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New Topics in Simulation and Modeling of RF Circuits addresses 
two main topics: simulation of RF circuits and new models of 
nonlinear power BAW resonators and filters.

Since RF circuits have several unique features, and all analysis 
methods are based on the circuit essential properties, the book 
begins by describing the properties of RF circuits, characterization 
of circuits with customary and uncustomary behavior and some 
theorems of solutions existence and uniqueness for dynamic 
nonlinear circuits.

Thereafter, the main time domain and frequency domain 
analysis methods for RF circuits are presented. The advantages 
and disadvantages of each method have been highlighted, and an 
algorithm for the time step choice in transient analysis based on 
energy balance errors is also presented.

Lastly, the final part contains some nonlinear circuit models of 
power BAW resonators. The behavioral models for the time domain 
analysis are simple circuits containing weakly nonlinear elements. 
The behavioral models for frequency domain analysis are based 
on the measured values of the frequency dependent S parameters 
for a set of incident powers. S parameters corresponding to certain 
intermodulation products of practical  interest are also considered. 
The physical models contain artificial transmission lines with 
nonlinear circuit elements corresponding to mechanical and 
electrical nonlinearities.
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Preface

For design purpose, a physical circuit made up of devices is associated to a
model (the electrical circuit) by replacing the devices with circuit elements,
or circuit models. Each circuit element is an approximation of the real device,
so there can be many models for the same device, depending on the effects to
be modeled and the analysis to be made. Knowing the interconnection and the
constitutive equations of the circuit elements, a system of equations whose
solution represents the theoretical results can be written. If the theoretical
results obtained from the electric circuit analysis correspond to the practical
results obtained from measurements made on the physical circuit, it means
that the adopted model is correct. Otherwise either the problem is not well
formulated, or the circuit model is not correct, or the analysis method used is
not suitable for that circuit. For example, for circuits driven by relatively low
frequency signals, the classical transient analysis is suitable. But, this analysis
is not suitable for the RF circuits, which are driven by high frequency signals,
because, in this case, it uses a lot of CPU time and memory resources. On the
other hand, the analysis methods designed for the RF circuits, although faster
than the classical transient analysis, can lead to erroneous solutions if they are
not carefully set (see Sections 2.1.2 and 2.1.3). The topics addressed in this
book are from the scientific areas of interest of the authors, containing their
research results together with other approaches from the literature.

Chapter 1 contains a description of the properties of RF circuits, char-
acterization of circuits with customary and uncustomary behavior, and some
theorems of solutions existence and uniqueness for dynamic nonlinear circuits.
Since many analysis methods are based on the essential properties of non-
autonomous circuits with customary behavior (exponential attenuation of
transient components, unique periodic steady state solution having the same
period with the excitation signal, and spectrum preservation), Section 1.2
presents the properties of these circuits, which are used almost exclusively in
technique. Because some of the methods described in Chapter 2 (shooting,
finite differences, harmonic balance, envelope following) can be applied only

ix



x Preface

for circuits with unique solution, in Section 1.3 are presented some theorems
of solutions existence and uniqueness for dynamic circuits.

In Chapter 2 are presented the main time domain and frequency domain
analysis methods for the RF circuits. The advantages and disadvantages of
each method are highlighted.An algorithm for the time step choice in transient
analysis based on energy balance errors is also presented.

Chapter 3 contains some nonlinear circuit models of power BAW res-
onators. The behavioral models for the time domain analysis are simple circuits
containing weakly nonlinear elements. The behavioral models for frequency
domain analysis are based on the measured values of the frequency dependent
S parameters, and on the frequency dependent intermodulation products; these
magnitudes are measured for incident powers in a certain range. The physical
models contain artificial transmission lines with nonlinear circuit elements
corresponding to mechanical and electrical nonlinearities.
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Introduction

1.1 RF Circuits

Wireless transceivers contain baseband and RF circuits. The baseband may be
the frequency range of the transmitter input signals or of the receiver output
signals. A higher bandwidth of the baseband allows a higher data flow to be
processed and transmitted through or received by the communication system.
The transmitter RF circuit yields the transmitted signal, modulating the carrier
appropriate to the communication channel with the baseband signal. The RF
circuit of the receiver extracts the information from the RF signal by converting
it to the baseband frequency range [1].

Consider the super-heterodyne receiver shown in Figure 1.1. The filtered
antenna signal is amplified by the low noise amplifier (LNA). After that the
mixer changes the RF carrier to the intermediate frequency (IF) using the
signal of the first local oscillator LO.

Because a receiver has small input signals, its sensitivity is limited by
noise. Therefore, one of the starting points in a receiver design is the noise
prediction by simulation. The noise components are generated mainly in LNA,
and their frequencies are translated similarly to those of the received signal
producing the so-called cyclostationary noise [1]. This kind of noise cannot
be computed with customary time domain simulators as SPICE.

Transmitters must produce a certain amount of power in a prescribed
frequency band, while receivers must recover weak signals in the same
frequency range. Both signal transmission and reception are intended to be
made using as little amount of power as possible. The useful received signal
is forbidden to interfere with signals in the adjacent communication channels.

Atransmitter and a receiver using the same antenna form a transceiver. This
kind of device is now widely used in the modern communications systems,
for example, for the mobile phone and for the base station. As a receiver

1
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Figure 1.1 RF front-end of a coherent super-heterodyne receiver [1].

must be sensitive to the desired small signal, other signals as those from
adjacent channels or intermodulation products resulting from the interference
with other signals must not reach the receiver input. To this end, the antenna
is connected to the transmitter and to the receiver via the duplexer filter
(Figure 1.2).

A new technology that emerged in the last years due to its low price and
to its compatibility with CMOS circuitry is the bulk acoustic wave (BAW)
filters built with AlN. These filters are working very well in the RF range
of frequencies and can be merged with CMOS circuits to build systems
on a chip (SoC) and systems in a package (SiP) [2]. In order to reach the
nearest base station, a mobile phone transmits a power up to 5 W, which
passes through the duplexer filter. While the behavior of BAW filters is linear
for the small signal operation, at this power level, some nonlinear effects
appear as: the amplitude-frequency effect (the shift of the filter resonance

Figure 1.2 Transceiver.
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frequencies depending on the transmitter power) and the occurrence of
some intermodulation products between transmitted and received signals
from adjacent channels [3]. Building of behavioral and physical models
that reproduce all these effects remains an open problem [4]. Moreover, the
customary time domain simulation (doing the transient analysis for a number
of signal periods so that all transients disappear) becomes unpractical due to the
fact that the signal period (the least common multiple of the intermodulation
component periods) is very large. It follows that more efficient time domain
analysis methods of finding the periodic steady state of nonlinear circuits
must be used for the RF front-end analysis. Filtering is very important
because the large interfering signals can saturate the receiver low noise
amplifier, which, in this case, does not sense the small signal in the desired
communication channel [1].

The main applications of the RF circuits are wireless communications
devices, as those included in a mobile telephony system. In order to ensure
the wireless propagation between a mobile phone and a base station, the
communication channel is centered at a frequency that is placed between
900 MHz and 2.5 GHz. The channel frequency band is very narrow
(10–30 KHz), so that very selective circuits are needed to avoid interferences
between the adjacent channels. As some blocks like mixers and demodulators
are essentially nonlinear, the computation of the periodic steady state can
be done in the time domain by the transient analysis. The high frequency
carrier forces a very small time step, while the low frequency modulating
signal imposes a very long signal period, and the transient analysis has a poor
efficiency. Some special methods such as shooting, envelope following, or
two-time variable analysis have been proposed for the fast computation of the
periodic steady state in RF circuits.

Modeling of certain passive RF components proves to be a difficult task due
to various reasons. The transmission lines being modeled as distributed circuit
elements, their lumped circuit models have an intricate structure. The accurate
modeling of spiral inductors, connection wires, substrates, and packages,
which can influence significantly the RF circuit behavior, is a difficult task.

Sometimes, neglecting certain parasitic elements, which at a first glance
seem unimportant, the model of a RF circuit may have an uncustomary
behavior or, even worse, no solution. In these cases, the transient analysis may
produce strange responses or no solution at all. To avoid this kind of surprises,
a designer must built a circuit model having a unique steady state solution
which is usually of technical interest. This model belongs to the class of the
circuits with customary behavior. On the other hand, industrial applications
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of circuits with uncustomary behavior have been developed in the areas of
communications with chaotic carrier [5] and cellular neural networks for
image processing [6]. The next paragraph describes the circuits with customary
and uncustomary behavior and their properties.

The algorithms used by the commercial time domain simulators as SPICE
and SPECTRE fail sometimes to converge. Assuming tacitly that the circuit
model has a customary behavior (that in general is not true), some very useful
procedures to avoid convergence problems in DC, AC, and transient analyses
are described in detail in [7].

1.2 Customary and Uncustomary Behavior
of Non-Autonomous Circuits

1.2.1 Definitions and Properties [9–11]

A non-autonomous circuit contains at least one independent source whose
parameter (e(t) for a voltage source, or is(t) for a current source), is a function
of time [8, 9]. If the circuit does not contain such type of sources, it is
considered as autonomous. A natural expectation may be that the response of
a non-autonomous circuit to a periodic excitation becomes periodic when the
time passed from the connection of the independent sources is large enough.
The circuits that have this property prove to have other two remarkable
properties, too: spectrum preservation and the exponential decay of the
transient components. These three properties characterize a circuit with a
customary behavior [10].

The rigorous definition of the customary behavior is made using the steady-
state response. Consider a nonlinear circuit driven by independent sources of
period T, having the state vector z = (qC , ϕL), where qC contains the capacitor
charges and ϕL contains the inductor magnetic fluxes. Suppose that this circuit
has the state equations in the normal form ż = f (z, t). The steady state
response of this circuit is zp(t) = lim

t→∞ z(t). Obviously, z(t) can be computed

only by knowing the initial state z(0)of the circuit. At least in theory, there
is a possibility to obtain two different steady-state responses zp1(t) (starting
from the initial state z1(0)) and zp2(t) (starting from the initial state z2(0)).
Examples with this property can be built [10].

It is considered that a circuit has a unique steady state solution if any
pair of solutions z1(t) and z2(t) corresponding to the initial states z1(0) and
z2(0) satisfies the relationship lim

t→∞ ‖z1(t) − z2(t)‖ = 0, where ‖·‖ is the

Euclidean norm.
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Property 1

Obviously, a circuit driven by periodic independent sources with period T has
a unique periodic response of the excitation period if it has a unique steady
state response zp(t) with period T.

The magnitude zt(t) = z(t) − zp(t) is the transient component of the
circuit response. For a circuit that has the property 1, lim

t→∞ zt(t) = 0. The

following property refers to how zt(t) tends to zero.

Property 2

A circuit has an exponential decay of the transient components if there are
positive real numbers τmin, τmax, kmin, kmax, so that the “distance” between
two solutions z1(t) and z2(t) corresponding to the initial states z1(0) and
z2(0) satisfies the relations:

kmin ‖z1(0) − z2(0)‖ e
− t

τmin < ‖z1(t) − z2(t)‖ <

< kmax‖z1(0) − z2(0)‖e− t
τmax

In other words, for a circuit with property 2, as t → ∞, the “distance” between
the solutions z1(t) and z2(t) diminishes being bordered by the “distance”

between the initial states weighted with kmine
− t

τmin and kmaxe
− t

τmax where
τmin and τmax are the minimum and the maximum “time constants” of the
circuit. Note that there is no algorithm to compute, without knowing the circuit
response, the values τmin, τmax, kmin, kmax for a nonlinear circuit with an
arbitrary structure.

The spectral combination Ss of the sources, in a circuit driven with DC
and sinusoidal sources of angular frequencies ωk(k = 1, 2, ...) only, is the set
of angular frequencies ω =

∑
k nkωk, where nk are arbitrary integers.

Property 3

A circuit preserves the spectral combination if the spectral combination
Szp corresponding to the steady state solution is included in the spectral
combination Ss of the sources.

For example, if a circuit is driven by two sinusoidal sources having the
angular frequencies ω1 and ω2, the spectral combination Ss of the sources
is n1ω1 + n2ω2, n1, n2 ∈ I , i.e., ω1 + ω2, ω1 − ω2, −ω1 + ω2, ω1 + 2ω2,
ω1 − 2ω2, . . . . If the steady state response is periodic and has only harmonic
components that are included in Ss, then this circuit preserves the spectral
combination.
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1.2.2 Customary and Uncustomary Behavior of Linear
and Nonlinear Circuits

An exponentially stable linear circuit, having all natural frequencies sk with
Re sk < 0, has a customary behavior. Consider such a circuit with a non-zero
initial state and being driven by a periodic excitation. Indeed, the response of
this circuit can be written as z(t) = z0(t) + ze(t) where z0(t) is the response
to null excitation, which depends on the initial state z(0), and ze(t) is the
response to the null initial state, which depends on the excitation [8, 9].

It is known that z0(t) =
∑

pk(t)eskt, where sk are the natural frequencies
of the circuit with Re sk < 0 and pk(t) are polynomials of t of degree q =
{the multiplicity order of sk} − 1. It follows that lim

t→∞ z0(t) = 0 (according

to Property 2) and zp(t) = lim
t→∞ ze(t). If ze(t) is computed with the Laplace

transform, ze(t) = zet(t) + zep(t) is obtained, where zet(t) is the transient
component with lim

t→∞ zet(t) = 0 and zep(t) is the steady state response to the

periodic excitation. In this case, zep(t) can be calculated separately for each
harmonic component of the excitation, so zp(t) is periodic of the excitation
period (Property 1) and has the same harmonic components as the excitation
(Property 3) [8, 9].

There are sufficient conditions that define classes of nonlinear circuits with
customary behavior. To formulate them, it is necessary to define the passive
characteristic and the strictly local passive characteristic of a circuit element.
This characteristic can be f(v, i) = 0 for a resistor, f(ϕ, i) = 0 for an inductor,
or f(q, v) = 0 for a capacitor.

The passive characteristic f(x, y) = 0 is a curve in the xy plane for which
x · y ≥ 0 (the curve passes only through the first and third quadrants).

The strictly local passive characteristic f(x, y) = 0 has the following
property: for any two points with the coordinates (x0, y0), (x1, y1) on this
characteristic, the magnitudes Δx = x1 − x0 and Δy = y1 − y0 satisfy the
relation Δx · Δy > 0. This means that a strictly local passive characteristic
has always a strictly positive slope Δy

Δx , so it is strictly increasing.
Consider a linear resistive multiport without independent sources, with

the voltage ports (a) and the current ports (b) (Figure 1.3).
Considering the port voltages as v = (va, vb) and the port currents as

i = (ia, ib), this multiport has the hybrid representation [9, 10]:

[
ia
vb

]
=
[
Haa Hab

Hba Hbb

] [
va

ib

]
,where

[
Haa Hab

Hba Hbb

]
=

⎡
⎢⎣

∂ha

∂va

∂ha

∂ib
∂hb

∂va

∂hb

∂ib

⎤
⎥⎦.
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Figure 1.3 Linear resistive multiport.

This multiport resistor is reciprocal if Haa and Hbb are symmetrical and Hab

= -Ht
ba. This definition can be generalized for a nonlinear resistive multiport

without independent sources described by the equations: ia = ha(va, ib) and
vb = hb(va, ib) considering the incremental (Jacobian) matrix instead of the
above H matrix. A dipolar resistor is always reciprocal.

The reciprocity can be similarly defined for the inductive or the capacitive
multiports, also. A voltage controlled nonlinear capacitive multiport having
the constitutive equation q = q̂(v) is reciprocal if the dynamic capacities
matrix (the Jacobian ∂q̂

∂u of q̂) is symmetrical. A current controlled nonlinear
inductive multiport having the constitutive equation ϕ = ϕ̂(i) is reciprocal if
the dynamic inductances matrix (the Jacobian of ϕ̂) is symmetrical. A dipolar
capacitor or a dipolar inductor is always reciprocal.

The sufficient conditions for a customary behavior are as follows [10].

Circuits with Linear Dynamic Elements

A circuit with linear dynamic elements has a customary behavior if the
following conditions are fulfilled:

1. There is no loop made of capacitors, inductors, and/or voltage sources,
only.

2. There is no cut-set made of capacitors, inductors, and/or current sources,
only.

3. All resistors are strictly local passive.
4. The independent sources parameters (ek(t), isk(t)) are periodic functions

of the C1 class.

RC (RL) Circuits

A RC (RL) circuit has a customary behavior if the following conditions are
met:

1. There is no loop (cut-set) made of capacitors (inductors) and/or voltage
(current) sources, only.

2. All resistors are linear, passive, and reciprocal.
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3. The capacitors (inductors) have strictly increasing characteristics of the
C1 class.

4. The independent sources parameters (ek(t), isk(t)) are periodic functions
of the C1 class.

RLC Nonlinear Circuits with “Small Signal” Operation

Consider a nonlinear RLC circuit with independent sources having DC
components and time variable components with period T. Such a circuit has
the properties 1 and 3 for any values of the sources DC components if the
following conditions are met:

1. There is no loop (cut-set) made of capacitors, inductors, and voltage
(current) sources, only.

2. The dynamic elements have strictly local passive characteristics.
3. The resistors have strictly local passive characteristics of C1 class.
4. The constitutive relations of the capacitors (q = q̂(v) or v = v̂(q)) and

inductors (ϕ = ϕ̂(i) or i = î(ϕ)) are of C1 class.
5. The sources periodic components have “small enough” amplitudes.

Although the necessity of these conditions for the customary behavior is not
proved, some examples have been built [9–11], showing that if only one
condition is not fulfilled, the circuit has an uncustomary behavior.

The uncustomary behavior of the non-autonomous circuits with T –
periodic excitation can be characterized by the following:

• the periodic steady state contains sub-harmonics (f/2, f/3, f/4, . . .
frequency components, where f = 1/T )

• non-periodic responses, as the chaotic ones,
• T ′ – periodic responses to a T – periodic excitation (T ′ �= T), T ′ depending

on the circuit initial state.

1.2.3 Operating Modes

An operating mode is defined by certain significant properties of the circuit
response [8–11]. These properties are significant both in terms of circuit theory
and in terms of technical applications.

Suppose that at t = t0 all independent sources are connected to the circuit.
The transient behavior (transient operating mode) of this circuit consists
in all circuit responses computed for any t ≥ t0. If these responses are
considered for t → ∞, the operating mode of this circuit is the steady
state.
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The RF circuits with periodic excitation have a special importance. The
steady state of a circuit with customary behavior for which the independent
sources have DC and T – periodic components is the T – periodic steady state
or the non-sinusoidal steady state.

An exponentially stable linear circuit driven by the above sources will
have only T – periodic responses in the steady state, so it will operate in the
T – periodic steady state. Moreover, any response will have only harmonic
components of the excitations, so harmonic components that are not present
in the excitations are not generated. The AC circuit is the simplest case of this
kind: in the steady state all voltages and currents are sinusoidal having the
unique excitation period T and f = 1/T is the AC frequency.

In a customary behavior nonlinear circuit driven by the above independent
sources, harmonic components that do not exist in these independent sources
can be generated, but their frequencies belong to the spectral combination
of these sources. The periodic steady state behavior of the excitation period
is of outstanding importance in the power systems and the communications
circuits.

The steady state of a circuit with uncustomary behavior driven by
independent sources having T – periodic parameters can be the following:

• a periodic steady state of period T;
• a behavior in which the responses are periodically but the periods are

equal to a multiple of the excitation period (sub-harmonic operating
mode);

• a behavior in which the responses are not periodically (chaotic operating
mode).

A good illustration of these operating modes, using the same circuit with
sinusoidal excitations of the same frequencies and various amplitudes, can be
found in [12, 13].

The sub-harmonic operating mode and the chaotic operating mode are
not commonly used in practice. In the last years, communications circuits [5]
and image processing circuits [6] in the chaotic operating mode have been
proposed.

1.3 Existence and Uniqueness of Dynamic Circuits
Solutions

The existence and uniqueness of the dynamic circuit solutions is linked to the
existence of the state equations in the normal form. Consider a dynamic circuit
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Figure 1.4 Resistive multiport for writing the state equations in normal form.

as a resistive multiport with the dynamic elements connected to its ports. The
normal tree, used to determine the independent state variables, contains all
voltage sources and as many capacitors as possible. It follows that the normal
co-tree (the complementary branch set of the normal tree) contains all current
sources and as many inductors as possible. For a linear circuit, the independent
state variables are tree capacitor voltages and co-tree inductor currents, while
the dependent state variables (excess state variables) are co-tree capacitor
voltages and tree inductor currents.

By the substitution theorem, the tree capacitors and inductors are replaced
with voltage sources and, the co-tree capacitors and inductors are replaced with
current sources. In this way, the resulting circuit is given in Figure 1.4, where,
for simplicity, only one source for each category of elements has been repre-
sented (tree capacitors, tree inductors, co-tree inductors, co-tree capacitors).
The first voltage and current index are C for capacitors and L for inductors.
The second index of these magnitudes is t for tree and c for co-tree.

For a linear circuit, we denote:

x =
[
vCt

iLc

]
, x∗ =

[
vCc

iLt

]
, y =

[
iCt

vLc

]
, y∗ =

[
iCc

vLt

]
.

Where x are the independent state variables, x* are the excess state variables,
v are port voltages, and i are port currents.

Linear Circuits

The independent state variables are tree capacitor voltages vCt and co-tree
inductor currents iLc, and the excess variables are co-tree capacitor voltages
vCc and tree inductor currents iLt. The operating equations of the dynamic
elements are y = −Δẋ and y∗ = −Δ∗ẋ∗, where Δ= diag [tree capacities,
co-tree inductances] and Δ∗ = diag [co-tree capacities, tree inductances]. In
this case, the dynamic elements parameters are constant and have non-zero
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values, so Δ−1 and Δ∗−1exist. If the resistive multiport has one and only one
solution for any parameter values of the independent sources connected to the
ports, then the superposition theorem gives y = k0x+k1μs +k2y

∗, where μs

contains parameters of the independent sources placed inside the multiport in
Figure 1.4, and k0, k1, k2 are matrices with constant entries. The excess state
variables can be written as x∗ = k3x + k4μs, according to Kirchhoff’s laws
(k3 and k4 are matrices with constant entries). Simple algebra gives the state
equation in normal form ẋ = −Δ−1y = −Δ−1[k0x + k1μs − k2(Δ∗k3 +
Δ∗k4μs)] or ẋ = Ax + Bμs + B∗μ̇s which can be written as ẋ = f(x, t).

If the equation ẋ = f(x, t) exists, then the mathematical literature
shows that: if f is a Lipschitz function (for any x1 and x2 and any t,
‖f(x1, t) − f(x2, t)‖ ≤ k ‖x1 − x2‖, where k > 0 and ‖·‖ is the Euclidean
norm) and if the function f (0, t) is uniformly bounded, then the state equation
has an unique solution for any initial state x0 = x(t0) [8–10].

It follows that the existence of the normal form of the state equation is
related to the following:

• the existence and uniqueness of the resistive multiport solution for any
values of the sources parameters (that replace the dynamic elements)
connected to the ports,

• the existence of Δ−1 and Δ∗−1, which can be proved because Δ and Δ∗
are diagonal matrices with non zero entries.

It can be shown that in this case, f(x, t) is a Lipschitz function
‖f(x1, t) − f(x2t)‖ = ‖A(x1 − x2)‖ because there is always a constant k so
that ‖A(x1 − x2)‖ ≤ k ‖x1 − x2‖. If f(0, t) is uniformly bounded, then the
circuit has a unique solution for any initial state x(t0) [9, 10].

Nonlinear Circuits

If the nonlinear resistive multiport in Figure 1.4 has only one solution for any
values of the independent sources parameters connected at its ports, then we
can write y = g(x, y∗, μs), where all magnitudes have the same meaning as
in the case of a linear circuit presented above.

For the nonlinear dynamic elements, we consider two cases only:

1st Case

• all capacitors are voltage controlled having the operation equations ik =
Ckv̇k, where Ck = dq̂k

dvk
�= 0 in any point of the characteristic,

• all inductors are current controlled having the operation equations vk =
Lk i̇k, with Lk = dϕ̂k

dik
�= 0 in any point of the characteristic.
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The independent state variables and the excess ones are the same as those of
a linear circuit. It can be written y = −Δẋ and y∗ = −Δ∗ẋ∗ where Δ =
diag [tree dynamic capacities, co-tree dynamic inductances] and Δ∗= diag
[co-tree dynamic capacities, tree dynamic inductances].

The state equation follows:

ẋ = −Δ−1y = −Δ−1 [g(x, y∗, μs)] = Δ−1f(x, μs).

2nd Case

• all capacitors are charge controlled,
• all inductors are flux controlled.

The state variables are the capacitors charges and the inductors fluxes.
With the notation x̄ = [qCa, ϕLc], x̄∗ = [qCc, ϕLa], the dynamic elements
characteristics are given by x = g1(x̄) and x∗ = g2(x̄∗), and because y = ˙̄x
and y∗ = ˙̄x∗, the state equations in the normal form are ˙̄x = h(x̄, μ s). The
existence of Δ−1 and Δ∗−1 matrices is obvious because all values of the
dynamic capacities and inductances for any values of the control parameters
of these elements are non-zero.

The existence and uniqueness conditions are formulated in the case of
the circuits without excess state variables, only. When there are excess state
variables, the problem is handled in a similar way. If the characteristics of
the dynamic elements are strictly increasing and differentiable, a non zero
dynamic parameter (Cd or Ld) exists in any operation point, so Δ−1 and Δ∗−1

exist. If the resistors are strictly increasing and the resistive multiport has no
loops made of voltage sources only, and cut-sets made of current sources only,
then this resistive multiport has a unique solution. It follows that there are state
equations in the normal form ẋ = f(x, t). In order for the dynamic circuit
to have a unique solution for any initial state x(t0), it is sufficient that f be a
Lipschitz function.

So we have justified:

Theorem I

A circuit without excess state variables having the following:

• dynamic elements with strictly increasing and differentiable charac-
teristics,

• resistive elements with strictly increasing characteristics so that ẋ =
f(x, t), where f is a Lipschitz function, has one and only one solution
for any initial state x(t0).
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But the conditions to be fulfilled by f in order to be a Lipschitz func-
tion are restrictive enough. For example, if f(x, t) = x2 + s(t) then
‖f(x1, t) − f(x2, t)‖ =

∥∥x2
1 − x2

2

∥∥ and there is no k so that
∥∥x2

1 − x2
2

∥∥ ≤
k ‖x1 − x2‖ for any pair x1, x2. It follows that the resistors with polynomial
nonlinearities may lead to non – Lipschitz functions f.

The existence and uniqueness conditions for the circuit solutions are
usually formulated in terms of elements constitutive equations and their inter-
connection properties. This feature allows a simple check of those conditions.
Unfortunately, the property “f is a Lipschitz function” cannot be deduced from
certain properties of the circuit elements.

It can be proved that a circuit with dynamic and resistive elements having
strictly increasing characteristics has a unique solution, although f is not a
Lipschitz function.

Theorem II

Consider a circuit with dynamic elements having strictly increasing and
differentiable characteristics. If all resistors are strictly increasing and the
resistive multiport has one and only one solution, then the dynamic circuit has
a one and only one solution for any initial state x(t0) [10].

It is known that the resistors with non-monotonic characteristics facilitate
the appearance of multiple solutions of the resistive circuit containing them.
The presence of these resistors can lead to the non-existence of the state
equation in normal form.

