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Preface

The trend in the miniaturization of electronic devices has naturally led

to the question of whether or not it is possible to use single molecules

as active elements in nanocircuits for a variety of applications. The re-

cent developments in nanofabrication techniques have made possible the

old dream of contacting individual molecules and exploring their electronic

transport properties. Moreover, it has been shown that molecules can in-

deed mimic the behavior of some of today’s microelectronic components,

and even strategies to interconnect molecular devices have already been

developed. These achievements have given rise to what is nowadays known

as Molecular Electronics. There are still many problems and challenges

to be faced to make this novel electronics a viable technology, but the

exploration of molecular-scale circuits has already led to the discovery of

many fundamental effects. In this sense, molecular electronics has become

a new interdisciplinary field of science, in which knowledge from traditional

disciplines like physics, chemistry, engineering and biology is combined to

understand the electrical and thermal conduction at the molecular scale.

This book provides a comprehensive overview of the rapidly developing

field of molecular electronics. It focuses on our present understanding of

the electrical conduction in single-molecule circuits and presents a thorough

introduction to the experimental techniques and the theoretical concepts.

To be precise, our goal in this monograph is two-fold. On the one hand, we

want to provide a true textbook for advanced undergraduate and graduate

students both in physics and chemistry who are interested in the field of

molecular electronics or nanoelectronics in general. Our idea is to take

a student with a good background in quantum mechanics all the way to

be able to follow the specialized literature in molecular electronics or to

start working in this field. On the other hand, we also want provide a

vii

  Star Diwa
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thorough review of the recent activities in molecular electronics from which

newcomers and specialists in the field can benefit.

Bearing these goals in mind, this book has been written in a self-

contained and unified way. It contains four parts that can be read indepen-

dently. In the first two ones we review the basic experimental techniques

and the main theoretical concepts concerning the electronic transport in

atomic-scale junctions. These two parts are meant to be textbook material

for an advanced course in molecular electronics. In particular, we have in-

cluded a collection of exercises at the end of most chapters, which in many

cases are motivated by recent experiments in the field. On the other hand,

Part 3 contains two chapters in which we describe at an introductory level

the physics of metallic atomic-size contacts and we also point out some of

the remaining challenges and open problems in this context. Finally, Part

4 is devoted to the electrical and thermal transport in molecular circuits,

with special emphasis on single-molecule junctions. Here, we do not only

review the recent activities in the field of molecular electronics, but we also

introduce the addressed topics at a basic level. In this sense, we have often

included unpublished material and additional exercises to help the reader

to gain a deeper insight into the fundamental concepts involved in the field

of molecular electronics.1

We have tried to cover in this monograph as many aspects of molecular

electronics as possible, but obviously the selection is limited for space rea-

sons and it reflects unavoidably our own research interests. We also want

to apologize with those authors that feel that their contribution was not

properly highlighted in the review part of this monograph, but it is by now

impossible to include all the huge amount of work done in this field. Fi-

nally, we just hope to have achieved, at least partially, the goal that truly

motivated the writing of this book, namely the sincere will to provide a

useful book for the new generation of researchers that should consolidate

molecular electronics as a solid pillar of the emerging nanoscience.

1See section 1.3 for a more detailed description of the structure and scope of the book.



Acknowledgments

It would not have been possible to write the book without the help of many

coworkers and colleagues. First of all, we want to thank Edith Goldberg

for encouraging one of us (JCC) to give a postgraduate course on molecular

electronics in the fall of 2008 in Santa Fe (Argentina). The excellent stu-

dents who attended that course demonstrated that, after a 50-hours course

and without any previous knowledge about this field, one can master the

basic concepts and techniques that now form the body of this monograph.

This fact provided the final boost that we needed to collect all our notes

and turn them into this book.

Similarly, for the experimental point of view of this book, the students

in the graduate course at Konstanz served as test candidates. Some of them

even got contaminated by this exciting field and went on asking questions

what finally resulted in contributions to this book. Very valuable input

came from my colleague Artur Erbe who was the real expert in molecular

electronics in our Department until he left to Dresden.

We also want to express our gratitude to Alvaro Mart́ın Rodero, who

not only introduced one of us (JCC) to the exciting field of nanoelectronics,

but also contributed decisively to this manuscript with his personal notes,

which are the basis of several chapters of the theoretical background. The
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Berndt, Paul Leiderer, Wolfgang Belzig, Marcel Mayor, Thomas Huhn,

Andreas Marx, Ulrich Steiner, and Ulrich Groth.

We also want acknowledge the contribution of all the authors who have

kindly granted us the permission to reprint their work in this monograph.

Finally, I (JCC) want to thank my parents and brothers for being always

by my side. I also want to thank Ana for being so patient and share my

time with this book for too many nights and weekends. ES thanks her

family for continuous support and reminding me steadily of what is really

important in life.



Contents

Preface vii

Acknowledgments ix

Brief history of the field and experimental
techniques 1

1. The birth of molecular electronics 3

1.1 Why molecular electronics? . . . . . . . . . . . . . . . . . 5

1.2 A brief history of molecular electronics . . . . . . . . . . . 6

1.3 Scope and structure of the book . . . . . . . . . . . . . . 14

2. Fabrication of metallic atomic-size contacts 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Techniques involving the scanning electron microscope

(STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Methods using atomic force microscopes (AFM) . . . . . 21

2.4 Contacts between macroscopic wires . . . . . . . . . . . . 22

2.5 Transmission electron microscope . . . . . . . . . . . . . . 23

2.6 Mechanically controllable break-junctions (MCBJ) . . . . 24

2.7 Electromigration technique . . . . . . . . . . . . . . . . . 31

2.8 Electrochemical methods . . . . . . . . . . . . . . . . . . . 35

2.9 Recent developments . . . . . . . . . . . . . . . . . . . . . 37

2.10 Electronic transport measurements . . . . . . . . . . . . . 38

2.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xi

  Star Diwa



xii Molecular Electronics: An Introduction to Theory and Experiment

3. Contacting single molecules: Experimental techniques 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Molecules for molecular electronics . . . . . . . . . . . . . 46

3.2.1 Hydrocarbons . . . . . . . . . . . . . . . . . . . . 47

3.2.2 All carbon materials . . . . . . . . . . . . . . . . . 50

3.2.3 DNA and DNA derivatives . . . . . . . . . . . . . 51

3.2.4 Metal-molecule contacts: anchoring groups . . . . 52

3.2.5 Conclusions: molecular functionalities . . . . . . . 52

3.3 Deposition of molecules . . . . . . . . . . . . . . . . . . . 53

3.4 Contacting single molecules . . . . . . . . . . . . . . . . . 55

3.4.1 Electromigration technique . . . . . . . . . . . . . 56

3.4.2 Molecular contacts using the transmission electron

microscope . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 Gold nanoparticle dumbbells . . . . . . . . . . . . 59

3.4.4 Scanning probe techniques . . . . . . . . . . . . . 60

3.4.5 Mechanically controllable break-junctions (MCBJs) 64

3.5 Contacting molecular ensembles . . . . . . . . . . . . . . . 66

3.5.1 Nanopores . . . . . . . . . . . . . . . . . . . . . . 66

3.5.2 Shadow masks . . . . . . . . . . . . . . . . . . . . 68

3.5.3 Conductive polymer electrodes . . . . . . . . . . . 69

3.5.4 Microtransfer printing . . . . . . . . . . . . . . . . 70

3.5.5 Gold nanoparticle arrays . . . . . . . . . . . . . . 71

3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Theoretical background 75

4. The scattering approach to phase-coherent transport in

nanocontacts 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 From mesoscopic conductors to atomic-scale junctions . . 79

4.3 Conductance is transmission: Heuristic derivation of the

Landauer formula . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Penetration of a potential barrier: Tunnel effect . . . . . . 83

4.5 The scattering matrix . . . . . . . . . . . . . . . . . . . . 88

4.5.1 Definition and properties of the scattering matrix 88

4.5.2 Combining scattering matrices . . . . . . . . . . . 91

4.6 Multichannel Landauer formula . . . . . . . . . . . . . . . 92



Contents xiii

4.6.1 Conductance quantization in 2DEG: Landauer

formula at work . . . . . . . . . . . . . . . . . . . 97

4.7 Shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 Thermal transport and thermoelectric phenomena . . . . 104

4.9 Limitations of the scattering approach . . . . . . . . . . . 106

4.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5. Introduction to Green’s function techniques for systems

in equilibrium 111

5.1 The Schrödinger and Heisenberg pictures . . . . . . . . . 112

5.2 Green’s functions of a noninteracting electron system . . . 113

5.3 Application to tight-binding Hamiltonians . . . . . . . . . 118

5.3.1 Example 1: A hydrogen molecule . . . . . . . . . 118

5.3.2 Example 2: Semi-infinite linear chain . . . . . . . 122

5.3.3 Example 3: A single level coupled to electrodes . 124

5.4 Green’s functions in time domain . . . . . . . . . . . . . . 128

5.4.1 The Lehmann representation . . . . . . . . . . . . 131

5.4.2 Relation to observables . . . . . . . . . . . . . . . 134

5.4.3 Equation of motion method . . . . . . . . . . . . 136

5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6. Green’s functions and Feynman diagrams 143

6.1 The interaction picture . . . . . . . . . . . . . . . . . . . . 144

6.2 The time-evolution operator . . . . . . . . . . . . . . . . . 146

6.3 Perturbative expansion of causal Green’s functions . . . . 148

6.4 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . 151

6.5.1 Feynman diagrams for the electron-electron inter-

action . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5.2 Feynman diagrams for an external potential . . . 157

6.6 Feynman diagrams in energy space . . . . . . . . . . . . . 158

6.7 Electronic self-energy and Dyson’s equation . . . . . . . . 162

6.8 Self-consistent diagrammatic theory: The Hartree-Fock

approximation . . . . . . . . . . . . . . . . . . . . . . . . 167

6.9 The Anderson model and the Kondo effect . . . . . . . . . 170

6.9.1 Friedel sum rule . . . . . . . . . . . . . . . . . . . 171

6.9.2 Perturbative analysis . . . . . . . . . . . . . . . . 173

6.10 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . 175



xiv Molecular Electronics: An Introduction to Theory and Experiment

6.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7. Nonequilibrium Green’s functions formalism 179

7.1 The Keldysh formalism . . . . . . . . . . . . . . . . . . . 180

7.2 Diagrammatic expansion in the Keldysh formalism . . . . 184

7.3 Basic relations and equations in the Keldysh formalism . 186

7.3.1 Relations between the Green’s functions . . . . . 186

7.3.2 The triangular representation . . . . . . . . . . . 187

7.3.3 Unperturbed Keldysh-Green’s functions . . . . . . 189

7.3.4 Some comments on the notation . . . . . . . . . . 191

7.4 Application of Keldysh formalism to simple transport

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.4.1 Electrical current through a metallic atomic contact193

7.4.2 Shot noise in an atomic contact . . . . . . . . . . 199

7.4.3 Current through a resonant level . . . . . . . . . . 200

7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8. Formulas of the electrical current: Exploiting the Keldysh

formalism 205

8.1 Elastic current: Microscopic derivation of the Landauer

formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.1.1 An example: back to the resonant tunneling model 211

8.1.2 Nonorthogonal basis sets . . . . . . . . . . . . . . 212

8.1.3 Spin-dependent elastic transport . . . . . . . . . . 213

8.2 Current through an interacting atomic-scale junction . . . 215

8.2.1 Electron-phonon interaction in the resonant tun-

neling model . . . . . . . . . . . . . . . . . . . . . 217

8.2.2 The Meir-Wingreen formula . . . . . . . . . . . . 222

8.3 Time-dependent transport in nanoscale junctions . . . . . 224

8.3.1 Photon-assisted resonant tunneling . . . . . . . . 231

8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

9. Electronic structure I: Tight-binding approach 237

9.1 Basics of the tight-binding approach . . . . . . . . . . . . 237

9.2 The extended Hückel method . . . . . . . . . . . . . . . . 241

9.3 Matrix elements in solid state approaches . . . . . . . . . 242

9.3.1 Two-center matrix elements . . . . . . . . . . . . 244

9.4 Slater-Koster two-center approximation . . . . . . . . . . 246



Contents xv

9.5 Some illustrative examples . . . . . . . . . . . . . . . . . . 247

9.5.1 Example 1: A benzene molecule . . . . . . . . . . 248

9.5.2 Example 2: Energy bands in line, square and cubic

Bravais lattices . . . . . . . . . . . . . . . . . . . . 250

9.5.3 Example 3: Energy bands of graphene . . . . . . 252

9.6 The NRL tight-binding method . . . . . . . . . . . . . . . 253

9.7 The tight-binding approach in molecular electronics . . . 257

9.7.1 Some comments on the practical implementation

of the tight-binding approach . . . . . . . . . . . . 258

9.7.2 Tight-binding simulations of atomic-scale trans-

port junctions . . . . . . . . . . . . . . . . . . . . 259

9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

10. Electronic structure II: Density functional theory 263

10.1 Elementary quantum mechanics . . . . . . . . . . . . . . . 264

10.1.1 The Schrödinger equation . . . . . . . . . . . . . . 264

10.1.2 The variational principle for the ground state . . 265

10.1.3 The Hartree-Fock approximation . . . . . . . . . . 266

10.2 Early density functional theories . . . . . . . . . . . . . . 268

10.3 The Hohenberg-Kohn theorems . . . . . . . . . . . . . . . 269

10.4 The Kohn-Sham approach . . . . . . . . . . . . . . . . . . 271

10.5 The exchange-correlation functionals . . . . . . . . . . . . 273

10.5.1 LDA approximation . . . . . . . . . . . . . . . . . 273

10.5.2 The generalized gradient approximation . . . . . . 275

10.5.3 Hybrid functionals . . . . . . . . . . . . . . . . . . 277

10.6 The basic machinery of DFT . . . . . . . . . . . . . . . . 277

10.6.1 The LCAO Ansatz in the Kohn-Sham equations . 278

10.6.2 Basis sets . . . . . . . . . . . . . . . . . . . . . . . 280

10.7 DFT performance . . . . . . . . . . . . . . . . . . . . . . 282

10.8 DFT in molecular electronics . . . . . . . . . . . . . . . . 284

10.8.1 Combining DFT with NEGF techniques . . . . . 285

10.8.2 Pluses and minuses of DFT-NEGF-based methods 291

10.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Metallic atomic-size contacts 293

11. The conductance of a single atom 295

11.1 Landauer approach to conductance: brief reminder . . . . 296



xvi Molecular Electronics: An Introduction to Theory and Experiment

11.2 Conductance of atomic-scale contacts . . . . . . . . . . . 297

11.3 Conductance histograms . . . . . . . . . . . . . . . . . . . 300

11.4 Determining the conduction channels . . . . . . . . . . . . 304

11.5 The chemical nature of the conduction channels of one-

atom contacts . . . . . . . . . . . . . . . . . . . . . . . . . 308

11.6 Some further issues . . . . . . . . . . . . . . . . . . . . . . 316

11.7 Conductance fluctuations . . . . . . . . . . . . . . . . . . 319

11.8 Atomic chains: Parity oscillations in the conductance . . . 322

11.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . 331

11.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

12. Spin-dependent transport in ferromagnetic atomic

contacts 335

12.1 Conductance of ferromagnetic atomic contacts . . . . . . 336

12.2 Magnetoresistance of ferromagnetic atomic contacts . . . 343

12.3 Anisotropic magnetoresistance in atomic contacts . . . . . 347

12.4 Concluding remarks and open problems . . . . . . . . . . 353

Transport through molecular junctions 355

13. Coherent transport through molecular junctions I: Basic

concepts 357

13.1 Identifying the transport mechanism in single-molecule

junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

13.2 Some lessons from the resonant tunneling model . . . . . 364

13.2.1 Shape of the I-V curves . . . . . . . . . . . . . . . 366

13.2.2 Molecular contacts as tunnel junctions . . . . . . 368

13.2.3 Temperature dependence of the current . . . . . . 369

13.2.4 Symmetry of the I-V curves . . . . . . . . . . . . 371

13.2.5 The resonant tunneling model at work . . . . . . 373

13.3 A two-level model . . . . . . . . . . . . . . . . . . . . . . 374

13.4 Length dependence of the conductance . . . . . . . . . . . 377

13.5 Role of conjugation in π-electron systems . . . . . . . . . 381

13.6 Fano resonances . . . . . . . . . . . . . . . . . . . . . . . 382

13.7 Negative differential resistance . . . . . . . . . . . . . . . 385

13.8 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . 388

13.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 389



Contents xvii

14. Coherent transport through molecular junctions II:

Test-bed molecules 391

14.1 Coherent transport through some test-bed molecules . . . 392

14.1.1 Benzenedithiol: how everything started . . . . . . 392

14.1.2 Conductance of alkanedithiol molecular junctions:

A reference system . . . . . . . . . . . . . . . . . 395

14.1.3 The smallest molecular junction: Hydrogen

bridges . . . . . . . . . . . . . . . . . . . . . . . . 401

14.1.4 Highly conductive benzene junctions . . . . . . . . 405

14.2 Metal-molecule contact: The role of anchoring groups . . 408

14.3 Tuning chemically the conductance: The role of

side-groups . . . . . . . . . . . . . . . . . . . . . . . . . . 412

14.4 Controlled STM-based single-molecule experiments . . . . 416

14.5 Conclusions and open problems . . . . . . . . . . . . . . . 420

15. Single-molecule transistors: Coulomb blockade and

Kondo physics 423

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 423

15.2 Charging effects in transport through nanoscale devices . 425

15.3 Single-molecule three-terminal devices . . . . . . . . . . . 429

15.4 Coulomb blockade theory: Constant interaction model . . 432

15.4.1 Formulation of the problem . . . . . . . . . . . . . 432

15.4.2 Periodicity of the Coulomb blockade oscillations . 435

15.4.3 Qualitative discussion of the transport

characteristics . . . . . . . . . . . . . . . . . . . . 436

15.4.4 Amplitudes and line shapes: Rate equations . . . 439

15.5 Towards a theory of Coulomb blockade in molecular tran-

sistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

15.5.1 Many-body master equations . . . . . . . . . . . . 447

15.5.2 A simple example: The Anderson model . . . . . 449

15.6 Intermediate coupling: Cotunneling and Kondo effect . . 451

15.6.1 Elastic and inelastic cotunneling . . . . . . . . . . 451

15.6.2 Kondo effect . . . . . . . . . . . . . . . . . . . . . 453

15.7 Single-molecule transistors: Experimental results . . . . . 456

15.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

16. Vibrationally-induced inelastic current I: Experiment 473

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 473



xviii Molecular Electronics: An Introduction to Theory and Experiment

16.2 Inelastic electron tunneling spectroscopy (IETS) . . . . . 475

16.3 Highly conductive junctions: Point-contact spectroscopy

(PCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

16.4 Crossover between PCS and IETS . . . . . . . . . . . . . 490

16.5 Resonant inelastic electron tunneling spectroscopy

(RIETS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

16.6 Summary of vibrational signatures . . . . . . . . . . . . . 499

17. Vibrationally-induced inelastic current II: Theory 501

17.1 Weak electron-phonon coupling regime . . . . . . . . . . . 501

17.1.1 Single-phonon model . . . . . . . . . . . . . . . . 502

17.1.2 Ab initio description of inelastic currents . . . . . 512

17.2 Intermediate electron-phonon coupling regime . . . . . . . 520

17.3 Strong electron-phonon coupling regime . . . . . . . . . . 524

17.3.1 Coulomb blockade regime . . . . . . . . . . . . . . 524

17.3.2 Interplay of Kondo physics and vibronic effects . . 532

17.4 Concluding remarks and open problems . . . . . . . . . . 534

17.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

18. The hopping regime and transport through DNA

molecules 537

18.1 Signatures of the hopping regime . . . . . . . . . . . . . . 538

18.2 Hopping transport in molecular junctions: Experimental

examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

18.3 DNA-based molecular junctions . . . . . . . . . . . . . . . 546

18.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

19. Beyond electrical conductance: Shot noise and thermal

transport 553

19.1 Shot noise in atomic and molecular junctions . . . . . . . 554

19.2 Heating and heat conduction . . . . . . . . . . . . . . . . 560

19.2.1 General considerations . . . . . . . . . . . . . . . 561

19.2.2 Thermal conductance . . . . . . . . . . . . . . . . 562

19.2.3 Heating and junction temperature . . . . . . . . . 565

19.3 Thermoelectricity in molecular junctions . . . . . . . . . . 569

20. Optical properties of current-carrying molecular

junctions 579



Contents xix

20.1 Surface-enhanced Raman spectroscopy of molecular

junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

20.2 Transport mechanisms in irradiated molecular junctions . 583

20.3 Theory of photon-assisted tunneling . . . . . . . . . . . . 585

20.3.1 Basic theory . . . . . . . . . . . . . . . . . . . . . 586

20.3.2 Theory of PAT in atomic contacts . . . . . . . . . 590

20.3.3 Theory of PAT in molecular junctions . . . . . . . 592

20.4 Experiments on radiation-induced transport in atomic and

molecular junctions . . . . . . . . . . . . . . . . . . . . . . 594

20.5 Resonant current amplification and other transport phe-

nomena in ac driven molecular junctions . . . . . . . . . . 601

20.6 Fluorescence from current-carrying molecular junctions . 604

20.7 Molecular optoelectronic devices . . . . . . . . . . . . . . 608

20.8 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . 613

20.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

21. What is missing in this book? 617

Appendixes 621

Appendix A Second Quantization 623

A.1 Harmonic oscillator and phonons . . . . . . . . . . . . . . 624

A.1.1 Review of simple harmonic oscillator quantization 624

A.1.2 1D harmonic chain . . . . . . . . . . . . . . . . . 626

A.2 Second quantization for fermions . . . . . . . . . . . . . . 628

A.2.1 Many-body wave function in second quantization 628

A.2.2 Creation and annihilation operators . . . . . . . . 630

A.2.3 Operators in second quantization . . . . . . . . . 632

A.2.4 Some special Hamiltonians . . . . . . . . . . . . . 634

A.3 Second quantization for bosons . . . . . . . . . . . . . . . 637

A.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

Bibliography 639

Index 699



This page intentionally left blankThis page intentionally left blank



PART 1

Brief history of the field and

experimental

techniques

  Star Diwa



This page intentionally left blankThis page intentionally left blank



Chapter 1

The birth of molecular electronics

How does the electrical current flow through a single molecule? Can a

molecule mimic the behavior of an ordinary microelectronics component or

maybe provide a new electronic functionality? How can a single molecule be

addressed and incorporated into an electrical circuit? How to interconnect

molecular devices and integrate them into complex architectures? These

questions and related ones are by no means new and, as we shall see later in

this chapter, they were already posed many decades ago. The difference is

that we are now in position to at least address them in the usual scientific

manner, i.e. by providing quantitative experimental and theoretical results.

The advances in the last two or three decades, both in nanofabrication

techniques and in the quantum theory of electronic transport, allow us now

to explore and to understand the basic properties of rudimentary electrical

circuits in which molecules are used as basic building blocks. It is worth

stressing right from the start that we do not yet have definitive answers for

the questions posed above. However, a tremendous progress has been made

in recent years and some concepts and techniques have already been firmly

established. In this sense, one of main goals of this book is to review such

progress, but more importantly, this monograph is intended to provide a

solid basis for the new generation of researchers that should take the field

of molecular electronics to the next level.

Molecular electronics, as used in this book, is defined as the field of

science that investigates the electronic and thermal transport properties of

circuits in which individual molecules (or an assembly of them) are used as

basic building blocks.1 Obviously, some of the feature dimensions of such

1Molecular electronics, in the sense used here, should not be confused with organic
electronics, the field in which molecular materials are investigated as possible constituents
of a variety of macroscopic electronic devices.

3
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Fig. 1.1 Molecular electronics: An interdisciplinary field.

molecular circuits are of the order of nanometers (or even less) and there-

fore, molecular electronics should be viewed as a subfield of nanoscience

or nanotechnology in which traditional disciplines like physics, chemistry,

material science, electrical engineering and biology play a fundamental role

(see Fig. 1.1). Molecular electronics, in the sense of a potential technology,

is based on the bottom-up approach where the idea is to assemble elemen-

tary pieces to form more complex structures, as opposed to the top-down

approach where the idea is to shrink macroscopic systems and components.

Molecular electronics has emerged from the constant quest for new tech-

nologies that could complement the silicon-based electronics, which in the

meantime it has become a true nanotechnology. It seems very unlikely

that molecular electronics will ever replace the silicon-based electronics,

but there are good reasons to believe that it can complement it by provid-

ing, for instance, novel functionalities out of the scope of traditional solid

state devices. More importantly, molecular electronics has become in recent

years a true field of science where many basic questions and quantum phe-

nomena are being investigated. In this sense, the importance of molecular

electronics is unquestionable and we are convinced that different traditional

disciplines will benefit from advances in this new field.

In the rest of this introductory chapter, we shall first try to answer the

questions of why it is worth pursuing molecular electronics research and

why it is interesting to work in a field like this. Then, in section 1.2 we

shall briefly review the complex history of this field to set the stage for

this book. Finally, in section 1.3 we shall clearly define the scope of this
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monograph and explain its structure.

1.1 Why molecular electronics?

Every researcher is sooner or later confronted with natural questions like

“why do you work in your field?” or “what is your research good for?”

Of course, the answers are always personal, but in the case of molecular

electronics they also depend on whether one’s interests are closer to fun-

damental science or to technological applications. From the point of view

of basic science, molecular electronics offers, for instance, the possibility to

investigate electronic and thermal conduction at the smallest imaginable

scale, where the physics is completely dominated by quantum mechanical

effects. The small feature dimensions of molecular circuits together with the

great variety of electrical, mechanical and optical properties of molecules

can give rise to countless new physical phenomena. Molecular junctions are

also ideal systems where to investigate and shed new light into the funda-

mental electron transfer mechanisms that play a key role both in chemistry

and biology. These reasons and many others make molecular electronics a

very attractive field of basic research. Moreover, we should never forget that

the history of science proves that the exploration of new territories and the

subsequent discovery of novel phenomena often lead to unexpected tech-

nological applications. History also teaches us that there is no technology

without basic understanding and thus, the future of molecular electronics

as an emerging technology depends on our ability to understand the funda-

mental mechanisms that govern the electronic conduction at the molecular

scale.

From a technological point of view, there are also good reasons to inves-

tigate the use of molecules as electronically active elements for a variety of

applications. In comparison with the silicon-based technology, which is al-

ready a nanotechnology in the sense that the structure sizes are in the range

of nanometers,2 molecular electronics could in principle offer the following

major advantages [2]:

• Size. The reduce size of small molecules (between 1 and 10 nm)

could lead to a higher packing density of devices with the subse-

quent advantages in cost, efficiency, and power dissipation.

2The next generation of transistors for advanced microprocessors will have gate lengths
of 22 nm and a SiO2 gate oxide thickness of less than 1.2 nm [1].
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• Speed. Although most molecules are poorly conductive, good

molecular wires could reduce the transit time of typical transis-

tors (∼ 10−14 s), reducing so the time needed for an operation.

• Assembly and recognition. One can exploit specific intermolecular

interactions to form structures by nanoscale self-assembly. Molec-

ular recognition can be used to modify electronic behavior, provid-

ing both switching and sensing capabilities on the single-molecule

scale.

• New functionalities. Special properties of molecules, like the exis-

tence of distinct stable geometric structures or isomers, could lead

to new electronic functions that are not possible to implement in

conventional solid state devices.

• Synthetic tailorability. By choice of composition and geometry, one

can extensively vary a molecule’s transport, binding, optical, and

structural properties. The tools of molecular synthesis are highly

developed.

Molecules have also obvious disadvantages such as instabilities at high

temperatures. Moreover, the fabrication of reliable molecular junctions

requires sometimes to control matter at an unprecedented level, which can

be not only difficult, but also slow and costly. Anyway, the advantages

described above are sufficient to motivate the exploration of a molecule-

based electronics.

1.2 A brief history of molecular electronics

It is always difficult to trace back the history of an emerging field and to

summarize it in a few pages. Anyway, even at the risk of being unfair leaving

out some important contributors, we find necessary to say a few words about

the history of molecular electronics as a tribute to those visionary scientists

that made possible that we are now working in this fascinating field. Our

brief account here is partially based on a delightful (non-scientific) article

by Choi and Mody [3], which reviews the history of molecular electronics

paying special attention to its social aspects.

We start this historical review in 1950’s, after the revolution in electron-

ics due to the invention of the transistor and the subsequent introduction

of integrated circuits. In that context and in view of the difficulties to rad-

ically miniaturize the existent electronic components, Arthur von Hippel,
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a German physicist working at the MIT, formulated in 1956 the basis of a

bottom-up approach that he called molecular engineering [4]. He argued:

Instead of taking prefabricated materials and trying to de-
vise engineering applications consistent with their macroscopic
properties, one builds materials from their atoms and molecules
for the purpose at hand ...

The concept of molecular engineering introduced by von Hippel [5] led

to the first notion of “molecular electronics”, which crystallized in a col-

laboration between the company Westinghouse and the US Air Force at

the end of the 1950’s. Westinghouse had begun a program to implement

von Hippel’s ideas and it applied for the financial support of the US Air

Force, which at that time was receptive to new ideas and alternatives to the

recently introduced integrated circuits. The Air Force organized a confer-

ence on “Molecular Electronics” and invited scientists and engineers from

military and private research labs. In this conference, colonel C.H. Lewis,

director of Electronics at the Air Research and Development Command,

expressed the need for a breakthrough in electronics in the following way:

Instead of taking known materials which will perform explicit
electronic functions, and reducing them in size, we should build
materials which due to their inherent molecular structure will
exhibit certain electronic property phenomena. We should syn-
thesize, that is, tailor materials with predetermined electronic
characteristic. Once we can correlate electronic property phe-
nomena with the chemical, physical, structural, and molecu-
lar properties of matter, we should be able to tailor materials
with predetermined characteristics. We could design and create
materials to perform desired functions. Inherent dependability
might eventually result. We call this more exact process of con-
structing materials with predetermined electrical characteristics
MOLECULAR ELECTRONICS.

This is probably the first time that the term molecular electronics was

used publicly, although it originally referred to a new strategy for the fab-

rication of electronic components, and it had yet little to do with the vision

of using individual molecules as electronically active elements. Fig. 1.2

summarizes the vision of colonel Lewis, where molecular electronics should

constitute be the next breakthrough in electronics, although it was not yet

clear what molecular electronics was supposed to mean.

The collaboration between Westinghouse and the US Air Force, which

started after the mentioned conference, lasted a few years and certain
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Fig. 1.2 Graph presented by colonel Lewis of the US Air Force in the first conference
on molecular electronics held in November 1958. Here, one can see the trend in the
miniaturization of the electronic components during the 1940’s and 1950’s. According to
Lewis, molecular electronics should have constituted the next breakthrough in electronics
by the end of the 1950’s. Adapted from [3].

progress was indeed made in the development of new fabrication strategies.

However, these initiatives were not able to compete with the steady minia-

turization of the semiconductor-based electronic devices and they were soon

abandoned.

From a more scientific point of view, one can consider that molecular

electronics, as we understand it today, started at the end of the 1960’s and

the beginning of 1970’s. At that time, different groups started to investi-

gate experimentally the electronic transport through molecular monolay-

ers. For instance, Hans Kuhn, a Swiss chemist working at the University of

Göttingen, and his coworkers studied at that time new ways of fabricating

the so-called Langmuir-Blodgett films.3 They were able to not only master

the fabrication of these molecular films, but also to sandwich them between

metal electrodes and to measure the electrical conductivity of the resulting

junctions. In Fig. 1.3 we reproduce the experimental results of Ref. [6] for

the low-bias conductivity of Al/S(n)/Hg junctions, where S(n) stands for

a monolayer of Cd salt of fatty acid CH3(CH2)n−2COOH of different chain

lengths. There one can see the exponential decay of the conductivity with

the length of the molecules, which is still a very important issue in today’s

3A Langmuir-Blodgett film contains one or more monolayers of an organic material,
deposited from the surface of a liquid onto a solid by immersing the solid substrate into
the liquid. A monolayer is adsorbed homogeneously with each immersion or emersion
step, thus films with very accurate thickness can be formed.
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Fig. 1.3 Measurements of the low-bias tunneling conductivity (σt) vs. the distance (d)
between the electrodes in Al/S(n)/Hg junctions. Here, S(n) stands for monolayers of
Cd salt of fatty acid CH3(CH2)n−2COOH with different lengths (n ranges between 18
and 21). The solid line is a linear fit to the experiment data. The measurements were
performed at two different temperatures: 20 and -35 oC. Reprinted with permission from
[6]. Copyright 1971, American Institute of Physics.

molecular electronics (see Chapter 13). This type of experimental results

can be considered as the starting point of molecular electronics as a modern

field of science.

The idea of molecular electronics reappeared in the States at the be-

ginning of the 1970’s at IBM and thanks to the enthusiasm of Ari Aviram,

a synthetic chemist. Aviram was working at that time on charge-transfer

salts, which had recently been discovered to be reasonably good conduc-

tors in their solid form. Although Aviram’s task at IBM was to synthesize

new types of charge-transfer salts, he started working on the theory of elec-

tron transfer through single organic molecules in collaboration with Mark

Ratner,4 at that time at New York University. In the course of their inves-

tigations, Aviram and Ratner saw a clear analogy between charge-transfer

salts like TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane), with

a functional unit (TTF) rich in electrons and another unit (TCNQ) poor

in electrons, and traditional semiconductor diodes. In 1974 they published

a now-famous paper on “molecular rectifiers” [8] in which they described

4Indeed Ratner was officially Aviram’s thesis advisor during that time.
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how a modified charge-transfer salt could operate as a traditional diode

in an electrical circuit. This is probably the first proposal to use a sin-

gle molecule as an electronic component, which is something that lies at

the heart of the modern molecular electronics. Aviram and Ratner’s idea

was considered during a long time a theoretical curiosity that could not be

tested experimentally and in this sense, it did not have much impact in the

scientific community at that time.

In the late 1970’s and early 1980’s other scientists started to work on

ideas similar to Aviram-Ratner’s unimolecular concept. Let us mention for

instance the name of Forrest Carter, a chemist at the Naval Research Lab-

oratory, who was certainly influenced by Feynman’s (1960) famous “Room

at the Bottom” speech [9]. Carter introduced concepts such as molecular

computing or cellular automata, where the essence was to use individual

molecules as the ultimate electronic components or as elementary units

where to store bits of information in a hypothetical molecular computer.

These ideas were to a large extend purely theoretical and they were no sup-

ported by real experiments. However, Carter was able to nucleate a first

molecular electronics community around him and, in particular, the orga-

nization of a series of conferences on molecular electronics in the 1980’s

played an important role in the history of this field. People like Robert

Metzger, Mark Reed and others, who played later an important role in

molecular electronics, attended those conferences and they were inspired

by the discussions held there.

As for many other fields in nanoscience, the invention of the scanning

tunneling microscope (STM) by Gerd Binnig and Heinrich Rohrer (at IBM

Zurich) in 1981 [10, 11] changed the panorama for molecular electronics.

The STM was the first tool that provided a practical way to “see”, “touch”,

and manipulate matter at the atomic scale (see Fig. 1.4). Soon after its

invention, it became clear to the STM could provide a realistic way to

address single molecules and to study their electronic transport properties.

Since the original experiments of Kuhn and coworkers [7], many different

groups studied the electrical conductivity through Langmuir-Blodgett (LB)

multilayers and even monolayers. For instance, Fujihira and co-workers

demonstrated an LB monolayer photodiode already back in 1985 [13], which

is probably the first unimolecular electronic device. In the 1990’s one of

the main goals in this context was to confirm the ideas of Aviram and

Ratner about unimolecular rectification. The Aviram-Ratner mechanism,

slightly modified, was confirmed by Robert Metzger’s group in both macro-

scopic and nanoscopic conductivity measurements through a monolayer of
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Fig. 1.4 Principle of a local probe like the scanning tunneling microscope: The gentle
touch of a nanofinger. If the interaction between tip and sample decays sufficiently
rapidly on the atomic scale, only the two atoms that are closest to each other are able to
“feel” each other. Reprinted with permission from [12]. Copyright 1999 by the American
Physical Society.

γ-hexadecyl-quinolinium tricyanoquinomethanide in 1997 [14].

At the end of the 1980’s and the beginning of the 1990’s the appear-

ance of the metallic atomic-sized contacts had an important impact in the

nanoscience community. Different groups showed that the STM and the

recently introduced mechanically controllable break junction (MCBJ) tech-

nique5 could be used to fabricate metallic wires of atomic dimensions (for a

review, see Ref. [15]). Since then these nanowires have become an endless

source of new physical phenomena and have played a crucial role in the fields

of mesoscopic physics and nanoelectronics. The relevance of these systems

for molecular electronics is two-fold. On the one hand, they provide the

basis to contact individual molecules with dimensions on the range of a few

nanometers, which is out of the scope of conventional lithographies. On

the other hand, the atomic contacts (or atomic-size contacts) have allowed

establishing the connection between the quantum properties of single atoms

and the macroscopic electrical properties of the circuits in which they are

embedded, which is an important lesson for molecular electronics.6

In 1997 the collaboration between the groups of Mark Reed (a physicist

at Yale University) and James Tour (a synthetic chemist at the University

of South Carolina) led to the publication of the results of what is often

considered as the first transport experiment in single-molecule junctions

[16].7 These authors used the MCBJ technique to contact benzenedithiol

5This technique will be described in the next chapter.
6The physics of these metallic nanowires will be described in the third part of this

monograph.
7Let us clarify that the first transport measurements involving single molecules were

indeed performed with the STM, but the experiment of Reed et al. is the first one realized



12 Molecular Electronics: An Introduction to Theory and Experiment
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Fig. 1.5 Schematics of the first transport measurements through single-molecule junc-
tions performed with the MCBJ technique [16]. (a) The gold wire of the break-junction
before breaking and tip formation. (b) After addition of benzene-1,4-dithiol, self-
assembled monolayers (SAMs) form on the gold wire surfaces. (c) Mechanical breakage
of the wire in solution produces two opposing gold contacts that are SAM-covered. (d)
After the solvent is evaporated, the gold contacts are slowly moved together until the
onset of conductance is achieved.

molecules with gold electrodes (the principle of this experiment is schemat-

ically illustrated in Fig. 1.5).8 The importance of this experiment is that

it triggered off the realization of many others in the same spirit. Indeed,

our review on single-molecule conduction in the last part of this book will

cover the activities from the appearance of this experiment on.

At the end of the 1990’s new experimental techniques were intro-

duced and additional results were reported showing that molecules can

indeed mimic the behavior of ordinary microelectronics components. Thus

for instance, Reed’s group adapted the so-called nanopore technique (see

Chapter 3) to form metal-self-assembled monolayer-metal heterojunctions.

With this technique it was shown that junctions based on certain organic

molecules can exhibit, for instance, rectifying behavior [17] or a very pro-

nounced negative differential resistance [18]. On the other hand, James

Heath and Fraser Stoddart groups joined efforts to show that junctions

based on rotaxanes and catenanes could act as reconfigurable switches

[19, 20].

in a symmetric structure that could in principle be integrated in more complex circuits.
8This experiment will be described in detail in section 14.1.1.
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Techniques like electromigration [21], which were specially designed to

contact single molecules, were developed at the turn of the century. These

methods made possible to incorporate a gate electrode in single-molecule

junctions and thus, to mimic the measurements performed in solid state

devices like transistors or in nanostructures like quantum dots. With the use

of these techniques it was possible to show that single-molecule junctions

can behave as a new kind of single-electron transistors [22] or that they

can exhibit basic physical phenomena like Coulomb blockade or the Kondo

effect [23, 24], which are well-known in the context of other nanoscopic

structures.

These results obtained in academic institutions and research laborato-

ries attracted the attention of global players in information technology like

HP, IBM and others that decided to set up small molecular electronics

research groups. This gave a new impulse to the field by providing very

important missing ingredients like, for instance, strategies to link molecular

devices with each other and with external systems. As an example we can

mention the nanoscale circuits based on a configurable crossbar architec-

ture introduced by Stanley Williams and coworkers at the HP Laboratories

in Palo Alto [25], see Fig. 1.6(a-d). This strategy was used, for instance,

to show that molecular crossbar circuits fabricated from a molecular mono-

layer of [2]rotaxanes can function as an ultra-high-density memory [26],

see Fig. 1.6(e-f). The working principle of these molecular memories is

supposed to be based on the ability of molecules like rotaxanes to switch

between two metastable states upon the application of an external bias

voltage. The actual origin of the switching behavior in these molecular

junctions has been heavily debated and, in some cases, it has shown that

the metal electrodes or the metal-molecule interface are responsible for

the switching mechanism rather than the molecules themselves (see e.g.

Ref. [27]). The controversy about these results, and also about some of

the original experiments mentioned above, led to the extended belief that

molecular electronics was going through a midlife crisis [28], although it was

no more than a teenager. In the meantime, the situation concerning the

molecular memories has been clarified to a large extend and more recently

the densest memory circuit ever made (1011 bits cm−2) was fabricated using

a monolayer of bistable [2]rotaxane molecules as the data storage elements

[29]. Although many scientific and engineering challenges, such as device

robustness, remain to be addressed before these devices can be practical,

these results show clearly the potential of a molecule-based electronics.

On the other hand, the efforts in recent years of numerous research



14 Molecular Electronics: An Introduction to Theory and Experiment
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Fig. 1.6 Nanoscale molecular-switch crossbar circuits. (a) An optical microscope image
of an array of four test circuits, showing that each has 16 contact pads with micron-
scale connections leading to nanoscale circuits in the center. (b) An image taken with
a scanning electron microscope (SEM) showing two mutually perpendicular arrays of
nanowires connected to their micron-scale connections. (c) A SEM image showing that
the two sets of nanowires cross each other in the central area. (d) A 3D image of the
crossbar taken with an atomic force microscope. (e) Schematic representation of the
crossbar circuit structure in which monolayer of the [2]rotaxane is sandwiched between
an array of Pt/Ti nanowires on the bottom and an array of Pt/Ti nanowires on the top.
(f) Molecular structure of the bistable [2]rotaxane R. Reprinted with permission from
[26]. Copyright 2003 IOP Publishing Ltd.

groups world-wide have established molecular electronics as a true field of

science, where there is a lot of new physics and chemistry to be learned.

Although it is still difficult to fabricate reliable molecular junctions, in par-

ticular at the single-molecule level, and there are other basic problems to

be solved, many concepts and techniques are by now well established and

they are precisely the subject of this book. For us, it is clear that molec-

ular electronics has reappeared this time to stay forever with us. In the

next years we shall surely contemplate many basic discoveries in this field

and some of them will hopefully lead to new and unforeseen technological

applications.

1.3 Scope and structure of the book

By now molecular electronics is a very broad field with many different inter-

esting aspects and special topics. These topics can be divided in a natural

way into those related to the development and potential applications of

molecular devices and those concerning the novel physical phenomena that
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take place in molecular-scale junctions. In this monograph we are interested

in the latter type of topics and, in particular, we shall focus our attention

on the understanding of the basic mechanisms that dominate the electronic

transport at the molecular scale. To be precise, we shall concentrate on

the analysis of the properties of single-molecule junctions, although some

examples of junctions based on molecular assemblies will also be presented

and discussed.

Our main goal in this monograph is two-fold. On the one hand, we want

to provide a true textbook on molecular electronic for advanced undergrad-

uate and graduate students both in physics and chemistry. The book has

been designed so that, by the end of it, a student with a background in

quantum mechanics and some elementary notions of solid state physics9

and organic chemistry10 should be able to start doing research in the field

of molecular electronics. On the other hand, we also want to provide a

thorough review of the activities on single-molecule conduction over the

last ten years, from which both newcomers and researches working in the

field can profit.

With this double goal in mind, we have divided this monograph into

four parts that can be read independently.11 The first two are meant as

textbook material that can be used for a regular course, while the last two

ones are closer to a topical review. Part 1 includes, apart from this intro-

ductory chapter, a detailed description of the experimental techniques that

are currently being used to fabricate both atomic-scale wires and molecular

junctions as well as the basic principles of transport measurements. Here,

we have tried to explain both the basis of the different techniques as well as

their advantages and disadvantages. Moreover, we have included in section

3.2 a brief discussion about the main molecules used in molecular electron-

ics and their basic properties, which can be viewed as an accelerated course

in organic chemistry.

Part 2 contains an extensive theoretical background that provides a ba-

sic introduction both to the transport mechanisms in nanoscale systems

and to the standard theoretical techniques that are used to describe the

transport in molecular systems. We want to stress that this theory part is

not just meant for theoreticians and theory-inclined students, but for every-

9For the students in chemistry we recommend the brief introduction to solid state
physics provided in Chapter 4 of Ref. [30] or in Chapter 3 of Ref. [31].
10For the students in physics we recommend the brief introduction to organic chemistry
provided in Chapter 5 of Ref. [31].
11There is indeed a fifth part that contains an appendix about the second quantization
formalism of quantum mechanics.
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body. All the topics are discussed in a didactic and self-contained manner

so that students without a previous knowledge on these topics should be

able, after reading this part, to follow the theory papers in this field. To

be precise, this part starts in Chapter 4 with an introduction to the scat-

tering (or Landauer) approach, which provides an appealing framework to

describe coherent transport in nanostructures. Then, we go on with several

chapters devoted to Green’s function techniques (Chapters 5-8), which pro-

vide powerful tools to compute equilibrium and nonequilibrium properties

of atomic-scale junctions beyond the capabilities of the scattering approach.

Finally, Chapters 9 and 10 deal with the two most widely used electronic

structure methods in molecular electronics, namely the tight-binding ap-

proach and density functional theory. These methods in combination with

the Green’s function techniques provide the starting point for the realistic

description of the transport properties of atomic and molecular junctions.

Let us emphasize that at the end of every chapter one can find several

exercises that have been chosen to illustrate the main concepts.

Part 3 presents a basic description of the physics of atomic-sized con-

tacts. Although this is not the main topic of the book, it is crucial to

have a basic knowledge about the transport properties of the metallic wires

that are then used as electrodes in molecular junctions. We have divided

this part into two chapters where we describe the physics of non-magnetic

atomic contacts (Chapter 11) and magnetic ones (Chapter 12).

Finally, Part 4 presents a detailed review on the transport through

molecular junctions. We have organized the material according to the phys-

ical mechanism which dominates the transport properties. Thus, we start

this part with two chapters devoted to the coherent transport in molecular

junctions (Chapters 13 and 14). Then, we discuss in Chapter 15 the physics

of the so-called molecular transistors, which are nothing but weakly coupled

molecular junctions where the transport is dominated by electronic corre-

lations that lead to phenomena like Coulomb blockade or the Kondo effect.

We then proceed to discuss in Chapters 16 and 17 the role of molecular

vibrations in the electrical current through molecular junctions. Chapter

19 is devoted to other transport properties beyond conductance and we

discuss there, in particular, shot noise and thermal transport in molecular

conductors. The optical properties of current-currying molecular junctions

are the subject of Chapter 20. Chapter 18 deals with the electronic trans-

port in long molecules where the hopping (or incoherent) transport regime

is realized. Finally, we conclude this part in Chapter 21 with a list of topics

that have not been addressed in this monograph and we indicate where to
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find information about them. It is worth remarking that these chapters

have been written so that they can be read almost independently. This

way a reader can concentrate on those topics or chapters that are of special

interest for him/her.

Parts 3 and 4 are meant for both students and researchers working in

the field. We do not only review what has recently been done in the field,

but we also introduce the different topics at a elementary level. In this

sense, whenever it was possible, we have provided simple arguments and

suggested additional exercises. These two parts are intended for both exper-

imentalists and theoreticians and, most of the time, we have intentionally

avoided the typical separation between experiment and theory, which we

find particularly harmful in this field.

Let us close this chapter with some recommendations about the existent

literature. For those who want a quick overview about molecular electron-

ics, we recommend the short reviews of Refs. [2, 32–37]. A nice general

overview of the field can be found in Chapter 20 of Ref. [31]. For more ex-

tensive introductions, we recommend Ref. [38] for the theory in molecular

systems and Refs. [39–41] for a discussion of the experimental techniques

used in molecular electronics. There already exist several books that deal

with different aspects of molecular electronics, see e.g. Refs. [42–49]. Most

of them consist of a collection of articles written by different authors, but

they are very useful if one wants a more detailed discussion of certain topics.

Concerning the theory of quantum transport or transport in nanoscale sys-

tems, which is one of the central subjects of this manuscript, we recommend

the monographs of Refs. [50–53].
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Chapter 2

Fabrication of metallic atomic-size

contacts

2.1 Introduction

In this chapter we shall present the most common methods which have

been developed during the last years for the fabrication of metallic atomic-

size contacts. Both the contacting methods and the physical properties

of atomic contacts found the basis for contacting single molecules. On

the other hand, these techniques have been further refined for contacting

molecules. These refinements are now also used for studying atomic con-

tacts. Therefore, the decision in which chapter one or the other method

is described is somewhat arbitrary. Manifold variations of the techniques

exist and are permanently improved further. The aim of this chapter is to

introduce into the most important principles and to compare the techniques

regarding their advantages and drawbacks.

As important as the sample preparation is the quality of the electronic

transport measurements. When dealing with tiny contacts, care has to be

taken to reduce the influence of the measurement onto the contact itself.

We will therefore end this chapter with a few brief remarks about the most

common measurement setups and possible artifacts.

2.2 Techniques involving the scanning electron microscope

(STM)

One of the most versatile tools for the fabrication of atomic-size contacts

and atomic chains is the scanning tunneling microscope (STM) (for a re-

view, see Ref. [54]). It has been used for that purpose from the very be-

ginning of its invention [55]. While in the standard application of an STM

a fine metallic tip is held at distance from a counter electrode (in general
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motion

Fig. 2.1 Working principle of the fabrication of atomic contacts with an scanning tun-
neling microscope (STM). The electron micrograph shows a STM tip. The width at half
length is in the order of 100 to 200 μm. The lower inset gives an artist’s view of the
atomic arrangement of an atomic contact. Courtesy of C. Bacca.

a metallic surface) by making use of the exponential distance dependence

of the tunneling current, the tip can also be indented into the surface and

carefully withdrawn until an atomic size contact or short atomic wire forms.

An artist’s view of the STM geometry and the atomic configuration of a

contact is shown in Fig. 2.1. For many metals it has been shown that the

tip will be covered by several atomic layers of the metal of the counter elec-

trode upon repeated indentation such that clean contacts may be formed

consisting of the same metal for both electrodes.

The main advantages of the STM in this application are its speed and

versatility. When the electrodes forming the contacts are prepared in ultra

high vacuum conditions, the STM furthermore allows to gather information

about the topography of the two electrodes on a somewhat larger than the

atomic scale before or after the formation of the contact. Since however,

the tip is usually pressed into the substrate and the atomic-size contact is

formed when withdrawing, the exact atomic configuration of the atomic-

contact cannot be measured directly.

This problem is partially solved when the contact is formed upon ap-

proaching [56]. For good metals the distance dependence of the conduc-
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tance follows an exponential increase until a sudden “jump to contact”

occurs which is marked by a step-like increase of the conductance. The

jump indicates the formation of a chemical bond between the tip and the

electrode and thus the formation of a single-atom contact. The geometry

of the substrate side of the contact can be well controlled by first preparing

and characterizing a clean terrace of a single crystalline substrate and sub-

sequently evaporating a sub-monolayer small amount of metal atoms onto

it. The surface can then be scanned and the tip can be approached right

on top of one of the extra atoms. This technique enables to form hetero-

junctions, i.e. contacts between two different metals. The determination of

the atomic configuration on the tip-side of the contact remains unsolved,

though.

Spectroscopic measurements on the scale of electron volts allow one to

deduce information about the cleanliness and the electronic structure of the

metal [57].

The main drawbacks are its limited stability with respect to the change

of external parameters such as the temperature or magnetic fields and the

short lifetime of the contacts in general because of the sensitivity of the STM

to vibrations. In the early years of STM-based atomic contact studies they

were furthermore limited to rather high temperatures in the range of 10 K

or higher. This drawback has been overcome in the last years. Nowadays

ultra high vacuum (UHV) STMs, which work with sufficient stability at

temperatures below 1 K and in strong magnetic fields are even commercially

available.

2.3 Methods using atomic force microscopes (AFM)

Another scanning probe technique which complements STM in many as-

pects is the atomic force microscope (AFM). Instead of the tunnel current

an AFM uses the distance dependence of the force between a fine tip and a

surface. Depending on the chemical nature of both the tip and the surface

this force consists of several contributions and its distance dependence may

be complex and even nonmonotonic. The working principle of the AFM

is based on measuring the force by recording the deflection of a cantilever

that carries the tip. The deflection can be detected by optical means or

by the detuning of an oscillator circuit due to the deflection. The AFM

has become a very versatile tool in surface science which works in various

environments and temperature ranges. In surface science the main advan-
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Fig. 2.2 Fabrication and characterization of atomic contacts with an atomic force mi-
croscope (AFM). (a) The conductive AFM uses a conductive cantilever and metallic
tip for recording the electrical signal. The deflection of the cantilever beam is detected
optically and used for recording the topographic information of sample. After Ref. [59].
(b) In the combined AFM-STM the sample is clamped to a cantilever. The metallic
contact is formed between the sample and the metal tip. The metal tip is part of an
STM and records the electrical signal. The deflection of the cantilever is recorded with a
separate AFM. This signal is used for measuring the force acting on the cantilever when
the atomic contact rearranges. After Ref. [58].

tage of AFM as compared to STM is its possibility to work on insulating

substrates. For the fabrication and characterization of atomic contacts the

AFM is in use in two different variations. The first one is the combination

with an STM which records the current while the AFM measures the force

that is necessary to form or break the contacts [58]. The second one is

the so-called conductive AFM which uses a metal-covered tip on a metallic

surface and both quantities, the current and the force, are available simul-

taneously, Fig. 2.2 [54]. The force signal can be used to determine the

topography.

2.4 Contacts between macroscopic wires

Transient atomic chains and contacts with lifetimes in the millisecond range

can also be fabricated in a table-top experiment first demonstrated by N.

Garcia and coworkers [60], which we call here “dangling-wire contacts”.

Two metal wires in loose contact to each other are excited to mechanical

vibrations, such that the contact opens and closes repeatedly. One end

of each wire is connected to the poles of a voltage source and the current

is recorded with a fast oscilloscope. This method is in principle particu-

larly versatile because it enables the formation of heterojunctions between
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Fig. 2.3 Experimental setup used to visualize contacts between macroscopic metallic
electrodes inside a scanning electron microscope (SEM). Adapted with permission from
[61]. Copyright 1997 by the American Physical Society.

various metals. However, in order to provide clean metallic contacts a thor-

ough cleaning of the wires would be required, similar to the tip and surface

preparation in a STM. Another drawback is the lack of control of the dis-

tance of the electrodes. It is thus mostly used as demonstration experiment

in schools with Au-Au contacts. The method has later been improved by

attaching the wires to piezo tubes. This realization thus resembles contacts

fabricated in the STM and have also been used within the chamber of an

scanning electron microscope for simultaneous imaging and conductance

measurements, see Fig. 2.3.

2.5 Transmission electron microscope

Another interesting method for preparing and imaging atomic contacts are

transient structures forming in a transmission electron microscope (TEM)

when irradiating thin metal films onto dewetting substrates [62, 63]. The

high energy impact caused by the intensive electron beam locally melts the

metal film causing the formation of constrictions which eventually shrink

down to the atomic size and finally pinch-off building a vacuum tunnel gap.

A typical system for these studies is Au on glassy carbon substrates. Several

variations of this principle have been developed that allows one to contact

both electrodes forming the contact, see Fig. 2.4. The high electron current

density necessary for imaging causes also high local temperatures resulting

in short lifetimes of these contacts. However, they offer the unique possi-

bility to simultaneously perform conductance measurements and imaging

with atomic precision. Similar results have been obtained with variations

of the STM inside a TEM [64]. This method enabled to directly prove

the existence of single-atom contacts, single-atom wide and several atom
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Fig. 2.4 High resolution TEM images of short atomic wires fabricated with an STM
inside the vacuum chamber of the TEM. The arrows indicate the number of atomic rows.
In panel f the contact is broken and forms a tunnel contact. Reprinted by permission
from Macmillan Publishers Ltd: Nature [63], copyright 1998.

long chains as well as to establish a correlation between contact size and

conductance [63, 62, 65]. For Au and Ag contacts it has been shown that

preferably well ordered contacts with growing directions corresponding to

the symmetry axes of the crystal structure are formed.

2.6 Mechanically controllable break-junctions (MCBJ)

Already before the development of the first STM another technique en-

abling the fabrication of atomic-size contacts and tunable tunnel contacts

has been put forward. The first realizations include the needle-anvil or

wedge-wedge point contact technique pioneered by Yanson and co-workers

(for a review see [66]) and the squeezable tunnel junction method described

by Moreland and Hansma [67] and Moreland and Ekin [68] who used metal

electrodes on two separate substrates which are then carefully adjusted with

respect to each other. The needle-anvil technique was mainly used to form

contacts with diameters of typically several nanometers and thus having
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Fig. 2.5 Working principle of the MCBJ (not to scale) with the metal wire, the elastic
substrate, the insulating sacrificial layer, the pushing rod, the counter supports and the
dimensions used for calculating the reduction ratio (see text).

hundreds or thousands of atoms in the narrowest cross section. These two

techniques formed the starting point for the development of the mechani-

cally controllable break-junctions (MCBJ) by C. Muller and coworkers [69],

which nowadays is applied for the fabrication of atomic contacts in vari-

ous subforms, the most common of which are the so-called notched-wire

[70] and thin-film MCBJs [71]. The working principle which is depicted

in Fig. 2.5 is the same for both variations: A suspended metallic bridge is

fixed on a flexible substrate, which itself is mounted in a three-point bend-

ing mechanism consisting of a pushing rod and two counter-supports. The

position of the pushing rod relative to the counter supports is controlled

by a motor or piezo drive or combinations of both. The electrodes on top

of the substrate are elongated by increasing the bending of the substrate.

The elongation can be reduced again by pulling back the pushing rod and

thus reducing the curvature of the substrate. In order to break a junction

to the tunneling regime, considerable displacements of the pushing rod and

thus important bending of the substrate is required. Therefore the most

common substrates are metals with a relatively high elastic limit like spring

steel or bronze. The substrates are covered by an electrically isolating ma-

terial such as polyimide before the junction can be fixed on it.

The notched-wire MCBJ, an example of which is shown in Fig. 2.6,

uses a thin metallic wire (diameter 50 μm to 200 μm) with a short, knife-

cut constriction to a diameter of 20 μm to 50 μm. The wire is glued at

both sides of the notch to the substrate and connected electrically to the
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Fig. 2.6 The 100 nm wide gold wire is glued with epoxy resin (black) onto the substrate.
The electrical contact is made by thin copper wires glued with silver paint. The inset
shows a zoom into the notch region between the two black drops of epoxy resin. Reprinted
from [15]. Copyright 2003, with permission from Elsevier.

measurement circuit at both ends. The distance between the glue drops is

of the order of 50 μm to 200 μm.

Variations of this method have been put forward which enable contact-

ing of reactive or brittle materials out of which no wires can be formed [72].

For this purpose the sample preparation is performed in protective environ-

ment. A beam-shaped piece of the material is cut in a non-reactive liquid

such as dodecanol or other slowly evaporating alcohols, or glycerine. Four

holes are drilled into the metal and a wedge is cut in the middle between

the holes. An example is shown in Fig. 2.7. The beam is screwed with the

help of two electrically isolating bolts to the substrate, one on each side of

the wedge. The remaining two holes serve for screwing metallic wires to

the beam for the conductance measurements.

For a version which enables scanning the two electrodes with respect to

each other, at first two piezo tubes are glued to the substrate. The metal

wire is then glued on top of the piezos. After mechanically breaking the

wire, the piezos are polarized such that they are bent and the two parts

of the wire are sliding along each other [73]. This realization corresponds

to a high-stability STM, but with very restricted scan possibility. It is

therefore used only sparsely. Finally, simultaneous force and conductance

measurements are possible when adding a tuning fork like in AFMs. Details

of this very sophisticated method are given in Ref. [75].

Fig. 2.8 shows two examples of thin-film MCBJs, which were fabricated

using the usual techniques of nanofabrication, i.e. electron beam lithography

and metal deposition by evaporation. There are mainly two differences to
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Fig. 2.7 Principle of the MCBJ technique adapted for reactive metals. Reprinted from
[15]. Copyright 2003, with permission from Elsevier.

2 μm
100 nm

(a) (b)

Fig. 2.8 Lithographic MCBJ. (a) Electron micrograph of a thin-film MCBJ made of
cobalt on polyimide taken under an inclination angle of 60o with respect to the normal.
The distance between the rectangular shaped electrodes is 2 μm, the thickness of the thin
film is 100 nm and the width of the constriction at its narrowest part is approximately
100 nm. (b) Electron micrograph of a thin-film MCBJmade of cobalt (medium grey) with
leads made of gold (light grey) taken under an inclination angle of 50o with respect to the
normal. The distance between the rectangular shaped electrodes is 2 μm, the thickness
of the Co film is 80 nm, of the Au film is 100 nm and the width of the constriction at its
narrowest part is approximately 100 nm. The sample has been fabricated using shadow
evaporation through a suspended mask such that two images of the mask exist. The Au
shadow of the bridge is broken off.

standard nanostructuring. The first one is the substrate, which in case

of MCBJs has to provide sufficient elastic flexibility without breaking or

irreversible bending. The second difference is the final etching step which

is needed to suspend the nanobridge (with typical dimensions of 2 μm in

length and 100 nm × 100 nm at the narrowest part of the constriction)

above the substrate by partial removal of a sacrificial layer underneath the

metal film. Fig. 2.9 summarizes the fabrication procedure. A piece of metal

with a typical thickness of a few hundred micrometers serves as substrate.
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The metal should have a high elastic deformation limit. Typical metals

are bronze or spring steel. For particular purposes, in particular when

capacitive effects have to be minimized, the metal is replaced by a plastic

substrate. Both metal or plastic are thoroughly polished to reduce the

roughness to less than a micrometer. The remaining corrugations are then

filled with a thin layer of polyimide (thickness 1-2 μm), which is spin-coated

and hardbaked in vacuum. The polyimide also serves as electrical insulator

between the nanostructure and the substrate. Subsequently the electron

resist is spin-coated and thermally treated as required for electron beam

structuring. Fig. 2.9(c) shows an example in which a double-layer resist

is used. The double-layer is necessary for, e.g. evaporation of the metal

under arbitrary angle. The next step is electron-beam writing in a scanning

electron microscope equipped with a pattern generator or in a commercial

electron-beam writer. After development of the resist in a selective solvent

the resist mask remains on top of the polyimide layer. The mask itself may

be partially suspended when using a double-layer resist. Subsequently the

metal will be deposited either by evaporation, sputtering, chemical vapor

deposition or other means. Shadow evaporation, i.e. evaporation of several

materials under different angles can be used for forming contacts between

different metals or for supplying nanobridges of one metal with electrodes

made of another metal. The advantage of the shadow-evaporation technique

lies at first in its self-alignment property because the same mask is used

for all metal depositions. The second advantage is given by the fact that

all depositions can be made in a single vacuum step, which enables one to

fabricate clean interfaces between the metals. After the metal deposition

the mask is stripped in a more aggressive solvent. Finally the structure is

exposed to an isotropic oxygen plasma which attacks the polyimide layer.

Consequently its thickness is reduced and all narrow metal parts, like the

nanobridge become suspended like a bridge.

Both versions of the technique - the notched-wire MCBJs and the litho-

graphic (or thin-film) MCBJs - share the idea of enhanced stability due to

the formation of the contact by breaking the very same piece of metal on a

single substrate and by transformation of the motion of the actuator into

a much reduced motion of the electrodes perpendicular to it. The small

dimensions of the freestanding bridge-arms give rise to high mechanical

eigenfrequencies, much higher than the ones of the setup. As a result the

system is less sensitive to mechanical perturbations by vibrations.

Assuming homogeneous beam-bending of the substrate we can calculate

the reduction ratio r between the length change of the bridge u and the
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Fig. 2.9 Fabrication scheme of thin-film (lithographic) MCBJ. (a) The substrate (metal,
plastic) is polished mechanically. (b) the sacrificial wafer (polyimide) is spin-coated and
baked. (c) The resin (typically a bi-layer electron sensitive organic material) is spin-
coated and baked. (d) The resin is exposed in an electron beam writer or a scanning
electron microscope equipped with a pattern generator in the desired pattern. (e) The
chip is developed in a solvent which selectively removes the exposed parts of the resin.
The result is a mask, which resides on the sacrificial layer, in the shape of the exposed
pattern. (f) The metal is deposited by evaporation or sputtering. (g) The mask with the
metal on top of it is lifted-off in a more aggressive solvent which attacks the unexposed
parts of the resin. The result is a metal layer in the shape of exposed pattern. (h) Finally
the thickness of the sacrificial layer is reduced in an isotropic plasma. The narrow parts
of the metal pattern are suspended and form the bridge which will be broken in the
MCBJ mechanism.

motion of the pushing rod x (see Fig. 2.5).

r =
6tu

L2
, (2.1)

where t is the thickness of the substrate, u the length of the free-standing

bridge arms and L the distance of the counter supports. This quantity

denotes the factor with which any motion of the pushing rod is reduced
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when it is transferred to the point contact. In a real MCBJ setup, however,

the beam-bending is in general non-uniform. Furthermore, also the sacrifi-

cial layer has a finite elasticity and is deformed when bending the MCBJ.

These effects can be accounted for by a correction factor, which enhances

r by a factor of roughly 4 [76]. The effective reduction ratio has a typical

value of 10−3 to 10−2 for the notched-wire MCBJs and 10−6 to 10−4 for the

thin-film MCBJs. The relatively weak reduction ratio of the notched-wire

MCBJs usually requires the use of a piezo drive for controlling and stabiliz-

ing single-atom contacts, while the lithographic MCBJs can be controlled

with purely mechanical drives, i.e. a dc-motor with a combination of gear

boxes, and a differential screw.

A common realization of a bending mechanism suitable for thin-film

MCBJs and use at low temperatures T < 1 K is shown in Fig. 2.10. A

rotary axis is connected to a differential screw which consists of a thread,

the two sections of which have a slightly different pitch. The typical values

for the pitches A and B are 0.7 to 0.8 mm and pitch differences 50 μm to

150 μm. Each full turn of the axis changes the distance between the sample

holder and the ground plate by the difference of the pitches. The shape

of the end of the pushing rod can be semi-cylindrical or wedge shaped,

depending on the desired deformation of the substrate. Because of the off-

line axis arrangement of rotary axis and pushing rod several guiding rods

are needed to reduce torque and ensure linear motion of the sample holder

with respect to the ground plate. The pushing rod can be designed such

that it hosts a piezo tube. The MCBJ is electrically contacted via spring

contacts or by gluing the wiring to it via silver paint. The thermal contact

of the sample to the thermal bath can additionally be provided by thick

wires and copper braid. Care has to be taken when choosing the materials

combination of the thread and its counterpart to avoid friction because

lubrification at low temperature and in vacuum is difficult.

Typical motion speeds of the piezo drive lie between 10 nm/s and

10 μm/s corresponding to results in 10 pm/s to 100 nm/s for the electrodes

forming the atomic contacts. For purely mechanical drive these values are

10 nm/s to 1 μm/s for the pushing rod and 10 fm/s to 10 nm/s for the

contact. Due to the in-built reduction also the piezo-driven setups are in

general slower than STM systems. The high stability enables comprehen-

sive studies on the very same atomic contact at various values of control

parameters such as fields and temperature.

On the other hand the small r values require considerable absolute mo-

tion of the pushing rod and deformation of the substrate in order to achieve
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Fig. 2.10 Sample holder with differential screw for thin-film MCBJ. A motor drives a
rotary axis which ends in a thread with two different pitches. Rotating the axis results
in varying distance between ground plate and sample holder. The sample resides on two

counter supports connected to the sample holder. It is bent by the pushing rod which
is attached to the ground plate. Three guiding rods (only one of which is shown) ensure
smooth and linear motion.

sufficient displacements of the electrodes. This reduces the possible choices

of the substrate material considerably.

MCBJ mechanisms have been developed for various environments in-

cluding ambient conditions, vacuum, very low temperatures [77] or liquid

solutions [78]. The latter one is of particular interest for the study of single-

molecule junctions and will be explained in detail in the following Chapter

3. The disadvantages of MCBJs as compared to STM techniques are the

small speed and the fact that the surrounding area of the contact cannot

easily be scanned. As for STM setups clean contacts can only be guaran-

teed when working in good vacuum conditions. The sample preparation

itself, however, does not require clean conditions because the atomic con-

tacts are only formed during the measurement by breaking the bulk of the

electrodes.

2.7 Electromigration technique

A third method for the formation of atomic-size contacts is controlled burn-

ing of a wire by electromigration (see Fig. 2.11). This technique has been

optimized for the formation of nanometer sized gaps for trapping individual

molecules or other nanoobjects [79, 80]. Before the wire finally fails and

the current drops drastically, atomic size contacts are formed for a rather

short time span [81–83]. During the electromigration process the trans-



32 Molecular Electronics: An Introduction to Theory and Experiment

500 nm 500 nm

200 nm 200 nm

Fig. 2.11 Electromigration technique. Top: Fabrication via shadow evaporation
through a suspended mask of an electrode structure to be used for producing atomic
contacts by electromigration. The arrows indicate the directions from which the metal is
deposited. The electromigration will nucleate at the thinnest part of the electrode struc-
ture. Bottom: Series of atomic force microscope images taken in the tapping mode of

an electromigrated contact made of Au on Si in different phases of the electromigration
process. From left to right: before electromigration (R = 40 Ω), R = 105 Ω, R = 630 Ω,
R = 30.000 Ω. Courtesy of D. Stöffler and R. Hoffmann.

port changes from ohmic behavior, i.e. limited by scattering events of the

electrons to wave-like electronic transport, which can be described by the

Landauer picture (see Chapter 4).

The term electromigration denotes a process in which ions are moved

due to high electrical current densities. We concentrate here on the electro-

migration behavior of metals. It has been understood that several effects

contribute to the total force acting on a metal atom which forms the con-

ductor, the two most important being the so-called direct force due to the

electric field. It causes the electrical current and thus points into the di-

rection of the field. The second one is caused by momentum transfer of

the conduction electrons onto the ions. It has opposite sign and is called

the wind force. When the total force overcomes the binding force of the

ions, they start to diffuse but can be pinned again at defects or positions

where the current density and driving force falls below this threshold value.

Depending on the material, the temperature, the crystallinity, the surface

roughness, and many other parameters either the direct force may exceed

the wind force or vice versa [84]. Therefore the exact direction of the mate-

rial transport depends on the microscopic structure of the wires. In many

cases the motion of the material is such that the cross section of the con-



Fabrication of metallic atomic-size contacts 33

ductor is locally reduced and its electrical resistance increases. The higher

resistance causes higher losses, enhanced dissipation, increasing tempera-

ture in the wire which further enhances the dissipation of ions. An impor-

tant role plays the temperature of the lattice because the diffusion and the

threshold current strongly depend on temperature. Electromigration has

become one of the most important origins of failures in integrated circuits,

due to the miniaturization of the metallic interconnects without reducing

the current by the same factor. Consequently, electromigration has widely

been studied in electrical engineering with the aim to achieve the highest

possible threshold current density for it to set in and the smallest diffusion

speed [85].

For the formation of atomic contacts a high threshold current is not

important but the possibility for controlling speed, shape and size of the

final structure. One of the most important preconditions is to define the

position at which the electromigration starts, and the contact forms. For

this purpose a short and thin metallic wire is fabricated by lithographic

methods as described in the previous section. Typical dimensions are a

length and width of 50 to 100 nm and a thickness of 10 to 20 nm. The

thin wire is connected to wider and thicker electrodes which consequently

have smaller resistivity. A convenient method to fabricate these structures

is shadow evaporation through a suspended mask as shown in Fig. 2.11.

First, thin layers of the metal (typical thickness 10 nm) are evaporated

under the angles Θ and −Θ. The angle is chosen such that both layers

slightly overlap underneath the suspended part of the mask. Afterwards a

thick layer of the electrode metal is deposited perpendicular to the substrate

plane. The ideal structure would consist of a single-crystalline wire in the

thin part of the wire, the boundaries of which are covered by the thick

electrodes in order to avoid electromigration of possible contaminants from

the grain boundaries. It is advantageous to work on a substrate with high

thermal conductivity in order to control the temperature.

The electromigration process itself is performed such that an electrical

current is continuously ramped up while the resistivity is monitored. As

soon as the resistance starts to increase a computer-controlled feedback

loop controls the current such that the rate of the resistance increase is

kept constant or slowed down. The resistance increase is partially due to

the temperature increase caused by the Joule heating of the driving current.

Although it has been shown that in the ohmic regime the current density is

the quantity which determines the diffusion of the ions, it is advantageous

to control the voltage in order to produce atomic size contacts. When the
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resistance increases the current becomes smaller, which helps to limit the

migration speed. The low-resistive electrodes ensure that the voltage drops

locally making the driving force acting only locally as well. Consequently,

the dissipation and Joule heat generation are local as well. The procedure

should be stopped when the desired resistance is achieved. For the study

of atomic contacts the interesting regime is reached when the resistance

exceeds roughly one kiloohm. For usual metals this corresponds to contacts

with a narrowest cross section of roughly 10 atoms. An important finding

is that the behavior changes markedly when the size of the smallest cross

section corresponds to a few atoms. However, the exact position of the

position at which the wire finally breaks is difficult to predict. As will be

explained in Chapter 11 the electrical transport of contacts of this size is

determined by the wave properties of the electrons rather than by collisions

with defects. If this happens the resistance may start to decrease again

before the wire finally is burned through. This non-monotonous behavior

complicates the control scheme further. Several control schemes have been

put forward which are optimized for various sample geometries, metals and

working conditions such as vacuum or low temperature [21, 81–83, 86]. So

far only a few studies exist in which the electromigration process has been

imaged in detail, although these kind of studies are very insightful. One

example is shown in Fig. 2.11, where AFM images have been taken after

discrete electromigration steps. A particularly nice series of TEM images

showing that the most dramatic shape changes occur during the final phase

can be found in Ref. [82].

An important difference to STM techniques and MCBJs is the fact that

the wire forming the contact is in solid contact with a substrate. The ad-

vantages are at first ultimate stability which will become important when

studying atomic or molecular junctions as a function of external fields (see

Chapters 12 and 20). The second advantage lies in the fact that no par-

ticular requirements exist for the properties of the substrate, besides the

fact that it should be sufficiently insulating. Often silicon - the standard

substrate in microelectronics - is used. With suitable doping it can be used

as back-gate for inducing an electric potential and building a three-terminal

device. This technique is important for studying effects like Coulomb block-

ade, which will be explained in Chapters 11 and 15.

The main drawback of the electromigration technique is the fact that it

is a single-shot experiment: Once an atomic contact has been established

there is only limited possibility to fine tune its atomic configuration, in par-

ticular coming back to a larger contact is almost impossible. After burning
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(b)(a)

Fig. 2.12 Electromigrated MCBJ with gate on silicon substrate. (a) Working principle
and (b) electron micrograph of an electromigrated MCBJ. The substrate is doped silicon
and can be used as back-gate. Reprinted with permission from [86]. Copyright 2005
American Chemical Society.

through the wire it cannot be closed again. As described before, the con-

trol of the final part of the electromigration process is tricky because the

character of the transport changes from ohmic to wave-like. A combina-

tion of electromigration with the lithographic MCBJ technique overcomes

this problem: a thin-film MCBJ is thinned-out by electromigration to a

narrow constriction with a cross section of less than 10 nm (see Fig. 2.12).

The substrate is then bent carefully for completely breaking the wire or

arranging single-atom contacts. This last step is reversible and repeatable

for studying small contacts [87] or trapped nanoobjects [86]. Because only

the very last part of the breaking requires mechanical deformation of the

substrate it is rather fast and enables the use of more brittle substrates

such as silicon.

2.8 Electrochemical methods

A completely distinct method for the formation of atomic-size contacts uses

electrochemical deposition and removal of metal atoms. Electrochemical

deposition of metals is a standard technique for surface treatment and in

micromachining. For the purpose of forming atomic contacts basically the

same principles are used. The main difference to the macroscopic techniques

is the shape of the starting electrodes and the feedback which controls

the deposition speed. Nanocontact formation by electrochemical methods

starts from metal electrodes with a gap or with a continuous wire that is

first broken either mechanically or by electromigration. The working prin-

ciple is depicted in Fig. 2.13. The electrode structure is then immersed into
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an electrolyte containing metal ions. The electrochemical setup is adapted

from the three-electrode cyclic voltammetry principle [88]. The deposition

and dissolution of metal is controlled by applying an electrical potential

difference between a so-called counter electrode and the electrodes forming

the nanocontact, which serve as “working electrodes”. A fourth electrode

defines the reference potential. The conductance is monitored and used as

control signal for the potentiostat which controls the deposition rate. The

typical control voltages are in the range of 20 mV to 1 V and can be ad-

justed to optimize the electrochemical process. It should exceed the bias

voltage if one aims at symmetric deposition on both electrodes forming the

contact. Obviously the place at which the fastest deposition and dissolu-

tion takes place can further be controlled by the size and the polarity of

the bias voltage. A typical metal combination is gold as electrode material

because of its weak chemical reactivity and silver for the formation of the

atomic contacts [89, 90]. Silver is easily dissolved in acids, like e.g. in ni-

tric acid, and simultaneously silver atomic contacts have well understood

transport properties, as will be further detailed in Chapter 11. One main

advantage of this technique is its versatility, since electrochemical deposi-

tion methods on the macroscale have been developed for almost all metals.

A further advantage is the simplicity of the working principle, in particular

the simplicity with which the starting electrodes can be produced: macro-

scopic wires as well as deposited thin films [91, 92] or STM setups [93]

are possible. Furthermore the contacts are mechanically stable because no

suspended parts are required.

Electrochemical contacts are often regarded to be three-terminal de-

vices: The two electrodes forming the contact correspond to source and

drain, the control electrode to the gate electrode in the language of semi-

conductor transistors. Since the electrochemical control involves diffusion

of ions, it is slower than the usual electrostatic gating in semiconductor

technology. It is however much faster than the purely mechanical control

used in the lithographic MCBJ technique. One obvious drawback is the

fact that the control mechanism requires liquid environment. It is not ob-

vious how one can bring the contacts into dry environment, vacuum or low

temperatures. Anyhow, after removal of the electrochemical environment

the contacts cannot be varied anymore (or one of the other techniques, e.g.

MCBJ or electromigration, have to be applied for this purpose).
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Fig. 2.13 Setup for the electrochemical fabrication and control of atomic contacts. For
particular choices of the control potential the atomic contact can be switched between
defined conductance values and thus a ”switching current” is recorded. Reprinted with
permission from [89]. Copyright 2003 by the American Physical Society.

2.9 Recent developments

As mentioned in the introduction of this chapter, many variations of the

standard methods described above have been developed. In particular,

combinations of the archetypical methods have been described. As an ex-

ample we present here two new versions of the MCBJ technique. The first

one has been introduced by Waitz et al. [94]. It uses thin-film-wires on

silicon membranes with a thickness of a few hundred nanometers. The

membrane is deformed by a fine tip on the rear side. At variance to the

MCBJ techniques on bulk substrates the elasticity of the membrane rather

than the bending determines the stretching of the metal wire, see Fig. 2.14.

The deformation of the substrate is applied locally and it is thus possible

to address particular positions while the rest of the circuit on the substrate

remains mainly unaffected. This is important when the MCBJ is embed-

ded in a more complex electronic circuit close to the atomic contact, which

should not be affected when changing the atomic contact. Such complex

circuits are required e.g. for studying Coulomb blockade, which we will de-

scribe in Chapter 15. Another advantage of this method as compared to

bulk substrates is that the membranes are electrically insulating or only
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poorly conducting. This reduces the capacitance of the circuit to ground

and is advantageous when fast measurements are required. A further differ-

ence to standard MCBJ techniques is that smaller suspended length of the

metal wire can be used. This enhances stability and reduces often unde-

sired effects such as magnetostriction when investigating magnetotransport

as explained in Chapter 12. Finally, by combining this membrane MCBJs

with electromigration it is possible to control atomic-size contacts at room

temperature without suspension at all [95].

The second recent improvement, which we want to describe here, is the

successful incorporation of a gate electrode into the lithographic MCBJ

techniques without combination with electromigration [96]. It is based on

the lithographic MCBJ technique on metallic substrates using two lithog-

raphy steps. In the first step a thin and rather narrow metallic gate strip is

patterned. The gate is then covered by an approximately 50 nm thick insu-

lating sacrificial layer and the resist system for the second lithography step

in which the nanobridge is patterned. After evaporation of the nanobridge

metal the sacrificial layer removed by dry etching as in the conventional pro-

cess for lithographic MCBJs. The result is shown in Fig. 2.15: a nanobridge

that is suspended approximately 50 nm above the gate electrode. With this

technique three-terminal devices with controllable source-drain coupling are

now possible.

2.10 Electronic transport measurements

Usually the first electrical characterization of nanoscale contacts is the mea-

surement of the linear conductance as a function of an outer parameter

such as temperature, magnetic field or size of the junction. The next more

complex quantity is the nonlinear conductance, i.e. measurements of the

current-voltage (I-V) characteristics or the differential conductance. Since

these quantities belong to the most common properties of any material

characterization their correct measurement is supposed to be trivial, and

manifold sophisticated equipment is on the market. In fact, several suppli-

ers of electronic measurement units offer information material or seminars

about low-level, high-resolution electronic measurements, and we encourage

our readers to access this literature. Therefore textbooks about nanoscience

only rarely address this issue. However, when dealing with nanoobjects it is

not easy how to perform a good conductance measurement. In this section

we will not give a complete overview over the various techniques. But since
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Fig. 2.14 MCBJ on silicon membranes. Top: Working principle of the membrane MCBJ
(not to scale). One or several lithographic MCBJs are defined on the front side of the
membrane. A glass or graphite tip is scanned along the rear side of the membrane with
the help of micromechanically controlled scan tables. The vertical motion of the tip
controls the deformation of the membrane. The close ups at the right side illustrate the
deformation of the membrane with a graphite tip, the rupture of the nanobridge, and
give an artist’s view of the atomic arrangement of a single-atom contact. The thickness
of the membrane is in the order of 300 nm, the lateral dimension of the membrane is

typically 1 mm × 1 mm. The length of the suspended bridge is smaller than the one for
lithographic MCBJs on massive substrates. The thickness of the sacrificial layer is in the
order of 100 nm only. When reducing the lateral size of the constriction first by electro-
migration, non-suspended metal bridges can be used. Bottom: optical micrograph of a
membrane carrying two MCBJs made of gold. The tip is positioned underneath the lower
bridge where the membrane is deformed. The size of the membrane is 0.6 mm × 0.6 mm.

the scope of this book is to serve as textbook for beginners in the field of

molecular electronics, we want to sensitize the reader to this issue. The par-

ticular facts which have to be taken into account in molecular conductance

measurements are the following:



40 Molecular Electronics: An Introduction to Theory and Experiment

500 nm

a

pushing rod

counter

supports

gold

electrodes

polyimide

phosphor

bronze

c

VbVg

Isd

100 MΩ VbVg

Isd

100 MΩ

b

S D

G

Fig. 2.15 MCBJ with gate electrode on bulk substrate. (a) Scanning electron micro-
graph of a lithographic MCBJ with gate electrode, (b) working principle of the MCBJ,
(c) and electronic circuit for the gated MCBJ. Reprinted with permission from [96].
Copyright 2009 American Chemical Society.

• Wide range of conductances from nanosiemens (corresponding to

10−5G0 (G0 = 2e2/h is the conductance quantum with e the ele-

mentary charge and h Planck’s constant) to siemens.1

• Correct choice of bias voltage to assure working in the linear regime

is difficult because the effects giving rise to nonlinearities happen

on varying voltage scales ranging from microvolt to volt.

• Self-heating of the contacts due to Joule dissipation is not always

easy to detect and to discriminate from the intrinsic properties of

the sample.

• Sudden voltage spikes and jumps may destroy the sample. There-

fore abrupt switching actions in the electrical measurement circuit

have to be minimized, often hampering optimum range adjustment.

• Extreme variation of the differential conductance within small

changes of the bias.

• Limited lifetime of the junctions to study.

The typical signal sizes which have to be resolved are of the order of

a few nanovolts for the voltage and picoamperes for the current. For par-

11 Siemens is the inverse of 1 Ω = 1 Volt/Ampere and thus the unit of the conductance
in the international system of units (SI).
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ticular experiments the requirements might even be stronger. The relative

measurement accuracy which is required for most investigations is 10−4 or

better corresponding to a resolution of typically 14 bits when expressed in

digital units. These requirements mean that one often works at the resolu-

tion limit of commercial electronic equipment. When enhancing the size of

the excitation signal to obtain response signals well above the noise floor

one risks to at least smear out the electronic characteristics of the sample

by warming it up. In the worst case the sample is destroyed by the heat

dissipation.

When designing a measurement circuit the first choice that one has to

take is whether one feeds the current and measures the voltage or vice versa.

For measurements of the linear conductance, or when the I-Vs are mainly

linear, the most important criterion is to optimize the signal-to-noise-ratio.

The general rule is that measuring voltage is the better solution for small

conductances whereas measuring current is good for high conductance val-

ues. When, however, a well-defined energy difference between source and

drain is required, e.g. for investigating Coulomb blockade2, a voltage bias is

obviously the best choice. For other purposes the transport current is the

decisive quantity and has to be defined. When dealing with hysteretic I-Vs

or junctions revealing negative differential resistance (NDR) (see section

13.7) the measurement strategy is crucial for reaching all interesting parts

of the I-Vs. Similar choices have to be made concerning the position of the

electric ground level of the circuit and whether one pole of the sample will

be directly connected to it.

Small nonlinearities in the I-Vs may easily disappear in the noise floor

of the electronic circuit. They are much easier to detect with a low-noise

lock-in amplifier working at a small but finite frequency. When the electric

circuit under study is biased with a harmonic voltage signal, the lock-

in detector measures directly the first derivative of the I-V when locking

it on the bias frequency. The second derivative (which is an important

quantity for detecting vibrational excitations (see Chapter 16) can then be

determined by numerical differentiation of the dI/dV . Alternatively it can

be directly measured when recording the response at twice the excitation

frequency.3

In any case the energy scale given by the excitation voltage has to be

kept smaller than the width of the vibrational resonances under study.

2Coulomb blockade and related effects shall be explained in Chapter 15.
3Practically all companies producing lock-in amplifiers offer tutorial material available

online.
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Furthermore the excitation energy has to be smaller than the temperature,

otherwise the spectra will be smeared out.

Abrupt changes of the conductance as a function of the bias or another

parameter, e.g. the conformation of the junction, result in abrupt changes of

the dissipated power as well. On the one hand this is a difficult task for the

measurement electronics to cope with. On the other hand this forces one

to take precautions, i.e. introduce measures for current limitation, which

themselves hamper a perfect voltage bias.

The limited lifetime of the junctions forces one to perform fast measure-

ments, a fact resulting in limited signal to noise ratios and limited statistical

information. Atomic and molecular junctions at room temperature reveal

intrinsic noise caused by atomic motion. Therefore low-temperature exper-

iments are very appealing. In standard cryostats the wires are rather long

and thermalization requires higher cable resistances. Additional measures

for high-frequency filtering are required. All these facts reduce the band-

width of the measurement circuit. As a result it is not trivial to perform

fast measurements at low temperatures.

As will be explained in Chapters 13 and 19, many important properties

of quantum transport cannot be revealed from conductance measurements

alone, but more complex transport properties such as shot noise or ther-

moelectric voltage have to be studied.

Obviously, for a meaningful noise measurement one has to discriminate

the shot noise signal from the undesired but unavoidable noise of the mea-

surement circuit. A fruitful method to do so is a correlation measurement

using two identical sets of cables [97, 98]. All noise signals which originate

from the wiring are uncorrelated to each other. Signals from the sample are

fed into both wires. They are correlated and are recorded in a spectrum

analyzer. Only those parts are processed further. An example of such a

wiring is shown in Fig. 2.16. It is particularly demanding to measure shot

noise at high frequency. A successful solution based on coupled quantum

dots has been reported in Ref. [99] and a version using superconducting

tunnel contacts in Ref. [100].

For measuring the thermopower a small voltage signal has to be detected

which is created by a small temperature gradient across the sample. This

means that this temperature difference has to be applied and detected with

high precision. One example where this has been successfully achieved

is given in Fig. 2.17. It is designed for detecting the conductance and

the thermopower of molecular junctions at room temperature [101, 102].

Another setup used for measuring the thermopower in atomic contacts at
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Fig. 2.16 Schematic experimental setup for measuring the voltage dependence of the
shot noise of an atomic contact. An atomic contact (double triangle symbol), of dynamic
resistance RD, is current biased through a resistance RB . The voltage V across the
contact is measured by two low noise preamplifiers through two nominally identical
lossy lines with total resistance RL in each line and the total capacitance C introduced
by the setup across the contact. The spectrum analyzer measures the cross-correlation
spectrum of the two voltage lines. The Si (i = B, Amp1,Amp2) are the known current
noise sources associated with the bias resistor and the two amplifiers. SI represents the
signal of interest, i.e. the shot noise associated with the current through the contact. Sv1

and Sv2 represent the voltage noise sources of each line (amplifier 1 connecting leads).
Reprinted with permission from [98]. Copyright 2001 by the American Physical Society.

low temperature is presented shown in Fig. 19.7 and explained there.

With these examples we will finish our short and incomplete list of

electronic measurement setups. Our aim was to make clear that although

the fabrication of atomic and molecular junctions is not simple, the correct

measurement of their electronic transport properties might be even more

demanding.

2.11 Exercises

2.1 Vacuum: Estimate the number of gas atoms per area impinging on a surface
at normal pressure, in high vacuum (p = 10−6 mbar), and in ultra high vacuum
(p = 10−10 mbar) during one minute. Let us assume that all incoming gas atoms
stick to the surface. How thick is the gas layer after 10 minutes?

2.2 Nanowires and atomic contacts: Let us consider a cylindrical nanowire
made of Au. Au has a lattice constant of a = 0.41 nm.

(a) Estimate the number of atoms in the cross section for a wire with diameter
10 nm, 5 nm, and 1 nm.

(b) Estimate the number of surface atoms for these wires with a length of 5
nm.

(c) Calculate the ratio between surface atoms and bulk atoms in these
nanowires.
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Fig. 2.17 Schematic description of the experimental setup for measuring thermoelec-
tric voltage based on an STM break junction. Individual molecules (symbolized by a
hexagon) are trapped between the Au STM tip kept at ambient temperature and a heated
Au substrate kept at temperature ΔT above the ambient. When the tip approaches the
substrate, a voltage bias is applied and the current is monitored to estimate the conduc-
tance. When the conductance reaches a threshold of 0.1 G0, the voltage bias and the
current amplifier are disconnected. A voltage amplifier is then used to measure the in-
duced thermoelectric voltage, while the tip is gradually pulled away from the substrate.
Reprinted with permission from [102]. Copyright 2008 American Chemical Society.

2.3 Mechanically controllable break-junctions: Let us consider a MCBJ
setup with a separation of the counter supports of L = 10 mm, a substrate
thickness of t = 0.5 mm and a suspended length of u = 2 μm. For simplicity
let us neglect the insulating sacrificial layer between substrate and metal wire.
Calculate the required displacement of the pushing rod for elongating the junction
by 10 nm assuming homogeneous bending, when the MCBJ is installed into a
differential screw with a pitch difference of 100 μm.

2.4 Joule heating: (a) Calculate the power dissipated in an atomic contact
(initially at room temperature) with a resistance of 10 kΩ when a voltage of 10
mV is applied.

(b) Assume that the dissipated power heats up a spherical volume containing
1000 atoms of a material with a specific heat of 130 J/(kg·K). Assume that the
sample is only possible to dissipate energy into the environment by radiation.
What is the temperature increase?

(c) Perform the same estimation when the sample is surrounded by a material
with heat conductivity of 300 W/(K·m).

(d) Repeat the set of estimations for a molecular contact with a resistance of
10 MΩ.



Chapter 3

Contacting single molecules:

Experimental techniques

3.1 Introduction

In this chapter we shall present the most common methods for contacting

molecules. Although we are mainly interested in single molecule devices, we

shall also introduce the most basic methods which are in use for contacting

molecular ensembles, since many interesting effects in molecular electronics

have first been observed in devices containing these assemblies. Of course,

this list can never be complete because new methods and variations of

existing ones are constantly being developed. Let us remark that we shall

focus here on methods to contact molecules with metal electrodes. Devices

including at least one semiconductor electrode have also been realized and

examples will be briefly described in section 13.7. Finally, as in the previous

chapter, we shall compare the performance of the various techniques and

indicate their most common applications.

In the fabrication of molecular junctions not only the kind of the elec-

trodes used is crucial, but also the deposition method of the molecules.

Thus, any report about electric current through molecular junctions has

to address the “protocol”, i.e. the precise contacting scheme including the

way how, the moment when, and the conditions under which the molecules

are brought into electric contact with the electrodes. For this reason, we

shall introduce in this chapter the most common deposition methods, then

we shall turn to single-molecule contacting schemes and we shall end by

addressing the ensemble techniques.

Particularly interesting are techniques which enable the fabrication of

three-terminal devices. In these systems, two of the terminals serve to inject

the current and measure the voltage, while the third one acts as a gate that

controls the electrostatic potential in the molecule. The incorporation of
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this third electrode is crucial for revealing the transport mechanism and it

allows us to tune the current through a molecular junction, very much like

in the transistors fabricated with the standard semiconductor technology.

For the sake of completeness, the first part of this chapter will be devoted

to introduce the standard molecules in use in molecular electronics as well

as to describe their basic properties.

3.2 Molecules for molecular electronics

Part of the fascination of molecular electronics lies in the fact that the

molecular toolbox is almost infinite, which makes us believe that it is pos-

sible to find an appropriate molecule for any imaginable application. So

far, however, only a few classes of molecules have been explored in molec-

ular electronics. In this section we shall introduce some of these molecules

and discuss their basic properties. But before doing that, it is convenient

to recall the most common functional elements in digital electronic circuits

that molecules are supposed to mimic. The main elements and their re-

quirements are the following:

• Conducting wires: low resistance, high ampacity.

• Insulators: high resistivity, high breakdown voltage.

• Switches: high on/off resistance ratio, reliable switching, small leak

current in off position.

• Storage elements: long storage time, low loss.

When extending the scope to cover also logic circuits one additionally

has to consider:

• Diodes: high forward/backward current ratio.

• Amplifiers: high gain.

Finally, since most of the existing devices containing molecules are com-

posite devices in which the molecules are connected to either metal or semi-

conductor electrodes yet another function has to be realized:

• Anchoring groups: reliable contact between functional molecular

unit and electrode.

In order to be able to compete with standard semiconductor technology,

the time constants of all devices have to be small, i.e. capacitances and/or
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Fig. 3.1 Examples of hydrocarbons. Left: Ethane with C-C single bond. Middle:
Ethene with one C-C double bond. Right: Ethyne with one C-C triple bond.

resistances have to be small. Since dissipation is already one of the most se-

vere problems in nowadays semiconductor devices, signal sizes, i.e. the level

of the current should be considerably smaller than in those devices. Since

our main interest lies in exploring the fundamental properties of molecular

electronic devices, we shall not pay attention to those requirements for the

rest of this book.

