those
terms should be sent to the publisher at the undermentioned address:

The Institution of Engineering and Technology
Michael Faraday House
Six Hills Way, Stevenage
Herts, SG1 2AY, United Kingdom

www.theiet.org

While the author and publisher believe that the information and guidance given in this
work are correct, all parties must rely upon their own skill and judgement when making
use of them. Neither the author nor publisher assumes any liability to anyone for any
loss or damage caused by any error or omission in the work, whether such an error or
omission is the result of negligence or any other cause. Any and all such liability is
disclaimed.

The moral rights of the author to be identified as author of this work have been
asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data
A catalogue record for this product is available from the British Library

ISBN 978-1-78561-140-7 (hardback)
ISBN 978-1-78561-141-4 (PDF)

Typeset in India by MPS Limited
Printed in the UK by CPI Group (UK) Ltd, Croydon



Contents

Preface xi

1 Introduction to microwaves 1
1.1 General 1
1.2 The microwave domain 1
1.3 History 4
1.4 Advantages and disadvantages of microwaves for testing,

measurements, and gauging 5
1.5 Energy associated with microwaves 8
1.6 Properties of fields at high frequencies 9
1.7 Microwaves and mechanics 11
1.8 Instrumentation and instruments 11

2 Transmission lines and transmission line resonators 13
2.1 Introduction 13
2.2 The transmission line 15
2.3 Transmission line parameters 17

2.3.1 Calculation of line parameters 18
2.4 The transmission line equations 19

2.4.1 Time-domain transmission line equations 24
2.5 Types of transmission lines 25

2.5.1 The lossless transmission line 25
2.5.2 The long transmission line 26
2.5.3 The distortionless transmission line 27
2.5.4 The low-resistance transmission line 28

2.6 The field approach to transmission lines 29
2.7 Finite transmission lines 32

2.7.1 The load reflection coefficient 33
2.7.2 Line impedance and the generalized reflection

coefficient 35
2.7.3 The lossless, terminated transmission line 37
2.7.4 The lossless, matched transmission line 42
2.7.5 The lossless, shorted transmission line 42
2.7.6 The lossless, open transmission line 43
2.7.7 The lossless, resistively loaded transmission line 45

2.8 Power relations on a general transmission line 48



2.9 Passive transmission line circuits 49
2.9.1 Impedance matching 50
2.9.2 Power dividers 52
2.9.3 Directional couplers 56
2.9.4 Antennas and probes 57
2.9.5 Attenuators 59
2.9.6 Other circuits 61

2.10 Transmission line resonators 61
2.10.1 The concept of resonance 62
2.10.2 The series RLC circuit 62
2.10.3 Parallel resonant circuit 67

2.11 Series and parallel transmission line resonators 70
2.11.1 Short-circuited l/2 transmission line resonator 71
2.11.2 Open-circuited l/2 transmission line resonator 73
2.11.3 Additional properties of transmission line resonators 75
2.11.4 Tapped transmission line resonators 78

2.12 The Smith chat 83
Bibliography 93

3 Planar transmission lines and coupled structures 97
3.1 Introduction 97
3.2 Planar transmission lines: the stripline 98

3.2.1 Coupled transmission lines 100
3.3 Waveguides and cavity resonators 105

3.3.1 TE propagation in parallel plate waveguides 108
3.3.2 TM propagation in parallel plate waveguides 109
3.3.3 Rectangular waveguides 109
3.3.4 TM modes in rectangular waveguides 111
3.3.5 TE modes in rectangular waveguides 112
3.3.6 Cavity resonators 113
3.3.7 TM modes in cavity resonators 114
3.3.8 TE modes in cavity resonators 115
3.3.9 Energy relations in a cavity resonator 115

3.4 Coupled stripline resonators 117
3.5 Resonant cavity perturbation 119

3.5.1 Whole cavity perturbation, lossless media 120
3.5.2 Cavity perturbation by small, lossless material samples 123
3.5.3 Cavity perturbation, lossy media 124

Bibliography 128

4 Microwave measurements 131
4.1 Introduction 131
4.2 N-Port networks 133

4.2.1 The scattering matrix and S-parameters 136

vi Open resonator microwave sensor systems for industrial gauging



4.2.2 Generalized scattering parameters 138
4.2.3 Some properties of S-parameters 139
4.2.4 The ABCD-parameters and the transmission

matrix 139
4.2.5 Relations between the various parameters 141
4.2.6 Shift of reference plane 141
4.2.7 Transformations between parameters 143

4.3 Use of the S-parameters for practical measurements 145
4.3.1 Matching of loads 146
4.3.2 Detection of resonance 146
4.3.3 Determination of losses 147

4.4 Other measurements 149
4.4.1 Frequency measurements 149
4.4.2 Wavemeters 152
4.4.3 Power measurements 154

4.5 Power sensors and detectors 155
4.5.1 Diode power sensors 155
4.5.2 Thermistors, bolometers, and thermocouples 156
4.5.3 Measurement of power density 160

4.6 Measurement of Q-factor of resonators 161
4.6.1 Q-Factors for series resonance 163
4.6.2 Q-Factors for parallel resonance 164

4.7 Measurement of impedance 167
4.8 Measurement of permittivity and loss tangent 167
4.9 Waveguide method of measurement 169
4.10 Cavity perturbation method 172
4.11 Other methods 175
Bibliography 177

5 Design of sensors for rubber thickness and fabric-coating
monitoring 181
5.1 Introduction 181
5.2 Sensor design for fabric coatings 182

5.2.1 Sensor modifications and optimization 192
5.2.2 Shielding of the sensor 195
5.2.3 Simulation and optimization 198
5.2.4 Sensitivity to motion of the plates 201
5.2.5 Mechanical design 202

5.3 Sensor design for rubber thickness sensing 206
5.3.1 Simulation and optimization 214

5.4 Alternative sensing strategies 225
5.4.1 Capacitive sensors 225
5.4.2 Reflection and transmission sensors 227

Further reading 231

Contents vii



6 Evaluation of the sensors 233
6.1 Introduction 233
6.2 Empty sensor tests 234
6.3 Laboratory tests 235
6.4 Online testing results 238
6.5 Performance evaluation 250

6.5.1 Effect of distance from antenna tips to center plate 250
6.5.2 Effect of flutter 252
6.5.3 Effect of cell offset 254

6.6 Calibration of the sensor 255

7 Implementation and testing 263
7.1 Introduction 263
7.2 The mechanical system 263
7.3 Evaluation of the mechanical system 270
7.4 Calibration 274
7.5 Compensation for environmental conditions 280

7.5.1 Compensation method 282

8 The network analyzer 285
8.1 Introduction 285
8.2 What is a network analyzer? 285

8.2.1 Scalar and vector network analyzers 289
8.3 The measurement process 292

8.3.1 Calibration 293
8.3.2 Measurements 296

8.4 Measurement of complex permittivity and loss tangent 311
8.4.1 Resonant methods 311
8.4.2 Transmission line methods 315
8.4.3 Measurements in space 318

8.5 Integration of network analyzers in designs 319
Further reading 321

Appendix A Electromagnetic radiation safety 325
A.1 Introduction 325
A.2 Field measurements 326
A.3 Conclusions 329
Bibliography 329

Appendix B Material properties 331
B.1 Introduction 331
B.2 Measurements 331
B.3 Effect of humidity and temperature 334
Bibliography 337

viii Open resonator microwave sensor systems for industrial gauging



Appendix C The finite-difference time-domain (FDTD) method 339
C.1 The finite difference time domain equations 339
C.2 Boundary conditions 345
C.3 Near-to-far-field transformation 346
C.4 Modeling material interfaces 346
C.5 Inclusion of sources 348
Bibliography 351

Appendix D Selected elements of electromagnetics 355
D.1 Maxwell’s equations 355

D.1.1 Maxwell’s equations: the time-harmonic form 356
D.1.2 Source-free equations 357
D.1.3 Interface conditions 358

D.2 The electromagnetic wave equation and its solution 359
D.2.1 Time-harmonic wave equations 359
D.2.2 Solution of the wave equation 360
D.2.3 Solution for uniform plane waves in lossless media 360

D.3 Propagation of plane waves in materials 363
D.3.1 Propagation of plane waves in lossy dielectrics 363
D.3.2 Propagation of plane waves in low-loss dielectrics 368
D.3.3 Propagation of plane waves in conductors or high-loss

dielectrics 369
D.4 The Poynting theorem and electromagnetic power 371

D.4.1 The Poynting theorem in the time domain 371
D.4.2 The complex Poynting vector 373

D.5 Reflection, transmission, and refraction of plane waves 376
D.5.1 Oblique incidence on a dielectric interface: perpendicular

polarization 377
D.5.2 Oblique incidence on a dielectric interface: parallel

polarization 380
D.5.3 Reflection and transmission on dielectric interfaces: normal

incidence 382
D.5.4 Reflection and transmission on perfect conductors 382

Further reading 383

Index 385

Contents ix



This page intentionally left blank 



Preface

1.1 General remarks on microwave systems

One of the goals of the present work is to present a coherent and entirely practical
approach to the design of open resonator microwave sensors. After preliminary
discussion of transmission lines and transmission line resonators and discussing the
general issues of microwave measurements and resonance, we embark on a detailed
design of a sensor system including dimensions, equipment, and results. The idea
behind this approach stems from the fact that whenever one deals with microwaves,
the ‘‘distance’’ between theory and practice is large and not easily bridged without
years of experience or extensive experimentation. The description, which at times
may seem lengthy, is intended to be inclusive so that by its end, there should be no
doubt in the reader’s mind on the whats and the hows of the design. It is genuinely
hoped that this approach can reduce the angst of any potential designer and encou-
rage the use of this powerful technique should the need arise. Nevertheless, it should
be realized that microwave equipment design is a mixture of disciplines. In addition
to understanding of the behavior of microwaves, the design of the mechanical
components is equally important. It is not possible to achieve a good design with
sloppy mechanical systems just as it is not possible to achieve proper operation with
bad electromagnetics design. Although one may take the view that a sensing system
is merely the implementation of a sensor, a source to feed the sensor, and a mea-
surement system to read and analyze the results, this would be an oversimplification
leading to an inadequate system. Every part of the system must be accurately
designed and the components must fit together. For example, one can do everything
right and still end up with a bad system by not paying attention to, say, impedance
matching between the probes and the source. Or, one can again properly design the
system but make a shield which is too thin that reacts to mechanical vibrations
thereby introducing changes in the output that are not due to the measured quantity.

Microwave sensors in the industrial environment have been neglected in the past
for a number of reasons, some valid, some less so. But it seems for the most part
because of perceptions associated with microwaves and with the design of microwave
systems. Whereas the military and communication industries have used microwaves on
varied large scales, the use of microwaves in industry has been limited to microwave
heating and limited use in sensing. A few of the reasons for this are as follows:

Microwave systems are expensive
Indeed, they usually are. There are many objective reasons why microwave systems
are not inexpensive. First, there is the issue of design at high frequencies, which



imposes certain requirements on the design, not to mention limited availability of
trained designers. Cables for example must be properly shielded and what passes as
an adequate shield at low frequencies may be totally inadequate at higher fre-
quencies. Stable oscillators are more difficult to build, components that operate at
microwave frequencies are fewer and more expensive and microwave integrated
circuits are even rarer. Materials used in microwave components are also unique.
Lossless dielectrics are rare and hence their production requires care. Conductors
must be very good to limit losses. The use of silver and gold for conductors or for
coating of conductors is very common. Then there are the issues of propagation of
microwaves, which are best done with transmission lines or waveguides. Although
these can be integrated, they are not usually off-the-shelf devices or components.
Even printed circuit boards must be selected carefully as their properties at high
frequencies are different than at lower frequencies. These issues, and many others,
mean simply that one cannot decide that a microwave sensor is the best solution
without thoroughly evaluating its costs and benefits. If it turns out that the micro-
wave system envisioned is too costly or its cost-benefit ratio is inappropriate, one
should look at alternatives. There are however applications in which microwave
sensing and, in particular, microwave gauging are most appropriate both in terms of
the physics involved and in terms of cost-benefit.

Microwave systems are sensitive and ‘‘fussy’’
They can be but only to the extent that they are not properly designed or used.
Many an engineer has found out the hard way that a microwave system is affected
by unexpected sources leading to poor performance. This is not in fact a problem
with the microwave idea but rather with its implementation. In fact, it is exactly this
sensitivity to a variety of factors that is so appealing in microwave sensors. How-
ever, at the core of any microwave system, there are only three properties that can
be sensed: permittivity, conductivity, and permeability. Any changes in these
properties of materials and anything that causes changes in these properties will be
sensed by a microwave sensor. It should then not be surprising that, for example, a
cavity resonator designed to measure the permittivity of a plastic should also react
to changes in humidity. Another example might be sensitivity of a sensor to per-
sonnel in its vicinity. The design must be able to cope with these issues by proper
calibration if necessary, perhaps by compensation of the sensor’s output or any
other means that will eliminate the error due to external sources.

Hidden reasons for visible effects
One of the most frustrating issues with microwave sensing and in particular with
microwave gauging is that the output of the sensor sometimes seems to be
capricious—reacting as if it had a mind of its own. One gets a reading without
being able to pinpoint the source. Of course, microwave systems just as any elec-
tronic system react to inputs in a specific and fully predictable fashion. Any effect
seen is due to a physical condition, but in microwave, the sources are not always
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easy to identify. The source may be due to a bad cable or a leak in a waveguide,
moisture in the system, or a myriad of other sources often mechanical in nature but
not only. For example, a microwave may react to a radio or TV transmission or
even to sources from power lines, not to mention mechanical issues such as
vibrations. Careful measurements and/or simulation should be used to eliminate all
undesired effects before a design can be called acceptable.

Complexity of microwave sources
A microwave source in its most general form is an oscillator operating either as a
fixed frequency oscillator or perhaps in a range of frequencies. Amplitude stabili-
zation may also be a part of that as can be a system of measuring both. That may
not sound like much, but building such a source can be an arduous task. Similarly,
connection of an external cable to a printed circuit board may require special
attention. One cannot simply solder the cable and hope that all will be well. Proper
matching to the board must be considered as must be the connector, length of wires,
delays on various paths, materials involved, and so on. If a printed circuit board
needs to be used, its design again calls for special techniques. One must remember
that any conducting path is part of a transmission line with its propagation prop-
erties, losses, phase delays, and impedance. Every length of conductor is an antenna
that will radiate into space and may interfere with the circuit itself or with other
circuits. Special attention must be paid to issues of electromagnetic compatibility,
power levels, and frequencies used as well as matching.

Expensive equipment: the use of a network analyzer
Anyone that has used a network analyzer must have been impressed with the
performance of this exceptional instrument, its capabilities, its accuracy, its
many uses, and, in particular, its cost. For a network analyzer is, necessarily, an
expensive instrument. And it is expensive for all the good reasons—primarily its
performance—and for all the bad reasons—primarily its limited use in laboratories.
But, in spite of that, I suggest very much its use in the industrial environment as
part of the sensor system proposed here. At first glance, it may seem that this will
only make the system more expensive. However, when considering the time and
cost needed to design a gauging sensor, its source and measuring system, the net-
work analyzer, which includes all the necessary functions as well as the software
needed to analyze the data and transmit it where it is needed, the cost is likely to be
lower overall. Similarly, a single component system, as costly as it is, will be less
expensive to maintain as it will not require more than an adept engineer that can set
its parameters or modify some software and, in case of breakdown, replace it and
send it for repair. There are of course some additional constraints imposed by the
instrument. It will have to be protected from the environment, likely will need to be
kept in a climatized space and may require periodic calibration. But these
requirements are not that different from those required by industrial controllers and
computers.
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Safety of microwave radiation
Microwaves have been implicated in the popular press in health effects including
cancer. None of this has been proven in reality but there are standards for exposure
limits to microwaves both for the general public and for occupational environ-
ments. Microwave radiation is nonionizing throughout its range, but, as a matter of
prudence, microwave designs should use the lowest intensity fields that will
properly address the problem. Proper shielding of radiation is another requirement
of the design.

Any time one designs a system rather than a component, the parameters to deal
with are necessarily intertwined. There are constrained parameters of space, fre-
quency, sensitivity, and the like. Then there are system parameters such as size,
coverage, and cost. There are mechanical parameters imposed by the measurement
environment, and finally, there are parameters that can be chosen to affect parti-
cular operational details of the system. In the design that follows, we look at all of
these in details.

1.2 Measurement versus gauging

There is a rich and varied literature on microwaves and microwave measure-
ments—from tutorials and textbooks to important monographs on circuits and
measurements. The present book attempts to go beyond the general topic of
microwave measurements and present a new topic—that of microwave gauging.
The very name implies measurements, specifically accurate measurements. The
premise is that in many cases, to detect something, or that a physical parameter
such as thickness or permittivity can be measured is not sufficient. It has to be
measured accurately and the measurement must be repeatable under reasonable
conditions. Only then can one claim that true gauging takes place.

Microwave measurements are quite common and encompass the range of
physical properties from simple dimensional measurements, general electric and
magnetic properties of materials, to very specific applications such as measurement
of moisture content, distance, and speed. Yet, the application of microwave mea-
surements for a wide range of industrial processes has been slow to evolve and find
acceptance for a number of reasons. One reason is objective—often, the cost of
microwave equipment is high and hence the application must justify the cost. But
there are two other reasons that come into play. One is the fact that most microwave
measurements are seen as not sufficiently accurate for the task at hand and the
second is the perceived complexity of such systems.

If microwave measurements are common, they are not simple. And one
constant in all microwave measurements is that they are difficult to interpret
uniquely. That is, a particular measurement may be influenced by other, sometimes
secondary effects that skew the results. For example, measurement of transmission
through a dielectric, in itself a very simple process, may be inaccurate because
of high humidity in air, through which waves must propagate. In other instances,
the material properties are only approximately known or measured at frequencies
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lower or higher, and again, the interpretation of results suffers. Then there is noise.
Of all kinds.

It would seem that while microwaves are very well suited for many industrial
applications, gauging, which by its very name implies accuracy, is not one of them.
And yet, this is exactly what this work attempts to do: To show that with proper
care, appropriate equipment, appropriate sensors, and sound calibration methods,
gauging is not only possible but is accurate, repeatable, and effective. Like other
gauging methods, microwave gauging is not inexpensive. The equipment is
sophisticated, produced in low volumes and therefore expensive. Few if any of the
sensors that may be used are off the shelf, again contributing to the overall cost.

On the other hand, microwave measurements and the sensors used are often
trivially simple and therefore rugged, well suited to the industrial environment.
Continuous production line gauging is practical, safe, and minimally intrusive. In
addition, in some applications microwave sensing replaces radioactive sensing.
This is the case in fabric thickness and density measurements.

The purpose of the present book is 2-fold. First, it attempts to dispel the notion
that microwave measurements are inaccurate and lay the groundwork for mean-
ingful, accurate, and industrially viable methods of gauging. Second, it tackles the
issue of the measuring environment, sensors, and equipment to show, in detail, how
these are made, the equipment needed, and specific procedures for practical gauging.

The presentation starts with the necessary theoretical subjects. Specifically, the
ideas of microwave measurements, waveguides, and transmission lines, so neces-
sary to the understanding of any microwave system, are first introduced, followed
by their extension to waveguide and cavity resonators. In all of these, we emphasize
the use of scattering parameters as these will then be used for practical measure-
ments. This part of the book may seem lengthy but it is necessary for the proper
understanding of the design and, in particular, for the measurement process.

1.3 Text contents

Chapter 1 introduces the subject of microwaves and places the sensors to be
described later in perspective. Following a short section on the microwave range
and a historical section, we discuss the advantages and disadvantages of microwave
testing and gauging. The properties and energy associated with microwaves and
material properties in the microwave domain are introduced.

Chapter 2 starts with basic theory of transmission lines followed by transmis-
sion line circuits and transmission line resonators. The theory is limited to those
aspects of transmission lines that have a bearing on the work in this book. Similarly,
we only discuss transmission line circuits that are relevant to the design of the sensors
or to the measurement process including matching circuits, attenuators, and direc-
tional couplers. Properties of resonators and their uses are discussed with a view to
the chapters to follow, where these resonators are implemented and evaluated. The
discussion of resonators is particularly important since the core of this work is
resonant microwave sensors based on transmission lines. Nevertheless, much of the
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discussion is general and applies to other types of resonators from simple RLC cir-
cuits to microwave cavity resonators. The chapter also includes the fundamentals of
the Smith chart as a tool in design and display of transmission line properties.

Chapter 3 introduces the general concept of planar transmission lines with
emphasis on striplines, and the stripline resonators are then introduced and their
theory outlined. Stripline resonators and in particular the broadside-coupled reso-
nator is emphasized as the structure used for the sensors in this work. A section on
waveguides and cavity resonators is also included as an extension of the concept of
transmission lines and because the analysis of the transmission line resonators to be
introduced later uses methods borrowed from cavity resonators. The issues of cal-
culation of changes in resonant frequency due to changes in material properties are
addressed through introduction of the perturbation method. Since this work uses
open stripline resonators with partial shielding, some of the aspects in this chapter
overlap with that of cavity resonators. In particular, a section on cavity perturbation
applies classical microwave cavity resonator ideas to the present work.

Chapter 4 introduces the general context of microwave measurements
including reflection, transmission, refraction, resonance, and their relation to gau-
ging. The case for resonant methods as particularly sensitive and applicable to
gauging is made. Because the sensors presented here are designed to work with a
network analyzer which provides both the driving and measurement capabilities,
the chapter emphasizes the use of S-parameters as the means to measure the
various quantities required. This approach is not only convenient but necessary to
achieve the accuracy required from a gauging system, and, as an added benefit, it is
modern and well suited for use in connected systems. The chapter also discusses the
general methods for measurement of frequency and Q-factors in resonators, mea-
surement of power, and the application of the cavity perturbation method intro-
duced in Chapter 3 for analysis. The chapter concludes with the important issue of
measurement of material properties.

Chapter 5 discusses the design of the resonator for two applications of inter-
est. One is a wide latex soaked fabric moving on a production line with the sensors
monitoring its thickness or, alternatively, the moisture content in the fabric for the
purpose of defining the amount of latex on the fabric. The second is a rubber sheet
moving on a calender (a cylindrical drum) where the interest is the thickness of the
sheet. Selection of physical parameters, dimensions and operational parameters,
and the simulations necessary are discussed. Alternative designs including multiple
sensors and moving sensors for full coverage of the fabric are weighed and an
appropriate design is reached. The details of design are given in full with alter-
natives and justification so that the reader has full accounting of what the design
involves and what to expect from the final product. As is often the case in micro-
wave systems, design is a mix of science and art. The design of stripline resonators
is no exception, but, fortunately, some of the uncertainties can be eliminated by
simulation. The use of simulation tools is emphasized at every step of the process.
Although there are two sensors involved, some of the design parameters are com-
mon to both, and hence, the rubber thickness sensor is viewed as a modification of
the fabric sensor. The modification also change some of the properties of the sensor
and these are discussed as well.
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Chapter 6: It is one thing to come up with a sensor but a whole different thing
to come up with a sensor that satisfies the strict criteria required in a gauging
application. The present chapter discusses the performance of the sensor, its sen-
sitivity, accuracy, calibration, and other parameters such as drift, sensitivity to
environmental changes, and long-time stability. The evaluation is based on both
simulations and on extensive in-plant measurements under normal production
conditions with a prototype sensor over extended periods of time. The process of
optimization continues with particular emphasis on performance and the effects of
various design parameters have on errors.

Chapter 7 gives full details of the implementation to the extent they are
important in terms of performance, but it is also recognized that different applica-
tions will have different physical requirements. Particular attention is given to the
mechanical system and its effects on the measurements. A full evaluation of the
mechanical system is included. Testing follows the implementation. Calibration of
the measurements is done with calibration standards, and compensation for envir-
onmental conditions is implemented based on the odd-mode resonant frequency for
the fabric sensor.

Chapter 8: As was indicated above, one of the features of the current work is
the incorporation of a network analyzer as part of the overall sensing system.
Although a network analyzer is a very expensive piece of equipment often asso-
ciated with laboratory work, its use in a system of this type is justified on a number
of grounds, not the least being development time, accuracy, and stability. In the
industrial environment, it also affords a single unit that can be replaced or repaired
quickly without the need of specialized personnel, saving downtime, and, ulti-
mately, costs. The chapter discusses primarily the methods of measurement but also
summarizes the structure of the network analyzer with particular emphasis on
vector network analyzers.

Appendices: Four appendices document some aspects of the work that did not
lend themselves to inclusion in the various chapters and add additional material.
These include the issue of radiation safety due to the open nature of the resonator
used (Appendix A), a short discussion on material properties (Appendix B), and
some elements of the method of simulation employed in the design and optimiza-
tion of the sensors (Appendix C). Appendix D is a short exposé of some elements of
electromagnetic theory. These include elements of wave propagation in lossless,
low loss, and lossy dielectrics; the Poynting theorem and the Poynting vector; and
elements of reflection, transmission, and refraction at interfaces between various
materials. These concepts are used throughout the book either implicitly or
explicitly, and in this sense, the purpose of the appendix is to complete the theory.

A note on references

The work reported in this text is based on my own work, on work of some of my
students, and, of course, many of the theoretical discussions and practical aspects of
measurements have been published by others. I have tried to properly refer and
acknowledge all sources I used. In the interest of readability, I opted to not include
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references in the text but, rather, to include an annotated bibliography section
where necessary. I felt as well that annotated references are more useful in that they
guide the reader to either verify or expand on the material given. Another aspect is
the preferred references to books rather than scientific publication. The reason for
that is readability and the desire to base the exposition on mature work rather than
current research.
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Chapter 1

Introduction to microwaves

1.1 General

As mentioned in the preface, the subject of this work is microwaves and their use
for the specific purpose of gauging. In that capacity, we will need to work with a
number of electromagnetic structures whose understanding is crucial to proper
understanding of the principles, possibilities, and limitations of the gauging meth-
ods to follow. These include the general topics of propagation of electromagnetic
waves on transmission lines and both transmission line resonators and cavity
resonators. We will also touch on waveguides, especially as these relate to mea-
surement of material properties. Another aspect of electromagnetics that finds its
way into the present work is the concept of probes or antennas. It is assumed that
the reader is familiar with the general concepts of electromagnetic waves and wave
propagation as well as elements of propagation on transmission lines and on
waveguides. Although it is not possible to include here the theory associated with
electromagnetics, some of the more important issues are discussed, especially in
Chapters 2 and 3 where we introduce the elements most intimately tied to the
present work.

The purpose of this short introduction is to discuss in general terms and with
a minimum of theory the concepts involved in microwave gauging and to
identify issues that will be addressed later, including frequency ranges, measure-
ments and properties of electromagnetic fields in the microwave region.

1.2 The microwave domain

Microwaves occupy a portion of the electromagnetic spectrum bordering infrared
radiation on the high end of its range at 300 GHz. The lower range is somewhat less
well defined, but it is usually set at 300 MHz or in terms of wavelengths, between
1 m and 1 mm. The electromagnetic spectrum in Table 1.1 shows the accepted
designations of various ranges within the spectrum of electromagnetic waves. Only
frequencies above 3 kHz are shown, and the upper range shows the infrared, visible
light, ultraviolet, and X-ray ranges. The spectrum of course continues into higher
frequencies including alpha, beta, and gamma radiation and cosmic rays. The
microwave domain is a small range of the spectrum between 300 MHz and
300 GHz. This range is somewhat arbitrary but has been accepted in standards and



is used to identify microwaves and microwave applications. At the lower end of the
band, microwaves overlap the Ultra-High Frequency (UHF) band and at the higher
end, they border the far infrared region. In addition to the general spectrum,
microwaves are often identified with subdomains or bands. These are designated by
letters to allow simple identification of equipment and operating frequencies. The
standard IEEE radar band designations are shown in Table 1.2. The names in the
third column are customary but are seldom used. There is a separate military band
designation shown in Table 1.3. Additional designations exist either by organi-
zations such as the International Telecommunication Union (ITU), Nato, broad-
casting organization or by usage such as the bands used in waveguides, shown in

Table 1.1 The electromagnetic spectrum

Frequency Designation Usage

0.003–0.03 (MHz) VLF
0.03–0.3 (MHz) LF LF radio
0.3–3 (MHz) MF AM radio
3–30 (MHz) HF SW radio
30–300 (MHz) VHF TV, FM radio
300–3,000 (MHz) UHF TV, radar
3–30 (GHz) SHF Satellites, radar
30–300 (GHz) EHF Radar
300–3,000 (GHz) mm and sub-mm waves
3–420 (THz) Infrared
420–790 (THz) Visible light
790 THz–30 PHz Ultraviolet
30 PHz–3,000 EHz X-rays

MHz¼ 106 Hz, GHz ¼ 109 Hz, THz ¼ 1012 Hz, PHz ¼ 1015 Hz, EHz ¼ 1018 Hz.

Table 1.2 IEEE radar band designations

Band Frequency (GHz) Name

HF 0.003–0.03 High frequency
VHF 0.03–3 Very high frequency
UHF 0.3–1 Ultrahigh frequency
L 1–2 Long wave
S 2–4 Short wave
C 4–8 Compromise (between C and X)
X 8–12 Crosshair
Ku 12–18 Kurz-under
K 18–27 Kurz
Ka 27–40 Kurz-above
V 40–75
W 75–110
mm or G 110–300 Millimeter
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Table 1.4. The latter is intended to follow the modes and bandwidths of standard
rectangular cross-section waveguides. Note also that bands can overlap, again to
cover standard waveguides. The relative location of the microwave domain in the
electromagnetic spectrum is shown schematically in Figure 1.1.

Table 1.3 New military microwave band designation

Band Frequency (GHz) Wavelength (cm)
(in vacuum)

A 0.1–0.25 300.0–120.0
B 0.25–0.5 120.0–60.0
C 0.5–1.0 60.0–30.0
D 1.0–2.0 30.0–15.0
E 2.0–3.0 15.0–10.0
F 3.0–4.0 10.0–7.5
G 4.0–6.0 7.5–5.0
H 6.0–8.0 5.0–3.75
I 8.0–10.0 3.75–3.0
J 10.0–20.0 3.0–1.5
K 20.0–40.0 1.5–0.75
L 40.0–60.0 0.75–0.5
M 60.0–100.0 0.5–0.3

Table 1.4 Waveguide bands

Band Frequency (GHz)

R 1.7–2.6
D 2.2–3.3
S 2.6–3.95
E 3.3–4.9
G 3.95–5.85
F 4.9–7.05
C 5.85–8.2
H 7.05–10.1
X 8.2–12.4
Ku 12.4–18
K 18–26.5
Ka 26.5–40
Q 33–50
U 40–60
V 40–75
E 60–90
W 75–110
F 90–140
D 110–170
G 140–120
Y 325–500
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As examples of various uses, many microwave ovens operate in the L and S
bands of Table 1.2 (a typical frequency is 2.450 GHz). Radar detectors used by
police operate in the X and K bands (10 or 24 GHz). Communication with satellites
is normally done in the C and K bands (4–30 GHz).

In the present work, we use microwaves at their very lowest end—around
350–500 MHz. This choice will be further explained in Chapter 4, but at this point,
it is sufficient to indicate that the choice of operating frequency is a compromise
between the need for high sensitivity, which requires high frequencies, and the
need for a relatively large spatial coverage, which could be best done at lower
frequencies.

1.3 History

It is of some interest to note that the first electromagnetic experiment to show the
existence of waves as predicted by Maxwell is, in a way, a microwave experiment.
When Heinrich Hertz used a spark transmitter to transmit electromagnetic waves,
the wavelengths he used were smaller than 1 m (about 60 cm or a frequency of
about 500 MHz), well within the microwave range. Propagation of waves in
waveguides was shown theoretically as early as 1897 by Lord Rayleigh, even
though they could not be realized experimentally at the time for lack of appropriate
generators. However, 3 years earlier, Sir Oliver Lodge, observed wave guiding
when he surrounded a spark generator of the type used by Hertz by a conducting
tube. Waveguides were not actually used until about 1936. In the meantime, the
theory of transmission lines was developed by Oliver Heaviside based on the work
by Maxwell. The first reliable microwave sources were developed in the 1930s for
radar applications. The first device was the magnetron, a microwave source that, in
one form or another, still finds applications in high power microwave systems and,
in vast quantities, in microwave ovens. The development of the klystron in the
1930s was another important step, because it could be used as a microwave
amplifier. The importance of these two microwave sources is amply proven by
their continuous use ever since their invention. Solid-state microwave devices are
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Figure 1.1 Relative location of the microwave domain in the electromagnetic
spectrum
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coming into wide use, especially for low-power applications, but their earliest use
can be traced to the use of the crystal diode in the 1930s. Active devices became
available in the 1960s with the development of negative resistance devices and
field effect transistors. The use of gallium arsenide (GaAs) and indium phosphide
(InP) has also benefited this aspect of solid state device development. Currently,
there are many relatively simple, reliable, and inexpensive microwave devices
including radio-frequency-integrated circuits (RFICs), microwave integrated
circuits (MICs), and monolithic integrated circuits MICs that the designer can use.
At high power levels, one finds vacuum tubes such as klystrons, magnetrons, and
traveling wave tubes, devices that cannot be replaced with semiconductor devices.

Passive devices were also developed in parallel with the development of
microwave sources. These include a variety of antennas, couplers, filters, attenua-
tors, waveguides, cavity resonators, absorbers, terminators, rotators, and others.

Microwave circuit development followed steps similar to other circuits at
lower frequencies. As examples, the idea of heterodyne receivers was used starting
with the earliest radar equipment, while MICs find applications in many commu-
nication systems.

Measurement equipment was, for a long time, one of the stumbling blocks of
microwave work. This however has been largely solved by the availability of
computer-controlled network and spectrum analyzers. Modern microwave equip-
ment is as reliable and as accurate as any other equipment although, in most cases,
it tends to be more expensive.

1.4 Advantages and disadvantages of microwaves for testing,
measurements, and gauging

Testing with microwaves is dominated by the basic properties of microwaves.
Since their penetration in good conducting materials is minimal, they are mainly
used to test nonconducting materials. This includes dielectric and lossy dielectric
materials. Testing and measurements on conducting materials are limited to
dimensional testing such as thickness gauging and surface measurements such as
testing for surface conditions and flaws.

On the other hand, microwaves are affected by a large number of material
properties. In lossless or lossy dielectrics, such diverse properties, as density,
porosity, material composition, uniformity of the material, delamination of layers,
moisture, and contamination content, are only some of the properties that can be
measured and, more importantly, that can affect a measurement. The range of
nonmetallic materials in which this is possible is extensive and growing steadily.
This includes ceramics, plastics, polymers, and composites, as well as organic
materials such as wood products, foods, or biological materials. Measurements and
testing in all dielectrics and lossy dielectrics are possible.

The spatial resolution that can be expected of microwave tests depends on the
wavelength of the wave and the type of measurement undertaken. For microwaves
and millimeter waves, this is of the order of at most, 1 mm. This resolution
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indicates the ability of the test to discern closely spaced discontinuities in the
materials. However, more sensitive measurements are possible by correlating them
with changes in amplitude or phase. This is the case with dimensional measure-
ments where variations in thickness of a few microns are measurable. High-
resolution testing can be achieved by scanning of the microwave field and by
moving the source. This is similar to synthetic aperture radar (SAR) methods and
can be used for imaging. If this is done in the near field of antennas, it may even be
called ‘‘micrometry.’’

Another particular property of microwave testing is the means by which energy
is coupled into the testing environment. This can be as simple as a horn antenna or
an open microwave guide. In some other cases, an aperture is used for this purpose
or, as with microwave cavities, a simple probe or loop serves the purpose. In all
cases, the coupling can be done through air, free space, or a convenient dielectric.
Impedance matching can also be employed if necessary. While most testing is
done in what may be termed the ‘‘near-field’’ environment (close to the antenna
or source), measurements in the far field are also possible where the waves pro-
pagate through a medium such as air and interact with the test sample. This is
particularly applicable to scattering methods, including radar and radar-like testing
applications.

Because of the influence of so many effects and properties on the wave, the
testing environment can be, and often is, noisy. Reflections from near and far
surfaces, edges, and other artifacts in the material are often encountered, resulting
in noise and loss of resolution. One of the most sensitive method of testing, and the
one pursued in this work, is resonance. In classical resonant methods, the micro-
wave fields are confined within a space by conducting walls in what are called
cavity resonators. Power is coupled into the cavity to compensate for losses and the
fields in the cavity then interact with any material or structure introduced into the
cavity. Because the fields can be very high and the resonant frequency highly
dependent on the physical dimensions and on material properties, the measure-
ments can be extremely sensitive. In general, what is measured is the resonant
frequency and that in turn correlated with properties of interest such as permittivity
or dimensions. In the present work, use is made of open or partially open resonators
based on transmission lines operating in the low microwave frequency range. The
open structure offers some unique advantages such as testing of continuous mate-
rials, for example, fabrics or dielectric sheets but also has distinct disadvantages
such as reduced sensitivity and interaction with structures outside the test region.
Much of the work reported in the following chapters deals with means of mitigating
these disadvantages and increasing the sensitivity of the system.

Microwave radiation is highly directive, and, because of the short wavelengths
involved, the devices used are often very compact. While many of the applications
are in high-power communication and radar system, low-power applications are
just as common. In this range, the choice of microwave sources is relatively wide
and includes low-power solid-state devices.

Of primary interest in this work is the interaction of microwaves with
materials. This takes the form of absorption in materials, scattering, attenuation,
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and transmission. These effects are exploited in various testing arrangements to
allow for quantitative measurements in materials. In the context of resonant
structures, the most important aspect is absorption. The absorption of microwaves
in water is well known and widely used in microwave ovens. These ovens depend
on this effect because it is typical of the whole microwave range. Thus, while most
microwave ovens operate at specific frequency bands because of regulation, they
can also operate at other frequencies. The absorption in water can be used either
directly or indirectly for testing of moisture and related effects (e.g., curing, dry-
ing). Other materials absorb radiation at specific frequencies. Often, these are
narrow bands that allow chemical analysis of materials. These resonant frequencies
are extremely useful for material characterization and identification. Sometimes,
even traces of materials can alter the resonant frequency of a microwave cavity,
leading to detection of materials in trace amounts. This again may be used for
testing or detection. Typical applications of this type are contamination tests and
detection of explosives.

Because microwaves border on the one hand the high-frequency radio range
and on the other the low infrared range, they have properties of both. More than any
other frequency range, the microwave range is sometimes analyzed using circuit
theory and sometimes using wave theory. Transmission lines are almost always
analyzed as distributed parameter circuits, while the aspects of refraction, trans-
mission, and propagation in waveguides are analyzed using wave theory.

Another aspect of microwaves is the special nature of the components used.
The familiar conductors are now replaced with guiding structures such as trans-
mission lines or waveguides. In transmission lines, we still use circuit concepts
including voltage and current. Hence, power propagates along the lines in the
familiar environment of circuits although, unlike circuits, there are additional
concepts of speed of propagation and delays on lines. In other microwave struc-
tures, power is transmitted not through the flow of current but through propagation
of fields. The fields are guided in the required direction by guiding structures.
These can take the form of hollow conductors, parallel plates, or dielectric slabs.
The impression one gets of a certain ‘‘plumbing’’ character involved in micro-
waves is not without basis. A waveguide or even a coaxial transmission line
cannot be bent in sharp corners as one would do with a wire. The guides and lines
must be properly terminated and matched to loads and sources, and modification
of propagation properties is often accomplished by physical structures in the
waveguides.

Microwave radiation has other properties that are less important in testing
than, for example, in communication. One of these is the large bandwidth
possible, because of the high frequency of the waves. Microwaves also pene-
trate easily through the ionosphere, with obvious applications to satellite com-
munication. In addition, microwaves penetrate into the body, causing a variety
of effects, including heating of tissue. The safety aspects of microwave mea-
surements and gauging cannot be neglected and, in fact are regulated by stan-
dards and regulating agencies such as the ITU or the Federal Communication
Commission (FCC).
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1.5 Energy associated with microwaves

The radiation energy associated with microwaves can be estimated considering the
quantum equivalent photon. The energy of a photon is equal to hf where h is the
Planck constant (h ¼ 4.14�10�15 eV). Thus, the maximum energy of a photon in
the microwave range is roughly 1.2 � 10�3 eV at the top of the frequency range
(minimum is about 1.0 � 10�6 eV at the lower frequency range). This energy is
relatively low and is much lower than the energy needed for ionization. The energy
is much lower than the energy in molecular links. Thus, because it cannot break
these links, it is considered a nonionizing form of radiation.

The danger from microwave radiation is considered to be primarily due to
absorption rather than due to its intrinsic energy. Exposure to microwaves is not unlike
absorption in a microwave oven, except for the levels encountered. For this reason, the
safety levels of radiation are often defined on the surface, in terms of power per unit
area (W/m2). There is also some evidence that nonthermal effects of microwave
radiation play a role, but this issue is still controversial and not very well researched.

The exposure levels allowed should serve as guidelines only. While there may
be no harmful effects due to allowable levels of microwave radiation, the levels in
the USA are much higher than in other countries. As a rule, one should avoid all
exposure to microwave radiation if only because of its absorption effects. Exposure
to microwave radiation has other consequences, some that are not immediately
obvious. For example, pacemakers wearers can experience interference from Radio
Frequency (RF) sources including microwave sources. Other devices may also be
interfered with although this is by no means unique to microwaves.

The allowable energy density exposure in industry in the USA is 1 mW/cm2 or
10 W/m2. As a means of understanding the thermal effects of this radiation level
(nonthermal effects are not as well defined and are still being debated), it is useful to
compare this radiation level with radiation from the sun. The maximum sun radiation
is about 1,400 W/m2 or 140 mW/cm2. To compare the fields associated with the two
types of radiation, these two energy densities are viewed as the result of a Poynting
vector and the equivalent electric and magnetic field intensities are calculated. For
the allowable microwave exposure in the USA of about 1 mW/cm2, the electric and
magnetic field intensities are calculated from the time averaged power density:

Pav ¼ E2

2h0
¼ 10 W=m2

� �
(1.1)

where h0 is the intrinsic impedance of free space and is equal to 377 W. From these,
the electric field intensity is

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 377 � 10

p
¼ 88:83 V=mð Þ (1.2)

The magnetic field intensity is

H ¼ E

h0
¼ 88:83

377
¼ 0:23 A=mð Þ (1.3)
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For comparison, the electric and magnetic field intensities associated with radiation
from the sun are

Pav ¼ E2

2h0
¼ 1;400 W=m2

� �
(1.4)

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 377 � 1;400

p
¼ 1;027 V=mð Þ (1.5)

H ¼ E

h0
¼ 1;027

377
¼ 2:72 A=mð Þ (1.6)

A direct comparison of these values would indicate that microwaves, even in the
highest range, produce fields that are much lower than those produced by the sun.
This, however, does not necessarily mean that microwaves are less ‘‘dangerous’’
than the sun’s radiation at the levels given. There are two aspects of microwave
energy that make them different than energy from the sun: one is the high
absorption in water, and therefore the heating effects of microwave power. The
second is its deeper penetration in tissue as well as penetration through clothing.
Whereas normal clothing protects against the sun, it does not protect against
microwave radiation.

Because of the concern for radiation, the designs developed in this work were
evaluated for microwave exposure. The fields produced by the systems were
measured and compared with standards and regulations to ensure compliance.
These measurements are given in Appendix A together with requirements pub-
lished by the FCC and by the American Conference of Governmental Industrial
Hygienists.

1.6 Properties of fields at high frequencies

The properties of electromagnetic fields in any frequency range can be deduced
from Maxwell’s equations and material properties. However, the high-frequency
range has some common properties that will be emphasized throughout this work.
These properties form the cornerstone of measurements at high frequencies. For
this reason, they will be discussed qualitatively and briefly here.

The first and foremost point is that the fields are always part of a wave. The
electric field intensity and magnetic field intensity are used to describe a wave.
Their relations with each other and with materials define a variety of properties
such as mode of propagation, reflection, refraction, transmission, and impedance.
The wave nature of the fields also forces us to think in terms of speeds of propa-
gation in different materials and delays in signals (or phase retardation) because of
these speeds. The notion that an electromagnetic disturbance propagating instan-
taneously is convenient in the static or quasistatic domains but not in the dynamic
case where propagation times are extremely important and, in fact, often serve for
measurements and testing. Simple aspects of low-frequency fields such as impe-
dance matching take a whole new meaning at high frequencies. At low frequency,
mismatched impedances mean mainly inefficiency, but, at high frequencies, this
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also means reflection of waves back into the transmitting medium and standing
waves. Standing waves can only exist in the dynamic environment and are only
important at higher frequencies.

Flow of currents is also different than at low frequencies. First, we must deal
with displacement currents. Thus, the whole space can support currents, not only
conductors. In many cases, displacement currents are dominant or the only currents
in existence. Without these displacement currents, many phenomena cannot
be explained, including the existence of the wave itself. Just consider the simple
dipole antenna to see that the low frequency, or quasistatic model is inadequate (in
the quasistatic model, currents must close through conductors, but the dipole antenna
is open circuited at both ends). Conduction currents are dominated by the skin effect
and flow only close to the surface of conductors. At microwave frequencies, the skin
depth is of the order of a few microns. A regular solid conductor is, therefore, useless
at these frequencies except for its role as a guide for waves (waves are guided along
the conductor) and to enclose and contain fields within cavities. If large currents
exist, the surface of the conductor must be large. Reduction of impedance now
means reduction of the ‘‘surface impedance’’ of the conductor. Thus, a thin layer of
highly conductive material on a substrate (which can be nonconducting) is
more efficient than a thick, heavy conducting wire. The idea of conductivity itself,
while the same as low-frequency conductivity, takes a different meaning. Because of
the skin depth, many of the conductors we use are often considered to be perfect
conductors. Low-conductivity materials, like sea water, in the microwave range are
considered to be highly conducting (or, more accurately—high loss materials, since
conductivity is most often associated with losses). Materials that we normally view
as lossless such as insulating dielectrics or water must be considered as lossy
dielectrics since the losses, even when relatively small are important.

With waves as the primary concept at high frequencies, we also need to deal
with wave behavior of voltages and currents in circuits and on transmission lines
leading to a new and different way of treating the common circuit parameters,
especially as they occur on transmission lines. The behavior of circuits now must
be treated using distributed parameter concepts leading to finite speed of propa-
gation and delays in circuits.

Material properties in the microwave range are considerably more complex and,
to a certain extent, more prominent than at low frequencies. Many of the properties
which are normally considered frequency independent must now be altered to
include frequency dependence. The best example of this is the permittivity of
dielectrics. Both the permittivity and permeability are complex numbers where the
imaginary part is associated with losses. In addition to conduction losses, we can talk
of dielectric losses and of attenuation of waves due to material properties.

Generation of electromagnetic waves is accomplished with antennas, so one
must also delve into properties of antennas and the propagation of these electro-
magnetic waves in space and in materials. Coupling of power from antennas or
probes into structures such as waveguides or transmission lines must be properly
defined and controlled to ensure proper operation of transmission line and wave-
guide circuits including resonators.
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This rich and complex system of properties complicates matters considerably,
but it also allows a very wide range of measurements and tests that are not possible
at low frequencies. These measurements are only limited by our instruments and
our imagination. By direct or indirect measurement of material properties and
associated effects, virtually any effect can be measured. From the measurement
point of view, this is fortunate since a basically simple method allows measure-
ments as diverse as simple dimensional measurements of a sheet of metal or the
curing condition of a polymer. Techniques for measurements are also diverse,
ranging from simple time-of-flight measurements to spectroscopy to holography.

1.7 Microwaves and mechanics

A unique feature of work with microwaves is the role mechanical quantities have in
testing. A big part of this has to do with the fact that the analysis of transmission
lines, waveguides, and resonators is based on a distributed parameter model, and
therefore, dimensions are often critical to performance of the system and to mea-
surements within it. In some cases, it is hard to escape the feeling of dealing with a
‘‘plumbing’’ system especially when waveguides must be used. Connectors and
transmission lines become critical components in the system, and none can ever be
considered lossless. Waveguides must be accurately machined and connectors must
match perfectly. Transmission lines must be low loss at the frequencies of interest.
The second part is the interaction of waves with structures. That means that any
object, material or structure, either intentionally or unintentionally in the path of the
waves will interact with the waves and, in the context of measurements will affect
the results. Conducting structures can act as antennas and can reradiate power. By
doing so they alter the distribution of fields. In some cases, when measurements are
done with microwaves in open air, special considerations such as calibration pro-
cedures must be followed to mitigate the effects of the test fixtures and objects in
the vicinity of the fixture. In some applications, vibrations in structures can have
considerable effects on measurements. In general one must pay close attention to
the mechanical and structural aspects of a microwave system. A third aspect that
must be taken into consideration is the effect of environmental conditions on
measurements. Material properties within the space of interest define the properties
of the waves including attenuation, changes in phase, reflection, transmission and
resonance, if any. Material properties, especially permittivity, are often temperature
dependent and are almost always frequency dependent. Humidity plays an impor-
tant role as well. It is often necessary to evaluate the permittivity of materials as
part of the measurement regime as variations in permittivity are often the source of
discrepancies between measurements and expected results.

1.8 Instrumentation and instruments

One factor that often discourages research and development of microwave systems
is the instrumentation of these systems. Instrumentation at microwave frequencies
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tends to be complex and expensive as one would expect of any instrument that must
operate at very high frequencies and large bandwidths. Often too, the equipment is
specialized and produced in small quantities adding to cost. In many cases,
instruments must be calibrated often if meaningful measurements are to be
obtained. The use of fixtures is common, and often fixtures are specialized pieces
of equipment designed for specific measurements. All this means that personnel
must have proper training in microwave measurements, sometimes specialized to a
class of measurements. The dominant test instrument is the network analyzer,
which itself may be geared toward a frequency range or a class of applications.
Scalar-network analyzers are used to measure quantities based on amplitudes,
whereas vector-network analyzers also analyze phases and the quantities associated
with them. Some instruments are geared toward the needs in communication,
whereas others are general purpose. In general, network analyzers are superb,
highly accurate instruments with a cost to match. In addition to network analyzers,
one encounters spectrum analyzers, again with the bandwidth and accuracy needed.
To this, one must add counters, sources, and an array of auxiliary components
including test fixtures, connectors, attenuators, filters, and the like.

On the circuit scale, microwave components are also specialized not only
because of the frequency range and bandwidth they need to operate but also
because of issues of impedance matching and control of losses. Nevertheless, an
array of active and passive components is available. These include discrete and
integrated components of every type needed for design of circuits. Integrated
circuits also exist, often implementing specialized circuits such as splitters, mixers,
or oscillators. One can expect these to be more expensive than the equivalent low-
frequency components and have different operational requirements as they are
based on different technologies.

The gauging methods and instrumentation used in this work are good examples
of adaptation of classical methods to the unique environments of measurement of
material properties and of thickness gauging. The methods, their limitations, and
their advantages will be introduced gradually, culminating in systems in the
industrial environment. The measurements are undertaken using a network analy-
zer, which is incorporated as an integral part of the gauging system. This approach,
while certainly costly, has the distinct advantage of producing a very accurate
system and of reducing the development time of the systems.
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Chapter 2

Transmission lines and transmission line
resonators

2.1 Introduction

Transmission lines are arrangements of conductors whose purpose is the transfer of
power or information from a source to a load, both of which should be viewed as
generic. That is, the source may well be a generator but it can equally be the output
of a device such as a transmitter, a receiving antenna, or an amplifier, whereas the
load can be any device or system that receives the power or information such as a
resistor, a transmitting antenna, or an actuator. Transmission lines differ from the
common circuit theory approach to transfer of power. In circuits, we usually
assume a lumped parameter model, that is, a line, connecting two points in a circuit
has some resistance, capacitance, inductance, and conductance that depend on the
type of line, materials, and dimensions, but these are the total values for the whole
line. That is, one can model the line as in Figure 2.1 where R, L, G, and C are,
respectively, the total resistance, total inductance, total capacitance, and total
conductance of the line of length l. Often too, these properties are neglected in
favor of an ‘‘ideal’’ line assuming that the properties of the line do not influence the
operation of the circuits to which it connects. In other words, we often neglect
the resistance, capacitance, inductance, and conductance of the line. For example,
the wiring in a house is certainly necessary, and it has physical properties that
depend on type of conductors, lengths, thicknesses, etc., but we rarely even think of
these. They are there to allow operation of devices but their properties are not
supposed to influence the operation of the devices. As a consequence of this model,
we must also assume that power transfer along a line is instantaneous, that is, as if
the load and the generator were connected without the intermediary of a line. This
approach is essentially a DC approach, extended to low frequency systems and is
appropriate under these conditions. It relies on the fact that the lines are relatively
short and frequencies are low. In more exact terms, we use this lumped circuit
approach when the physical dimensions of the circuit are small compared to the
shortest wavelength at which the circuit operates. The limitations of this approach
are also clear: when frequencies are high (short wavelengths) or when lines are
long, the lumped parameters approach breaks down and we must consider the
effects of waves propagating along the line.



Transmission line theory, on the other hand, assumes a distributed parameter
approach, that is, the transmission line still has the same basic parameters as in
Figure 2.1, but these are distributed along the line. The model used to develop the
relations on transmission lines is shown in Figure 2.4. It consists of a sequence of
segments of very short lengths Dz, each segment characterized by the four para-
meters, but now, these are defined per unit length of the line. In effect, the line is now
a circuit with passive components distributed along the line. This model will allow us
to characterize the behavior of the line at any frequency and for any length.

Thus, the theory of transmission lines may be viewed as a more general
approach to treatment of transfer of energy on lines. Many of the methods used here
will be familiar from circuit theory, and in most cases, the results will be in terms of
voltages and currents on the line. At times, it will become convenient to shift the
discussion to electric and magnetic fields and hence waves on the line. The relation
between circuit and field values will also be discussed to facilitate this approach.

One can also generalize the idea of transmission line to any structure that can
transfer power along a path. In this category, one can then include waveguides. Just
like a transmission line that guides voltage and current waves (and hence power),
one can guide electromagnetic waves. In fact, in the previous paragraph, we already
mentioned the fact that classical transmission lines can be viewed as guiding
propagation of electric and magnetic fields along the line. Waveguides then are
a special type of transmission line in which conductors, if any, take a different role.
Figure 2.2 shows two waveguides, one rectangular and one circular in cross-section,

A B

L R
G C

A B

1

Figure 2.1 A section of transmission line of length l and its equivalent low
frequency model

(a) (b)

Figure 2.2 Examples of waveguides: (a) rectangular and (b) cylindrical cross-
section waveguides
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made as a hollow tube. At its most fundamental level, one can understand the
guiding property simply by the fact that waves are contained within the conducting
shells and hence are constrained to move along the waveguide just like talking into
a tube only allows propagation of sound waves along the tube.

Of course, there are significant differences between two-conductor transmis-
sion lines and waveguides (only one conductor and in some cases, no conductors at
all). The most obvious is that now we cannot talk of voltages and currents except as
abstractions, in the sense that if power propagates, then one can talk of equivalent
current and voltages. Then, there is the fact that in transmission lines propagation is
transverse electromagnetic (TEM)—voltage and currents, or more accurately, the
electric and magnetic fields are orthogonal to each other and to the direction of
propagation. In waveguides, the effect is one of waves ‘‘bouncing’’ off the walls
and this produces non-TEM waves. Either TE waves (in which, the magnetic field
has a component in the direction of propagation) or TM waves (the electric field
has a component in the direction of propagation) may exist. These have other
effects in terms of impedance, speed of propagation, and losses. Also, unlike
transmission lines, in which propagation occurs at all frequencies, propagation in
waveguides can only occur above a minimum cutoff frequency related to the
physical dimensions of the waveguide’s cross-section. For this reason, one cannot
postulate a low frequency model for waveguides. In general, waveguides are only
practical at very high frequencies. As is the case with transmission lines, a
discontinuous section of a waveguide, shorted at its ends, forms a resonator. These
resonators are called cavity resonators for obvious reasons. They will resonate at
frequencies that depend on the dimensions of the cavity. We will describe wave-
guides here for the simple reason that the resonators we use both resemble cavity
resonators, and the method of analysis we employ is based on cavity resonators.
However, we will keep that discussion short since much of it parallels that of
transmission lines once one makes the connection between propagating electric and
magnetic fields and propagating currents and voltages.

2.2 The transmission line

A transmission line is a physical connection between two locations through two or
more conductors. We must indicate at the outset that any transmission of energy
through conducting or nonconducting media may be considered a transmission line.
Also, any guiding of energy by physical structures such as waveguides may be
included in this general definition. However, we will restrict our discussion here to
conducting lines with the following properties:

1. The transmission line is made of two conductors in any configuration.
2. The electric and magnetic field intensities in the line are perpendicular to each

other and perpendicular to the direction of propagation of power. This type of
propagation is called TEM propagation and has all the properties of plane
waves.
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Examples of lines that we may consider are parallel conducting wires such as the
two-wire power cable used to power an appliance or the overhead power trans-
mission line made of thick cables and suspended from towers. Another common
type of transmission line is the coaxial transmission line shown in Figure 2.3(d).
It is made of two coaxial conductors: an inner, thin, solid conductor and an outer
hollow cylindrical conductor. The latter is usually stranded to allow flexibility, and
the two conductors are insulated with some dielectric material. Dimensions of
coaxial cables and their properties vary, but a good example of an often-used
coaxial cable is the antenna cable in televisions, input cables for oscilloscopes, or
input leads in audio equipment. In this work, coaxial transmission lines will be used
as testing lines and to feed antennas used as probes in resonators, which in turn
excite the resonator and measure the fields within it. Coaxial lines are often the
choice in many applications because their fields are contained within the dielectric
separating the two conductors and as such they cannot interfere and cannot be
interfered with. It is this property that makes the coaxial cable so important in
testing and measurements.

A third type of transmission line that we will concern ourselves with is the
parallel strip line shown in Figure 2.3(e). This line may be made of two strips,
very close to each other, such as strips on printed circuit boards or of two parallel
plates in a number of possible configurations. We will make considerable use of
this type of line and of modifications to the basic structure. This type of line is
one of a class of lines often referred to as planar structures that has gained
popularity because of the ease with which they can be made by lithographic
means and hence integrated with electronics. A separate discussion of planar
transmission lines and their connection to this work is given in Chapter 3 where
we also discuss transmission line resonators and properties of waveguides and
microwave cavity resonators.

Although each line has its own properties and parameters, the discussion at this
point will be general and will encompass all lines that satisfy the above require-
ments. In doing so, we first discuss infinite lines, followed by finite, load termi-
nated lines. The lossless (ideal) line is discussed first since it is the simplest,
followed by lossy or attenuating lines. Special attention is given to shorted and
open transmission lines since these then lead to the ideas of resonance.

(a) (b) (c) (d) (e)

Figure 2.3 Examples of transmission lines: (a) simple two-lead, insulated cable,
(b) overhead power line, (c) twisted pair, (d) the coaxial transmission
line, and (e) parallel plate transmission line (strip line)
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2.3 Transmission line parameters

A transmission line has three types of parameters:

1. Dimensional parameters: These include length, dimensions of each conductor
(thickness, width, diameter, etc.), spacing between lines, thickness of dielec-
trics, and the like. These parameters define the physical configuration of the
line but also play a role in defining its electrical properties.

2. Material parameters: The line is made of conductors and dielectrics. The
electrical properties of these materials are their conductivities, permitti-
vities, and permeabilities. These obviously affect the way a line performs
its task.

3. Electric parameters: These are the resistance, capacitance, inductance, and
conductance per unit length of the line. The four line parameters are as follows:
R: Series resistance of the line in Ohms per unit length (W/m).
L: Series inductance of the line in Henrys per unit length (H/m).
C: Shunt capacitance of the line in Farads per unit length (F/m).
G: Shunt conductance of the line in Siemens per unit length (S/m).

Before we discuss the properties of transmission lines, it is important to be able to
define the various line parameters. These can be evaluated in different ways and
depend on the type of transmission line. One simple way is to measure the
parameters for any given transmission line configuration. This has the distinct
advantage of allowing parameter evaluation for arbitrary configurations. But it
comes at the cost of considerable effort in experiment setup, expensive equip-
ment, and time considerations. Another approach that is valid under certain
conditions is theoretical calculations. In principle, the parameters can be eval-
uated from known electromagnetic relations. In simple configurations, one can
obtain closed-form formulae, which are very useful. Of course, their accuracy
depends heavily on material properties of the conductors and any dielectric
included in the model as well as on dimensions. Table 2.1 summarizes the
properties of some of the common, classical transmission lines based on simpli-
fied assumptions on the transmission lines. A third method often used is to forego
the evaluation of the parameters and evaluate, measure, or simulate the overall
performance of the transmission line or the transmission line circuit as a whole.
This is particularly attractive in simulation of transmission line components using
methods such as the finite element method or the finite difference method. We
will have recourse to this approach in Chapter 4 where we simulate transmission
line resonators. In this work, we will have recourse to a class of special trans-
mission lines; for the sake of simplicity, we delay their discussion until later in
the following chapter. These lines, often called planar structures, are modifica-
tions of the parallel plate transmission line. Although these are unique structures
and often more difficult to analyze, the theory discussed here applies to them and
indeed to any transmission line.
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2.3.1 Calculation of line parameters
Given accurate geometrical data and material properties, it is usually possible to
calculate the line parameters either from circuit principles or from field princi-
ples. However, the calculation of resistance, capacitance, inductance, and
conductance per unit length of a pair of conductors depends on our ability to
evaluate these quantities in relatively complex environments. Although it is not
the purpose of this section to show how these are calculated, it is worth noting
that even seemingly simple configurations can lead to rather complex calcula-
tions. For example, consider the calculation of the capacitance per unit length of
the parallel plate transmission line. We can start with a circuit approach by
assuming the plates form a parallel plate capacitor. The capacitor has width w,
length l ¼ 1 m, separation d, and a dielectric of permittivity e between the plates.
The capacitance per unit length is then that shown in Table 2.1. This calculation,
while simple and useful in the sense that it indicates dependencies of the capa-
citance per unit length on dimensions and properties, assumes that w � d. In
practical transmission lines, such as traces on a printed circuit boards, this
condition is unlikely to be satisfied leading to significant errors in the calculation
of the parameters and therefore in the properties of the transmission lines. More
accurate parameters can be obtained using methods such as conformal mapping,
especially for relatively simple geometries such as the parallel plate transmission
line. In more complex geometries, one must use numerical methods and these are
usually based on field principles. In the example of the parallel plate transmission
line, one can use methods like the finite element method or the method of
moments to evaluate accurate parameters for and practical transmission line. For
example, the capacitance per unit length of a parallel plate transmission line of

Table 2.1 Transmission line parameters for some common, classical transmission
lines

Two-wire line
[Figure 2.3(a)]

Coaxial line
[Figure 2.3(d)]

Parallel plate line
[Figure 2.3(e)]

a ¼ radius of conductor,
d ¼ distance between centers
of conductors

a ¼ radius of inner conductor,
b ¼ inner radius
of outer conductor

w ¼ width of plates,
d ¼ distance between
plates

R ¼ 1=padsc R ¼ 1=2pdsc 1=a þ 1=b½ � R ¼ 2=wdsc ðW=mÞ
L ¼ m=pð Þcosh�1 d=2að Þ L ¼ m=2pð Þln b=að Þ L ¼ md=w ðH=mÞ
G ¼ ps= cosh�1ðd=2aÞ� �

G ¼ 2ps= lnðb=aÞð Þ G ¼ sw=d ðS=mÞ
C ¼ pe= cosh�1ðd=2aÞ� �

C ¼ 2pe= lnðb=aÞð Þ C ¼ we=d ðF=mÞ

Notes:
1. If ðd=2aÞ2 � 1; cosh�1ðd=2aÞ � lnðd=aÞ: For widely separated, two-wire, thin lines, this approx-

imation can be used to simplify the expressions. sc and mc are the conductivity and permeability of
the conductor, respectively. s, m, and e are the properties of the dielectric between the conductors.

2. The parameters in the table were obtained under simplifying assumptions.
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length 1 m, width 50 mm, and separation of 2 mm with air between the plates is
88.45 pF when calculated using the formula in Table 2.1. A method of moments
calculation of the same geometry produces a capacitance of 111.76 pF. This is an
error of over 25%. The same considerations apply to other parameters although
some calculations may be more accurate than others. The parameters for the
coaxial transmission line are much more accurate and, as a matter of fact,
the capacitance per unit length is exact. The other parameters for the coaxial line
are not exact but are rather accurate.

Most of the parameters in Table 2.1 seem to be independent of frequency. The
resistance per unit length is frequency dependent because the AC resistance is
related to the skin depth in the conductor and that in turn depends on frequency. But
other parameters are also, indirectly, dependent on frequency. Permittivity of
dielectrics is frequency dependent; hence, capacitance per unit length is also fre-
quency dependent. In most practical materials, conductivity and permeability are
not frequency dependent; hence, inductance per unit length is independent of fre-
quency. For these reasons, the parameters should be evaluated very carefully to
ensure the line properties are accurate.

A final word on commercially available transmission lines: manufacturers
typically provide data on line parameters in the range of frequencies the line is
intended to work in. In many cases however, this data is limited to geometrical
dimensions, losses, and characteristic impedance. In some cases, the per unit length
parameters are available as well. These are usually sufficient for design since the
line parameters are only needed to evaluate the losses per unit length and the
characteristic impedance.

2.4 The transmission line equations

As discussed above, the lumped parameter approach to transmission lines is not
feasible. Instead, we define the transmission line equations using a distributed
parameter approach. The transmission line is viewed as being made of a large
number of short segments, each of length Dl as shown in Figure 2.4 which also
shows the parameters of one segment. In this notation, RDl is the resistance of the

A B

l

+l
–l

Il Il+Δl

l+Δl

LΔl RΔl

GΔl CΔl Vl+ΔlVl

Δl Δl Δl

Figure 2.4 A transmission line viewed as a distributed parameter circuit built of
segments of arbitrary but small length Dl. One segment is shown in
detail. Note the general direction l. Later, we will replace this with a
specific coordinate
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line of length Dl, LDl is the inductance, CDl is the capacitance, and GDl is the
conductance, where R, L, C, and G are given per unit length. The total series
impedance of the line segment is therefore

Z ¼ RDl þ jwLDl ðWÞ (2.1)

and the parallel line admittance is

Y ¼ GDl þ jwCDl ð1=WÞ (2.2)

These parameters can now be used to build a transmission line of any length, as
shown in Figure 2.4. The D notation was used to indicate that the segment of line
used is arbitrary but must be small compared to wavelength. The circuit equations
are written using Kirchhoff’s laws for one of the segments to obtain the transmis-
sion line equations, assuming for the moment that both current and voltage are
phasors. The voltage across the line segment of length Dl can be written in terms of
the voltages at points A and B and the current in the segment. With the notation in
Figure 2.4, we have,

V ðl þ DlÞ � VðlÞ ¼ �IðlÞ½RDl þ jwLDlÞ Vð Þ (2.3)

Dividing both sides by Dl

V ðl þ DlÞ � VðlÞ
Dl

¼ �IðlÞ½R þ jwL� (2.4)

The term on the left-hand side becomes the derivative of V with respect to l if we let
Dl tend to zero. Thus, since Dl is arbitrarily small, we may write

dV ðlÞ
dl

¼ �IðlÞ½R þ jwL� (2.5)

This relation holds at any point on the line. Similarly, the current in the segment
can be written in terms of the current at points A and B and the voltage at point B as

Iðl þ DlÞ � IðlÞ ¼ �V ðl þ DlÞ½GDl þ jwCDl� Að Þ (2.6)

Following steps identical to (2.4) and (2.5), we get

dIðlÞ
dl

¼ �V ðl þ DlÞ½G þ jwC� (2.7)

To obtain an equation of the same form as for the voltage in (2.5), we expand
the term V(l þ Dl) in a Taylor series about l as V(l þ Dl) ¼ V(l) þ (dV(l)/dl)Dl/1! þ
(d2V(l)/dl2)(Dl)2/2! þ . . . . Neglecting all terms that contain Dl gives an approx-
imation V(l þ Dl) � V(l). Substitution of this in (2.7) gives

dIðlÞ
dl

¼ �V ðlÞ½G þ jwC� (2.8)

The transmission line equations are the current and voltage relations in (2.5) and
(2.8), respectively. These are two coupled first-order differential equations. Before
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attempting to solve for current and voltage, we can eliminate one of the variables
and obtain separate equations for V(l) and I(l). To do so, we substitute I(l) from
(2.5) into (2.8) and V(l) from (2.8) into (2.5). From (2.5),

IðlÞ ¼ � dV ðlÞ
dl

1
½R þ jwL� Að Þ (2.9)

Substitution of this into (2.8) gives

d2VðlÞ
dl2

� V ðlÞ½G þ jwC�½R þ jwL� ¼ 0 (2.10)

Similarly, substituting V(l) from (2.8) into (2.5), we get

d2IðlÞ
dl2

� IðlÞ½G þ jwC�½R þ jwL� ¼ 0 (2.11)

These two equations are wave equations. These can be written as

d2V

dl2
� g2V ¼ 0 (2.12)

and

d2I

dl2
� g2I ¼ 0 (2.13)

where

g ¼ aþ jb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½G þ jwC�½R þ jwL�

p
(2.14)

The first of these is the wave equation for the voltage on the line, and the second is
the wave equation for current in the line. Therefore, g is the propagation constant in
analogy with the definition of the propagation constant for a wave propagating in
space. a is called the attenuation constant, b is called the phase constant. The
solution is identical to that of propagation of plane waves. For the general trans-
mission line described here, the solution for voltage and current can be written as

V ðlÞ ¼ Vþe�gl þ V�egl Vð Þ (2.15)

IðlÞ ¼ Iþe�gl þ I�egl Að Þ (2.16)

Direct substitution of these solutions into (2.12) and (2.13) shows they are correct.
The solution to these equations has two parts: one propagating in the positive l
direction, the other in the negative l direction, along the line, exactly as for plane
waves. Vþ and V� are the amplitudes of the voltage waves propagating in the
positive and negative l directions, respectively. For the current solution, Iþ and I�

are the respective amplitudes of the current waves. The amplitudes of the forward
and backward propagating waves, Vþ and V�, can be calculated from the terminal
voltages on the transmission line as we shall see later.

Transmission lines and transmission line resonators 21



So far, we have defined one characteristic quantity of the line: the propagation
constant in (2.14). Now that we obtained the voltages and currents on the line, we
can define the second characteristic quantity of any transmission line: the char-
acteristic line impedance.

The characteristic line impedance Z0 of a transmission line is defined as the ratio
between the forward-propagating voltage amplitude and the forward-propagating
current amplitude:

Z0 ¼ Vþ

Iþ
Wð Þ (2.17)

To evaluate the characteristic impedance in terms of the line parameters (since
these are known and independent of line current), we substitute the general solution
from (2.15) and (2.16) into the transmission line relations in (2.5) and (2.8).
Starting with (2.5), we get

d Vþe�gl þ V�egl
� �

dl
¼ � Iþe�gl þ I�egl

� �½R þ jwL� (2.18)

or, after evaluating the derivatives,

�gVþe�gl þ gV�egl ¼ � Iþe�gl þ I�egl
� �½R þ jwL� (2.19)

Similarly, using (2.8), we get

�gIþe�gl þ gI�egl ¼ � Vþe�gl þ V�egl
� �½G þ jwC� (2.20)

Now, suppose, first, that only a forward-propagating wave exists by setting V�¼ 0,
I�¼ 0 in (2.19) and (2.20). We get

�gVþe�gl ¼ �Iþe�gl½R þ jwL� and �gIþe�gl ¼ �Vþe�gl½G þ jwC� (2.21)

Thus, the characteristic impedance can be written as

Z0 ¼ Vþ

Iþ
¼ R þ jwL

g
¼ g

G þ jwC
Wð Þ (2.22)

The first form is obtained from the first expression in (2.21) and the second from
the second expression. Also, by substituting for g from (2.14), we obtain

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R þ jwL

G þ jwC

s

Wð Þ (2.23)

Now suppose that, only a backward-propagating wave exists. By setting Vþ¼ 0,
Iþ¼ 0 in (2.19) and (2.20), we get

gV�egl ¼ �I�egl½R þ jwL� and gI�egl ¼ �V�egl½G þ jwC� (2.24)
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Dividing each of these two equations by I�, we can write

V�

I�
¼ �R þ jwL

g
¼ � g

G þ jwC
¼ �Z0 Wð Þ (2.25)

We can summarize these results as follows:

Z0 ¼ Vþ

Iþ
¼ �V�

I�
¼ R þ jwL

g
¼ g

G þ jwC
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R þ jwL

G þ jwC

s

Wð Þ (2.26)

The characteristic impedance Z0 is independent of location on the line and only
depends on line parameters—thus, the name characteristic impedance. The char-
acteristic impedance is, in general, a complex value. However, although all other
line parameters are given in per meter units, the characteristic impedance is a line
property, independent of length. In other words, for any given line, if we were to
measure the characteristic impedance, the above value would be obtained for any
length of line and at any location on the line.

Using (2.26), the line current given in (2.16) can be written as

IðlÞ ¼ Vþ

Z0
e�gl � V�

Z0
egl Að Þ (2.27)

Finally, we also mention that the wavelength and phase velocity for any propa-
gating wave are, respectively, given as

l ¼ 2p
b

mð Þ; vp ¼ w
b

m=sð Þ (2.28)

The quantity bl has units of radians. It is called the electrical length of the line and
may be considered an additional line parameter.

The discussion in this section assumed time-harmonic quantities. This was done
on purpose, since phasor calculations are usually simpler to perform and the final
result is also simpler. More important, this choice allowed us to use known results for
TEM wave propagation. In turn, this choice shows that propagation along trans-
mission lines is similar to transmission in free space and other materials, as long as
the basic assumptions of TEM waves are satisfied. Both plane waves in materials and
waves in transmission lines satisfy these conditions. Thus, we can expect that other
parameters such as reflection and transmission of energy as well as the reflection and
transmission coefficients should be similar. We will discuss these topics separately.

Instead of using the time-harmonic forms for voltage and current, we could
start with the time-dependent voltage and current to obtain the time-dependent
transmission line equations following essentially identical steps as above. One
reason for this is that many of the properties we require, including phase and
attenuation constants, wavelength, wave number, and the like, can only be properly
defined for time-harmonic fields. If quantities are not time harmonic, the time
dependent form must be used. Although we will use the time-harmonic forms
exclusively, the following section discusses, briefly, the transmission line in the
time domain for the sake of completeness.
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2.4.1 Time-domain transmission line equations
Although we will use the transmission line equations almost exclusively in the
frequency domain, it is nevertheless useful to derive here the time-domain trans-
mission line equations. One can envision the use of the time-domain equations in
instances when a single frequency cannot describe the behavior of the line. How-
ever, it should also be remembered that the line parameters themselves are fre-
quency dependent (see, e.g., the expression for R in Table 2.1) and a complete,
exact analysis in the time domain is rather difficult. In most cases, it is easier to
transform the time-domain signal into the frequency domain and analyze the
transmission line at the individual harmonics, recalculating the line parameters at
each harmonic if necessary. However, if we assume the line parameters to be
constants, analysis in the time domain is possible. On the other hand, simulation in
the time domain is common because it can capture effects that are not possible or
difficult to obtain in the frequency domain. In particular, this is the case with
transmission lines that incorporate nonlinear elements or transmission lines with
discontinuities or multifrequency operation on transmission lines. We will use
these ideas in simulation of behavior of transmission line resonators through use of
the finite-difference time-domain method in Chapter 4 (see also Appendix C).

To obtain the time-domain transmission line equations, we start with Figure 2.4,
but with time dependent voltages V(l, t), V(l þ Dl, t) I(l, t), and I(l þ Dl, t). With
these and with the fact that the potential across an inductor is LdI(l,t)/dt and the
current in a capacitor is CdV(l,t)/dt, we write by applying Kirchhoff’s laws:

V ðl þ Dl; tÞ � V ðl; tÞ ¼ �Iðl; tÞRDl � LDl
dIðl; tÞ

dt
Vð Þ (2.29)

Iðl þ Dl; tÞ � Iðl; tÞ ¼ �V ðl; tÞGDl � CDl
dVðl; tÞ

dt
ðAÞ (2.30)

Dividing each equation by Dl and allowing Dl to tend to zero, we obtain

dV ðl; tÞ
dl

¼ �Iðl; tÞR � L
dIðl; tÞ

dt
(2.31)

dIðl; tÞ
dl

¼ �Vðl; tÞG � C
dV ðl; tÞ

dt
(2.32)

We can now rewrite these equations so that each is a function of a single variable
as follows:

First, we take the derivative with respect to l on both sides of (2.31) and (2.32)

d2Vðl; tÞ
dl2

¼ �R
dIðl; tÞ

dl
� L

d

dl

dIðl; tÞ
dt

� �
¼ �R

dIðl; tÞ
dl

� L
d

dt

dIðl; tÞ
dl

� �
(2.33)

d2Iðl; tÞ
dl2

¼ �G
dVðl; tÞ

dl
� C

d

dl

dV ðl; tÞ
dt

� �
¼ �G

dV ðl; tÞ
dl

� C
d

dt

dV ðl; tÞ
dl

� �

(2.34)
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Substituting dI(l,t)/dl from (2.32) into (2.33) and dV(l,t)/dl from (2.31) into (2.34),
we get

d2Vðl; tÞ
dl2

� LC
d2V ðl; tÞ

dt2
� ðLG þ RCÞ dV ðl; tÞ

dt
� RGV ðl; tÞ ¼ 0 (2.35)

d2Iðl; tÞ
dl2

� LC
d2Iðl; tÞ

dt2
� ðLG þ RCÞ dIðl; tÞ

dt
� RGIðl; tÞ ¼ 0 (2.36)

Equations (2.31) and (2.32) are equivalent to (2.5) and (2.8), whereas (2.35) and
(2.36) are equivalent to (2.10) and (2.11). In fact, one can obtain (2.5), (2.8), (2.10),
and (2.11) from (2.31), (2.32), (2.35), and (2.36), respectively, by simply replacing
d/dt by jw and d2/dt2 by (jw)2 ¼�w2.

2.5 Types of transmission lines

The transmission line equations in Section 2.4 were obtained for a completely
general transmission line. As can be seen, the equations are rather involved. The
propagation constant as well as the line impedance are complex and are not always
easy to evaluate. Both a phase constant and an attenuation constant exist; therefore,
we can expect the waves along the line to decay due to attenuation as well as
change their phases. The fact that both a forward- and backward-propagating wave
exists indicates that the line may be finite in length whereby the backward-
propagating wave is due to a reflection from the load, a connection on the line, or
any other discontinuity that may exist.

For practical applications, we distinguish between a number of special types of
transmission lines in addition to the above general lossy line. These include the
lossless transmission line and the infinitely long transmission line as well as the so-
called distortionless transmission line. The wave characteristics on these lines are
simplified because of the assumptions associated with the three types of lines, but,
more importantly, they represent useful, practical lines. These are described briefly
next since many of their properties are useful either as exact representation or, often
as practical approximations to lines. Following these, we discuss the shorted and
open transmission lines as introduction to transmission line resonators. In addition,
the concepts associated with planar transmission line structures are discussed since
these will be used later in this work as resonators.

2.5.1 The lossless transmission line
A lossless transmission line is a line for which both the series resistance and the
shunt conductance are zero (R ¼ 0, G ¼ 0). In practice, this implies that the line is
made of perfect conducting materials and perfect dielectrics. Although no practical
line satisfies these conditions exactly, many lines satisfy them approximately.
The implications of these conditions are that the attenuation constant is zero, the
propagation constant is purely imaginary, and the characteristic impedance of the
line is real.
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If we substitute R ¼ 0 and G ¼ 0 in the propagation constant in (2.14), we get

g ¼ jb ¼ jw
ffiffiffiffiffiffiffi
LC

p
(2.37)

Similarly, the characteristic impedance of the line [from (2.23)] is real and equal to

Z0 ¼
ffiffiffiffi
L

C

r

Wð Þ (2.38)

A number of propagation parameters can now be easily evaluated. The phase and
attenuation constants are found from the propagation constant:

b ¼ w
ffiffiffiffiffiffiffi
LC

p
rad=mð Þ; a ¼ 0 (2.39)

The wavelength is defined as

l ¼ 2p
b

¼ 2p
w
ffiffiffiffiffiffiffi
LC

p mð Þ (2.40)

and the speed of propagation of the wave along the line (phase velocity) is

vp ¼ w
b
¼ 1

ffiffiffiffiffiffiffi
LC

p m=sð Þ (2.41)

Because the dielectric is lossless, the phase velocity may also be written as

vp ¼ 1
ffiffiffiffiffimep m=sð Þ (2.42)

From this, the following relation is obtained:

me ¼ LC (2.43)

In particular, the phase constant and the phase velocity only depend on the induc-
tance and capacitance per unit length. The voltage or current waves propagate
along the line without attenuation at a speed dictated by the inductance and capa-
citance per unit length of the line.

Lossless transmission lines are often invoked in analysis first because they
offer the simplest forms for the various quantities and second, because transmission
lines designed for use at high frequencies, such as connections to antennas or to
instruments often have very low losses. When relatively short lines are used, the
low loss approximation is justified and reflects actual performance very well.

2.5.2 The long transmission line
A long transmission line is a line that for practical purposes may be considered to
be infinite. The infinite transmission line is characterized by transmission without
backward-propagating waves since a backward-propagating wave can only exist if
the incident wave is reflected from a discontinuity in the wave’s path. The long line
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may be lossy or lossless. For a lossy line, the voltage and current waves are found
from (2.15) and (2.16) by removing the backward-propagating wave:

V ðlÞ ¼ Vþe�gl Vð Þ and IðlÞ ¼ Iþe�gl ¼ Vþ

Z0
e�gl Að Þ (2.44)

The propagation constant g is given in (2.14), and the characteristic impedance of
the line is given in (2.26).

If the long line is lossless, the voltage and current waves are

V ðlÞ ¼ Vþe�jbl and IðlÞ ¼ Vþ

Z0
e�jbl (2.45)

The phase constant is given in (2.39) and the characteristic impedance in (2.38).
The infinite transmission line cannot be realized physically, but it will prove to

be a convenient approximation for very long lines or for short lines before the
forward wave has reached the load or, indeed, for shorter lines with high loss in
which the reflected waves die out before they can reach the test point.

2.5.3 The distortionless transmission line
The propagation constant and characteristic impedance for general lossy lines were
obtained in (2.14) and (2.23), respectively. These are rather complicated expres-
sions and are frequency dependent. Whenever transmission lines are used for pro-
pagation of a single frequency wave (monochromatic wave), the fact that the line
impedance and propagation constant are frequency dependent is less important, but
when a wave has a range of frequencies, such as in the communication of infor-
mation, each frequency component will be attenuated differently, the phase of each
component will propagate at different speeds, and each component will see a dif-
ferent line impedance. This inevitably leads to distortion of the signals on the line.

The question is: how can we design a general lossy line so that the attenuation
constant, phase velocity, and characteristic impedance of the line are independent
of frequency? If we can do that, we would obtain a distortionless transmission line.
To do so, we note that if R/L ¼ G/C, the propagation constant in (2.14) becomes

g ¼ jw
ffiffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ R

jwL

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ R

jwL

s

¼ jw
ffiffiffiffiffiffiffi
LC

p
1 þ R

jwL

� �
¼ jw

ffiffiffiffiffiffiffi
LC

p
þ R

ffiffiffiffi
C

L

r

(2.46)

From this, the attenuation and phase constants are

a ¼ R

ffiffiffiffi
C

L

r

Np=mð Þ; b ¼ w
ffiffiffiffiffiffiffi
LC

p
rad=mð Þ (2.47)

and, therefore, the phase velocity is

up ¼ w
b
¼ 1

ffiffiffiffiffiffiffi
LC

p m=sð Þ (2.48)
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Thus, the first two conditions (i.e., that the attenuation constant and phase velocity
are independent of frequency) are satisfied. What about the characteristic impe-
dance? If we substitute the condition R/L ¼ G/C in (2.23), we get

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R þ jwL

RC=L þ jwC

s

¼
ffiffiffiffi
L

C

r

Wð Þ (2.49)

The characteristic impedance is also constant, and the above requirements are satis-
fied. Thus, for a line to be distortionless, the line parameters must be designed so that

R

L
¼ G

C
(2.50)

With this condition, the distortionless transmission line has the same phase constant
and characteristic impedance as the lossless line but a nonzero, constant attenua-
tion. Again, as was noted in Section 2.5.1 about lossless lines, good quality trans-
mission lines (mostly coaxial lines) are often designed as distortionless lines.
Clearly as well, lossless lines are necessarily distortionless.