Consider the first order circuit in Figure 1.5.a, where the nonlinear resistor
has the characteristic i = g(v) in Figure 1.5.b. Because v = −Li̇, it follows

(a) (b)

Figure 1.5 (a) First order circuit; (b) Characteristic of the nonlinear resistor.
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Figure 1.6 Inductor in Figure 1.5 is replaced with a current source.

that for v > 0 i decreases and for v < 0 i increases, so the possible dynamic
routes are shown in Figure 1.5.b.

This circuit has no solution because starting from any initial state an
impasse point Q1 or Q2 (from which the solution cannot evolve) is reached.
This circuit does not have a state equation in the normal form because the
function g−1 (where v = g−1(i)) does not exist, so the state equation in the

form i̇ = −g−1(i)
L cannot be written.

Indeed, if the inductor is replaced with a current source, the resistive
multiport does not have a unique solution for any i because the nonlinear
resistor is not current controlled for i ∈ (−∞,+∞).

Consider a RLC circuit in which the resistive part forms a multiport to
whose ports the dynamic elements are connected. The following theorem is
stated and proved in [10].

Theorem III

If in a RLC circuit, the following conditions are fulfilled:

i. no loops (cut-sets), made of capacitors (inductors) and/or independent
voltage (current) sources exist,

ii. any voltage-controlled resistor that is not current-controlled also, is
connected in parallel with a capacitor,

iii. any current-controlled resistor that is not voltage-controlled also, is
connected in series with an inductor,

iv. any resistor that does not meet the conditions ii and iii is strictly
monotone, and its characteristic slope dv

di verifies the relation 0 < μ 1 <
dv
di < μ 2 < ∞,

v. any capacitor has a charge controlled characteristic,
vi. any inductor has a flux controlled characteristic,

then the state equation ẋ = −f(g(x̄), μ ) of the circuit exists, and the circuit
has at least one solution.
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Remarks

In the previous example, if a capacitor is inserted in parallel with the nonlinear
resistor, then the resistive multiport has one and only one solution for any
values of iL and vC (Figure 1.7).

A circuit made of a linear capacitor in parallel with a nonlinear resistor
that is not voltage controlled is treated similarly (Figure 1.8).

In this case, an inductor is added in series with the resistor and the resistive
multiport has one and only one solution for any vC and iL (Figure 1.9).

Figure 1.7 Capacitor inserted in parallel with the nonlinear resistor in the circuit in
Figure 1.5.

(a) (b)

Figure 1.8 (a) First order circuit; (b) Characteristic of the nonlinear resistor.

Figure 1.9 Inductor added in series with the resistor in the circuit in Figure 1.8.
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2
Analysis of RF Circuits

2.1 Time Domain Analysis

2.1.1 Transient Analysis

The transient analysis computes the transient response of the circuit on a certain
time interval [1]. In any simulator you can specify the initial conditions for
this analysis. If no initial conditions are specified, the ones corresponding to
the DC operating point are considered; these values are determined by a DC
analysis.

The circuit simulator formulates nonlinear equations, which are solved
numerically. The most used numerical integration algorithms are: backward
Euler method, trapezoidal rule and Gear methods. All circuit simulators
contain automatic techniques to choose the integration step, based on some
errors calculation. A critical analysis of the time step choice methods, together
with case studies, is presented in the following.

A major disadvantage of time domain analysis of the RF circuits is that the
periodic steady state solution, which is often of interest, requires sweeping of
a large number of the excitation periods and consequently a long computation
time.

2.1.1.1 Time step choice algorithm of SPICE and SPECTRE RF
The variable order integration algorithms used by SPICE-like simulators,
select for each time step the order for which the time step is maximum. A
higher order method has a smaller local truncation error, allowing greater
integration steps, but may produce unstable solutions for some problems, due
to the narrow stability region in the hλ plan (h – the time step, λ – test equation
eigenvalue) [1].

Consider the integration algorithm based on the trapezoidal rule which
chooses the time step according to the local truncation error LTE [2]. This
algorithm is used in most SPICE-like programs. At every transient analysis

17



18 Analysis of RF Circuits

step, the maximum allowed truncation error is computed for each state variable
of the circuit and for its derivative with respect to time. For example the
maximum error for the current through a capacitor or for an inductor voltage
is estimated as the worst case scenario corresponding to a relative error εr and
an absolute error εa imposed by the user:

ε•
x

= εr · max
(∣∣∣•xn+1

∣∣∣,
∣∣∣•xn

∣∣∣)+ εa (2.1)

where
•
xn+1 is the current through the capacitor or the inductor voltage.

SPICE defines a similar error εx for charge or magnetic flux using the user
defined errors εr and εa.

For each step of the analysis, the allowed truncation error is given by the
greater one of these two errors:

E = max(εx, ε•
x
) (2.2)

In the case of the trapezoidal rule (used by SPICE-like simulators when the user
does not indicate another method) the truncation errors can be approximated
as follows:

εx = −h3

12
d3x

dt3
(ξ) and ε•

x
=

h2

6
d3x

dt3
(ξ)

where d3x
dt3

is considered at a time value ξ in the interval [tn, tn+1].
Taking into account that usually the time step, in seconds, is a number less

than unity, from (2.2) it follows that ε•
x

= max(εx, ε•
x
). Therefore, if you

calculate E using (2.1) and (2.2) based on the values set by the user for εr and
εa, at every step of the transient analysis, the maximum time step hn+1 can
be computed:

hn+1 ≤
√√√√ 6E∣∣∣d3x

dt3
(ξ)
∣∣∣ (2.3)

In (2.3) the time ξ is not known and the third derivative d3xn
dt3

is approxi-
mated by [1]:

dkx

dtk
(ξ) ∼= k! · DDk (2.4)

where DDk is the k-th order finite difference. Finite difference of the k-th
order is defined by the recursive expression:

DDk =
DDk−1(tn+1) − DDk−1(tn)

k∑
i=1

hn+1−i

(2.5)
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where DD0(tn+1) = xn+1, DD0(tn) = xn, and,

d3x

dt3
(ξ) = 6

xn+1 − xn

hn
− xn − xn−1

hn−1

hn + hn−1
−

xn − xn−1

hn−1
− xn−1 − xn−2

hn−2

hn−1 + hn−2

hn + hn−1 + hn−2

The Expression (2.4) had been deduced assuming that the solution x(t) is a
third degree polynomial for which the third time derivative is a constant.

The integration step choice algorithm can be outlined as follows:

tn+1 = tn + hn

solve for tn+1
if iter num <ITL4
compute hn+1 = f(LTE)

if hn+1 < 0.9 · hn then
reject tn+1
hn = hn+1
compute for the new tn+1

else
accept tn+1

hn+1 = min(hn+1, 2 · hn, TMAX)

continue with tn+2
else

reject tn+1
hn = hn/8

reduce integration order to 1 (BE)
if (hn > hmin) then

compute for the new tn+1
else

print TIME STEP TOO SMALL; analysis is aborted.

where f (LTE) is given by (2.3), ITL4 is the maximum number of iterations
to adjust the time step, TMAX is the step to display the results and hmin is
the minimum allowed step [1]. The values 0.9hn, hn/8, 2hn resulted from
numerical experiments.

At each time step, SPICE accepts or rejects the solution according to the
evaluation of LTE for all state variables and their derivatives with respect to
time. As will be explained in the next paragraph, this procedure does not take
into account the structure of the circuit.
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2.1.1.2 Brambilla-D’Amore time step choice algorithm
2.1.1.2.1 Computation of energy errors
PAN [3] uses a different strategy for choosing the time step, based on some
energy errors calculation, which is described below. The circuit shown in
Figure 2.1 consists of the nonlinear resistive one-port N0 and the charge
controlled nonlinear capacitor having the constitutive equation v = v̂(q),
where q is the electric charge.

Consider the following notations: vj denotes the voltage v(t) value at the
time tj , and vj+1denotes the voltage v(t) value at the time tj+1. The variation of
the energy stored in the capacitor between these time values can be computed
exactly [3]:

Ej+1 − Ej =
∫ tj+1

tj

dq

dt
vdt =

∫ qj+1

qj

v̂(q)dq (2.6)

This energy is transferred to the capacitor by the nonlinear one-port N0 over
the time step hj+1 = tj+1-tj . For this capacitor, the energy error can be defined:

ΔE = Ej+1 − Ej −
∫ tj+1

tj

i(τ)v(τ)dτ (2.7)

The stored energy variation in a voltage controlled capacitor characterized by
q = Q(v) between the time values tn and tn+1 is:

En+1 − En =
∫ tn+1

tn

dQ

dt
(v(τ))v(τ)dτ =

= Q(v(τ))v(τ)|tn+1
tn −

∫ tn+1

tn

Q(v(τ))
dv

dt
(τ)dτ = (2.8)

= Q(v(tn+1))v(tn+1) − Q(v(tn))v(tn) −
∫ v(tn+1)

v(tn)
Q(v)dv

Figure 2.1 Nonlinear RC circuit.
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It can be noted that the variation of the stored energy in any type of capacitor
depends only on the initial and the final value of the state variable. Obviously
the accumulated energy in the capacitor depends on the nonlinear characteristic
but not on the voltage or charge waveform versus time.As a numerical method
usually gives only the unknown sample values (for the time values tj and
tj+1, for example) and gives not the shape of the functions between these
samples, any numerical integration algorithm introduces errors in the solution
computation. Similar results were obtained for flux controlled or current
controlled linear and nonlinear inductors. In [3] is shown that for simple
linear circuits solved with the backward Euler method and the trapezoidal
rule lim

hj+1→0
ΔE = 0, property that is obvious in the general case.

2.1.1.2.2 Time step computation
The energy error ΔE for a dynamic circuit element is produced by the
numerical method used for circuit equations integration. The integration step
h = tn+1 − tn is chosen to satisfy, for each dynamic circuit element, the
condition:

|ΔE| < αrel|En+1 − En| + αabs (2.9)

where αrel and αabs are the relative and the absolute errors imposed by the
user. For this purpose the PAN software uses an algorithm such as “cut and
try”, similar to the SPICE one.

In SHORE, one of the first versions of PAN, another strategy of choosing
the integration step has been used, as follows [3].

Consider that the circuit equations are formulated with the modified
nodal analysis method and solved with the BE algorithm or the TP rule
which are widely used in circuit simulators. The unknowns are the nodes
voltages vj+1, currents ij+1 through the capacitors, inductors and current
controlled devices at tj+1 time and the time step hj+1. Each capacitor and each
inductor in the circuit generates an inequality type constraint of the form (2.9).
The inequality type constraints can be grouped in a penalty scalar function
[3], adding the constraint hj+1 > 0. The penalty function that has been
chosen is

F
(
ΔE1

j+1, . . .,ΔEz
j+1, . . .,ΔEZ

j+1

)
=

= exp
(

−∑Z
z=1

|ΔEz
j+1|

k0|Ez
j+1−Ez

j |+k1

)
: �Z → (0, 1] ⊂ �

(2.10)
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where:

•
∣∣∣Ez

j+1 − Ez
j

∣∣∣ are the energy stored in the z-th generic dynamic circuit

device at the time tj+1;
• ΔEz

j+1 is the energy error between the energy stored in the z-th dynamic
element and the energy it absorbs from the circuit between the time
values tj and tj+1;

• k0 and k1 are two constants that define the relative and the absolute
tolerances allowed for these energies;

• Z is the number of dynamic circuit elements.

The integration step is determined by solving

hj+1 − (hmax − hmin)F
(
ΔE1

j+1, . . .,ΔEz
j+1, . . .,ΔEZ

j+1
)− hmin = 0

(2.11)
whose solution hj+1 is placed in the positive interval (hmax − hmin]. If at least

one of the inequalities ΔEz
j+1 ≤ k0

∣∣∣Ez
j

∣∣∣ + k1, z = 1, . . ., Z is not satisfied,

the value of F is very close to zero and hj+1 → hmin.
The Equation (2.11) adds a new line to the Jacobian matrix of the modified

nodal analysis (MNA) method leading to the system:
{

Γ(vj+1, ij+1, hj+1) = 0 (2.12)

hj+1 − (hmax − hmin)F
(
ΔE1

j+1, . . .,ΔEz
j+1, . . .,ΔEZ

j+1

)
− hmin = 0

where Γ(vj+1, ij+1, hj+1) are implicit nonlinear functions related to the MNA
formulation.

At each time value the system of nonlinear algebraic Equations (2.12) is
solved, for example by the Newton-Raphson iterative algorithm. Since hj+1
is not known at the beginning of these iterations, the solution of the previous
iteration is used as the initial estimation.

When the Newton-Raphson iterative algorithm is used, a drawback can
occur: the penalty function tends to zero when the energy error is too high,
thus reducing the integration step hj+1 which tend to zero. This drawback can
be avoided by decreasing the hmax value.

Compared to the conventional LTE estimation, this algorithm takes into
account in part the circuit structure and does not require the computation of
the state variables derivatives by the finite differences method, which often
introduces numerical errors.

Table 2.1 shows the number of Newton iterations, total step number, along
with the number of accepted and rejected steps, and finally the CPU time used
to analyze the circuit in Figure 2.2 from Tstart = 0 to Tstop = 1s.
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Figure 2.2 Voltage multiplier schematic.

Table 2.1 Simulation results for the voltage multiplier
SPICE SHORE

Newton iterations 21244 15469
Time steps 4681 3434
Accepted time steps 3351 3351
Rejected time steps 1330 83
CPU time (sec) 38.6 21.3

2.1.1.2.3 Case studies
Class C amplifier
Numerical experiments made with several test circuits [4, 5], like those shown
in Figures 2.3 and 2.4, show that while the CPU time used by SPICE and
SPECTRE is almost the same, PAN needs up to 10 times less CPU time.
A comparison of SPECTRE RF simulation and PAN is given in Table 2.2.

Figure 2.3 Class C amplifier.
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The trreltol error from PAN is the relative error in the Expression (2.9)
used in transient analysis. Reltol signifies εr error in (2.1) for SPECTRE and
is a relative tolerance that determines when the Newton-Raphson iterations
stop in PAN. Trreltol error refers to energies and reltol refers to voltages
and currents. In SPECTRE if the user given value for reltol is the maximum
tolerance of the time derivative of a state variable, while the tolerance value
of this variable is h times smaller or less (because h � 1). Consequently, it
is impossible to set up the error parameters so that SPECTRE and PAN work
with the same imposed errors. Therefore we compared the results for which the
response waveforms are similar, these results being obtained with maximized
values for all error parameters.

ne600p Mixer

Figure 2.4 ne600p mixer.
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Table 2.2 Simulation results for the circuits in Figures 2.2 and 2.3
Circuit Reltol SPECTRE RF PAN Remarks (PAN)
Class C amplifier 1e–5 9.68 s 3.32 s trreltol = 1e–3

4.03 s trreltol = 1e–6
1e–6 20.1 s 3.42 s trreltol = 1e–3

2.91 s trreltol = 1e–2
slightly altered waveform

ne600p mixer 1e–5 35.65 s 7.55 s trreltol = 1e–3
1e–6 78.4 s 8.82 s trreltol = 1e–3

The absolute errors for voltages and currents are set to 10−12 in both SPECTRE
RF and PAN.

One Diode Circuit
In addition to the diode modeled by a non-linear resistor (Figure 2.6), the circuit
(Figure 2.5) also contains a branch having the series resonance frequency of
100f where f is the power supply frequency [9, 10]. These properties of the
circuit introduce difficulties in obtaining the correct result, as will be explained
below.

Figure 2.5 One diode circuit.

Figure 2.6 v-i diode characteristic.
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This circuit has been simulated with SPICE setting reltol = 0.6e–6, abstol =
1e–12 and with PAN for trreltol = 1e–13, trabstol = 1.5e–18. With these
imposed errors the results shown in Table 2.3 have been obtained.

At the first glance, the rectified voltage obtained with these two simulators
is identical (Figure 2.7), but in a detail (Figure 2.8) we can observe a slight
difference.

If we consider the voltage of R1 (Figure 2.9) and its detail (Figure 2.10) it
can be observed that there is a relatively large difference between the solutions
obtained with these two simulators.

From the above remarks it can be concluded that in this case at least one
obtained solution is not correct. To improve the results the circuit has simulated
again with reltol = 7.5e–11, abstol = 1e–12 for SPICE and trreltol = 1e–13,
trabstol = 1.5e–22 for PAN.

With these imposed errors, the results in Table 2.4 have been obtained.
It is interesting to note that in this case PAN rejects about 11 times more

steps than SPICE but the computation time is smaller.

Table 2.3 Simulation results for the circuit in Figure 2.5
SPICE PAN

Accepted steps 16509 15486
Rejected steps 5066 3404
CPU time 0.4 s 0.23 s

Figure 2.7 Diode voltage.
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Figure 2.8 Diode voltage – detail.

Figure 2.9 R1 voltage.

Zooming the same area, a significant improvement of these solutions,
which are now similar, is observed (Figure 2.11).

It is interesting to see how the time step evolves in both transient analysis
approaches (Figure 2.12).

Since the user cannot impose equivalent errors in these two programs and
there are cases where the same waveform is obtained with about the same
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Figure 2.12 Time step evolution for SPICE and PAN.

number of accepted steps, the average time step being about the same, it can
be said that the efficiency of transient analysis implemented in SPECTRE and
PAN is similar, for this more intricate example.

2.1.1.3 Time step choice algorithm based on energy balance
relative error

2.1.1.3.1 Errors used in transient analysis
2.1.1.3.1.1 Local truncation error and energy error
The equations of a nonlinear circuit with the state variables x(t), the inputs
u(t) and the outputs y(t) are:

• the state equations ẋ(t) = f(x(t), u(t))
• the link between inputs and outputs y(t) = g(x(t), u(t)).

By imposing certain values for truncation errors related to the relative and the
absolute error which are used to compute x(t) and ẋ(t), the errors used to
check the circuit equations depend on the f and g functions. In other words,
to a SPICE user who sets some values for the absolute and relative errors on
state variables and their derivatives with respect to time, certain errors values
with which are verified the circuit equations are not guaranteed. This is why
we say that this method of error parameter setting ignores the circuit structure.

By imposing αrel and αabs in (2.9), PAN limits the error between the
accumulated energy and the energy received in an integration step for each
dynamic circuit element. It can be said that this way to define the errors takes
partially into account the structure of the circuit.
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The energy balance errors, which are taking fully into account the circuit
structure, are defined in this section. It is expected that using these errors for
choosing the time step, a smaller computing time than that of SPICE will be
obtained for the computation of a solution having the same overall transient
analysis error (computed for the whole time interval).

The energy balance errors are defined in Paragraph 2.1.1.3.1, a time step
choice algorithm based on these errors is proposed in Paragraph 2.1.1.3.2, and
the analysis of some linear and nonlinear circuits comparing the results of the
proposed algorithm with the analytical solution and with the solution given
by SPICE is presented in Paragraph 2.1.1.3.3.

2.1.1.3.1.2 The energy balance error [8–12]
For each dynamic element the accumulated energy in a time step h = tn+1-tn
is defined. For capacitors we have:

• charge controlled linear capacitor

ΔEC = Ej+1 − Ej =
∫ tj+1

tj

dq

dt
vdt =

∫ qj+1

qj

v̂(q)dq (2.13)

• voltage controlled linear capacitor

ΔEC = En+1 − En =
∫ tn+1

tn

dQ

dt
(v(τ))v(τ)dτ =

= Q(v(τ))v(τ)|tn+1
tn −

∫ tn+1

tn

Q(v(τ))
dv

dt
(τ)dτ = (2.13′)

= Q(v(tn+1))v(tn+1) − Q(v(tn))v(tn) −
∫ v(tn+1)

v(tn)
Q(v)dv

and for inductors:

• flux controlled linear inductor

ΔEL = Ej+1 − Ej =
∫ tj+1

tj

dφ

dt
idt =

∫ φj+1

φj

î(φ)dφ (2.14)

• current controlled linear inductor

ΔEL = En+1 − En =
∫ tn+1

tn

dφ

dt
(i(τ))i(τ)dτ =

= φ(i(τ))i(τ)|tn+1
tn −

∫ tn+1

tn

φ(i(τ))
di

dt
(τ)dτ = (2.14′)

= φ(i(tn+1))i(tn+1) − φ(i(tn))i(tn) −
∫ i(tn+1)

i(tn)
φ(i)di
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The energy absorbed by the resistors and sources between tn and tn+1 is:

Ek =
∫ tn+1

tn

u(t) · i(t)dt (2.15)

where, starting from the samples computed with a numerical integration
method, v(t) and i(t) are approximated by a linear or a quadratic interpolation
(Table 2.5).

Table 2.5 Linear and quadratic interpolation for voltages and currents
Linear Interpolation Quadratic Interpolation

v(t) = a1 · t + a0 v(t) = a2 · t2 + a1 · t + a0

i(t) = b1 · t + b0 i(t) = b2 · t2 + b1 · t + b0

With linear interpolation between samples [9] it is obvious that higher
errors are obtained in energy calculation than using quadratic interpolation for
voltages and currents. To simplify the formulas that calculate the coefficients
of these polynomials we use a “local” coordinate system 0, h1, h1+h2 instead
of “global” one tn−1, tn, tn+1 (Figure 2.13). Significant interpolation errors
can occur if the denominator of these coefficients is too small. These errors
can be avoided by using linear interpolation between h1 and h1+h2 if h1h2
(h1 + h2) ≤ Δ, where h1h2(h1 + h2) is the denominator of the coefficient
and Δ is a limit set by the user.

Figure 2.13 Quadratic interpolation.

Certainly, this approximation of the waveform introduces errors in the
voltage and current energy calculation. So, these errors affect also the calcu-
lation of energy balance. To ensure a smooth waveform between tn and tn+1
a condition that halves the time step if the interpolation parabola peak is in
this range, is added.

The absolute energy balance error is defined as:

ΔEa =
N∑

k=1

Ek (2.16)
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and the relative energy balance relative error [10] as:

ΔEr = ΔEa

/√√√√ N∑
k=1

E2
k (2.17)

where N is the number of all elements in the circuit. These errors are computed
at each time point and if ΔEr is greater than an imposed threshold, the time
step is rejected.

2.1.1.3.2 Time step choice algorithm
The time step choice algorithm based on energy balance error is given below
[8, 10, 11]. In the following EER is the imposed relative energy error and
TMAX is the step to display the results.

EER = the imposed relative energy error
tn+1 = tn + hn

solve for tn+1
compute ΔEr

if ΔEr < EER/10
accept tn+1
hn+1 = 1.5 · hn

hn+1 = min (hn+1, TMAX)
continue

else if EER/10 < ΔEr < EER
accept tn+1
hn+1 = hn

continue
else if ΔEr > EER

reject tn+1
hn+1 = hn/1.5

if hn+1 < H min print TIME STEP TOO SMALL;
the analysis is aborted

The total error can be computed as ΔEtotal =
∑

ΔEa, where ΔEa is given
by (2.16), and the sum is considered for all accepted steps. This error is a global
estimation of the transient analysis accuracy, for the entire circuit and for the
entire time interval considered of the transient analysis accuracy. A truncation
error [2], or an energy error [3] does not allow this kind of global estimation.

Computing both ΔEa and ΔEtotal the compensation of some different
signs errors can lead to a wrong estimation of the solution accuracy. Since
the accumulated energy variation in the dynamic elements depends only on
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the values of the state variables at the boundaries of the interval [tn, tn+1],
a special attention in solving the resistive circuit containing companion models
(see Section 2.1.1.3.3) has been paid, this procedure being performed in long
double precision. In addition, the powers balance test that verifies the accuracy
of solving this circuit has been introduced.

This algorithm has been implemented in C and tested for linear circuits with
damped oscillating transient response, circuits with piecewise linear resistors
and circuits with polynomial nonlinearities. For the tested examples that
contain a relatively small number of circuit elements, the proposed algorithm
rejects a smaller number of steps than SPICE, the number of accepted steps
being about the same.

2.1.1.3.3 Solving the linear circuit with companion models
In transient analysis, at each time step, a system of equations Ax = b is solved.
This system results from the node voltage equations of the resistive circuit
obtained by replacing the dynamic elements with their equivalent companion
models [42]. If the integration step is very small, a common case in the
analysis of the oscillating circuits with high quality factor, the numerical
values of this matrix differ by several orders of magnitude and the matrix of the
system can become ill-conditioned. This introduces errors in computing the
system solution. Therefore, iterative methods were developed to improve
the solution, the most known and used being GMRES (generalized minimal
residual method) [14]. Briefly, the algorithm of this method is as follows:

{
calculate the residue r = b − A · x
solve A · d = r
update the solution x = x + d
} until r or d is small enough or the maximum number of iterations is

reached

This algorithm works well up to a certain point. If the condition number
(‖A‖ · ∥∥A−1

∥∥) is very high the residue is not worsen, but the solution x
(although it is usually improved by this process) is often worsen [13]. It seems
that using a greater precision in computations, a better solution can be obtained
even without GMRES.

For example, consider a 23 × 23 matrix similar to those occurring in
circuit analysis. This ill conditioned matrix has the condition number 2.1e+5
and the determinant value 3.08e–61. The results obtained using the GMRES
algorithm are given in Table 2.6 [42].
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Now consider the nonlinear circuit in Figure 2.5 [9, 10] the power
balance at each time step being computed using double and long double
precision.

Table 2.6 Simulation results for the ill-conditioned matrix
GMRES Full Pivoting Maximum Residue CPU Time

Double YES YES 1.27E–18 152.4 us
Long double NO YES 4.41E–22 104.4 us
Long double NO NO 3.04E–22 58.8 us

Figure 2.14 Evolution of the relative energy balance error – double precision.

Figure 2.15 Evolution of the absolute energy balance error – double precision.
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When for solving the linear system of the circuit with companion models
the double precision is used, with or without GMRES iterations, the evolution
of the power balance relative error is similar (Figure 2.14).

A similar evolution of the absolute power balance error can be observed
(Figure 2.15).

If the long double precision is used, both the relative power balance error
(Figure 2.16) and the absolute power balance error (Figure 2.17) are much
improved even without GMRES iterations compared to the errors computed
with double precision (Figure 2.14, Figure 2.15).

Figure 2.16 Evolution of the relative energy balance error – long double precision.

Figure 2.17 Evolution of the absolute energy balance error – long double precision.
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Table 2.7 Results obtained using double and long double precision
Accepted Rejected

Precision GMRES Prel max Pabs max CPU Time Steps Steps
Double YES 5.5E–5 2E–9 0.54 s 18911 981
Long double NO 1.7E–8 1.05E–12 0.43 s 13974 842

A summary of the results is presented in Table 2.7:
Where:

Pabs =
n∑

k=1

Pk

and

Prel =
Pabs√
n∑

k=1
(Pk)

2

.

Remarks [42]
In the computations performed with the double precision the long double errors
cannot be achieved no matter how many GMRES iterations are performed.

At least in these cases, using long double precision, the solution obtained
using LU factorization with full pivoting is the same as that obtained using
LU factorization without pivoting.

Using the long double precision the correct solution is obtained in less
CPU time than using double precision with GMRES iterations.

2.1.1.3.4 Examples
Using the opportunity of having the sources of SPICE+ (a variant of
SPICE3F5), a comparison of the proposed algorithm with SPICE for a set
of examples has been made.

Figure 2.18 Linear circuit with damped oscillatory response.
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2.1.1.3.4.1 1st Example
The circuit in Figure 2.18 [11, 12] has been analyzed starting from an initial
condition selected such as it generates a damped oscillatory response. This
circuit is powered by a 1 MHz sinusoidal voltage of 1 V amplitude. To compare
the results obtained with the proposed algorithm and with SPICE, two cases
have been considered. The first case has a higher level of the errors than the
second case.