From the very beginning of molecular electronics, it has been become

clear that carbon-based molecules offer the required versatility to realize

most of these desired functionalities. Carbon is the basis of a great variety

of solid structures including graphite, diamond, graphene, and molecules

like the cage-shaped fullerenes and - last but not least - the quasi one-

dimensional nanotubes.

3.2.1 Hydrocarbons

Another very rich class of carbon-based molecules is the hydrocarbons with

the possibility to tune their degree of conjugation. The electronic richness

of both classes stems from the fact that the degree of hybridization of the

molecular orbitals depends on the conformation and the environment. The

carbon atom has four valence electrons which in the case of diamond are

sp3 hybridized corresponding to a tetrahedral arrangement of the bonds in

space. This conformation is realized in the saturated hydrocarbons with

the sum formula CnH2n+2 which are called alkanes.1 Each carbon atom has

four direct neighbors, either C or H atoms and all bonds are σ-bonds, see

Fig. 3.1. Bigger alkanes with n ≥ 4 exist in several isomers, some of which

are ring-shaped (cycloalkanes). Since all electrons are used for forming

chemical bonds they are basically localized and the alkanes are insulating.

1The transport through alkane-based molecular junctions will be discussed in section
14.1.2.
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In graphite the valence electrons are sp2 hybridized in the graphite plane

with an angle of 120o between the bonds. The fourth electronic orbital has

p character with its lobes pointing perpendicular to the graphite plane. The

wave functions of neighboring carbon atoms overlap and form the electronic

π-system, which in case of graphite is responsible for the in plane and

the finite plane-to-plane conductance. The same situation takes place in

the alkene hydrocarbons containing one carbon-carbon double bond, see

Fig. 3.1. Interesting for molecular electronics are polyenes with the sum

formula CnHn+2, which contain more than one double bond. When these

double bonds are alternating with single bonds, the wave function of π-

system is extended over the whole molecule. These molecules are called

conjugated or aromatic molecules. The criterion of aromaticity is 4n + 2

π-electrons.

The carbons in hydrocarbons may furthermore be triply bond in sp-

hybrids forming alkynes. When alternated with single-bonds these linear

bonds are very stable and give also rise to delocalized wave functions as in

the conjugated species with double bonds.

The delocalization of the wave function is broken when the double or

triple bonds do not alternate with single bonds. Furthermore, the con-

jugation can be tuned by introducing an angle between the planes of the

individual cyclic parts. The consequences of breaking the conjugation for

the conductance of a molecular junction will be discussed in section 13.5.

In a very common representation only the bonds are shown: single bonds

as single lines, double bonds as double lines, triple bonds as triple lines. The

carbon atoms themselves are not displayed. The positions of the carbon

atoms are at the kinks between these lines. Neither the hydrogen atoms

nor the bonds to them are drawn. The number and positions of them can

be deduced by fulfilling the valence four at each carbon. As an example we

show in Fig. 3.2(a) the polyene hexatriene (consisting of six carbons and

with three double bonds) in various representations.

As for the alkanes larger species of alkenes and alkynes arrive in several

isomers. When two doubly-bond carbon atoms are surrounded by different

groups one has to distinguish between the cis conformation, in which the

neighboring groups are on the same side of the double bond, and the trans

conformation with the neighbor groups being located on opposite sides of

the double bond. A cis-trans conformation change sets the basis for a class

of molecules with in-built switching functionality.2

2The most popular species of molecular switches are those which can be addressed opti-
cally. Many realizations are based on two ground types of switching (cis/trans conforma-
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Fig. 3.2 Various representations of the hexatriene and the benzene molecule. (a) The
polyene hexatriene is chosen as an example for a conjugated linear hydrocarbon molecule.
(b) The benzene molecule. Top and center panel: Because of the delocalization of the
π-electrons the positions of the double bonds are not defined. Therefore, they are often
symbolized by an inner ring.

The typical conformations of polyenes are zigzag-shaped lines reflecting

the preferred 120o orientation of the sp2 hybrid. When building the angle

to the same side cyclic molecules are formed. The ideal cyclic polyene

geometry is the benzene molecule consisting of six carbons forming planar

ring with perfect conjugation, see Fig. 3.2(b). Since the π-electrons are

delocalized over the whole ring, it is not obvious between which carbons

the double bonds and where the single bonds have to be drawn. Therefore,

one often uses a notation in which the π-electrons are symbolized by an

inner ring.

Molecules consisting of several benzene rings merged along one bond are

called polycyclic aromates. The most prominent examples are naphtalene,

consisting of two benzene rings, anthracene consisting of three rings in a

linear arrangement, tetracene with four and pentacene with five rings in

series. Also angular arrangements of the rings or combinations with rings

containing five carbon are used. Examples are shown in Fig. 3.3. Also

five-rings (cyclopentadiene) and less often seven-rings (cycloheptatriene)

are possible. They are aromatic if six π-electrons per ring exist. In the case

tion switching and ring opening/ring closure). These types of molecules are introduced
in section 20.7.
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Naphtalene Anthracene Tetracene Cyclopentadiene
anion

Cycloheptatriene
cation

PyrenePhenanthreneBiphenyl

Fig. 3.3 Examples of polycyclic molecules.

N N

N

S O

Fig. 3.4 Examples of the most common heterocyclic aromates.

of cyclopentadiene this means that an extra electron has to be added to the

ring to provide a stable π-electron sextet (anion), while in cycloheptatriene

one electron charge has to be withdrawn (cation), see Fig. 3.3.

In heterocyclic molecules one or more carbon atoms are replaced by an

atom of another species. Some heterocycles in use in molecular electron-

ics are depicted in Fig. 3.4. The most common substituents are sulfur,

nitrogen and oxygen. Because of their chemical valence they posses more

electrons than the carbons. In hexagonal rings the additional electrons do

not contribute to the π-system, but may be used for forming bonds to other

atoms, e.g. to the metal electrodes. In five-rings they help stabilizing the

conjugation.

3.2.2 All carbon materials

As mentioned in the beginning, also pure carbon molecules are promising

for molecular electronics. Carbon nanotubes are sheets of graphite which

are rolled together. They have diameters ranging from 1 nm to several tens

of nanometers and length of up to millimeters. Depending on the orienta-

tion of the long axis with respect to the hexagons various nanotubes with
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C60

Fig. 3.5 Line representation of the bonds of the fullerene molecule C60.

varying electronic properties are possible.3 Since defect-free carbon nan-

otubes are ballistic conductors they may serve as interconnects for bridging

long distances.

Finally, the combination of pure carbon hexagons with pentagons, but

without hydrogen sets the basis for the fullerenes. Since the bond length

in pentagons is smaller than in hexagons, these molecules are not planar

but have a curvature. The most famous fullerene is C60 (see Fig. 3.5)

consisting of 20 hexagons and 12 pentagons in the same conformation as

in a soccer ball. It has a completely delocalized π system, making it also a

good candidate for molecular electronics applications.

3.2.3 DNA and DNA derivatives

A completely different class of molecules is based on our genetic information

carrying molecule DNA. It is very tempting to use DNA because of the rich

versatility, the possibility to tune the length from short to very long, and

its self-reproduction properties. After almost two decades of research on

DNA-based electronics it seems now to be clear that DNA by itself is too

poorly conducting for real electronic applications. However, it may serve

as template for assembling better conducting molecules or metal-molecule

combinations. Furthermore, DNA derivatives are under study which seem

to have more fortunate electronic properties. In section 18.3 we shall discuss

the transport properties of DNA-based molecular junctions.

3An excellent review about the conformation and resulting electronic properties of
nanotubes is given in Ref. [103].



52 Molecular Electronics: An Introduction to Theory and Experiment

3.2.4 Metal-molecule contacts: anchoring groups

A common problem in molecular electronics is the difficulty to form stable

and electronically transparent chemical bonds of the molecules to the metal

electrodes. Among the manifold possibilities one particular solution has

been chosen as standard system. This is the combination of a sulfur atom

to gold electrodes. The reason to choose gold lies in the fact that it is

inert to chemical reactions, which allows to prepare clean surfaces and tips.

The drawback of this inertia is the fact that it hardly undergoes chemical

reactions with other species. One of the rare exceptions is sulfur in its thiol

(sulfur-hydrogen) form. This bond is mechanically stable with a force in the

order of 1.5 nN [104]. The thiol-gold binding scheme has successfully been

tested in self-assembled monolayers (SAM) (see below) on flat surfaces as

well as in single-molecule contacts on tips. It provides sufficient electronic

transparency for most applications. This is the reason why alkanedithiols

(i.e. alkanes with thiol endgroups at both ends) and benzenedithiols (a

benzene ring with thiols usually at opposite ends) represent the testbeds

for molecular electronic circuits. The alkanedithiols are the archetypical

insulators, while benzenedithiol is the most simple aromatic molecule which

can be coupled to metal electrodes. However, alternatives to the thiol

bonding scheme are also under study, as it will be described in section 14.2.

3.2.5 Conclusions: molecular functionalities

We want to close this section by pointing out which molecules can be consid-

ered as possible candidates for various electronic components in molecular

circuits:

• Conducting wires: polyenes and alkynes.

• Insulators: alkanes.

• Switches: cis/trans conformation changes of manifold molecules,

the prototype being azobenzene, consisting of two benzene rings

connected via a C=C double bond. In many examples the con-

jugation is reduced in the trans isomer because the π-systems of

both parts are not coplanar. The second prototype of switches are

ring-opening-ring-closure transformations which can be triggered

optically, see section 20.7. In these switches one of the hydrocarbon

rings or heterocycles is opened thereby affecting the conjugation of

the π-system.

• Storage elements: all kinds of molecules with at least two states



Contacting single molecules: Experimental techniques 53

may serve as storage elements, including among others conforma-

tions, redox states, spin states, and vibrational states. Examples

will be discussed in Chapters 13, 15, and 16.

• Diodes: molecules which consist of two different, and electronically

decoupled parts. An example is the famous suggestion by Aviram

and Ratner [8] mentioned in the first chapter.

• Amplifiers: in principle all molecules the electronic levels of which

can be tuned by a gate electrode might act as amplifiers. Although

electronic three-terminal devices following this principle of bipolar

transistors have been demonstrated, they do not provide current

amplification yet.

• Anchoring groups: thiols, amines, nitros, cyanos or heterocycles

with the substituent atoms serving as linkers to the metal electrodes

(see 14.2).

3.3 Deposition of molecules

Molecular deposition methods are manifold because of the rich variety of

molecules in use. In most experiments the molecules are deposited from

solution onto the metal films forming the electrodes. Various solvents and

a wide range of concentrations are used. The molecules are allowed to

chemisorb to the metal electrodes. After an incubation time the molecular

solution is rinsed away with pure solvent. For low-temperature measure-

ments the devices are then dried in a gas (nitrogen) flow. In some cases

the electronic measurements are performed without drying, in solution -

either in presence of the pure solvent or with the molecular solution. A

variation of this deposition from solution is spin-coating. A drop of the

molecular solution is given on the substrate which is mounted on the chuck

of spin-coater. Upon rotation of the substrate the solution is wide-spread

over the wafer such that a very small concentration of molecules on the sub-

strate is achieved. As an example we mention individual carbon nanotubes,

which after spin-coating can be localized by atomic force microscopy or

other techniques. A particular nanotube can subsequently be contacted via

lithographically defined metal electrodes.

Many molecules, in particular rod-like molecules form self-assembled

monolayers (SAM) on metal surfaces. For that purpose the substrate

covered with the metal layer is dipped into the molecular solution. The

mostly amphiphilic molecules are equipped with one anchoring group that
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facilitates the chemical adsorption on the surface. The most common com-

bination for molecular electronics devices is thiol-terminated molecules for

adsorption on gold surfaces. The molecules organize such that they form

ordered monolayers (see Fig. 3.6). This procedure sounds simple, but in

practice many parameters have to be well controlled for obtaining repro-

ducible SAM quality. A recent review of this technique is given in Ref. [105].

Another highly developed technique is monolayer formation via the

Langmuir-Blodgett (LB) technique [106, 107]. A LB film consists of one

or more monolayers of an organic material, deposited from the surface of

a liquid onto a metal surface by immersing the solid substrate into the liq-

uid. The molecules form a monolayer on the surface of the solution. The

monolayer is transferred to the substrate when dipping it into the solu-

tion. Upon repetition of the immersion a multilayer consisting of several

monolayers and, thus films with very accurate thickness can be formed (see

Fig. 3.6). The film formation relies on the fact that amphiphilic molecules

with a hydrophilic head and a hydrophobic tail are used. These molecules

assemble vertically onto the substrate. For other molecules a horizontal

adsorption may be favored, yielding low-density films. The density and or-

dering can be enhanced by concentrating the molecular layer on the surface

of the solution with a spatula before the substrate is dipped into it.

In particular, for the preparation of samples for low-temperature mea-

surements, remainders of the solvent may hamper the formation of clean

metal-molecule-metal junctions. Therefore, alternative “dry” deposition

methods have been developed. Gaseous molecules (like e.g. hydrogen, oxy-

gen, nitrogen, carbonmonoxide, methane) can be deposited directly from

the gas phase by condensation on the cold metal electrodes. Very stable

molecules, like the fullerenes or DNA bases may be evaporated thermally

from various sources including Knudsen cells or tungsten boats, which are

Joule heated by driving a current through them. More sensitive molecules

can be deposited using electrospray ionization (ESI). The method starts

with a solution in which the molecules to be ionized are dissolved. An

electrospray of this solution is created by a strong electric field, which orig-

inates from a voltage applied between the spray needle and the end of a

capillary. Due to the strong field at the tip apex, charged droplets are

created, which are directed towards the capillary, which forms the connec-

tion to a vacuum chamber where the already prepared metal electrodes are

located [108]. With this method well-controlled submonolayer molecular

films may be deposited onto substrates in ultra-high vacuum (UHV).
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Au-covered substrate

Molecular solution
(thiol terminated)

Adsorption

Organization

Fig. 3.6 Top: Formation of a self-assembled monolayer (SAM) shown for two species of
alkanethiols on a gold-covered substrate. The substrate is immersed into the molecular
solution. The molecules adsorb assemble with the thiol-terminated end on the substrate.
After an incubation time a self-assembled monolayer is formed. Bottom: Fabrication of a
Langmuir-Blodgett (LB) film. The left panel shows a droplet of an amphiphilic molecule
dissolved in a volatile solvent. It is spread on the water-air interface of the trough. The
solvent evaporates and leaves a diluted and disordered monolayer behind which is then
compressed with the help of a moving barrier. The right panel shows how the monolayer
is transferred onto the substrate. Reprinted with permission from Ref. [106].

3.4 Contacting single molecules

The fabrication of single molecule electronic devices is a difficult task. The

main problem lies in the size of the molecules, which is usually smaller than

the resolution of lithographic methods. Thus, sophisticated techniques have
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to be applied for forming nanometer-size metal gaps. Most of the longer

molecules are not conductive enough to be studied in single-molecule de-

vices, but are rather investigated in ensembles.4 Furthermore, the coupling

between the molecule and the electrodes plays an important role. Another

consequence of the small size is the difficulty to image the geometry of the

junction and to prove that one deals indeed with a single-molecule device.

So far, no method exists which allows one to perform systematic measure-

ments of the electronic transport and to characterize the geometry of a

given junction with atomic precision. Therefore, several methods are used

and are permanently improved. This enables to distinguish between the

properties of the metal-molecule combination and the influence of the con-

tacting scheme. The methods may be divided into two main classes. The

first one produces rather stable devices, however, the geometry of it cannot

be varied and contamination cannot be excluded. Besides the stability, the

possibility to add a third electrode is an important advantage. For that

purpose, metal electrodes with small volume are desirable for reducing the

shielding of the electric field. The second class enables clean contacts and

modification of the junction geometry, but offers only limited stability.

The majority of methods in use for contacting individual molecules are

based on one of the techniques described in the previous chapter, since

contacting single molecules requires at least one atomically fine metal elec-

trode.

3.4.1 Electromigration technique

The electromigration technique described in the previous chapter is suc-

cessfully used for the fabrication of pairs of metal electrodes for contact-

ing single molecules [21, 109, 110]. For this purpose, the electromigration

has to be stopped when the contact is broken and the electrodes form a

nanometer-size gap. In vacuum this would be signaled by a sudden increase

of the resistance above the typical resistance of a single-atom contact. How-

ever, because clean interfaces are needed for achieving well-shaped single-

molecule junctions, the molecules are usually deposited - by one of the

methods mentioned above - before the electromigration process. This com-

plicates the control sequence needed for stopping the electromigration at

the right moment, because molecules short-cut the gap resistance. There-

fore, many junctions are prepared in parallel and the statistical behavior

is determined. Since the metal wire is at ambient conditions before the

4The transport properties of long molecules will be addressed in Chapter 18.
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Fig. 3.7 Three-terminal devices and possible artifacts in molecular contacts. Top panel:

Schematic diagram of electromigration gap and measurement configuration. Bottom

panel : Six models describing possible geometries formed within the electromigration gap
by molecule(s) and contaminant metal particles. (a) Single-molecule contact as desired.
The molecule is chemisorbed with both ends at the metal electrodes. (b) Single-molecule
in the vacuum gap between the electrodes. The molecule is not chemisorbed. (c) Metal-

nanoparticle bridging the gap between the electrodes. (d) Multi-molecule contact. (e)
The molecules are coupled indirectly via a metal nanoparticle to the electrodes. (f)
The molecules are not chemisorbed to the electrodes but to a metal nanoparticle. After
Ref. [109].

deposition of the molecules, all kinds of contaminants might be present and

have to be carefully removed before deposition of the molecules.

With this technique, all kinds of current-voltage characteristics have

been measured ranging from ohmic behavior to Coulomb-blockade be-

havior.5 The tunnel contacts may be formed by vacuum gaps (without

molecules), single-molecule or multi-molecule contacts. One particular

problem of the method is the risk to form small metal grains, the transport

5The various possible transport mechanisms will be described in Chapters 13 and 15.
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properties of which resemble molecular contacts [109, 110]. Some examples

of possible contact geometries are given in Fig. 3.7. Finally, the metal grain

may be contacted to both electrodes via one or several molecules. Thus, the

yield of this method, i.e. the probability to have a single-molecule contact

is in the order of a few percent only. On the other hand, the junctions are

extremely stable and well suited for systematic studies of their transport

behavior at varying temperature or magnetic field. Because the electrodes

are in direct contact to a substrate, it can be used as a back-gate form-

ing a three-terminal device.6 By applying a gate voltage the transport

mechanism can be detected and at least partial information of the contact

geometry can be obtained.

3.4.2 Molecular contacts using the transmission electron

microscope

In order to obtain very strong coupling between the metal electrodes and

the molecule, a particular method has been put forward. It includes further-

more the possibility to image the contact geometry, because the molecules

form suspended junctions over slits in thin membranes and can thus be

inspected by transmission electron microscopy (TEM). Several variations

have been reported, which are optimized for the various molecules. The

common point is that the metal electrodes, which have been pre-patterned

on a thin membrane or a TEM inspection grid, are rapidly heated up by

an intensive electron or laser beam above their melting temperature. Con-

tamination atoms are distilled out of the electrodes and defects are driven

out as well. The molecules are brought into contact while the metal is

liquid. During recrystallization parts of the molecule are soldered into the

electrodes resulting in small contact resistances.

This method has been demonstrated to work for long molecules like

DNA and carbon nanotubes [112] as well as for chains of clusters [113] (see

Fig. 3.8). Possible risks are, of course, destruction of the molecule by the

high-energy impact of the laser or electron beam or the hot metal electrodes

as well as formation of metal whiskers shorting the molecular junction.

6The physical results obtained with these devices are discussed in particular in Chapters
15 and 16.
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Fig. 3.8 Contacting individual molecules in a transmission electron microscope. Top:

Schematics of the sample geometry. A long molecule is suspended over a slit in a thin
membrane and soldered at its ends to two metal electrodes. Bottom: Transmission
electronic micrograph (TEM) of nanotubes, suspended across a slit between two metallic
pads, and detailed view of the contact region showing the metal molten by the laser beam.
Reprinted with permission from [112]. Copyright 2003 by the American Physical Society.

3.4.3 Gold nanoparticle dumbbells

A very elegant method for overcoming the size mismatch between the res-

olution of lithographic methods in use for the definition of the electrodes

and the molecules has been described by T. Dadosh et al. [114]. The au-

thors use gold nanoparticles (GNPs) with a typical diameter of 10 nm.

The molecules to be contacted are functionalized at both ends with thiol

anchoring groups, which have a high affinity to gold. By these thiol bonds

the molecules are attached to the GNPs such that two of them are com-

bined to form a dumbbell. Those dumbbells now have a suitable size for

bridging lithographically defined nanogaps and can be deposited onto them

straightforwardly. A further advantage of the method is that the statisti-

cal behavior of the molecules in contact with the GNPs can be studied by

various non-contact methods such as optical spectroscopic measurements

before deposition onto the electrodes (see Fig. 3.9).
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(a)

(b)

(c)

Fig. 3.9 (a) The structures of three molecules studied with the dumbbell tech-
nique: 1,4-benzenedimethanethiol (BDMT), 4,4′-biphenyldithiol (BPD) and bis-(4-
mercaptophenyl)-ether (BPE). (b) The dimer contacting scheme. (c) TEM image of
a BDMT dimer made of 10-nm colloidal gold particles. The separation between the
two particles corresponds approximately to the BDMT length (0.9 nm). Adapted with
permission from MacMillan Publishers Ltd: Nature [114], copyright 2005.

3.4.4 Scanning probe techniques

Conceptually, the most straightforward method for contacting a singe

molecule with a fine tip is to deposit the molecule on a metallic substrate

and to approach the molecule with the tip until one or several atoms of the

molecule are chemisorbed to the tip. However, this is not as simple as it

sounds and this method is only suitable for certain molecules. Even if the

process is successful, the interpretation of the subsequent conductance mea-

surements is not simple because in STM the electronic signal is convoluted

with the topographic information. Furthermore, the presence of the tip

may disturb or even destroy the molecule.7 Therefore, various variations

of the STM technique have been developed. They all have in common the

difficulty to add a third electrode for gating. A certain but nonlocal gate

effect can be achieved via electrochemical gates (see below). STM-based

techniques are particularly suitable for gathering statistical information be-

cause many contacts can be studied in relatively short time. As already

explained in the previous chapter, the price for the high flexibility is the

low stability and the, in general, short lifetimes of the junctions.

3.4.4.1 Direct contact

The direct contacting scheme mentioned above requires first a careful prepa-

ration and characterization of the surface. Subsequently a sub-monolayer

of the molecules is deposited. For stable molecules such as the fullerene

7This can be checked by comparing topographic and spectroscopic results, though.
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C60 this can be performed via evaporation [115, 116]. The surface is then

scanned and a suitable molecule is selected. Depending on the physical

question to study, an isolated molecule or a member of a larger aggregate

can be chosen. As described in the previous chapter, for single-atom con-

tacts, the formation of a single-molecule chemical junction is signaled by a

sudden increase of the conductance. When this is achieved, the approach

can be stopped and spectroscopic investigations can be performed. From

the electronic point of view this contacting method usually results in asym-

metric contacts, meaning that the molecule is electronically better coupled

to the substrate than to the tip. This is important for the interpretation of

the transport properties, which will be discussed in Part 4. Often the cou-

pling to the substrate is in the “strong” regime while the electrons have to

tunnel from the molecule onto the tip and vice versa, i.e. it is in the “weak

coupling” regime. Therefore, this method is most suitable for molecules

which are only loosely bound to the substrate, e.g. by a single atom or a

few atoms, like for C60, where the binding is given through one pentagon

or one hexagon of carbon atoms.

3.4.4.2 Contacting rod-like molecules

Rod-like or planar molecules have the tendency to lay flat on the surface.

In that case the current will not flow along the molecule, but most probably

transverse it perpendicularly finding the path of smallest resistance. For

those molecules several variations of the scanning probe technique have

been put forward. The first method is particularly suitable for imaging

and spectroscopy on the molecular orbitals [117]. After preparation of the

clean metallic surface, a monomolecular layer of an insulator, e.g. a salt

is deposited. The molecules are then evaporated on top of this thin layer

which acts as a tunnel barrier between substrate and molecule.

Another possibility is to directly deposit the molecules onto the metal

surface, but to design the molecules such that they have edge atoms with

high chemical affinity to the tip metal. The tip is then approached to one of

these atoms until a chemical bond is formed. Upon carefully withdrawing

the tip the molecule is peeled off the substrate, as illustrated in Fig. 3.10.

During the peel-off process spectroscopic measurements can be performed

which enables to identify the varying charge-transport mechanisms and to

quantify the coupling strength [118, 119]. This will be explained in more

detail in section 14.4.

The spatial resolution of the STM imaging can be enhanced by suit-
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1 2 3 4

Fig. 3.10 Schematics of the contact formation process of a molecular junction with the
STM. Four stages of the contact formation during approach (1,2) and retraction (3,4) are
shown. At (3) the chemical bond between the contact atom and the substrate is broken
and the molecular wire is formed. Reprinted with permission from [119]. Copyright 2008
IOP Publishing Ltd.

able functionalization of the STM tip, e.g. with hydrogen molecules [122].

Recently, it has been demonstrated that molecular orbitals can be even

better resolved by atomic force microscopy when the tips are terminated

with carbon monoxide (CO) molecules [120, 121].

Finally, an elegant way to contact rod-like molecules is to embed the

molecules into a matrix of less conducting molecules, such that the long axis

of the molecules is almost perpendicular to the substrate, see Fig. 3.11(a).

With the techniques described in section 3.3 a self-assembled layer of weakly

conducting molecules is prepared. A standard combination would be alka-

nes with one thiol anchor group on a gold substrate. The thiol binds chem-

ically to the gold releasing the non-thiolated ends to the top of the SAM.

The properties of the SAM are chosen such that free places or defects ex-

ist at which the study molecule can be incorporated. When scanning the

sample with an STM tip the positions of the better conducting molecules

can be located and spectroscopic measurements can be performed [123].

In a variation of this technique the study molecules are equipped with

two highly reacting anchoring groups, e.g. thiols. One end attaches to

the gold surface, the other one pointing to the top of the SAM. These

thiols can the be used as binding places for gold nanoparticles (GNPs) , see

Fig. 3.11(b). Depending on the density of the study molecule and the size

of the GNPs, one or several molecules are contacted with the same GNP. In

this way a very stable molecular junction consisting of substrate, molecule

and GNP is fabricated. The prepared sample is then investigated with

an STM [124] or a conductive AFM [125]. The tip is either brought into

strong contact with the GNP, such that the tip-GNP contact has negligible

resistance. Or the transport properties due to the presence of the GNP have

to be incorporated in modeling the transport for deducing the properties of

the molecular junction. The obvious advantage of this latter method is the

high stability of the device. Both variations share the in-built possibility
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Fig. 3.11 (a) Scanning tunneling microscopy (STM) study of electron transport through
a target molecule inserted into an ordered array of reference molecules. (b) STM or
conducting atomic force microscopy (AFM) measurement of conductance of a molecule
with one end attached to a substrate and the other end bound to a metal nanoparticle.
After Ref. [40].

to perform statistical investigations because hundreds of junctions can be

prepared on the same chip. The main drawbacks are the complex sample

preparation and the limited versatility because successful embedding into

the matrix is not obvious.8

3.4.4.3 STM in liquid environment

A very powerful tool is the use of an STM in liquid environment. The

surface and the tip are prepared as usual for forming atomic contacts, but

immersed into a solvent, in which the molecules under study can be dis-

solved. The tip can be sharpened and covered with substrate atoms by

repeated indentation into the substrate. Then molecules are added to the

solvent. After an incubation time needed for chemical binding to the sub-

strate, the tip is repeatedly approached to the surface and withdrawn while

the conductance is recorded. Upon closing the gap a metal-molecule-metal

junction consisting of several molecules is formed. When withdrawing the

tip, the molecules loose the contact to the electrodes not all at once but in

an irregular series. The result is a step-like decrease of the conductance as

a function of the distance which varies from repetition to repetition. After

breaking the contact to the last molecule, a new junction can be formed.

The molecules which get stuck to either the substrate or the tip are re-

placed by fresh molecules diffusing in from the solution. After a while a

8Examples of transport measurements performed with this technique will be described
in Chapter 13.
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new position on the substrate can be chosen. The method is very suitable

for gathering statistical information about the preferred conductance values

of molecular junctions. However, the stability of the molecular junctions is

usually not sufficient for spectroscopic measurements [36, 126].9

3.4.5 Mechanically controllable break-junctions (MCBJs)

Mechanically controllable break-junctions (MCBJs) (see section 2.6) are

used for contacting molecules in various environments. For measurements

at room temperature under ambient conditions, the molecules are usually

deposited from solution. After a reaction period, the remainder of the

molecular solution is rinsed in pure solvent and blew dry with nitrogen.

At variance to the electromigrated junctions, the molecules are usually de-

posited after forming the electrode gap by breaking the MCBJ. For polar-

izable molecules it might be helpful to apply a voltage in order to pull one

or several molecules into the junction. The junction is then carefully closed

until a measurable current flows. Depending on the molecule, the closing

traces show plateaus which signal the formation of a molecular junction

containing one or several molecules. At room temperature the electrode

atoms are rather mobile and the molecular junctions have only limited life-

time of a few minutes. This is, however, a much longer time span than

usually achieved with STM setups and is sufficient for measuring I-V char-

acteristics. On the other hand, only limited statistical information can be

acquired because of aging effects of the junctions. After several opening or

closing cycles no molecular junctions form any more. For recording con-

ductance histograms it is advantageous to perform the measurements in

liquid environment, as it was first proposed by Grüter et al. [78]. Fig. 3.12

shows a slightly different setup. A pipette is pressed onto the inner part

of MCBJ electrodes and sealed with gasket made of a flexible and solvent

resistant material (polydimethylsiloxane (PDMS)). The molecular solution

is continuously pulled through the pipette, while the MCBJ is opened and

closed and the conductance is recorded. Molecules which leave the junc-

tions are replaced by fresh ones from the solution as discussed earlier for

STM setups.

Much longer lifetimes of molecular junctions can be achieved at low

temperature. Furthermore, the thermal smearing of the electronic proper-

ties is considerably reduced. For that purpose several protocols have been

9This technique has been applied for transport measurements through DNA. Examples
will be discussed in section 18.3.
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Fig. 3.12 A PDMS-sealed glass pipette, in which the molecular solution circulates, is
pressed onto the central part of MCBJ chip with the help of a plug screwed to the sample
holder. The electrical contacts are realized in this case via spring-borne contacts outside
the gasket.

developed. When starting with a deposition of the molecules from solution,

the solvent and any humidity has to be carefully removed in order to obtain

clean molecular junctions without tunnel barriers due to ice formation. For

this purpose it is helpful to make use of strong metal molecule binding: A

molecular junction is formed at room temperature. When breaking it again

it may happen that the breaking does not occur between the molecule and

the metal electrode, but that one or several gold atoms remain attached to

the molecule leaving a gap between two metal atoms. The junction is then

cooled down and the metal-metal gap is closed again. Of course, water

films or other kinds of contamination may form on the metal surfaces as

well, but they can be pushed out of the contact such that a good electrical

contact can be established.

The problem of ice formation can be solved when forming the electrode

gap at low temperatures under cryogenic vacuum conditions. Even though

the surface of the native break-junction might be covered with water or

other contaminants fresh and clean metal tips are formed. Small molecules,

which at ambient conditions are in the gaseous phase (like e.g. hydrogen,

oxygen, carbonmonoxide, methane), may be condensed directly onto the

cold MCBJ electrodes with a nanometer-size separation [127]. Other small

molecules with low evaporation temperature (e.g. water) are first vaporized

and then condensed. Similarly, stable molecules like the fullerenes can be

evaporated on an opened MCBJ at low temperature [128].
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3.5 Contacting molecular ensembles

One main problem in single-molecule studies lies in the fact that the

electronic transport depends crucially on the exact coupling between the

molecule and the metal electrodes, i.e. on the precise atomic arrangement

of the contacts.10 As a result pronounced sample-to-sample and junction-

to-junction variations are observed. Repeated measurements are needed to

deduce the typical behavior of a given metal-molecule system. The influence

of varying contact geometry averages out in devices containing ensembles

of molecules. Furthermore, these ensembles are contacted with rigid and

robust electrodes. These devices usually provide better mechanical stability

and longer life-times allowing long-time systematic measurements and the

variation of outer control parameters like temperature or magnetic field.

However, when interpreting data recorded on ensemble devices one has

to bear in mind possible interaction effects between the molecules them-

selves which might affect their electronic properties. Furthermore, also

without interaction effects it is not straightforward to infer the single-

molecule junction behavior from the ensemble because the number of

molecules which contribute to the transport may be smaller than the total

number of molecules in the ensemble, if not all are contacted equally. For

instance, some of the molecules forming the ensemble might be in strong

coupling to the electrodes while others are only weakly coupled. As a result

the transport characteristics may show superpositions of various transport

mechanisms. Furthermore, ensemble structures are necessarily larger in

space than single-molecule devices giving limits to their maximum integra-

tion density. From the point of view of fundamental research the most

promising strategy is to compare the results from single-molecule contact

schemes with ensemble measurements for revealing the robust properties

of the given molecule-metal system. We shall restrict ourselves to methods

suitable for small ensembles ranging from roughly a few hundred molecules

to several thousand molecules. Very efficient methods have been developed

for contacting large area molecular films, which are however, out of scope

of this monograph.

3.5.1 Nanopores

One technique which produces rather small ensembles of molecules uses

pores in thin freestanding membranes. The method has been used in

10This issue will be addressed in Chapters 13 and 14.
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the 1980’s and 1990’s for fabricating nanometer-sized metallic contacts for

point contact spectroscopy [129]. However, no single-atom contacts can be

achieved. A single crystalline silicon wafer is covered from both sides with

a thin layer of silicon nitride with a typical thickness of 50 nm to 100 nm.

The rear side of the wafer is patterned by optical lithography with squares

of typical lateral size of 100 μm. Using first plasma etching for attacking

through the nitride, then wet-etching in hydrofluoric acid the squares are

etched through the bulk of the silicon wafer. The wet etching process is

anisotropic. It attacks particular crystal orientations of the silicon much

faster than others. As a result inclined etch walls are formed thereby re-

ducing the size of the squares. The inclined walls become covered with a

native silicon oxide layer during the following process steps. Furthermore,

the acid attacks silicon much faster than silicon nitride. The process can

thus be stopped controllably when a suspended silicon nitride membrane is

obtained. Now the membranes are patterned from the front side via elec-

tron beam lithography with a small dot in each membrane. Using plasma

etching a small pore is drilled into the membrane with a typical diameter

of 10 to 50 nm.

The formation of molecular junctions requires three further steps [130].

First, a metal electrode - usually gold - is evaporated from the top side.

The device is then immersed into the molecular solution until a SAM has

formed. After a suitable reaction time which depends on the molecule-

metal combination the sample is rinsed and dried and the second metal

electrode is deposited by evaporation onto the rear side, see Fig. 3.13. Care

has to be taken that the SAM is not destroyed by thermal impact com-

ing from the metal atoms. With this technique thermally stable molecular

ensemble junctions are obtained which are particularly suitable for studies

of the temperature dependence of the transport properties. A difficulty of

the method lies in the fact that the quality of the first deposited electrode

cannot be characterized; it might be covered with water or other contami-

nants which could hamper the formation of a high-quality SAM. A similar

objection was made concerning the second molecule-metal interface: The

molecular layer is exposed to ambient conditions before the deposition of

the second electrode.11

11We will discuss data recorded with this sample species in Chapter 13.
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Fig. 3.13 Molecular junctions in nanopores. A small molecular ensemble is contacted
with metal electrodes in a nanometer-sized pore in a silicon-nitride membrane. Top
schematic is the cross section of a silicon wafer with a nanometer-scale pore etched
through a suspended silicon nitride membrane. Middle and bottom schematics show a
Au-SAM-Au junction formed in the pore area. The structure of octanethiol is shown as
an example. Reprinted with permission from [130]. Copyright 2003 by the American
Physical Society.

3.5.2 Shadow masks

Another method to fabricate small ensemble devices uses the self-alignment

property of shadow masks. The sample fabrication scheme is shown in

Fig. 3.14. Via e-beam lithography a suspended mask is produced with

a geometry of a wire that is interrupted by a small gap. A first metal

layer is evaporated perpendicularly through this mask. The next step is

the deposition of a SAM of the molecules. Alternatively molecules can

be evaporated on top of the metal under the same angle. Subsequently a

second metal layer is evaporated under an inclined angle such that the edge

of the metal film covers the molecular layer. The resolution limits of the

lithography used for the preparation of the mask restrict the contact size

to roughly 50 nm in width. The overlay length is given by the evaporation

angle and is usually chosen in the range of 20 to 50 nm. It has been
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Fig. 3.14 Production of shadow mask on silicon substrate. (a) The shadow mask is
defined via electron-beam lithography in a Si3N4/SiO2 double layer using two dry etching
steps. (b) The bridge in the center of the structure is used to separate two metal
contacts, which are evaporated vertically onto the substrate. A SAM is deposited on
both electrodes. In a second step metal is evaporated under an angle that allows a small
overlap between this top electrode and one of the bottom electrodes. If this overlap is
small enough, transport through single or a few molecules can be possibly measured.
Reprinted with permission from [111]. Copyright 2005, American Institute of Physics.

shown that the smoothness of the first metal layer is mandatory for avoiding

shortcuts between both electrodes. A second problem of this method is the

risk of destroying the SAM by the heat impact during the evaporation of

the top electrode or of creating metal grains [109].

3.5.3 Conductive polymer electrodes

These problems are partially overcome by a technique described by Akker-

man et al. [131]. The fabrication method is shown in Fig. 3.15. In a first

lithography step metal lines are fabricated and then a second resist is spread

over the sample. In the next step this resist is patterned with holes via

electron-beam lithography. The molecular ensemble is deposited into these

holes. Next, the whole substrate is overcast with a highly conductive poly-

mer which provides the second electrode. The polymer is finally capped

by a planar top metal electrode. The result is a very robust molecular

junction because the SAM remains embedded into the resist. Furthermore,

the deposition of the conductive polymer is less aggressive to the SAM

than standard metal deposition techniques. At variance to most of the

previously described methods the contact scheme intrinsically gives rise to

asymmetric contacts.12 The fact that at least one of the metal electrodes

is not in direct contact with the molecular ensemble can be helpful when

exciting the molecular system optically, as described in Chapter 20.

12The importance of the metal-molecule contact shall be discussed in detail in section
14.2.
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Fig. 3.15 Processing steps of a large-area molecular junction. (a) Gold electrodes are
vapor-deposited on a silicon wafer and a photoresist is spin-coated. (b) Holes are pho-
tolithographically defined in the photoresist. (c) An alkane dithiolSAM is sandwiched
between a gold bottom electrode and the highly conductive polymer PEDOT:PSS as
a top electrode. (d) The junction is completed by vapor-deposition of gold through a
shadow mask, which acts as a self-aligned etching mask during reactive ion etching of the
PEDOT:PSS. The dimensions for these large-area molecular diodes range from 10 to 100
mm in diameter. Reprinted with permission from MacMillan Publishers Ltd: Nature
[131], copyright 2006.

3.5.4 Microtransfer printing

A method which combines gentle deposition of the top electrode with the

ability to fabricate arrays of molecular junctions with similar contact prop-

erties is given by the micro- or nanotransfer printing technique. It produces

stable contacts on a substrate and involves also the formation of a SAM

(Fig. 3.16). At first an array of bottom electrodes is fabricated using litho-

graphic methods or evaporation through a mechanical mask. Subsequently

a SAM of the molecules to study is formed on the substrate. The molecules

are functionalized at their top ends with an anchoring group suitable for

binding to the metal of the top electrode. In a separate fabrication line a

stamp made of a flexible material such as PDMS is fabricated. The stamp is

topographically patterned in the geometry of the top electrodes. The metal

of the top electrode is evaporated onto it. This stamp is then pressed onto

the substrate. During this step the metal is transferred from the stamp to
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Fig. 3.16 Production of nanoscale features by nano transfer printing (nTP). (a) The
features are defined by electron beam lithography in a polymethylmethacrylate (PMMA)
double layer on a silicon substrate. The elastomeric polydimethylsiloxane (PDMS) is cast
into the structures and cured at 60o C. Fluorination of the substrate before this step
ensures easy separation of PDMS and substrate after the curing. (b) Layers of 10-30 nm

metal gold are evaporated onto the PDMS stamp. (c) Alkanedithiols form a monolayer
on a GaAs substrate. The gold on the PDMS stamp binds to this monolayer and is
transferred to the substrate. (d) The patterned gold film that forms is transferred on
top of the GaAs substrate. Good binding to the monolayer is proved by the scotch
tape test. Reprinted with permission from [111]. Copyright 2005, American Institute of
Physics.

the substrate, thus forming an array of molecular junctions. This technique

enables junctions with areas ranging from less than a micrometer squared -

and thus named nanotransfer printing (nTP) - up to several hundred square

micrometers - microtransfer printing (μTP) [111, 132]. Besides the in-built

statistical information of molecular ensembles the quality of the SAM and

the contacts can be investigated by comparing contacts with varying area.

Furthermore, the contacts may be gated by applying voltages to the sub-

strate.

3.5.5 Gold nanoparticle arrays

Finally, it is possible to form networks of single-molecule junctions combin-

ing the robustness and statistical richness of ensemble studies with the fact

that each junction is formed by a single molecule or a very small number of

molecules only [133, 134]. The fabrication scheme is shown in Fig. 3.17. At

first gold nanoparticles (GNP) with a diameter of roughly 10 nanometers
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Fig. 3.17 Contacting molecular networks with gold nanoparticles. (a) Electron mi-
croscopy image of a device: two square-shaped gold contacts were evaporated on top
of a nanoparticle array line of width w. (b) Electron micrographs of the array struc-
ture before and after OPE (oligo-phenylene-ethynylene) exchange. (c) Schematic of the
molecular-exchange process. Left : self-assembled alkanethiol-capped nanoparticles be-
fore exchange. Right : During the exchange process. The OPE molecules displace part of
the alkane chains and interlink neighboring nanoparticles to form a network of molecular
junctions. Adapted with permission from [133]. Copyright Wiley-VCH Verlag GmbH &
Co. KGaA.

are covered with a spherical ligand shell. The thickness of the ligand shell

corresponds to half the length of the molecules which shall be assembled

between the GNPs later. A dense-packed, well-ordered, two-dimensional

array with an approximate size of 10 μm × 20 μm of these dressed GNPs

is deposited onto a substrate which is subsequently patterned with metallic

electrodes for performing the contacts to the measurement circuit. The ar-

ray contains approximately a million nanoparticles. The molecules forming

the ligand shell can be replaced with an exchange reaction by the molecules

to be studied electrically. By using network analysis methods the typical

properties of an individual molecular junction can be at least partially de-

duced from the behavior of the network. Besides the particular stability

and in-built ensemble averaging, this method is suitable for the investiga-

tion of very small signals, such as electrical response to optical activation

of photochromic molecules [135], see section 20.7.
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3.6 Exercises

3.1 Molecular ensembles: Estimate the number of alkanedithiol molecules in
the cross section of a nanopore with a diameter of 50 nm (see section 3.5.1). For
estimating the diameter of a molecule assume a C-C bond length of 0.15 nm, a
C-H bond length of 0.11 nm and a bonding angle of 110o between adjacent C-C
bonds. Furthermore, assume a densely packed SAM in a triangular arrangement.

3.2 Molecular arrays: Let us consider the technique shown in Fig. 3.17. As-
sume that the exchange reaction was perfect. Furthermore, assume that each
pair of nanoparticles is connected via a single molecule. How many molecules
will contribute to the transport if the array has a size of 20 μm × 10 μm. What
is the effective circuit diagram of this network? What happens when the exchange
reaction has a yield of 50%? What is the minimum rate for the exchange reaction
in order to obtain at least one conducting path between the ends of the array
(percolation threshold)?

3.3 Optical activation of molecules: In Chapter 20 we will present experi-
ments in which molecular contacts were excited by light irradiation. Therefore, we
want to estimate here the probability that a molecule in contact with metal elec-
trodes will be hit by a photon of the light source. Assume a single decanedithiol
molecule which spans the gap between two gold electrodes. The electrodes have
been fabricated with the MCBJ technique and have a cross section of 100 nm
times 100 nm. The break forms a slit with perfectly flat walls perpendicular to
the direction of light irradiation. The width of the slit is given by the length of
the molecule. Typical light intensities of the experiments are P = 1 mW focused
on an area of s = 100 μm2 with a light wavelength of λ = 400 nm. Consider
different positions of the molecule in the slit: (a) Top of the slit. (b) Center of
the slit. (c) Bottom of the slit.
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Chapter 4

The scattering approach to

phase-coherent transport in

nanocontacts

4.1 Introduction

The electrical conduction in macroscopic metallic wires is described by

Ohm’s law, which establishes that the current is proportional to the ap-

plied voltage. The constant of proportionality is simply the conductance,

G, which for a given sample grows linearly with the transverse area S and

it is inversely proportional to its length L, i.e.

G = σ
S

L
, (4.1)

where σ is the conductivity of the sample, which is a material specific

property. The conductance will be a key quantity in our analysis of the

transport properties of atomic and molecular junctions. However, concepts

like Ohm’s law are not applicable at the atomic scale. Atomic-size conduc-

tors are a limiting case of mesoscopic systems in which quantum coherence

plays a central role in the transport properties.

In mesoscopic systems one can identify different transport regimes ac-

cording to the relative size of various length scales. These scales are, in turn,

determined by different scattering mechanisms. A fundamental length scale

is the phase-coherence length, Lϕ, which measures the distance over which

the information about the phase of the electron wave function is preserved.

Phase coherence can be destroyed by inelastic scattering mechanisms such

as electron-electron and electron-phonon interactions. Scattering of elec-

trons by magnetic impurities, with internal degrees of freedom, also de-

grades the phase but elastic scattering by (static) non-magnetic impurities

does not affect the coherence length. Information on the coherence length

can be obtained experimentally, for instance, by studying the so-called weak

localization [50]. A typical value for Au at T = 1K is around 1μm [136],

77

  Star Diwa



78 Molecular Electronics: An Introduction to Theory and Experiment

diffusive ballistic

Fig. 4.1 Schematic illustration of a diffusive (left) and ballistic (right) conductor.

while at room temperature it becomes of the order of a few tens of nm.

The mesoscopic regime is determined by the condition L < Lϕ, where L is

a typical length scale of our sample.

Another important length scale is the elastic mean free path �, which

roughly measures the distance between elastic collisions with static impu-

rities. The regime � � L is called diffusive. In a semi-classical picture

the electron motion in this regime can be viewed as a random walk of step

size � among the impurities. On the other hand, when � > L we reach

the ballistic regime in which the electron momentum can be assumed to be

constant and only limited by scattering with the boundaries of the sample.

These two regimes are illustrated in Fig. 4.1.

In the previous discussion we have implicitly assumed that the typical

dimensions of the sample are much larger than the Fermi wavelength λF.

However, when dealing with atomic-scale junctions the contact width W is

of the order of a few nanometers or even less and thus we have W ∼ λF.

We thus enter into the full quantum limit which cannot be described by

semi-classical arguments. A main challenge for the theory is to derive the

conductance of an atomic-scale conductor from microscopic principles.

In this chapter we shall introduce the scattering (or Landauer) approach,

which is presently the most popular theoretical formalism to describe the

coherent transport in nanodevices. The central idea of this approach, al-

ready put forward by Rolf Landauer in the late 1950’s [137], is that if one

can ignore inelastic interactions, a transport problem can always be viewed

as a scattering problem. This means in practice that transport proper-

ties like the electrical conductance are intimately related to the transmis-

sion probability for an electron to cross the system. Our introduction to

the scattering approach will be divided into two main parts. First, using

heuristic arguments we shall show the relation between conductance and
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transmission, which is summarized in the so-called Landauer formula. This

formula will then be used to discuss basic concepts such as the tunnel effect

or resonant tunneling. Second, we shall present a more rigorous formulation

of this approach that will be used to compute various transport properties

such as shot noise and thermoelectric coefficients. Finally, we shall conclude

this chapter with a discussion of the limitations of the scattering formalism.

4.2 From mesoscopic conductors to atomic-scale junctions

On the basis of Ohm’s law one would expect the conductance of a metallic

wire to scale as R2, where R is its radius. Deviations from such a scaling law

were already discussed by Maxwell [138], who studied with classical argu-

ments the conductance of a diffusive constriction, where the contact radius

is large compared to the mean free path. He found that the conductance

scales linearly with the contact radius, i.e.

G = 2Rσ. (4.2)

where σ is the conductivity.

As we shrink a conductor to well below the mean free path, the con-

ductance departs from the value expected from the previous expression. In

1965 Sharvin [139] considered the propagation of electrical current through

a ballistic contact by approximating it with a classical problem of dilute

gas flow through an orifice. He reasoned that if the potential difference be-

tween the two half-spaces is eV , the conduction electrons passing through

the orifice should change their velocity by the amount Δv = ±eV/pF, where
pF is the Fermi momentum.1 The net current will be I = neΔvS, where

S = πR2 is the contact area and taking into account the Fermi-Dirac statis-

tics for electrons, n = 4πp3F/(3h
3), one gets the conductance for a circular

ballistic point-contact

G =
2e2

h

(
πR

λF

)2

=
2e2

h

(
kFR

2

)2

, (4.3)

where e is the electron charge and h is the Planck’s constant. Notice that

for ballistic contacts the conductance is proportional to the contact area,

like in Ohm’s law, but the proportionality constant 2e2/h has a quantum

nature. An important difference between the two lies in the fact that G is
1This is just an approximation and the exact treatment includes an integration of

the projection of Δv along the orifice axis over the solid angle of 2π. Anyway, the
phenomenological result is only a factor 8/3 different from the exact one [140].



80 Molecular Electronics: An Introduction to Theory and Experiment

independent of the length of the conductor and is determined only by its

cross-section radius R. It is remarkable that the Sharvin formula, being

based on semiclassical arguments, holds well for all ballistic contacts with

diameters down to a few nanometers. In the context of atomic contacts, it

is customary to use a slightly modified version of this equation in which the

so-called Weyl correction is introduced [141, 142]. This correction comes

from the fact that the Heisenberg uncertainty principle for Fermi electrons

in a narrow contact, 2pFR ≥ �, gives a small correction to the conductance

and the resulting semiclassical formula takes the form

G =
2e2

h

(
kFR

2

)2(
1− 2

kFR
+ · · ·

)
, (4.4)

where kF is the wave vector. This equation is valid for a contact in the

form of a wire. For an orifice the numerator of the last fraction should

be 1 instead of 2. Eq. (4.4), valid for contacts down to a few nanometers

in diameter [143], is often used to establish the relationship between the

conductance and the radius of a contact.

Due to limitations of the semiclassical approach, Eq. (4.4) does not

account for purely quantum effects which dominate when the size of the

contact becomes so small that the wave nature of an electron can no longer

be ignored. Rolf Landauer [137] showed, already back in the 1950’s, that

in the latter case “conductance is transmission”, i.e. in order to determine

the total conductance one has to solve the Schrödinger equation, find the

current-carrying eigenmodes, calculate their transmission values and sum

up their contributions. Mathematically, this is summarized by in the Lan-

dauer formula

G =
2e2

h

N∑
n=1

Tn, (4.5)

where the summation is performed over all available conduction modes and

Tn are their individual transmissions. If the transmission of a mode is per-

fect, it contributes exactly one quantum unit of conductance, G0 = 2e2/h ∼
(12.9 kΩ)−1. This formula shows that by changing the size of the contact,

one can change the number of modes contributing to the conductance and

thus the conductance itself in a step-like manner (see discussion below).

This is clearly at variance with the situations described above. The deriva-

tion of the Landauer formula and the discussion of its physical implications

is the subject of the rest of the next sections.
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Fig. 4.2 Wave function (plane wave) impinging on a potential barrier. The wave is
partially reflected with a probability amplitude r and partially transmitted with a prob-
ability T = |t|2.

4.3 Conductance is transmission: Heuristic derivation of

the Landauer formula

In a typical transport experiment on a nanoscale device, the sample is

connected to macroscopic electrodes by a set of leads (or electrodes) which

allow us to inject currents and fix voltages. The electrodes act as ideal

electron reservoirs in thermal equilibrium with a well-defined temperature

and chemical potential. The basic idea of the scattering approach is to relate

the transport properties with the transmission and reflection probabilities

for carriers incident on the sample. In this one-electron approach phase-

coherence is assumed to be preserved on the entire sample and inelastic

scattering is restricted to the electron reservoirs only. Instead of dealing

with complex processes taking place inside the reservoirs, they enter into

the description as a set of boundary conditions. In spite of its simplicity,

this approach has been very successful in explaining many experiments on

nanodevices.

Before turning to the description of the general scattering formalism, it

is instructive to understand the relation between current and transmission

with a simple heuristic argument. Let us consider a one-dimensional situ-

ation, like the one depicted in Fig. 4.3. Here, the potential simulates the

central part of a junction, where electrons are elastically scattered before

reaching one of the electrodes. We assume that when the electrons are in-

side the reservoirs, they are in thermal equilibrium at the temperature of

the corresponding electrode. Let us now consider a plane wave, (1/
√
L)eikx,

that is impinging on the potential barrier from the left (L represents the

length of the system). This wave is partially reflected with a probability

amplitude r and partially transmitted with a probability T = |t|2. We

can now compute the electrical current density, Jk, carried by an electron
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described by this wave function. It is given by the quantum-mechanical

expression

Jk =
�

2mi

[
ψ∗(x)

dψ

dx
− ψ(x)

dψ∗

dx

]
=
e

L
v(k)T (k), (4.6)

where v(k) = �k/m is the group velocity and we have computed the current

on the right hand side of the scattering potential (remember that the current

is conserved and thus its value is independent of where it is evaluated).

In a solid state device there are many electrons contributing to the

current. Therefore, we have to introduce a sum over k (strictly speak-

ing over the positive values). Moreover, we have to take into account the

Pauli principle, which means in practice that we have to introduce a factor

fL(k)[1− fR(k)], where fL,R is the Fermi function of the electron reservoir

on the left (L) or on the right (R) of the potential barrier. These Fermi

functions take also into account the fact that the corresponding chemical

potential can be shifted by an applied bias voltage, V . The blocking factor

above ensures that only those states that were initially occupied on the left

and empty on the right contribute to the current flowing from left to right,

JL→R, which adopts the form

JL→R =
e

L

∑
k

v(k)T (k)fL(k)[1− fR(k)]. (4.7)

Now, we can convert the sum into an integral with the usual replacement:

(1/L)
∑

k g(k) → 1/(2π)
∫
g(k)dk. Thus,

JL→R =
e

2π

∫
dk v(k)T (k)fL(k)[1− fR(k)]. (4.8)

We now change from the variable k to energy, E, introducing the density

of states dk/dE = (dE/dk)−1 = m/(�2k), since E = �
2k2/(2m).2 Due to

the cancellation between the group velocity and the density of states, the

left-to-right current can be written as

JL→R =
e

h

∫
dE T (E)fL(E)[1 − fR(E)]. (4.9)

Analogously, we can show that the current from right to left can be

written as

JR→L =
e

h

∫
dE T (E)fR(E)[1 − fL(E)], (4.10)

2Here, we are assuming that the conduction electrons can be described by a non-
interacting electron (or Fermi) gas.
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where we have used the fact that the transmission probability is the same,

no matter in which direction the barrier is crossed.

Now, the total current3 I(V ) = JL→R − JR→L can be simply expressed

as

I(V ) =
2e

h

∫ ∞

−∞
dE T (E)[fL(E)− fR(E)]. (4.11)

Here, we have introduced an extra factor 2 to account for the spin degener-

acy that usually exists in the systems that we shall analyze. This expression

is the simplest version of the so-called Landauer formula and it illustrates

the close relation between current and transmission. At zero temperature

fL(E) and fR(E) are step functions, equal to 1 below EF + eV/2 and

EF − eV/2, respectively, and 0 above this energy. If we moreover assume

low voltages (linear regime), this expression reduces to I = GV , where the

conductance is G = (2e2/h)T , where the transmission is evaluated at the

Fermi energy.

This simple calculation demonstrates that a perfect single mode conduc-

tor between two electrodes has a finite resistance, given by the universal

quantity h/2e2 ≈ 12.9 kΩ. This is an important difference with respect to

macroscopic leads, where one expects to have zero resistance for the per-

fectly conducting case. The proper interpretation of this result was first

pointed out by Imry [144], who associated the finite resistance with the

resistance arising at the interfaces between the leads and the sample.

4.4 Penetration of a potential barrier: Tunnel effect

As it is clear from Eq. (4.11), the transmission probability plays a central

role in Landauer approach. For this reason, it is worth reminding how this

quantum mechanical quantity can be computed in some simple situations of

special interest. For the sake of concreteness, we shall focus our discussion

in this section on the analysis of the transmission through a single potential

barrier. This simple problem not only illustrates some fundamental issues,

but it also provides a basic model widely used for the understanding of

tunneling currents in a great variety of situations such as tunnel junctions

based on insulating barriers, STM and even single-molecule junctions, as

we shall show later in this book.

3Since we are in a 1D situation, there is no difference between total current and current
density.
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I II III

0 L

V(x)

x

V0

Fig. 4.3 Rectangular potential barrier of height V0 and width L.

Let us consider the potential barrier of height V0 depicted in Fig. 4.3.

Our goal is to compute the probability to cross such a barrier as a function

of the energy, E, of an incoming electron. Classical mechanics tell us that

an incident particle will always be reflected when E < V0, and it will always

be transmitted when E > V0. We all know that in quantum mechanics a

particle can pass through a barrier, even when its energy is lower than the

barrier height. This phenomenon is known as quantum tunneling or simply

tunnel effect and it lies at the heart of the whole physics discussed in this

book.

In order to compute the transmission we proceed in the standard way.

We first determine the wave functions in the three different regions defined

in Fig. 4.3, and then we match these functions and their first spatial deriva-

tives at the boundaries (x = 0 and x = L). Let us first consider the case of

E < V0. In this case, the solutions of the Schrödinger equation in the three

regions are of the form

ψI = a1e
ik1x + b1e

−ik1x, ψII = a2e
k2x + b2e

−k2x, ψIII = a3e
ik3x, (4.12)

where

k1 = k3 =

√
2mE

�
and k2 =

√
2m(V0 − E)

�
. (4.13)

Note that we have assumed that the effective mass is the same everywhere

and we have discarded the incoming term (b3e
−ik3x) in ψIII because we are

considering here the problem of an a wave function impinging on the barrier

from the left.

Using now the continuity of the wave function and its first derivative at

x = 0 and x = L, we arrive at the following relationships

a1 + b1 = a2 + b2 ; ik1a1 − ik1b1 = k2a2 − k2b2 (4.14)

a2e
k2L + b2e

−k2L = a3e
ik1L ; k2a2e

k2L − k2b2e
−k2L = ik1a3e

ik1L.
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Fig. 4.4 (a) Transmission probability vs. energy for a symmetric potential barrier of
height V0 = 4 eV and width L = 1 nm. The inset shows a blow-up of the region E < V0.
(b) Transmission as a function of the width of the potential barrier (V0 = 4 eV) for
different values of the energy. In both cases the mass is assumed to be the electron mass.

Solving these equations, we obtain the following expression for the energy

dependence of the transmission coefficient

T =

∣∣∣∣a3a1
∣∣∣∣
2

=
1

1 +
(

k2
1
+k2

2

2k1k2

)2

sinh2(k2L)

=
4E(V0 − E)

4E(V0 − E) + V 2
0 sinh2(k2L)

.

(4.15)

Proceeding in a similar way, one can compute the transmission for E >

V0 and the result is (see Exercise 4.2)

T =
1

1 +
(

k2
1
−k2

2

2k1k2

)2

sin2(k2L)
=

4E(E − V0)

4E(E − V0) + V 2
0 sin2(k2L)

. (4.16)

The energy and length dependence of the transmission of this potential

barrier are illustrated in Fig. 4.4. The most prominent feature is maybe

the exponential dependence of the transmission on the barrier width for

energies E < V0, see Fig. 4.4(b). According to Eq. (4.15), this decay is

given by T ∝ exp(−2k2L) = exp(−2L
√
2m(V0 − E)/�), i.e. the slopes

in Fig. 4.4(b) are mainly determined by the square root of the difference

between the electron energy and the barrier height. Since the transmission

determines the conductance, this model provides a natural explanation for

the exponential decay of the low-bias conductance as a function of the

distance between the electrodes in all kind of tunnel barriers. It also tells

us that such decay is simply governed by the work function of the metals

involved.

Landauer formula shows that the linear conductance at low tempera-

tures is determined by the transmission at the Fermi energy. However, the
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analysis of the current-voltage (I-V) characteristics requires the knowledge

of the energy dependence and, strictly speaking, also of the voltage de-

pendence of the transmission probability, see Eq. (4.11). In the case of a

rectangular barrier, the voltage can be introduced in an approximate way

as shown in Fig. 4.5(a). The computation of the transmission and in turn of

the I-V curves is then a simple problem, see Exercise 4.3. A more appropri-

ate way of describing the effect of the voltage is shown in Fig. 4.5(b), where

a linear drop in the potential with the barrier region has been assumed.

(a) (b)

eV eV

eV

Fig. 4.5 Rectangular potential barrier under the application of a voltage: (a) approxi-
mation and (b) actual potential profile.

The analysis of the transmission through a potential like the one of

Fig. 4.5(b), or any other smooth barrier, can be tackled with the help of

the WKB approximation [145, 146] (see Exercise 4.4). This is precisely

what Simmons did in 1963 [147] in his celebrated model. He considered the

problem of the tunnel effect between metallic electrodes separated by a thin

insulating film. He derived a general formula for the I-V curves for a barrier

of arbitrary shape, and we reproduce here his result for the particular case of

a rectangular barrier. Simmons showed that zero-temperature net current

density in this case can be written as [147]

J = J0

{
ϕB exp(−A√ϕB)− (ϕB + eV ) exp(−A

√
ϕB + eV )

}
, (4.17)

where ϕB is the average barrier height relative to the negative electrode

and sB is the barrier width sB, see Fig. 4.6. Moreover,

A =
2αsB
�

√
2m and J0 =

e

2πhα2s2B
, (4.18)

where α is a dimensionless correction factor of order unity. Eq. (4.17) can

be simplified in three distinct cases depending on the applied voltage:

Low-voltage range. For very small voltages (eV ∼ 0), see Fig. 4.6(a),

the average barrier height ϕB is independent of the applied voltage and

equals the zero voltage barrier height ϕ0 = (ϕ1 + ϕ2)/2. Then, Eq. (4.17)

can be simplified into

J = JLV with JL =
e2
√
2mϕB

4π2α�2sB
exp(−A√ϕB). (4.19)



The scattering approach to phase-coherent transport in nanocontacts 87

ϕ
1 ϕ

2
ϕ

ΒsΒ
ϕ

1
ϕ

1
sΒ

ϕ
Β ϕ

2

ϕ
2

sΒ

ϕ
Β

Metal 1 Metal 2
Insulator

(a) (b) (c)

eV
eV

Fig. 4.6 Tunneling through a junction in which two metallic electrodes are separated
by a thin insulating film, which is modeled as a rectangular potential barrier. The three
panels show the three distinct voltage ranges discussed in the text.

Here, α = 1. As it can be seen in Eq. (4.19), the current density is a linear

function of the applied voltage V (Ohmic regime).

Intermediate-voltage range. For a medium applied voltage eV < ϕ0,

see Fig. 4.6(b), the average barrier height ϕB is given by (ϕ1 +ϕ2− eV )/2.

The current density can then be simplified to (assuming that α = 1)

J = JL(V + γV 3) with γ =
(Ae)2

96ϕ0
− Ae2

32ϕ
3/2
0

. (4.20)

This expression can be used to determine both the height and the barrier

width in terms of the coefficients γ and JL.

High-voltage range. For voltages eV > ϕ0, see Fig. 4.6(c), the aver-

age barrier height is reduced to ϕ1/2 and even the barrier width is reduced.

Eventually, the voltage is high enough so that the Fermi level of electrode

2 is lower than the conduction band of electrode 1. In this case, tunneling

from electrode 2 in electrode 1 is not possible since there are no empty

states in electrode 1 to tunnel to. As for electrons tunneling from electrode

1 into electrode 2, all states in electrode 2 are empty. This is analog to

field emission from a metal into vacuum. Then, the current density can be

simplified to

J =
2.2e3

8πh

F 2

ϕ1
exp

(
−8π

√
2mϕ

3/2
1

2.96ehF

)
, (4.21)

with the electric field strength in the insulator F = V/s, where s is the

thickness of the insulating field.

In the case of vacuum tunneling (or tunneling through an insulator), we

should be aware of the fact that whilst the electron is in the tunnel gap,

it will induce image charges in the two electrodes. This serves to modify

the barrier potential. The net effect of this is to reduce the average barrier

height and hence increase the transmission probability. For an analysis of



88 Molecular Electronics: An Introduction to Theory and Experiment

−L/2 +L/2 x0

V(x)

region 1 region 2

Fig. 4.7 The potential V (x) under consideration varies in an arbitrary way within the
interval −L/2 ≤ x ≤ +L/2 and goes to zero outside this interval.

these “image forces” for the case of the rectangular barrier discussed here,

see Ref. [147].

It is worth mentioning that the problem of the rectangular barrier under

an applied voltage, see Fig. 4.5(b), can be solved exactly using the full Airy

functions. This was done by Grundlach [148], who showed that the current

exhibits oscillations as a function of voltage that are superimposed in the

WKB result discussed above.

4.5 The scattering matrix

In the next section we shall present a more rigorous discussion of the scat-

tering formalism, where the concept of scattering matrix plays a central

role. The definition and properties of this matrix are described in many

quantum mechanics textbooks, but for the sake of completeness, we have

included here a brief discussion of this subject.

4.5.1 Definition and properties of the scattering matrix

In order to keep our discussion at a simple level, we study here a one-

dimensional situation. Let us consider a potential V (x) which is zero out-

side the region defined by |x| > L/2, but which varies in an arbitrary

way inside this interval, see Fig. 4.7. The equation satisfied by every wave

function ψ(x) associated with a stationary state of energy E is{
d2

dx2
+

2m

�2
[E − V (x)]

}
ψ(x) = 0. (4.22)

The most general solution ψ(x) of Eq. (4.22) in the region x < −L/2
(region 1) for a given value of E can be written as

ψk(x) = a1e
ikx + b1e

−ikx, (4.23)
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where k =
√
2mE/�2, while in the region x > +L/2 (region 2) it has the

form

ψk(x) = a2e
−ikx + b2e

ikx, (4.24)

Here, the different coefficients depend on k, as well as on the shape of the

potential under study. Notice that with our notation, the amplitudes ai
(i = 1, 2) correspond to the incoming waves impinging on the potential

region, whereas the amplitudes bi correspond to the outgoing waves.

The scattering matrix is defined as the 2 × 2 matrix that relates the

incoming and outgoing amplitudes as follows(
b1
b2

)
= Ŝ

(
a1
a2

)
, (4.25)

where Ŝ is usually written as

Ŝ =

(
r t′

t r′

)
. (4.26)

Here, r and r′ are reflection amplitudes and t and t′ are the transmission

amplitudes associated to this potential.

Are all these four elements independent? What are the properties of the

scattering matrix? A first property of the S-matrix can be deduced from

the conservation of the current. Let us remind that in quantum mechanics,

the current associated with a wave function ψ(x) is given by

J(x) =
�

2mi

[
ψ∗(x)

dψ

dx
− ψ(x)

dψ∗

dx

]
. (4.27)

Differentiating, we find

d

dx
J(x) =

�

2mi

[
ψ∗(x)

d2ψ

dx2
− ψ(x)

d2ψ∗

dx2

]
. (4.28)

Taking into account Eq. (4.22), we obtain

d

dx
J(x) = 0. (4.29)

Therefore, the current J(x) associated with a stationary state is the same

at all points of the x-axis. Note, moreover, that Eq. (4.29) is simply the

one-dimensional analog of the relation (continuity equation)

∇ · J(r) = 0, (4.30)

which is valid for any stationary state of a particle moving in three-

dimensional space. According to Eq. (4.29), the current J(x) has the same
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value, no matter in which region it is evaluated. Then, computing the

current in regions 1 and 2 we have

J(x) =
�k

m

[|a1|2 − |b1|2
]
=

�k

m

[|b2|2 − |a2|2
]
, (4.31)

which implies that

|a1|2 + |a2|2 = |b1|2 + |b2|2. (4.32)

This relation can be used to establish the first property of the scattering

matrix in the following way

|b1|2 + |b2|2 = (b∗1, b
∗
2)

(
b1
b2

)
= (a∗1, a

∗
2) Ŝ

†Ŝ
(
a1
a2

)
=

(a∗1, a
∗
2)

(
a1
a2

)
= |a1|2 + |a2|2, (4.33)

which simply implies that Ŝ is a unitary matrix, i.e.

Ŝ† = Ŝ−1. (4.34)

In terms of the matrix elements, this relation reads

|r|2 + |t|2 = 1 ; r∗t′ + t∗r′ = 0

(t′)∗r + (r′)∗t = 0 ; |r′|2 + |t′|2 = 1. (4.35)

Notice that the second and third relations are indeed the same.

If the potential V (x) is real, which means in particular that there is no

magnetic field applied, an additional property can be derived as follows. If

ψ(x) is a solution of Eq. (4.22), then ψ∗(x) is also a solution. This new

solution can be written as

ψ∗(x) = a∗1e
−ikx + b∗1e

ikx if x < −L/2
ψ∗(x) = a∗2e

ikx + b∗2e
−ikx if x > +L/2.

Notice that in this solution the coefficients a∗i correspond to the outgoing

amplitudes, while b∗i represent the incoming amplitudes. Therefore, by

definition they are related via the scattering matrix as follows(
a∗1
a∗2

)
= Ŝ

(
b∗1
b∗2

)
, (4.36)

which can be rewritten as(
b1
b2

)
= (Ŝ∗)−1

(
a1
a2

)
, (4.37)
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If we now compare this relation with Eq. (4.25), we arrive at

(Ŝ)−1 = Ŝ∗. (4.38)

If we now combine this with the fact that the scattering matrix is unitary,

we have that Ŝ is symmetric

(Ŝ)T = Ŝ ⇒ t′ = t. (4.39)

In the presence of a magnetic field, this latter relation changes and one

can show that reversing the magnetic field B transposes the S-matrix

Ŝ(B) = ŜT (−B) ⇒ t′(B) = t(−B). (4.40)

The demonstration is left to the reader as an exercise (see Exercise 4.7).

4.5.2 Combining scattering matrices

It is interesting to discuss how one can combine different scattering matri-

ces in a problem in which there are several scattering potentials. Let us

for instance consider the case of two potential barriers of arbitrary shape.

This situation is schematically represented in Fig. 4.8. We shall include in

the scattering matrix a superindex indicating to which potential barrier it

corresponds, Ŝ(i) (i = 1, 2). These matrices Ŝ(i) relate the incoming and

outgoing amplitudes across the corresponding potential barrier as follows

(see Fig. 4.8) (
b1
b2

)
= Ŝ(1)

(
a1
a2

)
;

(
a2
b3

)
= Ŝ(2)

(
b2
a3

)
. (4.41)

Notice that we have already used the fact that a2 is at the same time

the incoming amplitude for the potential 1 and the outgoing amplitude for

potential 2. Something similar happens with b2.

Our problem is to find in terms of the matrix elements of Ŝ(i) the total

scattering matrix ŜTot that relates the incoming and outgoing amplitudes

of the two scatterers, i.e.(
b1
b3

)
= ŜTot

(
a1
a3

)
; ŜTot =

(
r t′

t r′

)
. (4.42)

This can be easily done eliminating a2 and b2 from Eq. (4.41) and the

final result can be written as

r = r(1) + t′(1)r(2)
[
1− r′(1)r(2)

]−1

t(1) ; t = t(2)
[
1− r′(1)r(2)

]−1

t(1)

r′ = r′(2) + t(2)
[
1− r′(1)r(2)

]−1

r′(1)t′(2) ; t′ = t′(1)
[
1− r(2)r′(1)

]−1

t′(2).

(4.43)
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Fig. 4.8 Combination of two potential barriers of arbitrary shape. The coefficients ai
and bi represent the different incoming and outgoing amplitudes with respect to the
potential barrier i.

This result allows us to compute now very easily, for instance, the total

transmission through the combined structure. According to the previous

equations

T = |t|2 =
T1T2

1− 2
√
R1R2 cos θ +R1R2

, (4.44)

where Ti = |t(i)|2 = |t′(i)|2, Ri = |r(i)|2 = |r′(i)|2 and θ = phase(r′(1)) +
phase(r(2)) is the phase shift acquired in one round-trip between the scat-

terers.

This result can be used to study a very important phenomenon for us,

namely the resonant tunneling. In a double barrier system (or in a potential

well) one can have bound states in the region between the two scattering

centers. Then, the transmission probability in this system exhibits reso-

nances at energies close to the position of those bound states. The width

of the transmission peaks depends upon the transmissivity of the barriers,

while the distance between peaks is mainly determined by the distance be-

tween the barriers. These facts can be shown with the help of Eq. (4.44),

as it is illustrated in Exercise 4.8.

4.6 Multichannel Landauer formula

We present in this section a more rigorous derivation of Landauer formula,

where the important concept of conduction channel will arise. This for-

mulation will also be the starting point for the extension of the scattering

formalism to the description of other transport properties such as shot noise

or thermoelectric coefficients. This section is based on Refs. [149, 150] and

we refer the reader to them for more details.
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We consider a mesoscopic sample connected to two reservoirs (terminals,

probes), to be referred to as “left” (L) and “right” (R). It is assumed that

the reservoirs are so large that they can be characterized by a temperature

TL,R and a chemical potential μL,R; the distribution functions of electrons

in the reservoirs, defined via these parameters, are then Fermi distribution

functions

fα(E) = [exp[(E − μα)/kBTα] + 1]−1, α = L,R (4.45)

(see Fig. 4.9). Far from the sample, we can assume that transverse (across

the leads) and longitudinal (along the leads) motion of electrons are sepa-

rable. In the longitudinal (from left to right) direction the system is open,

and is characterized by the continuous wave vector kl. It is advantageous

to separate incoming (to the sample) and outgoing states, and to introduce

the longitudinal energy El = �
2k2l /2m as a quantum number. Transverse

motion is quantized and described by the discrete index n (corresponding

to transverse energies EL,R;n, which can be different for the left and right

leads). These states are in the following referred to as transverse (quan-

tum) channels. We write thus E = En +El. Since El needs to be positive,

for a given total energy E only a finite number of channels exists. The

number of incoming channels is denoted NL,R(E) in the left and right lead,

respectively.

L
^

aR
^

bR
^

aL
^

b

R

sample
T T
μ μ

L

L

R

R

L

Fig. 4.9 Two-terminal scattering problem for the case of one transverse channel.

We now introduce creation and annihilation operators of electrons in

the scattering states.4 In principle, we could have used the operators which

refer to particles in the states described by the quantum numbers n, kl.

However, the scattering matrix relates current amplitudes and not wave

function amplitudes. Thus, we introduce operators â†Ln(E) and âLn(E)

which create and annihilate electrons with total energy E in the transverse
4The second quantization language will be used here at a very simple level. A discussion

of this formalism is included in Appendix A and it will be widely used in the following
chapters.
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channel n in the left lead, which are incident upon the sample.5 In the

same way, the creation b̂†Ln(E) and annihilation b̂Ln(E) operators describe

electrons in the outgoing states. They obey anti-commutation relations

â†Ln(E)âLn′(E′) + âLn′(E′)â†Ln(E) = δnn′δ(E − E′)

âLn(E)âLn′(E′) + âLn′(E′)âLn(E) = 0

â†Ln(E)â†Ln′(E
′) + â†Ln′(E

′)â†Ln(E) = 0. (4.46)

Similarly, we introduce creation and annihilation operators â†Rn(E) and

âRn(E) for incoming states and b̂†Rn(E) and b̂Rn(E) for outgoing states in

the right lead (Fig. 4.9).

The operators â and b̂ are related via the scattering matrix Ŝ,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̂L1

...

b̂LNL

b̂R1

...

b̂RNR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Ŝ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

âL1

...

âLNL

âR1

...

âRNR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.47)

The creation operators â† and b̂† obey a similar relation with the Hermitian

conjugated matrix Ŝ†.
The matrix Ŝ has dimensions (NL +NR)× (NL +NR). Its size, as well

as the matrix elements, depends on the total energy E. It has the block

structure

Ŝ =

(
r̂ t̂′

t̂ r̂′

)
. (4.48)

Here the square diagonal blocks r̂ (size NL × NL) and r̂′ (size NR × NR)

describe electron reflection back to the left and right reservoirs, respectively.

The off-diagonal, rectangular blocks t̂ (size NR × NL) and t̂′ (size NL ×
NR) are responsible for the electron transmission through the sample. The

properties of the matrix Ŝ are a straightforward generalization to a multi-

mode case of those discussed in the previous section. Thus for instance, the

flux conservation in the scattering process implies that Ŝ is quite generally

unitary. In the presence of time-reversal symmetry the scattering matrix is

also symmetric.

5We shall denote here the operators with a “hat” to distinguish them from the ampli-
tudes of the previous section.
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The current operator in the left lead (far from the sample) is expressed

in a standard way,

ÎL(z, t) =
�e

2im

∫
dr⊥

[
Ψ̂†L(r, t)

∂

∂z
Ψ̂L(r, t) −

(
∂

∂z
Ψ̂†L(r, t)

)
Ψ̂L(r, t)

]
,

(4.49)

where the field operators Ψ̂ and Ψ̂† are defined as

Ψ̂L(r, t) =

∫
dEe−iEt/�

NL(E)∑
n=1

χLn(r⊥)
(2π�vLn(E))1/2

[
âLne

ikLnz + b̂Lne
−ikLnz

]
(4.50)

and

Ψ̂†L(r, t) =
∫
dEeiEt/�

NL(E)∑
n=1

χ∗Ln(r⊥)
(2π�vLn(E))1/2

[
â†Lne

−ikLnz + b̂†Lne
ikLnz

]
.

(4.51)

Here r⊥ is the transverse coordinate(s) and z is the coordinate along the

leads (measured from left to right), χL
n are the transverse wave functions,

and we have introduced the wave vector, kLn = �
−1[2m(E − ELn)]

1/2

(the summation only includes channels with real kLn), and the velocity of

carriers vn(E) = �kLn/m in the n-th transverse channel.

After some algebra, the expression for the current can be cast into the

form6

ÎL(t) =
e

h

∑
n

∫
dEdE′ei(E−E′)t/�

[
â†Ln(E)âLn(E

′)− b̂†Ln(E)b̂Ln(E
′)
]
.

(4.52)

Using Eq. (4.47) we can now express the current in terms of the â and â†

operators alone,

ÎL(t) =
e

h

∑
αβ

∑
mn

∫
dEdE′ei(E−E′)t/�â†αm(E)Amn

αβ (L;E,E′)âβn(E′).

(4.53)

Here the indices α and β label the reservoirs and may assume values L or

R. The matrix A is defined as

Amn
αβ (L;E,E′) = δmnδαLδβL −

∑
k

S†Lα;mk(E)SLβ;kn(E
′), (4.54)

and SLα;mk(E) is the element of the scattering matrix relating b̂Lm(E) to

âαk(E). Note that Eq. (4.53) is independent of the coordinate z along the

lead.
6Here, we have used the fact that the velocities vn(E) vary with energy quite slowly,

typically on the scale of the Fermi energy, and neglected their energy dependence.
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Let us now derive the average current from Eq. (4.53). For a system at

thermal equilibrium the quantum statistical average of the product of an

electron creation operator and annihilation operator of a Fermi gas is〈
â†αm(E)âβn(E

′)
〉
= δαβδmnδ(E − E′)fα(E). (4.55)

Using Eq. (4.53) and Eq. (4.55) and taking into account the unitarity of

the scattering matrix Ŝ, we obtain

I ≡ 〈IL〉 = e

h

∫ ∞

−∞
dE Tr

[
t̂†(E)t̂(E)

]
[fL(E)− fR(E)] . (4.56)

Here the matrix t is the off-diagonal block of the scattering matrix, tmn =

SRL;mn. In the zero-temperature limit and for a small applied voltage

Eq. (4.56) gives a conductance

G =
e2

h
Tr
[
t̂†(EF)t̂(EF)

]
, (4.57)

where EF is the Fermi energy. Eq. (4.57) establishes the relation between

the scattering matrix evaluated at the Fermi energy and the conductance.

It is a basis invariant expression. The matrix t̂† t̂ can be diagonalized;

it has a real set of eigenvalues (transmission coefficients) Tn(E) (not to be

confused with temperature), each of them assumes a value between zero and

one. The corresponding eigenfunctions will be referred to as eigenchannels

or conduction channels. In this natural basis we have instead of Eq. (4.56)

I =
e

h

∑
n

∫ ∞

−∞
dE Tn(E) [fL(E)− fR(E)] . (4.58)

and thus for the conductance

G =
e2

h

∑
n

Tn. (4.59)

Eq. (4.59) is known as a multi-channel generalization of Landauer formula.

Notice also that in the last formulas there is a difference of a factor 2 with

respect to Eq. (4.11). The reason is that in the discussion above we have

not assumed spin degeneracy.

For a constriction of only one atom in cross section one can estimate

the number of conductance channels as N � (kFR/2)
2, which is between

1 and 3 for most metals. We shall see that the actual number of channels

is determined by the valence orbital structure of the atoms. In the case of

molecular junctions, it turns out that, apart from a few notable exceptions,

the conductance is dominated by a single conduction channel.
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Fig. 4.10 (a) Schematic representation of a point contact defined in a two-dimensional
electron gas (2DEG) by means of a split gate on top of the heterostructure. (b) Allowed
states in the point contact constriction, which correspond to quantized values for ky =
±nπ/W , and continuous values for kx. The formation of these 1D subbands gives rise
of a quantized conductance.

Let us emphasize that we have focused our discussion on a two-

terminal configuration. The scattering approach was extended by Büttiker

to describe the electronic transport in multi-terminal situations and this

formalism (generally referred to as Landauer-Büttiker’s formalism) has

been widely used in the interpretation of mesoscopic experiments. We

shall not discuss this generalization here and we refer the reader to

Refs. [50, 149, 150, 171] for more details about this formalism.

4.6.1 Conductance quantization in 2DEG:

Landauer formula at work

As a simple illustration of the use of Landauer formula, we shall now briefly

discuss the conductance quantization in quantum point contacts defined in

semiconductor hetero-structures (for a detailed discussion of this topic, see

Refs. [151, 152]). It is well-known that in a semiconductor heterostructure

like GaAs-AlGaAs one can confine the electrons in the two-dimensional

interface between the two materials. Additionally, one can define electro-

statically a point contact by means of a split gate on top of the heterostruc-

ture. This is schematically represented in Fig. 4.10(a). In this way one can

define short and narrows constrictions in the two-dimensional electron gas

(2DEG), of variable width 0 < W < 250 nm comparable to the Fermi

wavelength λF ≈ 40 nm and much shorter than the mean free path l ≈ 10

μm.

Van Wees et al. [153] and Wharam et al. [154] independently discov-

ered a sequence of steps in the conductance of such a point contact as its

width was varied by means of the voltage on the split gate (see Fig. 4.11).
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Fig. 4.11 Point contact conductance as a function of gate voltage at 0.6 K, demonstrat-
ing the conductance quantization in units of 2e2/h. The constriction width increases
with increasing voltage on the gate (see inset). Reprinted with permission from [153].
Copyright 1988 by the American Physical Society.

The steps are near integer multiples of 2e2/h, after correction for a gate-

voltage-independent series resistance from the wide 2DEG regions. This

phenomenon is referred to as conductance quantization.

An elementary explanation of this effect relies on two facts: (i) the

2DEGs are ballistic systems (at least along the constriction) and the only

scattering takes place against the potential walls defined by the split gates

and (ii) the momentum of the electron is quantized in the transverse direc-

tion giving rise to 1D subbands. Since every subband that contributes to

the transport (or conduction channel) has a perfect transparency and the

number of them is obviously an integer, it follows from the two-terminal

Landauer formula that the low temperature conductance G is quantized,

G = (2e2/h)N, (4.60)

as observed experimentally. Here, N is the total number of open conduc-

tion channels and the prefactor 2 accounts for the spin degeneracy. This

number can be simply calculated assuming a square-well lateral confining

potential of width W . In the constriction, the electron momentum along

the transport direction (x-direction) can take any value, while the trans-

verse momentum ky is quantized and can only take the following values:

ky = ±nπ/W with n = 1, 2, ..., N , see Fig. 4.10(b). Since the current is only

carried by those electrons at the Fermi energy (or with momentum equal
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to the Fermi momentum kF), the number of subbands is simply given by

N = Int[kFW/π]. Therefore, a new subband is made available for transport

every time the width of the gate is increased by approximately half of the

Fermi wavelength. This explains the stair-like behavior seen in Fig. 4.11.

A detailed explanation of the necessary conditions to observe the con-

ductance quantization requires a more rigorous treatment of the confine-

ment potential and the corresponding analysis of the mode coupling at the

entrance and exit of the constriction. A more realistic model is discussed

in Exercise 4.9.

4.7 Shot noise

Shot noise is another important quantity for characterizing the transport

properties of nanoscale systems [150, 155]. It refers to the time-dependent

current fluctuations due to the discreteness of the electron charge. In a

mesoscopic conductor these fluctuations have a quantum origin, arising

from the quantum mechanical probability of electrons being transmitted or

reflected from the sample. In contrast to thermal noise, shot noise only

appears in the presence of transport, i.e. in a non-equilibrium situation.

Shot noise measurements provide information on temporal correlations

between the electrons. In a tunnel junction, where the electrons are trans-

mitted randomly and correlation effects can be neglected, the transfer of

carriers of charge q is described by Poisson statistics and the amplitude of

the current fluctuations is 2qI. In nanoscale conductors correlations may

suppress the shot noise below this value. Even when electron-electron inter-

actions can be neglected the Pauli principle provides a source for electron

correlations.

The relation between shot noise and the transmitted charge unit q has

allowed the detection of the carrier charge in exotic situations such as the

fractional quantum Hall regime [156, 157], where the charge can be frac-

tional and depends on the filling factor. It has also allowed to show that

the sub-gap transport in superconducting atomic contacts takes place in

big shots of multiple ne charges associated with multiple Andreev reflec-

tion processes [158, 159, 98].

The interest in shot noise in molecular electronics lies in the fact that

this quantity depends on the transmission coefficients in a nonlinear man-

ner. Thus, the shot noise can provide valuable information, not contained

in the conductance, about the number of conduction channels and their
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Fig. 4.12 In a quantum point contact with bias voltage, V , the transmission probability,
Tn, determines the distribution function, n(E), of a transmitted state as a function of its
energy, E. In the right reservoir, states with energy lower than the Fermi energy are all
occupied, while right-moving states with higher energy can only be coming from the left
reservoir, and therefore their average occupation is equal to the transmission probability,
Tn. This argument applies to every individual conduction channel.

transmission coefficients. This will be discussed in detail in Chapter 19.

Qualitatively, the shot noise in nanocontacts can be understood from

the diagram in Fig. 4.12. Let us consider the right moving states in this

contact, which have been transmitted through the junction with an excess

energy between 0 and eV . Their average occupation number, n, is given

by the transmission probability Tn. For the fluctuations in this number we

find

Δn2 = n2 − n2 = Tn(1 − Tn), (4.61)

where in the last step we used the fact that n2 = n, since for fermions n

is either zero or one. Hence, the fluctuations in the current are suppressed

both for Tn = 1 and for Tn = 0. According to Eq. (4.61) the fluctuations

will be maximal when the electrons have a probability of one half to be

transmitted. The shot noise is thus a non-linear function of the transmission

coefficients, as we anticipated above.

We shall now derive in a rigorous manner the main results concerning

shot noise in a two-terminal device within the scattering formalism. For

this purpose, we follow again Ref. [150]. Since are concerned with the

fluctuations of the current away from its average value, we then introduce

the operators ΔÎ(t) ≡ Î(t)− 〈I〉, where Î is the current operator evaluated

in a given reservoir, let us say, the left one. We define the correlation

function P (t− t′) of the current in a given contact as

P (t− t′) ≡ 1

2

〈
ΔÎ(t)ΔÎ(t′) + ΔÎ(t′)ΔÎ(t)

〉
. (4.62)



The scattering approach to phase-coherent transport in nanocontacts 101

Note that in the absence of time-dependent external fields, as we assume

here, the correlation function must be function of only t − t′. Its Fourier

transform,

2πδ(ω + ω′)P (ω) ≡
〈
ΔÎ(ω)ΔÎ(ω′) + ΔÎ(ω′)ΔÎ(ω)

〉
, (4.63)

is sometimes referred to as noise power.

To find the noise power we need the quantum statistical expectation

value of products of four operators â. For a Fermi gas at equilibrium this

expectation value is〈
â†αk(E1)âβl(E2)â

†
γm(E3)âδn(E4)

〉
−〈

â†αk(E1)âβl(E2)
〉〈
â†γm(E3)âδn(E4)

〉
= δαδδβγδknδmlδ(E1 − E4)δ(E2 − E3)fα(E1) [1− fβ(E2)] . (4.64)

Here fα(E) is the corresponding Fermi distribution. Now, making use of

the current operator of Eq. (4.53) and of the expectation value of Eq. (4.64),

we arrive at the following expression for the noise power

P (ω) =
e2

h

∑
γδ

∑
mn

∫
dEAmn

γδ (L;E,E + �ω)Anm
δγ (L;E + �ω,E)

× {fγ(E) [1− fδ(E + �ω)] + [1− fγ(E)] fδ(E + �ω)} . (4.65)

Note that with respect to frequency, it has the symmetry properties P (ω) =

P (−ω). In the rest of this discussion, we shall only be interested in the

zero-frequency noise.7 For the noise power at ω = 0 we obtain

P ≡ P (0) =
e2

h

∑
γδ

∑
mn

∫
dEAmn

γδ (L;E,E)Anm
δγ (L;E,E) (4.66)

× {fγ(E) [1− fδ(E)] + [1− fγ(E)] fδ(E)} .
Eq. (4.66) can now be used to predict the low frequency noise properties of

arbitrary multi-channel phase-coherent conductors. But before presenting

the general result, let us first discuss two limiting cases of special interest:

Equilibrium noise. If the system is in thermal equilibrium at tem-

perature T , the distribution functions in both reservoirs coincide and are

equal to f(E). Using the property f(1− f) = −kBT∂f/∂E and employing

the unitarity of the scattering matrix, one can arrive at the following result

P = 4kBTG, (4.67)
7Zero-frequency noise actually means that the frequency is small in comparison with

the relevant frequency scales of the problem, but large enough to neglect the 1/f noise
that is present in almost any system.
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where G is the linear conductance given by

G =
e2

h

∫ ∞

−∞
dE

(
− ∂f

∂E

)
Tr
[
t̂†(E)t̂(E)

]
. (4.68)

This is the thermal, or Nyquist-Johnson noise. In the approach discussed

here it is a consequence of the thermal fluctuations of occupation numbers

in the reservoirs. This is the manifestation of the fluctuation-dissipation

theorem: equilibrium fluctuations are proportional to the corresponding

generalized susceptibility, in this case to the conductance.

Zero-temperature shot noise. In the zero-temperature limit the

Fermi distribution in each reservoir is a step function fα(E) = θ(μα − E).

Utilizing the representation of the scattering matrix (4.48), and taking into

account that the unitarity of the matrix Ŝ implies r̂†r̂+ t̂†t̂ = 1, after some

algebra we can rewrite Eq. (4.66) as

P =
2e2

h
Tr (r̂†r̂t̂† t̂) e|V |, (4.69)

where the scattering matrix elements are evaluated at the Fermi level. Like

the expression of the conductance, Eq. (4.57), we can express this result in

the basis of eigenchannels with the help of the transmission probabilities

Tn and reflection probabilities Rn = 1− Tn,

P =
2e3|V |
h

∑
n

Tn (1− Tn) . (4.70)

We see that the non-equilibrium (shot) noise is not simply determined by

the conductance of the sample. Instead, it is determined by a sum of prod-

ucts of transmission and reflection probabilities of the conduction channels.

Only in the limit of low-transparency Tn � 1 in all conduction channels is

the shot noise given by the Poisson value, discussed by Schottky,

P =
2e3|V |
h

∑
n

Tn = 2e〈I〉. (4.71)

It is clear that zero-temperature shot noise is always suppressed in com-

parison with the Poisson value. In particular, neither closed (Tn = 0) nor

open (Tn = 1) channels contribute to shot noise; the maximal contribution

comes from channels with Tn = 1/2. The suppression below the Poissonian

limit given by Eq. (4.71) was one of the aspects of noise in mesoscopic sys-

tems which triggered many of the subsequent theoretical and experimental

works. A convenient measure of sub-Poissonian shot noise is the Fano fac-

tor F , which is the ratio of the actual shot noise and the Poisson noise that
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would be measured if the system produced noise due to single independent

electrons,

F =
P

2e〈I〉 . (4.72)

For energy-independent transmission and/or in the linear regime the Fano

factor is

F =

∑
n Tn(1− Tn)∑

n Tn
. (4.73)

The Fano factor assumes values between 0 (all channels are transparent)

and 1 (Poissonian noise). In particular, for one channel it becomes (1−T ).

The general result for arbitrary temperature and voltage for the noise

power of the current fluctuations in a two-terminal conductor is

P =
2e2

h

∑
n

∫ ∞

−∞
dE { Tn(E) [fL(1− fL) + fR(1− fR)] +

Tn(E) [1− Tn(E)] (fL − fR)
2
}
. (4.74)

Here the first two terms are the equilibrium noise contributions, and the

third term is the non-equilibrium or shot noise contribution to the power

spectrum. Note that this term is second order in the distribution function.

At high energies, in the range where the Fermi distribution function is well

approximated by a Maxwell-Boltzmann distribution, it is negligible com-

pared to the equilibrium noise described by the first two terms. According

to Eq. (4.74) the shot noise term enhances the noise power compared to

the equilibrium noise.

In the practically important case, when the scale of the energy depen-

dence of transmission coefficients Tn(E) is much larger than both the tem-

perature and applied voltage, these quantities in Eq. (4.74) may be replaced

by their values taken at the Fermi energy. We obtain then

P =
2e2

h

[
2kBT

∑
n

T 2
n + eV coth

(
eV

2kBT

)∑
n

Tn (1− Tn)

]
, (4.75)

where V is again the voltage applied between the left and right reservoirs.