2.5.4 The low-resistance transmission line
It was mentioned before that a transmission line is made of two conductors in a
given configuration. In a line of this type, it is often possible to assume that the
conductivity of the conductor is so high as to have negligible resistance. In other
words, the propagation on the transmission line is not affected by the conductor
itself. The conductors are required only to guide the waves, but all propagation
parameters are affected by the properties of the dielectric alone. Substituting R ¼ 0
in (2.14) and (2.23), we get

g ¼ jw
ffiffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ G

jwC

s

(2.51)

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jwL

G þ jwC

s

(2.52)

Since the conductor’s effect can be neglected, we can view this as a TEM wave
propagating in a lossy dielectric material with properties er, mr, and s as if the
conductors were not there.

For a general lossy dielectric, the propagation constant is

g ¼ jw
ffiffiffiffiffi
me

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ s
jwe

� �s

(2.53)

where s is the conductivity of the dielectric and e its dielectric constant. Direct
comparison between (2.53) and (2.51) gives the following two relations:

LC ¼ me and
s
e
¼ G

C
(2.54)
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where s is the conductivity of the dielectric between the conductors. These two
relations are important for two reasons:

1. They hold for lossless and lossy transmission lines even if the series resistance
is not zero. This can be easily verified for the three transmission lines listed in
Table 2.1.

2. The relations provide one of the simplest methods of evaluating some of the
parameters of the line. If, for example, C is known, L and G can be evaluated
directly. This is useful because in many cases, one of the line parameters is
easier to evaluate than the other two. In such cases, these two relations provide
a simple means of finding the line parameters.

Note also that if, in addition, G ¼ 0, the line becomes lossless.
In most practical cases, the transmission lines are relatively short and, with some

exceptions, are viewed as lossless. This is not to say that they are lossless but rather
that over short distances, the losses are minimal. Better quality transmission lines,
especially when they need to operate at higher frequencies, are specified with
their losses, usually given in dB/m or dB/km. When the line cannot be assumed to be
lossless, especially if the line is long, the distortionless line is often assumed. Both the
lossless and distortionless lines have real characteristic impedance, given in (2.49).

2.6 The field approach to transmission lines

The discussion in the previous sections was in terms of general line parameters and
therefore applies to any transmission line of the type considered here—two con-
ductor transmission lines. The primary variables were the voltage and current of the
line. This choice is natural if we view the line as a distributed parameter circuit.
It is, however, possible to arrive at exactly the same results from a field point of
view. In this case, the primary variables are the electric and magnetic field inten-
sities and the discussion is much the same as that for plane waves in space (see
Appendix D). One advantage of using field variables is that these are vectors and,
therefore, the direction of propagation at any point is always available and indicates
the direction in which net power is transferred. This is particularly useful in
analysis of waveguides where voltages and currents can only be postulated as
equivalent rather than physical quantities. To demonstrate this approach, we look
now at the wave characteristics on a parallel plate transmission line.

Suppose the transmission line shown in Figure 2.5 is given. The line is very
long and w >> d. The material between the plates is a general dielectric. At a given
instant in time, the potential between the two plates and the currents in the plates
are as shown. For the given condition, the electric field intensity points from the
upper plate to the lower plate (x direction) and the magnetic field intensity is par-
allel to the plates, pointing in the y direction. Because of our assumption that
w >> d, we may assume that the electric field is everywhere perpendicular to the
plates (no fringing at the edges) and the magnetic field intensity is everywhere
parallel to the plates.
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We know that the two fields are a solution to the source-free wave equation
since there are no sources in this domain and propagation takes place; that is, the
fields obey the general Maxwell equations. Also, because the transmission line is
infinite in extent, in the z direction, there can only be a forward-propagating wave.
Without knowing what the electric field intensity amplitude is, we can write, in
general terms:

E ¼ x̂E0e�gz V=mð Þ (2.55)

where we have replaced the generic coordinate l with z. The magnetic field inten-
sity is perpendicular to the electric field intensity and, using the intrinsic impedance
of the dielectric, we can write

H ¼ ŷ
E0

h
e�gz A=mð Þ (2.56)

where h is the intrinsic impedance (also called the wave impedance) of the
dielectric between the plates. The wave is a TEM wave (E and H are perpendicular
to each other and to the direction of propagation). The direction of propagation of
the wave is in the positive z direction, as shown by the Poynting vector:

P ðzÞ ¼ E � H ¼ x̂E0e�gz � ŷ
E0

h
e�gz ¼ ẑ

E2
0

h
e�2gz ðW=m2Þ (2.57)

The electric field intensity E0 was arbitrarily chosen, but, in practice, its sources are
the charge distribution on the conducting surfaces and the current density in the
conducting plates. The voltage between the two plates can be written as

V ¼
ð

l1

E � dl1 Vð Þ (2.58)

and the current in one of the plates (upper) as

I ¼
ð

l2

H � dl2 Að Þ (2.59)

d
w

I

I
E

H
+Q

–Q

x

y

z

Figure 2.5 Relations between current and charge on the conductor and the
electric and magnetic field intensities in the dielectric of a parallel
plate transmission line
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where the contours l1 and l2 are shown in Figure 2.6(b). These are the line voltage
and current and may be substituted in (2.15) and (2.16) to obtain the transmission
line voltage and current in terms of the electric and magnetic field intensities.

We can now calculate the charge density and the current density in the con-
ductors that will produce the required electric and magnetic fields from (2.58) and
(2.59). This calculation is not absolutely necessary for the discussion here, but it
emphasizes two important points:

1. The sources of the fields produced by the transmission line are the charges and
currents in the line.

2. The charge and current distributions must be of a form that produces these
fields; not all charge and current distributions will produce a propagating wave
in the transmission line.

Suppose that a charge distribution exists on the upper and lower plates as shown in
Figure 2.6(a). To calculate the electric field intensity, we use Gauss’s law. A small
volume, with two surfaces parallel to the upper plate is defined as shown in
Figure 2.6(a). The electric field intensity outside the plates is zero (as for parallel
plate capacitors) and the electric field intensity between the plates is given by
(2.55). Taking a surface S as shown, we get from Gauss’s law

ð

s
E � ds ¼

ð

s
ðx̂E0e�gzÞ � ðx̂dsÞ ¼ 1

e

ð

s
r ds (2.60)

or

rðy; zÞ ¼ eE0e�gz ðC=m2Þ (2.61)

Thus, the charge density is uniform in the y direction (independent of y) but varies
along the line. This variation is better seen if the charge density is written in the
time domain as

rðy; z; tÞ ¼ Re eE0e� aþjbð Þzejwt
n o

¼ eE0e�z cosðwt � bzÞ ðC=m2Þ (2.62)

Q=CV

(a) (b)
w

1 m

S

S

S
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Eds

dq=ρsds

ρs=ρ(y, z)

x
y

z
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I

I

+ + + + + +
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x
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l1
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w

Figure 2.6 (a) Calculation of charge density using Gauss’s law and
(b) calculation of current density using Ampere’s law
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In other words, the charge distribution must be cosinusoidal in the z direction. The
attenuation constant produces a decaying charge density magnitude with distance.
If propagation is without attenuation, then a¼ 0 and there is no decay in amplitude
of the electric field intensity. The charge density distribution on the lower plate is
the same as on the upper plate but opposite in sign.

The current density in the line is calculated from Ampere’s law. Using
the upper plate again and assuming some current density in the plate, we can enclose
this current density with an arbitrary contour as shown in Figure 2.6(b). The mag-
netic field intensity outside the plates is zero and between the plates is given by
(2.56). In our case, H is in the positive y direction, as is dl. Thus, the current density
is in the positive z direction (H and J are always perpendicular to each other). Since
the current is uniform in the y direction in this case, we can write I(y, z) ¼ wJ(y, z)
and, performing the integration in (2.59) with the field in (2.56), we get

E0

h
e�gz ¼ Jðy; zÞ A=mð Þ (2.63)

This gives the magnitude of the current density in the upper plate. This current must
be in the positive z direction to produce a magnetic field intensity in the positive y
direction (based on our notation in Figure 2.5); therefore,

J x; yð Þ ¼ ẑ
E0

h
e�gz A=mð Þ (2.64)

The current density in the lower plate is the same in magnitude but in the negative z
direction. The variation of current density along the line is also cosinusoidal, as for
the charge density.

2.7 Finite transmission lines

By a finite transmission line is meant a line of finite length with a generator of
some sort at one end and a load at the other. Both the generator and the load should
be viewed in generic terms: the load may actually be a short circuit, an open circuit,
or another transmission line. The generator may be an actual source, the output of
another transmission line or, perhaps, a receiving antenna. The configuration we
discuss here is shown in Figure 2.7.

V

l = 0 l = d

z = 0z = d

Positive l

Positive z

ZL

Zg Forward propagating wave

Backward propagating wave

Figure 2.7 A finite transmission line with the reference shifted to the load

32 Open resonator microwave sensor systems for industrial gauging



Until now, we discussed only infinite lines or made no specific reference to the
length of the line. Now, we have to discuss the distance on the line with respect to
the fixed points of the line: These are the locations of the load and the generator.
Thus, we seek a reference point to which to relate all our calculations. We could
choose either the generator or the load for this purpose, but it is common to use the
load as a reference point. This choice is partly arbitrary, partly based on con-
venience, and mostly on convention. At any rate, the only important point here is to
be consistent and not flip between points of reference.

We must be careful now: inspecting Figure 2.7, the positive z direction is
toward the generator. On the other hand, the positive direction of propagation of
power must be from the generator toward the load since energy is naturally trans-
ferred from generator to load. We recall that the wave solutions on a general
transmission line are

V ðlÞ ¼ Vþe�gl þ V�egl Vð Þ (2.65)

IðlÞ ¼ Iþe�gl þ I�egl Að Þ (2.66)

In these equations, l is positive toward the load (l ¼ 0 at the generator). The first
term is the forward-propagating wave (from generator to load) and the second is the
backward-propagating wave (from load to generator). This convention was used for
infinitely long transmission lines.

Our new convention, which corresponds to the common usage for finite
transmission lines, requires that the forward propagating wave propagates in
the negative z direction and the backward propagating wave propagates in the
positive z direction. Thus, to create our reference system, we replace þl by �z and
�l by þz:

V ðzÞ ¼ Vþegz þ V�e�gz Vð Þ and IðzÞ ¼ Iþegz þ I�e�gz Að Þ (2.67)

The first term in each relation is still the forward-propagating wave and the second
is the backward-propagating wave. The relation between the z and l notations and
the forward- and backward-propagating waves is shown in Figure 2.7 for a trans-
mission line of length d, connected to a generator and a load. The two sets of
equations also indicate what is involved in choosing a particular point of reference.

2.7.1 The load reflection coefficient
First, we recall the definition of the characteristic impedance Z0. This was defined
for an infinite transmission line as the ratio between the forward-propagating
voltage wave and the forward-propagating current wave. Thus, for any line, the
characteristic impedance is

Z0 ¼ Vþegz

Iþegz
¼ Vþ

Iþ
¼ �V�

I�
Wð Þ (2.68)

as was shown in (2.26). This impedance is characteristic of the line and has nothing
to do with generator or load. Similarly, the propagation constant g is independent of
load or generator, as are the parameters R, L, C, and G.
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Since the load is very important for our analysis and since it is one of the few
variables an engineer has any control over, it is only natural that we should wish to
analyze the transmission line behavior in terms of the load impedance and the line’s
variables. Thus, we first calculate the load impedance:

ZL ¼ VL

IL
Wð Þ (2.69)

where VL and IL are the total load voltage and total load current, respectively. By
total voltage and current, is meant that it is the sum of forward and backward
voltages and currents, respectively.

The load is located at z ¼ 0. In terms of the current and voltage of the line, this
becomes

ZL ¼ Vð0Þ
Ið0Þ ¼ Vþ þ V�

Iþ þ I�
¼ Vþ þ V�

Vþ=Z0 � V�=Z0
¼ Z0

Vþ þ V�

Vþ � V� Wð Þ (2.70)

Note that if only forward-propagating waves exist (V�¼ 0), the load impedance
must be equal to the characteristic impedance of the line. This condition defines
matching between load and line. Matching in transmission lines only requires that
the load and line impedances be equal, unlike circuits where matching also means
maximum transfer of power (conjugate matching). Under matched conditions
(ZL ¼ Z0), there are no backward propagating waves.

On the other hand, if ZL 6¼ Z0, there will be both forward-propagating and
backward-propagating waves. At the load (z ¼ 0), we can calculate the backward
propagating wave amplitude V� from (2.70) as

V� ¼ Vþ ZL � Z0

ZL þ Z0
Vð Þ (2.71)

The backward-propagating wave is due to the reflection of the forward-propagating
wave at the load. Thus, we define the load reflection coefficient as

GL ¼ V�

Vþ ¼ ZL � Z0

ZL þ Z0
(2.72)

It is important to remember that this is the reflection coefficient at the load only. At
other locations on the line, the reflection coefficient is, in general, different, and we
should never confuse the load reflection coefficient with any other reflection
coefficient that may be convenient to define. The load reflection coefficient will
always be denoted with a subscript L as in (2.72). Note also that, in general, the
load reflection coefficient is a complex number since it is the ratio of the complex
amplitudes V� and Vþ. Thus, we can also write the reflection coefficient as

GL ¼ jGLje jqG (2.73)

where qG is the phase angle of the reflection coefficient. This form will become
handy later in our study.
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2.7.2 Line impedance and the generalized reflection coefficient
After calculating the characteristic impedance and the reflection coefficient at the
load, we can now tackle the question of the impedance at any other point on the line.
This is an important question because it will allow us to connect the line to, say,
a generator, ensuring that the line is matched to the generator, or to connect one line
to another. These are questions of practical engineering importance. The simple
example in Figure 2.8 shows the concepts involved. A loudspeaker is to be connected
to a power amplifier through a transmission line. We know that for optimal opera-
tion, the output of the amplifier must be matched to the load. At the amplifier, the
load consists of the speaker and the line and the amplifier must be matched to the
line. We defer the question of matching for now, but for any attempt at matching,
we must be able to calculate the input impedance of the line.

This input impedance, which, in general, is different than the characteristic
impedance of the line, must in some way depend on the load impedance. That this
must be so should be obvious from our experience: suppose the above amplifier is
matched to the line for the given load. If we now change the load, say by shorting
the speaker, the system is not matched any more. In fact, by shorting the load, we
may well have damaged the amplifier. It is, therefore, important to be able to
calculate the line impedance for any load condition. Before continuing, we distin-
guish between two terms associated with impedance of the line. These are as
follows:

Input line impedance is the impedance at the input or generator side of the line.
In the above example, this impedance is the impedance of the line at the end, which
is connected to the source (amplifier in this case). This impedance will always be
denoted as Zin.

Line impedance is the impedance at any point on the line. The distinction
between the two terms is shown in Figure 2.8. The line impedance will be denoted
as Z(z). The distinction is not terribly important since if we were to cut the line at
the points A–A0, the line impedance would then become the input impedance. We
will, however, distinguish between the two terms wherever appropriate.

To calculate the line impedance, we need to calculate the total voltage and total
current at any point on the line and divide the voltage by current. Using
Figure 2.9(a) as a guide, the voltage and current at point z on the line are

V ðzÞ ¼ Vþegz þ V�e�gz Vð Þ; IðzÞ ¼ Vþ

Z0
egz � V�

Z0
e�gz Að Þ (2.74)

z = 0A

A′
V

Z(z)

ZL

Zin

zZg

Figure 2.8 Distinction between load, input, and line impedances
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where we made use of (2.27) to rewrite the current in terms of voltage and char-
acteristic impedance. We can divide V(z) by I(z) to obtain Z(z), but this would not
be very helpful now because the result would be in terms of both the forward and
backward waves. Instead, we use the load reflection coefficient in (2.72) to write

V ðzÞ ¼ Vþ egz þ GLe�gzð Þ Vð Þ and IðzÞ ¼ Vþ

Z0
egz � GLe�gzð Þ Að Þ (2.75)

The line impedance at point z is

ZðzÞ ¼ VðzÞ
IðzÞ ¼ Z0

egz þ GLe�gzð Þ
egz � GLe�gzð Þ Wð Þ (2.76)

This expression is quite useful because it requires only knowledge of the reflection
coefficient at the load, the characteristic impedance of the line, and the value of z
(distance from the load). We will make considerable use of this expression here and
in the following chapter.

Another way to look at the expression in (2.76) is to use the definition of the
reflection coefficient in (2.72) and substitute it in (2.76). Doing so and rearranging
terms gives

ZðzÞ ¼ Z0
ZL þ Z0ð Þegz þ ZL � Z0ð Þe�gzð Þ
ZL þ Z0ð Þegz � ZL � Z0ð Þe�gzð Þ

¼ Z0
ZL egz þ e�gzð Þ þ Z0 egz � e�gzð Þ
Z0 egz þ e�gzð Þ þ ZL egz � e�gzð Þ Wð Þ (2.77)

Now, we can use the identities (egz þ e�gz)/2 ¼ cosh gz and (egz � e�gz)/2 ¼ sinh gz
and write

ZðzÞ ¼ Z0
ZL cosh gz þ Z0 sinh gz

Z0 cosh gz þ ZL sinh gz
¼ Z0

ZL þ Z0 tanh gz

Z0 þ ZL tanh gz
Wð Þ (2.78)

z = 0z

ZL
Z(z)

ZL
′ = Z(z)

(a)

(b)

Figure 2.9 Method of calculation of the generalized reflection coefficient: (a) the
impedance on the line at a general point, viewed as a new load to the
line to the left of the point and (b) the new line and load
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where the relation tanh gz ¼ sinh gz/cosh gz was used. With these relations, we can
now calculate the line impedance at any location, including at the input of the line.

Now, we can argue as follows: if the line impedance at a point on the line is
equal to Z(z), then cutting the line at this point and replacing the cut section by an
equivalent load equal to Z(z) should not change the conditions on the line to the left
of the cut. This is shown in Figure 2.9(a). The equivalent line in Figure 2.9(b) can
be viewed as a new line with load impedance Z(z). There is no reason we cannot
calculate the reflection coefficient at this point on the line using (2.72) with Z(z)
instead of ZL. Using (2.72) and (2.75), we get for the reflection coefficient at point z
on the line

GðzÞ ¼ V�ðzÞ
VþðzÞ ¼

VþGLe�gz

Vþegz
¼ GLe�gz

egz
¼ GLe�2gz (2.79)

or using the form in (2.73) and also the relation g¼ aþ jb,

GðzÞ ¼ GLe�2gz ¼ GLe�2az�j2bz ¼ jGLje�2azejqGe�j2bz (2.80)

The reflection coefficient G(z) is called the generalized reflection coefficient to
distinguish it from the load reflection coefficient. The generalized reflection coef-
ficient on a general, lossy line can be viewed as having an amplitude |GL| at the
load, which decays exponentially (for a lossy line) as we move toward the gen-
erator, and a phase which varies linearly with z and is equal to

fGðzÞ ¼ qG � 2bz radð Þ (2.81)

Although these relations are rather general, we will, for the most part, use lossless
transmission lines. This simply means that a¼ 0 and g¼ jb, but doing so will
simplify analysis considerably.

2.7.3 The lossless, terminated transmission line
In all of the above relations, we assumed a general lossy transmission line in which
the propagation constant is a general complex number. There was no reason to do
otherwise since we could always replace g by aþ jb to obtain the expressions in
terms of the attenuation and phase constants a and b for any condition. However,
the expression in (2.78) requires the use of hyperbolic sine, cosine, and tangent
functions. If the line is lossless, then a¼ 0 and g¼ jb. Under these conditions, the
voltage and current on the line [setting g¼ jb in (2.75)] are

V zð Þ ¼ Vþ ejbz þ GLe�jbz
� �

Vð Þ and I zð Þ ¼ Vþ

Z0
ejbz � GLe�jbz
� �

Að Þ (2.82)

Similarly, the line impedance of a lossless transmission line is found by setting
g¼ jb in (2.78):

ZðzÞ ¼ Z0
ZL þ jZ0 tanbz

Z0 þ jZL tanbz
¼ Z0

ZL cosbz þ jZ0 sinbz

Z0 cos bz þ jZL sinbz
Wð Þ (2.83)
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where tanh(jbz) ¼ j tan(bz) was used. In general, the line impedance is a complex
value, as we should expect. The latter expression is also useful in that it indicates
explicitly the periodic nature of the line impedance and that the period is directly
related to the term bz, which in Section 2.4 we called the electrical length of the
transmission line. Not surprisingly, the electrical length of the line plays an
important role in line behavior.

The generalized reflection coefficient for lossless lines was obtained in (2.80).
Like the line impedance, the reflection coefficient is periodic along the line. This is
best seen if the exponential function is written as e�j2bz ¼ cos2bz � j sin2bz. The
generalized reflection coefficient now is

G zð Þ ¼ GLe�j2bz ¼ jGLje jqGe�j2bz ¼ jGLj cos qG � 2bzð Þ � j sin qG � 2bzð Þð Þ (2.84)

Thus, the generalized reflection coefficient for lossless transmission lines can be
viewed as having constant amplitude equal to that of |GL| but varying in phase along
the line as

fGðzÞ ¼ qG � 2bz (2.85)

Because of this phase angle, the generalized reflection coefficient has maxima and
minima along the line. However, it is more convenient to talk of maxima and
minima in voltage or current, or both. Consider (2.82). Rearranging the terms, we
get the voltage on the line as

V zð Þ¼Vþ e jbz þGLe�jbz
� �¼Vþe jbz 1þGLe�j2bz

� �¼Vþe jbz 1þG zð Þð Þ Vð Þ (2.86)

Similarly, the current on the line is

I zð Þ¼Vþ

Z0
e jbz �GLe�jbz
� �¼Vþ

Z0
e jbz 1�GLe�j2bz
� �¼Vþ

Z0
e jbz 1�G zð Þð Þ Að Þ (2.87)

Now, we can discuss the maximum and minimum magnitudes of the voltage. First,
we note that the term e jbz varies between �1 and þ1. Thus, its magnitude is 1.
Similarly, the generalized reflection coefficient G(z) varies between �G(z) and
þG(z) because the term e�j2bz varies between �1 and þ1. Thus, we can write the
maximum and minimum magnitudes of voltage as

Vmax ¼ jVþj 1 þ jGðzÞjð Þ Vð Þ (2.88)

Vmin ¼ jVþj 1 � jGðzÞjð Þ Vð Þ (2.89)

The same can be done for the current. Following identical steps but starting with
(2.87), we get

Imax ¼ Vmax

jZ0j ¼
Vþ

Z0

				

				 1 þ jGðzÞjð Þ Að Þ (2.90)

Imin ¼ Vmin

jZ0j ¼
Vþ

Z0

				

				 1 � jGðzÞjð Þ Að Þ (2.91)
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The ratio between the maximum and minimum voltage (or current) is called the
standing wave ratio (SWR) and is defined as

SWR ¼ Vmax

Vmin
¼ Imax

Imin
¼ 1 þ jGðzÞj

1 � jGðzÞj dimensionlessð Þ (2.92)

The SWR varies between 1 and ?. If the reflection coefficient is zero (no reflected
waves), the SWR is 1. If the magnitude of the reflection coefficient is 1 the SWR is ?.
Thus, a matched load produces no reflected waves and the line should have an SWR of 1.

Sometimes, the SWR is known or may be measured. In such cases, the mag-
nitude of the generalized reflection coefficient can be calculated from the SWR as

jGðzÞj ¼ SWR � 1
SWR þ 1

(2.93)

This expression can be substituted in (2.88) and (2.89) to obtain the minimum and
maximum voltage on the line in terms of the SWR:

Vmax ¼ jVþj 1þjG zð Þjð Þ¼ jVþj 1þSWR�1
SWRþ1

� �
¼ jVþj 2SWR

SWRþ1

� �
Vð Þ (2.94)

Vmin ¼ jVþj 1�jG zð Þjð Þ¼ jVþj 1�SWR�1
SWRþ1

� �
¼ jVþj 2

SWRþ1

� �
Vð Þ (2.95)

From the last three equations, it is apparent that the effect of the SWR is as follows:

1. The larger the SWR, the larger the maximum voltage and the lower the mini-
mum voltage on the line.

2. If SWR ¼ 1, the reflection coefficient is zero. In this case, Vmax ¼ Vmin ¼ |Vþ|.
The magnitude of the voltage on the line does not vary. The phase of course
varies. This corresponds to a matched load.

3. If SWR¼?, the magnitude of the reflection coefficient equals 1 (G(z) ¼�1 or
G(z) ¼þ1). In this case, Vmax ¼ 2|Vþ| and Vmin ¼ 0. We will see shortly that this
corresponds to either a short circuit (G(z) ¼�1) or an open circuit (G(z) ¼þ1).
This condition in plane waves was called a complete standing wave.

Now that we have all the tools to calculate the reflection coefficient anywhere on
the line as well as the SWR, we can return to the equations for current and voltage
and see how these behave along the line. The basis of calculation is (2.86) and
(2.87). Voltage and current anywhere on the line (including at the load) are

V zð Þ ¼ Vþe jbz 1 þ GLe�j2bz
� � ¼ Vþe jbz 1 þ jGLje jqGe�j2bz

� �
Vð Þ (2.96)

I zð Þ ¼ Vþ

Z0
ejbz 1 � GLe�j2bz
� � ¼ Vþ

Z0
ejbz 1 � jGLjejqGe�j2bz
� �

Að Þ (2.97)

We can also calculate the voltage and current at the load. These are obtained by
setting z ¼ 0:

VL ¼ Vþ 1 þ jGLjejqG
� �

Vð Þ and IL ¼ Vþ

Z0
1 � jGLjejqG
� �

Að Þ (2.98)
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To completely characterize the voltage and current waves, we must find the loca-
tions of the minima and maxima on the line. Suppose we plot the voltage and
current starting at the load and going toward the generator. For any given load, the
load reflection coefficient is known and we can calculate the voltage and current at
the load [Eq. (2.98)] and the maximum and minimum voltage and current [from
(2.88)–(2.91)]. We could, in fact, use (2.96) and (2.97) to plot the voltage and
current directly. The only other bit of information needed is the location of minima
and maxima in the voltage and current waves. These are found as follows.

From inspection of (2.96) and (2.97), the minimum in voltage must occur at
locations on the line at which the phase qG� 2bz equals �p, �3p, �5p, etc. The
general condition to be satisfied (taking z to be positive to the left and away from
the load) is

qG � 2bz ¼ � 2n þ 1ð Þp; n ¼ 0; 1; 2; . . . (2.99)

This condition can be verified by direct substitution in (2.89) or (2.96). On the other
hand, the current is maximum at this point because of the negative sign in front of
GL in (2.91) or (2.97). The location of the first minimum in voltage (maximum in
current) occurs at

qG � 2bzmin ¼ �p ! zmin ¼ qG þ p
2b

mð Þ (2.100)

The next minimum occurs at

qG � 2bzmin ¼ �3p ! zmin ¼ qG þ 3p
2b

¼ qG þ p
2b

þ p
b

mð Þ (2.101)

From the definition of wavelength, we can also write these relations in terms of the
wavelength by using the relation

l ¼ 2p
b

! p
b
¼ l

2
! 1

2b
¼ l

4p
(2.102)

Thus, the conditions for minima are
For the first minimum:

zmin ¼ l
4p

qG þ pð Þ lð Þ (2.103)

The unit (l) shows that the distance is indicated in wavelengths. For any minimum:

zmin ¼ l
4p

qG þ 2n þ 1ð Þpð Þ lð Þ; n ¼ 0; 1; 2; . . . (2.104)

This has the advantage of being described in terms of increments of l/2.
The maxima occur at a distance of l/4 on each side of a minimum. We know

this must be so since the conditions on the line repeat at increments of l/2. Between
every two minima there is a maximum. Thus, we can calculate the location of the
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first voltage maximum by adding l/4 in (2.104). Voltage maxima (current minima)
occur at

zmax ¼ l
4p

qG þ 2n þ 1ð Þpð Þ þ l
4

! zmax ¼ l
4p

qG þ 2npð Þ lð Þ; n ¼ 0; 1; 2; . . .

(2.105)

The complete description of voltage and current on the line are now shown in
Figure 2.10. Note in particular that the minima are sharper than the maxima.
In other words, the voltage or current do not vary sinusoidally. Whenever mea-
surements of SWR are required, the minima are usually easier to identify. Note also
that Figure 2.10 assumes, arbitrarily, that VL > 0 at the load. This does not have to
be so: VL can be negative or zero.

The maxima in line impedance occur at locations of voltage maxima (current
minima) and minima in line impedance occur at location of voltage minima
(current maxima).

From the foregoing discussion, it is clear that voltage and current are highly
dependent on the load reflection coefficient and they vary from point to point. From
(2.83), we can also tell that the line impedance varies from point to point. The
above relations are general and apply to any load. The only restriction in the above
discussion is that the line be lossless.

A number of particular solutions may be obtained for particular loads. These
loads are useful because they lead to simple, practical solutions. These are as follows:

1. Matched load: ZL ¼ Z0. The load reflection coefficient is zero (GL ¼ 0).
2. Short-circuited load: ZL ¼ 0. The load reflection coefficient is GL ¼�1.
3. Open-circuit load: ZL ¼?. The load reflection coefficient is GL ¼þ1.
4. Resistive load: ZL ¼ RL þ j0. The load reflection coefficient is real (�1 < GL < 1).

These particular types of terminated transmission lines are discussed in the fol-
lowing sections.

V(z) I(z) λ/4 λ/4

λθГ
4�

Figure 2.10 Locations of voltage maxima and minima on a transmission line
and the relation between voltage and current minima and maxima
on the line
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2.7.4 The lossless, matched transmission line
A matched transmission line is a line on which the load is equal to the characteristic
impedance of the line:

ZL ¼ Z0 (2.106)

Substitution of this condition in (2.72) results in a zero reflection coefficient at the
load: GL ¼ 0. Thus, the line impedance anywhere on the line is

Z zð Þ ¼ Z0
Z0 þ jZ0 tanbz

Z0 þ jZ0 tanbz
¼ Z0 Wð Þ (2.107)

Therefore, the impedance on the line for a matched load is constant and equal to Z0.
The other relations on the line are also obtained by substituting ZL ¼ Z0 and

GL ¼ 0. Thus, the SWR on the line is SWR ¼ 1 anywhere on the line. The voltage
and current on the line are

V zð Þ ¼ Vþe jbz Vð Þ and I zð Þ ¼ Vþ

Z0
e jbz Að Þ (2.108)

That is, the line voltage and current have only forward-propagating terms, as we
expect with a zero reflection coefficient.

In summary, a matched load produces no reflected waves and, therefore, no
standing waves on the line. All power on the line is transferred to the load.

2.7.5 The lossless, shorted transmission line
A shorted transmission line is characterized by ZL ¼ 0. From (2.72), the reflection
coefficient is GL ¼�1. For the same reason, SWR ¼?. The line impedance is now

Z zð Þ ¼ Z0
jZ0 tanbz

Z0
¼ jZ0 tanbz Wð Þ (2.109)

The line impedance of a shorted transmission line is purely imaginary and varies
between �? and ?. It has the following properties:

1. GL ¼�1, SWR ¼?.
2. It is zero at the load and at any value bz ¼ np, n ¼ 1, 2, . . . . In terms of

wavelength, the line impedance is zero at z ¼ nl/2, n ¼ 0, 1, 2, . . . and is
infinite at z ¼ nl/2 þ l/4, n ¼ 0, 1, 2, . . . .

3. The line impedance is purely imaginary and alternates between positive
and negative values, as shown in Figure 2.11. The impedance is positive
(inductive) for nl/2 < z < nl/2 þ l/4 and negative (capacitive) for nl/2 þ l/4
< z < nl/2 þ l/2, n ¼ 0, 1, 2, . . . . The line impedance changes from þ? to
�? at z ¼ nl/2 þ l/4.

4. A shorted transmission line behaves as an inductor or a capacitor, depending
on the location on the line. A capacitance or an inductance may be designed by
simply cutting a line of appropriate length as indicated in (3). In this sense,
shorted transmission lines are viewed as circuit elements.
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5. The conditions on a shorted transmission line repeat at intervals of l/2; that is,
if we add or remove a section of length l/2 (or any integer multiple of l/2), the
line impedance does not change.

The line voltage and line current are [setting GL ¼�1 in (2.96) and (2.97)]

V zð Þ ¼ Vþe jbz 1 � e�j2bz
� �

Vð Þ and I zð Þ ¼ Vþ

Z0
e jbz 1 þ e�j2bz
� �

Að Þ (2.110)

In particular, at the load (z ¼ 0), we get

VL ¼ 0 Vð Þ and IL ¼ 2Vþ

Z0
Að Þ (2.111)

Thus, whereas the voltage at the load must be zero, the current must be twice the
forward-propagating current. This, of course, is a consequence of the fact that there
is no transfer of power into the load and the reflected current is equal in magnitude
and phase to the forward current.

2.7.6 The lossless, open transmission line
An open transmission line may be assumed to have an infinite impedance as load.
Since ZL ? ?, the reflection coefficient at the load is GL ¼þ1. For the same
reason, SWR ¼?. Substitution of ZL into the line impedance in (2.83) gives (since
ZL � Z0):

Z zð Þ ¼ Z0
ZL þ jZ0 tanbz

Z0 þ jZL tanbz
¼ Z0

ZL

jZL tanbz
¼ �jZ0 cotbz Wð Þ (2.112)

This result is very similar to the result for the shorted transmission line. The
properties of this line are summarized as follows:

1. GL ¼þ1, SWR ¼?.
2. The line impedance is infinite at the load and at any value bz ¼ np, n ¼ 1,

2, . . . . In terms of wavelength, the line impedance is infinite at z ¼ nl/2, n ¼ 0,
1, 2, . . . . The line impedance is zero at z ¼ nl/2 þ l/4, n ¼ 0, 1, 2, . . . .

Z0tan(βz)
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Figure 2.11 Line impedance on a shorted transmission line
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3. The line impedance is purely imaginary and alternates between positive and
negative values, as shown in Figure 2.12. The impedance is negative (capaci-
tive) for nl/2 < z < nl/2 þ l/4 and positive (inductive) between nl/2 þ l/4 <
z < nl/2 þ l/2, n ¼ 0, 1, 2, . . . . The line impedance changes from þ? to �?
at z ¼ nl/2.

4. An open transmission line behaves as an inductor or a capacitor, depending on
the location on the line. A capacitance or an inductance may be designed by
simply cutting a line of appropriate length as indicated in (3). Open transmis-
sion lines may also be viewed as circuit elements.

5. The conditions on an open transmission line repeat at intervals of l/2; that is, if
we add or remove a section of length l/2 (or any integer multiple of l/2), the
line impedance is not affected.

6. The conditions on an open transmission line are identical to those of a shorted
transmission line if their length differs by an odd multiple of l/4. This can be
seen by direct comparison of Figures 2.12 and 2.11.

The line voltage and line current on the open transmission line are

V zð Þ ¼ Vþe jbz 1 þ e�j2bz
� �

Vð Þ and I zð Þ ¼ Vþ

Z0
e jbz 1 � e�j2bz
� �

Að Þ (2.113)

In particular, at the load (z ¼ 0), we get

VL ¼ 2Vþ Vð Þ and IL ¼ 0 (2.114)

Thus, maximum voltage occurs at the load, whereas maximum current occurs at l/4
from the load. Again, there is no transfer of power into the load and the reflected
voltage is equal to the forward propagating voltage (and in the same phase).

Suppose now that we perform an experiment. First, we short a transmission line
and obtain the line impedance at a point z. Then, we open the line and obtain the
impedance at the same point. The shorted and open line impedances are those given
in (2.109) and (2.112). If we take the product of these two impedances, we get

jZ0 tanbzð Þ �jZ0 cotbzð Þ ¼ Z2
0 (2.115)
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Figure 2.12 Line impedance on an open transmission line
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Perhaps a bit unexpected result but it gives us yet another way of calculating or
measuring the characteristic impedance of a transmission line. The characteristic
impedance of any lossless line is given as

Z0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZshortZopen

p
Wð Þ (2.116)

where Zshort is the line impedance with shorted load and Zopen is the impedance with
open load.

2.7.7 The lossless, resistively loaded transmission line
The discussion in Sections 2.7.1 and 2.7.2 was in terms of a general load, but it
applies equally well for a resistive load: ZL ¼ RLþ j0. The reflection coefficient at
the load is real: �1 < GL < 1:

GL ¼ V�

Vþ ¼ RL � Z0

RL þ Z0
(2.117)

and since Z0 is also real for lossless lines [see (2.38)], the reflection coefficient is
real. It can be either positive or negative depending on the relative magnitudes of
RL and Z0. The line impedance is now given as

ZðzÞ ¼ Z0
RL þ jZ0 tanbz

Z0 þ jRL tanbz
¼ Z0

RL cos bz þ jZ0 sinbz

Z0 cos bz þ jRL sinbz
Wð Þ (2.118)

This impedance is maximum at locations of maximum voltage and minimum at
locations of minimum voltage, as described in Section 2.7.3. The main difference
between a resistive load and a general load is that for a general load, the phase
angle of the load reflection coefficient can have any value. On the other hand, for a
resistive load, the phase angle can be either zero or �p. This can be seen from
(2.117). There are two possible situations:

1. RL > Z0. In this case, GL is real, positive and we can write

GL ¼ RL � Z0

RL þ Z0
! GL ¼ jGLje j0 (2.119)

Now, if we substitute qG¼ 0 in (2.96) and (2.97), we obtain the general voltage
and current waves on the line:

V ðzÞ ¼ Vþe jbz 1 þ GLe�j2bz
� �

Vð Þ (2.120)

IðzÞ ¼ Vþ

Z0
e jbz 1 � GLe�j2bz
� �

Að Þ (2.121)

The voltage and current at the load are

VL ¼ Vþ 1 þ GLð Þ Vð Þ and IL ¼ Vþ

Z0
1 � GLð Þ Að Þ (2.122)
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The locations of voltage minima are now [see (2.103) and (2.104)]:

zmin ¼ l
4p

ð2n þ 1Þp lð Þ; n ¼ 0; 1; 2; . . . (2.123)

Thus, the first minimum in voltage occurs at n ¼ 0:

zmin ¼ p
2b

¼ l
4

lð Þ (2.124)

Similarly, the locations of voltage maxima are (2.105)

zmax ¼ l
4p

2np lð Þ; n ¼ 0; 1; 2; . . . (2.125)

The first voltage maximum is at the load (z ¼ 0). The following voltage max-
ima (current minima) are at increments of l/2 from the load. The voltage and
current minima and maxima are shown in Figure 2.13(a).

2. RL < Z0. In this case, GL is real and negative and we can write

GL ¼ RL � Z0

RL þ Z0
! GL ¼ �jGLj ¼ jGLje�jp (2.126)

Now, if we substitute qG¼�p in (2.96) and (2.97), we obtain the general
voltage and current waves on the line:

V ðzÞ ¼ Vþe jbz 1 þ jGLje�jpe�j2bz
� �

Vð Þ (2.127)

IðzÞ ¼ Vþ

Z0
e jbz 1 � jGLje�jpe�j2bz
� �

Að Þ (2.128)

The voltage and current at the load are

VL ¼ Vþ 1 � jGLjð Þ Vð Þ and IL ¼ Vþ

Z0
1 þ jGLjð Þ Að Þ (2.129)

The locations of minima in voltage are

zmin ¼ l
4p

ð2npÞ lð Þ; n ¼ 0; 1; 2; . . . (2.130)

I(z)

RL<Z0

Imax

Vmin

RL>Z0Z0=R0 Z0=R0

V(z)
Vmax

Imin

RLRL

V(z)I(z)

λ/4λ/23λ/45λ/4z 0
(a) (b)

λ λ/4λ/23λ/45λ/4z 0λ

Figure 2.13 (a) Voltage and current maxima and minima for RL > Z0 and
(b) voltage and current maxima and minima for RL < Z0
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Thus, the first minimum in voltage occurs at z ¼ 0. Subsequent minima occur
at intervals of l/2 from the load. The first voltage maximum occurs at z ¼ l/4
and the general relation for voltage maxima is

zmax ¼ l
4p

ð2n � 1Þp lð Þ; n ¼ 0; 1; 2; . . . (2.131)

The complete description of voltage and current on the line for RL < Z0 is
shown in Figure 2.13(b). Note also that the maximum and minimum line
impedance are given as

Zmax ¼ Z0
1 þ jGLjð Þ
1 � jGLjð Þ ¼ Z0SWR Wð Þ (2.132)

Zmin ¼ Z0
1 � jGLjð Þ
1 þ jGLjð Þ ¼

Z0

SWR
Wð Þ (2.133)

The properties of line impedance on a resistively loaded line are

1. �1 < ГL <þ1, 1 < SWR <?.
2. The line impedance is maximum at locations of voltage maxima and minimum

at locations of voltage minima. These locations are given in (2.123) and
(2.125) for RL > Z0 and in (2.130) and (2.131) for RL < Z0.

3. The line impedance can be complex as can be seen from (2.118), but it is
always real at locations of voltage maxima and voltage minima for any lossless
line. The impedance at voltage maxima is Zmax ¼ Z0*SWR, whereas at voltage
minima (current maxima), it is Zmin ¼ Z0/SWR.

4. For RL > Z0, the first voltage maximum occurs at the load (z ¼ 0) and the first
voltage minimum at a distance l/4 from the load. All conditions on the line
repeat at intervals of l/2.

5. For RL < Z0, the first voltage minimum occurs at the load and the first voltage
maximum at a distance l/4 from the load. All conditions on the line repeat at
intervals of l/2.

In effect, the main difference between a general load and a resistive load is the
location of the minima and maxima. If the load is such that the magnitude of
the reflection coefficient at the load is the same for resistive and arbitrary loads, the
voltage and current on the line will be the same in both cases but displaced by the
value of zmin in (2.123) or (2.103). In other words, if we take an arbitrary load and
calculate all circuit parameters, we obtain the standing wave pattern for the line.
The line can now be shortened by the magnitude of zmin or lengthened by l/2 � zmin

to obtain an identical circuit but with a resistive loading which has the same
reflection coefficient magnitude. We will use this property of transmission lines in
the following chapter.
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2.8 Power relations on a general transmission line

The power relation on a line can be written directly from the current and voltage
on the line. The power at a distance z0 from the load can be calculated by assuming
that the load is at z ¼ 0 and the input is at z ¼ z0 as shown in Figure 2.14. For this
condition, the line voltage and current for a general lossy line are given in (2.75).
Setting z ¼ z0 gives the voltage and current as

Vðz0Þ ¼ Vþ egz0 þ GLe�gz0ð Þ Vð Þ and Iðz0Þ ¼ Vþ

Z0
egz0 � GLe�gz0ð Þ Að Þ (2.134)

where Z0 is the line characteristic impedance given in (2.23) and is, in general,
a complex number. Now, the power entering this section of the transmission line is
calculated from the current and voltage on the line at this point:

Pi ¼ 1
2

Re Vz0 I�z0

n o
¼ 1

2
Re Vþ egz0 þ GLe�gz0ð Þ½ � Vþ

Z0
egz0 � GLe�gz0ð Þ

� ��
 �

¼ jVþj2
2

Re e aþjbð Þz0 þ jGLjejqGe� aþjbð Þz0

�  e aþjbð Þz0 � jGLje�jqGe� aþjbð Þz0
� �

Z�
0

( )

¼ jVþj2
2jZ0j Re e2az0 þ jGLjejðqG�bz0Þ � jGLje�jðqG�bz0Þ � jGLj2e�2az0

� 
e�jqz0

n o

¼ jVþj2
2jZ0j Re e2az0 þ j2jGLjsinðqG � bz0Þ � jGLj2e�2az0

� 
e�jqz0

n o

¼ jVþj2
2jZ0j e2az0 � jGLj2e�2az0

� 
cos qZ0ð Þ Wð Þ

(2.135)

where qZ0 is the phase angle of the characteristic impedance and qz0 is the phase
angle at z ¼ z0. To summarize

Pz0 ¼
jVþj2
2jZ0j e2az0 � jGLj2e�2az0

� 
cos qZ0ð Þ Wð Þ (2.136)

z = z0 z = 0

V +egz0 = V +eaz0e jbz0

ΓV +e–gz0 = ΓV +e–az0e –jbz0

Z0 ZL

Figure 2.14 Notation used to calculate power relations on the transmission line
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This relation has two components: the first is forward-propagating toward the load
(in the negative z direction according to our convention which defines the load as
reference) and the second in the positive z direction (from load to generator). Both
are real powers and the total power is the sum of the two.

The power entering any section of the line may now be evaluated by setting the
correct value for z0. The power at the load may be found by setting z0 ¼ 0:

Pload ¼ jVþj2
2jZ0j 1 � jGLj2

� 
cos qZ0ð Þ Wð Þ (2.137)

The general power relation in (2.136) may be simplified under certain conditions.
If there is only a forward-propagating wave, the forward-propagating voltage,
current, and power are

Vþ z0ð Þ ¼ Vþegz0 Vð Þ; Iþ z0ð Þ ¼ Vþ

Z0
egz0 Að Þ; Pþ z0ð Þ ¼ jVþj

2jZ0j e
2az0 cosðqZ0Þ Wð Þ

(2.138)

For the backward propagating wave alone

V� z0ð Þ ¼ VþGLegz0 Vð Þ; I�ðz0Þ ¼ �Vþ

Z0
GLegz0 Að Þ;

P� z0ð Þ ¼ jVþj2jGLj2
2jZ0j e�2az0 cos qZ0ð Þ Wð Þ

(2.139)

For lossless lines, the attenuation constant is zero and the characteristic impedance
is real. The power at any point on the line is therefore

Pz0 ¼
jVþj2
2Z0

1 � jGLj2
� 

Wð Þ (2.140)

It is worth mentioning again that this power is positive propagating from generator
to load. Note that if the reflection coefficient is zero, all power on the line is
transferred to the load, although this does not imply maximum power transfer from
generator to load.

The instantaneous power on the line is calculated similarly by multiplying the
instantaneous voltage by instantaneous current.

2.9 Passive transmission line circuits

A length of transmission line has a line impedance that depends on the length of the
line and its properties. We saw as well that a real line has losses due to attenuation
and shorted and open transmission lines behave either as inductors or capacitors.
It is therefore obvious that by combining these elements one can build passive
circuits—essentially RLC circuits. This has important implications since now, any
low frequency RLC passive circuit has its equivalent in the high frequency range.
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But transmission lines have a few extra ‘‘tricks’’ due to the finite speed of propa-
gation on the line. These are associated with the phase on the line. It is therefore not
surprising that a transmission line can behave as a resonator, an attenuator or that
one can use transmission line segments to match a load to a line. The following
sections discuss the use of transmission lines to design useful passive circuits that
can operate successfully at high frequencies (and only at high frequencies). The
first use we describe is matching of transmission lines using shorted and open
transmission line stubs. Following these are power dividers and combiners, direc-
tional couplers and attenuators. These circuits are critical and described here
because they have critical impact on measurements and in the context of gauging
accurate circuits can make all the differences. These passive devices are integral to
network and spectrum analyzers and some of them will be also discussed in
Chapter 8 when we discuss these instruments. It should be understood that the
purpose here is not the design of passive circuits but rather an understanding and a
working knowledge of their operation. For this reason, only the salient features of
the circuits are described, and there is no attempt to be exhaustive.

The design of transmission line resonators is left to Section 2.10 because
resonators are at the heart of this work and there we need more than cursory
descriptions. The theory, analysis, and application of transmission line resonators
will be described in detail, leading to their application in the following chapters.

2.9.1 Impedance matching
We have described the shorted and open transmission lines in Sections 2.7.5 and
2.7.6. These lines have an impedance that is purely imaginary and can be either
positive or negative. Thus, a segment of shorted transmission line of appropriate
length will behave as an inductor or as a capacitor. A capacitance or inductance of
almost any value may therefore be obtained by an open or shorted line. Similarly,
an impedance of almost any value may be obtained by appropriate choice of lines
and loads. It is, therefore, possible to use these line segments to build particular
circuits with given properties. Examples of simple circuits are shorted or open stubs
used for matching purposes as shown in Figure 2.15. Figure 2.15(a) shows a shorted
stub of length l1 connected at a distance d1 from a mismatched load. The length of
the stub and the location of the stub are used to adjust the real part of the line

d1 d1

d1

d2

l1
l1

Z0 Z0
Z0jZ1 jZ1

jZ1 jZ2

R
L +jX

L

R
L +jX

L

R
L +jX

L

l1l2
(a) (b) (c)

Figure 2.15 Matching circuits: (a) single short-circuited stub matching, (b)
double short-circuited stub matching, and (c) series short-circuited
stub matching
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impedance and the imaginary part of the line impedance independently so that the
impedance at the location of the stub equals Z0 and hence match the load to the line.
Although we do not deal here with all the details of matching, it suffices to say that
d1 is adjusted so that the real part of the input admittance to the segment of loaded
line of length d1 equals 1/Z0. Now the admittance of the stub is adjusted so that it
equals the negative of the imaginary part of the segment. The connection of the
shorted stub cancels the imaginary part of the segment admittance, and we are left
with a matched line. Figure 2.15(b) is another method of matching with stubs
whereby the two stubs are placed at fixed distances from the mismatched load (d1

and d2 are fixed) and matching is done by adjusting the lengths of the two stubs
until the input impedance to the segment of length d1þd2 equals Z0. Figure 2.15(c)
is the simplest to understand but the least common in use because it requires cutting
one conductor of the line and inserting a shorted line in series. This cannot always
be done (e.g., in coaxial lines this is impossible). In essence, d1 is adjusted until the
real part of the input impedance of the segment of length d1 equals Z0, followed by
adjustment of l1 until its impedance equals the negative of the segment’s imaginary
part of the impedance. The net effect is that the segment of length d1 exhibits an
impedance Z0, matching the load to the line.

There are other types of circuits that can be easily built and are useful in
transmission line work. An example is the quarter wavelength transformer shown in
Figure 2.16. This circuit is often used to match loads to transmission lines or to
match two lines with different characteristic impedances. The operation of the
circuit is deduced directly from Figure 2.16. The input impedance to a line segment
of length z0 and loaded with a load impedance ZL is [from (2.83)]:

Zin ¼ Z0
ZL cos bz0 þ jZ0 sinbz0½ �
Z0 cos bz0 þ jZL sinbz0½ � Wð Þ (2.141)

where ZL is the load impedance, Z0 the characteristic impedance, z0 the length, and
b the phase constant on the line segment. Setting z0 ¼ l/4 and bz0 ¼ bl/4 ¼
(2p/l)(l/4) ¼ p/2 and replacing ZL by Zl and Z0 by Zt in (2.141), we get for the
input impedance of the l/4 section

Zin ¼ Zt
Zl cos p=2ð Þ þ jZt sin p=2ð Þ½ �
Zl cos p=2ð Þ þ jZl sin p=2ð Þ½ � ¼

Z2
t

Zl
Wð Þ (2.142)

d

ZL

Zg

Z0
Zin Zt

λ/4

ZlVg

Figure 2.16 A quarter-wavelength transformer located at distance d from load.
The characteristic impedance of the transformer segment Zt is
selected to match the load impedance Zl to the line of characteristic
impedance Z0
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Referring now to Figure 2.16, where Zl is the line impedance at a distance d from
the load, we get the condition for matching using the quarter-wavelength trans-
former shown:

Zt ¼
ffiffiffiffiffiffiffiffiffiffi
ZinZl

p
Wð Þ (2.143)

Thus, two different transmission lines or any two impedances may be matched,
provided a transformer of proper characteristic impedance Zt can be found. The
quarter-wavelength transformer is normally connected at a point of maximum or
minimum voltage since the line impedance is real at that point but these are details
of application.

Other examples of transmission line circuits are power dividers and combiners,
attenuators couplers and many others, including resonant circuits. These are dis-
cussed next.

2.9.2 Power dividers
Power dividers and combiners are fundamental passive circuits in waveguide and
transmission line networks. They allow one to perform simple tasks such as sam-
pling the power on a line or connect two loads (such as antennas) to the same
source with equal or unequal power in the two loads. Power dividers can be lossless
(or nearly lossless) or can be lossy and either matched or mismatched. Power
combiners are power dividers operating in ‘‘reverse’’ by combining power from
two sources into a single load.

2.9.2.1 The lossless T-junction power divider
The name of this divider comes from its microwave implementation [see
Figure 2.17(a)] even though in transmission lines it may not look like a T [see
Figure 2.17(b)]. The principle can be easily understood from Figure 2.17(b).
Assuming the three transmission lines are lossless, with z1 ¼ z0, z2 ¼ 1.5z0, z3 ¼ 3z0

and with a voltage V at the junction, the input power into the junction is

Pi ¼ V 2

2Z0
(2.144)

(a) (b)

Port 1

Port 2

Port 3

Zi = Z0

Z 2 = 1.5Z 0

Z
2 = 3Z

0

P 2

P
3

Pi

Figure 2.17 T-junction power divider: (a) waveguide T-junction and
(b) transmission line T-junction
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The powers in lines 2 and 3 are

P2 ¼ V 2

2Z2
¼ V 2

2 1:5Z0ð Þ ¼
V 2

3=2ð Þ � 2Z0
¼ 2

3
Pi (2.145)

P3 ¼ V 2

2Z3
¼ V 2

2 3Z0ð Þ ¼
1
3

Pi (2.146)

That is, the power has been divided with 1/3 of the power into line 2 and 2/3 into
line 1. The power can be divided equally provided Z2 ¼ Z3 ¼ 2Z0. In principle, any
division ratio can be achieved by selection of the impedances of lines 2 and 3.

Although very simple, there are a number of basic problems with this circuit.
First, the junction may not be lossless. In addition, the junction offers a dis-
continuity in which case, the junction itself adds a susceptance to the circuit. This is
shown in Figure 2.18 as ja. Now one is either obliged to match the junction
by adding tuning elements that will cancel the susceptance or accept a reflection
from the junction into line 1. Second, we note from Figure 2.17(b) that line 1 is
matched since Z2||Z3 ¼ Zi. However, lines 2 and 3 are not matched. Looking into
the junction from line 2, one sees the impedance of line 1 and line 3 in parallel.
That is, the impedance seen by line 2 is Z0||3Z0 ¼ 3Z0/4 and the reflection coeffi-
cient is

G2 ¼ 3Z0=4 � 3Z0=2
3Z0=4 þ 3Z0=2

¼ �0:333 (2.147)

Looking into the junction on line 3, the impedance is Z1||1.5Z2 ¼ 3Z0/5

G3 ¼ 3Z0=5 � 3Z0

3Z0=5 þ 3Z0
¼ �0:667 (2.148)

This leads to the conclusion that the three lines cannot all be matched as long as the
junction is lossless.

A third important problem is that the three lines are not isolated.

Pin

P 2

Z 2

P
3

Z0

Z
3

Port 1

Port 2

Port 3

O

ja

Figure 2.18 The effect of discontinuities at the lossless T-junction. The
susceptance due to discontinuities can be compensated
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2.9.2.2 The lossy T-junction power divider
A solution to the problem of matching the lines in a T-junction divider is to
add lossy components (resistors) to the transmission line T-junction shown in
Figure 2.19. The lines are all of impedance Z0, and the resistance values are
selected so that the input impedance to each lines equals Z0 and power is divided
by the required ratio. This is particularly simple to show for equal power division
between lines 2 and 3. The junction now is defined between ports A, B, and C as
shown in Figure 2.19 in which each of the resistor equals Z0/3. The voltages across
the junction are V1, V2, and V3. Looking into the center point (junction O), each of
lines 2 and 3 has an impedance of Z0 þ Z0/3 ¼ 4Z0/3 and with the two lines in
parallel, the impedance seen at O is 2Z0/3. The voltage at O is

VO ¼ V1
2Z0=3

Z0=3 þ 2Z0=3
¼ 2

3
V1 (2.149)

The voltages V1 and V2 are equal:

V2 ¼ V3 ¼ 2
3

V1
Z0

Z0 þ Z0=3
¼ 2

3
V1 � 3

4
¼ V1

2
(2.150)

Now, the input power and the powers in line 2 and 3 are

Pi ¼ V1
2

2Z0
; P2 ¼ P3 ¼ V1

2=2ð Þ2

2Z0
¼ V1

2

8Z0
(2.151)

Thus, given an input power Pi, the power in lines 2 and 3 are Pi /4 and half the
power is lost in the resistors.

2.9.2.3 The Wilkinson power divider
A more complex divider that solves the issues with the lossless or lossy T-junction
is the Wilkinson power divider shown in Figure 2.20. It consists of a l/4 junction
section and a resistive load across the output lines. The main requirements are that
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Z
Z

Z

Z = Z0/3

Figure 2.19 The lossy T-junction power divider. The power division is calculated
at ports A, B, and C
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the characteristic impedance of the l/4 sections be Z0

ffiffiffi
2

p
and the resistance be 2Z0.

It is matched at all lines, there is isolation between the lines and, in addition, it is
lossless when the lines are matched. The resistor only dissipates reflected power
from lines 2 and 3 and these reflections only occur when the lines are mismatched.
In addition, the Wilkinson power divider can be made with unequal power division
P ¼ P2/P1. The required impedances and resistance are

Z01 ¼ Z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

p
1 þ Pð Þ

q
(2.152)

Z02 ¼ Z0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ P

P
ffiffiffi
P

p
s

(2.153)

R ¼ Z0

ffiffiffi
P

p
þ 1

ffiffiffi
P

p
� �

(2.154)

Z1 ¼ PZ0; Z2 ¼ Z0

P
(2.155)

The divider is matched to the input line of impedance Z0 and to the two output lines
with impedances PZ0 and Z0/P, respectively. For equal division, all three lines are
of impedance Z0 since then P ¼ 1. In general, it is difficult to produce transmission
lines with impedance that can be vastly different from each other because in clas-
sical transmission line both dimensions and material properties must be adjusted
and the lines typically require connectors leading to discontinuities and poor con-
trol over the length of the l/4 section. However, in some cases, such as in striplines
(to be discussed in the following chapter), the impedance of lines can be controlled
by controlling the width of the strips and/or distances from ground planes. In most
cases, striplines are produced by lithographic techniques leading to accurate
dimensions and hence accurate power division.

The Wilkinson power divider can be extended to N divisions as shown in
Figure 2.21(a). In this implementation, the impedance of each l/4 line is Z0/N and
each resistor equals Z0. The problem with this method is the difficulty in designing
the impedances of the l/4 sections and that the resistances must go over lines,

Pin Z0

Z
02

Z 01
Port 1

O

P1

P2

Z1

Z2

Port 2

Port 3

l/4

l/4

R

Figure 2.20 The Wilkinson power divider
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complicating its implementation by lithographic means. Another way is to simply
repeat the divider as shown in Figure 2.21(b) for a 4-way divider. Obviously,
this method is suited for division by integer values and in particular for 2n, n ¼ 1,
2, 3, . . . divisions. It is also possible to divide power unequally.

Because the power dividers are resistive, they are also linear and bidirectional.
That is, they can also serve as power combiners. In all cases however, one must
take into account the losses and the power dissipated in the divider itself. For
example, in Figure 2.19, the power division was equal but each of the two output
lines only propagates 1/4 of the input power whereas half the power was dissipated
on the resistors.

2.9.3 Directional couplers
Given a transmission line (or waveguide) that transfers power from an input port to
an output port, it is sometime necessary to couple some of that power into a second
transmission line. The directional coupler is a little more than that; it couples power
in a particular direction while still transferring power from the input port to the
output port. The need for directional couplers arises from the fact that sometimes
one needs to separate waves on a transmission line. An example is afforded by the
need to measure the reflected wave on a line. This is shown in Figure 2.22(a). The
incident wave propagates from port 1 (input port) to port 2, also called the through
port. The reflected wave propagates in the opposite direction and is available on
port 3 which is called the coupled port. The coupled port 3 must also be isolated
from the input port 1. Thus, the coupler is a 4-port device, shown schematically in
Figure 2.22(b). Port 4 is isolated. The coupler can be bidirectional in which case
propagation is from port 2 to port 1 and the reflection is available on port 4, with
port 3 isolated [dotted arrows in Figure 2.22(b)].

Z

Z0

Z0

Z0

Z0

Z0

Z0

Z0

Z

Z Z

Z

Z

λ/4

2Z0

2Z0

2Z0

Z0

Z = Z0 / 4 Z = Z0 / 2
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Figure 2.21 A 4-way equal split matched Wilkinson power divider: (a) basic
method of implementation and (b) implementation by duplication
of the 2-way divider
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In waveguides, coupling is done across a wall common to two waveguides
through a hole or aperture. Depending on the location of the aperture or the relative
angle between the two waveguides, it is possible to produce wave cancelation at
the isolated port (two waves of equal amplitude but out of phase) and to enhance
the waves at the coupled port (two waves in phase). In transmission lines, the
coupling is done by two unshielded transmission lines in close proximity so that the
fields produced by one line coupled into the second line. This is shown schemati-
cally in Figure 2.23. The two conductors are above a ground conductor so that the
two lines have a common ground indicated by the dark plane in the figure. Under
these conditions, it is possible to design the coupler with arbitrary coupling and
with a properly isolated port. The l/4 design shown guarantees that power in the
coupled line propagates in the opposite direction to that in the main line hence only
the reflected power will be present in the coupled line, propagating into port 3,
leaving port 4 isolated as required. The schematic structure in Figure 2.23 is best
implemented with striplines but it can be implemented with other types of lines.

There are many ways of implementing couplers and many types of couplers
that are not discussed here. For the purpose of understanding their use in mea-
surements, especially as they are used in network analyzers, this short description is
sufficient.

2.9.4 Antennas and probes
Antennas are passive devices intended to generate and propagate power into a
space such as into air but, of course, they can be embedded in dielectrics as well.

(a) (b)

(1) (2)

(3)

(4)
(1)

(3)

(2)

(4)

Figure 2.22 (a) Operating principle of the coupler and (b) schematic view of the
coupler. Dotted arrows show the reverse operation for a
bidirectional coupler

λ/4

Port 1 Port 2

Port 3 Port 4

Main line

Coupled line

Figure 2.23 Schematic view of a transmission line coupler
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With few exceptions, antennas are designed for their far field properties, that is, the
interest is in the fields generated by antennas at large distances. In this context that
means many wavelengths away from the antenna. The near field, that is, the field in
the immediate vicinity of the antenna is of secondary importance (again, with some
exceptions). The antenna itself can be from a fraction of a wavelength in size to
many wavelengths. It can take many physical shapes, including simple straight
wires (electric dipoles or monopoles), loops (magnetic dipoles), conical, spiral,
horn, patches, apertures, and almost any imaginable shape, each with its unique
properties and performance characteristics. Many antennas are resonant, meaning
that their frequency response is related to their electrical size, whereas other
antennas are broadband operating over a wide frequency range. In general, the
impedance of the antenna, the radiated power, and other properties are also related
to their electrical size, which in turn is frequency dependent. As is well known,
antennas serve an important function in communication with other applications in
direction finding and in testing and measurements. It is not the intention in this
section to discuss antennas and their properties beyond this general description
simply because we have no need for them in this work in the true sense of antennas.

However, two particular types of antennas, called probes, are very important in
microwaves and in this work. Probes are very short wire antennas or small loops as
shown in Figure 2.24. Both of these are immediately recognized as an electric
monopole antenna and a magnetic or loop dipole antenna. These names come from
their field distribution, again as shown in Figure 2.24, where the electric field of the
short wire antenna is similar to a point charge above a conductor (hence the name
monopole), whereas the magnetic field of the loop is similar to a short magnet
(a magnetic dipole). The dimensions are small compared to the wavelength
meaning that they are not the best for applications such as communication except
for very short distances. On the other hand, the electric probe is useful as a source
of electric fields, whereas the loop generates magnetic fields, which can be used to
couple power into waveguides and cavity resonators. The probes can also be used
to sense electric and magnetic fields in various measurements. The fact that the
probes are small means that they will have negligible effect on the structures they

Pr
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e

Conducting ground

I

I

(a) (b)

Figure 2.24 Electric and magnetic probes: (a) the electric probe with its electric
field and (b) the magnetic probe and its magnetic field
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couple power into or on the fields they are measuring. In some cases, the loop may
only be a section of a circle and may in fact not be circular.

2.9.5 Attenuators
Attenuators are two-port passive devices whose function is to attenuate power.
Thus, for example, given an input power Pi, the output power from the attenuator
may be Pi � 10 dB, that is, the attenuator reduces the power by 10 dB. Attenuators
are widely used in measurements to extend the dynamic range of the measuring
equipment, in impedance matching, in amplifiers to control the output, and in many
other applications. Attenuation is achieved by dissipating part of the input power so
that the output power is at the level required by the device. One of the most obvious
methods of constructing an attenuator is to use a lossy transmission line in
which the attenuation depends on the length of the line. The problem with this is
that the attenuator may be physically long, especially if high attenuation is needed
and the attenuation is usually frequency dependent. Another method is to reflect
part of the power, leading to reflection attenuators. There are other methods to
achieve the same effect of which the use of resistors that are physically small
compared to the wavelength is the simplest and one of the most common. As long
as the resistors are small compared to the wavelength, they can be treated as
lumped values, and the attenuation only depends on the lumped resistance values.
In its simplest form, one can think of an attenuator as a simple resistive divider as
shown in Figure 2.25. This particular attenuator is called an L-pad attenuator and
may be used, for example, for impedance matching. Although not commonly used
as power attenuators, it is very simple and forms the basis for other attenuators.

Given a voltage V1 across port 1, the voltage across port 2 can be calculated
from the voltage divider:

V2 ¼ V1
R2 jj Zout

R1 þ R2 jj Zout
(2.156)

The input power is V1
2=Zin and the output power is

Pout ¼ V 2
2

Zout
¼ V 2

1

Zout

R2 jj Zout

R1 þ R2 jj Zout

� �2

(2.157)
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Figure 2.25 (a) L attenuator and (b) equivalent circuit used to calculate the
voltage on port 2
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The attenuation is

A ¼ 10 log10
Pout

Pin
¼ 10 log10

Zin

Zout

R2 jj Zout

R1 þ R2 jj Zout

� �2
" #

dBð Þ (2.158)

Given the input and output impedances (i.e., the impedances of the lines connected
to ports 1 and 2) and the required attenuation A, one can select the resistances R1

and R2 to accomplish the required attenuation. In most cases, it will also be
necessary that the attenuator be matched to both the input and output lines. That
means the following:

R1 þ R2 k Zout ¼ Zin (2.159)

R1 þ Zinð Þ kR2 ¼ Zout (2.160)

These then provide the necessary relations to design the attenuator in Figure 2.25.
In most cases, Zin ¼ Zout (typically 50 W), simplifying somewhat the calculations.

In practical attenuators, it is often desired that the device be symmetric, that is,
that attenuation in both direction is identical (the attenuator in Figure 2.25 is not
symmetric). In addition, the attenuators may be balanced or unbalanced. In an
unbalanced attenuator, the resistive elements are connected only to one conductor
of the transmission line, whereas the ground conductor contains no resistive
elements. A balanced attenuator will have resistors in the ground conductor iden-
tical to the resistors in the other conductor. The attenuator in Figure 2.25 is a
nonsymmetric, unbalanced attenuator. Figure 2.26 shows the unbalanced classical
T and p attenuators, whereas Figure 2.27 shows the equivalent balanced T and p

V2V1

(a) (b)

V2V1 17.62 Ω16.61 Ω 16.61 Ω

292.4 Ω
292.4 Ω

69.93 Ω50 Ω 50 Ω50 Ω50 Ω

Figure 2.26 (a) 6-dB unbalanced T attenuator and (b) 3-dB unbalanced p
attenuator

V2V1

(a) (b)

V2V1 8.8 Ω

8.8 Ω

8.3 Ω 8.3 Ω

8.3 Ω 8.3 Ω

292.4 Ω
292.4 Ω

69.93 Ω50 Ω 50 Ω50 Ω50 Ω

Figure 2.27 (a) 6-dB balanced T (or H) attenuator and (b) 3-dB balanced p
(or O) attenuator
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attenuators also called H and O attenuators (respectively) for obvious visual rea-
sons. The T attenuators are shown with resistance values for 6 dB attenuation
whereas the p attenuators are shown for 3-dB attenuation. Note that the attenuators
in Figures 2.26 and 2.27 are clearly symmetric. Both the T and H attenuators can be
designed for nonequal input and output impedances if necessary. Note also that the
series resistance in the balanced T and p attenuators is half the series resistance of
the respective unbalanced attenuator.

Attenuators come in many varieties. Fixed attenuators are designed with fixed
resistances and are produced in commonly used values from about �3 to about
�100 dB and for line impedances from 50 to 600 W. Variable attenuators use
variable resistances to obtain attenuation within a given range. If the variable
resistors are replaced with fixed resistors and switches, one obtains step attenuators.
Attenuators are also rated by power. Because power is dissipated in the resistive
elements, these must be able to dissipate the amount of power required, hence they
can be physically large (a 3-dB attenuator will dissipate half the input power).

It should also be noted that the resistors are assumed to be ideal. Any deviation
from that will introduce reactance in the circuits leading to degradation of perfor-
mance including changes in phase. Resistances must be accurate or the attenuation
will change representing an error from the nominal value of the attenuator and mis-
match may occur at the input and output of the device leading to unwanted reflections.

2.9.6 Other circuits
There are of course many other passive devices, mirroring the devices one
encounters in low frequency circuits. These include filters, phase shifters, isolators,
circulators, terminators, and many more.

There are of course active devices as well, either specific to the microwave
range or adapted from low frequency devices. These include tube devices such as
klystrons and traveling wave tubes as well as semiconductor devices such as
diodes, transistors, amplifiers, and integrated circuits. These will not be discussed
here as they are out of the scope of the present work.

2.10 Transmission line resonators

Of particular importance in this work is the possibility of building resonant trans-
mission lines. These resonant structures can then be used in a manner similar to
other resonant structures such as closed resonant cavities based on shorted wave-
guide sections or circuit LC resonators. The equivalent circuit of resonators
and hence of transmission line resonators are RLC circuits and are shown in
Figure 2.28. Figure 2.28(a) and (b) shows generic series and parallel lossless
resonators, whereas Figure 2.28(c) and (d) shows lossy resonators. These are easily
recognized as circuits, but from the discussion of transmission line circuits in the
previous section, it is easy to see how transmission lines may be analyzed in similar
fashion. For example, using Figure 2.28(b), one can easily implement this as two
stubs (shorted or open) in parallel. We will do so later in this chapter.
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2.10.1 The concept of resonance
There are two basic ways of defining resonance. One is in terms of circuit elements
and the other in terms of energy. Both methods yield identical results, but one or the
other is more useful depending on usage. In the case of transmission lines, the
circuit approach is more convenient because circuit elements are easily defined,
whereas the fields and the energy extend throughout the space around the lines and
hence not easily accounted for (except, of course for coaxial lines). On the other
hand, in the case of microwave cavity resonators, where the circuit elements are not
obvious, the energy approach is preferred since the fields and energy are contained
within the cavity between the conducting walls. We discuss both methods here
starting with the circuit theory approach and then apply them to transmission line
resonance. In particular, we show that the energy approach is useful for analysis
especially when transmission line resonators are shielded.

We start with general circuits and only then relate these to transmission lines.
This approach simplifies understanding and does not exclude generality.

2.10.2 The series RLC circuit
We analyze the series RLC circuit in terms of circuit elements and in terms of
energy simply to show that both methods produce identical results. Consider the
series RLC circuit in Figure 2.29. The input impedance is

Zin ¼ R þ jwL þ 1
jwC

¼ R þ j wL � 1
wC

� �
(2.161)

C

L

C

L

C

L

R

C

L

R

(a) (b) (c) (d)

Figure 2.28 Resonating circuits: (a) series resonator, (b) parallel resonator,
(c) lossy series resonator, and (d) lossy parallel resonator

C

LR

Zin

Figure 2.29 Series RLC circuit and its input impedance. The circuit is fed from a
voltage source
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Resonance is defined as that frequency at which the imaginary part of the impe-
dance (strictly speaking, of the transfer function of the circuit) is zero:

w0L � 1
w0C

¼ 0 ! w0 ¼ 1
ffiffiffiffiffiffiffi
LC

p rad=sð Þ (2.162)

or

f0 ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p Hzð Þ (2.163)

The resistance R does not affect the resonant frequency but it does dissipate power
whereas an LC circuit does not.

The circuit exhibits a number of properties at resonance:

1. The impedance is purely resistive and its resistance equals R. In a lossless
circuit, the input impedance is zero.

2. The magnitude of the input impedance is minimum at resonance
3. The source voltage Vs and the current I are in phase
4. The resistor voltage is equal to Vs but the voltages on the inductor and capa-

citor can be much larger than Vs.

The current amplitude in the circuit is shown in Figure 2.30. Consistent with
the properties above, the current is maximum at resonance, whereas the voltage is
minimum. Note also that an ideal resonant circuit behaves as a short circuit with
infinite current and zero voltage. Although the height of the response at resonance
is defined by the resistance, the shape of the response or its bandwidth is defined by
the so-called half-power frequencies w1 and w2, the frequencies at which the power
dissipated by the circuit is half the power at resonance. At resonance the power
dissipated is

P w0ð Þ ¼ I2R

2
(2.164)

At w1 and w2 (see Figure 2.30), the dissipated power is half of that

P w1ð Þ ¼ P w2ð Þ ¼ I2R

2
¼ V 2

2R
(2.165)

ω

I

ω1 ω0 ω2

0.707Vs/R
Vs/R

Figure 2.30 Response of the RLC circuit in Figure 2.18 for the current in the
circuit. Vs is the voltage source amplitude that feeds the circuit
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where V is the amplitude of the source. By setting the impedance in (2.161) to
ffiffiffi
2

p
R,

we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ wL þ 1
jwC

� �2
s

¼
ffiffiffi
2

p
R (2.166)

Solving this for the half-power frequencies, we obtain

w1 ¼ � R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

þ 1
LC

s

(2.167)

w2 ¼ R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

þ 1
LC

s

(2.168)

By convention, the difference between the two half-power frequencies is called the
bandwidth of the resonant circuit:

BW ¼ w2 � w1 ¼ R

L
(2.169)

The lower the resistance, the narrower the bandwidth. An ideal LC circuit will have
zero bandwidth and infinite current amplitude. Since the bandwidth depends on R
and L, we can also relate it to reactive (stored) energy and dissipated energy in the
circuit. To do so, we define a quantity called quality factor (Q-factor) as the ratio of
peak stored energy to energy dissipated in one period at resonance:

Q ¼ 2p
peak stored energy

energy dissipated=per period
(2.170)

Because at resonance the reactive energy oscillates between the inductor and the
capacitor, we can calculate the peak energy stored and the energy dissipated in one
cycle as

Ws ¼ LI2

2
; Wd ¼ I2R

2f
(2.171)

where f is the frequency. Thus,

Q ¼ 2pf0
LI2=2
I2R=2

¼ w0L

R
(2.172)

where f0 is the resonant frequency. Because the peak energy stored in the capacitor
equals the peak energy stored in the inductor, we also have

Q ¼ w0L

R
¼ 1

w0CR
(2.173)
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Now, the bandwidth can be written in terms of the resonant frequency and the
quality factor:

BW ¼ w0

Q
(2.174)

Again, consistent with the above, we can say that an ideal LC circuit has infinite quality
factor and hence, the larger the losses in the circuit, the lower the quality factor.

The energy approach is very similar but perhaps more intuitive. Starting with
the Poynting theorem, the input power into the circuit may be written as

Pin ¼ Ploss þ j2wðWm � WeÞ (2.175)

where Wm and We are the time averaged magnetic and time averaged electric
energy stored in the inductance and capacitance, respectively.

Wm ¼ LjI j2
4

; We ¼ CjVcj2
4

¼ CjI=wCj2
4

¼ jI j2
4w2C

(2.176)

where Vc is the voltage across the capacitor, I is the current in the circuit, and
we have used the relation between current in and voltage across the capacitor
(IC ¼ jwCVC).

The input impedance is the input power divided by the RMS current squared:

Zin ¼ Pin

1=
ffiffiffi
2

p� �2 ¼ Ploss þ j2w Wm � Weð Þ
I2=2

(2.177)

At resonance, the stored magnetic and stored electric energies are equal, hence,

Wm � We ¼ LjI j2
4

� jI j2
4w2

0C
¼ 0 ! w0 ¼ 1

ffiffiffiffiffiffiffi
LC

p (2.178)

and, at resonance

Zin ¼ Ploss

I2=2
¼ I2R=2

I2=2
¼ R (2.179)

These are the same as those in (2.162) and (2.161), respectively. The Q-factor can
be obtained in a similar manner using (2.170).

Since the resonant frequency as well as half power frequencies and bandwidth
are related to the impedance of the circuit, it is often useful to analyze the impe-
dance of the circuit in the vicinity of resonance. Rewriting the circuit impedance at
a frequency w ¼ w0 þ Dw where Dw is small:

Zin ¼ R þ j wL � 1
wC

� �
¼ R þ jwL 1 � 1

w2LC

� �
¼ R þ jwL 1 � w2

0

w2

� �

¼ R þ jwL
w2 � w2

0

w2

� �
(2.180)
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Expanding the term w2 � w2
0:

w2 � w2
0 ¼ w� w0ð Þ wþ w0ð Þ ¼ Dw 2w� Dwð Þ ’ 2wDw (2.181)

where the fact that Dw is small was invoked. Substituting this into (2.180),

Zin ’ R þ j2LDw (2.182)

This form will be particularly useful in calculation of resonant frequencies of
transmission lines, but it can also be used to simplify the calculation of half power
frequencies. As mentioned above [see (2.166)], at half power the magnitude of the
impedance equals

ffiffiffi
2

p
R. Hence,

Zin ’ jR þ j2LDwj ¼
ffiffiffi
2

p
R (2.183)

or

R2 þ 4L2 Dwð Þ2 ¼ 2R2 ! Dw ¼ R

2L
(2.184)

That is, the half power frequencies are

w1 ¼ w0 � Dw ¼ w0 � R

2L
(2.185)

w2 ¼ w0 þ Dw ¼ w0 þ R

2L
(2.186)

These look somewhat different than the half power frequencies in (2.167) and
(2.168) but, under the assumption that Dw is small, (2.185) and (2.186) are good
approximations to (2.167) and (2.168).

Note also that the bandwidth is 2Dw or

BW ¼ 2Dw ¼ R

L
(2.187)

Similarly, the Q-factor may be written as

Q ¼ w0

BW
¼ w0

2Dw
¼ w0L

R
(2.188)

as previously obtained.
One can rewrite the half-power frequencies and the bandwidth in terms of the

resonant frequency and the Q-factor as

w1 ¼ w0 � w0

2Q
; w2 ¼ w0 þ w0

2Q
; BW ¼ w0

Q
(2.189)

Equations (2.167) and (2.168) may be similarly treated. Another modification that
is useful, particularly in evaluation of the Q-factor in low loss circuits is to replace
the resonant frequency w0 by a complex effective resonant frequency wc defined as

wc ¼ w0 1 þ j

2Q

� �
(2.190)
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where w0 is the real resonant frequency (of the unperturbed cavity). The reason to
do so is that one can then start with the solution for the lossless case (always easier
to obtain) and then replace the resonant frequency with the complex effective
resonant frequency to take into account the loss. For example, the impedance of the
lossless circuit in is (R ¼ 0):

Zin ¼ j2L w� w0ð Þ (2.191)

Now replacing w0 with wc:

Zin ¼ j2L w� w0 � jw0

2Q

� �
¼ w0L

Q
þ j2L w� w0ð Þ ¼ R þ j2LDw (2.192)

The latter is exactly (2.182).
This is a perturbation method and is often used in analysis. We will discuss the

perturbation method and its application to resonant cavities in the context of cou-
pled transmission line resonators in Chapter 3.

2.10.3 Parallel resonant circuit
The basic parallel resonant circuit is shown in Figure 2.31. Although we could use
the circuit parameters here as for the series resonant circuit, there is no need to
repeat the process since the energy approach produces the same results. Starting
with admittances of the components we write for the input impedance:

Zin ¼ 1
1=R þ 1=jwL þ jwC

(2.193)

The input complex power into the circuit is

Pin ¼ VI�

2
¼ jV j2

2Z�
in

¼ jV j2
2

1
R
þ j

wL
� jwC

� �
(2.194)

The first term is the power loss in the resistance, the second the reactive magnetic
power, and the third the reactive electric power. We can rewrite the latter two terms
in terms of time averaged stored magnetic and electric energies by noting that the
stored electric energy is

We ¼ CjV j2
4

(2.195)

CLR
Zin

Figure 2.31 A parallel resonant circuit and its input impedance. The circuit is fed
from a current source
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and the time averaged stored magnetic energy is

Wm ¼ jILj2L

4
¼ jV j2

4w2L
(2.196)

The power may now be written as

Pin ¼ jV j2
2R

þ j
jV j2
2wL

� j
jV j2wC

2
¼ jV j2

2R
þ j2w

jV j2
4w2L

� jV j2C

4

 !

¼ Ploss þ j2w Wm � Weð Þ (2.197)

This relation is identical to (2.175). Since at resonance Wm ¼ We, we get the reso-
nant frequency as

jV j2
4w2

0L
� jV j2C

4
! w0 ¼ 1

ffiffiffiffiffiffiffi
LC

p (2.198)

The impedance of the circuit may be written in terms of power as

Zin ¼ Ploss þ j2w Wm � Weð Þ
I2=2

(2.199)

At resonance this is equal to

Zin ¼ Ploss

I2=2
¼ R (2.200)

These relations are the same as for the series resonance, but we note that although a
low loss series resonant circuit implies low series resistance, a low loss parallel
resonator implies high parallel resistance (infinite in the ideal case).

The Q-factor is calculated from the definition in (2.170):

Q ¼ w0
2Wm

Ploss
¼ R

w0L
¼ w0RC (2.201)

We note that in this case, the higher the resistance, the higher the Q-factor as one
would expect from a parallel circuit. The bandwidth of the resonator is proportional
to the reciprocal of Q:

BW ¼ w0

Q
¼ L

R
¼ 1

RC
(2.202)

Assuming that the bandwidth is small, we can calculate the half power
frequencies as

w1 ¼ w0 � L

2R
¼ w0 � 1

2RC
(2.203)

w2 ¼ w0 þ L

2R
¼ w0 þ 1

2RC
(2.204)
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Again, as in (2.172), these can be rewritten in terms of the Q-factor:

w1 ¼ w0 � w0

2Q
; w2 ¼ w0 þ w0

2Q
; BW ¼ w0

Q
(2.205)

More accurate values that do not assume small bandwidth are obtained from the
impedance relation by noting that the magnitude of the impedance at the half power
points must equal

ffiffiffi
2

p
R as was done to obtain the half power frequencies in (2.167)

and (2.168). Alternatively, by observing the duality between (2.161) and (2.193),
we can simply replace R by 1/R, L by 1/L, and C by 1/C in (2.167) and (2.168) and
obtain

w1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2RC

� �2

þ 1
LC

s

� 1
2RC

(2.206)

w2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2RC

� �2

þ 1
LC

s

þ 1
2RC

(2.207)

These too can be rewritten in terms of the Q-factor.
Clearly, as R approaches infinity, these relations approach (2.203) and (2.204),

respectively. The response of the parallel resonant circuit is shown in Figure 2.32.
It is similar to the series circuit response except of course that here it is the voltage
that changes with frequency and hence the impedance peaks at resonance.

The perturbation method can be applied here as well, but we will not pursue
this since the results are the same and there is little value in ‘‘proving’’ that one can
use the perturbation method.