For the first case, the voltage on the capacitor C is given in Figure 2.19
and Figure 2.20, the initial conditions being vC = 1V, vC1 = 1V and iL1 = 0A.

Figure 2.19 Circuit response in the first case.

Figure 2.20 Circuit response in the first case – detail.



38 Analysis of RF Circuits

The analysis parameters have been set so that the high frequency detail
obtained by SPICE is almost identical with that resulting using the pro-
posed algorithm (Figure 2.20). The main parameters of the SPICE analysis
and those of the analysis with the proposed algorithm are described in
Table 2.8.

In the second case smaller imposed errors are used. The circuit response
is shown in Figure 2.21 and Figure 2.22, while the parameters of the analyses
are given in Table 2.9.

It may be noted that in both cases the proposed algorithm rejects fewer steps
than the SPICE one, the number of accepted steps being similar. The similar

Table 2.8 Results obtained for the 1st example
Algorithm Imposed Errors Accepted Steps Rejected Steps
SPICE reltol = 1e–4 2117 814

abstol = 1e–15
Proposed ERR = 0.6e–4 2087 304

Table 2.9 Results obtained for the 1st example with smaller imposed errors
Algorithm Imposed Errors Accepted Steps Rejected Steps
SPICE reltol = 2e–6 8507 2924

abstol = 1e–15
Proposed ERR = 0.6e–5 8641 885

Figure 2.21 Circuit response in the second case.
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Figure 2.22 Circuit response in the second case – detail.

number of accepted steps results from the similar accuracy conditions im-
posed, in order to ensure a set of valid comparison between these algorithms.

2.1.1.3.4.2 2nd Example
The second example is the circuit in Figure 2.5 which contains a nonlinear
element and a resonant branch. This circuit is driven by a signal of 1 MHz, the
natural frequency of the transient component generated by the RLC resonance
branch being 100 MHz. The nonlinear element is a diode modeled by a
piecewise linear resistor in series with a voltage source (Figure 2.6).

The diode voltage V(2) computed with the proposed algorithm and with
SPICE is given in Figure 2.23.

Using the error limits reltol = 7.5e–11, abstol = 1e–12 for SPICE and
EER = 7e–7 for the proposed algorithm, we have obtained the results in
Table 2.10.

The errors imposed in the two algorithms have been chosen so that the
total error ΔEtotal produced by the proposed algorithm is almost the same
as the value ΔEtotal obtained with SPICE. It follows that for about the same
total errorΔEtotal, the proposed algorithm is better from the point of view of
rejected steps and computation time.

Using the trapezoidal rule for the circuit equations integration with both
algorithms, similar waveforms have been obtained, as expected (Figures 2.23,
2.24, and 2.25). It is interesting to observe the evolution of the energy balance
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Figure 2.23 Diode voltage.

Table 2.10 Results obtained for the 2nd example
Proposed SPICE

Accepted steps 303705 306215
Rejected steps 2921 6883
ΔEtotal 7.769e–17 9.396e–17
CPU time 7.38 s 7.56 s

Figure 2.24 V(4) voltage.
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Figure 2.25 V(4) voltage – detail.

relative error computed for the SPICE solution and for the proposed algorithm
(Figure 2.26, Figure 2.27).

The evolution of the time step both for SPICE and for the proposed
algorithm is shown in Figure 2.28.

It follows that using the same limit for the relative energy balance relative
error for all time steps, the proposed algorithm makes an average step greater

Figure 2.26 Relative energy balance error for SPICE and the proposed algorithm.
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Figure 2.27 Relative energy balance error for SPICE and the proposed algorithm – detail.

Figure 2.28 Evolution of the time step for SPICE and the proposed algorithm.

than the SPICE algorithm that uses the same local truncation error limit for
all time steps.

2.1.1.3.4.3 3rd Example
The equivalent circuit of the quartz crystal resonator (Figure 2.29) from the
amplifier given in [8] has been considered. This circuit has a quality factor
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Figure 2.29 High quality factor circuit.

Q = 1.6e+6 at the series resonance frequency of 5 MHz and it has been analyzed
starting from the null initial state, being driven by a 5 MHz signal.

2.1.1.3.4.3.1 Comparison with the analytical solution
The VC0(t) response after sweeping 497 periods is presented in Figure 2.30.
A detail is given in Figure 2.31.

Figure 2.30 High quality factor circuit response.
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Figure 2.31 High quality factor circuit response – detail.

2.1.1.3.4.3.2 Comparison with the SPICE solution
The response computed with the proposed algorithm is virtually identical
with the SPICE response (Figure 2.32) for reltol = 1e–7. The detail given in
Figure 2.33, considered in the last period of the analysis, shows a very small
the difference between these results.

The analysis parameters performed with SPICE and the proposed algo-
rithm for choosing the time step are given in Table 2.11.

Figure 2.32 High quality factor circuit response computed with SPICE and with the proposed
algorithm.
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Figure 2.33 High quality factor circuit response computed with SPICE and with the proposed
algorithm – detail.

Table 2.11 Results obtained for the 3rd example
Algorithm Imposed Errors Accepted Steps Rejected Steps CPU Time (s)
SPICE reltol = 0.7e–7 163028 15245 2.01

abstol = 1e–15
Proposed ERR = 5.5e–3 163207 3884 1.96

It follows that the number of rejected steps for the proposed algorithm
is almost four times smaller than the number of SPICE rejected steps, the
number of the accepted steps being similar.

2.1.1.3.4.4 4th Example
A bandpass filter built with two BAW (bulk acoustic wave) resonators has
been analyzed with SPICE, MAPLE and the proposed algorithm [9, 10].
The Butterworth-Van Dyke equivalent circuit is used for each resonator
(Figure 2.34). This circuit is driven by a sinusoidal signal of 2.025 GHz (the
series resonance frequency of the first resonator).

2.1.1.3.4.4.1 Comparison with the analytical solution
After sweeping 10 periods of the signal source, the output voltage V(2)
computed with the proposed algorithm is basically the same with the analytical
solution computed with the MAPLE software (a).
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Figure 2.34 Bandpass filter (output voltage – node 2 voltage).

At the beginning of the simulation there is a small difference between the
numerical and the analytical solution for V(2) and ILm1 (the current through
the motional branch of the first resonator) Figures 2.35 (b) and 2.36 (b).

2.1.1.3.4.4.2 Comparison with the SPICE solution
After sweeping 100 periods of the signal source, the output voltage V(2)
computed with the proposed algorithm and with SPICE is given in Figure 2.37.

Considering the imposed errors reltol = 3.2e–6 and EER = 1e–5 the results
obtained with these two algorithms have the properties in Table 2.12.

It can be observed that for a similar ΔEtotal value, the number of steps
computed with the proposed algorithm is about 80% of the number of steps
computed with SPICE.

It is interesting to observe the evolution of the relative energy balance
relative error for the SPICE solution (Figure 2.38) and to compare it with the

Table 2.12 Results obtained for the 4th example
Proposed SPICE

Accepted steps 9270 9238
Rejected steps 1161 3532
ΔEtotal 6.124e–16 2.417e–15
ΔErmax 1e–5 6.559e–3
CPU time 0.18 s 0.25 s
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Figure 2.35 V(2) [V] versus time [s].
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Figure 2.36 ILm1 [A] versus time [s].
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Figure 2.37 Output voltage of the band-pass filter.

Figure 2.38 Relative energy balance error for the SPICE solution.

relative energy balance relative error computed for the proposed algorithm
(Figure 2.39).

The evolution of the time step for SPICE and for the proposed algorithm
is given in Figure 2.40.

2.1.1.3.4.5 5th Example
The band-pass filter from the previous example where both linear BAW
resonators were replaced with nonlinear resonators has been analyzed with
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Figure 2.39 Relative energy balance error for the proposed algorithm solution.

Figure 2.40 Time step evolution for SPICE and for the proposed algorithm.

SPICE and the proposed algorithm. The nonlinear equivalent circuit proposed
in Chapter 3 is used for each resonator (Figure 2.41). This circuit is driven
with a sinusoidal signal of 2.025 GHz (the series resonance frequency of the
first resonator).

For the motional branch of the first resonator the following nonlinear
circuit elements were used:
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Figure 2.41 Band pass filter (output voltage – node 2 voltage).

uRm1(iRm1) = 4.56 · (iRm1 + 0.5e − 5 · i2Rm1 + 0.5e − 6 · i3Rm1
)

ϕLm1(iLm1) = 69.91e − 9 · (iLm1 + 5e − 3 · i2Lm1 + 1e − 5 · i3Lm1
)

qCm1(uCm1) = 88.29e − 15 · (uCm1 + 6e − 8 · u2
Cm1 + 6e − 10 · u3

Cm1
)

and for the motional branch of the second resonator we have:

uRm2(iRm2) = 4.56 · (iRm2 + 0.5e − 5 · i2Rm2 + 0.5e − 6 · i3Rm2
)

ϕLm2(iLm2) = 70e − 9 · (iLm2 + 5e − 3 · i2Lm2 + 1e − 5 · i3Lm2
)

qCm2(uCm2) = 93.166e − 15 · (uCm2 + 6e − 8 · u2
Cm2 + 6e − 10 · u3

Cm2
)

2.1.1.3.4.5.1 Comparison with the SPICE solution
After sweeping 100 periods of the voltage source, the output voltage V(2)
computed with the proposed algorithm is identical with the SPICE solution
(Figure 2.42). A detail is shown in Figure 2.43.

Considering the absolute error required for SPICE abstol = 1e–12, the
results obtained with these two algorithms have the properties in Table 2.13.

It is noted that for similar values of the total error ΔEtotal, the total number
of steps computed with the proposed algorithm is about 75% of the total
number of steps computed with SPICE.

Is interesting to observe the relative energy balance error evolution of the
SPICE solution compared with the energy balance relative error computed for
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Figure 2.42 Output voltage of the band-pass filter.

Figure 2.43 Output voltage of the band-pass filter – detail.

Table 2.13 Results obtained for the 5th example
Proposed SPICE

Imposed error EER = 9e–5 reltol = 5.5e–6
Accepted steps 7863 7816
Rejected steps 448 3031
ΔEtotal 3.906e–15 1.04e–14
CPU time 0.25 s 0.32 s
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Figure 2.44 Relative energy balance error for SPICE and the proposed algorithm.

Figure 2.45 Time step evolution for SPICE and for the proposed algorithm.

the proposed algorithm (Figure 2.44). Time step evolution for SPICE and for
the proposed algorithm is given in Figure 2.45.

2.1.1.3.5 Conclusions
A new error for transient analysis of electrical circuits has been proposed.
Using this approach, if the maximum relative energy balance error is small
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enough and the circuit doesn’t have too many branches, it is possible to
estimate the overall correctness of the transient analysis for the entire circuit
and for the entire time interval, unlike the LTE type errors and those used
in PAN.

A new algorithm for the time step choice, using this error has been
developed. Preliminary tests, carried out on linear and nonlinear circuits
with a relatively small number of elements, show that for a similar global
error, the proposed algorithm makes fewer steps, particularly the number of
rejected steps being reduced compared with the SPICE algorithm. Moreover,
the proposed algorithm is better than the algorithm of SPICE in terms of
computing time.

If the energy balance errors are not correctly enough computed, the solution
accuracy can be wrongly estimated. In comparison with the SPICE family
programs, the resistive circuit solution containing companion models is more
accurate because it is computed in long double precision and a test to check
its power balance is made. It follows that the change in accumulated energy of
dynamic elements is correctly computed. Although the quadratic interpolation
used to avoid peak voltages and currents in the range of interest seems more
natural than a interpolation polynomial of third degree used in the truncation
errors calculation, an estimation of error produced by this interpolation in the
computation of the energy absorbed by the resistors and sources was not made.
This topic will be a priority for further research.

The computation of all state variables and their derivatives with the same
relative error is too restrictive. The proposed approach, imposing the same
relative energy balance error for each time step, seems more natural although
errors compensation may occur.

Beside the above mentioned topics, future research will be carried out to
test this new algorithm on larger nonlinear circuits driven by signals with steep
variations and to develop adaptive strategies for choosing the time step.

2.1.1.4 Frequency warping in linear circuits
The computation errors in the transient analysis can be interpreted as a change
of frequency in autonomous circuits [6] or a response of a different period than
the excitation one for the non-autonomous circuits with customary behavior
and high quality factor [7]. Such errors are called in the literature “frequency
warping” and are explained as an intrinsic property of the first or second
order numerical integration methods. To eliminate this type of errors the use
of higher order numerical integration methods is proposed, which leads to
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more complicated computations. In [8] is shown that simply by appropriate
choosing of the relative error reltol, the trapezoidal method can give a solution
very close to the exact one.

2.1.1.4.1 Parallel RLC autonomous circuit
Consider the RLC parallel circuit mentioned in [6] (Figure 2.46) with the
initial state VC = 10V, IL = 0 mA.

The analytical solution VC(t), computed with MAPLE is shown in
Figure 2.47 together with the SPICE solutions for the reltol = 1e–3 and
reltol = 1e–6.

While the solution given by SPICE for reltol = 1e–3 can be seen as a result
of alteration of its own frequency value phenomenon, the solution given by
SPICE for reltol = 1e–6 is virtually indistinguishable by the analytical solution
(at this time scale).

A detail of VC(t) is given in Figure 2.48.

Figure 2.46 Parallel RLC circuit.

Figure 2.47 Voltage of the parallel RLC circuit.
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Figure 2.48 Voltage of the parallel RLC circuit – detail.

At least in this case, it seems that the errors introduced by the trapezoidal
method are the result of LTE accumulation rather than a change in the natural
frequency of the circuit [8].

2.1.1.4.2 High quality factor circuit
To calculate the analytical solution, only the reaction circuit from the transistor
emitter of the amplifier studied in [7] has been considered (Figure 2.34). This

Figure 2.49 Response of the high quality factor circuit.
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Figure 2.50 Response of the high quality factor circuit – detail.

circuit contains a quartz crystal having the quality factor Q = 1.6e+6 (at the
series resonance frequency of 5 MHz) and it was analyzed from the null initial
state and driven by a sinusoidal signal of 5 MHz.

The analytical solution VC0(t) after sweeping 487 periods of the source
signal, computed with MAPLE, is shown in Figure 2.49 together with the
SPICE solutions for reltol = 1e–3 and reltol = 1e–7. A detail of this solution
is given in Figure 2.50.

A similar interpretation (the errors introduced by the trapezoidal rule are
the result of LTE accumulation, not a change of the response period for a
customary behavior circuit) can be given for the results obtained analyzing
this circuit. Moreover, the response for reltol = 1e–7 is practically identical
to the analytical solution.

2.1.1.4.3 Linear band-pass BAW filter
In the following we present a case study aimed to estimate the efficiency of
using the trapezoidal method and the Gear methods (from the second order to
the sixth one) [43].

Consider the pass-band filter in Figure 2.34 built with two BAW resonators
and driven by a sinusoidal source having f0 = 2.025 GHz.

The numerical solution obtained with each of the above mentioned meth-
ods implemented in SPICE is compared to the exact (analytical) solution,
computed by MAPLE. This circuit has quality factor Q = 1.57e+6 at fs= f0
frequency and was analyzed starting from the null initial state.
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The response V(2) is roughly the same with the analytical solution using
reltol = 1e–10 for all methods. A detail of this response is given in Figure 2.51.
In order to estimate the error with respect to the exact solution we compute

ε = max
k

√∫ T
0 Δx2

k(τ)dτ

N where T = tstop, k = 1,. . . p is the index of the state

variable, Δxk = xk–xek,(xk-numerical solution, xek-exact solution) and N is
the number of accepted time steps [43].

The main characteristics of the transient analyses with T = 30/f0 are given
in Table 2.14 [43].

The most accurate result is given by the trapezoidal method, while the
most efficient method is Gear 5. Gear 6 is less efficient that Gear 5 because
of the time spent with the computation of the coefficients in Gear’s formula,
which must be done for each time step. For a circuit with 100 elements or

Figure 2.51 High Q circuit response – detail [43].

Table 2.14 Transient analysis results for circuit in Figure 2.34
Method Accepted Steps Rejected Steps CPU Time ε

Trap 103118 522 6.64 s 5.01e–8
Gear 2 143175 537 9.51 s 1.28e–7
Gear 3 11090 86 0.80 s 3.29e–7
Gear 4 4302 170 0.38 s 1.54e–7
Gear 5 1568 17 0.21 s 4.80e–6
Gear 6 1197 55 0.34 s 5.72e–6



2.1 Time Domain Analysis 59

more, this computation requires a negligible CPU time and Gear 6 should be
the most efficient. So that the recommendation to use Gear 5 (or Gear 6) given
in [14] in order to avoid the “frequency warping” effect remains valid, but for
efficiency reasons [43].

2.1.2 Envelope Following and the Analysis with Two Time
Variables

Consider a circuit driven by an amplitude modulated signal (Figure 2.52 (a)).
If the carrier period is Tc and the modulation signal period is Tm, and Tc �
Tm the circuit response to two carrier periods which are close each other
but are placed at a certain non-zero distance in time may be considered
as similar. It follows that, performing a transient analysis, it is not always
mandatory to sweep all carrier periods of the excitation. So, jumping over
some carrier periods the transient analysis duration may be shortened. An
envelope following method makes this kind of jumps, computing a correct
transient response (Figure 2.52 (b)).

If the error for the jump computation is small enough, the envelope
following algorithm doesn’t make any jump and this analysis uses the same

(a)
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(b)
Figure 2.52 Envelope following: (a) excitation, (b) response.

time steps as the transient analysis. In this case the computation time is larger
than that of the transient analysis, because it includes the calculations made
for the unsuccessful jump attempts.

2.1.2.1 Kundert algorithm implemented in SPECTRE RF
Figure 2.53 shows how the envelope following algorithm works [15]. In this
algorithm two previous values are used to compute a new one. It is assumed
that the values are known at the beginning of the carrier period for the time
values t(n−1) and tn which are separated by an integer number of carrier
periods T. The state variable values v

(
t(n−1) + T

)
at t(n−1) + T are obtained

from those at t(n−1) integrating over a time period, i.e.

v
(
t(n−1) + T

)
= Φ

(
v
(
t(n−1)

)
, t(n−1), t(n−1) + T

)
(2.18)

where Φ is the transition function. The state variables values at tn and tn + T
are related by v(tn + T ) = Φ(v(tn), tn, tn + T ), also.

The goal of the algorithm is to find the state variable value at a new time
value t(n+1) several periods away from tn so that the point with coordinates
(v
(
t(n+1)

)
, t(n+1) ) lies with a certain error on the parabola passing through

three points whose coordinates are: (v
(
t(n−1)

)
, t(n−1)),
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Figure 2.53 Kundert’s envelope following algorithm.

(v
(
t(n)
)
, t(n)), and (v

(
t(n+1) + T

)
, t(n+1)+T ). The value v

(
t(n+1) + T

)
is given by

v
(
t(n+1) + T

)
= Φ

(
v
(
t(n+1)

)
, t(n+1), t(n+1) + T

)
(2.19)

On the other hand, from the interpolation condition, v
(
t(n+1) + T

)
can be

written as a linear combination of v
(
t(n−1)

)
, v(tn), v

(
t(n+1)

)
, meaning that

there exist real constants α1, α2, α3 so that [15].

α1v
(
t(n−1)

)
+ α2v(tn) + α3v

(
t(n+1)

)
. (2.20)

The real constants α1, α2, α3 may be obtained by standard techniques [15].
Combining these two equations it follows:

α1v
(
t(n−1)

)
+α2v(tn)+α3v

(
t(n+1)

)−Φ
(
v
(
t(n+1)

)
, t(n+1), t(n+1) + T

)
= 0

(2.21)
which can be used to determine v

(
t(n+1)

)
with the Newton-Raphson method.

At each iteration, from the Newton-Raphson equation,
[
α3I − ∂Φ

∂v
(
t(n+1)

)
]
Δv
(
t(n+1)

)
= RHS (2.22)

is computed a correction Δv
(
t(n+1)

)
of v
(
t(n+1)

)
, where the right hand side

(RHS) value results from (2.21).
This process is repeated until the interpolation equation is satisfied with

the imposed relative error. If this error cannot be satisfied, tn+1 is chosen
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closer to tn and the process is repeated. These three steps are repeated until
the desired stop time is reached.

If the algorithm cannot make any jump, the analysis is reduced to the
transient one. As it is shown in the examples, this method cannot always be
more efficient than transient analysis due to the jumps recalculation.

2.1.2.2 Brambilla-Maffezzoni algorithm implemented in PAN
Consider the state equation

dy(t)
dt

= f(y, t) (2.23)

where y(t): �1 → �N , f(y, t): �N+1 → �N which models a customary
behavior non-autonomous circuit having a T-periodic excitation and an unique
T-periodic response.

The nonlinear transition function,

Φ(y(t), t) = y(t) +
∫ τ=t+T

τ=t
f(y(τ), τ)dτ (2.24)

computes the state equation solution at the time value t+T , starting from the
value y(t).

Assume that we have solved (2.24) up to the period m defined as
[tm = mT, tm+1 = (m + 1)T ], where m is a positive integer. At a subsequent
time value tn = tm+1+H , where H = (n − m) ·T, n > m is a multiple of T,
the state variables yn = y(tn) can be estimated as follows. A modified variant
of a numerical integration methods such as Forward Euler (FE), Backward
Euler (BE) or Trapezoidal rule (TP) is used for the envelope following
methods described by the relations 2.25′–2.27′ [16], where ym and yn rep-
resents samples of the envelope, and H is the jump over n-m periods of the
carrier.

The numerical integration methods are:

FE: yn = ym + H
dy

dt

∣∣∣∣
t=tm

(2.25)

BE: yn = ym + H
dy

dt

∣∣∣∣
t=tn

(2.26)

TP: yn = ym +
H

2

(
dy

dt

∣∣∣∣
t=tm

+
dy

dt

∣∣∣∣
t=tn

)
(2.27)
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Their corresponding envelope following methods are defined by:

FE: yn = ym +
H

T
(ym+1 − ym) (2.25′)

BE: yn = ym +
H

T
(yn+1 − yn) (2.26′)

TP: yn = ym +
H

2T
(yn+1 − yn + ym+1 − ym) (2.27′)

It can be observed that (2.26) and (2.27) are implicit integration formulas
because the unknown term yn+1 is in the right-hand of the expression. The term
yn+1 can be obtained by integrating (2.23) on the interval [tn, tn+1] starting
from the initial state y(tn). However, the value yn+1 depends on yn through the
unknown transition function (2.24): yn+1 = Φ(yn, tn). Substituting Φ(yn, tn)
in (2.26′) and (2.27′) the following nonlinear algebraic equations are obtained.

ΓBE(yn) = yn − Φ(yn, tn) +
T

H
(yn − ym) = 0 (2.28)

ΓTP (yn) = yn − Φ(yn, tn) + ym − Φ(ym, tm) +
2T

H
(yn − ym) = 0

(2.29)

It can be noted that if H → ∞, ΓBE(yn) no longer depends on ym and
becomes the equation that represents the shooting method

lim
H→+∞

ΓBE(yn) =

shooting method︷ ︸︸ ︷
yn − Φ(yn, tn) = 0 (2.30)

where, in this case, yn is the periodic steady state of the circuit. Considering
ΓTP (yn), a similar result is obtained

lim
H→+∞

ΓTP (yn) =

shooting formulation
in the n − th period︷ ︸︸ ︷

yn − Φ(yn, tn) +

shooting formulation
in the m − th period︷ ︸︸ ︷

ym − Φ(ym, tm) = 0.

(2.31)
Because any variant of the periodic steady state correct calculation leads to
the same result, the circuit having a unique periodic solution, the terms for
m and n periods of (2.31) have the same solution, yn = ym. Therefore, the
envelope following method can be considered as a modified shooting method.
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The main difficulty when applying the BE and TP integration methods
modified for the envelope following is that these are implicit formulas,
requiring the transition function Φ(y, t) evaluation, which can be done only
numerically. If we assume that (2.28) and (2.29) are solved with the Newton
iterative method, a transient analysis is required at each iteration of the Newton
algorithm. Two significant remarks follow [16]:

• the number of Newton iterations required to converge to a solution for the
time instant tn, should not be greater than (n − m) = H/T , or else the
envelope following method is less efficient than a conventional transient
analysis performed on the entire time interval H,

• it is mandatory to give a good initial approximation to Newton method
so that it can converge in few iterations.

To obtain this estimation, Φ(y, t) is expanded in Taylor series with respect to
y(t) and only the first order term is kept.

Φ(yn, t) = Φ(ym, t) +
dΦ
dy

∣∣∣∣
y=ym

(yn − ym) (2.32)

where dΦ
dy

∣∣∣
y=ym

∈ �N×N is the sensitivities matrix. Substituting (2.32) in

(2.28) yields

yp−BE
n −

[
Φ(ym, tm) +

dΦ
dy

∣∣∣∣
y=ym

(
yp−BE

n − ym

)]
+

T

H

(
yp−BE

n − ym

)
= 0

(2.33)
which can be rewritten as

yp−BE
n =

[(
1 +

T

H

)
I − dΦ

dy

∣∣∣∣
y=ym

]−1

·
[
ym+1 +

(
T

H
I − dΦ

dy

∣∣∣∣
y=ym

)
ym

]

(2.34)

where I ∈ �N×N is the unity matrix and dΦ
dy

∣∣∣
y=ym

is the sensitivities matrix

of ym+1with respect to ym. Since Newton-Raphson method is used to solve
(2.28), the dΦ/dy term is available at each iteration, as part of the Jacobian
matrix. Expression (2.34) is the predictor, and, used with BE corrector it
estimates y(tn) with yp−BE

n starting from the known values of ym+1 and ym.
The analysis algorithm based on BE has the following steps

1. Do the numerical integration of the equations for the [tm, tm+1] time
interval starting from ym initial condition ym.
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2. During the transient analysis compute dΦ
dy .

3. Apply (2.34) and estimate yp−BE
n .

4. Do the numerical integration of the equations for the [tn, tn+1] starting
from yp−BE

n .

5. Compute Φ
(
yp−BE

n , tn

)
and dΦ

dy

∣∣∣
y=yp−BE

n

.

6. Apply the Newton method to (2.28) and do only one iteration:

y1
n = yp

n−
[(

1 +
T

H

)
I − dΦ

dy

∣∣∣∣
y=yn

]−1

·
[
yp

n − Φ(yp
n, tm) +

T

H
(yp

n − ym)
]
.

7. If tn is after the final time of the analysis stop the computation, otherwise
continue with step 3.

Similar to the BE, a predictor for the TP can be determined:

yp−TP
n =

[(
2T

H
+ 1
)

I − dΦ
dy

∣∣∣∣
y=ym

]−1

·

·
[
2ym+1 −

(
dΦ
dy

∣∣∣∣
y=ym

+
(

1 − 2T

H

)
I

)
ym

]
(2.35)

2.1.2.3 Examples
To illustrate the concepts presented above, some circuits used in radio
communications are considered:

2.1.2.3.1 AM demodulator
This circuit in Figure 2.54 is driven by the amplitude modulated signal:

e(t) = 2 sin(2πfpt)(1 + sin(2πfmt))

Figure 2.54 AM demodulator.
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Consider fm=1 KHz and fp=1 MHz, 10 MHz, 100 MHz.
The algorithm of SPECTRE RF gives the correct circuit response but

the envelope following analysis computation time is 2-3 times smaller than
the time used by the transient analysis even if the ratio between the carrier
frequency and modulation frequency is only 103 (Figures 2.55 and 2.56).
A better efficiency is obtained if this ratio increases (Table 2.15).