The full noise is a complicated function of temperature and applied voltage

rather than a simple superposition of equilibrium and shot noise. For low

voltages eV � kBT one recovers the result of pure thermal noise, i.e. P =

4kBTG. Eq. (4.75) is the starting point for the analysis of experimental

results on noise in atomic and molecular junctions, see section 19.1.
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4.8 Thermal transport and thermoelectric phenomena

The scattering formalism is by no means restricted to the description of

the electronic transport. It has also been extended to describe thermal

transport and thermoelectric cross-effects [160–163] and in what follows

we present a discussion of these transport properties within the scattering

approach.8

Let us consider a generic two-terminal device like in the previous sec-

tions. In equilibrium, the electron reservoirs are at chemical potential μ

and temperature T . In the regime of linear response, the current I and

heat flow Q are related to the chemical potential difference Δμ and the

temperature difference ΔT by the constitutive equations(
I

Q

)
=

(
G L

M K

)(
Δμ/e

ΔT

)
. (4.76)

The thermoelectric coefficients L andM are related by an Onsager relation,

which in the absence of a magnetic field is

M = −LT. (4.77)

Equation (4.76) is often re-expressed with the current I rather than the

electrochemical potential Δμ as an independent variable,(
Δμ/e

Q

)
=

(
R S

Π −κ
)(

I

ΔT

)
. (4.78)

The resistance R is the reciprocal of the isothermal conductance G. The

thermopower S is defined as

S ≡
(
Δμ/e

ΔT

)
I=0

= −L/G. (4.79)

The Peltier coefficient Π, defined as

Π ≡
(
Q

I

)
ΔT=0

=M/G = ST, (4.80)

is proportional to the thermopower S in view of the Onsager relation (4.77).

Finally, the thermal conductance κ is defined as

κ ≡ −
(
Q

ΔT

)
I=0

= −K
(
1 +

S2GT

K

)
. (4.81)

In order to compute all the thermoelectric coefficients, we still need to

determine the heat current, which in the spirit of the scattering formalism
8It is worth stressing that we shall only consider the contribution of the electrons to

the thermal transport properties. In general, phonons can also play an important role.
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will be expressed in terms of the transmission and reflections coefficients

of the system. Let us assume that the left electrode has a temperature T1,

while the right one has a temperature T2. Following Ref. [160], the total

entropy current moving to the right on the left lead will be given by9

J→1S = −kB
h

∫
[f1 ln f1 + (1 − f1) ln(1− f1)] dE, (4.82)

where f1 = f(E, μ1, T1) denotes the Fermi function on the left electrode.

On the other hand, the entropy current going to the left on the same lead

is given by

J←1S = −kB
h

∫
[(R11f1 + T12f2) ln(R11f1 + T12f2)+

(1−R11f1 − T12f2) ln(1−R11f1 − T12f2)] dE, (4.83)

where T12 ≡ Tr{t̂†t̂} is the total transmission of the contact and R11 ≡
Tr{r̂†r̂} is the corresponding reflection coefficient.

By subtracting (4.82) and (4.83) the following expression for the heat

current is obtained [160]

Q1 = TJ1S =
1

h

∫
T12(E)(E − μ) [f1 − f2] dE, (4.84)

where T and μ are the average temperature and chemical potential.

Therefore, the thermoelectric coefficients are given in the scattering for-

malism by [160, 162]

G = −2e2

h

∫ ∞

−∞
dE

∂f

∂E
T12(E), (4.85)

L = −2e2

h

kB
e

∫ ∞

−∞
dE

∂f

∂E
T12(E)

E − μ

kBT
, (4.86)

K

T
=

2e2

h

(
kB
e

)2 ∫ ∞

−∞
dE

∂f

∂E
T12(E)

[
E − μ

kBT

]2
.

(4.87)

These integrals are convolutions of T12(E), which characterizes the conduc-

tor, and a kernel of the form εmdf/dε, m = 0, 1, 2, with ε ≡ (E − μ)/kBT ,

and f the Fermi function f(ε) = [exp(ε)+1]−1. Both df/dε and ε2df/dε are

symmetric functions of ε, which is why the conductance, G, and the thermal

conductances K and κ are determined to first order by T12(μ). (The term
9Notice that the expression in the square bracket is the entropy density of noninteracting

electrons, distributed according to an arbitrary non-equilibrium distribution function f1,
see pag. 54 of Ref. [164].
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within brackets in equation (4.81) is usually small.) In contrast, εdf/dε is

an antisymmetric function of ε, so that the thermoelectric cross-coefficients

L, S, M , and Π are determined mainly by the derivative dT12(E)/dE at

E = μ. This is substantiated by a Sommerfeld expansion of the integrals

in Eqs. (4.85)-(4.87), valid for a smooth function T12(E) to lowest order in

kBT/μ [162]

G ≈ 2e2

h
T12(μ) (4.88)

L ≈ 2e2

h
L0eT

(
dT12(E)

dE

)
E=μ

(4.89)

K ≈ −2e2

h
L0TT12(μ), (4.90)

with L0 ≡ (kB/e)
2π2/3 the Lorentz number. In this approximation K =

−L0TG, so that for S2 � L0 one finds from Eq. (4.81) the Wiedemann-

Franz relation: κ ≈ L0TG.

Thermoelectrical effects have been experimentally studied in detail in

2DEG quantum point contacts by van Houten et al. [163]. In the context

of atomic and molecular junctions, special attention has been paid to the

thermopower. As we shall discuss in section 19.3, the thermopower con-

tains valuable information about these systems that is not contained in the

electrical conductance.

4.9 Limitations of the scattering approach

The scattering formalism has been very successful explaining many basic

transport phenomena in a great variety of nanostructures. It has also been

extended to other situations of interest for the purpose of this book, such

as e.g. photon-assisted transport [165]. For space reasons we have to end

here our discussion of this formalism, and for more details we recommend

the the reviews of Refs. [150, 151, 166–168], the didactic book of S. Datta

[50] and the book on mesoscopic physics of Y. Imry [169].

In spite of its great success, the scattering approach is far from being a

complete theory of quantum transport. In this sense, it is important to be

aware of its limitations. Among them we want to emphasize two of special

interest for the scope of this book:

(i) The scattering approach gives no hints on how to compute the trans-

mission or, more generally, the scattering matrix. In particular, it does not

tell us how to determine the actual transmission of an atomic contact or
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a molecular circuit. In this sense, one might think that this formalism

has merely replaced a problem by another. This would be, of course, un-

fair. The scattering approach can be combined with simple models, as we

showed in section 4.4, or with more sophisticated techniques like random

matrix theory [170] to predict the transport properties of a great variety

of systems such as diffusive wires, chaotic cavities, superconducting nanos-

tructures, resonant tunneling systems, tunnel junctions, etc.

(ii) The scattering picture is an one-electron theory which is valid only

as long as inelastic scattering processes can be neglected. In this formalism

one assumes that the electron propagation is a fully quantum coherent

process over the entire sample. According to normal Fermi-liquid theory,

such a description would be strictly valid at zero temperature and only

for electrons at the Fermi energy. At finite bias the coherent propagation

may be limited by inelastic scattering processes due to electron-phonon

and electron-electron collisions. The theoretical description of transport

in situations where inelastic interactions play an important role requires

more sophisticated methods like the Green’s function techniques that will

be described in the next chapters.

Let us mention that there is a phenomenological way of describing the

effect of inelastic or phase-breaking mechanisms within the scattering ap-

proach, which is due to Büttiker [171]. In this description the inelastic scat-

tering events are simulated by the addition of voltage probes distributed

over the sample. The chemical potential on these probes is fixed by im-

posing the condition of no net current flow through them. Thus, although

the presence of the probes does not change the total current through the

sample, they introduce a randomization of the phase which tends to destroy

phase coherence. The current in such a structure will contain a coherent

component, corresponding to those electrons which go directly from one

lead to the other, and an inelastic component, corresponding to those elec-

trons which enter into at least one of the voltage probes in their travel

between the leads.

4.10 Exercises

4.1 Transmission through a potential step: Show that the transmission
probability as a function of energy, E, for the potential step shown in Fig. 4.13
is given by

T (E) =

{
4k1k2/(k1 + k2)

2 if E > V0

0 if E < V0
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where k1 =
√

2mE/�2, k2 =
√

2m(E − V0)/�2 and m is the electron mass.

0

V0

V(x)

x

Fig. 4.13 Potential step of height V0.

4.2 Penetration of a rectangular barrier: Show that the probability for an
electron to cross the rectangular barrier shown in Fig. 4.3 for energies E > V0 is
given by Eq. (4.16).

4.3 A rectangular barrier under an applied voltage: Consider the rectan-
gular barrier under an applied bias shown in Fig. 4.5(a). Show that the energy
and voltage dependence of the transmission for E < V0 is given by

T (E,V ) =

∣∣∣∣ 4k1k2
2(k1k3 − k22) sinh(k2L) + 2ik2(k1 + k3) cosh(k2L)

∣∣∣∣
2
k3
k1
,

where k1 =
√
2mE/�, k2 =

√
2m(V0 −E)/� and k3 =

√
2m(E + eV )/�.

Use this result and the Landauer formula [Eq. (4.11)] to compute the zero-
temperature current-voltage characteristics for a barrier of height V0 = 4 eV and
width L = 1 nm.

4.4 Penetration of an arbitrary potential barrier: Let us consider the
potential barrier shown in Fig 4.14. Here, in a region x < a (region I), V (x) =
V0 = const.; when x > a, V (x) is a positive and smooth function decreasing
monotonically from the positive value Va = V (a) to V (∞) = 0.

V

ba

III
II

E

V

0

a

I

x

V(x)

Fig. 4.14 Arbitrary potential barrier.

Use the WKB approximation to show that the transmission coefficient
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through that barrier is given by

T (E) = 4

√
(Va − E)(E − V0)

Va − V0
e−2τ , where τ =

∫ b

a

√
2m[V (x)− E]

�
dx.

Hint: The WKB approximation is nicely explained, e.g., in Ref. [146].

4.5 Resonant tunneling in a finite square well: Analyze the transmission
coefficient in the case of the square well shown in Fig 4.15. In particular, show
that in the energy range E > V3 this coefficient is given by

T (E) =
4k1k3k

2
2

k22(k1 + k3)2 cos2(k2L) + (k22 + k1k3)2 sin
2(k2L)

,

where L = a− b and ki is the electron momentum in the region i =I,II,III.

V1
V2

V3

xb

I
IIIII

a

V(x)

Fig. 4.15 Square well.

Show also that the transmission coefficient above exhibits resonances as a
function of energy. In particular, calculate the position of those resonances and
show that the transmission maxima are given by 4k1k3/(k1 + k3)

2.

4.6 Transmission through a delta function barrier: Let us model a one-
dimensional conductor with the following Hamiltonian

H = − �
2

2m

∂2

∂x2
+ V0δ(x),

where V0 is the strength of the delta potential that acts at x = 0.
(a) Demonstrate that the boundary conditions for the scattering states ψk(x),

k being the electron momentum, are: (i) continuity at x = 0 and (ii) ψ′
k(x =

0+) − ψ′
k(x = 0−) = (2mV0/�)ψ(x = 0), where the prime symbol indicates

derivative with respect to x.
(b) Use the previous result to show that the transmission probability through

this delta potential can be expressed as: T = 1/(1 +Z2), where Z ≡ mV0/(�
2k).

4.7 Scattering matrix:
(a) Show that in the presence of a magnetic field the scattering matrix fulfills

the property of Eq. (4.40).
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(b) Derive the relations of Eq. (4.43).

4.8 Resonant tunneling through a symmetric double barrier: Consider
a symmetric double barrier system formed by combining two square barriers (see
Exercise 4.2) of height V0 and width L that are separated a distance d.

(a) Compute the total transmission through this system for energies smaller
than V0. Hint: Use the idea of the combination of scattering matrices, see
Eq. (4.44) in section 4.5.2, and the results of Exercise 4.2.

(b) As in the case of the potential well of Exercise 4.5, the transmission in
this double barrier system exhibits pronounced resonances. Find the position of
those resonances and show that, in the limit in which they are well separated,
the transmission around one of those resonances can be written as

T (E) =
4ΓLΓR

(E − ε0)2 + (ΓL + ΓR)2
,

where ε0 is the position of the resonance and ΓL,R are the scattering rates as-
sociated to the left and right potential barriers. Find an expression for these
rates in terms of the transmissions of the barriers. Hints: (i) The resonances are
well separated when the transmissions T1 and T2 are small (R1, R2 ≈ 1). (ii)
The round-trip phase shift that appears in Eq. (4.44) is θ = 2kd, where k is the
electron momentum in the region between the two barriers.

4.9 Conductance quantization in a 2DEG: One of the most successful ap-
plications of the Landauer formula is the explanation of the conductance quan-
tization that takes place in split-gate constrictions (or quantum-point contacts)
in a two-dimensional electron gas (2DEG). A useful model to study the occur-
rence of conductance steps is the so-called saddle point model used by Büttiker in
Ref. [172]. In this model it is assumed that near the bottleneck of the constriction
the electrostatic potential can be expressed as

V (x, y) = V0 − 1

2
mω2

xx
2 +

1

2
mω2

yy
2. (4.91)

Here, V0 is the electrostatic potential at the saddle, ωx characterizes the curvature
of the potential barrier in the constriction and ωy the lateral confinement. Show
that for this potential the transmission probabilities are given by

Tn(E) =
1

exp[π(E − V0 − (n+ 1/2)ωx)/ωy ] + 1
.

Using this expression in combination with the Landauer formula, find the criteria
for the observation of well-defined conductance steps at low temperatures.

4.10 Shot noise and thermopower in a quantum point contact: Use the
saddle point model of the previous exercise to study the shot noise [155] and the
thermopower [161, 163] in a quantum point contact as a function of the Fermi
energy (or gate voltage).



Chapter 5

Introduction to Green’s function

techniques for systems in equilibrium

The discussion of the scattering formalism in the previous chapter has left

two basic questions open: (i) How to calculate the elastic transmission

of real systems such as atomic and molecular junctions? and (ii) how to

generalize Landauer formula to take into account correlation effects and

inelastic mechanisms? Indeed, both questions can be answered, at least

to a large extent, with the help of Green’s function techniques. For this

reason, we initiate here a series of three chapters devoted to this subject.

We are aware of the fact that at this point part of the readership will be

certainly tempted to jump to the next part of the book. The words Green’s

functions cause in many people an immediate rejection because they asso-

ciate them to some obscure theoretical techniques reserved to specialists.

We believe that this judgment is a bit unfair. The degree of difficulty of

the Green’s function techniques depends primarily on the type of prob-

lems addressed. Thus for instance, we shall show that what is required to

answer the first question posed above reduces to a standard problem of lin-

ear algebra that should be accessible to any student with a background in

quantum mechanics. The answer to the second question requires however

more elaborate methods, which will also be presented in this book. With

this distinction in mind, we shall guide you through the next three chapters

indicating the type of problems that we have in mind and we shall warn

you about the possible difficulties.

In our discussion on the Green’s function techniques we shall start in

this chapter by introducing the subject concentrating ourselves on the case

of electronic systems in equilibrium. This chapter is meant to give a first

insight into what Green’s functions in quantum mechanics are, what kind of

physical information they contain and how they can be calculated in some

simple situations. Having in mind the first question above, we shall focus

111

 Star Diwa
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on the analysis of noninteracting systems. Then, the next chapter will deal

with the diagrammatic theory, which provides a systematic perturbative

approach to compute the Green’s functions of many-body systems where

correlations and inelastic mechanisms in general play a fundamental role.

Finally, since our final goal is the analysis of the transport properties of

atomic-scale junctions, we shall present in Chapter 7 the Keldysh formalism

that allows us to compute the Green’s functions of nonequilibrium systems.

Then, at the end of that chapter, we shall apply this formalism to the

calculation of the transmission in some illustrative examples.

This chapter is organized as follows. First, we shall remind the reader

of the basics of the Schrödinger and Heisenberg representations of quantum

mechanics. Then, we shall introduce the retarded and advanced Green’s

functions in energy space for a noninteracting electron system and show how

they can be computed in certain simple examples. We shall then define

the general (valid also for interacting systems) time-dependent retarded,

advanced and causal Green’s functions and analyze their main analytical

properties, their relation with the observables of interest and how they can

be computed, in principle, with the so-called equation-of-motion method.

One last comment before we get started. We shall constantly make

use of the second quantization formalism in our discussion of the Green’s

functions techniques. So, if you are not very familiar with this formalism,

we strongly recommend you to read Appendix A.

5.1 The Schrödinger and Heisenberg pictures

Let us start by reviewing the two most standard pictures or representations

in quantum mechanics. The usual way to introduce quantum mechanics

makes use of the so-called Schrödinger picture, which is based on the time-

dependent Schrödinger equation

i�
∂

∂t
ΨS(t) = HΨS(t), (5.1)

where H is the time-independent Hamiltonian of the system and ΨS(t) is

the time-dependent wave function. Let us stress that in what follows, unless

said otherwise, we shall set � = 1 to simplify the different formulas and the

operators will be written in boldface.

The previous equation has the formal solution

ΨS(t) = e−iH(t−t0)ΨS(t0), (5.2)
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where t0 is an arbitrary initial time. Here, the exponential of any operator

A is defined, as usual, by means of its Taylor series

exp(A) =

∞∑
n=0

1

n!
An. (5.3)

From this result, it is obvious that the operator exp[−iH(t − t0)] is the

time-evolution operator in the Schrödinger picture, in the sense that by

acting on the wave function at a initial time, t0, this operator transforms

it into the wave function at the time t. If we take t0 = 0, we have

ΨS(t) = e−iHtΨS(0). (5.4)

For the moment, since we are only interested in equilibrium situations,

we shall assume that the operators describing the observables in this rep-

resentation, OS, do not have any explicit time dependence.

Another typical representation in quantum mechanics is the so-called

Heisenberg picture, which can be defined from the Schrödinger one by means

of the following unitary transformation

ΨH(t) = eiHtΨS(t) = ΨS(0)

OH(t) = eiHtOSe
−iHt. (5.5)

Thus, in Heisenberg picture the time dependence has been transferred

from the wave functions to the operators. The wave function in this rep-

resentation is stationary and equal to the wave function in Schrödinger

picture at time zero, i.e. ΨH = ΨS(0), whereas the operators, OH(t), do

depend explictly on time. Their time evolution can be obtained by taking

the derivative with respect to time in the previous equation

i
∂

∂t
OH = [OH,H] , (5.6)

which is the equation of motion of an operator in this representation (see

Exercise 5.1).

Both representations are equivalent in the sense that the expectation

values are the same, irrespective of the picture used. This is a simple

consequence of the fact that both representations are related by means of

a unitary transformation.

5.2 Green’s functions of a noninteracting electron system

Green’s functions are commonly used in traditional contexts such as clas-

sical mechanics and electromagnetism. In those cases, Green’s functions
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are defined as the inverse of differential operators. One can indeed pro-

ceed in a similar way with the Schrödinger equation, which is a second

order differential equation. As an illustration, let us consider the prob-

lem of an electron in an one-dimensional system, which is described by the

Schrödinger equation

H(x)Ψ(x) = EΨ(x). (5.7)

Now, we define the electron Green’s function (or propagator) as

[E −H(x)]G(x, x′) = δ(x− x′), (5.8)

where

H(x) = − 1

2m

∂2

∂x2
+ V (x), (5.9)

V (x) being an external potential acting on the electron. Notice that the

Green’s function is a complex function that depends both on the spatial

coordinates and on the energy, E.

In the case of a free electron, V (x) = V0 = constant, the Green’s function

can be obtained exactly (see Exercise 5.2). Indeed, one can show that a

solution is given by

G(x− x′, E) = − i

v
eik|x−x′|, (5.10)

where k =
√
2m(E − V0), v = k/m and we have included the energy,

E, as an argument. As it will become clear later on, one can interpret the

Green’s function as the propagation amplitude of an electron. In this sense,

the previous expression corresponds to the propagation of a free electron

at energy E from the position x′ to the right (x − x′ > 0) or to the left

(x− x′ < 0).

It is important to notice that there is another solution that corresponds

to the time-reserved solution as compared with the previous one:

G(x − x′, E) =
i

v
e−ik|x−x′|. (5.11)

This simply reflects the fact that the Green’s function is not completely de-

termined until we specify the boundary conditions for its differential equa-

tion.

Eq. (5.10) corresponds to the so-called retarded Green’s function, Gr,

while Eq. (5.11) corresponds to the advanced Green’s function, Ga. Al-

though the time does not appear explicitly in these functions, we shall show

later that one can relate Gr [Eq. (5.10)] with the propagation of an electron



Introduction to equilibrium Green’s function techniques 115

forwards in time, while Ga [Eq. (5.11)] is the corresponding time-reversed

function (describing the electron propagation backwards in time).

An easy way to obtain the retarded/advanced function in the previous

problem is by introducing an infinitesimal imaginary part in the energy in

the expression defining G(x−x′). Thus, the substitution E → E±iη selects
the retarded Green’s function for the plus sign and the advanced one for

the minus sign. A rigorous definition of the retarded Green’s function for

this one-dimensional problem would then be

limη→0 [E + iη −H(x)]Gr(x, x′) = δ(x− x′), (5.12)

and a similar one for the advanced function.

This definition for the one-dimensional problem can be generalized to

any single-particle problem. If H is the Hamilton operator of the system,

we can define the retarded and advanced Green’s functions as

Gr,a(E) = lim
η→0

[(E ± iη)1−H]
−1
, (5.13)

where we have written the equation as an operator identity in order to have

an expression that is independent of the representation. Here, 1 is the iden-

tity operator. It is possible to write the previous equation in an alternative

form in terms of the eigenfunctions and eigenvalues of H (H|ψn〉 = εn|ψn〉):

Gr,a(E) =
∑
n

|ψn〉〈ψn|
E − εn ± iη

, (5.14)

where from now on the limit limη→0 is implicitly assumed in all the ex-

pressions in which the parameter η appears. Are you able to show the

equivalence of Eqs. (5.13) and (5.14)? If not, see hints in Exercise 5.3.

Eq. (5.14) shows that the Green’s functions (for a noninteracting case)

have poles precisely at the eigenenergies, εn, of the system. This is the first

important piece of information contained in these functions.

From the previous equations, one can deduce a number of important

properties of the functions Gr,a. Let us discuss the most useful ones for our

purposes:

Property 1. The imaginary part of the Green’s functions is related to

the density of states of the system. To demonstrate this, let us remind that

the local density of states in a given position r can be written in terms of

the eigenstates of H as follows

ρ(r, E) =
∑
n

|〈r|ψn〉|2δ(E − εn). (5.15)
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From Eq. (5.14) we can write

Gr,a(r, E) =
∑
n

〈r|ψn〉〈ψn|r〉
E − εn ± iη

, (5.16)

and comparing these last two equations, one obtains

ρ(r, E) = ∓ 1

π
Im {Gr,a(r, E)} . (5.17)

Here, we have used the relation

1

E ± iη
= P

(
1

E

)
∓ iπδ(E), (5.18)

where P denotes a Cauchy principal value.

If we use a discrete basis of atomic orbitals, we would have

ρi(E) = ∓ 1

π
Im {Gr,a

ii (E)} , (5.19)

where i indicates that the density of states has been projected onto the

atom (or site) i.

Property 2. The diagonal Green’s functions satisfy in any basis that

Im{Gr
ii(E)} ≤ 0 and Im{Ga

ii(E)} ≥ 0. This is obvious from Eq. (5.14).

Property 3. The real and imaginary parts of Gr,a are related through

a Hilbert transformation:

Re {Gr,a(E)} = ∓P
∫ ∞

−∞

dE′

π

Im {Gr,a(E′)}
E − E′

. (5.20)

This is a consequence of the pole structure of Eq. (5.14) and it can be easily

shown with the help of Eq. (5.18). As a result of this relation, Gr,a(E) can

be written as

Gr,a(E) =

∫ ∞

−∞
dE′

ρ(E′)
E − E′ ± iη

, (5.21)

where we have defined the density operator ρ(E) ≡ ∓Im{Gr,a(E)}/π. This
way of writing the Green’s function in terms of the density of states is known

as spectral representation and, as we shall show below, it is also valid in the

case of interacting systems.

Property 4. An important consequence of the spectral representation

is the asymptotic form of the diagonal Green’s functions for E → ∞. As

ρi(E) is a bounded function, one has

lim
E→∞

Gr,a
ii (E) =

1

E
. (5.22)
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This is a consequence of the fact that the energy integral of ρi(E) is equal

to 1, i.e. ∫ ∞

−∞
dE ρi(E) = ∓ 1

π

∫ ∞

−∞
dE Im {Gr,a

ii (E)} = 1. (5.23)

Property 5. As one can easily see from Eq. (5.13), the following simple

relation between Gr and Ga holds:

Gr(E) = [Ga(E)]† . (5.24)

This means in practice that we only need to compute one of these two type

of functions.

Property 6. As a last issue, let us consider the case in which the

Hamiltonian H can be written as

H = H0 +V, (5.25)

where H0 is the Hamiltonian of a problem for which the Green’s functions

are known, gr,a, and V is an arbitrary single-particle perturbation. We

want to express the Green’s functions of the full problem in terms of the

unperturbed Green’s functions. This can be easily done starting from the

definition of Eq. (5.13)

Gr,a(E) = [(E ± iη)1−H0 −V]
−1
. (5.26)

Taking into account that for the unperturbed problem we have

gr,a(E) = [(E ± iη)1−H0]
−1
, (5.27)

it is easy to obtain the following relation (see Exercise 5.4)

Gr,a(E) = gr,a(E) + gr,a(E)VGr,a(E), (5.28)

The previous equation is known as Dyson’s equation and it can also be

derived in the interacting case, as we shall show in the next chapter. How-

ever, in the general case the operator V is replaced by a energy-dependent

operator, Σ(E), known as self-energy. Dyson’s equation is extremely useful

to compute the Green’s functions in different situations, as we shall illus-

trate in the next section. We shall also show that it is possible to have

a energy-dependent self-energy in single-particle problems when one deals

with a subspace of the full Hilbert space of the problem.
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5.3 Application to tight-binding Hamiltonians

In this section we shall apply what we have learned so far to the computa-

tion of the Green’s functions of several simple electronic systems described

in terms of tight-binding Hamiltonians.1 Such Hamiltonians, as we shall

see in the next chapters, play a fundamental role in the field of molecular

electronics. A generic tight-binding Hamiltonian adopts the following form

in the language of second quantization (see Appendix A)

H =
∑
iσ

εic
†
iσciσ +

∑
i�=j;σ

tijc
†
iσcjσ . (5.29)

Here, the indexes i and j run over of the sites (atoms) of the system and

σ represents the electron spin (σ =↑, ↓). The different operators have the

following meaning. For instance, c†iσ is the operator that creates an elec-

tron in the site i with spin σ, while ciσ annihilates such an electron. For

the sake of simplicity, we shall assume in this discussion that there is a

single relevant orbital per site. The parameters εi are the on-site energies,

while the hoppings tij describe the coupling between the different sites (see

Appendix A for a precise definition of all these parameters).

Our goal is the calculation of the different Green’s functions Gr,a
ij (E) in

this local basis representation. In principle, we have three methods at our

disposal: (i) the definition of Eq. (5.13), (ii) the spectral representation of

Eq. (5.14) and (iii) Dyson’s equation, see Eq. (5.28). We shall illustrate the

use of these different approaches with the analysis of three basic examples

that will be frequently used in subsequent chapters.

5.3.1 Example 1: A hydrogen molecule

We describe a hydrogen molecule with the following two-sites tight-binding

Hamiltonian (see Fig. 5.1)

H = ε0
∑
σ

(n1σ + n2σ) + t
∑
σ

(c†1σc2σ + c†2σc1σ). (5.30)

Here, niσ = c†iσciσ, ε0 is the 1s-level of the hydrogen atoms and t is the

hopping connecting these two levels and it is assumed to be real. Our goal

is to compute the retarded/advanced diagonal Green’s function of site 1, i.e.
1The tight-binding approach is briefly described in Appendix A and it is explained in

detail in Chapter 9. Here, we shall use the term tight-binding to refer to models or
Hamiltonians where the electronic structure is described in terms a local (atomic-like)
basis. We shall not discuss here how the matrix elements of such a Hamiltonian are
actually computed, and we shall just use them as parameters.
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ε0 ε0

ε0

ε0

t

1 2

(a) (b) +|t|

−|t|
Fig. 5.1 (a) Model for the hydrogen molecule. We consider a single orbital per site
(atom) with energy ε, and the coupling is described by a hopping t. (b) Level scheme
of the hydrogen molecule in which the two orbitals hybridize to form the bonding and
antibonding states with energies ε0 ± |t|.

Gr,a
11 (E) (since the problem has spin degeneracy, we omit the spin indexes

in the Green’s functions). For symmetry reasons, this Green’s function is

equal to Gr,a
22 (E). In order to compute this function, we shall employ the

three methods mentioned above:

Method 1: Direct definition. According to the definition of Eq. (5.13),

the matrix Green’s function can be simply calculated by inverting the

Hamiltonian of Eq. (5.30). In the basis of the atomic states localized in

the hydrogen atoms, {|1〉, |2〉}, this Hamiltonian adopts the following ma-

trix form

H =

(
ε0 t

t ε0

)
, (5.31)

and therefore the matrix Green’s function is given by

Gr,a(E) =

(
Er,a − ε0 −t

−t Er,a − ε0

)−1

, (5.32)

where Er,a ≡ E± iη, η being the infinitesimal imaginary part of the energy

appearing in the definition of Eq. (5.13). Thus, the element (1, 1) that we

are looking for reads

Gr,a
11 (E) =

Er,a − ε0
(Er,a − ε0)2 − t2

=
1/2

Er,a − (ε0 + t)
+

1/2

Er,a − (ε0 − t)
. (5.33)

One can show that this expression fulfills the different properties of

a Green’s function discussed in the previous section. Thus for instance,

notice that Eq. (5.33) has precisely the form of the spectral representation

of Eq. (5.14). The poles in this case are nothing else but the energies ε± =

ε0 ± t of the bonding and antibonding orbitals of the hydrogen molecule,2

2The hooping t is indeed a negative quantity and thus ε+ = ε0 + t corresponds to the
lowest energy level (bonding state).
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see Fig. 5.1. Notice also that the sum of the weights (coefficients appearing

in the numerators) is equal to 1.

On the other hand, the density of states projected onto the site 1 is

given in this case by

ρ1(E) = ∓ 1

π
Im {Gr,a

11 (E)} =
1

2
δ(E − ε+) +

1

2
δ(E − ε−), (5.34)

i.e. it is a sum of delta functions evaluated at the molecular energies. This

is a consequence of the fact that we are dealing with a finite system. In a

similar way, one could demonstrate that the rest of the properties listed at

the end of the previous section are satisfied. In particular, properties 4 and

5 are rather obvious from Eq. (5.33).

Method 2: Spectral representation. Let us now use the spectral repre-

sentation of Eq. (5.14). To evaluate this expression we need both the eigen-

functions and the eigenvalues of the hydrogen molecule. For this purpose

we just need to diagonalize the Hamiltonian of Eq. (5.31). The eigenfunc-

tions are simply the bonding (|ψ+〉) and antibonding (|ψ−〉) states given

by: |ψ±〉 = (|1〉 ± |2〉)/√2 with the corresponding eigenvalues ε±. Thus,

the function Gr,a
11 (E) is then given by

Gr,a
11 (E) = 〈1|G|1〉 =

∑
n=+,−

〈1|ψn〉〈ψn|1〉
Er,a − εn

=
∑

n=+,−

|〈1|ψn〉|2
Er,a − εn

. (5.35)

Using the fact that 〈1|ψ±〉 = 1/
√
2, we arrive immediately at the expres-

sion of Eq. (5.33). Obviously, this method is not very practical in general

since it requires the knowledge of the eigenfunctions of the system, which

are typically unknown.

Method 3: Dyson’s equation. Now, our starting point is Eq. (5.28).

The first thing to do is to divide the Hamiltonian of Eq. (5.30) into the

unperturbed part H0 and the perturbation V. The natural choice is that

the perturbation be the coupling term between the two atoms (second term

in Eq. (5.30)). Thus, these two parts of the Hamiltonian adopt the following

matrix form

H0 =

(
ε0 0

0 ε0

)
; V =

(
0 t

t 0

)
. (5.36)

To solve Dyson’s equation we also need the Green’s functions of the

unperturbed system, gr,a. These functions are simply given by

gr,a = [Er,a1−H0]
−1

=

(
Er,a − ε0 0

0 Er,a − ε0

)−1

=
1

Er,a − ε0
1. (5.37)
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Now, we can determine the function Gr,a
11 (E) by taking the element (1, 1)

in Eq. (5.28), i.e.

Gr,a
11 (E) = gr,a11 (E) + gr,a11 (E)V12G

r,a
21 (E). (5.38)

Remember that gr,a is diagonal, while V is purely off-diagonal. In order to

get a closed equation for Gr,a
11 , we still need an equation for Gr,a

21 . Taking

now the element (2, 1) in Eq. (5.28), we get

Gr,a
21 (E) = gr,a22 (E)V21G

r,a
11 (E). (5.39)

Substituting this expression now in Eq. (5.38), we arrive at

Gr,a
11 (E) = gr,a11 (E) + gr,a11 (E)V12g

r,a
22 (E)V21G

r,a
11 (E). (5.40)

This equation can now be trivially inverted and using the explicit expression

of the unperturbed Green’s functions one arrives once more at the result of

Eq. (5.33).

We can use the discussion above to illustrate the concept of self-energy,

which was briefly mentioned at the end of the last section. In the previous

equation, we can identify the following energy-dependent function

Σr,a
11 (E) ≡ V12g

r,a
22 (E)V21 = t2gr,a22 (E). (5.41)

This function describes how the properties of the atom 1 are modified via

the interaction with the second atom. This can be better seen by rewriting

Eq. (5.40) as

Gr,a
11 (E) =

1

Er,a − ε0 − Σr,a
11 (E)

, (5.42)

where we have used the expressions of the unperturbed Green’s functions.

In this equation we see that the self-energy renormalizes dynamically (de-

pending on the energy) both the position (ε0) and the lifetime of the en-

ergy level in the atom 1 (this latter point will become clearer in the next

examples). Notice that the self-energy depends both on the coupling to

the second atom and on the electronic structure of this second atom. We

shall see in the next examples that, no matter the problem, the concept

of self-energy appears naturally and it describes the renormalization of the

properties of a finite system due to its interaction with an external sys-

tem. In particular, we shall show in the next chapter that the concept of

self-energy remains valid even in the presence of interactions.
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5.3.2 Example 2: Semi-infinite linear chain

As a first example of an infinite solid, we consider now a semi-infinite linear

chain with only nearest-neighbor couplings. This system, which is schemat-

ically illustrated in Fig. 5.2(a), will be sometimes used in the next chapters

as a model for a metallic electrode. The corresponding tight-binding Hamil-

tonian of this system reads

H = ε0
∑
iσ

niσ + t
∑
iσ

(
c†iσci+1σ + c†i+1σciσ

)
, (5.43)

where i = 1, 2, 3, ... represents the different sites starting from the surface.

We shall carry out here the calculation of the surface Green’s function,

Gr,a
11 (E). As in the previous example, there are, in principle, three methods

avaliable. However, the first two are rather impractical. The first one would

require the inversion of an infinite matrix, while the second would need

the calculation of the eigenfunctions and eigenvalues of this infinite (non-

periodic) system. For these reasons, we shall resort to Dyson’s equation.

The first step in this method is to choose the unperturbed problem and

the corresponding perturbation. One possible choice would be to select the

uncoupled atoms as unperturbed system and the coupling between them

as the perturbation. Such a legitimate choice would lead us to an infinite

algebraic system, which is really difficult to solve (try it, just for fun!).

There is an alternative “trick” that does the job in a few steps. The idea

goes as follows. Let us consider that the unperturbed system is composed of

two uncoupled systems, namely the atom 1 and the rest of the chain. Then,

the perturbation is simply the coupling between these two subsystems, i.e.

V = t
∑
σ

(
c†1σc2σ + c†2σc1σ

)
. (5.44)

This means in practice that the only two non-zero elements of the pertur-

bation are V12 = V21 = t.

Now, we can use Dyson’s equation [Eq (5.28)] to obtain the equation

for Gr,a
11 (E). Taking the element (1, 1) we have

G11(E) = g11(E) + g11(E)V12G21(E)

G21(E) = g22(E)V21G11(E),

where the second relation is necessary to obtain a closed equation for

G11(E). Here, we have omitted again the spin index σ since there is spin

degeneracy in this problem and we have also dropped the superindexes

r, a because the equations are valid for both retarded and advanced func-

tions. The unperturbed function g11 of the site i = 1 is simply given by
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Fig. 5.2 (a) Semi-infinite linear chain with a single orbital per site and only nearest-
neighbor couplings. (b) Real and imaginary parts of the advanced surface Green’s func-
tion, Ga

11, of the semi-infinite chain as a function of the energy, see Eq. (5.46).

g11(E) = 1/(E − ε0). On the other hand, the unperturbed function g22
is nothing else but the surface Green’s function of a semi-infinite chain,3

which is precisely what we are looking for, i.e. g22 = G11. This allows us

to obtain the following closed equation for G11(E)

(E − ε0)G11(E) = 1 + t2G2
11(E). (5.45)

This is a quadratic equation that possesses two possible solutions. In order

to choose the “physical” one, it is necessary to take into account the bound-

ary condition E → Er,a = E ± iη to distinguish between the retarded and

advanced solutions. As a practical advice, remember that the imaginary

part of these functions has a well-defined sign. The final solution adopts

the following expression

Gr,a
11 (E) =

1

t

⎛
⎝Er,a − ε0

2t
−
√(

Er,a − ε0
2t

)2

− 1

⎞
⎠ . (5.46)

The real and imaginary parts of the advanced function are depicted in

Fig. 5.2(b). Notice that the imaginary part, and therefore the density of

states, is only non-zero in the region |E − ε0| < 2|t|, which defines the
3The removal of an atom from the chain does not modify the fact that the remaining

chain is again a semi-infinite chain.
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energy band of the linear chain. In this region, the Green’s function adopts

the following form

Gr,a
11 (E) =

1

t

⎛
⎝E − ε0

2t
∓ i

√
1−

(
E − ε0

2t

)2
⎞
⎠ . (5.47)

This expression can be written in a form that is very useful to do algebraic

manipulations (see Exercise 5.5) by defining cos(φ) ≡ (E − ε0)/2t:

Gr,a
11 (E) =

1

t
exp(∓iφ) (5.48)

The density of states in the surface atom of the chain can be then

expressed as

ρ1(E) =
1

π
Im {Ga

11(E)} =
1

πt

√
1−

(
E − ε0

2t

)2

, |E − ε0| ≤ 2|t|. (5.49)

and it can be seen in Fig. 5.2(b). Contrary to the example of the hydrogen

molecule, in this case there is an infinite number of states that are grouped

in an energy band of width 4t. Notice that we have not specified the actual

occupation of this band. If we had an electron per site, the band would be

half-filled (with the Fermi energy equal to ε0) and there would be electron-

hole symmetry.

It is worth mentioning that in Eq. (5.45) one can identify the self-energy

Σr,a
11 (E) = t2Gr,a

11 (E), which plays exactly the same role as in the case of

the hydrogen molecule and it has the same functional form.

Let us say to conclude this discussion that one can check that the expres-

sion of Eq. (5.46) satisfies the different properties discussed in the previous

section. The reader is encouraged to show, in particular, that

lim
E→∞

Re {Gr,a
11 (E)} =

1

E
, (5.50)

and that the following sum rule is fulfilled∫ ∞

−∞
dE ρ1(E) = 1. (5.51)

5.3.3 Example 3: A single level coupled to electrodes

We consider now the case of single energy level coupled to two infinite

electrodes. This is a very important example that will teach us a couple

of important lessons for molecular electronics. The system that we are
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Fig. 5.3 (a) A single level of energy ε0 is coupled to two infinite electrodes via the hop-
pings tL and tR. (b) The corresponding energy scheme where one can see the continuum
of states in the electrodes filled up to the Fermi energy and the resonant level, which
has acquired a half width at half maximum equal to Γ = ΓL + ΓR due to the coupling
to the reservoirs.

interested in is schematically represented in Fig. 5.3(a), and it is described

by the following Hamiltonian

H = HL +HR +
∑
σ

ε0c
†
0σc0σ + (5.52)

∑
σ

tL

(
c†0σcLσ + c†Lσc0σ

)
+
∑
σ

tR

(
c†0σcRσ + c†Rσc0σ

)
.

Here, the Hamiltonians HL and HR describe the left and right electrodes

that are coupled to a single energy level. It will not be necessary for the

present discussion to specify anything about the shape or concrete electronic

structure of these two leads. The subindex 0 refers to the localized level,

the energy of which is denoted by ε0. This level is coupled to the electrodes

via the hoppings tL and tR, which are assumed to be real. The subindexes

L and R refer here to the outermost sites of the left and right electrodes

(we have in mind again that there is a single relevant orbital per site in

these leads).

The question that we want to address is: How is this level modified

by the coupling to the electrodes? This question is very relevant for many

different contexts. We have in mind the problem of a molecule (or atom)

coupled to metallic leads, but it is also important for problems like the

chemisorption of molecules on surfaces (in this case there would be only one

electrode). In order to answer this question, we will compute the local den-

sity of states projected onto the level. This requires the calculation of the

Green’s function G00(E) (no matter whether it is retarded or advanced).

For this purpose, we resort to Dyson’s equation. Our choice for the un-

perturbed Hamiltonian H0 is the sum of the Hamiltonians of the three



126 Molecular Electronics: An Introduction to Theory and Experiment

uncoupled subsystems, i.e. the right hand side of the first line of Eq. (5.52).

Thus, the perturbation V is the term that describes the coupling between

the localized level and the electrodes (second line in Eq. (5.52)). Notice

that we are assuming that there is no direct coupling between the leads.

With this choice in mind, we take the element (0, 0) in Eq. (5.28) to

obtain

G00(E) = g00(E) + g00(E)V0LGL0(E) + g00(E)V0RGR0(E), (5.53)

where V0L = tL and V0R = tR and g00(E) = 1/(E − ε0) is the unperturbed

Green’s function of the single-level system. As usual, to close this equation,

we have to determine the functions GL0 and GR0. This can be done by

taking the corresponding elements in Dyson’s equation, i.e.

GL0(E) = gLL(E)VL0G00(E)

GR0(E) = gRR(E)VR0G00(E),

where VL/R0 = tL/R and gLL and gRR are the Green’s functions of the two

outermost sites of the left and right electrodes, respectively. Substituting

these expressions in Eq. (5.53), we obtain the following closed equation

G00(E) = g00(E) + g00(E)V0LgLL(E)VL0G00(E) (5.54)

+ g00(E)V0RgRR(E)VR0G00(E).

In this expression one can identify, as in the previous examples, the self-

energy Σ00(E) = t2LgLL(E) + t2RgRR(E), which in this case is the sum of

two contributions associated to the two leads. In terms of the self-energy

we can express the function G00(E) as

G00(E) =
1

E − ε0 − Σ00(E)
, (5.55)

where we have used the expression of g00(E). Here, we see once more that

the self-energy describes how the resonant level is modified by the inter-

action with the leads. In particular, its real part is responsible for the

renormalization of the level position, which becomes ε̃0 = ε0+Re{Σ00(E)},
while its imaginary part describes the finite energy “width” acquired by

the level via the interaction with the leads. This latter point becomes

more clear by using the following approximation. Let us assume that the

Green’s functions of the leads are imaginary for energies in the vicinity

of ε0 and that they do not depend significantly on energy in this region.4

Thus, we can approximate these functions by gr,aLL,RR ≈ ∓i/WL,R, where

4This approximation is usually known as wide-band approximation.
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WL,R are energy scales related to the density of states of the leads at the

energy ε0.
5 For instance, if we modeled the electrodes by the semi-infinite

chains like in the previous example, WL,R would then be the bulk hop-

ping element of these chains. Within this approximation, the self-energy

becomes Σr,a
00 = ∓i (ΓL + ΓR), where we have defined the scattering rates

ΓL,R ≡ t2L,R/WL,R. Obviously, with this approximation the level position

remains unchanged (see Exercise 5.9). Finally, the function G00(E) adopts

in this case the form

Gr,a
00 (E) =

1

Er,a − ε0 ± i (ΓL + ΓR)
, (5.56)

Thus, the local density of states that we wanted to calculate is given by

ρ0(E) = ∓ 1

π
Im {Gr,a

00 (E)} =
1

π

ΓL + ΓR

(E − ε0)2 + (ΓL + ΓR)2
, (5.57)

which is a Lorentzian function, where Γ = ΓL + ΓR is the half-width at

half-maximum (HWHM). This result shows clearly that the resonant level,

which originally had zero width (it was an eigenstate of the isolated central

system), acquires a finite width Γ via the coupling to the leads. This fact

is illustrated in Figs. 5.3(b). It is worth stressing that the width depends

both on the strength of the coupling to the electrodes (via t2L,R) and on

the local electronic structure of the leads (via WL,R or, more generally, via

gLL,RR). The time scale �/Γ that can be interpreted as the finite lifetime of

the resonant level due to the interaction with the leads, or in other words,

as the time that an electron spends in the resonant level.

Thus, the take-home message of this example is that when an isolated

molecule (or an atom) is coupled to a continuum of states, its levels are,

in general, shifted and they acquire a width that depends on the strength of

the coupling and on the local electronic structure of the leads.

Let us finally say that we hope that the reader has realized that all the

calculations of this section involved simple algebraic manipulations. Indeed,

we shall show in the next chapters that, as long as we deal with systems

with only elastic interactions (described by mean-field Hamiltonians), the

evaluation of the Green’s functions, both in equilibrium and out of equilib-

rium, reduces to straightforward exercises of linear algebra. So maybe, this

Green’s function stuff is not so scary after all, don’t you think?

For more detailed discussion of Green’s functions in the framework of

tight-binding models, we recommend the book of Ref. [181], as well as the

exercises 5-9 at the end of this chapter.
5This energy scales are simply given by WL,R = 1/[πρL,R(E = ε0)], where ρL,R are

the local densities of states of the two outermost sites of the leads.
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5.4 Green’s functions in time domain

The energy-dependent retarded and advanced Green’s functions introduced

in the previous section for single-particle problems can be considered as

Fourier transforms of time-dependent Green’s functions, the definition of

which is much more general and they are still valid in the case of interacting

systems. The utility of these new definitions will become apparent in the

next chapter when we deal with the perturbation theory. Moreover, it will

be clear that we need to introduce a new kind of function known as the

causal Green’s function.

Using the second quantization formalism and an arbitrary representa-

tion (or basis), the retarded Green’s function that depends on two time

arguments can be defined as follows

Gr
ij(t, t

′) = −iθ(t− t′)〈ΨH|
{
ciσ(t), c

†
jσ(t

′)
}
|ΨH〉, (5.58)

where |ΨH〉 = |ΨS(0)〉 is the wave function of the ground state of the system

(that can include interactions) and the operators are in Heisenberg picture.

We shall only include explicitly the spin index σ in Gr
ij in those problems

where the spin symmetry is broken. In this definition, the step function, θ,

ensures that t > t′ and the symbol { , } stands for the anticommutator.

The Green’s functions are often defined using the basis {|r〉} formed by

the eigenfunctions of the position operator. The corresponding creation and

annihilation operators in this representation are known as field operators

and they are denoted by Ψ†σ(r) and Ψσ(r), These operators are simply

related to c†iσ and ciσ by the basis transformation

Ψσ(r) =
∑
i

φi(r)ciσ and Ψ†σ(r) =
∑
i

φ∗i (r)c
†
iσ , (5.59)

where φi(r) are the basis wave functions of the discrete representation.

These field operators satisfy the standard type of anticommutation rela-

tions, i.e.

{Ψσ(r),Ψ
†
σ′ (r

′)} = δ(r− r′)δσ,σ′ ; etc. (5.60)

In terms of these field operators, the retarded Green’s function is defined

as

Gr(rt, r′t′) = −iθ(t− t′)〈ΨH|
{
Ψσ(r, t),Ψ

†
σ(r

′, t′)
} |ΨH〉, (5.61)

which is a complex function that depends on two spatial arguments and

two time arguments.
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The advanced Green’s function has a similar definition, the only differ-

ence being that the propagation takes place backwards in time

Ga
ij(t, t

′) = iθ(t′ − t)〈ΨH|
{
ciσ(t), c

†
jσ(t

′)
}
|ΨH〉. (5.62)

Finally, it is convenient to define an additional Green’s function, namely

the one known as causal Green’s function, which is defined as follows

Gc
ij(t, t

′) = −i〈ΨH|T
[
ciσ(t)c

†
jσ(t

′)
]
|ΨH〉, (5.63)

where T is the time-ordering operator. It acts on a product of time-

dependent operators by ordering them chronologically from right to left.

Thus for instance, the previous function has the following explicit form

Gc
ij(t, t

′) =

{
−i〈ΨH|ciσ(t)c†jσ(t′)|ΨH〉 t > t′

i〈ΨH|c†jσ(t′)ciσ(t)|ΨH〉 t′ > t.
(5.64)

Notice the sign change for t′ > t due to the anticommutation of fermion

operators.

So far, our discussion in this section has been a bit mathematical and

there are questions that arise naturally. The first one is: What is the

physical meaning of the Green’s functions? To answer this question no-

tice that these functions contain factors like 〈ΨH|ciσ(t)c†jσ(t′)|ΨH〉. Here,

c†jσ(t
′)|ΨH〉 describes the creation (or injection) in the ground state of an

electron at time t′ in the state j. Then, the previous expectation value

yields the probability amplitude of finding such an electron at a later time

t in the state i. In other words, the Green’s functions simply describe the

probability amplitude of the occurrence of certain processes. The type of

processes described depends on the arguments of these functions. Thus for

instance, they can describe the propagation of electrons in time domain or

in energy space, propagation in real space, in momentum space or simply

in an atomic lattice.6

Another natural question is: What is the relation between this definition

of the Green’s functions and the one put forward in the previous section?

At a first glance, it seems that there is no relation at all. However, we

shall show below that if the system is noninteracting, the Fourier transform

with respect to the time arguments of these new Green’s functions fulfill

Eqs. (5.13) and (5.14), i.e. these two type of functions are equivalent.

Simple example: degenerate electron gas. To illustrate the previ-

ous definitions, we consider now the example of a free electron gas at zero
6In this sense, it is not surprising that the elastic transmission of any real system can

be naturally expressed in terms of these functions.
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temperature, which is discussed in Exercise 5.1. As we know, the ground

state of this noninteracting system is a Fermi sea, where the single-particle

states are occupied up to the Fermi energy, EF (or chemical potential μ).

These states, |kσ〉, are plane waves characterized by an energy εk = k2/2m,

where k is the electron momentum. In this case, it is easy to compute both

the exact time evolution of the Heisenberg operators (see Exercise 5.1)

and the expectation values over this ground state (Fermi sea). Thus for

instance,

〈ΨH|c†kσck′σ|ΨH〉 = δk,k′θ(kF − k), (5.65)

where kF is the Fermi momentum.

Bearing these ideas in mind, it is easy to show that the retarded and

advanced Green’s functions defined in Eqs. (5.58) and (5.62) can be written

in the k-basis (momentum space) as

Gr(k, t− t′) = −iθ(t− t′)e−iεk(t−t′) (5.66)

Ga(k, t− t′) = +iθ(t′ − t)e−iεk(t−t′),

while the causal function can be written as

Gc(k, t− t′) =

{
−iθ(k − kF)e

−iεk(t−t′) t > t′

iθ(kF − k)e−iεk(t−t′) t < t′.
(5.67)

Notice first that these functions depend on the difference of the time ar-

guments, which is a general property for equilibrium systems. Notice also

that they are diagonal in k-space. Having in mind the physical meaning of

the Green’s functions, it is easy to understand why they have such a simple

time dependence. Since we are injecting electrons in a state |kσ〉, which
is an eigenstate of the system, the probability of finding it at a later time

in such state must be equal to one. This is precisely what the previous

expressions illustrate.

It is instructive to make contact with the results of the previous section.

For this purpose we must now Fourier transform the previous functions with

respect to the time difference, i.e.

Gr,a,c(k, E) =

∫ ∞

−∞
dt Gr,a,c(k, t)e−iE(t−t′). (5.68)

In the course of doing the Fourier transformations, one gets the impression

that the time integrals diverge. This can be cured by introducing a small
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imaginary part in the energy (E → E ± iη).7 So finally, the retarded and

advanced Green’s functions in energy space are given by

Gr,a(k, E) =
1

E − εk ± iη
. (5.69)

This is exactly the result that one would have obtained directly from

Eq. (5.13) in this plane wave basis.

On the other hand, the causal function adopts the form

Gc(k, E) =
θ(k − kF)

E − εk + iη
+

θ(kF − k)

E − εk − iη
=

1

E − εk + isgn(k − kF)η
. (5.70)

Therefore, for the free electron gas, the causal Green’s function is equal to

the retarded one for E > μ and equal to the advanced one for E < μ. This

relation is true in general, as we shall show below.

5.4.1 The Lehmann representation

The goal is now to get an insight into the energy dependence of the Green’s

functions introduced above for a general interacting system. For this pur-

pose, we shall derive here the spectral representation of a Green’s function,

which for the noninteracting case reduces to Eq. (5.14). We shall focus our

analysis on the causal function defined in Eq. (5.63). In equilibrium, this

function depends only on the difference of the time arguments. Choosing

t′ = 0 we have

Gc
ij(t) = −i〈ΨN

0 |T
[
ciσ(t)c

†
jσ(0)

]
|ΨN

0 〉, (5.71)

where we have added the superindex N in the ground state wave function,

|ΨN
0 〉 = |ΨH〉, to indicate the total number of electrons in the system.

Writing explicitly the time-evolution of Heisenberg operators (see Eq. (5.5))

one has

Gc
ij(t) = −iθ(t)〈ΨN

0 |eiHtciσe
−iHtc†jσ |ΨN

0 〉 (5.72)

+iθ(−t)〈ΨN
0 |c†jσeiHtciσe

−iHt|ΨN
0 〉.

We now use the fact that H|ΨN
0 〉 = EN

0 |ΨN
0 〉, where EN

0 is the ground state

energy of the system with N electrons, to arrive at

Gc
ij(t) = −iθ(t)〈ΨN

0 |ciσe−iHtc†jσ |ΨN
0 〉eiEN

0 t (5.73)

+iθ(−t)〈ΨN
0 |c†jσeiHtciσ|ΨN

0 〉e−iEN
0 t.

7A more rigorous way of solving this problem involves the introduction of the integral
representation of the step function:

θ(t− t′) = −
∫ ∞

−∞

dE

2πi

e−iE(t−t′)

E + iη
.
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We now insert
∑

m |ΨN+1
m 〉〈ΨN+1

m | in the part for t > 0 and∑
m |ΨN−1

m 〉〈ΨN−1
m | in the part for t < 0, where |ΨN+1

m 〉 and |ΨN−1
m 〉 are

the eigenfunctions of the system with one more and one less electrons, re-

spectively. The resulting expression reads

Gc
ij(t) = −iθ(t)

∑
m

〈ΨN
0 |ciσ |ΨN+1

m 〉〈ΨN+1
m |c†jσ |ΨN

0 〉e−i(EN+1
m −EN

0 )t

+iθ(−t)
∑
m

〈ΨN
0 |c†jσ |ΨN−1

m 〉〈ΨN−1
m |ciσ|ΨN

0 〉e−i(EN
0 −EN−1

m )t.

We now Fourier transform with respect to the time argument to obtain

the expression of the Green’s function in energy space

Gc
ij(E) =

∑
m

〈ΨN
0 |ciσ |ΨN+1

m 〉〈ΨN+1
m |c†jσ |ΨN

0 〉
E − (EN+1

m − EN
0 ) + iη

(5.74)

+
∑
m

〈ΨN
0 |c†jσ |ΨN−1

m 〉〈ΨN−1
m |ciσ |ΨN

0 〉
E + (EN−1

m − EN
0 )− iη

,

which in the diagonal case adopts the form

Gc
ii(E) =

∑
m

|〈ΨN+1
m |c†iσ |ΨN

0 〉|2
E − (EN+1

m − EN
0 ) + iη

+
∑
m

|〈ΨN−1
m |ciσ |ΨN

0 〉|2
E + (EN−1

m − EN
0 )− iη

.

(5.75)

This expression, referred to as Lehmann or spectral representation,

shows clearly the pole structure of the Green’s functions of a general elec-

tron system. The poles appear at the energy of the quasi-particles of the

system, that is, at the energies that are necessary to add or remove an elec-

tron in the ground state of the system.8 Before analyzing in more detail

the properties of Gc(E), let us see how the spectral representation of the

retarded/advanced function looks like. One can repeat the process above

to arrive at

Gr,a
ij (E) =

∑
m

〈ΨN
0 |ciσ |ΨN+1

m 〉〈ΨN+1
m |c†jσ |ΨN

0 〉
E − (EN+1

m − EN
0 )± iη

+ (5.76)

∑
m

〈ΨN
0 |c†jσ |ΨN−1

m 〉〈ΨN−1
m |ciσ |ΨN

0 〉
E + (EN−1

m − EN
0 )± iη

.

The previous expressions of the Green’s functions in energy space can be

written in a slightly different way in the thermodynamical limit (N → ∞).

Let us focus on the expressions of the denominators. Considering first the
8Due to the factors ±iη, the poles appear slightly shifted with respect to the real axis

in the complex plane.
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part of electrons, we can add and subtract the energy of the ground state

with N + 1 electrons:

E − (EN+1
m − EN

0 ) = E − (EN+1
0 − EN

0 )− (EN+1
m − EN+1

0 ). (5.77)

The energy difference EN+1
0 −EN

0 in the limit N → ∞ is the chemical po-

tential μ of the system, while EN+1
m −EN+1

0 is the energy of the excited state

of the system with N +1 electrons. Repeating the same operations for the

hole part, one can finally write the Green’s functions in the thermodynamic

limit as (we only consider diagonal elements)

Gc
ii(E) =

∑
m

|〈ΨN+1
m |c†iσ |ΨN

0 〉|2
E − μ− εN+1

m + iη
+
∑
m

|〈ΨN−1
m |ciσ |ΨN

0 〉|2
E − μ+ εN−1

m − iη
(5.78)

Gr,a
ii (E) =

∑
m

|〈ΨN+1
m |c†iσ |ΨN

0 〉|2
E − μ− εN+1

m ± iη
+
∑
m

|〈ΨN−1
m |ciσ |ΨN

0 〉|2
E − μ+ εN−1

m ± iη
, (5.79)

where εN+1
m = EN+1

m −EN+1
0 and εN−1

m = EN−1
m −EN−1

0 are the excitation

energies of the system with N + 1 and N − 1 electrons, respectively.

From the previous expressions one can show that the spectral represen-

tation reduces to Eq. (5.14) in the noninteracting case (this exercise is left

to the reader). This is one way to establish the connection between the

definitions introduced in this section and those of section 5.2.

From the general spectral representation, it is possible to derive the

following important properties of the exact Green’s functions of an arbitrary

electronic system, which are practically identical to those of section 5.2:

Property 1. It is possible to define a spectral density related to the

imaginary part of the Green’s functions as (we only write the diagonal

elements)

ρi(E) =
∑
m

|〈ΨN+1
m |c†iσ|ΨN

0 〉|2δ(E − μ− εN+1
m ) + (5.80)

∑
m

|〈ΨN−1
m |ciσ|ΨN

0 〉|2δ(E − μ+ εN−1
m ).

In a case in which i stands for a site index in a tight-binding problem,

the previous expression represents the quasiparticle density of states of the

system projected onto that site. The relation of the previous function to the

imaginary part of the Green’s functions is obvious. Comparing Eq. (5.80)

with Eqs. (5.78) and (5.79), one obtains

ρi(E) = ∓ 1

π
Im {Gr,a

ii (E)} (5.81)

ρi(E) = −sgn(E − μ)
1

π
Im {Gc

ii(E)} . (5.82)
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Property 2. The diagonal Green’s functions satisfy in any basis that

Im{Gr
ii(E)} ≤ 0 and Im{Ga

ii(E)} ≥ 0.

Property 3. Due to the pole structure of the Green’s functions in

energy space, their real and imaginary parts are related through a Hilbert

transformation:

Re {Gr,a
ii (E)} = ∓P

∫ ∞

−∞

dE′

π

Im {Gr,a
ii (E′)}

E − E′
(5.83)

Re {Gc
ii(E)} = −P

∫ ∞

−∞

dE′

π

Im {Gc
ii(E

′)} sgn(E′ − μ)

E − E′
. (5.84)

As in the single-particle case, it is possible to write the Green’s functions

in terms of the spectral density as

Gr,a
ii (E) =

∫ ∞

−∞
dE′

ρi(E
′)

E − E′ ± iη
(5.85)

Gc
ii(E) =

∫ ∞

−∞
dE′

ρi(E
′)

E − E′ + sgn(E′ − μ)iη
. (5.86)

Property 4. The previous expressions imply that

lim
E→∞

Gr,a
ii (E) = lim

E→∞
Gc

ii(E) =
1

E
, (5.87)

where we have used the fact that the spectral density is normalized to 1.

Property 5. From the spectral representations, one can easily deduce

the following relations

Ga
ij(E) =

[
Gr

ji(E)
]∗

and Gc
ij(E) =

{
Gr

ij(E), if E > μ

Ga
ij(E), if E < μ

.

5.4.2 Relation to observables

So far, we have seen that the Green’s functions provide important informa-

tion such as the density of states of states (or the excitation spectrum). But

the main reason for studying the Green’s functions is that the expectation

value of any one-electron operator in the ground state of the system can be

expressed in terms of the functions that we have just introduced. Thus for

instance, the electronic density n(r) in the ground state is given by

n(r) = 〈n(r)〉 =
∑
σ

〈Ψ†σ(r)Ψσ(r)〉, (5.88)

which is directly related to the causal Green’s function

Gc
σ(rt, r

′t′) = −i〈ΨH|T
[
Ψσ(rt)Ψ

†
σ(r

′t′)
] |ΨH〉, (5.89)
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by means of

n(r) = −i
∑
σ

Gc
σ(rt, rt

+), (5.90)

where t+ is an abbreviation that means that t′ tends t from above.

Analogously, if we use a discrete basis {|i〉}, the occupation of the state

i will be given by

〈niσ〉 = −iGc
iiσ(t, t

+). (5.91)

For instance, for the free electron gas, the time-dependent Green’s func-

tion is given by Eq. (5.67) and thus, the occupation of a state with wave

vector k in the ground state (Fermi sphere) is

〈nk〉 = θ(kF − k). (5.92)

Let us now demonstrate the general statement made above. One-

electron operators can be expressed generically in second quantized form

as

V =
∑
ijσ

Vijc
†
iσcjσ , (5.93)

where Vij = 〈i|V (r)|j〉.
Now, we want to compute the expectation value of this operator in the

ground state, i.e.

〈V〉 =
∑
i,j,σ

Vij〈ΨH|c†iσcjσ |ΨH〉. (5.94)

The expectation values appearing in the previous expression can be related

to the Green’s functions. For instance, if we recall the definition of the

causal Green’s functions in the time representation, we have

Gc
ij(t) = −i〈ΨH|T[ciσ(t)c

†
jσ(0)]|ΨH〉. (5.95)

If we evaluate this function at t = 0−

Gc
ij(0

−) = −i〈ΨH|c†jσciσ |ΨH〉, (5.96)

and therefore

〈ΨH|c†jσciσ |ΨH〉 = −iGc
ij(0

−). (5.97)

On the other hand,

Gc
ij(0

−) =
∫ ∞

−∞

dE

2π
Gc

ij(E)eiE0+ . (5.98)
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Making use of the spectral representation for Gc
ij(E), we obtain

〈ΨH|c†jσciσ |ΨH〉 = 1

2πi

∮
dE Gc

ij(E) =
1

π

∫ μ

−∞
dE Im

{
Gc

ij(E)
}
. (5.99)

Similar expressions can also be found in terms of the retarded and ad-

vanced functions.

Let us consider as an example the case in which the index i stands for a

site in a tight-binding model. The average occupation per spin of this site

is

〈niσ〉 = 〈ΨH|c†iσciσ|ΨH〉 = 1

π

∫ μ

−∞
dE Im {Gc

ii(E)} , (5.100)

as it should be, since Im{Gc
ii(E)}/π is nothing else than the local density

of states projected onto the state i.

To conclude this subsection, let us say that in general the expectation in

the ground state of two-electron operators, i.e. those containing two creation

and two annihilation operators (see Appendix A), cannot be expressed in

terms of the one-particle Green’s functions that we have introduced in this

chapter. However, a notable exception is the total energy of the system

(for a discussion of this issue, see e.g. Ref. [173]).

5.4.3 Equation of motion method

So far we have discussed some of the properties of the “new” Green’s func-

tions and we have seen that they contain very important information. Now,

let us discuss how they can be computed. In particular, we shall describe

in this section a method referred to as equation of motion. Let us illus-

trate it in an example that is already familiar to us, namely in the case of

an electron system described by a simple tight-binding Hamiltonian of the

form

H =
∑
ijσ

tijc
†
iσcjσ . (5.101)

Here, the diagonal matrix elements tii correspond to the on-site energies,

εi, in the notation used in previous sections.

Our goal is the calculation of, for instance, the retarded Green’s function

Gr
ij,σ(t) = −iθ(t)〈ΨH|ciσ(t)c†jσ(0) + c†jσ(0)ciσ(t)|ΨH〉. (5.102)

For this purpose, let us calculate its time derivative
∂

∂t
Gr

ij,σ(t) = −iδ(t)〈ΨH|ciσ(t)c†jσ(0) + c†jσ(0)ciσ(t)|ΨH〉 (5.103)

−iθ(t)〈ΨH| ∂
∂t

ciσ(t)c
†
jσ(0) + c†jσ(0)

∂

∂t
ciσ(t)|ΨH〉,
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where we have used the fact that the derivative of the step function is a

δ-function.

Now, in order to compute the time derivative of the annihilation oper-

ator appearing in the previous equation, we make use of the equation of

motion for operators in the Heisenberg picture, see Eq. (5.6). Thus,

i
∂

∂t
ciσ = [ciσ ,H] = i

∑
k

tikckσ, (5.104)

where we have used Eq. (5.101) to obtain the last result. Substituting this

expression in Eq. (5.103), we arrive at

i
∂

∂t
Gr

ij,σ(t) = δ(t)δij +
∑
k

tikG
r
kj,σ(t). (5.105)

It is now convenient to Fourier transform to energy space to convert this

differential equation into an algebraic one. Thus, introducing

Gr
ij,σ(t) =

1

2π

∫ ∞

−∞
dE e−iEtGr

ij,σ(E) ; δ(t) =
1

2π

∫ ∞

−∞
dE e−iEt (5.106)

in Eq. (5.105), we obtain the following algebraic equation of the Green’s

function in energy space

EGr
ij,σ(E) = δij +

∑
k

tikG
r
kj,σ(E). (5.107)

This is nothing else but the element (i, j) of the matrix equation

Gr(E) = [E1−H]
−1
, (5.108)

which is precisely the expression that we used as a definition in section 5.2

[see Eq. (5.13)]. Thus, we have shown again the equivalence of the two type

of definitions for the case of noninteracting electron systems.

It is important to emphasize that the equation-of-motion method

illustrated above is by no means restricted to noninteracting system.

However, if the Hamiltonian contains two-electron terms (with four cre-

ation/annihilation operators), in general there is no straightforward way to

get a closed system of equations, as in the previous example. The problem

is that the equation of motion for the one-particle Green’s function couples

this function to higher-order ones containing an increasing number of oper-

ators and the resulting algebraic system has, strictly speaking, an infinite

dimension. In practice, one has to find an appropriate way of truncating

the system, which is not an easy task in general.

In order to illustrate what we meant in the previous paragraph, let us

consider the Anderson model that describes the interaction of a single level
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(including the electron-electron interaction in this level) with a continuum

of states. This model can describe, for instance, a magnetic impurity in a

metal or a quantum dot (or a molecule) coupled to metallic reservoirs. The

Hamiltonian of this model adopts the form (see Appendix A)

H =
∑
k,σ

εknkσ +
∑
k,σ

(
Vk0c

†
kσc0σ + V0kc

†
0σckσ

)
+
∑
σ

ε0n0σ + Un0↑n0↓,

(5.109)

where the subindex 0 refers to the correlated level and k to the metallic

states in the reservoirs. Our goal is to compute the (retarded or advanced)

Green’s function G00,σ(E) in the impurity. For this purpose, we proceed as

above and determine the time derivative of this function. This calculation

requires the evaluation of the time derivative of the operator c0σ(t), which

in turn requires the determination of the commutator of this operator with

the Hamiltonian. The novel term, as compared with the tight-binding

example above, is Un0↑n0↓ and the corresponding commutator with it is

[c0σ, Un0↑n0↓] = Uc0σn0σ̄, (5.110)

where we have used the notation σ̄ = −σ. Inserting this term in the

equation of motion, it is straightforward to show that one arrives at (after

Fourier transforming to energy space)

(E − ε0)G00σ(E) = 1 +
∑
k

V0kGk0(E) (5.111)

−iUθ(t)〈ΨH| {c0σ(t)n0σ̄(t), c0σ} |ΨH〉,
where { } stands for the anticommutator. Here, the novelty with respect to

Eq. (5.107) is the appearance of the term in the second line that contains

four operators. To close the equation, we need now an equation for this new

expectation value. The reader can convince himself, that such an equation

would generate terms containing expectation values of six operators. Then,

the equation for these functions would involve terms with eight operators

and so on and so forth. So, the only way to solve these equations in practice

is to truncate the system with sensible arguments, but in most cases it is not

clear how to do it. In the next chapter we shall discuss a more systematic

approach to obtain the Green’s functions in interacting problems.

There is one limit in which it is possible to obtain the exact Green’s

function, namely in the limit where the coupling to the reservoirs tends to

zero (V0k → 0 with U finite). In this case the equation of motion can be

truncated and one obtains (see Problem 5.11)

G00σ(E) =
1− 〈n0σ̄〉
E − ε0

+
〈n0σ̄〉

E − ε0 − U
, (5.112)
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where 〈n0σ〉 is the occupation of the level ε0 for spin σ, which in turn has

to be calculated with the full Green’s function of Eq. (5.112). Thus, in this

limit the Green’s functions exhibit poles at energies equal to ε0 and ε0+U .

This tells us in particular that U is the energy that one has to supply to

accommodate a second electron in the level. The expression of Eq. (5.112)

can be used as an starting point to analyze the so-called Coulomb blockade

in quantum dots or molecular transistors (see Exercise 8.9).

Let us conclude this section by recommending Chapter 9 of Ref. [185]

for a more detailed discussion about the equation-of-motion method.

5.5 Exercises

5.1 Time evolution of the operators in Heisenberg picture:
(a) Let us consider a free electron gas described by the Hamiltonian

H =
∑
k,σ

εkc
†
kσckσ.

Show that the time evolution of the operators c†kσ and ckσ in Heisenberg
picture is given by

c†kσ(t) = c†kσ(0)e
iεkt and ckσ(t) = ckσ(0)e

−iεkt.

(b) Let us consider a diatomic molecule described by the following two-sites
tight-binding Hamiltonian

H = ε0
∑
σ

(n1σ + n2σ) + t
∑
σ

(c†1σc2σ + c†2σc1σ).

Obtain the temporal evolution of the operators c1σ and c2σ in Heisenberg
picture.

5.2 Green’s function of a free electron in 1D: Let us consider the
Schrödinger equation of a free electron in a 1D potential

[
− 1

2m

∂2

∂x2
+ V0

]
Ψ(x) = EΨ(x),

where V0 is a spatially constant potential. Show that the electron Green’s function
is given by the expressions detailed in section 5.2.

5.3 Equivalence of expressions (5.13) and (5.14): Show the equivalence
of Eq. (5.13) and Eq. (5.14). Hints: (i) Multiply both sides of Eq. (5.13) by
[(E ± iη) −H]. (ii) Introduce then the closure relation

∑
n |ψn〉〈ψn| = 1, where

ψn are the eigenfunctions of H. (iii) Use H|ψn〉 = εn|ψn〉 and (iv) multiply by
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the inverse of the operator on the left hand side of the Green’s function to obtain
Eq. (5.14).

5.4 Dyson’s equation: Starting from Eq. (5.26), show that the Green’s func-
tions fulfill the Dyson’s equation (5.28).

5.5 Semi-infinite tight-binding chain: Let us consider the Hamiltonian of
Eq. (5.43) for a semi-infinite chain. Calculate the off-diagonal retarded Green’s
functions Gr

n1 of the chain (where 1 is the first site and n an arbitrary one) and
demonstrate that it is given by the following expression for |E − ε0| < 2|t|:

Gr
n1(E) =

e−inφ

t
where cos φ = (E − ε0)/2t.

5.6 Infinite tight-binding chain: Let us consider an infinite chain of identical
atoms with only nearest-neighbor hoppings, t.

(a) Making use of the eigenvalues of this problem, εk = ε0 +2t cos(ka), where
a is the lattice constant, and the corresponding eigenfunctions, demonstrate that
the advanced Green’s functions Ga

ij(E) are given by

Ga
ij(E) =

i

|t|e
−iφ|i−j|cos φ for |E − ε0| < 2|t|.

(b) An infinite chain can be viewed as two coupled semi-infinite chains. In this
sense, consider the coupling between the semi-infinite chains as a perturbation
and use Dyson’s equation to obtain the diagonal advanced Green’s functions in a
site of the chain and demonstrate that it coincides with the result derived in (a)
for i = j.

5.7 Tight-binding chain with a defect: Let us consider an infinite chain as
in the previous problem in which a diagonal perturbation is introduced in one
of the sites, let us say in site i, such that its on-site energy becomes ε0 + Δ.
Calculate the local density of states in the site i and, in particular, investigate
the possibility of having a localized state outside the band. Study also the spatial
extension of such a state by calculating the occupation of this state in different
sites away from the one in which the defect is located.

5.8 Finite tight-binding chain: Let us consider a finite chain with N sites
and only nearest-neighbor interactions. Calculate the advanced Green’s function
Ga

n1(E), where 1 refers to the atom in one of the extremes of the chain and n to
an arbitrary site. Demonstrate in particular that for |E − ε0| < 2|t|

Ga
n1(E) =

1

t

sin[(N − n+ 1)φ]

sin[(N + 1)φ]
.

5.9 Resonant level coupled to metallic electrodes: In the example 3 of
section 5.3 we considered a single site with energy ε0 connected to two electron
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reservoirs. We computed the local density of states in the wide-band approx-
imation, see Eq. (5.57). Assume now that the electrodes are modeled by the
semi-infinite linear chain of the example 2 of section 5.3 with on-site energy equal
to zero and a hopping integral t. Study the local density of states in the central
site as a function of the values of ε0 and the coupling elements tL and tR. Discuss
in particular how the level position is renormalized.

5.10 Time-dependent Green’s functions: Make use of the expressions of
the time dependence of the creation and annihilation operators of the two-sites
problem of Exercise 5.1.(b) to compute the time-dependent retarded Green’s func-
tions. Show that the energy-dependent Green’s functions that can be obtained
from the previous solution coincide with the result of Eq. (5.13).

5.11 Equation of motion: Atomic limit of the Anderson’s model: Let us
consider the Anderson’s Hamiltonian given in Eq. (5.109). Use the equation-of-
motion method to show that in the atomic limit (V0k → 0) the Green’s function
of the level can indeed be written as in Eq. (5.112).
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Chapter 6

Green’s functions and Feynman

diagrams

In the previous chapter we have seen that the calculation of the zero-

temperature Green’s functions of a non-interacting system in equilibrium

reduces to solve an algebraic linear system, summarized in Dyson’s equa-

tion. This is practically all we need to tackle the problem of the determi-

nation of the elastic transmission of realistic systems. However, if we want

to go beyond and treat systems where the electron correlations or inelastic

interactions play a major role, we need many-body techniques. For this

reason, we present in this chapter a systematic perturbative approach for

the calculation of zero-temperature equilibrium Green’s functions.1 This

formalism is valid for any type of system and interaction and constitutes

the most general method for the computation of Green’s functions. More-

over, the nonequilibrium formalism introduced in the next chapter follows

closely the perturbative approach that we are about to describe.

The perturbative (or diagrammatic) approach is nicely explained in dif-

ferent many-body textbooks (see e.g. Refs. [173–175, 182–185]) and for this

reason, our description here will be rather brief.2 This approach is concep-

tually rather simple, but it contains several technical points that usually

make it rather obscure. In the spirit of this monograph, we shall avoid

very formal discussions and we shall provide instead simple plausibility ar-

guments or we shall simply refer the reader to the adequate literature.

Before the trees do not let us see the forest, let us give a brief overview

of what we are about to see. First, we shall learn how to write down a

perturbative series for the Green’s functions, i.e. how to express systemat-

ically the corrections to the Green’s function due to a perturbation such

1In some sense, this approach is simply a generalization of the perturbation theory for
the wave functions that one studies in elementary courses of quantum mechanics.
2This chapter is mainly based on Chapter 3 of Ref. [173].
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as an external potential, electron-electron interaction, etc. Then, we shall

discuss how these contributions can be “visualized” with the help of the so-

called Feynman diagrams. These diagrams will in turn help us to organize

and simplify the perturbative series. Finally, we shall show that this series

can be formally resumed and cast in the Dyson’s equation, which we have

already introduced for case of non-interacting systems. Dyson’s equation

is expressed in terms of the concept of self-energy. This concept was also

introduced in the previous chapter and in this one its precise meaning will

be clarified.

So, it is time get started. The general problem that we want to tackle

in this chapter is the analysis of an electron system in equilibrium that is

described by a Hamiltonian of the following form

H = H0 +V, (6.1)

where H0 is a single-particle Hamiltonian and V is a perturbation that may

contain an external potential and any type of interaction. Our goal is the

compute the Green’s functions of the system in terms of the unperturbed

Green’s functions, i.e. those associated with the Hamiltonian H0, which

are supposed to be known. For this purpose, we shall develop a system-

atic perturbation theory, but before doing that we shall now introduce a

convenient representation of quantum mechanics, known as the interaction

picture, that will be very useful in what follows.

6.1 The interaction picture

Let us consider a system described by the Hamiltonian of Eq. (6.1). We

define the interaction picture starting from the Schrödinger one by means

of the following unitary transformation3

ΨI(t) = eiH0tΨS(t) and OI(t) = eiH0tOS(t)e
−iH0t. (6.2)

Notice that, contrary to the case of the Schrödinger and Heisenberg pic-

tures, in the interaction picture both wave functions and operators depend

explicitly on time.

Let us analyze first the time evolution of the operators. It is obvious

from Eq. (6.2) that the operators in this representation are the Heisenberg

operators of the unperturbed system. Taking the derivative with respect to

time in the definition of an operator in the interaction picture, one obtains

i
∂

∂t
OI = [OI,H0] . (6.3)

3In this chapter we shall also set � = 1.
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Therefore, the dynamics of the operators in this representation is governed

by H0 and it is thus known.

Turning to the wave functions, we can make use of the evolution of the

wave function in Schrödinger picture to obtain

ΨI(t) = eiH0tΨS(t) = eiH0te−iHtΨS(0). (6.4)

Let us remind that

eiH0te−iHt �= e−iVt,

since, in general, [H0,H] �= 0.

In order to find the equation that describes the time evolution of the

wave function in this picture, we now take the derivative with respect to

time in Eq. (6.2)

i
∂

∂t
ΨI(t) = −H0e

iH0tΨS(t) + ieiH0t
∂

∂t
ΨS(t), (6.5)

and making use of the Schrödinger equation on the right hand side of the

previous expression, one obtains

i
∂

∂t
ΨI(t) = eiH0t(H−H0)ΨS(t) = eiH0tVe−iH0teiH0tΨS(t), (6.6)

which can be simply written as

i
∂

∂t
ΨI(t) = VI(t)ΨI(t). (6.7)

This equation plays the role of the standard Schrödinger equation in this

new picture. Notice that the dynamics of the wave functions is governed

by the perturbation. This is very important because it makes possible, by

means of an adiabatic hypothesis in which the perturbation is adiabatically

switched on, to relate the perturbed and unperturbed ground states of the

system by means of the evolution of the wave function in this picture. Due

to this fact, the operator that describes the time evolution of the wave

functions is of special interest and it will be discussed in detail in the next

section.

To end this section, let us discuss now the relation between the Heisen-

berg picture and the interaction picture. Using the definitions of Eq. (6.2),

one can easily show that

ΨI(t) = eiH0te−iHtΨH (6.8)

OI(t) = eiH0te−iHtOH(t)e
iHte−iH0t.

The inverse transformation is obviously given by

ΨH(t) = eiHte−iH0tΨI(t) (6.9)

OH(t) = eiHte−iH0tOI(t)e
iH0te−iHt.
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6.2 The time-evolution operator

We define the time-evolution operator in the interaction picture as

ΨI(t) = S(t, t0)ΨI(t0). (6.10)

It is easy to find a formal expression for the operator S in terms of the

system Hamiltonian. From the definition of the interaction picture one has

ΨI(t) = eiH0tΨS(t). (6.11)

Making use of the expression of the time evolution of the wave function

in the Schrödinger picture we can write

ΨI(t) = eiH0te−iH(t−t0)ΨS(t0). (6.12)

Transforming the wave function ΨS(t0) to the interaction picture, one

has finally

ΨI(t) = eiH0te−iH(t−t0)e−iH0t0ΨI(t0). (6.13)

Comparing this expression with the definition of Eq (6.10), we can iden-

tify

S(t, t0) = eiH0te−iH(t−t0)e−iH0t0 . (6.14)

From the definition of the time-evolution operator or from its formal

expression, one can easily show the following properties:

• The operator S is unitary, i.e. S−1 = S†.
• S(t, t) = 1.

• S(t, t′)S(t′, t′′) = S(t, t′′).
• S(t, t′) = S†(t′, t) .

The time-evolution operator is also related to the unitary transformation

that relates Heisenberg and interaction pictures. From Eq. (6.14) one has

S(0, t) = eiHte−iH0t. (6.15)

Comparing now with Eq. (6.9), we can write

ΨH = S(0, t)ΨI(t) (6.16)

OH(t) = S(0, t)OI(t)S(t, 0).

The operator S satisfies its own equation of motion, which is very similar

to the equation for the wave functions in this representation. Taking the

derivative with respect to time in Eq. (6.14) one has

i
∂

∂t
S(t, t0) = VI(t)S(t, t0). (6.17)
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Finally, the time-evolution operator can be expressed as a perturbative

series in the interaction VI(t). This can be shown either by solving itera-

tively the previous equation or by using the equation for the wave function

ΨI(t). We choose the second option and write Eq. (6.7) as an integral

equation

ΨI(t) = ΨI(t0)− i

∫ t

t0

dt′ VI(t
′)ΨI(t

′). (6.18)

This equation can now be solved iteratively. To zero order we have

ΨI(t) = ΨI(t0). (6.19)

Substituting this zero-order result in Eq. (6.18) we obtain the first-order

result

ΨI(t) =

[
1− i

∫ t

t0

dt1 VI(t1)

]
ΨI(t0). (6.20)

Iterating we can arrive at

ΨI(t) =

[
1 +

∑
n

(−i)n
∫ t

t0

dt1 VI(t1)× (6.21)

∫ t1

t0

dt2 VI(t2) · · ·
∫ tn−1

t0

dtn VI(tn)

]
ΨI(t0).

The expression inside the brackets is just the time-evolution operator

S(t, t0) expanded as a power series in the operator VI(t). This expres-

sion is not very inconvenient because the upper and lower limits of the

time integrals are different. It is possible to rewrite the previous expres-

sion in more adequate manner by noticing that the integration variables

fulfill t > t1 > t2 > · · · > tn > t0. This makes possible to rewrite the

time-evolution operator in the interaction picture as

S(t, t0) =
∞∑

n=0

(−i)n
n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtn T [VI(t1)VI(t2) · · ·VI(tn)] ,

(6.22)

where the n = 0 term is the unit operator and T is the time-ordering

operator that we introduced in the last chapter. The demonstration of this

last step is left to the reader as an exercise.
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6.3 Perturbative expansion of causal Green’s functions

Our goal now is the calculation of a generic causal Green’s function, which

in a discrete basis is given by

Gij(t, t
′) =

〈ΨH|T
[
ciσ(t)c

†
jσ(t

′)
]
|ΨH〉

〈ΨH|ΨH〉 . (6.23)

Here, the expectation value is evaluated in the ground state of the system

described by the Hamiltonian of Eq. (6.1) and the operators are written in

Heisenberg picture. Notice that we omit the superindex c to abbreviate the

notation and we introduce the denominator for normalization reasons that

will become clear later on.

As explained in the previous section, it is convenient to use the interac-

tion picture. We first transform the operators:

Gij(t, t
′) =

〈ΨH|T
[
S(0, t)c

(0)
iσ (t)S(t, t′)c(0)†jσ (t′)S(t′, 0)

]
|ΨH〉

〈ΨH|ΨH〉 . (6.24)

Here, we have used the superindex (0) to emphasize that the operators in

the interaction picture correspond to Heisenberg operators of the unper-

turbed system. We now transform the wave function by using

|ΨH〉 = S(0, t)|ΨI(t)〉, (6.25)

where t is an arbitrary time. Now, we want to relate the state |ΨI(t)〉 with
the unperturbed ground state (for V = 0), |φ0〉. This can be done using

the so-called adiabatic hypothesis. In this hypothesis, one assumes that

if the perturbation is switched on at an initial time, let us say t = −∞,

and grows slowly to its actual value at t = 0, the physics is not modified.

This adiabatic switch on is achieved by replacing the perturbation V by

Ve−ε|t|, where ε is an infinitesimally small positive parameter. In this

way, at t = ±∞ the perturbation vanishes and the system tends to the

unperturbed ground state

|ΨH〉 = S(0,−∞)|φ0〉. (6.26)

This procedure is not completely well-defined and one can show that

during the evolution of the ground state from t = −∞ to t = 0 with the

operator S, the wave function acquires a phase that diverges as ε tends to

zero. These phase factors are finally canceled by the terms in the denomi-

nator of the expectation value. The rigorous statement of this fact is known

as the Gell-Mann and Low theorem and for more information we refer the

reader to the book of Fetter and Walecka [173].
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We now make use of Eq. (6.26) to write the causal Green’s function as

follows

Gij(t, t
′) =

〈φ0|S(∞, 0)T
[
S(0, t)c

(0)
iσ (t)S(t, t′)c(0)†jσ (t′)S(t′, 0)

]
S(0,−∞)|φ0〉

〈φ0|S(∞,−∞)|φ0〉 .

(6.27)

Here, we have used the time symmetry of the problem that implies in par-

ticular that the ground state wave function is recovered at t = +∞ (apart

from a phase factor). On the other hand, it is obvious that in the previous

expression we can introduce the time-evolution operators appearing next to

the wave functions inside the time-ordered products. Thus, the expectation

value now reads

Gij(t, t
′) =

〈φ0|T
[
c
(0)
iσ (t)c

(0)†
jσ (t′)S(∞,−∞)

]
|φ0〉

〈φ0|S(∞,−∞)|φ0〉 , (6.28)

where we have grouped all the pieces of the operator S since the operator

T ensures the proper ordering. Now, we use the expansion of Eq. (6.22) for

the operator S to write the expectation value as a perturbative expansion

Gij(t, t
′) =

1

〈φ0|S(∞,−∞)|φ0〉

[ ∞∑
n=0

(−i)n
n!

∫ ∞

−∞
dt1... dtn× (6.29)

〈φ0|T
[
c
(0)
iσ (t)c

(0)†
jσ (t′)V(0)(t1) · · ·V(0)(tn)

]
|φ0〉

]
,

where the zero-order term (n = 0) corresponds to the unperturbed Green’s

function, which we shall denote as G
(0)
ij (t, t′). The previous expression is

the central result of this section.

The perturbative expansion adopts the same form, irrespectively of the

basis used. Thus for instance, if one uses a spatial representation, the

previous expression becomes

G(rt, r′t′) =
1

〈φ0|S(∞,−∞)|φ0〉

[ ∞∑
n=0

(−i)n
n!

∫ ∞

−∞
dt1 · · · dtn× (6.30)

〈φ0|T
[
Ψ(0)

σ (rt)Ψ(0)†
σ (r′t′)V(0)(t1) · · ·V(0)(tn)

]
|φ0〉

]
.

6.4 Wick’s theorem

With the perturbative formalism that we have developed so far, the problem

of calculating a Green’s function or any expectation value of an operator
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in the ground state reduces to the calculation of expectation values in the

unperturbed ground state of the following type

〈φ0|T
[
c
(0)
iσ (t)c

(0)†
jσ (t′)V(0)(t1) · · ·V(0)(tn)

]
|φ0〉. (6.31)

This is something that we can, in principle, calculate in an exact manner

because we know the evolution of the operators in the unperturbed problem.

However, in practice, the direct calculation of expectation values like the

one in Eq. (6.31) is extremely cumbersome. Fortunately, Wick’s theorem

simplifies enormously this task.

Wick’s theorem is the mathematical expression of the fact that the

electrons in the unperturbed problem are uncorrelated. Before stating the

theorem, let us illustrate it with a simple example. Let us consider the

following two-sites tight-binding Hamiltonian

H =
∑
σ

ε0 (n1σ + n2σ) + t
∑
σ

(
c†1σc2σ + c†2σc1σ

)
. (6.32)

Let us also assume that we have two electrons in total. If |φ0〉 is the wave

function of the noninteracting problem, it seems natural that

〈φ0|n1↑n1↓|φ0〉 = 〈φ0|n1↑|φ0〉〈φ0|n1↓|φ0〉, (6.33)

since in the absence of interactions the probability of finding two electrons

simultaneously in |1 ↓〉 and in |1 ↑〉 must be equal to the product of the

probabilities (see Exercise 6.1).

Wick’s theorem generalizes this result to the expectation value in a non-

interacting ground state of a product of an arbitrary number of operators.

Without many-body interactions, an average like the one in Eq. (6.31) look

like

〈φ0|T
[
c
(0)†
iσ (t)c

(0)†
jσ (t′) · · · c(0)†kσ (t1) · · · c(0)lσ (tn)

]
|φ0〉. (6.34)

Wick’s theorem establishes that such an expectation value is equal to the

sum of all possible factorizations of averages of two operators. Since in

our case the operators are fermionic and therefore anticommute, one has

to follow the usual criterion, i.e. the factorization that respects the origi-

nal order does not contain any minus sign, whereas the factorization that

differs by an odd number of permutations from the original configuration

introduces a minus sign. Thus for instance, the following expectation value

of the product of four operators can be decomposed as follows

〈φ0|T
[
c
(0)
iσ (t)c

(0)†
jσ (t′)c(0)kσ (t1)c

(0)†
lσ (t2)

]
|φ0〉 = (6.35)

〈φ0|T
[
c
(0)
iσ (t)c

(0)†
jσ (t′)

]
|φ0〉〈φ0|T

[
c
(0)
kσ (t1)c

(0)†
lσ (t2)

]
|φ0〉

−〈φ0|T
[
c
(0)
iσ (t)c

(0)†
lσ (t2)

]
|φ0〉〈φ0|T

[
c
(0)
kσ (t1)c

(0)†
jσ (t′)

]
|φ0〉.



Green’s functions and Feynman diagrams 151

Notice that in the previous factorization one could have had additional

terms containing expectation values like for instance

〈φ0|T
[
c
(0)
iσ (t)c

(0)
kσ (t1)

]
|φ0〉, 〈φ0|T

[
c
(0)†
jσ (t′)c(0)†lσ (t2)

]
|φ0〉

or 〈φ0|T
[
c
(0)
iσ (t)c

(0)†
j,σ̄ (t′)

]
|φ0〉.

However, they usually vanish for different reasons. In the first two cases,

the combinations of operators do not conserve the number of electrons.

The third expectation value vanishes, unless the ground state is magnetic.

Thus, usually the only terms that survive are those with the following form:

〈φ0|T
[
c
(0)
iσ (t)c

(0)†
jσ (t′)

]
|φ0〉, i.e. those with a combination of a creation and

an annihilation operator. As a convention, we shall always place the cre-

ation operator on the right hand side in these factors.

To end this section, notice that the basic factor appearing in the de-

composition that results from Wick’s theorem is closely related to a single-

particle Green’s function of the unperturbed system

〈φ0|T
[
c
(0)
iσ (t)c

(0)†
jσ (t′)

]
|φ0〉 = iG

(0)
ijσ(t, t

′). (6.36)

Thus for instance, the expectation value of the previous example can be

written as

〈φ0|T
[
c
(0)
iσ (t)c

(0)†
jσ (t′)c(0)kσ (t1)c

(0)†
lσ (t2)

]
|φ0〉 = (6.37)

−G(0)
ijσ(t, t

′)G(0)
klσ(t1, t2) +G

(0)
ilσ(t, t2)G

(0)
kjσ(t1, t

′).

6.5 Feynman diagrams

Feynman diagrams are a graphical representation of the different contribu-

tions of the perturbative expansion of a Green’s function, which result from

the application of Wick’s theorem. Let us recall that Green’s functions can

be interpreted as the propagation amplitude of an electron from one state

to another. In this sense, the Feynman diagrams turn out to have a simple

interpretation in terms of processes that contribute to the total amplitude

of propagation of an electron. Moreover, apart from the physical insight

that these diagrams provide, they also help in classifying and identifying

the contributions resulting from the application of Wick’s theorem.

Before describing the Feynman diagrams, we need a “dictionary” that

assigns a convenient graphical representation to the different functions
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that appear in the perturbation theory. Thus for instance, the unper-

turbed causal Green’s functions, which appear in the perturbative expan-

sion through the application of Wick’s theorem, will be represented by a

solid line. This is shown in Fig. 6.1(a) for the function G(0)(rt, r′t′) in real

space. For this case, the arrow points from the second set of arguments

(or event) to the first one (indicating the propagation of an electron from

r′t′ to rt). If the problem depends explicitly on the spin, we would have to

label the different events with the corresponding spin. If we use a discrete

basis, the corresponding line will look like in Fig. 6.1(b).

r t r t

r’ t’ r t
X

(e)
r t r’ t’

(d)

r’ t’

(a) (b) (c)

j t’

i t

Fig. 6.1 Basic elements of Feynman diagrams. (a) Propagator line between the events
r′t′ to rt. (b) Propagator line between the states jσ′ and iσ. (c) Full propagator line.
(d) Interaction line between the events r′t′ to rt. (e) Interaction line for an external
potential.

The full (or dressed) Green’s function that corresponds to the total

amplitude for the electron propagation will be represented as a double

line, as shown in Fig. 6.1(c). On the other hand, the electron-electron

interaction between two events will be represented by a wavy line, as in

Fig. 6.1(d). Notice that, in general, the interaction is instantaneous and

therefore U(rt, r′t′) ∝ δ(t− t′). In the case in which the perturbation is an

external potential, V (r), this will then be represented by a dashed line, see

Fig. 6.1(e).

The structure of perturbative series and the corresponding Feynman

diagrams depends on the type of perturbation under study. In what follows,

we shall illustrate the diagrammatic approach with the analysis of two

examples where the perturbation is (i) the electron-electron interaction and

(ii) an external static potential.