Aside from the fact that a resonator resonates at a given frequency, the most
important characteristic property is the Q-factor of the resonator. The Q-factor as
calculated from the definition in (2.170) only depends on the properties of the
resonator itself. When the resonator is connected to external circuits, as it must be,
these external circuits ‘‘load’’ the resonator, that is, they add losses to the resonator
by drawing currents. Necessarily, the effective Q-factor will be lower. To account
for this, the Q-factor calculated in (2.170) is called the unloaded Q-factor if the
cavity is unloaded; however, in practice, (2.170) is the loaded quality factor QL

ω
ω1 ω0 ω2

0.707IsR

V
IsR

Figure 2.32 Response of the parallel RLC circuit in Figure 2.31 for voltage in the
circuit. Is is the current source amplitude that feeds the circuit
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since the bandwidth measured depends on the loading. Thus, we use the loaded
quality factor as

QL ¼ w0

BW
¼ w0

w2 � w1
¼ f0

fu � fl
(2.208)

where f0 is the resonant frequency, fu the upper 3 dB frequency, and fl the lower
3 dB frequency so that fu � fl is the bandwidth of the cavity resonator (or any
resonant circuit). Again, it should be noted that this equals the unloaded quality
factor if the cavity is not loaded.

There are two additional definitions for quality factor in addition to that in (2.170):

Loaded quality factor is defined as

QL ¼ 2p
energy stored in the cavity

energy lost in the cavity per cycleþ
energy lost in the external circuit per cycle

(2.209)

The external quality factor is defined as

Qe ¼ 2p
energy stored in the cavity

energy lost in the external circuit per cycle
(2.210)

To calculate the external quality factor a load resistance RL due to the external
circuit is postulated which accounts for the loading and (2.172) or (2.201) is used to
define an external Q-factor Qe:

Qe ¼ w0L

RL
for series resonators (2.211)

Qe ¼ RL

w0L
for parallel resonators (2.212)

where RL is the load resistance. The relation between the three quality factors is

1
QL

¼ 1
Q0

þ 1
Qe

or : QL ¼ QeQ0

Qe þ Q0
(2.213)

In this relation, the unloaded cavity was denoted as Q0 to distinguish it from Qe

and QL.
In practical calculations or in measurements, QL is found from (2.208) and Qe

either from (2.211) or (2.212). Then, Q0 is found from (2.213).

2.11 Series and parallel transmission line resonators

Now that the properties of resonant circuits have been established, we apply these
concepts to transmission line resonators. Although these resonators may look very
different in structure because they are essentially ‘‘geometric’’ structures formed by
shorted and/or open transmission line sections, they operate exactly the same as any
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resonator. To do so, these sections represent series or parallel capacitors and
inductors and, in lossy resonators, they also represent resistances. The conditions
for resonance remain the same and the behavior at resonance as well.

There are two basic ways of building a transmission line resonator. The first
method exploits the fact that at resonance, the input impedance of a series resonator
is purely resistive and minimum [see (2.179) or (2.200)] or, if the resonator is
lossless, zero. This means that any shorted transmission line of length nl/2 (n ¼ 1,
2, 3, . . . ) will resonate. Similarly, any open transmission line of length nl/4 (n ¼ 1,
3, 5, . . . ) must also resonate (see Sections 2.7.5 and 2.7.6 for properties of shorted
and open transmission lines). Both of these produce minimum (zero) input impe-
dance and hence are series resonators. Parallel resonators can be built using
nl/2 (n ¼ 1, 2, 3, . . . ) open-circuit transmission lines or nl/4 (n ¼ 1, 3, 5, . . . )
short-circuited transmission lines since these lines will have maximum (infinite)
input impedance. A second method of building a transmission line resonator is
based on the fact that resonance is due to the capacitance and inductance [see
(2.162) or (2.198)]. Based on this and the fact that shorted and open transmission
line stubs have specific capacitances or inductances, it suffices to connect together
two stubs of different lengths for the circuit to resonate. A parallel resonator can
be built by connecting two line sections in parallel, with one line having a capa-
citive input impedance, the other with inductive input impedance and adjusting the
lengths of the line sections to obtain the required resonant frequency (see
Sections 2.7.5 and 2.7.6; Figures 2.11 and 2.12). The line sections can be, in
principle, connected in series although parallel connection of transmission line
sections is more practical. The resulting circuit is often called ‘‘tapped transmission
line resonator.’’ These two approaches to transmission line resonators are discussed
next in some detail, starting with the impedance approach.

2.11.1 Short-circuited l/2 transmission line resonator
Consider the half-wavelength shorted transmission line in Figure 2.33. Using (2.78)
with ZL ¼ 0, the input impedance to the line is

Zin ¼ Z0 tanhðglÞ (2.214)

where g ¼ aþ jb is the propagation constant, a the attenuation constant (due to
losses on the line), and b¼ 2p/l the phase constant. Or

Zin ¼ Z0 tanhðaþ jbÞl ¼ Z0
tanhal þ j tanbl

1 þ j tanhal tanbl
(2.215)

Zin Z0 α β Short

l = λ/2

Figure 2.33 A half-wavelength shorted transmission line segment
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We first note that at resonance bl ¼ 2p=lð Þ l=2ð Þ ¼ p, tan bl ¼ 0, and hence,

Zin ¼ Z0 tanhal (2.216)

The input impedance is real and clearly minimal since the attenuation constant in
practical transmission line resonators is very small. In fact, we can approximate
tanhal � al and write

Zin � Z0al (2.217)

This is then a series resonator with its equivalent resistance

R ¼ Z0al ¼ Z0a
l
2

(2.218)

If we assume a frequency w near resonance so that w ¼ w0 þ Dw where Dw is
small, then from the definition of the phase constant we have

b ¼ w
vp

¼ w0

vp
þ Dw

vp
(2.219)

Thus,

bl ¼ w0l

vp
þ Dwl

vp
¼ pþ Dwp

w0
(2.220)

where we used the fact that l¼ l/2 at resonance and hence bl ¼ 2p=lð Þ l=2ð Þ ¼ p.
Thus,

tanbl ¼ tan pþ Dwp
w0

� �
¼ tan

Dwp
w0

� �
� Dwp

w0
(2.221)

where the fact that Dwp=w0 is a small angle was used. With these, the input
impedance in (2.215) is

Zin � Z0
al þ j Dwp=w0ð Þ
1 þ jal Dwp=w0ð Þ � Z0al þ jZ0

Dwp
w0

(2.222)

where we used the fact that al 	 1 and Dwp=w0 	 1. The first term on the right-
hand side is the resistance of the circuit [see (2.217)]. Comparing this relation with
(2.182), we conclude that the equivalent inductance is

L ¼ Z0p
2w0

(2.223)

From the relation for resonant frequency in (2.162), the equivalent capacitance
becomes

C ¼ 1

w2
0L

¼ 2
Z0w0p

(2.224)
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Again, from equivalence with the series resonant circuit, the quality factor

Q ¼ w0L

R
¼ p

2al
¼ b

2a
(2.225)

The latter relates the Q-factor to the attenuation constant on the line. Bandwidth
and half power frequencies are immediately available from (2.185) to (2.187):

BW ¼ R

L
¼ Z0al

Z0p=2w0
¼ w0

Q
¼ w0

2a
b

(2.226)

Hence, the half power frequencies are

w1 ¼ w0 � w0
a
b

(2.227)

w2 ¼ w0 þ w0
a
b

(2.228)

2.11.2 Open-circuited l/2 transmission line resonator
Consider the half-wavelength open transmission line in Figure 2.34. Using (2.78)
with ZL ! 1, the input impedance to the line is

Zin ¼ Z0
1

tanhðglÞ (2.229)

where g ¼ aþ jb is the propagation constant, a the attenuation constant (due to
losses on the line), and b¼ 2p/l the phase constant. Or

Zin ¼ Z0
1

tanhðglÞ ¼ Z0
1 þ j tanbl tanhal

tanhal þ j tanbl
(2.230)

At resonance bl ¼ 2p=lð Þ l=2ð Þ ¼ p, tan bl ¼ 0, and hence,

Zin ¼ Z0

tanhal
(2.231)

Since the attenuation constant is small, the input impedance is real and clearly
larger than Z0. Because al is small, we can approximate tanhal � al and write

Zin � Z0

al
(2.232)

Zin Z0 α β

l = λ/2

Figure 2.34 A half-wavelength open transmission line segment
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This is therefore a parallel resonator with its equivalent resistance

R ¼ Z0

al
¼ 2Z0

al
(2.233)

At a frequency w near resonance so that w ¼ w0 þ Dw where Dw is small, then
from the definition of the phase constant

b ¼ w0

vp
þ Dw

vp
! bl ¼ pþ Dwp

w0
(2.234)

where again we used the fact that l ¼ l/2 at resonance, and hence, bl ¼
2p=lð Þ l=2ð Þ ¼ p. Thus,

tanbl ¼ tan pþ Dwp
w0

� �
¼ tan

Dwp
w0

� �
� Dwp

w0
(2.235)

where the fact that Dwp=w0 is a small angle was used. With these, the input
impedance in (2.230) is

Zin ¼ Z0
1

tanhðglÞ ¼ Z0
1

al þ j Dwp=w0ð Þ ¼
1

al=Z0ð Þ þ j Dwp=Z0w0ð Þ (2.236)

Comparing this with the impedance of the parallel circuit resonator in (2.183), we
write directly for the equivalent values:

R ¼ Z0

al
(2.237)

and

Dwp
Z0w0

¼ w0C � 1
w0L

(2.238)

or, since the impedance at resonance must be purely real,

C ¼ p
2w0Z0

; L ¼ 1

w2
0C

¼ 2Z0

w0p
(2.239)

From equivalence with the parallel resonant circuit, the quality factor

Q ¼ w0R

L
¼ w0 Z0=alð Þ

2Z0=w0p
¼ b

2a
(2.240)

Bandwidth and half power frequencies are immediately available from (2.237) to
(2.239):

BW ¼ L

R
¼ 2Z0=w0p

Z0=al
¼ 2al

w0p
¼ w0

2a
b

(2.241)

w1 ¼ w0 � w0
a
b

(2.242)

w2 ¼ w0 þ w0
a
b

(2.243)
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2.11.3 Additional properties of transmission line resonators
From the discussion in Sections 2.11.1 and 2.11.2, it is clear that the resonant
frequency is defined by the length of the line, whereas the type of resonator is
defined by the load (short or open). However, the situation is a bit more complex
than that since we have assumed, at the outset, that the length of the line is l/2
(or l/4, depending of which type of resonator we start with). Given a length of
transmission line, the resonant frequency in (2.239) or (2.224) is considered to be
the fundamental mode of resonance. However, that is not the only resonant fre-
quency possible. Suppose that we were to cut the resonator in Figure 2.33 or
Figure 2.34 in two. The net effect is that the length l in (2.220) and (2.134) is
reduced to l/2. The consequence of that is that the resonant frequency must be
twice as high. That is, the line will resonate at 2w0. Similarly, extending the length
of a line by a half wavelength will reduce the fundamental frequency to half its
original value. In fact, a transmission line resonator of a given length will resonate
in an infinite number of modes, both series and parallel. These properties arise
simply from the fact that conditions on a transmission line repeat at intervals of
half a wavelength.

From the properties of shorted and open lines, we recall that a l/4 open
transmission line has zero input impedance, whereas a l/4 shorted transmission line
has infinite input impedance. That means that a series transmission line resonator
will resonate as a parallel transmission line at a frequency at which its length is nl/4
(n ¼ 3, 5, 7, . . . ) since under these conditions the input to the line behaves as that of
an open l/2 line. Similarly, a parallel transmission line resonator will resonate as a
series transmission line resonator at a frequency at which the length of the line is
nl/4 (n ¼ 3, 5, 7, . . . ). In both of these situations, the line behaves as an nl/2 line,
whereas the additional l/4 length modifies the load.

To place these considerations in more concrete terms, one can view a trans-
mission line resonator in terms of the natural frequencies of the transmission line
section. Assuming a shorted transmission line section of length d, connected to an
ideal voltage source (a generator with zero internal impedance), we can calculate
the stored electric and magnetic energies as well as the dissipated time averaged
power from which we can calculate the resonant frequencies and Q-factor in a
process identical to the one discussed above, but now, we do not limit ourselves to
the fundamental frequency. The voltage and current at any point on the line are
found from (2.113):

V ðzÞ ¼ Vþ ejbz � e�jbz
� � ¼ j2VþsinðbzÞ ¼ j2Vþsin

np
d

z
� 

(2.244)

IðzÞ ¼ Vþ

Z0
ejbz þ e�jbz
� � ¼ 2Vþ

Z0
cos bzð Þ ¼ 2Vþ

Z0
cos

np
d

z
� 

(2.245)

For a line of length d, the phase constant was written as np/d to ensure that the
voltage is zero at the generator and at the load and the current is maximum as
required for (series) resonance.
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The time-average stored magnetic energy is due to the inductance per unit
length, L:

Wm ¼ 1
4

ðz¼d

z¼0
LjIðzÞj2dz ¼ 1

4

ðz¼d

z¼0
L

2Vþ

Z0

� �2

cos2 np
d

z
� 

dz ¼ 2Vþ

Z0

� �2 Ld

8
(2.246)

The time averaged stored electric energy is due to the capacitance per unit length, C:

We ¼ 1
4

ðz¼d

z¼0
CjV ðzÞj2dz ¼ 1

4

ðz¼d

z¼0
C 2Vþð Þ2

sin2 np
d

z
� 

dz ¼ 2Vþð Þ2 Cd

8
(2.247)

The dissipated power in the line is due to R and G or, more generally due to the
attenuation constant:

Pav ¼ 1
2

ðz¼d

z¼0
RjIðzÞj þ GjVðzÞj2dz

¼ 1
2

ðz¼d

z¼0
RjIðzÞj þ GjVðzÞj2dz

¼ 1
2

ðz¼d

z¼0
R

2Vþ

Z0

				

				

2

þ Gj2Vþj2dz ¼ 2Vþð Þ2 Rd=Z2
0 þ Gd

4
(2.248)

Now, we can calculate the Q-factor and resonant frequency for the nth mode:

Qn ¼ wn Wm þ Weð Þ
Pav

¼
wn 2Vþ=Z0ð Þ2 Ld=8ð Þ þ 2Vþð Þ2 Cd=8ð Þ
� 

2Vþð Þ2 Rd=Z0
2 þ Gdð Þ=4ð Þ

¼ wn=2 1=Z0
2ð ÞL þ Cð Þ

R=Z0
2ð Þ þ G

(2.249)

For a low loss transmission line, the characteristic impedance may be approximated as

Z0 �
ffiffiffiffi
L

C

r

(2.250)

With this,

Qn ¼ wn
LC

RC þ GL
(2.251)

and, since the input impedance (for an ideal transmission line) must vanish at
resonances the resonant frequencies of the line are

wn ¼ 1
ffiffiffiffiffiffiffiffiffiffi
LnCn

p ¼ np
d

1
ffiffiffiffiffiffiffi
LC

p ; n ¼ 0; 1; 2; 3; . . . : (2.252)
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where Ln and Cn are the equivalent inductance and capacitance, respectively. From
the magnetic energy, we have

1
4

LnjI j2 ¼ 1
8

LdjI j2 ! Ln ¼ Ld

2
(2.253)

From (2.252) and (2.253),

Cn ¼ 2Cd

n2p2
(2.254)

and, for an RLC circuit [see (2.188)],

Rn ¼ wnLn

Qn
¼ 1

2
R

L
þ G

C

� �
Ld (2.255)

A proper model that accounts for the resonant frequencies and their corresponding
Q-factors is shown in Figure 2.35. This is a lumped element model in which the
resonators are in parallel, each representing a resonant frequency. The series
resistance in each branch defines the Q-factor at that resonant frequency. Note that
n ¼ 0 means w0 ¼ 0. This defines the DC response of the transmission line. Note
that at DC the capacitance has been removed since based on (2.254) it becomes
infinite and hence a short circuit.

From (2.252), it is clear that given a length, d, and a fundamental resonant
frequency, w0, the higher order resonant frequencies occur at 2w0, 3w0, . . . , nw0.

The resonant frequencies and the model for an open transmission line may be
obtained following similar arguments. In fact, all that is necessary is to recognize
that for a resonant open line the current at the load and at the input to the line must
be zero (for an ideal line), meaning that the impedance must be infinite. The current
and voltage are [see (2.113)]:

V ðzÞ ¼ 2Vþcos
np
d

z
� 

; IðzÞ ¼ j
2Vþ

Z0
sin

np
d

z
� 

(2.256)

Ld

Rd

Ld/2 Ld/2 Ld/2

(R/L+G/C)Ld/2

2Cd/�2

(R/L+G/C)Ld/2

2Cd/4�2

(R/L+G/C)Ld/2

2Cd/(n�)2

Figure 2.35 A lumped element model for the shorted transmission line that defines
resonance and Q-factors for all modes of resonance
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Comparing these to the current and voltage for the shorted line, it is easy to see
that the time averaged electric and magnetic energy as well as the Q-factor are
the same. However, equating now the electric energy to that of a capacitance,
we have

1
4

Cnj2V j2 ¼ 1
8

Cdj2V j2 ! Cn ¼ Cd

2
(2.257)

and, as a consequence,

Ln ¼ 2Ld

n2p2
(2.258)

Comparing these results with those for the shorted line, the roles of Cn and Ln in the
model are interchanged and, since this is a parallel resonator (high impedance at
resonance), the model now is as shown in Figure 2.36. The first section corresponds
to n ¼ 0 (w¼ 0 or DC), the second to the fundamental resonant frequency (n ¼ 1),
and the third and up to the higher order resonances (n ¼ 2, 3, . . . ). The higher order
resonant frequencies are nw0, where n ¼ 2, 3, . . . and w0 is the fundamental
frequency as calculated in (2.178).

2.11.4 Tapped transmission line resonators
A somewhat different approach to the design of transmission line resonators is to
use the capacitive and inductive behavior of shorted and open transmission line
resonators. From Figure 2.12, we note that a shorted transmission line of length
0 < d1 < l/4 [or nl/2 < dl < (l/4 þ nl/2), n ¼ 0, 1, 2, . . . ] behaves as an inductor.
Similarly, from Figure 2.11, an open line of length 0 < d2 < l/4 [or nl/2 < d2 <
(l/4 þ nl/2), n ¼ 0, 1, 2, . . . ] behaves as a capacitor. Thus, a resonator can be built
as a l/4 line as shown in Figure 2.37. Note that selecting the line to be of length l/4
guarantees that d1 and d2 are each shorter than one quarter wavelength and hence
guaranteed to resonate. The circuit shown is a parallel resonator and at resonance
the impedance must be real and high; hence, we will calculate the admittance at
the connection point.

Gd

(R/L+G/C)Cd/2

2Ld/�2

Cd Cd/2

(R/L+G/C)Cd/2

2Ld/4�2

Cd/2

(R/L+G/C)Cd/2

2Ld/(4�)2

Cd/2

Figure 2.36 A lumped element model for the open transmission line that defines
resonance and Q-factors for all modes of resonance
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The input admittance of the shorted section is

Zin1 ¼ Z1 tanh a1 þ jb1ð Þd1 ! Yin1 ¼ Y1 coth a1 þ jb1ð Þd1 (2.259)

The input admittance of the open section is

Zin2 ¼ Z2 coth a2 þ jb2ð Þd2 ! Yin2 ¼ Y2 tanh a2 þ jb2ð Þd2 (2.260)

Assuming the properties of the two sections are the same and d1 ¼ d, d2 ¼ l/4 � d,
we have

Yd ¼ Y0 coth aþ jbð Þd þ tanh aþ jbð Þ l=4 � dð Þ½ � (2.261)

Expanding this using the properties of half-angles, we write

Yd ¼ Y0
sinh 2ad � j sin 2bd

cosh 2ad � cos 2bd
þ sinh 2a l=4 � dð Þ þ j sin 2b l=4 � dð Þ

cosh 2a l=4 � dð Þ þ cos 2b l=4 � dð Þ
� �

(2.262)

Now, since the lines are low loss, the attenuation constant is small, and we can
replace sinh 2ad ’ 2ad, sinh 2a l=4 � dð Þ ’ 2a l=4 � dð Þ
Also

sin 2b
l
4
� d

� �
¼ sin 2b

l
4

� �
cos 2bd � cos 2b

l
4

� �
sin 2bd ¼ sin 2bd (2.263)

cos 2b
l
4
� d

� �
¼ cos 2b

l
4

� �
cos 2bd � sin 2b

l
4

� �
sin 2bd ¼ �cos 2bd (2.264)

Substituting these

Yd ¼ Y0
2ad � j sin 2bd

1 � cos 2bd
þ 2a l=4 � dð Þ þ j sin 2bd

1 � cos 2bd

� �
¼ 2a l=4ð Þ

1 � cos 2bd
(2.265)

This shows that the device must resonate at any value of d since the admittance is
real regardless of d and the imaginary part cancels. The resonant frequency is
defined by the length of the line (see below). The quality factor of the line is the
same as calculated for the parallel resonator above. As a consequence, the band-
width and half-power points are also the same.

Z0Z0

d1d2

λ/4

Figure 2.37 A l/4 tapped transmission line resonator
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One can also build a tapped transmission line resonator using two shorted
segments as in Figure 2.38. In this case, one segment, say the left, must be shorter
than a quarter wavelength to act as an inductor. The second must be longer than a
quarter wavelength but shorter than a half wavelength to act as a capacitor (see
Figure 2.11). Under these conditions, the line becomes a half-wavelength resonator.
Although we do not show it here, the analysis is very similar to the analysis for the
l/4 transmission line resonator.

The tapped resonators in Figures 2.37 and 2.39(b) are guaranteed to resonate
for any position of the taps, and they are very specific as to the dimensions d1 and
d2. The resonant frequency can be calculated from the properties of the shorted and
open lines. Since in most practical applications the lines are either lossless or can be
approximated as lossless lines, we calculate the resonant frequency for lossless
stubs. Considering Figure 2.39, suppose that the left branch in Figure 2.39(b) is
made so that it is equivalent to a capacitance C. The input impedance of this seg-
ment must be

Zin1 ¼ jZ01 tanb1d1 ¼ 1
jwC

Wð Þ (2.266)

where Z01 is the characteristic impedance of the shorted line forming this segment,
and b1 is the phase constant of the segment.

Line (2), which is also shorted, must behave as an equivalent inductor of
inductance L. Its input impedance is

Zin2 ¼ jZ02 tanb2d2 ¼ jwL Wð Þ (2.267)

Z0Z0

d1d2

λ/2

Figure 2.38 A l/2 tapped transmission line resonator made with shorted segments

(a) (b)

(1) (2)

C L

A

B

Zin1 Zin2

Z02Z01

β1 β2

d2d1

Figure 2.39 (a) A parallel resonant circuit and (b) the transmission line
implementation of the parallel resonant circuit
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At resonance, the impedance of the circuit is ? or, alternatively, the admittance of
the parallel circuit is zero. Using the latter, we can write

1
Zin1

þ 1
Zin2

¼ 1
jZ01 tanb1d1

þ 1
jZ02 tanb2d2

¼ 0 (2.268)

Rearranging terms, we get the required condition for resonance:

Z01 tanb1d1 þ Z02 tanb2d2 ¼ 0 (2.269)

or, in terms of the frequency itself (b¼w/up ¼ 2pf/up), we can write

Z01 tan
2pfd1

up1
þ Z02 tan

2pfd2

up2
¼ 0 (2.270)

This is a transcendental equation and we cannot solve it explicitly. However, since
b1, b2, Z01, and Z02 are known from the line parameters, all that remains to be
defined are d1 and d2. This can be done in two ways: if the frequency is given, then
a relation between d1 and d2 is obtained. We fix one value and find the second such
that it satisfies the relation. Alternatively, we can fix both d1 and d2 and find the
frequencies at which the resulting circuit resonates. Any method of solving the
transcendental equation in (2.269) or (2.270) is acceptable for solution.

Note that we should expect multiple solutions from the periodic nature of the
tangent functions. The resonant circuit resonates at an infinite number of discrete
frequencies.

Series resonant circuits can also be built, at least in principle, using the same
approach, although not with all types of transmission lines. A simple series reso-
nant circuit is shown in Figure 2.40 together with its equivalent implementation in
terms of shorted, lossless transmission lines. The line shown is a two-wire line, but
other transmission lines may be used. Note, however, that there is no proper
mechanism to connect two coaxial lines in series. This circuit is limited to open
lines such as the parallel plate transmission line or the two-conductor open line.

Following the same process as for the parallel resonant circuit, one segment,
say segment (1), must be of length d1 to make it capacitive and therefore will have
the impedance in (2.266). The second segment is made to be inductive and will

(1)
(2)

Zin1Zin2

C

⇔L d1
d2

Figure 2.40 A series resonant circuit and its transmission line implementation
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have the impedance in (2.267). Now, the total impedance of the line is zero and
we write

Zin1 þ Zin2 ¼ jZ01 tanb1d1 þ jZ02 tanb2d2 ¼ 0 (2.271)

Thus, the equation that must be satisfied is, again,

Z01 tanb1d1 þ Z02 tanb2d2 ¼ 0 (2.272)

Also, instead of using shorted transmission lines, open transmission lines may be
used as well since the impedances of shorted and open transmission lines are the
same if one line is shortened or lengthened by one-quarter wavelength. Thus, once
a resonator is designed with either type of line, it is a simple matter to find a
resonator made of the second type or a combination of the two.

In general, shorted transmission lines are preferred for a variety of reasons,
including noise, but sometimes, especially when the line is used to measure
external conditions, an open line is more practical. For example, resonant coaxial
transmission lines are often used to measure water content in snow to evaluate
runoff levels and water reserves. An open resonant circuit is most useful since it
can then simply be pushed into the snow pack for measurement purposes. Simi-
larly, a resonator that measures pollutants in air must be open in one way or
another. If coaxial lines are used, the resonator must be made of open segments. If,
on the other hand, parallel plates are used, shorted lines may be used because the
structure itself is open.

This method also allows for the calculation of the Q-factor of the resonator.
Assuming a loss resistance R as in Figure 2.28(c) and (d), the Q-factor is

Q ¼ 2pf0
average energy stored

power loss
(2.273)

Since the resonant circuit stores both electric and magnetic energies, which are
equal at resonance, we have

Q ¼ 2pf0
We þ Wm

Pl
¼ 2pf0

2We

Pl
¼ 2pf0

2Wm

Pl
(2.274)

The stored magnetic energy is that stored in an equivalent inductor L is LI2/2 and
the electric energy is that stored in an equivalent capacitor is CV2/2 where I is the
current through the inductor and V the voltage across the capacitor. The power loss
is I2R. For the series circuit in Figure 2.28(c), this gives

Q ¼ 2pf0
2 LI2=2ð Þ

I2R
¼ 2pf0

L

R
(2.275)

This is the same as that obtained in (2.172) or in (2.225). The bandwidth and the
half power frequencies are also the same and given in (2.226)–(2.228).
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Similarly, starting with the stored electric energy as CV2/2 and the power loss
as I2/R, where I is the current through the capacitor. The latter can be calculated
from the impedance of the capacitor. The Q factor can then be written as

Q ¼ 2pf0
2We

Pl
¼ 2pf0

2 CVc
2=2ð Þ

Ic
2R

¼ 2pf0
CVc

2

Vc
2= jwCð Þ �jwCð Þð Þ=R

¼ 1
2pf0RC

(2.276)

Identical relations can be obtained for the parallel circuit in Figure 2.28(d).
The limitation of this simplistic method of looking at transmission line reso-

nance is obvious, especially when considering the series resonant circuit in
Figure 2.40. In fact, a circuit of this type would be almost impossible to construct
with many physical transmission lines. The methods of design and analysis in the
previous sections, especially for series transmission line resonators are much
more general. The advantage of the analysis in this section is its simplicity and the
intuitive equivalence to circuit theory approach to resonators.

2.12 The Smith chat

The dominant feature in transmission line analysis is the use of the reflection
coefficient. The reflection coefficient was used to find the conditions on the line, to
calculate the line impedance, and to calculate the SWR. Voltage, current, and
power were all related to the reflection coefficient. The reflection coefficient, in
turn, was defined in terms of the load and line impedances (or any equivalent load
impedances such as at a discontinuity). The calculations themselves can be rather
complex because of use of complex numbers and harmonic functions. Much of this
tedium can be simplified through the use of the Smith chart. The Smith chart is a
chart of normalized impedances (or admittances) in the reflection coefficient plane.
As such, it allows calculations of all parameters related to transmission lines,
waveguides, as well as impedances in open space, circuits, and the like. The Smith
chart is a common design tool in electromagnetics. Some measuring instruments
such as network analyzers actually use a Smith chart to display conditions on lines
and networks. Naturally, any chart can also be implemented in a computer pro-
gram, and the Smith chart has. A computerized Smith chart can then be used to
analyze conditions on lines.

The Smith chart is an impedance chart. As such it does not provide for direct
calculations of voltages, currents or power. Nevertheless, it is a useful tool in the
calculation of voltages and currents as well as power since it provides important
information such as the generalized reflection coefficient, SWR, and the location of
voltage and current maxima and minima. One of the most important uses of the
chart is as an aid in matching impedances.

To better understand the Smith chart and to gain some insight in its use, we
will ‘‘build’’ a Smith chart, gradually, based on the definitions of the reflection
coefficient. Consider the circuit in Figure 2.41. The line impedance is real and
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equals Z0, but the load is a complex impedance ZL ¼ RL þ jXL, where RL is the load
resistance and XL the load reactance. The reflection coefficient [see (2.72) and
(2.73)] may be written in one of two forms. The first is a rectangular form (i.e.,
written in complex variables):

GL ¼ ZL � Z0

ZL � Z0
¼ RL � Z0ð Þ þ jXL

RL þ Z0ð Þ þ jXL
¼ Gr þ Gi (2.277)

The reflection coefficient is not modified by normalizing the numerator and
denominator by Z0:

GL ¼ ZL � Z0ð Þ=Z0

ZL þ Z0ð Þ=Z0
¼ RL=Z0 � 1ð Þ þ jXL=Z0

RL=Z0 þ 1ð Þ þ jXL=Z0
¼ r � 1ð Þ þ jx

r þ 1ð Þ þ jx
¼ Gr þ Gi (2.278)

To obtain this result, we substituted r ¼ RL/Z0 and x ¼ XL/Z0 as the normalized
resistance and reactance. For much of the remainder of this section, we will drop
the specific notation for load partly to simplify notation but mostly because the
magnitude of the reflection coefficient remains constant along the line and, there-
fore, the results we obtain apply equally well for any impedance on the line (see
Figure 2.42). In the latter case, the generalized reflection coefficient is obtained,
and this can be written in exactly the same form as (2.277) or (2.278) by replacing
ZL with Z(z). Equation (2.278) defines a complex plane for the reflection coefficient
as shown in Figure 2.43(a). Any normalized impedance (load impedance or line
impedance) is represented by a point on this diagram.

The second form of the reflection coefficient is the polar form. This may be
written as

GL ¼ jGjejqG ¼ jGj cos qG þ j sin qGð Þ (2.279)

Z0 = R0
ГL

ZL = RL + jXL

Figure 2.41 A simple transmission line used to introduce the Smith chart

z

Zline = Rline + jXline

Zline

Zline

Z0ZL

Г(z)

Figure 2.42 Use of an equivalent transmission line to describe the line impedance
at a distance z from the load
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where qG is the phase angle of the load reflection coefficient as discussed in Sec-
tion 2.7.1. For a given magnitude of the reflection coefficient, the phase angle
defines a point on the circle of radius |GL|. Thus, since |GL| 
 1, only that section of
the rectangular diagram enclosed by the circle of radius 1 is used, as shown in
Figure 2.43(b). The polar form is more convenient to use than the rectangular form
but we will, for the moment, retain both.

We now go back to the rectangular representation and calculate the real and
imaginary parts of the reflection coefficient in terms of the normalized impedance.
The starting point is (2.278):

Gr þ Gi ¼ r � 1ð Þ þ jx

r þ 1ð Þ þ jx
(2.280)

Crossmultiplying gives

r þ 1ð ÞGr � xGi þ jGi r þ 1ð Þ þ jxGr ¼ r � 1ð Þ þ jx (2.281)

Separating the real and imaginary parts and rearranging terms, we get two
equations:

Gr � 1ð Þr � Gix ¼ � Gr þ 1ð Þ (2.282)

Gr � 1ð Þx þ Gir ¼ �Gi (2.283)

We now write two equations: one for r and one for x, by first eliminating x and
then, separately, r.

From (2.283), we write

x ¼ �Gi r þ 1ð Þ
Gr � 1

(2.284)

(0,0) (0,0)

+1

+1–1

–1
(a) (b)

Гr = –1 Гr = 1 Гr θГ

Гi = –1

Гi = –1

Гi Гi

Гr

Figure 2.43 The complex plane representation of the reflection coefficient:
(a) in rectangular form and (b) in polar form
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Substituting this into (2.282), we get

Gr � 1ð Þr þ Gi
2 r þ 1ð Þ
Gr � 1

¼ � Gr þ 1ð Þ (2.285)

Multiplying both sides by Gr � 1 and rearranging terms, this gives

Gr
2 r þ 1ð Þ � 2Grr þ Gi

2 r þ 1ð Þ ¼ 1 � r (2.286)

Dividing by the common term (r þ 1),

Gr
2 � 2Grr

r þ 1
þ Gi

2 ¼ 1 � r

r þ 1
(2.287)

Adding r2/(r þ 1)2 to both sides of the equation and rearranging terms, we get

Gr � r

r þ 1

� �2

þ Gi
2 ¼ 1

r þ 1ð Þ2 (2.288)

Repeating the process, we now eliminate r in (2.283) by first writing from (2.282):

r ¼ � Gr þ 1ð Þ � Gix

Gr � 1ð Þ (2.289)

Substituting this back into (2.283):

Gi
Gr þ 1ð Þ � Gix

Gr � 1
þ Gr � 1ð Þx ¼ �Gi (2.290)

Multiplying both sides of (2.290) by Gr � 1 and rearranging terms, we get

Gr � 1ð Þ2x þ G2
i x � 2Gi ¼ 0 (2.291)

The equation now is divided by x:

Gr � 1ð Þ2 þ G2
i � 2Gi

1
x

� �
¼ 0 (2.292)

To bring this into a useful form, we add 1=x2 to both sides of the equation:

Gr � 1ð Þ2 þ G2
i � 2Gi

1
x

� �
þ 1

x

� �2

¼ 1
x

� �2

(2.293)

Rearranging terms, we get

Gr � 1ð Þ2 þ Gi � 1
x

� �2

¼ 1
x

� �2

(2.294)

Both (2.288) and (2.294) describe circles in the complex G plane.
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Equation (2.288) is the equation of a circle, with its center at Gr ¼ r/(r þ 1),
Gi ¼ 0, and radius 1/(r þ 1). The center of any circle is on the real axis and can be
anywhere between Gr ¼ 0 for r ¼ 0 to Gr ¼ 1 for r ??. For example, for r ¼ 1, the
center of the circle is at Gr ¼ 0.5, and its radius equals 0.5. A number of
these circles are drawn in Figure 2.44(a). The larger the normalized resistance, the
smaller the circle. All circles pass through Gr ¼ 1, Gi ¼ 0. The normalized resis-
tance r can only be positive. Should there ever be a need to describe normalized
impedances with negative real part, these must be multiplied by �1 before analysis
using the Smith chart can commence.

From (2.294), we obtain a second set of circles for x. Since x can be positive or
negative, the circles are centered at Gr ¼ 1, Gi ¼ 1/x for positive values of x and at
Gr ¼ 1, Gi ¼�1/x for x negative. These circles are shown in Figure 2.44(b) for a
number of values of the normalized reactance x. Figure 2.45 shows the r and x
circles on the G plane, truncated at the circle |G| ¼ 1. This is the basic Smith chart.
A number of properties of the two sets of circles are immediately apparent:

1. The circles are loci of constant r or constant x.
2. x and r circles are orthogonal to each other.
3. There is an infinite number of circles for r and for x.
4. All circles pass through the point Gr ¼ 1, Gi ¼ 0.
5. The circles for x and �x are images of each other, reflected about the real

axis.
6. The center of the chart is at Gr ¼ 0, Gi ¼ 0.
7. The intersections of the r circles with the real axis, for r ¼ r0 and r ¼ 1/r0,

occur at points symmetric about the center of the chart (Gr ¼ 0, Gi ¼ 0).
8. The intersections of the x circles with the outer circle (|G| ¼ 1) for x ¼ x0 and

x ¼ 1/x0 occur at points symmetrically opposite each other.
9. The intersection of any r circle with any x circle represents a normalized

impedance point.

r = 0 r = 0.2 r = 0.5 r = 1

Гr = 0 Гr = 1

Гr = –1

Гi = 0

Гr = 1
Гi = 0

Гr = 0, Гi = –1

Гr = 0, Гi = 1

Гi = 0

r = 2 r = 5

r = ∞

x = 0

x = 0.2

x = 0.5
x = 1

x = 2

x = 5

x = −5

x = −2
x = −1

x = −0.5

x = −0.2

(a) (b)

|Г | = 1

|Г| = 1

Figure 2.44 The basic components of the Smith chart: (a) circles of constant
values of r and (b) circles of constant values of x or �x
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10. The real part of the normalized impedance, r, can only be positive but x can
be negative or positive.

The chart as described above is an impedance chart since we defined all
points in terms of normalized impedance. Its use as an admittance chart is
described in item 14 below.

In addition to the properties of the r and x circles given above, we note the
following:

11. The point Gr ¼ 1, Gi ¼ 0 (rightmost point in Figure 2.45) represents r ¼?,
x ¼?. This is the impedance of an open transmission line. This point is
therefore the open-circuit point.

12. The diametrically opposite point, at Gr ¼�1, Gi ¼ 0 represents r ¼ 0, x ¼ 0.
This is the impedance of a short circuit and is called the short-circuit point.

13. The outer circle represents |G|¼ 1. The center of the diagram represents |G|¼ 0.
Any circle centered at the center of the diagram (Gr ¼ 0, Gi ¼ 0) with radius a
is a circle on which the magnitude of the reflection coefficient is constant,
|G| ¼ a. Moreover, if we take the intersection between any r and x circles, the
distance between this point to the center of the diagram is the magnitude of
the reflection coefficient for this normalized impedance. A circle drawn
through this point represents the generalized reflection coefficient at different
locations on the line for this normalized load impedance. The intersection of
the reflection coefficient circle with r and x circles represents line impedances
at various locations. These aspects of the use of transmission lines are shown
in Figure 2.45. For example, point A represents an impedance rA þ jxA and
point B represents an impedance rB þ jxB, but the magnitude of the reflection
coefficient is the same. This will later be used to calculate the line impedance
as well as voltages and currents on the line.

A

B

Гr

|Г |

Figure 2.45 The Smith chart. A normalized impedance is a point on the Smith
chart defined by the intersection of a circle of constant normalized
resistance r and a circle of constant normalized reactance x
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14. Any point on the chart represents a normalized impedance, say, z ¼ r þ jx.
The admittance of this point is y ¼ 1/(r þ jx) ¼ (r � jx)/(r2 þ x2). The admit-
tance point corresponding to an impedance point lies on the reflection coef-
ficient circle that passes through the impedance point, diametrically opposite
to the impedance point. Thus, if we mark a normalized impedance as z and
draw the reflection coefficient circle through point z, this circle passes
through the admittance point y ¼ 1/z. The admittance point y is found by
passing a line through z and the center of the diagram. The intersection of this
line with the reflection coefficient circle is point y. These steps are shown in
Figure 2.46(a). These considerations allow the calculation of admittances
instead of impedances. The chart then becomes an admittance chart.

The Smith chart also provides for calculation of phase angles and lengths of
transmission lines. For this purpose, the Smith chart is equipped with a
number of scales, marked on the outer periphery of the diagram. These are
defined as follows:

15. For a given impedance, a point on the chart is found. The distance from the
center of the chart to the point is the magnitude of the line reflection
coefficient. If the line connecting the center of the chart with the impedance
point is continued until it intersects the outer (G¼ 1) circle, the location of
intersection gives the phase angle of the reflection coefficient in degrees. This
is the first set of values given on the circumference of the Smith chart and is
shown in Figure 2.46(b). Note that the open-circuit point has zero phase angle
(G¼þ1) and the short-circuit point has either a 180� or �180� phase angle.
The difference is in the sign of the imaginary part of the load impedance
(below or above the real axis). Intermediate points will vary in phase
depending on the distance from the load. For example, for point A in
Figure 2.46(b), the phase angle of the reflection coefficient is 104�, whereas
for point B, it is �120�.

A

A'

z

y = 1/z

A

B

θ1 = 104°

θ2 = –120°

(a) (b)

–180°
180° 0°

|Г | |Г |

|Г | = 0

Figure 2.46 (a) Normalized impedance, reflection coefficient, and normalized
admittance and (b) indication of phase angle of the reflection
coefficient on the Smith chart
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16. We recall that the distance between a point of maximum voltage and a point
of minimum voltage was found to be l/4 in Section 2.7.3. In particular, the
impedance of a shorted transmission line changes from zero to infinity (or
negative infinity) if we move a distance l/4 from the short. Thus, the distance
between the short-circuit and open-circuit points is l/4. This fact is indicated
on the outer circle of the chart, starting at the short-circuit point. Since the
short (or any other load) can be anywhere on a line, we may wish to move
either toward the generator or toward the load to evaluate the line behavior.
These two possibilities are indicated with arrows showing the direction
toward load and toward generator (Figure 2.47). Although the distance is
marked from the short-circuit point, the distance is always relative: If a point
is given at any location on the chart, movement on the chart a distance l/4
represents half the circumference of the chart.

17. The direction toward the generator is the clockwise direction. If we wish to
calculate the line impedance starting from the load, we move in the clockwise
direction toward the generator. If, on the other hand, we wish to calculate the
line impedance starting from the generator going toward the load or, starting
at the load and going away from the generator, we must move in the coun-
terclockwise direction and use the appropriate distance charts (see
Figure 2.47).

18. The whole Smith chart encompasses one-half wavelength. This, of course, is
due to the fact that all conditions on lines repeat at intervals of l/2 regardless
of loading or any other effect that may happen on the line. If we need to
analyze lines longer that l/2, we simply move around the chart as many half-
wavelengths as are necessary. Only the remainder length (length beyond any
integer numbers of half-wavelengths) need be analyzed.

SWR

1/SWR

Psc Poc

Phase angle
of Г!

 T
ow

ard
 generator 

Toward load 

Figure 2.47 Directions on the Smith chart and indication of SWR. The distance
between short- and open-circuit points is l/4
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The Smith chart also allows for the calculation of SWRs. The SWR is calculated
from the reflection coefficient as

SWR ¼ 1 þ jGj
1 � jGj dimensionlessð Þ (2.295)

We note that the circle of radius |G| intersects the positive real axis at x ¼ 0. At this
point, the normalized impedance is equal to r and the reflection coefficient is given
as G¼ (r � 1)/(r þ 1). Substituting this into the relation for SWR, we get

SWR ¼ r (2.296)

Thus, the SWR equals the value of normalized resistance at the location of inter-
section of the reflection coefficient circle and the real axis, right of the center of the
Smith chart. From property (7) above, the intersection of the reflection coefficient
circle with the real axis, left of the center of the chart is at point 1/r. Thus, this point
gives the value 1/SWR. The two points are shown for the reflection coefficient in
Figure 2.47.

Now that we discussed the individual parts making up the Smith chart, it is
time to put it all together. The result is the Smith chart shown in Figure 2.48. You
will immediately recognize the r and x circles as well as the scales discussed. There
are, however, a number of other scales given at the bottom of the chart as well as a
number of indications on the chart itself, which we have not discussed. These have
to do with losses on the line (which we have neglected) and the use of the chart as
an admittance rather than impedance chart. The scales at the bottom of the
figures are merely for convenience and are not necessarily available in all imple-
mentations of the Smith chart. They are usually present in printed charts but not in
displayed charts or when the chart is used for output such as in a network analyzer.

Although the chart is relatively simple, it contains considerable information
and can be used in many different ways and for purposes other than transmission
lines. The main difference in the Smith chart solution and the analytic solution is
that the Smith chart uses normalized impedances, whereas in analytic calculations,
we tend to use the actual values of the impedance. Also, because it is a graphical
chart, the results are approximate and depend on our ability to accurately read the
values off the chart. The Smith chart is available commercially as a paper chart as
well as computer software. The advantage of a software-based Smith chart is that
calculations are exact in addition to the ease of analysis and display of results. It
should be remembered that distances on the chart are in wavelengths. Physical
distances can be calculated provided the frequency and speed of propagation on the
line are known.

Figure 2.49 shows the screen display of a vector network analyzer in the pro-
cess of matching an antenna. It shows the impedance as the frequency changes
from 850 to 950 MHz. The marker shows the normalized impedance at 915 MHz.
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The latter equals 0.23 þ j2.31. For a 50-W system that equals 11.5 þ j115 W. In this
case, matching means moving the real part of the impedance until it intersects the
r ¼ 1 circle and the imaginary part until it intersects the x ¼ 0 circle. Although
matching is only of cursory interest in this work, it is done by adding series/parallel
inductors and/or capacitors to affect the required change in impedance. Note
however the options on the network analyzer to set the scan range and the types of
displays. The network analyzer can obviously calculate the S-parameters, in this
case for a two-port network as indicated at the bottom of the screen.
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Chapter 3

Planar transmission lines and
coupled structures

3.1 Introduction

In Chapter 2, we discussed the properties of the classical transmission lines as well
as circuits, including resonators, based on these lines. The basis of the theory and
circuits is the two-conductor transmission line (see Figure 2.3). This led to the
distributed circuit model in Figure 2.4, and all subsequent properties rose from this
model. However, transmission lines are not limited to two conductors. One can
easily envisage multiconductor transmission lines as well as other methods of
constructing transmission lines including one-conductor waveguides. For example,
a three-phase power distribution line consists of three conductors or, if a ground
conductor is included, of four conductors. Another example is that of two or more
two-conductor lines in close proximity so that they affect each other. More often,
however, multiconductor transmission lines are designed for specific purposes.
Multiconductor transmission lines have, necessarily, properties that can be very
different than the classical two-conductor transmission line. The fields within and
around the lines and the modes of propagation can be vastly different, and these
lead to properties and applications that are not possible with the classical two-
conductor transmission lines.

Of particular interest in this work are the so-called planar transmission lines.
Planar structures are extensions of the parallel plate transmission line in Figure 2.3(e),
which is considered a planar transmission line. The term planar simply refers to the
fact that in these transmission lines, the characteristics of the structure can be
determined by the dimensions in a plane—the cross section of the structure. The
term is often narrowed to those structures that can be conveniently produced by
lithographic methods with particular applications to microwave integrated circuits
although, in this work, we will use planar structures that are relatively large and
their fabrication is entirely different.

Planar structures can be made of two conductors, and in that form, they
resemble the classical two-conductor transmission lines. In fact, they are simple
extension of the classical two-wire transmission line. Multiconductor planar
structures are also common, and these are often said to be coupled transmission
lines. Coupling means that power from one line couples to another, and by doing
so, it affects the circuit model and hence affects both the properties of the lines and



their applications. A related structure is the waveguide, especially the parallel plate
waveguide. Waveguides will also be discussed here because the methods of ana-
lysis we use for the coupled transmission line resonators are similar and to an
extent, the resonators used in this work resemble microwave cavity resonators.

3.2 Planar transmission lines: the stripline

As was mentioned in the introduction, the term transmission line is rather generic
and includes a variety of structures, almost all are multiconductor structures of
which the most common is the two-conductor transmission line. Within this nar-
rower definition, in addition to the regular lines such as coaxial, two parallel wires
and parallel plate or strip transmission lines, there are certain structures that
have found particularly useful applications. The parallel plate transmission line
[Figure 2.3(e)] has become particularly useful in printed circuit structures although,
in general, the strips do not have to be parallel. Some other transmission lines that
can be viewed as extensions to the parallel plate lines are shown in Figure 3.1.
Figure 3.1(a) shows the so-called stripline. These structures have become important
because of their properties at high frequencies but also because they lend them-
selves to construction by lithographic means, similar to methods used in integrated
circuits. This is a planar structure consisting of a thin conducting strip of width w
between two wide conducting plates, separated a distance d apart. The space
between the plates is a dielectric of permittivity e and, in general, a loss factor
related to its conductivity sc. The strip does not have to be at the center between the
plates, and the plates can be of various widths (although, in most cases we will
assume the plates are infinite for analysis purpose). The stripline in Figure 3.1(a) is
a two-conductor structure since the two outer plates are at the same potential
(usually serve as ground planes). Figure 3.1(b) shows another structure, called
microstrip. The thin strip of width w is separated from a ground plane by a
dielectric of thickness d which supports the stripline. The popularity of this struc-
ture is again the ease with which it can be fabricated either by etching or by
deposition and hence is easily built into integrated circuits. But it can be as
simple as a strip on a printed circuit substrate above a ground plane. One can easily
see the relation between this structure and the parallel plate transmission line
although, the fact that the dielectric is not present everywhere can complicate
analysis. Figure 3.1(c) shows another common planar structure called a slotline.
Here, a ground plane is interrupted by a slot. Although one can clearly see
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Figure 3.1 Planar structures: (a) stripline, (b) microstrip line, and (c) slotline
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similarities between the lines, they are quite different both in properties and, par-
ticularly, in the way waves propagate along the line. For example, the stripline
propagates transverse electromagnetic (TEM) modes (i.e., the fields along the line
behave as plane waves in much the same way as on parallel plate transmission
lines), whereas slotted lines support non-TEM modes. The microstrip supports what
are called quasi-TEM modes of propagation.

The analysis of planar transmission lines is, in general, more complex than that
for the common transmission lines (say the coaxial or even the two wire trans-
mission line) because the field distributions are much more complex, and hence, the
parameters of the lines often cannot be calculated analytically. Often properties
such as characteristic impedance, attenuation constant, or resonant frequency are
calculated using approximations or are calculated numerically. Often too, these
may be evaluated experimentally. Approximate solutions exist for common lines.

Both the stripline and the microstrip come in many variants in constructions
and hence in properties and performance. Some of the common variations are
shown in Figure 3.2. The structures in Figure 3.2(a)–(c) still qualify as two-
conductor lines. However, those in Figure 3.2(d) and (e) do not. Figure 3.2(e) is a
three-conductor line if the ground plane is present as shown. One can then drive
each stripline separately with respect to ground or the source can be applied
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w

b εr

wSAir
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Figure 3.2 Variants of the basic structures in Figure 2.29: (a) suspended
stripline, (b) suspended microstrip, (c) inverted microstrip,
(d) coplanar waveguide, and (e) coplanar stripline
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between the striplines. If the two strips are driven each with respect to the ground
plane, they form two separate parallel lines and, because they are in close proxi-
mity, power from one line couples with the second line. If, on the other hand, the
ground plane is removed, the structure becomes a two-conductor transmission line
rather than a coupled line. The structure in Figure 3.2(e) can usually be viewed as a
two-conductor line since the two side strips are normally connected to the ground
plane. As a whole, these structures will not be discussed here except for the coupled
transmission lines and their use in directional couplers.

3.2.1 Coupled transmission lines
As was indicated above, the structure in Figure 3.2(e) is unique in that it forms a
coupled stripline. In fact, any three-conductor stripline will behave as a couple
transmission line. Of course, this is not limited to three conductors but we will limit
ourselves here to three conductors. The coupled structure in Figure 3.2(e) is a
coplanar stripline, but it should be obvious that other configuration of striplines,
microstrips, or even nonuniform transmission lines can be realized. We will limit
discussion here to coupled striplines because these are used in this work and, to an
extent, because coupled striplines support TEM modes and hence are easiest to
analyze in terms of effective capacitance and phase velocities on the lines.

Given a three-conductor transmission line in any configuration, its equivalent
capacitance model is shown in Figure 3.3. In this model, C11 represents the
capacitance between strip 1 and ground in the absence of strip 2, C22 represents
the capacitance between strip 2, and ground in the absence of strip 1, and C12

represents the capacitance between the two strips in the absence of the ground
plane. There are three basic structures that come into consideration in the context of
coupled transmission line. The first is that of Figure 3.2(e). The other two are
shown in Figure 3.4. The striplines in Figure 3.4(a) are said to be edge-coupled,
whereas in Figure 3.4(b), they are broadside coupled. Both consist of a pair of
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(2)
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Figure 3.3 Capacitance model for the two striplines above a conducting ground
plane
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Figure 3.4 (a) Edge-coupled striplines and (b) broadside coupled striplines
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striplines in a homogeneous dielectric (usually air) and both are placed between
two ground planes. Of particular interest in this work is the structure in Figure 3.4(b),
but it should be noted that any of the structures can be modified in many ways.
One can use strips of different widths, the strips can be offset and they do not have
to be symmetric relative to the ground planes. Edge and broadside coupling can
also be combined by duplicating the broadside coupled transmission line as in
Figure 3.5. In this case, each two pair of striplines forms either an edge-coupled
stripline or a broadside coupled stripline. The capacitance model for this config-
uration is more complex than the one in Figure 3.3, but the method of analysis is
essentially the same. It should be noticed as well that the ground plane does not
have to be a ‘‘ground’’ conductor—it is simply the third conductor of the line. In
practice, however, it is most often connected to ground, hence the designation.

As for any stripline, the coupled stripline can support TEM modes of propa-
gation (for a homogeneous dielectric like air) but, unlike the classical stripline, the
coupled stripline supports two fundamental, orthogonal TEM modes. These are
referred to as ‘‘even’’ and ‘‘odd’’ modes indicating two distinct ways the striplines
can be excited. The even mode is characterized by the two striplines being excited
with equal amplitudes and in phase (i.e., they are both positive with respect to the
ground planes) as shown in Figure 3.6(a). As a consequence of this excitation,
the electric field intensity has zero normal component on the line of symmetry
(the symmetry line A–A0 is therefore a ‘‘magnetic wall’’). The odd mode is excited
with the two lines having equal amplitudes but with opposite phases (one positive,
the other negative with respect to the ground plane) as shown in Figure 3.6(b).
Here, the electric field intensity only has a normal component on the line of
symmetry. (The symmetry line A–A0 is an electric wall.)

In terms of the capacitance model in Figure 3.3, the even mode now takes the
form in Figure 3.7(a). In effect, the two lines are decoupled.
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Figure 3.5 A 4 stripline coupled structure as a combination of edge and broadside
coupling
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Figure 3.6 Fields in broadside coupled striplines: (a) even and (b) odd modes
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If the coupling is symmetric, that is, if the two strips are identical in size and at
identical positions with respect to the ground planes, the two capacitances C11 and
C22 are identical, and we can write the even-mode capacitance as

Ce ¼ C11 ¼ C22 (3.1)

The characteristic impedance of the line for even-mode propagation can now be
written as

Z0e ¼
ffiffiffiffiffi
L

Ce

r
ðWÞ (3.2)

or

Z0e ¼
ffiffiffiffiffiffiffiffi
LCe

p
Ce

¼ 1
vCe

ðWÞ (3.3)

Clearly, only the capacitance and speed of propagation are necessary hence the
simple model in Figure 3.3.

The odd-mode impedance is calculated based on the model in Figure 3.7(b).
This model takes into account the fact that the centerline between the strips is an
electric wall, and hence, the capacitance between each strip and the electric wall is
twice that between the strips, and the electric wall is at ground potential. The
capacitance in the odd mode therefore is

Co ¼ C11 þ 2C12 ¼ C22 þ 2C12 (3.4)

C11 was calculated above and C12 is the capacitance per unit length between the
two strips. Equation (3.4) assumes that the coupling is symmetric. The impedance
now is written as in (3.3):

Z0o ¼
ffiffiffiffiffiffiffiffi
LCo

p
Co

¼ 1
vCo

ðWÞ (3.5)

The even- and odd-mode impedances can be calculated provided that the even- and
odd-mode capacitances in (3.1) and (3.4) can be calculated. This is, in general, an
arduous task since the fields within the line, as indicated schematically in Figure 3.6,
are rather complex and calculation of capacitances is not trivial. The capacitances
and hence impedances are normally calculated using conformal transformation
methods or, in more complex configurations, using numerical techniques.

C11 C22

(a) (b)

(1) (2)

C11 C22

(1) (2)
2C122C12

+ + + –

Figure 3.7 (a) The model for even-mode propagation and (b) the model for odd-
mode propagation
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For example, the characteristic impedance for the even and odd mode in the
structure shown in Figure 3.4(b) are given by

Z0e ¼ 60pKðk 0 Þ
ffiffiffiffi
er

p
KðkÞ ðeven modeÞ (3.6)

Z0o ¼ 293:9S

b
ffiffiffiffi
er

p
tanh�1ðkÞ ðodd modeÞ (3.7)

k is the complete elliptic function of the first kind, S is the separation between the
transmission lines, w their width, and b the distance between the ground planes
[Figure 3.4(b)]. The relative permittivity between the striplines is er. The parameter
k may be calculated as the solution to the following transcendental equation:

w ¼ b

p
ln

1 þ R

1 � R

� �
� S

b
ln

1 þ R=k

1 � R=k

� �� �
(3.8)

with

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k S=bð Þ � 1
b=kSð Þ � 1

s

(3.9)

Then, k0 is calculated as

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2

p
(3.10)

Similar results exist for edge-coupled striplines and for many other configurations.
These expressions were calculated using conformal mapping and although fairly
complex, they are only approximate, increasing in accuracy as w/S increases. There
are also approximations available that avoid the calculation of the elliptic functions
as well as online resources for calculations. It should also be noted that the thick-
ness of the striplines were neglected and that the assumption of pure TEM propa-
gation implies lossless media, a condition that can only be approximately satisfied.
Approximations for finite thickness striplines exist but, in general, the more com-
plex configurations, including lossy dielectrics, must be treated numerically.

To better understand the behavior of the broadside coupled transmission lines,
it is useful to look at a very simple configuration, which can be treated analytically
in terms of parallel plate capacitances.

We use the configuration in Figure 3.4(b) assuming the two strips are identical,
centered between the ground planes and that there are no fringing effects
(i.e., w � d and w � S). Under these conditions, the capacitances are calculated as
those of parallel plate capacitors. In this case, C11 ¼ C22. The capacitance, say C11,
is the sum of the capacitance between one of the strips and the upper plane and the
capacitance between the same strip and the lower plane. Using the dimensions in
Figure 3.4(b), the capacitance is

C11 ¼ C22 ¼ ew
b � Sð Þ=2

þ ew
S þ b � Sð Þ=2

¼ 4ewb

b2 � S2
F=mð Þ (3.11)

Planar transmission lines and coupled structures 103



This is the even-mode capacitance as indicated in (3.1). Using (3.3), the char-
acteristic impedance of the line for even-mode propagation can now be written
from (3.5) as

Z0e ¼ 1
vCe

ðWÞ (3.12)

With e ¼ e0er, v ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffie0erm0

p
, and Ce from (3.11), the impedance becomes

Z0e ¼ 1
vCo

¼ b2 � S2

4e0erwb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e0erm0

p ¼
ffiffiffiffiffi
m0

e0

r
b2 � S2

4wb
ffiffiffiffi
er

p ¼ h0
b2 � S2

4wb
ffiffiffiffi
er

p ðWÞ (3.13)

where er is the relative permittivity of the space between the ground planes and h0

the intrinsic impedance of vacuum. This is the characteristic impedance of either of
the strips relative to the ground plane when the coupled line operates in the even
mode.

The odd-mode impedance is calculated in a similar fashion using (3.4) and
(3.5). C11 was calculated in (3.11), and C12 is simply the capacitance per unit length
between the two strips:

C12 ¼ e0erw

S
(3.14)

The odd-mode capacitance in (3.4) is

Co ¼ C11 þ 2C12 ¼ 4e0erwb

b2 � S2
þ 2

e0erw

S
¼ 2e0erw

2b

b2 � S2ð Þ þ
1
S

� �
F=mð Þ (3.15)

The odd-mode impedance is therefore

Z0o ¼ 1
vCo

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffie0erm0

p
4e0erwb= b2 � S2ð Þð Þ þ 2 e0erw=Sð Þð Þ

¼ h0
1

2w
ffiffiffiffi
er

p
2b= b2 � S2ð Þ þ 1=S½ � ðWÞ (3.16)

This is the characteristic impedance of either of the strips relative to the ground
plane when the coupled line operates in the odd mode and is clearly different than
the even-mode characteristic impedance.

The results in (3.13) and (3.16) are fairly poor approximations, but they show
the general behavior of the coupled striplines. First we note that the odd-mode
impedance is lower than the even-mode impedance. The expressions also show
explicit relations between the dimensions and impedances and hence can serve for
initial design of coupled transmission lines.

Although the characteristic impedance for the two modes is different, the phase
velocity is the same and is entirely dependent on the permittivity of the dielectric in
the line.
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These relations are given here to demonstrate the fact that calculation of
parameters for this type of lines, especially when the dielectric between the lines is
nonhomogeneous, can be challenging. In fact, often, the line properties are eval-
uated using numerical methods.

Although approximate expressions for impedance and resonance for many
planar transmission lines exist, these expressions become more complex as the
structure becomes more complex. In particular, introduction of discontinuities in
the lines or in materials between the lines complicates the expressions con-
siderably. When we come to calculation of resonant frequencies of structures based
on these types of lines, it will be much more profitable to use a numerical method
rather than analytical techniques because the relation between the length of the line
and its resonant frequency is not as simple as in the simple two-conductor uniform
transmission line we discussed in Chapter 2. The effects of the ground planes,
proximity to external objects, and presence of supporting structures within the
resonator all complicate the analysis. Even when the structure is simple, introduc-
tion of materials or objects for testing purposes complicates the analysis beyond
what can be done analytically. These all combine to favor numerical analysis of the
structures.

Coupled transmission lines form the basis of a variety of microwave circuits,
perhaps the most obvious of them being the class of circuits called dividers
and couplers. Dividers are passive devices capable of power division or power
combination, while couplers rely on the power coupling capabilities of transmis-
sion lines in close proximity. Another common application is in design of filters.
Coupled transmission lines can also serve as microwave resonators by introducing
appropriate discontinuities in the lines. In that role, they exhibit two modes of
resonance—even and odd resonance—in parallel to the two modes of propagation
in continuous lines.

3.3 Waveguides and cavity resonators

In Chapter 2, the discussion centered around transmission lines that were defined as
structures made of two or more conductors with the stated purpose of transferring
power. The difference between mere ‘‘circuits’’ and transmission lines was shown
to be the length of the lines in relation to the wavelength, with short lines being
classical circuits, treated by lumped circuit methods and long lines being treated by
distributer circuit methods. The latter meant that transmission lines are, necessarily,
lines operating at high frequencies.

Analysis of transmission lines, including the planar structures in the present
chapter, followed circuit theory methods by which we obtained voltages and cur-
rents on the lines as well as all other properties including propagation parameters,
impedance, and the behavior of voltages and currents at loads and discontinuities.
In effect, the quantities of interest were circuit quantities. But it was also indicated
in Section 2.6 that a completely equivalent analysis in terms of the electric and
magnetic field is possible and leads to the same behavior. That was based on the
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assumption that the electric and magnetic fields are perpendicular to each other (see
Figure 2.5) and to the direction of propagation (see also Appendix D), that is, we
have used the concepts of plane waves or, alternatively, that of TEM propagation.
Because all two-wire transmission lines support TEM waves, that analysis was
deemed correct and useful.

However, that is not the whole story of transmission lines. One can take a
different approach with some transmission lines that lead to the conclusion that
TEM propagation is not the only possibility and, more significantly, that non-TEM
propagation has certain advantages. To see that, consider the parallel plate trans-
mission line in Figure 3.8. Instead of currents and voltages, we can start by
allowing a TEM wave to propagate at an angle to, say, the lower surface. In this
wave, the electric and magnetic fields are perpendicular to each other and to the
direction of propagation. The wave will be reflected off the surface as shown in
Figure 3.8 and propagate toward the upper conductor. The wave reflected off the
lower surface is also a TEM wave. This wave will now be reflected off the upper
surface as shown in Figure 3.8. The process repeats indefinitely. Without calcu-
lating the fields, the important effects to notice are

1. The wave propagates to the right—that is, power propagates to the right along
the transmission line. We say that power is guided by the two conductors.

2. The larger the angle q, the longer the path of the wave and hence the slower the
propagation.

3. The electric field intensity is perpendicular to the direction of propagation—
that is, the electric field intensity is a transverse field.

4. The magnetic field intensity has two components—one is transverse to the
direction of propagation (pointing along the x-axis), the other is in the direction
of propagation (along the z-axis).

In other words, the reflections off the conductors cause an incident TEM wave
to produce a wave in which only the electric field intensity is transverse, whereas
the magnetic field intensity has a component in the direction of propagation. We
call this wave a transverse electric (TE) wave.

Suppose now that the electric and magnetic field intensities are interchanged as
shown in Figure 3.9. Again without much difficulty, we conclude that the magnetic
field intensity remains perpendicular to the direction of propagation and hence is
transverse, whereas the electric field intensity has a component in the direction of
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Figure 3.8 Reflection of the incident wave off the lower and upper plates in a
parallel plate waveguide, transverse electric field
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propagation. For this reason, the wave now is called a transverse magnetic (TM)
wave.

The conclusion so far is that the parallel plate transmission line can support
TEM, TE, and TM waves depending on the angle of incidence of the wave and the
relation of the electric field intensity to the surface of the plates. If q¼ 90�, the
propagation is TEM since then both E and H are perpendicular to the direction of
propagation. For any other angle, if E is parallel to the surface of the conductors,
the propagation is TE, whereas if the magnetic field intensity is parallel to the
conducting surfaces, the propagation is TM.

Figure 3.10 shows schematically the three types of waves that may exist in the
parallel plate waveguide and the relations between the electric and magnetic field
components in each mode of propagation. The TEM mode can only exist in two-
conductor structures, whereas the TE and TM modes can exist in one-conductor
structures as well.

The parallel plate transmission line has now become a parallel plate waveguide
simply by virtue of how we use it. In this case, a wave is launched between the
plates, whereas as a classical transmission line, we connect the two conductors to a
generator or circuit, which results in a current in and voltage on the line. But that
seemingly small difference is far reaching in consequences.

It should be intuitively obvious that the three types of waves have different
properties and these can be deduced from the fields themselves. Also, the parallel
plate waveguide is only one of a number of structures that can serve as waveguides.
Some of the more common are rectangular cross-section waveguides and circular
cross-section waveguides. In both of these, one cannot distinguish two separate
conductors; hence, in the sense of classical transmission lines, they cannot be
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Figure 3.10 Types of waves: (a) TEM wave, (b) TE wave, and (c) TM wave. The
index l stands for longitudinal and t for transverse component
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Figure 3.9 Reflection of the incident wave off the lower plate in a parallel plate
waveguide, transverse magnetic field
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considered as transmission lines. However, in the sense that they transfer and guide
power they are. In fact, dielectric waveguides have no conductors at all. The main
reason these structures are discussed here is that sections of waveguides can be
transformed into resonators, and these resonators, called cavity resonators, have
much in common with transmission line resonators. We will use some of the con-
cepts of cavity resonators in this chapter and in the following chapters to under-
stand and analyze the behavior of the open transmission line resonators that are at
the center of this work.

In lieu of a full theoretical development, something that would take much
space, the following sections give the important relations in waveguides and in
cavity resonators without giving their full justification. We also restrict ourselves to
rectangular waveguides and resonators, simply because these are more useful here.

3.3.1 TE propagation in parallel plate waveguides
The fields in waveguides are usually written as longitudinal and transverse com-
ponents. With reference to Figure 3.8, the fields in the parallel plate waveguide are

Longitudinal component:

Hz x; zð Þ ¼ �E0

h
l
lcm

cos
mpx

d

	 

e�jbgz A=mð Þ (3.17)

Transverse components:

Ey x; zð Þ ¼ jE0 sin
mpx

d

	 

e�jbgz V=mð Þ (3.18)

Hx x; zð Þ ¼ �j
E0

h
l
lg

sin
mpx

d

	 

e�jbgz A=mð Þ (3.19)

In these relations, d is the separation between the two plates, lg is the guide
wavelength, l is the wavelength in the medium between the plates, and lcm is the
cutoff wavelength for mode m. lg and lcm are

lg ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � f 2

cm=f 2
p ðmÞ; lcm ¼ 2d

m
ðmÞ; m ¼ 1; 2; 3; . . . (3.20)

The cutoff wavelength and hence the cutoff frequency depend on the mode and the
dimension of the waveguide. The cutoff frequency is

fcm ¼ m

2d
ffiffiffiffiffimep Hzð Þ; m ¼ 1; 2; 3; . . . (3.21)

fcm and lcm are the frequency below which and the wavelength above which TE
propagation cannot occur in the waveguide and m is the mode number. A cutoff
frequency exists for each mode, and the fields in (3.17)–(3.19) are also mode
dependent. Note as well that the TEM mode has no cutoff frequency—it can exist
at any frequency.
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The power propagated in the wave is calculated using the Poynting vector. The
time-averaged power density propagated in the z direction is

Pav ¼ E2
0

2h
l
lg

sin2 mpx

d

	 

W=m2
� �

(3.22)

Finally, since the propagation is in the z direction, we can also define the char-
acteristic impedance of the waveguide by dividing the transverse component of the
electric field intensity (Ey) by the transverse component of the magnetic field
intensity (Hx):

ZTE ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � f 2

cm=f 2
p Wð Þ (3.23)

The wave impedance is, in fact, larger than the impedance for TEM waves. Also,
unlike the wave impedance h for TEM waves, the wave impedance for TE waves is
frequency dependent. The wave impedance tends to infinity at cutoff ( f ¼ fcm) and
to h as the frequency approaches infinity ( f � fcm).

3.3.2 TM propagation in parallel plate waveguides
Longitudinal component:

Ez x; zð Þ ¼ jE0
l
lcm

sin
mpx

d

	 

e�jbgz V=mð Þ (3.24)

Transverse components:

Ex x; zð Þ ¼ E0
l
lg

cos
mpx

d

	 

e�jbgz V=mð Þ (3.25)

Hyðx; zÞ ¼ E0

h
cos

mpx

d

	 

e�jbgz ðA=mÞ (3.26)

Power propagated by the m mode is

Pav ¼ E2
0l

2hlg
cos2 mpx

d

	 

ðW=m2Þ (3.27)

We can also calculate the wave impedance of the waveguide as

ZTM ¼ Ex

Hy
¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � f 2

cm=f 2
q

Wð Þ (3.28)

Note that the wave impedance for TM waves is always smaller than the intrinsic
impedance h, whereas at cutoff, ZTM ¼ 0.

3.3.3 Rectangular waveguides
In the parallel plates waveguide in the previous section, the fields only varied in
one transverse direction, whereas propagation was along the plates. Because of

Planar transmission lines and coupled structures 109



that, analysis of the fields was simple. True parallel plate waveguides are not
practical since all dimensions must be finite. Although structures resembling the
parallel plate waveguide can be built (such as the striplines in Section 3.2) and are
quite common in microwave integrated circuits, most waveguides are closed
structures. A rectangular or cylindrical tube or some other type of enclosed con-
ductor may be used. In the most general sense, the conductor is not a condition of
existence of guided waves; only total reflection from a boundary is required.
However, to simplify the discussion, we will restrict ourselves to waveguides
defined by highly conducting surfaces.

One of the most common and simple waveguide structures is the rectangular
waveguide built with two intersection parallel plates as shown in Figure 3.11. This
view has the advantage of defining the waveguide in terms of the parallel plate
waveguides we have already discussed and produces both TE and TM waves but
TEM waves cannot exist since now there is only one conductor.

A rectangular waveguide is shown in Figure 3.12. The dimensions of the
waveguide are the internal dimensions, and the walls are assumed to be perfectly
conducting. We will also restrict discussion to lossless media within the waveguide.
The longitudinal and transverse components of the fields are calculated directly
from Maxwell’s equations, the details of which are not shown here (but see the
‘‘Bibliography’’ section).

a
b b

a

Figure 3.11 A rectangular waveguide (shown in cross section) as a combination
of two parallel plate waveguides

x

y

z

b

a

Figure 3.12 Structure and dimensions of a rectangular waveguide
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3.3.4 TM modes in rectangular waveguides
For TM modes, the longitudinal component is the electric field intensity:

Ez x; y; zð Þ ¼ E0 sin
mp
a

x
	 


sin
np
b

y
	 


e�jbgz V=mð Þ (3.29)

The transverse components are

Ex x; y; zð Þ ¼ �jbg

k2
cmn

E0
mp
a

cos
mpx

a

	 

sin

npy

b

	 

e�jbgz V=mð Þ (3.30)

Ey x; y; zð Þ ¼ �jbg

k2
cmn

E0
np
b

sin
mpx
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b

	 

e�jbgz V=mð Þ (3.31)

Hx x; y; zð Þ ¼ jwe
k2

cmn

E0
np
b

sin
mpx
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npy
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e�jbgz A=mð Þ (3.32)

Hy x; y; zð Þ ¼ �jwe
k2

cmn

E0
mp
a

cos
mpx
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npy

b

	 

e�jbgz A=mð Þ (3.33)

In these relations, a is typically the larger dimension. The guide phase constant bg

and the cutoff wavenumber kcmn are

bg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2me� mp
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2
� np

b

	 
2
r

rad=mð Þ (3.34)

kcmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mp
a

	 
2
þ np

b

	 
2
r

rad=mð Þ (3.35)

The cutoff frequency may be obtained from the cutoff wavenumber by writing
kcmn ¼ 2pfcmn

ffiffiffiffiffimep
:

fcmn ¼ 1
2

ffiffiffiffiffimep
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

a

	 
2
þ n

b

	 
2
r

Hzð Þ (3.36)

The wave impedance is obtained by taking the ratio between the transverse
components of the electric and magnetic field intensities. Since the wave must
propagate in the z direction (i.e., the Poynting vector must be in the z direction), we
can take either the ratio between Ex and Hy or the negative ratio of Ey and Hx:

ZTM ¼ Ex

Hy
¼ � Ey

Hx
¼ bg

we
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
e

1 � f 2
cmn

f 2

� �s

ðWÞ (3.37)

The total power in the waveguide cross section is the power density, integrated over
the waveguide cross section. This gives

P ¼ webgE2
0ab

8k2
cmn

ðWÞ (3.38)

Planar transmission lines and coupled structures 111



where k2
cmn ¼ mp=að Þ2 þ np=bð Þ2. The total power is directly proportional to the

cross-sectional area of the wave guide (ab). In any given waveguide, the total
power may be increased by using larger fields (electric and magnetic) or increasing
the physical dimensions of the waveguide. Also, the power is proportional to fre-
quency and the dielectric constant in the waveguide. Most waveguides use air as
the dielectric, but increasing the frequency is feasible up to certain limits, imposed
by the circuits used to generate the fields. The modes, m, n, are any integer values
including zero. However, the obvious m ¼ 0, n ¼ 0 mode does not exist. Also,
observing the transverse fields in (3.30)–(3.33), modes with indices m ¼ 0, n 6¼ 0
and n ¼ 0, m 6¼ 0 cannot exist because with these indices, all transverse fields are
identically zero.

3.3.5 TE modes in rectangular waveguides
In TE modes, the longitudinal component is the magnetic field intensity:

Hzðx; yÞ ¼ H0 cos
mpx

a

	 

cos

npy

b

	 

e�gz A=mð Þ (3.39)

The transverse components of the electric and magnetic field intensities are

Exðx; y; zÞ ¼ jwm
k2

cmn

H0
np
b
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mpx

a

	 

sin

npy

b

	 

e�jbgz V=mð Þ (3.40)

Eyðx; y; zÞ ¼ �jwm
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e�jbgz V=mð Þ (3.41)

Hxðx; y; zÞ ¼ jbg
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mp
a

sin
mpx

a

	 

cos

npy

b

	 

e�jbgz A=mð Þ (3.42)

Hyðx; y; zÞ ¼ jbg
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cmn
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mpx
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npy
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e�jbgz A=mð Þ (3.43)

The propagation properties for TE modes in the waveguide are identical to those for
TM modes except for the wave impedance. This can be seen by direct calculation
of the various properties ( fcmn, bg, ug, etc.). The wave impedance, however, is
different for TE modes and is given by the ratio of the transverse components of the
electric and magnetic fields as follows:

ZTE ¼ Ex

Hy
¼ � Ey

Hx
¼ wm

bg
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
e

1
1 � f 2

cmn=f 2

� �s

ðWÞ (3.44)

TEmn modes are obtained for all possible pairs of the integers m and n, except for
m ¼ 0 and n ¼ 0. Unlike TM modes, in TE modes, either m or n can be zero but not
both. This indicates that the lowest propagating mode is a TE0n or TEm0, depending
on the dimensions a and b of the waveguide. If a > b, the lowest cutoff frequency is
for a TE10 mode. Also to be noted is that TM and TE modes with the same indices
have the same cutoff frequency, as can be seen from (3.36).
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The power density in a waveguide propagating a TE mode may be calculated
using steps identical to those for TM modes, using the Poynting vector for the
transverse components of E and H. This gives

P ¼ wmbgH2
0 ab

8k2
cmn

Wð Þ (3.45)

The lowest cutoff frequency mode in any waveguide is called dominant mode. In
rectangular waveguides, this is a TE mode and, usually, the TE10 mode. Different
modes which have the same cutoff frequency are called degenerate modes.

3.3.6 Cavity resonators
A rectangular cavity resonator is built out of a rectangular waveguide by adding
two conducting walls at z ¼ 0 and z ¼ d, as shown in Figure 3.13(a). The cavity
resonator may be viewed as being made of three parallel plate waveguides, as
shown in Figure 3.13(b). The cavity is a modified waveguide, in which there are
standing waves in the z direction as well as in the x and y directions. The cavity acts
as a resonant structure in which there is exchange of energy between the electric
and magnetic field at given (resonant) frequencies. This is equivalent to resonant
LC circuits in the case of lossless cavities and to RLC circuits in the case of lossy
cavities.

The analysis of fields in a cavity requires the solution of the full three-
dimensional wave equation with the required boundary conditions. The procedure
here will be to take the TM and TE waves we have defined for waveguides and to
modify them to satisfy the additional boundary conditions imposed by the addi-
tional conducting walls. However, the TE and TM equations for waveguides cannot
be used directly. The main reason is that in waveguides, we assumed explicitly that
the wave propagates in the z direction and that the transverse directions are the
directions perpendicular to the direction of propagation (z direction). In cavities,

x

y

a

z

b

d

b

d

(a) (b)

a

Figure 3.13 (a) Structure and dimensions of a rectangular cavity resonator and
(b) construction of the cavity resonator as the intersection of three
parallel plate waveguides
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there is no clear direction we can take as a transverse direction. The approach here
is to take the z direction (usually the long dimension of the cavity) as a reference
direction, allow the waves to propagate along this direction, and calculate the total
waves as the sum of the forward- and backward-propagating waves reflected off the
shorting walls. We define the TE and TM modes as

1. A TM mode in a cavity resonator is any mode which has no magnetic field
component in the z direction of the cavity.

2. A TE mode in a cavity resonator is any mode which has no electric field
component in the z direction of the cavity.

3.3.7 TM modes in cavity resonators
The longitudinal component is

Ezðx; y; zÞ ¼ E0 sin
mpx

a

	 

sin

npy

b
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ppz

d

	 

V=mð Þ (3.46)

The transverse components in the cavity resonator are as follows

Exðx; y; zÞ ¼ �1
g2 þ k2
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Note that these are standing waves—they do not propagate, as required. The
wavenumber is defined as

k2 ¼ mp
a

	 
2
þ np

b

	 
2
þ pp

d

	 
2
¼ w2me (3.51)

From this, the resonant frequency is calculated as

fmnp ¼ 1
2

ffiffiffiffiffimep
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
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2
þ n
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2
þ p

d

	 
2
r

Hzð Þ (3.52)

where the indices m, n, and p indicate the mode in which the cavity resonates. In
resonant cavities, the concept of cutoff is different than in waveguides. Since there
is no propagation in a cavity, these are called resonant frequencies or resonant
modes rather than cutoff frequencies.

Any combination of mode indices m, n, and p results in a resonant frequency
of the cavity except for those with m ¼ 0 or n ¼ 0 [for which the longitudinal
component of the field in (3.46) becomes zero]. If m or n or both are zero, all field
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components become zero. However, p can be zero. The lowest TM resonant mode
(assuming a > b > c) is TM110.

3.3.8 TE modes in cavity resonators
The longitudinal component is the magnetic field intensity:

Hzðx; y; zÞ ¼ H0 cos
mpx
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d

	 

A=mð Þ (3.53)

The transverse components are

Exðx; y; zÞ ¼ jwm
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g2 þ k2

H0
mp
a

pp
d

sin
mpx

a

	 

cos

npy

b

	 

cos

ppz

d

	 

ðA=mÞ (3.56)
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From the fields in (3.53)–(3.57), we see that for TE modes, either m or n can be
zero (but not both), while p must be nonzero (otherwise the longitudinal component
of the field is zero). For p ¼ 0 or for m ¼ n ¼ 0, all components of the field are zero.
The lowest resonant mode is therefore either the TE101 or TE011, depending on the
dimensions a, b, c.

The resonant frequencies for TE modes are the same as for the TM modes:

fmnp ¼ 1
2p ffiffiffiffiffimep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
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2
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2
þ p

d

	 
2
r

ðHzÞ (3.58)

Some of the modes may have the same resonant frequency even though they are
different modes. As an example, for a cubic cavity (a ¼ b ¼ d), TE011 and TE101

have the same frequency. These are called degenerate modes, as in waveguides.

3.3.9 Energy relations in a cavity resonator
Power and energy relations in a cavity are defined by the Poynting theorem. Since
there is a certain amount of energy stored in the fields of a cavity, the calculation of
this energy is an important aspect of analysis. This is particularly obvious if we
recall that in a resonant device, these relations change dramatically at or near
resonance. This was true with resonant circuits or resonant transmission lines and is
certainly true with resonant cavities. The stored and dissipated power in a cavity
define the basic qualities of the cavity. A lossless cavity is not practically realiz-
able; therefore, we also defined the quality factor of the cavity, which is a measure
of losses in the cavity. A shift in the resonant frequency of the cavity can also be
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described in terms of energy as we have done in Chapter 2 for general resonant
circuits.

To define the energy relations in the cavity, we need to calculate the Poynting
vector (P ¼ E � H) in the cavity. From (3.46)–(3.50) or (3.53)–(3.57), we note
that the Poynting vector for lossless cavities is purely imaginary, that is, the time-
averaged power density in the cavity is zero:

P av ¼ 1
2

ReðE � H�Þ ¼ 0 (3.59)

This means that there is no real power transferred in or out of the cavity, but there is
stored energy in the magnetic and electric fields inside the cavity. From the com-
plex Poynting vector [(D.135) in Appendix D], we have

S ¼ j2w
ð

u

1
4
eE � E� � 1

4
mH � H�

� �
dv ðWÞ (3.60)

The total time-averaged stored electric and magnetic energy in the cavity can now
be written as

W0 ¼
ð

v

eE � E�

4
� mH � H�

4

� �
dv Jð Þ (3.61)

where E and H are the fields in the cavity, and v the volume of the cavity. This
relation is correct at any frequency regardless of resonance.

If the cavity also has wall losses, the time-averaged dissipated power in the
cavity walls is

Ploss ¼ Rs

2

ð

s
J 2

s ds ¼ Rs

2

ð

s
jHtj2ds Wð Þ (3.62)

where Rs is the surface resistance of the cavity walls, Ht is the tangential magnetic
field intensity at the walls surface, and s is the internal surface of the cavity walls.
In addition, there may also be losses due to the dielectric inside the cavity, and
these must be added to (3.62).