Figure 2.55 AM demodulator – the transient analysis response.

Figure 2.56 AM demodulator – the envelope following analysis response.

Table 2.15 Results obtained for the AM demodulator with different carrier frequencies

log10

(
fp
fm

)
Transient Analysis (Tran) Envelope Following Analysis (Envlp)

3 80.08 s 29.7 s
4 800.8 s 138.7 s
5 8008 s 314.8 s
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2.1.2.3.2 In-Phase and quadrature modulator (IQ)
The circuit is composed of a modulator and an amplifier (Figure 2.57).

The modulator consists of two multipliers and an adder, each multiplier
having a rectangular input signal of low frequency (1 MHz) and a sinusoidal
signal of a higher frequency (1 GHz). The two output signals from each
multiplier are inputs to the adder. The selective amplifier is designed to filter
and amplify the input signals around 1 GHz.

At one entry of each multiplier the signal in Figure 2.58 has been applied
simulating a digital signal. Due to the envelope following method operating
mode which involve relatively large jumps on the time axis, the same input
signal is represented as in the following figure.

The local oscillator is considered as a sine wave of 1V magnitude and is
applied in-phase and in-quadrature to the inputs of the two ideal multipliers.

This circuit has been simulated in SPECTRE RF with two methods:
the envelope following method (ENVLP) and the transient analysis method

Figure 2.57 In-phase and quadrature modulator.

Figure 2.58 In-phase and quadrature modulator – input signal.
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Figure 2.59 In-phase and quadrature modulator – responses.

Table 2.16 Results obtained for in-phase and in-quadrature modulator
Transient Analysis Envelope Following Analysis

(Tran) (Envlp)
errpreset = moderate 35.25 s 5.6 s
errpreset = conservative 6.63 s 790 ms

(TRAN). In the following, a comparison of the results obtained with these two
methods is made.

The response obtained with these two methods is shown in Figure 2.59.
Comparing the results obtained with these two methods it can be observed

that relative to the transient analysis method, the simulation time is smaller
in the case of ENVLP method due to the jumps. This explains the different
waveforms obtained for the two methods. However, if the algorithm cannot
make any jump, ENVLP analysis is reduced to the transient one. Not always
this analysis can be more efficient than the transient analysis due to jump failed
attempts and/or recalculation.

To illustrate the problems that arise in simulating the RF circuits with
different envelope following algorithms, a class C amplifier (Figure 2.3) and
a commercial down-converter mixer ne600p (Figure 2.4) have been simulated.

Table 2.17 shows the results of the envelope following analysis from
SPECTRE RF, and PAN [4, 5]. The circuits and the absolute error values
are the same as those mentioned in the transient analysis. Some additional
settings are made to simulate with the envelope following method. The
relative error for the jump calculation is reltol multiplied by envlteratio in
SPECTRE RF, while ereltol is the relative error used by PAN for the jump
computation.

The waveforms obtained simulating these two circuits are shown in Figures
2.60–2.65. The effect of changing envlteratio can be seen in Figure 2.60.
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Table 2.17 Results of the envelope following analysis from SPECTRE RF and PAN
Comments

SPECTRE: Envlteratio
Circuit Reltol SPECTRE RF PAN PAN: Ereltol
Class C amplifier 11.9 s 115 s envlteratio = 10

no jumps ereltol = 1e–4
1e–5 8.57 s 62.36 s envlteratio = 100

ereltol = 1e–3
6.72 s 30.44 s envlteratio = 1000

ereltol = 1e–2
2.8 s 12.58 s envlteratio = 10000

ereltol = 1e–1
1e–6 25.15 s 108.75 s envlteratio = 100

ereltol = 1e–4
22.11 s 65.44 s envlteratio = 1000

ereltol = 1e–3
13 s 31.02 s envlteratio = 10000

ereltol = 1e–2
ne600p mixer no jumps 288.92 s envlteratio = 10

ereltol = 1e–4
1e–5 no jumps 295.08 s envlteratio = 100

ereltol = 1e–3
erroneous results 138.7 s envlteratio = 1000

ereltol = 1e–2
no jumps 288.40 s envlteratio = 100

ereltol = 1e–4
1e–6 no jumps 292.77 s envlteratio = 1000

ereltol = 1e–3
erroneous results 141.9 s envlteratio = 10000

ereltol = 1e–2

Figure 2.60 Class C amplifier, SPECTRE RF.
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Figure 2.61 Class C amplifier, PAN.

Figure 2.62 ne600p mixer – SPECTRE RF solution.

Figure 2.63 ne600p mixer – SPECTRE RF solution (detail).
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Figure 2.64 ne600p mixer – PAN solution.

Figure 2.65 ne600p mixer – PAN solution (detail).

Although designed to reduce the computation time, many test circuits
show that the envelope following implementations are not competitive with
the classical transient analysis.

An example showing that Brambilla’s jump algorithm is better than
Kundert’s algorithm is the ne600p down-converter mixer. From the detailed
figure it can be seen that SPECTRE RF cannot make any jump. In this case
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the time used by the envelope following analysis is greater than that used for
transient analysis.

The result presented in the following figures is obtained by simulating the
same circuit with the envelope following algorithm implemented in PAN.

In this case the algorithm works better but the computation time of the
envelope following analysis is still greater than the time used by the transient
analysis. The simulation time of the envelope following analysis in PAN is
close to that of transient analysis if the time interval is very big because the
algorithm can make higher jumps when the solution is close to the periodic
steady state. In conclusion, for many applications, contrary to expectations,
no envelope following algorithm is more efficient than the transient analysis.

2.1.2.3.3 Remark
The envelope following analysis from PAN allows you to choose any value
for the jump, not only a multiple of the largest frequency period (the local
oscillator period for the mixer case). If you choose to jump exactly the inter-
mediate frequency period (f IF = f LO-f RF) the analysis looks like a shooting
method which not only displays the periodic steady state solution but the
whole analysis period. This is the only way that gives good results faster than
the transient analysis, but due to the large jump, the transient response at the
beginning of the analysis is lost (Figure 2.66).

Figure 2.66 ne600p mixer – the response corresponding to f RF period jump.
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Considering the absolute error of 10−12 and the relative errors of 10−5 and
10−6 the envelope following method analysis has been done with SPECTRE
RF and PAN. Different values for the relative error were considered in the
jump calculation, so that a correct result be obtained. When no jump attempt
is made, simulation time is much greater than for a simple transient analysis.
Even if some jumps are made, the classical transient analysis is much more
efficient than the envelope following method [5].

In Figure 2.67 is presented a linear test circuit used to illustrate the low
efficiency of the envelope following method [5]. The independent sources
describe an amplitude modulated signal with the carrier frequency fc = 1 MHz
and the modulation frequency fm = 1 KHz. The R1, L1, C1 series branch
produces a transient component of 100 MHz.

The response is the voltage on the C capacitor (V [4]).
The same errors values for all envelope following method simulations in

PAN and SPECTRE RF have been used: reltol = 1e–6, iabstol = 1e–12, and
vabstol = 1e–12.

All the above computations lead to the same circuit solution, independently
of the analysis (transient or envelope following) and software (SPECTRE RF
or PAN).

In order to compare the time step evolution for the transient analysis or
envelope following, the errors have been set so that the envelope following
makes no jump. In this case, the waveform obtained with the envelope
following analysis is the same as that computed by the transient analysis, and
therefore a comparison of the simulations is relevant. In Figure 2.68 are given
the time step values obtained by SPECTRE RF considering the maximum

Figure 2.67 Linear test circuit.
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Figure 2.68 Time step for the transient and for the envelope following analyses from
SPECTRE RF.

relative error for the jump computation (corresponding to envlteratio = 1000)
for which no jump has been made.

It follows that even if the average time step for the transient analysis
is only about 50% higher than the envelope following one, the simulation
time for the envelope method is about nine times greater. This result can be
explained both by unsuccessful jump attempts, as well as due to the drastic
reduction of the time step after each jump. In Figure 2.68 has been used
errpreset = conservative option which implies that the maximum time step is
carrierperiod/ 100. With errpreset = moderate corresponding to a maximum
time step of carrierperiod/ 50 a similar average time step to that obtained with
the transient analysis has been achieved.

Using a similar setup for the envelope analysis in PAN (ereltol = 1e–6) the
results in Figure 2.69 are obtained. Even if PAN allows it, the minimum time
step in this analysis is not set by the user. The minimum and the maximum
time step are computed by PAN in this example. In this case, the simulation
time for the envelope analysis is two times higher than that for the transient
analysis.

In these circumstances the simulation time for the envelope analysis with
SPECTRE RF is about 17 times greater than that for PAN, while the simulation
time for the transient analysis with SPECTRE RF is about 4 times greater
than that for PAN (Figure 2.70). The maximum time step in the envelope
analysis from PAN is computed according to the minimum jump time Hm.
The minimum time step hmin can be chosen by the user, but it is better to
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Figure 2.69 The time step for the transient and for the envelope following analyses from
PAN.

Figure 2.70 Time step for the envelope following analysis from SPECTRE RF and PAN.

let the program to compute it. These aspects are illustrated in Table 2.18 and
Figure 2.71.

The dependence of hmax on Hm for the envelope analysis with PAN is
illustrated in Figure 2.71. A detail of the time step evolution at the beginning
of a carrier period is given in Figure 2.72.

Transient components higher than the carrier frequency lead to a time
step reduction. A detail given in Figure 2.73 illustrates this for the circuit in
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Table 2.18 hmin and Hm influence on the envelope following analysis for a 100 us simulation
with PAN

Hm = 1us Hm = 2us
hmin CPU time (s) Max Jump (x Hm) CPU time (s) Max Jump (x Hm)
4.00e–09 0.41 1 0.25 1
2.00e–09 0.62 0 0.21 1
1.00e–11 0.12 7 0.09 13
1.00e–12 0.09 24 0.10 10
PAN choice 0.10 21 0.11 10

Figure 2.71 Time step for the envelope following analysis for various Hm (PAN).

Figure 2.72 Time step evolution – detail.
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Figure 2.73 Transient components in the envelope following analysis (SPECTRE RF).

Figure 2.67. The time value t = 0 in this figure corresponds to t = 3e–6 in
Figure 2.68, where the time step is relatively small. This type of behavior can
occur after an erroneous jump, too.

Computing the jump by integrating the circuit equations, the Brambilla-
Maffezzoni method is conceptual superior to Kundert method that fits some
points on a parabola. This conclusion is confirmed also by case studies.
However, due to the unsuccessful jump attempts computations and reduction
of the time step after each jump, in many cases a simulation time shorter than
the one corresponding to the classical transient analysis cannot be obtained, as
expected. It follows that the development of an efficient envelope following
method remains an open problem.

2.1.2.4 Exponential approximation of the envelope
The envelope of the transient response in certain linear circuits evolves like an
exponential or like a combination of exponentials, one of them being dominant.

We consider that the value of the state variable v after the jump (at tn+1)
interpolates an exponential defined by three state variable values v(tn−1),
v(tn), v(tn+1 + T ) at the corresponding time values (Figure 2.74) [44].

Considering the “local coordinate” system shown in Figure 2.13, it
follows:

v
(
t(n+1) + T

)
= A + B · e− h1+h2+T

τ (2.36)

The value v(t(n+1) + T ) is obtained from v(t(n+1)) integrating the circuit
equations over a carrier period, i.e.
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Figure 2.74 Exponential approximation of the envelope.

v
(
t(n+1) + T

)
= Φ

(
v
(
t(n+1)

)
, t(n+1), t(n+1) + T

)
(2.37)

where Φ is the transition function. We define [44]:

f
(
v
(
t(n+1)

))
= Φ

(
v
(
t(n+1)

)
, t(n+1), t(n+1) + T

)− A − B · e− h1+h2+T
τ

(2.38)
The equation f

(
v
(
t(n+1)

))
= 0 is solved for ν(t(n+1)) with the Newton-

Raphson algorithm:
[

∂f

∂v
(
t(n+1)

)
]∣∣∣∣∣

v(t(n+1))
(j)

·
(
v
(
t(n+1)

)(j+1) − v
(
t(n+1)

)(j)) =

= −f
(
v
(
t(n+1)

)(j))
(2.39)

where j is the iteration index. The sensitivity matrix is computed as follows:

∂f

∂v
(
t(n+1)

) =
∂Φ

∂v
(
t(n+1)

) − ∂A

∂v
(
t(n+1)

) − ∂B

∂v
(
t(n+1)

) · e− h1+h2+T
τ −

− B(h1 + h2 + T )
τ2 · ∂τ

∂v
(
t(n+1)

) · e− h1+h2+T
τ (2.40)

and ∂A
∂v(t(n+1))

, ∂B
∂v(t(n+1))

, ∂τ
∂v(t(n+1))

are computed from
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⎧⎪⎨
⎪⎩

v
(
t(n−1)

)
= A + B

v
(
t(n)
)

= A + B · e− h1
τ

v
(
t(n+1)

)
= A + B · e− h1+h2

τ

(2.41)

replacing v
(
t(n+1)

)
with v

(
t(n+1)

)
+ Δv

(
t(n+1)

)
and approximating

∂A

∂v
(
t(n+1)

) ∼= ΔA

Δv
(
t(n+1)

) .
Similarly: ∂B

∂v(t(n+1))
∼= ΔB

Δv(t(n+1))
, ∂τ

∂v(t(n+1))
∼= Δτ

Δv(t(n+1))
.

To obtain a quicker convergence, the algorithm starts with an exponential

predictor v
(
t(n+1)

)(0)
(defined by v

(
t(n−1)

)
, v
(
t(n)
)
, v
(
t(n) + T

)
), whose

coefficients A, B, and τ are obtained by solving a system similar to (2.41)
[44]. The iterations (2.39) are repeated until the imposed relative error limit
εr0 for v

(
t(n+1)

)
is satisfied:

εr =

∥∥∥ v
(
t(n+1)

)(j) − v
(
t(n+1)

)(j+1)
∥∥∥

max
(
v
(
t(n+1)

)(j)
, v
(
t(n+1)

)(j+1)
) ≤ εr0 (2.42)

The solving of the system (2.41) for A, B, and τ needs a good initial guess
in order to avoid a great number of Newton-Raphson iterations. The most
sensitive initial value is that of τ [44]. Its initial guess can be chosen as
follows:

τ =
h1

ln( (v(tn)−v(tn−1))h2
(v(tn+1)−v(tn))h1

)
(2.43)

2.1.2.5 Quadratic approximation of the envelope
While the idea in Kundert’s algorithm (i.e. the value of a state variable at
t(n+1) interpolates with an imposed error a quadratic polynomial defined by
the state variable values at t(n−1), t(n) and t(n+1)+T) remains unchanged, its
implementation is not the same.

The implemented algorithm is similar to the exponential approximation
of envelope, using the Newton-Raphson method to solve

Φ
(
v
(
t(n+1)

)
, t(n+1), t(n+1) + T

)− p(h1 + h2 + T ) = 0 (2.44)

for v(t(n+1)), where p(t) = a2t2+a1t+a0, with a0, a1, a2 computed so that the
quadratic polynomial passes through the values corresponding to (t(n−1), t(n)
and t(n+1)+T). The formulas giving a0, a1, a2 are computed in “local time
coordinates” 0, h1 and h2, (Figure 2.74) for the sake of simplicity [44].
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2.1.2.5.1 Switching between exponential and quadratic envelope
approximations

Obviously, the coefficients in (2.36) can be identified only if the slopes of
the unknown computed on the time intervals h1and h2 have the same sign
and |slope (h1)|> |slope (h2)|. These two conditions are used to check if the
exponential approximation of the envelope can be built [44].

The proposed algorithm, outlined in the following, is used for each state
variable [44].

while t <tstop
if t = 0

solve for t = 0, T and for 2T
end
compute the predictors using v(tn−1), v(tn) and v(tn + T)
compute the correctors using v(tn−1), v(tn) and v(tn+1)

if corrector method is exponential
verify if exponential can be built

if NO
reject H and use quadratic for next jump

if YES
continue

end
end

end
end
estimate the method for next jump H

if slope(h1)*slope(h2)>0 and |slope(h1)|>|slope(h2)|
exponential

else
quadratic

end
end
if εr ≤ 1e − 2 · εr0

accept the solution for H and next jump Hnew = 2H
else if εr ≤ εr0

accept the solution for H and next jump Hnew = H
else if εr > εr0

reject the solution for H and next jump Hnew = H-1
end

end
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2.1.2.6 Examples
The simulation of the buck converter in Figure 2.75 has been performed both
with the transient analysis and with the envelope following algorithm which
uses the quadratic and the exponential approximation of the envelope. Its
parameters are: Vi = 10 V, L = 420 μH, C = 38 μF, R = 140 Ω, and the diode is
modeled as a piecewise-linear resistor with Rd = 1e–3 Ω and Ri = 1e+15 Ω.
The switch parameters are Ron = 0.01 Ω, Roff = 1 KΩ, f = 100 KHz [44].
The results given by the proposed envelope algorithm have been compared
with those obtained with similar algorithms implemented in SPECTRE RF
and PAN.

The minimum jump size is the switch signal period T. The efficiency η of
an envelope following algorithm is defined as follows:

η =
∑

k Hk

tstop
(2.45)

Hk being the accepted jumps magnitudes, and tstop being the total simulation
time.

SPECTRE RF analyses consider that each node has a capacity of 10−17 F
connected to the ground, unlike the proposed algorithm and PAN that analyze
the circuit in Figure 2.75.

In all analysis algorithms (transient and envelope) the absolute errors have
been set as iabstol = 1e–12A, vabstol = 1e–12V. The relative error in transient
analyses has been set to reltol = 1e–9. Two relative error limits for the jump
computation (εr0 in the case of the proposed algorithm) have been considered.
The results for εr0 = 1e–4 are given in Table 2.19, and the results for εr0 =
1e–6 are given in Table 2.20.

In these tables the maximum jump Hmax is given in switch periods. The
transient analysis with the program using the proposed algorithm needs 7.82s,
so that only the proposed envelope analysis for εr0 = 1e–4 leads to a significant
CPU time saving.

Figure 2.75 Buck converter.
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Table 2.19 εr0 = 1e–4
Algorithm η Hmax CPU Time [s]
Proposed 0.9298 30 1.86
Spectre RF 0.8105 19 7.58
PAN 0.2620 8 irrelevant

Table 2.20 εr0 = 1e–6
Algorithm η Hmax CPU Time [s]
Proposed 0.4860 10 13.15
Spectre RF 0.2935 19 42.09
PAN 0.0010 1 irrelevant

The waveforms in Figure 2.76 and Figure 2.77 show that the proposed
method gives the same results as the transient analysis.

The second example [44] is a synchronous rectification buck converter
(Figure 2.78) with a sampling frequency fs = 1/T = 530 KHz. A transient
analysis with tstop = 700T has been performed starting from a null initial state.
For ts = 500T the load resistance increases from 0.137 Ω to 1.37 Ω. The output
voltage waveform is given in Figure 2.79. A steady state detail after 497T is
given in Figure 2.80, and the transient response produced after the increase of
the load resistance is given in Figure 2.81. The results are given in Table 2.21.

In this case, the transient analysis in the program using the proposed
algorithm requires 1.74 s [44].

Figure 2.76 iL(t) – proposed algorithm.
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Figure 2.77 iL(t) – proposed algorithm (detail).

Figure 2.78 Synchronous rectification buck converter.

Figure 2.79 Output voltage V0.
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Figure 2.80 Output voltage V0 – steady state.

Figure 2.81 Output voltage V0 – transient solution for the increasing of the load resistance.

Table 2.21 εr0 = 1e–2
Algorithm η CPU Time
Proposed algorithm 0.802 0.99 s
Spectre RF 0.768 4.28 s
PAN 0.678 irrelevant
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2.1.2.7 Envelope following analysis of a buck converter with
closed loop control

Due to the variations in the pulse widths (especially when the load is varying or
the input voltage is changing), the neighboring clock periods are not as similar
as, for example, in switched capacitor circuits driven by the same clock. The
poor efficiency of all envelope following algorithms presented above for buck
converters with closed loop control is explained in [45] through the existence
of some state variables in the control loop which vary very fast, their values at
tn+1 having a weak dependence on their own history. This is because, in these
conditions, the algorithm implementation reported in [44] reduces drastically
its time step leading to a poor efficiency of the envelope following. Various
intricate algorithms have been proposed to overcome this difficulty [46].

In order to avoid useless jump attempts of the algorithm in [44] in these
circumstances, the minimum time step for the jump computation is set 10
times greater than the minimum time step for the transient analysis [46]. For
example, if the maximum time step for the transient analysis is T/100, then the
minimum time step for the transient analysis is 1e–14 times smaller (4e–20s)
and the minimum time step for the jump computation is 4e–19s. In order to
obtain a better efficiency of the envelope following analysis the maximum
Newton-Raphson iteration number is set to 5 for the transient analysis and to
10 for the jump computation [46].

For the comparison between various settings of the proposed algorithm
as well as between our algorithm and that implemented in SPECTRE RF, the
efficiency of an envelope algorithm is defined as in relation (2.45).

2.1.2.7.1 Example
The synchronous rectification buck converter with closed-loop control in
Figure 2.82 has been analyzed [46]. The parameters of this circuit are: Vin

= 10V, Rs = 1 mΩ, L = 3.4 µH, ESR = 2 mΩ, C = 10 mF, Rf1 = 1.2 KΩ, Rf2
= 0.8 KΩ, C1 = 1 nF, C2 = 8.5 pF, R1 = 150 KΩ, Vref = 1.2 V, and f = 250
KHz (switch frequency).

In order to ensure a precise derivative computation both operational
amplifiers are modeled as nonlinear VCVS described by [46]:

Vout =
5
2

· (1 + tanh(1.25e + 4 · (Vin + 1.25e − 4))). (2.46)

Switches are modeled by voltage controlled resistors [46]:

RSW =
1e + 5

π
·
(π

2
+ arctan(1e + 5 · (Uctrl − 4.999))

)
(2.47)
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Figure 2.82 Synchronous rectification buck converter with closed-loop control.

where Uctrl = 5 − V (10) for SW1 and Uctrl = V (10) for SW2, and Uctrl is
the output voltage of the PWM generator.

Two sets of operating conditions, defined by the load resistance variation,
have been simulated for this converter. The load resistance variation for the
first set of operating conditions (1st OC) is given in Figure 2.83 [46].

Figure 2.83 Load resistance variation – 1st OC.
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Table 2.22 1st OC parameters “reltol envlp” = 1e–4
Proposed Spectre

T stop 400T 400T
H total 250T 244T
η 0.625 0.61
reltol tran 1e–9 1e–8
reltol envlp 1e–4 1e–4
abstol 1e–12 1e–12

Figure 2.84 Output voltage (proposed algorithm) [46].

The relative error reltol has different values for the transient analysis and
for the jump computation (reltol envlp). The absolute error is the same for
both types of computation [46].

The simulation results are given in Table 2.22 and are illustrated in
Figures 2.84–2.86.

The proposed algorithm has a slightly better efficiency than SPECTRE
RF [46]. This feature can be observed also in Figure 2.85 and Figure 2.86,
representing the waveforms around the moment of the load resistance
commutation.

The results for smaller jump computation errors are given in Tables 2.23
and 2.24. As this error decreases, the efficiency difference between the
proposed algorithm and that implemented in SPECTRE RF increases [46].

The relative error for the transient analysis (reltol tran) has been chosen
as 1e–9 so that the proposed algorithm performs the largest jumps. The
corresponding error for SPECTRE RF is 1e–8 because this is the smallest value
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Figure 2.85 Output voltage – detail (proposed algorithm) [46].

Figure 2.86 Output voltage – detail (SPECTRE RF) [46].

for which this algorithm can operate (for 1e–9 the chosen time step oscillates
between the values 4.35e–19 and 8.7e–19 leading to a huge simulation
time) [46].

The load resistance variation for the second set of operating conditions
(2nd OC) is given in Figure 2.87 [46].
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Table 2.23 1st OC parameters “reltol envlp” = 1e–5
Proposed Spectre

T stop 400T 400T
H total 206T 192T
η 0.515 0.48
reltol tran 1e–9 1e–8
reltol envlp 1e–5 1e–5
abstol 1e–12 1e–12

Table 2.24 1st OC parameters “reltol envlp” = 1e–6
Proposed Spectre

T stop 400T 400T
H total 149T 70T
η 0.3725 0.175
reltol tran 1e–9 1e–8
reltol envlp 1e–6 1e–6
abstol 1e–12 1e–12

Figure 2.87 Load resistance variation – 2nd OC.

The simulation results are given in Table 2.25.
It can be observed that the proposed algorithm is more or less better than

that implemented in SPECTRE in all cases [46].

Table 2.25 2nd OC parameters
reltol envlp Proposed η. Proposed SPECTRE η SPECTRE
1e–4 218 0.545 189 0.4725
1e–5 160 0.4 122 0.305
1e–6 133 0.3325 53 0.1325
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2.1.2.8 Transient analysis with two time variables
Consider a two-tone signal [17], given by the following expression:

b(t) = sin
(

2π

T1
t

)
sin
(

2π

T2
t

)
(2.48)

The two tones are at very distant frequencies, for example f1 = 1/T1 =
1 kHz, and f2 = 1/T2 = 1000 kHz. In other words, every modulating
period T1 = 1 ms (the slow signal) contains 1,000 periods of the carrier
T2 = 0.001 ms (the fast signal).

In the time domain analysis of a circuit driven by such a signal, the time
step must be small enough to compute the correct response to rapid variation
in the b(t) signal. For example, if 50 points are used for a carrier period
50,000 points are needed to sweep a modulation period. Please note that this
is computed for T1/T2 = 103, but this ratio can reach 106 or more. Taking into
account that the steady state is reached after sweeping at least several signal
periods, a huge computation effort may be needed.

Now consider the two variables representation of b(t) obtained as follows:
For the slow variations of the b(t) expression, t is replaced with t1 and for
the rapid variations of the b(t) expression, t is replaced with t2. The resulting
function is as follows:

∧
b(t1, t2) = sin

(
2π

T1
t1

)
sin
(

2π

T2
t2

)
(2.49)

Figure 2.88 b(t) represented with one time variable [18, 19].
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Figure 2.89 b(t) signal represented with two time variables.

The function
∧
b(t1, t2) is bi-periodic, that is periodic with respect to both

t1 and t2:
∧
b(t1 + T1, t2 + T2) =

∧
b(t1, t2).

The function
∧
b(t1, t2) for 0 ≤ t1 ≤ T1, 0 ≤ t2 ≤ T2 is shown in

Figure 2.89. Considering that for plotting the function all the computed points
of the circuit response are used, a mesh with 50 × 50 nodes i.e. 2500 samples,
it results a much smaller number than those 50,000 samples used for the single
time variable calculations.

Note that it is easy to reconstruct b(t) from the
∧
b(t1, t2) setting t1 = t2 = t

and taking into account that
∧
b is bi-periodic. Giving any value for t, the

∧
b

arguments are given by ti = t mod Ti. For example:

b(1.952ms) =
∧
b(1.952ms, 1.952ms)

=
∧
b(T1 + 0.952ms, 195 T2 + 0.002ms)

=
∧
b(0.952ms, 0.002ms)

(2.50)

Giving the
∧
b(t1, t2) is easy to see how b(t) looks. When t increases from 0,

the trajectory given by {ti = t mod Ti} draws the trajectory in the saw teeth
form as it is shown in Figure 2.90.
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Figure 2.90 Trajectory in the t1–t2 plane [40].