6.5.1 Feynman diagrams for the electron-electron interac-

tion

Let us analyze the case of an electron system in which the electron-electron

interaction is considered to be the perturbation. In this case the Hamilto-
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nian has the following generic form in first quantization

H = H0 +V =

N∑
n=1

h(ri) +
1

2

N∑
i�=j

U(ri, rj), (6.38)

where h(r) is single-electron Hamiltonian and U(r, r′) is the electron-

electron (Coulomb) potential. Using the second quantization language and

the basis of the eigenfunctions of the position operator {|r〉}, the previous

Hamiltonian can be expressed in terms of the field operators as follows

H =
∑
σ

∫
dr Ψ†σ(r)h(r)Ψσ(r) (6.39)

+
1

2

∑
σσ′

∫
dr

∫
dr′ Ψ†σ(r)Ψ

†
σ′ (r

′)U(r, r′)Ψσ′(r′)Ψσ(r).

Thus, the perturbation V appearing in the perturbative expansion of the

causal Green’s function of Eqs. (6.30) is given by

V(0)(t) =
1

2

∑
σσ′

∫
dr

∫
dr′ Ψ(0)†

σ (rt)Ψ
(0)†
σ′ (r′t)U(r, r′)Ψ(0)

σ′ (r
′t)Ψ(0)

σ (rt).

(6.40)

Using this expression in Eq. (6.30) and applying Wick’s theorem, we

arrive at the following expression for the first-order correction for the causal

Green’s function4

δG(1)(x,x′) =
1

2

∫
dx1

∫
dx′1 U(x1,x

′
1) { (6.41)

n(0)(r′1)G
(0)(x,x1)G

(0)(x1,x
′) + iG(0)(x,x1)G

(0)(x1,x
′
1)G

(0)(x′1,x
′)

+iG(0)(x,x′1)G
(0)(x′1,x1)G

(0)(x1,x
′) + n(0)(r1)G

(0)(x,x′1)G
(0)(x′1,x

′)

−iG(0)(x,x′)G(0)(x′1,x1)G
(0)(x1,x

′
1)− n(0)(r1)n

(0)(r′1)G
(0)(x,x′)

}
,

where we have used the shorthand x ≡ rt to simplify the notation. In

Eq. (6.41) it was necessary to write the causal Green’s function with equal

time arguments, i.e. G(0)(t, t), which has an ambiguous mathematical ex-

pression. We have used the following criterion that provides the correct

result: G(0)(t, t+), i.e. in Eq. (6.41) we have used

G(0)(x,x) = G(0)(rt, rt+) (6.42)

= i〈φ0|Ψ(0)†
σ (rt)Ψ(0)

σ (rt)|φ0〉 = in(0)(r). (6.43)

Now, we can use the graphical conventions introduced in Fig. 6.1 to

represent the six different contributions to the first-order correction of the
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Fig. 6.2 First-order Feynman diagrams for the electron-electron interaction.

causal Green’s function. This can be seen in Fig. 6.2, where we have num-

bered the terms from 1 to 6 following the order of Eq. (6.41).

Let us summarize some of the main features of these diagrams, which

are also found in higher-order contributions:

• The only thing that matters in the diagrams is their topology, i.e.

the way in which the different events are connected.

• The Green’s functions with equal time arguments are represented

by a closed loop and their value is equal to in(0)(r). If we used a

local representation {|i〉}, then we would have

G
(0)
ii (t, t+) = i〈n(0)

iσ 〉. (6.44)

• Notice that all the intermediate events are linked by an interaction

line and they have an incoming and an outgoing propagator, which

correspond to the scattering process that the electron undergoes

due to the electron-electron interaction. These intermediate events

are known as vertexes (see Fig. 6.3).

• In Fig. 6.2 there are diagrams that have parts that are not con-

nected to the the rest of the diagram and, in particular, to the

initial and final events. Since there is an integration over the in-

termediate arguments appearing in these disconnected parts, they
4We assume here that there is spin symmetry in the unperturbed problem. Thus, all

the Green’s functions are diagonal in spin space and we will not write explicitly their
spin index to abbreviate the notation.
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Fig. 6.3 Vertex: point where two propagator lines and an interaction line meet.

simply give a constant that multiplies the contribution of the rest

of the diagram. More importantly, one can show that these type of

diagrams do not contribute to the final expansion because they are

exactly canceled by the denominator of the full Green’s functions.

For a demonstration of this fact we refer the reader to the Exercise

6.3.

• As we can see in Fig. 6.2, several diagrams are topologically equiva-

lent (e.g. diagrams 1 and 3 or 2 and 4) and the only difference is the

order in which the arguments appear. However, since there are in-

tegrations over such intermediate variables, see Eq. (6.41), all these

equivalent diagrams give exactly the same contribution. This hap-

pens indeed at any order of the perturbative expansion. Thus, at

order n, any topologically connected diagram appears 2nn! times.

The factor 1/2 in the expression of V (0) together with the factor

1/n! in the perturbative expansion (see Eq. (6.30)) cancel exactly

this multiplicity. Therefore, we need to consider the topologically

connected diagrams only once.

Summarizing, the series of diagrams that contribute to the expansion

of the causal Green’s function are formed by the topologically distinct con-

nected diagrams. Moreover, the denominator in Eq. (6.30) drops. There-

fore, we can finally write the diagrammatic series of Eq. (6.30) as

G(rt, r′t′) = G(0)(rt, r′t′) +
∞∑
n=1

(−i)n+1

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn × (6.45)

〈φ0|T
[
Ψ(0)

σ (rt)V(0)(t1) · · ·V(0)(tn)Ψ
(0)†(r′t′)

]
|φ0〉 connected,

where only the contribution of the topologically distinct connected diagrams

is considered. Of course, there would be a similar expression for the Green’s

functions in a discrete representation (or basis).

It is a very useful exercise to find the 10 topologically distinct connected

Feynman diagrams that contribute to the second-order correction of the

causal Green’s function (see Exercise 6.4). In Fig. 6.4 we show some of

these diagrams.
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Fig. 6.4 Some of the 10 second-order topologically distinct connected Feynman dia-
grams for the electron-electron interaction.

The Feynman diagrams provide a very intuitive way of evaluating the

different contributions to the perturbative expansion of a causal Green’s

function. In this sense, one proceeds sometimes by identifying directly

the relevant diagrams rather than calculating the systematic perturbative

series. Indeed, one can derive simple rules to quantify the contribution of

the different diagrams. For the sake of completeness, we state here these

rules for obtaining diagrammatically the contribution at a given order n to

the causal Green’s function in the case of the electron-electron interaction:

(1) Draw all the topologically distinct connected diagrams containing n

interaction lines and 2n + 1 propagator lines between the initial and

the final events.

(2) Every event must be labeled with its corresponding space-time coordi-

nate rt (or it, if one works with a discrete basis |i〉). All the events,

apart from the initial and final ones, contain a vertex as the one of

Fig. 6.3.

(3) Every propagator line connecting the events x2 = r2t2 and x1 = r1t1
contributes with a factor G0(x1,x2).

(4) Every interaction line connecting the events x2 = r2t2 and x1 = r1t1
introduces a factor U(x1,x2) = U(r1, r2)δ(t1 − t2). In the case of a

discrete basis, this factor would be Uijkl (corresponding matrix element

of the Coulomb potential).

(5) One has to include integrals over all intermediate variables.

(6) Every diagram of order n contains a pre-factor in.

(7) Finally, there is a sign (−1)F , where F is the number of closed loops

in the diagram. The closed loop can be formed either by a single

propagator or by a combination of several of them. Moreover, a Green’s

function with equal time variables must be interpreted asG(0)(xt,x′t+).

As an illustration of these rules, let us compute the contribution corre-

sponding to the last diagram in Fig. 6.4. This second-order contribution is
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equal to

−i2
∫
dx1

∫
dx′1

∫
dx2

∫
dx′2 G

(0)(x,x1)U(x1,x
′
1)G

(0)(x′1,x
′
2)G

(0)(x′2,x
′
1)

G(0)(x1,x2)U(x2,x
′
2)G

(0)(x2,x
′).

6.5.2 Feynman diagrams for an external potential

Now, we assume that the electrons are subjected to an external time-

independent perturbation of the form

V =

N∑
i=1

V (ri), (6.46)

which in second quantization can be written as (in the interaction picture)

V(0) =
∑
σ

∫
dr Ψ(0)†

σ (rt)V (r)Ψ(0)
σ (rt). (6.47)

x
x

x
+ + + .......

Fig. 6.5 Diagrammatic series for the propagator in the case of an external potential.

For the sake of simplicity, we have assumed that the potential does

not depend on the electron spin. In this case, the diagrammatic series

is very simple. Applying Wick’s theorem to Eq. (6.30), one obtains the

diagrammatic series shown in Fig. 6.5. This means that in the propagation

of the electron from the initial instance to the final one, one simply has a

series of sequential scattering events with the external potential. The rules

for computing the contribution to the nth-order correction of the causal

Green’s functions are very simple in this case:

(1) Draw the sequential diagrams like in Fig. 6.5 with n + 1 propagators

and n interaction lines.

(2) Associate the corresponding Green’s function to every propagator line.

(3) Assign the corresponding external potential to every interaction line.

(4) Integrate over the intermediate variables.
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(5) The prefactor is 1.

Due to the simplicity of the diagrammatic series in this case, it is often

possible to sum up all the contributions up infinite order (notice that the

diagrammatic expansion leads to a geometrical series). As an illustration of

the previous rules, the second-order diagram in Fig. 6.5 gives a contribution

equal to∫
dx1

∫
dx2 G

(0)(x,x1)V (r1)G
(0)(x1,x2)V (r2)G

(0)(x2,x
′). (6.48)

6.6 Feynman diagrams in energy space

In spite of all the simplifications that we have introduced in the last section,

it is still very difficult to compute the different terms of the perturbative

series. This is due to the presence of the integrals over the intermediate

arguments. Thus for instance, a diagram of order 1 for the electron-electron

interaction contains up to six integrals.

The problem can be simplified by noticing first that in an equilibrium

situation the Green’s functions depend exclusively on the difference of the

time arguments. Thus, we can Fourier transform with respect to time and

work in the energy space. The introduction of the Fourier transformation

modifies the Feynman diagrams and we now study how this occurs in detail.

On the other hand, if the system is spatially homogeneous, the prob-

lem can be simplified even further since then the Green’s functions de-

pend only on the difference of the space coordinates. We shall first discuss

this case and later on, we shall generalize the results to an arbitrary non-

homogeneous system.

As we have just said, if the system is spatially homogeneous and in

equilibrium, the Green’s functions satisfy

G(rt, r′t′) = G(r − r′, t− t′), (6.49)

or, using the four-dimensional notation (x ≡ rt), G(x,x′) = G(x − x′). If

we assume that the interaction potential also satisfies U(x,x′) = U(x−x′),
we can then Fourier transform

G(rt) =

∫
dk

(2π)3

∫
dE

2π
ei(k·r−Et)G(k, t). (6.50)

In what follows, we shall use the following simplified notation: p ≡
(k, E) and p · x = kr − Et. With this notation, the different Fourier
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transforms read

G(x) =

∫
dp

(2π)4
eipxG(p); U(x) =

∫
dp

(2π)4
eipxU(p), (6.51)

where dp ≡ d3kdE is the volume element in (k, E)-space.

In order to illustrate how the diagrams are modified in energy space, we

choose a first-order diagram for the electron-electron interaction, namely

diagram 2 in Fig. 6.2. The contribution of this diagram, which we shall

denote as D(x − x′), is given by

D(x− x′) = i

∫
dx1

∫
dx′1 G

(0)(x− x1)U(x1 − x′1) (6.52)

G(0)(x1 − x′1)G
(0)(x′1 − x′).

Substituting in the right hand side of this expression the Fourier trans-

form of G(0) and U , one has

D(x − x′) = i

∫
dx1

∫
dx′1

∫
dp

(2π)4

∫
dq

(2π)4

∫
dp′

(2π)4

∫
dq′

(2π)4
(6.53)

G(0)(p)U(q)G(0)(q′)G(0)(p′)eip(x−x1)eiq(x1−x′

1)eiq
′(x1−x′

1)eip
′(x′

1−x′).

This expression can be greatly simplified in the following way. First, we

regroup the exponential terms as follows

eipxeix1(−p+q+q′)eix
′

1(p
′−q−q′)e−ip′x′

. (6.54)

Now, we integrate over the variables x1 and x′1:∫
dx1 e

ix1(−p+q+q′) = (2π)4δ(p− q− q′) ⇒ q′ = p− q (6.55)∫
dx′1 e

ix′

1(p
′−q−q′) = (2π)4δ(p′ − q− q′) ⇒ p′ = q+ q′ = p.

The previous equations simply express the conservation of the four-

dimensional moment (momentum and energy) in every vertex, as we illus-

trate in Fig. 6.6, where the momentum lost by the electron in the scattering

process is carried by the interaction line. If we now substitute Eq. (6.55)

in Eq. (6.52), we obtain

D(x− x′) = i

∫
dp

(2π)4
eip(x−x′)

∫
dq

(2π)4
U(q)G(0)(p)G(0)(p− q)G(0)(p).

(6.56)

This implies that the Fourier transform of the diagram can be written as

D(p) = i

∫
dq

(2π)4
U(q)G(0)(p)G(0)(p− q)G(0)(p). (6.57)



160 Molecular Electronics: An Introduction to Theory and Experiment

p

p−q
q

Fig. 6.6 Energy and momentum conservation in a vertex.

The previous derivation would be similar for any diagram. The key idea

is that the energy and the momentum are conserved in every vertex. Thus,

one can view the diagrams as flow diagrams in which the propagator lines

and the interaction lines carry momentum and energy. The momentum k

and the energy E carried by the initial propagator are also carried by the

final one, due to the conservation of momentum and energy in every vertex

of the diagram. This is illustrated in Fig. 6.7 with two first-order diagrams

and a second-order one. Notice that, since the interaction lines carry both

momentum and energy, one has to assign to them a direction, which is

indicated by an arrow in the diagram.

qE’’

qE’’

k−qkE

kE

k

q
k
E’

E

E
k

k

k−q

E

E

E−E’’
,E−E’

k’E’ k’+q
E’+E’’

Fig. 6.7 Feynman diagrams in momentum and energy space.

As in the case of real space, it is possible to establish the diagrammatic

rules for computing the perturbative expansion of the causal Green’s func-

tion in energy space. Those rules for the nth-order correction now read:

(1) Draw all the topologically distinct connected diagrams with n interac-

tion lines and 2n+1 propagator lines. These diagrams are the same as

in the ones in (r, t)-space.

(2) Assign the flow direction (arrows) of the momentum and energy to

every interaction and propagator line.

(3) The momentum and the energy must be conserved in every vertex.

(4) Every propagator with momentum k and energy E contributes with a

factor that is equal to the unperturbed causal Green’s function, which
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for a homogeneous electron gas has the form

G(0)(k, E) =
1

E − εk − iηsgn(k − kF )
. (6.58)

(5) Every interaction line with momentum k introduces an interaction po-

tential in momentum space. For the homogenous system and for the

Coulomb potential, it has the form

U(k) =
4πe2

k2
. (6.59)

(6) We have to integrate over all intermediate momenta and energies (for

a non-homogeneous systems only over the energies).

(7) As a consequence of the previous rule, there is a factor for a diagram

of order n equal to 1/(2π)4n (equal to 1/(2π)n, if one only needs to

integrate over the energies). Moreover, there is a factor in, as in the

case of real space.

(8) As in the case of real space, there is a sign (−1)F , where F is the

number of closed loops.

(9) Finally, let us remind that for the diagrams in real space, there was

an ambiguity that occurs when the time arguments of the causal

Green’s function are equal. This problem was solved with the crite-

rion G(0)(t, t) = G(0)(t, t+). The consequence of this choice when we

Fourier transform is the introduction of a convergence factor exp(iEη),

which must appear associated to every propagator that forms a closed

loop and to those that are connected by an interaction line (if the in-

teraction is instantaneous).

As an example, let us write the contribution of the second-order diagram

in Fig. 6.7. The result is∫
dq

(2π)3

∫
dk′

(2π)3

∫
dE′′

2π

∫
dE′

2π
U2(q)G(0)(k, E)G(0)(k− q, E − E′′)×

G(0)(k′, E′)G(0)(k′ + q, E′ + E′′)G(0)(k, E).

To conclude this section, it is convenient to generalize the results ob-

tained so far to the case of non-homogeneous systems. Indeed, this gen-

eralization is quite simple. Since the momentum is not a good quantum

number, it makes no sense to Fourier transform with respect to the spatial

coordinates. However, since the system is in equilibrium, one can still in-

troduce the Fourier transform with respect to the time arguments. This is

done exactly in the way explained above for the homogeneous system.
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Fig. 6.8 Second-order Feynman diagrams in energy space for the Anderson model.

As an example, let us calculate the contribution of second-order diagram

of Fig. 6.8 for the Anderson model that we discussed in section 5.4.3:

U2

∫
dE′′

2π

∫
dE′

2π
G

(0)
00σ(E)G

(0)
00σ(E − E′′)G(0)

00σ̄(E
′)G(0)

00σ̄(E
′ + E′′)G(0)

00σ(E).

Here, the index 0 refers to the impurity level.

6.7 Electronic self-energy and Dyson’s equation

In the previous sections we have analyzed the structure of the diagrammatic

series of an electronic Green’s function. In this section we shall show that

it is possible to sum formally the diagrams up to infinite order, leading to

the Dyson’s equation. But before describing this further simplification of

the perturbative expansion, let us introduce the concept of self-energy.

In Fig. 6.9 we show again the diagrammatic expansion for the Green’s

function in the cases in which the perturbation is an external potential and

the electron-electron interaction. Notice that in both cases the diagrams

have the same type of structure in the following sense. They are formed by

an initial and a final Green’s function (the same in all diagrams) and by

a central part where one can find all the scattering processes. Obviously,

this latter part is the interesting one. This structure of the diagrammatic

series allows us to define the (improper) electronic self-energy as the sum

of the central part of the diagrams to all orders (ΣI in Fig. 6.10). Thus,

the diagrammatic series for the self-energy insertion has the form shown

in Fig. 6.11 for the cases of an external potential and the electron-electron

interaction.

Notice that in the previous discussion we have neither specified the rep-

resentation nor the space (time/energy). In this sense, the result discussed

in the previous paragraphs is quite general. The diagrammatic expansion
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Fig. 6.9 Diagrammatic expansion for the propagator for (a) an external potential and
(b) the electron-electron interaction.

of Fig. 6.9 can be summarized in the following equation in real space (r-

representation)

G(x,x′) = G(0)(x,x′) +
∫
dx1

∫
dx2 G

(0)(x,x1)ΣI(x1,x2)G
(0)(x2,x

′).

(6.60)

The equation in momentum-energy space (for a homogeneous case) reads

as follows

G(k, E) = G(0)(k, E) +G(0)(k, E)ΣI(k, E)G(0)(k, E). (6.61)

In the case of a localized basis (like in a tight-binding model), the previous

equation adopts the form:

Gij(E) = G
(0)
ij (E) +

∑
kl

G
(0)
ik (E)ΣI,kl(E)G

(0)
lj (E). (6.62)

To avoid explicit reference to any particular representation or space, we

shall write the previous equation in matrix form:

G = G(0) +G(0)ΣIG
(0), (6.63)
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Fig. 6.10 Self-energy insertion.
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Fig. 6.11 Diagrammatic expansion for the self-energy insertion. (a) External potential.
(b) Electron-electron interaction.

where the internal integrals and sums are implicitly assumed. It is possi-

ble to write this equation in a more convenient way by inspection of the

perturbative series of G or ΣI . Let us illustrate this fact first with the

example of an external potential. As we explained in previous sections, the

diagrammatic expansion has in this case the form of a geometrical series

where the diagram of order n is simply the repetition of n identical pieces.

If we define in this case the proper self-energy, Σ, as the part of the diagram

that includes only a single scattering process, which in this case is simply

the external potential, we have the following identity

ΣIG
(0) = ΣG. (6.64)

This is evident when it is expressed diagrammatically as in Fig. 6.12.
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Fig. 6.12 Relation between the self-energy insertion, ΣI and the proper self-energy, Σ.

The proper self-energy, or from now on just self-energy, does not con-

tain repetitions of the same process, but only one scattering event. Then,
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Eq. (6.63) can be written in terms of the self-energy as

G = G(0) +G(0)ΣG, (6.65)

which constitutes the so-called Dyson’s equation and was first obtained by

F. Dyson in 1949 in the context of the quantum electrodynamics.

Let us now discuss the derivation of this result in the case of the electron-

electron interaction. Notice first that in this case the diagrams that con-

tribute to the self-energy insertion to all orders can be classified in two

different ways. On the one hand, we have diagrams that cannot be sep-

arated in two parts by cutting a propagator line, i.e. they do not contain

repetitions of the same elementary process. These diagrams are called ir-

reducible [see Fig. 6.13(a)]. On the other hand, we have diagrams that can

be divided into parts of lower order by cutting a propagator line, these are

called reducible diagrams [see Fig. 6.13(b)].

(a)

(b)

Fig. 6.13 (a) Examples of irreducible self-energy diagrams for the electron-electron

interaction. (b) Reducible diagrams.

We define the proper self-energy (or simply self-energy) in this case as

the sum of all the irreducible self-energy diagrams. With this definition, the

Dyson’s equation is also verified in this case. The proof is more complicated

than in the case of an external potential and it will not be detailed here.

The Dyson’s equation can be represented graphically as shown in

Fig. 6.14. Notice that the due to the symmetry of the diagrammatic series,

we could have chosen to close the Dyson’s equation in an alternative way:

G = G(0) +GΣG(0). (6.66)

On the other hand, notice that the Dyson’s equation obtained in the

previous chapter for single-electron problems, see Eq. (5.28), is just a par-

ticular example of Eq. (6.65), which is valid for any electronic system.



166 Molecular Electronics: An Introduction to Theory and Experiment

= Σ+

Fig. 6.14 Pictorial representation of the Dyson’s equation.

For systems in equilibrium it is convenient to write the Dyson’s equation

in energy space

G(E) = G(0)(E) +G(0)(E)Σ(E)G(E), (6.67)

which will be our starting point for the description of the equilibrium prop-

erties of any system.

Taking into account the definition of the single-particle Green’s function

in energy space introduced in the previous chapter, we can rewrite the

previous Dyson’s equation as[
G(0)(E)

]−1

G(E) = 1+Σ(E)G(E) (6.68)

[E1−H0]G(E) = 1+Σ(E)G(E),

which allows us to write the Green’s function matrix of the full system as

G(E) = [E1−H0 −Σ(E)]
−1
. (6.69)

From this expression, one can interpret the self-energy as the matrix

whose elements renormalize dynamically the matrix elements of the unper-

turbed system. Thus for instance, for the homogeneous electron gas with

electron-electron interaction, the problem is diagonal in the plane wave

basis that diagonalizes H0 and the previous Dyson’s equation becomes

G(k, E) =
1

E − εk − Σ(k, E)
. (6.70)

In summary, the perturbative analysis reduces to the evaluation of the

proper self-energy (or just self-energy) of the electronic system. For the

two cases considered in the last sections, namely external potential and

electron-electron interaction, this implies to calculate the diagrammatic

series depicted in Fig. 6.15.

Finally, let us conclude this section with some comments and the main

analytical properties of the electronic self-energy:
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+ + + .......Σ =

Σ = X(a)

(b)

Fig. 6.15 Diagrammatic expansion for the proper self-energy. (a) External potential
and (b) electron-electron interaction.

• The Dyson’s equation relates directly the self-energy with the full

Green’s function. Therefore, the analytical properties of Σ(E) can

be derived from those of G(E).

• One can interpret Eq. (6.69) as a definition of Σ(E) in terms of G(E).

Thus, it is also possible to define a retarded and advanced self-energy.

• From Lehmann’s representation of the Green’s functions, one can de-

duce the following properties that we state here without any proof:

Im {Σr
ii(E)} ≤ 0 ; Im {Σa

ii(E)} ≥ 0 (6.71)

Im {Σc
ii(E)} ≥ 0 if E < μ ; Im {Σc

ii(E)} ≤ 0, if E > μ.

• ImΣii(E) and ReΣii(E) are related through a Hilbert transformation:

Re {Σr,a
ii (E)} = ∓P

∫
dE′

π

Im {Σr,a
ii (E′)}

E − E′
(6.72)

Re {Σc
ii(E)} = −P

∫
dE′

π

Im {Σc
ii(E

′)} sgn(E′ − μ)

E − E′
.

6.8 Self-consistent diagrammatic theory: The Hartree-Fock

approximation

Apart from the Dyson’s equation, there exist other ways to include certain

diagrams in the expansion of the self-energy up to infinite order. By inspec-

tion of the set of diagrams that contribute to the self-energy, it is possible

to distinguish two types of diagrams. On the one hand, there are diagrams,

like the one shown in Fig. 6.16, in which in one of the propagators there

is a self-energy insertion. On the other hand, there exist diagrams that do

not contain insertions and they are called skeleton diagrams. An example

of a second-order skeleton diagram is shown in Fig. 6.15(b).

Analyzing the diagrammatic series of the self-energy, one realizes that if

we consider any skeleton diagram, there appear diagrams at higher orders
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Fig. 6.16 Example of diagram with a self-energy insertion in one of the propagators.

with the same structure (or skeleton), but with all possible self-energy in-

sertions in their propagators. This fact makes possible to sum up to infinite

order all the diagrams that share the same skeleton, which leads to effective

diagrams like the one depicted in Fig. 6.17. Here, we have taken into ac-

count the fact that by adding all the diagrams with the same structure, the

propagator in the skeleton diagram can be replaced by the full (dressed)

propagator.

Fig. 6.17 Second-order skeleton diagram.

The previous result implies that it is possible to write the self-energy

as an expansion that contains exclusively skeleton diagrams, where the

propagators are the full ones (they are sometimes referred to as dressed or

renormalized propagators). This is illustrated in Fig. 6.18.

Σ = + + +   ......

Fig. 6.18 Expansion of the self-energy in terms of skeleton diagrams.

It is worth stressing that the propagators that appear in these skeleton

diagrams are the perturbed ones, which are unknown and they have to be

determined by solving the Dyson’s equation. This means that the expansion

of Fig. 6.18, together with the corresponding Dyson’s equation provide two
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equations that have to be solved in a self-consistent manner. The most

common practice is to include just a few diagrams in the expansion of

Fig. 6.18. An interesting example that illustrates this procedure is the

Hartree-Fock approximation, which from a diagrammatic point of view, is

given by the approximation for the self-energy schematized in Fig. 6.19.

Σ       = +HF

Fig. 6.19 Hartree-Fock approximation for the self-energy.

Let us show now this approximation is indeed equivalent to the well-

known Hartree-Fock approximation in the more standard wavefunction-

based language (see section 10.1.3). The diagram that contains the bubble

(Hartree diagram) has the following expression in the representation |r〉

ΣH
σ (r) =

∑
σ′

∫
dr′ U(r− r′)Gσ′ (r′t′, r′t′+) (6.73)

=
∑
σ′

∫
dr′ U(r− r′)nσ′ (r′) =

∑
σ′

∫
dr′

e2nσ′(r′)
|r− r′| ,

which is nothing else but the Hartree potential, where nσ(r) is the perturbed

electron density with spin σ that has to be determined self-consistently.

Analogously, the second diagram in Fig. 6.19 is given by (in the repre-

sentation |r〉)
ΣX

σ (r, r
′) = iU(r− r′)Gσ(rt, r

′t+). (6.74)

One can show that this expression leads to the known nonlocal (Fock)

exchange potential. For this purpose, one just needs to expand the field

operators in the previous expression in terms of an arbitrary single-electron

basis and take into account that the ground state is noninteracting. This

leads to

ΣX
σ (r, r

′) = −
∑
i

e2φiσ(r
′)φiσ(r)

|r− r′| . (6.75)

As an additional illustration of the Hartree-Fock approximation, we

discuss now the calculation of the energy bands in this approximation of a

homogeneous electron gas (see Exercise 6.5). In this case, it is not neces-

sary to do the self-consistency because it is automatically guaranteed due

homogeneity of the system with a constant density n = N/V . Instead of
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using the expressions derived above, we compute now the self-energy in this

approximation in the (k, E)-space. Evaluating the Hartree-Fock diagrams

in this space, one arrives at

ΣH
σ = U(q = 0)

∑
σ′

∫
dk′

(2π)3

∫
dE′

2π
Gσ′ (k′, E′)eiE

′η. (6.76)

Since the Fourier transform of the Coulomb potential, U(q) = 4πe2/q2,

diverges at q = 0, we replace the potential U(q) by limμ→0 4πe
2/(q2 + μ2),

which allows us to control the divergence. This new expression is simply

the Fourier transform of a Yukawa-like potential exp(−μr)/r. Thus, if one
computes the integral in the expression of ΣH

σ , one obtains

ΣH
σ =

4πe2

μ2
n. (6.77)

Although this result diverges when μ→ 0, it is exactly canceled in the jel-

lium model by the potential created by the uniform background of positive

charge. Thus, the only remaining contribution is the exchange one that can

be expressed as

ΣX
σ (k) = i

∫
dq

(2π)3

∫
dν

2π
U(q)Gσ(k−q, E−ν) = −

∫
dk′

(2π)3
4πe2

|k− k′| 〈nk′σ〉.
(6.78)

Now using the Dyson’s equation in this representation, G(k, E) =

[E − εk − Σ(k, E)]
−1

, we see that the energy bands in the Hartree-Fock

approximation are given by εk,HF = εk +ΣX(k). The explicit expression of

the dispersion relation is computed in Exercise 6.5.

6.9 The Anderson model and the Kondo effect

The goal of this section is two-fold. On the one hand, we shall use the

Anderson model, already discussed in section 5.4.3 and Appendix A, to

illustrate the perturbative approach described in this chapter. On the other

hand, we shall use this model to get a flavor of the Kondo effect. This is

a many-body phenomenon which can appear in molecular junctions and it

will be described in much more detail in Chapter 15.

The Anderson model describes the interaction of a localized level with

electron-electron interaction with the continuum of states of a metallic sys-

tem. It was introduced by Anderson to describe a magnetic impurity in

a metal host, but it can also be used to describe a metal-molecule-metal

junction, which is the problem that we are interested in. In this model, the
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Hamiltonian is given by Eq. (5.109), where in particular, the U -term de-

scribes the electron-electron interaction in this level. In the absence of this

interaction, this model reduces to the resonant tunneling model of section

5.3.3.

Our goal now is to study the influence of the electron-electron inter-

action in the equilibrium properties of a molecular junction, with special

attention to the local density of states. For this purpose, we shall make use

of the perturbative approach described in this chapter. In this approach we

shall consider the entire system without electron-electron interaction as the

unperturbed system and this interaction, i.e. the last term in Eq. (5.109),

will be considered as the perturbation. The unperturbed Green’s functions

projected onto the localized level were already obtained in section 5.3.3, see

Eq. (5.56). In particular, the causal function adopts the following form in

the wide-band approximation5

G
(0)
00 (E) =

1

E − ε0 − isgn(E − μ)Γ
, (6.79)

where μ is the chemical potential of the system and Γ = ΓL + ΓR is the

total broadening of the level acquired via the interaction with the metal

electrodes. In what follows, we shall only consider symmetric situations

(ΓL = ΓR). As we saw in section 5.3.3, in this approximation the density

of states in the localized level is a Lorentzian with Γ as its half width at

half maximum.

In the rest of this section, and in order to study the effect of the electron-

electron interaction, we shall first discuss the so-called Friedel sum rule,

which is an exact result that relates the local density of states at the Fermi

energy to the occupation of the level, and then we shall do a perturbative

analysis up to second order in the interaction U .

6.9.1 Friedel sum rule

We discuss now an important exact result, known as Friedel’ sum rule,

which is a consequence of the Fermi liquid properties of the system described

by the Anderson model.6 This sum rule can be derived as follows. The effect

of the electron-electron interaction in the localized level can be included via

the exact self-energy of the problem, Σ00,σ(E).7 The (retarded) full Green

5Notice that this function is independent of the spin.
6Although we have not discussed the Fermi liquid theory in this book, we find important

to introduce this discussion about Friedel sum rule because it provides a simple way to
understand the appearance of the Kondo effect.
7Notice that we have now included the spin index σ in the self-energy.
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function projected onto the level can written in terms of the self-energy as

Gr
00,σ(E) =

1

E − ε0 + iΓ− Σr
00,σ(E)

. (6.80)

Taking now into account that the density of states in the level is given

by ρ0σ(E) = −(1/π)ImGr
00,σ(E), the corresponding occupation can be ex-

pressed as

〈n0σ〉 =
∫ μ

−∞
dE ρ0σ(E) = − 1

π

∫ μ

−∞
dE

1

E − ε0 + iΓ− Σr
00,σ(E)

. (6.81)

We can now use the relation
1

E − ε0 + iΓ− Σr
00,σ(E)

=
∂

∂E
ln
[
E − ε0 + iΓ− Σr

00,σ(E)
]
+

∂Σr
00,σ(E)/∂E

E − ε0 + iΓ− Σr
00,σ(E)

(6.82)

together with the Ward identity (see Exercise 6.6)∫ μ

−∞
dE Gr

00,σ(E)
∂Σr

00,σ(E)

∂E
= 0, (6.83)

to write the occupation as

〈n0σ〉 = − 1

π
Im

∫ μ

−∞
dE

∂

∂E
ln
[
E − ε0 + iΓ− Σr

00,σ(E)
]
. (6.84)

Integrating this expression we arrive at

〈n0σ〉 = 1

2
− 1

π
tan−1

[
ε0 − μ− ReΣr

00,σ(μ)

Γ

]
. (6.85)

Here, we have used the fact that in a Fermi liquid ImΣr
00,σ(μ) = 0, which

physically means that the quasiparticles have an infinite lifetime at the

Fermi energy.

Thus, we can write the local density of states as

ρ0σ(E) =
1

π

Γ + ImΣr
00,σ(E)[

E − ε0 − ReΣr
00,σ(μ)

]2
+
[
Γ + ImΣr

00,σ(E)
]2 . (6.86)

Using Eq. (6.85), we can relate the exact density of states at the Fermi

energy with the occupation of the level as follows

ρ0σ(μ) =
1

πΓ
sin2 [π〈n0σ〉] , (6.87)

which is known as Friedel sum rule. In a case with electron-hole symmetry

and 〈n0σ〉 = 1/2, the previous expression reduces to

ρ0σ(μ) =
1

πΓ
. (6.88)
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Fig. 6.20 First (a) and second (b) order self-energy diagrams in the Anderson model.

Notice that this equation implies that in the symmetric case, the density

of states at the Fermi energy coincides with the corresponding one in the

unperturbed problem, i.e. ρ0σ(μ) = ρ
(0)
0σ (μ).

Friedel sum rule implies the appearance of a narrow peak in the density

of states in the limit U/Γ → 0. Let us discuss how this comes about. In

section 5.4.3 we saw that the level Green’s function in the limit U/Γ → 0

(atomic limit) is given by Eq. (5.112). This equation suggests that when

U � Γ, the density of states consists mainly of two subbands (of width

∼ Γ) around ε0 and ε0 + U , which have most of the total spectral weight.

However, Eq. (6.88) tells us that there is a finite density at the Fermi

energy. Therefore, the exact density of states must exhibit a narrow peak

at the Fermi energy, known as Kondo peak or Kondo resonance, the width

of which tends to zero in the limit U/Γ → 0. Indeed, it can be shown that

this weight decays exponentially in this limit.

6.9.2 Perturbative analysis

We now want to calculate the properties of the system via a perturbative

expansion of the Green’s functions. For this purpose, we need an approx-

imation for the self-energy, which can be obtained from the lowest-order

diagrams. Expanding up to second order in U , one finds only two self-

energy diagrams that give a finite contribution, namely those depicted in

Fig. 6.20. The first-order diagram, see Fig. 6.20(a), is the Hartree diagram

and it yields the following contribution

Σ
(1)
00,σ(E) = U

∫ ∞

−∞

dE′

2π
G

(0)
00,σ(E

′)eiE
′η = U〈n0σ̄〉. (6.89)

The standard Hartree approximation requires to determine the occupation

〈n0σ̄〉 in a self-consistent manner, i.e. by dressing the Green’s function line

in the Hartree diagram.

The level Green’s function can then be written within this approxima-



174 Molecular Electronics: An Introduction to Theory and Experiment

tion as

G00,σ(E) =
1

E − ε0 + iΓsgn(E) − U〈n0σ̄〉 , (6.90)

where we have set μ = 0. Notice that the role of the interaction is to

shift the position of the resonant level, which moves to ε0 + U〈n0σ̄〉. In

the special case in which ε0 = −U/2, known as the symmetric case, the

self-consistent solution, assuming that there is no magnetic solution, is

〈n0σ〉 = 〈n0σ̄〉 = 1/2. The problem exhibits in this case electron-hole

symmetry around μ = 0 and the density of states is still described by a

Lorentzian of width Γ.

Let us now analyze the contribution of the second-order diagram, see

Fig. 6.20(b). Such contribution is given by

Σ
(2)
00,σ(E) = U2

∫ ∞

−∞

dE′′

2π

∫ ∞

−∞

dE′

2π
G

(0)
00σ(E − E′′)G(0)

00σ̄(E
′)G(0)

00σ̄(E
′ + E′′).

(6.91)

This expression is not easy to evaluate, but the main features of this self-

energy can be reproduced in a simple analytical calculation in which one

assumes a constant density of states for the unperturbed problem (see Ex-

ercise 6.7).

If in the diagram of Fig. 6.20(b) the Green’s function line is dressed with

the Hartree diagram and one considers the symmetric case (ε0 = −U/2), the
second-order approximation preserves the electron-hole symmetry around

μ = 0 and one has 〈n0σ〉 = 〈n(0)
0σ 〉. Moreover, in this case one can show that

ReΣ
(2)
00,σ(μ) = ImΣ

(2)
00,σ(μ) = 0. This implies that ρ0σ = ρ

(0)
0σ and therefore

the Friedel sum rule is satisfied. This is one of the reasons why this second-

order approximation gives an excellent description in the symmetric case,

even if U is not too small in comparison with Γ.

In order to illustrate the effect of the electron-electron interaction in the

density of states, we have computed it numerically in the symmetric case

using the second-order self-energy of Eq. (6.91). The results for different

values of the ratio U/Γ are shown in Fig. 6.21.8 As one can see, as the U/Γ

increases, the density of states exhibits two subbands around ε0 and ε0+U

and a narrow peak at the Fermi energy (the Kondo peak). Notice that the

height of this peak remains constant and it is equal to 1/(πΓ), as in the

case without electron-electron interaction. The appearance of this peak at
8In this figure we explore cases in which U is considerably larger than Γ, which in

principle should be out of the scope of this second-order approximation. However, as
stated above, this approximation works nicely in the symmetric case and it reproduces
the main features of the exact solution [651].
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Fig. 6.21 Density of states projected onto the localized level as a function of the energy
in the Anderson model for ε0 = −U/2 and different values of the ratio U/Γ. The
calculation has been done including the self-energy diagrams up to second order. The
inset shows a blow-up of the energy region close to the Fermi energy.

the Fermi energy has very important consequences for the low-temperature

transport properties of molecular junctions. This will be discussed in detail

in section 15.6.2.

6.10 Final remarks

In this chapter we have presented a systematic perturbative approach to

compute zero-temperature Green’s functions of an electronic system. The

next natural step in most textbooks is to discuss the generalization of this

approach to finite temperatures. However, we shall skip this extension and

jump in the next chapter to the nonequilibrium formalism in which the

temperature will enter in a natural manner. Anyway, the reader is now in

position to study the finite-temperature formalism, which can be found in

different textbooks, see e.g. Refs. [173, 174, 182, 185].

It is worth stressing that in this chapter we have focused on the de-

scription of electronic systems, but a similar perturbative approach can be

extended to other types of systems. For instance, in nanoscale junctions

phonons or local vibrations play an important role both in the electronic

and thermal transport properties. In this sense, it is interesting to learn

how the diagrammatic formalism described in this chapter can be applied

to phonons and other bosonic degrees of freedom. This subject will not be
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address in this monograph and for those readers interested in this topic we

recommend Refs. [173, 174, 182, 185].

Finally, we would like to emphasize that at this stage the reader is ready

to study many important topics in solid state physics which are out of the

scope of this book. For instance, the formalism detailed in this chapter

is the starting point to understand the Fermi liquid theory, which is very

important to get a deeper insight into the physics of metals. The reader is

now also prepared to study the physics of the homogeneous electron gas,

which is a model system where one can learn many important lessons related

to the relevance of electronic correlations. Again, Refs. [173, 174, 182, 185]

are very recommendable for studying these topics.

6.11 Exercises

6.1 Wick’s theorem I: Let us consider the two-sites tight-binding Hamiltonian
of Exercise 5.1(b). Compute the ground state wave function, |φ0〉, for the case in
which there are 2 electrons in the system. Then, show that the following relations
hold:

〈φ0|n1↑n1↓|φ0〉 = 〈φ0|n1↑|φ0〉〈φ0|n1↓|φ0〉
〈φ0|n2↑n2↓|φ0〉 = 〈φ0|n2↑|φ0〉〈φ0|n2↓|φ0〉.

6.2 Wick’s theorem II: Starting from the results of Exercise 5.1(b) about the
time evolution of the creation and annihilation operators of the two-sites system,
show without applying Wick’s theorem that

〈φ0|T
[
c1σ(t)c

†
2σ̄(t)c

†
2σ(t

′)c1σ̄(t
′)
]
|φ0〉 = −G(0)

12σ(t− t′)G(0)
12σ̄(t

′ − t),

which is the result that one obtains using Wick’s theorem.

6.3 Cancellation of the disconnected diagrams: Compute the denomina-
tor of the Green’s function, 〈φ0|S|φ0〉 up to first order for the electron-electron
interaction and show that it exactly cancels the contribution of the disconnected
diagrams that appear in the numerator of the Green’s function (see Fig. 6.2).
Hint: Show that 〈φ0|S|φ0〉 has the following diagrammatic expansion up to first
order:

1 + +
Fig. 6.22 Diagrammatic expansion of the denominator of the Green’s function up to
first order in the electron-electron interaction.
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6.4 Feynman diagrams for the electron-electron interaction: Let us con-
sider a system of interacting electrons with the electron-electron interaction as a
perturbation. Use Wick’s theorem to compute the different contributions of the
10 second-order topologically distinct diagrams. Check that the rules presented
in section 6.5.1 reproduce these results.

6.5 Hartree-fock approximation for the homogeneous electron gas: De-
rive the expression for the exchange potential of an interacting electron gas and
demonstrate that the energy dispersion relation in this case is equal to

εk,HF =
�k2

2m
− 2e2kF

π

[
1

2
− 1− k0

4k0
ln

∣∣∣∣1 + k0
1− k0

∣∣∣∣
]
,

where k0 ≡ k/kF . Show also that the derivative of the dispersion relation exhibits
a logarithmic divergence at k = kF .

6.6 Ward identity: Demonstrate the Ward identity of Eq. (6.83).

6.7 Density of states and Kondo resonance in the Anderson model:
Compute the second-order contribution to the retarded self-energy in the Ander-
son model, see Eq. (6.91), in the symmetric ε0 = −U/2 by assuming that the
unperturbed density of states adopts the form

ρ
(0)
0σ (E) =

{
1/W, −W/2 < E < W/2
0, |E| > W/2

where W is a constant. Use this result to plot the density of states in the level
as a function of energy for different values of the ratio U/Γ. Hint: Use first the
spectral representation to write the unperturbed Green’s function appearing in
Eq. (6.91) in terms of the density of states ρ

(0)
0σ .
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Chapter 7

Nonequilibrium Green’s functions

formalism

So far we have shown how the Green’s function techniques can help us to

understand the physics of systems in equilibrium. Since our goal is the

analysis of the transport properties of different nanocontacts, we have to

generalize those techniques to deal with situations in which the systems

are driven out of equilibrium. This is precisely the goal of this chapter

in which we shall discuss the so-called nonequilibrium Green’s function for-

malism (NEGF). This formalism was developed independently by Kadanoff

and Baym [186] and Keldysh [187] in the early 1960’s. Here we shall follow

Keldysh formulation of this approach and we shall refer to it as the Keldysh

formalism. This formalism is a natural extension of the diagrammatic the-

ory that we have presented in the previous chapter. The importance of

the Keldysh formalism lies in the fact that it allows us to go beyond the

usual linear response in a systematic manner. Since its appearance, it has

been used in a great variety of topics (see Refs. [188, 189] and references

therein). In particular, it has been applied to the study of electronic trans-

port in many types of nanoscale devices and it constitutes a basic tool that

will be used throughout the rest of the book.

Apart from the original paper [187], there exist a number of excellent

reviews devoted to the Keldysh formalism in the literature [188–191]. We

try to explain it here in a didactic manner, concentrating ourselves on its

application to the problems of molecular electronics that we have in mind,

rather than entering into very technical discussions about its foundation.

Bearing this in mind, we have organized this chapter as follows. We first

present the general ideas of the Keldysh formalism. Then, we shall briefly

discuss how to perform the diagrammatic expansion within this formalism.

We shall finish the formal discussion by reviewing both the main properties

of the functions appearing in this nonequilibrium formalism and the main

179

 Star Diwa



180 Molecular Electronics: An Introduction to Theory and Experiment

practical equations. Finally, the last part of this chapter is devoted to the

application of the Keldysh formalism to some simple transport problems.

7.1 The Keldysh formalism

In an out-of-equilibrium situation the perturbative approach detailed in the

previous chapter is not applicable. However, its generalization to nonequi-

librium situations is straightforward. Let us consider an electron system

that is described by the following Hamiltonian

H = H0 +V(t), (7.1)

where H0 is a noninteracting Hamiltonian and V(t) is a time-dependent

perturbation that can contain external potentials and interaction terms.

As in the equilibrium case, we are interested in the calculation of ex-

pectation values of operators like the following one

〈A〉 = 〈ΨH|AH(t)|ΨH〉
〈ΨH|ΨH〉 , (7.2)

where, for the sake of clarity, we consider the expectation value of a single

operator rather than the usual product of two of them.

We now change to the interaction picture, where this expectation value

becomes

〈A〉 = 〈ΨI|AI(t)|ΨI〉
〈ΨI|ΨI〉 . (7.3)

Although the perturbation in this case may depend on time, one can still

assume that the interaction is adiabatically switched on and off at t = −∞
and t = ∞, respectively. As usual, this can be done by the replacement

V(t) → exp(−ε|t|)V(t), where ε is an infinitesimally small positive param-

eter. In the equilibrium case, the time symmetry is preserved and at time

t = ∞ we recover the same noninteracting state |φ0〉 that we had at t = −∞
(apart from a phase factor). However, out of equilibrium this symmetry

is in general broken and the starting point for the perturbative expansion

must be the following one

〈A〉 = 〈φ0|S(−∞, t)AI(t)S(t,−∞)|φ0〉
〈φ0|S(−∞, t)S(t,−∞)|φ0〉 . (7.4)

At a first glance, one might think that now the perturbative expansion

becomes very cumbersome because we cannot group all the pieces of the

time-evolution operator into a single one. Keldysh showed that one can
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Fig. 7.1 The Keldysh contour.

still order the time arguments along a modified time contour. This contour

is referred to as the Keldysh contour and it is depicted in Fig. 7.1.

On this contour, the time runs from −∞ to +∞ in the upper branch,

whereas it does it backwards in the lower one, i.e. from +∞ to −∞. In

order to indicate in which branch the time arguments lie, we introduce

a subindex that will be equal to + for the upper branch and − for the

lower one. With this notation, we can write now the expectation value of

Eq. (7.4) as

〈A〉 = 〈φ0|S−(−∞,∞)S+(∞, t)AI(t)S+(t,−∞)|φ0〉
〈φ0|S−(−∞,∞)S+(∞, t)S+(t,−∞)|φ0〉 , (7.5)

if t lies in the upper branch or

〈A〉 = 〈φ0|S−(−∞, t)AI(t)S−(t,∞)S+(∞,−∞)|φ0〉
〈φ0|S−(−∞, t)S−(t,∞)S+(∞,−∞)|φ0〉 , (7.6)

if t lies in the lower one. Defining the operator Tc that orders the time

arguments along the Keldysh contour, we can rewrite the expectation value

as

〈A〉 = 〈φ0|Tc [AI(t)S−(−∞,∞)S+(∞,−∞)] |φ0〉
〈φ0|S−(−∞,∞)S+(∞,−∞)|φ0〉 . (7.7)

This expression can be in turn rewritten in a more familiar way by defining

the operator that describes the time-evolution along the Keldysh contour

Sc(∞,−∞) ≡ S−(−∞,∞)S+(∞,−∞). (7.8)

With this definition we can finally write the expectation value 〈A〉 as

follows

〈A〉 = 〈φ0|Tc [AI(t)Sc(∞,−∞)] |φ0〉
〈φ0|Sc(∞,−∞)|φ0〉 . (7.9)

Analogously, one can express the expectation value of any operator product.

The expectation value of Eq. (7.9) has formally the same structure as

in an equilibrium situation. The main difference is the fact that one has

to keep track of the branch in which the time arguments lie (t+ and t−).
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This implies that when defining the propagators in this formalism, there

are four different possibilities depending on the two time arguments. These

definitions are analogous to those of the causal function in the equilibrium

formalism

Gij(tα, t
′
β) = −i

〈ΨH|Tc

[
ciσ(tα)c

†
jσ(t

′
β)
]
|ΨH〉

〈ΨH|ΨH〉 (7.10)

G(rtα, r
′t′β) = −i

〈ΨH|Tc

[
Ψσ(rtα)Ψ

†
σ(r

′t′β)
]
|ΨH〉

〈ΨH|ΨH〉 , (7.11)

depending on whether we use the representation |i〉 or |r〉. The subindexes

α and β take the values + and − and indicate in which branch the time

arguments lie. Let us now discuss in detail the expression for the four

possible functions:

(1) t = t+ and t′ = t′+:
In this case both time arguments lie in the upper branch and the cor-

responding Green’s function reads (for a discrete representation)

G++
ij (t, t′) = −i〈T

[
ciσ(t)c

†
jσ(t

′)
]
〉, (7.12)

where, from now on, the subindexes α, β = +,− will appear as su-

perindexes of the Green’s functions. Moreover, in order to simplify the

notation, we shall drop the wave functions in the expectation values and

we shall not include the denominator 〈ΨH|ΨH〉, which indeed turns out

to be equal to 1 (see discussion below). Notice that this function is

nothing else but the causal Green’s function.

(2) t = t+ and t′ = t′−:
In this case, since any time in the lower branch of the Keldysh contour

is “larger” than any time in the upper branch, one has

G+−
ij (t, t′) = i〈c†jσ(t′)ciσ(t)〉. (7.13)

This function plays a fundamental role in the nonequilibrium Green’s

functions theory and, as we shall see later, it contains information about

the distribution function of the electrons.

(3) t = t− and t′ = t′+:
In this case we have

G−+
ij (t, t′) = −i〈ciσ(t)c†jσ(t′)〉. (7.14)

This function contains essentially the same information as G+−
ij (t, t′).
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(4) t = t− and t′ = t′−
In this last possibility, both time arguments lie in the lower branch,

where the arguments are ordered in an antichronological way. There-

fore, this new function reads

G−−ij (t, t′) = −i〈T̄
[
ciσ(t)c

†
jσ(t

′)
]
〉, (7.15)

where the operator T̄ orders the time arguments in the opposite way as

compared with the usual time-ordering operator T, i.e. in a antichrono-

logical order.

The four Green’s functions defined above can be grouped in a matrix

as follows

Ǧ =

(
G++ G+−

G−+ G−−

)
, (7.16)

where the check symbol (̌ ) indicates that we are dealing with a 2 × 2

matrix in Keldysh space. The perturbative expansion couples the different

components of this matrix, which effectively leads to an enlargement of the

propagator space in a factor of 2. This enlargement is indeed quite natural

since in an out-of-equilibrium situation we have to determine not only the

states, the information of which is contained in the causal function, but also

the distribution function that describes how such states are occupied. This

latter information is provided by the off-diagonal functions in Eq. (7.16).

Formally speaking, the perturbative expansion is very similar to the

equilibrium one, and one has only to keep track of the matrix structure. A

additional complication is that in time-dependent problems, the products

are replaced by convolutions over intermediate arguments, which makes the

calculations considerably more complicated. Fortunately, transport prob-

lems often admit a stationary solution and then, the application of the

nonequilibrium formalism is not more complicated than the equilibrium

one.

As stated above, apart from the matrix structure introduced by the

Keldysh formalism, the rest of the perturbative approach is very similar to

the equilibrium one. To derive the perturbative expansion of the matrix

propagator of Eq. (7.16), one can use the expression of Eq. (7.9) and expand

the operator Sc. Let us recall that Sc(∞,−∞) ≡ S−(−∞,∞)S+(∞,−∞)

and the perturbative expansions of both time-evolution operators are given
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by

S+(∞,−∞) =

∞∑
n=0

(−i)n
n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtnT [VI(t1) · · ·VI(tn)] (7.17)

S−(−∞,∞) =
∞∑

n=0

(−i)n
n!

∫ −∞

∞
dt1 · · ·

∫ −∞

∞
dtnT̄ [VI(t1) · · ·VI(tn)] .

After expanding the operators S+ and S−, one applies the Wick’s theo-

rem in the standard way. Therefore, the resulting diagrammatic structure

is analogous to the one in equilibrium, the main difference being the en-

largement of the space that is encoded in the indexes α and β. We shall

discuss the peculiarities of the nonequilibrium diagrammatic expansion in

the next section.

Finally, since the structure of the diagrammatic expansion is identical to

the equilibrium one, such an expansion can be also summarized in a Dyson’s

equation, which in the nonequilibrium case has the following matrix form

Ǧ(t, t′) = ǧ(t, t′) +
∫
dt1

∫
dt2 ǧ(t, t1)Σ̌(t1, t2)Ǧ(t2, t

′). (7.18)

Here, we have denoted the unperturbed propagators by ǧ instead of Ǧ(0) to

simplify the notation. Here, the self-energy has a 2× 2 matrix structure in

Keldysh space analogous to Eq. (7.16). In general, the functions appearing

in Eq. (7.18) depend on two time arguments and the Dyson’s equation is

an integral equation. However, in many stationary situations, both the

propagators and the self-energies depend on the time difference and, after

Fourier transforming, Eq. (7.18) recovers its standard equilibrium form of

an algebraic equation with the frequency as the argument, i.e.

Ǧ(E) = ǧ(E) + ǧ(E)Σ̌(E)Ǧ(E). (7.19)

7.2 Diagrammatic expansion in the Keldysh formalism

Let us discuss now some of the peculiarities of the diagrammatic expansion

in the Keldysh formalism. One of them is the fact that in this formalism

the denominator of the Green’s functions does not play any role (indeed

〈φ0|Sc|φ0〉 = 1, see Exercise 7.1). One can show that in the expansion of Sc

the terms of order higher than zero cancel each other order by order. One

might think that this fact creates a problem related to the cancellation of

the disconnected diagrams. However, this is not the case because, as it is

easy to show by applying Wick’s theorem, these diagrams also cancel each
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other. Therefore, as in equilibrium, one needs to consider the topologically

distinct diagrams only once.

Let us discuss the diagrammatic structure in two situations of interest:

• Case 1: Time-dependent external potential.

Let us consider a system with N noninteracting electrons subjected to

an external potential that can be time-dependent. The Hamiltonian in

first quantization reads in this case

H = H0 +V(t), (7.20)

where

V(t) =

N∑
i=1

V (ri, t). (7.21)

The diagrams in this case are trivial because, as in the case of a static

potential, they consist of the repetition of identical scattering events.

The matrix self-energy is therfore given by (see Exercise 7.2)

Σ̌(r, t) =

(
V (r, t) 0

0 −V (r, t)

)
. (7.22)

It is interesting to note that for this single-electron perturbation the

components Σ+− and Σ−+ vanish. The existence of off-diagonals com-

ponents of the self-energies in the Keldysh space is only possible in

the case of inelastic mechanisms such as electron-electron interaction

or electron-phonon interaction (see next case).

• Case 2: Electron-electron interaction.

Let us consider an electronic system where the electron-electron in-

teraction is assumed to be the perturbation. The system might be

out of equilibrium due to, for instance, the presence of a current. For

the sake of concreteness, let us assume that the unperturbed system

can be described by a tight-binding Hamiltonian and the interaction is

Hubbard-like (see Appendix A)

H = H0 +
∑
i

Uni↑ni↓. (7.23)

The diagrams are topologically identical to the equilibrium ones and the

only difference is the fact that one has to indicate where the time argu-

ments reside on the Keldysh contour. In this respect, every equilibrium

diagram gives rise to several diagrams for the different components of

the self-energy in Keldysh space. We illustrate this fact in Fig. 7.2,
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σi
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−σi

−σi
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Fig. 7.2 Examples of second-order self-energy diagrams in the Keldysh space for the
electron-electron interaction. The indexes + and − indicate in which branch the time
arguments lie.

where we show the self-energy diagrams of second order in U for the

components Σ++ and Σ+−. The expression of the self-energy Σ+−
ii , for

instance, would be (ignoring the spin dependence)

Σ+−
ii (t, t′) = U2

[
g+−ii (t, t′)

]2
g−+
ii (t′, t). (7.24)

7.3 Basic relations and equations in the Keldysh formalism

In the previous section we have seen that the Dyson’s equation has acquired

an additional 2 × 2 matrix structure, which gives the impression that one

has to solve four times more equations than in the equilibrium case. Indeed,

one can show that the different functions in the 2× 2 matrix of Eq. (7.16)

are not independent and the number of equations that one has to solve in

practice can be reduced to only two. In this sense, the goal of this section

is to derive those equations and to discuss the general properties of the

Keldysh-Green’s functions.

7.3.1 Relations between the Green’s functions

Let us explore the different relations between the functions appearing in the

Keldysh formalism. We start by showing that the four Green’s functions

G++, G+−, G−+ and G−− are not independent, but satisfy

G++ +G−− = G+− +G−+. (7.25)

This is a direct consequence of the definition of these functions. Thus for

instance,

G++
ij (t, t′) = −iθ(t− t′)〈ciσ(t)c†jσ(t′)〉+ iθ(t′ − t)〈c†jσ(t′)ciσ(t)〉

= θ(t− t′)G−+
ij (t, t′) + θ(t′ − t)G+−

ij (t, t′). (7.26)
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Analogously,

G−−ij (t, t′) = θ(t− t′)G+−
ij (t, t′) + θ(t′ − t)G−+

ij (t, t′). (7.27)

Adding these two equations, we obtain the relation stated above.

On the other hand, from this relation and using the Dyson’s equation

in Keldysh space, see Eq. (7.18), one can show the following relation be-

tween the different elements of the self-energy matrix in Keldysh space (see

Exercise 7.3)

Σ++ +Σ−− = − (
Σ+− +Σ−+

)
. (7.28)

Other important relations are those between the Keldysh-Green’s func-

tions and the advanced and retarded functions Ga and Gr. Such relations

can be found as follows. Using the expression of Eq. (7.26), one obtains

G++
ij (t, t′)−G+−

ij (t, t′) = −θ(t− t′)
[
G+−

ij (t, t′)−G−+
ij (t, t′)

]
, (7.29)

and using the definitions of G+− and G+−, we arrive at

G++
ij (t, t′)−G+−

ij (t, t′) = −iθ(t− t′)〈ciσ(t)c†jσ(t′) + c†jσ(t
′)ciσ(t)〉

= Gr
ij(t, t

′) (7.30)

Proceeding in an analogous way, one can show the following relations

Gr = G++ −G+− = G−+ −G−− (7.31)

Ga = G++ −G−+ = G+− −G−−. (7.32)

These relations are crucial for the discussion of next section.

7.3.2 The triangular representation

As we have seen above, there are redundancies in the Green’s functions and

in that sense it is natural to try to get rid of them to simplify the equations

as much as possible. In what follows, we shall try to eliminate G++ and

G−− in favor of Gr and Ga. For this purpose, we will apply a unitary

transformation to perform the following change(
G++ G+−

G−+ G−−

)
−→

(
0 Ga

Gr GK

)
, (7.33)

where GK = G+++G−− = G+−+G−+ is known as the Keldysh function.

It is easy to show that the unitary transformation has the form

Ř =
1√
2

(
1 −1

1 1

)
=

1√
2
(1̌− iσ̌y), (7.34)
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where σ̌y is the corresponding Pauli matrix. The representation above

is known as the triangular representation and it is important from the

practical point of view. Let us now denote the standard Keldysh matrix

by Ǧ and the corresponding matrix in the triangular representation as G̃.

They are related by G̃ = ŘǦŘ−1. Applying the transformation Ř to the

Dyson’s equation1

Ǧ = ǧ+ ǧΣ̌Ǧ, (7.35)

we obtain the corresponding Dyson’s equation in the triangular represen-

tation

G̃ = g̃+ g̃Σ̃G̃, (7.36)

where the self-energy in this representation has the form

Σ̃ =

(
ΣK Σr

Σa 0

)
. (7.37)

Here, the new self-energy components are expressed in terms of those of

the original representation as follows

ΣK = Σ++ +Σ−− = − (
Σ+− +Σ−+

)
(7.38)

Σr = Σ++ +Σ+− = − (
Σ−− +Σ−+

)
(7.39)

Σa = Σ++ +Σ−+ = − (
Σ−− +Σ+−) . (7.40)

From Eqs. (7.36) and (7.37) one can show that the advanced and re-

tarded Green’s functions satisfy independent Dyson’s equations, i.e.

Gr,a = gr,a + gr,aΣr,aGr,a. (7.41)

Notice that this equation is formally identical to the equilibrium one. In

the case in which the perturbation is an external potential, as we showed

in the previous section, the corresponding self-energies reduce to Σa(r, t) =

Σr(r, t) = V (r, t), i.e. like in equilibrium.

On the other hand, the Keldysh function GK fulfills the following equa-

tion

GK = gK + gKΣaGa + grΣrGK + grΣKGa. (7.42)

Notice now that GK is coupled to Gr,a and this equation requires to solve

first Dyson’s equation for these latter functions. Let us recall that the

retarded and advanced functions are related, which in practice means that
1In this equation, as in the next ones, the integrations over the intermediate arguments

are implicitly assumed.
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there are only two functions to be determined, as we stated at the beginning

of this section.

The previous equation can be written in a more symmetric way as fol-

lows. We first group on the left hand side all the terms containing GK

and then we multiply from the left by (1− grΣr)
−1

on both sides of the

equation to arrive at

GK = (1− grΣr)−1 gK (1+ΣaGa) + (1− grΣr)−1 grΣKGa. (7.43)

Then, using the Dyson’s equation for the retarded function, we finally ob-

tain

GK = (1+GrΣr)gK (1+ΣaGa) +GrΣKGa. (7.44)

In this book, we shall mainly use the function G+−, rather than the

Keldysh function GK . For this reason, we now proceed to derive the corre-

sponding equation for G+−. We first take the element +− in the Dyson’s

equation, i.e.

G+− = g+− + (gΣG)
+−

. (7.45)

Then, we make use of the relations derived above between the different

functions to arrive at (see Exercise 7.3)

G+− = g+− + g+−ΣaGa + grΣrG+− − grΣ+−Ga. (7.46)

The function G−+ fulfills a similar equation that can be obtained from the

previous one by exchanging + by − and vice versa. Eq. (7.46) for G+− can

be written in a more symmetric way, in analogy with what we did for the

function GK . Thus, we obtain finally

G+− = (1+GrΣr)g+− (1+ΣaGa)−GrΣ+−Ga. (7.47)

The function G−+ satisfies a similar equation given by

G−+ = (1+GrΣr)g−+ (1+ΣaGa)−GrΣ−+Ga. (7.48)

7.3.3 Unperturbed Keldysh-Green’s functions

In the Keldysh formalism the time dependence is introduced through the

perturbation and the unperturbed Hamiltonian H0 must correspond to

a noninteracting electron system in equilibrium. Thus, all unperturbed

Green’s functions depend only on the time difference and they are easy

to obtain in energy space. The form and properties of the unperturbed

retarded, advanced and causal functions in energy space were studied in

detail in Chapter 5, whereas the properties of the functions g−−(E) can
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be easily deduced from those of g++(E). Thus, we concentrate now on the

analysis of the functions g+−(E) and g−+(E). From its definition in the

time domain (and in a discrete basis)

G+−
ij (t) = i〈c†jσ(0)ciσ(t)〉, (7.49)

it is obvious that this function is related to the electron distribution in

equilibrium. Although the temperature does not appear explicitly in the

Keldysh formalism, one uses the previous fact to introduce it. Thus, the

previous expression for t = 0 and i = j reads

G+−
ii (0) = i〈niσ〉 =

∫ ∞

−∞

dE

2π
G+−

ii (E). (7.50)

This implies that G+−
ii (E) = 2πiρi(E)f(E), where f(E) is the Fermi func-

tion and ρi(E) is the local density of states in the site i. In the same way,

one can show that G−+
ii (E) = −2πiρi(E)[1 − f(E)]. Taking into account

this result, it is clear that G+− ∝ f(E) and G−+ ∝ 1 − f(E). This fact

together with the general relation

Ga(t)−Gr(t) = G+−(t)−G−+(t), (7.51)

leads to the following relations

G+−(E) = [Ga(E)−Gr(E)] f(E) (7.52)

G−+(E) = − [Ga(E)−Gr(E)] [1− f(E)] . (7.53)

It is worth stressing that we have written the previous expressions using

capital letters to indicate that these expressions are always valid in equi-

librium, even in an interacting case. In the Keldysh formalism the unper-

turbed system is moreover non-interacting, which implies that in a basis |i〉
one has

g+−ij (E) =
[
gaij(E)− grij(E)

]
f(E) (7.54)

g−+
ij (E) = − [

gaij(E)− grij(E)
]
[1− f(E)] .

As a consequence, these functions are proportional to the spectral den-

sities and to the thermal distribution function. The way in which we have

introduced the temperature in the Keldysh formalism is certainly not very

satisfactory. However, one can show that a rigorous derivation leads exactly

to the result that we have just described (see for instance Ref. [192]).
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7.3.4 Some comments on the notation

The notation used here for the different Keldysh-Green’s functions is not

shared by all the authors. In this sense, it is important to devote a few lines

to make contact with other texts where the Keldysh formalism is described.

Frequently, the functions G+− and G−+ are denoted by G< and G>,

respectively. Sometimes, the Keldysh function GK is denoted by GF or

simply by F . On the other hand, the triangular representation is often

written in a slightly different way. One first defines a new matrix function

as Ḡ = σzǦ, where σz is the Pauli matrix, and then the unitary trans-

formation of Eq. (7.34) is applied. This leads to a 2 × 2 matrix with the

form (
Gr GK

0 Ga

)
, (7.55)

which is often used in the field of superconductivity [193].

7.4 Application of Keldysh formalism to simple transport

problems

In this section we shall illustrate the utility of the Keldysh formalism by

applying it to the description of the electronic transport in some simple

situations of special interest. Our goal is two fold. First, we want to

illustrate how this formalism is used in practice and second, we want to

show how the elastic transmission can be computed from an atomistic point

of view.

Most of the systems that we have in mind (atomic contacts, molecular

junctions, etc.) are conveniently described by a tight-binding Hamiltonian

of the following form

H =
∑
iσ

εiniσ +
∑
ijσ

tij

(
c†iσcjσ + c†jσciσ

)
, (7.56)

where we have assumed, without loss of generality, that the hopping ele-

ments tij are real. Our first task is to derive an expression for the electrical

current operator in this local basis. For this purpose, we first consider the

simple case of a tight-binding chain with only nearest-neighbor hoppings,

denoted by t. Such a chain is schematically represented in Fig. 7.3. Let us

compute now the current between the sites k and k + 1. Without doing

any calculation, one can guess that the operator must adopt somehow the
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following form2

I ∝ t
∑
σ

[
c†kσ(t)ck+1σ(t)− c†k+1σ(t)ckσ(t)

]
, (7.57)

where the first term in the sum represents the current flowing in one direc-

tion and second one corresponds to the current flowing in the opposite one.

Let us see if a rigorous calculation confirms our intuition.

................ t
AB

k k+1k−1

Fig. 7.3 Schematic representation of a linear chain with only nearest-neighbor hoppings.

The current operator must be obtained from the continuity equation

that describes the charge conservation. Such equation can be written in a

discrete representation as

IA − IB +
∂ρk
∂t

= 0, (7.58)

where A represents a point between the sites k and k + 1 and B a point

between k − 1 and k, see Fig. 7.3. Here, ρk is the operator that describes

the charge in the site k

ρk = e
∑
σ

c†kσckσ (7.59)

and satisfies the equation of motion of Heisenberg operators

∂ρk
∂t

= − i

�
[ρk,H] . (7.60)

Notice that we have reintroduced �, and we shall write it explicitly from

now on. Using the expression of Eq. (7.56) for the homogeneous chain that

we are considering, it is straightforward to compute the commutator that

appears in the previous equation of motion and thus, one arrives at

∂ρk
∂t

=
−iet
�

∑
σ

{
c†kσck+1σ − c†k+1σckσ + c†kσck−1σ − c†k−1σckσ

}
.

Rewriting this expression in the form of the continuity equation, see

Eq. (7.58), we can identify the current operator, which at point A takes the

form

IA(t) =
iet

�

∑
σ

{
c†kσ(t)ck+1σ(t)− c†k+1σ(t)ckσ(t)

}
. (7.61)

2We believe that no confusion can arise between the hopping t and the time appearing
as an argument in the creation and annihilation operators.
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Notice that this has exactly the intuitive form that we had anticipated

above.

This expression can be easily generalized to any 3D system described by

a tight-binding Hamiltonian as in Eq. (7.56). The electrical current through

an arbitrary surface that separates two regions A and B is given by

I(t) =
ie

�

∑
i∈A;j∈B

∑
σ

tij

{
c†iσ(t)cjσ(t)− c†jσ(t)ciσ(t)

}
. (7.62)

Let us now compute the expectation value of the current operator, for

instance, for the case of the chain. According to Eq. (7.61), one can write

(dropping the subindex A)

〈I(t)〉 = iet

�

∑
σ

{
〈c†kσ(t)ck+1σ(t)〉 − 〈c†k+1σ(t)ckσ(t)〉

}
. (7.63)

The expectation values appearing in the previous equation can be expressed

in terms of the Keldysh functions G+− as follows

〈I(t)〉 = e

�
t
∑
σ

{
G+−

k+1,k(t, t)−G+−
k,k+1(t, t)

}
, (7.64)

and there is a similar expression for the most general case of Eq. (7.62).

In many situations, for instance when there is a constant voltage applied

in a junction, the problem admits a stationary solution and the Green’s

functions depend exclusively on the difference of the time arguments. In

those cases, Eq. (7.64) can be written in terms of the Green’s functions in

energy space as

〈I〉 = e

�
t
∑
σ

∫ ∞

−∞

dE

2π

{
G+−

k+1,k(E)−G+−
k,k+1(E)

}
. (7.65)

We are now in position to discuss the electronic transport in some simple

examples of special interest.

7.4.1 Electrical current through a metallic atomic contact

As a first example, we consider an atomic constriction. As we learned

in the first part of this book, such contacts can nowadays be fabricated

with the scanning tunneling microscope or with the mechanically control-

lable break-junctions. For the sake of simplicity, we consider the case of

a metal described by a tight-binding Hamiltonian with a single relevant

atomic orbital per site. We assume that the two electrodes forming the

atomic junction are only coupled through their outermost atoms, denoted
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Fig. 7.4 Schematic representation of a single-channel atomic contact. The electrodes
are coupled via the hopping element t that describes the coupling between the two
outermost atoms of both leads, denoted by L and R. There is a bias voltage applied
across the system giving rise to a difference in the chemical potential of the electrodes:
eV = μL − μR.

as L and R, via a single hopping element t. This situation is schematically

represented in Fig. 7.4. Here, the specific shape of the electrodes is irrele-

vant for our discussion. As it will become clear later, this is a model for a

contact with a single conduction channel and if everything is consistent, we

should arrive at the Landauer formula. However, contrary to the scattering

approach, we will now be able to obtain a microscopic expression for the

transmission coefficient in terms of the coupling element t and the local

electronic structure of the electrodes.

This model system is described by the following tight-binding Hamilto-

nian

H = HL +HR +
∑
σ

t
(
c†LσcRσ + c†RσcLσ

)
, (7.66)

where HL and HR are the Hamiltonians describing the left and right elec-

trodes, respectively. We assume that there is a bias voltage V applied across

the contact and that the potential drops abruptly in the interface region.

The task in this example is to compute the current-voltage characteris-

tics. According to Eqs. (7.63-7.65), the current evaluated at the interface

between the electrodes is given by3

I = 〈I〉 = 2et

h

∫ ∞

−∞
dE

[
G+−

RL (E)−G+−
LR (E)

]
, (7.67)

3We assume that the voltage is time-independent and therefore the problem admits a
stationary solution. This allows us to write the current in terms of the Fourier transform
of the Green’s functions with respect to the difference of the time arguments.
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where the factor 2 is due to the spin degeneracy in this problem. At

this stage the problem is to determine the Green’s functions appearing

in Eq. (7.67). For this purpose, we employ the perturbative method that

we have just described in the previous sections. Therefore, the first thing

that we need to do is to choose the perturbation. Let us remind that in

the Keldysh formalism the unperturbed system has to be in equilibrium.

One possibility would be to introduce the voltage as a perturbation, but

this is not very convenient because such a perturbation is extended over

the whole system and the calculation would be rather cumbersome. The

most convenient choice is to treat the coupling term in Eq. (7.66) as the

perturbation and include the voltage in the unperturbed Hamiltonians by

shifting the corresponding chemical potential (e.g. μL = eV and μR = 0).4

With this choice, the retarded and advanced self-energies associated to

this single-particle perturbation adopt the form

Σr,a
LR = Σr,a

RL = t, (7.68)

while the Keldysh self-energies vanish: Σ+− = Σ−+ = 0 (there are no in-

elastic interactions). Now, the functions G+−
LR and G+−

RL appearing in the

expression of the current can be determined in terms of the Green’s func-

tions of the uncoupled electrodes (unperturbed functions) using Eq. (7.47).

But before doing so, we can simplify the algebra by writing the current in

terms of the diagonal Green’s functions of both electrodes. For this pur-

pose, we compute G+−
LR making use of Eq. (7.46) by writing it as (remember

that Σ+− = 0 in this problem)

G+− = g+− + g+−ΣaGa + grΣrG+−, (7.69)

while we compute G+−
RL using this equation, but written in the following

alternative form:

G+− = g+− +G+−Σaga +GrΣrg+−. (7.70)

It is important to emphasize that these equations are algebraic equations

in energy space and we shall often omit, as we have just done, the energy

argument of the Green’s functions, E, to abbreviate the notation.

Using the last two equations, we can write G+−
LR and G+−

RL as

G+−
LR = g+−LLΣa

LRG
a
RR + grLLΣ

r
LRG

+−
RR , (7.71)

G+−
RL = G+−

RRΣ
a
RLg

a
LL +Gr

RRΣ
r
RLg

+−
LL . (7.72)

4This does not mean that the unperturbed system is out of equilibrium since in the
absence of coupling, there is no current and the electron distributions in both leads are
the equilibrium one.
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Substituting now G+−
LR and G+−

RL in Eq. (7.67) and using the general

relation Ga −Gr = G+− −G−+, one arrives at

I =
2e

h
t2
∫ ∞

−∞
dE

[
g+−LL (E)G−+

RR(E)− g−+
LL (E)G+−

RR(E)
]
. (7.73)

We now compute the functions G+−
RR and G−+

RR by using Eqs. (7.47) and

(7.48)

G
+−/−+
RR = (1 +Gr

RLΣ
r
LR) g

+−/−+
RR (1 + Σa

RLG
a
LR) + (7.74)

Gr
RRΣ

r
RLg

+−/−+
LL Σa

LRG
a
RR. (7.75)

Introducing these expressions in Eq. (7.73) we obtain

I =
2e

h
t2
∫ ∞

−∞
dE |1 + tGr

RL(E)|2 [g+−LL (E)g−+
RR (E)− g−+

LL (E)g+−RR (E)
]
.

(7.76)

Here, we have used the explicit expression of the self-energies, see Eq. (7.68),

and the fact that Ga(E) = [Gr(E)]† (thus e.g., Ga
LR(E) = [Gr

RL(E)]∗).
To complete the calculation we still have to determine the retarded

function Gr
RL(E). This can be done, very much like in equilibrium, using

its Dyson’s equation, see Eq. (7.41). Taking the element (R,L) we arrive

at

Gr
RL = grRRΣ

r
RLG

r
LL. (7.77)

To close this equation, we need now an equation for Gr
LL, which is obtained

by taking the element (L,L) in the Dyson’s equation, i.e.

Gr
LL = grLL + grLLΣLRG

r
RL. (7.78)

Substituting back into the equation for Gr
RL, we obtain finally

Gr
RL =

tgrRRg
r
LL

1− t2grRRg
r
LL

and 1 + tGr
RL =

1

1− t2grRRg
r
LL

. (7.79)

Before coming back to the expression of current, let us remind that the

unperturbed Keldysh functions g+−/−+ can be expressed in terms of the

retarded and advanced ones using Eq. (7.54). Thus, the functions appearing

in Eq. (7.76) can be written as

g+−LL (E) = [gaLL(E − eV )− grLL(E − eV )] f(E − eV ) (7.80)

= 2πiρL(E − eV )f(E − eV )

g−+
LL (E) = − [gaLL(E − eV )− grLL(E − eV )] [1− f(E − eV )]

= −2πiρL(E − eV ) [1− f(E − eV )]

g+−RR (E) = [gaRR(E)− grRR(E)] f(E) = 2πiρR(E)f(E)

g−+
RR (E) = − [gaRR(E)− grRR(E)] [1− f(E)] = −2πiρR(E) [1− f(E)] ,
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where f(E) is the Fermi function and ρL/R is the local density of states of

the leads projected onto the sites L and R. Notice that we have already

taken into account the relative shift of the chemical potentials due to the

bias voltage V .

Using Eqs. (7.79) and (7.80), we can finally write the current as follows5

I =
2e

h

∫ ∞

−∞
dE

4πt2ρL(E − eV )ρR(E)

|1− t2gLL(E − eV )gRR(E)|2 [f(E − eV )− f(E)] .

(7.81)

Notice that Eq. (7.81) has exactly the form of the Landauer formula,

i.e.

I =
2e

h

∫ ∞

−∞
dE T (E, V ) [f(E − eV )− f(E)] , (7.82)

where we can identify T (E, V ) as an energy and voltage-dependent trans-

mission probability given by

T (E, V ) =
4πt2ρL(E − eV )ρR(E)

|1− t2gLL(E − eV )gRR(E)|2 . (7.83)

As it can be seen, the transmission depends primarily on the coupling

element t and the local electronic structure of the leads.

For sufficiently low voltages, there is a linear regime where the current is

proportional to the voltage. In this limit, the conductance is given by G =

(2e2/h)T (EF, V = 0), where T (EF, V = 0) is the zero-bias transmission at

the Fermi energy given by

T (EF, V = 0) =
4πt2ρL(EF)ρR(EF)

|1− t2gLL(EF)gRR(EF)|2 . (7.84)

One can often consider that the Green’s functions are constant around the

Fermi energy and one can also neglect their real part (this is the wide-band

approximation introduced in Chapter 5). This means that the lead Green’s

functions can be approximated by

gLL ≈ i

W
, (7.85)

where W = 1/πρL/R(EF) (we are assuming a symmetric contact (gLL =

gRR) for simplicity). Within this approximation, one obtains the following

expression for the transmission

T =
4t2/W 2

(1 + t2/W 2)2
. (7.86)

5This expression for the current was first derived in Ref. [194] for a more realistic model.
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This expression illustrates the transition from the tunnel regime, when

the electrodes are separated by a large distance, to the contact regime at

small distances. In the former limit, the transmission given in Eq. (7.86)

can be approximated by 4t2/W 2. This means that the dependence of the

transmission on the distance between the electrodes, and therefore that of

the linear conductance, is determined by t2. At large distances, a hopping

element is roughly proportional to the overlap of the atomic orbitals and

decays exponentially with the distance between the corresponding atoms.

This is how the exponential length dependence, which we already discussed

in section 4.4, comes about from an atomistic point of view. From the scat-

tering approach, see section 4.4, we concluded that the length dependence

of a metallic tunnel junction is determined by the metal work function.

However, with this simple model, we get the impression that such a de-

pendence is governed by a local property, namely the coupling between the

outermost orbitals of the electrodes. These two pictures, which at first

glance look contradictory, can indeed be reconciled. This is, however, a

subtle issue that is out of the scope of this book and we refer the reader to

Ref. [195] for a discussion of this question.

When the electrodes approach each other the hopping t becomes of the

same order as the energy scale W and the transmission can reach unity

and in turn the conductance approaches the quantum of conductance G0 =

2e2/h. The transition from tunnel to contact was first discussed within

this type of atomistic models in Ref. [194] in connection with the first

experiment that explored such a transition [55]. For an overview on recent

experiments exploring the tunnel-to-contact transition both in single atoms

and molecules, see Refs. [196, 197].

Let us now study in more detail the tunnel limit (t → 0). In this case,

the non-linear current of Eq. (7.81) can be approximated by

I =
8πe

h
t2
∫ ∞

−∞
dE ρL(E − eV )ρR(E) [f(E − eV )− f(E)] , (7.87)

which tell us that the current in this limit is determined by the convolution

of the local density of states of both electrodes. This well-known expression

is a fundamental result for the theory of STM and provides a simple inter-

pretation of the STM images. Assuming that the left electrode represents

a STM tip with a constant density of states around the Fermi energy, the

differential conductance at low temperatures is simply given by

G(V ) =
dI

dV
=

2e2

h
4πt2ρL(EF)ρR(EF + eV ), (7.88)
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i.e. the conductance is a measure of the local density of states of the sample

(or right electrode in our case).

7.4.2 Shot noise in an atomic contact

Another interesting transport property that can easily be calculated with

the Keldysh formalism is the shot noise (or nonequilibrium current fluc-

tuations), which was introduced in Chapter 4. Let us consider the model

for an atomic contact discussed in the previous subsection. Our goal now

is the calculation of the current fluctuations in the zero-temperature limit

and finite bias (shot noise).

The noise is characterized by the fluctuation spectral density that is

defined as

P (ω) = �

∫ ∞

−∞
dt eiωt〈δI(t)δI(0) + δI(0)δI(t)〉, (7.89)

where δI(t) = I(t)− 〈I(t)〉.
We are specially interested in the zero-frequency noise, P (0),

P (0) = �

∫ ∞

−∞
dt 〈δI(t)δI(0) + δI(0)δI(t)〉. (7.90)

If we now substitute the expressions for I(t) and 〈I(t)〉 for an atomic

contact and we write the result in terms of the Green’s functions, we obtain

P (0) =
2e2

h

∫ ∞

−∞
dE

[
G+−

LR (E)G−+
RL (E) +G+−

RL (E)G−+
LR (E)−

G+−
LL (E)G−+

RR(E)−G+−
RR(E)G−+

LL (E)
]
. (7.91)

Here, in order to obtain this expression, we have made use of Wick’s theo-

rem to decouple the averages of four operators (let us remind that this is

valid since our electron system is noninteracting).

At this stage the calculation of the shot noise has been reduced to

the computation of the different Keldysh-Green’s functions that appear in

Eq. (7.91). These functions can be calculated following exactly the same

procedure detailed in the previous subsection. If we now assume zero tem-

perature and use the wide-band approximation of Eq. (7.85) for the un-

perturbed Green’s functions, we can obtain the following expression (see

Exercise 7.5)

P (0) =
4e2

h
T (1− T )V, (7.92)

which is the result derived in section 4.7 using the scattering approach.
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7.4.3 Current through a resonant level

Let us now discuss the calculation of the current for the resonant level

model discussed in section 5.3.3. Let us remind that in this model a single

quantum level is coupled to two metallic electrodes and the corresponding

Hamiltonian is given by

H = HL +HR +
∑
σ

ε0n0σ + (7.93)

∑
σ

tL

(
c†Lσc0σ + c†0σcLσ

)
+
∑
σ

tR

(
c†Rσc0σ + c†0σcRσ

)
,

where ε0 is the position of the resonant level, which in principle can also

depend on the bias voltage, and tL,R are the matrix elements describing

the coupling to the reservoirs. Here, L and R denote the outermost sites

of the left and right electrodes, respectively. On the other hand, we now

assume that there is a constant bias voltage across the system and our task

is to compute the current-voltage characteristics.

We start by evaluating the current at the interface between the left

electrode and the level, which in terms of the Green’s functions G+− can

be written as follows

I =
2etL
h

∫ ∞

−∞
dE

[
G+−

L0 (E)−G+−
0L (E)

]
. (7.94)

In order to determine the Green’s functions in the previous expression,

we use again the Keldysh formalism and we treat the coupling terms be-

tween the level and the electrodes, i.e. the second line in Eq. (7.93), as

a perturbation. With this choice the only non-vanishing elements of the

self-energy are: Σr,a
L0 = Σr,a

0L = tL and Σr,a
R0 = Σr,a

0R = tR.

Following now the same steps as in section 7.4.1, we can write the current

in terms of diagonal elements of the Green’s functions as

I =
2etL
h

∫ ∞

−∞
dE

[
g+−LL (E)G−+

00 (E)− g−+
LL (E)G+−

00 (E)
]
. (7.95)

Now, to determine the full Green’s functions, we use the Dyson’s equa-

tion, Eq. (7.47), to write

G
+−/−+
00 = (1+GrΣr)00 g

+−/−+
00 (1+ΣaGa)00 + (7.96)

Gr
00Σ

r
0Lg

+−/−+
LL Σa

L0G
a
00 +Gr

00Σ
r
0Rg

+−/−+
RR Σa

R0G
a
00.

If we now substitute this expression into the current formula, the term

containing g
+−/−+
LL is canceled. Moreover, the term proportional to g

+−/−+
00

does not contribute either. The reason is that g
+−/−+
00 (E) ∝ δ(E − ε0) and
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the prefactor of this term vanishes at E = ε0.
6 Thus, the current can now

be expressed as

I =
2e

h
4π2t2Lt

2
R

∫ ∞

−∞
dE ρL(E)ρR(E)|Gr

00(E)|2 [fL(E)− fR(E)] , (7.97)

where it is implicitly assumed that the density of states (and distribution

function) of the left electrode is shifted by eV . Notice that we have already

used the expression of the lead Green’s functions in terms of the local

density of states and Fermi functions.

At this point, the only remaining task is the calculation of Gr
00(E), but

this is something that we have already done in section 5.3.3 and we just

recall here the result

Gr
00(E) =

1

E − ε0 − t2Lg
r
L(E)− t2Rg

r
R(E)

. (7.98)

Therefore, the current adopts again the form of the Landauer formula

I =
2e

h

∫ ∞

−∞
dE T (E, V ) [f(E − eV )− f(E)] , (7.99)

where this time the transmission T (E, V ) is given by

T (E, V ) =
4π2t2Lt

2
RρL(E − eV )ρR(E)

|E − ε0 − t2Lg
r
L(E − eV )− t2Rg

r
R(E)|2 . (7.100)

To simplify this expression, we use now as in section 5.3.3 the wide-

band approximation and neglect the energy dependence introduced by the

leads. This way, grL/R ≈ −iπρL/R(EF) and we define the scattering rates

ΓL/R = πt2L/RρL/R(EF). In this approximation the transmission can be

written as

T (E, V ) =
4ΓLΓR

(E − ε0)2 + (ΓL + ΓR)2
. (7.101)

In this case, the voltage dependence of the transmission may only stem from

the eventual voltage dependence of the level position. This expression is

the well-known Breit-Wigner formula that was derived in Chapter 4 within

the scattering approach (see Exercises 4.5 and 4.8) and it will be used

extensively in later chapters.

Again, in the linear regime the low-temperature conductance is simply

given by G = (2e2/h)T (EF, 0). This expression shows that the maximum

conductance is reached when EF = ε0, which is the resonant condition.

In the symmetric case (ΓL = ΓR), this maximum is equal to G0 = 2e2/h,

irrespectively of the value of the scattering rates. These facts are illustrated

in Fig. 7.5. The non-linear current-voltage characteristics of this model will

be discussed in detail in Chapter 15.
6Physically speaking, it is quite reasonable that this term does not contribute to the

current. It makes no sense that the current depends on the occupation of the level before
being coupled to the electrodes.
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Fig. 7.5 Zero-temperature linear conductance in the resonant tunneling model. (a)
Linear conductance (normalized by G0 = 2e2/h) as a function of the level position, ε0
for a symmetric contact ΓL = ΓR = Γ. (b) Linear conductance at resonance (ε0 = EF)
as a function of the ratio between the scattering rates.

7.5 Exercises

7.1 Diagrammatic expansion in the Keldysh formalism: Show explicitly
that 〈φ0|Sc|φ0〉 = 1 by using the expansion of the operator Sc. For this purpose,
expand Sc up to second order and show that the contributions of order higher
than zero cancel.

7.2 Time-dependent external potential: Let us consider a system with N
noninteracting electrons subjected to a time-dependent external potential:

V(t) =

N∑
i=1

V (ri, t). (7.102)

Apply Wick’s theorem to demonstrate that the self-energy is given by Eq. (7.22).

7.3 Properties of the Keldysh-Green’s functions:
(a) Demonstrate the property of Eq. (7.28). Hint: Use the property of

Eq. (7.25) and the Dyson’s equation in Keldysh space.
(b) Demonstrate Eq. (7.46).

7.4 Shot noise in a single-channel point contact:
Derive the expression of the zero-frequency shot noise of a single-channel point

contact following the discussion of the example of section 7.4.2 and demonstrate
that it is given by

P (0) =
4e2

h
T (1− T )eV,

where T is the energy-independent transmission coefficient of the contact given
by Eq. (7.86).

7.5 Electrical current through a linear chain: Consider the electronic trans-
port in a finite one-dimensional system formed by a tight-binding chain with N
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sites such that the site 1 is connected to the left electrode through a hopping tL
and the site N is connected to the right electrode with a hopping tR. Show that
the current formula in this case is given by

I =
2e

h
4π2t2Lt

2
R

∫ ∞

−∞
dE ρL(E − eV )ρR(E)|Gr

1N (E)|2 [f(E − eV )− f(E)] .

For the sake of simplicity, consider that in the chain there are only hoppings
between nearest-neighbor atoms, t, and that the on-site energy is given by ε0.
Study the linear conductance of this system as a function of the number of sites
N in the chain and show that it may exhibit parity oscillations, depending on
whether N is even or odd.

7.6 Thermopower of a single-channel point contact: Using the model
of section 7.4.1, derive the expression for the thermopower for a single-channel
contact and show that it coincides with the result obtained with the scattering
approach in section 4.8.
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Chapter 8

Formulas of the electrical current:

Exploiting the Keldysh formalism

In the previous chapter we showed how the Keldysh formalism can be com-

bined with simple Hamiltonians to compute the current in model systems.

In this chapter we shall exploit this technique and derive some general

expressions for the electrical current that can be combined with realistic

methods for the determination of the electronic structure. To be precise,

we shall address three basic issues:

(1) Derivation of Landauer formula in the framework of the non-

equilibrium Green’s function techniques. Here, the goal is the determi-

nation of the microscopic expression for the elastic transmission valid

for any atomic and molecular junction.

(2) Generalization of Landauer formula to include inelastic and correlation

effects.

(3) Description of the current in atomic-scale junctions subjected to time-

dependent potentials.

This chapter is rather technical and it can be skipped by those who are

not so interested in the algebra behind the current formulas. Anyway, we

recommend to read the next section about the derivation of the Landauer

formula, since the expression obtained there for the elastic transmission will

be frequently used in subsequent chapters.

8.1 Elastic current: Microscopic derivation of the Landauer

formula

In section 7.4 we discussed two simple examples of atomic-scale contacts. In

both cases we ended up with a Landauer-like formula for the elastic current,

205
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Fig. 8.1 Schematic representation of an atomic-scale contact of arbitrary geometry. We
divide this system into three parts: a central region, C, and the two leads, L and R.

the only difference being the expression for the transmission coefficient. In

this section we shall demonstrate that this was not a coincidence and we

shall derive a general expression for the elastic current valid for any type

of atomic and molecular junction.

Let us consider a contact with arbitrary geometry like the one depicted

in Fig. 8.1. Such a contact can be either an atomic contact or a molecular

junction. Since we shall ignore inelastic interaction in this discussion, one

can describe the system in terms of the following generic tight-binding

Hamiltonian

H =
∑

ij,αβ,σ

hiα,jβ c†iα,σcjβ,σ , (8.1)

where i, j run over the atomic sites and α, β denote the different atomic

orbitals. The number of orbitals in each site can be arbitrary. For the sake

of simplicity, we assume that the local basis is orthogonal. Later in this

section, we shall generalize the results to the case of nonorthogonal basis

sets. Notice also that we are assuming that matrix elements are independent

of the spin, i.e. for the moment we do not consider magnetic situations.

We now distinguish three different parts in this contact: the reservoirs

L and R, and a central region that can have arbitrary size and shape.

In principle, the reservoirs L and R could also have an arbitrary shape

and we assume that an electron in these subsystems has a well-defined

temperature and chemical potential. In other words, these regions play the

role of electron reservoirs, in the spirit of the scattering approach of Chapter

4. The separation of the contact in these three subsystems is somewhat

arbitrary, especially in the linear response regime, and one can play with

that, as we shall discuss below. We also assume that there is no direct

coupling between the reservoirs. With this assumption the Hamiltonian
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above can be written in the following matrix form

H =

⎛
⎝HLL tLC 0

tCL HCC tCR

0 tRC HRR

⎞
⎠ , (8.2)

where the diagonal terms HXX with X = L,C,R are the Hamiltonian of

the three subsystems and the t’s describe the coupling between them.

Our aim is to determine the current through the contact induced by a

constant bias voltage, eV = μL − μR. For this purpose, we first evaluate

the current at the interface between the left lead L and central region C,

which in the tight-binding representation adopts the form (see section 7.4)

I =
ie

�

∑
i∈L;j∈C;α,β,σ

(
hiα,jβ〈c†iα,σcjβ,σ〉 − hjβ,iα〈c†jβ,σciα,σ〉

)
, (8.3)

where i runs over the atoms of the left electrode which are connected with

the atoms in the central region C, and j runs over the atoms of the central

region coupled to the left electrode (in principle, all of them). The indexes

α and β indicate the different atomic orbitals in every site.

Following the ideas of the last section of the previous chapter, we make

use of nonequilibrium Green’s function techniques to calculate the current.

First of all, we express the expectation values appearing in the current

expression in terms of the Keldysh-Green’s function G+−. This function

gives information about the distribution function of the system and in a

local basis it adopts the following form

G+−,σσ′

iα,jβ (t, t′) = i〈c†jβ,σ′ (t
′)ciα,σ(t)〉. (8.4)

Using this expression one can write the current as

I =
e

�

∑
i∈L;j∈C;α,β,σ

[
tiα,jβG

+−,σσ
jβ,iα (t, t) − tjβ,iαG

+−,σσ
iα,jβ (t, t)

]
. (8.5)

The current can be expressed in a more compact way in terms of the

hopping matrices tLC and tCL [see Eq. (8.2)] whose elements are given by

(tLC)iα,jβ = hiα,jβ with i ∈ L; j ∈ C (8.6)

(tCL) = (tLC)
†.

Analogously, one can define similar matrices for the Green’s functions

G+−. With this new notation, one can express the current as

I =
2e

�
Tr
[
G+−

CL(t, t)tLC − tCLG
+−
LC (t, t)

]
, (8.7)
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where Tr denotes the trace over atoms and orbitals in the central region C.