The stored energy and the power loss in the cavity define the two most
important properties of cavity resonators. These are the resonant frequency and the
Q-factor in the cavity. These were discussed at length in Chapter 2 and are taken up
again in the following section where analysis of resonant frequency and quality
factor is done through the intermediary of energy and power. However, before we
leave the discussion of cavity resonators, it is useful to indicate that any power loss
in the cavity must be supplied from outside the cavity to maintain resonance. One
can easily imagine that if power lost in the cavity is not replaced, the fields will
diminish and eventually dissipate. Similarly, if too much power is supplied to the
cavity, the fields will increase over time, usually associated with an increase in
losses. Thus, the issue of coupling energy to the cavity is important and must be
taken care of for the cavity to resonate.
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The introduction of energy into the cavity can be done in a number of ways.
The most obvious of these is to have a source within the cavity that generates the
necessary fields. A small loop [Figure 3.14(a)] or a simple probe excitation
[Figure 3.14(b)] can be used. A loop generates a magnetic field intensity, and this
magnetic field intensity excites a mode with magnetic field intensity parallel to that
generated by the loop. Different modes can be generated by simply locating the
probe or the loop at different locations in the cavity, although, for obvious reasons,
these must be close to the outer surfaces of the cavity. The same applies to the small
probe except that now the excitation is through the electric field intensity of the
probe. Similarly, the cavity can be coupled through a small aperture through which
a small amount of energy ‘‘leaks’’ into the cavity [Figure 3.14(c)]. In this case, the
modes excited are those that have fields parallel to those in the waveguide at the
location of the aperture. The three coupling methods in Figure 3.14 excite different
modes. These are shown for a cavity, but identical considerations apply to wave-
guides. We will see in the following chapter that the transmission line resonator
used in the fabric sensors or the rubber thickness sensor use the small probe to
couple energy into the sensor and the sensor itself is a modified cavity resonator.

3.4 Coupled stripline resonators

Coupled striplines are used extensively for transmission line couplers, filters,
transformers, and other applications. However, one important application in the
context of this work is their use in open transmission line resonators. Particularly
useful for this purpose is the broadside coupled structure of Figure 3.4(b) because
of its field distribution (see Figure 3.6), but resonators based on the edge-coupled
stripline in Figure 3.4(a) can also be built and have their own application. In either
type of line, the ground planes serve as a shield, partially isolating the resonator
from external influences (see Figure 3.15). The planes are relatively large com-
pared to the classical striplines. In fact, in most methods of analysis, they are
considered as infinite planes. The planes can also be bent, to either entirely enclose
the striplines or, as required by an open resonator, to partially enclose the striplines
(Figure 3.16). This modification also helps improve the Q-factor of the resonator
but, naturally, complicates analysis. A distinct advantage of coupled stripline
resonators is that just like the dual mode of propagation, there are also two resonant

(a) (b)

Probe
Loop

(c)

Cavity

Aperture

Waveguide H
E

CavityCavity

H

Figure 3.14 (a) Coupling to a cavity by a small loop in the cavity, (b) coupling to
a cavity by a small probe in the cavity, and (c) coupling to a cavity by
a small aperture in the wall of the cavity
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modes. These are also called the odd and even mode of resonance. As can be seen
from the field distributions in Figure 3.6, the odd mode produces fields perpendi-
cular to the centerline of the broadside-coupled structure, whereas the even mode
produces electric fields parallel to the center line. One can, for example, expect that
a thin dielectric sheet on the center line will interact with the electric field in either
mode, but its vertical position will affect the even mode much more than the odd
mode. Hence, if one is interested in the thickness (or alternatively, the permittivity)
of the material, an even-mode excitation is more useful. Bulk effects, such as
humidity in the air or temperature, will tend to affect the odd mode and even mode
roughly equally so that these effects can be used for compensation purposes.

Resonators, of any type, also require that energy be coupled into the resonator
to compensate for power losses. In circuits, that is done through a feedback
mechanism, whereas in the tapped transmission line resonator (see e.g., Fig-
ure 2.37), the coupling is direct through a transmission line feed. In the microwave
cavity resonators in Figure 3.14, the coupling is through an electric probe, a mag-
netic loop, or through an aperture shared by the waveguide and the cavity. In
stripline resonators, the coupling can also be capacitive thorough a gap between the
stripline and the feeding transmission line (also a stripline) as shown in Figure 3.17.
A direct resistive connection is also possible although not as commonly used.
A third possibility, one that is used in this work, is coupling through a probe. This is

Ground planes Stripline
segments

(a) (b)

Figure 3.15 A broadside coupled stripline resonator: (a) side and (b) top views

Folded
ground planes

Stripline
segments

(a) (b)

Figure 3.16 Partially shielded, broadside-coupled stripline resonator: (a) side
view with striplines recessed from the edges of the folded ground
planes and (b) top view

Gap
ResonatorFeed line

Figure 3.17 Capacitive coupling to a stripline resonator. The gap between the
feed line and the resonator serves as a capacitor (top view)
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depicted in Figure 3.18 for the resonator in Figure 3.16 and is similar to the cavity
resonator feed in Figure 3.14(b). The optimization of this coupling is discussed in
the following chapter as part of the overall optimization of the sensors but, as in the
cavity resonator, the function of the probe is to excite the proper fields at the
location it is placed so as to reinforce the resonator field distribution.

There are other properties that we will discuss in the following chapter when
we undertake the design of such a resonator.

The resonator in Figure 3.15 is made as a transmission line section between
two ground planes but is open on four sides. As a first approximation, one may
assume that this structure will behave similar to that in Figure 2.33 or that we could
start the analysis using Section 2.11.2. This approach, which looks at resonance in
terms of the input impedance of the open line, can supply basic information on the
properties of the resonator. Thus, one could assume that a half-wavelength long
broadside coupled stripline will produce a resonant frequency equal to f ¼ c=l.
However, that would imply that we neglect the ground planes entirely and by so
doing disregard the issue of even and odd modes. This, of course, is inappropriate
since this type of line will resonate at distinct even and odd modes with different
resonant frequencies. It is this dual resonance that makes this type of resonator
attractive, and in the present work, the dual resonance is critical to the successful
development of the sensors and sensing strategies. On the other hand, exact ana-
lysis is difficult because of the nonuniform distribution of the fields, especially
around the edges. Therefore, we will opt for a numerical evaluation of the resonant
frequency and the Q-factor of the resonator as well as the effect of dielectrics in
the resonator. Unlike analytical modeling, numerical analysis requires specific
numerical dimensions and properties. Thus, we delay this until a resonator has been
designed based on specific requirements. We shall do so in the following chapter.
However, it is useful to look first at an analytical method of analysis called the
perturbation method because it provides a way of understanding how the shift in
resonant frequency relates to the properties (geometric and electric) of the space
within the resonator and any dielectric inclusion such as when testing materials. It
can also provide examples that are easy to calculate and therefore can be used to
verify numerical models. The perturbation method is discussed next.

3.5 Resonant cavity perturbation

The discussion in this chapter focuses mostly on transmission lines and transmis-
sion line resonators. There is, however, a parallel between transmission lines and

Folded
ground planes

Stripline
segments

Probe

Figure 3.18 Probe coupling to a stripline resonator

Planar transmission lines and coupled structures 119



waveguides and between transmission line resonators and microwave cavity reso-
nators. In particular, the work reported in this book is based on a partially enclosed
transmission line resonator that resembles both in structure and in function a par-
tially open-cavity resonator. This is fortunate because some of the tools for analysis
and measurements developed for cavity resonators can be adapted to transmission
line resonators either exactly or, often, as an approximation. One such tool that will
be used extensively is the idea of cavity perturbation.

In general terms, by measuring the shift in resonant frequency and of the
Q-factor of a cavity due to a sample inserted in the cavity or due to changes in
material properties of the cavity as a whole, one can determine the complex
permittivity of the sample or the material filling the cavity. Alternatively, the
properties of materials, introduced into a cavity, change the resonant frequency
and the Q factor of the cavity, and these changes can then be related to material
properties. If the material is lossless, the shift in resonant frequency alone is suf-
ficient to determine the dielectric constant of the material. In general, however,
both the permittivity and the permeability must be considered as complex values.
To understand the process by which the resonant frequency shifts, we consider first
a closed (cavity) resonator. The extension to open transmission line resonators is
then discussed.

3.5.1 Whole cavity perturbation, lossless media
The shift in resonant frequency of a cavity is due to the change in energy stored in
the cavity, whereas the change in the Q-factor is due to power loss in the cavity
(and hence related to the loss factor of the material within the cavity as well as in
the cavity walls). The following discussion starts with the fields in the cavity and
calculates the energy relations using the Poynting theorem in complex form, but we
assume for now that the medium in the cavity is lossless. To properly account for
energy and power, we must account for the fields everywhere in the space of
interest. In terms of resonant structures, we assume that the space is bounded by
conducting surfaces so that the space is clearly defined and the fields on the
boundary are known. Hence, the discussion below assumes a cavity bounded by
perfect conductors on which the tangential electric field intensity and the normal
magnetic flux density are zero.

A closed resonator with lossless walls (perfect conductors) and a lossless
medium with permittivity e and m filling the resonator is shown in Figure 3.19(a).

ε, μ

v

ε+Δε, μ+Δμ

v

(b)(a)

Figure 3.19 The concept of cavity perturbation: (a) unperturbed cavity and
(b) whole cavity perturbation
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The resonator resonates at a frequency which we denote as w0 and is viewed here as
the reference frequency of resonance. Assuming the fields within the cavity are E0

and H0, we have from Maxwell’s equations (see Sections D.1 and D.4) and

r� E0 ¼ �jw0mH0 (3.63)

r� H0 ¼ jw0eE0 (3.64)

If the cavity is perturbed, that is, if the material properties in the cavity change by
small values De and Dm [Figure 3.19(b)], the fields change to E and H and the
relations become

r� E ¼ �jw mþ Dmð ÞH (3.65)

r� H ¼ jw eþ Deð ÞE (3.66)

In these equations, E and H are phasors, and w is the perturbed resonant frequency,
distinct from the reference resonant frequency.

To calculate the shift in resonant frequency, we take the scalar product of
(3.66) with E�

0 and the scalar product of the conjugate of (3.63) with H and add
the two together:

r� Hð Þ � E�
0 � r� E0ð Þ � H ¼ jw eþ Deð ÞE � E�

0 � jw0mH�
0 � H (3.67)

From the following vector identity

H � r � E0ð Þ � E�
0 � r � Hð Þ ¼ r � E�

0 � H
� �

(3.68)

we get

r � H � E�
0

� � ¼ jw eþ Deð ÞE � E�
0 � jw0mH�

0 � H (3.69)

Similarly, taking the scalar product of (3.65) with H�
0, the conjugate of (3.64) with

E, adding them together and using again the identity in (3.68) we get

r � H�
0 � E

� � ¼ jw mþ Dmð ÞH � H�
0 � jw0eE�

0 � E (3.70)

The sum of these two equations is

r � H�
0 � E

� �þr � H � E�
0

� � ¼ jw mþ Dmð ÞH � H�
0 � jw0eE�

0 � E

þ jw eþ Deð ÞE � E�
0 � jw0mH�

0 � H
(3.71)

We now integrate the expression over the volume of the cavity:
ð

v
r � H�

0 � E
� �þr � H � E�

0

� � �
dv

¼
ð

v
jw mþ Dmð ÞH � H�

0 � jw0eE�
0 � E þ jw eþ Deð ÞE � E�

0 � jw0mH�
0 � H

 �
dv

(3.72)
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Applying the divergence theorem to the left-hand side
ð

v
r � H�

0 � E
� �þr � H � E�

0

� � �
dv ¼

þ

s
H�

0 � E
� � � ds þ

þ

s
H � E�

0

� � � ds

(3.73)

This integral vanishes since E and E0 are normal to the surface of the perfectly
conducting cavity wall, whereas H and H0 must be tangential. Thus, we have
ð

v
jw mþ Dmð ÞH � H�

0 � jw0eE�
0 � E þ jw eþ Deð ÞE � E�

0 � jw0mH�
0 � H

 �
dv ¼ 0

(3.74)

or, expanding the expression after dividing both sides by j:

w
ð

v
mH � H�

0dv þ w
ð

v
DmH � H�

0dv � w0

ð

v
eE�

0 � Edv þ w
ð

v
eE � E�

0dv

þ w
ð

v
DeE � E�

0dv � w0

ð

v
mH�

0 � Hdv ¼ 0 (3.75)

or

w� w0ð Þ
ð

v
mH � H�

0dv þ
ð

v
eE�

0 � Edv

� �
¼ �w

ð

v
DeE � E�

0dv � w
ð

v
DmH � H�

0dv

(3.76)

This gives

w� w0

w
¼ �

ð

v
DeE � E�

0dv þ
ð

v
DmH � H�

0dv
ð

v
mH � H�

0dv þ
ð

v
eE�

0 � Edv
(3.77)

The result in (3.77) is exact under the assumptions it was developed. If we can
assume that the change in permittivity and permeability is small, then E is
approximately equal to E0 and H to H0. Similarly, because the change in frequency
is small, we can approximate w in the denominator by w0, and we have

w� w0

w0
	 �

ð

v
De E0j j2dv þ

ð

v
Dm H0j j2dv

ð

v
e E0j j2dv þ

ð

v
m H0j j2dv

(3.78)

The exact relation in (3.77) or the approximation in (3.78) may be used to calculate
the resonant frequency due to changes in permeability and/or permittivity. It should
be emphasized again that this can only be done if we know the electric and mag-
netic field intensities throughout the cavity. In general, this is not the case, but in
practice, the fields of specific cavities are known and may be used in (3.78).
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In most cases of practical interest, the media in cavities are dielectrics with
permeability equal to m0. Under these conditions, (3.77) and (3.78) become

w� w0

w
¼ �

ð

v
DeE � E�

0dv
ð

v
m0H � H�

0dv þ
ð

v
eE�

0 � Edv
(3.79)

w� w0

w0
	 �

ð

v
DejE0j2dv

ð

v
ejE0j2dv þ

ð

v
m0jH0j2dv

(3.80)

3.5.2 Cavity perturbation by small, lossless
material samples

The discussion above assumes that the whole interior of the cavity is uniformly
perturbed. However, more often, only part of the cavity will be perturbed as in, for
example, testing a small sample in the cavity (see Figure 3.20). Now, of course, the
change in resonant frequency depends on the volume of the sample and, sig-
nificantly, where in the sample within the cavity it is located. For example, a small
dielectric sample placed at a location of zero electric field intensity will produce
little or no change in resonant frequency. To calculate the change in resonant fre-
quency, one must be able to relate the electric and magnetic field intensities in the
sample to those in the unperturbed part of the cavity. This is not possible in general
although it is relatively simple for some samples, depending on their shape and is
based on interface conditions at the sample’s boundaries. This method simply
assumes that the fields within the sample and the cavity relate to each other as in
the static case (a quasistatic approximation). To obtain a general expression for the
shift in resonant frequency, we note that the denominator in (3.77) or (3.78) is
the total energy stored in the cavity, whereas the nominator is the energy due to the
change in material properties. Since a sample introduced in a cavity is small, we
may safely approximate the fields in the denominator as in (3.77) and (3.78)
because the change in total energy stored in the cavity is small. These are E0

ε,μ

v

ε+Δε, μ+Δμ

v

(a) (b)

v

(c)

vs vs

ε+Δε, μ+Δμ,
σ+Δσ

ε μ, ε,μ,σ

Figure 3.20 Cavity perturbation by small sample: (a) empty cavity,(b) small
lossless sample in the cavity, and (c) small lossy sample in the cavity

Planar transmission lines and coupled structures 123



and H0. In the nominator, we must use the fields internal to the sample for E and H.
We denote these as Ei and Hi. Thus, we can write

w� w0

w0
¼ �

ð

v
DeEi � E�

0dv þ
ð

v
DmHi � H�

0dv
ð

v
mH0 � H�

0dv þ
ð

v
eE�

0 � E0dv
(3.81)

or

w� w0

w0
	 �

ð

v
DeEi � E�

0dv þ
ð

v
DmHi � H�

0dv
ð

v
ejE0j2dv þ

ð

v
mjH0j2dv

(3.82)

In most cases of interest, the materials in the cavity are dielectrics. In these cases,
Dm is zero and the stored magnetic energy equals the stored electric energy:

w� w0

w0
	 �

ð

v
DeEi � E�

0dv

2
ð

v
ejE0j2dv

(3.83)

Most cavities are air-filled with permittivity e0. For a sample of isotropic (complex)
permittivity e, De¼ e� e0 and the approximation may be written as

w� w0

w0
	 � er � 1ð Þ

ð

vs

Ei � E�
0dv

2
ð

v
jE0j2dv

(3.84)

where er is the relative permittivity of the perturbing sample and vs the volume of
the perturbation. The latter can be the whole volume of the cavity (in the case of
perturbation in the permittivity of the space in the cavity, such as due to moisture
in air) or the volume of the sample (such as in testing of permittivity of dielectrics
introduced into the cavity). In essence, the shift in resonant frequency is propor-
tional to the volume of the sample and its relative permittivity.

In this case, we have also assumed that the electric and magnetic energy in the
cavity remain equal because the perturbation is small.

3.5.3 Cavity perturbation, lossy media
If the perturbing medium is lossy, the permittivity is complex. We start by denoting
the perturbation in material conductivity, permittivity, and permeability as sþ Ds;
eþ De; mþ Dm where s, e, and m are the properties of the unperturbed cavity [see
Figure 3.20(c)].
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Starting again with Maxwell’s equations, we write for the unperturbed cavity:

r� E0 ¼ �jw0mH0 (3.85)

r� H0 ¼ sþ jw0eð ÞE0 (3.86)

For the perturbed cavity, we have

r� E ¼ �jw mþ Dmð ÞH (3.87)

r� H ¼ sþ jweð ÞE ¼ sþ Dsþ jw eþ Deð Þð ÞE (3.88)

The following vector identity applies in this case

r � H � E0ð Þ ¼ E0 � r � Hð Þ � H � r � E0ð Þ (3.89)

Substituting from (3.41) and (3.39)

r � H � E0ð Þ ¼ sþ Dsþ jw eþ Deð Þð ÞE � E0 þ jw0mH0 � H (3.90)

and substituting from (3.88) and (3.86):

r � H � Eð Þ ¼ sþ jweð ÞE � E0 þ jw0 mþ Dmð ÞH0 � H (3.91)

Subtracting the former from the latter:

r � H � Eð Þ � r � H � E0ð Þ ¼ sþ jweð ÞE � E0 þ jw0 mþ Dmð ÞH0 � H

� sþ Dsþ jw eþ Deð Þð ÞE � E0 þ jw0mH0 � H

¼ r � H � E0ð Þ ¼ sþ Dsþ jw eþ Deð Þð ÞE � E0 þ jw0mH0 � H

¼ j w� w0ð Þ eE � E0 � mH � H0½ � � jwDmH � H0 þ jw De� j
Ds
w

� �
E � E0

(3.92)

Integrating over the volume on both sides:
ð

v
r � H � Eð Þ � r � H � E0ð Þ½ �dv ¼

þ

s
H � Eð Þ � H � E0ð Þ½ � � ds

¼
ð

v
j w� w0ð Þ eE � E0 � mH � H0½ � � jwDmH � H0 þ jw De� j

Ds
w

� �
E � E0

� �
dv

(3.93)

where we used the divergence theorem to convert the volume to a closed surface
integral on the left-hand side. Because s is a conducting surface, n̂ � E0 ¼ 0
and n̂ � E ¼ 0 so that the left-hand side is zero (no power propagation across the
boundary). Hence,
ð

v
j w� w0ð Þ eE � E0 � mH � H0½ � � jwDmH � H0 þ jw De� j

Ds
w

� �
E � E0

� �
dv ¼ 0

(3.94)
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Rearranging terms

w� w0

w
¼ �

ð

v
De� j Ds=wð Þð ÞE � E0 � DmH � H0½ �dv

ð

v
eE � E0 � mH � H0½ �dv

(3.95)

or, approximating w in the denominator with w0:

w� w0

w0
¼ �

ð

v
De� j Ds=wð Þð ÞE � E0 � DmH � H0½ �dv

ð

v
eE � E0 � mH � H0½ �dv

(3.96)

Note that this is completely equivalent to (3.82) since H and E are 90� out of phase
(in space); hence, the energy terms in the brackets add up. This means that we can
still use the form in (3.83) for the case where Dm¼ 0:

w� w0

w0
¼ �

ð

v
De� j Ds=wð Þð ÞE � E0½ �dv

2
ð

v
eE � E0½ �dv

(3.97)

Because the perturbation is small, we can usually assume in the denominator: E 
 E0

w� w0

w0
¼ �

ð

vs

De� j Ds=wð Þð ÞE � E0½ �dv

2
ð

v
eE0

2dv
(3.98)

As in the lossless media case, the integration in the nominator is only on the per-
turbed section of the cavity, whereas in the denominator, it is over the whole cavity.

It should be noted here that both w and w0 must be complex, whereas in the
lossless case, both w and w0 were real.

In the lossless (ideal) cavity, the quality factor is infinite, but in the lossy
cavity, it is finite and is related to the losses in the cavity. In (3.97) or (3.98), the
losses are due to the change in conductivity caused by the perturbation. In parti-
cular, if the change is due to the introduction of a lossy sample into the cavity, then
De is the change in the dielectric constant of the sample, ss is the conductivity of
the sample, and the quantity in the round brackets can be written in terms of the
complex permittivity of the sample, ec:

ec ¼ e0 þ je00 ¼ e0 � j
ss

w
(3.99)

Equations (3.97) and (3.98) may now be written as

w� w0

w0
¼ �

ð

v
e0 � je00 � e0ð ÞE � E0½ �dv

2
ð

v
e0E � E0½ �dv

(3.100)

126 Open resonator microwave sensor systems for industrial gauging



w� w0

w0
¼ �

ð

v
e0 � je00 � e0ð ÞE � E0½ �dv

2
ð

v
e0E0

2dv
(3.101)

Using the idea of the complex resonant frequency in (2.190) where we replaced the
resonant frequency with a complex resonant frequency, we can write for the cavity
without the inclusion:

w ¼ w0 þ j
w0

2Q0
(3.102)

where w0 is clearly the resonant frequency of the empty cavity and Q0 its loaded
Q-factor.

We can do the same for the perturbed cavity and write

w ¼ wr þ j
wr

2Qs
(3.103)

where wr is the resonant frequency of the perturbed cavity and Qs the loaded
Q-factor with the sample present:

wr þ j
wr

2Qs
� w0 ¼ �

w0

ð

v
e0 � je00 � e0ð ÞE � E0½ �dv

2
ð

v
e0E0

2dv
(3.104)

Equating real terms on the two sides of (3.104):

wr � w0 ¼ �
w0

ð

v
e0 � e0ð ÞE � E0½ �dv

2
ð

v
e0E0

2dv
(3.105)

This equation is identical to (3.84) indicating that the losses do not affect the
resonant frequency.

Equating the imaginary terms, we get

wr

Qs
¼

w0

ð

v
e00E � E0½ �dv

ð

v
e0E0

2dv
(3.106)

Since the change in frequency is small, we can write wr 	 w0 to obtain

1
Qs

¼

ð

v
e00E � E0½ �dv
ð

v
e0E2

0dv
(3.107)
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This assumes that the losses in the unperturbed cavity are negligible. If, however,
they are not, then (3.107) is modified as

1
Q
¼

ð

v
e00E � E0½ �dv
ð

v
e0E2

0dv
(3.108)

where

1
Q
¼ 1

Qs
� 1

Q0
(3.109)

and Q0 is the Q-factor of the unperturbed cavity.
The use of the perturbation formulas above requires that the fields within the

whole of the cavity and within the perturbed space be known so that the various
volume integrals may be calculated. In many cases, this is, at best, an arduous
task. In others, such as in the case of small material samples, one can assume that
E 
 E0, that is, that the perturbation changes the fields within the sample very little,
to simplify he integrals. Yet, from these formulas, it is clear that the shift in
the resonant frequency depends on these fields and, as a consequence, on where
in the cavity the perturbation occurs. If, for example, a sample is placed in a place
where the fields are low (such as at the walls of the cavity or close to corners), the
shift in resonant frequency will be minimal, whereas the same sample placed at a
locations of very high field will result in a large shift in the frequency. Certain
relatively simple configurations can be treated analytically. These include dielec-
tric sheets and disks, spherical and cylindrical dielectrics, and ellipsoids. Other,
more complex configurations must be analyzed numerically both for the shift in
resonant frequency and for the calculation of the Q-factor. Even for the simple
configurations indicated here, the calculation is only valid within enclosed cavities
since we assumed the tangential electric field intensity and the normal magnetic
field intensity vanish on the boundary. Open or partially open cavities must, again,
be treated numerically in the majority of cases. Nevertheless, the perturbation
method is valuable as a tool in design because it allows one to approximate a
solution and reach a preliminary design that can then be followed by a full
numerical analysis for more accurate results, should that be needed.

The perturbation method can also be used to calculate the change in Q-factor
due to geometry or dielectric perturbations throughout the cavity. However, this aspect
of the method is not discussed here because it has limited relevance to the present
work. The discussion above should at least show how this can be done in general.
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Chapter 4

Microwave measurements

4.1 Introduction

Although the frequencies used in the two sensors described in this work are rela-
tively low, below 500 MHz, and microwaves are usually seen as being above that,
the term microwave measurements is appropriate for two reasons. First, the meth-
ods and the instrumentation used are normally associated with microwaves, and, in
fact, the common designation of the microwave range includes these frequencies.
Of course, one can get away from this slight difficulty by using the term ‘‘high
frequency’’ measurements but that is a less well-defined and broader concept.
Second, related reason lies with the fact that the range of frequencies usually
associated with microwaves is arbitrary and what matters are the measurements and
how they can be performed most accurately.

In general terms, at low frequencies, one can measure quantities such as vol-
tages, currents impedance, frequency, and power in circuits directly using relatively
simple instruments, familiar to any engineer. The use of Ohm’s and Kirchhoff’s
laws allows one to analyze circuits quickly and accurately. These are based on
a lumped-parameter approach, which, in turn, is based on the fact that at low
frequencies, the wavelength is long compared to the dimension of any component
of the circuit. Thus, for example, we can safely assume that on a conductor, the
voltage is constant, and the current entering and leaving the conductor is equal in
magnitude and phase. Under these conditions, a (passive) circuit can be reduced to
a collection of components (resistive, capacitive, and inductive) producing a mesh
of currents and voltages.

As the frequency increases, the wavelength becomes smaller and, eventually,
the lumped approach fails since the phases of currents and voltages in any segment
of the circuit cannot be assumed to remain constant over any length of conductors.
In effect, we must assume that voltages and currents are a result of propagation
along the segment. The circuit itself must be described as a distributed parameter
circuit, very different than the low-frequency representation. The common low-
frequency circuit approach using loop currents and node voltages cannot be used,
and one must then either use field-analysis methods through solution of Maxwell’s
equations or adapt circuit analysis to high-frequency applications. Clearly, not all
microwave problems can be analyzed using circuit theory extensions. If one is
interested in the behavior in a space, either inside a medium or in free space, there



is no alternative to field analysis through solution of Maxwell’s equations.
In principle, of course, all problems can be analyzed through Maxwell’s equations
although the difficulties of doing so can be enormous. Transmission lines can and
almost always are analyzed through circuit concepts adapted to high-frequency
propagation using methods ‘‘borrowed’’ from field analysis. In Chapter 2, we did
exactly that: We used the ideas of propagation, transmission, reflection and
attenuation, and the concept of plane waves [transverse electromagnetic modes
(TEM) propagation] to analyze the behavior of voltages, currents, and impedances
on the line. Since on transmission lines one can measure voltages and currents,
this approach is natural. Other microwave problems that are not clearly defined
circuits, such as waveguides, are better analyzed by using electric and magnetic
fields. They can also be analyzed by use of equivalent voltages and equivalent
currents although one cannot measure these directly. In this approach, the equiva-
lent voltages are proportional to the electric-field intensities and the equivalent
currents are proportional to the magnetic-field intensities. Because the fields vary
from location to location and depend on the mode of propagation in the waveguide,
the equivalent voltages and currents must be set so that their product provides the
power flow of the mode at any location in the waveguide. Clearly too, their ratio
must equal the wave impedance. Beyond transmission lines and waveguides, the
only alternative is a full field analysis.

Microwave measurements follow these methods of analysis. In transmission
lines and in waveguides, one can use network-analysis methods since one can
define proper ports for measurements. Thus, one-, two-, and N-port analysis
methods can be applied directly. This chapter will discuss network measurements
since the present work deals entirely with transmission lines and transmission line
resonators. Also, because the sensors described in this work are intended to be
connected directly to a network analyzer, understanding of these measurements is
crucial to understanding of the operation and specifications of the sensors. How-
ever, in order to understand how a network analyzer can perform its task, it is
important to understand how the various microwave quantities are defined and
measured. We will therefore discuss some general methods of measurement and
then link them to the network analyzer through the use of the S-parameters. We will
discuss measurements in terms of the S-parameters since in the present work, we
will only have recourse to measurements in transmission lines and cavity resonators
and because the instrument we use to perform these measurements is a network
analyzer.

Although one would think that network analysis is limited to true networks,
that is, systems in which an input connection and an output connection of some sort
can be identified and connected to, this is not the case. One can easily connect
antennas to the ports of the network analyzer and by doing so convert it into a radar
system, which then can be used to analyze waves in open space. By doing so, one
can extend the measurements to either enclosed or open spaces. That is not to say
that it is easy to do so since issues of noise, external sources, and influences from
structures must be taken into account, but with properly controlled measuring
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system measurements in space, especially in enclosed space, are possible and can
be accurate. In some cases, such as measurements in a resonant cavity, where the
waves are contained by the walls of the cavity, this is particularly simple and, with
some modifications, this is the method used in this work.

Other measurements such as antenna measurements and free-space measure-
ments will not be discussed except as necessary for the present work. In addition,
measurements of components properties and responses, although commonly
performed, will not be discussed here. These are one-port measurements, whereas
we restrict ourselves to two-port measurements, simply because that is the type of
measurement needed in the context of this work.

4.2 N-Port networks

At low frequencies, a port is a physical connection, a pair of terminals in which one
can measure voltages on or currents into the terminals. Thus, one can, as indicated
in the introduction, measure voltages, currents, impedance, and power by direct
means. This is in general also the case on transmission lines in which the ports are
well defined. In general microwave applications, this is not the case and a port is
defined somewhat differently, as a plane transverse to the direction of propagation
of the wave. In a waveguide or transmission line, this is a plane transverse to the
line or waveguide. At these ports, one can measure incident, reflected, and trans-
mitted power and hence fields or equivalent voltages and currents. Clearly then, the
analysis of low-frequency networks and microwave networks will be different. At
low frequencies, we typically use impedance or admittance parameters, whereas in
microwaves the primary parameters are called scattering parameters since they
define reflection and transmission at ports. Nevertheless, the methods are similar in
that they borrow from circuit analysis and, perhaps more importantly, because the
impedance and scattering parameters are related.

In what follows, we start with the impedance parameters, followed by the
scattering parameters and then show the relations between them. In this work,
we will have recourse to measurements in two-port systems, but it is perhaps more
useful and certainly more general to start with an N-port network which can then be
reduced to a two-port or a one-port network as needed. Consider Figure 4.1, which
shows an N-port network of transmission lines. On each line, there are incident and
backward (reflected) currents and voltages, and on each line there is a reference
port (sometimes called termination port or even load port) at which the phases
of the current and voltage are known. The reference port is indicated symbolically
by the dashed line. Incident waves, denoted with a (þ), propagate toward the port,
reflected waves, indicated with a (�), propagate away from the port as shown by
the thin, horizontal arrowed lines. The network shown in Figure 4.1 can also
describe an equivalent network of, say, waveguides in which the voltages and
currents shown are the equivalent voltages and currents as described in the
introduction.
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Starting with the voltages and current on a transmission line [see (2.74)], we
write on line n:

Vn zð Þ ¼ Vþ
n e�jbz þ V�

n e jbz (4.1)

In zð Þ ¼ Iþn e�jbz � I�n e jbz (4.2)

where Iþn ¼ Vþ
n =Zn0, I�n ¼ V�

n =Zn0, and Zn0 is the characteristic impedance of the
line. We write the reference voltage and current on the nth port by setting z ¼ 0 in
(4.1) and (4.2):

Vn ¼ Vþ
n þ V�

n (4.3)

In ¼ Iþn � I�n (4.4)

The relation between the voltages and currents on the n ports is then described by
an impedance matrix as follows:
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8
>>>><

>>>>:

9
>>>>=

>>>>;
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8
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9
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>>>>;

(4.5)

The impedance matrix is linear, meaning that 4N independent quantities, Vþ, V�
n ,

Iþ, I�n , may be selected to describe the behavior of the network. The coefficients of
the impedance matrix, Zij, can be found by driving port j with a current Ij, while all

I1
+

V1
+ V1

–

I1
–

In
+

Vn
+ Vn

–

In
–

Port 1

Port n

N-port
network

Figure 4.1 An arbitrary N-port network of transmission lines
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other ports have zero current (open-circuits) and using the open-circuit voltage on
port i:

Zij ¼ Vi

Ij

�����
Ik¼0;k 6¼j

(4.6)

The term Zii is the impedance of port i when all other ports are open circuited and is
clearly the ratio between Vi and Ii. Vi and Ii are given in (4.1) and (4.2) for n ¼ i.

This shows as well how the impedance coefficients may be measured either
manually or using a computerized instrument such as a network analyzer: starting
with one port, while all other ports are open we apply a current to that port (say port i)
and measure the voltages on all other ports to get the off diagonal terms Zij, j 6¼ i.
Repeating this for each port, we obtain all off-diagonal terms of the impedance
matrix. The diagonal terms are simply the ratio of voltage on a port and the current
in the port with all other ports open.

Since the relations between current and voltage can be written in terms of
admittances as,

Iþn ¼ Yn0Vþ
n ; I�n ¼ Yn0V�

n (4.7)

we can define an admittance matrix:

I1

I2

..

.

IN

8
>>>><

>>>>:

9
>>>>=

>>>>;

¼

Y11 Y12 � � � Y1n

Y21 Y22
..
.

..

. ..
.

YN1 � � � � � � YNN

2

666664

3

777775

V1

V2

..

.

VN

8
>>>><

>>>>:

9
>>>>=

>>>>;

(4.8)

The coefficients are found in a manner analogous to (4.6): Port j is driven with a
voltage Vj, while short-circuiting all other ports and measuring the short-circuit
current in port i.

Yij ¼ Ii

Vj

����
Vk¼0;k 6¼j

(4.9)

A few properties of the impedance and admittance matrices are worth mentioning
at this stage:

1. For a general network, the coefficients are complex.
2. For reciprocal networks, that is, networks that do not contain nonreciprocal

media such as ferrites or active devices, the impedance and admittance
matrices are symmetric.

3. If the network is lossless, the coefficients of the matrices are purely imaginary
since the net power into the network must be zero.

4. The impedance and admittance matrices are reciprocal of one another, that is,

Y½ � ¼ Z½ ��1 (4.10)
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5. Although not immediately evident, the coefficients of the matrices are fre-
quency dependent, that is, as the frequency changes, the coefficients change
because the impedances are frequency dependent in most cases.

The impedance and admittance matrices in (4.5) and (4.8) were developed from
circuit principles and clearly apply to circuit networks including transmission lines.
However, they apply equally well to networks in which circuit quantities including
voltages and currents are not obvious such as waveguides. In such cases, one
measures electric and magnetic fields rather than voltages and currents. However,
the concept of impedance is still valid since the ratio of electric-field intensity and
magnetic-field intensity is an impedance (wave impedance). Thus, one can define
equivalent voltages and equivalent currents in terms of the electric- and magnetic-
field intensities and proceed with the use of the impedance or admittance matrix
approach as above. We do not show these matrices here because in such cases it is
easiest and perhaps more intuitive to use the concept of scattering parameters
(described next) and then show that the two approaches are related, that is, one can
convert from impedance coefficients to scattering coefficients and vice versa.

Reduction of an N-port network to a two-port network is, perhaps, the most
common application since more often than not, we are interested in analysis or
measurement of the properties of a device that possesses an input port and an output
port. This will be the case used in this work and in particular in the following
section. The reduction to a two-port network is shown in Figure 4.2. It should be
noted that the incident quantities (voltages and currents) flow into the network,
whereas the reflected quantities flow out of the network. The impedance and
admittance matrices for the two-port network are

V1

V2

� �
¼ Z11 Z12

Z21 Z22

� �
I1

I2

� �
(4.11)

I1

I2

� �
¼ Y11 Y12

Y21 Y22

� �
V1

V2

� �
(4.12)

4.2.1 The scattering matrix and S-parameters
Impedance and admittance networks are useful whenever voltages and currents can
be measured, with particularly simple representations for transmission lines.
However, in applications where voltages cannot be measured directly, a different
approach is needed. Instead of relating the total voltage and total current [Eqs. (4.3)
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Figure 4.2 A two-port network of transmission lines
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and (4.4)], one can use the scattering matrix approach. In this method, the reflected
and incident wave amplitudes rather than voltages and currents are related through
a scattering matrix. Nevertheless, the scattering matrix is defined through equiva-
lent voltages. Needless to say that the scattering matrix and hence the scattering
parameters are related to the impedance and admittance matrices discussed above.
The reason that scattering coefficients are more useful for analysis of microwave
networks is that they do not rely on measurement of voltages, and the concepts of
short and open circuit, which are so vague in microwave analysis, are not required
for analysis with S-parameters.

In dealing with waves, either in open or closed structures, the quantities that
can be measured directly are reflected and transmitted waves through simple
measurements such as detection of maxima and minima (both magnitude and
location), standing wave ratio (SWR), and reflected and transmitted power. Thus,
the scattering parameters deal with reflection and transmission of equivalent vol-
tages. Consider Figure 4.1, which shows a junction of N waveguides. At each port i,
there is an incident wave indicated by the equivalent voltage Vi

þ and a reflected
wave indicated by the equivalent voltage V�

i . We can then say that the reflected
amplitude due to port i is

V�
i ¼ SiiV

þ
i (4.13)

This reflection ignores any waves that may exist due to the other ports in the
network. But waves are also transmitted from each port to all other ports,
depending on the transmission coefficients between them. The amplitudes of these
transmitted (or, one can say scattered) waves on line i can be written as

V�
n ¼ Sni Vi

þ; n ¼ 1; 2; . . . ;N ; n 6¼ i (4.14)

Repeating this for all ports produces the scattering matrix:
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(4.15)

The scattering matrix for an N-port network is defined formally in a manner similar
to the impedance matrix except, of course, that the coefficients relate forward and
reflected waves at the ports. The coefficients of the matrix are found as follows:

Sij ¼ V�
i

Vþ
j

�����
Vþ

k ¼0;k 6¼j

(4.16)

That is, to measure Sij, port j is driven with an incident equivalent voltage, and the
reflected voltage is measured at port i, while all other ports are set to zero voltage.
The latter can be easily accomplished by terminating all ports other than port i and j
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with their characteristic impedance to avoid reflections. Clearly then, Sij is the
transmission coefficient from port j to port i, with all other ports terminated in their
characteristic impedance (matched loads). If i ¼ j, we have

Sij ¼ V�
i

Vþ
i

�����
Vþ

k ¼0;k 6¼i

(4.17)

This is clearly the reflection coefficient at port i, with all other ports terminated
with their characteristic impedance. Note that the reflection coefficient as defined
in (2.72) implies that the wave is reflected while there are no other waves trans-
mitted due to, say, internal reflections within the circuit. In that case, Sii is equal to
the reflection coefficient. If, however, there are multiple reflections, Sii represents
the total reflected wave coefficient rather than the reflection coefficient in (2.72).
For this reason, one should not, in general, refer to Sii as the reflection coefficient.
That is only true under the clearly defined conditions in (4.17) or in one-port
networks in which (4.17) is trivial since there are no other ports.

4.2.2 Generalized scattering parameters
So far, we have implicitly assumed that all ports have the same characteristic
impedance by simply not including the characteristic impedance in the definitions.
To analyze more general networks, we can define generalized scattering para-
meters. Rather than viewing the coefficients as relating the amplitudes of the
incident and reflected voltages, we normalize these voltages so that the normalized
amplitudes squared provide the incident and reflected time averaged power at
port n:

Pin ¼ 1
2
janj2 (4.18)

Prn ¼ 1
2
jbnj2 (4.19)

With these, the net time averaged power into port n becomes

Pn ¼ Pin � Prn ¼ 1
2
janj2 � 1

2
jbnj2 (4.20)

At least in principle this form is more appealing since it is more general and does
not necessarily require voltages. However, to relate to the previous discussion, we
can write

an ¼ Vþ
nffiffiffiffiffiffiffi
Z0n

p (4.21)

bn ¼ V�
nffiffiffiffiffiffiffi
Z0n

p (4.22)
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With these, the generalized scattering matrix becomes
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The coefficients of the generalized scattering matrix are

Sij ¼
V�

i

ffiffiffiffiffiffi
Z0j

p

Vþ
i

ffiffiffiffiffiffi
Z0i

p
�����
Vþ

k ¼0;k 6¼i

(4.24)

whereas Sii remains unchanged

Sij ¼ V�
i

Vþ
i

�����
Vþ

k ¼0;k 6¼i

(4.25)

It should be noted that (4.24) reduces to (4.16) if Z0i ¼ Z0j (i.e., if all ports have the
same characteristic impedance) and then the generalized scattering matrix in (4.23)
reduces to that in (4.15).

4.2.3 Some properties of S-parameters
1. If ports are perfectly matched, the reflection coefficients are zero, and hence

Sii ¼ 0. That is, the diagonal coefficients are zero.
2. As with the impedance matrix, reciprocal networks are symmetric, that is,

Sij ¼ Sji (i 6¼ j).
3. For any lossless network, the net power into a port [see (4.20)] is zero. That

implies that the sum of the products of each term of any row or any column
multiplied by its complex conjugate is equal to 1:

XN

n¼1

Sni � S�
ni ¼ 1 (4.26)

4. The S-parameters are easily related to the Z- or Y-parameters and can be
obtained from them.

5. There are other properties that will not be discussed here including properties
associated with the phase.

4.2.4 The ABCD-parameters and the transmission matrix
Another useful set of network parameters is the so-called ABCD parameters. These
are defined for two-port networks when multiple two-port networks are cascaded to
form a more complex network. The reason this is convenient is that then the matrix
for the cascaded network is the product of the matrices of the individual two-port
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networks. To do so, we define the ABCD matrix based on Figure 4.3. In this
network, the currents and voltages are the same as those in Figure 4.1 except that I2

points away from the network. This is done so that the output from any network
becomes the input to the next two-port network in the cascade (see Figure 4.4).
We write

V1 ¼ AV 2 þ BI2 (4.27)

I2 ¼ CV 2 þ DI2 (4.28)

Or

V1

I1

� �
¼ A B

C D

� �
V2

I2

� �
(4.29)

If we write the same for the two networks in Figure 4.4:

V1

I1

� �
¼ A1 B1

C1 D1

� �
V2

I2

� �
(4.30)

V2

I2

� �
¼ A2 B2

C2 D2

� �
V3

I3

� �
(4.31)

Thus

V1

I1

� �
¼ A1 B1

C1 D1

� �
A2 B2

C2 D2

� �
V3

I3

� �
(4.32)

That is, the relation between V1, I1 and V3, I3 is given by the product of the two
matrices.
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Figure 4.3 The two-port network used to define the ABCD-parameters. Note that
I2 flows out of port 2
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Figure 4.4 Two cascaded two-port networks
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The coefficients ABCD in (4.29) are measured on the basis of (4.27) and (4.28)
and depend of course on the network configuration, as follows:

A ¼ V1

V2

�����
I2¼0

;B ¼ V1

I2

�����
V2¼0

;C ¼ I1

V2

�����
I2¼0

;D ¼ I1

I2

�����
V2¼0

(4.33)

4.2.5 Relations between the various parameters
The relations between the various parameters can be written down relatively easily
from their definitions. This can be done for general N-port networks, but we will
limit ourselves here to two-port networks as the most useful for the present work
and because it is easier to follow the process.

4.2.6 Shift of reference plane
The voltage and current on a transmission line and, of course, waves (electric field,
magnetic field, or power) in space or in a waveguide propagate along a path with an
amplitude and phase that change as the waves propagate. Thus, for example, if we
were to measure a quantity at a point along the path of propagation and then move
to a different point, we would get totally different results. On a lossless transmis-
sion line, however, the amplitude remains constant, but the phase changes as the
wave propagates along the line. This has important implications on measurement of
the S-parameter and, of course, on all other parameters. Consider, for example, an
instrument such as an oscilloscope or a network analyzer. The measurement, that is,
the quantity that the oscilloscope displays is the quantity that appears at its port (the
connector on the front of the instrument). This is the test or reference point for
measurements. We call it the reference plane. However, we never actually measure
anything at that point—the measurement we need must occur at the end of a
transmission line that connects the instrument to the measurement point as shown
in Figure 4.5. We use here a network analyzer simply to emphasize that the idea of
the reference plane is important in high-frequency applications because only then
the shift in frequency as we shift the reference plane becomes significant.

Consider first the transmission line as discussed in Chapter 2. The shift in
phase along the line as the wave propagates a distance l between two points z1

V –
Instrument
port

Network
analyzer

z = 0

Test
port

z = l

V +

V′–
V′+

Figure 4.5 The instrument port and test port. The instrument measures the values
at z ¼ 0
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and z2 can be written as (using the forward voltage wave as an example, see
Figure 4.6):

Vþ
z2 ¼ Vþ

z1e�jb z2�z1ð Þ ¼ Vþ
z1e�jbl (4.34)

where l is the distance between the two points. bl is the electrical length between
the two points. If a reflected wave is generated at point z2, the reflected wave at
point z1 becomes

V�
z1 ¼ Vþ

z1Ge�jbl
� 	

e�jbl ¼ Vþ
z1Ge�j2bl (4.35)

Clearly then there is a shift in the phase proportional to the distance the wave
propagates, and this can be understood as a delay in the time domain. The electrical
length bl is the phase difference between the two points.

Now, returning to the S-parameters and Figure 4.5, we have the instrument port
at z ¼ 0 and shifted measurement or test port at z ¼ l. Assuming the amplitude of
the forward wave (voltage, for example) to be Vþ, the S-parameters can be written
at each of the two locations for each of the ports in Figure 4.5 using (4.15) at the
reference plane at z ¼ 0 as
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� �
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� �
Vþ

1

Vþ
2

� �
(4.36)

We can do the same at the shifted plane, but now the S-parameters must be different:
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However, from the theory of transmission lines (and the discussion above), we have

V
0þ ¼ Vþejbl (4.38)

V
0� ¼ V�e�jbl (4.39)

Substituting (4.38) and (4.39) into (4.36), we get
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(4.40)
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Figure 4.6 Propagation of voltages on a line between two points separated a
distance l apart
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Multiplying by the inverse of the leftmost matrix
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That is, the S-parameters at the shifted reference planes is

S
0

h i
¼ S11e�j2bl1 S12

S21 S22e�j2bl2

� �
¼ S11e�j2q1 S12

S21 S22e�j2q2

� �
(4.42)

Clearly then the S-parameters of any shifted reference plane are simply those of the
test reference plane with the diagonal (Sii) parameters shifted by a phase equivalent
to twice the distance between the test reference plane and the shifted reference
plane. This phase angle can be either calculated or, more often, measured as part of
the overall measurement process. This will be used in Chapter 8 to calibrate the
network analyzer to take into account the phase shift due to the insertion of coaxial
cables between the ports of the network analyzer and the device under test (DUT).

4.2.7 Transformations between parameters
Although the S-parameters are the most useful parameters in the microwave range,
it is important to remember that all the network parameters we defined (and others
we have not) are related and can be obtained from each other. This is particularly
useful since some coefficients are easier to obtain than others. The following shows
a few of these transformations to and from S-parameters and between other
parameters for two-port networks:

Transformation from Z- to S-parameters

S11 ¼ Z11 � Z0ð Þ Z22 þ Z0ð Þ � Z12Z21

Z11 þ Z0ð Þ Z22 þ Z0ð Þ � Z12Z21
(4.43)

S12 ¼ 2Z12Z0

Z11 þ Z0ð Þ Z22 þ Z0ð Þ � Z12Z21
(4.44)

S21 ¼ 2Z21Z0

Z11 þ Z0ð Þ Z22 þ Z0ð Þ � Z12Z21
(4.45)

S22 ¼ Z11 þ Z0ð Þ Z22 � Z0ð Þ � Z12Z21

Z11 þ Z0ð Þ Z22 þ Z0ð Þ � Z12Z21
(4.46)

Note that in these transformations we did not assume symmetric networks (i.e., S12

is not assumed to be equal to S21). Of course, if they are equal, it is because the
network is symmetric.
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Transformation from ABCD- to S-parameters

S11 ¼ A þ B=Z0 � CZ0 � D

A þ B=Z0 þ CZ0 þ D
(4.47)

S12 ¼ 2 AD � BCð Þ
A þ B=Z0 þ CZ0 þ D

(4.48)

S21 ¼ 2
A þ B=Z0 þ CZ0 þ D

(4.49)

S22 ¼ �A þ B=Z0 � CZ0 þ D

A þ B=Z0 þ CZ0 þ D
(4.50)

Transformation from S- to Z-parameters

Z11 ¼ Z0
1 þ S11ð Þ 1 � S22ð Þ þ S12S21

1 � S11ð Þ 1 � S22ð Þ � S12S21
(4.51)

Z12 ¼ Z0
2S12

1 � S11ð Þ 1 � S22ð Þ � S12S21
(4.52)

Z21 ¼ Z0
2S21

1 � S11ð Þ 1 � S22ð Þ � S12S21
(4.53)

Z22 ¼ Z0
1 � S11ð Þ 1 þ S22ð Þ þ S12S21

1 � S11ð Þ 1 � S22ð Þ � S12S21
(4.54)

Transformation from S- to ABCD-parameters

A ¼ 1 þ S11ð Þ 1 � S22ð Þ � S12S21

2S21
(4.55)

B ¼ Z0
1 þ S11ð Þ 1 þ S22ð Þ � S12S21

2S21
(4.56)

C ¼ 1
Z0

1 � S11ð Þ 1 � S22ð Þ � S12S21

2S21
(4.57)

D ¼ 1 � S11ð Þ 1 þ S22ð Þ þ S12S21

2S21
(4.58)

Transformation from ABCD- to Z-parameters

Z11 ¼ A

C
(4.59)

Z12 ¼ AD � BC

C
(4.60)
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Z12 ¼ 1
C

(4.61)

Z22 ¼ D

C
(4.62)

Transformation from Z- to ABCD-parameters

A ¼ Z11

Z21
(4.63)

B ¼ Z11Z22 � Z12Z21

Z21
(4.64)

C ¼ 1
Z21

(4.65)

A ¼ Z22

Z21
(4.66)

The Z-, Y-, ABCD-, and S-parameters are the classical parameters in network
analysis and all assume linear networks. In essence, one assumes small signal
operation and testing. There are, however, instances in which large signal analysis
and hence nonlinear analysis is required. Examples are in analysis of power
amplifiers, power components, and nonsinusoidal operation in which one must take
into account multiple harmonics. Parameters for these applications have been
developed in the form of X-parameters, which can be viewed as a superset of
S-parameters. These apply to both linear and nonlinear (small- and large-signal)
analysis since in the limit of low signal, they reduce to the classical S-parameters as
given in this section. We will not pursue these here, but it should be remembered
that, in conjunction with nonlinear vector network analyzers, X-parameters are a
very important extension of capabilities of parameter analysis.

4.3 Use of the S-parameters for practical measurements

The use of S-parameters for measurements in the microwave bands is widespread
and is, perhaps, the single most important method for measurement of a wide
variety of quantities. It is particularly useful in two-port structures in which
the method can be implemented with relative ease. But it can also be used in one-
port measurements (such as in evaluation of electronic components) and in multi-
port measurements. In the past, measurement of S-parameters required direct
measurements of voltages or power-related quantities using discrete instruments
that made the testing procedure tedious and prone to errors. However, the method is
standard on network analyzers and, therefore, provided that the DUT can be
connected to the network analyzer either directly or through the intermediacy of a
test fixture, the parameters are measured directly and from these, other important
quantities can be obtained and displayed as needed. We will discuss the network
analyzer separately in Chapter 8 and, at that point, will reflect back on the
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S-parameters. Here we wish to discuss some of the results that can be obtained from
the S-parameters and explain their usage since these have either direct or indirect
bearing on the present work. Although we use a two-port model, as the most
common application of S-parameters, N-ports can be similarly applied if needed.

Consider first the two-port system in Figure 4.2. The S-parameters may be
calculated from the following:

b1

b2

� �
¼ S11 S12

S21 S22

� �
a1

a2

� �
(4.67)

where the S-parameters have the following meaning:

S11 is the reflection coefficient G1 at port 1 when port 2 is terminated with a
matching load (i.e., there is no reflection from port 2 back into port 1). S22 is
the reflection coefficient G2 at port 2 when port 1 is terminated with a
matching load

S12 is the transmission coefficient for a wave traveling from port 2 to port 1.
S21 is the transmission coefficient for a wave traveling from port 1 to port 2.

These are easy to understand and recalling that the S-parameters are defined from
incident, reflected, and transmitted power, it is no surprise that all the important
properties of microwave systems can be obtained from measurement of
S-parameters. In the following, we discuss practical measurements with particular
emphasis on those that are relevant to the present work.

4.3.1 Matching of loads
Measurement of the S11-parameter provides the reflection coefficient looking into
port 1. This has immediate use in matching such as in matching a load (say, an
antenna) to a transmission line. In principle, matching means minimization of the
S11-parameter. In practice, this is done through minimization of the SWR. SWR is
defined directly in terms of the reflection coefficient; hence, by measuring the
S11-parameter, one obtains

SWR ¼ 1 þ S11

1 � S11
(4.68)

The SWR at matched condition equals 1. In transmission lines, this is obvious,
but the same can be done in waveguides. The SWR can be viewed as a measure-
ment of the degree of mismatch and hence is the natural choice of parameter to
measure when matching is required. Some practical aspects of matching in the
context of measurements will be discussed in Chapter 8.

4.3.2 Detection of resonance
Monitoring of the S11-parameter is also commonly used to measure the resonant
frequency of a resonator. The process is simply that of scanning the frequency of
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the source coupling to the resonator until S11 is maximum. For series resonance, the
impedance of the resonator is minimum, and hence S11 tends to �1 since

S11 ¼ G1 ¼ Zin � Z0

Zin þ Z0
(4.69)

In general, the S-parameters are complex, but at resonance the input impedance to
the resonator is real, and S11 becomes real (for a lossless transmission line con-
necting to the resonator).

For parallel resonance, the impedance of the resonator is high, and S11 tends to
þ1, again, under the same conditions. As with matching, resonance can be detected
through monitoring of the SWR, but in this case, resonance occurs at maximum
SWR. The S-parameter does not measure the resonant frequency but rather detects
resonance, and the frequency is deduced from the scan.

4.3.3 Determination of losses
Given an input power Pi fed to port 1, reflected power Pr from port 1, and trans-
mitted power Po to port 2, one can easily measure losses in the system. In micro-
waves, one defines a number of losses and quantities associated with losses. The
following describe these losses and their measurement through the S-parameters.
Losses are usually given in dB.

Given an incident power Pi at the input port of a network, some of that power
is reflected back as Pr; hence, the power entering the network is Pi � Pr. The
network may attenuate this power so that Po is smaller than Pi � Pr. The ratio
between the power entering the network and the incident power is

Pin

Pi
¼ Pi � Pr

Pi
(4.70)

whereas the ratio between the output power at the output port and input power at
the input port is

Po

Pi
¼ Po

Pi � Pr
(4.71)

Therefore

Po

Pi
¼ Pi � Pr

Pi
� Po

Pi � Pr
(4.72)

These relations define the fundamental losses in the network as follows.

4.3.3.1 Reflection loss
Reflection loss (RFL) is a measure of the reflected power at the port and is defined
by the term in (4.70) as follows:

RFL ¼ 10 log
Pi � Pr

Pi
¼ 10 log

�
1 � jS11j2

	
(4.73)
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4.3.3.2 Attenuation loss (transmission loss)
Attenuation loss (AL) or transmission loss is defined as the power loss between the
input and output ports, that is, given the power entering the input port as Pi � Pr

and the power at the output port as Po, the ratio Po= Pi � Prð Þ defines the AL as
follows:

AL ¼ 10 log
Po

Pi � Pr
¼ 10 log

jS12j2
1 � jS11j2

(4.74)

4.3.3.3 Insertion loss
Insertion loss (IL) is defined as the ratio of the power delivered to the load when the
load is connected directly to the source and the power when the network is inserted
between the source and the load. That is, when the network is inserted, part of the
input power is reflected, whereas the transmitted power may be attenuated due to
the network. Therefore IL may be viewed as the sum of loses due to reflection and
due to attenuation by the inserted network. From (4.72), we have

10 log
Po

Pi
¼ 10 log

Pi � Pr

Pi
þ 10 log

Po

Pi � Pr
(4.75)

The first term on the RHS is the reflection loss, whereas the second is the
attenuation loss. From (4.73) and (4.74), we write

IL ¼ 10 log
Po

Pi
¼ 10 log 1� jS11j2


 �
þ 10 log

jS12j2
1� jS11j2

¼ 10 logjS12j2 ¼ 20 logS12

(4.76)

It is therefore sufficient to measure the transmission coefficient from port 1 to
port 2.

4.3.3.4 Return loss
When the load is mismatched, not all of the available power from the generator is
delivered to the load. This ‘‘loss’’ is called return loss (RL) and is defined (in dB)
so that a matched load (GL ¼ 0) has a return loss of ? dB (no reflected power),
while a total reflection (|GL| ¼ 1) has a return loss of 0 dB (all incident power is
reflected). Note that return loss is a nonnegative number for reflection from a
passive network.

RL ¼ 10 log
Pi

Pr
¼ 20 log

1
jS11j (4.77)

The return loss is written in this fashion to guarantee that it comes out as a positive
number. The term should be used with care because of its inverse meaning, that is,
the better the matching of a load, the higher the return loss and vice versa.
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4.4 Other measurements

The S-parameters can be used to measure other quantities. We have mentioned the
detection of resonance. The method can be used to measure the resonant frequency
rather than detecting resonance since at resonance the magnitude of the reflection
coefficient is maximum.

In addition to measurement of the resonant frequency of resonators or reso-
nating elements, one can measure the quality factor of resonators since these are
related to power loss in the resonator.

Many more properties can and are being analyzed through the use of
S-parameters, and some of these will be discussed in Chapter 8 when we discuss the
network analyzer.

Through the use of these properties and others, the S-parameters have become
the primary measurement in microwaves and are the primary process of measure-
ment in network analyzers. This is not surprising since the incidence, reflection,
and transmission are the fundamental processes by which waves interact with
media and as such are the most general way of analysis.

4.4.1 Frequency measurements
Traditionally, one did not measure frequency directly since measurement of
microwave frequencies by direct methods (such as through the use of counters or
even through comparison methods such as beating) was not possible until relatively
recently. Rather, one measured the wavelength. This was done by setting up
standing waves and measuring the physical distance between two minima of the
standing wave patterns. In transmission lines, the common method was to use a
slotted transmission line terminated in a short or open and move a probe in the slot
with the aid of a micrometer. The minima were detected with a receiver or power
meter, and the distance shown by the micrometer was then converted into fre-
quency using the relation between frequency, wavelength, and phase velocity that
was known for the particular slotted line. In waveguides, the common method was
to use a wavemeter—a cylindrical cavity resonator, dimensions of which could be
changed through a micrometer and the change calibrated into wavelengths or
frequency. The wavemeter also required a power detector to detect resonance.
These methods were very awkward primarily because they tended to interfere with
the operation of the devices and because they were slow, manual, and prone to
errors. These methods have been, for the most part, relegated to history except in
the very high-frequency ranges including in the optical domains.

The common method of measurement of frequency at low frequencies is
through the use of counters. In this type of instrument, one counts the number of
pulses (or peaks of sinusoidal signals) for a determined period of time and then the
frequency is simply the count number divided by time. The main problem
with this method is that at very high frequency, the gating time must be very short
and the components must be able to respond at the frequencies of measurement.
The common counter method can be extended to higher frequencies by first
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dividing the income frequency by a given factor using prescalers and only then
measuring the lower frequency after division. This approach increases the range but
reduces accuracy and is not generally suitable for very accurate frequency mea-
surements. A schematic circuit is shown in Figure 4.7. The microwave field is
sampled, and a frequency divider (prescaler) is used in any combination required
for the appropriate output. Digital frequency counters are used extensively because
they are simple and inexpensive. The only limitation on this straightforward
method is the frequency response of digital circuitry. Counters of this type exist
with an upper limit of about 3 GHz, while standard universal counters measure
frequency to about 500 MHz. Although perhaps not high enough for many micro-
wave measurements, these are simple, accurate, and relatively inexpensive instru-
ments. Typically the power needed for sampling is insignificant, and the sampling
mechanism does not load the microwave source.

Although frequency counters well into the GHz region are available com-
mercially, these are usually designed for measurements in circuits. Wave quantities
can be measured with counters after conversion to electronic signals using a
receiving antenna followed by amplification. However, an antenna followed by a
receiver/amplifier is essentially a spectrum analyzer. Hence, often, the frequency of
waves will be measured using spectrum analyzers. These are sensitive, wide-band
receivers with facility for scanning over a frequency range and analyzing the
signals including frequency, power, etc. Spectrum analyzers with ranges well into
the GHz range exist and are probably the best choice for frequency measurements.

A simple and accurate method of measurement is to heterodyne the unknown
frequency with an exactly known frequency and measure the difference between
the two. This is shown schematically in Figure 4.8. The known frequency is fa, the
measured frequency is fx. Their difference, fif ¼ fx � fa, is obtained after mixing fx
and fa. The resulting frequency, called the intermediate frequency, is much lower
than fx and can be measured accurately by a counter. The measured frequency is
then fa þ fcounter and since both of these are known accurately, the measured fre-
quency can be very accurate. Frequency measurement based on this process is
shown in Figure 4.9. The instrument will usually require some front-end amplifi-
cation and signal conditioning and filtering after mixing. Additional amplification
is almost always needed before detection and counting. Unfortunately, this very
simple process is seldom satisfactory. At microwave frequencies, the generation of
arbitrary values of fa is difficult especially if a wide range is needed. In more
practical instruments, this is usually done by generating a fixed frequency f0 using

Oscillator

GateSignal
shaping Counter Display

Control

Figure 4.7 The basic frequency counter
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an oven stabilized crystal generator or a cavity resonator (depending on the range of
frequencies that need to be measured). This fixed frequency is then fed to a har-
monic generator that generates N higher harmonics. A tuning cavity can then be
used to select an appropriate harmonic fa ¼ nf0 so that the IF frequency fif is within
the range of the counter, usually in the range of 100–500 MHz. This method is
shown in Figure 4.10. In practical measuring equipment, either the input signal is

Local oscillator

Mixer

Measured frequency fif = fx − fa

fx

fa

Figure 4.8 The principle of the heterodyning an unknown frequency with a known
locally generated frequency to down-convert to a lower intermediate
frequency

Display Counter
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AmplifierMixer LP or BP
filterAmplifier

Oscillator

Figure 4.9 Basic heterodyne frequency meter
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Figure 4.10 The main elements of a microwave heterodyne frequency
measurement
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scanned at fixed frequency intervals, or the output from the harmonic generator is
filtered for a given range, to provide a frequency difference in the range of at most a
few hundred MHz which can then be counted directly. Often, the functions of
harmonic frequency generation, selective filtering, and local oscillator are con-
trolled by a microprocessor. A simple schematic of this type of frequency meter is
shown in Figure 4.11, which shows additional functions necessary for practical
measurements. These include again amplification and conditioning of the input
signal, typically obtained with an antenna, filtering, and control mechanisms for
the harmonics. Often the functions of harmonic frequency generation, selective
filtering, local oscillator, and the counting process and display are controlled by a
microprocessor.

4.4.2 Wavemeters
Mechanical wavemeters were in the past the main method of measuring frequency
primarily because of the limitations of other instruments such as counters at high
frequencies and because they were simple and inexpensive. Their accuracy is,
however, lower than that of electronic frequency meters and, because they operated
‘‘off the signal,’’ they tended to load the input. However, wavemeters are still in use
either in the old mechanical configurations or in newer electronic implementations.
In the upper reaches of the microwave region and in the optical domains,
wavemeters are commonly used because direct measurement of frequency is not
practical. We discuss them here even though in the lower range of the microwave
domain, including in the range used in this work, the preference is for direct
measurement using counters. Wavemeters are based on direct measurement of the
length of a cavity resonator and from that one can calculate the frequency since
cavity resonators are either quarter wavelength or half wavelength long (or any
integer multiple of quarter wavelength). There are three types of wavemeters:
transmission, reaction, and absorption wavemeters. Among these, the transmission
wavemeter is most often used, primarily because it is connected in line with

Display

CounterMixer LP filterAmplifier

Oscillator
f0

Multiplier
f0, 2f0,....nf0

Filter for kth
harmonic

Control

kf0Signal

f – kf0
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Figure 4.11 A practical heterodyne frequency meter
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waveguides or transmission lines, simplifying connections, and does not load the
waveguide other than at resonance.

In a transmission wavemeter, power flows through the cavity, which at all
frequencies except resonance acts as a short circuit. At resonance, there is a certain
amount of energy absorbed by the cavity. This can be read as a dip in the output
power. The output power is then used as an indication of resonance. The resonant
frequency of the cavity is adjusted mechanically and the frequency read directly off
the adjusting screw.

Two types of wavemeters are shown in Figure 4.12. One is a cylindrical cavity,
the other a coaxial cavity. Coaxial wavemeters are more often used, primarily
because they have a higher bandwidth (larger frequency band between consecutive
modes). The cavity is normally a quarter wavelength cavity with the plunger being
adjusted. Half wavelength cavities are also used with one of the cylindrical walls
being adjusted. Coupling to the cavity is by loop probes that excite the magnetic
field inside the cavity. In a transmission mode, the coaxial line is terminated in
the cavity and another line couples energy out [as in Figure 4.12(a)]. Reaction type
waveguides also exist, in which the transmission line is not interrupted, but the
cavity is coupled to the line by exposing the inner conductor in the cavity. In effect,
the inner conductor serves as a coupling loop to couple energy into the cavity. This
is shown schematically in Figure 4.13. Absorption type wavemeters also exist, but
are rarely used because they require more energy from the measuring environment.
In all cases, the measurement is completed by adjusting the cavity to resonance at
which point a dip in the signal is observed due to resonance.

Waveguide wavemeters are made of a cylindrical waveguide with an
adjustable shorting wall, normally operating in the TE111 mode. Coupling to
waveguides is by an aperture. In all cases, the frequency range of a wavemeter is
that between two consecutive modes and the frequency is read directly off the
adjusting screw. Figure 4.12(b) shows a waveguide wavemeter of this type.

In Out

Moving, shorting
cylinder

Aperture

In OutWaveguide

Moving, shorting
cylinder

Coupling
loop Coupling

loop
(a) (b)

Figure 4.12 (a) Cylindrical wavemeter (reaction type) for measurements in
waveguides and (b) coaxial wavemeter (transmission type) for use
with transmission lines
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4.4.3 Power measurements
The measurement of power at microwave frequencies relies on two broad methods,
depending on the power level, accuracy needed, and response time. One method,
particularly suited for measurement of low power, is based on rectification by a
diode. The second broad method is by measuring the heating effects of microwaves
and is more suitable for higher power levels. Both methods and any derivatives
thereof are based on the Poynting theorem. The latter can be written as an instan-
taneous quantity

p tð Þ ¼
þ

S
E tð Þ � H tð Þð Þ � ds Wð Þ (4.78)

This gives the instantaneous power in a volume enclosed by the surface S. In most
cases, when one talks about power, the time-averaged power is implied:

Pav ¼ 1
2

Re
þ

S
E � H�ð Þ � ds

� �
Wð Þ (4.79)

here E and H are phasors and * indicates the conjugate. These definitions are
equivalent to the circuit definitions of power, either instantaneous:

p tð Þ ¼ V tð ÞI tð Þ Wð Þ (4.80)

or time averaged:

Pav ¼ 1
2

ReVI� Wð Þ (4.81)

here again, V and I are phasors.
In circuits and transmission lines, one can easily measure current and voltage

whereas in waveguides or in space, the measurement of fields is more practical.

In Out

Moving, shorting
cylinder

Transmission line

Figure 4.13 A reflection type wavemeter
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In many cases however, power or power density can be measured directly through
properties of rectifying diodes or indirectly through the heating effects of power.
As with any measurement, one must ensure that the method and sensors used to
implement it are appropriate for the frequency or band of frequencies of the source.

4.5 Power sensors and detectors

4.5.1 Diode power sensors
A diode rectifies the signal and hence produces either a DC or a rectified AC signal
proportional to the power in the signal since the diode is a square-law detector. The
common diodes used are Schottky barrier diodes. These are useful down to about
�70 dBm (about 100 pW) and up to about 50 GHz. The detection of power is based
on the fact that the output of the diode, that is, its current is proportional to the
square of the voltage across the diode. Given the V–I characteristic of a zero-bias
Schottky diode in Figure 4.14, the current in the load for small signal detection
(around the origin) can be written as

I ¼ aV 2 (4.82)

where a is a constant characteristic of the diode and V is the voltage across the
junction. Hence, the name square law and its use as power detectors. For a sinu-
soidal current, this is written as

I ¼ a V cos wtð Þ2 (4.83)

Of course, diodes are never ideal and a more appropriate model for a real diode
is more complex. In general, the V–I relation can be written as

I ¼ a0 þ a1V þ a2V 2 þ a3V 3 þ � � � (4.84)

or

I ¼ a0 þ a1V cos wt þ a2 V cos wtð Þ2 þ a3 V cos wtð Þ3 þ � � � (4.85)
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Figure 4.14 V–I characteristic of an ideal diode
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The term a0 relates to the value of the current at I ¼ 0, V ¼ 0 (origin). In an ideal
diode, this is zero and in very good diodes it is negligible. The linear term is
significant only at low currents, whereas the third and higher order terms are
relevant at high currents. For a diode to be used as an accurate power sensor, these
issues must be taken into account. First, a diode with very low leakage current is
used. Then, its nonlinearities must be properly evaluated and compensated. In
addition, the range of operation must be such that these undesirable effects are kept
to a minimum. In general, diodes cannot be used at very low power levels or at very
high power levels. The range is roughly from �70 to þ20 dBm although this
depends on the frequency range. Diodes can be used for broadband detection or for
narrowband detection.

The power sensor itself is very simple in principle and shown in Figure 4.15. In
practice, in addition to the matching network indicated by the resistance Rm and the
bypass circuit (the capacitor C), there are often biasing circuits, temperature com-
pensation circuits, and others to ensure accurate measurement of power.

4.5.2 Thermistors, bolometers, and thermocouples
An approach that is very different from that of the diode detector is the use of
devices that can detect and quantify the change in temperature caused by the
absorption of microwave power. This includes bolometers, thermistors, and ther-
mocouples of various types. A bolometer is a device that changes its resistance with
temperature. In the past, this was based on the positive temperature coefficient of
resistance of metals (very thin wires), but the modern form uses a thermistor.
Thermistors are semiconductor devices with either a negative or positive tem-
perature coefficient of resistance, with preference to negative temperature coeffi-
cients of resistance devices. Thermistors for this purpose are very small—about
0.3–0.4 mm in diameter. This ensures a measurable change in temperature for
minute input power. Because thermistors have an exponential resistance versus
temperature curve (Figure 4.16), it is crucial that the operating temperature of the
thermistor remains constant for all operational environmental temperature and
power levels. This can be achieved either by compensation or by using power
substitution methods (Figure 4.17). For example, the thermistor can be fed from a
DC source to raise its temperature to a fixed level above the background tem-
perature but monitoring its resistance and keeping this temperature constant. At this
point, the power supplied to the thermistor is Vth*I0. R is at a value R0 and Rth at a
value Rt0. When measuring external power, say Pe, the thermistor’s temperature
will rise, and its resistance drops to a value lower than Rt0. The current in the circuit
increases to a value, say I1, and the voltage across the thermistor changes to Vth1.

C
Rs

Rm Vo

Figure 4.15 Basic power measuring circuit
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The power in the thermistor is Vth1*I1. Now the resistance of resistor R is increased
until the resistance of the thermistor is restored to Rt0. The change in power equals
Vth*I0�Vth1*I1. This power is the reduction in power needed to restore the resis-
tance of the thermistor (hence the original temperature), and it equals the absorbed
microwave power. In practice, a more sophisticated circuit will be needed but the
principle is the same.

Bridge circuits are often used for this purpose with or without sensors that
sense the background temperature. A basic measuring circuit of this type is shown
in Figure 4.18(a). The indication can be measured directly on the meter, or the
bridge may be rebalanced and the DC power required to rebalance the bridge is
measured. Normally the latter method is used. In Figure 4.18(b), two identical
sensors are used with the upper sensor on the left branch isolated from the input
power flux and hence serves to compensate for ambient temperature. In the absence
of external power on ZS1, the bridge is balanced (Z1 ¼ Z2 and ZS1 ¼ ZS2 for all
ambient conditions), and the voltage measured is zero.

Thermistor-based sensors can sense down below 1 mW but require particular
attention to proper calibration. Obviously, not all incoming power is absorbed in
the thermistor, and the absorption efficiency of thermistors is less than 100%.
These quantities must be carefully measured so that the output of the thermistor
measurement can be compensated for losses.
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Figure 4.16 Thermistor resistance versus temperature curve
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Figure 4.17 Power substitution principle. The power needed to restore the
thermistor’s temperature equals the external power absorbed
by the thermistor
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Unlike thermistors, thermocouples are passive devices that do not require
external power to operate. These are junctions between two different materials—
either metals or metal–semiconductor or two semiconductors that produce a DC
voltage proportional to the temperature. To do so, the thermocouple sensor is made
of two junctions, one held at a constant temperature, the second measuring
the temperature due to microwave power (Figure 4.19). The reference junction may
be replaced with a compensation circuit by measuring the reference temperature
[Figure 4.20(a)]. The reference voltage, equivalent to a fixed temperature (usually

a b

(1)

(2)
(3)

(4)

(5)(6) T3

T1

T4

T2

c

c
a

b

b

Figure 4.19 Thermocouple measurement. T1 is the cold junction (reference)
temperature
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Figure 4.20 Compensation of cold junction: (a) compensation circuit based on
measurement of the reference temperature and (b) implementation
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Figure 4.18 A thermoresistive power measurement configuration:
(a) uncompensated bridge and (b) compensation for ambient
temperature
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0 �C), is inserted instead in series with the hot junction to replace the cold junction
[Figure 4.20(b)]. Although the output of the thermocouple is not linear, its char-
acteristics are available in exact relations for all practical combinations of materials.
Therefore, the measurement is very accurate. Any two different metals may be used
for junctions, but modern thermocouples used for microwave power measurements
are semiconductors for a number of reasons including the ease of production and
integration, the much larger thermoelectric outputs of semiconductor thermo-
couples and their smaller size and hence faster response. In practice, it is not pos-
sible to absorb power directly into the junction because the junction itself is very
small and because, in many cases, one uses thermopiles made of a number of
junction connected in series electrically. Instead, an absorber made of a conductor
with low heat capacity (such as gold) and coated black is used, and the thermo-
couple or thermopile measures the temperature of the absorber. Thermocouples are
often used in pairs for compensation (one thermocouple is exposed to the power
source, the second is shielded from the source) and can be easily integrated with
matching resistors and bypass capacitors. The basic configuration is shown in
Figure 4.21. This compensation allows for direct elimination of common mode
effects such as ambient temperature. Initially, both junctions are at the same tem-
perature, and the output is zero. As microwave power is absorbed in junction A (hot
junction) while junction B is shielded from the measured power, the temperature
difference generates a potential difference, proportional to the power absorbed. The
thermocouple marked as B serves as a cold junction, and in this configuration, a
cold junction compensation is not applicable. Calibration of the device is normally
done using simple DC or low-frequency power substitution. In addition to the basic
circuit, a variety of methods for signal conditioning, attenuation, and amplification
are sometimes used to extend measurement ranges. The output of thermocouple
and thermopiles is measured directly. Sensitivity is between 100 and 200 mV/mW
and unlike diodes can operate at much higher power levels of a few hundred mW.

In general, instruments using these devices for power measurements (such as
network analyzers) will use diodes for low power ranges and switch to thermistors
or thermocouples for higher power ranges.

AB

Hot junctionCold junction

Microwave power

V

Figure 4.21 The thermocouple in a measuring circuit. The cold junction is
isolated from the input power
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It should also be clear that thermocouples and thermistors react slower than
diodes and so the measurement time must be longer. All of them must be properly
calibrated and compensated for losses.

It should be mentioned in passing that microwave power can also be measured
by calorimetric methods. Obviously these are not suitable for instrumentation, but
the standards of power measurements are based on calorimetric methods, and,
when high powers must be measured directly, calorimetric methods are often used.

4.5.3 Measurement of power density
Sometimes, the total power is of less interest than the power density. This is the
case, for example, when a small sample is illuminated by an antenna and only a
small fraction of the total power is linked to the sample. Similarly, in radiation
exposure measurements, only the power density is normally specified. The main
difference between measurement of power and power density is that in power
density measurements, only a small fraction of the power is sampled. One obvious
method of measuring flux is to use a small loop. The loop operates as an antenna
and has a relatively narrow bandwidth. Dipole antennas of various forms can be
used for this purpose. The power density can also be measured using thermistors or,
more often, semiconductor thermocouples. Perhaps, the most common method for
power flux measurement is the use of an array of thermocouples on a substrate. The
individual thermocouples are fabricated on a substrate with alternating hot and cold
junctions, at intervals smaller than a quarter wavelength such that the net result is a
thermopile with a number of thermocouples connected in series. The main advan-
tage of this device is that it is nonresonant (unlike the small loop) and therefore
broadband. For applications at very high frequencies, it is not normally possible to
use loops for measurement but thermopiles, fabricated by integrated circuit means,
can always be made small enough to be below the required quarter wavelength
intervals. The use of power substitution for measurement simplifies calibration and
measurement. A thermopile array is shown schematically in Figure 4.22. The array
is built with alternating hot and cold junctions on a substrate, with individual
elements insulated from each other and the cold junctions shielded from the hot
junctions (see Figure 4.21). A sensor of this type is calibrated in power per unit area
and, provided the sensor is small enough, the reading, which is an average value,
can be accurate.

C

C
C

C

C

C

C
H

H

H

H

H

H = hot,  C = cold

Figure 4.22 A thermopile array for measurement of power density. Junctions
alternate and cold junctions are isolated from the microwave source
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4.6 Measurement of Q-factor of resonators

We discussed the behavior of resonant circuits in Chapters 2 and 3, including the
definition of the Q-factor. Since the sensitivity of measurements in cavity resona-
tors in the microwave range depends directly on the quality factor of the cavity,
the measurement of the Q-factor is an important issue. In the present work, we are
particularly interested in open stripline resonators. In general, open resonators have
lower Q-factors than the equivalent closed cavity and hence knowledge of the
Q-factor is even more important than in closed cavities.

There are two fundamental methods of measuring the Q-factor of a cavity. The
first measures power transmitted through the cavity and is shown in Figure 4.23(a).
This requires that an input and an output port be available, and the cavity is treated
as a two-port network. The second method is a reflection method shown in
Figure 4.23(b). In this case, the cavity is a ‘‘load’’ on the transmission line con-
necting to its port, and it is clearly a one-port network. In the first case, the power-
transmitted peaks at resonance, whereas in the second, the reflected power dips at
resonance.

One can define the Q-factor of the resonator either with a load [such as the
measuring instrument in Figure 4.23(a)] or without the load. These are called the
loaded and unloaded Q-factors, respectively and were defined in (2.208) and
(2.213). In the configuration in Figure 4.23(a), one measures the loaded Q-factor,
whereas in Figure 4.23(b) one measures the unloaded Q-factor. Since the loaded
Q-factor can be obtained from the unloaded Q-factor and vice versa, either method
can be used.

We show here both methods starting with the transmission method, simply
because that is the method used in this work. For this purpose, some of the
discussion in Chapter 2 is repeated here as it pertains to the measurement of the
Q-factor. The loaded Q-factor is measured directly, whereas the unloaded Q-factor
is calculated from the loaded Q-factor.

Cavity

Power
meter

Frequency
meter

Microwave
source

(a)

CavityMicrowave
source

Power
meter

Frequency
meter(b)

Figure 4.23 Two basic methods used to measure quality factor: (a) power
transmitted through the cavity shows a peak at resonance and
(b) power measured at the cavity port shows a dip at resonance
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Following the discussion in Chapter 2, it is clear that there are a number of
methods by which one can measure the Q-factor. The definition of the Q-factor is
the starting point—one must measure the energy loss per period and the peak
energy stored in the cavity.

Q ¼ 2p
peak stored energy

energy dissipated=per period
(4.86)

These quantities are difficult to measure, so alternative methods are used.
The loaded Q-factor can be most easily measured from the resonant frequency

and the bandwidth of the resonator using (2.208):

QL ¼ w0

BW
¼ w0

w2 � w1
¼ f0

f2 � f1
(4.87)

In this relation, f2 and f1 are the upper and lower half-power frequencies. Their
difference is the bandwidth of the resonator (see Figure 4.24). In high-Q resonators,
this is particularly easy to do especially using a network analyzer. If the Q-factor is
low, the frequency response is much flatter and determination of the half-power
frequencies is more difficult to measure leading to larger errors. Nevertheless, this
method can be very accurate for all but the poorest quality resonators, especially
when an instrument like a network analyzer is used.

The unloaded Q-factor can be calculated from the following:

1
QL

¼ 1
Q0

þ 1
Qe

(4.88)

where QL is the loaded Q-factor, Qe is the external Q-factor (due to loading), and
Q0 the unloaded Q-factor.

We assume here a two-port measurement in which both the input and output
impedances are Z0 (as would be the case when the resonator would be connected to a
network analyzer or in line with a transmission line of characteristic impedance Z0).

Since we are interested in the unloaded Q-factor, we write

1
QL

¼ 1
Q0

1 þ Q0

Qe

� 
¼ 1

Q0
1 þ gð Þ ! Q0 ¼ 1 þ gð ÞQL (4.89)

f

P
P3 dB

f1 f2f0

Power

Figure 4.24 3-dB points and corresponding frequencies used to determine the
quality factor of a cavity resonator
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where g is called a coupling factor. This relation may be used to calculate the
unloaded Q-factor Q0 from the loaded Q-factor since the latter is easier to obtain
using the resonant frequency and bandwidth as shown in (4.87).

4.6.1 Q-Factors for series resonance
The external Q-factor, Qe for series resonance was calculated in Chapter 2 as [see
(2.211)]:

Qe ¼ w0L

RL
(4.90)

where RL is the load resistance external to the resonator. This gives

Qe ¼ w0L

RL
¼ w0L

2Z0
(4.91)

here we note that the series load impedance is 2Z0 since the resonator is connected
in series (see Figure 4.25).

We can now write the coupling factor as

g ¼ Q0

Qe
¼ w0L=RL

w0L=2Z0
¼ 2Z0

RL
(4.92)

Referring now to Figure 4.25, at resonance, the impedance of the resonator equals
R and is minimal and hence the transmission is maximal. Off-resonance, the
impedance of the resonator increases, the reflection increases, and hence the insertion
loss increases. We can now calculate the S-parameters of the network starting with
the ABCD-parameters that are easiest to evaluate. From their definition in (4.33), the
ABCD-parameters at resonance are

A ¼ 1; B ¼ R; C ¼ 0; D ¼ 1 (4.93)

By using the transformation to S-parameters in (4.47)–(4.50), we have

S11 ¼ A þ B=Z0 � CZ0 � D

A þ B=Z0 þ CZ0 þ D
¼ R=Z0

2 þ R=Z0
¼ R

2Z0 þ R
(4.94)

S21 ¼ 2
A þ B=Z0 þ CZ0 þ D

¼ 2
1 þ R=Z0 þ 1

¼ 2Z0

2Z0 þ R
(4.95)

CLR
Z0 Z0Port 1 Port 2

Figure 4.25 Two-port network. The network is a series resonator and is connected
in series with a transmission line
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S12 ¼ 2 AD � BCð Þ
A þ B=Z0 þ CZ0 þ D

¼ 2 1 � 0ð Þ
1 þ R=Z0 þ 1

¼ 2
2 þ R=Z0

¼ 2Z0

2Z0 þ R
(4.96)

S22 ¼ �A þ B=Z0 � CZ0 þ D

A þ B=Z0 þ CZ0 þ D
S22 ¼ R=Z0

2 þ R=Z0
¼ R

2Z0 þ R
(4.97)

Now we note that

g

1 þ g
¼ 2Z0=R

1 þ 2Z0=Rð Þ ¼
2Z0

2Z0 þ R
(4.98)

or

g

1 þ g
¼ S21 (4.99)

That is, at resonance we can write

g ¼ S21

1 � S21
(4.100)

or

Q0 ¼ 1 þ gð ÞQL ¼ 1 þ S21

1 � S21

� 
QL ¼ 1

1 � S21

� 
QL (4.101)

In other words, we can calculate the unloaded Q-factor by simple evaluating the
S-parameters; in this case, we only need the S21-parameter at resonance and then
use (4.89) and (4.87) to evaluate the unloaded Q-factor.