Writing the circuit equations for this method is presented in the
Section 2.1.3.3. The transient analysis of the circuit starts from the specified
initial conditions x(t1, 0) and x(0, t2).

2.1.2.8.1 Remarks
Due to the wide spectrum of the RF signals, the classical transient analysis is
very time consuming.

Although designed to shorten the computation time, the envelope fol-
lowing method implemented in SPECTRE RF cannot be used efficiently to
compute the transient response for a large class of RF circuits.

Recently, continuing the ideas in [20], several two-time variables analysis
methods have been developed but are not yet implemented in any commercial
software. It follows that the efficient transient analysis of the RF circuits
remains an open problem.

2.1.3 Computation of the Periodic Steady State

In the RF circuit design and simulation, the periodic steady state response
is of great interest. Some of these circuits are characterized by a very long
transient response and their simulation with the traditional transient analysis
from SPICE is not efficient. For this reason, some methods that compute
directly the periodic steady state response have been developed.

2.1.3.1 The brute force method with the periodicity error control
The classical transient analysis, also called “the brute force method”, computes
the transient response of a circuit until all transient components decay. All
time domain circuit simulators can perform this analysis on a specified interval
(from 0 to Tstop) without computing the periodicity error. A more efficient and
accurate analysis can be easily obtained by calling a user-defined procedure
to compute the periodicity error after each excitation period. For example the
periodic steady state can be considered reached if the state vector x satisfies
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ε(j) ≤ ε0, j = 1, . . ., M (2.51)

where ε is the global relative periodicity error between the (m+1)-th and the
m-th periods for all state variables x(j) k = 1,. . ., n, and ε0 is the imposed
relative error [21]:

ε(j) =
1
n

·
√√√√ n∑

k=1

1
T

·
∫ T

0

Δx
(j) 2
k

x
(j) 2
k

dτ (2.52)

with Δx
(j)
k (τ) = x

(j)
k [(m + 1)T + τ ] − x

(j)
k (mT + τ).

By this way the transient analysis is stopped if the imposed periodicity
error is satisfied.

2.1.3.2 Shooting methods
2.1.3.2.1 Shooting with Newton-Raphson
The PSS (periodic steady state) analysis [22] implemented in SPECTRE RF
computes directly the permanent response of the circuit in the time domain.
This simulation technique is known in the literature as shooting with Newton-
Raphson. It uses a shooting method to compute the steady state response and
can handle circuits having strong nonlinearities.

If the circuit has strongly nonlinear elements, the advantage of a shoot-
ing method over early implementations of the harmonic balance method
(Section 2.2.1.1) is considerable. For this kind of circuits the last method
is slow and has convergence difficulties, requiring a huge memory space,
while the shooting methods are not affected by the strong nonlinear behavior
of some circuit elements.

How a shooting method works is illustrated in Figure 2.91, showing the
evolution of the state variable Vk.

For a circuit with customary behavior driven by T-periodic sources, the
T-periodic steady state solution [23] satisfies the following condition:

v(T ) − v(0) = 0. (2.53)

The transition function ΦT (v0, t0) is defined, as a solution of the following
equation at the time value t0 + T

f(v(t), t) = i(v(t)) +
dq(v(t))

dt
+ u(t) = 0 (2.54)

which has the initial condition v0 at the time value t0.
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Figure 2.91 Shooting.

This can be written as follows:

v0(t0 + T ) = ΦT (v0(t0), t0) (2.55)

In (2.54)υ(t) is the voltages vector, i(t) is the currents vector of the voltage con-
trolled nonlinear resistors, q(t) is the charges vector of the voltage controlled
nonlinear capacitors, and u(t) is the vector of the independent sources.

The shooting methods combines (2.53) and (2.55) in

ΦT (v(0), 0) = v(0) (2.56)

which is a nonlinear algebra problem, so the Newton-Raphson method can
be used to solve it for v(0) [24]. The combination of shooting and Newton-
Raphson method is known as the shooting algorithm with Newton-Raphson.

In order to apply the shooting with Newton-Raphson, it is necessary to
compute both the circuit response over a period and the sensitivities of the
final state v(T) with respect to changes in the initial state v(0). The Jacobian J
is the sensitivity matrix of (2.56) and is used to determine how to correct the
initial state to reduce the difference between the initial and the final states:

υ(0)j+1 = υ(0)j − J−1(υ(0)j)(ΦT (υ(0)j) − υ(0)j) (2.57)

Two test circuits that have been presented in the Section 2.1.2.3, the class C
amplifier and the ne600p mixer, have been simulated with the PSS analysis
of SPECTRE RF. The waveforms together with the iterations number needed
to obtain the periodic steady state response and the simulation time are listed
in the Tables 2.26 and 2.27 [25].
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Table 2.26 Steady state of the class C amplifier – SPECTRE RF
Iteration number 5
Simulation time 30.22 s

Table 2.27 Steady state of the ne600p mixer – SPECTRE RF
Iteration number 5
Simulation time 52.4 s

For the class C amplifier, the following results have been obtained:

Figure 2.92 Steady state of the class C amplifier, PSS analysis of SPECTRE RF.

For the ne600p mixer, the following results have been obtained:

Figure 2.93 Steady state of the ne600p mixer, PSS analysis of SPECTRE RF.

For both simulations a relative error reltol = 1e–3 and an absolute error:
vabstol = 1e–6 for voltage and iabstol = 1e–12 for current have been used.
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2.1.3.2.2 Shooting analysis from PAN
Although the shooting analysis of PAN is based on the same algorithm
as the PSS analysis of SPECTRE RF, different performances are obtained.
One explanation could be that the transient analysis underlying the shooting
analysis is controlled by a set of errors which is not the same as that of
SPECTRE RF. Moreover, it is not clear how the periodicity error is defined
in PAN.

For the class C amplifier, the following results have been obtained:

Figure 2.94 Steady state of the class C amplifier, PSS analysis of PAN.

Table 2.28 Steady state of the class C amplifier – PAN
Iteration number 2
Simulation time 8.98 s

For the ne600p mixer, the following results have been obtained
(Figure 2.95, Table 2.29):

Table 2.29 Steady state of the ne600p mixer – PAN
Iteration number 2
Simulation time 1.8 s

2.1.3.2.2.1 Remarks
The difference of the response amplitudes obtained with SPECTRE and PAN
is mainly due to the different transistors models implemented in these two
programs [25].
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Figure 2.95 Steady state of the ne600p mixer, PSS analysis of PAN.

At the first glance, in terms of the implementation of the same shooting
method, PAN seems more efficient than SPECTRE RF. But, PAN documen-
tation does not explain clearly in which conditions the shooting iterations are
stopped.

2.1.3.3 Shooting with linear extrapolation
The linear extrapolation method assumes that the states vector vj+1 at the
beginning of (j+1)-th period is an affine function of the states vector vj at the
beginning of the j-th period: vj+1 = A · vj + b where A and b are unknown
[26]. When the steady state is reached it follows:

x∗ = Ax∗ + b ⇒ x∗(1 − A) = b. (2.58)

Supposing that the steady state x∗ can be obtained solving (2.58), it follows
that the components of x∗ are linear independent. If N is the number of the
state variables, it follows that p values

Δx0,Δx1, . . .,Δxp−1 (2.59)



98 Analysis of RF Circuits

where Δx(i) = x(i+1) − x(i) are linearly independent and Δxp is a linear
combination of Δx0,Δx1, . . .,Δxp−1:

V · c = Δxp ⇔ [
[Δx0][Δx1] . . . [Δxp−1]

]
⎡
⎢⎢⎣

c1
c2
. . .

cp−1

⎤
⎥⎥⎦ = [Δxp] (2.60)

where V is a square p x p matrix whose columns are Δx0,Δx1, . . .,Δxp−1

considered at the beginning of the periods 0 (initial state), 1, . ., p-1 in the
transient analysis [26].

The matrix V columns are computed by sweeping p periods of the
excitation and solving the problem of minimizing the value:

ε = ‖V · c − Δxp
0‖2. (2.61)

The solution of this minimization problem using the least squares method is
as follows:

x∗ =
p∑

i=0

cix
(i)/

p∑
i=0

ci (2.62)

where x∗ is the fixed point of (2.58).
The computation of x∗ is an iteration of this extrapolation procedure. These

iterations include sweeping of p excitation periods by a transient analysis
algorithm. The values in x∗converge to the initial state corresponding to
the periodic steady state. The value of p is practically equal to the number
of the independent state variables that change slowly with time. The linear
extrapolation method is efficient if p is not a large number.

2.1.3.4 Shooting with exponential extrapolation
Consider a linear exponentially stable circuit driven by a sinusoidal signal
with period T. Having a customary behavior, this circuit has a T-periodic
sinusoidal steady state. Assume that this circuit has a real natural frequency
s1 = −α1 corresponding to the maximum time constant of this circuit τ1 =
1/α1with τ1>>T. Moreover, this circuit has no complex natural frequencies
sk = −αk+jωk , with Tk = 2π/ωk of the same order of magnitude as T and τk

= 1/ αk>>T. The brute force method can reach the steady state of this circuit
after sweeping a number of 5 τ1/T periods. It can be easily shown that the
average value x̃j(k)on the period k for any response xj having a significant
term depending on s1 can be written as:
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x̃j(k) = aj + Aje
−kT/τ1 (2.63)

Computing the average values x̃j(1), x̃j(2), and x̃j(3) for three consecutive
periods 1, 2, and 3 it follows that the steady state average value aj is as
follows:

aj =
x̃j(1)x̃j(3) − x̃2

j (2)
x̃j(1) + x̃j(3) − 2x̃2

j (2)
, (2.64)

The shooting algorithm with exponential extrapolation has the following
steps [21]:

1. Three excitation periods are swept using a stiff stable method and the
average values x̃j(1), x̃j(2), x̃j(3) corresponding to each period are
computed for all state variables;

2. The asymptotic values aj are computed with the relation (2.64) for all
state variables (for j = 1, . .,n),

3. The initial states corresponding to the periodic response x∗
j0 are computed

for all state variables as x∗
j0 = x

(3)
j0 − x̃

(3)
j +aj for j = 1, . . ., n, where x

(3)
j0

are the initial states for the 3-rd period;
4. Two periods 4 and 5 are swept starting from x∗

j0, j = 1, . . ., n;
5. If the steady state error (2.52) between the responses in the 4th and the

5th periods satisfies the imposed error, the periodic response is obtained;
if not, the computation continues with the first step.

2.1.3.4.1 Example
The test circuit (Figure 2.96) is a DC commutation source. The circuit
parameters are: E1 = 200 V, R1 = 3 KΩ, Rb = 1 Ω, R3 = 1.5 KΩ, Rptx = 0.1
Ω, Rpri = 10 Ω, Resr = 3.75 mΩ, Rl = 0.25 mΩ, C1 = 0.1 µF, C2 = 16000 µF,
C3 = 1360 pF, L1 = 2034 µH, L2 = 358.5 µH, k = 0.99. All diodes included
those in the Ebers-Moll transistor model are considered as piecewise-linear
resistors with two linear regions, having the break point in i = 0 A and
v = 0.4 V and dynamic conductances g1 = 3.7 S and g2 = 5.56 10−12 S. The
filter capacitor C2 generates a huge time constant, this being the reason why
this circuit is used for testing the fast method for steady state computation [47].

The simulation results are given in Table 2.30, where b.f. is the brute force
method, e.e. is the exponential extrapolation method, swp/shp is the swept
period number/shootings number, h is the time step used in simulations, and
t is the simulation time in seconds.
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Figure 2.96 DC commutation source.

Table 2.30 Simulation results for the DC commutation source
h = T/50 h = T/100 h = T/300

Meth. swp/shp t (s) swp./sh t (s) swp./shp. t (s)
b. f. 193 66.2 192 94.5 188 220.2
e. e. 22/5 7.4 41/10 21 22/5 29.5

2.1.3.5 Two time variables method
2.1.3.5.1 Finite difference method
In this method [38], the multiple partial differential equation (MPDE)

∂q(
∧
x)

∂t1
+ · · · +

∂q(
∧
x)

∂tm
= f(

∧
x) +

∧
b(t1, · · ·, tm) (2.65)

is solved on a grid in the t1, · · ·, tm space, where m is the number of
time variables [18]. Let this grid consists of

{
t1, · · ·, tn

}
points where each

ti = (t1i , · · ·, tmi). The partial differential operators of the MPDE are
discretized and the MPDE is associated with this grid. This results in a set

of nonlinear algebraic equations having the unknown s
{∧

x
(
t1
)
, · · ·, ∧

x
(
tn
)}

.

The nonlinear equations are numerically solved using the Newton-Raphson
method.
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In practice, only the two time variables case is considered. The MPDE
equation corresponding to the relation (2.65) is as follows:

∂q(
∧
x)

∂t1
+

∂q(
∧
x)

∂t2
= f(

∧
x) +

∧
b(t1, t2) (2.66)

with boundary conditions
∧
x(t1 + T1, t2 + T2) =

∧
x(t1, t2). Consider a uni-

form grid
{
ti,j
}

of n1 ×n2 size on [0, T1]× [0, T2] area. Here ti,j =
(
t1i , t2j

)
,

t1i = (i − 1)h1 and t2j = (j − 1)h2, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. The distances
between the grid nodes are: h1 = T1

n1
and h2 = T2

n2
on the directions t1 and t2.

Discretizing the partial differential operators using the Backward Euler
method, the following relations are obtained:

∂q(
∧
x)

∂t1

(
ti,j
)

= q(
∧
x(ti,j))−q(

∧
x(ti−1,j))

h1

∂q(
∧
x)

∂t2

(
ti,j
)

= q(
∧
x(ti,j))−q(

∧
x(ti,j−1))

h2

(2.67)

Writing in each grid node
{
ti,j
}

the equation of the method, n = n1 × n2
equations are obtained:

Fi,j =
∧
q i,j − ∧

q i−1,j

h1
+

∧
q i,j − ∧

q i,j−1

h2
−

∧
f i,j − ∧

b i,j = 0, (2.68)

∀i ∈ {1, · · ·, n1},∀j ∈ {1, · · ·, n2},
∧
q i,j = q(

∧
x(ti,j)),

∧
fi,j = f(

∧
x(ti,j)),

∧
b i,j = b(

∧
x(ti,j)).

These n equations have a large number of unknowns; n1+n2 additional
unknowns are resulting from discretization of the differential operators for
t1 = 0 and t2 = 0. These unknowns are eliminated using bi-periodic boundary
conditions.

The following system of equations is obtained:

F (X) = 0 (2.69)

where F = [F1,1, · · ·, F1,n2 , F2,1, · · ·, · · ·, Fn1,1, · · ·, Fn1,n2 ]
T ,

and X =
[∧
x(t1,1), · · ·, ∧

x(t1,n2),
∧
x(t2,1), · · ·, · · · ∧

x(tn1,n2)
]T

.

This system can be solved by Newton-Raphson method [18].
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2.1.3.5.2 Shooting with Newton-Raphson
The key of extending the shooting method to more than one time variable
is to view MPDE as ordinary differential equations with variables that are
functions of other variables. Consider again the case of the MPDE having two
time variables:

∂q(
∧
x)

∂t1
+

∂q(
∧
x)

∂t2
= f(

∧
x) +

∧
b(t1, t2) (2.70)

In this equation the variables
∧
x, q, f, and

∧
b are vectors of two arguments t1

and t2. Let Q(t1), X (t1), F(t1), and B(t1) be functions of t1 whose values are
functions of t2. In other words, the value of Q(t1), for example, for a fixed t1
is the whole q(t1, ·) function.

The MPDE equation can be formally written as a differential-algebraic
equation (DAE) having a function as an independent variable:

dQ(X)
dt1

= F (X) + B(t1) − D t2 [Q(X)] (2.71)

where Dt2 is an operator that differentiates the function (of t2) on which it
operates.

The shooting method can be applied now on (2.71). Let Φ(X0, t) be the
transition function of the differential-algebraic equation. The shooting method
consists in solving the equation:

Φ(X, T1) − X = 0 (2.72)

using the Newton-Raphson method.

2.1.3.6 Shooting with exponential extrapolation
For circuits having a customary behavior (including the property to attenuate
exponentially the transient components) and a unique T-periodic response to
a T-periodic excitation, exponential extrapolation method can be applied with
two time variables [30].

Let dx/dt = f(x, s(t)) be the state equations of the circuit in which f (x)
is nonlinear and s(t) corresponds to a periodic excitation. Consider that the
slow component of s(t) and x(t) depends on α1 = t/T1 (T1 – the modulating
signal period) and the fast components of s(t) and x(t) depends on α2 = t/T2
(T2 – the carrier period). It follows

dx

dt
=

∂x

∂α1
· ∂α1

∂t
+

∂x

∂α2
· ∂α2

∂t
(2.73)
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and the state equations become:

1
T1

∂x

∂α1
+

1
T2

∂x

∂α2
= f [x(α1, α2), s(α1, α2)] (2.74)

in which s(α1, α2) has the unity period with respect to both variables
α1 and α2.

The Equations (2.74) can be discretized, for example, with the backward
Euler method, with respect to both α1 and α2. For the presentation simplicity,
the step of the mesh can be considered for both variables α1 and α2 equal to
h = 1/N where N is the number of intervals in a period for both variables α1
and α2; in this case each unknown xj can be described by a table of N+1 by
N+1 samples. For α1 = ph and α2 = qh (p, q ≤ N + 1), the Equation (2.74)
for xj is written as:

1
T1

xj [ph, qh] − xj [(p − 1)h, qh]
h

+
1
T2

xj [ph, qh] − xj [ph, (q − 1)h]
h

=

= fj(x(ph, qh), s(ph, qh)) (2.75)

If xj [(p − 1)h, qh] and xj [ph, (q − 1)h] are known for j = 1,. . . ,n,
then (2.75) can be solved with the Newton-Raphson method to compute
xj [ph, qh] for j = 1, . . .,n, applying the same algorithm as the exponential
extrapolation method for one time variable. The relatively small size of the
system (n x n) is one of the advantages of the shooting method compared to
the finite difference method.

For n = 1, sweeping one period by backward Euler method requires to
know the values on the line 0 and on the column 0 of the two-dimensional
array x1. Integrating with respect to α2 for α1 = h leads to the calculation of
the values in the first line of the two-dimensional array and so on.

Figure 2.97 Two dimensional xi table.
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In the periodic steady state the line n is identical to the line 0 and the
column n is identical to the column 0. The average value of each line is
initialized by the exponential extrapolation method followed by iterations of
the values on this line until an imposed periodicity error is reached on this line,
which represents a carrier period. These iterations, performed on all lines, lead
to differences between elements of the column 0 and of the column n that are
within the imposed limits for the line periodicity error.

To get the slow variable periodicity (error between the values imposed on
the line 0 and on the line n), the unknowns arrays sweeping is restarted from
the line 0 containing the “initial condition” given by the values obtained on the
previous line n.

2.1.3.6.1 Example
Consider the circuit in Figure 2.98(a) driven by an AM signal e(t) =
sin 2π(t/T1) sin 2π(t/T2), the diode being modeled as the piecewise linear
resistor in Figure 2.98(b).

The following cases have been analyzed [48] for T1 = 1 ms:

• case 0 (T2 = 1 μs);
• case 1 (T2 = 0.1 μs);
• case 2 (T2 = 10 ns);
• case 3 (T2 = 1 ns).

The exponential extrapolation is used for an average value prediction which
may be computed for the entire array, each line, each column. For this example,
the best results have been obtained using the entire array average as an initial
value for the row average.

Considering the relative periodicity error εd = 10−9 per line and a
maximum of 40 cycles of the state variable array uc(α1, α2) an envelope
with the maximum relative error of 5e–2 is obtained compared with the result

Figure 2.98 AM demodulator: (a) circuit and (b) diode model.
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of the classical time domain analysis (1D). The computation time with the 2D
analysis using exponential extrapolation is lower than that with 1D analysis
using the same shooting method only if T1/T2 > 105. Considering 100 samples
for the fast variable and the same number for the slow variable, the results for
T1/T2 > 107 are not correct. By increasing the number of samples at 800 for
the slow variable, correct results are obtained for T1/T2 = 108.

If the time steps h1 and h2 are constant, the two-time variables analysis
is very fast, but the lack of errors estimation cannot guarantee the accuracy
of the solution. In [37], the computation time is considerably reduced using a
much lower carrier frequency than the real one for the initial approximation
computations. In [39], companion models are proposed for 2D analysis for
the case where the fast variable analysis is performed with SPICE (with the
appropriate absolute and relative imposed errors) coupled with a program in
FORTRAN performing the slow variable analysis. The elimination of some
state variables may be useful to improve the 2D analysis [27].

By doing basically the same type of calculations as the envelope following
method, the 2D time domain analysis is not always better than the 1D analysis.
The problem of developing efficient methods to obtain the periodic steady state
response of the RF circuits by the time domain analysis remains open.

2.2 Frequency Domain Analysis

2.2.1 Harmonic Balance Method

2.2.1.1 Valtonen harmonic balance method implemented
in APLAC

2.2.1.1.1 Time domain and frequency domain representations
of a periodic signal

A T-periodic signal can be written as a complex Fourier series

x(t) =
+∞∑

k=−∞
Cke

jkωt (2.76)

It is obvious that C−k = Ck
∗. Usually a finite number of spectral components

are considered:

x(t) =
K∑

k=−K

Cke
jkωt (2.77)

These spectral components can be computed taking into account N samples
of x(t), namely x(0), . . .,x((N–1)Δt), where Δt = T/N. It follows:
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Ck =
1
T

N−1∑
n=0

x(nΔt)e−jkωnΔtΔt =
1
N

N−1∑
n=0

x(nΔt)e−jk 2π
N

n (2.78)

where

Xk =
N−1∑
n=0

x(nΔt)e−jk 2π
N

n, k = 0, 1, . . ., N − 1 (2.79)

are the direct discrete Fourier transform of the set of samples x(0), . . .,
x((N–1)Δt).

The relations

x(nΔt) =
1
N

N−1∑
k=0

Xke
jk 2π

N
n (2.80)

define the inverse discrete Fourier transform of the spectral components Xk,
k = 0, . . ., N–1.

The signal x(t) has both the time domain representation x(0), . . .,
x((N–1)Δt) and the frequency domain representation Xk, k = 0, . . ., N–1.
Using the direct and the inverse discrete Fourier transforms one can easily
pass from a signal representation to the other one.

2.2.1.1.2 Harmonic balance analysis
In the harmonic balance method [28], the non-linear circuit is partitioned
into a linear sub-circuit and a nonlinear sub-circuit. The linear sub-circuit
can be described by the admittance matrix Y, the scattering matrix S, or any
other parameters. The nonlinear elements are modeled by their constitutive
equations and their operation equations.

The harmonic balance formulates the circuit equations having the har-
monic components of the voltages and currents as unknowns. Computing the
periodic steady state only, the solution can be written as a Fourier series.

Consider, for the sake of simplicity, a circuit having as nonlinear elements
only voltage controlled resistors and voltage controlled capacitors. For such a
circuit one can write the nodal equations having as unknowns only the nodes
voltages.

Suppose that the steady state is characterized by Nh harmonic components.
It follows that each voltage has 2Nh +1 harmonic components (one DC com-
ponent, Nh components with positive frequencies and Nh components with
negative frequencies), whose complex amplitudes Xk have to be computed.
The circuit to be solved can be partitioned into a linear sub-circuit which
contains the independent sources, too, and a nonlinear sub-circuit. These two
sub-circuits are connected through n + 1 nodes (Figures 2.99 and 2.100).
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Figure 2.99 Linear and nonlinear sub-circuits.

Suppose that the linear sub-circuit has a voltage controlled representation
at the ports (1, n + 1), (2, n + 1), . . .,(n, n + 1) described by I = Y V +J where
I and V are the vectors of port currents and voltages, and J is the vector of the
independent equivalent current sources. The size of the vectors is n and the Y
matrix size is n×n. For each harmonic component k, the currents entering the
first n linear multiport terminals are Ik = YkVk + Jk where Jk and Vk are the
complex magnitudes and Yk is the port complex admittance matrix computed
for the k-th harmonic component.

Let x(t) be the time domain node voltages vector of the nonlinear sub-
circuit. These voltages are represented in the frequency domain by the vector
X which has Nx(2Nh + 1) components (complex amplitudes) where Nx + 1
is the number of nodes in the nonlinear sub-circuit.

The iterative procedure starts from an initial estimation of X which allows
the computation of x(t) at certain time points kh (k = 1, . . ., 2Nh) using
the inverse discrete Fourier transform. Knowing the constitutive equations
of the nonlinear elements (i = i(u) for resistors and q = q(u) for capacitors),
the current values at the same time points can be computed. The direct discrete
Fourier transform computes the complex amplitudes of the nonlinear resistors
currents, and the nonlinear capacitors charges. The complex amplitudes of the
nonlinear capacitors currents are found from i = dq/dt deriving with respect
to time, term by term, the Fourier series of each charge. Knowing the complex
amplitudes of all nonlinear sub-circuit currents, the complex amplitudes Ik

can be computed using Kirchhoff’s current law.

Figure 2.100 Port magnitudes for the nonlinear sub-circuit.
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Obviously, the complex amplitudes Ik and Vk depend on X. In the periodic
steady state, the currents entering the linear sub-circuit terminals must be equal
to those leaving the terminals of the nonlinear sub-circuit. Both due to the
arbitrary choice of X and due to the finite number of considered harmonics,
this currents equality is verified up to a certain error. For the k-th harmonic
component this error is:

Ek(X) = YkVk(X) + Jk + Ik(X) (2.81)

The aim of this method is to minimize this error up to an imposed limit by
using the Newton-Raphson method for solving the equation E(X ) = 0.

It followsX(n+1) = X(n)−J (−1)(X(n))E(X(n)), where J is the Jacobian
of the equation E(X ) = 0. The algorithm of the harmonic balance method is:

1. Initialize X.
2. Analyzing the nonlinear sub-circuit in the time domain, Vk(X) and Ik(X)

are computed.
3. Knowing Yk for each harmonic component, Ek(X) is computed.
4. If ‖E‖ ≤ ε the solution is obtained, if ‖E‖ > ε compute the new X

using the Newton-Raphson method and restart from step 2.

2.2.1.1.3 Remarks
The computation becomes very intricate even for simple circuits; for example,
if we consider Nh = 4 and we have Nx = 10 state variables in the nonlinear
circuit then the dimension of E is 10 × (2 × 4 + 1) = 90 components and J
has 90 × 90 components.

The convergence of the Newton-Raphson iterations is not guaranteed.
To overcome this difficulty, the sub-relaxation may be used: X(n+1) =
X(n) − αJ−1(X(n))E(X(n)) where α < 1.

Harmonic balance is implemented in ADS, SERENADE, and APLAC
simulators.

It is well known that harmonic balance works very well when the periodic
steady state has relatively few harmonics but it has convergence problems
for waveforms with steep transitions and for circuits with strongly nonlinear
elements. These issues are illustrated by the following example – a first order
nonlinear circuit [29].

2.2.1.1.4 Example
The periodic steady state response is computed both in the time domain
by the brute force method from PSPICE (OrCad 9.0) and in the frequency
domain with the harmonic balance from APLAC Student version 7.70.
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For the diode, a piecewise linear characteristic consisting of two segments
was considered. Two waveforms have been tested: a sine one and one AM
(sin(2πf1t) sin(2πf2t), f1 = 1 KHz, f2 = 10 MHz). The harmonic
balance result is compared with the one obtained with PSPICE. The slope
of the linear segment from the diode characteristic is adjusted in order to
observe the influence of the weak or strong nonlinearity.