The prefactor 2 comes from the sum over spins, since for the moment we

do not consider any magnetic situation. For the same reason, we drop the

superindex σ in the Green’s functions.

This transport problem admits a stationary solution and therefore, the

different Green’s functions only depend on the difference of time arguments.

Thus, we can Fourier transform with respect to the difference of the time

arguments and write the current as

I =
2e

h

∫ ∞

−∞
dE Tr

[
G+−

CL(E)tLC − tCLG
+−
LC (E)

]
. (8.8)

Notice that the current is expressed in terms of the trace of a matrix whose

dimension is the number of orbitals in the central region, which we denote as

NC . At this stage, the problem has been reduced to the determination of the

functions G+− in terms of matrix elements of the Hamiltonian of Eq. (8.1).

We shall calculate these functions considering the coupling terms between

the electrodes and the central region as a perturbation. Then, starting from

the Green’s functions for the three isolated systems, we shall determine the

corresponding functions for the whole system. With this choice, the self-

energies of the problem are the hopping matrices defined in Eq. (8.6) and

the equivalent ones for the interface between the central region and the

right electrode R.

We now follow the ideas of section 7.4.3 and make use of Dyson’s equa-

tion in Keldysh space, see Eq. (7.46), to write the functions G+− as follows1

G+−
LC = g+−

LL tLCG
a
CC + gr

LLtLCG
+−
CC (8.9)

G+−
CL = G+−

CCtCLg
a
LL + Gr

CCtCLg
+−
LL ,

where gr,a
XX are the (retarded, advanced) Green’s functions of the uncoupled

reservoirs (X = L,R). Introducing this equation in the current expression

and making use of the relation G+− −G−+ = Ga −Gr, we obtain

I =
2e

h

∫ ∞

−∞
dE Tr

[
G−+

CCtCLg
+−
LL tLC − G+−

CCtCLg
−+
LL tLC

]
. (8.10)

Then, we determine G+−/−+ by means of the relation

G+−/−+ = (1+Grt)g+−/−+ (1+ tGa) . (8.11)

Taking the element (C,C) in this expression we obtain

G
+−/−+
CC = Gr

CC t̂CLg
+−/−+
LL tLCG

a
CC+Gr

CRtCRg
+−/−+
RR tRCG

a
CC . (8.12)

1In order to abbreviate the notation, we do not write the energy argument E explicitly.
Moreover, since there are no inelastic processes involved in this model, the self-energies
Σ+− associated with them vanish.
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Notice that there is an additional contribution containing g
+−/−+
CC that was

left out in the previous expression. The reason for this is that, in analogy

with our discussion of the resonant tunneling model in section 7.4.3, one

can show that such a term does not contribute to the final expression of

the current.

Substitution of the previous equation in the expression of the current

yields

I =
2e

h

∫ ∞

−∞
dE Tr

[
Gr

CCtCRg
−+
RRtRCG

a
CCtCLg

+−
LL tLC −

Gr
CCtCRg

+−
RRtRCG

a
CCtCLg

−+
LL tLC

]
. (8.13)

Let us recall that the unperturbed functions g+− and g−+ satisfy the

following relations2

g+− = (ga − gr) f = 2i Im (ga) f

g−+ = (ga − gr) (f − 1) = 2i Im (ga) (f − 1),
(8.14)

where f is the Fermi function. Thus, the current can be expressed as

I =
8e

h

∫ ∞

−∞
dE Tr [Gr

CCtCRIm {ga
RR} tRCG

a
CCtCLIm {ga

LL} tLC ]

× (fL − fR) . (8.15)

Here, fL/R is the Fermi function of the corresponding electrode, which takes

into account the shift of the chemical potential induced by the voltage.

One can further simplify the expression of the current by defining

Σr,a
L = tCLg

r,a
LLtLC and Σr,a

R = tCRg
r,a
RRtRC , (8.16)

These matrices are nothing else but the self-energies of this problem for the

subspace of the central region. These self-energies describe the influence of

the reservoir in the central region and they depend both on the coupling

between the reservoirs and the central region and on the local electronic

structure of the leads. Notice that these matrices have a dimension equal

to the number of orbitals in the central region. Using these definitions, the

current can now be rewritten in the following familiar form

I =
2e

h

∫ ∞

−∞
dE T (E, V ) (fL − fR) , (8.17)

where T (E, V ) is the energy- and voltage-dependent total transmission

probability of the contact given by

T (E, V ) ≡ 4Tr [ΓLG
r
CCΓRG

a
CC ] . (8.18)

2Notice that in Eq. (8.14) we have assumed that that Hamiltonian is real, i.e. there is
time reversal symmetry. One can easily show that this implies that gr(E) = [ga(E)]∗.
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where we have defined the scattering rate matrices as ΓL,R ≡ Im{Σa
L,R}.3

The voltage dependence of the transmission comes through the scattering

rates (i.e. via the leads), but also through the possible voltage dependence

of the Hamiltonian matrix elements of the central region.

We can further symmetrize this expression by using the cyclic

property of the trace and write T (E, V ) = Tr
[
t(E, V )t†(E, V )

]
=

Tr
[
t†(E, V )t(E, V )

]
, where

t(E, V ) = 2Γ
1/2
L Gr

CCΓ
1/2
R (8.19)

is the transmission matrix of the system. The existence of Γ1/2 as a real

matrix is warranted by Γ being positive definite (see Exercise 8.1).

Finally, the current adopts the form

I =
2e

h

∫ ∞

−∞
dE Tr

[
t†(E, V )t(E, V )

]
(fL − fR) , (8.20)

valid for arbitrary bias voltage. In the linear regime this expression reduces

to the standard Landauer formula for the zero-temperature conductance

G =
2e2

h
Tr
[
t†(EF, 0)t(EF, 0)

]
=

2e2

h

N∑
i=1

Ti, (8.21)

where Ti are the eigenvalues of t̂†t (or tt̂†) at the Fermi level. As one can

see, in principle the number of channel would be NC , which is the dimension

of the matrix t†t. However, as we stated at the beginning of this section, the

separation in three subsystems in somewhat arbitrary and one can evaluate

the current at any point. Thus, it is evident that the actual number of

channels is controlled by the narrowest part of the junction. This fact will

be very important in our discussion of the conduction channels in metallic

single-atom contacts, see section 11.5. Notice also that in this formulation,

the conduction channels , defined as the eigenfunctions of t†t̂, are linear

combinations of the atomic orbitals in the central system.

As a result of the discussion above, we have not only re-derived the

Landauer formula, but more importantly, we have also obtained an explicit

formula for the transmission as a function of the microscopic parameters of

the system. As one can see in Eq. (8.18) or in Eq. (8.19), the determination

of the transmission requires the calculations of both the retarded/advanced

Green’s functions of the central system and the scattering rate matrices.

These functions can be determined from their Dyson’s equation

Ga
CC = (Gr

CC)
† =

[
(E − i0+)1−HCC −Σa

L −Σa
R

]−1
, (8.22)

3We have assumed without loss of generality that the hopping matrix elements are real.
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where HCC is the Hamiltonian of the central region and the self-energies

ΣX (X = L,R) are given by Eq. (8.16).

On the other hand, the calculation of the scattering rate matrices,

which are the imaginary part of the self-energies of Eq. (8.16), requires

the knowledge of the Green’s functions of the uncoupled reservoirs, gXX

(with X = L,R). The leads are semi-infinite systems and thus they cannot

possess in practice a very complicated geometry. A typical option is to

describe these leads as ideal surfaces of the corresponding material and the

unperturbed Green’s functions are then computed using special recursive

techniques like the so-called decimation [198].

Let us end this section with a brief technical discussion. The quantity

t(E, V ) appearing in Eq. (8.19) has been called transmission matrix without

a real justification. We should demonstrate that this matrix fulfills the

properties of a transmission matrix. In particular, we should at least prove

that the eigenvalues of tt† are bounded between 0 and 1. Indeed, this

property can be shown using a few algebraic manipulations (see Exercise

8.2).

Another way of showing that t(E, V ) in Eq. (8.19) is indeed the trans-

mission matrix of the contact is via the so-called Fisher-Lee relation [199],

which expresses the elements of the scattering matrix in terms of Green’s

functions. For the readers interested in this route, we recommend the orig-

inal work of Ref. [199] and the discussion on this matter in Chapter 3 of

Ref. [50].

8.1.1 An example: back to the resonant tunneling model

As an application of the general formula derived above and in order to

illustrate its use, let us now re-derive the current formula for the resonant

tunneling model considered in section 7.4.3.

Our starting point is the expression for the transmission of Eq. (8.18).

We need first to compute the retarded/advanced Green’s functions of the

central region. In this case this region consists of a single site with an on-

site energy ε0. Therefore, the Green’s functions of the central region are

scalars with the following form

Gr,a
CC =

[
E ± i0+ − ε0 − Σr,a

L − Σr,a
R

]−1
, (8.23)

where the self-energies are the scalars Σr,a
L/R = t2L/Rg

r,a
LL/RR. Assuming as in

section 7.4.3 that the local Green’s functions gr,aLL/RR are purely imaginary

and independent of the energy around EF, the advanced self-energies reduce
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to Σa
L/R = iΓL/R, where ΓL/R = t2L/RIm{gaLL/RR(EF)} are the scattering

rates at the Fermi energy. Substituting now Eq. (8.23) and the expressions

of the self-energy in Eq. (8.18), we arrive again at the well-known Breit-

Wigner formula

T (E) =
4ΓLΓR

(E − ε0)2 + (ΓL + ΓR)2
. (8.24)

Analogously, we can easily re-derive all the different formulas obtained

in the last chapter like for instance, the current expression of the Exercise

7.5 for a linear tight-binding chain (see Exercise 8.3).

8.1.2 Nonorthogonal basis sets

In the context of molecular electronics the use of nonorthogonal local basis

is quite common. In this sense, we have to discuss how to generalize the

current formula derived above for this type of bases. We shall address this

issue using a simple argument put forward by Emberly and Kirczenow [200]

and we refer the reader to different entry points in the literature for more

rigorous discussions.

In an orthogonal basis set, the overlap between the different basis states

is: 〈i|j〉 = Sij = δij , while the corresponding secular equation that provides

the eigenstates of the systems reads: HO − E1 = 0. Here, the subindex

O indicates that we are working with an orthogonal basis set. Finally, the

Green’s functions are simply obtained by inverting the Hamiltonian in the

usual way, i.e. GO = [E1−HO]
−1.

For a nonorthogonal basis, the overlap matrix differs from the unity

and the secular equation adopts the form: HN −ES = 0. Here, N denotes

nonorthogonal basis set. The left hand side of the secular equation can be

rewritten as follows

HN − ES = HN − E(S− 1)− E1 ≡ H′N − E1. (8.25)

Notice that the secular equation has now the same form as in the orthog-

onal case, but with an effective energy-dependent Hamiltonian: H′N ≡
HN−E(S−1). In this Hamiltonian, the on-site energies remain unchanged,

as compared with the original one, whereas the hopping matrix elements

become energy dependent: h′ij = hij − ESij . This argument suggests that

the only effect that the nonorthogonal basis introduces is the renormaliza-

tion of the hopping elements and therefore, the current formula is identical

to the one derived above after replacing the orthogonal parameters by the

nonorthogonal ones. Additionally, the retarded/advancedGreen’s functions
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appearing in the expression of the transmission have to be calculated by

means of the following Dyson’s equation

Gr,a
CC =

[
(E ± i0+)SCC −HCC −Σr,a

L −Σr,a
R

]−1
, (8.26)

where HCC is now the nonorthogonal Hamiltonian of the central region

and SCC is the sector of the overlap matrix corresponding to the central

region. On the other hand, in the expression of the self-energies we have to

replace the hopping matrices tXC by tXC − ESXC , where X = L,R.

There is another way of deriving the result above [201]. The idea is to

transform every quantity from an orthogonal representation to a nonorthog-

onal one via the so-called Löwdin’s transformation. This transformation is

defined by S−1/2, where S is the overlap matrix and it transforms an opera-

tor MO in the orthogonal basis to the corresponding one in the nonorthog-

onal basis, MN , as follows

MN = S1/2MOS
1/2. (8.27)

Inserting 1 = S−1/2S1/2 in the current formula in the orthogonal repre-

sentation, we arrive after some straightforward algebra at the same conclu-

sions as those stated above. For more detailed discussion of the derivation

of this result, we recommend Refs. [202, 203].

8.1.3 Spin-dependent elastic transport

So far we have only considered situations where there was spin symmetry.

We proceed now to generalize the Landauer formula derived above to sit-

uations where the spin symmetry is broken. Those situations include very

prominent examples in molecular electronics such as the transport through

ferromagnetic atomic-sized contacts (see Chapter 12) and molecular junc-

tions with ferromagnetic leads.

For the sake of concreteness, let us first consider the case of a metallic

atomic-sized contact made of a ferromagnetic material (like Fe, Co or Ni).

It is customary to analyze the transport properties of these junctions within

the two-current model put forward by N.F. Mott [204, 205]. Mott realized

that at sufficiently low temperature, where the magnon scattering in a

ferromagnet becomes vanishingly small, electrons of majority and minority

spin, with magnetic moment parallel and antiparallel to the magnetization,

respectively, do not mix in the scattering processes. This means in practice

that the total current can then be expressed as the sum of two independent

contribution coming from the two different spin projections, which implies
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that in ferromagnets the current is spin polarized. Therefore, the Landauer

formula of Eq. (8.20) adopts now the form

I =
e

h

∫ ∞

−∞
dE T (E, V ) (fL − fR) , (8.28)

where T (E, V ) is the total transmission sum of the transmissions of the two

spin bands

T =
∑

σ=↑,↓
Tσ =

∑
σ

Tr
{
t†σtσ

}
=
∑
n,σ

Tnσ, (8.29)

where tσ is the transmission matrix of the spin sector σ and Tnσ are the

corresponding transmission coefficients. The transmission tσ is given by

Eq. (8.19), where all the quantity are referred to the spin band σ.

The previous current formula describes any (elastic) situation where

there is no mixing of the two spin bands. This is what occurs in most of

the atomic-scale junctions that we have in mind, where the system size is

clearly smaller than the spin-diffusion length. However, this is no longer

true if, for instance, there is a small domain wall of atomic size in the

junction or a strong spin-orbit interaction is present. Let us show how the

formula for the elastic current is modified in those situations.

A system in which the majority and minority spin bands are mixed can

be generically described by the following tight-binding Hamiltonian

H =
∑

ijαβσσ′

hσσ
′

iα,jβc
†
iασcjβσ′ , (8.30)

where i, j run over the atomic sites, α, β denote the different atomic orbitals,

and σ = ↑, ↓ the spin. Within this model, the current can be computed fol-

lowing the same steps as in the case with spin symmetry and we only sketch

here the main idea and the final result. Briefly, the atomic-scale contact is

divided into three parts, a central region C containing the constriction and

the left/right (L/R) leads. The retarded Green’s functions of the central

part read4

Gr
CC = [ESCC −HCC −Σr

L −Σr
R]
−1
, (8.31)

where Σr
X = (tCX −ESCX)gr

XX(tCX −ESCX)† are the lead self-energies

(X = L,R). Here, tCX and SCX are the hoppings and overlaps between the

C region and the lead X , and gr
XX is a lead Green’s function. Notice that

the dimension of all the matrices in the previous equation is equal to the

total number of orbitals in the central region multiplied by two. This factor
4Notice that we take into account the possibility of using non-orthogonal basis sets.
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two comes from the structure in spin space. As before, the transmission

matrix is given by t = 2Γ
1/2
L Gr

CCΓ
1/2
R , but this time the scattering rate

matrices are given by where ΓX = i[Σr
X − (Σr

X)†]/2. The reason for this is

that, in general, the Hamiltonian is not real and gr
XX = (ga

XX)†. Finally,

the current then adopts the standard Landauer form of Eq. (8.28), but now

the trace includes not only a sum over the orbitals in the central part, but

also over spins. Finally, the low-temperature linear conductance can be

written as G = (e2/h)
∑

n Tn, where Tn are the transmission coefficients,

i.e. the eigenvalues of t†t at Fermi energy.

8.2 Current through an interacting atomic-scale junction

As we explained in previous chapters, one of the main advantages of the

Green’s functions techniques with respect to the scattering approach is the

possibility to describe the influence of correlation and inelastic effects in

the transport characteristics. The goal of this section is to show how the

Landauer formula derived in the previous section is modified when such

effects are present in an atomic-scale junction. The derivation of the current

formula for an interacting system in the framework of Hamiltonian written

in a local basis was first done by Caroli and coworkers [209]. Later, Meir

and Wingreen re-derived this formula to express the current in a more

appealing way [210]. Although this latter formula is widely used in the

context of mesoscopic physics, its simplest form is not generally valid for

atomic-scale systems (see discussion below). We follow now the formulation

of Caroli and coworkers [209] and then discuss the Meir-Wingreen formula

in section 8.2.2.

Let us consider again the generic junction of Fig. 8.1. For the sake

of simplicity, we assume that the interactions (such as electron-electron or

electron-phonon interactions) are restricted to the central region. The cal-

culation of the current is identical to that of the elastic case up to Eq. (8.10).

At this point we have to determine the functions G+−/−+ of the central re-

gion, which can be done using the general Keldysh relations [see Eqs. (7.47)

and (7.48)]

G+−/−+ = (1+Grt)g+−/−+ (1+ tGa)−GrΣ+−/−+Ga, (8.32)

where Σ+−/−+ are the Keldysh components of the self-energy describing

the inelastic effects. Notice that the last term was absent in the elastic

case. We now take the block-element (C,C) in the previous equation and
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obtain

G
+−/−+
CC = g

+−/−+
CC +Gr

CC t̂CLg
+−/−+
LL tLCG

a
CC + (8.33)

Gr
CRtCRg

+−/−+
RR tRCG

a
CC −Gr

CCΣ
+−/−+
CC Ga

CC .

Here we have used the fact that the interactions are restricted to the central

region, which in practice means that the inelastic self-energies Σ+−/−+

have only a (CC) component. Introducing now these Green’s functions in

Eq. (8.10), one can readily show that the current can be written as the sum

of two contributions: I = Iel + Iinel, where

Iel =
8e

h

∫ ∞

−∞
dE Tr [Gr

CCΓRG
a
CCΓL] (fL − fR) (8.34)

Iinel =
4ie

h

∫ ∞

−∞
dE Tr

{
Ga

CCΓLG
r
CC

[
(fL − 1)Σ+−

CC − fLΣ
−+
CC

]}
.(8.35)

Again, the trace in these expressions has to be understood as a sum over all

the orbitals in the central region. The first term, Iel, represents the elastic

current and it has the same form as the Landauer formula derived in the

previous section. The second term, Iinel, which we call inelastic current,

is the new contribution due to the inelastic interactions. Notice that this

term has a rather asymmetric form, which is a consequence of our choice of

computing the current in the left interface. If wanted, one can symmetrize

this expression by combining it with the inelastic current evaluated in right

interface5 and using current conservation to define the inelastic current as

Iinel = (ILinel + IRinel)/2.

From Eq. (8.35) it is not obvious that the inelastic current vanishes at

zero bias. However, this can be shown by using the general relations for a

system in equilibrium

Σ+−(E) = (Σr −Σa) f(E); Σ−+(E) = (Σr −Σa) (f(E)− 1), (8.36)

where f(E) is the Fermi function.

It is important to emphasize that the retarded and advanced Green’s

functions of the central region are computed through a Dyson’s equation

that now also includes the new inelastic self-energies

Ga
CC = (Gr

CC)
† = [(E − i0+)1−HCC −Σa

L −Σa
R −Σa

CC ]
−1, (8.37)

5Such expression reads

IRinel = −4ie

h

∫ ∞

−∞
dE Tr

{
Ga

CCΓRGr
CC

[
(fR − 1)Σ+−

CC − fRΣ
−+
CC

]}
.
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where Σa
CC is the advanced component of the self-energy describing the

inelastic interactions in the central region and Σa
L,R are given by Eq. (8.16).

The precise form of the inelastic self-energies and in turn of the con-

tribution of the inelastic term to the total current depends on the specific

nature of the inelastic interactions. In order to illustrate the use of this

new current formula, we present in the next subsection an important ex-

ample concerning the role of the electron-phonon interaction in molecular

junctions.

8.2.1 Electron-phonon interaction in the resonant tunnel-

ing model

In most transport experiments in molecular junctions, there is no certainty

that the current is indeed flowing through a molecule. Thus, it is to find

unambiguous signatures of the presence of the molecule, for instance, in

the current-voltage (I-V) characteristics. As we shall discuss extensively

in Chapter 16, presently the most convincing signatures are those related

to the excitation of vibration modes of the molecules used to form the

junctions. For this reason, it has become very important to understand

how the local interaction between the conduction electrons and molecular

vibrations is manifested in the I-V curves. We shall address this issue here

with a toy model that will also serve us to illustrate the use of the inelastic

current formula derived above.

Let us consider the resonant tunneling model that was already discussed

in section 7.4.3. Let us recall that in this model an electronic level with

energy ε0 is coupled to two metallic reservoirs via hopping elements tL and

tR, where L and R denote the left and right leads, respectively. Now, we

assume that this resonant level is also coupled to a single local vibrational

mode of energy �ω. This model is schematically represented in Fig. 8.2.

Our goal is to compute the current-voltage characteristics when a constant

bias voltage, V , is applied. In particular, we shall pay special attention to

the correction of the current due to the electron-vibration interaction.

The Hamiltonian of the system that we have just described has the

following form

H = He +Hvib +He−vib, (8.38)

where He describes the electronic part of this problem as it is given by

Eq. (7.93). The vibrational mode is described as a simple harmonic oscil-
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hωL

R

MetalMoleculeMetal

ε0

eV
λ

Fig. 8.2 Schematic representation of the resonant tunneling model where the electronic
level is coupled to a single vibrational mode of frequency ω with an electron-phonon
coupling constant λ.

lator of energy �ω by

Hvib = �ω

(
b†b+

1

2

)
, (8.39)

where the creation and annihilation operators b† and b satisfy the bosonic

commutation relations, e.g. [b,b†] = 1. Finally, the interaction between the

vibration mode and the conduction electrons is described by the following

Hamiltonian [174]

He−vib = λc†0c0(b
† + b), (8.40)

where λ is the electron-vibration coupling constant and c†0 and c0 are the

fermionic operators related to the electronic level.6

In this simple model, the central region consists of a single site and

therefore the Green’s functions, scattering rates and self-energies appearing

in the current formulas of Eqs. (8.34) and (8.35) are just scalars. Such

formulas reduce to the following expressions

Iel =
8e

h
ΓLΓR

∫ ∞

−∞
dE |Gr|2(fL − fR), (8.41)

Iinel =
4ie

h
ΓL

∫ ∞

−∞
dE |Gr|2 [(fL − 1)Σ+−

e−vib − fLΣ
−+
e−vib

]
. (8.42)

Here, the Green’s function Gr(E) refers to the central site or resonant

level. Moreover, as usual, we have assumed that the scattering rates, ΓL,R,

that describe the strength of the coupling between the resonant level and

the leads are independent of the energy. Now, we have to determine the
6The spin does not play any role in this problem and we have dropped it in the previous

expression.
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self-energy associated to the electron-vibration interaction, Σ̌e−vib. The

simplest approximation for this self-energy can be obtained by applying

perturbation theory and keeping only the lowest order correction. Physi-

cally, this means that one only takes single-phonon processes into account.

As it is shown in Exercise 8.5, the first non-vanishing correction to the

self-energy is proportional to λ2 and its different components are given by7

Σr
e−vib(E) = iλ2

∫ ∞

−∞

dE′

2π

{
Dr(E′)G̃−+(E − E′) +D+−(E′)G̃r(E − E′)

}
,

Σ+−
e−vib(E) = −iλ2

∫
dE′

2π
D+−(E′)G̃+−(E − E′),

Σ−+
e−vib(E) = −iλ2

∫
dE′

2π
D−+(E′)G̃−+(E − E′). (8.43)

Here, the functions with tilde are the electronic Green’s functions of the

resonant site where the coupling to the leads is taken into account and

the electron-vibration is not included, i.e. these are, loosely speaking, the

unperturbed functions of this problem, which are given by

G̃r(E) = [(E + iη)− ε0 + i(ΓL + ΓR)]
−1
,

G̃+−(E) = 2i|G̃r(E)|2 [ΓLfL + ΓRfR] ,

G̃−+(E) = −2i|G̃r(E)|2 [ΓL(1− fL) + ΓR(1− fR)] , (8.44)

where η = 0+.

On the other hand, the D’s are the phonon Green’s functions of this

problem and their general definitions can be found in Exercise 8.4. Assum-

ing that the vibration mode is in thermal equilibrium at the temperature

of the electrodes, these functions are given by (see Exercise 8.4)

Dr(E) =
1

E − �ω + iη
− 1

E + �ω + iη
,

D+−(E) = −2πi {(nB + 1)δ(E + �ω) + nBδ(E − �ω)} ,
D−+(E) = −2πi {(nB + 1)δ(E − �ω) + nBδ(E + �ω)} , (8.45)

where nB = 1/[exp(β�ω) − 1], with β = 1/kBT is the Bose function that

describes the thermal occupation of the vibration mode.

7There is an additional contribution to Σr
e−vib(E) which is equal to

−iλ2Dr(0)

∫ ∞

−∞

dE′

2π
G̃+−(E′).

This gives a constant contribution that simply renormalizes the position of the resonant
level and we ignore it in what follows.
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Now, we expand the current to lowest order in the coupling constant λ.

To do so, in the inelastic term of Eq. (8.42) we just need to introduce the

expressions of Σe−vib and replace the full Gr by G̃r . In the elastic term

of Eq. (8.41) we have to insert the lowest order correction of the Green’s

functions, i.e. Gr ≈ G̃r+G̃rΣr
e−vibG̃

r, and collect all the terms up to second

order in λ. Doing this, the current can be expressed as the sum of three

terms: I = I0el + δIel + Iinel, where the different contributions are given by

I0el =
8e

h
ΓLΓR

∫ ∞

−∞
dE |G̃r(E)|2 [fL(E)− fR(E)] , (8.46)

δIel =
16e

h
ΓLΓR

∫ ∞

−∞
dE |G̃r(E)|2 ×

Re
{
G̃r(E)Σr

e−vib(E)
}
[fL(E)− fR(E)] , (8.47)

Iinel =
8eλ2

h
ΓLΓR

∫ ∞

−∞
dE

{
(nB + 1)|G̃r(E)G̃r(E − �ω)|2×

[fL(E)(1 − fR(E − �ω))− fR(E)(1 − fL(E − �ω))]

+nB|G̃r(E)G̃r(E + �ω)|2 ×
[fL(E)(1 − fR(E + �ω))− fR(E)(1 − fL(E + �ω))]} . (8.48)

The first contribution, I0el, is nothing else but the elastic current in the

absence of electron-vibration interaction that we have studied in section

7.4.3, see Fig. 8.3(a). The third term, Iinel, is the inelastic contribution

coming from the emission and absorption of a vibrational mode. Notice

that the term in Iinel proportional to nB corresponds to the contribution

of processes assisted by the absorption of a mode, see Fig. 8.3(b), whereas

the term proportional to (nB + 1) is the contribution of tunneling pro-

cesses mediated by the stimulated and spontaneous emission of a mode, see

Fig. 8.3(c). At temperatures much lower than �ω/kB, the second one dom-

inates. Moreover, it is easy to see that at low temperatures the emission

term has a threshold voltage equal to the vibration energy (�ω/e) below

which it vanishes. Above this voltage this term gives always a positive con-

tribution, which means that it gives rise to a step up in the conductance.

The second term, δIel, has a less obvious interpretation. It is an elastic term

that involves the emission and absorption of a virtual vibrational mode, see

Fig. 8.3(d). This term will be referred to as elastic correction.

It is easy to evaluate numerically the different contributions to the cur-

rent for an arbitrary range of parameters. However, in order to gain some

insight, we concentrate here on a limiting case that can be worked out

analytically. Let us assume that the energy dependence in the retarded
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(c) Phonon emission (d) Elastic correction
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L

R

MetalMoleculeMetal

ε0
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(a) Elastic process

eV
L

R

MetalMoleculeMetal

ε0

hωeV
L

R

MetalMoleculeMetal

ε0

(b) Phonon absorption

Fig. 8.3 Schematic representation of the elastic (a) and inelastic (b-d) tunneling pro-

cesses that can occur in the model in which an electronic level is coupled to a single
vibration mode. Here, we have assumed that the electron-phonon interaction is weak
and the processes (b-d) are responsible for the inelastic correction to the elastic current
up to order λ2.

electronic Green’s functions can be neglected, i.e. G̃r(E) = G̃r(EF). This

means in practice that we assume that both the local density of states

and the transmission are energy-independent. This is a good approxima-

tion in two cases: (i) when the coupling to the leads is so strong that

ΓL + ΓR >> �ω, eV, |EF − ε0| and (ii) when the resonant level is far away

from the Fermi energy, i.e. |EF − ε0| � ΓL,R, eV, �ω. With this approxi-

mation the different terms can be computed analytically. At temperatures

well below the vibrational energy, the correction to the elastic current is a

competition between the emission term in Iinel and the elastic correction

δIel. Assuming a symmetric junction, ΓL = ΓR = Γ, the three contri-

butions to the zero-temperature differential conductance are given by (see

Exercise 8.6)

G0
el

G0
= T,

δGel(V )

G0
=
λ2

Γ2

{
T 2(1 − T )/2; |eV | ≤ �ω

T 2(1− 2T )/2; |eV | > �ω

Ginel(V )

G0
=
λ2

Γ2

{
0; |eV | ≤ �ω

T 2/4; |eV | > �ω
, (8.49)
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−  ωh_ +  ωh_ −  ωh_ +  ωh_

∼(λ/Γ)2

eV eV

dI/dVdI/dV
(a) T > 1/2 (b) T < 1/2

Fig. 8.4 Signature of a vibration mode in the zero-temperature differential conductance
of a resonant level. (a) For transmissions greater than 1/2, the differential conductance
exhibits a step down at eV = ±�ω due to electron-vibration interaction. The height of
the step is mainly determined by the ratio λ2/Γ2 and it has been exaggerated for clarity.
(b) The signature of the vibration mode in the differential conductance for transmissions
less than 1/2 is a step up at eV = ±�ω.

where T = 4Γ2|G̃r(EF)|2 is the elastic transmission in the absence of

electron-vibration interaction. Notice that δGel has a discontinuity (step

down) at eV = ±�ω proportional to −T 3/2, while the emission term con-

tributes to this jump as ∼ +T 2/4. This means that the sign of the con-

ductance jump depends on the junction transmission and it is given by:

(λ2/Γ2)T 2(1− 2T )/4. Notice that the magnitude is determined by the ra-

tio of the two relevant coupling constants, λ and Γ, which has been assumed

to be small. On the other hand, the conclusion of this analysis is that the

electron-vibration interaction in this simple model is reflected in the appear-

ance of a jump in the low-temperature conductance at eV = ±�ω. This

jump is seen as a step up in conductance for T < 1/2 and as step down

for T > 1/2. This conclusion is summarized schematically in Fig. 8.4. The

signature of the vibration modes can be seen more clearly in the second

derivative of the current, d2I/dV 2, where it appears as a peak or as a dip

depending on the junction transmission.8 The results of this model will be

discussed in much more detail in section 17.1.1.

8.2.2 The Meir-Wingreen formula

As we mentioned in the introduction of this section, Meir and Wingreen

proposed in 1992 [210] an alternative form for the formula of the current

through an interacting region. This formula has been widely used in meso-

scopic physics and, in particular, for studying the transport through all kind

of quantum dots and molecular transistors. For this reason and for the sake

8The signature is antisymmetric with respect to the voltage polarity in the sense that
if it appears as peak for positive bias, it appears as dip for negative one.
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of completeness, we include here a short discussion of the derivation of this

formula. Further technical details can be found in Exercise 8.7.

Once more, we consider the system of Fig. 8.1, where the central part

represents an interacting region. The current evaluated at the left interface

is given by Eq. (8.8). Now, to determine the Keldysh-Green’s functions

appearing in that expression we make use of Dyson’s equation in Keldysh

space as follows

G+−
LC = g++

LL tLCG
+−
CC − g+−

LL tLCG
−−
CC (8.50)

G+−
CL = G++

CCtCLg
+−
LL − G+−

CCtCLg
−−
LL .

Using the general relations G+−+G−+ = G+++G−− and G+−−G−+ =

Ga − Gr, it is straightforward to show that the current evaluated at the

left interface, IL, is given by

IL =
4ie

h

∫ ∞

−∞
dE Tr

{
ΓL

[
G+−

CC + (Gr
CC −Ga

CC)fL
]}
, (8.51)

where the scattering rate ΓL is defined in the usual way.

Analogously, one can obtain the expression of the current, evaluated

this time at the right interface, IR. Writing then the current in a more

symmetric manner as I = (IL + IR)/2, one arrives at

I =
2ie

h

∫ ∞

−∞
dE Tr

{
(ΓL − ΓR)G

+−
CC + (fLΓL − ΓRfR)(G

r
CC −Ga

CC)
}
.

(8.52)

This is the Meir-Wingreen formula in its most general form. It is completely

equivalent to the expression derived above and in the non-interacting case

it reduces to the Landauer formula (see Exercise 8.7). The “popularity”

of this formula is due to the fact that it takes an appealing form in the

case in which the couplings to the leads differ only by a constant factor,

ΓL(E) = λΓR(E). In this case, the current reads

I =
8e

h

∫ ∞

−∞
dE Tr {ΓA} (fL − fR), (8.53)

where Γ ≡ ΓLΓR/(ΓL + ΓR) and A ≡ i(Gr
CC − Ga

CC)/2 is the spectral

function of the central region. The division in the expression of Γ has to

be understood as multiplication by the inverse of the matrix appearing in

the denominator. The nice thing about this formula is that the current is

expressed in terms of the spectral function, A. Unfortunately, the condition

of proportionality of the scattering rates is quite restrictive and most cases

it is not really fulfilled. For applications of this latter formula, see Exercises

8.9 and 8.10.



224 Molecular Electronics: An Introduction to Theory and Experiment

8.3 Time-dependent transport in nanoscale junctions

Up to now we have only considered stationary situations where the current

was time-independent. In this section we shall illustrate the use of the

Keldysh formalism for computing the transport properties of a system that

is subjected to an externally applied time-dependent drive.

As a model problem, which will be very important for Chapter 20,

we consider here the calculation of the current in an atomic or molec-

ular contact under the presence of an oscillating bias voltage: V (t) =

V + Vac sin(ωt), where V is the dc part of the bias and Vac and ω are the

amplitude and the frequency of this periodic potential, respectively. This

ac field can be simply due to an applied chemical potential difference, but

one can also imagine that it is induced in the junction by the application of

an external radiation, which is a situation is of special interest for us. The

question of how the current through an atomic-scale junction can be modi-

fied by irradiation is a very important subject in molecular electronics [211].

In other contexts, like for instance in the case of superconducting tunnel

junctions, this problem has a long history [212]. From the theory side, the

“photon-assisted” transport has been traditionally addressed following the

seminal work of Tien and Gordon (TG) [213], where this phenomenon was

described by a harmonic voltage at the radiation frequency ω applied to

one of the leads of a junction. Such a simple approach have been quite

successful in gaining a qualitative understanding of radiation-induced cur-

rents in many situations like superconducting systems [212], semiconductor

heterostructures [214], STM [215], and and other mesoscopic systems [211].

Our discussion in this section provides the basis to address similar problems

in the context of atomic and molecular junctions.

Different theoretical approaches have been applied to the problem that

we are about to tackle such as the scattering approach [165] or Floquet

theory [211, 214]. We shall follow here the nonequilibrium Green’s func-

tion formalism used in the previous sections of this chapter (see also

Refs. [216–220]). This approach allows us to describe the photo-transport

in realistic atomic and molecular contacts, in the sense that it can be com-

bined by advanced electronic structure methods.

Let us consider the generic geometry of Fig. 8.1, which again represents

an atomic or molecular contact of arbitrary shape. For simplicity, we as-

sume that the correlation and inelastic effects do not play a mayor role in

this case. In other words, we assume that the transport in the absence of

the ac drive is coherent. We describe the system with the following time-
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dependent Hamiltonian: H(t) = H0 +H1(t). Here, H0 is the Hamiltonian

of Eq. (8.1) that contains the full microscopic information about the sys-

tem in the absence of dc and ac voltages.9 The time-dependent part H1(t)

describes the driving potential and it can be written generically as

H1(t) =
∑
ij

Wii(t)c
†
ici, (8.54)

where Wii(t) = Udc
i +Uac

i sin(ωt) describe the shifts in the on-site energies

induced by the dc and ac parts of voltage. Here, the Ui’s are the amplitudes

of the local potential at site i and equal for all the orbitals in the same atom.

We assume that the potential is spatially constant in the L and R leads and

equal to UX(t) = Udc
X +Uac

X sin(ωt), and X = L,R. The applied dc voltage

is V = (Udc
L −Udc

R )/e and the corresponding ac part is Vac = (Uac
L −Uac

R )/e.

We shall calculate the current for an arbitrary potential profile in the central

region (encoded in the functions Ui(t)), the actual shape of which should

in principle be obtained self-consistently [165].

In order to derive the current formula in this situation, we shall follow

the same steps taken in section 8.1 and we shall emphasize here only the

main differences with respect to that calculation. Our starting point is the

expression of the time-dependent current evaluated at the left interface,

which can be written in terms of the Green’s functions as follows

I(t) =
2e

�
Tr
[
G+−

CL(t, t)tLC − tCLG
+−
LC (t, t)

]
. (8.55)

To determine the Green’s functions we follow the same perturbative ap-

proach as in section 8.1. The essential difference now is that the Green’s

functions depend explicitly on two time arguments (rather than on their dif-

ference), which introduces an extra complication, as we are about to show.

Using the Dyson’s equation [see Eq. (7.46)] we can express the functions

appearing in the current as10

G+−
LC (t, t′) =

{
g+−
LL ◦ tLC ◦Ga

CC + gr
LL ◦ tLC ◦G+−

CC

}
(t, t′) (8.56)

G+−
CL(t, t

′) =
{
G+−

CC ◦ tCL ◦ ga
LL + Gr

CC ◦ tCL ◦ g+−
LL

}
(t, t′),

where the product ◦ is defined by (A◦B)(t, t′) =
∫
dt1 A(t, t1)B(t1, t

′), i.e.
it is a convolution over the intermediate time arguments. This means that

any Dyson’s equation is no longer an algebraic equation as before, but rather

an integral equation. Anyway, if we handle carefully this non-commutative
9We shall assume throughout this discussion that this Hamiltonian is written is a local

orthogonal basis.
10Here, the time-dependent hopping matrices are defined, for instance, as: tLC(t, t′) =
tLCδ(t − t′).
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product, the derivation still follows the same steps as in section 8.1. Thus,

we can easily arrive at the following expression for the current

I(t) =
2e

�
Tr
[
Gr

CC ◦Σ−+
R ◦Ga

CC ◦Σ+−
L −

Gr
CC ◦Σ+−

R ◦Ga
CC ◦Σ−+

L

]
(t, t), (8.57)

which is the analog of Eq. (8.13). Here, we have define the “lead self-

energies”

Σ
+−/−+
X (t, t′) =

[
tCX ◦ g+−/−+

XX ◦ tXC

]
(t, t′), (8.58)

where X = L,R.

The lead Green’s functions have now a more complicated time depen-

dence. Due to the ac voltage they oscillate on time as follows11

gc
X(t, t′) = e−iφX(t)gc

X(t− t′)eiφX (t′), (8.59)

where c = r, a,+−,−+. Here, ∂φX(t)/∂t = μX(t)/�, where μX(t) is the

chemical potential of the corresponding electrode. Therefore, φX(t) =

(Udc
X /�)t+ αX cos(ωt), with αX = Uac

X /(�ω).

As usual, it is more convenient to work in energy space and for this

reason we now Fourier transform with respect to the two time arguments

gc
X(t, t′) =

1

2π

∫
dE

∫
dE′ e−iEt/�eiE

′t′/�gc
X(E,E′). (8.60)

From Eq. (8.59) it is easy to show that the lead Green’s functions admit a

Fourier expansion of the form

gc
X(t, t′) =

∑
m

eimωt′
∫
dE

2π
e−iE(t−t′)/�gc

X(E,E +m�ω). (8.61)

In other words, the functions gc
X(E,E′) satisfy the following relation

gc
X(E,E′) =

∑
n

[ĝc
X ]0,n(E)δ(E − E′ + n�ω), (8.62)

where [ĝc
X ]0,n(E) ≡ gc

X(E,E+n�ω). Other Fourier components are related

by [gc
X ]n,m(E) = [gc

X ]0,m−n(E + n�ω). These Fourier components can be

seen as the matrix elements of the Green’s functions in energy space. We
11This time dependence can be shown by solving the Dyson’s equation for the lead
Green’s function, which e.g. for the retarded component reads:(

i�
∂

∂t
−HXX −WXX(t)

)
gr
XX(t, t′) = �δ(t − t′),

where WXX(t) is nothing else but a spatially constant term equal to the chemical
potential of the electrode.
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denote the matrices in this space with a “hat” symbol. The previous rela-

tion is the mathematical expression of the fact that all physical quantities

in this problem oscillate in time with the driving frequency and all its har-

monics.

With the help of the relation

eiα cos(ωt) =
∑
m

imJm(α)eimωt, (8.63)

where Jm is the Bessel function of first kind of order m, one can show that

the Fourier components of the lead Green’s functions are given by

[ĝc
X ]n,m(E) = im−n

∑
l

Jn−l(αX)Jm−l(αX)gc,eq
X (E − Udc

X + l�ω), (8.64)

where gc,eq
X are the equilibrium Green’s functions of the lead X , i.e. the

usual lead Green’s function for us. With these expressions, it is straight-

forward to show that the self-energies, like the ones in Eq. (8.58), and the

corresponding scattering rates are related to the corresponding equilibrium

quantities as follows

[Σ̂c
X ]m,n =

∑
l

[Σ̂
c(l)
X ]m,n, [Γ̂X ]m,n =

∑
l

[Γ̂
(l)
X ]m,n, (8.65)

where we define the components

[Γ̂
(l)
X ]n,m(E) = im−nJn−l (αX)Jm−l (αX)Γeq

X (E − Udc
X + l�ω), (8.66)

with a similar equation for Σ̂
c(l)
X (E).

The full Green’s functions in the central region have a similar structure

in energy space and their different Fourier components are given by the

following matrix Dyson’s equation

[Ĝr,a
CC ]

−1 = Ê−HCC 1̂− ŴCC − Σ̂r,a
L − Σ̂r,a

R . (8.67)

Here [Ê]n,m = (E + n�ω)δm,n1, [ŴCC ]n,m = Wdc
CCδn,m +Wac

CC(δn−1,m +

δn+1,m)/2. This means that the Fourier components of the Green’s func-

tions can be obtained by inverting the usual matrix, but this time in an

extended space. This is a (∞×∞) matrix that has to be truncated and its

actual dimension is determined by the amplitude of the ac voltage.

Now, we can bring all these results into the current expression, see

Eq. (8.57). The first thing to notice is that, as we have already pointed

out, all the quantities in this problem, Green’s functions, self-energies, etc.,

admit a Fourier expansion of the form of Eq. (8.61). It is easy to show

that the convolution (or ◦-product) of two quantities with this property is

a function that also fulfills this property. Therefore, it is obvious that the
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current in Eq. (8.57), in which the two time arguments are equal, has the

following time dependence

I(t) =
∑
m

Ime
imωt, (8.68)

i.e. as anticipated, it oscillates with the external frequency and all its har-

monics. We are only interested here in the dc component, I0, which from

now on we will simply denote as I.

Using the generic Fourier expansion of Eq. (8.61) for all the quantities

appearing in the current expression, see Eq. (8.57), it is easy to show that

the dc current can be written in terms of the different Fourier components

in energy space defined above as

I =
8e

h

∫ ∞

−∞

∑
k,l,m,n,n′

Tr
{
[Ĝr]0,k[Γ̂

(n)
R ]k,l[Ĝ

a]l,m[Γ̂
(n′)
L ]m,0

}
(f

(n′)
L − f

(n)
R ),

(8.69)

where f
(n)
X (E) = f(E − Udc

X + n�ω). At this stage it is already obvious

that in the absence of an ac field, this formula reduces to the Landauer

formula derived in section 8.1. We can write the current in numerous

ways by changing summation indices and the integration variable. Thus

for instance, it is not difficult to show that the dc current can be expressed

as follows12

I(V ;α, ω) =
2e

h

∞∑
k=−∞

∫ ∞

−∞
dE [T

(k)
RL(E, V ;α, ω)fL(E)− (8.70)

T
(k)
LR(E, V ;α, ω)fR(E)],

where fX(E) = f(E − Udc
X ), the parameter α = αL − αR = eVac/�ω is

the strength of the ac drive and the coefficients appearing inside the energy

integral are given by

T
(k)
RL(E) = 4Trω[Ĝ

r(E)Γ̂
(k)
R (E)Ĝa(E)Γ̂

(0)
L (E)], (8.71)

T
(k)
LR(E) = 4Trω[Ĝ

a(E)Γ̂
(k)
L (E)Ĝr(E)Γ̂

(0)
R (E)], (8.72)

where trace Trω includes a summation over the “harmonic” indexes, i.e.

over the Fourier components in energy space, and over the usual site and

orbital indexes of the central region. Here T
(k)
RL(E) can be interpreted as

a transmission coefficient that describes processes taking an electron from

left (L) to right (R), under the absorption of a total of k energy quanta

12For the sake of clarity, we make explicit the dependence of the current on the dc
voltage, V , the frequency, ω, and the strength of the ac drive, α = αL − αR = eVac/�ω.
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�ω. The coefficient T
(k)
LR(E) has a similar interpretation. By the way,

these interpretations are the reason why one usually talks about photo-

assisted processes in this problem, although there is indeed no quantized

electromagnetic field interacting with the conduction electrons in our model.

Let us summarize the discussion above. The current of Eq. (8.70) de-

scribes the dc current in the presence of an oscillating potential and it

adopts a form similar to the standard Landauer formula. The main differ-

ence is that all the quantities have now a matrix structure in an extended

Hilbert space, which includes both the orbital and the energy space. The

appearance of off-diagonal elements in energy space is a natural conse-

quence of the occurrence of the inelastic processes that take place in this

problem. In those inelastic tunneling processes, a certain number of en-

ergy quanta (multiples of �ω) can be either absorbed or emitted. The

retarded/advanced Green’s functions appearing in the current formula are

determined by solving the matrix equation (8.67), while the scattering rates

are given by Eq. (8.66). All these matrices have, in principle, an infinite

dimension in energy space, but they can be truncated in practice and their

actual dimension is governed by the amplitude of the ac drive, α.

The formalism above has been recently used to discuss both the photon-

assisted transport in atomic [221] and molecular wires [222]. This formalism

is a bit cumbersome and numerically demanding due to the large size of

the matrices involved. However, the current formula above can be greatly

simplified in the case in which we can ignore the energy dependence in the

leads, which is frequently a very good approximation. In this situation the

self-energies Σ̂X become diagonal (see Exercise 8.8)

[Σ̂X ]n,m(E) = ΣX(E)δn,m. (8.73)

If in addition we assume that the ac potential profile is such that it is

constant in the central region (i.e. the drops occur at the interfaces), the

current formula reduces to [165, 211, 214]

I(V ;α, ω) =
2e

h

∞∑
l=−∞

[
Jl

(α
2

)]2 ∫
dE T (E+ l�ω)[fL(E)−fR(E)], (8.74)

where T (E) is the transmission in the absence of ac drive.13 Moreover, we

have assumed here that the ac potential drops symmetrically at both inter-

faces, i.e. αL,R = ±α/2. The result of Eq. (8.74) is quite remarkable and it

tell us that the current under a periodic time-dependent field depends pri-

marily on the energy dependence of the elastic transmission. This becomes
13This transmission may include the dc part of the voltage.
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even more apparent in the case of the conductance. At low temperatures

and in the linear response regime (vanishing dc bias), the conductance,

which will be referred to as photoconductance, takes the particularly simple

form

G(V = 0;α, ω) = G0

∞∑
l=−∞

[
Jl

(α
2

)]2
T (EF + l�ω), (8.75)

where T (E) is the zero-bias equilibrium transmission. Let us remind that

here l can be interpreted as the number of absorbed or emitted photons,

Jl(x) is a Bessel function of the first kind (of order l), and α = eVac/�ω is

the dimensionless parameter describing the strength of the ac drive. Note

that if the transmission does not depend on energy in the range explored

by the inelastic processes, the conductance reduces to the conductance in

the absence of drive, i.e. G0T (EF).

In the limit α � 1 and frequencies small in comparison with the energy

scale in which transmission changes significantly, we can expand T (E) and

the Bessel functions in Eq. (8.75) to leading order in these small quantities,

yielding G(ω) = G0T (EF) + G0(α�ω)
2T ′′(EF)/16, where T

′′ denotes the

second derivative respect to energy. Defining then the induced conductance

correction ΔG(ω) = G(ω) −G(ω = 0), where G(ω = 0) = G = G0T (EF),

the relative correction becomes

ΔG(α, ω)

G
=

(α�ω)2

16

T ′′(EF)

T (EF)
. (8.76)

We thus see that this quantity gives experimental access to the second

derivative of the transmission function at E = EF. Note that in this ap-

proximation, which can be seen as an adiabatic or “classical” limit [212],

the conductance correction depends only on the driving field through the

ac amplitude Vac = α�ω/e.

Finally, let us mention that Eq. (8.74) may equally well be written in

the form [213, 212]

I(V ;α, ω) =

∞∑
l=−∞

[
Jl

(α
2

)]2
I0(V + 2l�ω/e), (8.77)

where I0(V ) is the I-V characteristic in the absence of light.

The main assumption leading to these simplified formulas is the fact

that the profile is flat across the central part of the constriction. However,

it has been shown in Refs. [221, 222] that the detailed shape of the profile

does not change significantly the main results, unless the ac amplitude is

very large.
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8.3.1 Photon-assisted resonant tunneling

In order to illustrate the previous time-dependent formalism, let us now

apply it to the resonant tunneling model (see section 7.4.3). This problem

has been analyzed by Jauho et al. [218]. As we have discussed many times

by now, this simple model gives useful insight into the conduction through

a single-molecule junction. Now, the question is: How is the resonant

transport modified in the presence of radiation? Following the discussion

above, we assume here that an electromagnetic field simply induces an ac

voltage of frequency ω across the junction. If, as usual, we neglect the

energy dependence of the scattering rates, we can analyze this problem in

terms of the simplified formulas presented at the end of the previous section.

The first issue that we want to address is the modification of the non-

linear conductance. For this purpose, we use the expression of Eq. (8.74)

to determine the current-voltage characteristics and in turn the differential

conductance dI(V ;α, ω)/dV , where V is the dc voltage. In this formula

we make use of the expression of Eq. (8.24) for the elastic transmission

through the resonant level in the absence of radiation. We assume that

both the bias voltage and the ac drive drop symmetrically at the interfaces.

This means in practice that the chemical potentials of both electrodes are

shifted by ±eV/2, while the resonant level is not shifted by the bias. An

example of the zero-temperature I-V characteristics for different values of α

is shown in Fig. 8.5(a). In this example, the level position (measured with

respect to the equilibrium chemical potential of the electrodes) is ε0 = 5�ω

and ΓL = ΓR = 0.1�ω. The corresponding differential conductance as a

function of the bias voltage is shown in Fig. 8.5(b). Notice that in the

absence of the external ac field, the conductance is simply given by a Breit-

Wigner resonance centered around 2ε0 (see curve for α = 0). The factor two

is due to the symmetric voltage profile adopted here. When the radiation is

applied, one can see the appearance of additional steps in the current and

satellite peaks in the conductance with a regular spacing equal to 2�ω. In

the case of the conductance, the peaks on the left hand side of the central

elastic resonance are due to the photon absorption, i.e. due to tunneling

processes in which an incoming electron with energy E = ε0 − eV/2− k�ω

absorbs k photons and crosses the level exactly at resonance. Similarly,

the peaks on the right hand side are due to emission processes in which an

electron loses energy emitting a certain number of photons. The number

of satellite peaks (or side bands) depends on the strength of the ac drive,

α, which is basically a measure of the local field intensity at the junction.
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Fig. 8.5 Photon-assisted transport in the resonant tunneling model. In this example we
consider a symmetric junction with ΓL = ΓR = 0.1�ω and all the results are obtained at
zero temperature. (a) Current as a function of the dc bias voltage V for ε0 −EF = 5�ω
and different values of α = eVac/�ω. (b) The differential conductance corresponding to
the I-V curves of panel (a). (c) Photoconductance normalized by the conductance in the
absence of radiation as a function of the radiation frequency for different values of α.
(d) Photoconductance versus level position measured with respect to the Fermi energy.

An important quantity for us is the photoconductance G(V = 0;α, ω),

i.e. the conductance when the dc voltage is infinitesimally small. In

Fig. 8.5(c) we show an example of this quantity as a function of the ra-

diation frequency. The fact that we want to illustrate here is that when

the frequency matches the distance between the Fermi energy and the level

position, one observes a huge enhancement of the conductance that can

reach up to several orders of magnitude. The additional peaks that one

can see in Fig. 8.5(c) are due to multi-photon processes. Finally, in some

situations the position of the resonant level can be tuned by means of, for

instance, a gate voltage. Therefore, it is interesting to know what is the

expected dependence of the photoconductance on the level position. This

can be seen in Fig. 8.5(d), where one can observe that in this case the in-

elastic tunneling events give rise to satellite peaks that are separated by an

energy equal to �ω.
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8.4 Exercises

8.1 Scattering rate matrices: Show that the scattering rate matrices defined
in section 8.1 as ΓX = Im{ΣX} (X = L,R), where ΣX are the self-energies of
Eq. (8.16), are positive definite and therefore their square roots are well-defined.

8.2 Transmission matrix: The goal of this exercise is to show that the matrix
defined in Eq. (8.19) has indeed the basic properties of a transmission matrix. For
this purpose, it must be shown that the eigenvalues of tt† are bounded between
0 and 1. Demonstrate this property following the next steps:

(i) Using the result of the previous exercise, show that tt† is positive definite
and therefore all its eigenvalues are real and positive.

(ii) Use the definition of the scattering rate matrices and Dyson’s equation
for the retarded and advanced Green’s functions to prove the following relation

Gr
CC [ΓL + ΓR]G

a
CC =

i

2
[Gr

CC −Ga
CC ] .

(iii) Use the previous relation to demonstrate the following relation

1 = rr† + tt†,

where r is the reflection matrix given by

r = 1− 2iΓ
1/2
L Gr

CCΓ
1/2
L .

(iv) Using this last relation, show that the all eigenvalues of tt† are less than
(or equal to) one.

8.3 Formula for the current through an atomic chain: Consider the model
for an atomic chain described in Exercise 7.5. Use the general expression of
Eq. (8.20) to re-derive the formula for the electrical current obtained in that
exercise.

8.4 Phonon Green’s functions: The phonon Green’s functions are defined in
analogy with the electronic ones as

Dr(t, t′) = −iθ(t− t′)〈
[
A(t),A†(t′)

]
〉, Da(t, t′) = −iθ(t′ − t)〈

[
A(t),A†(t′)

]
〉,

D+−(t, t′) = i〈A†(t′)A(t)〉, D−+(t, t′) = −i〈A(t)A†(t′)〉,
where A = b+ b† and the creation and annihilation operators b† and b satisfy
the bosonic commutation relations (see Appendix A). Show that for the case of
a free phonon (or vibration) mode, described by the Hamiltonian of Eq. (8.39),
these functions are by given Eq. (8.45). Hint: Compute first the time evolution
of the bosonic operators by solving the equation of motion of an operator in the
Heisenberg picture.
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8.5 Lowest order expansion of the electron-vibration self-energy: The
goal of this exercise is to demonstrate that Eq. (8.43) gives the correct expression
for the lowest order correction to the electronic self-energy in the problem of
section 8.2.1. For this purpose, follow the next steps:

(i) Use the Hamiltonian of Eq. (8.40) as the perturbation in this problem.
With this choice, show that the second order correction in λ of an electronic
Green’s function is equal to

G(2)
c (tα, tβ) = λ2 (−i)3

2!

∫
c

dt1

∫
c

dt2 ×

〈Tc

[
c(tα)c

†(t1)c(t1)[b
†(t1) + b(t1)]c

†(t2)c(t2)[b
†(t2) + b(t2)]c

†(tβ)
]
〉.

Here, the subindex c indicates that the Green’s functions can be any of the four
components in Keldysh space depending upon where the time arguments, tα and
tβ (α, β = +,−), lie on the Keldysh contour. The integrations above have to be
understood as follows ∫

c

dti =

∫ ∞

−∞
dti,+ −

∫ ∞

−∞
dti,−.

(ii) Apply Wick’s theorem to the previous expression and keep only the con-
tributions of topologically distinct connected diagrams. Show that the only two
relevant self-energy diagrams are the ones shown in Fig. 8.6.

Fig. 8.6 Lowest-order electronic self-energy diagrams associated to the electron-phonon
interaction in the resonant tunneling model. The solid lines represent electronic Green’s
functions, while the dashed ones correspond to phonon Green’s functions.

(iii) Evaluate the contribution of the diagrams of Fig. 8.6 to the different com-
ponents of the self-energy in energy space. Show that the contributions coming
from the diagram on the left hand side lead to the results of Eq. (8.43). Discuss
also the relevance of the contributions coming from the other diagram.

8.6 Signature of a vibrational mode in the differential conductance:
Consider the model used in section 8.2.1 to understand the signature of a vibration
mode in the current through a single resonant level. Assume that the density of
states in that level and the corresponding transmission are energy-independent
and show that the zero-temperature differential conductance is given by Eq. (8.49)
in the case of a symmetric junction.

Hint: The only complicated term in the expression for the current is the elastic
correction, which contains the self-energy Σr

e−vib. Separating the contributions
of the real and imaginary part of the retarded phonon Green’s function Dr , this
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self-energy can be written as

Σr
e−vib(E)/λ2 = i

∫ ∞

−∞

dE′

2π

{
2�ω

(E′)2 − (�ω)2
G̃−+(E − E′)

}
+

1

2

[
G̃−+(E − �ω)− G̃−+(E + �ω)

]
+

(nB + 1)G̃r(E + �ω) + nBG̃
r(E − �ω).

The first term, which has to be understood as principle value, does not contribute
to the conductance in the case of a symmetric junction, while the others are
responsible for the contribution of the elastic correction to Eq. (8.49).

8.7 The Meir-Wingreen formula:
(i) Follow the steps indicated in section 8.2.2 to show that the current through

an interacting region is given by Eq. (8.52).
(ii) Show that the current given by Eq. (8.52) vanishes in equilibrium.
(iii) Demonstrate that in the noninteracting case the Meir-Wingreen formula

of Eq. (8.52) reduces to the Landauer formula derived in section 8.1.
(iv) Assume that the scattering rates fulfill ΓL(E) = λΓR(E) and prove that

the Meir-Wingreen formula adopts the form given in Eq. (8.53).

8.8 Photo-current formula in the wide-band approximation:
(i) Show that the general formula of Eq. (8.70) for the current in a nanocontact

under an ac field reduces to Eq. (8.74) when (i) the energy dependence of the
density of states in the leads can be neglected (wide-band approximation) and
(ii) the ac potential is assumed to be flat in the central region of the system.

(ii) Starting from Eq. (8.75), show that in the limit of α 	 1 and small
frequencies, the conductance correction induced by the ac drive is a measure of the
second derivative of the transmission around the Fermi energy, i.e. demonstrate
Eq. (8.76).

Hint: Use the following properties of Bessel’s functions

∞∑
l=−∞

Jn+l(x)Jm+l(x) = δnm,
∞∑

l=−∞
[Jl(x)]

2 = 1,

Jl(x	 1, l > 0) ≈ (±x/2)l
l!

− (±x/2)l+2

(l + 1)!
.

8.9 Linear conductance in the Coulomb blockade regime: As we shall
explain in Chapter 15, the Coulomb blockade is a transport phenomenon that
takes place in weakly coupled quantum dots and molecular junctions. The sig-
natures of Coulomb blockade in the linear conductance (i.e. at vanishingly small
bias voltage) are: (i) the appearance of peaks as a function of the gate voltage
(or chemical potential) known as Coulomb oscillations and (ii) a characteristic
temperature dependence that is described by the derivative of the Fermi function
with respect to energy. The goal of this exercise is to explain these two signa-
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tures by combining the Meir-Wingreen formula of Eq. (8.53) and the single-level
Anderson model of Eq. (5.109). For this purpose, carry out the following tasks:

(i) Adapt the Meir-Wingreen formula to the case of a single-level Anderson
model and derive an expression for the linear conductance in terms of the spectral
function in the resonant level.

(ii) Use the approximation of Eq. (5.112) to compute the spectral function in
the weak coupling limit.

(iii) Combine the results of (i) and (ii) to obtain the gate voltage and temper-
ature dependence of the linear conductance and show that this model reproduces
the two signatures described above.

Hint: This problem was addressed by Meir et al. in Ref. [632].

8.10 Kondo effect in molecular transistors: Unitary limit. The Kondo
effect in molecular junctions is manifested in the appearance of a pronounced
resonance in the density of states at the Fermi energy. This many-body effect is
usually described with the help of the Anderson model (see section 6.9). Apply
the Meir-Wingreen formula to this model and show that in the Kondo regime the
low-temperature linear conductance in a symmetric junction (ΓL = ΓR) is equal
to the conductance quantum (G0). This is referred to as the unitary limit. Hint:
Use the Friedel sum rule discussed in section 6.9.1.



Chapter 9

Electronic structure I: Tight-binding

approach

In the previous chapters we have shown how to compute the transport

properties of an atomic-scale junction once the corresponding Hamilto-

nian is known. Therefore, in order to make our theoretical background

self-contained, at least to a certain extent, we need to discuss how those

Hamiltonians are determined in practice. In other words, we have to de-

scribe adequate methods for the description of the electronic structure of

atomic and molecular junctions. Such methods are based on the stan-

dard approaches for the calculation of the electronic structure of atoms,

molecules and solids that are used in atomic physics, theoretical chemistry

and solid state physics. There is a great variety of electronic structure

methods and, obviously, we cannot review all of them here. We shall fo-

cus our attention on the two methods that have had the largest impact

so far in the field of molecular electronics. First, in this chapter we shall

discuss the tight-binding approach, which is a very intuitive empirical or

semi-empirical method that has been crucial to elucidate the physics of, in

particular, metallic atomic-sized contacts. Then, the next chapter is de-

voted to the density functional theory (DFT), which is the most widely

used approach among the so-called ab initio methods.

The tight-binding approach is reviewed in several textbooks and we

recommend in particular Refs. [223–226] to the physics-oriented readership

and Ref. [227] for a chemistry view on this subject.

9.1 Basics of the tight-binding approach

The main idea of the tight-binding approach was already introduced in Ap-

pendix A and indeed it has been extensively used in the previous chapters

devoted to the Green’s function techniques. Anyway, let us now define
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more precisely what we mean by tight-binding approach or by a tight-

binding model. The problem that we are interested in is the determination

the electronic structure of a system composed of a collection of atoms that

are located in different positions denoted by Ri. The corresponding Hamil-

tonian, H, of this system can be written in a local basis, i.e. in a basis

formed by single-particle wave functions that are localized around the dif-

ferent atomic positions. This is the spirit of the method known as linear

combination of atomic orbitals (LCAO), which is so popular in theoretical

chemistry. The first approximation in the tight-binding approach is to as-

sume that the Hamiltonian adopts the form of Eq. (A.67), which in first

quantization language reads (using Dirac’s notation)1

H =
∑
ij,αβ

Hiα,βj |iα〉〈jβ|, (9.1)

where |iα〉 denotes the state that corresponds to the localized orbital α

that is centered around Ri, i.e. 〈r|iα〉 = φiα(r) = φα(r−Ri). This generic

form for the Hamiltonian implies that either the many-body interactions

such as the electron-electron interaction are neglected or they are taken

into account in a mean field manner by an appropriate choice of the matrix

elements. In the former case, the matrix elements are rigorously defined as

Hiα,jβ =

∫
dr φ∗α(r−Ri)

[
− �

2

2m
∇2 + V (r)

]
φβ(r −Rj), (9.2)

where V (r) is the potential that describes the Coulomb interaction between

the electrons and ions. Finally, in the tight-binding approach, as it is used

in this book, the matrix elements are not determined from first principles,

i.e. from a direct evaluation of the integral in Eq. (9.2), but they are used

merely as parameters that may be derived approximately or may be fitted

to experiment or to other theories. Thus, by tight-binding model we mean

here a model in which the system is described in terms of a single-particle

Hamiltonian written in a local basis, the elements of which are determined

in a empirical or semi-empirical way. The different tight-binding models

differ in the way in which these parameters are obtained.

There are two situations where the wave function associated to a tight-

binding model can be determined in a straightforward manner. The first

one corresponds to the case of a small finite system such as a molecule and
1This Hamiltonian in our usual second quantization language reads

H =
∑
ij,αβ

Hiα,βjc
†
iαcjβ .
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the second one corresponds to the case of an infinite periodic system. In

the first case, the Hamiltonian can be diagonalized by writing first the wave

function as a combination of the localized orbitals:

Φ(r) =
∑
jβ

ciα,jβφjβ(r). (9.3)

This leads immediately to the following set of equations for the coefficients

(see Exercise 9.1) ∑
jβ

[Hiα,jβ − ESiα,jβ ] ciα,jβ = 0, (9.4)

where E is the energy and

Siα,jβ =

∫
dr φ∗α(r −Ri)φβ(r−Rj), (9.5)

is the overlap between the states |iα〉 and |jβ〉. Here, we have taken into

account the possibility that the localized orbitals centered in different atoms

can be non-orthogonal. These equations have non-trivial solutions if

det (H− ES) = 0, (9.6)

where the symbol “det” denotes the determinant of the matrix appearing

inside the brackets. The roots of this secular equation yield the eigenen-

ergies or energy levels of the finite problem and the eigenfunctions are the

corresponding waves functions (or molecular orbitals) of this system. The

dimension of the matrices in Eq. (9.6) is simply the total number of local-

ized orbitals in the problem and therefore, the solution of the generalized

eigenvalue problem of Eq. (9.6) requires typically to resort to numerics.

In the case of an infinite periodic system, typical of solid state physics,

one can diagonalize the Hamiltonian making use of Bloch’s theorem (see

for instance Ref. [223]). The idea goes as follows. Consider a periodically

replicated unit cell, where the lattice vectors are denoted as Rm, with a set

of atoms i located at positions bi in each unit cell. Associated with each

atom is a set of atomic-like orbitals φiα, where α denotes both the orbital

and angular quantum number of the atomic state. The Hamiltonian can

be easily diagonalized in reciprocal space as follows. We first construct the

following wavefunctions (Bloch sums)

Φkiα(r) =
1√
N

∑
n

exp(ik ·Rn)φiα(r−Rn − bi), (9.7)

where k is the Bloch wave vector, which is restricted to the Brillouin zone,

and N is the number of unit cells in the sum. The solution to Schrödinger
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equation for wave vector k then requires the diagonalization of the Hamil-

tonian matrix using the basis functions of Eq. (9.7). Since the Hamilto-

nian has the periodicity of the lattice, this basis will block-diagonalize the

Hamiltonian, with each block having a single value of k. Within one of

these blocks, the matrix elements can be written in the form

Hiα,jβ(k) =
∑
n

exp(ik ·Rn)

∫
φ∗iα(r−Rn − bi)Hφjβ(r− bj)d

3r, (9.8)

where we have used the translation symmetry of the lattice to remove one of

the sums over the lattice vector R (see Exercise 9.2). In the same way, one

can also define the overlap matrix in reciprocal space where the different

elements adopt the form

Siα,jβ(k) =
∑
n

exp(ik ·Rn)

∫
φ∗iα(r−Rn − bi)φjβ(r − bj)d

3r. (9.9)

The corresponding secular equation reads this time

det (H(k)− ES(k)) = 0. (9.10)

The solution of this generalized eigenvalue problem yields the different en-

ergy bands, εμ(k) of the solid and the corresponding eigenvectors Qμ(k).

Notice that the number of bands, i.e. the number of solutions of Eq. (9.10),

equals the number of atoms in the unit cell times the number of orbitals per

atom. Thus, in some simple cases the solution can be found analytically

and, in general, this problem can be easily solved numerically.

An important quantity for many purposes is the density of states (DOS)

per unit energy E. The local DOS projected onto a given atom, orbital and

spin (summarized by the index ν) is defined in terms of the energy bands

εμ(k) as follows

ρν(E) =
1

Nk

∑
k,μ

|Qν,μ(k)|2δ(εμ(k)− E) (9.11)

=
Ωcell

(2π)d

∑
μ

∫
BZ

dk |Qν,μ(k)|2δ(εμ(k)− E),

where BZ denotes the Brillouin zone, Ωcell is the volume of the unit cell

and d is the dimensionality of the system.

In the case of infinite non-periodic systems, like the atomic-scale junc-

tions that we are interested in, the determination of the wavefunction is

literally impossible. However, the use of the Green’s function techniques

described in Chapter 5 allows to extract most of the relevant information

about the electronic structure from a tight-binding Hamiltonian.
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9.2 The extended Hückel method

The history of quantum chemistry is plagued with examples of approxima-

tions in the framework of the LCAO method, which fall into our definition

of tight-binding approach. One of the oldest and most familiar of such

approaches in quantum chemistry is the “extended Hückel approximation”

[228]. Let us explain briefly the idea behind this approach. It was developed

by Roald Hoffmann in 1963 [228] to describe the electronic structure of a

variety of organic molecules. It is based on the Hückel method [229–232]

but, while the original Hückel method only considers π-orbitals, the ex-

tended method also includes the σ-orbitals. The idea goes as follows. We

seek matrix elements of the Hamiltonian between atomic orbitals on adja-

cent atoms, 〈i|H|j〉. If |j〉 were an eigenstate of the Hamiltonian, we could

replace H|j〉 by εj|j〉, where εj, the on-site energy of the atom j, is the

eigenvalue. Then, if the overlap 〈i|j〉 is written Sij , the matrix element be-

comes εjSij . This, however, treats the two orbitals differently, so we might

use the average instead of εj . Finding that this does not give good values,

we introduce a scale factor K, to be adjusted to fit the properties of heavy

molecules (a value of K = 1.75 is usually taken); this leads to the extended

Hückel formula2

〈i|H|j〉 = KSij(εi + εj)/2. (9.12)

In the extended Hückel method, only valence electrons are considered;

the core electron energies and wave functions are supposed to be more or

less constant between atoms of the same type. The method uses a series of

parameterized energies calculated from atomic ionization potentials or the-

oretical methods to fill the diagonal of the Hamiltonian matrix. After filling

the non-diagonal elements (with the formula above) and diagonalizing the

resulting Hamiltonian matrix, the energies (eigenvalues) and wavefunctions

(eigenvectors) of the valence orbitals are found.

The extended Hückel approximation and a wide range of methods that

may be considered as descendents of it have enjoyed considerable success

in theoretical chemistry. This method can be used for determining the

molecular orbitals, but it is not very successful in determining the structural

geometry of an organic molecule. It can however determine the relative

energy of different geometrical configurations. It is common in quantum

chemistry to use the extended Hückel molecular orbitals as a first guess in

2This formula is indeed due to M. Wolfsberg and L.J. Helmholtz [233].
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the determination of the molecular orbitals by ab initio quantum chemistry

methods.

9.3 Matrix elements in solid state approaches

In the context of solid state physics most of the semi-empirical tight-binding

applications are largely based on the seminal work of Slater and Koster (SK)

[234], in which they proposed a modified LCAO method to interpolate the

results of first-principles electronic structure calculations. At that time

(1954), it was computationally impossible to directly evaluate the large

number of integrals occurring in the LCAO method. However, since this

approach shows all the correct symmetry properties of the energy bands

as well as providing solutions of the single-particle Schrödinger equation at

arbitrary points in the Brillouin zone, they suggested that these integrals

could be considered as adjustable constants to be determined from the

results of other, more efficient, calculations. In order to understand the

basis of the simplified LCAO/tight-binding method proposed by Slater and

Koster, we need first to discuss in certain detail the nature of the matrix

elements that appear in the tight-binding approach. Thus, the explanation

of the SK-method will be postponed until the next section.

The tight-binding approach benefits from the consideration of the sym-

metries of the basis orbitals and the crystal or molecule. On each site of the

physical system, the atomic-like functions can be written as radial functions

multiplied by spherical harmonics,

φnlm(r) = φnl(r)Ylm(r̂), (9.13)

where r = |r|, r̂ = r/r and n indicates different functions with the same

angular momentum. We shall work frequently with real basis functions that

can be defined using the real angular functions S+
lm = (Ylm + Y ∗lm)/

√
2 and

S−lm = (Ylm − Y ∗lm)/(i
√
2). The examples of real s (l = 0), p (l = 1) and

d (l = 2) orbitals are given in Fig. 9.1. The analytical expressions of the

angular dependence of these real orbitals can be found in many textbooks,

see e.g. Chapter 1 of Ref. [224] or Chapter 3 of Ref. [227].

The key problem in a tight-binding model is the determination of the

matrix elements (or integrals) that appear both in Eq. (9.8) and Eq. (9.9).

Those matrix elements can be divided into one-, two-, and three-center

terms. The simplest is the overlap matrix in Eq. (9.9), which involves only

one center if the two orbitals are on the same site and two centers otherwise.
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m = 0 m =   1 m =   2

m =   1
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Fig. 9.1 Boundary surfaces for real s-, p-, and d-orbitals. The index m indicates the
quantum number corresponding to the z-component of the orbital angular momentum.

The Hamiltonian matrix elements appearing in Eq. (9.8) consist of kinetic

and potential terms

H = − �
2

2m
∇2 +

∑
nk

Vk(r−Rn − bk), (9.14)

where the first term is the usual kinetic energy and the second is the po-

tential decomposed into a sum of spherical terms centered on each site k in

the unit cell. The kinetic part of the Hamiltonian matrix element always

involves one or two centers. However, the potential terms may depend upon

the positions of other atoms; they can be divided into the following.

• One-center, where both orbitals and the potential are centered on the

same site. These terms have the same symmetry as an atom in free

space.

• Two-center, where the orbitals are centered on different sites and the

potential is on one of the two. These terms have the same symmetry

as other two-center terms.

• Three-center, where the orbitals and the potential are all centered on

different sites. These terms can also be classified into various symme-

tries based upon the fact that three sites define a triangle.

• A special class of two-center terms with both orbitals on the same site

and the potential centered on a different site. These terms add to the

one-center terms above, but depend upon the crystal symmetry.
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ssσ spσ sdσ

ppσ
ppπ

pdσ
pdπ

ddσ
ddπ ddδ

Fig. 9.2 The 10 irreducible SK-parameters for the s, p and d orbitals, which are classi-
fied by the angular momentum about the axis with the notation σ (m = 0), π (m = 1)
and δ (m = 2). The orbitals shown are the real combinations of the angular momen-
tum eigenstates. Positive and negative lobes are denoted by solid and dashed lines,
respectively.

9.3.1 Two-center matrix elements

Two-center matrix elements play a special role in most practical tight-

binding approaches and are considered here in more detail. The analysis

applies to all overlap terms and to any Hamiltonian matrix element that

involves only orbitals and potential on two sites. For these integral the

problem is the same as for a diatomic molecule in free space with cylin-

drical symmetry. The orbitals can be classified in terms of the azimuthal

angular momentum about the line between the centers, i.e. the value of m

with the axis chosen along the line, and the only non-zero matrix elements

are between orbitals with the same m. If Klm,l′m′ denotes an overlap or

two-center Hamiltonian matrix element for states lm and l′m′, then in the

standard form with orbitals quantized about the axis between the pair of

atoms, the matrix elements are diagonal in mm′ and can be written as

Klm,l′m′ = Kll′mδm,m′ . The quantities Kll′m are independent matrix ele-

ments that are irreducible, i.e. they cannot be further reduced by symmetry.

By convention the states are labeled with l or l′ denoted by s, p, d, ..., and

m = 0,±1,±2, ..., denoted by σ, π, δ, ..., leading to the notation Kssσ,

Kspσ, Kppπ, etc.
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ppσ

ppπ

spx

R R

R
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z
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x

p pzx

σsp

Fig. 9.3 Schematic representation of two examples of two-center matrix elements of s
and p orbitals for atoms separated by a displacement vector R. Matrix elements are
related to σ and π integrals by the transformation to a combination of orbitals that are
aligned along R and perpendicular to R. The top figure illustrates the transformation
to write a real matrix element Ks,px in terms of Kspσ: the s orbital is unchanged and
the px orbital is written as a sum of the σ orbital, which is shown, and the π orbitals,
which are not shown because there is no spπ matrix element. The lower figure illustrates
the transformation needed to write Kpx,pz in terms of Kppσ and Kppπ. The coefficients
of the transformation for all s and p matrix elements are given in Table 9.1.

In Fig. 9.2 we show the orbitals for the non-zero σ, π, and δ matrix

elements for s, p, and d orbitals. The orbitals shown are actually the real

basis functions S±lm defined as combinations of the ±m angular momentum

eigenstates. These are oriented along the axes defined by the line between

the neighbors and two perpendicular axes. All states except the s state

have positive and negative lobes. Note that states with odd l are odd under

inversion. Their sign must be fixed by convention (typically one chooses

the positive lobe along the positive axis). The direction of the displacement

vector is defined to lie between the site denoted by the first index and that

denoted by the second index. For example, in Fig. 9.2, the Kspσ matrix

element in the top center has the negative lobe of the p function oriented

toward the s function. Interchange of the indices leads to Kpsσ = −Kspσ

and, more generally, to Kll′m = (−1)l+l′Kl′lm.

An actual set of basis functions is constructed with the quantization

axis fixed in space, so that the functions must be transformed to utilize the

standard irreducible form of the matrix elements. Examples of two-center

matrix elements of s and pi = px, py, pz orbitals for atoms separated by
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Table 9.1 Table of two-center matrix elements for either the overlap or the Hamil-
tonian, with real orbitals s and px, py, pz . The vector R between sites, as shown
in Fig. 9.3, is defined to have direction components R̂ ≡ x, y, z. The matrix el-
ements are then expressed in terms of these coordinates and the four irreducible
matrix elements: Kssσ, Kspσ , Kppσ and Kppπ. Other matrix elements can be
found by permuting elements.

Element Expression

Ks,s Kssσ

Ks,px xKspσ

Kpx,px x2Kppσ + (1− x2)Kppπ

Kpx,py xy(Kppσ −Kppπ)
Kpx,pz xz(Kppσ −Kppπ)

the displacement vector R are shown in Fig. 9.3. Each of the orbitals on

the left-hand side can be expressed as a linear combination of orbitals that

have the standard form oriented along the rotated axes, as shown on the

right. An s orbital is invariant and a p orbital is transformed to a linear

combination of p orbitals. The only non-zero matrix elements are the σ

and π matrix elements, as shown. The top row of the figure illustrates the

transformation of the px orbital needed to write the matrix element Ks,px

in terms of Kspσ and the bottom row illustrates the relation of Kpx,pz to

Kppσ and Kppπ. Specific relations for all s and p matrix elements are given

in Table 9.1. Expressions for d orbitals are given in Refs. [234, 224, 225].

9.4 Slater-Koster two-center approximation

Now we are in position to describe the Slater and Koster approach [234].

These authors proposed that the Hamiltonian matrix elements can be ap-

proximated with the two-center form and fitted to theoretical calculations

(or empirical data) as a simplified way of describing and extending cal-

culations of electronic bands. Within this approach, all matrix elements

have the same symmetry as for two atoms in free space (see Fig 9.3 and

Table 9.1). This is a great simplification that leads to an extremely useful

approach to understanding electrons in materials.

Slater and Koster gave extensive tables for matrix elements, including

the s and p matrix elements given in Table 9.1. In addition, they presented

expressions for the d states and analytical formulas for bands in several

crystal structures. Examples of the latter are presented in the next sec-
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tion to illustrate the useful information that can be derived. However, the

primary use of the SK approach in electronic structure has become the de-

scription of complicated systems, including the bands, total energies, and

forces for relaxation of structures and molecular dynamics. These applica-

tions have very different requirements that often lead to different choices of

SK parameters.

For the bands, the parameters are usually designed to fit selected eigen-

values for a particular crystal structure and lattice constant. For example,

the extensive tables derived by Papaconstantopoulos [235] are very useful

for interpolation of results of more expensive methods. It has been pointed

out by Stiles [236] that for a fixed ionic configuration, effects of multi-center

integrals can be included in two-center terms that can be generated by an

automatic procedure. This makes it possible to describe any band struc-

ture accurately with a sufficient number of matrix elements in SK form.

However, the two-center matrix elements are not transferable to different

structures.

On the other hand, any calculation of total energies, forces, etc., requires

that the parameters be known as a function of the position of the atoms.

Thus, the choices are usually compromises that attempt to fit a large range

of data. Such models are fit to structural data and, in general, are only

qualitatively correct for the bands. Since the total energy depends only

upon the occupied states, the conduction bands may be poorly described

in these models. Of particular note, Harrison [224, 225] has introduced a

table that provides parameters for any element or compound. The forms

are chosen for simplicity, generality, and ability to describe many properties

in a way that it is instructive and useful. The basis is assumed to be

orthonormal, i.e. Smm′ = δmm′ . The diagonal Hamiltonian matrix elements

are given in a table for each atom. Any Hamiltonian matrix element for

orbitals on neighboring atoms separated by a distance R is given by a factor

times 1/R2 for s and p orbitals and 1/Rl+l′ for l > l′.
Many other SK parameterizations have been proposed, each tailored

to particular elements and compounds. Some additional examples can be

found in Chapter 14 of Ref. [226].

9.5 Some illustrative examples

Let us illustrate the tight-binding approach with the analysis of some simple

situations.
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9.5.1 Example 1: A benzene molecule

Often in molecular electronics one wants to establish a relation between the

transport properties of a molecular junction and the corresponding the elec-

tronic structure of an isolated molecule. Let us illustrate how this electronic

structure can be described by means of simple tight-binding models. For

this purpose, we consider here the case of a benzene molecule, which was

introduced in section 3.2. Benzene is an emblematic example of a molecule

in which the relevant electronic structure is determined by a conjugated

π-system. This means that the electrons in the highest occupied orbitals

reside in π orbitals, which in this case are formed by the 2pz orbitals of

the six carbon atoms (here z is the direction perpendicular to the plane of

the molecule). The word conjugated refers to the fact that this π-system

extends over several neighboring atoms, which is the way in which the

binding energy is increased in these molecules. In molecular orbital theory

in chemistry, benzene is often described within the simplified Hückel ap-

proximation [229, 232, 227]. This approximation is based on the following

basic assumptions: (i) only π-orbitals are considered (the σ-orbitals are

much more strongly bound and they can be ignored), i.e. only one orbital

per carbon atom is taken into account, (ii) the overlap integrals between

different orbitals are set to zero: Sij = δij , (iii) all the diagonal matrix

elements of the Hamiltonian are ascribed the same value: Hii = ε0, and

(iv) the off-diagonal elements are set equal to zero except for those between

neighboring atoms, all of which are set equal to −t, where t is positive.

This model for benzene is summarized schematically in Fig. 9.4(a).

Following our discussion on finite systems in section 9.1, see in particular

Eq. (9.6), the energy levels in this model are the roots of the following

secular equation∣∣∣∣∣∣∣∣∣∣∣∣∣

ε0 − E −t 0 0 0 −t
−t ε0 − E −t 0 0 0

0 −t ε0 − E −t 0 0

0 0 −t ε0 − E −t 0

0 0 0 −t ε0 − E −t
−t 0 0 0 −t ε0 − E

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (9.15)

In this determinant we have followed the order sketched in Fig. 9.4(a) and

the π-orbitals in the different C atoms are denoted by |i〉, with i = 1, ..., 6.

This equation can be solved analytically (see Exercise 9.3) and the different

eigenenergies are given by

E1 = ε0 − 2t;E2 = E3 = ε0 − t;E4 = E5 = ε0 + t;E4 = ε0 + 2t, (9.16)
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Fig. 9.4 (a) Schematic representation of the Hückel model for the benzene molecule,
as described in the text. (b) Energy level diagram of benzene as obtained from this
approximation. The levels are labeled from 1 to 6 following Eq. (9.16). We also show
charge-density plots of the molecular orbitals obtained from a density-functional-theory
calculation to show that indeed the Hückel approximation reproduces the character of
the orbitals, see Eq. (9.17). The two colors indicate different signs of the wavefunctions.
The ground state is obtained by doubly occupying the three lowest energy levels.

and the corresponding molecular orbitals (eigenfunctions) read

φ1 =
1√
6
(|1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉)

φ2 =
1√
12

(2|1〉+ |2〉 − |3〉 − 2|4〉 − |5〉+ |6〉)

φ3 =
1

2
(|2〉+ |3〉 − |5〉 − |6〉)

φ4 =
1√
12

(2|1〉 − |2〉 − |3〉+ 2|4〉 − |5〉 − |6〉)

φ5 =
1

2
(|2〉 − |3〉+ |5〉 − |6〉)

φ6 =
1√
6
(|1〉 − |2〉+ |3〉 − |4〉+ |5〉 − |6〉) (9.17)

These orbitals indeed describe correctly the symmetry and extension of the

molecular orbitals that one obtains with more sophisticated methods, as

one can see in Fig. 9.4(b), where we show the orbitals as obtained from a
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density-functional-theory calculation. The ground state of benzene is that

in which the six π electrons are occupying the three lowest energy levels,

as shown in Fig. 9.4.(b) and it has a total energy of (6ε0 − 8t). Notice that

the gap between the highest occupied molecular orbital (HOMO) and the

lowest unoccupied molecular orbital (LUMO) is equal to 2t. This result can

be used to obtain the value of the hopping parameter t by comparing with

spectroscopical data or ab initio calculations. A fit to a density-functional-

theory calculation gives a value of around 2.6 eV.

It is worth stressing that the molecule gains stability or binding energy

by delocalizing the electrons over the entire molecule (conjugation). This

fact can be quantified in the following manner. If the molecule were de-

scribed as having three unconjugated π-bonds, its total π-electron energy

would have been 6(ε0 − t). By means of the conjugation, the molecule has

gained an energy equal to −2t (this gain is sometimes called delocalization

energy).

On the other hand, notice that the form of the orbitals is determined

solely by the symmetry of the molecule. Notice also that the six electrons

just complete the molecular orbitals with net bonding effect, leaving unfilled

the orbitals with net antibonding character. Another feature of the energy

of levels of benzene is that the array of levels is symmetrical: to every

bonding level there corresponds an antibonding level. This symmetry is a

characteristic feature of alternant hydrocarbons and can be traced to the

topology of the molecules.

This has been a simple example of the insightful molecular orbital the-

ory, which is widely used in theoretical chemistry. For more examples, see

for instance Chapter 8 of Ref. [227].

9.5.2 Example 2: Energy bands in line, square and cubic

Bravais lattices

In molecular electronics it is important to know the bulk electronic struc-

ture of typical metals that are used in molecular junctions. For this reason,

we consider now a bulk solid with a single atom per unit cell. The simplest

possible example of bands is that of a lattice in which we have a single

relevant orbital per site with s-symmetry. As a further simplification, we

consider the case of orthogonal basis states and non-zero Hamiltonian ma-

trix elements 〈i|H|j〉 = t only if i and j are nearest neighbors. The on-site

energy can be chosen to be zero, 〈i|H|i〉 = 0. There are three cases (line,

square and cubic lattices) that can be treated together. For the cubic lat-
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Fig. 9.5 Density of states per spin (DOS) vs. energy for an s-band in (a) a one-
dimensional line, (b) a two-dimensional square, and (c) a three dimensional simple cubic
lattice with nearest neighbor interactions t.

tice with spacing a the general expressions (9.8) and (9.10) reduce to (see

Exercise 9.4)

ε(k) = H(k) = 2t [cos(kxa) + cos(kya) + cos(kza)] . (9.18)

The bands for the square lattice in the xy-plane are given by this expression,

omitting the kz term; for a line (or chain) in the x-direction, only the kx
term applies. From this expression one can easily deduce several interesting

consequences. First, the bands are symmetric about ε(k) = 0 in the sense

that every state at +ε has a corresponding state at −ε. This can be seen in

Fig. 9.5, where we show the density of states (DOS) for one, two and three

dimensions. The shapes can be found analytically in this case (see Exercise

9.6). Notice that the bandwidth is determined by the hopping element t.

In the case of a metal, this parameter has a value of around 1 eV.

In the square lattice, the energy ε(k) = 0 at a face zone k = (π/a, 0).

This is a saddle point since the slope vanishes and the bands curve upward

and downward in different directions. This leads to a density of states with

a logarithmic divergence at ε = 0. Furthermore, for a half-filled band (one

electron per cell), the Fermi surface is at ε(k) = 0. This leads to the result

that the Fermi surface is a square rotated by π/4 with half the volume of

the Brillouin zone, and the density of states diverges at ε = EF as shown

in Fig. 9.5(b). If there are second-neighbor interactions, the symmetry of

the bands in ±ε is broken and the Fermi surface is no longer square.

Let us assume now that the states are no longer orthogonal, but the

overlap between nearest neighbors is equal to s. Then the solution for the

bands, Eq. (9.18), is generalized to (Exercise 9.7)

ε(k) =
H(k)

S(k)
=

2t [cos(kxa) + cos(kya) + cos(kza)]

1 + 2s [cos(kxa) + cos(kya) + cos(kza)]
. (9.19)
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In this case, the symmetry about ε = 0 is broken, so that the conclusions

on bands and the Fermi surface no longer apply. In fact s has an effect like

longer range Hamiltonian matrix elements, indeed showing strictly infinite

range but rapid exponential decay.

9.5.3 Example 3: Energy bands of graphene

As an example of a lattice with more than one atom per unit cell, we con-

sider now the case of graphene. Graphene is a two-dimensional system

formed by a single sheet of carbon atoms. Although the graphene band

structure was already discussed theoretically more than 50 years ago [237],

only recently it has been shown to exist in reality [238] and its physical

properties are attracting a great attention [239–241]. Graphene has the

planar honeycomb structure shown in Fig. 9.6(a). The corresponding Bril-

louin zone is a hexagon. Full calculations show that the band of graphitic

systems at the Fermi energy are π bands, composed of electronic states

that are odd in reflection in the plane. For graphene the π bands are well

represented as linear combinations of pz orbitals of the C atoms, where z is

perpendicular to the plane. Since graphene has two atoms per cell, the pz
states form two bands. If there is a nearest neighbor Hamiltonian matrix

element t, the bands are given by (Exercise 9.8)

|H(k)− ε(k)| =
∣∣∣∣ −ε(k) H12(k)

H∗12(k) −ε(k)
∣∣∣∣ = 0, (9.20)

where (with the lattice oriented as in Fig. 9.6(a))

H12(k) = t
[
eikya/

√
3 + 2e−ikya/2

√
3 cos(kxa/2)

]
, (9.21)

and a is the lattice constant. This is readily solved to yield the bands

ε(k) = ±t
[
1 + 4 cos(

√
3kya/2) cos(kxa/2) + 4 cos2(kxa/2)

]1/2
. (9.22)

The most remarkable feature of the graphene bands is that they touch at

the corners of the hexagonal Brillouin zone, e.g. the points denoted K± =

(kx = ±4π/3a, ky = 0). Note also that the bands are symmetric in ±ε.
Since there is one π electron per atom, the band is half-filled and the bands

touch with finite slope at the Fermi energy, i.e. a Fermi surface consisting of

points. Indeed, one can show (see Exercise 9.8) that the dispersion relation

around the points K± (Dirac points) is linear, i.e. ε(q) = �v|q|, where

q = k−K± with a velocity given by v = (
√
3a/2�)t. This linear dispersion

relation resembles that of Dirac’s massless fermions and it is the origin of
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Fig. 9.6 (a) Honeycomb lattice for a graphene sheet: the lattice is triangular and there
are two atoms per unit cell. Two primitive vectors are a1 = a(1, 0) and a2 = a/2(1,−√

3),
where a is the lattice constant. (b) Local density of states (per spin) projected onto an
atom of the unit cell as a function of the energy normalized by the hopping parameter t.
Notice that the DOS vanishes at E = 0 and there are van Hove singularities at E = ±t.

the extraordinary properties of this material [239–241]. Finally, if we have

a look at the density of states, see Fig. 9.6(b), we can see that (undoped)

graphene is a zero-bandgap semiconductor.

9.6 The NRL tight-binding method

There is a basic difficulty in generating tight-binding models that can de-

scribe very different structures. In models that have only two-center matrix

elements, the values of the matrix elements must take into account effects

of three-center terms. These effects change drastically between structures.

There are two primary approaches toward making tight-binding models that

are transferable between different structures. One is to define environment-

dependent matrix elements, the values of which depend upon the presence of

other neighbors. The other approach involves non-orthogonal tight-binding,

which is more transferable than orthogonal forms.

The goal of this section is to describe in certain detail a sophisticated

tight-binding parameterization in the spirit of the SK approach that meets

the two requirements discussed in the previous paragraph. Moreover, this

parameterization, which has been developed by Cohen, Mehl, and Papa-

constantopoulos [242, 243], also allows us the computation of total energies

and related quantities. This method has been widely used, in particular, for

the analysis of the transport properties of metallic atomic-sized contacts,
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as we will show in later chapters. This parameterization is referred to as

NRL3 and it is nicely described in several review articles [244, 245].

Up to this point we have mainly discussed tight-binding parameteriza-

tions of the band structure alone.4 Total-energy information is typically not

given by these calculations, although a band energy can be readily deter-

mined from the sum of the eigenvalues over the occupied states. However,

in single-particle band theory this sum is only a partial contribution to the

total energy. In the Kohn-Sham single particle density functional theory

(DFT) Ansatz, which will be explained in the next chapter, the total energy

is given by

E =

∫
d3k

(2π)3

∑
n

εn(k) + F [n(r)], (9.23)

where the integral is over the first Brillouin zone, the sum is over occupied

states, and F [n(r)] is a functional of the density which includes the repulsion

of the ionic cores, correlation effects, and part of the Coulomb interaction.

Note that the value of the integral depends upon the choice of zero for the

Kohn-Sham potential vKS(r) which generates the eigenvalue spectrum:

−∇2ψn(r) + vKS(r)ψn(r) = εnψn(r). (9.24)

This choice is arbitrary. In the method developed at NRL [242, 243], the

potential vKS in the previous equation is shifted by an amount

V0 = F [n(r)]/Ne, (9.25)

where Ne is the number of electrons in the unit cell. Then, the total energy

of the system is

E =

∫
d3k

(2π)3

∑
n

εn(k) + F [n(r)] =

∫
d3k

(2π)3

∑
n

εn(k) +NeV0

=

∫
d3k

(2π)3

∑
n

[εn(k) + V0], (9.26)

If we now define a shifted eigenvalue: ε′(k) = εn(k) + V0, then to get the

total energy we just sum the shifted eigenvalues of the occupied states:

E =

∫
d3k

(2π)3

∑
n

ε′(k). (9.27)

3NRL stands for Naval Research Laboratory, which is located in Washington D.C. For
more practical information about this parameterization, visit the web page: http://cst-
www.nrl.navy.mil/bind/.
4The only exception was the method put forward by Harrison that was briefly mentioned

in section 9.4.
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Note that V0 depends upon the structure of the crystal, as well as the

original method for determining the energy zero. Notice also that the ε′(k)
are in some sense “universal”. That is, if any two band structure methods

are sufficiently well converged, they will give the same total energy, and the

eigenvalues derived from the two methods will differ by only a constant.