If, for whatever reason, the external quality factor is needed, it can be found
from (4.100) and (4.89):

g ¼ S21

1 � S21
¼ Q0

Qe
! Qe ¼ 1 � S21

S21

� 
Q0 ¼ 1 � S21

S21

� 
1

1 � S21

� 
QL ¼ QL

S21

(4.102)

That is, the same measurement provides Qe as well.

4.6.2 Q-Factors for parallel resonance
A very similar process can be followed to obtain the unloaded Q-factor for parallel
resonators, but now the coefficients are different. From Chapter 2, we write for the
external and unloaded quality factors:

Qe ¼ RL

w0L
; Q0 ¼ R

w0L
(4.103)
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Now, since the load is Z0/2 (see Figure 4.26), we have

Qe ¼ Z0

2w0L
(4.104)

From (4.89), we write

g ¼ Q0

Qe
¼ R=w0L

Z0=2w0L
¼ 2R

Z0
(4.105)

and

g

1 þ g
¼ 2R=Z0

1 þ 2R=Z0ð Þ ¼
2R

Z0 þ 2R
(4.106)

Writing the ABCD-parameters from Figure 4.26,

A ¼ 1; B ¼ 0; C ¼ 1
R
; D ¼ 1 (4.107)

The S-parameters are

S12 ¼ 2 AD � BCð Þ
A þ B=Z0 þ CZ0 þ D

¼ 2 1 � 0ð Þ
1 þ Z0=R þ 1

¼ 2
2 þ Z0=R

¼ 2R

2R þ Z0
(4.108)

S11 ¼ A þ B=Z0 � CZ0 � D

A þ B=Z0 þ CZ0 þ D
¼ �Z0=R

2 þ Z0=R
¼ �Z0

2R þ Z0
(4.109)

S22 ¼ �A þ B=Z0 � CZ0 þ D

A þ B=Z0 þ CZ0 þ D
S22 ¼ �R=Z0

2 þ R=Z0
¼ �Z0

2R þ Z0
(4.110)

S21 ¼ 2
A þ B=Z0 þ CZ0 þ D

¼ 2
2 þ Z0=R

¼ 2R

2R þ Z0
(4.111)

Therefore,

g

1 þ g
¼ S21 and g ¼ S21

1 � S21
(4.112)

Z0 Z0Port 1 Port 2

CLR

Figure 4.26 Two-port network. The network is a parallel resonator and is
connected in parallel with a transmission line
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Hence,

Q0 ¼ 1
1 � S21

� 
QL (4.113)

Qe is also available from (4.102).
Note that this has the same form as (4.101), but the S-parameters are different.
Perhaps, a more intuitive approach to the measurement of the Q-factor is

afforded by the use of the reflection method in Figure 4.23(b). The Q-factor is
measured from the properties of the cavity as viewed from the input, that is, the
power reflected from the cavity can be measured through a standing wave mea-
surement as shown in Figure 4.27. Here the cavity is the load on the transmission
line. Since the cavity presents a pure resistance at resonance, the SWR at resonance
is the ratio between the cavity impedance and the line impedance:

SWR ¼ Zc

Z0
(4.114)

if the cavity is overcoupled (if the cavity impedance Zc is higher than Z0) or

SWR ¼ Z0

Zc
(4.115)

if the cavity is undercoupled (i.e., if the cavity impedance Zc is lower than Z0).
The measurement starts by tuning the cavity to resonance. The standing

wavemeter reading represents power at resonance. Detuning the cavity and mea-
suring the frequency at which the standing wavemeter reads 3 dB below that at
resonance on each side of the resonant frequency gives the two 3 dB points. These
frequencies are f1 and f2. The Q-factor is then the ratio between f at resonance and
f2 � f1 as in (4.87). In this measurement, one obtains the unloaded Q-factor, or Q0.
If the loaded cavity Q-factor is required, this is easily calculated from the unloaded
Q-factor and the SWR as

QL ¼ Q0

1 þ SWR
(4.116)

and, based on the definition above, SWR is always greater than 1. This gives a
loaded cavity Q smaller than Q0.

SWR
meter

Source Isolator CavitySlotted
line

Figure 4.27 Standing wave method of measuring half bandwidth frequencies for
Q-factor measurements
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4.7 Measurement of impedance

At microwave frequencies, either in transmission lines, waveguides, or in space,
impedance is fundamental to operation and to many measurements. The most
common method of measurement of impedance is from the reflection coefficient
or, equivalently from the SWR. The reflection coefficient at the load on a line is

GL ¼ ZL � Z0

ZL þ Z0
¼ jGLje jqG (4.117)

where ZL is a load impedance to be measured and Z0 either the characteristic
impedance of a line or the wave impedance in space. Clearly, one has to measure
both the magnitude of the reflection coefficient and its phase qG since impedance
must be considered complex for general measurements.

The impedance becomes

ZL ¼ Z0
1 þ GLð Þ
1 � GLð Þ ¼ Z0

1 þ jGLje jqGð Þ
1 � jGLje jqGð Þ (4.118)

When measuring the impedance of a device, it is connected as a one-port network.
Since under these conditions, the reflection coefficient is the S11-parameter, the
impedance is evaluated from the S-parameters as well:

ZL ¼ Z0
1 þ S11ð Þ
1 � S11ð Þ (4.119)

Note, however, that S11 equals the reflection coefficient only if S21 is zero, other-
wise S11 is the total reflection at port 1 and includes, in addition to the reflection
coefficient, terms transmitted back into port 1 from port 2. S11 is always equal to
the reflection coefficient in any one-port device. The same approach can be used to
measure the input impedance of a loaded transmission line. The impedance mea-
sured is that of a one-port network.

4.8 Measurement of permittivity and loss tangent

The measurement of the dielectric constant and the loss tangent of materials is
important to the characterization of materials and particularly so in the microwave
range in which these quantities must be characterized as a function of frequency. In
many instances, the permittivity is known at low frequencies but not at microwave
frequencies, or it may not be known at the frequency of interest. It is therefore of
paramount importance to be able to accurately measure the dielectric constant and
the loss tangent and hence obtain the complex permittivity of the dielectric. Often
too, as is the case in this work, one does not have a single dielectric but rather a
mixture of dielectrics and the permittivity of the mixture must be evaluated.

There are a number of methods that can be used for the measurements, and
there are various standards devoted to this issue. The method of choice depends on
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the type of dielectric and the instrumentation available. As was the case with other
measurements, the emphasis here will be on those methods that can be performed
with modern instruments such as the network analyzer.

In general, permittivity must be considered to be complex:

e ¼ e0 � je00 (4.120)

e0 is usually referred to as the dielectric constant of the material, whereas the ratio
of e00=e0 is referred to as the loss tangent

tan d ¼ e00

e0
(4.121)

The imaginary part of the permittivity is dependent on conductivity and frequency
and is often written as

e00 ¼ s
w

(4.122)

The complex permittivity is then

e ¼ e0 1 � j
s
we0


 �
(4.123)

and the loss tangent is

tan d ¼ s
we0

(4.124)

The loss tangent is explicitly dependent on frequency but so is e0, and therefore
both must be measured at the frequency of interest or very near to it.

Depending on the dielectric to be measured and the frequency range, there are
different methods and different test fixtures that may be used. These range from
relatively simple capacitance and AC resistance measurements at low frequency
from which the complex permittivity is deduced to samples in waveguides or
coaxial test rigs to resonant methods. The type of test and the test fixture to be used
also depends on the state of the dielectric. Solid dielectrics can often (but not
always) be machined to specific shapes, whereas liquids require different test
fixtures. In some cases, provisions must be made for high- or low-temperature
testing and in still others the test sample may be too small for a particular method of
testing. Thus, many methods have been developed, and it is not possible to discuss
all of them here. However, the methods we discuss are characteristic to measure-
ments in the microwave range and are relevant to the work reported in this text. It
should also be mentioned that many of the methods of testing can also provide the
complex permeability of the dielectric. However, since most dielectrics are non-
magnetic and since the measurement of complex permeability is much rarer, it is
not discussed here.
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4.9 Waveguide method of measurement

One of the more common methods of measurement of permittivity (and perme-
ability) is the use of a shorted transmission line of some sort with a sample of the
medium to be measured placed in the line. Either a transmission line (usually a
coaxial line) or a waveguide may be used depending on various parameters such as
frequency, available fixtures, and the medium to be measured. The measurement is
similar in both types except, of course, that coaxial lines support TEM at any
frequency, whereas waveguides supper TE (transverse electric modes) or TM
(transverse magnetic modes) above a minimum cutoff frequency. Thus, the fre-
quency becomes important. Additional constraints may apply. For example,
because cutoff frequencies in waveguides are related to dimensions of the wave-
guide, they are not practical at the lower frequencies in the microwave and sub-
microwave regions. At low frequencies, the waveguides are large and the samples
needed for testing are also large. Coaxial lines propagate waves down to ‘‘zero’’
frequency so the issue of size is not a problem, but the sample must be in the form
of a tube to fit between the inner and outer conductors of the coaxial structure. For
some dielectrics, this may be difficult to produce. Coaxial lines are also best when
broadband measurements are needed.

There are two fundamental methods in either waveguides or transmission line.
One method requires that the waveguide or transmission line be shorted at one end
and the sample to be tested placed at the short (see Figure 4.28). The reflection
coefficient is measured, from which both the dielectric constant and the loss tan-
gent may be calculated. The sample is of thickness t. The launcher is a probe that
generates the required mode of propagation in the waveguide. The reference plane
is where measurements are made. In practice, another probe measures the reflected
wave at that point (the S11-parameter). The method is often called a reflection
method since only the S11-parameter is measured. The second method is shown in
Figure 4.29. In this, the sample is placed in the waveguide or transmission line, and
both the reflection and transmission coefficients are measured hence the name
reflection–transmission method. In practice, the measurements are done with a
vector network analyzer; hence, either the S11-parameter is measured for the
reflection method or both the S11- and S21-parameters are measured for the
reflection–transmission method. We will describe here the reflection–transmission
method since the reflection method is quite similar.

Sample

Waveguide

Sh
or

tReference
plane

Launcher Γ12
T12

(1) (2)

Γ = −1
e, m, se0, m0,  s  = 0

Figure 4.28 Measurement of permittivity of a sample in a shorted waveguide
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Given Figure 4.29, the reflection coefficient off the sample, that is, the S11

coefficient is due to multiple internal reflections within the sample. The wave is
first reflected with a reflection coefficient G12. Part of it is transmitted with a
transmission coefficient T12 and that propagates to the opposite surface with
attenuation and change in phase. At that surface, part of the wave is transmitted into
medium 3 with a transmission coefficient T23, and part reflected back with a
reflection coefficient G23 propagates back to the left surface (with, again attenua-
tion and phase change). Part of that is transmitted across the interface with a
transmission coefficient T21, and part of it reflected back into the sample with a
reflection coefficient G21. This component adds to the first reflection G12 to form
part of the S11 term. This continues indefinitely. Using the notation shown, the
reflection coefficient can be written as

S11 ¼ G12 þ T12e�jblG23e�jblT21 þ T12e�jblG23e�jblG21e�jblG23e�jblT21 þ � � � :
(4.125)

Similarly, we can write S21 as the sum of all transmitted components after multiple
internal reflections

S21 ¼ T12e�jblT23 þ T12e�jblG23e�jblG21e�jblT23 þ T12e�jblG23e�jblG21e�jbl

�G23e�jblT23 þ � � � : (4.126)

Now, denoting

G12 ¼ G; G21 ¼ �G; G23 ¼ �G; T12 ¼ 1 þ G;
T21 ¼ 1 � G; T23 ¼ 1 � G

(4.127)

and

e�gl ¼ T (4.128)

where l is the length of the sample and g the propagation constant in the sample.
We have

S11 ¼ Gþ 1 þ Gð ÞT �Gð ÞT 1 � Gð Þ þ 1 þ Gð ÞT �Gð ÞT �Gð ÞT 1 � Gð Þ þ � � �

¼ Gþ 1 þ Gð ÞT �Gð ÞT 1 � Gð Þ
1 � G2T2

¼ G 1 � T2ð Þ
1 � G2T2

(4.129)

Γ12

(1)

Waveguide

T12 (3)(2)

SampleT21

Γ21

T23

Γ23

e0 ,  m0 , s  = 0 e0,  m0, s  = 0e, m, s

Figure 4.29 Measurement of permittivity of a sample in a waveguide
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and

S21 ¼ 1 þ Gð ÞT 1 � Gð Þ þ 1 þ Gð ÞT �Gð ÞT �Gð ÞT 1 � Gð Þ
þ 1 þ Gð ÞT �Gð ÞT �Gð ÞT 1 � Gð Þ �Gð ÞT 1 � Gð Þ þ � � �

¼ 1 þ Gð ÞT 1 � Gð Þ 1

1 � G2T2
¼ T 1 � G2

� 	

1 � G2T2
(4.130)

In these relations, G is the reflection coefficient at the interface and T the trans-
mission coefficient. Assuming now that the S11- and S21-parameters are measured
(magnitude and phase), the process continues through calculations in one of a
number of methods. Perhaps the best known is the Nicholson–Ross–Weir (NRW)
method. It requires the calculation of the reflection coefficient G followed by the
transmission coefficient T. From these, one can then calculate the complex per-
mittivity and the complex permeability. In the NRW method, the reflection coef-
ficient is written in the following form:

G ¼ X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 � 1

p
(4.131)

The sign is selected so that jGj 	 1. The roots are

X ¼ S2
11 � S2

21 þ 1
2S11

(4.132)

Substituting back into (4.131):

G ¼ S2
11 � S2

21 þ 1
2S11

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
11 � S2

21 þ 1
2S11

� 2

� 1

s

(4.133)

Hence, the reflection coefficient is described directly from the S-parameters. From
(4.129) and (4.130), the transmission coefficient is

T ¼ S11 þ S21 � G
1 � S11 þ S21ð ÞG (4.134)

T is given in (4.128) in terms of the propagation constant and G is given in (4.133).
The permeability and permittivity are determined from G and T as follows. The
complex permittivity is written as

er ¼ er0 þ jer00 ¼ l2
0

mr

1

lc
2 �

1
2pl

ln
1
T

� � �2
 !

(4.135)

where lc is the cutoff wavelength of the waveguide (lc ¼ 1 for coaxial lines but is
finite and well defined for waveguides). From this, one calculates the relative
complex permittivity.
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If the relative permeability is not 1 (i.e., for magnetic materials), then the
relative permeability is calculated first as

mr ¼
1 � G

L 1 � Gð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2

0

� 	� 1=l2
c

� 	q (4.136)

where l0 is the free-space wavelength, and L is found from

1

L2 ¼ � 1
2pl

ln
1
T

� � 2

(4.137)

Because the S-parameters are complex, the reflection and transmission coefficients
are also complex. Therefore, the term ln(1/T) is also complex. Although the real
part presents no problems, the imaginary part is not unique and depends on the
length of the sample. That means that (4.135) has multiple solutions. This can be
resolved in a number of ways. The most obvious is to solve for all possible solu-
tions with an imaginary part equal to j qþ 2pnð Þ where n ¼ 0, �1, �2, . . . where
n ¼ int(l/lg) and lg the wavelength in the sample and select the solution that one
expects since in many cases the permittivity is known approximately. Another
method is to make the sample thin enough (l small) to guarantee that n ¼ 0 and
hence get the correct solution. This is usually accompanied by loss of accuracy.
There are also methods of exactly calculating n from the group delay on the line,
a quantity that can be measured directly by a network analyzer. Since the group
delay can also be calculated, one can then select the correct permittivity solution by
equating the measured and calculated group delays. There are additional issues that
often need to be addressed such as compensation for losses in the waveguide or
transmission line walls, but these are secondary issues and discussing them here
would only complicate the discussion without adding to understanding.

The method described here is the choice method of measurement and, in fact, is
recommended in standards for permittivity measurements. It can be done entirely with
vector network analyzers. Although it can be done at any frequency and over a range of
frequencies, it is important that the frequency is not a resonant frequency. The method
fails at resonance, and the results obtained at resonance should not be used.

Finally, it is obvious that the process can be applied to the reflection method in
Figure 4.28 with the obvious changes in the reflection coefficient and the fact that
only the S11-parameter is measured. In fact, we can use (4.125)–(4.128) directly
by setting G23 ¼�1 and T23 ¼ 0. Then the process described in (4.131)–(4.137)
produces the permittivity and permeability as in the previous method.

4.10 Cavity perturbation method

This method is particularly useful when the permittivity of a small sample of the
dielectric is to be tested at a specific frequency. The method consists of placing the
sample in a resonant cavity at the location where the electric-field intensity is max-
imum and the magnetic-field intensity is zero if the complex permittivity is measured
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(complex permeability is measured by placing the sample at the location of maximum
magnetic-field intensity and zero electric-field intensity). The method requires a priori
knowledge of the field distribution and, most importantly, the sample must be small
enough so that the change the field distributions of the empty cavity is minimal (see
Section 3.5.2 on the theory of cavity perturbation). Under these conditions, one can
assume that the fields remain the same as for the empty cavity, but the resonant fre-
quency of the cavity changes due to the dielectric constant of the test sample and the
quality factor of the cavity changes due to the loss tangent of the sample.

Given an empty cavity resonating at a frequency w0, it will resonate at a
frequency w after the introduction of the dielectric sample. Similarly, if the loaded
Q-factor of the empty cavity is Q0, the loaded Q-factor changes to Qs after the
introduction of the sample. The cavity perturbation relations discussed in Chapter 3
[see (3.81) and (3.84)] provide the necessary relations. From (3.83) and (3.84):

w� w0

w0

 � e0 � e0ð Þ

Ð
Vs

Ei � E�
0dv

2
Ð

V e0jE0j2dv

 � e0r � 1

� 	
Ð

Vs
jE0j2dv

2
Ð

V jE0j2dv
(4.138)

where Vs is the volume of the sample and V the volume of the cavity. Note that the
fields in the sample and in the cavity are assumed to be the same in the second form
in (4.138). The negative sign simply indicates that the resonant frequency goes
down as the sample is introduced into the cavity (w<w0). For a small sample, the
equation can be simplified to

Dw
w0

¼ Df

f0

 � e0r � 1

� 	 jE0j2Vs

2
Ð

V jE0j2dv
(4.139)

Similarly, the quality factor is given as [see (3.108)]:

1
Q

 e00r

jE0j2VsÐ
V jE0j2dv

(4.140)

where

1
Q
¼ 1

Qs
� 1

Q0
(4.141)

By measuring the resonant frequency of the perturbed cavity and the resonant
frequency of the empty cavity, one obtains the change in resonant frequency Dw.
However, the measurement of the field E0 in the cavity is next to impossible since
that would require introduction of probes which then would themselves change the
resonant frequency. For successful use of this method, one relies on cavities for
which the field can be eliminated from the calculation. As an example, consider a
cavity of dimensions a, b, d in the TE103 mode shown in Figure 4.30. The cavity
only has nonzero electric-field intensity Ey:

Ey ¼ l
2a

sin
px

a


 �
sin

3pz

d

� 
(4.142)
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By placing the sample at x ¼ a/2, z ¼ d/2, the two sine terms are eliminated:

Ey ¼ l
2a

(4.143)

That is, the electric-field intensity is maximum at this point.
Therefore, the nominator in (4.139) and (4.140) becomes

jE0j2Vs ¼ l
2a

� 2

Vs (4.144)

The integral in the denominator is now evaluated:
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Substituting these into (4.139) and (4.140), we get
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and
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Thus

e0r ¼ 1 þ 0:5
V
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(4.148)

and

e00r ¼ V

4Vs

� 
1

Qs
� 1

Q0

� 
(4.149)

If the empty cavity has a high Q (low losses), the second term in the brackets can be
neglected and only the Q-factor for the cavity with the sample need be measured.

x
y

z

ab

c0

Figure 4.30 Small sample at the center of a rectangular cavity resonator
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It should be noted again that, by necessity, both Q0 and Qs are loaded Q-factors
since in practice, only loaded Q-factors can be measured, whereas unloaded
Q-factors are calculated from the loaded Q-factors if needed. By using a rectan-
gular cavity, resonating at a specific mode, and placing the sample at a particular
location, the measurement is reduced to that of measuring the resonant frequencies
with and without the sample and that of measuring the quality factors with and
without the sample. The volume of the cavity is known (V ¼ abd ) and that of the
sample is given.

In practice, there are certain precautions that must be followed. The sample
must be small but not too small, or the changes in frequency and Q-factor will be
small leading to errors in measurement. It must be machined with smooth surfaces
and accurately placed in the cavity.

Also, it should be obvious that other types of cavities may be used. Of these,
the most common is a circular cavity resonating at the TM010 mode.

Of all the methods available for measurement of dielectric properties, the
resonant methods are the most sensitive and, often the more accurate, especially
when only small samples are available.

4.11 Other methods

There are, of course, other methods of measurement of permittivity of materials.
We already mentioned the capacitive method, which is particularly useful at lower
frequencies. The permittivity can also be measured in free space when other
methods are not practical such as at high temperatures or in hostile environments.
The measurement is shown in Figure 4.31. The sample is usually large and the
antenna directive, so that ideally all power is either transmitted through or reflected
from the sample. The method proceeds by evaluating the S-parameters with the
sample holder in place but no sample and then, again, evaluate the S-parameters of
the sample with the sample holder. By a technique called deembedding, the effect
of the sample holder is removed so that one is left with the S-parameters of the
sample itself. After that, the process is the same as for the reflection–transmission
method described above. Equations (4.135)–(4.137) are used here as well since it is
assumed that the antennas receive all reflections. The limitations of the method are
primarily due to multiple reflections from conducting surfaces including the
antennas and diffraction at edges of the sample, especially when the sample cannot
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Network
analyzer

Antenna Antenna

Figure 4.31 Free-space measurement of permittivity
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be made large enough or if the antennas are not sufficiently directive or placed
too far apart.

Another useful method is based on an open-ended coaxial probe shown in
Figure 4.32. The probe is placed against the dielectric to be measured and the
reflection coefficient at the interface between the probe’s end and the material is
found. If properly calibrated, the phase differences and any minor mismatching due
to the cables and connected would have been taken into account, and the vector
network analyzer produces the correct S-parameters. The material properties are
calculated from that. This method is particularly useful for dielectrics that cannot
be machined such as biological tissue or in nondestructive testing of existing
structures where in situ measurements are essential. Other applications are in
liquids and in environmental tests. The method typically produces the complex
permittivity of the test sample.

The methods for measurement of permittivity are in most cases designed for
measurement of permittivity of solid dielectrics, primarily because the methods
require sample preparation and that often means machining of solids. Liquids can
also be measured under some restrictions. For example, the reflection method in
Figure 4.28 can be used for liquids by simply holding the waveguide or coaxial line
vertically so that the liquid rests on top of the short and fills the structure to a height
l. The transmission–reflection method can be used for liquids by using an enclosed
section of transmission line or waveguide and filling it partially or completely with
the liquid. Resonant methods are also useful in this regard, especially for lossless or
very low loss liquids since the perturbation method can be used as well for whole-
cavity material perturbation. The change in resonant frequency in this case is
entirely due to the change in material properties and both the permittivity and the
loss tangent may be evaluated. Figure 4.33 shows schematically an arrangement for
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Figure 4.32 Open-ended coaxial probe used to measure the complex permittivity
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Figure 4.33 Coaxial fixture for measurement of the permittivity of liquids.
The liquid fills the entire space between the connectors
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evaluation of the dielectric constant of a liquid using the transmission–reflection
method in a coaxial sample holder. The liquid fills the space between the inner and
outer conductors so that the length of the sample equals the length of the coaxial
fixture. As long as the lines are matched, the fact that the liquid fills the section
does not pose a problem. By filling the sample holder entirely, the holder can be
held vertically or horizontally. Obviously the same configuration can be used with
the reflection method by shorting the output (lower connector). In this case, the
holder must be vertical. The transmission line section is connected to a network
analyzer using matched coaxial cables, and the measurement proceeds by evalu-
ating the S-parameters.
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Chapter 5

Design of sensors for rubber thickness and
fabric-coating monitoring

5.1 Introduction

This chapter discusses the design of resonator sensors for two applications of
interest. One is a wide latex-coated fabric moving on a production line with the
sensors monitoring the coating thickness or, alternatively, the moisture content in
the fabric for the purpose of controlling the amount of latex on the fabric. The
second is a rubber sheet moving on a calender (a cylindrical drum) in which the
interest is the thickness of the sheet. Selection of physical parameters, dimensions
and operational parameters, and the simulations necessary are discussed. Alter-
native designs including multiple sensors and moving sensors for full coverage of
the fabric are weighed, and an appropriate design is reached. The details of design
are given in full with alternatives and justification so that the reader has full
accounting of what the design involves and what to expect from the final product.
The most common alternative measurement methods of low-density dielectrics
such as fabrics, paper, and thin rubber are either nuclear (by measuring absorption
of gamma or beta particles from a radioactive source) or through transmission and/
or reflection of electromagnetic waves. In some cases, the methods are more pri-
mitive than that; a sample of the final product is cut and weighed to ascertain that
the coating is within the required limits. Because this must be done after the pro-
duction process, it is extremely wasteful and whole production runs may need to be
scrapped due to insufficient or overcoating. The purpose of the designs described
here is to eliminate this uncertainty and monitor the production in real time to offer
feedback for continuous correction of the coating thickness.

As is often the case in microwave systems, design is a mix of science and art.
The design of stripline resonators is no exception but, fortunately, some of the
uncertainties can be eliminated by simulation. The use of simulation tools is
emphasized at every step of the process.

Although the discussion here focuses on the rubber and tire industry needs, the
sensors and the design process apply to other industries including the production of
paper, fabrics, plastics, wood veneers, food and the like, and in monitoring of
various processes. Some details of the production process will be given for the
purpose of understanding the sensor and its use, but these are not really part of the
design. Both sensors are designed as open cavity resonators to allow free movement



of the fabric or rubber at production speeds and are built and installed without
modifications to the production lines.

We start with the sensor design, followed by simulation and concluding with
discussion of the applications in which the sensors are used. The following chapters
will deal with evaluation of the sensor’s performance, implementation, and testing.

5.2 Sensor design for fabric coatings

To understand the design of the sensor, it is useful to first look at the required
parameters from the point of view of the sensed quantity since that, to a large
extent, dictates what can be done and what sensing parameters are critical.

In the first problem to be addressed, a nylon or polyester fabric is dipped in a
latex solution to coat it with a certain amount of latex. The fabric in question is then
dried and, in this case, used for production of tires. The quantity that the sensor is
intended to sense is the amount of latex retained on the fabric after drying. Clearly,
too little latex will inhibit the function of the fabric and may cause delamination
in the tire, whereas too much latex, in addition to the cost, weakens the layered
structure of the tire. The latex solution is about 94% water, 5% solids, and small
amounts of additives. After drying, the solids remain bonded to the fabric.
Although the fabric material has a relative permittivity of about 3.13 for nylon and
2.92 for polyester (the permittivity is frequency and temperature dependent), the
fabric is thin and sparse so that when wet, the dominant quantity is water, whereas
when dry, the dominant quantity is the deposited solids. The interest is the coating
of solids retained after drying but, by monitoring the thickness (or, alternatively the
weight per unit area) of the wet fabric, one can then control the coating thickness,
provided proper calibration of the sensor can be done. The fabric is wide—the
width can vary but typically is around 180 cm, and its thickness is under 1 mm
(before coating). The coating thickness depends on the application, but it needs to
be controlled within strict tolerances and must be uniform across the width and
length of the fabric. Typically, the amount of latex is controlled by removing
excess material after dipping using blowers (see Figure 5.1). The purpose of the
sensor is to control these blowers to obtain the proper amount of material on the
fabric, prior to drying. In Figure 5.1, the sensor is placed after the vacuum
dewebbers, the purpose of which is to remove excess latex off the web. The
dewebbers are an arrangement of fans that move air through the fabric to remove
excess dip material by a suction-like action. In a complete system, the signal from
the sensor is used to control the dewebbers to maintain a set coating. A more
complete description of the dip system and its components is available in Sec-
tion 5.4 in conjunction with online testing of the sensor.

Because the fabric is thin, it is important that the sensor selected be sensitive to
variations in permittivity at the location of the fabric. Similarly, given that the
coating is produced in a continuous length at relatively high speeds, it is important
that the sensor does not interfere in any way with the motion of the fabric or with its
coating and must allow sufficient space for splices between sections of the fabric to
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pass through. Clearly, the most obvious solution, one that uses capacitance to sense
permittivity variations is not applicable—the variations in capacitance due to
variations in retained solution are too small. On the other hand, an open cavity
resonator will not only allow for free motion of the fabric but can be made sensitive
enough to variations in permittivity of the fabric. Of the possible resonant struc-
tures, the most promising is the broadside coupled stripline resonator discussed in
Section 3.4. As was discussed in Chapter 3, the resonator is open and the distance
between the striplines can be significant. However, the main attractive feature of
this type of resonator is in its electric-field distribution within the space between
the striplines. Figure 5.2 shows the field distributions for the odd and even modes
of propagation in coupled transmission lines. These are very similar at resonance
except, of course, that the resonator is finite in length and hence the fields tend to
be highest at the edges of the center plates. The odd-mode fields are vertical across
the centerline of the cavity. This clearly means that the sensor will be less sensitive
to position of the fabric or changes in its permittivity since around the centerline
the field is more or less uniform. On the other hand, in the even mode, in which
the fields are horizontal around the centerline, the field gradient is high around the
centerline and therefore the resonant frequency will be highly sensitive to changes
in the conditions around the centerline. A sensor made as a broadside coupled
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Figure 5.2 Electric-field distribution in broadside coupled transmission lines:
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stripline resonator can satisfy both the physical requirements of a nonintrusive,
open sensor, and the sensitivity requirements. Further, although the odd mode is not
sensitive to the fabric properties, it can be used for compensation purposes since
both modes are roughly equally sensitive to bulk properties in the space between
the stripline, such as temperature and humidity.

As with any design, various decisions will affect the performance of the sensor.
In the case of the cavity resonator for the fabric sensor, there are three primary
considerations to be weighed:

1. the resonant frequency, f0
2. distance between striplines
3. area covered by the sensor

Since the change in frequency is the measure used to infer changes in permittivity
(i.e., changes in coating thickness), the higher the base frequency, the larger the
changes in frequency for a given change in coating thickness. However, the reso-
nant frequency relates to the physical dimensions of the cavity, meaning that
increasing the frequency necessarily reduces both the distance between the strip-
lines and the area covered by the sensor. The distance between the striplines is
dictated primarily by the need to clear splices in the fabric, and it is relatively easy
to decide upon. A distance of about 10–15 cm should be sufficient for most
applications. In applications such as paper production or a continuous distribution
such as grain on a belt, the distance may be reduced to the minimum necessary to
clear the product. This distance affects the Q-factor of the cavity as well as possible
external interference such as due to proximity of objects or personnel. Smaller
distances produce higher Q-factor sensors with less interference from the outside
and higher sensitivity. The downside of this is that maintaining the fabric at the
centerline becomes more critical and motion of the fabric must be smoother.
The area covered by the sensor is also important in that the larger the area the more
of the width of the fabric is monitored but, at the same time, its properties are
averaged over a larger area. That is, a higher frequency sensor will be more sen-
sitive to localized variations in fabric properties, but a smaller section of the fabric
is covered.

There are additional, secondary considerations that must be taken into account.
These include weight of the sensor, measurement of the resonant frequency,
rigidity of the cavity, shielding effects, and others.

Obviously, there is no single solution to this tradeoff between the various
considerations and in the end, one has to decide on a set of parameters that opti-
mizes the application at hand. Assuming that the most important decision is the
resonant frequency (because it defines sensitivity), we start with that. In an open
cavity of the type shown in Figure 5.2, it is very difficult to calculate the exact
resonant frequency, but we can perform some simple calculation to come up with
an acceptable design. To do so, we start with the required sensitivity. In the
application at hand, the separation between the striplines is set at 12 cm. For pur-
poses of initial design, we assume the fabric is 1-mm thick, and the sensor covers
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an area S (to be defined). The properties of the fabric and latex mixture are as
follows:

Relative permittivity of water: 78.
Relative permittivity of solids in the dip mixture: 2.5.
Relative permittivity of the fabric: 2.5.
The mixture is approximately 20% solids and 80% water.
After dipping in the solution, the solution occupies 35% of the fabric volume.
Required sensitivity: 1% in solids retention (after drying).
These values are not exact, nor do they need to be as long as the final design

allows for a sufficient margin in sensitivity.

For resonance, once the dimensions of the resonator have been set, the important
quantity is the permittivity within the resonator. If the space in the resonator con-
tains a uniformly distributed medium, then the permittivity is that of the medium.
In the cases related to this work, that is never the case since the fabric or the rubber
sheet only occupies a small portion of the space, whereas the rest is air. The air
itself contains water in the form of moisture. The fabric being evaluated is made of
many constituents, the most important being water and the base material (nylon,
polyester, or aramid). Thus, one can only talk of an effective permittivity, some-
thing that is difficult to come by even when the mixture of materials is uniform
within the cavity and certainly when the media are distinctly separated. The effect
of, say, the fabric depends where the fabric is within the resonator. We place it at
the center because the even-mode fields are highest at that point and hence the
effect of the fabric on the resonant frequency is larger than if it were off-center. All
that means that calculation of an effective permittivity is difficult and fraught with
errors. For proper calculation, one has to take into account many parameters
including relative volumes, permittivities, location of the various media, any
polarization that may exist, shapes of particles if individual particles can be iden-
tified, not to mention environmental quantities such as temperature and pressure.
There are many methods of calculation of effective permittivity for various con-
ditions and varying levels of complexity. These are known by various names
including mixture formulas, homogenization formulas, and more. However, we
will take a simple approach here since the purpose of calculating the effective
permittivity is to obtain an estimate rather than an exact value. To do so, we will
assume that the materials within the fabric are homogeneously distributed
(or mixed) and also assume the same for the air and fabric within the resonator.
This approximation provides a starting point and a simple way of estimating the
sensitivity of the sensor.

There are a few mixing formulae for the relative permittivity homogeneous
mixtures of dielectrics. One of the simplest and commonly used is

ffiffiffiffiffiffiffi
eeff

p ¼
XN

i¼1

vi
ffiffiffiffi
ei

p
(5.1)
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To this, one can add an even simpler (and less accurate) approximation as

eeff ¼
XN

i¼1

viei (5.2)

In these equations, eeff is the effective relative permittivity, vi is the volume fraction
of the ith dielectric constituent, ei its relative permittivity, and N the number of
constituents in the mixture.

By using these formulae to calculate the effective relative permittivity of 20%
solids, 80% water in the dip mixture, we can write using (5.1):

ffiffiffiffi
er

p ¼
ffiffiffiffiffi
78

p
� 0:8 þ

ffiffiffiffiffiffiffi
2:5

p
� 0:2 ¼ 7:38 ! er ¼ 54:49 (5.3)

To see how the amount of dip affects the dielectric constant and therefore the
resonant frequency, we assume a ‘‘solid’’ material, 1 mm thick with 35% solution
(relative permittivity equal to 62.9), whereas the remaining 65% of the total volume
has relative permittivity of 2.5. Using again the same mixture formula, the per-
mittivity of the material is now

ffiffiffiffi
er

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
54:49

p
� 0:35 þ

ffiffiffiffiffiffiffi
2:5

p
� 0:65 ¼ 3:611 ! er ¼ 13:04 (5.4)

A 5% change in solution pickup by the fabric should result in 1% change in solids
retention. Suppose now the fabric picks up 40% (1% increase in solids retention).
The relative permittivity of the wet fabric now becomes

ffiffiffiffi
er

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
54:49

p
� 0:4 þ

ffiffiffiffiffiffiffi
2:5

p
� 0:6 ¼ 3:9 ! er ¼ 15:22 (5.5)

The uses of the other mixture formulas produce different values, and these are
shown in Table 5.1.

In either case, the change in permittivity is very significant and should be
easily detectable. But the question is how to decide on the resonant frequency of the
cavity. Since analytical calculations using, for example, the perturbation method
are rather difficult to perform, we opt for numerical calculations. The process is as
follows:

1. Start with an initial design by deciding on a set of dimensions for the sensor. If
a preference for any of the parameters is available, use that and adjust the other
parameters accordingly. For example, one may have a preference or a restric-
tion on the resonant frequency or on the area covered by the sensor. In the case

Table 5.1 Effective permittivity in the resonator for two mixing formulas

er of the dip
mixture

er of the fabric
at 35% dip pickup

er of the fabric
at 40% dip pickup

Formula (5.1) 55.49 13.04 15.22
Formula (5.2) 62.9 23.64 26.66
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described here, because the fabric is wide, the sensor will necessarily be
smaller than the width so as to avoid averaging over the whole width of the
fabric. An initial design of the sensor covering about 1/4 of the width is rea-
sonable. Then, one can use either multiple sensors to cover the width of the
fabric (with appropriate overlap) or incorporate a single moving sensor to
‘‘scan’’ the width of the fabric. Each method has its advantages, and we will
discuss both.

2. Calculate the resonant frequency with the fabric present and without it (using
the relative permittivities above) and calculate the shift in resonant frequency
caused by the change in retained solids. From these results, one can calculate
the expected sensitivity of the sensor based on the smallest reliable measure-
ment of frequency shift than can be obtained.

3. If the sensitivity is not sufficiently high, reduce the dimensions of the sensor to
increase the resonant frequency and hence the shift in resonant frequency due
to changes in solid pickup until an acceptable resolution is obtained. It is
important to recognize that the calculations are approximate because of the
approximate nature of the properties used and hence a margin must be built
into the sensitivity calculation.

4. Verify the results experimentally. This of course means building a prototype
of the sensor for the purpose. At this point, the measured sensitivity can be
compared with the calculation, and perhaps readjusted higher or lower by
repeating steps (3) and perhaps (4).

5. Improve the sensor based on the experimental and numerical results. This may
entail adjusting the resonant frequency to a convenient value, adding shielding
to the sensor to reduce outside influences improving rigidity and the like.
Additional calculations may be necessary, but the numerical process is fast and
efficient and should not present a significant increase in time or cost.

An initial design is shown in Figure 5.3. It consists of two ground planes, each 50-cm
long and 35-cm wide with the two striplines 30-cm long and 6-cm wide, separated
12 cm apart and centered between the two ground planes. The height of the resonator
is 28 cm with the two striplines at 7 cm from their respective ground planes. These
dimensions, especially the widths, are somewhat arbitrary. The length of the striplines
corresponds to a theoretical resonant frequency of 500 MHz for a l/2 resonator:

f0 ¼ 3 � 108

0:3 � 2
¼ 500 MHz (5.6)

This somewhat arbitrary frequency is a compromise between the need for as high a
frequency as possible to increase sensitivity and practical issues of coverage as well
as the need to use lower frequencies so that the electronic components can be easily
incorporated. The actual resonant frequency is expected to be somewhat different
because of the influence of the ground planes and the other dimensions selected for
the design. The dimensions of the ground plane were selected to cover a reasonable
portion of the fabric width (in this case about one quarter). The width of the ground
planes was selected sufficiently wide to contain the field of the stripline to avoid
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interference with external objects. Ideally, these dimensions should be much larger
but, because these dimensions are used in a simulation, they were deemed suffi-
ciently large. In addition, because it was anticipated that partial shielding of the
resonator will be incorporated, the issues of interference from external bodies were
not considered important at this stage.

As can be seen in Figure 5.3, the resonator is fed through a probe, whereas
the second probe is used as a load to sense the resonant frequency and Q-factor. In
the simulation, only the exciting probe need be modeled since resonance can be
detected from the magnitudes of the fields, but in experimental verification the
sensing or load probe is used by a network analyzer to measure resonance.

The fabric moves on the centerline of the resonator, and both the even and odd
modes are calculated. The purpose of the initial simulations is simply to establish
the expected sensitivity of the resonator and to provide data for any modifications
that may be needed prior to implementation and testing. Because the initial design
is so very simple, it is relatively easy to build it so that measurements can be
performed as additional verification. This is not always possible but whenever it is,
it becomes useful and provides confidence in the design.

The simulation was done with a general purpose finite-difference time-domain
(FDTD) program, described in Appendix C, over a span of 1 GHz. Figure 5.4
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Figure 5.3 Prototype broadside coupled stripline resonator. The resonator is
placed with the longer dimension perpendicular to the direction
of motion of the fabric
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shows the FDTD simulation showing the first even and odd modes as expected at
380 and 422 MHz, respectively, and a higher order (even) mode at 832 MHz. Note
that the odd resonant frequency is higher than the even resonant frequency.

The two probes shown in Figure 5.3 are used as a source and load probe for the
network analyzer to monitor the S-parameters in a two-port configuration. The
excitation is through the gap between the probe and upper plate. To detect reso-
nance, only the S11-parameter is needed since at resonance the S11-parameter
exhibits a sharp drop. Figure 5.5 shows a screen snapshot showing the even and odd
resonant frequencies of the unloaded cavity in Figure 5.3 showing an even mode at
384.715 MHz and an odd mode at 428.243 MHz. The scan is between 300 and
450 MHz so that only the first order resonances are visible. The difference between
the simulation and experiment is mainly due to small differences between the
nominal dimensions and the actual dimensions of the cavity but also due to
environmental conditions (moisture) between the plates. Both are lower than those
expected from a l/4 resonator as was explained above.

To estimate the sensitivity of the resonator, the configuration described above,
consisting of a 1-mm-thick fabric with various amounts of solutions, can be used to
compute the resonant frequency. This is shown in Table 5.2 for 30%, 35%, and
40% solution in the fabric. The table also shows the effective permittivity of the
fabric based on the calculations above.

Thus, a 5% change in solution pickup, which is a 1% change in solids pickup,
causes a shift in resonant frequency of 0.7 MHz. Assuming a minimum
detectable shift on the network analyzer of 10 kHz, the system should be able to
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Figure 5.4 Computed resonant frequencies of the empty cavity. The first is an
even mode at 380 MHz followed by an odd-mode resonance at
422 MHz. A second higher order even mode occurs at 832 MHz
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detect a change of 1%*10/700 kHz ¼ 0.014% in solids pickup. The network ana-
lyzer can in fact detect shifts as low as 1 kHz, but the figure given here should be a
good guideline. The high sensitivity indicated here is mainly due to the large per-
mittivity of water. In other words, the system does not detect the change in amount
of solids but rather the change in amount of water. For this reason, the resonator can
also be used to sense the drying process of the fabric.

It is also useful to note that the odd-mode resonant frequency is not affected by
the change in permittivity of the fabric. This is consistent with the analysis of the
fields in Section 2.12.

Marker

Figure 5.5 Screenshot of a network analyzer for the empty resonator showing the
even and odd modes at 384.715 and 428.243 MHz, respectively

Table 5.2 Sensitivity-to-solid coating: solids 20% (er ¼ 2.5), water 80% (er ¼ 78),
fabric (er ¼ 2.5)

% Solution eeff Resonant frequency
even mode (MHz)

Resonant frequency
odd mode (MHz)

30 20.62 374.4 424.3
35 23.64 373.7 424.3
40 26.66 373.0 424.3
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Experimental verification of sensitivity was also carried out although under
different conditions. A thin fabric was used with a very low permittivity to test the
sensitivity to moisture (water). The dip solution was not used for these tests pri-
marily because of the difficulty in handling it and because it dries quickly.
Nevertheless, the response with respect to moisture content is similar to that in the
simulation. The results can be seen in Figure 5.6. The change in frequency is shown
with respect to the moisture content in the fabric. In this experiment, the moisture
content was measured by weight. The fabric was weighed first, then water was
sprayed on it until its weight corresponded to the volume fraction of 100% moist-
ure, that is, water fills the equivalent volume of the fabric. The latter was calculated
from the thickness of the fabric and its area. This of course is not very accurate, but
the figure shows two important results. First, the change in the resonant frequency
of the even mode is linear with moisture content (within the accuracy afforded by
the sample preparation method described above). Second, and equally important is
that the odd-mode resonant frequency is much less affected by the moisture content
as one would expect. Nevertheless, there is a slight effect, especially at higher
moisture levels. This indicates both that the odd-mode frequency can be used for
compensation of environmental conditions and that this compensation is not per-
fect. More will be said about this in Chapter 7 when we discuss this issue in the
context of calibration.
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Figure 5.6 Experiment showing behavior of the even and odd resonant frequency
with moisture content in a fabric
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5.2.1 Sensor modifications and optimization
The sensor in Figure 5.3, although certainly sufficiently sensitive for the purpose,
has a number of shortcomings that need to be addressed before it can be used in an
industrial environment. One obvious issue is the rigidity of the structure. The
ground planes are relatively large and hence prone to vibrations. They also need to
be attached to an external structure while allowing the space between the center
plates open. The center plates themselves must be attached to and electrically
insulated from the ground planes. A second problem is the fact that the center plates
are exposed and hence subject to two separate issues. One is mechanical. Splices in
the fabric can easily snag in the protruding center conductors and possibly damage
the sensor. The second is electrical and manifests itself in the fact that the resonant
frequency can be influenced by structures and bodies outside the sensor. Because of
the wide-open structure, any substance, member, structure, or even personnel may
affect the resonant frequency.

Next comes the question of coverage of the fabric. The sensors are only 50-cm
wide (the center plates are perpendicular to the direction of motion of the fabric)
and hence cannot cover the whole width of the fabric. Multiple sensors in various
configurations or moving sensors can be employed, each method having its
advantages and disadvantages.

A regime of simulations and tests is necessary to establish the final config-
uration of the sensors and to modify the sensors to satisfy the requirements of the
system. The simulations also establish limits on working parameters that need to be
followed for the sensor to perform as designed. These issues are described next.

5.2.1.1 The simulation regime
Integral to the design of the sensors is a simulation regime that attempts to reduce
the design time and anticipate modifications and the optimization of the sensors
and the sensing environments. All simulations results given here and elsewhere in
this work were done using an FDTD program available commercially. The funda-
mentals of the method are described in some detail in Appendix C, but some details
of the setup for simulation are given here, prior to presentation of optimization
results leading to an acceptable design. The importance of the simulation process
cannot be overstated—it is an absolutely necessary step that allows the designer to
obtain results without the need for extensive experimentation and to weed out those
changes that are either not necessary or that have little impact on the design.
Simulation is much faster and less expensive in comparison with experimentation
and should always precede prototyping.

The simulation starts by defining the geometry of the sensor. This includes the
folded ground planes and the center plates as shown in the center of Figure 5.7.
This is done through the human–machine interface (HMI) of the software and,
while the HMI for various software programs may be different, it usually involves
either drawing the object or specifying its coordinates and dimensions as well as the
type of materials. The ground and center planes are modeled as perfect conductors.
In addition, one has to specify the driving source for the simulation. This is the
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source (or feed) probe in Figure 5.3 or Figure 5.10. In the FDTD program used
here, the probe is replaced with an input plane, shown as the rectangular structure
(port) at the left side, below the lower center plane in Figure 5.7. The second,
identical structure is the load port at which the fields are monitored to detect
resonance (or, in other terms, to compute the S21-parameter).

These structures, which look like small square-based towers, are designed as
well to present the proper impedance to the transmission line connecting to them
(not part of the simulation). In most cases, this would be 50 W and represent the
connectors to the transmission lines. Because the resonator is open, one must
assume that the electric and magnetic fields outside the resonator extend to infinity,
something that computer models cannot simulate. To take this into account, arti-
ficial boundaries are created to enclose the geometry at some reasonable distance
away (shown in Figure 5.7 with triangular markings). These boundaries are used to
perform near-to-far-field transformation so that the net effect is that fields at any
distance can be calculated without the need to model large volumes. An explana-
tion of the specification of sources, boundary conditions, and near-to-far-field
transformations is given in Appendix C. Figure 5.7 shows an empty sensor, but the
addition of a fabric simply means defining the geometry, dimensions, location, and
material properties of the fabric.

Once the material properties of the space, the fabric, and the boundaries are
specified, the simulation can begin. Again, the details of the method are many and
fully explained in Appendix C, but in simple terms it follows the idea that once the
source is switched on, all we have to do is, follow the evolution of the fields within
the cavity in time until the resonant frequency is detected on the basis of the fact
that fields are highest at resonance or, more likely, that either the S11 is maximum

Figure 5.7 FDTD model for the resonant sensor in Figure 5.3
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(maximum reflection caused by the fact that the resonator impedance is minimal)
or the S21 is minimum (caused by the fact that minimum power is transferred from
the source to the load port). This can be done by supplying a short pulse to the
source port or by scanning the source port over a range of frequencies using a
sinusoidal source. The latter is how a network analyzer measures resonance, and it
is the method used here (see, e.g., Figure 5.4). In the simulations performed here,
we are only interested in the resonant frequency and the Q-factor; hence, the field
levels are of no interest. However, given the field at the source port, one can cal-
culate the actual electric- and magnetic-field intensities, power, losses, and any
other quantity derivable from the fields. Note as well that the model in Figure 5.7
corresponds to the geometry in Figure 5.3 (the ground planes are not folded). The
same model with folded ground planes is shown in Figure 5.8 and corresponds to
the geometry in Figure 5.10.

Clearly much more complex structures can be simulated. An example, also
modeled as part of the design process, is shown schematically in Figure 5.23. In this
configuration, a number of sensors, placed side by side, are attached to a large
metal shield, the purpose of which is to both shield and support the individual
sensors so that a larger area can be covered. Figure 5.9 shows the FDTD model for
one of the sensors at the center of the shield. Note that, in this simulation, the
ground planes are folded as in Figure 5.8. This sensor is then duplicated and dis-
placed to form the overall structure (these are not shown for clarity) and, following
application of sources and boundary conditions, the resonant frequency of each of
the sensors can be calculated either together (all sensors driven at the same time) or,
as was done here, one at a time because only one sensor is usually driven, while the
others are off. A simulation of this type reveals the effect of the physical structure
of neighboring sensors on the driven sensor.

Figure 5.8 FDTD model for the resonant sensor in Figure 5.10
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5.2.2 Shielding of the sensor
As a microwave resonator, the ideal structure is a closed cavity, a structure that
maximizes the Q-factor and eliminates outside influences. Obviously, the sensor
discussed here must remain open. However, the space above the upper center plate
and below the lower center plate is not used, and hence that space can be shielded.
This is done by folding the upper and lower plates down to the level of the center
plates (or slightly past them) as shown in Figure 5.10(b). Introducing this partial
shield has a number of consequences. The most obvious is the fact that it protects
the center plates from possible damage from splices in the fabric. It also adds
rigidity to the outer plates and to the center plates. Because the shielded sensor
approximates a closed cavity, it improves the Q-factor as well and reduces sensi-
tivity to external influences, as will be shown shortly. To see the effect of the
shield, the ‘‘static’’ electric-field intensity with and without the shield is shown in

Figure 5.9 FDTD model for the simulation of a sensor placed at the center of a
large external shield (see Figure 5.23)
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Figure 5.10 The resonator with folded-over ground planes (shown by the
dotted lines) to form a partially shielded open resonator.
(a) top view (b) side view
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Figure 5.11. The effect of the shield can be clearly seen. The fields shown in
Figure 5.11 are quasistatic, that is, they are calculated at the correct frequency but
not as a resonant structure. At resonance, this effect is much more significant
because the fields are larger. However, because the shield is partial, the fields still
extend outside the cavity. The extent depends on the distance between the two
folded-over ground planes as well as on the width and length of the cavity.

To see the effect of the folded-over plates on the resonant frequency in the
presence of personnel, consider Figure 5.12. It shows the shift in resonant fre-
quency due to a dielectric block at various distances. At distances of about 1 m and
above, from the side of the shielded sensor, the effect due to the presence of per-
sonnel is negligible, whereas the unshielded sensor requires a distance roughly
three times larger to produce the same effect. It is, however, interesting to note that
at very close proximity (less than about 20 mm), the unshielded sensor is less
sensitive to the presence of foreign bodies. As a rule, a perimeter of 1–1.5 m
laterally from the sensor must be considered an exclusion zone from which per-
sonnel and any moving or temporary foreign bodies should be kept out. Fixed
structures however do not pose a problem even though they may change the reso-
nant frequency since the sensor can be calibrated in their presence. This only
applies to stationary sensors. If the cavity resonator moves, then any fixed struc-
tures will also alter the reading of the sensor, and this cannot be calibrated for.
Good conductors and good dielectrics in particular will only affect the resonant
frequency, whereas lossy dielectrics in close proximity may affect the Q-factor of
the resonator and hence its performance.

(a) (b)

Figure 5.11 The effect of the partial shield on the static electric field: (a) with the
bent-over plates (partial shield) and (b) no shield
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Although the shield must be open, the gap between the upper and lower shields
does not have to be the same as that between the center plates. To see the effect of
the gap on the sensitivity of the sensor, the gap was varied from 40 to 275 mm
(nominal distance between center plates is 120 mm) as shown in Figure 5.13.
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Figure 5.13 Effect of the gap between the upper and lower shields on the resonant
frequency. The distance between the center plates remains fixed at
120 mm
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Figure 5.12 Effect of personnel in the proximity of the open side of the sensor.
Distance between center plates is 120 mm
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Clearly, the effect of the gap on the resonant frequency is minimal. The shift shown
is due to the fabric relative to an empty resonator. The resonant frequencies (both
odd and even) depend primarily on the length of the center plates and, of course, on
dielectric materials within the resonator. However, in practical applications, the gap
between the shields is roughly the same as that between the center plates, and this
distance is critical in terms of sensitivity and can be seen in the simulations that
follow.

The upper and lower shields were made of a 6-mm aluminum plate with all
seams welded.

5.2.3 Simulation and optimization
Although the initial simulation has shown that the sensor is quite sensitive and the
addition of the folded shield limits the effects from external sources as well as
increase the Q-factor of the resonator, it is important to simulate other parameters
of the sensor to ensure an optimal configuration. One of the most critical issues in
the sensor is the separation between the center plates. This requirement is imposed
by the fabric, and the nominal 120-mm separation was the minimum distance
acceptable for practical implementation. For the current application, a larger
separation is desirable but not critical, whereas in other applications, smaller
separation may be possible (such as in production of paper). Figure 5.14 shows the
effect of the gap between the center plates on the odd- and even-mode resonant
frequency. Both increase dramatically with the decrease in gap indicating that the
sensitivity of the sensor increases (more or less) exponentially with the decrease in
the gap. The 120-mm separation used here is a compromise between physical
requirements and sensitivity. It should also be noted that the separation has an
effect on the Q-factor of the cavity as well as on external influences since, as the
separation is reduced, the gap between the two shields is also reduced, more closely
approximating a closed cavity. The sensitivity in Figure 5.14 is entirely due to the
separation between the center plates since the distance between the shields has no
effect on the resonant frequency (see Figure 5.13).

Another influence on the performance of the sensor is the position of the
exciting probe relative to the (upper) center plate. While keeping the probe on the
centerline (axis) of the plate, its position can be moved laterally along the center-
line. Figure 5.11 shows a simulation of the sensor with the position of the probe
relative to the center of the upper center plate along its axis. There is little to be said
other than, perhaps, that the even-mode sensitivity is slightly higher around 120 mm.
Experiments have shown similar results at about 130 mm. In the final sensor
design, the two probes (one exciting, one load) were placed symmetrically about
the upper plate, separated 25 cm apart so that they are 25 mm from the edges of the
plates. The results in Figure 5.15 were obtained with both probes on one side of the
sensor so that the two probes are placed next to the two edges of one center plate.
The probes can also be placed at opposite sides of the sensor either across from
each other or diagonally opposite from each other. However, because the fields are
symmetric, the results are the same regardless of how the probes are arranged.
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Because the center plates have the largest influence on the performance of the
resonator, optimization of these was in order although the simulations show that the
shape, thickness, and width of the center plates have minimal or no influence on the
resonant frequency. For example, Figure 5.16 shows the results of simulation of
butterfly-shaped center plates. The center of the plate was narrowed, and the results
plotted for a ratio of 0.2/1–5/1 between the narrow dimension and the wide
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Figure 5.15 Effect of exciting probe position relative to the center of the upper
center plate
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dimension. As long as the center plates are reasonably wide (above about 20 mm),
the response is flat. Although this result is less than interesting, it showed that the
design can use virtually any shape, and in the end, a simple rectangular center plate
with rounded edges was used as a practical design.
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Figure 5.16 Effect of center plate shape on the resonant frequency. The center
plate is butterfly-shaped
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Figure 5.17 Effect of center plate width on the resonant frequency. The center
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Similarly, the width of the rectangular center conductor width is not very
important as long as it is above about 20 mm as shown in Figure 5.17. However,
because the width of the ground planes is fixed at 30 cm, the width must be kept
well below that, or the distribution of the fields within the sensor will change
and with it, its performance. The length of the center plate was kept constant at
35 cm.

One can, of course, optimize further, especially with regard to the center
plates. For example, Figure 5.18 shows that the thickness of the plates has no effect
on performance although this can be deduced without simulation. The plate
thickness was changed to increase its stiffness, and the only effect that one could
anticipate is a slight change in resonant frequency due to the fact that the thicker
plate occupies a larger volume in the cavity and hence the resonant frequency can
increase slightly. However, as long as the separation between the plates remains
unchanged, the thickness of the plates has no effect. There are other effects that can
have larger influences on the performance. Very thin plates can vibrate and hence
introduce errors in the sensed resonant frequency based on the sensitivity to the
distance between the plates. Similarly, any foreign material in the sensor or changes
in humidity and temperature will have much larger influences on the resonant
frequency. These will be discussed separately.

5.2.4 Sensitivity to motion of the plates
To see how the motion of the plates (due to vibrations, separation, etc.) influences
the resonant frequency, consider the following:
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Figure 5.18 Effect of center plate thickness on the resonant frequency. The center
plate is rectangular
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1. Starting with the nominal separation of 120 mm and nominal solution of 40%
(as described above), the plates were now separated to 122 mm while keeping
the fabric entered between the plates.

2. Keeping a nominal separation of 120 mm and nominal solution of 40%, the
web fabric moved off-center by 2 mm.

These simple results show that the even mode does not change as the plates are
separated but the odd mode does shift. Also, the motion of the web within the
resonant cavity does not seem to affect the resonant frequency (or the effect is too
small to be seen within this small change and within the 100-kHz resolution of
these calculations).

This clearly indicates that if the plates are allowed to vibrate, the result will
change the odd mode, and if this mode is used for temperature and/or humidity
compensation, it will misrepresent the results. For this reason, the cavity must be
made as rigid as possible.

5.2.5 Mechanical design
The electrical design of the sensor does not, for the most part, take into account
mechanical issues although it has been shown that vibrations are apt to introduce
errors in the measurements and, for example, that exposed center plates are likely to
snag splices in the fabric. To minimize the effects of vibrations, the center plates and
the ground planes are made of 6-mm aluminum sheet stock with all edges welded.
The center planes are attached to the ground planes using solid blocks of Teflon as
shown in Figure 5.19 for the upper half of the sensor (an identical block is used on
the lower half of the sensor as shown in Figure 5.20). The support block is 45 mm
thick, and the center plates are held down with four countersunk bolts threaded into
the Teflon block. These blocks are shaped to allow space on either end for the two
probes. Note also that they are 64 mm deep so that the lower face of the upper center
plate is flush with the edge of the shield, again to eliminate the possibility of
snagging the fabric. The bent shields are flush with the center plates, and their edges

Results Even mode (MHz) Odd mode (MHz)

Nominal 374.4 424.3
1. 374.4 424.0
2. 374.4 424.3

Probe Probe

Center plate

Ground plane15 cm

50 cm

70 mm

30 cm

Weld

22 cm

Teflon block

Figure 5.19 View of one half of the sensor showing the Teflon block support of the
center plate
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rounded as are the edges of the center plates. The final dimensions were modified to
take into account the thickness of the material and are shown in Figure 5.20. The
spacing between the two halves was left at 120 mm, but the other dimensions were
modified to leave the inner dimensions intact. Therefore, the external dimensions of
each half of the sensor are now 51.2 by 36.2 by 7.6 cm as shown.

One issue that was alluded to previously is the fact that the sensor cannot cover
the entire width of the fabric. Hence, a number of possibilities were considered to
rectify this deficiency. The most obvious solution is to use multiple sensors in some
configuration. A possible arrangement is shown in Figure 5.22. Figure 5.21(a)
shows the schematic arrangement, and Figure 5.21(b) shows the coverage in terms
of the center plates. Four sensors are fixed at distances of between 10 and 15 cm
from each other covering a fabric width of 127 cm. The separation is needed to
minimize coupling between adjacent sensors. The four sensors represent the
minimum needed for physical coverage of the fabric. Initial simulations of this
configuration has shown nonuniform sensitivity to different sections of the fabric
because the electric-field intensity is largest around the edges of the center plates
and these only cover small sections of the fabric. The center plates themselves only

Ground plane

50 cm

70 mm

30 cm

Weld76
 m

m

51.2 cm

12
0 

m
m

36.2 cm

35 cm

60 mm

Wide dimension view Narrow dimension view

Figure 5.20 Final dimensions of the sensor with internal dimensions unchanged
and separation between the two halves left at 120 mm

100

50

50 50

35

3535

10–15

10

10–15

127 cmFabric 127 cm

10–15

10

10–1530 30

30 30

Fabric

(a) (b)

Figure 5.21 (a) Possible coverage of a 127-cm fabric with four sensors and
(b) coverage in terms of center plates
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cover 90 cm of the width of the fabric. Since fabrics are wider than this (180 cm is
common), more sensors are needed and they need to be placed closer together to
allow better coverage. To alleviate this, the configuration in Figure 5.22 may be
used. This configuration consists of nine sensors across the fabric plus one off the
fabric to be used as a calibration sensor but also to sense environmental effects of
temperature and humidity. The sensors are arranged so that there is overlap
between consecutive center plates. In practice, the nine sensors are attached to large
stiff plates to hold them in place, keep the separation the same for all nine sensors,
and minimize vibrations and variations between their positions [Figure 5.23(a) and
(b)]. This configuration produces a more uniform sensitivity because of the stag-
gered position of center plates.

30 30

Fabric

30

30 30 30

30 30 30

127 cm

Figure 5.22 An arrangement of staggered sensors that allows better coverage of
the width of the fabric

(a) (b)

Figure 5.23 Use of multiple sensors to cover the width of the fabric: (a) one half-
shell and (b) the whole assembly
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Since the resonant frequency is measured using a network analyzer, a
switching control system is needed to switch in and out the nine sensors sequen-
tially. The control system consists of nine coaxial switches, a control I/O card, and
a power I/O card and is shown in Figure 5.24. The control of the switches is rather
involved. In Figure 5.16, the first sensor (leftmost) is connected to the network
analyzer through switches (1) and (5). At the same time, switches (2), (3), (7), and
(9) are off (open). Switches (4), (6), and (8) connect the load probe of all the other
sensors (sensors 2–10) in parallel to a load equal to nine 50-W terminators. In the
next step, sensor 2 will be connected to the analyzer and all other sensor’s input
probe disconnected, whereas the load probes connected to the load. It is possible to
do the switching with six switches by not terminating the inactive sensors removing
the terminations and switches (4), (6), and (8), but then the settling time after
connection is longer. Two types of switches were evaluated for this application.
Both were SP4T type, one designed for operation between 10 MHz and 1 GHz,
with a 1.5-dB maximum insertion loss and 250-ns switching speed and the other
designed for operation up to 35 GHz and 0.15 dB maximum insertion loss. The
switching was controlled by a computer, and as each sensor is switched on, its
resonant frequency is measured by the network analyzer. Because of the switching
in and out of the network analyzer, the switching speed possible is much lower than
the maximum speed the switches are capable of. Time must be allowed for the
signals to settle after connection, and sufficient time must be available for the
measurement itself before the network analyzer is switched to the next sensor.

In testing the switches, it turns out that they do not perform very well in
repetitive fast switching resulting in repeated failures in spite of the fact that some
of the switches were rated for 107 cycles. Considering the cost of switches, the

Network analyzer

In Out

Switch
control card

Nine 50 Ω terminations
in parallel

Computer

(1) (2) (3)

(4) (5) (6) (7) (8) (9)

Figure 5.24 Control scheme with microwave switches
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complexity of the switching system, and the downtime associated with switch
replacement, it was decided to use a single sensor, permanently connected to the
network analyzer and cover the fabric width by moving the sensor back and forth
across the fabric at an appropriate rate that will allow the network analyzer to
sample sections of the fabric’s width. This simplifies the electrical aspects of the
system but, obviously, adds a mechanical dimension that did not exist previously.
The motion of the sensors was accomplished using a pair of belts, one for the upper
half of the sensor and the other for the lower, driven by a pair of high-power stepper
motors. By using ribbed belts and cogs and tight control over the motors, the two
halves were kept in fixed positions relative to each other as they moved. The need
for two belts rather than one was necessitated by the need to keep the structure open
so the whole arrangement could be positioned over the fabric without the need to
modify or interfere with the production line. There are, of course, additional con-
siderations for the mechanical structure. The two halves of the sensor must be kept
parallel to each other and vibration free. To do so the whole motion system is
mounted on a heavy frame as will be described in Section 7.2.

5.3 Sensor design for rubber thickness sensing

The sensing of rubber sheet thickness can be sensed in a manner similar to the
fabric described above. In fact, the same sensor may be used without modifications
provided access is available to the rubber sheet so that the two halves of the sensor
may be placed with the rubber sheet passing between them.

f = –1.3476t + 361.35
R2 = 0.9983
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Figure 5.25 Resonant frequency as a function of rubber thickness. Source and
load probes on the opposite sides of the resonator
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We start with the previous sensor design by measuring the resonant frequency
of the sensor with respect to rubber thickness to establish a baseline and, as well, to
show the difference between the broadside coupled stripline resonator and the
modified resonator that will eventually be used for rubber thickness gauging as will
be described shortly. Figure 5.25 shows the resonant frequency of the cavity (see
the inset) with the rubber sheet at the center of the cavity. The rubber sheet varied
from 2.25 to 4.75 mm in thickness. As can be seen, the sensitivity is high and the
behavior is linear. The sensitivity can be estimated from this figure or, more
appropriately, from the linear least-square representation of the measured data:

f ¼ �1:3476t þ 361:35 (5.7)

where t is the rubber thickness in mm and f the resonant frequency in MHz. The
sensitivity is approximately 1.35 MHz/mm. Since the measurement will be done
with a network analyzer and the analyzer can resolve well below 1 kHz, the sensor
can sense changes in thickness of rubber of the order of 1 mm (0.742 mm/kHz). The
measurements shown in Figure 5.25 were made by adding rubber sheets 0.4 mm
thick to a base sheet 2.25 mm thick to obtain the various thicknesses shown. Part of
the reason that the points deviate slightly from a straight line is that the thin sheets
are difficult to lay flat without slight stretching.

However, in the production of continuous thin rubber sheets, the most con-
venient place for sensing is where the rubber moves over a rotating calender as
shown schematically in Figure 5.26. The calender roll is a steel cylinder of a
relatively large diameter and at least as long as the width of the rubber sheet. At that
location, the rubber sheet is flush with the calender and hence sensing at this
location is ideal as the position of the rubber does not vary and is perfectly flat on
the roll. In addition, the surface is easily accessible and relatively clean as this is
toward the end of the production line.

However, this also means that the sensor must be modified since now the
rubber cannot pass between the two halves of the sensor. To design a sensor for this
application, one can start with the classical stripline resonator but, because the

Calender

Rubber product

Se
ns

or

Figure 5.26 Rubber sheet moving on a calender. The sensor is most conveniently
placed on the section in which the rubber makes contact with the
calender
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calender is conducting, only one half of the sensor can be used so that the rubber is
between the center plate and the calender.

The transition from the fabric sensor to that of the rubber against calender
sensor starts with Figure 5.27. In this initial approach, the rubber material is still
stacked on a flat steel sheet and both are placed inside the unmodified fabric sensor
except for the fact that both probes are now on the side of the rubber. The reason is
obvious—resonance occurs in the space between the rubber side of the steel plate
and the half-shell to its right. The figure also shows the connections to the network
analyzer and from it to two computers. One is the computer used to control the
motion of the resonator and to record the data, whereas the other contains the HMI
through which all commands are given. The reason for the separation is that in
actual testing and measurements, the HMI is on a remote machine and commands
may be given over the web.

The configuration in Figure 5.27 was used as an initial step toward optimi-
zation of a sensor adapted to this type of gauging. The first measurements are
shown in Figure 5.28 and were intended to define an acceptable separation
between the steel plate and the stripline. The figure shows two measurements, one
at 35-mm separation and the second at 100-mm separation. The least-square
representations of the measured resonant frequency (MHz) as a function of rubber
thickness (mm) are

f ¼ �0:1169t þ 380:88 for 100-mm separation (5.8)

f ¼ �1:8026t þ 411:77 for 35-mm separation (5.9)

Rubber layered
on a large steel
plate, to simulate
calender roll

Resonator
shield Coax cable

Network analyzer

PC1 HMI
PC2 control

PC’s—control and
HMI

A
ntenna

Earth ground

Figure 5.27 The transition from the fabric sensor to the rubber thickness sensor

208 Open resonator microwave sensor systems for industrial gauging



The first thing to note is that in either case, the resonant frequency increases simply
because the volume of the cavity decreases. Although the empty cavity in
Figure 5.25 resonates at 361.35 MHz, the cavity in Figure 5.27 resonates at
380.88 MHz with the 100-mm separation and at 411.77 MHz at 35-mm separation.
On the other hand, the sensitivity is much lower at the 100-mm separation but much
higher at the 35-mm separation. This is because in these measurements, the rubber
is against the steel plate and hence, for the same separation as in Figure 5.25, one
would expect lower sensitivity. However, the sensitivity increases with the reduc-
tion in separation and at a separation of 35 mm, the sensitivity is higher. At
100-mm separation, the sensitivity is 116.9 kHz/mm or 117 Hz/mm. At 35 mm, the
sensitivity is 1.8 MHz/mm or 1.8 kHz/mm. These values would allow

f = −0.1169t + 380.88
R2 = 0.9991

f = −1.8026t + 411.77
R2 = 0.9999
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Figure 5.28 Resonant frequency versus rubber thickness for 35- and 100-mm
separation between center plates. Source and load probes on the
same side of the resonator

Table 5.3 Simulation of the resonator in Figure 5.27

Thickness
(mm)

First resonant
frequency (MHz)

Second resonant
frequency (MHz)

0 436.6 863.4
2 433.2 856.9
1 434.8 860.2
0.5 435.8 861.8
0.25 436.4 862.4
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measurements down to 8.55 mm at 100-mm separation or 0.55 mm at 35-mm
separation (given a 1-kHz resolution on the network analyzer). Clearly then, the
lower the separation, the better it is. This is true with the fabric sensor but much
more so with the rubber thickness sensor.

Simulation results have shown the same tendency in terms of sensitivity,
although the results are less linear than in the measurements. A set of simulated
results is shown in Table 5.3 for the configuration in Figure 5.27 with a separation
of 3.5 mm. The table shows the first and second resonant frequency. To be noted is
that these are not dual frequencies since the cavity now is not a broadside-coupled
cavity but rather a regular cavity that resonates at multiple modes. The sensitivity
for the first resonant frequency varies between 1.2 and 1.6 MHz/mm, depending on
the thickness, with an average of 1.6 MHz/mm. This is not quite identical to the
results of the measurement that seem to be more linear. A possible reason may lie
with the way the boundary conditions were set. In this case, because the cavity is
closer to a closed cavity, the boundaries were set at the conductors and the gap was
closed as well, making it into a closed cavity. This of course neglects any fields
outside the cavity. The second resonant frequency may be used as well with a
sensitivity twice as high. Indeed, one can use higher resonant frequencies, but, in
keeping with the original idea of using the lowest frequency necessary to obtain the
required sensitivity and to keep in line with the resonant frequency of the fabric
sensor, we opted for the first resonant frequency. A sensitivity under 1 mm is more
than sufficient for this and many other applications.

The transition from the flat steel sheet to the calender is shown in Figure 5.29.
Clearly the one half of the original sensor (left side in Figure 5.27) serves no
purpose so it is removed. The right side of the original sensor together with the
conducting calender now forms a resonator, but because of this modification, the
properties of the resonator also change as will be seen shortly. To adapt the original
structure to the present configuration, the resonator is modified as follows:

1. The calender is used as one of the ground planes.
2. The center conductor and the second ground plane are curved to keep a con-

stant distance between the ground plane and the calender. The basic config-
uration is shown schematically in Figure 5.30(a). The figure also shows,
schematically, the connection to the network analyzer.

3. The ground plane can also be bent over to create a partially enclosed cavity as
was done with the previous sensor [Figure 5.30(b)]. By doing so, the Q-factor
increases and the effects of external influences decrease.

4. Because the rubber sheet is thin and tight over the calender, the gap between
the center plate and the calender can be relatively small and from the values
given above must be kept at a minimum to increase sensitivity.

Starting with the dimensions of the broadside coupled sensor, an appropriate sensor
that implements the changes above is shown in Figure 5.31. The sensor incorpo-
rates the bent plates, and the dimensions reached at in the broadside coupled sensor,
but the gap has been reduced to 35 mm (to the centerline) instead of the 60 mm in
the previous case, based on the measurements in Figure 5.28 and on the simulated
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values. The ground plane measures 50 by 35 cm (interior dimensions), the center
conductor measures 30 by 6 cm, and both are made of 6 mm thick aluminum. Both
the ground plane and the center conductor are curved to create a uniform separation
between the sensor and the calender. The purpose of this shape is to ensure that the
change in resonant frequency due to rubber thickness variations is as linear as
possible. Since the electric-field intensity is largest at the edges of the center plane,
the ports are placed near the edges of the center plate. The long dimension of the
sensor is oriented axially with the calender [Figure 5.31(b)]. Figure 5.31(a) shows
how the constant distance between the calender and the sensor is completed by
properly curving the geometry of the sensor. The dimensions of the sensor are
approximately the same as in Figure 5.20. Results of a simulation of the curved
sensor are shown in Table 5.4. In comparison with Table 5.3, the resonant fre-
quency is a little lower indicating that the volume of the resonator increased
slightly. On the other hand, the resolution sensitivity increased slightly with
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Figure 5.29 Adaptation of the stripline resonator to sense a rubber sheet on a
conducting surface: (a) initial experiments and (b) the half-shell
against the calender roll
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Figure 5.30 Adaptation of the sensor to the calender by curving the sensor so
that the distance between the sensor and the calender is constant:
(a) nonshielded prototype and (b) shielded prototype
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average sensitivity of 2.4 MHz/mm. The linearity has also improved considerably.
As in Table 5.3, the sensitivity at the second resonant frequency is higher, in this
case an average of 4.4 MHz/mm.

As was the case with the fabric sensor, the width of the rubber sheet cannot be
covered entirely by the sensor, and the same considerations as for the fabric sensors
apply here.

It should be noted here again that the sensor as shown in Figures 5.27, 5.29, or
5.30 is not a broadside coupled resonator and hence the center plate does not seem
to be necessary. In fact, the results in Figure 5.25 show as much. One could, by
proper location of the probes, remove the center plate and obtain the same results.
However, simulations without the stripline and with the probes in the same location
show poor performance with a very low Q-factor. It was therefore decided to keep
the stripline as in the original sensor. This has the advantage that the rubber
thickness sensor and the fabric sensor are driven in exactly the same fashion and the
measurements treated identically. The main difference between the two sensors lies
in the fact that the odd-mode resonance does not exist in the rubber thickness
sensor. Since the odd-mode resonance is used for compensation of environmental

Calender Calender

76
.2

 c
m

154.2 cm

35 mm

76 mm

(a) (b)

Figure 5.31 Two views of the sensor. Note the curvature in (a) and the two ports
in (b). The figure is not up to scale

Table 5.4 Simulation of the resonator in Figure 5.31

Thickness
(mm)

First resonant
frequency (MHz)

Second resonant
frequency (MHz)

0 422.2 829.6
0.5 420.5 826.3
1 419.8 824.8
1.5 418.7 822.6
2.0 417.6 820.4
2.5 416.6 818.2
3.0 415.6 816.0
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conditions, this also means that the compensation cannot be applied to the rubber
thickness sensor.

5.3.1 Simulation and optimization
The first step in the simulation process is to establish the resonant frequency of the
empty resonator (no rubber). The FDTD program is used here as well. Figures 5.32
and 5.33 show the geometry as input to the program. In Figure 5.32, the calender
has been removed to show the model of the sensor. The center plate can be seen at
the center, and the folds of the ground plane clearly show the curvature. Figure 5.33
shows the geometry with the calender. Note also the outer rectangular box—this
delineates the space modeled. In this view, the two ports are also visible.

The resonant frequency is calculated by scanning over a range of frequencies,
calculating the fields at each frequency (for an arbitrary amplitude at the input
port), and sensing the field at the load port. Figure 5.34 shows a scan between
300 MHz and 1 GHz. Resonant frequencies at 422.2 MHz and at 829.6 MHz can be

Figure 5.32 Simulator input for the curved half-shell for rubber thickness sensing

Figure 5.33 Simulator input for the rubber thickness sensor showing the calender
above the curved half-shell
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easily seen. These are single-mode resonances since now one cannot distinguish
between odd and even modes. One can select any of the two frequencies and other
higher order frequencies beyond 1 GHz, but, as we have done previously, the lower
frequency resonances are preferred.

The sensitivity of the sensor to rubber thickness variations is also established
by the same simulation process by including a rubber sheet on the calender of
varying thickness. Table 5.5 shows the results for rubber sheets between 0.05
and 3-mm thick. These are also shown in Figure 5.35. Although the change in
frequency is not linear, it is approximately 2.2 kHz/mm in the first-order resonance
and approximately 4.53 kHz/mm in the second-order resonance. Since the network
analyzer can easily detect a change lower than 1 kHz, the sensitivity of the sensor is
better than 0.5 mm in rubber thickness variation. The slope of the curves in

Val = 0.79531
f(GHz) = 0.4198

Marker:
1.037

0.7076
0.3 Frequency (GHz) 1

Figure 5.34 Screen capture of a simulation of the resonator in Figure 5.20

Table 5.5 Resonant frequency as a function of rubber thickness
for the first and second resonant modes

Thickness
(mm)

First resonant
frequency (GHz)

Second resonant
frequency (GHz)

0.00 0.4222 0.8296
0.05 0.4205 0.8263
1.00 0.4198 0.8248
1.50 0.4187 0.8226
2.00 0.4176 0.8204
2.50 0.4166 0.8182
3.00 0.4156 0.8160
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Figure 5.35 is constant except for a small deviation at very thin rubber sheets;
hence, the sensitivity is constant for any thickness.

The optimization process follows that established for the fabric sensor but also
looks at the shape of the center plate in some detail. Since we use essentially the
same sensor, there is little value in repeating the simulations associated with
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Figure 5.35 Resonant frequency as a function of rubber thickness: (a) first
resonant mode and (b) second resonant mode
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the folded ground plane. Perhaps the most important parameter of the sensor is the
distance between the center plate and the calender’s surface; hence, we start
with that. The distance is varied between 30 and 100 mm for rubber thicknesses
between 0 and 3 mm. The results shown in Figure 5.36 confirms the expected
behavior. The sensitivity decreases with increased separation. At a separation of
30 mm, the sensitivity in the first resonant mode is approximately 2.8 kHz/mm,
whereas at 100 mm, the sensitivity is approximately 400 Hz/mm. This is still a
respectable sensitivity but significantly lower than at 30 mm. The sensitivity in the
second resonant mode is approximately twice as high as one would expect.

The center conductor of this modified stripline is, of course, an important
element of the sensor, and it is important to try to optimize its dimensions and
shape. However, as can be seen from the following simulations, it is, for the most
part, insensitive to changes in dimensions and shape. Nevertheless, some changes
can be made to improve sensitivity of the overall system. The following simula-
tions discuss these issues.

Figure 5.37 explores the sensitivity of the sensor as a function of width of the
center plate. The sensitivity is measured as the change in frequency of the resonator
as the rubber thickness changes from 0 to 3 mm. For example, at a center plate
width of 50 mm, the sensitivity is 6.6/3 ¼ 2.2 MHz/mm in the lowest resonant
mode and 13.6/3 ¼ 4.53 MHz/mm in the second resonant mode. These increase to
2.6 and 5.43 MHz/mm at a plate width of 90 mm. As can be seen, the value selected
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Figure 5.37 Sensitivity of the sensor as a function of center plate width for a
change of 3 mm in rubber thickness. The sensitivity is 2.2 MHz/mm
in the lowest resonant mode and 4.53 MHz/mm in the second
resonant mode
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for this (60 mm) is acceptable although a slight improvement can be had with wider
plates. Increasing the width to 90 mm would lead to an improvement in sensitivity
of about 18%. Increasing the width of the center plates should be undertaken
carefully since the ground planes are only 350 mm wide. Too wide a center plate
may require widening the ground planes and that of course would reduce the
resonant frequency and the spatial resolution of the sensor.

The length of the conductor also influences the sensitivity but, in this case, the
resonant frequency itself also changes (see Tables 5.6 and 5.7). Sensitivity is cal-
culated for center plates between 200 and 400 mm keeping the folded ground plane
fixed at 500 by 350 mm. The plot in Figure 5.38 shows the change in resonant
frequency as the 3-mm rubber sheet is inserted into the sensor. At shorter and
longer center conductors, the sensitivity is about the same (1.13 and 2.47 MHz/mm)
with an increase to 2.2 and 4.53 MHz/mm at the selected length of 300 mm. This
result is particular to the geometry and is influenced by the ground plane. A larger

Table 5.6 Resonant frequency for various center
conductor lengths, empty resonator

Length
(mm)

First resonant
frequency (GHz)

Second resonant
frequency (GHz)

200.00 0.5157 0.9696
225.00 0.5108 0.9630
250.00 0.4859 0.9301
275.00 0.4296 0.8404
300.00 0.4222 0.8296
325.00 0.4135 0.8138
350.00 0.3388 0.6690
375.00 0.3351 0.6635
400.00 0.4296 0.6564

Table 5.7 Resonant frequency for various center conductor
lengths, 3-mm rubber on the calender

Length
(mm)

First resonant
frequency (GHz)

Second resonant
frequency (GHz)

200.00 0.5121 0.9627
225.00 0.5073 0.9560
250.00 0.4825 0.9227
275.00 0.4255 0.8313
300.00 0.4156 0.8160
325.00 0.4099 0.8061
350.00 0.3352 0.6615
375.00 0.3317 0.6563
400.00 0.3273 0.6494
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ground plane would produce a maximum in sensitivity at a longer center plane, but
the sensor will resonate at a lower frequency as well. Perhaps, the most useful
conclusion from this is that the length of the center plate relative to the length of the
resonator is the important parameter, and one cannot be optimized without opti-
mizing the other.

In the design of the fabric sensor as well as in the present design, the distance
between the ground and center planes was selected as 70 mm assuming that this
dimension will have minimal influence on either the resonant frequency (the latter
being defined primarily by the length of the center plate) or on sensitivity. The
simulation in Figure 5.39 shows that a smaller distance would tend to reduce sen-
sitivity, whereas a higher distance will have almost no influence on the sensitivity.

Although in most striplines, the center plates are rectangular, in resonators,
because of the finite length of the center plate, its shape can be modified quite easily
to obtain better sensitivity. The following are a few simple modifications to the center
plate that can be easily simulated and implemented. There are of course many others.