Figure 2.101 First order nonlinear circuit; (a) – circuit, (b) – V(2), (c) – V(2) – detail.

For a sinusoidal input signal there is a good agreement between these two
approaches for direct resistance Rd ∈ (0.1 Ω, 10 Ω) and inverse resistance
Ri ∈ (10 KΩ, 10 MΩ). For the amplitude modulated input signal APLAC
fails to display the high frequency details of the capacitor voltage. As the ratio
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Ri/Rd increases (the nonlinearity becomes strong), the envelope computed by
APLAC becomes less accurate. For example, if Rd = 1 Ω, Ri = 1 MΩ, the
envelope amplitude computed byAPLAC is less than 50% of the one computed
with PSPICE. The high frequency detail from Figure 2.99(c) corresponds to
Rd = 0.01 Ω and Ri = 1 MΩ.

A more efficient implementation of the harmonic balance algorithm seems
to be that from Advanced Design System (ADS). A simple test has been
performed with the AM demodulator in Figure 2.101(a) with Rd = 1 Ω,
Ri = 1 MΩ. The envelope amplitude is similar with that obtained by the
transient analysis (Figure 2.102).

Figure 2.102 AM demodulator – ADS results (a) transient analysis, (b) HB analysis.

Some other tests have shown that the harmonic balance algorithm
implemented in ADS gives better results than that implemented in APLAC.

2.2.1.2 Mixed frequency – time domain analysis method
implemented in SPECTRE RF

Consider a circuit containing switches, controlled by a relatively high fre-
quency periodic signal compared to the frequency range of the node voltages.
For such a circuit the response corresponding to a clock period is similar, but
not exactly the same, with the response to the next or previous cycles. Based
on this remark, a very efficient algorithm that computes the periodic response
of a nonlinear circuit has been developed [36].

Consider the sequence of the initial points of each clock cycle for the
circuit node n, noted with vn(τ1), vn(τ2), . . . , vn(τn) where S is the number
of clock cycles in an input period. Suppose that this sequence can be accurately
approximated by a truncated Fourier series,

V0 +
∑(

V C
k cos kωτS + V S

k sin kωτS

)
= vn(τS) (2.82)
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where ω is the fundamental frequency of the input signal, K is the number
of the harmonics, and J = 2K + 1 is the number of unknown coefficients.
Given (2.82), there is a linear relation between any set of J initial points and
any other set of J initial points. We are interested in the linear operator that
converts a set vn(τη1), . . ., vn(τηJ ) into vn(τη1 + T ), . . ., vn(τηJ + T ) where
T is the clock period and {η1, . . ., ηJ} is a subset of {1, . . . , S}. This linear
operator is called the delay matrix.

The delay matrix computation is a two-stage process. First, the J points
vn(τη1), . . ., vn(τηJ ) are used to calculate the Fourier coefficients. Then the
Fourier series (using these coefficients) is evaluated at the J times, τη1 +
T, . . . , τηJ + T . The Fourier coefficients are then eliminated obtaining the
desired relation. To compute the Fourier coefficients, (2.82) is written as a
system of J linear equations in J unknowns [36]:

Γ−1

⎡
⎢⎢⎢⎢⎢⎣

V0
V R

1
...

V R
K

V S
K

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

vn(τη1)
vn(τη2)
vn(τη3)

...
vn(τηJ )

⎤
⎥⎥⎥⎥⎥⎦

(2.83)

where Γ−1 ∈ �J×J is given by
⎡
⎢⎢⎢⎢⎢⎣

1 cos ωτη1 sinωτη1 · · · cos Kωτη1 sinKωτη1

1 cos ωτη2 sinωτη2 · · · cos Kωτη2 sinKωτη2

1 cos ωτη3 sinωτη3 · · · cos Kωτη3 sinKωτη3
...

...
...

...
...

1 cos ωτηJ sinωτηJ · · · cos KωτηJ sinKωτηJ

⎤
⎥⎥⎥⎥⎥⎦

(2.84)

The Γ−1 matrix is known as the inverse discrete Fourier transform. If the
τη1, . . ., τnJ times are reasonably evenly distributed over one period of the
input signal, then Γ−1 is invertible. Its inverse, the forward discrete Fourier
transform, is denoted by Γ. We can also write

Γ−1

⎡
⎢⎢⎢⎢⎢⎣

V0
V R

1
...

V R
K

V S
K

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

vn(τη1 + T )
vn(τη2 + T )
vn(τη3 + T )

...
vn(τηJ + T )

⎤
⎥⎥⎥⎥⎥⎦

(2.85)
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where Γ−1(T ) ∈ �J×J is given by
⎡
⎢⎢⎢⎢⎢⎣

1 cos ω(τη1 + T ) sin ω(τη1 + T ) · · · cos Kω(τη1 + T ) sin Kω(τη1 + T )
1 cos ω(τη2 + T ) sin ω(τη2 + T ) · · · cos Kω(τη2 + T ) sin Kω(τη2 + T )
1 cos ω(τη3 + T ) sin ω(τη3 + T ) · · · cos Kω(τη3 + T ) sin Kω(τη3 + T )
...

...
...

...
...

1 cos ω(τηJ + T ) sin ω(τηJ + T ) · · · cos Kω(τηJ + T ) sin Kω(τηJ + T )

⎤
⎥⎥⎥⎥⎥⎦

(2.86)
Given a sequence of samples, a delayed version is computed by applying Γ

to the sequence to compute the Fourier coefficients, and then multiplying the
vector of coefficients by Γ−1(T ):⎡

⎢⎢⎢⎣
vn(τη1 + T )
vn(τη2 + T )

...
vn(τηJ + T )

⎤
⎥⎥⎥⎦ = Γ−1(T )Γ

⎡
⎢⎢⎢⎣

vn(τη1)
vn(τη2)

...
vn(τηJ )

⎤
⎥⎥⎥⎦ (2.87)

Thus, the delay matrix D(T ) ∈ �J×J is defined as

D(T ) = Γ−1(T )Γ (2.88)

As the delay matrix is a function only of ω, K, {τη1 , . . . , τηJ }, and T, it can
be computed once and used for every node.

Assumed that any analog circuit can be described by a system of differential
equations of the form

d

dt
q(υ(t), u(t)) + i(υ(t), u(t)) = 0 (2.89)

where υ(t) ∈ �N is the vector of node voltages, u(t) ∈ �M is the vector of
independent sources, q(υ(t), u(t)) ∈ �N is the vector of the charges sums at
each node, and i(υ(t), u(t)) ∈ �N is the vector of the currents sums entering
each node. If the node voltages are known at t0 time, it is possible to solve
(2.89) and compute the node voltages at some later time t1. In general, one
can write

v(t1) = φ(v(t0), t0, t1) (2.90)

where φ is the state transition function and can be written as

φ(v(t0), t0, t1) =

⎡
⎢⎣

φ1(v(t0), t0, t1)
...

φN (v(t0), t0, t1)

⎤
⎥⎦ (2.91)
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where φn : �N×1×1 → � for all nodes n ∈ {1, . . ., N}.
For each j ∈ {1, . . ., J} and for each node n ∈ {1, . . ., N} one can write

vn

(
τηj + T

)
= φn

(
v
(
τnj

)
, τnj , τnj + T

)
(2.92)

where T is the clock period. vn

(
τηj + T

)
is the initial point of the cycle

immediately following the cycle beginning at τηj . Also, the node voltages at
τηj can be related to the node voltages at τηj +T by the delay matrix D(T ), i.e.

D(T )

⎡
⎢⎣

vn(τη1)
...

vn(τηJ )

⎤
⎥⎦ =

⎡
⎢⎣

vn(τη1 + T )
...

vn(τηJ + T )

⎤
⎥⎦ (2.93)

It is possible to use (2.92) to eliminate the vn

(
τηj + T

)
terms from (2.93)

D(T )

⎡
⎢⎣

vn(τη1)
...

vn(τηJ )

⎤
⎥⎦ =

⎡
⎢⎣

φn(v(τη1), τη1 , τη1 + T )
...

φn(v(τηJ ), τηJ , τηJ + T )

⎤
⎥⎦ (2.94)

for each n ∈ {1, . . ., N}.
The relations (2.94) can be written as a system whose unknowns are the

N vectors of the node voltages at the beginning of the J periods of the clock:

F

⎛
⎜⎝

v(τη1)
...

v(τηJ )

⎞
⎟⎠ = D(T )

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(τη1)
...

vN (τη1)
...

v1(τηJ )
...

vN (τηJ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(v(τη1), τη1 , τη1 + T )
...

φN (v(τη1), τη1 , τη1 + T )
...

φ1(v(τηJ ), τηJ , τηJ + T )
...

φN (v(τηJ ), τηJ , τηJ + T )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.95)
and

F

⎛
⎜⎝

v(τη1)
...

v(τηJ )

⎞
⎟⎠ = 0 (2.96)

where F : �NJ → �NJ , and DN ∈ �NJ×NJ is given by

DN (T ) =

⎡
⎢⎣

d11IN · · · d1JIN
...

...
dJ1IN · · · dJJIN

⎤
⎥⎦ (2.97)
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where dij ∈ � is the ij-th element of the delay matrix D(T ), and IN ∈ �N×N

is the identity matrix.
The system (2.95) can be solved by the Newton-Raphson.

2.2.1.2.1 Example
The circuit is the same with that tested with the APLAC program (Figure
2.101(a)). The excitation is e(t) = 2 sin(2πfpt)(1 + sin(2πfmt)) with
fp = 1 KHz and fm = 1 MHz and the diode is modeled by a piecewise linear
resistor (Figure 2.103).

As it is shown in the following figure, the result obtained with shooting
in the time domain is the same with the result obtained with shooting in the
frequency domain, a slight difference being observed in the high frequency
detail.

Figure 2.103 Piecewise linear resistor.

Figure 2.104 Output voltage – circuit in Figure 2.101(a) with the diode model in Figure 2.103.
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Figure 2.105 Output voltage – circuit in Figure 2.101(a) with the diode model in Figure
2.103 – detail.

In order to obtain this detail many harmonics are needed, increasing
substantially the computation time as it is shown in the Table 2.31. This
algorithm is implemented in SPECTRE RF as the periodic steady state
(PSS) frequency domain analysis, while shooting with Newton-Raphson is
implemented as time domain PSS Analysis.

Table 2.31 Shooting in the time domain and in the frequency domain – AM demodulator
analysis

PSS Time Domain PSS Frequency Domain
Harmonics 30 2800
Iterations 5 11
CPU time 3.88 s 24.42 s

2.2.2 Sources Iteration Method for Circuits with Resistive
Nonlinearities

This is a frequency domain method for circuits having linear dynamic elements
and resistive nonlinearities. The nonlinearity is treated iteratively using a fixed
point method employed successfully in solving nonlinear electromagnetic
field problems [31]. The nonlinear resistor is replaced with an equivalent
controlled voltage or current source having a linear internal resistance. In
this way the nonlinearities are “transferred” to the sources so that the circuit
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impedances become linear. Using a Fourier decomposition of the sources,
each value of a control voltage (current) is computed by solving a linear
circuit. These values are used for sources correction and so on. It can be
demonstrated that this iterative process is convergent. The number of the linear
equation systems to be solved within an iteration is given by the number of
the considered harmonics. The iterations may begin with a small number of
harmonics, to improve the calculation efficiency [31].

2.2.2.1 Equivalent sources
Consider that constitutive relationship i = F (u), of the p-port resistor, where
F : Rp → Rp is Lipschitzian, i.e.

∥∥F (u′)− F
(
u′′)∥∥

Rp ≤ Λ
∥∥u′ − u′′∥∥

Rp ,∀u′, u′′ ∈ Rp (2.98)

and monotonic, i. e.
〈
F (u′) − F (u′′), u′ − u′′〉

Rp ≥ λ
∥∥u′ − u′′∥∥2

Rp ,∀u′, u′′ ∈ Rp (2.99)

with λ > 0, where the inner product is 〈x, y〉Rp = xT y
The resistor may be replaced at any port, by the sources:

uk = rkik + ek (2.100)

where ek has a nonlinear dependence on uk [31]:

ek = uk − rkFk(u) ≡ Gk(u). (2.101)

If rk = α with α ∈ (0, 2λ
Λ2

)
, then the function G is a contraction, i.e.

∥∥G(u′) − G(u′′)
∥∥

Rp ≤ θ
∥∥u′ − u′′∥∥

Rp (2.102)

where the contraction factor is θ =
√

1 − 2αλ + α2Λ2 < 1 [31].

Figure 2.106 Two-port nonlinear resistor.
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Figure 2.107 Equivalent sources for a two port nonlinear resistor [31].

The smallest value θ =
√

1 − λ2

Λ2 of the contraction factor is obtained

for α = λ
Λ2 .

In the case of the one-port nonlinear resistor, Equations (2.98) and (2.99)
lead to a positive bounded increasing u-i relationship and

θ = Max(1 − α · gmin, α · gmax − 1),

with gmin = Inf
u′,u′′

F (u′)−F (u′′)
u′−u′′ , gmax = Sup

u′,u′′
F (u′)−F (u′′)

u′−u′′ .

The circuit may contain many nonlinear resistors whose equivalent circuits
are similarly built. For the sake of simplicity, in the following is considered a
circuit containing only one p-port nonlinear resistor [31].

2.2.2.2 Periodic solutions of the linear circuit
Replacing the nonlinear resistors with voltage (current) dependent sources,
we obtain a linear circuit with “linear” relationships (2.88) for resistors. Let
u

′
β, u

′′
β and i

′
β, i

′′
β be the branch voltages and currents, corresponding to e′, e′′

respectively, and Δuβ = u
′
β−u

′′
β , Δiβ = i

′
β−i

′′
β , corresponding to Δe = e′−e′′

sources. Tellegen’s theorem gives:

〈Δuβ,Δiβ〉Rb = 〈Δuρ, gΔuρ − gΔe〉Rr +
〈

Δuγ , C
dΔuγ

dt

〉
Rc

+

+
〈

L
dΔiη
dt

,Δiη

〉
Rl

= 0

(2.103)

where uρ, uγ are the vectors of the resistors and the capacitors voltages and iη
is the vector of the inductors currents; r, c, l, b are the numbers of the resistors,
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capacitors, inductors and of all branches respectively; C and L are posi-
tively defined matrices of the capacitances and inductances respectively, and
g = r−1 is the symmetric and positively defined matrix of all conductances.

The vector Δe has nonzero entries only for the nonlinear resistor ports.
Therefore, for the periodic solution we have [31]:

∫ T

0
〈Δuρ, gΔuρ〉Rrdt ≤

∫ T

0
〈Δuρ, gΔe〉Rrdt (2.104)

∫ T

0
〈Δuρ, gΔuρ〉Rrdt ≤

∫ T

0
〈Δe, gΔe〉Rpdt (2.105)

It follows that the function e
W−→ u, giving the periodic solution of the linear

circuit, is non-expansive in the Hilbert space of the periodic functions [31].

2.2.2.3 Fourier analysis
Any periodic source ek has a Fourier series expansion in the form

ek(t) =
∑

n

(
(e′

k)n sin(nωt) + (e′′
k)n cos(nωt)

)
(2.106)

For the numerical computation, we retain only a finite number N of harmonics,
namely e ∼= ea ≡ Y (e), the approximation Y being non-expansive. For each
harmonic of ea the corresponding complex voltage is considered [31].

2.2.2.4 Iterative procedure
Starting from arbitrary initial values for the sources in (2.106) the port voltages
of the nonlinear resistor are computed. If the null initial value is chosen, we
obtain [31]:

u(t) = u(0) = W (0) (2.107)

These voltages are produced by the independent sources in the circuit. It
follows the sources correction using the relation (2.101):

e(t) = e(1) = G(u(0)) (2.108)

The harmonic components of these sources are computed and some of them
are used for further computation. The harmonic components of the resistor
port voltages are computed as:

(
(u

′
k)n

(u
′′
k)n

)
=
(

(ak11)n (ak12)n

(ak21)n (ak22)n

)(
(e

′
k)n

(e
′′
k)n

)
(2.109)
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Using the superposition theorem in the linear equivalent circuit, the time
domain port voltages u

(1)
k of the nonlinear resistor are computed. These values

are obtained as a sum of the voltages u(0) produced by the independent sources
and the time domain waveforms corresponding to the result in (2.109). The
above steps are repeated until the difference between the last two values of
the resistor port voltages is small enough. Each step may be outlined as:

e(m) Y−→ e(m)
a

W−→ u(m) G−→ e(m+1) (2.110)

Because the functions W and Y are non-expansive, and G is a contraction,
the composition of these three functions is a contraction having the con-
traction factor θ. It follows that the above iterative procedure generates a
Picard-Banach sequence which converges to the fixed point of the composed
function [31].

2.2.2.5 Remarks
1. The initial value u(0) = W (0) and the matrices ((ak)n) in (2.109) are

computed only once, before starting the iterations [31].
2. In most circuits the number of the nonlinear resistor ports is smaller than

the resistor branch number, because the most resistors are linear. Using
(2.105) it follows:

∫ T

0
〈Δu, gΔu〉Rpdt <

∫ T

0
〈Δuρ, gΔuρ〉Rrdt ≤

∫ T

0
〈Δe, gΔe〉Rpdt

(2.111)
The inequality defining the non-expansive nature of the mapping L is
stronger in this case, and the convergence speed of the iterative procedure
is increased.

3. As the harmonics number taken into account in the Fourier series is
smaller, the inequality

∫ T
0 (Y (ek))

2dt ≤ ∫ T
0 e2

kdt, defining the non-
expansive nature of the approximation functions Y is stronger and the
speed of the iterative procedure is increased [31].

2.2.2.6 Harmonics selection
The third remark suggests a method for the convergence speed improvement
through the selection of the most important weight harmonics. In the first
iteration all harmonic components of e(1) up to a certain range N are computed.
Starting with the second iteration only those harmonic components having a
weight greater than an imposed value are selected [31]:
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√
(e′

k
2)n + (e′′2

k)n

E
≥ q1 (2.112)

where E is a reference value, for example:

E =

√
2
T

∫ T

0

∥∥u(0)
∥∥2

Rpdt (2.113)

The iterative procedure is started using the selected harmonic components
only. The Fourier analysis is much faster than the case where all harmonic
components are taken into account and the contractive nature of the function
chain is stronger. Therefore the convergence speed is increased compared with
the case when all N harmonics are used. The iterations are stopped if the error
is smaller than an imposed value ε1:

err =
1
E

√
1
T

∫ T

0

∥∥Δu(m+1)
∥∥2

Rpdt ≤ ε1 (2.114)

The Fourier analysis with N harmonic components can be made again,
selecting only those components having a weight q2 < q1. Using these
harmonics the iterations are stopped if the error ε2 is reached. Considering
more harmonics and having a weaker contractive nature of the function chain,
the convergence speed decreases. The harmonics selection algorithm can be
stopped if the iteration number for the new selection is small (for example eight
iterations), therefore the improvement obtained by increasing the harmonics
number is insignificant [31].

2.2.2.7 Example
Consider the AM demodulator in Figure 2.108 with e(t) = 2 sin(2πf1)
sin(2πf2), f1 = 1 kHz, f2 = 1 MHz and the diode v-i relationship given
in Figure 2.109.

The nonlinear element is replaced by a 10 Ω resistor in series with a voltage
source, whose dependence on the diode branch voltage u is:

e = G(u) =
{

0, for u ≥ 0
0.99999u, for u < 0 (2.115)

The value E = 2 is considered in the relations (2.112) and (2.114). The data
describing a set of harmonics selection are given in Table 2.32.
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Figure 2.108 AM demodulator.

Figure 2.109 Diode v-i relationship.

Table 2.32 Harmonic selections
Selection Weight Harmonic Number Iteration Selection
1 0.01 16 78 0.890E–07
2 0.005 19 27 0.841E–05
3 0.002 32 11 0.882E–05
4 0.001 41 31 0.945E–05
5 0.0005 85 55 0.984E–07

A part of the diode voltage plot is given in Figure 2.110 [31, 32]. The
capacitor voltage is shown in Figure 2.111 and Figure 2.112 shows a high
frequency detail.

If 16, 41, 85 or 10,000 harmonic components are used, the plots in
Figures 2.108 and 2.109 remain the same. Zooming an area of Figure 2.112,
the detail in Figure 2.113 is obtained, illustrating the small differences between
various harmonics selections. A 0.7‰ error can be observed between the
results obtained with 85 and 10,000 harmonics.

The result obtained with this algorithm is compared with the result of the
harmonic balance method and of the shooting with Newton-Raphson method
[31]. The capacitor voltage waveforms given by these methods are shown in
Figure 2.114.
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Figure 2.110 Diode voltage.

Figure 2.111 Capacitor voltage.

Figure 2.112 Capacitor voltage – detail.
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Figure 2.113 Comparison between various harmonics selections.

Figure 2.114 uC given by the proposed method, APLAC, and SPECTRE RF.

The harmonic balance response is obtained with APLAC, while the
shooting response is computed with the PSS analysis of SPECTRE RF. A very
good agreement between the proposed algorithm and the shooting method can
be observed. The differences between these two waveforms and the APLAC
harmonic balance response can be explained by the convergence problems of
this last method in the case of strong nonlinearities [31].

2.2.3 Circuit Envelope Method

For the efficient and accurate computation of the envelope, a new method
of the “Fourier envelope” type, known as the circuit envelope method has
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been developed. This method uses the time domain techniques combined
with the solution computed with the harmonic balance in the frequency
domain [33]. The differential equation of the envelope is solved in an outer
loop in which the time step is not limited by the signal with rapid changes,
while at each time step of the transient analysis, in an inner loop is solved
a steady state problem with the harmonic balance method [34]. Unlike the
classical method of harmonic balance where the Fourier coefficients are
constants representing the value of the periodic steady state [23], in the circuit
envelope method, these coefficients are complex time functions Xk(t), but are
not necessarily periodic. The Fourier coefficients Xk(t) are slowly varying
transient waveforms. The signals have the form

v(t) =
∞∑

k=−∞
Xk(t)ej2πkft (2.116)

where f is the fundamental frequency of the base Fourier series. Xk(t)
represents the complex modulation of the k-th harmonic. Xk(t) must vary
slowly relative to f because if the bandwidth of Xk becomes greater than
f /2 then the sidebands of the adjacent harmonics begin to overlap and the
representation is not unique.

Rewriting (2.54) and assuming that v and f take the form of (2.116), it
results ∞∑

k=−∞
F k

(
V (t), t

)
ej2πkft = 0 (2.117)

where

Fk

(
V (t), t

)
=

dQk

(
V (t)

)
dt

+ j2πkfQk

(
V (t)

)
+ Ik

(
V (t)

)
+ Uk (2.118)

Assuming that the bandwidth of each term in (2.118) is much less than f /2, the
terms associated with each harmonic k will sum to zero individually. Then,
Fk

(
V (t), t

)
= 0 for each k, or in vector form

F k

(
V (t), t

)
=

dQk

(
V (t)

)
dt

+ ΩQk

(
V (t)

)
+ Ik

(
V (t)

)
+ Uk = 0 (2.119)

whereΩ is a diagonal matrix with j2πkf on the k-th diagonal.As with transient
analysis, discretization methods such as trapezoidal rule or the backward
difference formulae replace dQ/dt with a finite-difference approximation,
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converting (2.119) to a system of nonlinear algebraic equations that are solved
with Newton’s method. For example, applying backward Euler converts
(2.119) to

Q
(
V (tm)

)− Q
(
V (tm−1)

)
tm − tm−1

+ ΩQ
(
V (tm)

)
+ I
(
V (tm)

)
+ U(tm) = 0

(2.120)
I
(
V (tm)

)
and Q

(
V (tm)

)
are evaluated at ts by converting V (tm) into the

time domain using the inverse discrete Fourier transform, passing the time-
domain voltage waveform through i(·) and q(·), and converting the resulting
current and charge waveforms back into the frequency domain using the
forward discrete Fourier transform. This procedure relies on the property
stating that the envelope is practically constant over the length of a cycle
of the carrier.

Circuit envelope has the fundamental advantage over time domain sim-
ulators by the fact that the time step must be small enough just to cover the
envelope bandwidth instead that of the RF carrier. Figure 2.115 presents the
input and the output data of the Circuit Envelope method [33].

It is obvious that the modulated data are completely represented in the time
domain as a complex envelope of the RF carrier. The modulation frequency
information is not represented by adding signals in the spectrum, but by the
time-varying behavior of the spectrum. Hence, even though circuit envelope
uses harmonic balance, the matrix size remains reasonable even for the
simulation on a personal computer.

Circuit envelope simulates RF circuits with transient or digital signals
more efficiently than the existing time and frequency domain simulators
exploiting the benefits of both techniques. It does this by processing modulated
signal information in the time domain [35] and the RF carrier in the frequency
domain (Figure 2.116).

The following five concepts present a basic overview of the circuit
envelope simulation process [35].

Figure 2.115 Circuit envelope method.
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Figure 2.116 Modulated signal in the time domain.

• Transform input signal
Each modulated signal can be represented as a carrier modulated by an
envelope – A(t) · ejf(t). The values of the amplitude and phase of the
sampled envelope are used as input signals for the harmonic balance
analyses.

• Time domain analysis
Circuit envelope provides a complete non-steady state solution of the
circuit through a Fourier series with time-varying coefficients.

• Frequency domain analysis
Harmonic balance analysis is performed at each time step, which includes
both the basic HB equations as well as the effects due to time-varying
envelopes. This process creates a succession of spectra that characterize
the response of the circuit at the different time steps.

• Extract data from time domain
Selecting the desired harmonic spectral line, it is possible to analyze:

• Amplitude versus time
• Phase versus time
• Amplitude and phase versus time

• Extract data from frequency domain
By applying FFT to the selected time-varying spectral line it is possible
to analyze:



2.2 Frequency Domain Analysis 127

• Adjacent channel power ratio
• Noise power ratio
• Power added efficiency
• Higher order intermodulation products (3rd, 5th, 7th, 9th)

The set of spectral frequencies is user-defined; the amplitude and phase at each
spectral frequency can vary with time, so the signal representing the harmonic
is no longer limited to a constant, as it is with harmonic balance. Each spectral
frequency can be thought of as the center frequency of a spectrum; the width
of each spectrum is ±0.5/Time step [35]. Figure 2.117 illustrates this, where
the minimum envelope bandwidth is equal to the bandwidth of the modulation
signal. In most cases the bandwidth of the modulation signal is much smaller
than the lowest user-defined spectral frequency set by the user.

The band-limited signal within each spectrum can contain periodic, tran-
sient, or random tones. The actual time-domain waveform is represented as a
sum of carriers (with harmonics and intermodulation products), where each
envelope can vary with time [35]:

v(t) = real

[
N∑

k=0

Vk(t)ej2πfkt

]
(2.121)

Here, v(t) is a voltage at any node in the circuit, including the input. The
Fourier coefficients Vk(t) are allowed to vary with time and may represent an

Figure 2.117 Spectra in the frequency domain [35].
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arbitrary modulation of each carrier. Since each time-varying spectrum Vk(t)
can be thought of as a modulation waveform with a center frequency f k, these
are often referred to as “envelopes”. This spectrum may represent transient
signals with continuous spectra, or periodic signals with discrete spectral
lines [35].

2.2.3.1 Example
Consider the AM demodulator in Figure 2.101(a), with the diode having the
characteristic in Figure 2.118.

This circuit is driven by e(t) = sin(2πfmt) sin(2πfct), fm = 1 KHz,
fc = 1 MHz, and the response V(2) computed with the transient analysis
(TRAN) and with the circuit envelope is given in Figures 2.119 and 2.120.