Then the definition of V0 for each method will be such that the shifted

eigenvalues ε′(k) are identical.

In the NRL method, the authors construct a first-principles5 database of

eigenvalues ε(k) and total energies E for several crystal structures at several

volumes. Then, they find V0 for each system, and shift the eigenvalues.

Next, they attempt to find a set of parameters which will generate non-

orthogonal, two-center SK Hamiltonians which will reproduce the energies

and eigenvalues in the database.

Let us now describe how the TB parameters for elemental systems are

constructed. One assumes that the on-site terms are diagonal and sensitive

to the environment. For single-element systems one assigns atom i in the

crystal an embedded-atom-like “density”

ρi =
∑
j

exp(−λ2Rij)F (Rij), (9.28)

where the sum is over all the atoms j within a range Rc of atom i; λ is the

first fitting parameter, squared to ensure that the contributions are greater

from the nearest neighbors; and F (R) is a cut-off function,

F (R) = θ(Rc −R)/ {1 + exp [(R −Rc)/l + 5]} , (9.29)

where θ(z) is the step function. Typically one takes Rc between 10.5 and

16.5 Bohr and l between 0.25 and 0.5 Bohr.

One then defines the angular-momentum-dependent on-site terms by

hil = al + blρ
2/3
i + clρ

4/3
i + dlρ

2
i , (9.30)

where l = s, p, or d. These (a, b, c, d)l form the next 12 fitting parameters.

In the spirit of the two-center approximation, one assumes that the

hopping integrals depend only upon the angular momentum of the orbitals

and the distance between the atoms. As we showed in section 9.3.1, all

the two-center (spd) hopping integral can then be constructed from ten

independent parameters, the SK parameters, Hll′m, where

(ll′m) = ssσ, spσ, ppσ, ppπ, sdσ, pdσ, pdπ, ddσ, ddπ, and ddδ. (9.31)

5The first-principle methods used by the authors are typically the augmented plane
wave method (APW) or the linearized augmented plane wave method (LAPW).
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Then, it is assumed the following polynomial × exponential form for these

parameters:

Hll′m(R) = (ell′m + fll′mR+ gll′mR
2) exp(−h2ll′mR)F (R), (9.32)

where R is the separation between these atoms and F (R) is the cut-off

function defined above. The parameters (ell′m, fll′m, gll′m, hll′m) constitute

the next 40 fitting parameters.

Since this is a non-orthogonal calculation, one must also define a set of

SK overlap functions. These represent the overlap between two orbitals sep-

arated by a distance R. They have the same angular momentum behavior

as the hopping parameters:

Sll′m(R) = (pll′m + qll′mR+ rll′mR
2) exp(−s2ll′mR)F (R), (9.33)

The parameters (pll′m, qll′m, rll′m, sll′m) make up the final 40 fitting pa-

rameters for a monoatomic system, giving in total 93 fitting parameters

that are chosen to reproduce the contents of the first-principles database,

as noted above.6

So in summary, this parameterization uses an analytical set of two-

center integrals, nonorthogonal parameters and on-site parameters that de-

pend on the local environment. The method reproduces not only the band

structure, but also the total energy of the system. It has been demonstrated

that this method reproduces very well structural energy differences, elas-

tic constants, phonon frequencies, vacancy formation energies, and surface

energies for both transition metal and noble metals.

As an application of this parameterization, we have computed the bulk

density of states of six different metals that play an important role in molec-

ular electronics.7 The results can be seen in Fig. 9.7. Notice that in the

cases of Ag and Au (noble metals), the Fermi energy lies in the region

where the DOS is dominated by the s band. In the case of Al and Pb,

the s and p bands dominate the DOS around the Fermi energy. The main

difference between these two metals is that Pb has 4 valence electrons and

therefore, the Fermi energy lies well inside the p band. Finally, Nb and Pt

are examples of transition metals, where the d band dominates the DOS at

the Fermi energy and for this reason, the d orbitals play a fundamental in

the transport properties of these metals.

6These parameters for many different elementary solids can be found in the following
web page: http://cst-www.nrl.navy.mil/bind/.
7In particular, we shall analyze in Chapter 11 the conductance of single-atom contacts

of these six materials.
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Fig. 9.7 Bulk DOS as a function of energy for Ag, Au, Al, Pb, Nb, and Pt computed
using the NRL-tight-binding parameterization. The DOS is projected onto the s, p, and
d orbitals that give rise to the bands around the Fermi energy (EF).

9.7 The tight-binding approach in molecular electronics

In this final section we shall explain how the tight-binding approach is used

in practice to describe the transport properties of atomic-scale junctions

and we shall also review very briefly the impact of this approach in the

field of molecular electronics to date.
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9.7.1 Some comments on the practical implementation of

the tight-binding approach

In the previous chapters we have learned how the Green’s function tech-

niques can be combined with the knowledge of the Hamiltonian matrix

elements in a local basis to describe both equilibrium and transport prop-

erties of atomic-scale junctions. Thus, the application of the tight-binding

approach to the description of the physics of atomic or molecular junctions

is now rather straightforward. Anyway, let us mention some of technical

issues and difficulties that one encounters in the practical application of

this method.

One of the most common theoretical problems in molecular electronics

is the calculation of the elastic current of an atomic-scale junction. Such

calculation proceeds in a series of steps that we now proceed to describe.

Step 1: Geometry of the contact. As a first step one has to define the

geometry of the junction. This geometry includes a central part of arbi-

trary shape and two ideal leads or electrodes that, for practical reasons,

must have a regular structure (see Fig. 8.1). Ideally, one should deter-

mine the junction geometry by doing, for instance, molecular dynamics

simulations or geometry optimization. In principle, this is possible with

sophisticated tight-binding approaches like the NRL-method described in

section 9.6 which allows us to compute the forces between the atoms or the

total energy of the system. In practice, the determination of the geometry

with tight-binding models has been restricted to the case of atomic con-

tacts and for molecular junctions one needs to resort to more sophisticated

methods like density function theory (see next chapter).

Step 2: Hamiltonian matrix elements. Once the geometry is defined,

one proceeds to the determination of the matrix elements of the Hamilto-

nian, as explained in the previous sections. For instance, in the approaches

based on the two-center approximation (see section 9.4), one can construct

those matrix elements between two neighboring atoms by projecting the

irreducible SK-parameters according to their relative position.

Step 3: Calculation of the Green’s functions. The retarded and ad-

vanced Green’s functions of the central part of the junction contain all the

relevant information about both the equilibrium and transport properties

of the system. These functions are computed via their Dyson’s equation,

see Eq. (8.22). This requires to previously calculate the self-energies and

in turn the Green’s functions of the leads. This is indeed the most com-

plicated step in the whole calculation. The leads are semi-infinite systems
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and the lack of periodicity complicates the calculation of their Green’s func-

tions. There are different solutions for this problem. For instance, one can

describe the electrodes with simple structures like Bethe lattices [246]. A

more satisfactory solution to avoid artificial interface resistances is to de-

scribe the leads as ideal surfaces and compute the Green’s functions with

recursive methods like the decimation technique of Ref. [198].8

Step 4: Computation of the current. The final step is the calculation

of the current from the knowledge of the Green’s functions, which is done

using Eqs. (8.18-8.20).

In general, the “recipe” described above has to be carried out numeri-

cally, but the computer codes can be developed by a single person in a few

weeks. Moreover, the tight-binding approach is extremely efficient, com-

putationally speaking, and the calculations of the transport properties of

realistic systems can be done in standard PC’s. Of course, the level of accu-

racy of these calculations depends on the quality tight-binding parameters,

which in turn depends on the system under study.

9.7.2 Tight-binding simulations of atomic-scale transport

junctions

The tight-binding approach has been used to describe a great variety of

problems related to the electronic transport in atomic-scale junctions. Our

goal in this subsection is to mention very briefly some these applications and

we refer the reader to Todorov’s review [248] for a more detailed discussion

and for a more complete list of references.

One of the first applications of the tight-binding approach was the anal-

ysis of the operation of the STM and the interpretation of images taken with

this instrument [194, 249–252]. This approach has been very important to

elucidate the role of the tip-substrate distance and it allows to identify the

characteristic signature of many different adsorbates.

In the context of molecular junctions, at the end of the 1980’s Sautet

and Joachim pioneered the use of the tight-binding approach (within the

extended Hückel approximation) to compute the current and conductance

of single-molecule junctions [253, 254]. Later, Ratner and coworkers used

simple tight-binding models to address a number of issues such as the depen-

dence of the conductance on the length of the molecular wires [255–259].9

8An extension of the decimation technique to the case of non-orthogonal basis sets can
be found in the appendix C of Ref. [247].
9In Chapter 13 we shall make use of simple tight-binding models to discuss basic issues
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Also in the middle of the 1990’s, Datta and coworkers employed the tight-

binding approach to describe the current-voltage characteristics of different

organic molecules and to establish a detailed comparison with the experi-

ments [260, 261].

In the context of metallic atomic-sized contacts,10 the tight-binding for-

malism was first used, in combination with molecular dynamics simula-

tions, to elucidate the origin of the conductance jumps observed during

the formation of these nanowires [262]. Tight-binding models were then

used to establish the relation between the conduction channels of single-

atom contacts and the detailed chemistry of the metal atoms [263, 264].

The tight-binding approach has also been extended to calculate changes

to interatomic forces under electrical current flow in atomic-scale conduc-

tors [265] and this formalism has been used to model electromigration and

current-induced fracture of atomic wires [266, 267].

9.8 Exercises

9.1 Secular equation for a finite system: Use the Schrödinger equation to
show that the coefficients of the expansion of Eq. (9.3) satisfy the set of equations
given by Eq. (9.6).

9.2 Bloch’s theorem: Using the translational invariance in a Bravais lattice,
show that matrix elements of the Hamiltonian with basis functions Φkiα and
Φk′jβ are non-zero only for k = k′, and derive the expression of Eq. (9.8).

9.3 Energy spectrum of benzene: Solve analytically the secular equation
(9.15) and show that within the Hückel approximation the energy levels and the
corresponding molecular orbitals are given by Eq. (9.16) and Eq. (9.17), respec-
tively.

9.4 Molecular orbital structure of butadiene: The 1,3-butadiene molecule
(C4H6) shown in Fig. 9.8 is a simple conjugated diene, i.e. it is a hydrocarbon
which contains two double bonds. Determine its energy levels and molecular
orbitals using the Hückel approximation.

9.5 Energy bands of s-bands in line, square and cubic Bravais lattices:
Show that for an s-band in a line, square lattice, and simple cubic lattice with
only nearest neighbor Hamiltonian matrix elements, the energy bands are given
by Eq. (9.18).

9.6 Density of states of s-bands in line, square and cubic Bravais lat-

concerning the coherent transport through molecular junctions.
10The physics of these metallic nanowires is described in Part 3, where in particular we
shall make extensive use of the tight-binding approach.
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Fig. 9.8 Composition and structure of the 1,3-butadiene molecule.

tices: Reproduce the results of Fig. 9.5 for the density of states of s-band in a line,
square lattice, and simple cubic lattice with only nearest neighbor Hamiltonian
matrix elements.

9.7 Energy bands of s-bands in line, square and cubic Bravais lattices
in a non-orthogonal model: Show that the expression for bands with non-
orthogonal basis orbitals, Eq. (9.19), is correct. Why are the bands in this case
no longer symmetric about ε = 0?

9.8 Electronic structure of graphene: Consider the model for graphene de-
tailed in section 9.5.3. Carry out the following tasks: (i) Determine the Brillouin
zone of the honeycomb lattice, (ii) show that the energy bands are given by
Eq. (9.22), (iii) demonstrate that the dispersion relation around the Dirac’s point
is linear, and (iv) compute the local density of states and show that it is given
by the result of Fig. 9.6(b).

9.9 The NRL tight-binding method: An interesting project for graduate
students and advanced undergraduate students is to write a computer code (in
whatever language) to calculate the energy bands and bulk density of states [see
Fig. 9.7] of elementary solids within the NRL tight-binding method described in
section 9.6.
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Chapter 10

Electronic structure II: Density

functional theory

This second chapter about electronic structure calculations provides a ba-

sic introduction to the density functional theory (DFT). This theory is

presently the most successful (and also the most promising) approach for

computing the electronic structure of matter. Its applicability ranges from

atoms, molecules and solids to nuclei and quantum and classical fluids.

Thus for instance, in chemistry DFT is widely used to predict a great vari-

ety of molecular properties: molecular structures, vibrational frequencies,

atomization energies, ionization energies, electric and magnetic properties,

reaction paths, etc. Originally, DFT was designed to provide the electron

density and total energy of the ground state of (non-magnetic) electronic

systems. However, meanwhile the theory has been generalized to deal with

many different situations: spin polarized systems, multicomponent systems

such as nuclei and electron hole droplets, free energy at finite temperatures,

superconductors with electronic pairing mechanisms, relativistic electrons,

time-dependent phenomena and excited states, bosons, molecular dynam-

ics, etc.

More importantly for the scope of this book, DFT is at the moment

the theoretical approach with the largest impact in molecular electronics.

In this sense, we believe that DFT should be part of the general culture of

the researchers working in this field. For this reason, we have included here

a concise introduction to the standard formulation of DFT, which can be

read almost independently of the rest of the book. Our goals are: (i) To

explain what kind of information this theory can provide, (ii) to describe

how it is used in molecular electronics, and (iii) to discuss its advantages and

limitations. For those readers who want to get deeper into the subtleties and

performance of this theory, the following entry points into the literature are

recommended. First of all, one has of course the original papers [268, 269]
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and Kohn’s Nobel lecture [270]. Among the DFT reviews, we recommend

the one of Ref. [271]. Finally, let us say that this chapter is based on the

monographs of Refs. [272, 226] and specially on that of Ref. [273]. Those

readers familiar with DFT who only want to know how it is applied in

molecular electronic are advised to jump directly to the last section of this

chapter.

10.1 Elementary quantum mechanics

In order to pave the way for the understanding of the basic formulation of

density function theory, we start reminding some basic issues in quantum

mechanics.1

10.1.1 The Schrödinger equation

The ultimate goal of most theoretical approaches in solid state physics and

quantum chemistry is the solution of the time-independent, non-relativistic

Schrödinger equation2

HΨi(�x1, ..., �xN , �R1, ..., �RM ) = EiΨi(�x1, ..., �xN , �R1, ..., �RM ), (10.1)

where H is the Hamiltonian for a system consisting of M nuclei and N

electrons. In the absence of external fields, H has the following form:

H = −1

2

N∑
i=1

∇2
i−

1

2

M∑
A=1

1

MA
∇2

A−
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB

RAB
.

(10.2)

Here, A and B run over theM nuclei while i and j denote the N electrons in

the system. The first two terms describe the kinetic energy of the electrons

and nuclei. The other three terms represent the attractive electrostatic

interaction between the nuclei and the electrons and repulsive potential

due to the electron-electron and nucleus-nucleus interactions. Let us stress

that, following the common practice in most textbooks, we shall use atomic

units throughout this chapter.3

1Throughout this chapter we shall be using the more standard first quantization for-
mulation of quantum mechanics.
2In this chapter the operators will be written in boldface, while the vector character of

a variable will be indicated by an arrow on top of it.
3In this system of units the masses are measured in units of the electron mass, the

charges in units of the electron charge, � is the unit of action, the energy is measured in
Hartrees (27.211 eV) and the length unit is the Bohr (0.52910 Å).



Electronic structure II: Density functional theory 265

The Schrödinger equation [Eq. (10.1)] can be simplified using the Born-

Oppenheimer approximation. Due to their masses the nuclei move much

slower than the electrons, which implies that we can consider the electrons

as moving in the field of fixed nuclei, i.e. the nuclear kinetic energy is

zero and their potential energy is merely a constant. Thus, the electronic

Hamiltonian reduces to

Helec = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
= T+VNe +Vee. (10.3)

The solution of the Schrödinger equation with Helec is the electronic

wave function Ψelec and the electronic energy Eelec. The total energy Etot

is then the sum of Eelec and the constant nuclear repulsion term Enuc, i.e.

HelecΨelec = EelecΨelec, (10.4)

and

Etot = Eelec + Enuc where Enuc =
M∑

A=1

M∑
B>A

ZAZB

RAB
. (10.5)

In principle, our main problem now is to solve Eq. (10.4), which is simply

impossible to accomplish in general.4

10.1.2 The variational principle for the ground state

A general strategy for the search of the lowest-energy solution of

Schrödinger equation [Eq (10.4)] is provided by the variational principle.

This idea goes as follows. When a system is in the state Ψ, the expectation

value of the energy is given by

E[Ψ] =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 where 〈Ψ|H|Ψ〉 =

∫
Ψ∗HΨ d�x. (10.6)

The variational principle states that the energy computed from a guessed

Ψ is an upper bound to the true ground-state energy E0. Full minimization

of the functional E[Ψ] with respect to all allowedN -electrons wave functions

will give the true ground state Ψ0 and energy E[Ψ0] = E0; that is

E0 = min
Ψ→N

E[Ψ] = min
Ψ→N

〈Ψ|T+VNe +Vee|Ψ〉, (10.7)

where Ψ → N indicates that Ψ is an allowed N -electron wave function.
4From now one we shall only consider the electronic problem and subscript “elec” will

be dropped.
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For a system of N electrons and given nuclear potential Vext, the vari-

ational principle defines a procedure to determine the ground-state wave

function Ψ0, the ground-state energy E0[N, Vext], and other properties of

interest. In other words, the ground state energy is a functional of the

number of electrons N and the nuclear potential Vext

E0 = E[N, Vext]. (10.8)

10.1.3 The Hartree-Fock approximation

Although the variational principle offers a strategy for finding the ground

state wave function, it is simply impossible to solve Eq. (10.4) by searching

through all acceptable many-body wave functions. We need to define a

suitable subset, which offers a reasonable approximation to the exact wave

function without being unmanageable in practice. The Hartree-Fock ap-

proximation provides the simplest, yet physically sound, solution to this

problem. Let us briefly explain the basic idea behind this approach.

Suppose that the ground state wave function, Ψ0, is approximated as

an antisymmetrized product of N orthonormal spin orbitals ψi(�x), each

a product of a spatial orbital φk(�r) and a spin function σ(s), the Slater

determinant

Ψ0 ≈ ΨHF =
1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(�x1) ψ2(�x1) ... ψN (�x1)

ψ1(�x2) ψ2(�x2) ... ψN (�x2)
...

...
...

ψ1(�xN ) ψ2(�xN ) ... ψN (�xN )

∣∣∣∣∣∣∣∣∣
. (10.9)

The Hartree-Fock approximation is the method whereby the orthogonal

orbitals ψi are found that minimize the energy for this determinantal form

of Ψ0

EHF = min
(ΨHF→N)

E [ΨHF] . (10.10)

The expectation value of the Hamiltonian operator with ΨHF is given

by (Exercise 10.1)

EHF = 〈ΨHF|H|ΨHF〉 =
N∑
i=1

Hi +
1

2

N∑
i,j=1

(Jij −Kij) , (10.11)

where

Hi ≡
∫
ψ∗i (�x)

[
−1

2
∇2 + Vext(�x)

]
ψi(�x) d�x (10.12)
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defines the contribution due to the kinetic energy and the electron-nucleus

attraction and

Jij =

∫ ∫
ψi(�x1)ψ

∗
i (�x1)

1

r12
ψ∗j (�x2)ψj(�x2)d�x1d�x2, (10.13)

Kij =

∫ ∫
ψ∗i (�x1)ψj(�x1)

1

r12
ψi(�x2)ψ

∗
j (�x2)d�x1d�x2. (10.14)

The integrals are all real, and Jij ≥ Kij ≥ 0. The Jij are called Coulomb

integrals, the Kij are called exchange integrals. We have the property Jii =

Kii.

The variational freedom in the expression of the energy [Eq. (10.11)] is in

the choice of the orbitals. The minimization of the energy functional with

the normalization conditions
∫
ψ∗i (�x)ψj(�x)d�x = δij leads to the Hartree-

Fock differential equations (see Exercise 10.2)

f ψi = εi ψi , i = 1, 2, ..., N. (10.15)

These N equations have the appearance of eigenvalue equations, where

εi are the eigenvalues of the operator f . The Fock operator f is an effective

one-electron operator defined as

f = −1

2
∇2

i −
M∑
A

ZA

riA
+VHF(i). (10.16)

The first two terms are the kinetic energy and the potential energy due

to the electron-nucleus attraction. VHF(i) is the Hartree-Fock potential,

the average repulsive potential experienced by the i-th electron due to the

remaining N -1 electrons, and it is given by

VHF(�x1) =
N∑
j

(Jj(�x1)−Kj(�x1)) , (10.17)

Jj(�x1) =

∫
|ψj(�x2)|2 1

r12
d�x2. (10.18)

The Coulomb operator J represents the potential that an electron at

position �x1 experiences due to the average charge distribution of another

electron in spin orbital ψj .

The second term in Eq. (10.17) is the exchange contribution to the HF

potential. It has no classical analog and it describes the modification of the

energy that can be ascribed to the effects of spin correlation. It is defined

through its effect when operating on a spin orbital

Kj(�x1) ψi(�x1) =

∫
ψ∗j (�x2)

1

r12
ψi(�x2) d�x2 ψj(�x1). (10.19)
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Two important remarks to conclude this section. First, the HF potential

is non-local and it depends on the spin orbitals. Thus, the HF equations

must be solved self-consistently. Second, the Koopman’s theorem [274]

provides a physical interpretation of the orbital energies: it states that

the orbital energy εi is an approximation of minus the ionization energy

(IE) associated with the removal of an electron from the orbital ψi, i.e.

εi ≈ EN − Ei
N−1 = −IE(i).

10.2 Early density functional theories

In this section we shall introduce the electron density, which is the funda-

mental quantity in DFT, and we shall briefly review some early attempts

to develop a density functional theory.

The electron density is defined as the integral over the spin coordinates

of all electrons and over all but one of the spatial variables (�x ≡ �r, s)

ρ(�r) = N

∫
...

∫
|Ψ(�x1, �x2, ..., �xN )|2ds1d�x2...d�xN . (10.20)

The electron density ρ(�r) determines the probability of finding any of the N

electrons within volume element d�r. Clearly, ρ(�r) is a non-negative function

of only the three spatial variables which vanishes at infinity and integrates

to the total number of electrons, i.e.

ρ(�r → ∞) = 0;

∫
ρ(�r)d�r = N. (10.21)

Moreover, unlike the wave function, the electron density is an observable

and it can be measured experimentally, e.g. by X-ray diffraction.

At this stage, one may wonder whether the central role of the com-

plicated N-electron wave function, which depends on 3N spatial variables,

could be played by a simpler function such as the electron density. As early

as in the 1920’s, several authors conjectured that indeed the total energy

could be a functional of the electronic density alone. Probably, the most

famous example of such an early density functional theory is the so-called

Thomas-Fermi model, which was put forward in 1927. Based on the uni-

form electron gas, Thomas and Fermi proposed independently the following

functional for the kinetic energy

TTF [ρ(�r)] =
3

10
(3π2)2/3

∫
ρ5/3(�r)d�r. (10.22)
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This functional was combined with the classical expression for the electron-

nuclei potential and the electron-electron potential to write down the fol-

lowing functional for the energy of an atom

ETF [ρ(�r)] =
3

10
(3π2)2/3

∫
ρ5/3(�r)d�r

−Z
∫
ρ(�r)

r
d�r +

1

2

∫ ∫
ρ(�r1)ρ(�r2)

r12
d�r1d�r2. (10.23)

Notice that the energy is given completely in terms of the electron density.

In order to determine the correct density to be included in Eq. (10.23),

they employed a variational principle. They assumed that the ground state

of the system is connected to the ρ(�r) for which the energy is minimized

under the constraint of
∫
ρ(�r)d�r = N . The obvious question at this stage is:

does this variational principle make sense? The Hohenberg-Kohn theorems

discussed in the next section will prove that this approach can be rigorously

justified.

10.3 The Hohenberg-Kohn theorems

Density functional theory as we know it today is founded in the so-called

Hohenberg-Kohn theorems that were put forward in 1964 [268]. In this

section we present these theorems and discuss some of their basic implica-

tions. The proofs of these theorems will not be detailed here and they can

be found in any of the references given at the beginning of this chapter.

The first Hohenberg-Kohn theorem states that the electron density

uniquely determines the Hamiltonian operator and thus all the properties

of the system. To be precise, this theorem states that the external potential

Vext(�r) is (to within a constant) a unique functional of ρ(�r); since, in turn

Vext(�r) fixes H we see that the full many particle ground state is a unique

functional of ρ(�r).

Thus, ρ(�r) determines N and Vext(�r) and hence all the properties of

the ground state, for example the kinetic energy T [ρ], the potential energy

V [ρ], and the total energy E[ρ]. Now, we can write the total energy as

E[ρ] = ENe[ρ] + T [ρ] + Eee[ρ] =

∫
ρ(�r)VNe(�r)d�r + FHK[ρ], (10.24)

FHK[ρ] = T [ρ] + Eee[ρ]. (10.25)

Here, we have separated the contributions that depend on the actual

system, i.e. the potential energy due to the electron-nuclei attraction,
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ENe[ρ] =
∫
ρ(�r)VNe(�r)d�r, from those which are universal, FHK[ρ]. This

functional FHK[ρ] is the holy grail of density functional theory. If it was

known, we would be able to solve the Schrödinger equation exactly and for

any system. This functional contains the functional for the kinetic energy

T [ρ] and that for the electron-electron interaction, Eee[ρ]. The explicit

form of both these functionals is unknown. However, from the latter we

can extract at least the classical part J [ρ],

Eee[ρ] =
1

2

∫ ∫
ρ(�r1)ρ(�r2)

r12
d�r1d�r2 + Encl = J [ρ] + Encl[ρ]. (10.26)

Encl is the non-classical contribution to the electron-electron interaction:

self-interaction correction, exchange and Coulomb correlation. The explicit

form of the functionals T [ρ] and Encl[ρ] is the major challenge of DFT.

Let us now address the following question: how can we be sure that a

certain density is the ground-state density that we are looking for? The

second Hohenberg-Kohn theorem answers this question. This theorem

states that FHK[ρ], the functional that delivers the ground state energy of

the system, delivers the lowest energy if and only if the input density is the

true ground state density. This is nothing but the variational principle

E0 ≤ E[ρ̃] = T [ρ̃] + ENe[ρ̃] + Eee[ρ̃]. (10.27)

In other words, this means that for any trial density ρ̃(�r), which satisfies

the necessary boundary conditions such as ρ̃(�r) ≥ 0,
∫
ρ̃(�r)d�r = N , and

which is associated with some external potential Ṽext, the energy obtained

from the functional of Eq. (10.24) represents an upper bound to the true

ground state energy E0. E0 results if and only if the exact ground state

density is inserted in Eq. (10.27).

Let us summarize what we have learned so far and some basic conse-

quences of the previous theorems:

• All the properties of a system defined by an external potential Vext are

determined by the ground state density. In particular, the ground state

energy associated with a density ρ is available through the functional∫
ρ(�r)Vextd�r + FHK[ρ]. (10.28)

• This functional attains its minimum value with respect to all allowed

densities if and only if the input density is the true ground state density,

i.e. for ρ̃(�r) ≡ ρ(�r).

• The applicability of the variational principle is limited to the ground

state. Hence, we cannot easily transfer this strategy to the problem of

excited states.
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• The explicit form of the functional FHK[ρ] is unknown and this remains

as the major challenge of DFT.

10.4 The Kohn-Sham approach

We have seen that the ground state energy of a system can be written as

E0 = min
ρ→N

(
FHK[ρ] +

∫
ρ(�r)VNed�r

)
, (10.29)

where the universal functional FHK[ρ] contains the contributions of the ki-

netic energy, the classical Coulomb interaction and the non-classical portion

FHK[ρ] = T [ρ] + J [ρ] + Encl[ρ]. (10.30)

Of these, only J [ρ] is known. The main problem is to find the expressions

for T [ρ] and Encl[ρ]. The Thomas-Fermi model of section 10.2 provides an

example of density functional theory. However, its performance is really

bad due to the poor approximation of the kinetic energy. To solve this

problem Kohn and Sham proposed in 1965 [269] the following approach.

They suggested to calculate the exact kinetic energy of a non-interacting

reference system with the same density as the real, interacting one

TS = −1

2

N∑
i

〈ψi|∇2|ψi〉, ρS(�r) =

N∑
i

∑
s

|ψi(�r, s)|2 = ρ(�r), (10.31)

where the ψi are the orbitals of the non-interacting system. Of course,

TS is not equal to the true kinetic energy of the system. Kohn and Sham

accounted for that by introducing the following separation of the functional

FHK[ρ]

FHK[ρ] = TS[ρ] + J [ρ] + EXC [ρ], (10.32)

where EXC , the so-called exchange-correlation energy is defined through

Eq. (10.32) as

EXC [ρ] ≡ (T [ρ]− TS[ρ]) + (Eee[ρ]− J [ρ]) . (10.33)

The exchange and correlation energyEXC is the functional that contains

everything that is unknown.

Now the question is: How can we uniquely determine the orbitals in

our non-interacting reference system? In other words, how can we define

a potential VS such that it provides us with a Slater determinant which

is characterized by the same density as our real system? To solve this
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problem, we write down the expression for the energy of the interacting

system in terms of the separation described in Eq. (10.32)

E[ρ] = TS[ρ] + J [ρ] + EXC [ρ] + ENe[ρ], (10.34)

where

E[ρ] = TS[ρ] +
1

2

∫ ∫
ρ(�r1)ρ(�r2)

r12
d�r1d�r2 + EXC [ρ] +

∫
VNeρ(�r)d�r

= −1

2

N∑
i

〈ψi|∇2|ψi〉+ 1

2

N∑
i

N∑
j

∫ ∫
|ψi(�r1)|2 1

r12
|ψj(�r2)|2d�r1d�r2

+EXC [ρ]−
N∑
i

∫ M∑
A

ZA

r1A
|ψi(�r1)|2d�r1. (10.35)

The only term for which no explicit form can be given is EXC . We now

apply the variational principle and ask: What condition must the orbitals

{ψi} fulfill in order to minimize this energy expression under the usual

constraint 〈ψi|ψj〉 = δij? The resulting equations are the Kohn-Sham

equations: (
−1

2
∇2 + Veff (�r1)

)
ψi = εiψi, (10.36)

where the effective potential Veff (�r1) is given by

Veff (�r1) =

∫
ρ(�r2)

r12
d�r2 + VXC(�r1)−

M∑
A

ZA

r1A
. (10.37)

Thus, once we know the various contributions in Eq. (10.37), we can

insert the potential Veff into the one-particle equations, which in turn de-

termine the orbitals and hence the ground state density and the ground

state energy employing Eq. (10.35). Notice that Veff depends on the den-

sity, and therefore the Kohn-Sham equations have to be solved iteratively.

One term in the above equations needs some additional comments. The

exchange-correlation potential, VXC is defined as the functional derivative

of EXC with respect to ρ, i.e. VXC = δEXC/δρ. It is very important to

realize that if the exact forms of EXC and VXC were known, the Kohn-Sham

strategy would lead to the exact energy.

A question of special relevance for the use of DFT in molecular elec-

tronics is: Do the Kohn-Sham orbitals and eigenvalues mean anything? It

is often said that the Kohn-Sham orbitals and eigenvalues have no physical

meaning. In particular, the eigenvalues are not the energies to add or sub-

tract electrons from the interacting many-body system. There is only one
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exception [275]: The highest eigenvalue in a finite system, which is minus

the ionization energy.5 Anyway, several authors have lately pointed to the

interpretative power of the Kohn-Sham orbitals in traditional qualitative

molecular orbital schemes (see section 5.3.3 in Ref. [273]) and in solid state

physics it is customary to use these orbitals as an approximation for the

true spectrum of an electronic system, see Ref. [271]. After all, these or-

bitals are not only associated with a one-electron potential which includes

all non-classical effects, they are also consistent with the exact ground state

density.

Let us close this section by saying that the Kohn-Sham (KS) approach

provides a practical strategy to find both the electron density and the total

energy of the ground state of any electronic system. However, there are

still two important issues that we have to address. First, we need to find

reasonable approximations for the exchange-correlation functional and sec-

ond, we have to discuss how to solve in practice the Kohn-Sham equations.

These two issues are the subject of the next sections.

10.5 The exchange-correlation functionals

The genius of the Kohn-Sham approach described in the previous section

is two-fold. First, the Ansatz leads to tractable single-particle equations

that hold the hope of solving interacting many-body problems. Second, by

explicitly separating the independent-particle kinetic energy and the long-

range Hartree terms, the remaining exchange-correlation functional EXC [ρ]

can be reasonable approximated as a local or nearly local functional of the

density. Even though the exact functional EXC [ρ] must be very complex,

great progress has been made with remarkably simple approximations. This

sections is devoted to a brief description of some of those approximations.

For more details about this topic, see for instance Chapter 8 of Ref. [226]

and Chapter 6 of Ref. [273].

10.5.1 LDA approximation

The local density approximation (LDA) is the basis of all approximate

exchange-correlation functionals. At the center of this model is the idea

of a uniform electron gas. This is a system in which electrons move on

5The asymptotic long-range density of a bound system is governed by the occupied
state with the highest eigenvalue; since the density is assumed to be exact, so must the
eigenvalue be exact. No other eigenvalue is guaranteed to be correct.
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a positive background charge distribution such that the total ensemble is

neutral.

The central idea of LDA is the assumption that we can write EXC in

the following form

ELDA
XC [ρ] =

∫
ρ(�r)εXC(ρ(�r)) d�r. (10.38)

Here, εXC(ρ(�r)) is the exchange-correlation energy per particle of a uniform

electron gas of density ρ(�r). This energy per particle is weighted with the

probability ρ(�r) that there is an electron at this position. The quantity

εXC(ρ(�r)) can be further split into exchange and correlation contributions,

εXC(ρ(�r)) = εX(ρ(�r)) + εC(ρ(�r)). (10.39)

The exchange part, εX , which represents the exchange energy of an

electron in a uniform electron gas of a particular density, was originally

derived by Bloch and Dirac in the late 1920’s and it is given by

εX = −3

4

(
3ρ(�r)

π

)1/3

. (10.40)

No such explicit expression is known for the correlation part, εC . How-

ever, highly accurate numerical quantum Monte-Carlo simulations of the

homogeneous electron gas are available from the work of Ceperly and Alder

[276]. On the basis of these results various authors have presented analyti-

cal expressions of εC based on sophisticated interpolation schemes.

Up to this point the local density approximation was introduced as a

functional depending solely on ρ(�r). If we extend the LDA to an unre-

stricted case, i.e. to a case without spin symmetry, we arrive at the local

spin-density approximation, or LSDA, where the two spin densities, ρ↑(�r)
and ρ↓(�r), with ρ(�r) = ρ↑(�r) + ρ↓(�r), are employed as the central input. In

this approximation, instead of Eq. (10.38) one now writes

ELSDA
XC [ρ↑, ρ↓] =

∫
ρ(�r)εXC(ρ↑(�r), ρ↓(�r)) d�r. (10.41)

As for the simple spin-symmetric situation, there are related expressions

for the exchange and correlation energies per particle of the uniform electron

gas characterized by ρ↑(�r) �= ρ↓(�r), the so-called spin polarized case. In the

following we do not differentiate between the local and the local spin-density

approximation and use the abbreviation LDA for both.

We conclude this subsection with some brief comments about the per-

formance of LDA, especially in the context of molecular physics:
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• The accuracy of the LDA for the exchange energy is typically within

10%, while the normally much smaller correlation energy is generally

overestimated by up to a factor 2. The two errors typically cancel

partially.

• Experience has shown that the LDA gives ionization energies of atoms,

dissociation energies of molecules and cohesive energies with a fair ac-

curacy of typically 10-20%. However, the LDA gives bond lengths of

molecules and solids typically with an astonishing accuracy of ∼ 2%.

• The moderate accuracy that LDA delivers is insufficient for most appli-

cations in chemistry. For this reason, for many years, where LDA was

the only approximation for the exchange-correlation functional, DFT

was mostly used by solid-state physicists and it hardly had any impact

in quantum chemistry.

10.5.2 The generalized gradient approximation

The first step beyond the local approximation is a functional of the mag-

nitude of the gradient of the density ∇ρ(�r) as well as the value of ρ(�r) at

each point. Such a gradient expansion approximation (GEA) was already

suggested in the original paper of Kohn and Sham. The low-order expan-

sion of the exchange and correlation energies is known. However, the GEA

does not lead to consistent improvement over the LDA. It violates exact

sum rules and other relevant conditions and, indeed, often leads to worse

results. The basic problem is that gradients in real systems can be so large

that the expansion breaks down.

The term generalized gradient approximation (GGA) denotes a variety

of ways proposed for functionals that modify the behavior at large gradients

in such way as to preserve the desired properties. These functionals are the

workhorses of current DFT and they can be generically written as

EGGA
XC [ρ↑, ρ↓] =

∫
f(ρ↑, ρ↓,∇ρ↑,∇ρ↓) d�r. (10.42)

In practice, EGGA
XC is usually split into its exchange and correlation con-

tributions, EGGA
XC = EGGA

X +EGGA
C , and approximations for the two terms

are sought separately. With respect to the exchange part EGGA
X , it can be

written as

EGGA
X = ELDA

X −
∑

σ=↑,↓

∫
F (sσ)ρ

4/3
σ (�r) d�r. (10.43)
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The argument of the function F is the reduced density gradient for spin σ

sσ =
|∇ρσ(�r)|
ρ
4/3
σ

. (10.44)

Numerous forms for the function F above have been given. We just

mention here three of the most widely used ones that were proposed by

Becke in 1986 (B86) [277], Perdew also in 1986 (P) [278], and Perdew, Burke

and Ernzerhof in 1996 (PBE) [279]. In all these cases, F is a complicated

rational function of the reduced density gradient that we shall not write

here explicitly.

The corresponding gradient-corrected correlation functionals have even

more complicated analytical forms and cannot be understood by simple

physically motivated reasoning. Among the most widely used choices is

the correlation counterpart of the 1986 Perdew exchange functional [278],

usually referred to as P or P86. This functional employs an empirical

parameter, which was fitted to the correlation energy of the neon atom. A

few years later Perdew and Wang [280] refined their correlation functional,

leading to the parameter free PW91. Another, nowadays even more popular

correlation functional is due to Lee, Yang, and Parr (LYP) [281]. This

functional was derived from an expression for the correlation energy of

the helium atom. The LYP functional contains one empirical parameter

and it differs from other GGA functionals in that it contains some local

components.

In principle, each exchange functional could be combined with any of the

correlation functionals, but only a few combinations are currently in use.

The exchange part is usually chosen to be Becke’s functional which is either

combined with Perdew’s 1986 correlation functional or the LYP one. These

combinations are termed BP86 and BLYP, respectively. Sometimes also

the PW91 correlation functional is employed, corresponding to BPW91. It

is worth stressing that these combinations lead to results that are of very

similar quality.

As a general statement about the performance of GGA-based function-

als, let us say that they have reduced the LDA errors of, in particular,

atomization energies of standard set of small molecules by a factor 3-5.

This improved accuracy has made DFT one of the most widely used tools

in quantum chemistry.



Electronic structure II: Density functional theory 277

10.5.3 Hybrid functionals

Usually the exchange contributions are significantly larger than the cor-

responding correlation effects. Therefore, an accurate expression for the

exchange functional is a prerequisite for obtaining meaningful results from

density functional theory. In this sense, it is important to remind that the

exchange energy of a Slater determinant can be computed exactly (see dis-

cussion of the Hartree-Fock (HF) approximation in section 10.1.3). This

fact has motivated the construction of functionals called hybrid because

they are a combination of orbital-dependent Hartree-Fock and an explicit

density functional. These are the most accurate functionals available as far

as the energetics is concerned and are the method of choice in the quantum

chemistry community.

The hybrid functionals differ in the way in which the exchange HF en-

ergy is mixed with the exchange-correlation energy of a density functional.

Becke [282] has argued that the total exchange-correlation energy can be

approximated by

EXC =
1

2

(
EHF

X + EDFA
XC

)
, (10.45)

where DFA denotes an LDA or GGA functional. Later Becke presented

parameterized forms that are accurate for many molecules, such as “B3P91”

[282, 283], a three-parameter functional that mixes Hartree-Fock exchange,

the exchange functional of Becke (B88), and correlation from Perdew and

Wang (PW91).

Currently the most popular hybrid functional is the so-called B3LYP

[284] that uses the LYP correlation functional. In this case the definition

of the exchange-correlation energy is

EXC = ELDA
XC + a0

(
EHF

X − EDFA
X

)
+ axE

Becke
X + acEC , (10.46)

where the three coefficients ai are empirically adjusted to fit atomic and

molecular data.

10.6 The basic machinery of DFT

In this section we shall address how the Kohn-Sham single-particle equa-

tions are solved in practice. There are three main types of methods that

are applied to this problem with their own advantages and disadvantages.

The first one are the plane wave and grid methods that provide general ap-

proaches for the solution of differential equations, including the Schrödinger
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and Poisson equations. A second family is formed by the atomic sphere

methods that are the most general methods for precise solution of the

Kohn-Sham equations. The basic idea is to divide the electronic structure

problem, providing efficient representation of atomic-like features that are

rapidly varying near each nucleus and smoothly varying functions between

atoms. Finally, the third type of methods is based on localized atomic-

(like) orbitals (LCAO) that provide a basis that captures the essence of

the atomic-like features of solids and molecules. They provide a satisfying,

localized description of electronic structure widely used in chemistry. Since

this latter method is, in principle, better adapted to the type of systems

studied in molecular electronics, we shall devote the rest of this section to

describe how it is actually used to solve the Kohn-Sham equations. The

other two types of methods are extensively discussed in Ref. [226].

10.6.1 The LCAO Ansatz in the Kohn-Sham equations

Recall the central ingredient of the Kohn-Sham (KS) approach to density

functional theory, i.e. the one-electron KS equations,⎛
⎝−1

2
∇2 +

⎡
⎣ N∑

j

∫ |ψj(�r2)|2
r12

d�r2 + VXC(�r1)−
M∑
A

ZA

r1A

⎤
⎦
⎞
⎠ψi = εi ψi.

(10.47)

The term in square brackets defines the Kohn-Sham one-electron oper-

ator and Eq. (10.47) can be written more compactly as

fKS ψi = εi ψi. (10.48)

Most of the applications in chemistry of the Kohn-Sham density func-

tional theory make use of the LCAO expansion of the Kohn-Sham orbitals.

Indeed, the way to proceed is almost identical to the case of the tight-

binding approach that we discussed in the previous chapter. Let us assume

that we are dealing with a finite system and introduce a set of L predefined

basis functions {ημ} and linearly expand the K-S orbitals as

ψi =

L∑
μ=1

cμiημ. (10.49)

We now insert Eq. (10.49) into Eq. (10.48) and obtain

fKS(�r1)

L∑
ν=1

cνiην(�r1) = εi

L∑
ν=1

cνiην(�r1). (10.50)
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If we now multiply this equation from the left with an arbitrary basis

function ημ and integrate over space we get L equations6

L∑
ν=1

cνi

∫
ημ(�r1)f

KS(�r1)ην(�r1)d�r1 = εi

L∑
ν=1

cνi

∫
ημ(�r1)ην(�r1)d�r1, (10.51)

where i runs from 0 to L.

The integrals on the left hand side of this equation define the Kohn-

Sham matrix, FKS, with the corresponding elements defined as

FKS
μν =

∫
ημ(�r1)f

KS(�r1)ην(�r1)d�r1, (10.52)

and on the right hand side we can identify the overlap matrix, S, the ele-

ments of which are given by

Sμν =

∫
ημ(�r1)ην(�r1)d�r1. (10.53)

Both matrices are L×L dimensional. The previous equation can be rewrit-

ten compactly as a matrix equation

FKSC = SCε. (10.54)

Hence, through the LCAO expansion we have translated the non-linear

optimization problem into a linear one, which can be expressed in the lan-

guage of standard algebra.

By expanding fKS into its components, the individual elements of the

KS matrix become

FKS
μν =

∫
ημ(�r1)

(
−1

2
∇2 −

M∑
A

ZA

r1A
+

∫
ρ(�r2)

r12
d�r2 + VXC(�r1)

)
ην(�r1)d�r1.

(10.55)

The first two terms describe the kinetic energy and the electron-nuclear

interaction, and they are usually combined since they are one-electron in-

tegrals7

hμν =

∫
ημ(�r1)

(
−1

2
∇2 −

M∑
A

ZA

r1A

)
ην(�r1)d�r1. (10.56)

For the third term we need the charge density ρ which takes the following

form in the LCAO scheme

ρ(�r) =

L∑
i

|ψi(�r)|2 =

N∑
i

L∑
μ

L∑
ν

cμicνiημ(�r)ην(�r). (10.57)

6We assume without loss of generality that the basis functions are real.
7These are the hooping matrix elements introduced in the frame of the tight-binding

approach.
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The expansion coefficients are usually collected in the so-called density

matrix P with elements

Pμν =

N∑
i

cμicνi. (10.58)

Thus, the Coulomb contribution in Eq. (10.55) can be expressed as

Jμν =
L∑
λ

L∑
σ

Pλσ

∫ ∫
ημ(�r1)ην(�r1)

1

r12
ηλ(�r2)ησ(�r2)d�r1d�r2. (10.59)

Up to this point, exactly the same formulas also apply in the Hartree-

Fock case. The difference is only in the exchange-correlation part. In the

Kohn-Sham scheme this is represented by the integral

V XC
μν =

∫
ημ(�r1)VXC(�r1)ην(�r1)d�r1, (10.60)

whereas the Hartree-Fock exchange integral is given by

Kμν =
L∑
λ

L∑
σ

Pλσ

∫ ∫
ημ(�x1)ηλ(�x1)

1

r12
ην(�x2)ησ(�x2)d�x1d�x2. (10.61)

The L2/2 one-electron integrals contained in hμν can be easily com-

puted. The computational bottle-neck is the calculation of the ∼ L4 two-

electron integrals in the Coulomb and exchange-correlation terms. For

a discussion about efficient ways of computing these latter integrals, see

Ref. [273].

10.6.2 Basis sets

In order to complete our discussion of the LCAO approach in DFT, we shall

now describe the main types of localized basis functions that are used. A

first type of orbitals are the Gaussian-type-orbitals (GTOs), which

have been inherited from wave-functions-based methods like Hartree-Fock.

The GTO basis functions have the following general form

ηGTO = Nxlymzn exp
[−αr2] . (10.62)

Here, N is a normalization factor which ensures that 〈ημ|ημ〉 = 1, but

note that the ημ are not orthogonal. The orbital exponent α determines

how compact or how diffusive the resulting function is. L = l + m + n

is used to classify the GTO as s-functions (L = 0), p-functions (L = 1),

etc. The advantage of this type of basis functions lies in the existence of

very efficient algorithms for calculating analytically the huge number of
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multi-center integrals appearing in the Coulomb and exchange-correlation

terms.

On the other hand, from a physical point of view, Slater-type-orbitals

(STO) seem to be the natural choice for basis functions. They are expo-

nential functions that mimic the exact eigenfunctions of the hydrogen atom.

A typical STO is expressed as

ηSTO = Nrn−1 exp [−βr]Ylm(Θ, φ). (10.63)

Here, n corresponds to the principal quantum number, the orbital exponent

is termed β and Ylm are the usual spherical harmonics. Unfortunately,

many-center integrals are very difficult to compute with STO basis, and

they do not play a major role in the DFT community.

The so-called contracted Gaussian functions (CGF) try to combine

the advantages of the two previous type of orbitals. In this case, several

primitive Gaussian functions are combined in a fixed linear combination:

ηCGF
τ =

A∑
a

daτη
GTO
a . (10.64)

The original motivation for contracting was that the contraction coefficients

daτ can be chosen in a way that the CGF resembles as much as possible a

single STO function. In density functional theory, CGF basis sets enjoy a

strong popularity.

A fourth type of basis functions are the numerical basis functions.

In this case, the orbitals are represented numerically on atomic centered

grids. These functions can be generated, for instance, by numerically solv-

ing the atomic KS equations with a given approximation for the exchange-

correlation functional. Obviously, in this approach the different integrals

are computed numerically.

Irrespective of the type of functions used, the basis sets can be classified

in the following simple way that already gives a hint about their quality.

The simplest (and smallest) basis functions are those that use a single basis

function for each atomic orbital up to and including the valence orbitals.

These basis sets are called, for obvious reasons, minimal basis sets. A

typical representative is the STO-3G basis set, in which three primitive

GTO functions are combined into one CGF. For carbon, this basis set

consists of five functions, one describing the 1s atomic orbital, another one

for the 2s orbital and three more for the 2p shell. One should expect no

more than only qualitative results from minimal sets and nowadays they

are hardly used anymore.
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In the next level of sophistication are the double-zeta basis sets. Here,

the set of functions is doubled, i.e. there are two functions for each orbital.

If only the valence orbitals are doubled, and each core atomic orbitals is

still described by a single function, the resulting basis set is called split-

valence basis set. Typical examples are the 3-21G or 6-31G Gaussian basis

sets. In most applications, such basis sets are augmented by polarization

functions, i.e. functions of higher angular momentum than those occupied in

the atom. Polarized double-zeta or split valence basis sets are the mainstay

of routine quantum chemical applications since usually they offer a balance

compromise between accuracy and efficiency. Finally, it is obvious how

these schemes can be extended by increasing the number of functions in

the various categories. This results in triple- or quadruple-zeta basis sets

which are augmented by several sets of polarization functions.

If the molecules or solids of interest contain elements heavier than, say

krypton, one usually employs effective core potentials, also called pseudopo-

tentials, to model the core electrons. For a detailed discussion of the theory

of pseudopotentials see Ref. [226].

10.7 DFT performance

Our discussion about density functional theory would not be complete with-

out answering, at least partially, the most obvious question at this stage,

namely: how much should one trust DFT? In other words, what is the

accuracy of DFT at present, i.e. with the existent approximations for the

exchange-correlation functional? A detailed answer to this question is out

of the scope of this book and we just pretend to give here a flavor about

DFT’s performance in the case of the systems of interest in molecular elec-

tronics.

Let us remind again that the standard DFT, as presented here, gives

only results for the ground state energy and density of a system and related

properties. In the context of chemistry (or molecular physics), this means in

practice that one can expect from DFT information about the structure of

molecules, vibrational frequencies, atomization energies, dipole moments,

reactions paths and other similar properties. In what follows, we shall illus-

trate DFT’s performance with a very brief discussion of its predictions for

some basic molecular properties. We follow here Ref. [273], where an excel-

lent discussion of “goodness” of DFT in the context of quantum chemistry

can be found.
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Table 10.1 Calculated and experimental bond lengths for different bonding
situations [Å]. The LDA calculations were done with the 6-31G(d) basis set
and the GGA ones with the 6-311++G(d,p) basis set.

Bond LDA BLYP BP86 BPW91 Experiment

H-H RH−H 0.765 0.748 0.752 0.749 0.741
H3C-CH3 RC−C 1.510 1.542 1.535 1.533 1.526

RC−H 1.101 1.100 1.102 1.100 1.088
H2C=CH2 RC−C 1.331 1.339 1.337 1.336 1.339

RC−H 1.098 1.092 1.094 1.092 1.085
HC≡CH RC−C 1.203 1.209 1.210 1.209 1.203

RC−H 1.073 1.068 1.072 1.070 1.061

Molecular structures: DFT calculations provide the electronic part

of the energy of a molecule. If this information is combined with the clas-

sical nuclear energy in Eq. (10.5), the total energy of the molecule can be

minimized with respect to the position of the nuclei to find the most stable

structure. This is one of the main applications of DFT, which gives the

bond lengths of a large set of molecules with a precision of 1-2%. Gradient-

corrected and hybrid functionals have improved the LDA results, which

for this property are already surprisingly good. The degree of accuracy

is illustrated in Table 10.1, where we show the calculated bond distances

for several basic covalently bound molecular structures with different func-

tionals and their comparison with experimental results (data taken from

Ref. [273]).

Vibrational frequencies: The frequencies of molecular vibrational

modes can be calculated by evaluation of second derivatives of the total

energy with respect to Cartesian coordinates. DFT predicts the vibrational

frequencies of a broad range of molecules within 5-10% accuracy.

Scott and Radom [285] have investigated the performance of a variety

of gradient-corrected and hybrid functionals for predicting vibrational fre-

quencies of a large set of 122 test molecules. By fitting computed data to a

basis of 1066 experimental vibrations, they obtained scaling factors relating

the computed frequencies to experimental values. Some of the results are

reproduced in Table 10.7.

Atomization energies: The most common way of testing the perfor-

mance of new functionals is the comparison with the experimental atom-

ization energies (the energies needed to break up a molecule into its con-

stituent atoms) of well-studied sets of small molecules. These comparisons
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Table 10.2 Vibrational frequencies of a set of 122 molecules: functional, fre-
quency scaling factor (f), root mean square (RMS) error after scaling in cm−1

and percentage of frequencies that fall outside the experimental values by more
than 10%.

Functional f RMS 10%

BLYP 0.9945 45 10
BP86 0.9914 41 6
B3LYP 0.9614 34 6
B3P86 0.9558 38 4

B3PW91 0.9573 34 4

have established the following hierarchy of functionals:

LDA < GGA < hybrid functionals .

The hybrid functionals are progressively approaching the desired accu-

racy in the atomization energies, and in many cases they deliver results

comparable with highly sophisticated post-HF methods.

Ionization and affinity energies: The energies needed to remove

(IE) or to add an electron (EA) can be determined with hybrid functionals

with an average error of around 0.2 eV for a large variety of molecules.

The discussion above shows the impressive accuracy that DFT is achiev-

ing in many situations. However, it is worth stressing that DFT (with the

present approximations) is still failing in situations where the density is

not a slowly varying function. An important example of the failure of DFT

is the description of systems where the binding is dominated by van der

Waals interactions, which is something essential for supramolecular chem-

istry. Another example is the description of electronic tails evanescing into

the vacuum near the surfaces of bounded electronic systems, which is a key

problem in the context of the STM.

10.8 DFT in molecular electronics

In this final section we shall discuss how DFT is used in practice in the field

of molecular electronics. For this purpose, we shall first discuss how DFT

can be combined with the nonequilibrium Green’s function (NEGF) tech-

niques presented in previous chapters to describe the electronic transport

in atomic-scale junctions. Then, we shall end this section with some com-
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Fig. 10.1 Schematic representation of a molecular junction. We distinguish regions:
the left (L) and right (R) semi-infinite electrodes and the central region or “extended
molecule” that contains the molecule and part of the leads.

ments about the advantages and limitations of such a combination. For a

more detailed discussion of the use of DFT to compute the transport prop-

erties of nanostructures, we recommend the excellent review of Pecchia and

Di Carlo [286].

10.8.1 Combining DFT with NEGF techniques

In section 10.6 we have shown how DFT is applied to the description of

the electronic structure of finite systems like molecules or atomic clusters,

in particular within the LCAO approach. For periodic systems like infinite

solids, one proceeds in a similar manner, but in this case the Kohn-Sham

equations are solved in reciprocal space. In both types of systems the

dimension of the problem, i.e. the number of Kohn-Sham equations, is

finite. In the first case this dimension is mainly determined by the number

of atoms in the system, whereas in the latter it is governed by the size of

the unit cell. In molecular electronics we are interested in the description of

the electronic structure and transport properties of atomic-scale junctions,

like the one depicted in Fig. 10.1. These junctions are neither finite nor

periodic, which makes more complicated the application of DFT. Moreover,

we are also interested in situations in which these systems are driven out

of equilibrium, for instance by the application of a bias voltage. Such

situations are out of the scope of the standard ground state DFT. The

goal of this subsection is to show how DFT can be combined with the

Green’s function techniques of Chapters 5-8 to describe the equilibrium

and transport properties of nanoscale junctions.

When applying DFT to systems like the one in Fig. 10.1, one is con-
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fronted with the following two questions: (i) how to compute the charge

density? and (ii) how to make finite the dimension of the problem? Both

questions can be answered with the help of Green’s function methods as

follows. First, we divide the junction into three parts: the left (L) and right

(R) electrodes and a central part or “extended molecule” that contains the

narrowest part of the junction (the molecule in Fig. 10.1) and part of the

electrodes.8 Second, within the LCAO approach, the charge density is com-

puted in terms of the density matrix, see Eqs. (10.57) and (10.58), which

in turn can be computed in terms of Green’s functions in the following

way. Let us assume that the system is in equilibrium. The retarded and

advanced Green’s functions Gr,a
μν referred to the local basis functions μ and

ν can be written via their spectral representation [see Eq. (5.14)] as follows

Gr,a
μν (E) =

∑
i

cμic
∗
iν

E ± iη − Ei
. (10.65)

Here, the c’s are the coefficients of the expansion of the system eigenfunc-

tions (or molecular orbitals) in terms of local orbitals and Ei are the cor-

responding eigenenergies. Notice that
∑

i cμic
∗
iν is nothing but the element

Pμν of the density matrix, see Eq. (10.58).9 Therefore, the density matrix

in the central part of the junction can be calculated from the retarded or

advanced Green’s function matrix of this part of the system as10

P = ∓ 1

π

∫ ∞

−∞
dE Im {Gr,a(E)} f(E), (10.66)

where f(E) is the Fermi function that ensures that only the occupied states

contribute to the electron density. Now, these Green’s functions can be

computed via their Dyson’s equation [see Eq. (8.26)]

Gr,a = [(E ± iη)S−H−Σr,a
L −Σr,a

R ]
−1
, (10.67)

where S is the overlap matrix, H is the one-electron Kohn-Sham Hamilto-

nian of the central part and Σr,a
L/R are the left and right self-energies (see

section 8.1). The calculation of these self-energies requires the computation

of the Hamiltonian and Green’s functions of the electrodes. This issue will

be discussed in detail below.

This discussion shows that DFT can be applied to describe nanoscale

junctions by using Eq. (10.66) for determining the density matrix, rather
8The reason for dividing the system in this way will become clear below.
9In Eq. (10.58), we assumed that the c’s were real, but in principle, these coefficients

can be complex numbers and then,
∑

i cμic
∗
iν is the most general definition of Pμν .

10In what follows, we shall not write explicitly the subindexes CC to refer to the central
part of the junction, as we did, for instance, in section 8.1.
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Re(z)

Im
(z

) C

R

Fig. 10.2 The integral of a retarded Green’s function Gr(z), considered as a function
of a complex variable z, is the same along the contour C and along the real axis R.
However, Gr(z) is much smoother away from the real axis and for this reason, it is
advantageous to integrate the Green’s functions in Eq. (10.66) along a contour like C.

The lower limit of this contour has to be below the lowest lying states of the system,
while the upper limit should be the chemical potential of the system.

than solving the Kohn-Sham equations. The evaluation of the density ma-

trix requires the calculation of the Green’s functions via Eq. (10.67) from

the knowledge of the Kohn-Sham Hamiltonian of the central part. Since this

Hamiltonian depends on the charge density (or density matrix), Eqs. (10.66)

and (10.67) are coupled and they have to be solved in a self-consistent man-

ner. Finally, when these equations are solved, one can compute the different

equilibrium properties of a junction such as charge density, total energy, lo-

cal density of states, etc.

A technical comment is pertinent at this point. Usually Green’s func-

tions vary rapidly as a function of energy, which complicates the integration

appearing in Eq. (10.66). One can get around this problem by making use

of the fact that the Green’s functions are analytical functions and they

can be extended into the complex plane. This means in practice that the

integral in Eq. (10.66) can be done by integrating along a contour in the

complex plane, see Fig. 10.2, where these functions are very smooth. Thus,

one needs a much smaller number of points to carry out the numerical

integration.

The previous discussion also suggests a straightforward way of general-

izing this approach to nonequilibrium situations. In this case, the density

matrix can be expressed in terms of the Keldysh-Green’s functions as

P =
1

2πi

∫ ∞

−∞
dE G+−(E), (10.68)

where G+− can be computed in terms of the retarded and advanced func-

tions as [see Eq. (8.12)]

G+−(E) = 2iGr [ΓLfL + ΓRfR]G
a. (10.69)
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Here, the scattering rates ΓL/R are the imaginary part of the self-energies

Σa
L/R (see section 8.1) and fL/R are the Fermi functions of the left and

right electrodes that include the energy shift caused by the applied bias

voltage. In this latter equation, the retarded and advanced functions can

be calculated from a Dyson’s equation like Eq. (10.67) taking into account

the presence of the bias voltage. Again, Eqs. (10.69) and (10.69) are coupled

and they have to be solved self-consistently. Once this is done, the different

transport properties can be computed as described in Chapter 8. It is

worth mentioning that again the integration in Eq. (10.68) can be done

more efficiently in the complex plane, although this time the integration

close to the Fermi energy requires to modify the contour shown in Fig. 10.2

(see Ref. [287] for details).

The key step to make our generic problem finite was the division of

the system into three parts, see Fig. 10.1. In this division one assumes

that the electrodes are not perturbed by the central part and therefore,

their Hamiltonians and charge densities can be obtained from a separate

(bulk-like) calculation, which only needs to be done once. This assumption

is based on the idea that deep inside a solid the Kohn-Sham potential

approaches the bulk potential. This approximation is often referred to as

the screening approximation and it provides natural boundary conditions

for the potential of the open system. In any calculation, it should be checked

that the potential of the central part actually matches that of the bulk

calculation. Such a check defines in practice the size of the central part and

this size depends on the nature of the electrodes.

The practical implementations of the DFT-NEGF combination differ

mainly in the way in which the electrodes Green’s functions are determined

and how the potential and Hamiltonian of the central part are forced to

match the corresponding ones in the leads. Roughly speaking, one can

grouped all the existent approaches into the following two families:

1.- Methods based on quantum chemistry software. In order to take ad-

vantage of the powerful and well-tested existent quantum chemistry codes,

several groups have implemented the DFT-NEGF approach as follows. The

diagonalization in these codes of the Kohn-Sham Hamiltonian of the finite

central system is replaced by Eqs. (10.68) and (10.69), which are solved

self-consistently. The self-energies required to compute the retarded and

advanced Green’s functions appearing in Eq (10.69) are obtained from a

separate calculation, from which one extracts the bulk Hamiltonian as well

as the coupling matrix elements between the central part and the leads.

This separate calculation can be done at different levels of sophistication.
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Fig. 10.3 Schematic description of the self-consistent loop in DFT for the determina-
tion of the electronic structure of a finite system (left panel) and an infinite non-periodic
system (right panel) [293]. For an isolated system, the density matrix is constructed by
occupying the states of the Kohn-Sham Hamiltonian H with N electrons. For an infi-
nite system, the density matrix is computed from the nonequilibrium Green’s functions,
see Eq. (10.68), which requires the determination of the self-energies from a separate
calculation.

Thus for instance, some authors describe the leads in terms of simple pa-

rameterized tight-binding methods [288–292] and others extract the bulk

Hamiltonian from DFT calculations of finite clusters [293, 294, 247]. The

bulk parameters are then used to construct surface Green’s functions using

recursive methods like those described in Refs. [198, 295, 296]. Following

Damle et al. [293], we summarize in Fig. 10.3 this approach and emphasize

the main differences with the standard method used for finite equilibrium

systems.

In this approach it is implicitly assumed that the central Hamiltonian

is a functional of the charge density only in the central system. This is

indeed the case for the contributions coming from the kinetic energy and the

electron-nuclei interaction, see Eq. (10.56). It is also true for the exchange-

correlation potential, see Eq. (10.59), but it is not really the case for the

classical Coulomb contribution, see Eq. (10.60). In this latter term, there

are non-local contributions coming from the leads, which are not easy to

describe correctly in the approach discussed in the previous paragraph. The

lack of these non-local contributions causes sometimes severe problems in

the convergence procedure in this method. However, it seems that, as shown

in Ref. [247], if the central system is sufficiently large, those additional

contributions do not play a major role in the physical quantities of interest,

and the self-consistent loop is not crucial in equilibrium systems.

2.- Methods based on solid state software. In the implementations of

the DFT-NEGF method based on the computer codes specially designed

for the description of (infinite) solid states systems, the Hartree potential
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VH, or classical Coulomb term of Eq. (10.59), is obtained in the central

region as a solution of the Poisson equation (in Hartree atomic units)

∇2VH = −4πρ(�r). (10.70)

This equation needs to be solved with appropriate boundary conditions

given by the contact potentials, which are obtained from a separate bulk

calculation. This Poisson equation can be solved with different strategies.

For instance, in the TRANSIESTA code [287], which is an extension of

the SIESTA code for equilibrium systems, this equation is solved via a

fast Fourier transformation algorithm by constructing a periodic supercell.

In other implementations, this equation is solved in real space with 3D

multigrid algorithms [297, 298].

In this approach, the Hamiltonian of the leads, necessary for the con-

struction of the self-energies, is determined with recursive methods similar

to those employed in the method described above. This second approach

Self−consistent
loop

Guess input density

Solve the Poisson equation
with the proper boundary
conditions for the external
potential. This gives the

Hartree potential

Hartree potential + xc potential

of the device and load
the lead Hamiltonians

Solve for the NEGF
of the system and 

compute the density
matrix from Eq. (10.68)

bulk Hamiltonians of
Calculation of the 

the electrodes

Compute the Hamiltonian 

Fig. 10.4 Flowchart of the self-consistent loop for the solution of the nonequilibrium
transport problem based on the solution of the Poisson equation [286].



Electronic structure II: Density functional theory 291

Table 10.3 List of implementations of the combination of DFT and Green’s func-
tion techniques for the description of equilibrium and nonequilibrium properties of
nanoscale junctions. We provide the name of the code, if any, some characteristics,
the reference equilibrium DFT code in which it is based on, and a reference where
details about it can be found. Methods 1 and 2 refer to the methods described in
the text, BC means boundary conditions and TB corresponds to tight-binding.

Name Key features Basis code Ref.

McDCAL Method 2, real space, SIESTA [297]
non-linear transport

TRANSIESTA Method 2, periodic BC, SIESTA [287]
non-linear transport

— complex band structure method, FIREBALL [299]
linear transport

— Periodic BC + Wannier functions, Dacapo [300]

linear transport

SMEAGOL Method 2, periodic BC, non-linear SIESTA [301]
and spin-dependent transport

ALACANT Method 1, TB for the leads GAUSSIAN [290]

— Method 1, DFT for the leads, GAUSSIAN [294]

non-linear transport

— Method 1, TB for the leads, GAUSSIAN [292]

non-linear transport

Cluster-based Method 1, DFT for the leads, TURBOMOLE [247]
method linear transport

is summarized in the flowchart of Fig. 10.4.

We conclude this discussion by listing a few implementations of the

combination of DFT and Green’s function techniques, see Table 10.3. This

list is by no means complete and it is included here just to give some entry

points into the literature where one can find the technical details that we

have skipped in our discussion of the use of DFT for transport problems.

10.8.2 Pluses and minuses of DFT-NEGF-based methods

Let us end this section with some brief comments about the advantages and

drawbacks of the DFT-NEGF approach for the description of the proper-

ties of nanoscale junctions. As we have seen in previous sections, DFT

was designed to describe the ground state energy and related equilibrium
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properties of a system. In this sense, from DFT we can expect to obtain an

excellent description of, for instance, contact geometries, breaking forces,

vibration modes and electron-phonon coupling constants. This constitutes

a very valuable information for the understanding of issues like the struc-

ture and formation mechanisms of molecular junctions as well as for the

description of the vibration-assisted inelastic transport (see Chapter 17) or

the phonon contribution to heat conduction in these systems.

On the other hand, the use of DFT for transport problems has clear

limitations. As it is used in these problems, DFT just provides a mean field

approach which is unable to describe strong electronic correlations like the

ones that give rise to phenomena such as Coulomb blockade or the Kondo

effect (see Chapter 15). Furthermore, the use of Kohn-Sham orbitals as the

molecular orbitals of a system is just an approximation that in some cases

leads to large errors in the position of the relevant energy levels responsible

for the transport. In the case of molecular junctions, the transport often

proceeds through the tails of the molecular orbitals closest to the Fermi

energy. Thus, small errors in the position of those levels can lead to big

errors in the transport properties. It is also worth stressing that the use

of DFT in nonequilibrium situations, as it was described above, is just a

reasonable Ansatz, but it is not really justified at the same level as the

corresponding ground state theory. For all these reasons, the DFT-NEGF

combination should be seen as a first step towards a quantitative theory of

transport in nanoscale junctions.

In summary, DFT provides crucial information for the description of the

transport properties of atomic and molecular junctions, but it is important

to be aware of its limitations. In Part 4, we shall discuss in detail the per-

formance of this theory when applied to different aspects of the electronic

and thermal transport of molecular junctions.

10.9 Exercises

10.1 Energy in the Hartree-Fock approximation: Show that the expecta-
tion value of the electronic Hamiltonian of Eq. (10.3) in the Hartree-Fock approx-
imation [see Eq. (10.9)] is given by Eq. (10.11).

10.2 Hartree-Fock equations: Use the variational principle to derive the
Hartree-Fock equations [see Eqs. (10.15) and (10.16)].

10.3 Kohn-Sham equations: Use the variational principle to derive the Kohn-
Sham equations [see Eq. (10.36)].
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Chapter 11

The conductance of a single atom

In order to understand the electrical and thermal conduction through

molecular junctions, which is the main goal of this monograph, it is neces-

sary to first understand the corresponding properties of the metallic atomic

contacts that are used as electrodes in these nanoscale circuits. The con-

duction through atomic-scale wires constitutes a field of its own that started

at the beginning of the 1990’s and it has reached maturity in the last years.

Metallic wires of atomic dimensions have become a marvelous playground

where many basic concepts of quantum transport have been tested [15].

The physics of these nanocontacts and the progress made in this field up

to 2003 have been reviewed in a magnificent article by Agräıt, Levy Yeyati

and van Ruitenbeek [15].1 For this reason, we shall not make any attempt

to provide a historical revision of this field or to give a complete list of

references. Instead, we shall present here a short elementary introduction

to some basic aspects that will be useful in subsequent chapters where the

physics of molecular transport junctions is described.

With this idea in mind, we initiate here a series of two chapters devoted

to the electrical conduction through metallic atomic-size contacts. In this

first chapter, we shall focus our attention on the conduction through non-

magnetic contacts, with special emphasis in the simplest structures, namely

single-atom junctions and monoatomic chains. Our main goal here is to es-

tablish the relation between the transport characteristics of these nanowires

and the quantum properties of those atoms used as building blocks. The

next chapter will be devoted to the spin-dependent transport through mag-

netic atomic-size contacts. This is a topic in which a lot of progress has

been made in recent years and these advances are not covered in the review

1A brief introduction to the transport properties of metallic atomic contacts can be
found in [302].
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of Ref. [15].

11.1 Landauer approach to conductance: brief reminder

Before discussing the experimental results for the conductance of atomic

contacts, it is convenient to say a few words about how this transport prop-

erty is described theoretically. The metallic point contacts and nanowires

that we are considering here have characteristic dimensions that are much

smaller than the typical elastic and inelastic scattering lengths of metals. In

particular, the electron mean free path for elastic scattering on defects and

impurities near the contact is usually much larger than the contact size.2

The main source of (elastic) scattering in these nanocontacts are the walls

forming the boundary of the system. Thus, the transport through atomic

contacts is phase-coherent and it can be described within the framework of

the scattering or Landauer approach, which was extensively described in

Chapter 4.

Within this approach, the low-temperature linear conductance G is

given by Landauer formula

G = G0T (EF) = G0Tr
{
t†t

}
(EF), (11.1)

where T (E) = Tr{t†t}(E) is the energy-dependent total transmission of

the structure, EF is the Fermi energy and G0 = 2e2/h = 77.5 nS = (12.9

kΩ)−1 is the conductance quantum.3 Here, t is the transmission matrix

of the contact whose elements tmn give the probability amplitude for an

electron wave in mode n on the left of the contact to be transmitted into

mode m on the right of the contact. Since the trace is an invariant, one

can choose to write Eq. (11.1) in the basis that diagonalizes the matrix t†t
and then the conductance expression adopts the following simplified form

G = G0

Nc∑
n=1

Tn(EF), (11.2)

where Tn (with 0 ≤ Tn ≤ 1) are the transmission coefficients defined as

the eigenvalues of t†t. A simple estimate of the number channels Nc in 3D

metallic contact is given by Nc ≈ (πR/λF)
2, where R is the radius of the

contact radius and λF the Fermi wavelength of the conduction electrons.

For one-atom thick contacts this number is between 1 and 3 for most metals.
2Moreover, the spin-diffusion and the phase-breaking lengths are also typically much

larger than the contact dimensions.
3The factor 2 is due to the spin degeneracy in non-magnetic situations.
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Fig. 11.1 Three typical recordings of the conductance G measured in atomic-size con-
tacts for gold at helium temperatures, using the MCBJ technique. The electrodes are
pulled apart by increasing the piezo-voltage. The corresponding displacement is about
0.1 nm per 25 V. After each recording the electrodes are pushed firmly together, and
each trace has new structure. Reprinted with permission from Ref. [74].

As we shall see later in this chapter, the actual number channels that give

a significant contribution to the conductance depends on the geometry of

the narrowest part of the contacts and on the number of valence orbitals of

the atoms of the corresponding metal.

11.2 Conductance of atomic-scale contacts

The first question that we want to address is: what is the conductance

of a metallic atomic contact? As we discussed in Chapter 2, a metallic

contact of atomic size can be fabricated with various techniques, but the

most widely used ones are the scanning tunneling microscope (STM) and

the mechanically controllable break-junction (MCBJ). In Fig. 11.1 one can

see some typical examples of the conductance measured during breaking of

a gold contact at low temperatures, using a MCBJ device.4 Notice that the

conductance decreases by sudden jumps, separated by “plateaus”, which

have a negative slope, the higher conductance the steeper. Some of the

plateaus are remarkably close to multiples of the conductance quantum,

G0; in particular the last plateau before loosing contact is nearly flat and

very close to 1G0.
5 This behavior resembles the conductance quantization

4In these atomic contacts the current-voltage characteristics are typically linear at low
voltages (below, let us say, 100 mV) and for this reason we shall mainly talk about the
linear conductance as the central transport property.
5As it will become clear later in this chapter, the last conductance plateaus most likely

correspond to contacts with one atom in cross section and, in particular, long plateaus,
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Fig. 11.2 Evolution of conductance vs tip-sample relative displacement for several rep-
resentative nanocontacts of Al and Pb in STM experiments at low temperatures (4.2 K
for Al and 1.5 K for Pb). The black and grey curves correspond to elongation (open-
ing of the contact) and contraction (closing of the contact), respectively. Adapted with
permission from [264]. Copyright 1998 by the American Physical Society.

that occurs in point contacts defined in 2D electron gases (2DEG), see sec-

tion 4.6.1 and in particular Fig. 4.11. Indeed, different authors interpreted

the step-like evolution of the conductance as an evidence of conductance

quantization in atomic contacts. However, closer inspection of Fig. 11.1

shows that many plateaus cannot be identified with integer multiples of

the quantum unit, and the structure of the steps is different for each new

recording. Also, the height of the steps is of the order of the quantum unit,

but they can vary by more than a factor of 2, where both smaller and larger

steps are found.

The conductance traces not only change from realization to realiza-

tion, but they are also clearly distinct for different metals. In Fig. 11.2

we show several examples of conductance curves for aluminum and lead

wires obtained in the last stages of the breaking of contacts formed with a

STM at low temperatures. In the case of aluminum, one finds that many

plateaus have an anomalous slope: the conductance increases when pulling

the contact, in contrast to the results for gold. For aluminum, the last

plateau before breaking is still close to the quantum conductance, but one

frequently observes the conductance diving below this value, and then re-

covering to nearly 1G0, before contact is lost. Lead, on the other hand,

has a last conductance value, which is clearly above 1G0 and the slope is

positive, i.e. the conductance is reduced upon stretching.

It is worth mentioning that, as one can see in the examples of Fig. 11.2,

like the one in the left curve in Fig. 11.1, are a signature of the formation of a monoatomic
chain.
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Fig. 11.3 Simultaneous measurement of force and conductance on atom scale point
contacts for Au. The sample is mounted on a cantilever beam and the force between tip
and sample is measured by the deflection of the beam using an AFM. The measurements
are done in air at room temperature. Reprinted with permission from [58]. Copyright
1996 by the American Physical Society.

the conductance traces recorded when opening the contacts differ from

those recorded during the closing of the contacts. The reason for this lies

in the different atomic arrangements which can be achieved when stretching

as opposed to the ones when pushing the electrodes together. Furthermore,

as we shall explain later, the shape of the conductance traces also depends

on the technique used for fabricating the nanowires.

The previous examples raise several basic questions. The main one is

related to the origin of the conductance steps. In the case of point contacts

defined in 2DEGs, these steps are due to continuous change in the number

of conduction channels as the width varies. In that case the abruptness of

the jumps depends in particular on the shape of the confinement potential.

However, in the case of atomic contacts the cross section cannot be changed

continuously. Early molecular dynamic simulations [303, 304, 262] already

suggested that these jumps could be due to sudden atomic rearrangements.

The idea goes as follows. Upon stretching of the contact, the stress accumu-

lates elastic energy in the atomic bonds over the length of a plateau. This
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energy is suddenly released in a transition to a new atomic configuration,

which will typically have a smaller contact size.

The direct proof of the relation between atomic rearrangements and con-

ductance steps was provided in an experiment by Rubio, Agräıt and Vieira

[58], where the conductance for atomic-size gold contacts was measured si-

multaneously with the force on the contacts, see Fig. 11.3. Notice that the

stress accumulation on the plateaus and the coincidence of the stress relief

events with the jumps in the conductance can be clearly distinguished.

11.3 Conductance histograms

As shown in the previous section, the conductance of an atomic con-

tact changes from realization to realization, but there are features that

are certainly reproducible, like the last plateau in gold contacts. In or-

der investigate objectively the intrinsic conductance of atomic junctions,

several authors introduced a method [305, 306], which consists in record-

ing histograms of conductance values encountered in a large number of

runs.6 The most studied metal has been gold, which has been investi-

gated with various techniques and under very different conditions, see e.g.

Refs. [60, 70, 307–315].7 In Fig. 11.4 we show conductance histograms of

gold contacts that were measured at different temperatures and different

bias voltages using the MCBJ technique [315].8 Notice that the histograms

are largely dominated by the presence of a peak located very close to 1G0,

while some additional peaks close 2 and 3G0 are also visible. Similar his-

tograms to that of gold are found for the other two noble metals and an

example for silver can be seen in the upper left panel of Fig. 11.6.

It is worth stressing that, although it does not seem to be very obvi-

ous in the case of gold, the conductance histograms are in general rather

sensitive to experimental conditions such as temperature, voltage, breaking

speed, environmental conditions, etc., see e.g. Ref. [315]. To illustrate this

point, let us briefly discuss here the influence of the experimental technique.

As mentioned in the previous section, the shape of the conductance traces

6This method was adopted later by Xu and Tao to study the conductance of single-
molecule junctions [549].
7This metal plays a very important role in molecular electronics since it is by far the

most common material used for the electrodes in molecular junctions.
8The Ph.D. thesis of A.I. Yanson [315] contains the most systematic study of the con-

ductance histograms of various metals published to date (see in particular Chapter 4 of
this work). Another systematic analysis can be found in Ref. [313].
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(b)(a)

Fig. 11.4 (a) Conductance histograms of gold at 4.2, 77 and 295 K using the notched-
wire MCBJ technique. The inset shows the first peaks on the expanded scale. (b)
Conductance histograms of gold built from 2000 traces recorded at 1.25 V bias and
12 K (gray). The low temperature histogram (4.2 K) from the left panel is shown for
comparison (black). Note that the vertical axis is in logarithmic scale. Reprinted with
permission from [315].

depends on the sample fabrication method and this variation is reflected in

the histograms. This fact can be easily understood with the help of a me-

chanical model of the atomic contact and its leads [316]. The nanowire can

be modeled as a series of the atomic contact between the left and the right

lead. The leads are modeled as one effective spring with a spring constant

Ks. Obviously, when the spring constant of the leads is smaller than the

effective spring constant of the atomic contact, only a small fraction of the

total applied stretching force is concentrated at the atomic contact. When

pulling the electrodes apart, the leads are elongated and the atomic contact

remains almost unchanged. The conductance trace would thus display hor-

izontal plateaus. The plateaus however do in fact not correspond to values

which are favored electronically but by the minimum force. When however,

the spring representing the atomic contact is softer than the lead springs (in

Fig. 11.5 this is modeled as atomic contact without spring, thus an infinite

spring constant of the lead), the majority of the strain is concentrated at

the contact. It has to respond to the changing separation of the leads result-

ing in plateaus with rich substructure and rather broad conductance peaks

in the histogram. When comparing the various techniques with respect to

this property, we can deduce the following rule of thumb: Techniques with

short free-standing electrodes such as the lithographic MCBJ technique are

supposed to give rise to plateaus with fine structure and wide histogram

peaks, while STM techniques and notched-wire MCBJs are expected to

show straight plateaus and narrower peaks for the same metal.
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(b)(a)

Fig. 11.5 (a) Molecular dynamics simulation of the elongation of a Au nanocontact.
Inset: Initial atomic configuration. Top panel: Tensile force on the contact during
elongation: Elastic straining of the metallic bonds interrupted by mechanical instabilities
and processes. Middle panel: Conductance and minimum cross section area (rs 51.6 Å is
the Wigner-Seitz radius for Au). Lower panel: Transmissions coefficients of conductance
channels. For smaller contacts, stages appear where the transmission is carried by a
few almost fully transmitting channels, giving rise to a conductance plateau slightly
downshifted from an integer value (G = {1, 3, 6}G0). (b) The same as in the left panel
but for a contact in series with a spring, in order to account for finite stiffness of the
experimental setup. The spring constant is here taken to be Ks = 25 N/m corresponding
to a typical value for contacts fabricated with an STM. Reprinted with permission from
[316]. Copyright 1997 by the American Physical Society.

For alkali metals (Na, K, etc.) one finds histograms at low temperatures

with peaks near 1, 3, 5 and 6 times G0 [306]. An example for sodium is

shown in the upper right panel of Fig. 11.6. The fact that peaks near 2

and 4G0 are absent points at an interpretation in terms of a smooth, near-

perfect cylindrical symmetry of the sodium contacts. The alkali metals can

be described to a good approximation as free electron systems. Within this

framework, it can be shown that in smooth cylindrical contacts with con-

tinuously adjustable contact diameter [143, 317], the conductance increases

from zero to 1G0 as soon as the diameter is large enough, so that the first

conductance mode is occupied. When increasing the diameter further, the

conductance increases by two units because the second and third modes are

degenerate. In a similar way, one can explain the absence of a peak at 4G0
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Fig. 11.6 Conductance histograms of several metals obtained using the MCBJ tech-
nique. All the histograms were recorded at 4.2 K, except for Nb, which was obtained at
16 K. The conductance was measured at 20 mV for Ag and Nb, 10 mV for Na and Al
and 100 mV for Pb and Pt. Adapted with permission from [315].

and the presence of peaks at 5 and 6G0.

The analysis of atomic contacts of monovalent metals (alkali and noble

metals) suggests that there is certain tendency to observe quantized values

of the conductance, at least in the very last stages of the formation of these

atomic contacts. However, this tendency is by no means universal. Indeed,

most multivalent metals only show a rather broad first peak, which reflects

the conductance of a single-atom contact (see discussion below). This peak

can generally not be identified with an integer value of the conductance.

This is illustrated in Fig. 11.6 for Pb, Nb and Pt, which exhibit peaks at

roughly 1.7, 2.3 and 1.6G0, respectively. On the other hand, there are a

few examples of multivalent metals, which show pronounced peaks in the

histograms, like for instance Al [318] (see Fig. 11.6), Zn [315, 319, 320]

and Mg [321]. As we shall discuss in the next section, the histogram for Al

throws doubt upon a straightforward interpretation of the histogram peaks

in terms of conductance quantization.

To conclude this section and following Ref. [315], we can summarize the

findings concerning the conductance histograms of atomic contacts in the

following way:
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• With the exception of alkali metals, the highest peak is always lying at

the lowest conductance value.

• The position of this peak for all the elements falls in the range between

0.7 and 2.3G0. There is no structure related to metallic conductance

in the histograms below the position of the first peak.

• For free electron-like alkali metals the first peak is extremely sharp and

is located almost exactly at 1G0. This statement also extends to the

almost free electron-like noble metals.

• For divalent metals (zinc, magnesium) and trivalent ones (aluminum)

the first peak is rather sharp and located slightly below 1G0. Other

multivalent metals, and in particular transition metals, exhibit a broad

first peak located well above 1G0 and in some case like niobium it lies

even above 2G0.

11.4 Determining the conduction channels

As the Landauer formula indicates [see Eqs. (11.1) and (11.2)], the con-

ductance measurements gives us only access to the total transmission

T =
∑

n Tn at the Fermi energy. Obviously, the experimental determina-

tion of the individual transmission coefficients, Tn, could provide a valuable

insight into the origin of the differences between atomic contacts of different

metals. From a mathematical point of view, it is clear that the extraction

of the set {Tn} requires the analysis of transport properties that depend on

the transmission coefficients on a non-linear manner. As we saw in section

4.7, the shot noise is an example of such a quantity. Indeed, the experimen-

tal study of shot noise has provided very important information about the

conduction channels of both atomic contacts and single-molecule junctions.

This is discussed in detail in Chapter 19.

In this section we shall focus our attention on the first method that was

used to extract the individual transmission coefficients of an atomic con-

tact and which continues to be the most precise one. This method was put

forward by Scheer et al. [77] and it is based on the analysis of the subgap

structure in superconducting contacts. Let us explain this idea in certain

detail. Many simple metals, like Al, Pb, Nb, etc., are superconducting be-

low a critical temperature of the order of a few K. In the superconducting

state these metals exhibit a gap in density of states, Δ, which is typically

between 0.1 and 1 meV. This gap strongly influences the transport prop-

erties of superconducting contacts (including atomic junctions) leading to
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Fig. 11.7 Schematic representation of the multiple Andreev reflection (MAR) that take
place in a contact between two superconductors with gap Δ. We have sketched the
density of states of both electrodes, which exhibits a singularity at the gap edges. In order
to simplify these graphical representations, we have not shifted the DOS of the leads with
bias voltage, but equivalently we have taken into account the fact the quasiparticles gain
an energy eV every time they cross the junction. (a) This panel describes the process in
which a single electron tunnels through the system overcoming the gap due to a voltage
eV ≥ 2Δ. (b) Andreev reflection process in which an electron is reflected as a hole
transferring a Cooper pair to the other electrode. This process has a threshold voltage
equal to Δ/e and its probability is proportional to T 2. (c) MAR of order 3 in which a
quasiparticle is reflected twice before it finds an available state in the right electrodes.
In this process three electron charges are transferred across the junction, the threshold
voltage is 2Δ/3e and its probability is proportional to T 3. Higher-order processes with

contributions proportional to Tn can also occur when the bias voltage is larger than
2Δ/ne (with n integer).

highly non-linear current-voltage (I-V) characteristics. In order to under-

stand why this is so, let us consider a junction with a single conduction

mode of transmission T . In the limit T � 1, we have essentially a tunnel

junction and the I-V characteristic for a superconducting tunnel junction

is known to directly reflect the gap [702]. As illustrated in Fig. 11.7(a), no

current flows until the applied bias exceeds 2Δ/e, after which the current

jumps to approximately the normal-state resistance line. For eV > 2Δ

single quasiparticles can be transferred from the occupied states at EF−Δ

on the low voltage side of the junction to empty states at EF + Δ at the

other side. For eV < 2Δ this process is forbidden, since there are no states

available in the gap.

If the transmission of the junction is not too low, one can still have cur-

rent for voltages smaller than 2Δ/e due to higher-order tunnel processes.

Figure 11.7(b) illustrates a process, known as Andreev reflection, in which

an electron is reflected as hole leading to the transfer of a Cooper pair to

the other side of the junction.9 The Andreev process is allowed for eV > Δ

9This process can also be viewed as the simultaneous tunneling of two quasiparticles.



306 Molecular Electronics: An Introduction to Theory and Experiment

0 0.5 1 1.5 2 2.5 3
eV/Δ

0

1

2

3

4

5

eI
/G

N
Δ

0 0.5 1 1.5 2 2.5 3
eV/Δ

0
1
2
3
4
5
6
7

G
/G

N

T = 0.2
T = 0.4
T = 0.81.0

0.95

0.8
0.6

0.4
0.2 0.01

(a) (b)

Fig. 11.8 (a) Zero-temperature I-V characteristics of a single channel superconducting
quantum point contact for different values of the normal transmission coefficient (indi-
cated in the graph). Notice that the current has been normalized with the normal state
conductance GN = G0T to see all the curves in the same scale. (b) The corresponding
differential conductance G = dI/dV for three different values of the transmission. As
a guide for the eyes, the vertical dotted lines indicate the position eV = 2Δ/n with
n = 1, . . . , 6. From Ref. [326].

and its onset causes a step in the current at V = Δ/e. The height of

the current step is smaller than the step at 2Δ/e by a factor T , since the

probability for two particles to tunnel is T 2. Depending on the junction

transparency, similar processes of order n involving the transfer of n parti-

cles can occur. These processes give rise to current onsets at eV = 2Δ/n

with a step height proportional to T n. An example for n = 3 is illustrated in

Fig. 11.7(c). These processes are referred to as multiple Andreev reflections

(MARs) [323].10 The microscopic theory of MARs for a single-channel point

contact was developed in the late 1980’s and in the 1990’s by several groups

independently [324–328]. In Fig. 11.8 we show the zero-temperature I-V

curves and the corresponding differential conductance for different values of

the normal transmission coefficient. Notice the appearance of a pronounced

structure in the I-Vs close to voltages V = 2Δ/ne (with n integer) as a re-

sult of the onset of the different MAR processes. This structure, which is

known as subharmonic gap structure, is more clearly seen in the differential

conductance a series of maxima, see Fig. 11.8(b).

The subharmonic gap structure had been measured in the context of

atomic contacts by several authors [69, 329, 330], but Scheer et al. [77]

10These multiple processes were first described by Schrieffer and Wilkins [322] in the
limit of low transparent junctions. These authors coined the name multiple particle
tunneling (MPT) for these tunnel events. It is now understood that the concepts of
MAR and MPT are indeed equivalent.
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Fig. 11.9 Current–voltage characteristics for four atom-sized contacts of aluminum us-
ing a lithographically fabricated MCBJs at 30 mK (symbols). The right inset shows
the typical variation of the conductance, or total transmission T = G/G0, as a func-
tion of the displacement of the electrodes, while pulling. The data in the main panel
have been recorded by stopping the elongation at the last stages of the contact (a–c) or
just after the jump to the tunneling regime (d) and then measuring the current while
slowly sweeping the bias voltage. The current and voltage are plotted in reduced units,
eI/GΔ and eV/Δ, where G is the normal state conductance for each contact and Δ is
the measured superconducting gap, Δ/e = (182.5 ± 2.0)μV. The solid lines have been
obtained by adding several theoretical curves for a single channel contact and optimiz-
ing the set of transmission values. The curves are obtained with: (a) three channels,
T1=0.997, T2=0.46, T3=0.29 with a total transmission

∑
Tn =1.747, (b) two channels,

T1=0.74, T2=0.11, with a total transmission
∑

Tn =0.85, (c) three channels, T1=0.46,
T2=0.35, T3=0.07 with a total transmission

∑
Tn =0.88. (d) In the tunneling range a

single channel is sufficient, here
∑

Tn = T1=0.025. Reprinted with permission from [77].
Copyright 1997 by the American Physical Society.

were the first to realize that the highly non-linear dependence of the su-

perconducting I-Vs on the transmission coefficient offers the possibility to

extract the transmission coefficients of a few-atom thick contacts. The

principle is illustrated in Fig. 11.9. Using lithographic MCBJs, Al atomic

contacts were formed at very low temperatures (30 mK). During the break-

ing of the Al wires, I-V at low bias (� 1 mV) were recorded along the

conductance plateaus. Examples of these I-Vs can be seen in the main

panel of Fig. 11.9 for different realizations of the contacts. Notice in par-

ticular that curves (b) and (c) correspond to similar values of the normal

state conductance (i.e. for voltages much larger than the Al gap). This

indicates that while these two junctions are almost indistinguishable in

the normal state, they exhibit clearly distinct superconducting I-Vs, which
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means that their set of transmission coefficients are very different. The

I-V curves were fitted very accurately with the single-channel I-V curves of

Fig. 11.8(a) using as adjustable parameters both the number of conduction

channels and the transmission coefficients. The authors of Ref. [77] showed

that for the smallest contacts, the set of transmission probabilities can be

unambiguously determined.

The most important finding in these experiments was that in the last

“plateau” in the conductance, just before the breaking of the contact, typ-

ically three channels with different T ’s are required for a good description.

This is surprising since the conductance for such contacts is typically below

1G0 (see Fig. 11.2(a) and the Al histogram in Fig. 11.6), and it would in

principle require only a single conductance channel. Contacts at the verge

of breaking are expected to consist of a single atom, and this atom would

then admit three conductance channels, but each of the three would only be

partially open, adding up to a conductance close to 1G0. This very much

contradicts a simple picture of quantized conductance in atomic-size con-

tacts, and poses the question as to what determines the number of channels

through a single atom.

11.5 The chemical nature of the conduction channels of

one-atom contacts

In order to answer the question posed at the end of the previous section,

Cuevas, Levy Yeyati and Martin-Rodero [263] put forward a minimal model

to compute the conductance of atomic contacts within the framework of

Landauer approach. This model is based on a combination of a simple tight-

binding (TB) model and nonequilibrium Green’s functions techniques, in

the spirit of what we have discussed in Chapters 7-9, and it contains the fol-

lowing three basic ingredients. First, a proper description of the electronic

structure of atomic contacts, and in turn of their transport properties, re-

quires the inclusion in the TB model of at least the atomic orbitals that

give the major contribution to the bulk density of states at the Fermi en-

ergy. As one can see in Fig. 9.7, this means in practice to include the s

orbitals for alkali and noble metals, the s and p orbitals for metals like Al

and Pb and the s and d orbitals in the case of transition metals. Second,

since often we do not have direct information about the geometry of the

atomic contacts, it is important to study the influence of the precise atomic

arrangements. Finally, metals often exhibit local charge neutrality due to
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their small screening length. In this respect, it is important to impose such

neutrality in the TB model via a self-consistent determination of the on-site

energies.

With this minimal model, the authors of Ref. [263] focused on the anal-

ysis of the conductance of one-atom thick contacts like the one shown in

Fig. 11.10(a). In such geometries the current proceeds mainly through the

central atom. Thus, it is convenient to compute the transmission matrix

at the central atom, where its dimension is just the number of orbitals in-

cluded in the basis set.11 This simple idea already tell us that the number

of channels is determined by the number of valence orbitals of the central

atom. This means in practice that the number of conduction channels for

monovalent metals (alkali and noble ones) is limited to one, this number is

at maximum four in the case of sp-like metals like Al or Pb and it can be

up to 6 for transition metals due to the contribution of the s and d bands.