Figure 5.40 shows the modification of the plate into a butterfly shape by
widening the ends from 60 to 120 mm in increments of 10 mm while keeping the
center at 60 mm. Figure 5.41 shows the sensitivity to a 3-mm change in rubber
thickness. The sensitivity climbs from 2.2 and 4.53 to 4.7 and 11.53 MHz/mm for
the two resonant frequencies respectively when the ends are widened to 90 mm but
goes down beyond that. This effectively doubles the sensitivity of the sensor.
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Figure 5.38 Sensitivity as a function of plate length for a change in rubber
thickness of 3 mm, keeping the dimensions of the folded ground plane
unchanged
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Butterfly shape
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Figure 5.40 Modification of the center plate into a butterfly geometry. The plate
is modified by widening the ends in increments of 10 mm
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Figure 5.39 Sensitivity as a function of distance between the center plate and the
ground plane for a change in rubber thickness of 3 mm, keeping the
dimensions of the folded ground plane unchanged
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A different way of building a butterfly-shaped plate is shown in Figure 5.42.
Here, we start with the 60-mm plate and narrow it at the center, again in increments
of 10 mm down to a minimum of 10 mm. However, unlike the previous case, the
results are not as useful. The narrower the center, the lower the resolution as can be
seen in Figure 5.43. In addition, a plate with a center that is too narrow is likely to
vibrate more easily and be less sturdy.
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Figure 5.41 Sensitivity for the butterfly shaped center plate. Note the significant
increase in sensitivity when the ends are 90 mm

10 mm width 60 mm width

Figure 5.42 Modification of the center plate into a butterfly geometry. The plate
is modified by narrowing the center in increments of 10 mm
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Another simple modification is the diamond-shaped center plate in Figure 5.44
with the accompanied results in Figure 5.45. Clearly there is no advantage in this
design since the sensitivity decreases compared to the rectangular plate.

The simulation steps above clearly show that as far as sensitivity is concerned,
two parameters offer the most advantages: the distance between the calender and
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Figure 5.43 Sensitivity for the butterfly-shaped center plate in Figure 5.42. The
sensitivity is lower than that of the rectangular plate
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Figure 5.44 Modification of the center plate into a diamond-shaped geometry.
The plate is modified by widening the center in increments of 10 mm
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the center plate and the shape of the plate with some minor improvement that can
be had by changing the dimensions of the plate. Although the butterfly-shaped plate
increases sensitivity by a factor of 2, it may not be very practical since the low-
angle corners are likely to snag loose or torn rubber, especially if the gap between
the center plate and the calender is small. In addition, the corners of the plate would
need to be supported to avoid vibrations. The distance between the center plate and
the calender can be reduced somewhat, but the improvement in sensitivity is
minimal. Because of these reasons and to keep the design simple, the center plate
was left in its rectangular shape especially since the sensitivity is very high to begin
with and improvement, even by a factor of 2 is not critical to the performance of the
sensor. Nevertheless, in other applications, these considerations may change and
the additional sensitivity may be useful.

A final note on the simulations performed in this work. The simulations were
done with commercial software based on the FDTD approach. In this approach, one
‘‘follows’’ the development of the electromagnetic fields in the region of interest
(in this case, within the cavity) taking into account the geometry of the cavity and
the material properties within the cavity. The FDTD method is not necessarily the
most efficient method of simulation, but it is perhaps the easiest to understand and
setup, especially in geometries with conducting boundaries. A short description of
the method with additional details is given in Appendix C.
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Figure 5.45 Sensitivity for the diamond-shaped center plate in Figure 5.44. The
sensitivity is lower than that of the rectangular plate
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5.4 Alternative sensing strategies

The previous sections described the sensors, its design, simulations, and, of course,
the reasons why the resonant sensor was selected. But, as with any design, there are
always alternative methods, and sensing of moisture content or rubber thickness
are no exception. Now that the needs of the sensors and the functional parameters
have been understood, it is an appropriate point to discuss the alternatives that were
considered and discarded in favor of the present design in spite of the fact that the
sensor relies extensively on the capabilities of a network analyzer and hence is,
necessarily, a relatively expensive design.

In the fabric sensor what is measured is an effective permittivity of the fabric,
whereas in the rubber thickness sensor, the measurement is a dimension (thickness
of the rubber sheet); to both, there are a number of possible alternatives. These
include electromagnetic transmission sensors, electromagnetic reflection sensors,
and, perhaps the most obvious, capacitive sensors. One can also use beta gauges
based on the absorption of radiation by the fabric or rubber. These systems rely on a
low-intensity source emitting on one side of the fabric and a detector on the other
side. For obvious safety reasons, the gap provided for the fabric to move through
must be very small, a feature that requires the device to be removed when splices
are made. Beta gauges are also prone to contamination by the dip material because
of the proximity of the moving fabric. Beta gauges and systems based on them
are available commercially and an important motivation of the introduction of the
current sensors was to avoid the use of radiation sensor because of concern for
radiation and the accuracy needed. Thus, these sensors were not considered as
alternatives to the present design.

5.4.1 Capacitive sensors
Capacitive sensors are the easiest to understand and simplest to implement. In
essence, all one has to do is place two conducting plates, one on each side of the
fabric, and measure the capacitance between the plates as shown in Figure 5.46(a).
In the case of the fabric gauging, the plates can be spaced to allow the necessary
clearance (120 mm was the minimum requirement in this work). The plates can
either be large to cover, say, the width of the fabric or smaller to allow for better
resolution across the fabric. The capacitance can be monitored with a simple
capacitance meter or with a more sophisticated RLC meter if better accuracy is
needed. The plates can also be modified by adding guard electrodes, and one can

1 mm

50 cm
12 cm

Calender

Rubber Plate

3
cm

(a) (b)

Figure 5.46 Capacitive gauging of permittivity in a dielectric: (a) fabric moisture
sensing and (b) thickness gauging of rubber
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easily devise arrays of capacitors to cover the width of the fabric. Thus, the sensor
itself, aside from some simple mechanical issues, is rather trivial. The main diffi-
culty with a sensor of this type is sensitivity. To estimate the sensitivity of a
capacitive sensor, we can start with the mixing formulas in (5.1)–(5.4) and apply
them to the space between two parallel plates of the same size as the resonant
sensor, that is, each plate is 50 by 35 cm and are separated a distance 12 cm. From
(5.3) and (5.4), the relative permittivity of a 1-mm thick fabric changes from 23.64
with the fabric containing 35% dip solution to 26.66 when the dip solution
increases to 40% of the fabric volume, corresponding to 1% increase in solids
retention. Using the mixture formula in (5.2), the effective relative permittivity of
the space between the plates at these two levels of absorbed dip is

eeff ¼ e0v0 þ ervf

v0 þ vf
(5.10)

where v0 is the volume of the space between the capacitor, vf that of the fabric, e0

the permittivity of air, and er the permittivity of the fabric. At a dip pickup of 35%,
the effective permittivity is

eeff ¼ 1 � 0:119 þ 23:64 � 0:001
0:12

¼ 1:1887 (5.11)

At a dip pickup of 40%, the effective permittivity in the capacitor is

eeff ¼ 1 � 0:119 þ 26:66 � 0:001
0:12

¼ 1:2138 (5.12)

The capacitance at 35% dip pickup, assuming a parallel plate capacitor is

C 35%ð Þ ¼ 1:1887 � 8:853 � 10�12 � 0:5 � 0:35ð Þ
0:12

¼ 15:35 pFð Þ (5.13)

At 40% dip pickup, the capacitance increases to

C 40%ð Þ ¼ 1:2138 � 8:853 � 10�12 � 0:5 � 0:35ð Þ
0:12

¼ 15:67 pFð Þ (5.14)

This is a sensitivity of 0.32 pF/1% solids.
If the target is the ability to accurately detect a change of 0.02% in solids

pickup, the sensor must be capable of accurately measuring capacitance increments
of 0.0064 pF. This is not practical under the best of conditions and certainly not on
the factory floor.

The calculations above are only rough estimates, and one can improve on this
somewhat. The distance of 12 cm between the plates can be reduced, and the use of
guard electrodes can improve things, but in the end, the capacitance is too low and
effects of humidity and temperature are very likely to be much higher than the
required sensitivity.

In the case of rubber thickness gauging, the capacitive sensor would take the
form of a curved plate parallel to the calender as shown in Figure 5.46(b). In this
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case, the plates are much closer together but the relative permittivity of rubber is
much lower, leading to similar results. For these reasons, the capacitive sensing
strategy was deemed insufficiently sensitive.

5.4.2 Reflection and transmission sensors
Reflection and transmission sensors at various frequencies are used in many
applications including in what is sometimes called aquametry—the evaluation of
moisture content in products such as wood, grain, foodstuff, foams, wool, etc. As
such they could be adapted to the requirements of this work, at least in principle.
The attraction of these methods is primarily cost effectiveness—they are likely to
be less expensive but also the fact that the transmitters and receivers can be placed
at considerable distances from the fabric or rubber sheet. The basic configuration
is based on the reflection and transmission of electromagnetic waves from and
through dielectric. The principle is shown in Figure 5.47(a) where an incident
electromagnetic wave from source (S) propagates to a dielectric layer. Part of the
wave is reflected (R) and part of it is transmitted (T). The reflected and transmitted
components are dependent on the permittivity of the dielectric, and these in turn
depend on the properties of the medium including density, moisture content,
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Figure 5.47 (a) A general arrangement for reflection and transmission sensing
and (b) simple arrangement for transmission and reflection sensing
with a single antenna
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temperature, and sometimes even on strain or pressure. In a reflection sensor, the
reflected wave is sensed, whereas in a transmission sensor, the transmitted wave
is sensed. The waves can propagate at an angle as in Figure 5.47(a) or perpen-
dicular to the sensed medium as in Figure 5.47(b). The methods in Figure 5.47
are often called bistatic methods because of the use of separate transmitters and
receivers. Because of that, the transmission and detection can be continuous, so
the methods can also be defined as bistatic continuous wave (CW) methods. It is
also possible to use a single antenna in a pulsed mode as shown in Figure 5.47(b).
This is an astatic (or monostatic) method that serves both as transmitter and
receiver. A short pulse is transmitted and the return signal received by the same
antenna. This is a transmission sensor except that the signal is transmitted
through the dielectric twice.

The reflection from and transmission into a dielectric depends on the permit-
tivity of the dielectric, angle of incidence, and the polarization of the wave. To get
an idea on how these sensors operate and what is being measured, we will use the
configuration in Figure 5.48 and assume plane wave propagation. Although the
fields of the antenna only satisfy these conditions in the far field, and even there,
only approximately, the propagation of plane wave affords a simple description of
transmitted and reflected waves and hence a simple way of understanding the
operation of the sensors. The reflection and transmission coefficients under these
conditions are (see Section D.5 in Appendix D):

G ¼ hd � h0

hd þ h0
; T ¼ 2hd

hd þ h0
(5.15)

where h0 is the wave impedance in air and hd the wave impedance in the dielectric.
The latter are given as

h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jwm0

s0 þ jwe0

s

; hd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jwmd

sd þ jwed

s

(5.16)
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Figure 5.48 A simple transmission sensor
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where e0; m0; s0ð Þ are the permittivity, permeability, and conductivity of air and
ed ; md ; sdð Þ the permittivity, permeability, and conductivity of the dielectric. The

impedances can also be written as

h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m0

e0 1 � j s0=we0ð Þð Þ
r

; hd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

md

ed 1 � j sd=wedð Þð Þ
r

(5.17)

where e0 1 � j s0=we0ð Þð Þ is the complex permittivity of air and ed 1 � j sd=wedð Þð Þ is
the complex permittivity of the dielectric. The first term is the dielectric constant of the
medium and the second is loss associated with the medium. The term s/we is called
the loss tangent of the medium. The complex permittivity is normally written as

e ¼ e0 þ je00 (5.18)

with e0 indicating the dielectric constant and e00 ¼ s/we the loss tangent.
Given an incident electric-field intensity of amplitude E0, the reflected and

transmitted electric- and magnetic-field intensities are

Er ¼ GEi; Et ¼ TEi; Hr ¼ G
Ei

h0
; Ht ¼ T

Ei

hd
(5.19)

Et and Ht are the amplitudes of the electric- and magnetic-field intensities trans-
mitted into the dielectric. To calculate electric-field intensity onto the receiver, the
waves transmitted into the dielectric must transmit again across the opposite sur-
face. Using Figure 5.48, we write

Et ¼ TadTdaE0; Ht ¼ TadTda
E0

h0
(5.20)

where

Tad ¼ 2hd

hd þ h0
; Tda ¼ 2hd

hd þ h0
(5.21)

In addition, because both air and dielectrics are lossy to a certain degree, the wave
is also attenuated, and its phase changes as it propagates through air as well as the
dielectric. The attenuation and phase constants in air and in the dielectric are

aa þ jba ¼ jw
ffiffiffiffiffiffiffiffiffi
m0e0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � j

s0

we0

r
(5.22)

ad þ jbd ¼ jw
ffiffiffiffiffiffiffiffiffi
mded

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � j

sd

wed

r
(5.23)

With these, and the notation in Figure 5.48, the field that reaches the receiver is

Erec ¼ Tad Tda E0 e�aa d1þd2ð Þ e�add e�jba d1þd2ð Þ e�jbdd (5.24)
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Or, in the time domain, assuming a sinusoidal form of the incident field (Ei ¼
E0 cos(wt)):

Erec ¼ Tad Tda E0 e�aa d1þd2ð Þ�add cos wt � ba d1 þ d2ð Þ � bddð Þ (5.25)

The transmission coefficients, attenuation constants, and phase constants depend on
the complex permittivity of the materials (air and dielectric). The properties of air
are known a priori, and, if they are not, they can be evaluated directly through a
calibration process without the dielectric. Hence, the two unknown values are the
dielectric constant ed and the loss tangent sd=wed of the dielectric. These are
evaluated by measuring the attenuation of the wave and the change in its phase,
measured at the receiver relative to the transmitted wave.

Of course, in practice, the issues are more complex than this. The transmission
coefficients Tad and Tda are themselves complex values, and their product must be
smaller than 1. This means that they contribute both an effective attenuation and a
change in phase. For this reason, it is not sufficient to measure amplitude and phase
but rather, one must also establish a calibration curve for the medium; otherwise,
these effects contribute to errors in the measurement. Errors in measurements can
also be introduced by reflections from structures in the sensing environment and by
fields from external sources.

The method described here is akin to the free-space permittivity measurement
described in section 4.11. In free space, permittivity measurement use is made of a
carefully designed and calibrated sample holder, and the sample itself is carefully
made to ensure accurate measurements using a network analyzer.

In some cases, especially if a reflection sensor is used, the configuration in
Figure 5.47(a) is more convenient. Although the transmission and reflection coef-
ficients are more complex and depend on the angle of incidence of the wave upon
the dielectric as well as the polarization of the wave, the principle is still the
same—one measures the phase and amplitude of the transmitted and reflected wave
and correlates these with the dielectric constant and loss tangent of the dielectric.

In the context of the requirements of gauging of the fabric, neither the reflec-
tion nor the transmission sensor is appropriate. The fabric is very thin and hence
both the attenuation and phase change within the fabric are low. On the other hand,
the reflection coefficient is fairly large because of the high permittivity of the dip
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Figure 5.49 A dielectric sheet against a conductor backing
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pickup in the fabric. This leads to very low sensitivity to moisture content although
the method is very useful in thick dielectrics.

The method is much more appropriate as a rubber thickness sensor although it
is nowhere near the sensitivity of the resonant method. In the case of the rubber
thickness sensor, the most appropriate method is a pulsed reflection method as
shown in Figure 5.49. Because the rubber sheet is located against the conducting
calender, the reflection coefficient is an effective coefficient that depends on the
dielectric. The wave received back at the antenna (assuming now a CW) can be
written as follows:

Erec ¼ Gad � e�2add e�2bdd

1 � Gade�2add e�2bdd

� �
E0 e�2aad1 cos wt � 2bad1ð Þ (5.26)

where Gad is the reflection coefficient at the air–rubber interface. The term in
brackets is the effective reflection coefficient of the rubber–conductor combination,
and the rest is the effect of propagation in air. This approximate formula takes into
account the fact that the wave propagates twice through air and through the rubber
and is perfectly reflected at the rubber–calender interface.

In practical measurements, the phase and amplitude of the reflected wave can
be measured and correlated with the dielectric constant and loss tangent of the
dielectric (rubber). In the pulsed approach, one can proceed in the same fashion, but
the field is quite different including the fact that multiple harmonics will be present.

In reflection and transmission measurements, one can measure the power
rather than the electric field, but since these are related quantities, the conclusions
drawn here remain the same.

In addition to the methods described above, there are others as well as varia-
tions on these methods. One approach often used in measuring is an interferometric
method. The method is particularly useful for thick dielectrics and requires the
accurate evaluation of phases and amplitude. In that sense, it has the same prop-
erties of the transmission and reflections methods. The main difference between it
and the reflection/transmission methods is that the total field rather than its
reflected/transmitted components are measured.

Further reading

Some additional details of the initial prototype and on line measurements can be
found in the following:

[1] S. DuFore, ‘‘Stripline Resonant Sensor Development for the Measurement
and Control of Moisture in a Moving Web,’’ M.Sc. Thesis, The University of
Akron, December 2000.

[2] J. M. Madaras, K. M. Kot and P. M. Bujak, US Patent 6,565,914 Method
for Controlling Deposited Polymer on a Substrate, May 20, 2003.

The design and optimization of the rubber thickness resonant sensor are detailed in
the following:
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[3] O. Bhuiya, ‘‘Design and Optimization of a Stripline Resonator Sensor for
Measurement of Rubber Thickness in a Moving Web,’’ M.Sc. Thesis, The
University of Akron, December 2006.

Additional aspects of the simulation of the stripline resonators described in this
work are described in the following:

[4] N. Farahat and N. Ida, ‘‘Open Stripline Resonator for Gauging in Industrial
Applications,’’ Review of Progress in Applied Computational Electro-
magnetics, ACES Conference, Verona, Italy, April 20–24, 2007, pp. 1846–
1851.

[5] N. Ida and O. Bhuyia, ‘‘Design and Optimization of an Open Stripline
Resonator for Rubber Thickness Gauging,’’ Proceedings of the 11th Inter-
national Conference on Optimization of Electrical and Electronic Equip-
ment, Brasov, Romania, May 22–24, 2008, Vol. 4, pp. 97–100.

[6] N. Ida, ‘‘Open Stripline Resonator Sensors for Rubber Properties Gauging,’’
Proceedings of MOMAG-08, Florianopolis, Brazil, September 7–10, 2008,
pp. 1077–1083.

Some alternative sensors for moisture content and the more general issue of mea-
suring complex permittivity may be found in the following:

[7] J. Musil and F. Zacek, ‘‘Microwave Measurements of Complex Permittivity
by Free Space Methods and Their Applications,’’ Elsevier, Amsterdam,
1986.

[8] J. R. King, ‘‘Microwave Sensors for Process Control Part I: Transmission
Sensors,’’ Sensors, Vol. 9, No. 9, 1992, pp. 68–74.

[9] A. Kraszewski, ‘‘Microwave aquametry—a review,’’ Journal of Microwave
Power, Vol. 15, No. 4, 1980, pp. 209–220.

[10] J. Thuery, ‘‘Microwaves: Industrial, Scientific and Medical Applications,’’
Artech House, Norwood, MA, 1992.

[11] G. F. Engen, ‘‘Microwave Circuit Theory and Foundations of Microwave
Metrology,’’ IET, London, 1992.

[12] G. Roussy and J. A. Pearce, ‘‘Foundations and Industrial Applications of
Microwaves,’’ Wiley, New York, 1995.
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Chapter 6

Evaluation of the sensors

6.1 Introduction

It is one thing to come up with a sensor but a whole different matter to come up
with a sensor that satisfies the strict criteria required in a gauging application. The
present chapter discusses the performance of the fabric coating sensor, its sensi-
tivity, accuracy, calibration, and other parameters such as drift, sensitivity to
environmental changes, and long-time stability. We start with initial performance
tests on a prototype sensor whose purpose was to establish the viability of the
sensor and to obtain data for further development that might be needed. Some of
the tests were done in a laboratory environment but most were performed on an
existing production line. The purpose of these tests, in addition to establishing the
functional parameters of the sensor such as sensitivity and stability, was to also
establish its viability in the industrial environment.

The first tests evaluate the empty sensor. The purpose is to verify the stability
of the measurement and, as well, establish the effects of ambient temperature and
humidity on the resonant frequency. These tests also have the advantage of com-
parison with accurate simulations since the effect is over the whole space occupied
by the open cavity and the immediate environment. Following are laboratory tests
that establish guidelines of what one should expect in actual measurements. As part
of these, we define limits on shift in resonant frequency due to moisture in the
fabric as well as verify the role of the even mode as the ‘‘sensing’’ mode, while the
odd mode is seen to depend only on whole-cavity parameters such as environ-
mental humidity and temperature.

Of course, what matters in the end are the actual measurements in the industrial
environment. The prototype built for this purpose was tested over an extended period
on a production line. The results given here show that all aspects of online testing can
be identified from the signal obtained from the sensor. Even though the prototype
sensor is very simple, stability is excellent and sensitivity is in line with the expected
values. These measurements also pointed out to some possible modifications of the
sensor, chief among them being the need for shielding it from nearby objects and
personnel but also the need to stiffen the sensor against vibrations.

Any sensor must be calibrated before it can be used for any accurate mea-
surements. The calibration method and some results used for the calibration process
are described in some detail although the prototype sensor was only calibrated



before installation. The production sensor is calibrated as part of the operation of
the sensor at regular time intervals.

The sources of possible errors in measurement are explored as well by physi-
cally creating these errors and analyzing them from the signals obtained. These
include the effects of fabric flutter, misalignment of the fabric in the sensor, sensor
misalignment (offset), and others.

Although the present chapter deals exclusively with the fabric-coating sensor,
the rubber thickness sensor has essentially the same properties. In both cases, only
one mode is used for sensing, and since they are identical in dimensions and
method of operation, including the method of motion, there is little difference
worth reporting. In fact, many of the performance issues encountered in the fabric
sensor, including the calibration process, are trivial in the rubber thickness sensor.

6.2 Empty sensor tests

After construction of the sensor’s two halves, they were assembled on a temporary
frame so that the distance between the center plates is 120 mm. This was the distance
deemed sufficient for measurements on the production line, arrived at as a compro-
mise between sensitivity (minimum distance) and requirements for clearance of
splices in the fabric that, ideally, requires larger distances. The performance was first
simulated using the finite-difference time-domain method and is shown in Figure 6.1.
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Figure 6.1 Finite-difference time-domain simulation showing empty resonator
characteristics. The two resonant modes, even and odd, of the
resonator can be clearly seen. The even-mode resonant frequency is at
approximately 380 MHz, whereas the odd-mode resonant frequency is
at approximately 420 MHz. The frequency span of the simulation
is 1 GHz
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The empty sensor resonates at 380 (even mode) and 420 MHz (odd mode). The
network analyzer measurement in Figure 6.2 shows resonant frequencies of 384.7
and 428.2 MHz. The differences are small and are primarily due to small dimen-
sional differences between the simulated and actual sensor. Figure 6.2 also indicates
a smooth response and sharp resonances. These are indications that the signal-to-
noise ratio and the quality factor of the cavity are high. This will be seen again in the
online results to be discussed later in this chapter. Figures 6.1 and 6.2 are the same as
Figures 5.4 and 5.5, respectively, but are reproduced here for convenience.

6.3 Laboratory tests

The primary function of the resonant sensor is to measure moisture content and,
indirectly, the amount of solids left on the fabric after drying. Thus, the first tests
were laboratory tests to verify the performance of the sensor with respect to
moisture content in the fabric. Following calibration of the sensor (calibration is

Marker

Figure 6.2 Network analyzer printout showing empty resonator characteristics.
This graph also shows the two resonant modes, even and odd, of the
resonator. The even-mode resonant frequency is at 384.71 MHz, while
the odd-mode resonant frequency is at 428.24 MHz. The frequency
span of the graph is between 300 and 450 MHz
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discussed in Section 6.6), and tests with the empty sensor, a number of tests were
performed by wetting the fabric, weighing the fabric to obtain the amount of water,
and then measure the resonant frequency with the wet fabric in the sensor. Multiple
tests were performed using fabric samples similar to those that are to be monitored.
Sample fabrics included fabrics of different densities, as well as bare and dipped
fabrics. The testing procedure consisted of the following steps:

1. Weigh the dry-fabric sample.
2. Place the dry fabric in the sensor so that the plane of the fabric is lined with the

plane of symmetry of the sensor.
3. Record even- and odd-mode resonant frequencies and weight.
4. Spray fabric with water using spray bottle.
5. Place moistened fabric in sensor as in step 2.
6. Repeat steps 3–5 until fabric is saturated (approximately 40% moisture

content).

Table 6.1 shows sample data from a typical test. The fabric itself had a mass of
49 g. Water was added until the fabric was saturated. The final water weight was
62 g. This equates to a moisture content range from 0% to approximately 70%.

Table 6.1 Sample data from resonator test

Even mode (Hz) Odd mode (Hz) Odd–even (Hz) Weight (g)

383,196,096 427,721,728 44,525,632 76.20
383,166,272 427,726,208 44,559,936 77.10
383,133,760 427,744,736 44,610,976 78.30
382,898,944 427,549,312 44,650,368 79.50
382,968,864 427,717,632 44,748,768 81.20
382,720,640 427,587,520 44,866,880 82.60
382,667,616 427,643,008 44,975,392 84.10
382,532,096 427,522,528 44,990,432 85.30
382,361,696 427,378,016 45,016,320 86.70
382,330,848 427,490,432 45,159,584 87.90
382,434,560 427,498,592 45,064,032 89.50
382,258,400 427,429,408 45,171,008 90.90
382,136,320 427,411,584 45,275,264 92.50
381,886,624 427,292,064 45,405,440 93.70
381,953,984 427,425,728 45,471,744 95.70
381,935,296 427,273,504 45,338,208 97.20
381,676,832 427,204,960 45,528,128 98.60
381,615,072 427,232,896 45,617,824 100.20
381,449,376 427,192,384 45,743,008 101.90
381,329,472 427,065,152 45,735,680 103.40
380,957,440 426,907,648 45,950,208 104.90
381,252,416 427,238,432 45,986,016 106.70
380,661,536 426,865,856 46,204,320 108.30
380,945,856 427,134,080 46,188,224 109.60
380,810,048 426,914,784 46,104,736 111.00
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The typical moisture content on the web in the manufacturing process is approxi-
mately 35% and falls well within these limits. Table 6.1 shows, as predicted, the
even-mode resonant frequency decreased from about 383.2 to 380.8 MHz as
moisture content increased, while the odd-mode frequency remained relatively
constant at 427 MHz.

Figure 6.3 shows four separate tests using the same fabric for moisture content.
Both even- and odd-mode resonant frequencies were obtained and tabulated using
the network analyzer. The difference between even- and odd-mode resonant
frequencies was calculated and plotted versus the mass of the water on the fabric.
It can be seen from the figures that the measurements are repeatable, and that, the
change in frequency versus moisture content is linear. The reason for taking the
difference between the even and odd resonant frequencies is that both are roughly
equally sensitive to air humidity and to temperature, and therefore, this is a simple
way of compensating for these effects. Using this information, the sensor can be
modeled simply as a gain of approximately 13.3 kHz/g of water in the fabric.
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Figure 6.3 Four separate tests for moisture content measurement on the same
fabric
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The required accuracy of the sensor is specified by a maximum absolute error
of 2% moisture content. Most of the observed data fall within this tolerance. The
maximum error in moisture content encountered in this data is approximately 7%.
However, the deviations from the linear characteristic appear to be randomly dis-
tributed, which implies that time-averaging techniques can eliminate the problem.
The on-line testing results given later in this chapter confirm this idea. In addition,
some of the error is due to alignment of the fabric and due to errors in establishing
the water content, including drying during the preparation and measurements.

6.4 Online testing results

The preliminary tests were performed to insure that the sensor was a viable means
for measuring moisture content and that the measurements are accurate, stable, and
repeatable. For this purpose, the sensor was installed on an open frame made of
aluminum so that the two halves of the sensor can be slipped into place without
interfering with the production line. Figure 6.4 shows schematically how the senor
is mounted on an open frame, allowing it to be moved in place without interfering
with the moving fabric web. Figure 6.5 shows the sensor placed in position to
measure the moisture content of a moving fabric web. The fabric is moving
upwards. The two coaxial cables, seen in the forefront, connect the sensor probes to
the network analyzer. Figure 6.6 shows the sensor before it is placed over the fabric
to give a better view of the construction of the prototype sensor. The prototype was
a fairly simple implementation of the sensor using 1.6-mm-thick aluminum plates
for the ground planes and for the center plates. The center plates were held in place
with plastic bolts, and the probes penetrated through the ground plane. The whole
structure was attached to an aluminum frame that afforded some rigidity and

Fabric
Sensor

Fabric

Sensor

(a) (b)

Frame

Frame

Figure 6.4 The two halves of the sensor attached to an open frame. The sensor is
moved into position so that the web is centered. The web moves out of
the page: (a) top and (b) side views
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allowed the sensor to be placed over the moving fabric without interfering with
production or stopping the motion of the fabric. In the prototype, the frame simply
sat on the floor with the fabric moving upwards in the center of the frame (see
Figure 5.3). Although a simple and relatively crude prototype, the results were
extremely promising and predictable. These results were more than convincing as
to the ability of a sensor of this type to measure and quantify all aspects of the
fabric coating including amount of solids picked up and damage to the fabric.

Figure 6.7 shows schematically the relationship of the sensor to the other
components of the dipping and curing process. The fabric is brought in on a roll
(fabric letoff roll) and is then fed into the system by sewing the beginning of the
letoff roll to the end of the last roll. The fabric then travels through a series of rolls
called the festoon or accumulator. Then, the fabric is dipped in the dip tank. The
fabric then travels through the dewebber system. The sensor was placed right after
the dewebbers and just before the fabric travels into the drying oven. This way the
final dip coating is sensed and kept at the required level.

Figure 6.5 Sensor measuring moisture content online (side view). The fabric can
be seen on the left, moving up
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Figure 6.6 The sensor before sliding around the fabric (seen on the right of the
figure) (end view)

1. Letoff feed roll
2. Festoon
3. Dip tank
4. Vacuum dewebbers
5. Moisture sensor
6. Drying oven

5

3

2

4

6

1

Figure 6.7 Conceptual diagram for the production line
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The data was collected using a computer connected to the network analyzer.
The computer communicates with the network analyzer via a National Instruments
General Purpose Interface Bus interface card. A human–machine interface was
created to enable an easy way to collect the required data. The interface allows the
user to set the start and stop frequency scan. This is typically set to a narrow range
that includes the expected resonant frequency but not too narrow to avoid missing
the resonant frequency altogether. The defaults are set to 330 and 410 MHz but can
be changed at will. The interface also sets the type of measurements to take
including quality factor for the even and odd modes in both reflection and trans-
mission configuration. Data can be collected at specific spots or in a continuous
fashion. Additional functions can be added including buffering, storage and
archiving, and transfer over the internet for remote monitoring.

Prior to the start of data collection, the gap between the center conductors was
changed to 10 cm to get the best possible measurements. Data was collected by
averaging five measurements together to get rid of noise effects and fluttering of
the fabric. The even-mode resonant frequency of the reflected signal was the only
measurement taken in these initial measurements. The odd-mode resonant fre-
quency was considered to be constant after viewing some of the measurements
taken, so it was dropped from the data acquisition. Figures 6.8–6.16 show the
graphs of the even-mode resonant frequency over time, for several of the most
interesting cases. Each graph shows some phenomenon happening in the system
that could easily be used to better control the system. From these graphs, it can
be seen that the sensor can detect minute changes in the moisture content. Also, the
measurement appears relatively noise-free. No fabric weight data was taken on the
fabric during the online testing trials, so comparative results could not be made.
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Figure 6.8 shows the response of the resonant sensor for change of the fabric
materials as well as speed. Different fabrics (i.e., nylon or polyester) as well as
fabrics of the same material but different density or even different batches have
different properties; hence, they will pick up more or less dip. A decrease in speed
allows the dewebbers to remove more dip hence the higher resonant frequency on
the right hand part of the figure. In this case, the frequency increases by about
800 kHz. Note however that when the speed is constant, the resonant frequency is
constant as well. The small variation in frequency along the constant speed sections
are due to variations in dip distribution either because the fabric has picked more or
less dip or, more likely, because the dewebbers have removed more or less of the
material.

Figure 6.9 shows the effects of raising and lowering the festoon. When a new
roll of fabric has to be attached to the end of a roll that is almost used up, a festoon
or accumulator moves up to accumulate enough fabric to ensure continuous pro-
duction during the time the new roll is being attached (sewn) to the roll that is being
coated. As the fabric is being sewn, the new roll fabric is stationary, so the festoon
lowers to feed the accumulated fabric to the system. The explanation to the effect
seen in the figure is that raising and lowering of the festoon changes the tension on
the fabric and that changes the amount of dip being picked up or that dip being
removed by the dewebber changes. As can be seen in the figure, the resonant
frequency decreases indicating more dip and then increases again indicating
reduced dip pickup. After the festoon returns to normal, the resonant frequency
returns to its previous value. Note also the splice in the fabric seen here as the point

350,000,000

350,100,000

350,200,000

350,300,000

350,400,000

350,500,000

350,600,000

350,700,000

350,800,000

350,900,000

351,000,000

351,100,000

351,200,000

351,300,000

351,400,000

16.53 16.56 16.59 17.02 17.05 17.08 17.11 17.13 17.16 17.19 17.22

Splice completed,
festoon emptying

Splice passes
resonator

Back to original
level

Fr
eq

ue
nc

y 
(H

z)

Time

Started filling
letoff festoon

Figure 6.9 Resonant frequency versus time during web splicing. The splice is seen
as the single dot at center–bottom
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in the lower middle part of the figure. As the splice passes through the sensor, the
resonant frequency goes down considerably because of the larger amount of dip
picked up by the splice. The added dip during the sewing operation represents a
problem in quality assurance, but it can be eliminated by increasing the speed of the
dewebbers to reduce the dip to the required value. This type of closed-loop control
has not been implemented in the prototype system used for the measurements
given here.

Figure 6.10 is somewhat similar to Figure 6.9. It shows the effect of the
festoon movement up (left side of the figure), movement down (right side of
the figure), and the splice passing through (lower left). However, the figure shows
the response when a new fabric, different than the one in production, is attached.
Since this fabric has lower permittivity (either because the fabric itself has lower
permittivity or because it picks up less dip), the resonant frequency increases by
about 200 kHz, from 351 to 351.2 MHz. A few minutes after the fabric change, the
line stopped moving. The fabric dries off gradually as can be seen by the rising
frequency during the time interval from 18.25 to 18.45. Once the line starts moving
again, the measurement returns to the same value as before the line stop. The
stability of the measurement guarantees that as long as the dip pickup and the
dewebbing do not change, the resonant frequency remains the same. This results in
particular but, to some extent the previous results as well, emphasizes the produc-
tion-line-monitoring capabilities of the sensor. It can clearly detect and report such
conditions as line stoppage, dewebber malfunction, lack of or reduction in dip
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Figure 6.10 Resonant frequency versus time during a fabric change and line
stoppage
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material, and many other conditions, some minor, some major. As such, it can help
run the system unattended or with minimum operator supervision.

Figure 6.11 shows the line changing to a lower speed at 19.43 and then
returning to normal speed at 19.47. The change in frequency is clearly noticeable
during these times. Note as well that the change is gradual. As the line slows down,
the dewebbers remove more dip off of the fabric; hence, the fabric is drier and the
resonator frequency increases. It should be noted that the same effect would be
obtained if the fabric were to pickup less dip or if the dewebber’s speed were to
increase.

One of the most important aspects of the resonator is the center plates. Since
these were subject to optimization in Chapter 5, their effect was also tested in situ.
Figure 6.12 shows the results of these tests. The first set of data points on the left
part of the figure is for the thick rectangular plates, placed so that moisture was
being measured and shows a resonant frequency of 351 MHz. Next, the sensor was
pulled back from the fabric, and the center conductors were replaced with thin
rectangular plates of the same dimensions. There was no appreciable change in
resonant frequency. The small change in resonant frequency shown on the graph is
due to the fact that the thin plates allowed a slightly larger distance between them
and, since the effective permittivity is reduced slightly, there is a slight increase in
the resonant frequency. These results are shown in the center of the figure. In the
right section of the figure, we show the results after replacing the thin rectangular
plate with butterfly-shaped plates with the same length and maximum width but
with the middle of the conductor made narrow (see Section 5.3.1). This changed the

350,600,000

350,700,000

350,800,000

350,900,000

351,000,000

351,100,000

35,120,0000

351,300,000

351,400,000

351,500,000

351,600,000

351,700,000

351,800,000

351,900,000

352,000,000

19.35 9.37 19.40 19.43 19.46 19.49 19.52 19.55 19.58

Line slows
down

Line speeds
up

Fr
eq

ue
nc

y 
(H

z)

Time

Figure 6.11 Resonant frequency versus time during line speed change
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resonant frequency by about 26 MHz. The step change in frequency after placing
the butterfly plates on the sensor is due to moving the sensor from air back onto the
fabric to be measured. Although each of the type of plate produces a stable resonant
frequency, in the end, the thick plate was selected because it is sturdier than the thin
plate, and the butterfly or hourglass-shaped plate has sharp corners that can snag
the fabric. Since each produces a stable baseline frequency, it does not really matter
which one is used other than the slight advantage of the thick plate. We note
however that the butterfly plates produce a higher Q-factor in the cavity meaning
that they are likely to produce higher sensitivity, which was not considered an
important factor here since the sensitivity was more than sufficient.

Another functional parameter of the resonant sensor is the separation between
the two center plates. As a rule, the wider the separation, the lower the danger
that the sensor will interfere with the passage of splices and the lower the sensitivity
of the sensor to misalignment of the fabric at the center between the plates. On the
other hand, sensitivity suffers because of the reduction in the Q-factor of the cavity
and reduction in the effective permittivity due to the mixture of air and the fabric/
dip volume in the cavity. Another issue is the influence of external objects and
personnel on the resonant frequency, which increases with the separation. To see
the response of the sensor to separation between the plates, these were set to 100
and 200 mm to correspond to the minimum and maximum separation envisaged.
Figure 6.13 shows the change in frequency due to changing the gap between the
center plates. The resonant frequency changes approximately 4.5 MHz as the gap
changes from 100 to 200 mm. The results were obtained with the butterfly-shaped
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center conductors. The lower separation shows a higher frequency because of the
larger effective permittivity in the cavity (the fabric represents a higher fraction of
the volume of the cavity).

The sensitivity of the sensor allows it to clearly distinguish the smallest var-
iations in the test conditions. Figure 6.14 shows a slight shift in the resonant fre-
quency caused by a change from a fabric to another of the same type but from a
different supplier. The first fabric, whose response is on the left part of the figure,
was slightly more absorbent than the second. The permittivity of the fabric is the
same so the change must be due to a change in pickup of dip. The separation
between the center plates was 200 mm.

A source of nonuniform dip coverage is either rubbing off of dip due to friction
or slippage on the pull roll or due to streaking cause by contamination of the pull
roll. Figure 6.15 shows a downward trend in the resonant frequency over time
caused by accumulation of dip due to contamination of the pull roll. In this case, the
dip kept building up and hence the reduction in the resonant frequency over time.
Since streaking can occur anywhere on the fabric, it is important that the whole
width of the fabric be monitored. The response due to streaking can be very gradual
and hence it is important that the response be compared to the baseline resonant
frequency continuously. Other ‘‘defects’’ in the coating or, indeed, in the fabric
(such as tears) can be similarly detected although small area changes in properties
may only show as a point or a very short line.

One purpose of the developed sensor is to serve as a feedback mechanism to
control the dip and hence control the final dry coating of the fabric. This is done by
using the resonant frequency to control the fans on the dewebbers and by so doing
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Figure 6.13 Resonant frequency versus time with a change in the distance
between the center plates
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Figure 6.14 Resonant frequency versus time with the same fabric but a change in
supplier
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Figure 6.15 Resonant frequency versus time for streaking in the fabric due to pull
roll stand contamination
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keep the coating constant. This can be accomplished by increasing the speed of the
fans if the resonant frequency decreases below the baseline resonant frequency and
decreasing the speed if the resonant frequency increases. Figure 6.16 shows initial
tests in establishing this control mechanism. Here, the speed of the fans was
decreased from 3,200 to 2,800 rpm. The frequency went down by 30 kHz indicating
an increase in dip remaining on the fabric. The control can be based on the feed-
back alone or it can be based on baseline values as well. That is, one can fix the
resonant frequency for a particular type of fabric or even for a batch and change the
dewebbers speed to maintain that frequency. If a baseline is not used, the frequency
dip pickup can be changed so that the frequency is constant with time. However,
the danger is that if a baseline is not used, one can produce a fabric with uniform
dip pickup, but the dip may be too high or too low. A database of baseline resonant
frequencies for various fabrics and various applications is sufficient to resolve this
issue.

Figures 6.8–6.16 show the versatility, sensitivity, and stability of the sensor. It
can be used to collect data and to control the coating thickness on the fabric to
within very narrow margins. It is very effective in detecting variations in the
amount of dip being picked up on the fabric but can also detect the festoon raising
and lowering, splices, line stops, line speed changes, streaking, fabric code chan-
ges, fabric material changes, and fan speed changes. In that sense, it is more than a
moisture sensor and can be used to monitor the production line functional para-
meters or, with proper additions, to also control the line. Certainly, simple alarms
can be added or the line may be stopped if certain conditions (say, streaking) occur
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and an operator alerted to rectify the problem. The sensor’s ability to operate in the
industrial environment was clearly established from these simple measurements.
There are also some performance characteristics that are not seen in these figures.
For example, fluttering of the fabric, which in principle should be seen as changes
in frequency, did not cause such changes primarily because the average position of
the fabric remained centered but also because each resonant frequency shown is an
average of multiple readings. Another concern was the possible contamination of
the sensor with splattered dip, which would necessitate cleaning. This turned out to
be an unfounded concern. The vertical motion of the fabric and the position of the
sensor just before the drying oven prevented this from happening. As can be seen
from the figures, the resonant frequencies are steady without observed noise.
However, the sensor design, including coatings, used on the center plate took the
possibility of contamination and the possible need for cleaning into account.
Should that be necessary, cleaning can be undertaken by washing the sensor with
water or with an appropriate solvent.

There were however some issues that needed addressing. One was the use of
thin ground plates which can vibrate causing changes in the resonant frequency.
In the industrial environment, there is also the danger of physical damage to the
plates. Being made of aluminum, the thin ground plates can easily bend. In addi-
tion, the large separation between the ground plates meant that anything in the
vicinity, and in particular, movement of personnel influenced the resonant fre-
quency. As a result of these observations, a number of changes in the construction
of the sensor were called for. These included use of much thicker plates and the
bending of the ground plates into a partial shield. This was intended primarily to
reduce external influences. A second recommendation was to coat the interior of
the sensor with an easily cleanable coating such as Teflon (PTFE) similar to that
used in nonstick utensils.

The second generation sensor has been described in Chapter 5 (see Sec-
tion 5.2.5), and some of its characteristics have been optimized, including distance
between the center plates, position of the probes, and many others. The main dif-
ference between this sensor and the prototype above is in the partial shielding of the
sensor which makes it into a more closed sensor. This has far reaching con-
sequences on the performance. By partially enclosing the sensor, the Q-factor of the
cavity rises considerably improving sensitivity and signal-to-noise ratio. In addi-
tion, it reduces sensitivity to outside influences. The sensor was made of much
thicker material to increase rigidity, and, in addition, the method of installation was
modified to allow the sensor to move back and forth across the fabric to allow full
coverage of the fabric. The implementation of the final sensor is described in the
following chapter.

Following verification of the early prototype in the previous sections and
production of the new sensor, a more detailed study of the performance of the
sensor and the quantities that affect this performance was undertaken. Since the
basic functioning of the sensor was established, the following sections discuss
the more subtle performance characteristics of the sensor. These include variations
in the gap between the center plates, off-centered fabric, position of the feed and
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load probes, and many others. The purpose of these tests was to establish limits of
performance and to better understand the sources of errors that one can expect
under normal operating conditions. Another important consideration is the cali-
bration of the sensor and will be discussed here at some length.

6.5 Performance evaluation

6.5.1 Effect of distance from antenna tips to center plate
The purpose of the antenna probes is 2-fold. The feed probe, which is referred to
here as the ‘‘reflection’’ probe, excites the cavity and sets it into resonance. It is
connected to the source port of the network analyzer. We call it reflection antenna
or probe simply because it is here that the reflection coefficient is measured
through the S11-parameter. The second probe is the load probe or ‘‘transmission’’
probe and is used to sense the transmitted power through the S21-parameter. Since
the coupling from the transmission probe to the center plate and from the center
plate to the reflection probe is through the gaps between the probes and the plates
one can expect that these gaps will influence the performance of the sensors. In
fact, both the resonant frequency and the quality factor depend on these gaps as can
be seen in Figures 6.17 and 6.18. Figure 6.17 shows that the resonant frequency
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increases as either of the gaps increases. This may seem at first odd since the
frequency should not be related to the coupling (i.e., to the power supplied to the
cavity). However, the closer the probes are to the plate, the larger the influence of
the conducting probe volume has on the effective volume of the cavity. In other
words, as the conducting probes approach the plate, the perturbation due to their
volume is larger (higher fields), effectively decreasing the volume of the cavity and
hence the increase in resonant frequency. These results were also observed in
simulations—a 1-mm change in the gap changes the resonant frequency by about
700 kHz. The surprisingly large change is due to the fact that this change occurs in
a region of intense fields and hence has more influence on the resonant frequency
that if it occurred in a region of low fields.

Figure 6.18 shows the quality factor of the cavity with respect to the position of
the probes. The quality factor decreases as the source antenna moves further from
the plate, because the energy coupled into the cavity decreases (while the losses are
more or less constant). On the other hand, as the load probe moves away from the
plate, the Q-factor increases since now there are fewer losses in the load probe as it
encounters lower field values.

These results also show that the coupling is not critical and the cavity will
operate over a range of positions of the probes. Of course, the resonant frequency
changes are not important in the sense that once the distances are fixed, the reso-
nator will operate around a fixed frequency. Any material in the cavity will then
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lower the frequency to a value corresponding to the effective permittivity of the
cavity. However, the Q-factor affects sensitivity and signal-to-noise ratio and, as a
rule, the target is to increase the Q-factor as much as possible. From Figure 6.17, it
is clear that the source probe should be closer to the center plate, whereas the load
probe should be further away. Moving the tip from 7.5 to 10 mm increases the
Q-factor by a factor of 2.

6.5.2 Effect of flutter
A wide, taught fabric, moving at a considerable velocity, is bound to flutter—that
is, it will vibrate up and down around its axis of motion with larger vibration
toward the edges. Since this flutter moves the fabric off the plane of symmetry of
the sensor, there was a concern that errors may result from measurement of the
fabric in the wrong position. To see how the sensor behaves under these conditions,
the fabric (nylon) was tested at various position below and above the plane of
symmetry of the sensor. With a separation between the center plates of 200 mm,
this allowed positioning of the fabric at distances of up to �100 mm from the center
plane. Figure 6.19 shows two curves. For the top curve, the probes were placed on
opposite sides of the sensor (one above the upper center plate, the other below the
lower center plate). The curve shows that as the fabric moves away from the center
plane, the resonant frequency decreases. This is as expected since for the even
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mode, the electric field on the center plane is parallel to the fabric, whereas further
away from the center plane, the parallel field decreases and the perpendicular
component of the field increases. The center plane is indicated by the vertical
dashed line. Because the fabric is thin, the main reaction is with the tangential
component of the field which is highest at the center plane between the center
plates. Hence, one can expect the sensitivity to go down as well. It is this loss of
sensitivity that is the main concern, and it is the reason why the fabric must be kept
as close as possible on the center plane. Nevertheless, for small deviations from
the center plane, the changes are minor as can be seen from the flat section of the
curve around the center. The lower curve in Figure 6.19 shows very similar results
for the two probes installed on the same side of the sensor.

A flutter of a few millimeter is of no concern, but larger variations do occur.
The simplest solution to this problem is to measure the resonant frequency a
number of times (we chose five measurements) at the same position and average
the values. Since the flutter occurs relatively fast, averaging produces a result very
close to that without the flutter. Figure 6.20 shows the same two curves but on a
narrower interval of �40 mm. The variations are much smaller (about 150 kHz)
justifying the averaging concept. It should be noted that the response is not per-
fectly symmetric especially with the two probes on the same side. This is simply
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from the fact that the feed is in one corner of one plate, and the fields around that
corner are higher than at the other corners of the center plates. This asymmetry is
not a concern especially if the fabric is maintained near the center plane.

6.5.3 Effect of cell offset
Because the sensor is made of two half-cells, connected to a frame, a relevant
concern is the effect of any possible offset between the two half-cells. In particular,
in the final implementation (to be discussed in the following chapter), the two half-
cells move independently driven by screw drivers or by belts and there is a distinct
possibility that cells may become either permanently misaligned or their relative
position to each other may change during motion of the cells across the fabric. To
evaluate the possible effects of offsets between the cells, the two half-cells were
installed with deliberate offsets and the resonant frequency measured with the
empty cavity (air) and with the copolymer calibration sheet. The offset is measured
as the distance of one half-shell relative to the other as shown in Figure 6.21. Two
types of center plates were used: one is coated with a smooth, black plasma coating,
the other is coated with a rough plasma coating. The results for offsets of up to
35 mm are shown in Figure 6.22. In all four cases shown (air or copolymer in the
cavity, each tested with either the smooth or the rough coating), the results show
similar tendency: as the offset increases, the resonant frequency increases. This, of
course, is due to the fact that the effective volume of the cavity decreases. How-
ever, for very small offsets, the changes are minimal indicating that small varia-
tions in position due to, say, vibrations should not pose a problem, and these small
variations may not be detectable. The offset should also have an effect on the
Q-factor. To test that the ‘‘depth’’ of the dip in the response of the sensor has been
measured as an indication of the Q-factor—the deeper the dip, the higher the
Q-factor. This is shown in Figure 6.23. As a rule, the Q-factor increases with the
offset when the sheet is not present since the amount of lossy material in the cavity
decreases. However, there is also an effect due to the coating on the center plates
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Figure 6.21 Definition of offset. The distance is measured on the outside of the
shield between the upper and lower half-shells. The separation
between the plates remains constant at 112 mm
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since there are losses associated with these coatings. The dip level is not an accurate
method of gaging the Q-factor since the width of the curve at the half-power points
must be taken into account, but it gives some idea of the behavior of the Q-factor.

6.6 Calibration of the sensor

Both sensors described in this work rely on the change in resonant frequency due to
changes in effective permittivity of the open cavity. As such, one can properly
describe these as relative sensors, that is, one can easily say that a thicker material
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or one that contains more water will cause a larger shift in resonant frequency but
one cannot, in general, associate a thickness or type of material or a certain
moisture content directly to a resonant frequency unless the sensor has been
properly calibrated. Calibration then is the establishment of the behavior of the
sensor for the range of variations in the test material that one can expect in the
production process. In the case of coated fabrics, the common target for production
is the weight per unit area of the fabric. For example, the moisture content is
measured in weight per unit area rather than, say, percentage of volume of the
fabric. To be able to use the sensor to control the amount of dip pickup on the
fabric, a clear calibration curve must first be established for each type of material
(composition, thickness, etc.). In the case of the rubber thickness sensor, assuming
the composition of the rubber is constant, the calibration curve relates the resonant
frequency with the thickness of the material directly. One can establish theoretical
curves from simulations or more practical curves based on measurements.

Figure 6.24 shows a calibration curve for thickness, correlated to the dip
pickup measurements. The curve was obtained by using white Delrin sheets in lieu
of the fabric. The white Delrin was used because its permittivity is roughly the
same as that of the nylon material used in the nylon fabric. The sheets were 610 by
610 mm, one of thickness 1.588 mm and the other 2.38 mm used in combination—
the first point is in air, the second for a single 1.588 mm sheet, the third for a 2.38 mm
sheet, then two 1.588 sheets stacked up, and so on. As expected, the calibration curve
is linear indicating that the electric field is more or less uniform in the small area
around the center plane of the sensor. The small spread in the measurements is taken
care of by a linear least square curve given as

f ¼ �0:4262t þ 359:74 MHzð Þ (6.1)
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where f is the resonant frequency (shown as y in the figure) and t the thickness in
mm (shown as x on the figure). R2 is the correlation coefficient and indicates that in
this case the linear least square representation is very close to the actual points
(R2 = 0.99907). The range of use for dip pickup is between 0.1 and 1.2 mm (indi-
cated in the figure). These correspond to the minimum and maximum dip pickup.
Note also the location of the probes connected to the source and load ports of the
network analyzer. In all measurements, the sheets are centered between the center
plates and the measurement is reflective (i.e., based on the S11-parameter), mea-
suring the even-mode resonant frequency.

Although the material used for the calibration is different than the fabric,
because the curve is linear and because the limits expected for the dip pickup are
known, the curve between the limits can be used for the dip pickup directly. The
reason to use solid sheets for the calibration rather than, say, fabric with the correct
dip is that these sheets are stable, do not stretch, and are unlikely to pick up
moisture or other foreign materials and hence skew the measurements. We shall see
in Chapter 6 that the use of solid sheets of material was needed so that the cali-
bration can be done online before measurements begin and, periodically, during
production runs.

Related to these measurements is Figure 6.25 which shows the Q-factor for the
same material and thicknesses as in Figure 6.24. Although there is considerable
spread for multiple measurements, the Q-factor follows an exponential curve with
the Q-factor decreasing as the thickness increases:

Q ¼ 6;731:3e�0:5818t (6.2)
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This is exactly as expected—the thicker material introduces more losses and hence
the decrease in the Q-factor. It should be noted however that at the maximum dip
pickup, the expected Q-factor is above 3,000. Also, the relatively large spread of
the points means that the correlation coefficient is lower (R2 ¼ 0.76509). Unlike the
resonant frequency, the Q-factor as shown here applies to the dip pickup mea-
surements only approximately since the loss tangent of the dip pickup is unlikely to
be the same as that of Delrin. For this reason, the results in Figure 6.25 should be
taken only as an indication of the behavior of the Q-factor.

In Figures 6.24 and 6.25, care was taken to ensure the Delrin sheets were cen-
tered in the cavity. As with the fabric flutter discussed above, any deviation from the
center plane of the cavity will reduce the resonant frequency and introduce an error.
The response of the sensor to off-centered calibration sheets is shown in Figure 6.26
for a 3.175 mm sheet of black acetal copolymer. The black acetal copolymer is used
in lieu of the polyester fabric, again because of the similar permittivities of the two
materials. The even-mode resonant frequency is shown as a function of position of
the sheet between the center plates. The center plates are separated 112 mm apart.
Zero distance means the sheet is at the surface of upper center plate (the plate next to
the probes), and 112 mm means the sheet is at the lower plate.

The relation between plate thickness and resonant frequency shown by the
solid curve was obtained from the measured points using a second-order least
square fit, given by

f ¼ �0:0008x2 þ 0:107x þ 354:99 MHzð Þ (6.3)

The correlation factor of 0.9663 indicates a close fit.

y = –0.0008x2 + 0.107x + 354.99
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Although the information here is similar to that in Figures 6.19 and 6.20, it is
interesting to see the asymmetry in the curve, that is, the change in frequency is
larger as the calibration sheet approaches the upper plate because the fields are
larger in that region. This also means that the physical center of the cavity and the
electrical center are not the same. In fact, for normal operation, the fabric should
move in a plane below the center of the cavity. In the case shown here, the geo-
metric center is at 56 mm, whereas the electrical center is at 68 mm from the upper
(driven) plate. This point is shown as the ‘‘curve center’’ in the figure. Around that
point, the curve is flatter, and small deviations of the fabric from that point will
cause minimal errors in the resonant frequency.

Figures 6.19, 6.20, and 6.26 all show an asymmetry in the response of the
resonator, attributed to the location of the probes. To explore this issue further, the
senor was equipped with four probes, two next to the upper center plate, two next to
the lower center plate. This allowed for the source and load ports to be connected to
two probes on the same plate or opposite plate in different combinations. This is
shown in Figure 6.27. The inset numbers the probes for identification. The
figure shows that for the reflection and transmission probes (source and load) on
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the same side of the sensor (T1/R2 or T2/R1), the response shows the asymmetry
seen above in Figures 6.19, 6.20, and 6.26. These are the two curves in the lower
part of the figure. Oppositely placed probes (T1/R3 or T1/R4) show a symmetric
curve with the geometric and electric center coinciding.

In addition to improving the symmetry of the curve, the opposing connections
improve the Q-factor as well as can be seen in Figure 6.28. The configuration T1/R3

has particularly large Q-factors, followed by the T1/R4 configuration.
Although one can argue that this asymmetry may not be important, since, once

the fabric is located in the center of the cavity, it stays there, in fact symmetry in
response is rather important. In particular, the method we used to eliminate the
effect of fluttering assumes a symmetric response to deviations from the center
plane. For this reason, the ideal configuration is to connect one probe as the source
(say probe 1 in the inset in Figure 6.27) and connect the opposite probe on the same
side, that is, probe 3 as the load.

All calibration measurements shown above were static, that is, the various
sheets were placed in the sensor and the resonant frequency measured. This
established the necessary calibration data and curves. In the following chapter, we
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revisit some of the calibration issues discussed here in the context of a production
sensor. That will become necessary since the calibration sheets (which we will call
‘‘calibration standards’’) must be mounted in a frame to be held in position, and the
frames mounted to the sensor structure. Influences of the frame and the motion of
the cavity resonator must be taken into account and errors due to all of these factors
established.
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Chapter 7

Implementation and testing

7.1 Introduction

Following the design and simulation of the sensors, the implementation poses its
own challenges, both mechanical and electrical. These have to be resolved, and
their effects on performance must be evaluated. This chapter discusses the imple-
mentation of the sensors followed by testing. Much of the functional testing was
reported in Chapter 6 and will not be addressed here. However, microwave systems
are very sensitive to mechanical issues, and these will be addressed here. In parti-
cular, resonant systems, because of their high sensitivity to variations in volume of
material, position of the tested material within the cavity, and, of course, variations
in permittivity, require special attention to mechanical structures that support and
facilitate the measurement.

As was discussed in the previous chapter, the prototype sensor, while certainly
performing very well, was a fairly flimsy affair. The ground plates as well as the
center plates were made of 1.6-mm aluminum sheet. The center plates were held in
place with nylon bolts and the antenna probes held with rubber grommets through
the ground planes. A much sturdier sensor is necessary for the industrial environ-
ment. In addition, the prototype sensor was stationary—it only evaluated a narrow
strip of the fabric. The production sensor needs to cover the whole surface of the
fabric.

The construction of the sensor must be sturdy while being nonintrusive, and
the motion must be accurate and smooth. Some key details of the structure and its
operation are described next for the fabric sensor. The rubber thickness sensor
presents the same issues but since it is made of one half-cell, its implementation is
essentially the same as that of the fabric sensor and there is nothing particularly
different that requires a separate description.

7.2 The mechanical system

Following initial experiments with multiple stationary sensors and switches
(see Section 5.2.5), it was realized that a single sensor moving back and forth
across the fabric is a more practical solution even though, at first glance, it seems
much more complex. There are a number of reasons that the single moving sensor
was adopted. Multiple sensors are not likely to be identical leading to variations in



signals and switches are not only expensive but proved to be unreliable and
short-lived. A moving sensor has the advantage of simplicity in sensing but with the
addition of the complexity of the motion mechanism. This was deemed an
acceptable disadvantage since it is an issue of design rather than maintenance, that
is, once the mechanical design is complete and satisfactory, it should function
properly with very little maintenance. On the other hand, the issues of multiple
identical sensors (physical dimensions, separation of the cells, and variations in
alignment) and in particular the cost and downtime related to replacement of failing
switches are major maintenance problems.

The structure starts with a steel U-frame that allows the sensor to be placed
around the fabric without the need to modify the production line [Figure 7.1(a)].
That is, the whole sensing mechanism can be built and then moved into position. It
can also be removed as necessary without affecting the production line. Each half-
cell is physically connected to a sliding bearing as shown in Figure 7.1(b). For
stability and rigidity, the half-shells are connected to a thick 19-mm aluminum
plate. The plates are welded to the sliding bearings, and these ride on the U-frame
[Figure 7.1(b)]. A guiding structure keeps these plates parallel so that the distance
between the center plates is constant throughout the travel. Each of the plates is
driven by a screw mechanism rotated by stepping motors. The two half-shells are
kept opposite to each other with zero offset by properly driving the two motors. The
need for two separate drives is dictated by the need to keep the frame open so that it
can be slid into place around the fabric.

In addition, two calibration sheets are included, one at each side of the fabric as
shown in Figure 7.2. One is white Delrin and serves for calibration for the nylon
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Figure 7.1 Schematic of the production sensing system: (a) top view with the
sensor overlapping part of the fabric width and (b) front view showing
the bearings
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fabrics, whereas the second is black copolymer and serves as calibrator for the
polyester fabrics (see Section 6.6). The travel of the sensor extends beyond the
fabric on each side so that calibration can be performed on either calibration sheet.
The sheets are thin (2.38 mm) and are 600 by 600 mm held in a nonconducting
frame to ensure they are centered with the sensor. Since they are placed vertically,
there is no concern with sag. Vibrations are well under control since the frames
are attached to the same structure as the sensor mechanism, and calibration occurs
after the sensors have stopped in the calibration position (centered with the
calibration plates).

The sensor itself is a modification of the prototype sensor described in
Chapter 6. The overall dimensions are kept the same, but the ground planes have
been bent to form an open box (see also discussion in Section 5.2.5). In actual
construction, the box was made of 6-mm-thick aluminum with the sides welded as
can be seen in Figure 7.3 or Figure 7.4. Each half-shell was attached to a 19-mm
plate (see Figures 7.1, 7.2, and 7.5) with four bolts. The purpose of the plate was to
provide a convenient way to attach the sensor to the bearings [see Figure 7.1(b)]
and guarantee the two half-shells are parallel to each other. It also added stiffness to
the sensor as it moves and serves as a guide to ensure the half-shells stay parallel
during the motion. In case service is needed, the sensors can be detached and
reattached without interfering with the probes or the center plates by simply
detaching the coaxial connectors and the four bolts holding the plate. The half-
shells are removed together with their plates.

The center plates were of particular concern in the design as well as in the
construction. Keeping the dimensions of the prototype, they were made much
thicker (6 mm) and were plasma coated with either a smooth or a rough coating as
mentioned in Section 6.5.3. The coating was added to facilitate cleaning of possible
splatters of dip material. In tests, that was never an issue, primarily because the
plates are placed in a vertical position parallel to the fabric. The plates are attached
to a solid Delrin block (see Figures 7.3 and 7.6) while still allowing space for the
antenna probes. The plates were attached with four recessed screws to the Delrin
block and the block attached with two bolts to the ground plane (see Figures 7.6
and 7.7). Note also that the block sits in a channel (Figure 7.3) to ensure it does not
shift. One of the concerns with the center plates was the possibility of the fabric

Fabric

Sensor

Calibration
frame

Calibration
frame

Figure 7.2 Top view of the sensing system with the two calibration frames
included. The motion of the sensor allows calibration on either side
depending on the fabric material
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Figure 7.3 Detail of the probe. Note the insulation at the aluminum shell. The
probe is adjustable through a screw mechanism on the outside of the
shell to allow for optimal coupling with the plate. Note also the
rounding-off of the center plate designed to minimize the change of the
fabric snagging on the plate. The channel is designed to keep the
Delrin block in place with minimum chance of displacement should
the center plate snag the fabric

Figure 7.4 The upper half-sensor and its attachment to the motion mechanism.
Note the construction of the ground plane and partial shield afforded
by the bent plates. The second half-shell has been moved away for a
better view. The Delrin calibration frame can be seen in the lower part
of the picture away from the half-shell
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Figure 7.5 The two halves of the sensor placed over one of the calibration frames.
The two calibration frames are located on the two extremes of the
sensor’s travel (see Section 7.4). Note how the two halves are attached
to the motion mechanism at the top and bottom. The driving
mechanism cannot be seen—it is hidden behind the guiding strips. One
of the probes and the upper center plate with its Delrin support can
also be seen above the calibration frame

Figure 7.6 Upper half of the sensor. The central plate is held in place on a Delrin
block with four recessed screws to allow for a smooth surface. The
Delrin block is solid and held in place in its channel with two bolts
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snagging on its corners. Therefore, the edges were rounded (see Figure 7.3). The
Delrin block seen in Figure 7.6 is fairly massive and the plate thick (6 mm) to help
eliminate any possible vibrations of the central plate. Above the left edge of the
plate is one of the probes (the other is on the opposite half-sensor). Note the
location of the probes—it corresponds to the optimized location as discussed in
Chapter 5. On the right side of the plate, there is a hole for another probe if the two
probes are placed on the same half-sensor. Note also the gap between the end of the
probe and the plate. This gap is adjustable from the top of the plate for optimal
coupling. The gap is about 15 mm.

The antenna probes were mounted on opposite half-shells as can be seen in
Figures 7.3 and 7.8. This configuration was found to be most beneficial primarily
due to symmetry in response to off-centered fabric, a property used to minimize the
effects of fabric flutter (see Section 6.5.2).

Figure 7.5 shows the two half-shells over one of the calibration frames. It also
shows the guiding structure and the solid plates to which the half-shells are attached
although the motors and the drive screws are hidden. The motors are also shielded
to avoid any influence on measurements. These are stepper motors of considerable
power necessitating shielding. Figure 7.9 shows a head-on view of the sensor over
the calibration frame. Although the frame is thick (about 80 mm), the calibration
sheet is only 2.38 mm thick and centered in the frame. Figures 7.3 and 7.6 show
details of one of the half-shells complete with the center plate and the antenna
probe. The complete empty cavity is shown in Figure 7.8.

Figure 7.7 View of the upper half-shell from below showing the center plate
attachment as well as two of the four bolts that hold the ground planes
to the movement mechanism. Note the black plasma coating on the
center plate. The center plate is held onto the Delrin block with four
long bolts
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The sensor is connected to the network analyzer with two long cables that ride
onto a flexible track to control the bending radius and to ensure minimum strain on
the cables.

Figure 7.8 The lower half-shell showing the lower center plate and the load probe
under the left corner of the center plate. The support and construction
is identical to that of the upper half-shell

Figure 7.9 Head-on view of the sensor with the calibration frame between the
center plates. Note that the calibration sheet is very thin. The dark
band at the center is the frame holding the calibration sheet
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Overall, the requirements from the mechanical system are as follows:

Rigidity. Because the sensor detects any variation in its volume, any deviation
from the rigid sensor (vibrations, offsets of any kind, changes in distance
between the two half-shells) will change the resonant frequency and should
be viewed as errors.

Accuracy. The motion must be such that the two drives move the two half-
shells so they remain parallel to each other and that there is no offset
between the two halves. This is normally taken care by the step size of the
stepper motor, but it also involves any backlash in the screw driving
mechanism. Any offset can be corrected by the stepping mechanism and that
same mechanism allows introduction of a fixed offset if that becomes
necessary, all under software control. Because the two half-shells are driven
independently, they can be moved one at a time for purposes such as
maintenance and cleaning.

Repeatability. Even more than issues like zero offset, repeatability is a key to
a successful sensing system.

7.3 Evaluation of the mechanical system

Much of the usefulness of a sensor of the type described here relies on the rigidity
and accuracy of the mechanical system especially since the sensor itself is rela-
tively simple. The sensitivity of the sensor (Q-factor, frequency resolution of the
network analyzer, etc.) contributes to this dependency on the accurate motion of
the senor. Fortunately, the effects of the mechanical system on the output can
be evaluated with the sensor itself, that is, the resonant frequency of the sensor can
be used to measure the performance of the mechanical system. It suffices to run the
sensor and look at the changes in resonant frequency and associate them with
specific aspects of the mechanical structure. A number of effects can be expected,
and these are quantified next. First, because the frame itself is not perfectly aligned,
variations in the resonant frequency due to motion at different location along the
frame can be expected. Then, the effects of ancillary structures such as motor/driver
covers, brackets, and bearing housings are also likely to change the resonant fre-
quency if they are in sufficient proximity to the sensor. In addition, the measure-
ment of the resonant frequency can be done in one of two modes: one can stop the
motion, measure the resonant frequency at a location across the fabric, then move
to a new location and repeat the process until the fabric width has been covered and
then repeat indefinitely. Instead, one can let the sensor run continuously at a con-
stant speed and measure the resonant frequency at fixed or variable time intervals.
Each method has its advantages although in the final product, continuous motion is
more practical.

Figure 7.10 shows the sensor response as it moves in the region between the
two calibration frames (where the fabric would normally be). In this test, the
bearing housing is not installed and LMR195 Ultraflex cables are used. Two tests
are performed. In one, the sensor is stopped every 50 mm to take a measurement as
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shown by the continuous curve. The second test shows measurement taken at much
shorter intervals while the sensor is in motion. In both cases, the maximum varia-
tion is 20 kHz, but the scatter in the continuous measurement is higher. This may
actually represent the conditions that exist better than the stop and go measurement,
that is, the variations along the test path, from all sources are more frequent than the
continuous line shows.

Figure 7.11 shows the same test as in Figure 7.10 but with the lower bearing
housing installed and with Thermax RG316 cables connecting to the network
analyzer. The test shows three peaks with a maximum variation of over 50 kHz.
Although the cables are different, the reason for the changes is not the cable since
an identical test with the same cables as in Figure 7.10 (LMR195 Ultraflex) shows
results similar to those in Figure 7.11. These are shown in Figure 7.12. It turns out
that the changes are due to the metal lower bearing cover which influenced the
resonant frequency. These variations can be seen in the stop and go measurements
and in the continuous run measurements in both figures.

The variations seen in Figure 7.10 must come either from changes within the
volume of the cavity, from outside influences, or from variations of the distance
between the two half-shells of the sensor. Since the material in the cavity is air and
after eliminating the possibility of outside influences, the distance between the half-
shells was measured throughout the travel span of the sensor at intervals of 50-mm
travel. The sensor was stopped and in each step the distance between the sensor’s
half-shells was measured at two locations (top and bottom) and at two different
frequencies. The results are shown in Figure 7.13. The maximum variation in
distance between the shells is 0.16 mm with a change in frequency of about 12 kHz.
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Figure 7.10 Test showing the variation in resonant frequency due to
imperfections in the mechanical system. The bearing housing cover is
not installed. The cables to the network analyzer are LMR195
Ultraflex cables. Stop-and-go and continuous motion measurements
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This is lower than the result in Figure 7.10, which shows a change of about 15 kHz
for the stop and go measurement. It is likely that the stop-and-go method introduces
additional vibrations especially since the motors used to drive the system are high
torque motors.
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Figure 7.11 Test showing the variation in resonant frequency due to
imperfections in the mechanical system. The bearing housing cover is
not installed. The cables to the network analyzer are Thermax RG316
cables. Stop-and-go and continuous motion measurements
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Figure 7.12 Repeat of the test in Figure 7.11 with the LMR195 Ultraflex cables to
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Figure 7.14 shows actual measurements of the spacing between the two half-
shells. Measurements were taken between the tops of the shields, bottoms of the
shields, tops of the center plates, and bottoms of the center plates. There is a dif-
ference of about 14 mm between the top and bottoms of the two half-shells, but the
difference does not vary along the path. Since the variations are constant, they
really do not matter although, of course, this is just a question of adjusting the
positions of the two half-shells.

7.4 Calibration

The calibration method was discussed in Chapter 6. It consists of using two thin
sheets of material to establish the calibration curves. One is a white Delrin sheet
used for the calibration curve for nylon fabrics, the other a black copolymer for the
calibration curve for polyester fabrics. In the production sensor, these ‘‘standards’’
were mounted in nonconducting frames centered with the sensor at each end of the
sensor mechanism so that the sensor can be centered over one or the other standard
(see Figure 7.2). However, since the frames are relatively small and hence in close
proximity to the sensor, concerns of the influence of the frames on the resonant
frequency had to be addressed. Furthermore, the frames had to be attached to the
steel frame, and concerns of the influence of the steel frame at the end of travel of
the open resonator sensor had to be addressed as well. The calibration standards
were 610 by 610 mm so that with the length of the cavity equal to 500 mm, only
55 mm on each side of the cavity is available. The frame holding the standard took
more than half of that leaving only 22 mm between the cavity shield and the
standard’s frame.

One of the effects of the calibration frame has on the performance of
the system is shown in Figure 7.15. In this case, the far frame (the one closer to the
metal structure in Figure 7.2) is placed with its near edge (the one closer to where
the fabric would be) at 1,843 mm. The test, made in air, shows that as the sensor
approaches the frame edge, its resonant frequency starts decreasing slightly about
50–75 mm before the edge of the sensor’s shield reaches the edge of the frame. The
reference scan, shown as the horizontal line with white diamond indication, is a
scan in air without the calibration frame and its support. While the change is not
large, indicating that the external influence on the resonant frequency is small, it
does indicate that a minimum distance between the edge of the fabric and the frame
of about 100 mm must be maintained. This also indicates that when scanning the
width of the fabric, the sensor is only expected to produce accurate results for scans
starting 100 mm from one edge and ending 100 mm from the other edge of the
fabric.

The test in Figure 7.15 was done for a number of conditions as shown in the
figure, including with a metal brace for the frame (used to ensure a minimum
rigidity) as well as with antenna probes either on opposite sides of the sensor or on
the same side.
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Whereas the metal brace used to hold the frame does not affect the resonant
frequency as the sensor approaches the frame, it has a marked effect when the
sensor moves over the frame as one would expect. Figure 7.16 shows the effect.
With the metal brace, the frequency increases because of the reduction in the
effective volume of the cavity. As the sensor advances, the effect changes because
of the nonuniform distribution of the fields in the cavity with larger increases when
the metal brace is under either edge of the center plate and lower increase when
around the center of the center plates. Note that the figure only shows a small
portion of the travel. The sensor is 350 mm wide and starts entering the frame at
1,843 mm. Its sensing position for calibration is in the center of the frame which
corresponds to 1,843 þ 350 þ 50 ¼ 2,243 mm and the far edge is then at 2,243 þ
350/2 ¼ 2,418 mm. The most important aspect of this test is that the frame must be
either free standing or braced with nonconducting materials. The two arching
curves show the effect of the frame itself (i.e., a freestanding frame) on the resonant
frequency. This is the expected result indicating that the frame itself has a small
effect once the edge of the frame has cleared the sensor. As with the results in
Figure 7.15, the tests were carried out with both antenna configurations.

Figure 7.17 is an expanded view of the tests in Figures 7.15 and 7.16. The
initial steep drop that starts at around 1,900 mm occurs as the sensor’s edge passes
over the frame. Once the trailing edge clears the frame, the test without the metal
brace stabilizes at the actual resonant frequency of the standard in the frame
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(around 2,240 mm) for either the opposite antennae or the one-sided antennae. As
the sensor continues past that point (the center of the calibration frame), the reso-
nant frequency increases quickly if the metal brace is present or stays more or less
constant, with a slight drop if the metal brace is absent (as can be seen more clearly
in Figure 7.16).

To get a better feel of the effect of the metal brace vis-à-vis the unbraced
frame, consider Figure 7.18. In this figure, the maximum change in resonant fre-
quency as the sensor moves within the frame, that is, as the sensor moves from one
edge of the frame to the other was measured. The gap between the sensor edge and
the frame is only 22–23 mm on each side when centered. The figure shows the
change in frequency within that span. For the unbraced frame (it simply lies on
wood blocks or attached with nonconducting members), the maximum variation in
resonant frequency is 25 kHz. This variation is due to the proximity of the frame to
the sensor. With the metal brace, the maximum variation in the resonant frequency
is 612 kHz. While it is clear from the results in Figures 7.15–7.18 that metal bra-
cing or, for that matter, any metal in close proximity to the sensor produces
unacceptable errors, nonmetal bracing also produces errors, albeit acceptable in
magnitude and of the same order of magnitude as the errors produced by the motion
over the length of the structure.

Another issue is associated with calibration repeatability. Because the sensor
must be properly centered within the frame (so that it is at equal distances from the
frame on all four sides, or at least on the long sides) and because there is at most
22–23 mm distance to the frame when properly centered, any deviation from these
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Figure 7.18 Errors in resonant frequency due to bracing of the calibration frame
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precise positioning requirements can change the resonant frequency. Since
the sensor must be stopped for calibration and then started again, moving in the
opposite direction, it is likely that some slack or mechanical hysteresis will
be present introducing an error in the calibration. To evaluate any possible errors
due to positioning within the calibration frames, three separate sensors were tested
and each was tested 13 times to evaluate the repeatability of the mechanical system.
The resonant frequency of the start and the stop of the calibration position were
measured, and the average resonant frequency subtracted to obtain the change in
resonant frequency due to the variations in the start and stop positions. These
variations are attributed to minor slack (hysteresis) in the driving mechanism and,
perhaps, in the position of the two half-shells. The results shown in Figure 7.19
indicate a maximum change in resonant frequency of less than 20 kHz in most
cases. One test shows a maximum variation of 30 kHz. These changes are
consistent with the changes seen for variations along the entire path of the sensor
(see Figure 7.10).

In Chapter 6, we have seen that the resonant frequency is affected by the
position of the antenna probes (see, e.g., the discussion on the effect of flutter). It is
therefore necessary to also see if the position of the probes affects errors during the
motion of the sensor. To do so the sensor was run with both probes on one half-
shell and with opposing probes (one probe on the left half-shell, the second on the
right half-shell). The tests were run in air and, separately, with the polyester cali-
bration sheet. These are shown in Figures 7.20 and 7.21. Figure 7.20 shows the
resonant frequency in air and, consistent with the results in Chapter 6, the changes
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Figure 7.19 Repeatability test on the calibration standard
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in resonant frequency are lower for the opposing probes but, at the same time, the
Q-factor is also lower. The changes in resonant frequency were larger when the
polyester sheet was present, again with a reduction in the Q-factor. This sensitivity
to location of the antenna probes was observed throughout the experiments and
resulted in placing the probes on opposite sides of the sensor for the final design to
reduce overall errors.

7.5 Compensation for environmental conditions

As can be expected, the environmental conditions within the resonant cavity must
have an effect on the resonant frequency. Of these, the relative humidity and
temperature are of particular concern since they are expected to fluctuate con-
tinuously and because both can affect the resonant frequency. There are other
effects including contamination of the space and the conducting surfaces, all of
which will affect the resonant frequency. The effect of relative humidity is fairly
obvious—water and water vapor have a high relative permittivity and hence will
change the resonant frequency. The effect of temperature is due to the change of the
relative permittivity of air (see Appendix B) and of water vapor.

To see the effect and to quantify the errors, the resonant frequency of the cavity
was measured over a period of time, while, at the same time, the temperature and
humidity were recorded and correlated with the resonant frequency. Both the even
and odd frequencies were measured since the odd-mode frequency can be used to
compensate for the change in resonant frequency due to environmental effects.
In Section 5.2, we discussed the fact the odd-mode electric field is perpendicular to
the fabric being tested, and since the fabric is very thin, it has a minimal effect on
the resonant frequency of the cavity. On the other hand, the even mode, which is
parallel to the fabric, is affected much more, and for this reason, the even mode is
used to gauge the fabric’s permittivity. Both the even and odd modes are roughly
equally sensitive to the permittivity of the bulk of the cavity and will change in
roughly equal proportions due to these effects. It is this property that allows one to
compensate the even-mode frequency using the odd-mode frequency.

Figure 7.22 shows the resonant frequency of an empty cavity over a period of
15 h out of the 16 h of the test, during which both the temperature and the relative
humidity change. During the time of the test, the variation in humidity is 2% and
that in temperature about 1.5 �C. Assuming that these are the only environmental
changes during that period (no other change has been observed during testing), the
change in resonant frequency can be attributed to these changes alone. The resonant
frequency changes by a maximum of 186 kHz during the 16-h period. The mea-
surement was taken at 5 s intervals and showed some spread although it is rather
small—the maximum spread is about 20 kHz. One can safely assume that some of
this spread is due to variations in conditions but some of it seems to be random.

To separate the effects of temperature and relative humidity, it is useful to
inspect Figure 7.23. In this figure, the resonant frequency, relative humidity, and
temperature were plotted, each normalized with respect to its maximum value in
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Figure 7.22 The even-mode resonant frequency due to changes in temperature
and relative humidity measured over a period of 15 h
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the test period. It is clear from the figure that the resonant frequency follows the
change in relative humidity exactly, whereas the change in temperature does not
seem to have any visible effect. This of course is expected based on the relatively
high relative permittivity of water and the relatively weak dependency of the per-
mittivity of air on temperature.

Note: in Figure 7.23, the change in resonant frequency was modified from
negative to positive to show the trend, that is, as the relative humidity increases, the
resonant frequency decreases, whereas in the plot, they trend the same way.

The error in the resonant frequency is approximately 186/2 ¼ 93 kHz/%RH.
This is a very large error and cannot be left alone. A change of 10% in relative
humidity would change the resonant frequency by almost 1 MHz. This is particu-
larly concerning because one can easily expect relative humidity to vary between,
say, 30% and 80% at any time of the year and even more in extreme cases. Var-
iations can occur in short periods of times or may be slow, changing over long
periods of time. For this reason, it is critical that the odd-mode measurement be
used to compensate for the effect of the relative humidity and any other bulk effect
within the cavity.

7.5.1 Compensation method
There are two basic ways one can compensate for the bulk effects in the cavity. One
is the use of the odd-mode resonance mentioned above. We will use this method
here. It is however possible to generate a set of data similar to the data above which
indicates the change in resonant frequency due to humidity and temperature and
subtract that change from the measured resonant frequency. This is very simple and
can be easily handled by the computer. It does, however, require the measurement
of relative humidity, a measurement that can only be done outside the cavity. There
are however many disadvantages of this method. First, it cannot take into account
any other effects such as, say, contamination of the cavity or even as simple an
effect as dew forming within the cavity or on its walls. Further, with time, the
response of the cavity to environmental effects may change due to changes in
alignment, etc., and this would require generation of a new curve for relative
humidity. Finally, humidity measurements are slow and likely to lag behind the
measurement of frequency.

On the other hand, the use of the odd-mode resonance for the purpose of
compensation is almost ideal in the sense that it can compensate for any condition
in the bulk of the cavity and there is no need for either external sensors or recali-
bration. Its only disadvantage is the need to measure the odd-mode resonance and
that requires a wider scan of the frequency range since the odd-mode resonance is
at a frequency higher than the even-mode (see Figure 6.2). This is a small price to
pay, and the network analyzer is well equipped to handle this task.

Figure 7.24 shows plots of the even- and odd-mode resonant frequencies taken
over the same period of time, and each sample was taken at identical times. Clearly,
the two resonant frequencies behave almost identically although, because the odd-
mode frequency is higher, the variation in the resonant frequency is also higher
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since, when the equivalent permittivity in the cavity changes, the resonant fre-
quency changes by a factor proportional to the permittivity. In fact, the maximum
change in frequency over the period of measurement for the even mode is 186 kHz,
whereas for the odd-mode resonance, it is 322 kHz. However, if one scales this
change by the ratio of frequencies, that is, by the ratio 305/572, one obtains 322 *
306/572 ¼ 172 kHz. Although the two frequencies do not change by exactly the
same ratio, this is close and hence this change can be used for compensation of
environmental conditions in the cavity.

The compensation itself can take many forms. The simplest method is to take a
fixed value as reference, say the first reading in the measurement sequence in
Figure 7.22 or in Figure 7.24. Suppose that value is k. Now the compensated even-
mode frequency is written as

f n
ec ¼ f n

e � f n
o � k

� � � f n
e

f n
o

(7.1)

In this relation, n refers to the current measurement, c to the compensated value of
the measurement, o to odd mode, and e to even mode. Applying this simple cal-
culation to the data in Figure 7.22 and plotting the compensated values results in
the plot in Figure 7.25. The maximum change in frequency over the test period is
48.8 kHz, resulting in an error of approximately 24.4 kHz/%RH. This is roughly
1/4 of the error in Figure 7.22. Looking at the averaged value along this plot, the
maximum variation is about 20 kHz with an averaged error of about 10 kHz/%RH.