The two high-frequency details are overlapping (Figure 2.121).
The harmonic balance method fromADS calculates an envelope very close

to those computed with the TRAN and ENVLP analyses (Figure 2.122), but
the high frequency detail is distorted (Figure 2.123).

Figure 2.118 Diode characteristic.

Figure 2.119 V(2) – TRAN analysis.
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Figure 2.120 V(2) – circuit envelope analysis.

Figure 2.121 V(2) – detail.

Figure 2.122 V(2) – harmonic balance analysis.

The Fourier envelope method implemented in ADS converge for circuits
having strong nonlinearities, while the harmonic balance method from ADS
gives better results than the APLAC but the high frequency detail is distorted.
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Figure 2.123 V(2) – harmonic balance analysis (detail).

As it can be seen from the above examples the harmonic balance method
implemented in ADS works better than the harmonic balance method imple-
mented in APLAC. Both implementation work well if the analyzed circuit has
weak nonlinearities and the circuit response has few harmonics. If the circuit
contains strong nonlinearities a harmonic balance solution may be affected by
errors and if the circuit response contains many harmonics its convergence is
slow and the computation time may become high. To speed up the convergence
one can use a relatively small number of harmonics in which case the high
frequency detail cannot be computed. The sources iteration method is not
affected by the strong nonlinearities and can compute the high frequency detail,
but its convergence speed is low. Moreover, it can be used only for circuits
with nonlinear resistors, the dynamic elements in these circuits being linear.
The mixed frequency – time analysis implemented in SPECTRE RF can solve
circuits with strong nonlinearities in a relatively small number of iterations
but the solution is very sensitive to the choice of the analysis parameters. To
obtain the high frequency detail, many harmonics are needed which greatly
increases the computation time. The circuit envelope method is designed for
circuits having signals with spectrum of the type shown in Figure 2.117 and
converges for circuits with strong nonlinearities.

A general mathematical framework for the fast methods aimed to compute
the steady state of the RF circuits is given in [49].
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3
Nonlinear Circuit Models for Power Bulk
Acoustic Wave Resonators and Filters

3.1 Bulk Acoustic Wave Resonators – Structure
and Nonlinear Behavior

The thin film piezoelectric resonators technology has emerged about 40 years
ago. Since the series resonance frequency is inversely proportional to the
thickness of the piezoelectric material layer, the film became thinner in order to
obtain resonance frequencies increasingly larger. Modern thin films deposition
technology of piezoelectric materials allows fabrication of resonators and
filters in the 500 MHz–20 GHZ range [1].

Because in the near future, the production of high power CMOS transistors
is not expected, the front end of the mobile phones will remain analogic. In
order to miniaturize the mobile phones, the numerical and the analogical
part can be integrated together to form a SIP/SoC system (System In a
Package/System On a Chip). To this end, the bulk acoustic wave (BAW)
resonators having AlN as piezoelectric layer is one of the best solutions.
BAW technology is compatible with the silicon substrate and with the CMOS
integrated circuits and is significantly cheaper than the surface acoustic wave
(SAW) resonators technology [2].

As a BAW resonator is incorporated into an electronic system, its equiv-
alent circuit is very useful for its design. Further, the relations between the
equivalent circuit parameters and the physical phenomena in the resonator are
of outstanding interest in the design of these devices [1].

The electromechanical devices, just like the ones with quartz crystal, are
of interest in electronic systems because they can have a large Q at resonance.
The quality factor of the mechanical system can be retrieved at the electronic
system terminals. An AC signal applied to a crystal having a frequency close

135
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Figure 3.1 Crystal resonator. (a) symbol (b) equivalent circuit.

to the mechanical resonance will result in mechanical vibrations that will
produce a current at the electrical terminals (Figure 3.1).

From the geometric point of view, the resonator has the form of a
capacitor having a piezoelectric material as dielectric, and metal electrodes.
The symbol for the crystal resonator in Figure 3.1 is associated with a
simple equivalent circuit. This symbol dates back to the time when the
piezoelectric material was ‘glued’ to the metal electrodes that do not touch the
vibration surface. Given that the mechanical motion is measured in fractions
of a nanometer, practically there is no movement and the thin electrodes
can be deposited directly on the resonator. Most resonators have the main
propagation direction of the acoustic wave perpendicular to the electrodes,
which means that the bulk acoustic wave (BAW) is reflected between the
surface of the electrodes. The boundary conditions correspond to small
border losses, leading to a high Q at resonance. The Butterworth-Van Dyke
equivalent circuit of the piezoelectric resonator (Figure 3.1(b)) illustrates
the transducer mechanism and the resonance response. Co is the geometric
capacity of the structure, close to the resonance, and the Ca La Ra series
circuit (called the motional branch) represents the mechanical resonance.
The ratio Co/Ca is fixed by the topology and by the piezoelectric material
of the resonator. Ca and La, resonate at a frequency determined by the
thickness of the resonator, and Ra is determined by losses. Starting from a
lower frequency, the first resonance is a series resonance of the motional
branch, and increasing the frequency, the inductive reactance becomes greater
and the parallel resonance with Co occurs. Between the series and the
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parallel resonance, the circuit behavior is inductive. In addition, the equivalent
inductance has a very high quality factor Q, for acoustics reasons. This is
the explanation why the crystal resonators are used in so many applica-
tions requiring frequency control. A second reason could be that the crystal
resonators have very small sizes, because in the crystal the wavelength of
sound is four times smaller than that of the electromagnetic waves. This
small wavelength, translated from the technological point of view in a very
thin structure, was the source of difficulties in obtaining microwave crystal
resonators [3].

Since the resonant frequency is inversely proportional to the thickness
of the piezoelectric layer, for the microwave frequencies a very thin layer
is needed. In the 1960s, because of the existing technologies, CdS and ZnO
have been used as piezoelectric layers. Since the thin layers of piezoelectric
material must be deposited on a substrate about which no one knew how will
support these thin films, the first applications were for radar transducers. With
the current technologies (micro and nano), the crystal resonators can be used
for the synthesis of microwave filters.

The achievement of a high Q can be provided by the treatment of
appropriate layers and by obtaining the needed thickness (in the micrometers
range). At frequencies below 500 MHz, the crystal layer can be processed
to the desired thickness, but the microwave frequency range is necessary to
deposit a film on a suitable substrate. For example, a resonator with aluminum
nitride (AlN) at 1,600 MHz has a thickness of 3 μm, aluminum electrodes of
0.3 μm thickness, and an area of 0.25 × 0.25 mm, and its ratio between the
lateral dimension and the thickness is greater than 50: 1.

In Figure 3.2 (a) is shown a resonator with air gap, which is provided in
order to prevent the mechanical waves to reach the substrate; this phenomenon
is responsible for the substrate heating and its consequence – the decrease
in the Q value. For the fabrication, initially the substrate is deposited,
followed by the introduction of a temporary support; next the lower electrode,
a piezoelectric film, and then the upper electrode are deposited. Finally,
the support is removed and remains a film resonator having adjacent air
borders and certain mechanical peripheral supports. This technology is known
as FBAR.

In Figure 3.2 (b), the structure of a SMR resonator (solidly mounted
resonator) is presented. This device is obtained by isolating the resonator from
the substrate through a reflector (Bragg mirror) made from layers of a quarter
thickness of the nominal wavelength. The number of deposits depends on the
required reflection coefficient and on the ratio of the characteristic impedance
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Figure 3.2 Thin film resonators [3]. (a) FBAR, (b) SMR.

of two successive layers. For example, a nine-layer reflector for a 1.575 MHz
GPS will have 5 layers of silicon dioxide (0.93 μm) and 4 layers of AlN
(1.7 μm) [3].

The BAW resonators have a linear behavior if they are driven by a low
power excitation. In this case, a linear Butterworth-Van Dyke equivalent
circuit (Figure 3.1.(b)) may be used to simulate their behavior.

Some measurements highlight the nonlinear behavior of these devices
while they are driven by a high power excitation. Such devices are called
power BAW resonators. The nonlinear behavior of the piezoelectric materials
is a problem that goes back about 40 years [4]. There have been many attempts
to explain it using the perturbation theory that led to the identification of the
“nonlinear constants” associated with different material properties (elastic,
electrical, electromechanical coupling) [3, 4].

By measuring the periodic steady state response at the resonator terminals,
three effects can be evidenced:

• the amplitude-frequency effect

The amplitude-frequency effect of a quartz resonator represents the
increase of the resonance frequency when the input power increases
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Figure 3.3 Frequency characteristics of a quartz resonator (I – current through the resonator,
U – excitation voltage).

Figure 3.4 Amplitude-frequency effect of a stack crystal filter with AlN.

(Figure 3.3.). For the AlN resonators, the series resonance frequency
decreases (Figure 3.4) if the input power increases.

• the intermodulation effect

The intermodulation effect of a power BAW resonator driven by a
sinusoidal signal of frequency f consists in the appearance of the 2f
and 3f harmonics in the resonator response.

• the bias-frequency effect

The bias-frequency effect refers to the change in the resonance frequency
by introducing a direct current component of tens of volts in the excitation
signal.



140 Nonlinear Circuit Models for Power BulkAcoustic Wave Resonators and Filters

3.2 Linear Parametric Circuit Models

Some physical models of the power BAW resonators have been proposed
in the literature. These models are based on the assumption that at least
one of the constitutive equations of the electromechanical field (electrical,
mechanical, or electromechanical) is nonlinear. For the nonlinear approxima-
tion of these equations Taylor series expansion is used taking into account
terms up to the 3rd or 4th order. In [4], it is shown that the results obtained
by different authors who are using these types of models differ from each
other. The reason for this mismatch is related to systematic measurement
errors, errors in judging the crystal orientation, mathematical calculation
errors, the computation with improper chosen coefficient, etc. However, very
good concordances between the simulation results of these models and the
measurements made by their authors are reported [4]. What bothers most
is that these models cannot be implemented in any type of circuit analysis
program.

A solution for modeling a power BAW resonator could be a circuit whose
parameters are identified from the measurements made under real conditions.
This circuit is a behavioral model, which apparently seems to ignore the
physical phenomena in a BAW resonator. Nevertheless, these phenomena are
used to choose which elements are nonlinear and what is the nature of their
nonlinearities.

In the first stage of the modeling, the material parameters changes with
the temperature are not taken into account. These models illustrate correctly
the amplitude-frequency effect and the intermodulation effect for a practical
interest range of frequencies and excitation amplitudes. In the second stage
of the modeling, the effects of temperature variation on material parameters
and heat exchange between the resonator and its environment must be
considered.

3.2.1 Nosek and Albareda Models

In [5], a linear parametric circuit model for a quartz resonator is proposed
(Figure 3.5).

Starting from the measured quadratic dependence of the resonance fre-
quency with the r.m.s. value of the current, this model contains a constant
inductance and a capacity which depend on the r.m.s. value of the current:

1
C(I)

=
1
C

(1 + αI2) (3.1)
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Figure 3.5 Linear parametric circuit model for a quartz resonator [5].

The resistance value is given by (3.2):

R(I) = R(1 + βI2) (3.2)

This model leads to a correct dependence of the current value on frequency,
for a set of the input voltages U. Obviously, a correct dependence of the series
resonance frequency on the input voltage is obtained [5]. The set of graphs
in Figure 3.6 is given for U = U0 = 0.1V and U = U0 + kΔU where
ΔU = 0.0533 V and k = 0, 1, ..., 6.

Figure 3.6 Frequency characteristics of a nonlinear crystal resonator [5].
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The analysis of this circuit is made in the complex domain neglecting
the current through C0 [5]. It is not clear how this analysis is made, given
that it is considered a dependency of C on i = I sinωt instead of the
proposed C(I ) [7].

In [6] is proposed a similar parametric linear model (Figure 3.7) contai-
ning a series reactance X1 = X10 + α2I

2
1 + α4I

4
1 and a series resistance

R = R10 + β2I
2
1 + β4I

4
1 , where I1 is the r.m.s. value of the series branch

current. This model considers a 4th order nonlinear mechanical constitutive
equation.

The measured dependences of the reactance and resistance on current
through the resonator motional branch are given in Figure 3.8.

This model reproduces the measured reactance and resistance of a
resonator with a ceramic piezoelectric.

These two models can reproduce the amplitude-frequency effect for
frequency and amplitude values of practical interest, but cannot reproduce
the intermodulation effect.

Figure 3.7 Linear parametric circuit model of a resonator [6].
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Figure 3.8 Dependence of the resistance and the reactance on I1 at different frequencies.

3.2.2 Identification of the Nosek Model Parameters

The model parameters identification can be made based on the approximate
formulas for resonance frequencies, the expression of the voltage across
the model and the measured frequency characteristics (Figure 3.6) [7]. The
parameter identification method is presented in the following.
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The admittance of this model is computed as follows:

Y (s) = C0
s(s − z1)(z − s2)
(s − p1)(s − p2)

where

p1,2 = − R

2L
± 1

2

√
R2

L2 − 4
LC

and

z1,2 = − R

2L
± 1

2

√
R2

L2 − 4
L

(
1
C

+
1
C0

)
.

Setting s = jω the admittance module is as follows:

|Y (jω)|2 =
ω2R2/L2 + (1/(LC) + 1/(LC0) − ω2)2

ω2R2/L2 + (1/(LC) − ω2)2
· C2

0ω2

The resonance frequencies are defined as corresponding to the maximum and
minimum values of |Y (jω)|. Considering ∂|Y (jω)|

∂ω = 0, no analytical solution
has been found. Even though the algorithm in [8] could be used to compute
the approximate symbolic expressions of poles and zeros, the known relations

ω2
s =

1
LC

, ω2
p = ω2

s +
1

LC0

are preferred for the approximate solutions of ∂|Y (jω)|
∂ω = 0.

Consider a given family of n frequency characteristics as in Figure 3.6.
The series resonance frequency on the curve k satisfies the relation

ω2
sk =

1
LC

(1 + αI2
k) (3.3)

for k = 1, ..., n.
Considering the expressions (3.3) of two frequencies ωsk and ωsj , by their

division one can compute the value of α:

α =
ω2

sk − ω2
sj

ω2
skI

2
k − ω2

sjI
2
j

(3.4)

where Ik is the r.m.s. value corresponding to ωsk.
Taking into account that the values ωsk and Ik are measured with

certain errors, the following algorithm will give the best value for α. The
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Equation (3.3) can be written as ak = LCω2
sk = 1 + αI2

k (k = 1, ..., n).
If the measured pairs (ak, I

2
k ) are represented with respect to the coordinates

a and I2, a straight line corresponding to the least squares approximation will
give the best value for α.

For each ωsk, it follows:

U2
k =

I2
k

1
R2(1 + βI2

k)
+ ω2

skC
2
0

k = 1, ..., n, which can be written as

Ak = 1 + βI2
k (3.5)

k = 1, ..., n, where Ak are some constants.
The best value for β can be determined from (3.5) in a similar manner to

the above mentioned best value for α.
The frequency characteristic for the small signal excitation being given,

the value of the quality factor at ωs in this case is known and satisfies

Q =
ωsL

R
(3.6)

The series and parallel resonance frequencies for the small signal input are as
follows:

ω2
s =

1
LC

, ω2
p = ω2

s +
1

LC0
. (3.7)

The input voltage at ωs for the small signal excitation satisfies the following
relationship where U and I are small signal values

U2 =
I2

1
R2 + ω2

sC
2
0

(3.8)

The algorithm for parameter identification of the Nosek AC model is as
follows:

1) The values L, C, C0, and R are computed using (3.6–3.8).
2) The best values for α and β are computed using the above mentioned

algorithm for α.

Example

The resonator data are: ωs = 2π · 5 · 106 s−1, ωp = 2π · 5.06 · 106 s−1,
Q = 0.8·106, and the coordinates of the resonance points are given in Table 3.1
corresponding to the family of the frequency characteristics in Figure 3.6.
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Table 3.1 Coordinates of the resonance points
ωsk/ωs I(mA) U(V )
1.00000015 0.70 0.1000
1.00000025 0.80 0.1533
1.00000040 1.25 0.2066
1.00000060 1.45 0.2599
1.00000085 1.70 0.3132
1.00000120 1.90 0.3665
1.00000145 2.10 0.4198

From the Equations (3.6–3.8), it follows: R = 165 Ω, L = 4.2 H, C =
2.412 · 10−16 F, C0 = 1.116 · 10−10 F.

The least squares approximation algorithm led to the following results:
α = 1.14 A−2, β = 3.405 · 105A−2.

Taking into account these values, ∂|Y (jω)|
∂ω is evaluated in ωs and ωp.

The obtained figures (0.9·10−6, 0.3·10−11) using a computation with 50 digits
in MAPLE 9 may be considered as satisfactory approximations of 0.

3.2.3 Discussion on Linear Parametric Circuit Models

Development of some circuit models for BAW resonators is very useful
in design of mobile phone filters which are made of multiple resonators
(Figure 3.9).

Linear behavior of the resonators in the vicinity of the fundamental
frequency is modeled by the Butterworth-Van Dyke circuit. The nonlinear
effects occurring in power BAW resonators are modeled using several types
of circuits that attempt to explain these phenomena using the theory of
nonlinear perturbations to identify the constants associated with various
material properties (elastic, electric, electromechanical).

Figure 3.9 BAW filter.
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Physical models like those described in [5, 6] assume that at least one of the
constitutive equations of the electromechanical field in resonator is nonlinear.
In [4] is shown that the results obtained by various authors are not consistent
with each other. The reason that these models do not match each other is related
to the fact that so-called “nonlinear constants” that appear in Taylor series
expansion of nonlinear constitutive equations cannot be measured directly.

To avoid these difficulties, behavioral models based on measured data
taken under similar conditions to the real operation of the resonators have
been developed.

In [9, 12] a process for identifying the parameters based on a set of
frequency characteristics is proposed.

Parametric linear models can reproduce only amplitude-frequency effect,
but not the intermodulation effect. Since the frequency domain analysis
programs APLAC, Serenade, and ADS do not allow the using of r.m.s. values
as a control variable, linear parametric models cannot be implemented in this
kind of programs. Implementation of these models is not possible either in
time domain analysis programs like SPICE or SPECTRE RF because the
r.m.s. value depends on the instantaneous values of the current for a period.
The utility of these models is that they can illustrate through equivalent circuits
the nonlinear amplitude-frequency effect for the power BAW resonators.

Simulation of resonators and filters using linear parametric circuit models
can be made using special methods such as AC iterative analysis [7] or a
symbolic method [13]. But these methods can be used only for simple circuits
with few resonators.

3.3 Nonlinear Circuit Models

3.3.1 Behavioral Circuit Models

The most promising model is a nonlinear circuit model suggested in [14]
without mentioning the values of circuit parameters or simulations results
and comparison with measured values. Starting from this idea and taking into
account the shortcomings of linear parametric circuit models, some models
that can be implemented in a time domain analysis program like SPICE or
SPECTRE RF (Cadence) and in a frequency domain simulator as APLAC or
ADS have been proposed [15–18].

The first proposed model is based on the BVD circuit whose schematic is
given in Figure 3.1. (b). The resistor, inductor, and capacitor in the motional
branch are nonlinear and are implemented as nonlinear controlled sources
with polynomial nonlinearities as in Figure 3.10.
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Figure 3.10 Controlled source implementation of the first nonlinear circuit model.

To implement this circuit inAPLAC is considered the following parameter
values:

C0 = 1.566e-12
CCVS R1 1 2 1 b [4.7 *(CI(0)+0.5*CI(0)ˆ2+0.5*CI(0)ˆ3)] R
CCVS L1 2 3 1 b [3.5e-9*(CI(0)-5e-2*CI(0)ˆ2+1e-2*CI(0)ˆ3)] L
VCCS C1 3 5 1 3 5 [.177e-12*(CV(0)+1e-2*CV(0)ˆ2+1e-4*CV(0)ˆ3)] C

The amplitude-frequency effect of this model is shown in Figure 3.11, where
the frequency characteristics are given for amplitude excitation of 1 V,
3 V, and 5 V.

Figure 3.11 Plot of Ia versus frequency for the first model.
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Amplitudes of the second and third harmonics obtained with the first model
are given in Figure 3.12 and Figure 3.13 for three excitation frequencies.

Figure 3.12 Intermodulation products for V = 1 V, the first model.

Figure 3.13 Intermodulation products for V = 5 V, the first model.
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Changing the capacitor parameters as:

VCCS C1 3 5 1 3 5 [.177e-12*(CV(0)+1e-4*CV(0)ˆ2+1e-5*CV(0)ˆ3)] C

the resonance frequency shift is diminished (Figure 3.14) and all amplitudes
of the intermodulation products are about four times smaller (Figure 3.15).

Figure 3.14 Plot of Ia versus frequency for the first model with modified capacitor
characteristic.

Figure 3.15 Intermodulation products for the first model with modified capacitor
characteristic.
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Forcing the current value of the mechanical branch by the voltage con-
trolled current source, the capacitor has a dominant role in this model. In
this way, the value of series resonance frequency and the intermodulation
products amplitudes will depend directly on the polynomial coefficients
defining nonlinear characteristic of the capacitor.

To avoid this disadvantage, a second nonlinear circuit model was proposed
(Figure 3.16).

Its implementation with nonlinear controlled sources is given in
Figure 3.17.

Figure 3.16 The second nonlinear circuit model.

Figure 3.17 Implementation with controlled sources of the second nonlinear circuit model.
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Figure 3.18 Plot of Ia versus frequency for the second model.

To implement this circuit in APLAC, the following parameter values have
been used:

C0 = 1.566e-12
Res Ri 4 6 1
CCVS L1 1 2 1 b [3.5e-9*(CI(0)+1e-1*CI(0)ˆ2+1e-2*CI(0)ˆ3)] L
CCVS R1 3 5 1 c [430*(CI(0)+2e-2*CI(0)ˆ2+2e-2*CI(0)ˆ3)] R
VCCS C1 3 GND 1 3 GND [.177e-12*(CV(0)+5e-5*CV(0)ˆ2+
5e-5*CV(0)ˆ3)] C

The amplitude-frequency effect of this model is given in Figure 3.18 with
frequency characteristics corresponding to the 1 V, 3 V, and 5 V amplitude
excitation. The intermodulation products for V = 5V are given in Figure 3.19.

By changing the nonlinear characteristic of the inductor as follows:

CCVS L1 1 2 1 b [3.5e-9*(CI(0)+1e-3*CI(0)ˆ2+1e-3*CI(0)ˆ3)] L

the amplitude-frequency effect remains unchanged, while the second har-
monic current is negligible (Figure 3.20).

This example illustrates the superiority of the second nonlinear model,
which allows adjusting the amplitude of the second harmonic of the current
without influencing the change in the series resonance frequency produced
by the excitation amplitude variation. Using some simple relations of AC
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Figure 3.19 Intermodulation products for V = 5 V, the second model.

Figure 3.20 Intermodulation products of Ia for the second model with modified inductor
characteristic.
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impedance equivalence, other models, more complex, with more circuit
elements which allow the adjustment of the various parameters of the response
can be obtained.

The correctness of the nonlinear circuit model is verified by the fact that
the amplitude-frequency effect and the intermodulation effect are reduced
decreasing the nonlinear coefficients values of the circuit elements’ constitu-
tive equations.

Examples

The nonlinear circuit models presented before have been implemented in
the APLAC simulator, working in the frequency domain, and in the SPICE
simulator, working in the time domain. In order to verify the computation
accuracy and the agreement between time domain and frequency domain
results, four circuits of the same type (first model) have been analyzed. The
results obtained by doing these simulations are given in the following. The
frequency of the excitation signal was f = 2.025 GHz, close to the series
resonance frequency. In order to reach the sinusoidal steady state, a transient
analysis with Tstop = 400 T has been used [17].

Simulation of the circuit having “very weak” nonlinearities, defined by:

CCVS R1 1 2 1 b [4.56*(CI(0)+0.5e-6*CI(0)ˆ2+0.5e-7*CI(0)ˆ3)] R
CCVS L1 2 3 1 b [69.91e-9*(CI(0)+5e-4*CI(0)ˆ2+1e-6*CI(0)ˆ3)] L
VCCS C1 3 5 1 3 5 [88.29e-15*(CV(0)+6e-9*CV(0)ˆ2+6e-11*CV(0)ˆ3)]C

led to the following results:

Table 3.2 Harmonic components of I(V ) for “very weak” nonlinearities
Software f 2f 3f

APLAC 882.9 mA 251.1 µA 2.85 µA
PSPICE 881.2 mA 127.6 µA 3 µA

Simulation of the circuit having “weak” nonlinearities, defined by:

CCVS R1 1 2 1 b [4.56*(CI(0)+0.5e-5*CI(0)ˆ2+0.5e-6*CI(0)ˆ3)] R
CCVS L1 2 3 1 b [69.91e-9*(CI(0)+5e-3*CI(0)ˆ2+1e-5*CI(0)ˆ3)] L
VCCS C1 3 5 1 3 5 [88.29e-15*(CV(0)+6e-8*CV(0)ˆ2+6e-10*CV(0)ˆ3)]C

led to the following results:

Table 3.3 Harmonic components of I(V ) for “weak” nonlinearities
Software f 2f 3f
APLAC 884.2 mA 2.5 mA 40 µA
PSPICE 882.7 mA 1.5 mA 23 µA



3.3 Nonlinear Circuit Models 155

Simulation of the circuit having “mild” nonlinearities, defined by:

CCVS R1 1 2 1 b [4.56*(CI(0)+0.5e-5*CI(0)ˆ2+0.5e-6*CI(0)ˆ3)] R
CCVS L1 2 3 1 b [69.91e-9*(CI(0)+5e-3*CI(0)ˆ2+1e-5*CI(0)ˆ3)] L
VCCS C1 3 5 1 3 5 [88.29e-15*(CV(0)+6e-8*CV(0)ˆ2+6e-10*CV(0)ˆ3)]C

led to the following results:

Table 3.4 Harmonic components of I(V ) for “mild” nonlinearities
Software f 2f 3f
APLAC 861.9 mA 25.2 mA 1.5 mA
PSPICE 881.6 mA 13.3 mA 384 µA

Simulation of the circuit having “strong” nonlinearities, defined by:

CCVS R1 1 2 1 b [4.56*(CI(0)+1e-3*CI(0)ˆ2+1e-3*CI(0)ˆ3)] R
CCVS L1 2 3 1 b [69.91e-9*(CI(0)+1e-1*CI(0)ˆ2+1e-2*CI(0)ˆ3)] L
VCCS C1 3 5 1 3 5 [88.29e-15*(CV(0)+1e-5*CV(0)ˆ2+1e-6*CV(0)ˆ3)] C

led to the following results:

Table 3.5 Harmonic components of I (V) for “strong” nonlinearities
Software f 2f 3f
APLAC 125.8 mA 2.69 mA 579 µA
PSPICE 213 mA 2.53 mA 585 µA

A two resonators filter has been simulated with APLAC and SPICE, the
results being given in Table 3.6.
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Simulation of the circuit having “mild” nonlinearities, defined by:

X1: C0 = 1.5664 pF; R = 4.56 Ω; L = 69.91 nH; C = 88.29 fF
X2: C0 = 1.6462 pF; R = 4.56 Ω; L = 70 nH; C = 93.166 fF

led to the following results:

Table 3.6 Harmonic components of voltage gain of a filter with “mild” nonlinearities
Software f 2f 3f
APLAC 3.646 V 477 uV 388 nV
PSPICE 3.646 V 239 uV 772 nV

As it is known, the harmonic balance used byAPLAC gives no accurate results
for mild and strong nonlinearities. Increasing by two orders of magnitude the
coefficients of the polynomial describing the characteristic of the L1 element,
a strong nonlinearity is obtained and the results given byAPLAC are incorrect.