It is worth stressing that this rule of thumb should be taken as an upper

limit since some of the channels may be closed for symmetry reasons. The

case of Al nicely illustrates this fact. Al in its atomic form has an electronic

configuration [Ne]3s23p1, and a total of four orbitals would be available for

current transport: one s orbital and three p orbitals (px, py and pz). The

calculations of Ref. [263] showed that for a single-atom Al contact there are

three channels that give a significant contribution adding up to a total con-

ductance of the order of 1G0. There is a dominant channel that originates

from a combination of the s and pz orbitals of the central atom (where the

z coordinate is taken in the current direction), and two smaller identical

contributions coming from the px and py orbitals.12 The degeneracy of

these two channels is due to the symmetry of the geometry considered [see

Fig. 11.10(a)], and it can be lifted by changing the local environment for

the central atom. The fourth possible channel, an antisymmetric combina-

tion of s and pz, is found to have a negligible transmission probability.13

Thus, these calculations explained the experimental observation by Scheer

et al. [77] that three channels contribute to the conductance for a single

11Strictly speaking, this is only true if the hopping elements in the TB Hamiltonian are
restricted to first nearest-neighbors. In general, it is a good approximation as long as
the direct coupling between atoms on the left and on the right of the central atom is
weak. The technical details concerning this discussion can be found in section 8.1.
12The conduction channels, defined as the eigenfunctions of t†t, can be expressed in the
approach of Ref. [263] as a linear combination of the atomic orbitals of the central atom.
13In simple terms, this antisymmetric combination in the central atom is almost orthog-
onal to the incoming states from the leads which results in a very weak effective coupling
and the corresponding negligible contribution to the total conductance.
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Fig. 11.10 (a) Ideal geometry of a single-atom Ag contact grown along the [111] di-
rection (taken as the z-axis). The distances are set to bulk distances and the last two
layers on both sides correspond to those atoms in the infinite surfaces used to model
the leads that are coupled to the atoms in the constriction. (b) Bulk density of states
(DOS) projected onto the s, p and d orbitals as a function of energy (measured with
respect to the Fermi energy EF). (c) Total transmission and transmission coefficients
of the contact of panel (a) as a function of energy. (d) Local density of states (LDOS)
at the central atom projected onto the different atomic orbitals as a function of energy.
Courtesy of Michael Häfner [331].

aluminum atom. Moreover, the results for the number of channels were

shown to be robust against changes in the atomic configuration, whereas

the total conductance was found to vary depending on the exact atomic

geometry. Finally, this analysis was extended to the case of transition met-

als (in particular Nb) showing that for these metals up to 5 channels can

be expected for a single-atom contact. Again, the sixth channel that could

potentially contribute in a transition metal is actually closed for symmetry

reasons.

Before turning to the analysis of the experiments that confirmed these

ideas, we now want to illustrate them in more detail. In what follows, we

shall make use of the NRL tight-binding method of section 9.6 and the
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formulas derived in section 8.1. The NRL method provides a very accurate

TB parameterization of the bulk properties of elementary solids that is also

well suited for low-dimensional structures (see discussion below). More-

over, this parameterization takes into account long range hopping matrix

elements and it includes up 9 orbitals in the basis set (the s, p and d closest

to the Fermi energy). Thus, this parameterization is more accurate than

that used in Ref. [263] and it serves us to test the conclusions drawn above.

Let us start by analyzing the conductance of an ideal single-atom contact

of Ag. The geometry of this ideal contact is shown in Fig. 11.10(a). It

is constructed by starting from a central atom and including the nearest

neighbors in the successive layers of the fcc lattice along the [111] direction.

The leads are modeled as two infinite surfaces grown along the same direc-

tion. The bulk density of states (DOS) of this metal computed from this

TB parameterization is shown in Fig. 11.10(b). Notice that the d bands

are filled, while the p bands have little weight at the Fermi energy. There-

fore, one expects the s band to dominate the transport properties of this

monovalent metal. Moreover, from the arguments above, one also expects

to have a single conduction channel in the case of one-atom contacts. This

is indeed confirmed by the calculations, as one can see in Fig. 11.10(c).

This figure shows both the total transmission and individual transmission

coefficients as a function of energy for this geometry. Notice in particular

that the transmission at the Fermi energy, which determines the conduc-

tance, is largely dominated by a single channel. One can get insight into

the nature of the conductance channels of single-atom contacts by analyz-

ing the corresponding local density of states (LDOS) at the central atom.

This LDOS projected onto the different atomic orbitals for the geometry

of panel (a) can be seen in Fig. 11.10(d). The first thing to notice is the

presence of true energy bands that, although are narrower than those of

the bulk solid, have widths of several electronvolts. This illustrates the

fact that the central atom is strongly coupled to the electrodes and there

is huge hybridization between its orbitals and those of the leads. Notice

also that there is a clear correlation between the energy dependence of the

transmission and that of the LDOS. In particular, one can see that the

transmission at the Fermi energy arises from a resonance of the s band, as

expected from the arguments above.

On the other hand, we can use this example to anticipate the results for

single-atom contacts of other metals in the periodic table. The idea goes

as follows. Most metals have similar energy bands and the main difference

is the position of the Fermi level, which is determined by the number of
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valence electrons. Thus, the energy dependence of the transmission shown

in Fig. 11.10(c) for an Ag contact can be used to understand what happens

in the case of other metals by simply imagining that the Fermi level is lo-

cated in a different position. To figure out what to expect for a transition

metal, we can concentrate on energies 3 eV below the Fermi energy, which

is the region dominated by the d bands, see Fig. 11.10(d). In this case

one can see that up to 5 channels can give a significant contribution to the

total transmission depending on the energy. This agrees with the predic-

tions described above for transition metals. On the other hand, the region

dominated by the p orbitals, a few eV above EF in Fig. 11.10(c), can give

us a hint about the expectations for metals like Al or Pb. In this region

one can see that three channels dominate the transport and their relative

contribution depends on the energy. Two of the channels are degenerate as

a result of the symmetry of the contact. This degeneracy is also reflected

in the LDOS, see Fig. 11.10(d), where the px and py bands are identical,

while the pz one has been shifted down due to the stronger hybridization of

the pz orbitals with the states in the leads. These results again agree with

arguments described above.

To confirm these ideas, we present in Fig. 11.11 the results for the

transmission coefficients for six different metals. This time we have chosen

a geometry for one-atom thick contacts that contains a dimer in its central

part. Different molecular dynamics simulations suggest that this type of

geometry is the most frequently realized in the last stages of the breaking

of the contacts [332, 333, 342, 343]. The results for Ag are similar to

those of Fig. 11.10(c), the main difference being that the channels arising

from the the px and py orbitals have been partially suppressed due to

the reduction of the effective coupling of these orbitals to those in the

leads. In the case of Au (another monovalent metal) the transmission is

also dominated by a single channel, although the second and third one give

a larger contribution than in Ag. Turning now to the sp-like metals Al

and Pb, we see that the three channels give a significant contribution at

the Fermi energy. Notice that two of them are degenerate in this highly

symmetric contact due to the reasons explained above. As anticipated in

the previous paragraph, the total conductance for Pb (1.67G0) is higher

than for Al (1.16G0) because the former has one more valence electron and

therefore the Fermi level lies in the middle of the p bands, rather than in

their tails as in the case of Al. In the case of the transition metals Nb and

Pt the d orbitals play a crucial role (see their bulk DOS in Fig. 9.7) leading

to the opening of additional channels and conductances well above G0. In
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Reprinted by permission from Macmillan Publishers Ltd: Nature [335], copyright 1998.

the case of Nb the total conductance (1.56G0) is due to the contribution of

approximately 5 partially open channels. In the case of Pt, however, three

channels contribute to its conductance (2.6G0). The difference between

these two transition metals is due to the fact that Pt has five more valence

electrons than Nb and the Fermi level lies on the edge of the d bands, while

for Nb is almost in the center of those bands, see Fig. 9.7.

Turning now to the experiments, the method described in the previous

section to extract the information on the conduction channels based on

the analysis of the superconducting I-V curves has been extended to other



The conductance of a single atom 315

metals. In particular, in a collaboration between three different laborato-

ries atomic contacts of Pb, Al, Nb and Au were analyzed [335]. Fig. 11.12

shows conductance curves for Pb, Al, Nb and Au, where at each point in

the figure I-V curves as in Fig. 11.9 were recorded and fitted in order to

determine the number of channels involved. The number is constant over

a plateau in the conductance, where the transmission probability for every

mode changes gradually. At the steps in the conductance the number of

channels involved is usually found to jump to a smaller number. In tunnel-

ing range, when the contact is broken and the distance is larger than 0.2 nm,

the I-V characteristics can in all cases be described by a single channel, with

a transmission probability which is given by the tunneling resistance. The

number of channels found for the smallest contacts, just before the jump

to tunneling is 1 for Au, 3 for Al and Pb, and 5 for Nb. The case of gold

deserves a special comment. This metal is not a superconductor, and a

special device was fabricated which allowed the use of proximity induced

superconductivity [335, 334]. The device is a nanofabricated MCBJ hav-

ing a thick superconducting Al layer forming a bridge with a gap of about

100 nm. This small gap was closed by a thin Au film in contact with the

aluminum. Superconducting properties were thereby induced in the Au

film, and by breaking this film and adjusting an atomic-size contact, the

same subgap analysis could be performed.14 Both the Al and Au junctions

were measured at temperatures of 100 mK, far below the superconducting

transition temperatures. Pb and Nb were measured at 1.5 K.

The number of channels and the total conductance at the last plateau

before breaking found in the experiment agree very well with the theory

detailed above and this can be seen as the confirmation of the fact that

the number of conduction channels in single-atom contacts is mainly de-

termined by the number of valence orbitals. Notice also that the relative

conductances of Al and Pb, which are metals of the same group, also agrees

with the theoretical predictions that say that Pb should be more conductive

because of the larger contribution of the px-py channels (see also the con-

ductance histograms of Fig. 11.6). Another important conclusion from the

work of Ref. [335] was that the smallest contacts produced by the different

experimental techniques are indeed one-atom thick contacts since the num-

ber of channels in the last conductance plateau never exceeds the number

of valence orbitals. That was an important conclusion at that time since

14Notice that in Fig. 11.12 the conductance for Au in the last plateau is a factor 2–3
smaller than usually found, see Figs. 11.1 and 11.6. This was tentatively attributed to
the strong scattering in the nanofabricated device.
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there were no means to obtain direct information about the contact ge-

ometries. Later, it became possible to directly image atomic-size contacts

by means of high resolution transmission electron microscopy (HR-TEM),

see e.g. Refs. [63, 336, 62, 65]. This technique has allowed to confirm the

existence of single-atom contacts and the formation of monoatomic chains

(see below).

11.6 Some further issues

The ensemble of results presented in the previous section illustrates the

very good level of understanding achieved in this field. Anyway, there are

aspects of the transport properties of atomic contacts that deserve further

discussion. From the theory side, in spite of excellent overall agreement

with the experiments, one may wonder whether TB models based on pa-

rameterizations of bulk properties can provide a quantitative description of

the conductance of atomic contacts. In recent years, many different groups

have applied ab initio methods to the description of the transport prop-

erties of these metallic nanowires, see e.g. [337, 290, 287, 338, 339, 247]

and references therein. Most of these methods are based on the density

functional theory (DFT) and are described in Chapter 10. As an illustra-

tive example, we present in Fig. 11.13 a comparison of the transmission of

a single-atom Al contact computed with the NRL-TB method and with the

cluster-based DFT method of Ref. [247]. As one can see, the agreement on

the total conductance and transmission channels is quite satisfactory. Such

an agreement is very important because for many problems involving large

contacts or the analysis of a great number of configurations, the ab initio

calculations are either extremely time-consuming or simply not possible.

However, those problems can nowadays be tackled with, for instance, the

relatively inexpensive NRL-TB method.

A more important issue is the role of the mechanical properties in the

conductance of atomic contacts. Since these properties determine the geom-

etry of these metallic wires, they obviously have a major impact in the trans-

port properties. In this sense, a complete theoretical description should

ideally determine also the possible contact geometries realized in the exper-

iments. For this reason, different authors have combined conductance cal-

culations with geometry optimizations or molecular dynamics simulations

of different levels of sophistication, see for instance [332, 333, 340–344] and

references therein. Such combinations have allowed to tackle the following
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Fig. 11.13 Total transmission and individual transmission coefficients as a function of
energy for an ideal single-atom Al contact in [111]-direction, as depicted in Fig. 11.10(a).
(a) Calculation done with the NRL-TB method [331]. Courtesy of Michael Häfner. (b)
DFT calculation from Ref. [247].

two important problems that we now proceed to describe.

The first one concerns the different slopes observed in the conductance

traces of different metals (see section 11.2). This issue was addressed in

Ref. [264], where it was argued that the slopes depend primarily on the evo-

lution of the local density of states at the contact region upon stretching.

This was further investigated with the help of first-principle simulations for

the case of Al by Jeĺınek et al. [332]. Their main results are reproduced

in Fig. 11.14 where one can see a typical evolution of an Al wire in their

simulations of the stretching process and the corresponding total conduc-

tance and the contribution of the individual channels. As one can see, these

results nicely reproduce the main findings of the experiments of Ref. [77]:

(i) the anomalous positive slope of the conductance plateaus, (ii) the fact

that three channels contribute to the conductance in the last plateau and

(iii) the fact that this last plateau has a conductance below 1G0, but it

raises to almost 1G0 on the verge to break.

Maybe, the main problem that remains without a fully satisfactory so-

lution is that of the origin of the peaks in the conductance histograms of the

different metals, see Fig. 11.6. From the discussion in the last section, it is

clear that those peaks cannot longer be interpreted as signatures of conduc-

tance quantization, even if they appear close to integers of G0 as in the case

of Al (see Fig. 11.6). In some cases it has been understood that these peaks

are the result of the interplay between mechanical and electrical properties.

Thus for instance, in the case of alkali metals it has been understood that

the peaks are associated to the existence of exceptionally stable configura-
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tions due to both electronic and atomic shell effects [72, 345, 346].15 In the

case of gold, it has become clear that the pronounced peak close to 1G0 is

related to the formation of monoatomic chains which sustain a single almost

fully open channel (see section 11.8). Several suggestions for the origin of

the peaks in the low-temperature histograms of some multivalent metals

have been made [347].16 An interesting idea was put forward by Hasmy et

al. [351] who performed molecular dynamics simulations to study the his-

tograms of the minimum cross section for Al contacts. At low temperatures

they obtained peaks at multiples of the cross section of a single atom, which

led them to an interpretation of the conductance histogram peaks based on

preferential geometrical arrangements of nanocontact necks. Dreher et al.

[342, 343] have corroborated the existence of well-defined peaks in the min-

imum cross section histograms. However, they have shown that those peaks

15This is a very interesting topic that will not be further discussed here because our
interest is focused on the smallest contacts. For a detailed discussion of the shell effects
we recommend Refs. [15, 315].
16Let us mention that more recently room-temperature conductance histograms of Al
and noble metals have been interpreted as an evidence of electronic and atomic shell
effect in these metals [348–350].
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are not necessarily reflected in the corresponding conductance histograms.

Their theoretical analysis of conductance histograms of Au, Ag, Pt and Ni

contacts shows that the lowest peak is related to the formation of single-

atom contacts and monoatomic chains in the cases of Au and Pt. The

origin of the multi-peak structure of metals like Al or Zn remains however

to be understood.

11.7 Conductance fluctuations

The method described in section 11.4 to extract the set of transmission

coefficients of an atomic contact can only be easily applied in the case

of superconducting metals. In this sense, it is important to have other

methods that give access to the conduction channels. As already mentioned,

the shot noise and the thermopower are two valuable transport properties in

this respect and we shall discuss them in detail in Chapter 19. In this section

we shall focus on the analysis of the so-called conductance fluctuations.

This discussion is based on Ref. [302].

The elastic scattering of conduction electrons on defects and/or im-

purities near atomic contacts leads to interference effects that are clearly

visible in the second derivative of the current with respect to bias voltage,

i.e. in dG/dV . This is similar to the universal conductance fluctuations

in diffusive mesoscopic conductors [50]. This phenomenon is well-known

in point contacts with dimensions much larger than those of an atomic

contact [352–355]. The conductance fluctuations on atomic contacts were

studied systematically by Ludoph et al. [312]. In these experiments lock-in

amplifiers were used to measure simultaneously the conductance and its

derivative during the breaking of the nanowires. By repeating this opera-

tion many times one can construct a conductance histogram together with

the average properties of dG/dV . Typical results for gold contacts can be

seen in Fig. 11.15, where the upper panel shows the standard deviation of

the derivative of the conductance with bias voltage σGV = 〈(dG/dV )2〉 as
a function of the conductance. The conductance histogram for the same

set of data is shown in the lower panel. As one can see in this figure, the

data for σGV display pronounced minima for G near multiples of G0.

The authors of Ref. [312] offered a very appealing explanation for this

quantum suppression of the conductance fluctuations, which is sketched in

the inset of Fig. 11.15. The idea goes as follows. The atomic contact is

modeled by a ballistic central part, which is described by a set of trans-
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mission coefficients, sandwiched between diffusive banks, where electrons

are scattered by defects characterized by an elastic scattering length le.

An electron wave of a given mode impinging on the contact is transmit-

ted with probability amplitude t and it is partially reflected back to the

contact by the diffusive medium, into the same mode, with probability am-

plitude an � 1. This back-scattered wave is then reflected again at the

contact with probability amplitude rn, where Tn = |tn|2 = 1 − |rn|2. The

latter wave interferes with the original transmitted wave. This interference
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Fig. 11.15 (a) Standard deviation of the voltage dependence of the conductance versus
conductance for 3500 curves for gold measured with the notched-wire MCBJ technique
at 4.2 K. All data points in the set were sorted as a function of the conductance after
which the rms value of dG/dV was calculated from a fixed number of successive points.
The circles are the averages for 300 points, and the squares for 2500 points. The solid
and dashed curves depict the calculated behavior for a single partially-open channel and
a random distribution over two channels respectively. The vertical grey lines are the
corrected integer conductance values (see text). (b) Conductance histogram obtained
from the same data set. The peak in the conductance histogram at G0 extends to
53000 on the vertical scale. The insets shows a schematic diagram of the configuration
used in the analysis. The dark lines with arrows show the paths, which contribute to
the conductance fluctuations in lowest order. Reprinted with permission from [312].
Copyright 1999 by the American Physical Society.
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depends on the phase difference between the two waves, and this phase dif-

ference depends on the phase accumulated by the wave during the passage

through the diffusive medium. The probability amplitude an is a sum over

all possible trajectories, and the phase for such a trajectory of total length

L is simply kL, k being the wave vector of the electron. The wave vector

can be influenced by increasing the voltage over the contact, thus launching

the electrons into the other electrode with a higher speed. The interference

of the waves changes as we change the bias voltage, and therefore the total

transmission probability, or the conductance, changes as a function of V .

This describes the dominant contributions to the conductance fluctuations,

and from this description it is clear that the fluctuations are expected to

vanish either when tn = 0, or when rn = 0.

Based on this model, Ludoph et al. [312] obtained the following analyt-

ical expression for σGV ,

σGV =
2.71 e G0

�kFvF
√
1− cos γ

(
�/τe
eVm

)3/4
√∑

n

T 2
n(1 − Tn) , (11.3)

where kF and vF are the Fermi wave vector and Fermi velocity, respectively,

τe = le/vF is the scattering time. The shape of the contact is taken into ac-

count in the form of the opening angle γ (see the inset in Fig. 11.15), and Vm
is the applied voltage modulation amplitude. The solid lines in Fig. 11.15(a)

are obtained from Eq. (11.3), assuming a single partially-open channel at

any point, i.e. assuming that channels open one-by-one as the conductance

increases. In agreement with the results discussed in previous sections, the

conductance for the smallest gold contacts is very well described by this

simple approximation. The amplitude of the curves is adjusted to fit the

data, from which a value for the mean free path is obtained, le = 5± 1 nm.

Similar experiments [312, 313] for copper and silver and for sodium also

show the quantum suppression of conductance fluctuations observed here

for gold. However, this suppression is not observed in the cases of alu-

minum or niobium [313], which clearly indicates that the transport in these

multivalent metals is governed by partially open channels. Thus, the con-

ductance fluctuation measurements confirm the overall picture described in

previous sections in which the transport in these nanowires is determined

by the valence orbitals of the corresponding material.
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11.8 Atomic chains: Parity oscillations in the conductance

As we have seen in previous sections, all evidence shows that for an one-

atom thick contact of monovalent metals the current is carried by a single

mode, with a transmission probability close to one. Guided by this knowl-

edge in experiments on gold Yanson et al. [356] discovered that during the

contact breaking process the atoms in the contact form stable chains of

single atoms, up to 7 atoms long. Independently, Ohnishi et al. [63] discov-

ered the formation of chains of gold atoms at room temperature using an

instrument that combines a STM with a transmission electron microscope,

where an atomic strand could be directly seen in the images. Similar results

were also obtained in Refs. [336, 357].

Some understanding of the underlying mechanism can be obtained from

molecular dynamics simulations. Already before the experimental observa-

tions, several groups had observed the spontaneous formation of chains of

atoms in computer simulations of contact breaking [358, 359]. The au-

thors argue that the interatomic potentials used in the simulation may not

be reliable for this unusual configuration. However, the stability of these

atomic wires has now been confirmed by various more advanced calculations

[360–364].

Only three metals are known to form purely metallic atomic chains,

namely Au, Pt, and Ir [365]. They are neighbors in the sixth period of the

periodic table of the elements and they share another property: they make

similar reconstructions of the surface atoms on clean [100], [110], and [111]

surfaces. A common origin for these two properties has been suggested in

terms of a relativistic contribution to the linear bond strength [365].

There are many interesting aspects of the physics of metallic atomic

chains that could be discussed in detail such as the formation mechanism,

their stability or the fundamental limits for their length. However, we

shall focus our attention here on the analysis of their transport properties

and, in particular, of the so-called parity oscillation of the conductance

because it nicely illustrates how the electrical conduction takes place in

these remarkable 1D systems.

Let us start our discussion by briefly describing the original observa-

tions of the parity oscillations reported by Smit et al. [366]. These authors

investigated the changes of conductance in the process of pulling atomic

chains of Au, Pt and Ir using a STM and MCBJs. In Fig. 11.16 we show a

typical conductance trace obtained during the breaking of an Au contact.

As we have discussed in previous sections, the last conductance plateau
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Fig. 11.16 Evolution of the conductance while pulling a contact between two gold elec-
trodes (measured with the notched-wire MCBJ technique at 4.2 K). In the inset, an
enlargement of the plateau of conductance at ∼ 1G0 is shown. Variations to lower
conductance and back up by about 10–15% can be noticed when the atomic chain is
stretched. Reprinted with permission from [366]. Copyright 2003 by the American
Physical Society.

before rupture is in general due to a single-atom contact. The formation of

an atomic wire results from further pulling of this one-atom contact, and

its length can be estimated from the length of the last conductance plateau

[356, 365, 367]. A histogram made of those lengths, see filled curves in

Fig. 11.17, shows peaks separated by distances equal to the inter-atomic

spacing in the chain. These peaks correspond to the lengths of stretching

at which the atomic chain breaks, since at that point the strain to incor-

porate a new atom is higher than the one needed to break the chain [368].

This implies that a chain of atoms with a length between the position of

the n-th and (n+ 1)-th peak consists typically of n+ 1 atoms.

As we learned in previous sections, the valence of the metal determines

the number of electronic channels through the chain, and each channel con-

tributes to the conductance with a maximum of G0. For gold, a monova-

lent metal, both the one-atom contact and the chain have a conductance of

about 1G0 with only small deviations from this value (see Fig. 11.16) sug-

gesting that the single channel has a nearly perfect coupling to the banks.

The small changes of conductance during the pulling of the wire shown in

the inset in Fig. 11.16 are suggestive of an odd-even oscillation. The jumps

result from changes in the connection between the chain and the banks

when new atoms are being pulled into the atomic wire. In order to un-

cover possible patterns hidden in these changes the authors averaged many

conductance traces starting from the moment that a single-atom contact

is formed (defined here as a conductance dropping below 1.2G0) until the



324 Molecular Electronics: An Introduction to Theory and Experiment

0 0.2 0.4 0.6 0.8 1 1.2 1.4
length (nm)

1.6

1.8

2

2.2

Ir

1.5

2
co

nd
uc

ta
nc

e 
(2

e2 /h
)

0.95

1

1.05

1.1

Au

Pt

Fig. 11.17 Averaged conductance traces for chains of atoms of Au, Pt, and Ir (measured
with the notched-wire MCBJ at 4.2 K). Each of the curves are made by the average of
individual traces of conductance while pulling atomic contacts or chains. Histograms of
the plateau lengths for the three metals obtained from the same set of data are shown by
the filled curves. Reprinted with permission from [366]. Copyright 2003 by the American
Physical Society.

wire is broken (conductance dropping below 0.5G0). In the upper panel

of Fig. 11.17 it can be seen that the thus obtained average plateau shows

an oscillatory dependence of the conductance with the length of the wire.

The amplitude of the oscillation is small and differs slightly between exper-

iments.17

The same procedure was repeated for Pt and Ir. These metals have

s and d orbitals giving rise to several conduction channels. Each channel

may have a different transmission that can be affected by the details of the

contact and therefore the average plateau conductance is expected to show

a more complicated behavior. A one-atom Pt contact has a conductance of

about 2G0 while for a Pt atomic chain it is slightly smaller, ∼ 1.5G0 with

variations during the pulling process that can be as large as 0.5G0. For

Pt similar oscillations to those for Au were observed, which were compared

17This behavior is clearly at variance with that found in molecular junctions, where the
conductance typically decays exponentially with the molecule length.
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to the peak spacing in the length histogram in Fig. 11.17. The latter is

obtained by taking as a starting point of the chain a conductance drop-

ping below 2.4G0. Ir shows a similar behavior although somewhat less

pronounced and it is more difficult to obtain good length histograms.

The simplicity of the atomic chains had stimulated numerical simula-

tions of their transport properties well before their experimental observa-

tion [369]. In particular, various groups [369–374] had found oscillations

in the conductance as a function of the number of atoms for calculations

of sodium atomic chains, where this metal was selected because it has the

simplest electronic structure. Sim et al. [370], using first-principles calcu-

lations and exploiting the Friedel sum rule, found that the conductance for

an odd number of atoms is equal to G0, independent of the geometry of

the metallic banks, as long as they are symmetric for the left and right

connections. On the other hand, the conductance is generally smaller than

G0 and sensitive to the lead structure for an even number of atoms. The

odd-even behavior follows from a charge neutrality condition imposed for

monovalent-atom wires. These predictions agree nicely with the results

found for the Au chains.

As explained by the authors of Ref. [366], the odd-even behavior is

essentially an interference effect and it can be easily understood in the

frame of a simplified one-dimensional free-electron model, see Exercise 11.1

and Refs. [366, 375]. Instead, we shall provide here an argument from our

usual “atomistic” point of view. We shall analyze the parity effect in gold

chain with the help of the simple model described in Exercise 7.5, which

is represented schematically in Fig. 11.18. In this model we describe the

gold chain with a tight-binding Hamiltonian with a single orbital per atom

and with hopping elements, t, only between nearest neighbors. We assume

that the on-site energy, ε0, is the same for all the atoms in the chain and

we set it to zero. We describe the leads by two identical semi-infinite linear

chains with, for simplicity, the same parameters as in the finite chain (bulk

hopping t and on-site energy ε0). Finally, the coupling between the chain

and the leads is described by the hoppings tL and tR that can be different

from the intra-chain hopping t.

The calculation of the transmission in this model, and therefore of the

zero-bias conductance, is a simple exercise that we proceed to sketch.18

From the general formula of Eq. 8.18, it is easy to show that the zero-bias

18It is not necessary to follow this calculation to understand the main conclusions that
will be drawn from this toy model.
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Fig. 11.18 Schematic representation of the simple tight-binding model used to analyze

the parity effect in gold chains. In this model the chain has N atoms with a single
orbital per site and with an on-site energy ε0 = 0. There is only coupling between
nearest neighbors inside the chain, t. The coupling to the leads is given by the matrix
elements tL,R. The leads are modeled in practice by two identical semi-infinite chains
with the same parameters as the finite central chain.

transmission in this model is given by (see also Exercise 7.5)

T (E) = 4ΓL(E)ΓR(E)|Ga
1N (E)|2, (11.4)

where the scattering rates are given by ΓL,R = Im{Σa
L,R} and the self-

energies can be by expressed as ΣL,R = t2L,Rg
a
L,R, where g

a
L,R are the ad-

vanced Green’s functions of the last atom of the two semi-infinite chains

used to model the leads [see Eq. (5.46)]. Finally, we have to determine

Ga
1N (E), which is simply the element (1, N) of the following matrix

Ga(E) = [Ea −Hchain − Σa
L − Σa

R]
−1

(11.5)

=

⎛
⎜⎜⎜⎜⎜⎝

Ea − ε0 − ΣL −t 0 · · ·
−t Ea − ε0 −t 0
...

...
...

...

0 t Ea − ε0 −t
· · · 0 −t Ea − ε0 − ΣR

⎞
⎟⎟⎟⎟⎟⎠

−1

,

where Ea = E − i0+. This tridiagonal matrix of dimension N can be

inverted numerically or even analytically (see Exercise 11.2).

Let us illustrate the results of this simple model. In Fig. 11.19 we show

the transmission as a function of energy for two chains with 4 and 5 atoms.

Let us remind that the conductance is determined by the value of the trans-

mission at the Fermi energy, which in this model is zero due to the inherent

electron-hole symmetry (we have a single electron per atom). The different

curves in both panels correspond to different values of the interface hop-

ping tL,R. Notice that if tL,R = t the system becomes an ideal infinite chain

where there is no backscattering, which leads to a perfect transparency in

the whole band (|E| < 2t). If the interface hopping is different from the

intra-chain hopping (interface mismatch), the backscattering builds Fabry-

Perot-like resonances in the transmission. In the case of the 4-atom chain
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Fig. 11.19 Transmission as a function of energy (normalized by the intra-chain hopping
t) for two chains with 4 (a) and 5 (b) atoms. The different curves correspond to different

values of the interface hopping tL,R, as indicated in the legend. The vertical dotted lines
indicate the position of the Fermi energy, which is zero in this case.

(and in any chain with an even number of atoms), those resonances produce

a minimum of the transmission at the Fermi energy, whereas they lead to a

maximum for the chains with an odd number of atoms. This result explains

qualitatively the parity effect discussed above for a monovalent metal.

The presence of transmission maxima at the Fermi energy for odd num-

ber of atoms in the chain and the minima for the chains with even number

of atoms can be understood as follows (see Exercise 11.1). The maxima of

the transmission appear at the position of the levels of the decoupled chain.

In the case of odd N there is always a level in the chain spectrum exactly

at the Fermi energy (E = 0) for symmetry reasons, which together with

the charge neutrality leads to a maximum of the linear conductance. On

the contrary, when N is even there is no chain level at the Fermi energy

and therefore these chains exhibit a lower conductance. To conclude this

discussion, we show in Fig. 11.20 the transmission at the Fermi energy as

a function of the number of chain atoms. As one can see, the amplitude of

the even-odd oscillations depends on the quality of the interfaces.19

The simple explanation presented above can account qualitatively for

the experimental behavior in the case of Au, characterized by a full 5d

band and a nearly half-filled 6s band. However, for the case of Pt and Ir, in

which the contribution of 5d orbitals to the conductance is important, there

19The conductance does not decay with length in this case because the Fermi energy
lies inside the “band” formed by the states of the finite chain. For energies outside this
energy window, the conductance decays exponentially with length. This is what happens
in the case of molecular junctions (see discussion in section 13.4).



328 Molecular Electronics: An Introduction to Theory and Experiment

2 3 4 5 6 7 8 9 10
Number of chain atoms

0

0.2

0.4

0.6

0.8

1

Tr
an

sm
is

si
on

 (E
F)

tL = tR = t
tL = tR = 0.9t
tL = tR = 0.8t
tL = tR = 0.7t

Fig. 11.20 Transmission at the Fermi energy as a function of the number of atoms in
a linear chain. Notice the even-odd effect. The different curves correspond to different
values of the interface hopping tL,R, as indicated in the legend.

is no reason why this simple picture should still hold. The experiments of

Smit et al. [366] triggered off new the theoretical analyses of the conduc-

tance of these monoatomic wires, see for instance Refs. [342, 343, 376–381].

In particular, de la Vega et al. [376] presented an appealing comparative

study that we now proceed to describe. These authors studied the con-

ductance of ideal chain geometries of Au, Pt and Ir, in which the atomic

chain is connected to bulk electrodes represented by two semi-infinite fcc

perfect crystals along the (111) direction. Using the Green’s function tech-

niques detailed in Chapters 7 and 8 and a parameterized self-consistent

tight-binding model, they obtained the evolution of the conductance with

the number of atoms in the chain depicted in Fig. 11.21(a). Notice that

this evolution is rather sensitive to the elongation, especially in the case

of Pt and Ir (for Au the conductance exhibits small amplitude even-odd

oscillations, which remain practically unaffected upon stretching).

The main features and the differences between Au, Pt and Ir are more

clearly understood by analyzing the local density of states and the energy

dependence of the transmission, shown in Fig. 11.21(b) for a N = 5 chain of

these metals at an intermediate elongation. The Au chains are characterized

by a single conduction channel around the Fermi energy with predominant

s character. The transmission of this channel lies close to one and exhibits

small oscillations as a function of energy resembling the behavior of the

single band TB model discussed above.

In the case of Pt the contribution from the almost filled 5d bands be-

comes important for the electronic properties at the Fermi energy. There
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Fig. 11.21 (a) Evolution of the conductance with N for different values of the inter-
atomic distance a. (b) Local density of states (LDOS) at the central atom and total
transmission for Au, Pt and Ir chains N = 5 at an intermediate elongation. The LDOS
is decomposed in s (full line), d (dotted line) and p (dashed line) orbitals with the same
normalization in the three cases. Reprinted with permission from [376]. Copyright 2004
by the American Physical Society.

are three conduction channels with significant transmission at EF: one due

to the hybridization of s-pz and dz2 orbitals, and another two almost degen-

erate with px-dxz and py-dyz character, respectively (here z corresponds to

the chain axis). The contribution of the 5d orbitals is even more important

in the case of Ir where a fourth channel exhibits a significant transmission.

As discussed in Ref. [376], more insight into these results can be ob-

tained by analyzing the band structure of the infinite chains. Fig. 11.22(a)

shows the bands around the Fermi energy for Pt obtained from ab-initio

calculations. Two main features are worth commenting: (i) Symmetry con-

siderations allow to classify the bands according to the projection of the

angular momentum along the chain axis, m. (ii) Close to EF there is an

almost flat filled two-fold degenerate band with dxy and dx2−y2 (m = ±2)

character. The other partially filled and more dispersing bands have s-

pz-dz2 (m = 0) and px-dxz or py-dyz (m = ±1) character (see labels in

Fig. 11.22).

The close connection between this band structure and the conduction
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Fig. 11.22 (a) Band structure of the infinite Pt chain. The bands are classified by the
quantum number m corresponding to the projection of the angular momentum on the
chain axis. The arrows indicate the crossing of the Fermi level for the m = 0 and the
m = ±1 bands. (b) Channel decomposition for Pt chains as a function of N . The legends
indicate the symmetry of the corresponding bands in the infinite chain. Courtesy of A.
Levy Yeyati.

channels of the chains is realized when analyzing the evolution of the con-

ductance and its channel decomposition for even longer chains than in

Fig. 11.21 (N > 8). This is illustrated in Fig. 11.22(b). As it can be

observed, the decrease of the total conductance of Pt for N < 7 − 8 cor-

responds actually to a long period oscillation in the transmission of the

two nearly degenerate channels associated with the m = 1± bands. This

period can be related to the small Fermi wave vector of these almost filled

d bands, as indicated by the arrows in Fig. 11.22(a). In addition, the up-

per m = 0 band crossing the Fermi level is close to half-filling giving rise

to the even-odd oscillatory behavior observed in the transmission of the

channel with predominant s character. The lower m = 0 band tends to be

completely filled and the corresponding channel is nearly closed for short

chains. However, one can appreciate a very long period oscillation in its

transmission, rising up to ∼ 0.5G0, for N ∼ 13-14.

The general rule that emerges from the above analysis is that the

transmission corresponding to each conduction channel oscillates as ∼
cos2(kF,iNa), where kF,i is the Fermi wave vector of the associated band in

the infinite chain. In the case of Pt the total conductance for short chains

(N < 7-8) exhibits an overall decrease with superimposed even-odd oscil-

lations in qualitative agreement with the experimental results. For even

longer chains (not yet attainable in experiments) these calculations pre-
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dict an increase of the conductance due to the contribution of conduction

channels with dxz, dyz character.

11.9 Concluding remarks

As we have shown in this chapter, thanks to a close interaction between ex-

periment and theory it has become possible to establish a coherent picture

of the transport in metallic atomic contacts. Moreover, we have learned a

few important lessons that are very useful for the field of single-molecule

conduction. First of all, we now understand the close relation between

the quantum properties of individual atoms used as building blocks and

the macroscopic transport properties of the circuits in which they are em-

bedded. This relation is nicely summarized in the connection between the

number of channels of a single-atom contact and the valence orbitals of the

corresponding atom. It has also become clear that a deep understanding

of the electrical conduction in these nanocircuits can only be achieved by

combining different experimental techniques and by studying a variety of

transport properties.

Let us emphasize again that in this chapter we have addressed only a

few basic issues concerning the very rich physics of (non-magnetic) atomic

contacts. We have left out many important topics, a discussion of which can

be found in the review of Ref. [15]. On the other hand, it is worth stress-

ing that there are still many basic issues to be resolved. We have already

mentioned some of them, like the problem of the origin of the peaks in the

conductance histograms of multivalent metals, but there are many others.

For instance, some materials like the semi-metals [382, 311, 384] exhibit

very peculiar transport properties that are not yet fully understood. Con-

cerning atomic chains, it has been recently discovered that the presence of

impurity atoms can facilitate the formation of atomic chains, even in met-

als in which they are not formed in the pure state [385]. The fundamental

limits for the lengths of these hybrid chains as well as their mechanical and

transport properties still need to be investigated in further detail. With re-

spect to the optical properties of atomic contacts, experiments measuring

the laser-assisted transport are just beginning to be reported (see Chapter

20). On the other hand, experiments on light emission from atomic contacts

are starting to reveal new information about the physics of these contacts

[386]. So in short, atomic contacts will continue to be a marvelous source

of new and fascinating physics.
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11.10 Exercises

11.1 1D model for the parity effect in gold chains:
Let us model the gold monoatomic chains by the simple 1D potential shown

in Fig. 11.23. The regions on the left and right of the potential step represent the
electrodes, while the chain corresponds to the step region. The scattering at the
chain-leads interfaces is taken into account via a mismatch in the wave vectors:
k1 = k3 
= k2.

k2
k3 k1k1

k1

V1

V2

V3

=<

x = 0 xx = L

Fig. 11.23 One-dimensional model for the potential landscape describing an atomic
chain of length L.

(i) Compute the transmission through this potential barrier for energies higher
than the step height as a function of k1 and k2. Hint: the solution is given in
Eq. (4.16).

(ii) Show that the transmission exhibits oscillations as a function of the chain
length where the maxima are given by Tmax = 1 and minima by Tmin = 4γ2/(1+
γ2)2, where γ = k2/k1.

(iii) To determine the value of k2 relevant for the transport, one might be
tempted to fix it to kF of an infinite chain. Show that assuming that there is
an electron per atom this Fermi wave vector is given by kF = π/(2a), where
a = L/N is the interatomic distance, N the number of atoms in the chain and
L its length. Show also that with this choice for k2 this 1D model predicts that
the conductance maxima should appear for chains with even number of atoms,
contrary to the model explained in section 11.8.

(iv) The problem found in (iii) can be solved by computing k2 in the following
more appropriate manner. Since the chain is finite, there is a limited set of
possible values for k2, namely ki2 = (π/a)i/N with i = 1, ..., N (can you explain
why?). Then, imposing charge neutrality one obtains k2 = (π/2a)N/(N + 1) for
the Fermi wave vector. Use this value for k2 in the expression of the transmission
to show that now the model reproduces the correct phase of the conductance
oscillations.

11.2 Even-odd effect in gold atomic chains:
Let us consider the chain model discussed in section 11.8 to explain the even-

odd effect in the conductance of gold atomic wires.
(i) Reproduce the results of Figs. 11.19 and 11.20.
(ii) Diagonalize the Hamiltonian of the uncoupled finite chain for different

number atoms, N , to obtain its energy spectrum. Show that for N odd there is
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always an energy level of the chain at E = 0.
(iii) Compute the local density of states inside the chain for N = 4, 5 and

study its relation with both level spectrum obtained in (iii) and the transmission
function of Fig. 11.19.

(iv) Demonstrate that the transmission at the Fermi energy (EF = 0) is given
by the following analytical expression

T (EF) =

{
4t2ΓLΓR/(t

2 + ΓLΓR)
2 for even N

4ΓLΓR/(ΓL + ΓR)
2 for odd N.

(11.6)

Here, ΓL,R are the scattering rates at the Fermi energy given by ΓL,R = tL,R,
where we have assumed that the semi-infinite chains describing the leads have
the same hopping as the finite central chain.
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Chapter 12

Spin-dependent transport in

ferromagnetic atomic contacts

The use of the spin degree of freedom of the electron in conventional charge-

based electronic devices has lead to the discovery of many fundamental

effects and, in some cases, to new technological applications [387, 388].

The emblematic physical effects in this new field, already known as spin-

tronics, like the giant magnetoresistance (GMR), tunneling magnetoresis-

tance (TMR) or anisotropic magnetoresistance (AMR) stem from the spin-

sensitivity of the scattering mechanisms that dominate the transport prop-

erties in electronic devices made of magnetic materials.1 In recent years,

a great effort has been devoted to understand how these fundamental ef-

fects are modified when the dimensions of a magnetic device are reduced of

the way down to the atomic scale. Contrary to the case of non-magnetic

atomic contacts, the physics of their ferromagnetic counterparts is not so

well established and there are still basic open problems. The goal of this

chapter is to provide a brief introduction to the transport properties of

ferromagnetic atomic-size contacts and to draw the attention to problems

that could be soon analyzed in the context of molecular junctions.

There are many different topics in this field that one could address. In

order to illustrate the interesting physics of ferromagnetic atomic contacts,

we have chosen to discuss three issues that are attracting a lot of atten-

tion. The first one concerns the conductance of these atomic contacts in

the absence of domain or external magnetic fields and, in particular, the

possibility of observing conductance quantization. The second problem is

related to the magnetoresistance of these atomic-scale conductors, which

has been shown to be enormous in comparison with the one found in larger

devices made of the same materials. Finally, we shall address the issue of

1For a basic explanation of all these magnetoresistive effects, see Ref. [388] or Chapter
15 in Ref. [389].
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the anisotropic magnetoresistance in ferromagnetic atomic contacts, which

again is very different from the one found in bulk systems. After discussing

these topics in the next three sections, we shall conclude this chapter with

some final remarks and a brief discussion about the challenges and open

problems.

12.1 Conductance of ferromagnetic atomic contacts

The first issue that we want to address is the conductance of ferromagnetic

atomic-size contacts.2 This question has been experimentally investigated

by numerous groups [311, 313, 315, 390–406] which, in particular, have

studied the conductance histograms of atomic contacts made of the 3d

ferromagnetic metals (Ni, Co and Fe). To make a long story short, let us

say that two type of contradictory results have been reported. On the one

hand, several groups have observed peaks in the conductance histogram

at half-integer multiples of G0 [397–402]. This has been interpreted as a

manifestation of half-integer conductance quantization [400], implying that

only fully open channels contribute to the conductance. In this sense, a

peak at 0.5G0 would then additionally mean the existence of a fully spin-

polarized current. Furthermore, some authors have reported conductance

histograms that are very sensitive to an external magnetic field [394].

On the other hand, another group of experiments, see e.g.

Refs. [311, 313, 390, 403], show that the conductance histograms are either

featureless at room temperature or they exhibit a single peak at conduc-

tances well above 1G0 at low temperatures. Let us mention in particular

the work of Untiedt et al. [403] in which conductance histograms of Fe, Co,

and Ni using notched-wire MCBJs under cryogenic vacuum conditions.

These histograms are reproduced in Fig. 12.1. Notice the absence of frac-

tional conductance quantization, even when a high external magnetic field

was applied. Notice also that the histograms show broad peaks above 1G0,

with only little weight below it. Furthermore these authors suggested that

the differences between these two groups of experiments could be due to

the fact that all room temperature experiments are performed under at-

mospheres that are considerably less pure than that provided by cryogenic

vacuum and thus, one cannot disregard the possibility of atomic-scale con-

tamination of the contact by foreign atoms or molecules. Indeed, these

2Here, we have in mind situations where there is a homogeneous magnetization in the
junctions, i.e. no domains.
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Fig. 12.1 Conductance histograms for Fe, Co and Ni atomic contacts obtained with the
notched-wire MCBJ technique without magnetic field (thin curve) and when a magnetic
field of 5 T parallel to the current direction was applied (thick curve). The conductance
was measured using a dc bias voltage of 20 mV and a temperature of 4.2 K. Reprinted
with permission from [403]. Copyright 2004 by the American Physical Society.

authors showed that the inclusion of hydrogen molecules significantly mod-

ifies the histograms of Fe, Co, and Ni.

The observation of any kind of quantization of ferromagnetic materials

like Fe, Co or Ni is certainly surprising. These materials are transition

metals in which, according to our discussions in the previous chapter, the d

bands are expected to play a fundamental role in the transport properties

contributing with partially open channels. The conductance of ferromag-

netic atomic contacts has been analyzed theoretically by many different

groups using a variety of methods, see e.g. Refs. [407–427]. The general pic-

ture that emerges from these works confirms the naive picture and clearly

suggests that conductance quantization is not really expected in these fer-

romagnetic nanowires.

In what follows, we shall discuss in certain detail the results of Ref. [427],

which illustrate the most commonly accepted picture of the transport in
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ferromagnetic contacts. In this work the calculations are based on the com-

bination of the NRL tight-binding method of section 9.6 (see also Ref. [428])

and nonequilibrium Green’s function techniques, which was already used

in the last chapter.3 Let us stress that in this discussion we shall neglect

both the spin-orbit interaction and we shall assume that there are no do-

main walls present in the contacts.4 With these assumptions, the transport

properties of ferromagnetic contacts can be described in terms of two inde-

pendent contributions coming from both spin bands. In particular, in the

framework of Landauer’s approach the linear conductance at low tempera-

ture can be expressed as follows

G =
e2

h

∑
σ

Tσ(EF ), (12.1)

where Tσ(E) is the total transmission for spin σ =↑, ↓ at energy E and EF

is the Fermi energy. We also define the spin-resolved conductances Gσ =

(e2/h)Tσ(EF), such that G = G↑ +G↓. The transmissions are obtained as

follows

Tσ(E) = Tr[t†σ(E)tσ(E)] =
∑
n

Tn,σ(E), (12.2)

where tσ(E) is the transmission matrix and Tn,σ(E) are the individual

transmission eigenvalues for each spin σ (see section 8.1.3 for more details

on the calculation of these transmission matrices).

An important quantity in our discussion will be the spin polarization P

of the current, which we define as

P =
G↑ −G↓
G↑ +G↓

× 100%. (12.3)

Here, we shall assume that spin up denotes the majority spins, while spin

down corresponds to the minority ones.

In order to understand the results described below, it is instructive to

first discuss the bulk density of states (DOS). The spin- and orbital-resolved

bulk DOS of these materials around EF, as calculated from the NRL tight-

binding method, is shown in Fig. 12.2. The common feature for the three

ferromagnets is that the Fermi energy for the minority spins lies inside the

d bands. This fact immediately suggests that the d orbitals may play an

important role in the transport. For the majority spins the Fermi energy lies

3The technical details of the calculation of the current in ferromagnetic contacts have
been discussed in section 8.1.3.
4Later in this chapter we shall discuss the role of these two factors.
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Fig. 12.2 Bulk density of states (DOS) of Fe, Co, and Ni, resolved with respect to the
individual contributions of 3d, 4s, and 4p orbitals, as indicated in the legend. The upper
panels show the DOS for the majority spins (spin up) and the lower ones the DOS for
minority spins (spin down). The vertical dotted lines indicate the Fermi energy, set to
zero. Reprinted with permission from [427]. Copyright 2008 by the American Physical
Society.

close to the edge of the d band. The main difference between the materials

is that for Fe there is still an important contribution of the d orbitals, while

for Ni the Fermi level is in a region where the s and p bands become more

important. The calculated values of the magnetic moment per atom (in

units of the Bohr magneton) of 2.15 for Fe, 1.3 for Co, and 0.45 for Ni are

reasonable agreement with the literature values [429].

Let us turn now to the analysis of the conductance of Fe, Co and Ni

contacts. We consider ideal one-atom thick contact geometries with a cen-

tral dimer as shown in the upper part of Fig. 12.3. In this figure we also

present the total transmission for majority spins and minority spins as a

function of energy as well as the individual transmission coefficients for

those geometries. As one can see in Fig. 12.3(a), for the case of Fe one

finds 3 channels for the majority spins, yielding G↑ = 1.24e2/h, while for

the minority spins 3 channels contribute to G↓ = 0.70e2/h. The total con-

ductance is 0.94G0 and the polarization P = +28%. For the Co contact,

see Fig. 12.3(b), one finds G↑ = 0.90e2/h and G↓ = 2.23e2/h, summing up

to a total conductance of 1.6G0. The transmission is formed by 3 channels

for the majority spins (with one clearly dominant) and 6 channels for mi-
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Fig. 12.3 Transmission for the three single-atom contacts of Fe, Co, and Ni containing a
dimer in the central part of the contact. The geometries are shown in the upper graphs.
The distances are set to bulk distances and the atoms of the last two layers correspond
to the atoms of the leads (semi-infinite surfaces) that are coupled to the central atoms in
the model. We present the total transmission (black solid line) for both majority spins
and minority spins as well as the transmission of individual conduction channels that give
the most important contribution at Fermi energy, which is indicated by a vertical dotted
line. The channels corresponding to τ1, τ2, and τ3 are two-fold degenerate. Reprinted
with permission from [427]. Copyright 2008 by the American Physical Society.

nority spins and polarization is P = −42%. Finally, for the Ni contact in

Fig. 12.3(c), a single channel contributes to G↑ = 0.86e2/h and 4 channels

add up to G↓ = 2.66e2/h. This means that one has a total conductance of

1.8G0, while the current polarization adopts a value of P = −51%.

From the analysis of Fig. 12.3 and many other one-atom thick geome-

tries, the following basic conclusions were drawn in Ref. [427] concerning

the conductance of a ferromagnetic single-atom contact. First, both spin

bands contribute significantly to the transport. Second, the d orbitals give

a very important contribution to conductance of the minority spins and

they give rise to several channels (from 3 to 5 depending on the material).

Third, for the majority spins there is a smaller number of channels ranging

from 3 for Fe to 1 for Ni. This contribution is dominated by the d and

s orbitals for Fe and only by the s orbitals for Co and Ni. The relative

contribution and number of channels of the two spin species is a simple

consequence of the position of the Fermi level and the magnitude of the

spin splitting, see Fig. 12.2. In particular, notice that as we move from
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Fe to Ni, the Fermi energy lies more and more outside of the d band for

the majority spins, which implies that the number of channels is reduced

for this spin species. In particular, for Ni a single majority spin channel

dominates and in some sense, this material behaves as a monovalent and

a transition metal combined in parallel. Finally, the conductance values

for single-atom contacts lie typically above 1G0, in agreement with the

experimental results of Fig. 12.1.

The analysis of Häfner et al. [427] also put forward two additional im-

portant conclusions. First, as a consequence of the contribution of the d

bands, the value of the conductance and the current polarization are very

sensitive to the contact geometry and to disorder. Second, in the tunneling

regime one can have a much higher current polarization reaching in some

cases values close to 100%.

These ideas and conclusions can be further illustrated with the results

of Ref. [343] where conductance calculations were combined with classical

molecular dynamics simulations to determine the contact geometries. In

Fig. 12.4 we show the formation of a single-atom Ni contact containing a

dimer in its central part just before rupture. Moreover, this figure shows the

corresponding conductance and channel transmissions for both spin compo-

nents, the strain force necessary to break the contact, the spin polarization

of the current and the contact geometries. As one can see in this figure, in

the last stages of the stretching the conductance is dominated by a single

channel for the majority spins, while for the minority spin band there are

still up to 4 open channels. In particular, in the very final stages (regions

of 3 or 1 open channels for G↑) the spin-up conductance lies below 1.2e2/h,

while for spin down it is close to 2e2/h, adding up to a conductance of

around 1.2-1.6G0.

It is worth discussing the behavior of the spin polarization of the current,

P . Notice that at the beginning of this contact evolution it takes a value

around−40%, which is indeed close to the spin polarization of the bulk DOS

at the Fermi energy (−40.5% in these model calculations). However, as the

contact evolves, P fluctuates and even increases to positive values, which

cannot be simply explained in terms of the bulk DOS. Notice also that

P reaches the value of +80% in the tunneling regime, when the contact

is broken. Such a huge value in this regime is due to the fact that the

couplings between the d orbitals of the two Ni tips decrease much faster

with distance than the corresponding s orbitals. As a result there is a great

reduction of the spin-down conductance and in turn in a large positive value

of P .
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Fig. 12.4 Classical molecular dynamics simulation of the formation of a single-atom
Ni contact at 4.2 K ([001]-direction). The upper panel shows the strain force as a
function of the elongation of the contact. In the lower two panels the conductance G,
the MCS (minimum cross-section) radius and the channel transmissions are displayed
for the majority and minority spin components. Vertical lines separate regions with
different numbers of open channels ranging from 7 to 1 and 18 to 4, respectively. The
inset shows the evolution of the spin polarization of the current. Above and below these

graphs snapshots of the stretching process are shown. Reprinted with permission from
[343]. Copyright 2006 by the American Physical Society.
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As a final comment on these results, let us to point out that the contri-

bution of the minority spin component to the conductance is more sensitive

to changes in the contact geometry, as one can see in Fig. 12.4. Again, this

is a consequence of the fact that the minority spin contribution is domi-

nated by the bands arising from the d orbitals, which are anisotropic and

therefore more sensitive to disorder than the s states responsible for the

conductance of the majority spins.

12.2 Magnetoresistance of ferromagnetic atomic contacts

Another aspect of the transport through ferromagnetic atomic contacts that

has been extensively investigated in recent years is the magnetoresistance.

In this case the resistance (or conductance) of a junction is measured for

the two possible relative orientations (parallel and antiparallel) of the mag-

netization of the electrodes.5 The way to quantify the resistance change is

by means of the magnetoresistance defined as

MR =
R(AP )−R(P )

R(P )
× 100%, (12.4)

where R(AP ) is the resistance with an antiparallel orientation for the mag-

netizations in the electrodes and R(P ) is the resistance with parallel magne-

tizations. Normally, the antiparallel orientation exhibits a higher resistance

and with this definition the magnetoresistance has not upper bound and,

in particular, it can be larger than 100%.6

In the AP orientation there must be a domain wall somewhere in the

contact and it can play an important role in the resistance of the sam-

ple. For large contacts (with diameter greater than tens of nm), the main

contribution to the domain wall resistance is expected to come from the

anisotropic MR, a difference in the resistivity of a magnetic material de-

pending on whether the magnetic moment is oriented parallel or perpendic-

ular to the current.7 This contribution is relatively small, typically giving

MR values of a few percent [430].

As the contact diameter is reduced, the width of the domain wall can

be constrained by the geometry and decreases in proportion to the contact

width [431]. Eventually a new mechanism of MR may become dominant
5This requires to design the geometry of the magnetic electrodes so that their moments

can be controlled between reliably antiparallel and parallel configurations.
6Other definitions are also used in the literature as, for instance, MR = [R(AP ) −

R(P )]/R(AP ) × 100%, which in the usual situations has an upper bound of 100%.
7The anisotropic MR will be the subject of the next section.
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Fig. 12.5 (A) Scanning electron micrograph of a device where gold electrodes are used
to contact two permalloy thin-film magnets (inset) on top of an oxidized aluminum
gate. (B) Micromagnetic modeling showing antiparallel magnetic alignment across the
tunneling gap in an applied magnetic field of H= 66 mT. Reprinted with permission
from [438]. Copyright 2006 American Chemical Society.

if a domain wall is sufficiently narrow that the spin of a conduction elec-

tron cannot follow the direction of the local magnetization adiabatically

[432]. In that case the domain wall can enhance the electron scattering in a

similar way to what happens in the giant magnetoresistance effect in mag-

netic multilayers [433]. For contacts approaching the single-atom diameter

regime, values of MR as large as 200% [434] to 100000% [435] have been

reported, and ascribed to a “ballistic magnetoresistance” effect involving

scattering of electrons from an atomically-abrupt domain wall. However,

these large effects have not been reliably observed in well-controlled me-

chanical break-junctions [404], and it has been argued that the very large

changes in resistance are due to the effects of magnetostriction or magne-

tostatic forces that cause the contact to break and reform as the magnetic

field is varied [436].

Finally, if the contact diameter is reduced beyond the single-atom limit,

it enters the tunneling regime. MR in that regime reflects the spin po-

larization of tunneling electrons and it is also expected to depend on the

geometry of the contacts [437, 415].

As a representative example, we shall now describe the experiments of

Bolotin et al. [438]. These authors fabricated two thin-film ferromagnets

connected by a small magnetic constriction made of permalloy which can

be controllably narrowed by electromigration from about 100 × 30 nm2

to the atomic scale and finally to a tunnel junction, see Fig. 12.5. This

allowed them to study the MR as the contact region between the two fer-

romagnets is progressively narrowed in a single sample. One additional



Spin-dependent transport in ferromagnetic atomic contacts 345

100 200 300
Resistance (Ω)

0.5

1

1.5

2

ΔR
/R

P (%
)

103 104

Resistance (Ω)

-10

0

10

20

30

40(a) (b)

Fig. 12.6 (a) Magnetoresistance as a function of resistance in the range less than 400
Ω (device I). (b) Magnetoresistance as a function of resistance in the range 60 Ω - 15 kΩ
(device II). Adapted with permission from [438]. Copyright 2006 American Chemical
Society.

advantage of this device geometry is that the magnets are attached rigidly

to a non-magnetic substrate with no suspended parts, so that the influence

of magnetostriction and magnetostatic forces on the contact are expected to

be negligible. Moreover, these experiments were conducted at low temper-

atures (4.2 K) to have the required thermal stability. Although it cannot

be taken for granted that electromigration of alloys would maintain the

stoichiometry down to the atomic scale, the magnetic properties seem not

to have changed during the final phase of the electromigration process.

Let us now summarize the main findings of this work. When the resis-

tance of a device is low (< 400 Ω), it increases smoothly as electromigration

proceeds. The cross-section of the constriction varies from 100 × 30 nm2

(60 Ω) to approximately 1 nm2 (400 Ω). In this regime small (< 3%) pos-

itive MR was found which increases as the constriction is narrowed, see

Fig. 12.6(a), as expected from the semiclassical theory of Levy and Zhang

[432]. In this theory, the resistance of the domain wall scales inversely with

its width and the MR ranges typically from 0.7% to 3% for bulk ferromag-

nets.

In the resistance range from 400 Ω to 25 kΩ, corresponding to a crossover

between transport through just a few atoms and tunneling, the value of

MR exhibits pronounced dependence on the resistance of the device, see

Fig. 12.6(b). The MR has a minimum for resistances above 1 kΩ, and

typically changes sign here to give negative values. As the resistance is

increased further into the kΩ range, the MR increases gradually to positive

values of 10-20%. The observed MR values in the point contact regime are

smaller than expected from scaling results of the semiclassical theory [432],
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which is not surprising since the current is transmitted through just a few

channels.

Finally, in the tunnel regime, when the resistance of a device becomes

greater than tens of kΩ, MR values in the range from -10% to a maximum

of 85% where observed. These large fluctuations clearly indicate that the

MR is sensitive to the details of the atomic structure near the tunnel gap.

The tunneling current is flowing through just a few atoms on each of the

electrodes, and the electronic structure at these atoms does not necessarily

reflect the same degree of spin polarization as in the bulk of the ferromagnet.

Experiments like the ones just described raise several basic questions,

most of them related to the role of a domain wall scattering in the mag-

netoresistance of atomic-size contacts and whether or not it can be re-

sponsible for the huge MR values reported in some experiments. These

questions have been addressed theoretically by numerous authors, see e.g.

Refs. [439–441, 409, 410, 413, 412, 414, 415]. In order to elucidate these

issues a theory should incorporate three basic ingredients: (i) a proper de-

scription of the electronic structure of ferromagnetic atomic contacts, (ii)

an adequate description of the domain wall or magnetization profiles that

can appear in atomic-scale junctions and (iii) an analysis of realistic atomic

geometries. One of the few works that meets these requirements is that of

Jacob et al. [415] in which the authors studied the magnetoresistance of Ni

atomic contacts using ab initio transport calculations. In Fig. 12.7 we repro-

duce results from this work for the transmission as a function of energy for a

single-atom Ni contact for both P and AP orientations. These results were

obtained using local spin density approximation (LSDA). In the AP case

the self-consistent magnetization reverses abruptly between the tips atoms,

i.e. this calculation confirms the possibility of having atomically-abrupt do-

main walls. However, despite this fact, the MR acquires a moderate value

of 23%, which suggests that the domain wall scattering does not account

for the large MR in Ni single-atom contacts.

The quantitative result above was found to be very sensitive to the func-

tional used in the DFT calculations, but in no case very large MR values

were found. According to the authors, the reason for the moderate MR val-

ues is two-fold. First, in the AP configuration the resistance is never too low

because of the robust contribution of the s orbitals, which is of the order of

G0 for a single-atom contact. Second, in the P configuration the resistance

never reaches the minimum value of the ballistic case because, as we saw in

the previous section, the transport in these ferromagnetic contacts is not
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Fig. 12.7 Conductance per spin channel in the P configuration for the model nanocon-

tact shown in the inset calculated with the local spin density approximation. (b) Same
as in (a), but for the AP configuration. Reprinted with permission from [415]. Copyright
2005 by the American Physical Society.

really ballistic8 and the d bands contribute with partially open channels.

Another interesting finding of this work is the fact that the MR in atomic

contacts can become negative, as in the experiments described above. This

shows once more that the usual classical or semiclassical arguments do not

apply to the transport in ferromagnetic atomic-size contacts.

12.3 Anisotropic magnetoresistance in atomic contacts

Lord Kelvin discovered in 1857 that the resistivity of bulk ferromagnetic

metals depends on the relative angle between the electric current and the

magnetization direction.9 The importance of this phenomenon, known as

anisotropic magnetoresistance (AMR), was recognized in the 1970’s when

AMR of a few percent at room temperature was found in a number of alloys

based on Fe, Co, and Ni. This fact stimulated the development of AMR

sensors for magnetic recording (for reviews on AMR see Refs. [389, 443]).

In the usual AMR effect, the resistivity of a ferromagnetic metal reaches

a maximum when the current is parallel to the magnetization direction, ρ‖,
and a minimum when the current is perpendicular to the magnetization

8By ballistic transport we mean a situation where all the open conduction channels
have a transmission equal to one.
9The experimental study of the anisotropic magnetoresistance requires the application

a magnetic field high enough to saturate the magnetization of the system.
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direction, ρ⊥. The magnitude of AMR can be defined by

AMR =
ρ‖ − ρ⊥
ρ⊥

. (12.5)

As a function of the angle, θ, between the current and magnetization, the

resistivity of a polycrystalline sample can often be described by

ρ(θ) = ρ⊥ + (ρ‖ − ρ⊥) cos2 θ. (12.6)

The origin of AMR stems from the anisotropy of scattering produced by

the spin-orbit interaction [444]. The stronger scattering is expected for

electrons traveling parallel to magnetization, resulting in larger resistivity

ρ‖ as compared to ρ⊥ (see Refs. [389, 443, 444] for more details).

As usual, when the dimensions of a metallic wires are shrunk to the

atomic scale, its transport properties (including its AMR) are significantly

altered. Indeed, inspired by the work of Ref. [445] on Ni contacts, Bolotin et

al. [446] investigated the AMR of permalloy electromigrated junctions and

found that it can be considerably enhanced as compared with bulk samples

and that it exhibits an angular dependence that clearly deviates from the

cos2 θ law of Eq. (12.6). These results are illustrated in Fig. 12.8. In panel

(a) one can see, as a reference, the AMR signal of a large device exhibiting

the cos2 θ-behavior. Panel (b) shows the AMR signal of a device as its

cross section is reduced approaching atomic dimensions. Notice how the

AMR signal progressively deviates from the bulk behavior. Finally, panel

(c) shows results for the tunneling regime (when the contacts are already

broken) exhibiting an amplitude of more than 10% to be compared with

typical amplitudes of the bulk samples of less than 1%.

Additionally, these authors found a significant voltage dependence on

the scale of millivolts, which led them to interpret the effect as a con-

sequence of conductance fluctuations due to quantum interference [447].

Independently, Viret and coworkers [448] reported similar results in Ni con-

tacts, but also the occurrence of conductance jumps upon rotation of the

magnetization. Similar stepwise variations of the conductance have been

found in Co nanocontacts [449], see Fig. 12.9.

These jumps have been interpreted as a manifestation of the so-called

ballistic AMR (BAMR), a concept that we now proceed to explain. In

2005 Velev et al. [450] predicted that the conductance of a ferromagnetic

ballistic conductor can change abruptly with the direction of magnetization.

This prediction was based on ab initio calculations of the electronic band

structure of infinite chains of Ni and Fe. One of those calculations for Ni

is reproduced in Fig. 12.10, where one can see the band structure of an
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(b) (c)
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Fig. 12.8 (a) Zero-bias differential resistance vs angle of applied magnetic field at dif-
ferent field magnitudes at 4.2 K, illustrating bulk AMR for a permalloy constriction size
of 30×100 nm2 and resistance R0 = 70 Ω. The inset shows a scanning electron micro-
graph of a typical device. (b) Evolution of AMR as the device resistance R0 is increased
from 56 to 1129 Ω. (c) AMR for a device with R0 = 6 kΩ exhibiting 15% AMR, and a
R0 = 4 MΩ tunneling device, exhibiting 25% AMR. All measurements were made at a
field magnitude of 800 mT at 4.2 K. Inset in panel (b): AMR magnitude as a function
of R0 for 12 devices studied into the tunneling regime. Adapted with permission from
[446]. Copyright 2006 by the American Physical Society.

infinite chain in the absence of spin-orbit interaction [panel (a)] and in the

presence of spin-orbit interaction for magnetizations both parallel to the

chain axis [panel (b)] and perpendicular to it [panel (c)]. The key idea is

that by rotating the magnetization one can change the number of bands

crossing the Fermi energy, EF. Since in a ballistic conductor the number of

bands at EF is equal to the number of conduction channels (all of them with

perfect transparency), this change is reflected in an abrupt change of the

corresponding linear conductance. In the particular example of Fig. 12.10,

the conductance would change from 6 e2/h to 7 e2/h and back upon rotation

of the magnetization.
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Fig. 12.9 Angular dependence of conductance of Co nanocontacts. (a-d) The angle
Θ between the magnetic field and the sample plane changes from 0o to 180o. Results
for four different samples exhibiting different sign and magnitude of AMR. Reprinted
by permission from Macmillan Publishers Ltd: Nature Nanotechnology [449], copyright
2007.

The results of Fig. 12.9 definitively resemble the expected BAMR be-

havior described above, although in general the conductance jumps do not

occur between quantized values, as can easily be seen in the representative

traces However, as we have seen in previous sections, realistic ferromagnetic

contacts made of transition metals are not ballistic and thus, the interpre-

tation of the conductance jumps in terms of BAMR is at least question-

able. Indeed, Shi and Ralph [451] have suggested that these jumps might

originate from two-level fluctuations due to changes in atomic configura-

tions [452].

From the above discussion, one can see that at present there is still a

controversy about AMR in atomic contacts, concerning the origin of the

enhanced amplitude, the anomalous angular dependence, the occurrence

of conductance jumps and the voltage dependence. Different theoretical

groups have tried recently to shed new light on this problem. Thus for

instance, it has been proposed that the presence of resonant states local-
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Fig. 12.10 Calculated electronic structure of monoatomic Ni chain with equilibrium
interatomic distance in the absence of spin-orbit interaction (a) and in the presence
of spin-orbit interaction for magnetization lying along the wire axis M ‖ ẑ (b) and
perpendicular to the wire axis M ⊥ ẑ (c). The solid and dashed lines in (a) show
the minority-spin and majority-spin bands, respectively. The labels stand for the irre-
ducible representation of the group C∞ν and are displayed for minority-spin bands only.
Reprinted with permission from [450]. Copyright 2005 by the American Physical Society.

ized in the electrodes near the junction break could give rise to a strong

dependence of the conductance on the magnetization direction [453, 454].

This is an appealing explanation, but as we have seen in section 12.1, the

transmission of ferromagnetic contacts is usually very smooth around the

Fermi energy on the scale of a few meV. On the other hand, Autes et al.

[455] have proposed an alternative explanation of the conductance jumps

in terms of the existence of giant orbital moments in the contacts.

More recently, Häfner et al. [456] have put forward a simple explanation

for the anomalous AMR in terms of the reduced symmetry of the atomic

contacts as compared with bulk samples. The idea goes as follows. The

AMR stems from the scattering between the s and d energy bands induced

by the spin-orbit interaction and therefore, the AMR signal may reflect

the symmetry of the lattice. In bulk samples the final signal is a result of

the average over many impurities, but in the extreme case of an atomic-

scale contact, such signal strongly depends on the local geometry. This is

particularly clear in the case of a single-atom contact where all the current

must flow through a single bond. Thus, it is not so strange to observe,

depending on the contact realization, a large amplitude or an anomalous

angular dependence as compared with bulk samples. This idea is illustrated

in Fig. 12.11, where we reproduce the results of Ref. [456]. Here, one can
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Fig. 12.11 Contact evolution of a Ni junction grown in the fcc [001] direction as ob-
tained from classical molecular dynamics simulations. (a) Spin-projected, G↑,↓, and
total conductance in the absence of spin-orbit interaction and total conductance aver-
aged over θ, φ in the presence of spin-orbit interaction. Vertical lines correspond to the

contact geometries in (b). Inset: relative AMR amplitude ΔG/〈G〉θ = (Gmax,θ(φ) −
Gmin,θ(φ))/〈G(θ, φ)〉θ vs. inverse averaged conductance. (c) Conductance vs. θ for the
geometries in (b) and with φ in steps of π/6. (d) Same as (c) for the thick contact with
324 atoms shown in this panel. Reprinted with permission from [456]. Copyright 2009
by the American Physical Society.

see the evolution of the conductance and AMR signal10 as a function of the

polar angle θ and azimuthal angle φ during the formation of a Ni atomic

contact. This formation was simulated by means of molecular dynamics

(see Ref. [456] for technical details).

In Fig. 12.11(d) one can see that in the limit of thick contacts, these

model calculations recover the bulk behavior with an AMR amplitude of

0.45%. However, in the case of small contacts, one can observe clear devi-

ations from the cos2 θ-behavior and an enhancement of the amplitude [see

Fig. 12.11(a-c)]. Notice in particular that the signal in this case also de-

pends strongly on the azimuthal angle φ, contrary to the bulk case. Finally,

the statistical analysis of the data of these simulations reveals strong fluc-

tuations in the AMR signal and an increase to 2% on average in the last

steps before breaking, see inset of Fig 12.11(a).

On the other hand, in the analysis of these realistic geometries, Häfner

et al. [456] did not find signs of BAMR or the presence of pronounced

resonances in the local density of states of the electrodes. These authors

argued finally that the voltage dependence observed in the experiments

10In this case the AMR signal is defined in terms of the conductance, see caption of
Fig. 12.11.
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of Refs. [446, 452] could be a result of the combination of the intrinsic

anomalous AMR of atomic contacts with conductance fluctuations origi-

nating from impurities near the contacts [447].

12.4 Concluding remarks and open problems

As we have seen in the previous sections, the ferromagnetic atomic con-

tacts exhibit a very rich phenomenology. Moreover, in spite of progress

made in recent years, the level of understanding of the transport effects in

these systems is not comparable to the corresponding one in non-magnetic

contacts. With respect to the issues addressed in this chapter, there is an

increasing evidence (both experimental and theoretical) that the electronic

transport in these nanowires is not ballistic and phenomena like conduc-

tance quantization are not expected. Different theories show consistently

that in ordinary ferromagnetic metals, like Fe, Co or Ni, the d bands give

an important contribution to the transport, but the conduction channels

originating from these states are in general only partially open.

While the results for the properties of ferromagnetic atomic contacts

in the absence of field seem to be converging, there is not yet a similar

consensus about the magnetoresistive effects. With respect to MR, it is be-

coming clear that the huge values reported in some of the first experiments

are most likely due to magnetostriction. However, more controlled experi-

ments are needed to establish the values of the MR for different materials

as a function of the different system parameters (contact size, field, temper-

ature, etc.). From the theory side, more work is required to elucidate the

questions related to the existence and properties of domain walls in these

systems, as well as their influence in the transport characteristics. In some

cases, very sophisticated calculations have been performed for academic ge-

ometries like atomic chains, which often results in misleading conclusions

that do not apply to the systems explored experimentally.

The situation is very similar in the case of AMR of these magnetic

contacts. New experiments are needed to, in particular, identify the origin

of the abrupt steps observed in some experiments in the conductance as a

function of the angle between the magnetization and the current direction.

More theoretical calculations for realistic geometries are highly desirable to

find out the origin of the anomalous amplitude and angular dependence of

the AMR in these systems.

Finally, let us say the phenomena described in this chapter consti-
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tute the starting point for the investigation the spin-dependent transport

through single-molecule junctions. As we shall see in the next part of book,

experiments of that kind have been already reported. Some of them are

exploring the spin injection in molecules with the use of ferromagnetic elec-

trodes, while others investigate how the molecular magnetism is reflected

in the transport properties of molecular junctions with non-magnetic elec-

trodes.
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Transport through molecular
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Chapter 13

Coherent transport through

molecular junctions I: Basic concepts

As we have just seen in Part 3, the level of understanding achieved in the

field of metallic atomic-size contacts is certainly remarkable. However, it

is also clear that such metallic nanowires are not very “flexible” in many

respects. Thus for instance, their conductance can hardly be changed with

a gate voltage and often their current-voltage characteristics are simply

linear, which hinders the implementation of interesting electronic function-

alities. Thus, it seems natural to investigate the use of molecules as possible

building blocks of nanoscale circuits. Molecules are still small enough to

take advantage of their size, and the great variety of their physical prop-

erties make them ideal not only to mimic ordinary components of today’s

microelectronics, but also to provide new electronic functions.1 For these

reasons, the analysis of the transport properties of molecular junctions is

attracting a lot of attention and this will be the subject of the rest of this

book.

The study of the transport properties of molecular junctions constitutes

a formidable challenge. As we discussed in Chapter 3, there are still many

basic problems to be solved from the experimental side: reproducibility

of the results, stability of the contacts, external control, mass production,

etc. On the other hand, the theoretical description of the electrical con-

duction in molecular circuits is, in general, considerably more complicated

than in the case of atomic wires for various reasons. First, a molecule has

a more complicated electronic structure than an atom, simply because it

is composed of several atoms of, in general, different species. The accu-

rate description of the interaction between those atoms which leads, among

other things, to substantial charge transfer between them requires sophis-

1The basic properties of the main molecules explored so far in molecular electronics, as
well as their possible functionalities, are described in section 3.2.
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ticated ab initio methods.2 Second, in the case of a molecular junction,

a molecule may have a weak chemical interaction with the metallic elec-

trodes, which implies that the charge carriers can spend a long time in

the molecule. This may in turn lead to the appearance of correlation ef-

fects well-known in mesoscopic physics such as the Coulomb blockade or

the Kondo effect. Third, molecules possess internal degree of freedom, in

particular vibrations modes, which can be excited by the transport elec-

trons leading to a modification of the current-voltage (I-V) characteristics.

Obviously, the probability to excite a vibration depends on various factors

like the strength of the electron-vibration interaction, the quality of metal-

molecule interfaces and, of course, the length of the molecule. Depending

on this latter factor, the vibrations can produce weak signals in the I-V

curves in the case of short molecules or they can completely dominate the

transport characteristics like in long DNA strands. Fourth, a molecule can

undergo conformation changes due to, for instance, the high electric fields

applied in the contacts, mechanical stress, an external field (electromagnetic

radiation) or the local environment (red-ox reactions).

Due to the very rich phenomenology of molecular transport junctions,

it is not an easy task to organize the existent material in the literature.

Since this is not merely a review, we shall not follow a chronological or-

der. Instead, we find didactic to organize the huge amount of results con-

cerning the physics and chemistry of molecular junctions according to the

dominant transport mechanism. Thus, we shall first discuss the coher-

ent transport through molecular wires, in which electrons flow elastically

through the molecules without exchanging energy. The main goal in this

case is to understand the relation between the electronic structure of in-

dividual molecules and the transport properties of the junctions in which

they are embedded. This discussion will be divided into two parts. In the

first one, which is covered in this chapter, we shall discuss several coherent

transport phenomena which can be understood in the light of simple toy

models or handwaving arguments. These phenomena cover issues like the

shape of the current-voltage characteristics, their temperature dependence,

their symmetry or the dependence of the conductance on the length of the

molecules. Then, in the Chapter 14, we shall address similar issues, but

2Let us remind the reader at this stage that empirical methods like extended Hückel and
its descendents have played a fundamental role in quantum chemistry, but one cannot
expect these methods to give quantitative answers to the key questions in molecular
electronics, such as the position of the molecular levels, hybridization with the extended
states of the metallic leads, metal-molecule charge transfer, etc.
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this time from a more quantitative point of view. In particular, we shall

discuss the transport through short molecules which serve as test-beds for

molecular electronics and we shall try to establish to what extend their

electronic transport properties are quantitatively understood at present.

In Chapter 15 we shall discuss the transport through weakly coupled

molecules, where correlation effects such as the Coulomb blockade and the

Kondo effect play an essential role. Then, we present in Chapters 16 and 17

a thorough discussion of the role of vibration modes in the current through

short molecules, while the incoherent or hooping transport regime in long

molecules will be deferred until Chapter 18. Chapter 19 is devoted to the

analysis of transport properties (different from the electrical conductance)

that provide very valuable information about the transport in different

types of junctions. In particular, we address in that chapter the thermal

transport in molecular circuits. In Chapter 20 we shall discuss the optical

properties of current-carrying molecular junctions. Finally, in Chapter 21

we shall briefly mention some of the topics in molecular electronics that are

not addressed in this monograph.

We want to stress that, as the previous part of this book, the remaining

chapters have bee written in such a way that most sections are accessible

for both theorists and experimentalists. Our main goal has been to give a

didactic introduction to the basic concepts in molecular electronics, but at

the same time we have made an effort to review the most relevant contri-

butions to the different topics in this field. Let us finally say that, as stated

in the introductory part of this book, we shall mainly focus our attention

on single-molecule junctions.

13.1 Identifying the transport mechanism in

single-molecule junctions

As explained in the introduction, in this chapter we want to discuss the

coherent transport through molecular junctions. Let us stress that by co-

herent transport (or tunneling) we mean the transport regime in which the

information about the phase of the wavefunction of conduction electrons is

preserved along the molecular bridges and the inelastic interactions take

only place well inside the electrodes.3 The first question that we want to

3In Chapter 4 we have presented an introduction to the scattering approach, which
is the most popular and appealing theoretical formalism for the description of phase-
coherent transport in nanoscale junctions. If you are not familiar with this approach, we
recommend you to read that chapter at least up to section 4.4.
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Table 13.1 Possible conduction mechanisms. Here, J is the current density, V is the bias
voltage, ϕB is the barrier height, d is the barrier length and T the temperature.

Conduction Characteristic Temperature Voltage

mechanism behavior dependence dependence

Direct

tunneling J ∼ V exp
(
− 2d

�

√
2mϕB

)
none J ∼ V

Fowler-Nordheim

tunneling J ∼ V 2 exp

(
− 4d

√
2mϕ

3/2
B

3q�V

)
none ln( J

V 2 ) ∼ 1
V

Thermionic

emission J ∼ T 2 exp

(
−ϕB−q

√
qV/4πεd

kBT

)
ln

(
J
T2

)
∼ 1

T
ln(J) ∼ V 1/2

Hopping

conduction J ∼ V exp
(
− ϕB

kBT

)
ln

(
J
V

)
∼ 1

T
J ∼ V

address is: How do we know that the transport in a particular junction is

coherent? Or more generally, how can we identify the transport mechanism

from the experimental results? There is no unique answer to these ques-

tions, but certainly both the shape of the I-V characteristics and, specially,

their temperature dependence are very useful in this respect. Following

the instructive work of Reed’s group (see Ref. [130]), we list in Table 13.1

some possible conduction mechanisms along with their characteristic tem-

perature and voltage dependence of the current.4 This list is by no means

complete and some other mechanisms will be discussed in later chapters,

but it constitutes a good starting point. The mechanisms listed in Table

13.1 have been extensively studied in the context of metal tunnel junctions

and semiconductor devices.

The first two conduction mechanisms, direct tunneling and Fowler-

Nordheim tunneling, are two manifestations of coherent tunneling through

a potential barrier. The explicity voltage and temperature dependence are

taken from the Simmons model that we discussed in detail in section 4.4.

Direct tunneling refers to what happens at low bias, when the voltage is

much smaller than the barrier height, whereas Fowler-Nordheim tunneling

occurs when voltage is larger than the average barrier height and it is sim-

ilar to field emission. Both mechanisms (or regimes, to be more precise)

4This list was adapted from Ref. [457].
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have in common that the I-V’s are rather insensitive to temperature and

they only differ in the voltage dependence.

The third mechanism, thermionic emission, is a process that takes place

when the electrons are excited over a potential barrier, as opposed to tun-

neling through it. This clearly has a very strong temperature dependence,

and will become significant when the potential barrier is relatively small.

Notice that, strictly speaking, thermionic emission is also a coherent mech-

anism since the electrons proceed elastically through the barrier without

losing their phase memory.

Hopping conduction is a mechanism in which electrons are localized at

certain points within the molecule, and can hop between those points. This

will also be a thermally activated process.5 This mechanism dominates the

transport properties of long molecules, except in some remarkable cases

such as carbon nanotubes.

Based on whether thermal activation is involved, the conduction mecha-

nisms fall into two distinct categories: (i) thermionic or hopping conduction,

which has temperature-dependent I-V characteristics, and (ii) direct tunnel-

ing or Fowler-Nordheimer tunneling, which does not exhibit temperature-

dependent I-V curves. According to this slightly oversimplified discussion,

one can conclude that if the I-V curves are temperature independent, the

dominant conduction mechanism is (coherent) tunneling. Moreover, the

transport regime can be discriminated by the analysis of the shape of the

I-V characteristics. It is important to recall that most experimental tech-

niques, especially those designed to work with single molecules, are not

suitable for temperature-dependent measurements. Thus, it may not be

easy to carry out the test proposed above to elucidate the transport mech-

anism.

The working principle stated in the previous paragraph has been used

in many different investigations to establish the conduction mechanism.

In Fig. 13.1 one can see an example taken from Ref. [130]. In this case,

the authors studied the transport through thiolated alkanes of different

length using the nanopore technique (see section 3.5.1). In this experiment

the transport through a self-assembled monolayer (SAM) was investigated.

Although our main interest is on single-molecule junctions, this experiment

is specially illustrative and it will be used several times in this chapter.

As one can see in Fig. 13.1(b,c), the current is rather insensitive to the

temperature and thus it was concluded that the conduction mechanism

5This transport mechanism will be discussed in detail in Chapter 18.
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(b)(a)

(c)

Fig. 13.1 (a) Schematics of a nanometer-scale device used in the experiments [130].
The structure of octanethiol is shown as an example. (b) Temperature-dependent I-V
characteristics of dodecanethiol (C12). I-V data at temperature from 300 to 80 K with
20 K steps are plotted on a logarithmic scale. (c) Arrhenius plot generated from the
I-V data in panel (b), at voltages from 0.1 to 1.0 V with 0.1 V steps. Reprinted with
permission from [130]. Copyright 2003 by the American Physical Society.

through alkanethiols is tunneling, i.e. the electronic transport is coherent.

Once it has been established that coherent tunneling is the dominant

transport mechanism, one can use, for instance, the Simmons model to un-

derstand the shape of the I-V characteristics. As we explained in section

4.4, see in particular Eq. (4.17), the current in this model is given in terms

of different parameters like the electron mass, m, the barrier width, d, the

barrier height, ϕB, and a dimensionless parameter called α. This parame-

ter is of the order of 1 for a rectangular barrier and bare electron mass. It

is sometimes used as a fitting parameter to account for the possibility of

non-rectangular barriers or an effective mass, m∗, different from the bare

electron mass. Eq. (4.17), with ϕB and α as adjustable parameters, was

used in Ref. [130] to fit the I-V curves of different thiolated alkanes. An

example of such fits is shown in Fig. 13.2, where the I-V curve of a do-

decanethiol (C12) was fitted. The best nonlinear least-square fitted was

performed with ϕB = 1.42 eV and α = 0.65.
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Fig. 13.2 Measured current-voltage characteristics (circular symbols) of a nanopore
junction with dodecanethiols compared with calculations based on Simmons model (solid
line) using ϕB = 1.42 eV and α = 0.65. The calculated I-V from a simple rectangular
model (α = 1) with ϕB = 0.65 eV is also shown as dashed curve. Reprinted with
permission from [130]. Copyright 2003 by the American Physical Society.

In spite of the quality of the fit shown in Fig. 13.2, there are a few

things that are not very satisfactory. First, an attempt to fit the results

with a rectangular barrier fails to describe the high-bias regime, see dashed

line in Fig. 13.2. This conclusion has been drawn in several analyses of

the transport through alkanethiol [458, 459]. This is the reason why α

was used above as an adjustable parameter, although its physical meaning

is not really clear. Second, the value obtained for the barrier height is

certainly small as compared with the expectations. This height, ϕB, is

in principle the distance between the Fermi energy of the electrodes and

the nearest molecular energy level in the molecule. For the combination of

Au contacts and alkanes, this distance is expected to be between 4 and 5

eV [299]. A possible way out for these problems has been pointed out by

Akkerman et al. [460]. These authors have shown that the description of

the transport through SAMs of alkenedithiols can be improved by including

the effect of image charges in the Simmons model (see brief discussion of

the role of image charges in section 4.4). They were able to describe the

transport in their experiments up to 1 V by using a single effective mass

and a barrier height. The barrier heights found were in the order of 4-5 eV

and, irrespective of the length of the molecules, an effective mass of 0.28 m

was determined in agreement with theoretical predictions [299].

Simmons model has been used in many other examples in molecular

electronics to interpret the observed I-V characteristics. For instance, an-
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other beautiful example can be seen in Ref. [461], where the authors used

this model to explain the measured I-V curves in metal-molecule-metal

junctions formed from π-conjugated thiols, which were consistent with a

change in transport mechanism from direct tunneling to field emission.

Tunneling models, like Simmons one, borrowed from the field of metal-

lic tunnel junctions and semiconductor devices will continue to play an

important role in molecular electronics. However, their use is at least ques-

tionable. For instance, one may argue that one should use at least a double-

barrier model to describe a metal-molecule-metal junction since we have two

interfaces. Of course, such models are available, as we showed in Chapter

4. However, one could still argue that the bound states of a simple double-

barrier structure do not necessarily resemble those of a molecule. One could

go on trying to refine even further such barrier models, but it seems more

natural to use models that already incorporate the molecular features right

from the start. This is precisely the strategy that we are going to follow in

the rest of this chapter, where we shall introduce simple molecular-based

models to describe the transport in molecular junctions. In particular, we

shall start in the next section by studying the main conclusions that can

be drawn from the simple resonant tunneling model.

13.2 Some lessons from the resonant tunneling model

When the coherent transport through a metal-molecule-metal contact is

discussed, one typically thinks of the molecular orbitals of the molecule

within the junction. These orbitals are occupied up to the highest occu-

pied molecular orbital (HOMO), which for a characteristic molecule could

be roughly −7 eV. This has to be compared with the Fermi level of the

metal, which for a noble material is around −5 eV.6 Due to the inter-

action between the molecule and the metal electrodes, some charge flow,

charge rearrangements, and geometric reorganization will occur. After this

process, the simplest viewpoint is expressed by the level scheme depicted

in Fig. 13.3(a). Here, the Fermi energy of the electrodes lies somewhere

within the HOMO-LUMO (lowest unoccupied molecular orbital) gap of

the molecule. Moreover, due to the hybridization of the molecular orbitals

and the metallic states, the former ones acquire a finite broadening that

depends on the strength of the metal-molecule coupling, i.e. the original

molecular states have now a finite lifetime.

6These energies are measured with respect to the vacuum level, which is set to zero.
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(a) (b)

Fig. 13.3 (a) Level scheme of a molecular junction. The molecule has a series of sharp
resonances corresponding to the different molecular orbitals, whereas the metal possess
a continuum of states that is filled up to the Fermi energy of the metal. (b) The same
as in panel (a) for a situation where the transport is dominated by a single level, ε0.

In principle, different molecular orbitals can participate in the electron

transport simultaneously. However, there are many situations where one

level (HOMO or LUMO) lies closest to the Fermi level of the metal and

therefore dominates the transport in a certain voltage range. In this case,

the situation is better represented by the scheme of Fig. 13.3(b). This is

precisely the situation that we will be considering throughout this section.

Such situation can be described with the (single-level) resonant tunneling

model considered, for instance, in section 7.4.1.7 In this model, the level

position is denoted by ε0 and we measure it with respect to the Fermi en-

ergy of the electrodes, which we set to zero. At finite bias, this position

depends on the voltage applied across the junction (and on the way the

voltage drops at the interfaces) and to indicate it explicitly we shall write

ε0(V ). The other key parameters of this model are the scattering rates

ΓL,R, which describe the strength of the coupling to the metal electrodes

(L,R). These parameters have dimensions of energy and they determine

the lifetime or broadening of the resonant level. Such broadening, to be

precise the half-width at half-maximum, is simply given by Γ = ΓL + ΓR.

The different parameters of the model will be considered as phenomenolog-

ical parameters, but they could in principle be obtained from a fit to the

experimental results or they can be calculated from ab initio methods.

As we have seen in the previous chapters, see Chapter 4 and section

7The word “resonant” in the name of this model is maybe a bit misleading since it may
suggest that the transport takes place on resonance. This is actually not the case and,
as we shall see in this section, this model describes in a unified manner different regimes
within the coherent tunneling picture.
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7.4.1, following the spirit of the Landauer approach, the I-V characteristics

in this model can be computed from the following expression

I(V ) =
2e

h

∫ ∞

−∞
dE T (E, V ) [f(E − eV/2)− f(E + eV/2)] , (13.1)

where the factor 2 is due to the spin symmetry of the problem, f(E) is the

Fermi function and T (E, V ) is the energy- and voltage-dependent trans-

mission coefficient given by the Breit-Wigner formula

T (E, V ) =
4ΓLΓR

[E − ε0(V )]2 + [ΓL + ΓR]2
. (13.2)

Here, the scattering rates are assumed to be energy- and voltage-

independent. This assumption can be easily relaxed, but it is usually a

good approximation for noble metals like gold with a rather flat density of

states around the Fermi energy. Notice also that we assume that the voltage

is applied symmetrically between the left and right electrode. Obviously,

this is irrelevant and the current only depends on the different of the chem-

ical potentials. The previous simple expressions will be our starting point

to discuss a few basic issues in the next subsections.

13.2.1 Shape of the I-V curves

The first obvious issue to be discussed is the shape of the I-V characteristics.

Let us assume for the moment that the voltage drops symmetrically in both

interfaces and therefore ε0(V ) = ε0. This is the situation expected when

the molecule is equally coupled to both electrodes (ΓL = ΓR). In the zero-

temperature limit the integral of Eq. (13.1) can be done analytically and

the current adopts the following form

I(V ) =
2e

h

4ΓLΓR

Γ

[
arctan

(
eV/2− ε0

Γ

)
+ arctan

(
eV/2 + ε0

Γ

)]
, (13.3)

where Γ ≡ ΓL + ΓR. From this expression one can see that the cur-

rent at sufficiently large voltages saturates to a value given by Isat =

(2e/h)4πΓLΓR/Γ, which one can show to be independent of the tempera-

ture. This simple result illustrates how the scattering rates determine the

order of magnitude of the current.

In order to have an idea about how the I-V curves looks like, we show

in Fig. 13.4 the current vs. bias voltage and the corresponding differen-

tial conductance (G = dI/dV ) for different values of the scattering rates

(symmetric situation), a level position of ε0 = 1 eV and room temperature.

Notice that the current is symmetric with respect to voltage inversion and it
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Fig. 13.4 (a) Current vs. bias voltage in the resonant tunneling model for a level position
ε0 = 1 eV (measured with respect to the Fermi energy of the electrodes) and at room
temperature (kBT = 0.025 eV). The different curves correspond to different values of the
scattering rates that are assumed to be equal for both interfaces. (b) The corresponding
differential conductance G = dI/dV normalized by G0 = 2e2/h.

has a characteristic shape where one can distinguish three different regions.

We focus on the positive bias part. The first region is at low bias, when the

voltage is much smaller than |ε0|, see Fig. 13.5(a). In this case the current is

quite low, specially if Γ is rather small. The second region is defined by the

resonant condition: eV/2 = ε0(V ), i.e. eV = 2ε0, see Fig. 13.5(b), where

the level is aligned with the chemical potential of one of the electrodes.

Here, when the voltage approaches this condition, the current is greatly

enhanced. Finally, when the voltage is larger than 2|ε0| + Γ, the current

saturates to the value given by Isat obtained above, see Fig. 13.5(c).

As one can see in Fig. 13.4(b), the corresponding differential con-

ductance, G = dI/dV , exhibits two peaks at the resonant conditions

ε0
ε0(V)

ε0(V)
(b) (c)

R

L

R

L

(a)

RL

Fig. 13.5 Voltage dependence of the level alignment in the resonant tunneling model
for symmetric coupling. (a) Zero bias region, (b) resonant situation where the level is
aligned with the chemical potential of one of the electrodes and (c) large bias region
where the current saturates. The level has a finite broadening given by Γ = ΓL + ΓR.
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(a) (b)

Fig. 13.6 (a) I-V curves of octanedithiol-based junctions measured with the appara-
tus shown in the inset. Here octanedithiol molecules are placed inside a monolayer of
octyl chains on top a gold surface. The molecules are contacted with a gold nanopar-
ticle, which in turn is contacted by the gold tip of a conducting AFM. From [125].
Reprinted with permission from AAAS. (b) I-V curves (solid lines) measured in molec-
ular junctions formed with the break-junction technique at room temperature where a
trans-platinum(II) complex is contacted with gold electrodes (see inset). The curves
were fitted with a model for a rectangular barrier of height 2.5 eV (circles). Reproduced
with permission from [462]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA.

eV = ±2ε0. The width of these peaks is determined by the largest en-

ergy scale between Γ and kBT . In the example of Fig. 13.4, the width is

mainly determined by Γ and the conductance at low temperatures would

reach a value close to G0 at the resonant conditions. Then, in the plot of

the conductance vs. bias voltage one can read off at low temperatures the

parameter Γ, which determines the strength of the metal-molecule coupling.