In practice, this error can be reduced further by updating k at regular intervals
so that the compensation is done on a smaller range. This can be done in con-
junction with the periodic calibration of the sensor (see Section 7.4). In this
approach, k is updated immediately after the calibration is performed and the sensor
starts measurements. For example, by updating k every 10 min, the maximum
error is less than 4 kHz/%RH and is, in fact, smaller than the spread observed in
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Figure 7.22. The method adopted in this work makes use of this compensation
procedure to update the value of k periodically (approximately every half hour
or so). Although it may seem that the choice of k is arbitrary, that is, that its value is
affected by the relative humidity in the cavity, the use of the calibration frames
removes this uncertainty since the relative humidity during calibration is taken into
account at the calibration step. That is, after the calibration, the value of k is devoid
of effects of relative humidity or any other bulk effect in the cavity since the
permittivity of the calibration sheets is known exactly.

Although this method of compensations seem to be almost ideal, it is not. First,
it assumes that the odd-mode resonant frequency is not influenced by the fabric but
only by the bulk volume. That is only approximately true. Indeed, the odd-mode is
largely insensitive to the fabric but not entirely so. This can be seen in Figure 7.25.
We have also shown in Figure 5.6 that the odd-mode resonance changes with
permittivity of the fabric, especially when the moisture content of the fabric is high
(high permittivity). Therefore, the compensation method shown here can only be
seen as a method of improving accuracy rather than eliminating the effects of
environmental conditions. The second limitation of the method is that it cannot be
applied to the rubber thickness measurement since there the odd-mode resonance
has no meaning.

There are of course many more methods that can be used for this purpose, but
the method described here is sufficiently accurate for the purpose.
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Chapter 8

The network analyzer

8.1 Introduction

As was indicated in the introduction, one of the features of the current work is the
incorporation of a network analyzer as part of the overall sensing system. Although
a network analyzer is a very expensive piece of equipment often associated with
laboratory work, its use in a system of this type is justified on a number of grounds,
not the least being development time, accuracy, and stability. In the industrial
environment, it also affords a single unit that can be replaced or repaired quickly
without the need of specialized personnel, saving downtime, and, ultimately, costs.
Of course, there are alternatives to this approach. These include separate oscillators
and voltage-controlled oscillators (VCOs) that can then be related to the shift in
resonant frequency. Although less expensive than the network analyzer, these
alternative methods are also less accurate and in the context of this work were
deemed insufficient. It should also be remembered that development of equipment
is a lengthy process and even when individual building blocks exist, the integration
and testing of the equipment is tedious. For these reasons and, of course, because of
the accuracy afforded by the network analyzer, we decided to use a vector network
analyzer (VNA) as a single integrated test piece in spite of the initial cost and the
fact that only a small portion of the analyzer’s capability is actually used.

Because of the central role the network analyzer holds in the sensors described
in this work, this chapter describes briefly the structure of network analyzers and
the measurements one can perform. The measurements described are primarily
those needed for the present work and hence this description should not be viewed
as a tutorial on the use of network analyzers.

8.2 What is a network analyzer?

The network analyzer is, perhaps, the most sophisticated and versatile (and
expensive) measuring instrument for radio frequency (RF) analysis in existence
and, as such, is not normally used or known by the average practitioner. However,
at its very basis, it is a trivially simple instrument. To understand these statements,
consider first the circuit (i.e., low frequency) approach to analyzing a network.
Figure 8.1 shows a one-port network and the necessary instrumentation to analyze
the network. Since all we have access to is the port, we can measure the current into



the port and voltage across the port. From these, we can calculate the impedance of
the network and, with some additional effort, the phase between current and vol-
tage, real power entering the port, reactive power, and so on.

If one considers a two-port network, then identical measurements can be per-
formed on the output port (see Figure 8.2). Indeed, one can extend this to an N-port
system—all that is necessary is to place appropriate measuring instruments on each
port and, perhaps, have a facility to read them automatically and perform the ana-
lysis. Indeed, we can call the system in Figure 8.1 or Figure 8.2, a network analyzer
provided that we add to it analysis tools such as a piece of software or, if one were
to stick with the basics—a pencil and paper. It should be noted that the measure-
ments in Figure 8.2 can be done with a single set of measuring instruments and a
single source by switching them from ports 1 to 2. However, doing so, one cannot
measure them at the same time and hence it is not possible to measure, for example,
the voltage on port 2 when port 1 is driven. For this reason, network analyzers are
specifically designed as two-port (or more) systems.

Of course, this is not what one would pay a prince’s ransom for. A network
analyzer is much more than this, but at the fundamental level, the picture drawn in
the previous paragraph is useful to keep things simple and in context. At high
frequencies, one cannot measure voltages and currents directly as we have dis-
cussed in Section 4.2. Rather, we can measure waves, or more specifically power,
propagating, reflecting, and transmitting into and out of a network. Network ana-
lyzers, therefore, do not measure voltages and currents but rather power. That is,
they make use of power detectors to measure incident, reflected, and transmitted
power and from these evaluate the S-parameters as well as other quantities. Thus, as
a second level of complexity, a network analyzer can be viewed as in Figure 8.3.
The source is a variable frequency generator that can scan the frequencies of
interest under controlled conditions of amplitude, phase, frequency, and spectral
purity. The generator may be a true variable frequency source such as a VCO, but,
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more often, it is a synthesized source. The signal from the generator is split into a
forward wave and an incident or reference wave. The forward wave is fed to the
port through a directional coupler, whereas the reference wave is fed to the receiver
(detector) directly to define the incident power. The directional coupler is used to
allow the incident power to propagate to the input port but prevent the reflected
power from the port to propagate back to the generator. Rather, the reflected power
is coupled into the receiver through the directional coupler to detect the reflected
power. On the transmission side, the transmitted power is fed into a second receiver
(or a second receiving channel) to detect the transmitted power, again, through a
directional coupler. The power detection is usually performed through a balanced
bridge detector, a diode detector, or, in some cases, a small thermistor (see Sec-
tion 4.5.2). The blocks indicated as attenuators allow for adjustment of signal levels
as needed by the measurement. The detected signals are then analyzed in the on-
board computer that can calculate the S-parameters and from them any other
quantity calculable. The term ‘‘network’’ is a generic term, and it may represent any
device or circuit analyzed. In one-port networks, only the incident and reflected
signals are detected. Of course, things are much more complicated than this, and
the designers of network analyzers had to worry about many issues including noise,
losses, and accuracy, but the user does not need to worry about all of that. A two-
port network analyzer is shown in Figure 8.3 and the extension to N-ports is
shown in Figure 8.4. Note that the source is common to all ports and switched
between them for measurements although, for two-port network analyzers, one can
also use a split source rather than a switched source. Each port is served by two
channels, a reference channel and a measurement channel. The ADC (analog-to-
digital converter) and digital signal processing units process the data locally before
transferring to the computer.
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Figure 8.3 A simplistic block diagram of a network analyzer capable of detecting
the incident, reflected, and transmitted signals due to a two-port
network
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As was alluded to previously, the instrument is much more complex than the
description above reveals. Issues of signal losses, mutual coupling between ports,
directivity and isolation of signals, frequency range, speed of analysis, signal
purity, attenuation, phase changes, and many others had to be resolved before a
network analyzer could become the sophisticated instrument it is today. Also, all
control, analysis, and computation of parameters is done with an integrated com-
puter in the network analyzer so that one can compute, analyze, and display results
in many forms as well as store and archive results and testing parameters as needed.
However, these are issues that are specific to particular instruments, whereas here
our intention is to discuss the use of the network analyzer rather than its con-
struction and its many features.
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8.2.1 Scalar and vector network analyzers
There are two basic types of network analyzers—scalar network analyzers (SNAs)
and vector network analyzers (VNAs). In very simple terms, an SNA only measures
the amplitude of waves, whereas the vector instrument measures both amplitude and
phase. Behind this broad distinction, there are many important differences that ulti-
mately define the way these instruments are used. A simplified diagram of the scalar
analyzer is shown in Figure 8.5. The reference detector measures incident power,
whereas the reflected and transmitted powers are measured separately. The direc-
tional couplers are used to separate between incident and reflected powers.
Obviously other functions are incorporated in the instrument including attenuators,
compensators, mixers, ADCs and processors, a computer, and many more. This
diagram shows what is the main attraction of the SNA—its simplicity, and therefore
its relatively lower cost. In general, the analyzers use a broadband signal that is then
downconverted to a low-frequency AC or even to DC to measure the power in the
signal. The power detectors themselves are relatively simple and may include diodes
or thermoelectric devices, which are themselves broadband devices. This means
that the power receivers do not require retuning as the frequency changes, that is, a
frequency sweep only requires tuning of the source and measuring the power at each
frequency. This leads to fast frequency sweeps and quick measurements.

While simplicity, speed, and cost are important, the SNA is not always the best
choice for measurements. It is limited by the broadband noise in the detectors as
well as external noise, and its calibration is usually not as accurate as more
advanced VNAs. Nevertheless, in many applications, especially if the frequency
range is narrow, the SNA is sufficient for all but the most demanding measurements.

The VNA differs from the SNA not only in that it measures both amplitude
and phase but also in the way it does so. Probably the most important general
distinction is that the measurement is narrowband and hence the VNA does not
suffer from broadband noise and has a much higher dynamic range than the SNA.
It accomplishes this by using heterodyning—a downconversion technique that
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Figure 8.5 Simplified block diagram of a scalar network analyzer (SNA)
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employs a local oscillator in tune with the scanning source to produce a fixed
intermediate, lower frequency for the power measurements. As a consequence,
the power measurement itself is more accurate and, in general, the frequency steps
the instrument is capable of are smaller. All this of course leads to a much more
complex architecture and consequently to a more expensive instrument but with the
added benefit of a more accurate measurement for amplitude and phase and of
more flexibility in measurements it can handle. In operation, the VNA stimulates
the network with a swept-frequency continuous wave (or, in certain applications
with a pulse) and measures the phase and amplitude of the traveling waves at the
stimulated port and at all other ports of the network, while these are terminated at
their characteristic impedances (usually at 50 W). A simplified diagram of the VNA
is shown in Figure 8.6. The source generator supplies the signal for measurements.
In most analyzers, this is a synthesized source with tight control on frequency and
power and can be swept over a wide frequency range as well as over a range of
output power. In older VNAs, especially those with a narrow frequency range, the
generator may be a VCO. The output is typically a pure sinewave although in some
VNAs it is also possible to produce multifrequency signals as well as modulated
sinewaves for more advanced measurements. Aside for accuracy of amplitude and
frequency, the VNA source must be extremely agile, capable of sweeping rapidly
over a wide range of frequencies or a range of power so that the response of the
network can be obtained in a reasonable time. Figure 8.6 shows a two-port analyzer
and hence the signal is switched (sometimes split) between the two so that each port
can be analyzed. The source is followed by attenuators to control the amplitude fed
onto the ports. Each port is fed through directional couplers so that the incident
(reference) signal and the reflected signal can be measured separately. The incident
and reflected signals are then mixed with the signal from a local oscillator to
produce the IF signal that the receivers detect. Since each signal is detected by a
separate receiver, both the amplitude and phase can be measured. The mixers,
receivers, and all other functions needed are included in the blocks marked as Ref

Test port 1

Test port 2

Ref1 Test1

Ref2 Test2

Local

oscillator

Source
Switch

Figure 8.6 Simplified block diagram of a two-port vector network analyzer
(VNA). The section within the dashed lines is expanded in Figure 8.7
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and Test but are not shown explicitly (see Figure 8.7). As was discussed above,
additional functions are needed to make this diagram practical, but these are not
shown.

Figure 8.7 shows a simplified diagram of one of the receivers, say for the
incident wave of port 1 (see dashed lines in Figure 8.6). After passing through
the directional coupler, the signal is mixed with the local oscillator signal before
entering the detector. Once the power of the signals is detected, it is typically
converted to a digital signal using a high-speed ADC and fed to a digital signal
processor for further analysis, display, and archiving.

At the end of the measurement process, there is a computer that performs all
signal analysis, controls the measurement process, the display, and all other func-
tions necessary for the measurement. A more general diagram of a multiport VNA
is shown in Figure 8.8. This is essentially the diagram in Figure 8.4 with the
addition of a local oscillator and a mixer to each channel. The N-port network is
connected to the VNA directly. The source is switched between the ports, atte-
nuated, split into a reference (incident) signal, and fed to the port through a direc-
tional coupler to measure the reflected signal, as described above. The local
oscillator is common to all ports. The analysis is, of course, done in the computer
following digitization and processing. It should be noted that although the N-port
VNA has no theoretical limit on the number of ports, the complexity of the system,
associated cost, and the speed at which the N-ports can be analyzed limit the
number of ports to a relatively modest number. Four- and six-port analyzers are
available but anything beyond that becomes very expensive and with limited utility.

The description above gives enough details to understand the principles and,
perhaps, also hints to the technical difficulties faced by the designers of this mar-
velous instrument. It is not possible to discuss these in the context of this work, nor
is there a particular need to do so. Nevertheless, it should be borne in mind that all
components of the system introduce some errors that the instrument must com-
pensate for and that much of its complexity is due to these circuits. Clearly, for
example, a directional coupler presents an insertion loss, and the coupling is not
perfect. The directivity of the coupler and its isolation from inputs that are not
supposed to be coupled are not ideal and so on. All these and more must be taken
into account and compensated to produce the accuracy needed. The generator and
the local oscillators are again not ideal, their spectral purity is finite and stability of
amplitude and frequency must also be taken into account. Indeed, there are many
more issues that must be resolved including external noise, impedance of ports,
even thermal issues (often, e.g., the network analyzer must be turned on for a
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Figure 8.7 Block diagram of one of the receivers in Figure 8.6
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considerable time before measurements commence to ensure it is in thermal
equilibrium). Because of these issues, one of the most important aspects of mea-
surement with network analyzers is the calibration process that must, necessarily,
precede measurements.

It should also be noted here that, in general, VNAs are slower than SNAs
primarily because of the need for frequency scanning, whereas in SNAs, the mea-
surement is broadband. However, because of their other attributes, primarily their
versatility and accuracy, VNAs are more often used in spite of their higher cost.

8.3 The measurement process

Most network analyzers measure the linear response of networks. However, there
are also instruments that can extend some of the measurements to nonlinear

C
om

pu
te

r

Atten.

Directional
coupler

N
et

w
or

k

Po
rt 

1

Ref 1

A/D DSP

Atten. A/D DSP

Atten.

Directional
coupler

Po
rt 

2

Ref 2

A/D DSP

Atten. A/D DSP

Reference channel 1

Measurement channel 1

Reference channel 2

Measurement channel 2

Atten.

Directional
coupler

Po
rt 

N

Ref N

A/D DSP

Atten. A/D DSP

Reference channel N

Measurement channel N

Ref 1

Ref 2

Switch

Ref N

RF generator

Local
oscillator

Mixer Power
detector

Mixer

Power
detector

Mixer Power
detector

Mixer
Power
detector

Mixer Power
detector

Mixer
Power
detector

Figure 8.8 Structure of an N-port vector network analyzer (VNA)

292 Open resonator microwave sensor systems for industrial gauging



networks and devices, and, as mentioned in the introduction, they can also be used
for measurements in space through the intermediary of antennas. In fact, the present
work uses exactly this facility, that is, the network analyzer couples power to the
stripline resonator through a probe (a short antenna) connected to one port of the
analyzer and detects resonance through a second antenna connected to the second
port of the analyzer.

There are a number of fundamental measurements that are often undertaken,
but in almost all cases, these involve the determination of the S-parameters of the
network (or device). The VNA does so by accurately measuring the incident and
reflected amplitudes and phase on each of the ports of the network and doing so
accurately. From these, one can then determine, through the use of the onboard
computer, other quantities including losses, impedance, and even time-domain
quantities such as delays.

8.3.1 Calibration
Much of the accuracy in measurements depends on the calibration of the instru-
ment. In the case of the network analyzer, there are two types of calibrations that
are necessary to achieve the high accuracy one demands of them. The first is what
is often called ‘‘factory’’ calibration. This consists primarily of calibration of the
source power, frequency, sweeping steps, attenuators, frequency response of the
receivers, and the like. In essence, this calibration ensures a properly functioning
instrument with known parameters so that the user can proceed with its use.
Because of the sensitivity of measurements, it is not unusual for a network analyzer
to need periodic recalibration. In addition, many measurement procedures specify
calibration before each measurement.

More important from the user’s point of view is the calibration of the instru-
ment with the text fixture in place. This calibration is necessary to take into account
the particulars of the measurement and ensure minimal errors. As a simple exam-
ple, a device under test (DUT) must be connected to the network analyzer through a
cable (transmission line) of some length. Even if we can safely assume the trans-
mission line to be lossless, the length of the cable introduces a delay, which
manifests itself through a change in phase. Using Figure 8.9, and given a forward
propagating wave A, suppose we are trying to measure the reflection at the DUT
(actually the S11-parameter). The reflected wave B received back at the network
analyzer is delayed because the waves must propagate to the DUT and back.

Instrument
port

VNA

z = 0

Test
port

z = l

A

B

Ae−jbl

Ae−jblΓDUT

DUT

Figure 8.9 The change in phase between the measurement plane and the DUT
plane

The network analyzer 293



We referred to this effect in Chapter 4 (see Section 4.2.6) as the shift in the refer-
ence plane when we discussed the generalized S-parameters. The wave reflected
back into the test port of the network analyzer is

B ¼ Ae�j2bl GDUT (8.1)

where GDUT is the reflection coefficient at the DUT. The reflection coefficient at
the test port of the network analyzer is therefore

GTEST ¼ B

A
¼ GDUT e�j2bl (8.2)

Or, since b ¼ 2p=l and l ¼ vp=f where vp is the phase velocity along the line, we
can write this result in terms of frequency f and the delay along the line, t ¼ l=vp as

GTEST ¼ GDUT e�j4pf t (8.3)

Clearly then, the phase of the reflection coefficient changes depending on the
length of the transmission line, l, and the phase constant of the line, b, although the
amplitude remains the same. Given that at high frequency even a very short delay
(line length) can introduce significant errors in the phase, it is imperative that the
phase difference be known and therefore removed from the measurement. This is
done during the calibration process.

This particular problem was discussed in Chapter 4 as the reference plane in
evaluation of S-parameters and is an obvious issue in the use of VNAs. But it is not
the only one. Many of the errors that can be removed through calibration are sys-
temic errors of the instrument and include test-port match errors, directivity errors
in the directional couplers, frequency response, and isolation at the test port.

Port match errors on both the source and load ports are always present. Even
though the ports’ nominal impedance is 50 W (some network analyzers used for
communication work may have a 75 W impedance), the actual impedance varies
somewhat. In addition, every port has a return loss, and these combine to reduce the
accuracy of the test. These must be compensated prior to actual measurement.

Directivity errors refer to the directional couplers. In an ideal directional
coupler, the signal travels through the coupler from the input to the output
and coupled to the coupled output as shown in Figure 8.10(a). In a real directional
coupler, some signal may travel in the opposite direction and into the coupled
arm of the coupler shown in Figure 8.10(b) by the dashed path. This error in
directivity can also be compensated for in the design of the analyzer or by proper
calibration.

Frequency-response errors refer to the fact that each receiver in the VNA
has a slightly different frequency response because of slight variations in cir-
cuits and paths of signals. These are often referred to reflection and transmission
tracking.

Finally, isolation refers to the isolation between ports. Ideally, the ports should
be perfectly isolated, but in practice, some coupling between the receivers of the
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ports must exist. This crosstalk between different channels is also compensated for
during calibration.

Actual calibration is done by connection of calibration standards to the refer-
ence planes (the location where the DUT would otherwise be connected) and
following a procedure prescribed by the type of calibration required. Calibration
standards are devices with exactly characterized properties including impedances.
With these, the VNA measures the incident and reflected waves and uses these
measurements to compensate for the mismatches and errors that exist. The cali-
bration method depends on what is being measured. The most common methods of
calibration are the short-open-load-through and involve first connecting the
insertable standard between the reference planes and then connecting the two
calibration ports (reference planes) together. This is particularly simple when
the DUT is a coaxial device and hence can be inserted directly at the reference
planes. Otherwise, special connecters and adaptors are needed to use with non-
insertable devices such as in the case of characterization of electronic components.
Calibration methods are based on error models, and, as one would expect, there are
quite a few error models to choose from, each with a certain level of complexity.
Error models refer to what errors are being compensated for. For example, if one
compensates at one port for coupler directivity, reflection tracking, and source
match, then this becomes a three-term model. If this is done on a two-port system,
there are three additional errors due to load match, transmission tracking, and
isolation. If these six errors are applied to each port (forward and reverse model),
the result is a 12-term error model. Error models range from 3 to 16 (for two-port
analyzers). Which model is to be used depends on the measurement and the accu-
racy needed.

There are of course other methods of calibration, some simpler, some more
complex, and there are variations of almost all of them. Most methods of cali-
bration are documented and their advantages and disadvantages given by the
manufacturer. In all cases, standards and connectors are available from manu-
facturers, and basic calibration components are usually included with the instru-
ment. Many more standards, connectors, adapters, and test fixtures are available to
fit any calibration and testing need. The instrument manual provides data for basic
use and calibration, while additional publications are available from the

(b)

1

3

2

(a)

1

3

2

Figure 8.10 (a) An ideal and (b) real couplers showing back coupling through the
dashed path
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manufacturer for other applications. Manufacturers also offer automatic (some-
times called electronic) calibration units that simplify the calibration process to
that of connecting the unit and running the calibration process. Two- and four-port
automatic calibration units are available for VNAs, but these are specific to the
manufacturer of the VNA.

In addition to systemic errors that careful calibration can minimize, there are
other errors that can be caused by various components of the measurement system
or by the network analyzer itself. One of the most obvious and common source of
problems in measurements is the cables connecting to the DUT or the test fixture.
Bending of cables, damaged or poor shielding, and poor connection can result in
errors or even in false measurements due to reflections within the cables. These
errors are particularly annoying because they often appear to be random. Simi-
larly, poor-quality connectors or loose connections at the connectors or within test
fixtures can similarly lead to poor measurements. Operation at the very limits of
the analyzer such as at maximum power can also lead to nonlinear behavior,
whereas at the limits of frequency response, there may be issues with tracking and
with the local oscillator. In general, one should remember that it is unreasonable
to expect good measurements with poor quality testing equipment. A quality
instrument such as the VNA can easily be reduced to a useless instrument by use
of poor cables, improper connections, or test fixtures or by improper measurement
procedures.

Finally, one more point: the network analyzer is a complex instrument that
requires time to master. A first encounter with it is daunting even for experienced
practitioners. The instrument itself is expensive and everything associated with it,
from connectors to test fixtures, is equally costly. It is therefore well advised to take
the necessary time to learn the instrument and to practice its use before embarking
on actual measurements to avoid unnecessary expenses and, even more impor-
tantly, misleading measurements. In the end, it is the practitioner who must judge
the measured results in spite of the sophistication of the instrument.

8.3.2 Measurements
The primary measurements of network analyzers and in particular VNAs are the
S-parameters of a network. A network for the purpose of this discussion is seen as
anything that can be connected either as a one-, two-, or multiple-port quantity.
It may be a simple passive or active component such as an inductor or a diode
(one-port devices or networks), or it may be a transmission line section, an
amplifier, or a cavity resonator (two-port devices or networks). In all cases, the S-
parameters are evaluated and are independent of the properties of the network
analyzers provided that proper calibration has been performed. S-parameters
characterize the linear behavior of the network and, as we have seen in Chapter 4,
almost all useful characteristics of the network can be obtained from the S-para-
meters. Through the use of cascaded measurements, one can characterize even
more complex circuits.
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VNAs can also be used to characterize materials in application as simple as
measurement of dielectric constants and loss tangent or as complex as character-
ization of biologic properties and interactions or scans for tumors since, with
proper antennae connected to its ports, the network analyzer can be transformed
into a low power, short-range radar, or a microwave microscope. With its onboard
computer and powerful signal-processing capabilities, it becomes a powerful
imaging tool.

Since VNAs measure the reflected power as well as transmitted power as a
function of frequency, these results can be easily transformed into the time domain.
Hence, some of the important uses of VNAs are in time-domain reflectometry.

The primary purpose of the present work is detection and quantification of
moisture content in open transmission line resonators; hence, we will limit the
discussion of VNA measurements to those that are useful to that end. These include
detection of resonance, measurement of quality factor, measurement of permittiv-
ity, and measurement of losses as well as some other quantities that are useful in
determining the primary quantities.

The network analyzer measures S-parameters internally but, from the point of
view of the user, the S-parameters are usually not ‘‘visible.’’ For example, suppose
one wished to measure the standing wave ratio (SWR). To do so, the network
analyzer measures the S11-parameter [see (4.68)]. The SWR is then

SWR ¼ 1 þ S11j j
1 � S11j j (8.4)

The network analyzer will display the SWR, and the user never actually knows
what S11 is unless, of course, he or she chooses to measure the reflection coeffi-
cient, which is S11. All that means that the instrument is set to perform the neces-
sary calculations to obtain the measured result the user asks for but internally it
measures S-parameters.

In the following, we will describe the processes by which the analyzer obtains
the results, but it should be remembered that much of this process is part of the
algorithm for particular measurements.

8.3.2.1 Measurement of the S-parameters
Given a two-port network as in Figure 8.11, the S-parameters are defined from the
forward waves a1, a2 and backward waves b1, b2. As was discussed in Chapter 4,
the relations between the forward and backward waves are

b1 ¼ s11a1 þ s12a2 (8.5)

b2 ¼ s21a1 þ s22a2 (8.6)

The reference planes Z0 are at the DUT, that is, it is assumed that the phase dif-
ference between the DUT ports and the instrument port have been compensated for.
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The S-parameters are then obtained by selectively setting one of the forward
waves to zero. In the network analyzer, this is done by properly terminating one of
the ports with the characteristic impedance as follows:

By terminating port 2 with its characteristic impedance, we force a2 ¼ 0 and
obtain

S11 ¼ b1

a1

����
a2¼0

and S21 ¼ b2

a1

����
a2¼0

(8.7)

Similarly, by now terminating port 1 with its characteristic impedance, a1 ¼ 0, and
we obtain

S22 ¼ b2

a2

����
a1¼0

and S12 ¼ b1

a2

����
a1¼0

(8.8)

That is, the sequence in the network analyzer is to terminate port 2 with its char-
acteristic impedance (usually 50 W), excite port 1 with a wave, and measure the
reflected and transmitted waves b1 and b2 (Figure 8.12). The S11- and S21-
parameters are then calculated as the ratios between the backward waves b1 and b2

and the incident wave a1 as in (8.7). This measurement is referred to as the forward
measurement.

Now the process is repeated on port 2 by terminating port 1 and measuring the
backward waves again to obtain S22 and S12 (Figure 8.13). This measurement is
referred to as the reverse measurement.

It should be noted here again that these measurements are only as accurate as
the termination is exact, and the systemic errors have been removed. Hence, a two-
port calibration prior to evaluation of the S-parameters is absolutely essential,

Port 1 Port 2
S21

S22

S12

S11

a1

b1
a2

b2

Z0 Z0

Figure 8.11 Relation between forward and backward waves at the ports of a
network

Port 1 Port 2
S21

S11

a1

b1 a2 = 0

b2

Z0 Z0

Figure 8.12 Forward measurement to obtain S11 and S21
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otherwise the errors in the S-parameters can be significant, and these will carry over
to subsequent measurements based on the S-parameters.

The reduction of this process to a single port is obvious since in that case,
a2 ¼ 0, and only the parameters S11 and S21 exist. The extension of an N-port net-
work is also obvious (see Section 4.2.2): each port is analyzed as above, by setting
all incidents except for that on the measured port to zero by terminating the ports
with their (compensated) characteristic impedance.

The S-parameters are obtained over the range of desired frequencies, and hence
they represent the frequency response of the network over that range.

The S-parameters are in general complex values. An SNA can only measure
the differences in amplitude between the wave quantities and hence can only obtain
the magnitude of the parameters. A VNA also measures the phase differences
between the waves and hence measures the complex S-parameters. It should be
noted that in most VNAs, the phase is referenced to the input wave on a port
(the reference wave) although some VNAs can actually measure absolute phase.
Figure 8.14 shows how the S21-parameter and its phase with respect to the incident
wave a1 are obtained from measurement of the delay between the two waves. The
phase difference is therefore the argument of S21 (in this measurement), whereas
S21 is the ratio between the amplitudes ( S21j j ¼ b2=a1).

Although in most cases the S-parameters are used for subsequent measure-
ments, their magnitude and phase can be displayed either on a Smith chart screen
display or as plots. The magnitude is usually displayed in dB versus frequency,
whereas the phase is displayed in degrees versus frequency.

8.3.2.2 Measurement of the reflection coefficient
Perhaps the most fundamental measurement is that of the reflection coefficient.
This was explained in the previous section and, indeed, the S11-parameter is the

Port 1 Port 2

12

22S

S
b1

a2

b2

Z0
Z0

a1 = 0

Figure 8.13 Reverse measurement to obtain S22 and S12

Amplitude

t
a1b2

Δf

Figure 8.14 Measurement of magnitude and phase of the S21-parameter

The network analyzer 299



overall reflection coefficient. That is, the reflection coefficient as defined in
transmission lines or in space equals S11 if the reflecting section is infinite or if the
reflection section is matched at the load port. If the reflecting section is not infinite
or not matched, S11 is the sum of all reflections at the port including those due to
internal reflections. However, its knowledge has far reaching implications for the
network or device. Since the reflection coefficient is a measure of mismatch
between the transmission line leading to the port and the port itself, the S11-
parameter can be used directly to match the network. It is often used in this
fashion to match loads such as antennas or to match between components and
transmission lines in circuits. In the network analyzer, impedances are normalized
with respect to the test-port impedance; hence, the reflection coefficient can be
written as

G ¼ S11 ¼ 1 � Z=Z0

1 þ Z=Z0
(8.9)

Since S11 is obtained over a frequency range, Z, the impedance of the port is also
some function of frequency. By modifying Z of the port (e.g., by adding passive
components to an antenna), matching is obtained when Z ¼ Z0 either in a range of
frequencies or at a particular frequency, as is often the case with antennas that
operate at a fixed frequency. If matching is undertaken, it is often done with the aid
of the Smith chart (see Section 2.12). The ideal condition of course is for S11 to be
zero. In practice, one tries to reduce the reflection coefficient as much as possible.
If the display is in Smith chart mode, the goal is to bring the trace to converge to the
center of the chart, a point that corresponds to zero-reflection coefficient. The
measurement is usually used to evaluate the required impedance Z for matching.
Then the impedance of the device is modified to equal the matched impedance and
then the network analyzer is used again to verify that matching occurs.

We have mentioned the SWR in (8.4). The network analyzer can compute
the SWR directly from (8.4) after the S11-parameter has been found. The SWR can
also be used for matching, but now the goal is to reduce the SWR to SWR ¼ 1,
a value corresponding to S11 ¼ 0. As the mismatch increases, so does the SWR
with SWR tending to infinity for shorted (zero impedance load) or open (infinite
impedance load).

The S11-parameter can also be used for detection of resonance in circuits. Since
at resonance the impedance of a network is purely real, resonance also corresponds
to minimum reflection at series resonance and maximum reflection at parallel
resonance. Thus, the S11-parameter can be used as a resonance indicator directly.

In this section, we discuss the measurement of the S11-parameter using a
VNA and its application to two important functions. One is the matching of a load
to an antenna (or transmission line) (see Section 2.9.1 for a discussion on matching),
and the second is the detection of resonant frequency in a number of configuration
as they were used as part of the present work. Because these applications make use
of the Smith chart and the Smith chart is a numerical tool, we use specific
numerical examples. However, the methods are totally general.
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Matching of a load to a 50-W antenna
Consider Figure 8.15(a). The load in this case is an energy harvesting board con-
nected to a 50-W antenna. The board is designed to harvest power from a 915-MHz
transmission. At 915 MHz, the impedance of the board is 12.5 þ j115 W, as mea-
sured with a network analyzer. Under these conditions, the reflection coefficient
can be calculated directly:

G ¼ 12 þ j115 � 50
12 þ j115 þ 50

¼ 0:6368 þ j0:6737 (8.10)

Clearly, this is the same as the S11-parameter

S11 ¼ 0:6368 þ j0:6737 or S11 ¼ 0:9270ff46:6� (8.11)

The mismatch on the line produces an SWR [see (8.4)]

SWR ¼ 1 þ S11j j
1 � S11j j ¼

1 þ 0:9270
1 � 0:9270

¼ 26:4 (8.12)

Measurement of resonant frequency
This can be done with the network analyzer over a range of frequencies.
Figure 8.16 shows the S11-parameter over the frequency range 905–920 MHz.

(a) (b)

V
Zg ZL

Antenna Load C1

V
Zg ZL

Antenna Load

C2

Figure 8.15 (a) A load connected to a 50-W source (antenna) and (b) the
matching network needed to match the load
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Figure 8.16 The S11 for the circuit in Figure 8.15(a). S11 is shown in dB
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The S11-parameter is in dB. The phase of S11 is shown in Figure 8.17 over the same
range. At 915 MHz, the network analyzer provides the following:

S11 ¼ �0:6275117ff46:3� (8.13)

If we convert this to magnitude using (4.77), we have

S11j j ¼ 10 �0:6275117=20ð Þ ¼ 0:93 (8.14)

or:

S11 ¼ 0:93ff46:3� or S11 ¼ 0:6425 þ j0:6723 (8.15)

Note that there is a slight difference between the calculated values and those
obtained from the Smith chart. This is because of the ripple on the S11 curve in
Figure 8.16.

To better match the board to the antenna, a network consisting of a series and a
shunt capacitor is added as shown in Figure 8.15(b). The choice here is obvious—
since the impedance of the board is inductive, the network must be capacitive. The
process as performed on the network analyzer in matching mode is shown in
Figure 8.18. A series capacitor equal to 1.84 pF moves the impedance from its
original location at point P [where the normalized impedance is (12 þ j115)/50 ¼
0.24 þ j2.3] to point P1 at which the normalized impedance is 0.24 þ j0.43. The
shunt capacitor, equal to 6.14 pF, moves the impedance the center point at which
the normalized impedance is 1 þ j0. As can be seen from the figure and from the
inset, the S11-parameter now is

S11 ¼ 0:01ff180 or S11 ¼ �0:01 (8.16)

That is, the reflection coefficient has been reduced to �0.01 indicating an almost
perfect result. The impedance seen by the antenna is virtually 50 W and SWR ¼ 1.
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Figure 8.17 The phase angle of S11 for the circuit in Figure 8.15(a)
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In practice, it is not possible to use the capacitor values given. Using standard
capacitors with values close to those indicated in the design will produce some
mismatch. For example, a series capacitor of 1.5 pF and a shunt capacitor of 5 pF
produces an impedance of 86þ j28 W instead of 50 W, with S11j j ¼ 0:3 and SWR¼ 2.
This is of course not ‘‘perfect,’’ but it is much better than the starting point.

Figure 8.18 shows one of the many modes of a VNA—in this case a matching
mode.

Since the present work deals primarily with resonance, an example is useful.
A coaxial resonator of length 30 cm was designed as in Figure 8.19. The dimen-
sions of the resonator were designed to produce a nominal characteristic impedance
of 50 W when air-filled. The purpose of the device was to measure the permittivities
of water. Polyester, nylon, and the solution used for coating of the nylon and
polyester fabrics. The dialog allows the user to build the network, select compo-
nents, and to compute and display the results. The image shown is the final display
for a scan over a range of frequencies.

Figure 8.18 Screenshot for the design of the matching network in Figure 8.15(b)
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Figure 8.20 shows the frequency response of port 1. A clear resonance can be
seen at a frequency of 530.4 MHz with minor variations in the reflection coef-
ficient at other frequencies, indicating variations in impedance. The frequency is
scanned from 100 kHz to 1 GHz. The second port is not used (off), and the
magnitude is given in dB with 5 dB/division. Note also the reference signal
specified at �30 dB.

Figure 8.21 shows the same measurement after a polyvinyl chloride (PVC)
pipe was inserted in the chamber. The PVC pipe fills the chamber lengthwise but
only partially radially since its wall thickness is smaller than the air space available.
The resonant frequency has now moved to a lower value of 468.9 MHz because of
the higher permittivity of the PVC. Although the purpose of this example is simply

Connector Connector

L

Figure 8.19 A coaxial section used as a resonator

Figure 8.20 Reflection measurement on port 1 of the device in Figure 8.19
(air-filled)
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to show the utility of the S-parameters in detection of resonance, it should be noted
that the effective permittivity of the chamber can be easily evaluated as

eeff ¼ 530:4
468:9

� �2

¼ 1:284 (8.17)

This, of course, is not the permittivity of the PVC pipe but rather the effective
permittivity due to the partially filled cavity (a mixture of air and PVC).

Figure 8.22 shows the reflection measurement when the cavity is filled with
water. Now the resonant frequencies moved to even lower frequencies as expected
from the higher permittivity of water. Resonances can be seen at 144, 218, 290,
363, 435, 510 MHz, and so on. It should be noted that there are resonant fre-
quencies lower than 100 MHz as can be seen from the curve that tends lower at
100 MHz, but its measurement would require a scan staring at a lower frequency.
The many resonant frequencies are not surprising since the high permittivity of
water increases the electric length of the cavity.

8.3.2.3 Measurement of the transmission coefficient
The measurement of the S21-parameter, or the transmission coefficient, was
described above. As with the reflection coefficient, it can be used for a number of
applications. One of the simplest applications is its use in detection of resonance in

Figure 8.21 Reflection measurement on port 1 of the device in Figure 8.19
(PVC pipe in the chamber)

The network analyzer 305



a manner similar to that of the reflection coefficient except, of course, that when the
S11-parameter is minimum, the S21-parameter is maximum. Thus, in detection of
resonance with the S21-parameter, one looks at peaks rather than valleys in the
response. This is not usually a recommended use because unlike valleys, which are
very sharp, peaks tend to be flat, and hence the decision on what the resonant
frequency is tends to be less accurate. To see this, consider Figures 8.23–8.26.

Figures 8.23 and 8.24 are both scans from the empty cavity of Figure 8.19.
Figure 8.23 is a plot of the transmission coefficient S21 and Figure 8.20 of the
reflection coefficient. The scans are between 300 kHz and 1.3 GHz. The first thing
to note is that the minima in Figure 8.24 are at the exact location of the maxima in
Figure 8.23 as can be seen by comparing the markers. Clearly also, the maxima
in the transmission scan are broad and flat, whereas the minima in the reflection
scan are narrow and well defined. It is also interesting to compare Figure 8.24 with
Figure 8.20. Both of them are reflection scans with the cavity air-filled. In an ideal
case, these should be identical, but in fact the first resonant frequency in
Figure 8.20 is 530.4 MHz, whereas in Figure 8.24, it is 534.26—a difference of
almost 4 MHz. The two scans were taken at different times, and the difference is
likely due to changes in properties of air—temperature, humidity, and pressure
which all change the permittivity and hence the difference. It is also possible that
one or the other scan was done after a ‘‘better’’ calibration or that the instrument

Figure 8.22 Reflection measurement on port 1 of the device in Figure 8.19
(chamber filled with water)
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may not have been in thermal steady state. Although the difference is small (less
than 1%), it is significant and it represents the testing conditions during the actual
tests. Note also that the trace along the scan is different as well with different
variations. These can usually be attributed to the test cables (i.e., reflections due to
bending) and/or due to imperfections in the manufacturing of the resonator and are
not significant in this test (i.e., we are only interested in the resonant frequency, not
in the frequency response of the test cables).

The tests in Figures 8.23 and 8.24 were repeated with a polyester core, for the
purpose of evaluating the permittivity of polyester. The results are shown in Fig-
ure 8.25 for the transmission scan and in Figure 8.26 for the reflection scan. The
resonant frequency reduced from 534.26 for the air-filled cavity to 514.98 MHz
with the polyester core. To be noted again is the fact that the minima in Figure 8.26
correspond to the maxima in the transmission test in Figure 8.25 although the peaks
in the transmission test are quite difficult to identify.

8.3.2.4 Measurement of quality factor
Measurement of quality factor of a resonator is often needed in evaluation of cir-
cuits or, in the case described here, to evaluate the accuracy of measurement of
resonant frequencies. Indeed, the higher the quality factor, the sharper the

Figure 8.23 Transmission test on port 1. The marker at the peak between markers
2 and 3 shows the resonant frequency (maximum transmission,
minimum reflection)
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Figure 8.24 Reflection scan for the same conditions as in Figure 8.23. The
resonant frequencies at 534.26 and 848.21 MHz correspond to the
peaks in Figure 8.23

Figure 8.25 Transmission test with a polyester core filling part of the space in the
coaxial resonator



resonance and the more accurately it can be measured. There are a number of
methods suitable for this purpose. The easiest method to understand the measure-
ment of the loaded quality factor is based on the fact that the quality factor is the
ratio between the resonant frequency and the bandwidth between the two half-
power points [see (2.208)]:

QL ¼ w0

BW
¼ f0

fu � fl
(8.18)

Once the resonant frequency has been identified on the scan, the 3 dB points below
( fl) and above ( fu) the resonant frequency can be identified automatically and the
quality factor displayed. Other algorithms that accomplish the same purpose exist
and may be used, but the method above is simple and accurate. However, if the
unloaded quality factor or the external quality factor is required, we must resort
again to the S-parameters. Section 4.6 discussed the theoretical details of this
measurement. At resonance, the unloaded quality factor is [see (4.101)]:

Q0 ¼ 1
1 � S21

� �
QL (8.19)

The measurement of Q0 requires a couple of steps. First, we must find the resonant
frequency to evaluate the loaded quality factor using (8.18) and the process of

Figure 8.26 Transmission test with a polyester core filling part of the space in the
coaxial resonator
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evaluating the half-power frequencies. These are usually evaluated from the
S11-parameter in a reflection test. This is followed by a transmission test to find the
S21-parameter at the resonant frequency. The simple calculation in (8.19) is carried
out by the network analyzer to obtain the unloaded quality factor. The external
Q-factor is also available from the S-parameters [see (4.102)]:

Qe ¼ QL

S21
(8.20)

Although the external quality factor is not often needed, (8.20) shows the ease with
which additional, secondary values can be measured without additional measure-
ments and the associated necessary calibrations.

Of course, there are other methods of measurement for the Q-factor since there
are different methods of evaluating the losses in a cavity. For example, one can
measure the loaded Q of a cavity from the reflection coefficient or, more con-
veniently, from the SWR since at the half-power points, the magnitude of the real
part of the impedance equals the real part of the resonator impedance. Either the
phase or the magnitude may be used for this purpose. Other methods use the
transmitted power. However, in modern measurements, all these can be done using
a network analyzer, and hence the method described above is sufficient and has the
advantage of clarity and simplicity.

8.3.2.5 Measurement of impedance
Measurement of impedance is a fundamental process in a VNA and is related to the
S11-parameter as discussed in Chapter 4. Impedance of a device connected to a
transmission line produces a reflection coefficient:

GL ¼ ZL � Z0

ZL þ Z0
¼ GLj jejqG (8.21)

where ZL is a load impedance to be measured and Z0 either the characteristic
impedance of a line or the impedance in space. One has to measure both the
magnitude of the reflection coefficient and its phase qG, something that is inherent
in VNA measurements. Once the S11 coefficient has been measured, one can
evaluate the impedance of the device as

ZL ¼ Z0
1 þ S11ð Þ
1 � S11ð Þ (8.22)

This of course is a complex value as one would expect.
The measurement of impedance is fairly simple except of course that one must

take the normal precautions associated with VNA measurement including proper
calibration.

8.3.2.6 Measurement of insertion loss, return loss,
attenuation loss, and reflection loss

These losses were defined in Section 4.3.3.3 in terms of the S-parameters. In all
cases, it is sufficient to measure the S11- and S12-parameters (or, in some cases,
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the S22- and S21-parameters). The various losses are calculated from the S-
parameters as

Reflection loss

RL ¼ 10 log 1 � S11j j2
� �

(8.23)

Attenuation loss (transmission loss):

AL ¼ 10 log
S12j j2

1 � S11j j2 (8.24)

Insertion loss:

IL ¼ 20 log S12j j (8.25)

Return loss
that return loss is a nonnegative number for reflection from a passive network:

RTL ¼ 20 log
1

S11j j (8.26)

8.4 Measurement of complex permittivity and loss tangent

The measurement of complex permittivity was discussed extensively in Chapter 4.
All methods discussed relied on the measurement of the S-parameters either in a
waveguide, a transmission line, or in free space. In addition to the S-parameters, the
methods required extensive computation and, in some cases, special calibrations
and compensation techniques. All these of course can be done with a network
analyzer and either a standard fixture or, in some cases, a specially made fixture.
Sample preparation is necessary for most methods. Of particular interest are the
transmission line methods and the cavity perturbation method. These methods were
used in the present work to measure the resonant frequency of solid sheets of nylon
and delrin for sensor calibration purposes and of the liquid solution to verify the
numerical simulations. Although in general the dielectric constant is known, mea-
surements often become necessary either because of variability between suppliers
or even batches of the same material from the same supplier or because the per-
mittivity is not available at the required frequency. Also, the loss tangent is often
not known and requires measurements.

8.4.1 Resonant methods
The use of a coaxial resonator for measurement of permittivity was discussed in
Sections 8.3.2.2 and 8.3.2.3, in which the effective permittivity was calculated from
the resonant frequency of the cavity with and without the sample in the cavity [see
(8.10)]. As was indicated in Section 8.3.2.2 and as discussed in Section 3.5, the use
of resonant methods can only measure the permittivity of the cavity due to all
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effects that may occur in the cavity, hence the term effective permittivity. However,
under one of two conditions, the measurement can provide the actual permittivity
of the sample:

1. The material being tested fills the entire resonator.
2. The sample is small and placed at a location where the electric-field intensity is

maximum and constant throughout the sample.

The condition in (1) can be satisfied if a sample can be machined to fill the cavity
exactly or if the cavity is filled with a liquid permittivity of which is required.
In some cases, such as measurement on gases or in relating permittivity due to
humidity, the condition is satisfied exactly. It is not, however, possible to do so if
the material comes in sheets or if it is bulk material such as, say, grains. The
condition in (2) can be satisfied theoretically for almost any cavity and many solid
materials that can be machined. It is not suitable for liquids, and the placement of
the sample in the cavity can be problematic. In some cases, it requires some kind of
support such as a suspending wire, and these issues must be taken into account.

Once the sample has been made and properly placed, the measurement is
straightforward. The resonant frequency of the empty cavity is measured first. Then
the measurement is repeated with the sample in the cavity.

8.4.1.1 Small sample in cavity—cavity perturbation
The cavity perturbation method was described in Section 3.5 and will not be
repeated here. However, from a practical measurement point of view, there are a
number of issues that have to be resolved for the measurement to be valid. The first
of these is the type of cavity to be used. The most common are rectangular cavities
and cylindrical cavities. The latter are particularly useful because the connections
to coaxial cables are usually easier to handle and result in better matching than in
rectangular cavities. Figure 8.27 shows the sample placement in a cylindrical
cavity. If the cavity is driven in the TM010 mode, the sample is a thin rod of any
length (up to the axial length of the cavity), ensuring that the field is constant in the
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Figure 8.27 Cavity perturbation measurement in a circular cavity driven in
a TM010 mode
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sample. Under these conditions, the perturbation equation in (3.84) for the shift in
resonant frequency and (3.108) for the Q-factor produce the following:

e0r ¼ 0:539
V

Vs

� �
f0 � f

f0

� �
(8.27)

e00r ¼ 0:269
V

Vs

� �
1

Qs
� 1

Q0

� �
(8.28)

where V is the volume of the cavity, Vs the volume of the sample, f0 the resonant
frequency of the empty cavity, f the resonant frequency of the cavity with the
sample, Q0 the Q-factor of the empty cavity, and Qs the Q-factor of the cavity with
the sample.

In a rectangular cavity driven in the TE103 mode, the sample is also a rod and is
placed at the center of the cavity as shown in Figure 4.30. The real and imaginary
parts of the permittivity were given in (4.148) and (4.149) and repeated here for
convenience:

e0r ¼ 1 þ 0:5
V

Vs

� �
f0 � f

f
(8.29)

e00r ¼ V

4Vs

� �
1

Qs
� 1

Q0

� �
(8.30)

Clearly then, the process is identical and the results are very similar.
One first measures the resonant frequency f0 of the empty cavity followed by

the measurement of Q0, the loaded Q-factor of the empty cavity as described in
Section 8.3.2.4. Then the process is repeated for f and Qs, and the permittivity
calculated from the equations for the specific cavity used.

The measurement of the resonant frequency is typically done through the S11-
parameter (for series resonance) or from the S21-parameter (for parallel resonance).
The loaded Q-factor is measured from the half-power points in the frequency
response of the cavity.

There are a few precautions that should be borne in mind to ensure accurate
results.

1. The cavity must be a low-loss cavity to ensure that losses in the cavity walls do
not affect the loss tangent. If the sample is very low loss, the losses in the
cavity walls may introduce a large error in the calculation of e00. In very low-
loss materials, the sample fills a larger section of the cavity or even the whole
cavity. In such cases, (8.27)–(8.30) cannot be used since these were specifi-
cally derived from the condition that the sample is thin. In such cases, one has
to go back to the perturbation equations and recalculate e0 and e00.

2. Matching to the cavity is very important, otherwise the S-parameters may be in
errors affecting the results.
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3. The sample must be machined accurately and must be as small (thin) as pos-
sible since, strictly speaking, the field is only constant on the axis of the cir-
cular cavity or the center of the rectangular cavity. The thicker the rods, the
less accurate the measurements. Nevertheless, it is possible to come up with
calculations for samples that are large—for example, disks the radius of the
circular cavities if this is necessary.

8.4.1.2 Large sample in the cavity
If the dielectric properties of low loss, or low-density materials (such as foams or
gases) are needed, the perturbation method may not be applicable directly. Liquids,
for examples, are also difficult to test under the perturbation conditions. For these
types of materials, the approach is to include a much larger sample or, if appro-
priate, to fill the whole cavity. The perturbation method allows for this type of test
as was indicated in the more general relations in (3.77), (3.78), and (3.80). These
equations however are more difficult to apply since some of the approximations
used in the perturbation method for small samples cannot be used. In particular, we
cannot assume that the fields internal to the sample remain the same as the fields
before the sample was introduced. Instead of using the approximations for the
fields, we simply integrate the fields over the cavity volume for the empty cavity
and over the material volume, which now may take a significant part of the cavity
or the whole cavity. Assuming that the test material fills the whole cavity, we
proceed with (3.105) and (3.107) modified as follows:

wr � w0 ¼ �w0
Ð

V e0 � e0ð ÞE � E0½ �dv

2
Ð

V e0E � E2
0dv

(8.31)

1
Q
¼
Ð

V e00E � E0½ �dv
Ð

V e0E � E0dv
(8.32)

In these relations, E0 is the field in the empty cavity, E the field in the perturbed
cavity, and Q is found from

1
Q
¼ 1

Qs
� 1

Q0
(8.33)

where Q0 is the Q-factor of the empty cavity and Qs that of the perturbed cavity.
If the test material only fills a portion Vs of the cavity, then the integral in the

nominator is over that volume only.
The disadvantage of this approach is simply in the difficulty of performing the

integrals since the approximation we used previously to obtain (8.27)–(8.30),
namely that E ~ E0, cannot be used. That is, the formulas for Dw/w0 and for 1/Q are
more complex. However, from a testing point of view, we proceed with the same
steps:

1. Measure the resonant frequency for the S11-parameter of the empty cavity to
obtain f0.
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2. Repeat for the cavity with the material to obtain fr.
3. Measure Qs and Q0 as described above from the half-power points.

These provide the left-hand side of (8.32) and (8.33). The right-hand side is usually
calculated analytically or even numerically if need be.

These measurements are easily done on a VNA and, unless the losses in the
tested medium are comparable to the losses in the cavity walls, the results are
accurate. Of all the methods for evaluation of the dielectric constant, the resonant
methods are the most sensitive and often the most accurate. They are also relatively
simple to perform once an appropriate cavity and sample have been prepared.

8.4.2 Transmission line methods
Perhaps, the most common method of evaluation of dielectric properties of mate-
rials is the transmission line (or waveguide) method described in Section 4.9. In
most cases, the reflection-transmission method is used, which implies that the sample
is in a transmission line and both the reflection and transmission coefficients are used
for the measurement. The configuration was shown in Figure 4.29. The complex
permittivity is calculated using (4.135) for nonmagnetic materials:

er ¼ er0 þ jer00 ¼ l2
0

mr

1

l2
c

� 1
2pl

ln
1
T

� �� �2
 !

(8.34)

where T is found from (4.134):

T ¼ S11 þ S21 � G
1 � S11 þ S21ð ÞG (8.35)

and G is given in (4.133):

G ¼ S2
11 � S2

21 þ 1
2S11

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
11 � S2

21 þ 1
2S11

� �2

� 1

s

(8.36)

l0 is the wavelength in the empty transmission line or waveguide, and lc is the cutoff
wavelength (equals infinity for transverse electromagnetic (TEM) waves in trans-
mission lines but is finite in waveguides). Clearly then, the measurement is essentially
that of measuring the S11- and S21-parameters using a VNA (requires both amplitude
and phase of the S-parameters) and then calculating the permittivity.

If the material is magnetic, then the permeability in (4.135) must be found first
from (4.136):

mr ¼
1 � G

L 1 � Gð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2

0


 �� 1=l2
c


 �q (8.37)

where

1

L2 ¼ � 1
2pl

ln
1
T

� �� �2

(8.38)
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As was indicated in Section 4.9, the solution for the imaginary part of permittivity
is not unique and the correct solution must be found through additional analytic
steps. These usually require the measurement of the group delay on the line,
a quantity that can also be obtained using the network analyzer. The process
described in Section 4.9 and in this section is often referred to the NRW (Nicholson–
Ross–Weir) algorithm and is almost always available on network analyzers as a
function.

It goes without saying that the normal steps in measurements such as calibra-
tion must precede any measurement and issues of connections and matching must
be resolved. The preparation of samples must be carefully done and the fixture
(transmission line or waveguide) must be a quality fixture with low wall losses. An
example of such a fixture can be seen in Figure 8.19, and the S11- and S21-
parameters one can obtain for various materials can be seen in Figures 8.20–8.26.
Finally, it is worth mentioning as well that the method is well suited for materials
with relatively high permittivities and losses and that it fails around the resonant
frequencies. Low-loss materials are best tested in resonant cavities. The method is
not suited to measurement of liquids simply because it is not possible to place a
sample in the middle of a transmission line or waveguide.

A second option for testing in transmission lines and cavities is afforded by the
so-called reflection method in which the sample is placed against the shorted end of
the transmission line or waveguide as shown in Figure 4.28. There are two
advantages to this method: first, only the reflection coefficient due to the sample is
used and, second, liquid samples can be tested as well. The network analyzer only
measures the S11-parameter. Figure 4.33 shows how a liquid sample can be mea-
sured by simply setting the transmission line vertically so that the liquid collects at
the bottom above the short. The measurement for a coaxial transmission line using
the sample holder in Figure 8.19 is shown in Figure 8.28. With a fluid height t, and
assuming the sample is placed against the short, the S11-parameter, i.e., the slab
reflection coefficient can be written as

S11 ¼ �p þ tanh gt

p þ tanh gt
(8.39)
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Figure 8.28 Measurement of the properties of a fluid in a shorted coaxial line
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where

p ¼ gm0

g0m
(8.40)

g ¼ aþ jb (8.41)

a is the attenuation constant in the material under test (MUT), b the phase constant,
and g0 is the propagation constant in the empty waveguide or line.

The propagation constants as well as the attenuation and phase constants
depend on the type of transmission lines or waveguide and on the modes being
propagated.

In a coaxial transmission line, only the TEM mode exists and there is no cutoff
frequency; therefore, the propagation constant in the MUT is

gTEM ¼ jw
ffiffiffiffiffiffi
me0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � j

s
we

r
¼ jw

ffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 � je00

p
(8.42)

The attenuation and phase constants are obtained from g:

a ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ s
we0
� �2

r

� 1

" #vuut ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ð Þ2 þ e00ð Þ2

q
� 1

� �s

(8.43)

b ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ s
we0
� �2

r

þ 1

" #vuut ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ð Þ2 þ e00ð Þ2

q
þ 1

� �s

(8.44)

The propagation constant in the empty line is usually taken as that of lossless air:

g0 ¼ jw
ffiffiffiffiffiffiffiffiffi
m0e0

p
(8.45)

Once (8.42) and (8.45) are substituted into (8.40) and then (8.40) and (8.42) are
substituted into (8.39), there is a direct relation between the permittivity and per-
meability and the terms of S11. If the material is nonmagnetic, then this relation
suffices to calculate e0 and e00 from the real and imaginary parts of S11. If both the
permittivity and permeability are needed, one can either measure two samples, each
of a different thickness or one can move the sample away from the short a certain
distance Dt and obtain a second relation with this condition. However, since the
interest here is only for nonmagnetic materials, we can set m¼ m0 and proceed with
the solution.

The measurement on a network analyzer consists of measuring the S11-parameter
followed by the calculations above. The algorithm necessary to do so may already
exist in the network analyzer’s computer or may be done separately.

The measurement in waveguides is identical, but the calculations are some-
what different because the propagation constant, and hence the phase and
attenuation constants are different and mode dependent. In most cases, the lowest
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propagating mode is used, which, in a rectangular waveguide, is the TE10 mode.
Under these conditions, the propagation constant in the waveguide is

gTE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

c � w2m e0 � je00ð Þ
q

(8.46)

where kc is the cutoff wavenumber for the particular waveguide and mode of pro-
pagation. For a rectangular waveguide with the larger dimension equal to a, the
cutoff wavenumber is

kc ¼ p
a

(8.47)

We get

gTE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
a

� �2
� w2m e0 � je00ð Þ

r

(8.48)

The rest of the calculations are the same as for the coaxial line as long as the
frequency is above the cutoff frequency for the mode and below the cutoff
frequency of the next, higher mode.

8.4.3 Measurements in space
Many of the measurements made with network analyzers are in transmission lines
and in waveguides including in sections of these that act as resonators. This is
entirely understandable since under these conditions, the ports and the impedances
are well defined and the fields generated and measured are contained within the
structures. There are however other important uses for the network analyzer. One
of these is the measurement of propagation properties in open space or in config-
urations in which the inputs of the network analyzer are not connected directly to
transmission line ports. An example is shown in Figure 4.31. In this case, the
purpose is to evaluate the material such as in trying to measure its complex
permittivity or permeability or perhaps to detect inclusions in the material as part of
a nondestructive testing regime.

Looking at Figure 4.31, we can view this as a radar system, whereby the source
port transmits power, some of which is reflected back to the port, some of which is
transmitted to the load port of the network analyzer. Therefore, the basic mea-
surements of the network analyzer can be extended to this type of configuration
with some modifications. The most important modification has to do with the fact
that the DUT in Figure 4.31 is on a holder or support structure and that structure
modifies the interaction of waves with the DUT. Similarly, one cannot assume that
all power is either reflected from or transmitted into the DUT—some may be
transmitted through air to the load port of the network analyzer, some may be lost
by passing over the DUT into space. Another problem to be resolved is the inter-
action of waves with structures in the vicinity—walls, furniture, etc. Nevertheless,
with careful setups, proper calibration, and test procedures, these measurements
can be accurate and repeatable.

318 Open resonator microwave sensor systems for industrial gauging



The process of obtaining the S-parameters under the conditions in Figure 4.31
is a two-step process:

1. The S-parameters of the holder without the DUT are obtained first.
2. The S-parameter with the holder and the DUT are then obtained separately.

These two sets of S-parameters are now used to deembed the holder effects from
the S-parameter leading to a set of parameters that are entirely due to the DUT. The
deembedding functions available on most network analyzers are often used to
eliminate the effects of holders, connectors, cables, etc. The measurement then
proceeds as for the transmission line measurement described above.

Although this type of measurement can be very accurate, some precautions are
essential. Reflections from fixed surfaces and objects can be eliminated by the
deembedding process, but transient effects such as moving objects and personnel
moving in the vicinity may present a totally different signature during the two tests
and hence lead to errors. It is also required that the transmission of power through
the sample be done with a focused beam using directive antennas to ensure that all
power either reflects from or transmits through the sample. That may require that
the sample being tested be relatively large and/or that the transmitting and receiv-
ing antennas be placed at short distances from each other.

8.5 Integration of network analyzers in designs

The network analyzer is an expensive, accurate, measuring instrument. It is rare
that one would consider using it for anything other than a laboratory instrument.
Nevertheless, because it is so versatile and because it combines a source and
analysis modules, it can be used as part of an industrial sensing system.
Its advantage, in addition to its exceptional qualities as a measuring instrument,
is that in certain cases, it can replace all the electronics, computation, and ana-
lysis requirements of the sensing system. An example is the production line
sensing in a cavity resonator of, for example, plastic rods and profiles or fabrics
for the purpose of integrity and quality control. In the present work, the thickness
of rubber and the coating of fabrics are controlled by an open resonant sensor. In
this type of application, the resonant cavity must be set into resonance and the
resonant frequency measured accurately to obtain information for the purpose of
control of the rubber thickness or the amount of coating material on the fabric.
It is a simple matter of using the source port to drive the cavity and the load
port to measure the resonant frequency. One can go beyond that and use the
S-parameters to monitor the Q-factor as well. And all that over a wide range of
frequencies and power levels, all accurately controlled. The computer in the
network analyzer can then be employed to do additional tasks and to commu-
nicate data out of the system. The use of a dedicated network analyzer as part of
the sensor system, if it can be justified in terms of cost, means that the design is
limited to the sensor itself (the resonant cavity in this case) and its mechanical
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components. All other functions are taken care of by the network analyzer. This
approach has additional advantages:

1. The single-module approach, whereby all electronics and computational
functions are in a single instrument, has advantages in maintenance. In the case
of malfunction, the network analyzer can be replaced and the faulty unit sent
for repair. The interruption in production is minimal, and the need for skilled
personnel is limited.

2. Development time is greatly reduced. In addition to having the hardware
available, network analyzers also have powerful software tools that can be
brought to bear on the design. The common necessary steps of prototyping
the electronic circuits, testing, writing software, etc. are obviated, and the time
required to integrate the system reduced to a minimum.

3. Future upgrades can be handled much easier. Replacement of the network
analyzer or new software can be done independent of the rest of the system and
vice versa.

4. Flexibility of the system is another important point. One can change para-
meters of the sensing system to match required conditions, and the use of the
internal computer allows for additional tasks such as documenting, archiving,
and communicating data.

5. The cost itself, even though it is high, may in the end be comparable or even
lower than a design based on dedicated electronics, especially when one takes
into account development time and possible future upgrades. This is particu-
larly important in microwave systems in which hardware design requires spe-
cialty components and special skills.

There are however some limitations to this nonconventional use of the network
analyzer:

1. The instrument is not an industrial instrument and may not be able to operate
under the conditions often found on the factory floor without some means of
protection. This may include protection from the elements, vibrations, exces-
sive humidity and heat, and the like. It will almost certainly have to be placed
in an air-conditioned environment, perhaps with some means of power con-
ditioning. Electromagnetic compatibility and interference must also be
addressed in high field environments.

2. The power levels available from the instrument are relatively low meaning that
it may not be suitable in applications where high power is needed. Clearly, it is
limited to low-power applications.

Overall, while there are certainly applications where this approach is not viable,
there are many that can benefit from the use of the network analyzer. The designer
should at the very least consider the possibility of utilizing a first rate, flexible
instrument that can replace many of the functions in the design, and, in the process,
reduce design and testing time and produce a better system.

Depending on the application, one may be able to use a simpler network
analyzer (scalar or vector) that connects to a computer. These relatively simple
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instruments are available as front-ends to a computer and are driven by software on
the computer. These two-port devices are usually limited in capabilities such as
frequency range, power, scan time, and accuracy but are simple and simple to use
and may be perfectly suited for many tasks at a small fraction of the cost of a
laboratory network analyzer even when including the cost of a dedicated computer.

Further reading

There are many good references on network analyzers as well as well-written
tutorials. As a whole, academic works on the subject are less important in the
context of this chapter than tutorials and manufacturers’ literature. There are also
many publications and tips on methods of measurement, algorithms, measurement
tips, and so on. There is much to be learned from these publications. The user
should start with the guide that comes with the instrument and consult the appli-
cation notes from the manufacturer. Because different manufacturers produce
relatively similar instruments, it is common to find answers to questions on mea-
surement from sources other than those specific to the instrument in use.

The following is a short list of publications that may be of interest, in additions
to the references on measurements listed in the “Bibliography” section of
Chapter 4. Description of the operation of the network analyzer can be found in the
following publications available from various manufacturers of network analyzers.

[1] ‘‘Measurement Guide: Vector Network Analyzer for Anritsu RF and
Microwave Handheld Instruments,’’ Anritsu Corp., 2016.

[2] ‘‘Fundamentals of Vector Network Analysis, Version 1.1,’’ Rohde &
Schwarz USA, Inc.

[3] ‘‘Measurement Guide: Vector Network Analyzer for Anritsu RF and
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Appendix A

Electromagnetic radiation safety

A.1 Introduction

The sensors described in this work use an open stripline resonator driven by a
network analyzer. As the sensors are open, it is important to ensure that the radiated
fields are within safety standards, so that personnel are properly protected.

These sensors use frequencies in the range of 350–450 MHz generated by an
Agilent model 8712ET vector network analyzer. The reference power of the ana-
lyzer is 1 mW, and the highest power used in any of the sensors was 16 dBm or
40 mW. Although the power is low, the fields in the resonant sensor can be rather
high, and because personnel can get close to the open resonator, it is important to
establish the risk associated with exposure to these fields.

The electromagnetic fields were measured using a Wayne Kerr spectrum
analyzer and two types of receiving antennas, a hand-held monopole and a larger
dipole receiving antenna. Measurements were taken at distances ranging from
50 mm to 10 m from the network analyzer’s source antenna, which is located in the
resonant cavity.

The measurement results were compared to the 1.25 mW/cm2 power density
exposure limit per published standards for the frequency range in which the sensor
device will operate. The limits are those published in the American Conference of
Governmental Industrial Hygienists worldwide publication, ‘‘2017 Threshold Limit
Values (TLV) and Biological Exposure Indices.’’

In the United States, the limits defined by the Federal Communication Com-
mission (FCC) are somewhat different and are given in Table A.1. These values are
published in the ‘‘OET Bulletin No. 65 (August 1997), Evaluating Compliance
With FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic
Fields.’’ The FCC distinguishes between occupational/controlled and general
population/uncontrolled exposures and, within these categories, allows larger
exposures on the extremities—hands, wrists, feet, and ankles as shown. The limits
for the general population is lower by a factor of 5 compared to the occupational
limits, but in both cases, the limits allowed on the extremities are 50 times higher
than on the body. Table A.1 also shows limits on specific absorption rate (SAR).
These are two different ways of assessing the risk from exposure. Power density is
specified on the surface of the body, whereas SAR is specified in the volume.



Although the limits in Table A.1 are somewhat different than those in the TLV
document, they are close and below those in the TLV document. It should also be
noted that other countries have their own limits and are often lower than those
indicated here. Other bodies, including professional societies, trade organizations,
national offices, and international agencies, publish limits and standards for expo-
sure. However, for the sake of simplicity, the field levels measured as part of this
work are compared to the FCC and TLV documents. It is shown that the fields
produced by the sensors described here are orders of magnitude lower than
these limits; hence, they also comply with any of the other sources available. In the
interest of generality, some of the more important documents on the subject
are listed in the ‘‘Bibliography’’ section.

A.2 Field measurements

The spectrum analyzer performs measurements in terms of power ratios (dBm—
with reference to 1 mW) or in terms of voltage ratios (dBmV—with reference to
1 mV). These two are entirely equivalent since any reading in dBm can be con-
verted into dBmV as follows:

dBmV ¼ dBm þ 107 dB (A.1)

However, what we need here are the electric-field intensities at the location of the
antenna rather than the dBm readings at the input to the spectrum analyzer.
To convert the readings, the following is used:

1. The power at the input to the spectrum analyzer is

Pin ¼ Va
2

2RL
¼ V 2

aðrmsÞ
RL

(A.2)

where RL is the input impedance to the spectrum analyzer (50 W). Since values
are typically measured as rms, the following will be done as rms values, but
peak values obviously are obtained just as easily.

Table A.1 FCC limits of allowable exposure to electromagnetic fields in the very
high frequency (VHF) and ultra high frequency (UHV) ranges

Occupational General population

Power density 30–300 MHz 1 mW/cm2 0.2 mW/cm2

300–1,500 MHz f/300 mW/cm2 f/1,500 mW/cm2

SAR 0.4 W/kg* (8 W/kg†) 0.08 W/kg* (1.6 W/kg†)

*Averaged over the whole body.
†Averaged over any 1 g of the body.
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2. The power may equally well be written in terms of the incident electric-field
intensity:

Pin ¼ pqSAe ¼ pq
E2

iðrmsÞ
h0

Ae (A.3)

where Ae is the antenna effective area and p and q are the polarization factors
of the antenna. S is the time-averaged power density at the location of the
antenna. The effective area of the antenna is given as

Ae ¼ G
l2

4p
¼ G

c2

4pf 2
(A.4)

where G is the antenna gain, c the speed of light and f the frequency of the
wave. The polarization factors p and q indicate the fraction of the maximum
field that is coupled to the antenna. For simplicity, it was assumed that both p
and q equal 1 (i.e., that the antenna is parallel to the maximum electric-field
intensity). This is justified from the fact that both horizontal and vertical
components of the field are roughly equal. The latter means the field is not
polarized. The assumption also guarantees that worst case values are obtained.

Equating the input power in (A.3) and (A.4):

pq
E2

iðrmsÞ
h0

G
c2

4pf 2
¼

V 2
aðrmsÞ
RL

(A.5)

or:

E2
iðrmsÞ ¼

V 2
aðrmsÞ 4pf 2 h0

RL Gc2 pq
(A.6)

Now, to write this in dBmV, we take 10 log10 on both sides as follows:

10 log10 E2
iðrmsÞ ¼ 10 log10

V 2
aðrmsÞ 4pf 2 h0

RL Gc2 pq

 !
(A.7)

or

EiðrmsÞðdBmV=mÞ
¼ VaðrmsÞ dBmV=mð Þ þ 20 log10 f � 10 log10 G � 10 log10 RL

� 10 log10 p � 10 log10 q � 10 log10
c2

4ph0
(A.8)

In this relation, f is measured in MHz and c ¼ 300 to ensure proper units.
With these, and taking p ¼ 1, q ¼ 1, h0 ¼ 377

EiðrmsÞðdBmV=mÞ ¼ VaðrmsÞ dBmV=mð Þ þ 20 log10 f � GðdBÞ

� 10 log10 RL � 12:787 (A.9)
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In this configuration, RL ¼ 50 W, f ¼ 364 MHz. Also, the gain of the antenna can
be approximated as G ¼ 1.642. A half wavelength antenna has a gain of 2.15 dB.
The antenna used for the measurements was smaller, but, since an infinitesimal
dipole has a gain of G ¼ 1.5 or 1.76 dB, a value of 2 is a good approximation. With
the readings we have taken, which will be denoted here as M (dBm), the incident
electric-field intensity can be written as

EiðrmsÞðdBmV=mÞ ¼ MðdBmÞ þ 107 þ 51:22 � 2 � 16:99 � 12:787ð ÞdB

(A.10)

or:

EiðrmsÞðdBmV=mÞ ¼ MðdBmÞ þ 126:44 dBð Þ ¼ k (A.11)

Finally, the electric field itself is calculated as

EiðrmsÞ ¼ 100:05k � 10�6 V=mð Þ (A.12)

Figure A.1 shows the lines along which the measurements were taken relative to
the sensor, and Table A.1 shows the actual measured values in V/m. Additional
measurements were taken, but those shown in Table A.2 are the largest values.

Side view
Top view

Line 4

Line 1 Line 2Line 3

Line 4

Figure A.1 Schematic showing the lines on which measurements of the electric-
field intensity were taken. The values are shown in Table A.1

Table A.2 Electric-field intensities along the lines shown in Figure A.1

Distance (m) Line 1 (mV/m) Line 2 (mV/m) Line 3 (mV/m) Line 4 (mV/m)

0
0.3 118.16 130.58 112.39 144.32
0.5 124.21 101.7 130.58 144.32
0.5 118.16 101.7 118.16
1 48.04 48.04 48.04 68.17
2 35.59 41.35 35.59 55.82
3 37.41 25.08 37.41 55.82
4 25.08 39.33 27.71 45.7
5 25.08 35.59 23.86 30.63
6 26.36 33.85 16.81 27.72
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A.3 Conclusions

The largest field measured is less than 150 mV/m. This corresponds to a maximum
power density of (150 mV/m)2/377 ¼ 59.7 � 10�12 W/m2. The magnetic-field
intensities were not measured separately, but rather it was assumed that the waves
are plane waves.

Comparing these with the TLVs, the largest electric-field intensity is at least
six orders of magnitude lower than the allowable TLVs. The same applies to the
magnetic-field intensity. Allowable power density is 1.25 mW/cm2 ¼ 12.5 W/m2.
The power radiated by any of the sensors is at least ten orders of magnitude lower
than the allowable TLVs. Since we made some assumptions (such as plane wave
propagation), the fields and power are well within the allowable exposure fields.
This is not surprising since the total power to the sensor is 40 mW, and only a small
part of this leaks out of the sensor.
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Appendix B

Material properties

B.1 Introduction

The success of the sensors described in this work is due to the ability of the open
stripline resonator to detect changes in the permittivity of the material being tested.
In the case of the coated fabrics, the main material being sensed is the dip solution
being picked up by the fabric. Although the solution contains various materials and
upon drying it leaves a solid layer that is about 20% of the original solution, the
sensing mechanism is based on sensing of water, which is about 80% of the solu-
tion. Since the fabric is very thin and the amount of solution is relatively small, the
dielectric being sensed is a small fraction of the volume of the sensor. Because of
that, what is really sensed is the effective permittivity of the space within the
sensor. The same applies to the rubber thickness sensor. The rubber is only a few
millimeter thick and again the effective permittivity is the sensed quantity.
Nevertheless, the response of the sensor is linear with the effective permittivity
because the amount of material involved is small. It is therefore obvious that the
dielectric constants of the materials involved are important not the least because of
the way calibration is performed.

This short appendix summarizes some of the properties used in this work as
well as measurements of permittivity performed for the purpose of ascertaining
published values. In some cases, the permittivity was calculated from simulations.
Since the resonant frequency of the actual material was measured and given the
dimensions of the medium, a simple process of iteration on the permittivity in the
simulation until the simulated resonant frequency matched the measured resonant
frequency provided the correct value for the material. In other cases, simulations
were performed to ascertain the exact value of permittivity.

B.2 Measurements

Although permittivities of most materials we used are available in published docu-
ments, one cannot hope to find exact data at the frequencies of interest. In other cases,
the relative permittivity is available in a range of values. In still other cases, such as
the dip material, data are not available at all since the dip is a mixed composition of a
number of substances. In such cases, the permittivity had to be measured.



Nylon and polyester. One of the fabrics used in this work is made of nylon. To
obtain the relative permittivity, it was measured on sheets of Delrin of various
thicknesses using a capacitive method in a holder, using the network analyzer. At
400 MHz, the relative permittivity obtained is 3.13, but it varies from 4.0 at very
low frequencies—essentially DC to 3.11 at 1 GHz. The data are shown in
Figure B.1. Similar measurements on polyester provide a value of 2.92 at 400 MHz
with variations from 4.0 at DC to 2.9 at 1 GHz. Figure B.2 shows these data with a
few points indicated. Unlike nylon, the scatter in the measurements on polyester is
larger and the value of 2.92 is the best estimate that could have been obtained from
the measurements. Aramid is also a common fabric. Its permittivity was obtained
from published data (see the ‘‘Bibliography’’ section). Its permittivity at the fre-
quencies of interest is between 4.5 and 5.3.

Dip material. As mentioned previously, the dip solution is composed of a
number of ingredients. About 80% is water with additions that include epoxy,
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Figure B.1 Relative permittivity of nylon 6/6 with respect to frequency: (a) range
between DC and 1 GHz and (b) range between 1 MHz and 1 GHz
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formalin, carbon black, and other additions that make up about 20% of the solution
(by weight). Each of the ingredients has its own permittivity, available in published
data. We have measured the permittivity of the dip solution using the method
described in Chapter 4 in a coaxial resonator as well as used the mixing formula in
Section 5.2 to calculate the relative permittivity of the mixed solution. The best
estimate for the solution from both measurements and mixing formula is a relative
permittivity of 62.9. This is reasonable considering the fact that 80% is water with a
permittivity of 78.3 at 400 kHz. The mixing formula is as follows:

ffiffiffiffiffiffieeq
p ¼

P
i

ffiffiffiffi
ei

p
viP

ivi
(B.1)

Or, a simpler, less accurate formula may be used

eeq ¼
P

ieiviP
ivi

(B.2)
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Figure B.2 Relative permittivity of polyester with respect to frequency: (a) range
between DC and 1 GHz and (b) range between 1 MHz and 1 GHz
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where ei is the relative permittivity of material i, and vi its volume. The equivalent
relative permittivity is that of the mixture. There are other formulas for mixing of
dielectrics but all of them are based on certain assumptions including the shape of
the composing media (sphere, cylinders, etc.) and hence each formula will produce
different results. It should also be noted here that in the case of the fabric sensor, the
fabric itself may either be modeled as a uniform mixture of the fabric material and
the dip solution, whereas the solution itself is a mixture of material and again can
be modeled as particles or as a uniform mixture of its components without any
distinction between the constituents. In the cavity, the fabric constitutes a thin layer
of dielectric with an effective permittivity based on its composition and dip pickup
with the rest of the volume being air. The effective permittivity in the cavity now
depends on these two dielectrics. As a simple estimate of the effective permittivity
in the cavity, we have used (B.2) first to calculate the effective permittivity of the
fabric with dip pickup and then the effective permittivity of the whole cavity
volume, again using (B.2). These are very rough estimates and were only used as a
guide in estimating the sensitivity of the system. In reality, the fields in various
parts of the cavity are vastly different and depend on the mode of resonance. As
was described in Sections 3.2.1 and 5.2, the fields of the even mode are highest at
the edges of the center plates and in the fabric itself (and parallel to it), whereas the
even mode fields are uniform across the fabric (and perpendicular to it). This means
that the effect of the fabric on the even mode is larger than what a uniform per-
mittivity throughout the cavity would imply, whereas the effect on the odd mode is
smaller. For these reasons, pursuing more accurate methods of estimating the
effective permittivity in the cavity was deemed unnecessary, whereas the use of
(B.2) was seen as providing an underestimate of the permittivity and hence a lower
limit on the sensitivity of the sensor.

In the case of rubber thickness sensing, the rubber itself was modeled as a
uniform medium and the effective permittivity of the rubber layer and air was also
estimated using (B.2), providing a lower limit on estimated sensitivity. Because in
both cases the lower sensitivity limit was higher than the performance required of
the sensors, no further refinement in these calculations was needed. Measurements
on sample fabrics confirmed these considerations.

Fabric with dip material. The permittivities of the two common fabrics
(nylon and polyester) were calculated from the relative permittivities of the base
material and the dip pickup as they emerge from the dip bath and move into the
sensor. The calculation is based on the mixing formula and the measured values of
permittivity given above. The relative permittivity of the nylon fabric with dip is
15.59, whereas the relative permittivity of the polyester fabric is 17.79.

B.3 Effect of humidity and temperature

Humidity in air was a concern in these designs because the sensor is open and the
dip solution as it passes through the sensor creates a moist environment close to
100% humidity under almost all conditions. The temperature is also likely to be
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high although it can vary considerably on the open factory floor. Direct measure-
ment of the effect of humidity proved to be impractical primarily because of the
difficulty of keeping a particular temperature and humidity constant for the
measurement. Instead, we resorted to simulations based on published data for
humidity. Such data are scarce, with the exception of saturated water vapor (100%
humidity). The data for saturated water vapor are shown in Figure B.3 and tabu-
lated in Table B.1.

To get an idea of the effect of humidity, we used these data to simulate the
space in the sensor. At zero humidity, the resonant frequency of the empty was
379.3 MHz for the even mode and 424.3 MHz for the odd mode. At 100 �C and
100% humidity (relative permittivity of 1.00587), the resonant frequencies were
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Figure B.3 Relative permittivity of saturated water vapor with respect to
permittivity

Table B.1 Relative permittivity for saturated water vapor

Temperature Relative permittivity

0 1.00007
10 1.00012
20 1.00022
30 1.00037
40 1.00060
50 1.00095
60 1.00144
70 1.00213
80 1.00305
90 1.00428
100 1.00587
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378.9 MHz for the even mode and 423.7 for the odd mode. The changes seemed to
be significant—0.4 MHz for the even mode and 0.6 MHz for the odd mode.
However, these extreme conditions are not likely to ever be encountered. At a more
reasonable maximum temperature of 40 �C at 100% humidity, the simulation
shows a change below 100 kHz. In fact, assuming uniform fields in the resonator,
the maximum change in the resonant frequency at 40� should be 120 kHz. This is
on the very high end and is roughly twice the measured change. For these reasons,
we decided to neglect the effects of humidity on the resonant frequency, a decision
that was borne by the in-plant experiments reported in Chapter 6. Nevertheless, one
can always opt for a compensation mechanism that uses the odd frequency to
monitor humidity (and temperature) since the odd frequency is more sensitive
to these effects. This method was used for the fabric sensor and is described
in Section 7.5. It cannot be used with the rubber thickness sensor because the
distinction between even and odd modes does not exist. Another simple method of
compensation is to use a calibration curve using the simulated results and use these
values to compensate for the changes in humidity for both sensors. That would
require real-time measurements of temperature and humidity in the sensor, some-
thing that was not done in the implementations reported in this work.

Another concern related to material properties is the dependence of permittivity of
the various constituents of the dip solution on temperature. Because water is the main
constituent, the dependency of the permittivity of water on temperature was of primary
interest. This dependency is shown in Figure B.4 and tabulated in Table B.2 for some
temperatures. Indeed, the changes are significant. However, the temperature variations
in plant turned out to be relatively small and hence, in the implementation described in
this work, there was no attempt to compensate for any changes due to these effects. If
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Figure B.4 Relative permittivity of water with respect to permittivity
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necessary, one can measure the temperature of the dip solution in real time and add a
compensation scheme to the resonant frequency in the network analyzer itself.

Effect of frequency. The permittivity of most materials is frequency dependent
as can be seen from Figures B.1 and B.2 for nylon and polyester. Clearly one has to use
the correct permittivity. However, for other materials, the variations may not be as
large as that indicated in these figures. The permittivity of water vapor and water also
goes down with frequency, but, at the relatively low frequency used in this work, the
permittivity is virtually the same as the static (or low frequency) permittivity.
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Appendix C

The finite-difference time-domain
(FDTD) method

C.1 The finite difference time domain equations

The simulations used in this work were all done using the finite-difference time-
domain (FDTD) method. One of a fairly large number of methods and variations on
methods applicable to the simulation of electromagnetic fields, the FDTD is
particularly simple and intuitive, and its application is well adapted to computation of
high-frequency electromagnetic fields. The FDTD method approximates the electro-
magnetic-field equations directly without the need for intermediate steps such as the
approximation and minimization processes that are so important in many numerical
computation methods such as the finite-element methods. To understand how this is
done, one can start with general Maxwell’s equations in the time domain:

r� E ¼ � @B
@t

(C.1)

r� H ¼ J þ @D
@t

(C.2)

r � D ¼ r (C.3)

r � B ¼ 0 (C.4)

where E is the electric-field intensity, B the magnetic-flux density, H the magnetic-
field intensity, D the electric-flux density, J the current density, and r the charge
density in the volume of interest. All quantities are vectors, except the charge
density, which is a scalar. One immediately recognizes (C.1) as Faraday’s law,
(C.2) as Ampere’s law, (C.3) as Gauss’s law, and (C.4) as the statement of non-
existence of magnetic poles. Alternatively, the equations define the curl and
divergence of the electric and magnetic fields to satisfy the Helmholtz theorem
which requires that both the divergence and the curl of a vector field be specified
for a vector to be uniquely defined. In addition, one has to take into account the
material properties in which these fields occur through the constitutive relations:

B ¼ mH (C.5)

D ¼ eE (C.6)



where m is the permeability of the medium and e its permittivity. Both m and e are,
in general, complex values and are, for the most part, frequency dependent.