By implementing a power balance verification procedure both in PSPICE
and APLAC was found that both implementations lead to results with errors.
SPICE solution is affected by local truncation errors and the APLAC solution
is obtained according to a local minimum, which is not the global minimum.

3.3.2 Parameter Identification for a Behavioral
Resonator Model

The second and third harmonic components measurements and the inter-
pretation of the results are made with difficulty because the components
of the third harmonic are located below the noise level, and the results
for the second harmonic components must be corrected taking into account
the errors introduced by the lack of adaptation between various components
of the measurement chain at this frequency. For these reasons, in the first
stage were identified the parameters of the first nonlinear circuit model, which
replicate the measured variation of the series resonance frequency depending
on the incident power. These measurements have been made in the framework
of the European project MOBILIS at the XLIM laboratory (University of
Limoges, France).

For obtaining the simulation results in Figure 3.21, the following
parameters of the first nonlinear model have been chosen:

Cap C0 1 GND 1.56p
CCVS R1 1 2 b [4.56*(CI(0)+0.5e-4*CI(0)ˆ2+0.5e-5*CI(0)ˆ3)] R
CCVS L1 2 3 1 b [69.91e-9*(CI(0)+5e-2*CI(0)ˆ2+1e-4*CI(0)ˆ3)] L
VCCS C1 3 5 1 3 5 [88.29e-15*(CV(0)+6e-7*CV(0)ˆ2+6e-9*CV(0)ˆ3)] C
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Figure 3.21 Dependence of the series resonance frequency on the incident power.

in order to correspond to the measured values of the series resonance frequency
(the amplitude-frequency effect):

3.3.3 Nonlinear Circuit Model for Anti-Series and Anti-Parallel
Connections

Figure 3.22 shows the series and the parallel connections of two power BAW
resonators together with their anti-series and anti-parallel connections. The
anti-series and anti-parallel connections have been patented [19] and are used
in the power BAW filters design by Infineon and EPCOS AG companies.

Using the anti-series connection, a significant reduction in second har-
monic amplitude relative to the series connection has been experimentally
observed.Asimilar effect was found for the anti-parallel connection compared
to the parallel connection. Even though some measurements results for two
anti-series and anti-parallel resonators have not been published by the patents
authors, these design solutions have been used for power BAW filters, a
significant reduction in the distortions at the filter output being measured.
This reduction of the 2f frequency components has been explained by the
bias-frequency effect. This effect means the series resonance frequency modi-
fication by introducing a DC component of tens of volts in the excitation signal.
This explanation can only suggest that a DC component voltage could stress
the piezoelectric material and change its behavior, but probably has no real
connection with the phenomenon underlying the reduction in certain harmonic
amplitudes for anti-series and anti-parallel connections. This phenomenon has
not been identified, yet.
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Figure 3.22 Connections of two power BAW resonators.
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Figure 3.23 Circuit for the anti-series connection model validation.

A simple circuit model that reproduces this effect has been proposed. This
model contains only one nonlinear element (the capacitor of the motional
branch) described by a q–u polynomial characteristic of the second degree.
For the anti-series or anti-parallel connection the second-degree coefficients
have different signs for those two resonators, while for the series and parallel
connections these coefficients have the same sign.

The anti-series connection model has been validated by SPECTRE RF
simulation of the circuit in Figure 3.23. The input source is sinusoidal with
a 2.025 GHz series resonance frequency and 4 V amplitude. The output
magnitude is the source current.

For the series connection, both C1 capacitors have the characteristic:

c1 (3 out) cap1 c = 88.29e-15
model cap1 capacitor coeffs = [6e-5]

In case of anti-series connection, one of C1 capacitors had the same charac-
teristic as the previous case, and the other one had a quadratic term with the
opposite sign, namely:

c1 (3 out) cap1 c = 88.29e-15
model cap1 capacitor coeffs = [-6e-5].

The PSS analysis results are presented in Table 3.7. A significant second
harmonic component reduction was obtained in the case of the anti-series
connection, while the third harmonic had nearly the same amplitude.

The anti-parallel connection model was validated by SPECTRE RF
simulation of the circuit in Figure 3.24.

The input source is sinusoidal with a 2.025 GHz frequency (the series
resonance frequency) and 4 V amplitude. The output magnitude is the source
current. The resonators models for the parallel connection are the same as
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Table 3.7 PSS analysis results in the frequency domain for the anti-series connection
BAW Filter Structure 2f 3f
Series connection 10.58 uA 5.387 nA
Anti-series connection 812.9 aA 5.392 nA

Figure 3.24 Circuit for the anti-parallel connection model validation.

Table 3.8 PSS analysis results in the frequency domain for the anti-parallel connection
BAW Filter Structure 2f 3f
Parallel connection 1.671 uA 427.7 pA
Anti-parallel connection 5.344 nA 425.7 pA

the models for series. The quadratic coefficients of the anti-parallel resonator
models connection have opposite signs.

The PSS analysis results in the frequency domain are presented in
Table 3.8. A significant second harmonic component reduction is obtained
in the case of the anti-parallel connection, while the third harmonic has nearly
the same amplitude.

3.3.4 Example

The following example is a nonlinear amplifier with a filter using resonators
with anti-series connection. In a class D power amplifier, the transistor has a
switch behavior. The output of the amplifier is switched between the cut-off
and saturation regions. The efficiency of this amplifier is close to 100% because
the active operating region is swept only during the transitions between the
cutoff and saturation regions.
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The circuit simulated with PSS analysis from SPECTRE RF [20] consists
in a class D amplifier together with a low-pass LC filter and a ladder band
pass filter with 6 BAW resonators (Figure 3.25). The amplifier is driven
with a sinusoidal signal of f1 = 2.025 GHz frequency to “+” terminal of
the comparator and a triangular signal of frequency 100f1 to “−” terminal.
The 100f1 or greater frequency components are removed by the low-pass
LC filter. Final filtering is performed by the BAW filter in which each
resonator was replaced with the non-linear model presented in the preceding
paragraph.

The frequency characteristic of this circuit for the input voltage in the range
[1 mV, 5 V] is not altered significantly by the amplitude-frequency effect of
the BAW filter.

To study the intermodulation effect, the second and the third harmonics
have been computed for an input voltage of 1 V. Replacing the X2, X4 and X6
resonators with the anti-series connections of two resonators, we obtained
a reduction in the second harmonic, while the third harmonic remained
unchanged (Table 3.9).

Figure 3.25 Class D amplifier with a power BAW filter.

Table 3.9 Results obtained for the class D amplifier with a power BAW filter
Harmonic Component f1 2f1 3f1

Series connection 3.822 V 7.572 µV 2.321 µV
X2, X4, and X6 replaced with anti-series resonators 3.822 V 1.541 µV 2.321 µV
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3.4 Physical Model Using Transmission Lines

A BAW solidly mounted resonator (SMR) is a multi-layer structure including
the piezoelectric layer, the electrodes, and other mechanical layers as the
substrate and the reflector layers forming the Bragg mirror (Figure 3.26) [22].

This structure has a linear behavior and can be described using the Mason
multi-layer model for each layer which takes into account the mechanical loads
corresponding to the neighboring layers (Figure 3.27). This is a physical model
including mechanical transmission lines having Za and Zc impedances, an
ideal transformer, and some capacitors. The parameters of this model depend
on material parameters such as density, velocity of the mechanical waves,
Young’s modulus, the piezoelectric coefficient, electrical permittivity a.s.o.,
which makes it very useful in the physical design of BAW resonators and
filters [21].

As the power level in the communication circuits increased, the nonlinear
behavior of power BAW resonators came into attention of the researchers, even
though it is known from the late 1980s [23]. This behavior consists mainly in
the amplitude-frequency effect (the shift of the resonance frequencies as the
incident power increases) and the intermodulation effect.

This nonlinear behavior is produced by some nonlinear constitutive
equations of the material.

Figure 3.26 Structure of a solidly mounted BAW resonator [3].
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Figure 3.27 Mason multi-layer model [22]: (a) physical structure, (b) circuit model.

As the Mason multi-layer model cannot be extended for nonlinear materi-
als, a useful design tool could be an electromechanical field solver, but there
are some difficulties in solving these problems in materials with a nonlinear
mechanical characteristic:

• Transient analysis of the electromechanical field in piezoelectric res-
onators gives a parasitic amplitude modulation, even though the materials
are linear.

• Nonlinear mechanical characteristics of piezoelectric materials cannot
be implemented in software packages like ANSYS and COMSOL.

• There is no harmonic balance algorithm implemented in ANSYS or
COMSOL for the analysis of nonlinear piezoelectric materials.
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On the other hand, some powerful harmonic balance algorithms are available
in circuit simulation programs like ADS and CADENCE.

The linear artificial transmission line model of a piezoelectric transducer
[24, 25] is a physical circuit model whose parameters depend on material
characteristics and can be implemented in a circuit simulator. In the next
paragraph is presented its extension for materials with mechanical nonlinearity
[21]. The simulation results obtained using this new model are compared with
the experimental data.

3.4.1 1D Linear Artificial Transmission Line Model

In the following paragraph is presented a slightly modified version of the 1D
model given in [24]. This model takes into account only the propagation of
the mechanical waves on the direction orthogonal to the electrodes [21].

Consider a part of length Δx of this model, shown in Figure 3.28, where
T is stress, v is velocity, ξ is displacement, S = ∂ξ/∂x is strain, E is electric
field, D is electric flux density, h = e/ε, ε is the dielectric constant, e is the
piezoelectric coupling coefficient, and CD is the Young modulus.

The piezoelectric effect equations are as follows:

T = CD · S − h · D (3.9)

E = −h · S +
D

ε
(3.10)

On the electrode surface q(t) = D(t) · A, where A is the resonator area, and
for any x we have the same current value, so that I(t) = ∂q

∂t = A · ∂D
∂t . There

is no volume charge density so that divD = ∂D
∂x = 0. It follows:

∂v

∂x
=

1
CD

· ∂T

∂t
+

h

A · CD
· I(t) (3.11)

Figure 3.28 Part of length Δx of the linear 1D model.
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From (3.10) it follows:

C0 · ∂V (x + Δx, t)
∂t

−C0 · ∂V (x, t)
∂t

= −h·C0 ·[v(x+Δx, t)−v(x, t)]+I(t)
(3.12)

where C0 = ε·A
Δx and v = ∂ξ

∂t . The second Newton’s law leads to the following:

∂T

∂x
= ρ · ∂v (x, t)

∂t
(3.13)

The mechanical equivalent circuit, where stress is a voltage-type variable and
velocity is a current-type variable, can be built from (3.11) and (3.13) and is
given in Figure 3.29. Here Le = ρΔx is a “mechanical inductance”, Cm is a
“mechanical capacity”, and Is is the current through the electrical equivalent
circuit.

The electrical equivalent circuit can be built from (3.12) and is given in
Figure 3.30.

A 1D linear artificial transmission line model, which for simplicity has
only three cells, is given in Figure 3.31. The parameters of this circuit are
computed using the material parameters (e.g. those given in Table 3.11) in
their expressions given above.

Figure 3.29 Linear mechanical equivalent circuit.

Figure 3.30 Linear electrical equivalent circuit.
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Figure 3.31 1D linear artificial transmission line model with 3 cells.

The mechanical boundary conditions are T = 0 at both edges and
correspond to the short-circuits at both ends of the mechanical equivalent
circuit. The electrical boundary conditions, resulting from the sinusoidal
voltage applied to the resonator, are given by the sinusoidal voltage source
V in in the last cell of the electrical equivalent circuit and the short-circuit to
ground in the first cell of the same equivalent circuit.

3.4.2 1D Artificial Transmission Line Model With Mechanical
Nonlinearity

Various nonlinear mechanical characteristics are given in the literature as S(T)
or T(S) polynomials [26–28]. Considering a polynomial nonlinearity S(T), it
follows [21]:

S =
1

CD
· T +

k2

CD
· T 2 +

k3

CD
· T 3 +

h

CD
· D (3.14)

From (3.11) and (3.14), taking into account ∂S
∂t = ∂2ξ

∂t∂x = ∂v
∂x , it results:

∂v

∂x
=

1
CD

· ∂T (x, t)
∂t

+
2 · k2

CD
· T (x, t) · ∂T (x, t)

∂t
+

+
3 · k3

CD
· T 2 · ∂T (x, t)

∂t
+

h

CD · A
· I(t)

The operating equation of the nonlinear capacitor in the mechanical equivalent
circuit is as follows:

v (x, y) =
1

CD
·
[
1 +

2 · k2

CD
· T (x, t) +

3 · k3

CD
· T 2(x, t)

]
· ∂T (x, t)

∂t



3.4 Physical Model Using Transmission Lines 167

or

v(x, y) = Cm · [1 + K2 · T (x, t) + K3 · T 2(x, t)
] · ∂T (x, t)

∂t
(3.15)

where K2 and K3 are the coefficients of the capacitor polynomial nonlinearity.

3.4.3 Example

The measured resonator has the layers structure described in Table 3.10,
and the main parameters (density, velocity, Young’s modulus, electrical
permittivity, piezoelectric coupling coefficient) being given in Table 3.11.

Each layer is divided in 10 parts [21], except the piezoelectric one (AlN),
which is divided into 21 parts. Each layer has an equivalent circuit similar to
that in Figure 3.31, with the number of cells equal to the number of these parts.

Table 3.10 Layers structure of the measured resonator

Material Thickness (nm)

Si (subs) Semi-infinite
SiOC 295
SiN 1160
SiOC 295
SiN 1160
SiOC 295
Mo 280
AlN 1170
Mo 240
SiO2 140
(only for loaded resonators) SiN 200

Table 3.11 Material parameters

Material ρ (kg/m3) Velocity (m/s) CD (GPa) ε (pF/m) e (C/m2)

Mo 10000 6600 435.6
SiO2 2200 6000 79.2
SiOC 1500 2400 10.14
SiN 2700 9300 233.523
Si 2330 8400 164.4
AlN 3300 11000 399.3 82.6 1.5
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All these equivalent circuits are connected in cascade and are linear, except
the equivalent circuit of AlN that has nonlinear mechanical capacitors whose
operating equations are defined by (3.15). The parameters of these circuits are
computed using the values given in Tables 3.10 and 3.11.

The optimal values of the coefficients K1 and K2 are found in order to
fit the simulation results to the experimental data. Considering K1 = 4e-10
and K2 = 1.5e-19, the amplitude-frequency effect presented in Figure 3.32
and Figure 3.33 and the second harmonic of the reflected power shown in
Figure 3.34 are obtained.

The model simulation has been made with HB analysis of ADS having
the following parameters: MaxOrder = 7, Order[1] = 7, KrylovSS Tol =
1e-6, KrylovMaxIters = 300, KrylovLooseIters = 150, oversample = 300,
V RelTol = 1e-5, V AbsTol = 1e-6 V, I RelTol = 1e-6, I AbsTol = 1e-10 A.

The very good agreement between the simulated and measured data is
obvious.

Figure 3.32 Amplitude-frequency effect.
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Figure 3.33 Amplitude-frequency effect (detail).

Figure 3.34 Second harmonic of the reflected power.
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3.5 Behavioral Models for Frequency Domain Analysis
of Power BAW Filters Driven by Multi-Tone Excitations

For a high input power, the bulk acoustic wave (BAW) resonators have a
nonlinear behavior, consisting in the amplitude-frequency effect (dependence
of the series and parallel resonance frequencies on the incident power) and the
intermodulation effect [31, 32]. Some simple nonlinear circuits reproducing
these effects for a one tone excitation are described in [33, 34]. The filters
exhibiting these effects are called power BAW filters.Atypical case of a power
BAW filter is the duplexer filter in the mobile phone, which may operate at an
incident power up to 5 W.

A new behavioral model, consisting in some files containing the measured
frequency characteristics of the S-parameters as functions on the filter incident
power, has been proposed in [32]. This model is valid for a one tone filter input
signal, but can be easily extended for multi-tone excitations. Even though
intricate circuits, as artificial transmission lines, are used as models for multi-
tone excitation circuits [35], an accurate modeling of all intermodulation
products remains an open problem.

The large-signal S-parameter model developed in [32] for a power BAW
filter is based on the measurements performed using some wired connections
of the filter input and output. If the model of the filter without connections is
needed, for example, if this filter is used in an intricate SoC, the parameters of
the behavioral model of the filter itself (without wired connections) must be
developed. How this model is obtained is the subject of the next paragraph.

As the power at any input or output port can be computed via simulation,
the compensation of the influence of the connection wires is treated firstly
using a behavioral filter model built employing simple nonlinear circuits,
which are the behavioral resonators models [29]. In the following is shown
how the behavioral model of the filter without connections can be computed
from the measurement data obtained using the equivalent circuits of the input
and the output connections [30].

3.5.1 Compensation of Connection Wires Influence

A three resonator power BAW filter is shown in Figure 3.35, where S1 and
S2 are identical series resonators and P is a parallel resonator [32]. The input
wired connection is W1, while the output wired connection is W2.

The series resonators have an area of 32000 µm2 a series resonance
frequency f s = 2.1344 GHz and a parallel resonance frequency fp =
2.2035 GHz and a quality factor around fsQs = 426.4. The parallel resonator
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Figure 3.35 T filter with connection wires.

has an area of 44000 µm2, f s = 2.069 GHz, fp = 2.1344 GHz, and a quality
factor Qs = 320 around fs.

The equivalent circuit of a wired connection is presented in Figure 3.36.
The values of R, L, and C correspond to the wired input connection. For the
output connection, these values are R = 96.8 mΩ, L = 0.645 nH, and C =
29.44 fF.

The behavioral model of a series resonator is given in Figure 3.37. The
behavioral model of the parallel resonator is a similar circuit, having the same

Figure 3.36 Equivalent circuit of a wired connection.

Figure 3.37 Behavioral model of S1 and S2.
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Figure 3.38 Power of the source in PORT 1 so that Pin in T filter is 24 dBm.

nonlinear coefficients lists, but other values for Rm, Lm, Cm, and C0, namely:
Rm = 168, 845 kΩ, Lm = 31.43 nH, Cm = 188.3 fF, C0 = 3.1 pF.

The connection of the two-ports W1 and T filter, as well as the connection
of the two-ports T filter and W2 is a cascade one. In the case of two matched
cascaded two-ports, any S-parameter is the product of the corresponding
S-parameters of the two components [36]. As the impedances of the high
Q series and parallel resonators have a significant dependence on frequency,
unlike that of W1, the matching condition between W1 and T filter is not ful-
filled, and the parameter S21 of the T filter cannot be extracted using the above
property.

The source connected at PORT 1 in Figure 3.35 gives a constant incident
power for all frequencies. Its power can be modified for each frequency in
order to obtain a constant incident power at the input of the T filter. These
modifications can be made varying in small steps the power of the source
connected to PORT 1. For example, in Figure 3.38 are shown the power values
of the source in PORT 1 in order to obtain an incident power of 24 dBm at the
T filter input.

The differences between the S21 frequency characteristics corresponding
to various levels of the incident powers are negligible for this filter.

The frequency characteristic of the second harmonic of the reflected power
at the filter output is used in order to validate this approach. To this end, we
compare the reflected power on the second harmonic at the T filter output
computed in the following two ways:
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1. the reflected power at T filter output PA
2f r computed as

PA
2f r =

P out
2f r

SW2
21

(3.16)

where P out
2f r is the reflected power on the second harmonic at PORT 2 and

SW2
21 is computed for the output connection W2 on the second harmonic

of the incident power with the frequency f, which is obtained using the
simulation of the whole circuit driven by a power source whose parameter
is chosen according to the data in Figure 3.38.

2. the reflected power at T filter output PB
2f r computed using only the T

filter behavioral model driven by a power source of 24 dBm.

The results are given in Figure 3.39, where PA
2f r are the “extracted” data,

whilePB
2f r are the “simulated” data.

Figure 3.39 Comparison between the simulated and extracted data.

It can be observed that the “extracted” data are practically the same with
the “simulated” data, which are the correct ones. By this way, the computation
performed employing (3.16) is validated.

3.5.2 Example

Using a similar procedure to that described above, the input power at PORT 1
is “calibrated” in order to obtain an incident power of 28 dBm and 30 dBm
at the T filter input. This “calibrated” source allows the computation of the
characteristics of the T filter without connections.
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The transfer characteristic |S21( f )| is given in Figure 3.40.
For this filter, it results that there is practically no influence of the

connection wires on this characteristic. Moreover, the amplitude-frequency
effect, which for other filters leads to slight variations in the pass-band filter
depending on the incident power [37], is not observable at this scale of display.

The frequency characteristic of the 2f reflected power at the T filter output
is given in Figure 3.41.

A slight influence of the connection wires on this characteristic can be
observed.

Figure 3.40 T filter transfer characteristic.

Figure 3.41 2f reflected power at the T filter output.
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3.6 Conclusions

Being proved the impossibility of direct measurement of the nonlinear con-
stants in the constitutive equations describing the operation of a power BAW
resonator from which some physical circuit models could be obtained, it
follows that behavioral circuit models are desirable [9, 12]. They are derived
from measurements data made under conditions similar to the actual operation.
A first step in modeling the behavior of power BAW resonators has been
the development of some linear parametric circuits that reproduce only the
amplitude-frequency effect, in which the resistor and the capacitor in the
mechanical branch are function of the r.m.s. value of the current from that
branch.

In Section 3.2.2, a procedure for identifying the parameters for a linear
parametric behavioral model of a power BAW resonator is presented. The
model is an AC circuit with two elements that have a parametric dependence
on the input current “energy”. This model follows naturally, as long as all
resonator phenomena depend on the overall power. The behavioral nature
of this model avoids the use of certain material parameters, for example
“elastic constants” of 3rd or 4th order, which cannot be directly measured.
Parameter identification procedure is simple and relies only on measured
frequency characteristics. It was also found a way to minimize the influence
of measurement errors.

Considering the future spread of power BAW resonators technology in
the mobile phone design, the development of efficient models for time and
frequency domain analysis is very useful. These new models should reproduce
the resonator behavior driven by a real RF signal.

Contrary to some expectations, it is not possible to use r.m.s. values as
parameters in user-defined models in a frequency domain analysis program
as ADS, APLAC, or Serenade. These linear parametric models cannot be
implemented in a time domain program like SPICE, also.

In Section 3.3.1, two new nonlinear models of power BAW resonators are
presented. These models, unlike other up to date known models, highlight the
amplitude-frequency and the intermodulation effects. Their APLAC imple-
mentation is made using non-linear controlled sources. For the first nonlinear
model, the parameters were chosen to match the measured values taking into
account only the amplitude-frequency effect. The second nonlinear circuit
model allows adjustment of the second harmonic current amplitude without
affecting the series resonance frequency dependence on the excitation ampli-
tude.Amethodology for the computation of the parameters of these behavioral
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models, starting from the measured data, and including the estimation of the
connection wires influence, is outlined in [29]. By simple AC impedance
transformations, more complicated models, having more circuit elements
which allow the fitting of various response characteristics to the measured
data, can be generated.

In Section 3.3.3, two simple circuit models that reproduce the intermod-
ulation effect of the anti-series and anti-parallel connections are presented.
The model contains only one nonlinear element (the capacitor of the motional
branch) described by a q–u polynomial characteristic of the second degree.
For the anti-series or the anti-parallel connection, the second degree coeffi-
cients have different signs to each resonator. These models have been validated
by the SPECTRE RF simulation, resulting in an important reduction in the
second harmonic. The proposed models were validated through a simulation of
a nonlinear amplifier followed by a band pass filter. If some resonators in this
filter are replaced by anti-series connections, there is a significant reduction
in the second harmonic at the filter output; this filter structure corresponds to
patented solutions used by the companies fabricating power BAW filters.

The linear artificial transmission line model of Morris and Hutchens is
modified in the Section 3.4.1 for materials with mechanical nonlinearity. A
very good agreement is observed between the simulated and experimental
results concerning both the amplitude-frequency effect and the intermodula-
tion effect. This fact suggests that the mechanical nonlinearity is a possible
origin of the nonlinear resonator behavior. The undulations in the frequency
characteristic of the second harmonic reflected power are produced by the
reflections of the transversal waves at the resonator boundaries and cannot be
reproduced by the 1D model. A 2D model, obtained in a similar manner, can
explain these undulations. In order to avoid these effects of the transversal
wave reflections, the electrode shape becomes a pentagon having no parallel
edges (apodized resonator). For the simulation of the improvement produced
by apodization, a 3D model, which can be an extension of that presented in
this paper, may be useful.

Being very simple, the behavioral nonlinear circuit models [15, 29] are
very efficient for simulation of circuits containing power BAW resonators,
but their parameters are not directly related to the material parameters. The
nonlinear artificial line models are physical models, their parameters having
a known dependence on the material parameters. This feature makes them
very useful in the physical design of the power BAW resonators. Moreover,
these models can be implemented in circuit simulators avoiding the use of the
commercial electromechanical field simulators that cannot handle mechanical
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nonlinearities. Some material parameters cannot be measured directly in the
operating conditions; some simulation errors can occur considering their
values taken from the literature.

Section 3.5 presents a behavioral model for the frequency domain analysis,
consisting in tables of S-parameters, whose values depend on frequency and
incident power [32].

A procedure aimed to eliminate the influence of the connection wires is
proposed in Section 3.5.1, knowing that the data on which the model proposed
in [32] is based are measured using some wired connections to the test bench.
This procedure is useful when the device is used in a more intricate circuit,
and employs a behavioral circuit model of the filter, as well as the equivalent
circuits of the connection wires.

This new kind of model is used for weakly nonlinear devices as power
BAW resonators and filters built with AlN as the piezoelectric material. This
model can reproduce the device behavior on the fundamental frequency f in
the case of a one tone excitation, including the nonlinear amplitude-frequency
effect as well as the frequency characteristics of the 2f reflected power at the
device output, both being specified for a set of incident powers [32].

This kind of model seems to be superior to the behavioral model in the form
of a simple circuit [33, 34], because it can reproduce exactly the measured
values, while the simulation of the simple circuit can only approximate them.
But the outstanding result of this approach can be obtained in the case of the
multi-tone excitation for which no existing model is working well enough [35].
The large-signal S-parameter models for power BAW resonators and filters
are used for the first time in [32] and in the present work, even though
these magnitudes are mentioned in [38] and [39] for some nonlinear circuit
models.
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New Topics in Simulation and Modeling of RF Circuits addresses 
two main topics: simulation of RF circuits and new models of 
nonlinear power BAW resonators and filters.

Since RF circuits have several unique features, and all analysis 
methods are based on the circuit essential properties, the book 
begins by describing the properties of RF circuits, characterization 
of circuits with customary and uncustomary behavior and some 
theorems of solutions existence and uniqueness for dynamic 
nonlinear circuits.

Thereafter, the main time domain and frequency domain 
analysis methods for RF circuits are presented. The advantages 
and disadvantages of each method have been highlighted, and an 
algorithm for the time step choice in transient analysis based on 
energy balance errors is also presented.

Lastly, the final part contains some nonlinear circuit models of 
power BAW resonators. The behavioral models for the time domain 
analysis are simple circuits containing weakly nonlinear elements. 
The behavioral models for frequency domain analysis are based 
on the measured values of the frequency dependent S parameters 
for a set of incident powers. S parameters corresponding to certain 
intermodulation products of practical  interest are also considered. 
The physical models contain artificial transmission lines with 
nonlinear circuit elements corresponding to mechanical and 
electrical nonlinearities.
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