The current density J includes all possible current densities that may exist in
the medium. These are source current densities Js (such as those that may be
applied in an antenna), induced current densities in conductors Je, and convection
current densities Jv due to motion of charges in the medium. The second term on
the right-hand side of (C.2) is also a current density called a displacement current
density Jd. The current density in conductors affords the third constitutive relation:

Je ¼ sE (C.7)

The first step is to remove the source current density from the equations since the
sources will be applied to the computational model separately as ‘‘driving’’ func-
tions, in the cases described in this work, through the probes connected to the
network analyzer. Then, by using the constitutive relations, we rewrite (C.1) and
(C.2) in terms of the electric- and magnetic-field intensity alone:

@H
@t

¼ � 1
m

r� Eð Þ (C.8)

@E
@t

¼ 1
e

r� H � sEð Þ (C.9)

The equations are then written explicitly as follows:
From (C.9) (Ampere’s law)

@Ex

@t
¼ 1

e
@Hz

@y
� @Hy

@z
� sEx

� �
(C.10)

@Ey

@t
¼ 1

e
@Hx

@z
� @Hz

@x
� sEy

� �
(C.11)

@Ez

@t
¼ 1

e
@Hy

@x
� @Hx

@y
� sEz

� �
(C.12)

From (C.8) (Faraday’s law)

@Hx

@t
¼ � 1

m
@Ez

@y
� @Ey

@z

� �
(C.13)

@Hy

@t
¼ � 1

m
@Ex

@z
� @Ez

@x

� �
(C.14)

@Hz

@t
¼ � 1

m
@Ey

@x
� @Ex

@y

� �
(C.15)

Note again that source-current densities are not included. These as well as bound-
ary and initial conditions are specified separately although sources can be included
directly in the formulation that follows.
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The derivatives in (C.10)–(C.15) are approximated directly by finite differ-
ences in time and space. For this purpose, the partial derivatives are written using
the common approximation for finite differences. One possibility is as follows:

f 0ðuÞ ¼ df ðuÞ
du

¼ f ðu þ DuÞ � f ðuÞ
Du

(C.16)

This is called a forward difference formula since it only uses terms at given points
in space or time and points ahead of that. u represents any of the space variables or
time and du is the distance between the two points used to approximate the deri-
vative. A similar formula may be written as a backward difference formula:

f 0ðuÞ ¼ df ðuÞ
du

¼ f ðuÞ � f ðu � DuÞ
Du

(C.17)

The average between the two provides a central difference formula in which points
ahead and behind the center point are used:

f 0ðuÞ ¼ df ðuÞ
du

¼ f ðu þ DuÞ � f ðu � DuÞ
2Du

(C.18)

One can obtain second-order derivatives as well but the approximation of the
equations in (C.10)–(C.15) only require first-order derivatives.

The finite-difference formulas require that the space of interest be divided in
space into cells that are Dx by Dy by Dz in size and by so doing define an assembly
of points in space at which the values of E an H are calculated. In practice, one
selects Dx ¼ Dy ¼ Dz ¼ h, forming a regular mesh. The same must be done in time
where, in principle, one would require a separate mesh for each time step as shown
in Figure C.1.

In practice, the time approximation is done on the same mesh in the sense that
a separate mesh is not required for each time step.

Because of the curl relations in (C.10)–(C.15), the electric-field intensity is
calculated using the magnetic-field components in directions other than that of the
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Figure C.1 A three-dimensional mesh for time-dependent applications
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electric-field component. For example, to calculate the x-component of the electric-
field intensity requires the y- and z-components of the magnetic-field intensity and
vice versa. For this reason, each cell in the mesh is subdivided into 2 in each
direction as shown in Figure C.2, and the electric and magnetic fields are calculated
at half-cell distances away from each other both in time and space.

Because the formulation links the magnetic- and electric-field components in
each of (C.10)–(C.15), the calculation of the electric-field components in the first
three equations requires the calculation of the magnetic field from the second set of
three equations and vice versa. For this reason, the calculation proceeds in a
leapfrog fashion by which the electric field is calculated at a certain time step
assuming the magnetic field is known. Then, the magnetic field at the same time
step but different location in space is calculated on the basis of the now-known
electric-field components.

To do so, a grid is defined over the space of the solution domain as shown in
Figures C.1 and C.2. The spatial distribution in each dimension is assumed to be the
same, denoted by h but that is only a convenience to simplify the relations. Based
on this basic cell, (C.10)–(C.15) are discretized as follows. First, a finite-difference
scheme is defined for space and for time discretization:

@Em
i;j;k

@x
¼

@Em
iþ1=2;j;k � @Em

i�1=2;j;k

h
(C.19)
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Figure C.2 Spatial relation between the magnetic and electric field. The electric
and magnetic fields are calculated at different locations on the grid.
The magnetic-field intensity is calculated a half grid away from the
electric-field intensity. The center of the cell is at (i,j,k)
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@Em
i; j;k

@t
¼ @Emþ1=2

i; j;k � @Em�1=2
i; j;k

Dt
(C.20)

where m indicates a point in time and i,j,k a point in space, h is the cell size, and
Dt is the time step. The notation 1/2 indicates a half step in time and/or space.
Applying these approximations to (C.10)–(C.15) on the grid in Figure C.2:

Hnþ1=2
x ði; j þ 1=2; k þ 1=2Þ
¼ Hn�1=2

x ði; j þ 1=2; k þ 1=2Þ
� Dt

mh
En

z ði; j þ 1; k þ 1=2Þ � En
z ði; j; k þ 1=2Þ � En

yði; j þ 1=2; k þ 1Þ
h

þEn
yði; j þ 1=2; kÞ

i

(C.21)

Hnþ1=2
y ði þ 1=2; j; k þ 1=2Þ
¼ Hn�1=2

y ði þ 1=2; j; k þ 1=2Þ

� Dt

mh
En

xði þ 1=2; j; k þ 1Þ � En
xði þ 1=2; j; kÞ � En

z ði þ 1; j; k þ 1=2Þ�

þEn
z ði; j; k þ 1=2Þ�

(C.22)
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¼ Hn�1=2
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(C.23)

Enþ1=2
x ði þ 1=2; j; kÞ ¼ 1
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(C.24)
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Enþ1=2
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(C.26)

The most important observation here is that the electric and magnetic fields are
interlaced and calculation of one field can only occur after the second has been
evaluated. Note also that material properties e and s are specified for each mesh
point at which E is evaluated. That means that they can vary from point to point and
hence one can easily model material variations within the solution domain. On the
other hand, it is assumed here that the permeability is constant throughout the
solution space. Although the permeability can also be specified at each point, this is
not usually necessary, especially in the context of the present work. Assuming that
initial values for the electric- and magnetic-field intensities are specified, the
magnetic field components in (C.21)–(C.23) are first evaluated. Then one evaluates
the electric field intensity components in (C.24)–(C.26). Note that these values,
both for the electric and magnetic fields, are at a time step n þ 1/2 and are based on
the previous time step n. Once the fields are evaluated at all points of the mesh at
the current time step, the time step advances by Dt, and the process repeats until an
error criterion has been satisfied.

A couple of additional observations are in order here. First, the mesh cell size
was assumed to be equal in the three dimensions (Dx ¼ Dy ¼ Dz ¼ h) in each cell
and uniform throughout the mesh. This is not a necessary condition, and, in fact,
one can use different values for Dx, Dy, and Dz by replacing h in (C.21)–(C.26) with
the appropriate value. In principle, each cell can be of different size although that
would complicate the algorithms needed for computation considerably. Some of
this is done in adaptive algorithms, but in FDTD, it is most common to use a
constant uniform value. The second observation is that the conductivity in the space
is assumed to be low, that is, that if conductivity exists, it is due to a lossy dielectric
rather than a conductor. In conductors, the displacement current is negligible and
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hence Maxwell’s equations reduce to a diffusion process rather than a wave
process. In such cases, the FDTD method is not the best approach for solution.

The cell spacing and time step used for the geometrical mesh and the time
discretization must satisfy the following stability criterion:

Dt � 1

vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Dxð Þ2 þ 1=Dyð Þ2 þ 1=Dzð Þ2

q or

Dt � h

vp

ffiffiffi
3

p for Dx ¼ Dy ¼ Dz ¼ h

(C.27)

where vp is the maximum phase velocity in the discretization space. From a prac-
tical point of view, one would prefer that Dt be as large as possible and hence,
h should be as large as possible so that solution can be fast. The latter however is
constrained by the accuracy required and is usually taken as h < l=10 where l is
the wavelength in the medium being discretized. In many cases, even smaller
spatial steps may be needed to simulate features that may be smaller than l/10. That
then constrains the time step to very small values. For this reason, an FDTD model
requires a very large mesh. As an example, consider a 1-m3 space in which the
fields are to be simulated at 1 GHz. The wavelength is 0.03 m, requiring a mesh of
at least 33�33�33 or about 36,000 points. The time step that corresponds to the
stability criterion is 5�10�11 s. This would require 20 time steps per cycle of a
sinusoidal source and may require thousands of cycle to obtain a solution with the
required accuracy. In practice, a 30-mm special spacing may be too large to
account for features in the solution space. A 1-mm resolution would require 106

nodes and a time step of 10�12 s. Although the model may be vast, the calculations
are rather simple, and in general, FDTD solutions are rather fast.

C.2 Boundary conditions

Any numerical model must be bounded in space and limited in time if one hopes to
obtain a valid solution in finite solution time. In cases where the boundaries coin-
cide with conducting surfaces, the reflecting condition on the boundary may be
used, that is, any wave impinging on a (perfect) conductor is reflected, simply
modifying the difference formulae at the boundary to take into account the beha-
vior of the fields at the conducting boundary. On the other hand, unbounded space
requires special attention. To bound an unbounded space, one can introduce an
artificial boundary that encloses the region of interest. For this boundary to be
valid, it must be ‘‘transparent’’ to ongoing waves. That means it should not reflect
any of the waves back into the solution domain. This can be accomplished in a
number of ways. One is to define an absorbing boundary condition (ABC), which
modifies the difference formulae to ensure there are no reflections. These boundary
conditions are mathematical in nature. An important aspect of absorbing boundary
conditions is that they are only approximate. One can improve their performance
but one cannot entirely eliminate reflections.
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Another approach is to actually introduce an artificial medium with material
properties at the boundary, again, to ensure there are no reflections from that
medium. These boundaries are called perfectly matched layers (PMLs). PMLs are
designed to be frequency and angle of incidence independent and to be as close as
possible to true matched layers.

Both the ABC and PML approaches are rather complex mathematically and
hence will not be described here. These are usually incorporated in commercial
implementation of the FDTD method requiring little intervention from the user.

C.3 Near-to-far-field transformation

In many cases, the fields in the vicinity of sources such as antennas are the quantities
of interest. In this work, we are particularly interested in the fields within and in the
vicinity of open resonant cavities. However, if one requires the fields at large dis-
tances from the sources such as the far fields of antennas or the effect of the open
cavity fields on personnel, one must find a way of deriving these fields without
modeling the very large spaces that would otherwise be needed. To do so, one can
use a near-to-far-field transformation. The far-field transformation arises directly
from Huygens principle. In the case here that means that the electric and magnetic
fields on any surface enclosing the sources can be viewed as the sources for
the far fields. Thus, the near-to-far-field transformation starts with a convenient
artificial surface enclosing the sources. Then the equivalent electric- and magnetic-
current densities are defined as bn �H and E � bn. These equivalent current den-
sities then serve to calculate the far fields. Again, as with boundary conditions, the
transformation is usually incorporated into commercial FDTD software.

C.4 Modeling material interfaces

The approximations in (C.21)–(C.26) were defined on a Cartesian grid, and mate-
rial properties are also inserted into the equations based on this grid. As long as
geometry boundaries and material interfaces comply with this structure, the appli-
cation of these equations for calculation presents no issues. However, any boundary
or interface that is not rectangular in nature must somehow adapt to this structure.
Figure C.3(a) shows a curved interface on a finite-difference grid. Clearly, most
nodes do not fall on the interface. The simplest solution to this problem is to
approximate the interface using the staircase shape that passes through nodes of the
mesh as shown in Figure C.3(b). The advantage of this approach is that the mesh
does not need to be modified and, if the steps are small compared to the wave-
length, the solution is usually acceptable. If necessary, one can decrease the step
size (h) to accommodate these types of interfaces or boundary, but this increases
the mesh size and decreases the time step resulting in larger and slower models.
Figure C.4 shows this aspect of modeling and its consequences.

There are however alternative methods that are much more effective in mod-
eling curved boundaries and interfaces, without the need for excessive refinement
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of the mesh. These are available under the generic name of conformal FDTD cells
or algorithms. The methods can treat curved conducting boundaries or dielectric
interfaces without the staircasing effects that would otherwise reduce accuracy.
Conformal FDTD grids are nonorthogonal and can follow the shape of a boundary
accurately. They rely on modifications of the grid locally without affecting the grid
elsewhere. There are many methods of doing so but perhaps the simplest is based
on keeping the grid itself unchanged but modifying the permittivity at the appro-
priate nodes based on their position with respect to the interface.

Conducting boundaries can also be treated using an interpolation technique as
shown in Figure C.5. In this method, any grid line (lines in a grid are artifices: only
the nodes actually exist and are used) that cuts the boundary creates a node on the
boundary at the point of intersection. The result is a grid, with nodes on the
boundary, but the uniformity of the mesh has been lost. To use this grid, we per-
form interpolation between the available points and find a modified expression for
the nodes at the boundary. By using Figure C.5, the two dark points on the
boundaries can be approximated by linear interpolation as

V11 ¼ V5
Dx þ a

Dx
� V4

a

Dx
(C.28)

Approximate
boundary

Actual
boundary 

(a) (b)

Figure C.3 (a) Curved boundary in a finite-difference grid and (b) approximation
of a curved boundary by nearest nodes

Figure C.4 Improving curved boundary representation by mesh refinement
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V10 ¼ V5
Dy þ b

Dy
� V8

b

Dx
(C.29)

These equations may be used, for example, to calculate the value at node 5 in terms
of values at nodes 4, 8, and the two boundary values V10 and V11. (V is used here as
a generic variable.)

C.5 Inclusion of sources

As was mentioned above, the sources were so far excluded from the FDTD
approximation. Of course, they must be part of the solution and hence they must be
reintroduced. There are a number of ways this can be done. The most obvious
method is to keep the sources in (C.8) and hence to modify (C.10)–(C.12) as well
as (C.24)–(C.26) to include the sources. All that is required is to add the term
�Jnþ1=2

x ði þ 1=2; j; kÞ in the curly brackets in (C.24), the term �J nþ1=2
y ði; j þ 1=2; kÞ

in the curly brackets in (C.25), and �Jnþ1=2
z ði; j; k þ 1=2Þ in the curly brackets in

(C.26). If the components of the current density Jx, Jy, and Jz at the nodes of the
mesh are known (many of which would normally be zero), that specifies the
sources directly into the approximations and drives the solution.

In many cases, however, the driving function is not a current density but,
perhaps, the electric-field intensity produced by an antenna on part of the boundary
of the solution domain, or at a point (or points) within it. In such cases, these points
are held at the required electric-field intensity as boundary values and serve as
the driving functions for the solution. For example, in the simulations in Chapter 5,
the transmission line resonator is driven by a probe, which in turn is supplied by the
network analyzer. Figure C.6 shows the basic model used for these simulations.
The source probe is replaced by a port at which the electric field (or magnetic field)
is specified and that serves as a boundary condition at this location (it can be as
simple as a single node or, perhaps a few nodes). The load is similarly modeled so
that resonance can be detected. The metallic shield and the center plates are
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Figure C.5 Use of interpolation to approximate nodes on curved boundaries
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modeled as perfect conductors (perfectly reflecting surfaces), and the open space
is modeled with a near-to-far-field boundary on which the near-to-far-field trans-
formation is applied. The Delrin supports are implemented with the dielectric
property of Delrin and the fabric with its own properties including the effect of dip
pickup on permittivity. Some details such as the penetration of the bolts that hold
the center plates into the Delrin supports or the channel in which the supports sit are
neglected. In this particular application, the magnitudes of the fields are not
important since the quantity of interest is the resonant frequency. That is detected
by monitoring the fields in the cavity or at the load port, where, in the actual device,
the load probe would be located.

The simulation starts by defining the geometry of the sensor. This includes the
folded ground planes and the center plates as shown in the center of Figure 5.8.
This is done through the human–machine interface (HMI) of the software, and,
while the HMI for various software programs may be different, it usually involves
either drawing the object or specifying its coordinates and dimensions as well as the
type of materials. The ground planes and center planes are modeled as perfect
conductors. In addition, one has to specify the driving source for the simulation.
This is the source (or feed) probe in Figure 5.3 or Figure 5.10. In the FDTD pro-
gram used here, the probe is replaced with an input plane, shown as the rectangular
structure (port) at the left side, below the lower center plane in Figure C.7. The
second, identical structure is the load port at which the fields are monitored to
detect resonance (or, in other terms, to compute the S21-parameter).

These structures, which look like small square-based towers, are designed as
well to present the proper impedance to the transmission line connecting to them
(not part of the simulation). In most cases, this would be 50 W and would repre-
sent the connectors to the transmission lines. Because the resonator is open, one
must assume that the electric and magnetic fields outside the resonator extend to
infinity, something that computer models cannot simulate. To take this into
account, artificial boundaries are created to enclose the geometry at some rea-
sonable distance away (shown in Figure C.7 with triangular markings). These
boundaries are used for the near-to-far-field transformation so that the net effect

Wide dimension view
Near-to-far-field boundary

Fabric Perfect conductors

Delrin

Air

Input field Detection

Figure C.6 Geometry model of the resonator with boundary conditions, source,
load, and the near-to-far-field transformation
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is that fields at any distance can be calculated without the need to model large
volumes.

As with any numerical method, many more variations and modifications are
possible, including definition of grids on cylindrical or spherical geometries,
inclusion of anisotropic materials, and others. In all cases, however, it is important
to note that for the solution to start, the initial conditions for the fields must be
available before one can start (often zero values are used for this purpose). In other
cases, perhaps a wave front is available, which can serve as initial condition. Also
to be noted again is that material properties are defined point by point. Therefore,
anisotropic media are easily taken into account. Finally, the simplicity of this for-
mulation should be again indicated.

To obtain a solution, it is also necessary to properly terminate the space
discretization through imposition of boundary conditions and termination in
time based on some appropriate criterion. Sometimes boundary conditions are
imposed by the geometry. A perfect electric conductor (PEC) is an example of this
type of boundary condition. More often, especially with propagating waves, some
type of radiation or absorption boundary condition is necessary. These allow close
truncation of the solution domain so that only regions of interest are included
thereby reducing the time needed for solution. Here again the FDTD method holds
a clear advantage in the simplicity with which boundary conditions are taken into
account. These boundary conditions are incorporated directly into the formulation.
Because of this ease of implementation, some very useful radiation boundary
conditions have been introduced allowing the FDTD to work effectively in open
geometry configurations. Because of this, it has been the method of choice in high-
frequency applications for many years. Nevertheless, it can also be used at low
frequencies, either through use of modified radiation boundary conditions or,
indeed, through the use of surface impedance boundary conditions (SIBCs).

Figure C.7 The input model as displayed by the FDTD program. The outer
surfaces indicated by the triangular frill are the near-to-far-field
transformation. The center plates in this model are butterfly shaped
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In addition to boundary conditions, the initial conditions needed to start the
solution must be specified. This may take the form of sources at nodes or may take
the form of, say, a plane wave, propagating into the solution domain.

There are however some limitation in the use of the FDTD. A basic one,
which is shared by other methods such as the transmission line method, is dis-
cretization of nonrectangular boundaries. The basic solution to this difficulty is the
staircase discretization of such boundaries, that is, one tries to fit the geometry on a
rectangular grid. If the staircase is done properly (i.e., sufficiently fine), then this
method is acceptable. Others have adapted the FDTD for use in non-Cartesian grids
and for nonuniform grids, all in attempts to extend the applicability of the method.
Another limitation is the stability criterion defined in (C.27). It is always possible to
find a combination of time/space steps that will satisfy these conditions, but the
time or space steps may have to be so small as to make the solution either slow and
difficult or, indeed, impractical.

Of course, there is much more to the FDTD method than this short appendix
implies. The purpose here is merely to indicate some basics of the method rather
than to serve as a tutorial.

The software used for the simulations in this work is a commercial one called
Concerto. It has many facilities that have not been included in the basics of the
method above. First, it features a user interface or editor that allows the user to
input a geometry with its parameters and material properties. The issue of stability
is handled internally so that the user does not have to worry about it. Boundary
conditions may be specified as conducting (PEC boundaries), magnetic bound-
aries (perfect magnetic conductor boundaries), symmetry planes, and so on.
Curved geometries are treated equally well and infinite geometries are handled
with special projection methods. From the basic data, the software calculates
fields, scans over frequency ranges, calculates resonant frequencies, the Q-factors,
and so on.
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Appendix D

Selected elements of electromagnetics

D.1 Maxwell’s equations

The purpose of this appendix is to collect some of the quantities related to propa-
gation of electromagnetic waves and provide definitions to the important quantities
that are used in this work. It is of course not possible to deal with the whole theory
of electromagnetics nor there is a need for that. It is assumed the reader is familiar
with most of the concepts, but there is still value in collecting together these con-
cepts. The reader will, of course, have to refer to more extensive exposition of
electromagnetics for the details of the relations given here and for any extension of
the concepts beyond the scope of the present work.

As is well known, all aspects of electromagnetics are governed by Maxwell’s
equations. These form a set that define the divergence and the curl of the electric
and magnetic field intensities as required by the Helmholtz theorem, that is, a
vector field is defined within an additive constant by its curl and divergence.
In addition, one needs to define the relations of the fields with material properties.
Maxwell’s equations and the constitutive relations are shown in Table D.1 in
differential and integral forms. E is called the electric field intensity (V/m),
H the magnetic field intensity (A/m), D the electric-flux density (C/m2), and B the
magnetic-flux density (T). m is the permeability of the medium (H/m) and e the
permittivity (F/m). In these relations, E, H, B, J, and D are complex vector, rv is
the volume charge density in the region of interest, Q the total charge (if any), F the
magnetic flux, and both e and m are, in general, complex tensors. In addition, one
defines the relation between current density and the electric field intensity in con-
ducting media and in lossy dielectrics as J ¼ sE. The Lorenz force equation is
usually added to the system of equation and defines the electric and magnetic
forces on charges. In (D.11), v refers to the velocity of moving charge.

It should be also clarified that these are what one might call macroscopic
equations and in most cases we will assume that media are linear, isotropic, and
homogeneous although Maxwell’s equations do not require that. Under these
assumptions, both m and e are single valued.

The equations, either in differential form in (D.1)–(D.4) or in integral form in
(D.5)–(D.8), contain four vector variables E, D, B, and H, and two sources J (or I)



and rv (or Q). The first is a vector source, whereas the second is a scalar source.
Each vector variable has three components in space, and, therefore, the equations
contain 12 unknown values for the 12 components of the fields. Since the first two
equations are vector equations, they are equivalent to six scalar equations. The last
two equations [(D.3) and (D.4) or (D.7) and (D.8)] are scalar equations. Thus, we
have 8 scalar equations in 12 unknowns.

In fact, the last two equations in each set are not independent of the first two
and can be derived from the first two with the aid of the continuity equation. The
latter is a statement of conservation of charge and is usually stated as follows:

r � J ¼ � @ru
@t

(D.12)

Using this, one can derive (D.3) from (D.2) and (D.4) from (D.1). Therefore, there are
really only two independent vector equations for a total of six unknowns. The con-
stitutive equations in (D.9) and (D.10) are used as the remaining six scalar equations to
ensure proper solution of Maxwell’s equations. That this must be so can also be seen
from the fact that Maxwell’s equations as written in (D.1)–(D.4) or (D.5)–(D.8) do not
refer to material properties at all. On the other hand, we know that fields are very much
dependent on materials. This dependency is expressed by the constitutive relations.

D.1.1 Maxwell’s equations: the time-harmonic form
Maxwell’s equations are often written in terms of phasors, again, assuming line-
arity in material properties and, often, monochromatic (sinusoidal) excitation. This
is the case in this work as well and the use of phasors simplifies both discussion and
solution. The time-harmonic differential and integral forms of Maxwell’s equations
together with the constitutive relations and the Lorentz force are summarized in
Table D.2 where all quantities are phasors.

Table D.1 Summary of the electromagnetic field equations in differential and
integral forms

Maxwell’s equations Differential form Integral form

Faraday’s law r� E ¼ �@B
@t

(D.1)

þ

C
E � dl ¼ �dF

dt
(D.5)

Ampere’s law r� H ¼ J þ @D
@t

(D.2)
þ

C
H � dl ¼

ð

s
J þ @D

@t

� �
� ds (D.6)

Gauss’s law r � D ¼ ru (D.3)
þ

s
D � ds ¼ Q (D.7)

No monopoles r � B ¼ 0 (D.4)
þ

s
B � ds ¼ 0 (D.8)

Constitutive relations B ¼ mH (D.9)
D ¼ eE (D.10)

The Lorentz force equation F ¼ qðE þ v � BÞ (D.11)
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Note that the constitutive relations and the Lorentz force equations have not
changed although all vector quantities are now assumed to be phasors. Of course,
velocity is still a real number. e and m remain unaffected by the phasor notation but
they are, in general, complex values. The charge Q or the charge density ru may,
in some cases, be time dependent, in which case they also become phasors.

D.1.2 Source-free equations
The general forms of Maxwell’s equations can sometimes be simplified if the
sources do not need to be taken into account. Under these conditions, the current
density J, the charge density rv, or both are removed from the equations, and a
much simpler form of the equations is obtained. This is true in the time-dependent
or phasor forms of the equations. The time-dependent and time-harmonic source-
free Maxwell’s equations are summarized in Tables D.3 and D.4. This is the form
adopted in the present work since we are primarily interested in resonant fre-
quencies without regard to amplitudes or, for that matter, how the fields in cavities

Table D.2 Summary of the time-harmonic electromagnetic field equations

Maxwell’s equations Differential form Integral form

r� E ¼ �jwB (D.13)
þ

C
E � dl ¼ �jw

ð

s
B � ds (D.17)

r� H ¼ J þ jwD (D.14)

þ

C
H � dl ¼

ð

s
ðJ þ jwDÞ � ds (D.18)

r � D ¼ rv (D.15)

þ

s
D � ds ¼ Q (D.19)

r � B ¼ 0 (D.16)

þ

s
B � ds ¼ 0 (D.20)

Constitutive relations B ¼ mH (D.21)
D ¼ eE (D.22)

The Lorentz force equation F ¼ qðE þ v � BÞ (D.23)

Table D.3 The source-free time-dependent Maxwell’s equations

Differential Integral

Faraday’s law r� E ¼ �@B
@t

(D.24)

þ

C
E � dl ¼ �dF

dt
(D.28)

Ampere’s law r� H ¼ �@D
@t

(D.25)
þ

C
H � dl ¼

ð

s

@D
dt

� ds (D.29)

Gauss’s law r � D ¼ 0 (D.26)
þ

s
D � ds ¼ 0 (D.30)

No monopoles r � B ¼ 0 (D.27)
þ

s
B � ds ¼ 0 (D.31)
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are generated since these are supplied by the network analyzer in the form of pure
sinusoidal signals.

D.1.3 Interface conditions
The behavior of electric and magnetic fields as defined by Maxwell’s equations
depend on material properties. At the interface between different materials,
the fields must also satisfy Maxwell’s equations. This imposes relations between
the fields on the two sides of any interface. These relations are called interface
conditions.

In these relations it is assumed that the normal to the interface points into
medium 1. rs is the surface charge density at the interface given in C/m2, and Js is
the current density on the interface given in A/m. The tangential components of the
electric field intensity and the normal components of the magnetic-flux density are
always continuous across interfaces but the magnetic field intensity and the
electric-flux density are not, unless the surface charge density and the surface
current density vanish. The interface conditions are summarized in Table D.5.

Table D.4 The source-free time-harmonic Maxwell’s equations

Faraday’s law r� E ¼ �jwB (D.32)

þ

C
E � dl ¼ �jw

þ

s
B � ds (D.36)

Ampere’s law r� H ¼ �jwD (D.33)
þ

C
H � dl ¼ jw

ð

s
D � ds (D.37)

Gauss’s law r � D ¼ 0 (D.34)
þ

s
D � ds ¼ 0 (D.38)

No monopoles r � B ¼ 0 (D.35)
þ

s
B � ds ¼ 0 (D.39)

Table D.5 Electromagnetic interface conditions for general materials

Electric field Magnetic field

Tangential
components

E1t ¼ E2t bn � H1 � H2ð Þ ¼ Js ðA=mÞ
or:
H1t � H2t ¼ J�

s ðA=mÞ
D1t=e1 ¼ D2t=e2 bn � B1=m1ð Þ � B2=m2ð Þð Þ ¼ Js ðA=mÞ

or:
B1t=m1ð Þ � B2t=m2ð Þ ¼ Js ðA=mÞ

Normal
components

bn � D1 � D2ð Þ ¼ rs ðC=m2Þ
or:
D1n � D2n ¼ rs (C/m2)

B1n ¼ B2n

bn � e1E1 � e2E2ð Þ ¼ rs ðC=m2Þ
or:
e1E1n � e2E2n ¼ rs (C/m2)

m1H1n ¼ m2H2n
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D.2 The electromagnetic wave equation and its solution

Except for low frequency applications, in which the displacement current density in
Maxwell’s equations [second term in (D.2) or (D.6) or in (D.14) or (D.18)] can be
neglected, one usually deals with propagation of waves. At low frequencies, the
existence of waves is neglected and only the distribution of fields due to sources is
of interest. To obtain the appropriate wave equations and, consequently, their
solutions, one can start either with the time-domain equations in Table D.1 or
the frequency domain equations in Table D.2 if the sources must be included or
those in Table D.3 or Table D.4 if sources are not included. In the present work,
we are not concerned with sources but we are concerned with losses due to induced
currents in lossy dielectrics, especially in the way these manifest themselves in
resonators. Therefore we will look at wave propagation in lossy media without
external sources, and in the frequency domain, that is, we will use the equations in
Table D.2 and replace the term J by the induced current density Je ¼ sE.

D.2.1 Time-harmonic wave equations
The time-harmonic wave equation is obtained either by starting with the time-
harmonic Maxwell’s equations and following steps similar to those in the previous
section or with the time-dependent equation and then transforming the resulting
time-dependent wave equations to time-harmonic wave equations.

To obtain the time-harmonic wave equation in terms of the electric field
intensity E, we start with Maxwell’s equations in time-harmonic form [see (D.13)–
(D.16)], but written in terms of E and H. Assuming linear, isotropic, homogeneous
materials, these are

r� E ¼ �jwB ¼ �jwmH (D.40)

r � H ¼ 0 (D.41)

r� H ¼ J þ jwD ¼ sE þ jweE (D.42)

r � eE ¼ 0 (D.43)

We start by taking the curl on both sides of Faraday’s law [see (D.40)]:

r� r� Eð Þ ¼ �jwm r� Hð Þ (D.44)

Substituting for r� H from Ampere’s law [see (D.42)]

r� r� Eð Þ ¼ �jwm sþ jweð ÞE (D.45)

Using the identity r� (r� E) ¼�r2E þr(r � E)

�r2E þ r r � Eð Þ ¼ �jwm sþ jweð ÞE (D.46)

The divergence of E is given in (D.43) and happens to be zero for source-free
environments. The source-free wave equation in lossy media under source-free
conditions is

r2E ¼ jwm sE þ jweEð Þ (D.47)
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If, in addition, the losses are zero (s¼ 0), the source-free, lossless wave equation is
obtained:

r2E ¼ jwm jweð ÞE (D.48)

Multiplying the terms on the right-hand side of (D.47) and rearranging them gives

r2E þ w2meE � jwmsE ¼ 0 (D.49)

If the medium is lossless, this reduces to

r2E þ w2meE ¼ 0 (D.50)

One can easily obtain the wave equation for the magnetic field intensity in a similar
manner.

D.2.2 Solution of the wave equation
Now that the wave equation has been obtained, it is time to solve it. First, we must
decide which wave equation to solve and under what conditions. To observe the
behavior of fields and define the important aspects of propagation, we use a one-
dimensional wave equation; that is, we assume that the electric field intensity E or
the magnetic field intensity H has a single component in space. This is by no means
a restriction since we can do the same for each component of the electric and
magnetic field intensities to obtain a general solution. We start by solving the
equation under the following conditions:

1. Fields are time harmonic.
2. The electric field intensity is directed in the x direction but varies in the z

direction; that is, the field is perpendicular to the direction of propagation.
3. The medium in which the wave propagates is lossless (s¼ 0).
4. The wave equation is source free (Js ¼ 0, ru¼ 0).

This set of assumptions seems to be rather restrictive. In fact, it is not. Although
the direction in space is fixed, we are free to choose this direction and we can repeat the
solution with a field in any other direction in space. Also, and perhaps more importantly,
many of the above assumptions are actually satisfied, at least partially in practical
waves. Similarly, propagation in general media, although not identical to propagation in
lossless media, is quite similar in many cases. The benefit of this approach is in keeping
the solution simple while still capturing all the important properties of the wave.

In fact, the conditions stated in this section specify what is called a uniform
plane wave.

D.2.3 Solution for uniform plane waves in lossless media
A uniform plane wave is a wave (i.e., a solution to the wave equation) in which the
electric and magnetic field intensities are directed in fixed directions in space and
are constant in magnitude and phase on planes perpendicular to the direction of
propagation.
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Clearly, for a field to be constant in amplitude and phase on infinite planes,
the source must also be infinite in extent. In this sense, a plane wave cannot be
generated in practice. However, many practical situations can approximate plane
waves to such an extent that plane waves are actually more common than one might
think. Even when fields are not plane waves, one can show that they are super-
positions of plane waves. Hence, the idea of plane waves is extremely useful for
analysis.

D.2.3.1 The one-dimensional wave equation in free space
and perfect dielectrics

With the assumptions in Section D.2.2, the electric field intensity is

E ¼ bxEx zð Þ ðV=mÞ (D.51)

where E is a phasor (i.e., e jwt is implied). These assumptions imply the following
conditions:

Ey ¼ Ez ¼ 0 and
@E�
@x

¼ @E�
@y

¼ 0 (D.52)

where * denotes any component of E. Substitution of these into (D.50) results in

d2Ex

dz2
þ w2meEx ¼ 0 (D.53)

where the partial derivative was replaced with the ordinary derivative because of
the field dependence on z alone. Also, since the electric field is directed in a fixed
direction in space, a scalar equation is sufficient. We denote

k ¼
ffiffiffiffiffiffiffiffiffiffi
w2me

p
¼ w

ffiffiffiffiffi
me

p ðrad=mÞ (D.54)

Since (D.53) describes simple harmonic motion, it has a solution

Ex zð Þ ¼ Eþ
0 e�jkz þ E�

0 ejkz ðV=mÞ (D.55)

where Eþ
0 and E�

0 are constants (amplitudes) to be determined from the boundary
conditions of the problem. The notations (þ) and (�) indicate that the first term is a
propagating wave in the positive z direction called a forward-propagating wave and
the second a propagating wave in the negative z direction called a backward-
propagating wave, as in Figure D.1(a) (horizontal arrows indicate the direction of
propagation, the electric field intensity components are vertical). The amplitudes
Eþ

0 and E�
0 are real (but they may, in general, be complex) and are arbitrary. This

solution can be verified by direct substitution into (D.53).
Using the phasor transformation, we can write the solution in the time domain as

Ex z; tð Þ ¼ Re ExðzÞejwt
� � ¼ Eþ

0 cosðwt � kz þ fÞ þ E�
0 cosðwt þ kz þ fÞ ðV=mÞ

(D.56)
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where the initial (arbitrary) phase angle f was added for completeness.
If the wave propagates in boundless space, only an outward wave exists and E�

0
is zero (all power propagates away from the source and there can be no backward-
propagating waves, such as in a transmitting antenna). If the forward-propagating
wave is reflected without losses, the amplitudes of the two waves are equal.

Assuming only a forward-propagating wave, the solution is

ExðzÞ ¼ Eþ
0 e�jkzejf or Exðz; tÞ ¼ Eþ

0 cos wt � kz þ fð Þ ðV=mÞ (D.57)

Examining these expressions, it becomes apparent that what changes with time is
the phase of the wave. In other words, the phase of the wave ‘‘travels’’ at a certain
velocity. To see what this velocity is, we use Figure D.2 and follow a fixed point on
the wave, for which the phase of the field is wt � kz þ f ¼ constant:

z ¼ wt

k
þ f

k
� constant (D.58)

The speed of propagation of the phase is

up ¼ dz

dt
¼ w

k
¼ 1

ffiffiffiffiffimep ðm=sÞ (D.59)

where k ¼ w ffiffiffiffiffimep
was used [see (D.54)]. up is called the phase velocity of the wave.

E

z

λ

t + Δt
t

Δz
. .vp vp

Figure D.2 Definition of wavelength and calculation of phase velocity

(a) (b)
Source

o

x

z

Source

o

x

z

E+
0 e–jkz E+

0 e–jkzE0
– e+jkz

Reflector

Figure D.1 (a) Forward and backward-propagating waves in bounded space and
(b) forward-propagating wave in unbounded space (the horizontal
arrows show the direction of propagation)
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The phase velocity of electromagnetic waves is material dependent. In parti-
cular, in free space,

up ¼ 1
ffiffiffiffiffiffiffiffiffim0e0

p ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � p� 10�7 � 8:8541853 � 10�12

p ¼ 3 � 108 ðm=sÞ (D.60)

The phase velocity of electromagnetic waves in free space is the speed of light.
The phase velocity in all materials is lower than c since mr, er � 1.
As the wave propagates, the distance between two successive crests of the

wave depends both on the frequency of the wave and its phase velocity. We define
the wavelength l (in meters) as that distance a wave front (a front of constant
phase) travels in one cycle:

l ¼ vp

f
¼ 2p

k
ðmÞ (D.61)

In the electromagnetic case, the wavelength can be very short or very long,
depending on frequency and phase velocity. For example, the wavelength in free
space for a wave at 50 Hz is 6,000 km. At 30 GHz (a frequency used to commu-
nicate with satellites), the wavelength is 10 mm. From the definition of the wave-
length in (D.61), we can write k as

k ¼ 2p
l

ðrad=mÞ (D.62)

k is called the wave number. If the wavelength in free space is given, then k is
called the free-space wave number.

D.3 Propagation of plane waves in materials

That waves are affected by the material in which they propagate has been shown in
Section D.2.3.1, where propagation in lossless dielectrics, including free space, was
discussed. The phase velocity, wavelength, wave number, and intrinsic impedance
are material dependent. The behavior of waves in the presence of materials and in
particular of lossy dielectrics is discussed next. In the process, we define the
important parameters of propagating waves, which, in addition to those defined in
Section D.2, describe an electromagnetic wave. These parameters include the
propagation, phase, and attenuation constants, as well as the skin depth and the
complex permittivity.

D.3.1 Propagation of plane waves in lossy dielectrics
The source-free wave equation with losses was written in (D.47) for the electric
field intensity as

r2E ¼ jwmðsþ jweÞE (D.63)
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If the term sþ jwe in (D.63) is replaced with a complex term jwec, that is,

jwec ¼ sþ jwe (D.64)

Equation (D.63) becomes identical in form to (D.50). The only difference is that the
permittivity is replaced with the complex permittivity. The term ec can be written as

ec ¼ sþ jwe
jw

¼ e� j
s
w
¼ e 1 � j

s
we

h i
¼ eþ je00 ðF=mÞ (D.65)

This is called the complex permittivity and, in general, replaces the permittivity e in
the field equations. The imaginary part of the complex permittivity is associated
with losses. Now, the term lossless dielectric becomes obvious: these are dielectrics
in which s¼ 0 and ec is real and equal to e. The definition of complex permittivity
is not merely a mathematical nicety: it is an accurate model of material behavior.
The real and imaginary parts of the complex permittivity are measurable.

The ratio between the imaginary and real parts of the complex permittivity is
called the loss tangent of the material and is a common measure of how lossy
materials are:

tan qloss ¼ s
we

¼ e00

e0
ðdimensionlessÞ (D.66)

Since the loss tangent may be viewed as the ratio between induced and displace-
ment current densities, we will use it to define approximation limits to the complex
permittivity. A very low conductivity means that the permittivity is real, whereas a
high conductivity means that the imaginary part of the complex permittivity
dominates and the real part may be neglected.

To obtain a solution to the wave equation in lossy media, we will rely on the
solution we already obtained for the lossless equation. Since the two are identical in
form if the permittivity in the lossless equation is replaced with the complex per-
mittivity, we can write the wave equation in lossy dielectrics as

r2E ¼ jwmðjwecÞE ¼ jwm jwe
�

1 � j
s
we

�� �
E (D.67)

or writing this in the form of the Helmholtz equation in (D.50)

r2E � jwm jwe
�

1 � j
s
we

�� �
E ¼ 0 (D.68)

Comparing this with the source-free (Helmholtz) equation and denoting

g ¼ jw
ffiffiffiffiffi
me

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1 � j
s
we

�s

(D.69)

Equation (D.68) can be written as

r2E � g2E ¼ 0 (D.70)
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The quantity g is called the propagation constant and is, in general, a complex
number. The propagation constant can also be written directly from (D.63) by
comparison with (D.70) as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jwmðsþ jweÞ

p
(D.71)

Equation (D.70) for lossy materials is similar to (D.50) for lossless materials.
We can put them in exactly the same form if we write

g ¼ jkc (D.72)

where

kc ¼ w
ffiffiffiffiffi
me

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1 � j
s
we

�s

ðrad=mÞ (D.73)

The importance of this is that now we can use all the relations obtained for the
lossless propagation of waves by replacing the term jk in (D.55) and (D.57) by g.

The general solution for propagation in a lossy dielectric has the same two
wave components as in (D.55): one traveling in the positive z direction, the other in
the negative z direction

ExðzÞ ¼ Eþ
0 e�gz þ E�

0 eþgz ðV=mÞ (D.74)

Similarly, assuming only an outgoing wave, we have from (D.57):

ExðzÞ ¼ Eþ
0 e�gz ðV=mÞ (D.75)

Since the propagation constant is a complex number, it can also be written as

g ¼ aþ jb (D.76)

This gives for the general solution

ExðzÞ ¼ Eþ
0 e�aze�jbz þ E�

0 eþazeþjbz ðV=mÞ (D.77)

Similarly, in the case of forward propagation only

ExðzÞ ¼ Eþ
0 e�ðaþjbÞz ¼ Eþ

0 e�aze�jbz ðV=mÞ (D.78)

The general solution in the time domain may be written as

Exðz; tÞ ¼ Eþ
0 e�az cosðwt � bzÞ þ E�

0 eþaz cosðwt þ bzÞ ðV=mÞ (D.79)

For a wave propagating in the positive z direction only, this reduces to the first term
of (D.79):

Exðz; tÞ ¼ Eþ
0 e�az cosðwt � bzÞ ðV=mÞ (D.80)

In this form, the propagating wave has the same form as (D.57) where b has
replaced k and the exponential term e�az multiplies the amplitude. This is
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therefore a wave, propagating in the positive z direction, with a phase velocity up

and with an exponentially decaying amplitude. Thus, unlike the lossless case, in
which the amplitude remained constant as the wave propagated, this time the
amplitude changes as the wave propagates (Figure D.3). Much more will be said
about this decay in amplitude in future sections. Perhaps, the most important
general comment is that the decay can be quite rapid and that it depends on
conductivity. If s¼ 0, a¼ 0, e�az ¼ 1, and the amplitude does not decay as the
wave propagates.

We note that a causes an attenuation of the amplitude of the wave and is called
the attenuation constant. The attenuation constant a is measured in nepers/meter.
The neper defines the fraction of the attenuation the wave undergoes in 1 m.
Attenuation of 1 Np/m reduces the wave amplitude to 1/e as it propagates a
distance of 1 m. Therefore, it is equivalent to 8.69 dB/m (20 log10 e ¼ 8.69), that is,
1 Np/m ¼ 8.69 dB/m.

The imaginary part, b, only affects the phase of the wave and is called the
phase constant. The phase constant for lossless materials is identical to the wave
number k as defined in (D.54). However, we will use k as notation for wave number
and use the phase constant b for all media, including lossless dielectrics.

A propagating wave in a lossy material is shown schematically in Figure D.3.
As the wave propagates in space, its amplitude is reduced exponentially. All
aspects of propagation presented in the previous section remain the same except for
replacing k by b and including the exponential decay in the amplitude.

The attenuation and phase constants for a general, lossy material are found by
separating the real and imaginary parts of g in (D.71). These are

a ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ s
we

	 
2
r

� 1

" #vuut ðNp=mÞ (D.81)

b ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ s
we

	 
2
r

þ 1

" #vuut ðrad=mÞ (D.82)

z

e–αz

Amplitude

λ

Figure D.3 Propagation of a wave in a lossy material showing exponential
attenuation
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The other parameters required for description of the wave in general lossy media
are the phase velocity, wavelength, and intrinsic impedance. The phase velocity
and wavelength are now

up ¼ w
b
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

me=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ s=weð Þ2

q
þ 1

� �s ðm=sÞ (D.83)

l ¼ 2p
b

¼ 2p

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

me=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ s=weð Þ2

q
þ 1

� �s ðmÞ (D.84)

Thus, both phase velocity and wavelength are smaller in lossy dielectrics,
depending on conductivity. For lossless materials (s¼ 0), (D.83) and (D.84) reduce
to those for lossless materials given in (D.59) and (D.61). To find the intrinsic
impedance, we return to (D.75):

@Eþ
x

@z
¼ @

@z
Eþ

0 e�gz
� � ¼ �gEþ

x ðzÞ (D.85)

Substituting this in (D.32) gives

�gEþ
x ðzÞ ¼ �jwmHy (D.86)

The intrinsic impedance is now written as

h ¼ Eþ
x ðzÞ

Hþ
y ðzÞ ¼

jwm
g

ðWÞ (D.87)

In the case considered here, the intrinsic impedance becomes

h ¼ jwm
g

¼ jwm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jwm sþ jweð Þp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jwm

sþ jwe

s

ðWÞ (D.88)

The intrinsic impedance (also called the wave impedance) is now a complex
number. It has both a resistive and a reactive part. In practical terms, this means that
E and H are out of time phase in all but lossless materials and are out of phase in
space for all materials (i.e., for plane waves, they are perpendicular to each other).

Some important general observations are appropriate here:

1. The phase velocity in lossy dielectrics is lower than in perfect dielectrics. This
can be seen from (D.83) since b for lossy materials is larger than k for perfect
dielectrics. Thus, the speed of propagation of electromagnetic waves is lower in
lossy dielectrics (for the same e and m). The larger the losses, the lower the speed.

2. The intrinsic impedance (wave impedance) in lossy dielectrics is complex,
indicating a phase difference between the electric and magnetic field intensity
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in the same way as the phase difference between voltage and current in a
circuit which contains reactive components. The magnitude of the intrinsic
impedance is lower in conductive media. The higher the conductivity (losses),
the lower the magnitude of the impedance.

3. The electric and magnetic field intensity remain perpendicular to each other
and to the direction of propagation regardless of losses. This is a property of
the uniform plane waves we assumed.

4. Attenuation of the wave in lossy media is exponential. This means that in materials
with high conductivity, the attenuation is rapid. These materials will be called
high-loss materials. Low-loss materials are materials with low conductivity.

D.3.2 Propagation of plane waves in low-loss dielectrics
We define low-loss materials as those materials in which the loss tangent is small:
s=we � 1 [or, equivalently, that the imaginary part of the complex permittivity in
(D.65) is small compared to the real part]. This relation also indicates that a
material may be considered to be low loss at a given frequency range, whereas in
another frequency range, this assumption may not hold. Thus, the classification of
materials changes, depending on frequencies. In practice, the permittivity of the
material also changes with frequency, changing the range in which a material may
be considered to be a low-loss material.

All properties of the wave propagating in low-loss dielectrics remain the same
as for any lossy material. But the above condition for low-loss materials simplifies
some of these relations, allowing easier application and better understanding of
behavior of waves propagating in these materials. The propagation constant now
can be approximated using the binomial expansion (because s/we< 1) as

g ¼ jw
ffiffiffiffiffi
me

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � js
we

� �s

¼ jw
ffiffiffiffiffi
me

p
1 � js

2we
þ 1

8
s
we

	 
2
þ H :O:T :

� �
(D.89)

Deciding, somewhat arbitrarily, to neglect all but the first three terms in the expan-
sion, the attenuation constant is approximated by the second (real) term in (D.89):

a � s
2

	 
 ffiffiffi
m
e

r
¼ s

2
hn ðNp=mÞ (D.90)

where hn is the no-loss intrinsic impedance (i.e., the intrinsic impedance of a
material with the same m and e but in which s¼ 0), and the phase constant is

b � w
ffiffiffiffiffi
me

p
1 þ 1

8
s
we

	 
2
� �

ðrad=mÞ (D.91)

In very low-loss cases, the second term in (D.91) may also be neglected and the
phase constant may often be approximated as

b � w
ffiffiffiffiffi
me

p ðrad=mÞ (D.92)
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The phase constant and, therefore, phase velocity and wavelength for low-loss
dielectrics are essentially unchanged from those for the lossless dielectric because
the second term in (D.91) is small, but the attenuation constant can be quite sig-
nificant. Thus, the phase velocity and wavelength are

up � 1
ffiffiffiffiffimep

1 þ 1=8ð Þ s=weð Þ2
	 
 ðm=sÞ

l ¼ 2p
b

¼ up

f
¼ 1

f
ffiffiffiffiffimep

1 þ 1=8ð Þ s=weð Þ2
	 
 ðmÞ

(D.93)

for general low-loss materials and

up � 1
ffiffiffiffiffimep ðm=sÞ l ¼ 2p

b
¼ up

f
ðmÞ (D.94)

for very low-loss materials. The intrinsic impedance in low-loss dielectrics is still a
complex number. Substituting the value of g from (D.89) in (D.87), and using the
expansion again, h can be approximated as

h ¼ jwm
g

¼
ffiffiffi
m
e

r
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � js=weð Þð Þp �

ffiffiffi
m
e

r
1 þ js=2weð Þð Þ ¼ hn 1 þ js

2we

� �
ðWÞ

(D.95)

where hn is the no-loss intrinsic impedance for the same material. The reactive part
of the intrinsic impedance is quite small since s=we � 1. Thus, for many practical
applications, the intrinsic impedance of the lossless material may be used with
little error.

D.3.3 Propagation of plane waves in conductors or high-loss
dielectrics

In highly conductive materials, the losses are high, and we can assume that s 	 we
or that the imaginary part of the complex permittivity is not negligible compared to
the real part (i.e., conduction currents dominate). Under this condition, the complex
propagation constant can be approximated from (D.89) as

g � jw
ffiffiffiffiffi
me

p
ffiffiffiffiffiffiffiffiffiffi

� js
we

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jwmes

e

r

¼ ð1 þ jÞ
ffiffiffiffiffiffiffiffiffi
wms

2

r
(D.96)

by neglecting 1 compared to js/we and using
ffiffi
j

p ¼ ð1 þ jÞ= ffiffiffi
2

p
. From this, we get

a ¼
ffiffiffiffiffiffiffiffiffi
wms

2

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
pf ms

p
ðNp=mÞ; b ¼

ffiffiffiffiffiffiffiffiffi
wms

2

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
pf ms

p
ðrad=mÞ (D.97)
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The attenuation and phase constants are equal and are very large. The wave is
attenuated rapidly to the point where propagation in conducting media can only
exist within short distances. The propagating wave can now be written as

ExðzÞ ¼ Eþ
0 e�z=de�jz=d ðV=mÞ (D.98)

where the term

d ¼
ffiffiffiffiffiffiffiffiffi

2
wms

s

¼
ffiffiffiffiffiffiffiffiffiffiffi

1
pf ms

s

¼ 1
a

ðmÞ (D.99)

is known as the skin depth or depth of penetration of the wave. It is defined as
that distance in which the amplitude of a plane wave is attenuated to 1/e of its
original amplitude. The skin depth in conductors is small. In the microwave
range, it can be of the order of a few microns (depending on material and
frequency). Because waves at these high frequencies penetrate very little in
conductors, it is quite common to use the perfect conductor approximation for
conducting materials.

The phase velocity in good conductors is [from (D.83) and (D.97)]:

v ¼ w
b
¼ wd ¼

ffiffiffiffiffiffi
2w
ms

s

ðm=sÞ (D.100)

and is obviously small compared to the phase velocity in dielectrics or free space,
because d is small.

The wavelength also changes drastically compared to free space or lossless
dielectrics. It is very short and given by

l ¼ 2p
b

¼ 2pd ðmÞ (D.101)

The intrinsic impedance is [using (D.88)]:

h � jwm
g

¼ jwm
ð1 þ jÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wms=2
p ¼ ð1 þ jÞ

ffiffiffiffiffiffi
wm
2s

r
¼ ð1 þ jÞ 1

sd
¼ 1 þ jð Þwmd

2
ðWÞ

(D.102)

where j/(j þ 1) ¼ (j þ 1)/2 was used. The phase angle of the intrinsic impedance is,
therefore, 45
. This is characteristic of good conductors for which the magnetic
field intensity lags behind the electric field intensity by 45
. The intrinsic
impedance of conductors can be very low and is much lower than the intrinsic
impedance of free space. For example, the intrinsic impedance in copper at 1 GHz
is (1 þ j) � 8.3 � 10�3 W compared to 377 W in free space.
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D.4 The Poynting theorem and electromagnetic power

One of the most important characteristics of waves is their ability to transport
energy and the power associated with the process. To examine power and energy
relations in the electromagnetic wave, it is convenient to look first at the general
time-dependent expression for the rate of energy transfer that includes time-rate of
change in stored magnetic and stored electric energy, and dissipated power.
As always, the starting point must be with Maxwell’s equations.

D.4.1 The Poynting theorem in the time domain
Before formalizing the expressions for energy transfer, first consider Ampere’s law
[see (D.2)]:

r� H ¼ J þ @D
@t

ðA=m2Þ (D.103)

where J includes all possible current densities as follows

J ¼ J0 þ Je ¼ J0 þ sE A=m2
� �

(D.104)

where J0 indicates source current densities and Je indicates induced current den-
sities in conducting media. Now, suppose we take the scalar product of (D.103)
with the electric field intensity E:

E � r � Hð Þ ¼ E � J þ E � @D
@t

(D.105)

The term E�J is the volume power density associated with the general current
density in (D.104):

dP

du
¼ E � J W=m3

� �
(D.106)

The terms on the right-hand side of (D.105) are electric volume power densities
since they are both associated with the electric field intensity.

The following vector identity can be written for any two vectors:

r � E � Hð Þ ¼ H � r � Eð Þ � E � r � Hð Þ (D.107)

The second term on the right-hand side is (D.105), and, therefore, all three terms in
(D.107) represent power densities. The first term on the right-hand side comes from
taking the scalar product of Faraday’s law [see (D.1)] and the magnetic field
intensity H:

H � r � Eð Þ ¼ �H � @B
@t

� �
(D.108)
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The right-hand side of (D.108) is a magnetic power density as it is associated with
the magnetic field intensity. From (D.107) we have

r � E � Hð Þ ¼ �H � @B
@t

� E � J þ @D
@t

� �
¼ �H � @B

@t
� E � @D

@t
� E � J W=m3

� �

(D.109)

Assuming that we consider the power relations in a volume u, bounded by an area s,
the total power in the volume is obtained by integrating over the volume:

ð

u
r � E � Hð Þdu ¼ �

ð

u
H � @B

@t
þ E � @D

@t

� �
du�

ð

u
E � Jdu ðWÞ (D.110)

The left-hand side is transformed from a volume integral to a surface integral using
the divergence theorem. We also use the following identities:

E � @D
@t

¼ @

@t

E � D
2

� �
; H � @B

@t
¼ @

@t

H � B
2

� �
(D.111)

With these, (D.110) becomes
þ

s
E � Hð Þ � ds ¼ � @

@t

ð

u

H � B
2

þ E � D
2

� �
du�

ð

u
E � J du ðWÞ (D.112)

or performing the scalar products

H � B ¼ mH � H ¼ mH2; E � D ¼ eE � E ¼ eE2 (D.113)

we get
þ

s
E � Hð Þ � ds ¼ � @

@t

ð

u

mH2

2
þ eE2

2

� �
du�

ð

u
E � J du ðWÞ (D.114)

The left-hand side of (D.114) represents the total outward flow of power through the
area s bounding the volume u or, alternately, the energy per unit time crossing the
surface s. If this flow is inwards, it is a negative flow; if outward, it is positive
(because ds is always positive pointing out of the volume). The expression E � H
has units of (V/m)�(A/m) ¼ (W/m2) and is therefore a surface power density. This
power density is called the Poynting vector P:

P ¼ E � H W=m2
� �

(D.115)

The advantage of this expression is that it also indicates the direction of the power
flow, information that is important for wave propagation calculations. Thus, power
flows in the direction perpendicular to both E and H, according to the right-
hand rule.

The first term on the right-hand side of (D.114) represents the time-rate of
decrease in the potential or stored energy in the system. It has two components: one
is the time-rate of change of the stored electric energy and the other is time-rate of
change of the stored magnetic energy.
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The second term is due to any sources that may exist in the volume. There are
two possibilities that must be considered here. One is that the current density is a
source current density such as produced by a battery or a generator inside volume u.
The second is a current density provided by external sources (outside the volume u).

The expressions in (D.114) and (D.115) are instantaneous quantities. For
practical purposes, a time-averaged quantity is sometimes more useful. For a per-
iodic time variation of fields, this can be obtained by averaging over a time T
(usually a cycle of the field), giving the time-averaged Poynting vector:

P au ¼ 1
T

ðT

0
P ðtÞdt W=m2

� �
(D.116)

The time-averaged Poynting vector is a time-averaged power density. To calculate the
total power, either instantaneous or time averaged, the Poynting vector must be inte-
grated over the surface through which the power crosses. This usually means a closed
surface enclosing a volume, but not always. The instantaneous power is given as

PðtÞ ¼
þ

s
P ðtÞ � ds ¼

þ

s
ðEðtÞ � HðtÞÞ � ds ðWÞ (D.117)

while the time-averaged power through a closed surface s is

Pau ¼
þ

s
P au � ds ðWÞ (D.118)

The important properties of the Poynting theorem and the Poynting vector are as
follows:

1. The Poynting theorem gives the power relations of the fields in any volume.
2. The Poynting vector is the power density on the surface of a volume. The

direction of the Poynting vector is the direction of flow of power.
3. The Poynting vector gives the direction of propagation of electromagnetic

power.
4. The Poynting theorem gives the net flow of power out of a given volume

through its surface.

D.4.2 The complex Poynting vector
As pointed out earlier, most electromagnetic relations encountered here, including
most applications, are handled in the frequency domain, assuming sinusoidal
excitation. Thus, it often becomes necessary to define the Poynting vector in the
frequency domain. This definition also shows the relation between real and reactive
power and is closely related to time-averaged power.

In analogy with time-averaged power in circuits using the phasor notation, the
time-averaged Poynting vector in a general field under sinusoidal conditions may
be written as

P au ¼ 1
2

Re E � H�f g W=m2
� �

(D.119)
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where * indicates the complex conjugate form. Comparing this to (D.115), we are
led to define a complex Poynting vector as

P c ¼ E � H� ¼ E� � H W=m2
� �

(D.120)

where E and H are phasors. Clearly, the value of the complex Poynting vector is
the ease with which the time-averaged power density and, therefore, time-averaged
power are evaluated.

A formal derivation of the complex Poynting vector starts with Maxwell’s first
two equations in the frequency domain [see (D.13) and (D.14)]:

r� E ¼ �jwmH (D.121)

r� H ¼ J þ jweE (D.122)

The conjugates of (D.121) and (D.122) are

r� E� ¼ jwmH� (D.123)

r� H� ¼ J� � jweE� (D.124)

The current density J* includes source and induced current densities [see (D.104)]:

J� ¼ J�0 þ J�e ¼ J�
0 þ sE� (D.125)

First, we write the scalar product between H* and (D.121) as

H� � ðr � EÞ ¼ �jwmH � H� (D.126)

Next, we write the scalar product between E and (D.124) as

E � ðr � H�Þ ¼ ðJ� � jweE�Þ � E (D.127)

Equations (D.126) and (D.127) may be combined using the following vector
identity:

H� � r � Eð Þ � E � r � H�ð Þ ¼ r � E � H�ð Þ (D.128)

Substituting for H* � (r� E) from (D.126) and for E � (r� H*) from (D.127) and
rearranging terms gives

r � E � H�ð Þ ¼ jw eE � E� � mH � H�ð Þ � E � J� (D.129)

The first two terms on the right-hand side represent the electric and magnetic power
densities. The third term represents the input and dissipated power densities.

Using the ideas of the transmitter and receiver cases discussed in the previous
section, the term E � J* is replaced by sE � E* for the receiver case and by �E � J*

for the transmitter case, as was done earlier. To write this in terms of power rather
than power density, we integrate (D.129) over an arbitrary volume u:

ð

u
r � E � H�ð Þdu ¼ jw

ð

u
eE � E� � mH � H�ð Þdu�

ð

u
E � J�0du

�
ð

u
sE � E�du ðWÞ (D.130)
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and using the divergence theorem on the left-hand side, we get

þ

s
E � H�ð Þ � ds ¼ jw

ð

u
eE � E� � mH � H�ð Þdu�

ð

u
E � J�0du�

ð

u
sE � E�du ðWÞ

(D.131)

where J0 indicates a source current density. The left-hand side is the complex
power flow through the surface s enclosing the volume u. The first term on the
right-hand side is the reactive power in the volume, the second term on the right-
hand side is the complex source power (either positive or negative depending on the
location of the source), and the last term is the dissipated power in the volume if
dissipation occurs (in conducting media).

Equation (D.131) is the complex Poynting theorem. As mentioned at
the beginning of this section when using the complex Poynting vector, it is for the
purpose of calculating time-averaged quantities. It is therefore more useful to write
this relation as two terms as follows [using the notation in (D.119)]:

1
2

Re
þ

s
P c � ds

 �
¼ � 1

2

ð

u
E � J�0du� 1

2

ð

u
sE � E�du ðWÞ (D.132)

1
2

Im
þ

s
P c � ds

 �
¼ w

ð

u

eE � E�

2
� mH � H�

2

� �
du ðWÞ (D.133)

Equation (D.132) gives the real power balance in the volume. The left-hand side is
the net outward flow of power through the surface enclosing the volume. The first
term on the right-hand side is the net source power (in this case, the source is
outside the volume hence the negative sign) and the last term is the dissipated
power in the volume. E � J* is positive for the receiver case (power propagates into
the volume) and negative for the transmitter case (power propagates out of the
volume). Therefore, the second term on the right-hand side of (D.132) is negative
for the receiver case and positive for the transmitter case.

Usually, in the transmitter case, we will assume there are no losses in the
volume, whereas in the receiver case, there are no sources in the volume. If this is
so, the corresponding terms are deleted from (D.132).

Equation (D.133) is the balance of reactive power. It shows it is the rate of flow
of reactive power across the surface. The right-hand side gives the time-averaged
reactive power. The second term on the right-hand side is the reactive power due to
the source. The time-averaged magnetic and electric energy densities can be shown
to be

wmðavÞ ¼ 1
4
mH � H� weðavÞ ¼ 1

4
mE � E� J=m3

� �
(D.134)

To emphasize the time-averaged energy densities, (D.133) may be written as

1
2

Im
þ

s
P c � ds

 �
¼ 2w

ð

u

eE � E�

4
� mH � H�

4

� �
du ðWÞ (D.135)
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D.5 Reflection, transmission, and refraction of plane waves

In addition to propagation of waves in unbounded space, we also need to look at
their behavior at interfaces between different media. At these interfaces, which can
be between lossless or lossy dielectrics or between dielectrics and conductors, the
waves are modified by reflections from and transmission through the interface.
This interaction gives rise to additional properties of waves that need to be defined.
In fact, the ideas of reflection and transmission are fundamental in many applica-
tions including those described in Chapters 3 and 4. We will develop here the
relations for transmission and reflection coefficients for the most important con-
figurations including lossy and lossless dielectrics and conductors.

The basic principle involved in describing the behavior of a wave at the
interface between materials is to write the waves on both sides of the interface and
to match the components of the electric and magnetic fields at the interface. In
general, this means applying the interface conditions of the fields, from which the
fields on both sides of the interface are found. The general conditions are shown in
Figure D.4. There are two separate configurations that need to be considered. One
is the case of perpendicular polarization shown in Figure D.4(a). The electric field
intensity is perpendicular to the plane formed by the direction of propagation of
the incident wave and the normal to the interface. This plane is called the plane of
incidence. The second case is shown in Figure D.4(b) in which the electric field
intensity is polarized parallel to the plane of incidence. The more general case of
arbitrary polarization is handled by superposition of perpendicular and parallel
polarization cases. The wave in material (1) propagates at an angle to the normal to
the interface. This angle is called the incidence angle, qi. The tangential compo-
nents of the electric field intensity are continuous at the interface (see Table D.5).
The normal components are discontinuous. In general, we will assume that there
are no charge densities or current densities at the interface (except for conducting
interfaces). The wave is partly transmitted into material (2) and partly reflected at
an angle qr called the reflection angle. We will also show that the incidence and
reflection angles are equal. The transmission angle (or refraction angle) qt is
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Figure D.4 Incident, reflected, and refracted waves for oblique incidence at a
dielectric–dielectric interface: (a) perpendicular and (b) parallel
polarizations
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different than the incidence angle qi, as one would expect from two different
materials. Note however that the discussion of waves at interfaces goes beyond
simple interface conditions. The propagation properties of the wave must also be
taken into account. This means that we must consider such properties as polariza-
tion of the wave and its speed of propagation.

As we discuss the behavior of waves at interfaces, it is useful to recall the
behavior of light waves. We expect similar behavior, including reflection, trans-
mission, and refraction of waves at the interface. We start with a wave incident at
an angle on a dielectric interface and find the reflection and transmission coeffi-
cients. Then, from these relations, we find the conditions for transmission and
reflection on conductors and the conditions for normal incidence on both con-
ductors and dielectrics.

We start with a general, lossy dielectric interface and then proceed to discuss
lossless and low-loss dielectrics and conductors. Normal incidence is treated as a
special case of the general oblique incidence, and incidence on conductors is a
limiting case of incidence on lossy media.

D.5.1 Oblique incidence on a dielectric interface:
perpendicular polarization

To define the conditions for the reflection and transmitted waves, we use
Figure D.4, write the electric and magnetic field intensities on both sides, and apply
the boundary conditions on the interface for the tangential components of the
electric field intensity. We assume here lossless propagation for simplicity. Losses
will be discussed separately after the lossless reflection and transmission is
discussed.

The direction of propagation can be written directly from Figure D.5(b). For
the incident wave, the unit vector in the direction of propagation is

bpi ¼ bx sin qi þ bz cos qi (D.136)
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Figure D.5 Direction of propagation and phase constants at an interface:
(a) relation between phase constants and (b) distances traveled
by the incident and reflected waves
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For the reflected wave, the direction of propagation is

bpr ¼ bx sin qr � bz cos qr (D.137)

where the unit vectors bpi and bpr refer to the direction of the Poynting vector for the
incident and reflected waves, respectively.

Inspection of the electric field intensity in (D.77) shows that the variable z in
the exponent is a distance the wave propagates from some reference point, whereas
b is the phase constant of the wave. The product bz is the phase of the wave after it
has propagated a distance z from some reference point. Since the phase constant b1

is given for the wave propagating in the bpi direction, we can view the wave in
Figure D.5(b) as two components, one propagating in the positive x direction with
phase constant b1x and one in the positive z direction with phase constant b1z [see
Figure D.5(a)], where

b1x ¼ b1 sin qi; b1z ¼ b1 cos qi ðrad=mÞ (D.138)

When the wave propagates a distance ri along bpi [see Figure D.5(b)], the
vertical component of the wave propagates a distance x with phase constant b1x and
the horizontal component propagates a distance z with a phase constant b1z. The
phase of the incident wave is therefore

b1ri ¼ b1x sin qi þ b1z cos qi ðradÞ (D.139)

Similarly, for the backward-propagating wave, the components of b are as in
(D.138), but now the wave travels a distance x in the vertical direction and a
distance �z in the horizontal direction and the angle is qr. The phase of the
reflected wave is

b1rr ¼ b1x sin qr � b1z cos qr ðradÞ (D.140)

The incident electric and magnetic fields can now be written directly from
Figure D.4(a) as follows:

Eiðx; zÞ ¼ byEi1e�jb1 x sin qiþz cos qið Þ ðV=mÞ (D.141)

Hiðx; zÞ ¼ Ei1

h1
�bx cos qi þ bz sin qið Þe�jb1 x sin qiþz cos qið Þ ðA=mÞ (D.142)

where, again, the direction of propagation of the incident wave is given by
bpi ¼ bx sin qi þ bzcos qi. The reflected electric and magnetic fields are

Erðx; zÞ ¼ byEr1e�jb1 x sin qi�z cos qið Þ ðV=mÞ (D.143)

Hrðx; zÞ ¼ Er1

h1
bx cos qi þ bz sin qið Þe�jb1 x sin qi�z cos qið Þ ðA=mÞ (D.144)
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Similarly, the transmitted electric and magnetic fields have the same form as the
incident wave but with different amplitude and propagate at a different angle [see
Figure D.4(a)]:

Etðx; zÞ ¼ byEt2e�jb2 x sin qtþz cos qtð Þ ðV=mÞ (D.145)

Htðx; zÞ ¼ Et2

h2
�bx cos qt þ bz sin qtð Þe�jb2 x sin qtþz cos qtð Þ ðA=mÞ (D.146)

To determine the transmission and reflection coefficients, the tangential compo-
nents of the electric field intensity and those of the magnetic field intensity on both
sides of the interface (i.e., at z ¼ 0) are equated. From Figure D.4(a) and (D.141)–
(D.146), and taking only the tangential components (y component for E and x
component for H) at z ¼ 0, we have

Ei1 þ Er1ð Þe�jb1x sin qi ¼ Et2e�jb2x sin qt and

Ei1

h1
� Er1

h1

� �
cos qie

�jb1x sin qi ¼ Et2

h2
cos qte

�jb2x sin qt (D.147)

There are three relations that must be satisfied:

e�jb1x sin qi ¼ e�jb2x sin qt or b1 sin qi ¼ b2 sin qt (D.148)

and

Ei1 þ Er1 ¼ Et2 and
Ei1

h1
cos qi � Er1

h1
cos qi ¼ Et2

h2
cos qt (D.149)

From (D.148), we get

w
ffiffiffiffiffiffiffiffiffi
e1m1

p
sin qi ¼ w

ffiffiffiffiffiffiffiffiffi
e2m2

p
sin qt (D.150)

or

sin qt ¼
ffiffiffiffiffiffiffiffiffie1m1

p
ffiffiffiffiffiffiffiffiffie2m2

p sin qi (D.151)

This relation between the incident and refraction angle is Snell’s law of refraction.
Since e1 ¼ e0er1, e2 ¼ e0er2, m1 ¼ m0mr1, and m2 ¼ m0mr2 (where er1; er2; mr1; mr2

er1; er2; mr1; mr2 are the relative permittivities and relative permeabilities of the two
media), and since the phase velocities in medium (1) and (2) are vp1 ¼ 1=

ffiffiffiffiffiffiffiffiffie1m1
p

and vp2 ¼ 1=
ffiffiffiffiffiffiffiffiffie2m2

p
, respectively, we can also write Snell’s law of refraction as

sin qt

sin qi
¼ n1

n2
¼ vp2

vp1
(D.152)

where n1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffier1mr1
p

is the (optical) index of refraction in medium (1) and
n2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffier2mr2

p
is the (optical) index of refraction in medium (2).
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Now returning to (D.149), the solution of the two relations for Er1 and Et2 gives

Er1 ¼ Ei1
h2 cos qi � h1 cos qt

h2 cos qi þ h1 cos qt
; Et2 ¼ Ei1

2h2 cos qi

h2 cos qi þ h1 cos qt
(D.153)

Because Er1 and Ei1 are in the same direction, the reflection coefficient may be
written as G⊥¼ Er1/Ei1 and the transmission coefficient as T⊥¼ Et1/Ei1:

G? ¼ Er1

Ei1
¼ h2 cos qi � h1 cos qt

h2 cos qi þ h1 cos qt
ðdimensionlessÞ (D.154)

T? ¼ Et2

Ei1
¼ 2h2 cos qi

h2 cos qi þ h1 cos qt
ðdimensionlessÞ (D.155)

The notation ⊥ indicates these are the reflection and transmission coefficients for
perpendicular polarization, because, as we shall see, the coefficients for parallel
polarization differ.

Now, the total fields in each material can be written directly. In material (1),
the fields are the sum of the incident and reflected waves [from (D.141) and
(D.142) for E1 and from (D.142) and (D.144) for H1]:

E1ðx; zÞ ¼ byEi1 e�jb1z cos qi þ G?e jb1z cos qi
� �

e�jb1x sin qi ðV=mÞ (D.156)

H1ðx; zÞ ¼ bx
Ei1 cos qi

h1
G?ejb1z cos qi � e�jb1z cos qi
� �

e�jb1x sin qi

þ bz
Ei1 sin qi

h1
e�jb1z cos qi þ G?ejb1z cos qi
� �

e�jb1x sin qi ðA=mÞ (D.157)

In medium (2), where the only wave is the transmitted wave, (D.145) and (D.146)
describe the wave. Using the transmission coefficient, we can write

Etðx; zÞ ¼ byT?Ei1e�jb2 x sin qtþz cos qtð Þ ðV=mÞ (D.158)

Htðx; zÞ ¼ T?Ei1

h2
�bx cosqt þ bz sinqtð Þ�jb2 x sin qtþz cos qtð Þ ðA=mÞ (D.159)

In all these relations, we could also use (D.151) to write the refraction angle qt in
terms of the incident angle qi. However, this would complicate the expressions
considerably.

The electric field intensity E1 is in the y direction, but H1 has a component in
the x and z directions. This indicates a propagating wave in the x direction and a
standing wave in the z direction.

D.5.2 Oblique incidence on a dielectric interface: parallel
polarization

The situation considered here is shown in Figure D.4(b). The incident electric field
is parallel to the plane of incidence and the magnetic field is perpendicular in the y
direction so that the incident wave propagates toward the interface. The directions
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of the reflected fields in Figure D.4(b) are assumed. The correct directions are
found from the interface conditions that must be satisfied.

The incident and reflected electric and magnetic field intensities for the
configuration in Figure D.4(b) are written directly from the figure:

Ei x; zð Þ ¼ Ei1 bx cos qi � bz sin qið Þe�jb1 x sin qiþz cos qið Þ ðV=mÞ (D.160)

Hi x; zð Þ ¼ by
Ei1

h1
e�jb1 x sin qiþz cos qið Þ ðA=mÞ (D.161)

Er x; zð Þ ¼ Er1 bx cos qi þ bz sin qið Þe�jb1 x sin qi�z cos qið Þ ðV=mÞ (D.162)

Hr x; zð Þ ¼ �by Er1

h1
e�jb1 x sin qi�z cos qið Þ ðA=mÞ (D.163)

The transmitted wave into material (2) can be written directly from Figure D.4(b):

Et x; zð Þ ¼ Et1 bx cos qt � bz sin qtð Þe�jb2 x sin qtþz cos qtð Þ ðV=mÞ (D.164)

Ht x; zð Þ ¼ by
Et2

h2
e�jb2 x sin qtþz cos qtð Þ ðA=mÞ (D.165)

At the interface between the two media (at z ¼ 0), the continuity condition on the
tangential components of the electric and magnetic field intensities are

Ei1 cos qt þ Er1 cos qi ¼ Et2 cos qt and
Ei1

h1
� Er1

h1
þ Et2

h2
(D.166)

Solving for Er1 and Et2, we get

Er1 ¼ Ei1
h2 cos qt � h1 cos qi

h2 cos qt þ h1 cos qi
; Et2 ¼ Ei1

2h2 cos qi

h2 cos qt þ h1 cos qi
(D.167)

Therefore, the reflection coefficient for parallel polarization is defined as

Gjj ¼ Er1

Ei1
¼ h2 cos qt � h1 cos qi

h2 cos qt þ h1 cos qi
(D.168)

The transmission coefficient is

T jj ¼ Et2

Ei1
¼ 2h2 cos qi

h2 cos qt þ h1 cos qi
(D.169)

The total fields in medium (1) are calculated by summing the incident and reflected
waves. With the use of the reflection coefficient (i.e., using Er1 ¼ G||Ei1), these
become

E1 x; zð Þ ¼ bxEi1 cos qi Gjjejb1z cos qi þ e�jb1z cos qi
� �

e�jb1x sin qi

þ bzEi1 sin qi Gjjejb1z cos qi � e�jb1z cos qi
� �

e�jb1x sin qi ðV=mÞ (D.170)

H1 x; zð Þ ¼ by
Ei1

h1
Gjjejb1z cos qi � e�jb1z cos qi
� �

e�jb1x sin qi ðA=mÞ (D.171)
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Using Et2 ¼ T||Ei1 in (D.164) and (D.165), we get the fields in medium (2):

Et x; zð Þ ¼ T jjEi1 bx cos qt � bz sin qtð Þe�jb2 x sin qtþz cos qtð Þ ðV=mÞ (D.172)

Ht x; zð Þ ¼ by
T jjEi1

h2
e�jb2 x sin qtþz cos qtð Þ ðA=mÞ (D.173)

D.5.3 Reflection and transmission on dielectric interfaces:
normal incidence

The reflection coefficients in (D.154) and (D.155) and the transmission coefficients
in (D.168) and (D.169) apply to normal incidence as well by simply setting the
incidence angle to 0
. The transmission and reflection coefficients become
(regardless of polarization):

G ¼ h2 � h1

h2 þ h1
ðdimensionlessÞ (D.174)

T ¼ 2h2

h2 þ h1
ðdimensionlessÞ (D.175)

Similarly, the electric and magnetic field intensities on either side of the interface
have only components tangential to the interface as can be seen in either (D.141)–
(D.146) and (D.156)–(D.159) or (D.160)–(D.165) and (D.170)–(D.173).

D.5.4 Reflection and transmission on perfect conductors
The transmission and reflection coefficients also apply to conducting media.
In perfect conductors, the transmission coefficient is zero and the reflection co-
efficient is �1 as can be seen by direct substitution (the intrinsic impedance of
perfect conductors is zero).

Real conductors can be treated as lossy dielectrics, that is, we simply insert the
intrinsic impedance of the conductor and the propagation constant, both of which
are dependent on conductivity as

h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jwm1

s1 þ jwe1

s

ðWÞ; g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jwm1 s1 þ jwe1ð Þ

p
(D.176)

This also means that in lossy dielectrics the reflection and transmission coefficients
must be complex since the intrinsic impedances in (D.154), (D.155), (D.168),
(D.169), (D.174), and (D.175) are complex.

The select elements of electromagnetics given in this appendix represent the
fundamentals of wave propagation. There are of course many more and important
aspects of electromagnetics that were not and could not be covered. Even within the
given subjects, there are issues and details that were not addressed either because
they are not relevant to this work or because their exposition would take too much
space and detract from the idea of writing a short appendix. Some additional
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aspects of electromagnetics are discussed in Chapter 3 (waveguides and cavity
resonators), Chapter 5 (reflection and transmission sensors), Chapter 8 (resonant
methods of measurement), and the whole of Chapter 2, which discusses transmis-
sion lines. Any additional material that may be needed can be found in textbooks of
various levels. Some are listed in the following short bibliography.

Further reading

[1] N. Ida, ‘‘Engineering Electromagnetics,’’ 3rd edition, Springer, NY, 2015.
[2] D. K. Cheng, ‘‘Field and Wave Electromagnetics,’’ 2nd edition, Addison-

Wesley, Reading, MA, 1992.
[3] C. A. Balanis, ‘‘Advanced Engineering Electromagnetics,’’ 2nd edition,

Wiley, New York, 2012.
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ADC (analog-to-digital converter) 287
Ampere’s law 32, 340, 356–9, 371
antenna probes 250–1, 268, 280
antennas and probes 57–9
attenuation constant 32, 230, 366
attenuation loss (AL) 148

measurement of 310
attenuators 59–61, 287, 290
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102–4
coaxial cable 16, 238
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input line impedance 35
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latex 181–2
line impedance 35, 38, 43–4, 83

maxima in 41
on open transmission line 44
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on shorted transmission line 42–3

line parameters, calculation of 18
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load probe/‘‘transmission’’ probe 250
load reflection coefficient 33–4
Lodge, Oliver 4
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lossless dielectric 363
lossless line, characteristic

impedance of 45
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loss tangent 364

measurement of 167–8
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multiconductor planar structures 97
multiconductor transmission lines 97
multiple sensors 192, 204, 263
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measurement process 235, 292, 317
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310–11

calibration 293–6
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310–11
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307–10
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measurement of 299–305
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297–9
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289–92
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frequency measurements
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ABCD-parameters and
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transformations between
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power sensors and detectors 155
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160
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for series resonance 163–4

S-parameters, for practical
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detection of resonance 146–7
determination of losses 147–8
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waveguide method of measurement
169–72
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Nicholson–Ross–Weir (NRW)

method 171
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matrix 139–41

generalized scattering parameters
138–9

relations between various
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136–8
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S-parameters, properties of 139
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algorithm 316
nylon 182, 332, 334
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interface
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377–80
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284
offset 254–5, 270
Ohm’s law 131
one-port network 285, 287
online testing results 238–50
open-circuit point 88–9
open-ended coaxial probe 176
open transmission line 43–5, 71
oscilloscope 141
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107

parallel plate waveguides 107, 110
TE propagation in 108–9
TM propagation in 109

parallel resonant circuit 67–70, 80
parallel resonators 71
parallel strip line 16
passive transmission line circuits

49–61
antennas and probes 57–9
attenuators 59–61
directional couplers 56–7
impedance matching 50
power dividers 52

lossless T-junction 52–3
lossy T-junction 54
Wilkinson power divider 54–6

perfect conductors
reflection and transmission on

382–3
perfect electric conductor (PEC) 350
perfectly matched layers (PMLs) 346
permittivity 175, 246, 337
permittivity and loss tangent,

measurement of 167–8
permittivity measurement 230
perturbation formulas 128
perturbation method 67, 69, 119,

128, 314
phase constant 366, 368
phase velocity 362, 366–7, 370

planar structures 16–17, 97–8
planar transmission lines and coupled

structures 97
cavity resonators 105, 113–14

energy relations in 115–17
TE modes in 115
TM modes in 114–15

coupled stripline resonators
117–19

resonant cavity perturbation 119
cavity perturbation, lossy media

124–8
cavity perturbation by small,

lossless material samples
123–4

whole cavity perturbation, lossless
media 120–3

stripline 98
coupled transmission lines

100–5
waveguides 105

rectangular waveguides 109–10
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waveguides 112–13
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waveguides 108–9
TM modes in rectangular

waveguides 111–12
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waveguides 109
plane of incidence 376
plane waves, propagation of 363

in conductors/high-loss dielectrics
369–70

in lossy dielectrics 363–8
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power density, measurement of 160
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power flux measurement 160
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power sensors and detectors 155
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thermocouples 156–60
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Poynting theorem 65, 115, 154
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properties of 373
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probes 57–9, 189, 198
production sensing system 264
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reference port 33
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227–31
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measurement of 299–305
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measurement of 310–11
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repeatability 270
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242, 245
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measurement of 310–11
reverse measurement 298
rigid sensor 270
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sensor design for 206

simulation and optimization
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