13.2.2 Molecular contacts as tunnel junctions

In Fig. 13.2 one can see an example of the I-V characteristics of a molec-

ular junction that resembles those that typically are reported in tunnel

junctions. These type of curves are encountered quite frequently in the lit-

erature and we show two more examples in Fig. 13.6. The first one, see panel

(a), was obtained by measuring the current through an alkane thiol ad-layer

with a gold cluster attached to a conductive AFM tip [125]. In the second

example, see panel (b), the current through a trans-platinum complex was

measured making use of the microfabricated MCBJ technique [462]. As

discussed in the previous section, this type of curves can be described with

standard tunneling models. Indeed, in the example of Fig. 13.6(b), the

authors were able to fit quite well the I-V curves using the model of a

rectangular potential barrier of height 2.5 eV.
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Fig. 13.7 The same as in Fig. 13.4 for low bias (|eV | < ε0(V )).

Such tunneling curves can also be described with the resonant tunneling

model. If in Fig. 13.4 we focus on the low bias regime, i.e. before the

resonant condition is reached, one obtains the current and conductance

shown in Fig. 13.7. The similarity with the experimental curves is rather

obvious and by adjusting the parameters ε0 and Γ, one can in principle

fit those I-V curves. Anyway, it is important to emphasize that what it

is usually called a tunnel-like curve is nothing but a cubic function of the

form: I(V ) = AV + BV 3, where A and B are constants. Almost any

tunneling model that produces symmetric I-V curves gives rise to such a

voltage-dependence at low bias and therefore it is suitable for fitting the

I-V characteristics in this regime.8 For this reason, if the I-V curves have

no much structure, one must be careful in interpreting the fits and one

should make sure that the values of the parameters obtained from the fits

are sensible.

13.2.3 Temperature dependence of the current

As we discussed in the previous section, the temperature dependence of the

current is a key issue for identifying the transport mechanism. In particular,

we concluded that temperature-independent I-V curves are a signature of

coherent tunneling. In this subsection we shall show that this conclusion

is basically supported by the resonant tunneling model, although we shall

show that coherent tunneling can also give rise to temperature-dependent

I-V curves.

Quite generally, if the transport is coherent, the Landauer formula, see
8We showed in section 4.4 that the I-V curves in Simmons model has this cubic depen-

dence in an intermediate voltage range.
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Fig. 13.8 (a) Current-voltage characteristics computed with the resonant tunneling
model for different temperatures. The parameter values are: ΓL = ΓR = 2 meV and
ε0 = 1 eV. (b) Blow-up of the low bias region. Notice that the current is independent of
the temperature. (c) The corresponding differential conductance vs. voltage.

Eq. (13.1), tell us that the temperature dependence of the current or of the

conductance is determined by the energy dependence of the transmission

coefficient, which is usually not very pronounced. Thus, the temperature

dependence in the coherent regime, if any, is typically a power law, which

is clearly at variance with, for instance, the exponential behavior in the

incoherent hopping regime that takes place in very long molecules. In the

particular case of the resonant tunneling model, it is easy to see that if the

transmission is fairly energy-independent in the energy window controlled

by the voltage, then the current is insensitive to the temperature. This is

precisely what occurs at low bias when the level lies well above (or below)

the equilibrium Fermi energy of the system. Therefore, we can conclude

that the current (and also the conductance) is temperature independent in

an off-resonant situation.

The situation changes when the transport takes place on resonance. In

this case, if the temperature is comparable or larger than Γ, the current

depends on temperature. This is illustrated in Fig. 13.8 where we show

the I-V curves and the corresponding differential conductance for temper-

atures larger than the width of the resonance. As one can see, the current

and conductance depend on temperature for voltages around the resonant

condition, while at low bias they are insensitive to its value, see Fig. 13.8(b).

To be more precise, let us now study the temperature dependence of

the conductance in the linear regime. From Eqs. (13.1) and (13.2), one can
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show that the linear conductance is given by

G(T ) =

(
2e2

h

)
1

4kBT

∫ ∞

−∞
dE

[
4ΓLΓR

(E − ε0)2 + Γ2

]
1

cosh2(βE/2)
, (13.4)

where β = 1/kBT . There are two limiting cases in which we can get a

simple analytical expression. First, if we are in an off-resonant situation,

where |ε0| � Γ, kBT , then the conductance is temperature independent and

it is given by

G =

(
2e2

h

)
4ΓLΓR

ε20
. (13.5)

On the other hand, in a weak coupling situation (Γ � kBT ) the linear

conductance can be expressed as

G(T ) =

(
2e2

h

)
πΓLΓR

Γ

1

kBT cosh2(βε0/2)
. (13.6)

This means that in this limit the conductance increases as the temperature

decreases. Such temperature dependence is illustrated in Fig. 13.8(c).

13.2.4 Symmetry of the I-V curves

The symmetry of the I-V characteristics with respect to voltage inversion

has played a prominent role in the history of molecular electronics. As

we discussed in section 1.2, Aviram and Ratner suggested in their seminal

paper [8] that a single molecule with a donor-spacer-acceptor structure

would behave as a diode when placed between two electrodes.

Rectifying behavior was already observed in 1990 and 1993 by

two groups using a monolayer of hexadecylquinolinium tricyanoquin-

odimethanide sandwiched between dissimilar metal electrodes (magnesium

and platinum) [463, 464] and then confirmed later in 1997 and 2001 by

Metzger and coworkers, who used identical metals (first aluminum, then

gold) [14, 465, 466]. These papers use Langmuir-Blodgett monolayers (one

molecule thick), with maybe 1014 to 1015 molecules measured in parallel.

About nine similar rectifiers of vastly different structure have been found by

Metzger’s group between 1997 and 2006 [467]. Rectification has also been

studied at the level of single-molecule contacts, see for instance Ref. [468].

Let us see now what the resonant tunneling model can teach us about

the symmetry of the I-V characteristics. This model suggests that a possible

rectification mechanism is related to the voltage profile across the junction.

Let us consider an asymmetric situation, where the molecule is differently
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Fig. 13.9 Current-voltage characteristics in the resonant tunneling model for an asym-
metric situation for ε0 = 1 eV, ΓR = 20 meV and at room temperature (kBT = 25
meV). The different curves correspond to different values of the left scattering rate. The
inset shows very asymmetric situations where the scattering rates have bee interchanged.
Notice the that the I-V curves exhibit a clear rectification behavior.

coupled to the left and right electrodes. If the scattering rates ΓL and

ΓR are different, it is reasonable to assume that the voltage drops at the

interfaces accordingly to the ratio of the scattering rates. This can be simply

modeled by assuming that the voltage dependence of the level position is of

the form: ε0(V ) = ε0+(eV/2)(ΓL−ΓR)/Γ. This expression simply reflects

the fact that if one of the rates is much greater than the other, the level

follows the shift of the chemical potential of the electrode that is better

coupled.

With this simple model, we can now compute the I-V curves and an

example is shown in Fig. 13.9. Here, the different curves correspond to

different values of the ratio ΓL/ΓR. As we can see, when this ratio clearly

differs from one, the I-V curves become very asymmetric and the desired

rectification behavior becomes apparent. Notice that the polarity of the

curves can be controlled by exchanging the values of the scattering rates in

an asymmetric situation, as it is shown in the inset of Fig. 13.9.

It is easy to understand the shape of the I-V curves in Fig. 13.9. For

instance, if we focus on the situation where ΓL � ΓR, the level is shifted

with the bias as ε0(V ) = ε0 − eV/2, i.e. it follows the chemical potential

of the right electrode. Then, the resonant condition is reached for positive

voltages when the Fermi energy of the left electrode is aligned with the

level, i.e. when eV/2 = ε0 − eV/2, which implies ε0 = eV . For negative
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voltages, since the level follows the right electrode, the resonant condition

is never reached and then the current for this polarity is much lower than

for positive voltages. These arguments explain the curve in Fig. 13.9 for

ΓL = 0.1ΓR. Using similar arguments, one can easily explain the other

curves in this figure.

It is worth pointing out that the asymmetry in the coupling can be due

to extrinsic factors, like a different coupling between left and right due to

an asymmetric configuration of the molecular junction, or it can be due to

something intrinsic, like the geometry of the molecule under investigation.

Thus for instance, an asymmetric molecule has molecular orbitals with an

asymmetric charge distribution. This induces a different coupling with the

electrodes, which can lead in turn to an asymmetric voltage profile. In both

cases, the final result is the observation of asymmetric I-V curves. For an

illustrative experimental example, we refer to the reader to Ref. [469].

13.2.5 The resonant tunneling model at work

After the extensive discussion of the previous subsections about the trans-

port characteristics that can be deduced from the resonant tunneling model,

the reader may be wondering whether this model actually works. The pur-

pose of this subsection is to show that indeed it does.

The resonant tunneling model has been used by several authors to de-

scribe the experimental results in different types of molecular junctions.

Thus for instance, Grüter et al. [470] used this model to obtain information

about the tunneling rates in the transport through thiolated C60 molecules

in a liquid environment. As we shall discuss in detail in section 18.2, this

model was used by Poot et al. [471] to describe successfully the tempera-

ture dependence of I-V characteristics of three-terminal devices containing

individual tercyclohexylidene molecules.

More recently, Zotti et al. [472] have shown that the I-V curves of single

tolane molecules attached to gold electrodes via different anchoring groups

can be accurately fitted with the resonant tunneling model. In Fig. 13.10

we show typical examples of those I-Vs for three different molecules to-

gether with the corresponding fits to this model. The curves in this figure

correspond to symmetric I-Vs, but also asymmetric curves were fitted us-

ing the ideas of the previous subsection. It is worth mentioning that these

I-V curves could not be so accurately described with other models like the

Simmons one. On the other hand, as one can see in the figure caption,

the values of the scattering rate (Γ = ΓL = ΓR) vary depending on the
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Fig. 13.10 I-V curves of tolane-based molecules junctions measured with the micro-
fabricated MCBJ technique at room temperature and under liquid environment [472].
The molecules investigated are shown in the upper part: 4,4′-bisthiotolane (BTT), 4,4′-
bisnitrotolane (BNT) and 4,4′-biscyanotolane (BCT). The black lines in the different
panels correspond to the experimental results, while the lighter lines are the fits to the
resonant tunneling model. The parameters used in the fits of these symmetric curves
(Γ = ΓL = ΓR) are: Γ = 42 meV and ε0 = 404 meV for BTT, Γ = 93 meV and ε0 = 271
meV for BNT and Γ = 1.8 meV and ε0 = 558 meV for BCT. Courtesy of Artur Erbe.

anchoring group used to bind the molecules. Let us also stress that Zotti et

al. showed by means of ab initio DFT-based calculations that the use of the

resonant tunneling model was justified. To be precise, they showed that the

transport in these molecules is indeed dominated by a single molecular or-

bital that gives rise to a Breit-Wigner resonance close to the Fermi energy.

In particular, the transport was found to be dominated by the HOMO in

the case of the thiolated molecule, while the LUMO was found to be re-

sponsible for the conduction in the other two cases with nitro and cyano

(or nitril) groups. The implications of this work for the role of anchoring

groups in the transport through molecular junctions will be discussed in

section 14.2.

13.3 A two-level model

In the previous section we have assumed that the coherent transport was

completely dominated by a single molecular level. Of course, this is not

always the case. For instance, the Fermi level may lie more or less in the

middle of the HOMO-LUMO gap and then both molecular orbitals would

contribute to the transport. In other situations, we can have other levels

very close to the HOMO or to the LUMO contributing significantly to the

transport. For these reasons, we want to refine the resonant tunneling

model to include a second level. Our goal is to learn how the conductance
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Fig. 13.11 Schematic representation of a two-level model where two sites with on-site
energy ε0 are coupled via a hopping tH . Each site is coupled to its closest electrode by
a hopping t (the same for both leads).

depends on the distance between the two levels and on the strength of the

coupling to the electrodes.

The model that we are about to describe is inspired by an important

example in molecular electronics, namely the transport through a hydrogen

molecule [569]. As we shall see in section 14.1.3, Smit and coworkers [127]

investigated the transport through hydrogen molecules with Pt contacts us-

ing the break junction technique. These authors concluded that a hydrogen

molecule can form a stable bridge between Pt electrodes and that such a

bridge has typically a conductance very close to the conductance quantum

G0 = 2e2/h. Obviously, in this situation only two molecular levels can

participate in the transport, namely the bonding and antibonding state of

the hydrogen molecule.

With the hydrogen molecule in mind, we now proceed to analyze the

transmission in the model represented schematically in Fig. 13.11. In this

model we consider that the molecule is formed by two atoms with a single

relevant orbital per site. The on-site energy is denoted by ε0 and it is

assumed to be the same in both sites. The two sites are connected by a

hopping tH , while the symmetric coupling to the electrodes is described by

the hopping t. Notice that, for simplicity, we assume that the electrodes are

only coupled to its closest atom. The hopping tH is related to the splitting

between the bonding (ε+) and the antibonding state (ε−) of the molecule,

namely ε± = ε0 ± tH . Thus, the HOMO-LUMO gap is simply 2tH in this

case. Obviously, within this model the conductance is made up of a single

channel because there is only one distinct path to cross the molecule.

The calculation of the zero-bias transmission is a simple exercise for

those who have followed the theoretical background (see Exercise 13.1).
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Fig. 13.12 (a) Transmission as a function of the energy for the two-level model. The
different curves correspond to different values of the scattering rate Γ. (b) Total density
of states (DOS) projected onto the molecule, i.e. the sum of the local DOS in both sites
vs. energy.

We just state here the final result that reads9

T (E) =
4Γ2t2H

[(E − ε̃+)2 + Γ2] [(E − ε̃−)2 + Γ2]
. (13.7)

Here, ε̃± = ε0 ± tH + t2Re{ga} are the renormalized molecular levels, ga(ε)

being the advanced Green function which describes the local electronic

structure of the leads. The scattering rate Γ, which determines the broad-

ening of the molecular levels, is given by Γ(ε) = t2Im{ga} = πt2ρ(ε), where

ρ(ε) is the LDOS of the metallic contacts. For the sake of simplicity, we

now assume that Γ is independent of the energy and that the levels are not

renormalized (ε̃± = ε±). In Fig. 13.12(a) we show the transmission as a

function of energy for different values of Γ in units of tH . We also show

in Fig. 13.12(b) the corresponding total density of states (DOS) projected

onto the molecule.10 Let us recall that the linear conductance is finally

determined by the value of the transmission at the Fermi energy, which we

have not yet specified.

As one can see in Fig. 13.12(a), the energy dependence of the trans-

mission depends crucially on the ratio between the scattering rate and the

hopping tH . In a weak coupling situation, where Γ � tH , the molecular

levels are clearly resolved and there is a pronounced pseudo-gap between

them. On the other hand, as Γ becomes of the order of tH , and therefore of

the order of the distance between the molecular levels, the gap is filled with

states, see Fig. 13.12(b). In this case one can reach a transmission close to

9It is not important to understand the meaning of all the functions appearing in this
formula to appreciate the main conclusion that we want to draw.
10This DOS is given by ρ+ + ρ−, where πρ± = Γ/{(ε − ε̃±)2 + Γ2}.
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one even in the energy region between the two molecular states. The first

limit describes the typical situation in many organic molecules in which

the Fermi energy lies somewhere in the HOMO-LUMO gap and the broad-

ening of the levels (0.01-0.5 eV) is clearly smaller than the gap (3-8 eV).

This is the reason why most organic molecules, even those with delocalized

orbitals, are poorly conductive. The opposite limit describes the situation

that occurs in strongly coupled systems such as the hydrogen molecule [127]

and other short organic molecules coupled to transition metals [473, 474],

where the linear conductance can be as high as 1G0. In these cases the

strong hybridization between the molecules and the electrodes (made of

Pt) provides a broadening to the molecular levels of several electronvolts,

which is in some cases comparable to the gap of the molecules or it simply

facilitates the resonant condition for the relevant orbital for transport (see

sections 14.1.3 and 14.1.4). Thus, almost irrespective of the exact position

of the Fermi energy, the transmission reaches a value close to unity. This

is, in simple terms, the explanation for the high conductance observed in

those examples.

Another simple two-level model is that in which the transmission is

assumed to be the sum of two independent Lorentzian functions. We shall

make use such a model in section 19.3 in our discussion of the thermopower

of molecular junctions.

13.4 Length dependence of the conductance

One of the most studied issues in molecular electronics is the length de-

pendence of the conductance of molecular junctions. Typically the experi-

ments are restricted to low bias, but there are also studies of the influence

of a finite bias on this length dependence. Series of molecules like alkanes,

oligophenylenes, oligothiophenes, etc., have been extensively studied with

different techniques (see Ref. [41] for exhaustive list of references). The

most common finding is that conductance decays exponentially with the

length of the molecule, L, as

G(L) = Ae−βL, (13.8)

where the attenuation factor β depends on the particular type of molecule,

the presence of side groups, eventually on the bias voltage and not so much

on the anchoring group. Here, A is just a prefactor that determines the

order of magnitude of the conductance. Typical values of β range from 0.2-

0.4 Å−1 for conjugated molecules to 0.8-1.2 Å−1 for aromatic compounds.
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Fig. 13.13 Length dependence of the current through a self-assembled monolayer of
alkane thiols measured for different bias voltages with the nanopore technique. The
figure shows a log plot of the tunneling current densities multiplied by the molecular
length, which is denoted by d in this graph, at low bias and by d2 at high bias (symbols)
vs. molecular lengths. The lines through the data points are linear fittings. Reprinted
with permission from [130]. Copyright 2003 by the American Physical Society.

The exponential length dependence is expected in almost any tun-

neling model. Thus for instance, from the Simmons model (see sec-

tion 4.4) one expects at low voltages a length dependence of the type

G ∝ (1/L) exp(−βLVL), where βLV is a bias-independent decay coefficient

given by

βLV =
2
√
2m

�
α
√
ϕB, (13.9)

where let us recall that ϕB is the barrier height, m is the electron mass and

α is a parameter that depends on the exact shape of the barrier. For higher

voltages (HV) (i.e. eV > ϕB), the attenuation factor depends on the bias

as

βHV = βLV

(
1− eV

2ϕB

)1/2

. (13.10)

We show a typical experimental example of this type length dependence

in Fig. 13.13 taken from Ref. [130]. Let us recall that in this experiment the

current through a self-assembled monolayer of alkanethiols was measured

for different bias voltages with the nanopore technique. The data corre-

spond to three different alkanethiols: CH3(CH2)n−1SH with n = 8, 12, 16,

denoted as C8, C12 and C16. The current density has been normalized
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Fig. 13.14 Schematic representation of the bridge model to explain the exponential
length dependence of the conductance. For further explanations, see text.

following the expectation of Simmons model and as it can be seen, the fit

is satisfactory. On the other hand, in order to compare with other results

reported in the literature, the authors also performed a fit to Eq. (13.8).

They obtained a β value from 0.83 to 0.72 Å−1 in the bias range from 0.1

to 1.0 V, which is comparable to results reported previously with other

techniques [458, 475, 476].

From an atomistic point of view, the exponential length dependence

of the conductance can be understood using a simple tight-binding model,

often used in the field of electron transfer [38]. Let us briefly explain the

main idea. The model is schematically represented in Fig. 13.14. In this

model a molecular bridge formed by N sites (or segments) with on-site

energies εi (only one orbital per side) is coupled to two metallic leads via the

hoppings tL,R. In the bridge we only consider nearest-neighbor hoppings

denoted by ti,i+1. Notice that this model is simply the inhomogeneous

version of the model that we have used to explain the even-odd effect in

gold atomic chains in section 11.8.

Let us briefly remind how the transmission through the molecular bridge

can be calculated.11 Using the result of the Exercise 7.5 or the general

formulas derived in section 8.1, the zero-bias transmission coefficient can

be written as

T (E) = 4ΓL(E)ΓR(E)|Ga
1N (E)|2, (13.11)

where the ΓL,R are the scattering rates determining the strength of the cou-

pling to the metallic electrodes. Usually they do not have a very significant

energy dependence and we assume here that they are constant. Moreover,

Ga
1N is the (advanced) Green’s function connecting the first and last site in

11Those readers not familiar with the Green’s function techniques described in the second
part of the book can skip this discussion and go directly to Eq. (13.14).
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the molecular bridge. In this sense, |Ga
1N (E)|2 can be seen as the proba-

bility for an electron to propagate along the molecular wire. This function

can be calculated by taking the element (1, N) of the following matrix (see

section 11.8)

Ga(E) = [Ea1−Hbridge −Σa
L −Σa

R]
−1
, (13.12)

where Ea = E − i0+ and Hbridge is the Hamiltonian of the molecular

bridge. Here, the only non-vanishing elements of the matrix self-energies

are (Σa
L)11 = t2Lg

a
L and (Σa

R)NN = t2Rg
a
R, where g

a
L,R are the lead Green’s

functions (their exact expressions are irrelevant for our present discussion).

The scattering rates are giving by ΓL,R = t2L,RIm{gaL,R}.
Rather than inverting exactly the previous N ×N matrix, we compute

the first non-vanishing contribution to Ga
1N . Obviously, this lowest-order

contribution corresponds to the sequential tunneling along the bridge with-

out any reflection. This is a good approximation to the exact expression in

the weak coupling regime, where max{ti,i+1} � min{|E− εi|}. Mathemat-

ically, this contribution can be written as

Ga
1N (E) ≈ 1

Ea − εN

N−1∏
i=1

ti,i+1

Ea − εi
. (13.13)

For the sake of simplicity, we now assume that all bridge segments are

identical, i.e. ti,i+1 = t and εi = ε. Substituting the previous result into the

expression of the transmission, one obtains for the homogeneous bridge

T (E) ≈ 4ΓLΓR

|t|2
∣∣∣∣ t

E − ε

∣∣∣∣
2N

. (13.14)

This result implies a simple form for the attenuation parameter of Eq. (13.8)

β(E) =
2

a
ln

∣∣∣∣E − ε

t

∣∣∣∣ , (13.15)

where a measures the segment size, so that the bridge length is Na. Notice

that β is independent of the coupling to the leads and it is just determined

by intrinsic properties of the molecular bridge. The exponential dependence

on the bridge length is a manifestation of the tunneling character of this

process. Again, remember that the relevant energy for the linear conduc-

tance is the Fermi energy, EF. For typical values, e.g. |(EF − ε)/t| = 10

and a = 5 Å, Eq. (13.15) yields β = 0.92 Å−1.

So in short, the general conclusion of our discussion is that the expo-

nential length dependence of the conductance is a signature of coherent
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tunneling in an off-resonant situation. Things may be different if the trans-

port occurs via a resonant molecular orbital. In this case, the conductance

could be length independent or at least a non-monotonic function (see Ex-

ercise 13.4). Indeed, it is easy to show that if an electron is injected within

the molecular bridge energy band, the conductance oscillates as a function

of both the injection energy and of wire length (see Refs. [255–259] and

Exercise 13.4). This is precisely the behavior found in the monoatomic

chains in section 11.8. However, this situation seems to occur very rarely

in the case of molecular junctions and it is reserved to “metallic” solid-like

molecules like the carbon nanotubes.

13.5 Role of conjugation in π-electron systems

We want to address in this section the role of the conjugation in a delo-

calized π-electron system.12 It is obvious that the “goodness” of the elec-

trical conduction in a molecular junction depends crucially on the degree

of delocalization of the molecular orbitals. After all, we have learned that

the conductance is governed, among other things, by the strength of the

metal-molecule coupling. In order to have a high current flowing through

a molecular orbital, it has to be strongly coupled to both electrodes, which

in turn implies that it has to be extended over the whole molecule. This is

the reason why conjugated molecules are believed to be good candidates for

molecular wires. A delocalized π-electron system in a conjugated molecule

can be interrupted by the introduction of adequate side groups that rotate

one part of the molecule with respect to the other. In this case the coupling

of the two subsystems, which is mainly determined by a matrix element (or

hopping) between two π-orbitals, decreases as the twist angle increases,

and eventually it vanishes when the two orbitals are exactly orthogonal at

an angle of π/2. This argument suggests a way of testing the role of the

conjugation in the conductance of a molecular junction.

A beautiful experimental illustration of this simple idea was reported

by Venkataraman and coworkers [477]. These authors investigated the

transport through different biphenyl molecules using an STM-based break-

junction technique. They studied in particular a series of biphenyl molecules

with different ring substitutions that alter the twist angle of the molecules.

They found that the conductance for this series decreases with increasing

12This type of electron systems was discussed in section 9.5.1 using benzene as an ex-
ample.
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Fig. 13.15 (a) Structures of a subset of the biphenyl series studied, shown in order of
increasing twist angle or decreasing conjugation. (b) Conductance histograms of the
different molecules obtained with an STM at a bias voltage of 25 mV. (c) Position of
the peaks for all the molecules studied plotted against cos2 θ, where θ is the calculated
twist angle for each molecule, see Ref. [477] for more details. Reprinted by permission
from Macmillan Publishers Ltd: Nature [477], copyright 2006.

twist angle, consistent with a cosine-squared relation, which is expected in

transport through π-conjugated biphenyl systems, see Fig. 13.15.

Let us briefly explain how the cos2 θ-dependence comes about in these

biphenyl compounds. For this purpose, let us use the model of the previous

section. For simplicity, we assume that the bridge is composed of two

identical segments linked by a hopping t. In an off-resonant situation,

according to Eq. (13.14) the transmission is simply given by

T (E) ≈ 4ΓLΓR

|t|2
∣∣∣∣ t

E − ε

∣∣∣∣
4

=
4ΓLΓR

|E − ε|4 |t|
2, (13.16)

i.e. the transmission is proportional to |t|2. Here, t is the hopping between

two π-orbitals that is simply proportional to cos θ, where θ is the angle

between them (see Exercise 13.3). Thus, we arrive at the result that the

transmission, and therefore the linear conductance, is expected to be pro-

portional to cos2 θ, as it was nicely observed in Ref. [477]. For a more

rigorous discussion of this cos2 θ-law, see Ref. [478].

13.6 Fano resonances

As we have discussed in sections 13.2 and 13.3, in most cases the coherent

transport through molecular junctions is determined by Breit-Wigner reso-

nances that originate from the different molecular orbitals. However, these

are not the only transmission line shapes that can be expected in molec-
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Fig. 13.16 (a) Schematic representation of a simple that illustrates the physics of Fano
resonances. Here, the resonant tunneling model of section 13.2 is modified by introducing
an additional level (ε) that is coupled to the resonant level, but not to the leads. (b)
Zero-bias transmission as a function of the energy for the model of panel (a) for ε0 = 2.0
eV, ε = 0.0 eV, ΓL = ΓR = 0.1 eV and different values of the coupling t.

ular junctions. In the last years, different authors have discussed the role

of quantum interference [259, 479–482] and, in particular, Fano resonances

[483–487] in the transport through molecular contacts. It has been shown

that these phenomena can give rise of transmission line shapes that dif-

fer significantly from the standard Breit-Wigner resonances of section 13.2.

As an example, in this section we shall briefly discuss the physics of Fano

resonances in molecular wires.

In 1961 U. Fano showed that in the context of the excitation spectra of

atoms and molecules, the interference of a discrete autoionized state with a

continuum gives rise to characteristically asymmetric peaks [488], which are

nowadays referred to as Fano peaks or resonances. The appearance of this

type of resonances in transport experiments have been discussed in several

contexts in mesoscopic physics ranging from one-dimensional waveguides to

Kondo impurities. In the context of molecular junctions, a Fano resonance

can appear in the transmission, for instance, due to the interplay between

extended molecular orbitals and states that are localized in a side group of

the molecule which is decoupled from the electrodes [484].

Following Ref. [484], we shall use the toy model schematically repre-

sented in Fig. 13.16(a) to explain the origin of Fano resonances. This model

is based on the resonant tunneling model and the ingredient is the presence

of an additional site (or energy level) that represents a side group that is

not directly connected to the electrodes. The coupling to the resonant level

is given by the hopping t and the level position of this “side group” is de-

noted by ε. The calculation of the zero-bias transmission in this model is a
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simple exercise (see Exercise 13.5) and the final result reads

T (E) =
4ΓLΓR

[E − ε0 − t2/(E − ε)]2 + Γ2
, (13.17)

where Γ = ΓL + ΓR. This equation reduces to the Breit-Wigner formula

of Eq. (13.2) when the coupling element t vanishes. The main new feature

in this model is the appearance of an antiresonance at E = ε where the

transmission vanishes. This feature stems from a destructive quantum in-

terference between the direct path crossing the resonant level and a path in

which the electron “visits” the side group. Apart from this antiresonance,

the transmission exhibits two maxima at E = ε±, where ε± are given by

ε± =
1

2

{
(ε+ ε0)±

√
(ε− ε0)2 + 4t2

}
. (13.18)

In the limit t � |ε − ε0|, i.e. when the “side group” is weakly coupled to

the central backbone, the transmission exhibits a Breit-Wigner resonance

of width Γ in the vicinity of E = ε0. Moreover, a Fano peak occurs near

the antiresonance (E = ε) separated from it by a distance of approximately

t2/|ε−ε0|. Thus, in this limit the hybridization with the weakly coupled side

group leads to the appearance of a peculiar asymmetric structure formed

by a peak followed by an antiresonance, which is the main fingerprint of

this phenomenon. Examples of those asymmetric line shapes are shown in

Fig. 4.73(b) in the limit of weak coupling (small t). Notice in particular

the dramatic change in the transmission that can go from 1 all the way

down to zero by changing slightly the energy. Obviously, in order to have

an impact in the transport properties, the Fano resonances needs to be

located close to the Fermi energy. If this is the case, they can give rise

to a pronounced structure in the I-V curves [480] or they can significantly

modify the thermoelectric properties of a molecular junction [487].

It is worth mentioning that an experimental situation that closely mim-

ics our simple model was reported in Ref. [489]. In this work, an artificial

quantum structure consisting of a single CO molecule adsorbed on a Au

chain was assembled by manipulating single Au atoms on NiAl(110) at 12

K with a STM. It was shown that the CO disrupts the delocalization of

electron density waves in the chain, as it suppresses the coupling between

neighboring chain atoms. In a subsequent paper, Calzoni et al. [490] showed

theoretically that the electronic properties of this system can be tuned by

the selective adsorption of small molecules. In particular, they showed that

a single CO group induces a quantum interference pattern that modulates

the electronic wave functions and modifies the coherent transport properties

of the system.
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13.7 Negative differential resistance

As explained in Chapter 1, one of the goals of molecular electronics is to

complement current Si technology. For this purpose, one must find molec-

ular systems that, at least, mimic some of today’s microelectronic compo-

nents. In this respect, one of the most studied issues in the last years is the

occurrence of negative differential resistance (NDR) in molecular junctions,

which indeed has already been observed in several systems [18, 491–499].

NDR is the key feature in the I-V characteristics of the semiconductor de-

vice known as resonant tunneling diode, which was pioneered by Esaki and

coworkers [500]. This device consists of two potential barriers in series,

the barrier being formed by thin layers of a wide-gap material like AlGaAs

sandwiched between layers of a material like GaAs having a smaller gap.

Both barriers are thin enough for electrons to tunnel through. The NDR

that occurs in this device forms the basis for practical applications as a

switching device and in high frequency oscillators [501–503].

In the context of molecular junctions, several mechanisms for NDR

have been suggested involving, for instance, charging and/or conformation

changes [18, 504–508] or polaron formation [509]. Following the philosophy

of this chapter, we are interested in the following question: Is it possible to

induce NDR simply by means of coherent tunneling processes? With our

analysis so far, based mainly on the resonant tunneling model, one might

get the impression that this is not possible. However, it is well-known that

the NDR in Esaki’s resonant diode is explained in terms of coherent trans-

port (for a didactic discussion of the essential physics of this device, see

Chapter 6 of Ref. [50]). The NDR in that device is originated from the

energy dependence of the electron injection rate (or scattering rate in our

usual language), which is due to the band structure of the semiconducting

leads. Thus, the take-home message is that coherent tunneling can lead

to NDR, but one needs to have a pronounced energy dependence of the

scattering rates.13 This is not easy to achieve with metallic leads because

they typically exhibit a rather flat density of states around the Fermi en-

ergy. An alternative is then to use of semiconductor electrodes (at least

one of them). Indeed, many experiments have demonstrated the feasibility

of attaching various organic molecules on Si substrates (see list of refer-

ences in Refs. [510, 511]). The first theoretical analysis of the transport

through metal-molecule-semiconductor junctions was carried out by Datta

13Let us recall that so far we have always assumed that the scattering rates were energy
independent.
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Fig. 13.17 (a) Schematic representation of a metal-molecule-semiconductor junction.
In equilibrium, the right electrode has a gap in the energy window E ∈ [EF, EF + Δ],
which simulates a heavily p-type doped semiconductor. The scattering rate ΓR van-
ishes inside the gap of the semiconductor. (b) I-V characteristics of the metal-molecule-
semiconductor junction of panel (a) for different values of the scattering rates and at
room temperature (300 K). The gap is Δ = 1 eV and the level position is ε0 = −1
eV (measured with respect to EF). The value of ΓR indicated in the legend refers to
value outside the gap of the semiconductor. We have assumed that the voltage drops
symmetrically at both interfaces. The vertical dotted lines indicate the voltage region
where the resonant level lies inside the gap of the right electrode. The inset shows a
blow up of the voltage region where the NDR occurs.

and coworkers [512]. These authors showed that indeed one can have NDR

in these systems by means of coherent resonant tunneling. The presence

of a semiconductor band-edge leads to NDR when the molecular levels are

driven by the external potential into the semiconducting band-gap. We

now proceed to illustrate this mechanism with a simple model.

Let us consider once more the resonant tunneling model of section 13.2.

In order to describe a metal-molecule-semiconductor junction, we now as-

sume that there is a gap in, let us say, the right electrode, see Fig. 13.17(a).

The size of this gap is denoted by Δ. In a heterojunction like this one, it is

important to describe correctly the band-bending in the semiconductor and

the overall level alignment. We shall ignore these important details, in order

to emphasize the basic conceptual issues. We assume that the equilibrium

band-alignment is as shown in Fig. 13.17(a). Here, the Fermi energy lies

near the semiconductor valence band-edge, i.e. we assume that the semicon-

ductor is heavily p-type doped. The presence of a gap in the right electrode

strongly modifies the scattering rate, which in particular vanishes inside the

gap. We model this situation by a rate, ΓR, that is constant outside the

gap region and equal to zero at energies E ∈ [EF − eV/2, EF − eV/2 + Δ].

Here, we have already taken into account the shift of the chemical potential

of the right electrode induced by the bias voltage. The energy dependence
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of ΓR is the only difference with respect to the standard resonant tunneling

model.

In Fig. 13.17(b) we show examples of the I-V characteristics obtained

with this simple model for a symmetric situation where the voltage drops

equally at both interfaces. Here, we have assumed that in equilibrium the

level lies 1 eV below the Fermi energy and the gap is Δ = 1 eV. The most

prominent feature is the appearance of NDR (a decrease in the current) at

V = +2 V. This voltage corresponds to the bias at which the resonant level

reaches the semiconductor valence band-gap and therefore the transmis-

sion drops abruptly. Another important feature is the strong asymmetry

of the I-V’s with respect to voltage inversion. In particular, notice that

there is no NDR for negative bias. The reason is that for negative voltages

the resonant level is shifted down with respect to the chemical potential

of the right electrode and thus, it never “feels” (or reaches) the band-gap.

The I-V curves of Fig. 13.17(b) reproduce qualitatively the line shapes ob-

tained with a Hückel model and ab initio methods by Datta and coworkers

[512, 513]. These authors also pointed out that in order to see NDR at neg-

ative voltages, one would need to use n-type semiconductors (see Exercise

13.6).

The first observation of NDR through individual organic molecules on

silicon surfaces was reported by Hersam and coworkers [514]. This work re-

ported room temperature charge transport measurements performed on in-

dividual organic molecules mounted on degenerately doped Si(100) surfaces

using UHV STM. In particular, for 2,2,6,6-tetramethyl-1-piperidinyloxy

(TEMPO) molecules, NDR was observed only for negative sample bias on

n-type Si(100) and for positive sample bias on p-type Si(100). This unique

behavior is consistent with the resonant tunneling mechanism described

above. However, let us mention that the origin of the NDR in the n-type

junction is not so clear and it has been attributed to possible vibronic inter-

actions [513]. An example of the experimental results of Ref. [514] is shown

in Fig. 13.18. Since this first observation, the conditions that give rise to

electronic NDR on silicon within the coherent regime have been investigated

at length both experimentally and theoretically [510, 511, 513, 515–520].

We conclude this section by saying that the mechanism described above

is not the only possibility to obtain NDR in a situation where the transport

is mainly coherent. The electrostatic potential profile across a molecular

conductor is a key factor determining the shape of the I-V characteristics.

It has been suggested by Liang et al. [521] that a complex potential profile

might lead to NDR in a molecular junction.
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Fig. 13.18 Experimental observation of NDR in the transport through TEMPO
molecules on Si(100)-2 × 1 surfaces probed with STM. (A) Molecular mechanics opti-
mized structure of an individual TEMPO molecule on a truncated Si(100)-2 × 1 surface.
(B) STM topography image of isolated TEMPO molecules on a degenerately n-type
Si(100)-2 × 1 surface. (C) STM image of the isolated TEMPO molecule that is circled
in part (B). (D) I-V curves of an isolated TEMPO molecule bound to n-type Si(100).
At negative sample bias, three distinct NDR events are observed, while a shoulder is ob-
served at positive sample bias. (E) Current-voltage plot of an isolated TEMPO molecule
bound to p-type Si(100). At negative sample bias, a shoulder is observed, whereas two
NDR events are detected at positive sample bias. Adapted with permission from [514].
Copyright 2004 American Chemical Society.

13.8 Final remarks

The goal of this chapter has been to describe and illustrate some basic

concepts related to the coherent transport through molecular junctions. It

is often believed in the context of molecular electronics that the theory is

unable to reproduce the experimental observations. We hope to have shown

that this judgment is unfair. We have been able to explain qualitatively a

variety of effects by simply using toy models and handwaving arguments.

A different story is our quantitative understanding that, as we shall see in

the next chapter, is not yet that satisfactory.

We also want to stress that there are other basic issues related to the

coherent transport that we have not covered in this chapter. Probably the

most important one is the issue of the electrostatic potential profile. We

have learned in this chapter that the position of the energy levels plays

a crucial role determining the current through a molecular junction. At

finite bias the energy levels are shifted with the voltage in a way that de-

pends on the exact electrostatic profile across the junction. Therefore, the
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determination of such profile is crucial for the proper description of the

current-voltage characteristics. The theoretical analysis of the electrostatic

potential profile across atomic-scale junctions has been addressed by differ-

ent authors with a variety of methods such as simple tight-binding models

[246], model calculations based on a combination of the Schrödinger and

Poisson equations [522], a simple Thomas-Fermi-type screening model [523]

or ab initio approaches [293] mainly based on DFT (see section 10.8). For

a detailed discussion about the electrostatic potential profile in molecular

conductors we recommend Ref. [521] and references therein.

13.9 Exercises

13.1 Resonant tunneling model: Let us consider the resonant tunneling model
of section 13.2 for a symmetric situation (ΓL = ΓR = Γ/2). Calculate the current
at zero temperature up to third order in the bias voltage, i.e. determine the
relation I(V ) = AV +BV 3 at low bias and express the constants A and B as a
function of the two parameters of the model, namely Γ and ε0.

13.2 Two-level model: Let us consider the two-level model of section 13.3.
(a) Use the general expressions derived in section 8.1, see Eq. (8.18) or (8.19),

to show that the zero-bias transmission is given by Eq. (13.7). Discuss also under
which conditions one recovers the expression of the transmission of the (single-
level) resonant tunneling model.

(b) Compute the I-V characteristics within the two-level model and discuss
the results. Hint: Assume that there is no voltage drop inside the molecular
bridge and that the scattering rates are independent of the energy.

13.3 The cos2 θ-law: Show that a matrix element (or hopping) between two
π-orbitals is proportional to cos θ, where θ is the angle formed by the axes of the
two orbitals. Hint: See discussion about two-center matrix elements in section
9.3.1.

13.4 Length and energy dependence of the transmission in molecu-
lar wires: In a series of papers Mujica and coworkers studied the conduction
through molecular wires using an effective tight-binding Hamiltonian (equivalent
to a Hückel model) [255–259]. They obtained the following interesting results for
the linear conductance of a molecular junction:

(1) The conductance achieves large (but bounded) values in the vicinity of any
of the wire energy eigenvalues.

(2) The conductance oscillates as a function of both injection energy and of wire
length when the electron is injected within the wire’s energy band.

(3) The conductance decreases exponentially with length when the electron is
injected outside the band of the wire.
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Use the model for a molecular bridge discussed in section 13.4, see Fig. 13.14,
to demonstrate the previous conclusions. For this purpose, solve the model ex-
actly inverting Eq. (13.12), rather than using perturbation theory as we did in
our discussion in section 13.4. On the other hand, model the leads as semi-infinite
linear chains and use Eq. (5.46) for the Green’s functions of the outermost atoms
of the chains that are coupled to the molecular bridge.

13.5 Fano resonances: Show that the transmission in the model introduced
in section 13.6 is given by Eq. (13.17). Hints: (i) Use the general expression of
Eq. (8.18) to show that the zero-bias transmission can be written as T (E) =
4ΓLΓR|Ga

00(E)|2, where Ga
00(E) is the advanced Green’s function in the resonant

level. (ii) Show that Ga
00(E) = 1/{E − ε0 − t2/(E − ε) − iΓ}. This result leads

directly to Eq. (13.17).
Finally, investigate the impact of Fano resonances on the current through a

molecular junction by computing the I-V curves within this model. For simplicity,
assume that the system is symmetrically coupled to the leads and that the voltage
drops occur at the metal-molecule interfaces.

13.6 NDR in metal-molecule-semiconductor junctions: Using the model
of section 13.7 show that one can encounter NDR at negative voltages using
a heavily n-type doped semiconductor. For this purpose, (i) assume that in
equilibrium the Fermi level lies near the edge of the conduction band of the
semiconducting lead and (ii) assume that in equilibrium the resonant level lies
above the semiconductor gap.

13.7 Transmission of a benzene junction: The goal of this exercise is to com-
pute the transmission as a function of energy for a metal-benzene-metal junction.
Use for this purpose the Hückel approximation for the benzene molecule described
in section 9.5.1 with ε0 = 0 for the on-site energy of the π-orbital in each carbon
atom and t = −2.5 eV for the hopping between neighboring atoms. Assume that
the benzene molecule is coupled to the leads through a single carbon atom in each
side [e.g. atoms 1 and 4 in Fig. 9.4(a)] and describe the strength of the coupling
with a scalar and energy-independent scattering rate Γ (the same for both inter-
faces). Calculate the zero-bias transmission as a function of energy within this
model for different values of Γ. Determine also the linear conductance assuming
that the Fermi energy is EF = 0 (i.e. it lies in the middle of the HOMO-LUMO
gap of the benzene molecule) and estimate the value of Γ necessary to reach a
conductance larger than 0.1G0.



Chapter 14

Coherent transport through molecular

junctions II: Test-bed molecules

In the previous chapter we have learned that the coherent transport through

molecular junctions is determined by the strength of the metal-molecule

coupling as well as by the intrinsic properties of the molecules, including

their length, conformation, the HOMO-LUMO gap and the alignment of

this gap to the metal Fermi level. Moreover, we have shown that in many

cases the experimental observations can be explained by means of very

simple qualitative arguments. In this chapter we shall go on discussing the

coherent transport in single-molecule junctions, but from a more quanti-

tative point of view. Our goal is twofold. On the one hand, we want to

calibrate our present level of understanding and for this purpose, we shall

compare different experimental and theoretical results for various test sys-

tems. On the other hand, we shall illustrate some of the basic concepts

discussed in the previous chapter in more quantitative terms.

Bearing these goals in mind, we shall discuss in the next section the

results obtained so far for some test-bed molecules of special interest in

molecular electronics. Then, we shall review recent advances in the un-

derstanding of the role of the metal-molecule interface and the efforts to

chemically tune the conductance with the use of side-groups. Moreover,

we shall briefly describe a set of controlled experiments performed with

the STM, in which the junctions are fully characterized providing thus im-

portant test systems. We shall finish this chapter with a summary of the

main conclusions and some comments about the future challenges and open

problems.

Before getting started, let us say that the current status of the under-

standing of the electronic transport through molecular junctions has been

reviewed several times in this decade. In particular, we recommend the

following articles by Lindsay and collaborators [524–529].
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Fig. 14.1 I-V characteristics and differential conductance of Au-benzenedithiol-Au junc-
tions measured with the MCBJ technique at room temperature. (A) Typical I-V curves,
which illustrate a gap of 0.7 V; and the differential conductance G(V ) = dI/dV , which
shows a steplike structure. (B) Three independent G(V ) measurements, offset for clar-
ity, illustrating the reproducibility of the conductance values. From [16]. Reprinted with
permission from AAAS.

14.1 Coherent transport through some test-bed molecules

In order to establish to what extend we understand the electronic transport

through single-molecule junctions, we shall review in this section several

representative examples related to small molecules, in which the electrical

conduction is believed to be dominated by coherent tunneling. These ex-

amples will also serve to illustrate in more detail some of the basic concepts

discussed in the previous chapter.

14.1.1 Benzenedithiol: how everything started

As we discussed in our brief review of the history of molecular electronics

in section 1.2, the experiment of Reed and coworkers in 1997 [16] is often

considered as the beginning of the field of single-molecule conduction. This

experiment was performed using a mechanically controllable break-junction

(MCBJ) device working at room temperature, with the junction immersed

in a solution of the organic compound of interest. The compound that they

selected was 1,4-benzenedithiol (BDT), which has become a workhorse in

this field. In the experiment the broken gold wire was allowed to interact

with the molecules for a number of hours so that a self-assembled monolayer

covered the surface. Next, the junction was closed and re-opened a number

of times and I-V curves were recorded at the position just before contact

was lost completely. The I-V curves showed some degree of reproducibility

with a large energy gap feature of about 0.7 V, see Fig. 14.1, which was

attributed to a metal-molecule-metal junction.
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Transport through BDT molecules have been studied by several experi-

mental groups with different setups [530–536]. The reported values for the

linear conductance vary between 5× 10−5G0 and 0.1G0, i.e. they are scat-

tered over more than 3 orders of magnitude. From the theory side, many

authors have calculated the linear conductance of Au-BDT-Au junctions

[537–546]. The typical values lie in the range of (0.05-0.4)G0, which in

general overestimate the observed linear conductance.

A certain level of disagreement between different experiments and differ-

ent theories might be understandable because the transport depends on the

microscopic details of the junction. Indeed, the conductance of BDT con-

tacts has been found theoretically to be strongly dependent on the bonding

site of the S atom [540, 543], while variations in the Au-S bond length only

affects the transmission function weakly [541]. However, it is difficult to

understand the differences found in the conductance histograms, where a

statistical analysis is supposed to average out the microscopic details. Thus

for instance, Xiao et al. [530] using a STM-based break-junction setup found

that the most probable value for the room temperature linear conductance

is ∼ 0.01G0, while Lörtscher et al. [534] reported a value of ∼ 5× 10−5G0

using microfabricated break-junctions. Also using this latter technique,

Martin et al. [535, 536] found no distinct peaks in the histograms. More-

over, in Refs. [534, 535] I-V characteristics were reported that clearly differ

from those of the original work of Reed and coworkers [16]. Both Lörtscher

et al. [534] and Martin et al. [535] found non-linear I-Vs that were sensitive

to temperature and, although some features like the gap at low bias were

similar, there were significant differences in the magnitude of the measured

current in these experiments. The origin of these discrepancies still remains

unclear.

With respect to the theory, what is the origin of the differences be-

tween different theoretical results and why does the theory seem to over-

estimate the value of the linear conductance? There is no definite answer

to these questions, but let us try to give some ideas. Most of the calcu-

lations mentioned above are based on the combination of nonequilibrium

Green’s function techniques (NEGF) and density functional theory (DFT),

which was explained in detail in section 10.8. At this stage the techni-

cal details related to the implementation of this combination still matter

and in some cases the deficiencies in the implementation of this approach

lead to artificial results, which has nothing to do with the limitation of

the NEGF-DFT approach (for a discussion of this issue, see Ref. [545]).

On the other hand, the discrepancy between experiment and theory might
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be due to the intrinsic approximations made in the NEGF-DFT method.

For instance, Delaney and Greer have suggested that the problem might

lie in the insufficient description of the electronic correlation [547]. These

authors claim that by reformulating the transport problem using boundary

conditions suitable for correlated many-electron systems, one can obtain

I-V curves for BDT that are close to experimental observations. Although,

this method is not generally accepted (see Ref. [548] for severe objections

to this approach), it is quite reasonable to believe that correlations beyond

the scope of the NEGF-DFT approach play a fundamental role in molecular

junctions. The development of those theoretical methods is presently one

of the major challenges in the field.

Bearing in mind the limitations of the existent theories, let us try to give

a simple picture of the expected transport mechanism in benzenedithiol.

First of all, since this molecule is rather small and the Au-S bond is suf-

ficiently strong, one does not expect the transport in Au-BDT-Au junc-

tions to be dominated by vibronic degrees of freedom or correlation effects

like Coulomb blockade. In other words, it is reasonable to assume that

the transport in this case is coherent and therefore, it is probably deter-

mined by the electronic structure of the contact.1 With respect to the

molecule itself, it possesses an electronic structure that closely resembles

that of benzene (see section 14.1.4). In Fig. 14.2(a) we show the frontier

orbitals of this molecule, as obtained from a DFT calculation of the isolated

molecule.2 With respect to the vacuum level, the HOMO and the LUMO of

the molecule lie at -4.95 eV and -1.42 eV, respectively. It is worth stressing

that when the molecule is coupled to the electrodes, its levels are shifted

and broadened depending on the strength of the interaction with the metal.

Anyway, since the gold Fermi energy lies at approximately -5 eV and the

Au-S bond is rather strong, one naively expects a rather high conductance

dominated by the HOMO level. This picture is indeed confirmed by calcu-

lations based on the DFT-NEGF combination. Apart from the numerical

discrepancies mentioned above, these calculations show that the transport

proceeds through the tail of the HOMO of the molecule that lies at around

1 eV below the Fermi energy. An example of the zero-bias transmission as

a function of energy of an Au-BDT-Au junction taken from Ref. [545] is

1The temperature dependence of the I-V curves in Refs. [534, 535] cannot be easily
explained within a coherent transport picture, unless such changes are related to the
thermal stability of the contacts.
2These DFT results were obtained with the code TURBOMOLE v5.7 [575] using a split

valence polarization basis set and the BP86 exchange-correlation functional.
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Fig. 14.2 (a) Frontier orbitals of a benzenedithiol (BDT) molecule as obtained from a
DFT calculation (see footnote 2). (b) Supercell used to model the central region of a
Au(111)-BDT-Au(111) junction with S at the fcc hollow site. (c) The calculated trans-
mission functions with two different methods and different basis sets. The transmission
at the Fermi level is indicated in the parentheses following the legends. Reprinted with
permission from [545]. Copyright 2008, American Institute of Physics.

shown in Fig. 14.2(c). In this case the leads are ideal Au(111) surfaces and

the S atoms were place at the minimum energy positions in the fcc hollow

sites. The linear conductance obtained in this case is ∼ 0.28G0 in line with

the naive expectation and clearly higher that in the experiments.

14.1.2 Conductance of alkanedithiol molecular junctions:

A reference system

From our discussion about benzenedithiol in the previous section, one may

infer that the level of agreement between experiments, theories, and exper-

iment and theory is certainly disappointing. We shall see in this section

that the situation is definitively improving and for this purpose we shall

discuss the transport through alkanedithiols.

Alkanes3 (CnH2n+2) are simple saturated chains of carbon atoms that

constitute the most popular test-bed molecules for studies of the electrical

conductance of molecular junctions in the last few years. Their chemical

stability and large HOMO-LUMO gap (see below) make them ideal for

investigating the contribution of the metal-molecule coupling to the con-

ductance. In most cases thiol groups (SH) have been attached to the ends

3There are different types of alkanes such as branched alkanes or cyclic alkanes. Here,
we restrict ourselves to the linear alkanes. A brief discussion of the properties of these
molecules can be found in section 3.2.
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of alkane molecules to investigate the transport with gold electrodes, mak-

ing use of the well-known chemistry of the covalent Au-S bond.4 Trans-

port through thiolated alkanes has been studied extensively both at the

level of single molecules [125, 549–556, 535] and self-assembled monolo-

yares (SAMs), indexself-assembled monoloyares (SAM) see Refs. [130, 41]

and references therein. Furthermore, as we shall discuss later in this chap-

ter, alkanes have also been used as a platform for testing the anchoring

efficiency of different chemical groups [557, 126, 559].

It is presently acknowledged that a reliable measurement of the trans-

port properties of single-molecules junctions requires a detailed statistical

analysis. In this sense, the method introduced by Xu and Tao in 2003 [549]

has been adopted by many authors, especially in the context of STM and

break-junctions. In this statistical analysis, the conductance of a molecular

contact is measured by repeatedly forming thousands of junctions. Of-

ten the corresponding conductance histograms reveal well-defined peaks at

integer multiples of a fundamental conductance value, which is typically

interpreted as the conductance of a single molecule. Xu and Tao presented

in their seminal paper [549] the first statistical results on the conductance

of alkanedithiols. In particular, they reported zero-bias resistances of 10.5

± 0.5, 51 ± 5, and 630 ± 50 MΩ for hexanedithiol, octanedithiol, and

decanedithiol. Moreover, the attenuation factor (βN ) for N-alkanedithiols

was 1.0 ± 0.1 per carbon atom and was weakly dependent on the applied

bias, which is in qualitative agreement with the values reported in SAMs

by various authors (see Refs. [130, 460] and references therein).

Despite using the same statistical analysis and comparable experimental

techniques, Xu and Tao [549] and Haiss et al. [550] obtained qualitatively

different results for both the average conductance of an N-alkanedithiol

and the length dependence. Further studies showed that the analysis of the

conductance histogram would not yield a unique trace for the conductance,

but rather several traces or peaks [551, 553]. The initial puzzling situation

is by now resolved to a large extent. Presently, different groups agree that

molecular junctions based on alkanedithiols are typically characterized by

three conductance values. These can be labeled Gl (low), Gm (medium)

and Gh (high). The authors explain that each G value corresponds to a

single molecular junction of a different type, which is characterized by the

atomic configuration at the molecule-electrode bond [551, 553, 555, 561].

Changes in the internal alkane conformation (from trans to gauche) can also

4When a thiolated molecule is adsorbed on gold surfaces the H of the thiol terminations
desorbs and the sulfur atoms at each end bond strongly to the Au surfaces [560].
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Fig. 14.3 Conductance histograms of Au-octanedithiol-Au junctions measured with a
microfabricated MCBJ setup. (a) Log G-histograms built from sets of 100 G(z) traces
(figure 1(c)). A peak structure is observed when C8 is in solution in contrast to the flat,
pure solvent histogram. The broad peak in contact mode can be fitted to a Gaussian
curve (dotted line). A finer, superimposed structure is observed (black arrows). In
the non-contact mode, new peaks appear between - 4 and -3. (b) and (c) Linear G-
histograms for C8 in two different G ranges. A peak centered at 2.2× 10−4 G0 appears
only in the non-contact mode. Reprinted with permission from [556]. Copyright 2008
IOP Publishing Ltd.

result in different conductance values [553, 555, 561]. These assumptions

are supported by several ab initio calculations that predict a significant

conductance variation upon atomic rearrangement [562, 563, 555].

The present situation has been summarized by González et al. [556].

There is good agreement among the values assigned to Gl, Gm and Gh

by different groups [551, 553, 555, 561]. Also, individual G values re-

ported in initial experiments (where only a restricted conductance range

was explored) [549, 550] are in good agreement with one of the three con-

ductance values. The important exception was until recently Gh. While

this value is reported by several groups working with STM break-junctions

[549, 555, 561], no molecular signature was initially observed in that con-

ductance range in MCBJ experiments [552]. In Ref. [556] González et al.

studied the conductance of octanedithiol using a MCBJ setup and found for
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Table 14.1 Values of the three main peaks (low, medium and high)
of the conductance histograms of Au-alkanedithiol-Au junctions. The
integer N indicates the number of C atoms in the molecule.∗

alkanedithiol Gl (G0) Gm (G0) Gh (G0)

N = 5 2.45×10−5 8.26×10−4 -
N = 6 3.16×10−5 2.58×10−4 1.22×10−3

N = 8 1.14×10−5 5.68×10−5 2.71×10−4

N = 9 6.06 ×10−6 2.58×10−5 1.27×10−4

N = 10 2.84 ×10−6 5.81×10−6 2.17×10−5

∗ Taken from Ref. [555].

the three peaks. The first one was found at Gl = 1.2×10−5G0,
5 which was

attributed to the conductance of a single-molecule junction. The other two

peaks appear at Gm = 4.5×10−5G0, and G
h = 2.3×10−4G0, see Fig. 14.3.

They found that the Gm has the strongest statistical weight, whereas Gh

is only observed in a non-contact mode, in which the electrodes do not get

into contact before each new molecular junction formation. They proposed

that these two values reflect the formation of several molecular junctions

in parallel between the electrodes.

Then, what is the linear conductance of Au-alkanedithiol-Au? In Table

14.1 we have reproduced the experimental results of Wandlowski’s group

obtained with STM break-junctions for the three main peaks in the conduc-

tance histograms of alkanedithiol molecules of different length [555]. These

values show an exponential decay of the linear conductance as a function of

the number of C atoms (or length) for both the medium and the high peaks

with exponents of 0.94 and 0.96 per carbon atom (βN ), respectively. How-

ever, the low peak does not exhibit such an exponential decay, see Ref. [555]

for further details.

Let us discuss now how the transport takes place through alkane

molecules. As we explained in the previous chapter, the analysis of the I-

V characteristics in experiments involving alkane SAMs have shown clearly

that the transport mechanism is coherent tunneling [41, 130]. This has also

been confirmed in single-molecule experiments [557]. This is indeed what

is naively expected from the electronic structure of these carbon chains. In

Fig. 14.4 we have summarized some of the main features of such electronic

structure, as obtained from DFT-based calculations (see footnote 2). As

one can see, these molecules exhibit a very large HOMO-LUMO gap of

5This peak was followed by several ones at multiples of Gl.



Coherent transport through molecular junctions II: Test-bed molecules 399

2 4 6 8 10 12 14 16
N

-8

-6

-4

-2

0

2

En
er

gy
 (e

V
)

5 10 15
N

8

8.4

8.8

9.2

G
ap

 (e
V

)

LUMO

HOMO

Au Fermi energy

HOMO

LUMO

−7.28 eV

+1.09 eV

C8

Fig. 14.4 Electronic structure of alkane molecules as computed from DFT (see text).
(a) Frontier orbitals (HOMO and LUMO) of octane (C8). (b) HOMO and LUMO levels
for alkanes of different length (N is the number of carbon atoms). The dashed line
indicates the approximate position of the Fermi energy of gold. The inset shows the
HOMO-LUMO gas vs. N.

more than 8 eV. The HOMO lies around 2-3 eV below the Fermi energy (or

negative work function) of gold.6 Thus, it is reasonable to assume that the

transport in Au-alkanedithiols-Au junctions takes place through the tails of

the HOMO of these molecules. This simple picture is basically confirmed

by the existent DFT-based calculations of the linear conductance of these

junctions [562, 563, 555]. However, there are still significant discrepancies

between the different theoretical studies, as we now proceed to explain.

The DFT-based study of Ref. [555] indicates that the conductance of

these junctions strongly depends on the binding geometry. These authors

proposed values of 0.83 and 0.88 for the attenuation factor per C atom

(βN ) for the medium and high conductance peaks, respectively, which is in

fair agreement with the experimental results reported in that work. They

also indicated that these exponents are sensitive to the functional used in

the DFT calculations and differences up to 20% between functional can be

expected. On the other hand, the estimates based on a complex band struc-

ture analysis, performed by Tomfohr and Sankey [299] and by Picaud et al.

[564], suggested βN ≈ 1.0 and 0.9, respectively. However, their estimates

for the tunneling barrier (distance between the HOMO of the molecule and

the gold Fermi energy) of 3.5-5.0 eV exceed the values of Ref. [555] by

a factor of 2. Another study by Müller [563] reported a comprehensive

6The inclusion of thiol groups at the end of the carbon chains introduces states close
to the gold Fermi energy. These states are mainly localized in the sulfur atoms and
therefore, they are not expected to play a role in the conduction, at least for long
molecules. The situation may be different in the case of short alkanes.
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Fig. 14.5 (left) Snapshots of the formation of an octanedithiol molecular junction sim-
ulated using DFT-based molecular dynamics. As the junction is being stretched, the
molecule migrates into the junction and pulls out a short gold chain before finally break-
ing. (right) Calculated electron transmission probability as a function of stretching
distance. The number of Au-S bonds (defined by rAu−S < 3.3 Å) and dihedral angles
(0o ∼ straight molecule; 60o ∼ gauche defect) for the S-C8-S chain are also shown.
Reprinted with permission from [566]. Copyright 2009 American Chemical Society.

transport calculation using the TRANSIESTA package and also showed

a strong dependence of the conductance on the contact geometry. How-

ever, the obtained exponent of βN = 1.25 is in clear disagreement with the

other theoretical results. Moreover, the HOMO-LUMO gaps reported in

that study were unrealistically large (17 eV). An attempt to go beyond the

DFT approach for the conductance through alkanes was made by Fagas

et al. [565] using a configuration interaction method. Unfortunately, the

discrepancy between the obtained value, βN = 0.5, and the experimental

observation is even larger than the DFT-related uncertainty.

One of the main problems of ab initio theories in molecular electronics

is the fact that the numerical calculations are so time-consuming that at

the moment it is practically impossible to do a proper statistical analysis

of the transport properties of a molecular junction. In this sense, most the-

oretical studies are restricted to the analysis of a few idealized geometries

and the comparison of these results with the experiment should be taken

with caution. In some cases, it has been possible to perform some small

molecular dynamic simulations to get an insight into the most probable con-

tact geometries, see our discussion about hydrogen and benzene in the next

subsections. In the case of alkanes, Paulsson et al. [566] have recently re-

ported a study of the formation and conductance of alkanedithiol junctions

using DFT-based molecular dynamics. This study provides a very valu-

able insight into the formation mechanism of junctions based on thiolated

molecules and gold electrodes. This work also shows that the conductance
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along the last “plateau” is very sensitive to the contact geometry, and one

can observe upon stretching large variations in the conductance of an or-

der of magnitude when gauche defects are present. We show an example

of these simulations in Fig. 14.5 for octanedithiol (C8), where one can see

both the evolution of the contact geometry upon stretching and the cor-

responding transmission probability. From these simulations, the authors

constructed rudimentary conductance histograms from which they deduced

a value of βN = 1.19 and values of the conductance peaks of 2.2 ×10−3,

3.1 ×10−4, and 2.0 ×10−5 in units of G0 for C6, C8, and C10, respectively.

Notice that these values tend to overestimate the experimental results of

Table 14.1 (see Ref. [566] for further details).

14.1.3 The smallest molecular junction: Hydrogen bridges

Since the goal of this section is to discuss the coherent transport through

certain reference systems, it seems natural to include here the analysis

of probably the simplest molecular junction that one can think of. Smit

et al. [127] obtained molecular junctions of a hydrogen molecule between

platinum leads using the MCBJ technique. In Fig. 14.6 we reproduce some

of the results of this experiment. The inset shows a conductance curve

for clean Pt (black) at 4.2 K, before admitting H2 gas into the system.

About 10000 similar curves were used to build the conductance histogram

shown in the main panel (black, normalized by the area). After introducing

hydrogen gas the conductance curves were observed to change qualitatively

as illustrated by the gray curve in the inset. The dramatic change is most

clearly brought out by the conductance histogram (gray, hatched). Clean

Pt contacts show a typical conductance of 1.5 ± 0.2G0 for a single-atom

contact, as it can be inferred from the position and width of the first peak

in the Pt conductance histogram. Below 1G0 very few data points are

recorded, since Pt contacts tend to show an abrupt jump from the one-

atom contact value into the tunneling regime towards tunnel conductance

values well below 0.1G0. In contrast, after admitting hydrogen gas a lot of

structure is found in the entire range below 1.5G0, including a pronounced

peak in the histogram near 1G0.

Apart from the simplicity of the hydrogen molecule, what makes this

system so special is the thorough characterization of these junctions that

was carried out both in the original work and in subsequent papers. The

information gathered in the different works can be summarized as follows:
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Fig. 14.6 Conductance curves and histograms for clean Pt, and Pt in a H2 atmosphere.
The inset shows a conductance curve for clean Pt (black) at 4.2 K recorded with a bias
voltage of 10 mV, before admitting H2 gas into the system. About 10000 similar curves
are used to build the conductance histogram shown in the main panel (black). After
introducing hydrogen gas the conductance curves change qualitatively as illustrated by
the grey curve in the inset, recorded at 100 mV. This is most clearly brought out by
the conductance histogram (grey; recorded with 140 mV bias). Reprinted by permission
from Macmillan Publishers Ltd: Nature [127], copyright 2002.

• The presence of the molecules was confirmed with the signatures of

vibration modes at energies between 40-70 meV in I-V characteristics

[127]. Such signatures cannot be attributed to Pt, which has a Debye

energy of around 20 meV.

• The shift in the vibrational energies upon isotope substitution of H2

by D2 and HD confirmed that the modes were indeed associated to a

hydrogen molecule.

• Upon stretching of the contacts, the energy of the lowest modes in-

creased, which indicates that these modes are transverse ones [567].

• The analysis of the conductance fluctuations [127] and especially shot

noise measurements showed that the conductance in the range of 1G0

is largely dominated by a single channel [568].

The physics behind the signatures of vibration modes and the impor-

tance of transport properties like the shot noise will be discussed in detail

in subsequent chapters, where we shall come back to this example.

All the observations detailed above offer a very stringent test to the the-

ory, which should explain consistently all the experimental results. Before

reviewing the existent work in the literature, it is interesting to discuss the
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Fig. 14.7 Calculated transmission for the molecular hydrogen contact shown in the in-
set. For comparison both the k-point sampled transmission and the Γ-point transmission
are shown. The wide plateau with T ≈ 1 extending across the Fermi level indicates a
single, robust conductance channel with nearly perfect transparency. Reprinted with
permission from [571]. Copyright 2005 by the American Physical Society.

naive expectation for the conductance of a hydrogen molecule. Obviously,

in the transport through this molecule, only the bonding and antibonding

states (formed by the hybridization of the 1s orbitals of the H atoms) can

contribute. A typical DFT calculation yields a HOMO-LUMO gap of about

10.5-11 eV, depending on the functional used, and the HOMO turns out

to be located at ∼ −10 eV with respect to the vacuum level. These results

are for the equilibrium geometry, where the H-H distance is equal to 0.74

Å. This means that Fermi energy of Pt lies more or less in the middle of

the gap. Thus, one might naively think that in view of the huge gap, H2

should be poorly conductive, in clear contrast to the experiments. We shall

see below that this naive picture fails because the molecule is significantly

distorted in the Pt junction.

Different authors have studied theoretically the conductance of Pt-H2-

Pt junctions [127, 569–572]. The most satisfactory explanation so far has

been proposed by Thygesen and Jacobsen [571], who presented conductance

calculations based on density functional theory (DFT) showing that a hy-

drogen molecule bridging a pair of Pt contacts can have a conductance close

to 1G0. In Fig. 14.7 we reproduce the main result of Ref. [571], where one

can see the transmission as a function of energy for the junction shown in

the inset. Notice in particular the presence of a plateau with a transmission

close to 1 in an energy window of 4 eV around the Fermi level, suggesting
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the existence of a single conduction channel with nearly perfect transmis-

sion. The geometry of the inset was fully optimized and it is characterized

by the bond lengths dH−H = 1.0 Å and dPt−H = 1.76 Å. This means that

in this stable configuration the molecule has been largely deformed and,

in particular, the HOMO-LUMO gap is significantly reduced with respect

to its value in vacuum. On the other hand, the authors showed that the

vibration modes of the hydrogen molecule in this configuration are in fair

agreement with the experimental results [567].

With respect to the physical mechanism, by performing a Wannier func-

tion analysis, they could establish that the transport is dominated by the

antibonding state of the molecule. In particular, the transmission plateau

in Fig. 14.7 is a result of a strong hybridization between the H2 antibonding

state and a combination of d- and s-like orbitals located on the neighboring

Pt atoms. The antibonding orbital was found to be 0.1 eV above the Fermi

energy (EF), while the bonding orbitals lied 6.4 eV below EF. Moreover,

a coupling matrix element of 1.9 eV between the antibonding state and

the leads was obtained. Therefore, the conclusion is that one has resonant

transport through the antibonding orbital that has been largely broadened

due to the strong hybridization with the Pt electrodes.

Other DFT calculations have been performed [569, 570, 572]. Using a

slightly different approach Garćıa et al. [570] obtained a conductance well

below 1G0. They propose an alternative atomic arrangement to explain

the high conductance for the Pt-H bridge, consisting of a Pt-Pt-bridge

with two H atoms bonded to the sides in a perpendicular arrangement.

However, this configuration gives rise to three conduction channels, which is

excluded based on the analysis of shot noise and conductance fluctuations as

discussed above. The origin of this discrepancy is still unclear (see Ref. [545]

for some ideas).

Let us conclude this discussion by saying that conductance histograms

recorded using Fe, Co and Ni electrodes in the presence of hydrogen also

show a pronounced peak near 1G0 [403], indicating that many transition

metals may form similar single-molecule junctions. Also Pd seemed a good

candidate, but Csonka et al. [573] find an additional peak at 0.5G0 in the

conductance histogram, and it was argued that hydrogen is incorporated

into the bulk of the Pd metal electrodes.
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14.1.4 Highly conductive benzene junctions

As we shall discuss in detail in the next section, the most common approach

in fabrication of molecular junctions utilizes functional side groups attached

to the main molecule structure as anchoring “arms” that chemically bind to

metallic leads (e.g. thiol [16], amine [126] and carboxylic [557] groups). In

many cases anchoring groups act as resistive spacers between the electrodes

and the molecule. This leads to low conductance and sensitivity to differ-

ent environmental effects such as neighbor adsorbed species [574]. In order

to overcome these problems, Ruitenbeek and coworkers [473] have recently

reported on a highly conductive molecular junction achieved by direct bind-

ing of a π-conjugated organic molecule (benzene) to metallic electrodes (Pt)

without the use of anchoring groups. Again, the thorough analysis of the

transport properties through these junctions makes Pt-benzene-Pt contacts

a nice test system. In this sense, the goal of this section is to briefly describe

the work of Ref. [473].

The measurements were performed using the MCBJ technique and they

were conducted at 4 K. Following the formation of the Pt junction, the

benzene was admitted using a leak valve via a heated capillary to the Pt

junction while the latter is broken and formed repeatedly. During the

benzene introduction, the typical Pt peak is observed to be suppressed, and

a single peak appears near 1G0 accompanied with a low conductance tail

(Fig. 14.8, filled curve). In some cases, the histogram exhibits a peak near

0.2G0 on top of the tail. These findings imply that after the introduction

of benzene, the formation of pure Pt junctions is suppressed while new

junctions with preferred conductance of 1G0 and sometimes 0.2G0 are

formed while stretching the contact.

Following the spirit of the experiments on hydrogen, the presence of

the molecule was identified by vibrational spectroscopy that revealed a

well-defined mode at around 42 meV in the zero-bias-conductance region

of 0.05-0.4G0, which was rather insensitive to stretching of the contact.

On the other hand, shot noise measurements showed that the number of

channels is eventually reduced to one when the conductance is reduced to

0.2G0, while at higher conductance (also well below 1G0) multiple channels

make up the transport across the junction.

What is the naive expectation for the conductance of a benzene

molecule? As we discussed in section 9.5.1, the electronic structure of ben-

zene is determined by a delocalized π-orbital system formed by 6 π-orbitals

(the p-orbitals pointing out of the benzene plane), one per C atom. This
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Fig. 14.8 Conductance histograms for a Pt junction (black), and for Pt after introducing
benzene (filled) measured with the MCBJ technique. Each conductance histogram is
constructed from more than 3000 conductance traces recorded with a bias of 0.1 V during
repeated breaking of the contact. Reprinted with permission from [473]. Copyright 2008
by the American Physical Society.

simple picture is confirmed by DFT calculations (see footnote 2), which

also predict a HOMO-LUMO gap of 5.14 eV with the two-fold degenerate

HOMO lying at -6.26 eV (measured with respect to vacuum), see Fig. 9.4.

Taking into account that the Fermi energy (or negative work function) of Pt

is around -5.4 eV, one naively expects that if there is no substantial charge

transfer, the transport must be dominated by the HOMO. With respect to

the value of the conductance, it will depend crucially on the strength of the

metal-molecule coupling (see Exercise 13.7).

The authors of Ref. [473] performed DFT structural simulations to de-

termine the contact geometry and conductance calculations based on the

method detailed in Ref. [576]. Their main conclusions are: (i) benzene can

indeed form a stable bridge between Pt contacts with a conductance as high

as 1G0 and (ii) stretching of the junction leads to tilting of the molecule

which reduces both the conductance and the number of transmission chan-

nels across the junction as a consequence of sequential breaking of the Pt-C

bonds. The main take-home message from the theoretical analysis is that

the high conductance can be attributed to the strong hybridization of the

benzene molecule with the Pt contacts. This can be seen in Fig. 14.9, where

we show both the transmission and density of states (DOS) projected onto

the frontier molecular orbitals as a function of energy for two geometries at

different stages of the stretching process. Notice that when the conductance

is close to 1G0 (see left panels), the transport is dominated by the HOMOs

of the molecule, which are no longer degenerate because of the different

coupling to the Pt electrodes. In this geometry, the conductance is due
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Fig. 14.9 Transmission and density of states (DOS) as a function of energy in a Pt-
benzene-Pt junction as calculated in Ref. [473]. The left panels show the results for
a geometry where the outermost Pt atoms were separated a distance of 4.9 Å, while
the right ones show the corresponding results for a separation of 6.5 Å. The contact
geometries are shown on top of these panels. The transmission plots show both the total
transmission and its decomposition into individual transmission coefficients, Ti. The
local DOS has been projected onto the four benzene frontier orbitals, which are shown
in the upper part of the figure. The vertical dashed lines indicate the position of the
Fermi energy (-5.4 eV). Courtesy of Sören Wohlthat.

to two channels and the frontier orbitals of the benzene acquired a large

broadening due to the strong interaction with the metallic leads. When

the elongation of the contact proceeds, the reduction of the metal-molecule

coupling becomes apparent in the transmission curve with the appearance

of a pseudo-gap around the Fermi energy (see right panels in Fig. 14.9).

In this case, the transport is dominated by a single conduction channel.

The reason for this is not really obvious from the information of the local

DOS. Then, what determines the number of channels in this case? As a
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rule of thumb, an upper limit to the number of conduction channels when

the molecular junction is formed, is simply given by the number of C atoms

bonded to the Pt tip atoms. This can be understood as follows. Since each

C atom has only one orbital taking part in the π-system of the benzene

ring, each C atom can build at most one π-channel. This is nothing else

than another example of the simple rule that we discussed in the context

of the conductance of a single-atom contact (see section 11.5).

14.2 Metal-molecule contact: The role of anchoring groups

As we discussed in the previous chapter, one of the fundamental ingredients

that determines the coherent transport through molecular junctions is the

strength of the metal-molecule coupling. This strength can be tuned chem-

ically, at least up to certain degree, by using appropriate anchoring groups

to bind a molecule to metallic electrodes. How to choose the linker group?

The choice depends primarily on the type of metal-molecule combination

used to build the junctions and usually only a few anchoring groups are

possible. On the other hand, the choice also depends on the functionality

that one wants to implement in the system. If the goal is to achieve a high

conductance, then the anchoring group is chosen to maximize the strength

of the metal-molecule coupling.7 Other important factors to bear in mind

are the stability of the contact and the variability of the bonding between

the terminal group and the metal, which can play a fundamental role in

the reproducibility of the experimental results.

The majority of candidates for end-group/metal pairings for molecular

electronics come from studies of self-assembled monolayers (SAMs) [577],

such as thiolated molecules on gold surfaces. The combination of thiol as

an end group and gold electrodes is by far the most studied metal-molecule

binding motif in molecular electronics so far. In the previous section we have

given several examples of this combination. Lately, it has been argued that

the variability in the bonding between thiol groups and gold may be harm-

ful for the reliability of electrical measurements on single molecules [126].

For this reason, different alternatives are currently being explored in many

laboratories. An interesting possibility was put forward by Venkataraman

and coworkers in Ref. [126], where the authors suggested the use of amine

7A strong coupling is not always the goal. In some cases, one may want to partially
decouple the molecule from the leads, like in the case of the molecular transistors (see
next chapter).
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no molecules   1,4−benzenediamine   1,4−benzenedithiol   1,4−benzenediisonitrile

{{{{

Fig. 14.10 (a) Sample conductance traces measured with STM Au break-junction
without molecules and with 1,4-benzenediamine, 1,4-benzenedithiol, and 1,4-
benzenediisonitrile shown on a semilog plot. (b) Conductance histograms constructed
from over 3000 traces measured in the presence of the three molecules shown on a log-log

plot. The control histogram of Au without molecules is also shown. Inset: same data on
a linear plot showing a Gaussian fit to the peak (black curve). Adapted with permission
from [126]. Copyright 2006 American Chemical Society.

(NH2) groups to obtain well-defined values of the conductance of molecular

junctions. In this work, the conductance of amine-terminated molecules was

measured by breaking Au atomic contacts in a molecular solution at room

temperature. It was found that the variability of the observed conductance

for the diamine molecule-Au junctions is much less than the variability for

diisonitrile- and dithiol-Au junctions. This narrow distribution enabled the

authors to unambiguously determine the conductance of single molecules.

The conductance histograms obtained in Ref. [126] for three differently

substituted aromatics, 1,4-benzenedithiol, 1,4-benzenediisonitrile, and 1,4-

benzenediamine, are shown in Fig. 14.10(b). Notice that in comparison

to the data for the dithiol or the diisonitrile, the conductance histogram

for 1,4-benzenediamine is particularly well-defined. From this histogram, a

conductance value for this molecule of 0.0064± 0.0004G0 was deduced.

With the help of DFT-based calculations, it was suggested in Ref. [126]

that the reproducible electrical characteristics result from the selective bind-

ing between the gold electrodes and amine link groups through a donor-

acceptor bond to under-coordinated gold atoms. The amine end groups

have been used by Venkataraman and coworkers to study the transport

through alkanes [558], to analyze the role of the conjugation in the trans-
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port through biphenyl molecules [477] and to establish a detailed com-

parison with theory [578]. For more information, see Ref. [579], which

provides a comprehensive review of single-molecule junction conductance

measurements across families of molecules measured while breaking gold

point contacts in a solution of molecules with amine end groups.

Tao and coworkers have systematically studied and compared the

single-molecule conductance of alkanes terminated with dicarboxylic-acid

(COOH), diamine, and dithiol anchoring groups [557]. The conductance

values of these molecules were found to be independent of temperature,

indicating coherent tunneling. For each anchoring group, the authors re-

ported an exponential decay of the conductance with the molecular length,

given by G = A exp(−βNN), which also suggests the tunneling mecha-

nism. The prefactor of the exponential function, A, a measure of contact

resistance, turned out to be highly sensitive to the type of the anchoring

group, which varies in the order Au-S > Au-NH2 > Au-COOH. This de-

pendence was attributed to the different coupling strengths provided by the

different anchoring groups between the alkane and the electrodes. On the

other hand, with respect to the spread of the peaks in the conductance his-

tograms, there were no significant differences between thiols and amines.

Something similar has also been reported by Martin et al. [535]. Using

microfabricated gold break-junctions, these authors measured the conduc-

tance histogram for benzenediamine. In contrast to Ref. [477], they did not

find a pronounced peak structure. According to these authors, the differ-

ence may be due to the absence of a solvent in their experiment and also

to the fast rupture of the metal-molecule bond that must have reduced the

probability of forming stable molecular junctions.

From the previous discussion it is obvious that the conductance values

are not necessarily correlated with the selectivity of the binding that leads

to narrow peaks in the conductance histograms. It would be desirable to

find linker groups with the properties of amines, but providing a stronger

coupling. With this goal in mind, Park et al. [559] have compared the

low bias conductance of a series of alkanes terminated on their ends with

dimethyl phosphines, methyl sulfides, and amines and found that junctions

formed with dimethyl phosphine terminated alkanes have the highest con-

ductance. Furthermore, they observed a clear conductance signature with

these linker groups, indicating that the binding is well-defined and electron-

ically selective.

As we discussed in a previous section devoted to the transport through

benzene molecules, an interesting possibility is the use of other metals than
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Fig. 14.11 (a) Conductance traces of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene (BDC60),
1,4-benzenediamine (BDA) and 1,4-benzenedithiol (BDT) measured using lithographic
gold MCBJs. (b) Conductance histograms on a semilog scale, constructed from 400 con-
secutive traces. The arrow marks the typical junction conductance of BDC60. All curves
are offset for clarity. Colors in panel (a) correspond to those in panel (b). Reprinted
with permission from [536]. Copyright 2008 American Chemical Society.

gold. As we showed in that section, the use of a transition metal like Pt

allows exploring the chemistry of unsaturated carbon bonds. In the case

of benzene, this led to a very high conductance, of the order of 1G0, to

be compared with the conductance of 0.0064± 0.0004G0 reported for ben-

zenediamine in Ref. [477]. This illustrates the fact that in many cases the

anchoring groups are acting as spacers or potential barriers that diminish

the conductance of the junctions. Of course, the use of other metals is

often hindered by the oxidation of those metals, which can only be avoided

working under UHV conditions.

The direct binding of carbon structures, like C60, to gold electrodes

has also been explored in the literature. C60 is known to hybridize

strongly with gold surfaces [580], and in single-molecule junctions it can

exhibit conductances on the order of one tenth of G0 [128]. These re-

sults suggest that one could also use C60 as an anchoring group. In-

deed, this possibility has been recently investigated by Martin et al. [536].

These authors have designed and synthesized a linear and rigid C60-capped

molecule, 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene (BDC60), and compared

the electrical characteristics to those of 1,4-benzenediamine (BDA) and

1,4-benzenedithiol (BDT) using lithographic MCBJs. The main conclu-
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sion of this work is the suitability of fullerene-anchoring for single-molecule

transport measurements. In particular, compared to thiols the fullerene-

anchoring leads to a considerably lower spread in low-bias conductance due

to the higher junction stability that minimizes fluctuations due to atomic

details at the anchoring site.

More recently, Zotti et al. [472] have studied both experimentally and

theoretically the transport through tolane molecules attached to gold con-

tacts via different anchoring groups. From the experimental side, they

showed that the molecules with thiol and nitro groups can sustain a much

higher current (see Fig. 13.10). From the theory side, and with the help

of DFT-based calculations, they showed that the anchoring not only deter-

mine the strength of the metal-molecule coupling (i.e. width of the molecu-

lar resonances), but they also control the position of the molecular energy

levels. In particular, they showed that in the case of thiol and amine groups,

their electron-donating character is reflected in the fact that the HOMO of

the molecules dominates the transport. On the contrary, nitro and cyano

groups have an electron-withdrawing character, which means in practice

that the LUMO is pushed closer to the gold Fermi energy and it dominates

the electrical conduction. Moreover, these authors showed that there is

no direct relation between the metal-molecule binding energies for different

anchoring groups and the corresponding junction conductances. This is ob-

vious in the case of molecules where the LUMO dominates the transport,

since this orbital plays practically no role in the binding energy.

As a last comment, let us say that not only the type of anchoring group

matters, but also its exact position. In a nice work, Mayor et al. [581]

showed that the conductance of a thiol-terminated indexanchoring groups!

thiol rod-like conjugated molecule depends crucially on the position of the

thiol group. They showed that by placing the thiol group in the meta

position of the last phenyl ring, the conjugation is partially interrupted

and the current decreases significantly as compared with the case in which

the thiol group is in the para position.

14.3 Tuning chemically the conductance: The role of

side-groups

As it is clear from our discussions in the previous chapter, the coherent

transport through a molecular junction depends crucially on the position of

the relevant orbitals of the molecule with respect to the metal Fermi energy
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and also on their character (degree of delocalization). Thus, the internal

electronic structure of a molecule plays a fundamental role and it can be

chemically tuned to certain extend with the inclusion of appropriate side-

groups or substituents . In principle, side-groups can have two main effects:

(i) they can control the structure of a molecule which in turn determines

the degree of conjugation (delocalization of the molecular orbitals) and (ii)

they can tune the position of the frontier orbitals. Both effects can have

an impact in the conductance of a junction. These effects are well-known

in the field of electron transfer [582, 583], but so far they have been quite

difficult to test systematically in molecular junctions.

The fact that the conformation must have a major impact on the con-

duction through a molecular junction has been predicted long ago [584, 585]

and it is very easy to explain, as we saw in section 13.5. Such impact have

been illustrated in different experiments [586–588], but probably the most

illustrative example have been reported by Venkataraman and coworkers

in Ref. [477]. As we explained in section 13.5, these authors carried out

a detailed study of the conductance of a series of biphenyl molecules with

different twist angles, θ, that were coupled to gold electrodes via amino

linking groups. They showed that the conductance follows a cos2 θ depen-

dence, as expected for transport through π-conjugated biphenyl systems

(see Refs. [584, 260] and section 13.5).

As it was shown by Pauly et al. [478], ab initio calculations based on

DFT show that the low-temperature conductance of biphenyl derivatives

follows closely the cos2 θ law consistent with an effective π-orbital coupling

model. A comparison between theory and the results of Ref. [477] has been

reported by Finch et al. [589]. These authors studied the conductance of

the series of 8 molecules shown in Fig. 14.12(a), with both thiol and amine

anchoring groups. They showed that if the Fermi energy EF lies within the

HOMO-LUMO gap, then the experimental results are reproduced. More

generally, however, if EF is located within either the LUMO or HOMO

states,8 the presence of resonances destroys the linear dependence of the

conductance on cos2 θ and gives rise to non-monotonic behavior associated

with the level structure of the different molecules. These results are illus-

trated in Fig. 14.12(b).

It is worth mentioning that the conduction in the experiment of

Ref. [477] is not completely suppressed when θ = π/2. In this limit also

σ-orbitals contribute to the effective coupling that allows a finite current

8In an experiment, EF may differ from the computed value for a number of reasons,
including the presence of a dielectric environment, such as air or water.
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Fig. 14.12 Theoretical results on the conductance of biphenyl derivatives. (a) Molecules
studied capped with NH2. The dark vertex in the backbone of molecule 3 corresponds
to N and the side groups of molecules 6 and 7 (other than H) correspond to F and
Cl atoms, respectively. (b) Zero-bias conductance in a hollow configuration, for sulfur
contact (circles), nitrogen contact (squares) and values from Ref. [477] (triangles). All

cases have been normalized to the θ = 0 value. Adapted with permission from [589].
Copyright 2008 IOP Publishing Ltd.

to flow through the system [478]. In this sense, Pauly et al. [546] have

shown theoretically that the conductance of oligophenylenes of different

length remains finite when the molecules are modified with methyl side-

groups, although these substituents induce a rotation of the neighboring

phenyl rings of about 90o. The typical reduction of the conductance, in

comparison with the conjugated molecules, is about two order of magni-

tude. Recently, Lörtscher et al. [590] have shown experimentally that such

non-conjugated molecules are still conductive.

The role of the conjugation in the conduction through molecular systems

can also be illustrated without resorting to side-groups. Thus for instance,

the comparison of the conductance through alkanes to that through proto-

typical molecular wires with extended π-electron states, like oligophenyle-

neethynylene (OPE) or oligophenylenevinylene (OPV), shows substantially

higher conductance through the conjugated molecules and a rational de-

pendence on the HOMO-LUMO gap [475, 591–593].

As mentioned above, the second main effect of side-groups is to shift

the frontier orbitals of a molecule. In this sense, side-groups can be used

to improve the usually bad alignment between the molecular levels and

the Fermi energy of the metallic electrodes. In other words, and using

terminology of semiconductor physics, one can use side-groups to “dope”
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Fig. 14.13 Chemical control of double barrier tunneling in α,ω-dithiaalkane molecular
wires. (a) Molecules used and their frontier orbital energies (in eV) as obtained from a
DFT calculation. R = HS(CH2)6- in all cases. (b) Plot of conductances determined by
I(t) method (with standard deviations) against HOMO energy for molecules 1-4. From

[594]. Reproduced by permission of The Royal Society of Chemistry.

molecular junctions. This effect has been studied experimentally by several

groups [558, 594, 102], but it seems that it is still rather difficult to show

this basic effect in a systematic manner. Let us briefly describe the work

of Leary et al. [594], where the authors studied the low-bias conductance

of 1,4-bis-(6-thiahexyl)-benzene derivatives using the STM-based I(t) and

I(s) methods that will be discussed in the next section. In particular, they

investigated the four benzene derivatives shown in Fig. 14.13(a). In order

to achieve a contact with gold electrodes, these molecules contain radicals,

which act a linking groups, consisting of thiolated alkyl chains [HS(CH2)6].

The central idea of this work was to study the correlation between the low-

bias conductance and the position of the frontier orbitals. For this purpose,

the authors determined theoretically the position of these orbitals by means

of DFT calculations [see Fig. 14.13(a)]. In panel (b) of the same figure one

can see the experimental results for the conductance plotted as a function of

the theoretical position of the HOMO of the isolated molecules. This graph

shows that the more electron-rich benzene rings (with a higher HOMO) give

higher conductances, which is consistent with hole conduction (i.e. via the

benzene HOMO). These results constitute a beautiful illustration of the

doping effect, although the change in the conductance is still rather small

(smaller than a factor 2). Anyway, let us stress that what really determines

the conductance is the actual position of the frontier orbitals of the molecule

in the junction, which in principle may differ from the corresponding ones in

gas phase. In that sense, it would be highly desirable to obtain information
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in-situ about the level alignment with the electrode Fermi energy, along

the lines of Ref. [461]. This is of course extremely challenging in the case

of single-molecule junctions, although not impossible as we shall see in

Chapter 20.

Another example of this doping effect was presented by Venkataraman

et al. [558]. In this case, the authors studied the single molecule con-

ductances of a series of very short conjugated molecules (substituted 1,4-

diaminobenzenes) using an STM-based break-junction technique. They

found that electron donating substituents resulted in higher molecular con-

ductances, and there was an approximate correlation between the conduc-

tance and the Hammett σp parameter,9 consistent with hole transport (i.e.

transport dominated by the HOMO of the molecules). Another interest-

ing example related to the influence of side-groups has been reported by

Baheti et al. [102]. In this work the thermopower of molecular junctions

based on several 1,4-benzenedithiol (BDT) derivatives was investigated.

The BDT molecule was modified by the addition of electron-withdrawing

or -donating groups such as fluorine, chlorine, and methyl on the benzene

ring. It was found that the substituents on BDT generated small and pre-

dictable changes in conductance depending on their character. Moreover,

the authors showed that by replacing the thiol end groups by cyanide end

groups the transport changes radically and it turns out to be dominated by

the LUMO of the molecule. These results will be discussed in more detail

in Chapter 19 in the context of thermoelectricity in molecular junctions.

14.4 Controlled STM-based single-molecule experiments

One of the major problems in most of the experiments that we have dis-

cussed so far is the fact that it is not easy to prove that one is dealing with

a single molecule. In principle, the STM constitutes an ideal tool to resolve

this issue.10 The STM can be utilized to perform controlled transport

experiments through individual molecules that have been deposited onto

metal surfaces by bringing the metallic tip into contact to the molecule. The

obvious advantage of the STM is that the structure under investigation–a

molecule along with its substrate–can be imaged with submolecular preci-

sion prior to and after taking conductance data. In this way, parameters

9Roughly speaking, the Hammett parameter (or constant) describes the change in re-
action rates upon introduction of substituents. For a precise definition, see Ref. [595].
10The STM as a tool to fabricate molecular junctions has extensively described in section
3.4.4.
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Fig. 14.14 Conductance of a C60 molecule deposited on a Cu(100) surface measured
with a STM as a function of the tip displacement Δz. Data are an average of 500
measurements. Zero displacement corresponds to the tip position before freezing the
feedback loop at V = 300 mV and I = 3 nA. The solid line correspond to the exper-
imental data, while the square symbols correspond to calculations performed with the
TRANSIESTA package. The inset shows a single conductance curve revealing a discon-
tinuity at Δz = 3.3 Å. Reprinted with permission from [116]. Copyright 2007 by the
American Physical Society.

such as molecular orientation or binding site can be monitored. Another

advantage of STM is the possibility to characterize to some extent the sta-

tus of the second electrode, the microscope tip, by recording conductance

data on clean metal areas. Maybe the main disadvantage of the STM is

its mechanical stability, which does not reach level of the break-junction

methods. On the other hand, it is sometimes said that in this approach

there is an inherent asymmetry in the contact and the strong substrate-

molecule interaction that may distort some of the intrinsic properties of

the molecule. In any case, the high degree of control in these experiments

is extremely valuable at this stage in order to establish the basic transport

mechanisms at the molecular scale. In this sense, it is somewhat surprising

that STM data for molecular contacts are so scarce. In this section we

shall briefly describe some illustrative examples of this type of controlled

single-molecule experiments.

One of the first experiments of this kind was performed by Joachim et

al. [115] who used a STM at room temperature to study the contact con-

ductance of a C60 on Au(110). This experiment has been revisited more

recently by Néel et al. [116], but at 8 K and under UHV conditions. In

this experiment the molecules were deposited by sublimation onto a clean

Cu(100) surface and were probed by a Cu-covered tip. The orientation
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of the molecules on top of the Cu(100) surface could be resolved, and

only those molecules were selected that exposed a C-C bond between a

hexagon and a pentagon at the top. When approaching the tip towards the

molecule they observed a very reproducible jump into contact from about

G = 2.5× 10−2G0 to G = 0.25G0 (see Fig. 14.14). When approaching the

tip further towards the molecule a jump up to G ≈ G0 was observed. The

detailed information provided in this experiment makes it ideal to compare

with the theory. Indeed, in the same work a theoretical analysis of the

linear conductance based on DFT yielded a satisfactory agreement, as one

can see in Fig. 14.14. From the modeling the authors inferred that the con-

trolled contact to a C60 molecule does not significantly deform its spherical

shape and they also showed that the conductance around the tip-molecule

contact formation is affected by a fluctuation between different microscopic

configurations.

In the context of the STM, two important methods have been intro-

duced by the Nichols’ group for the measurement of single-molecule con-

ductance [550, 596–599]. These methods are referred to as the I(s) and

I(t) methods. In these methods the starting point for the measurements

is the adsorption of a low coverage of the molecules under investigation on

a Au surface. This condition typically results in flat-lying molecules and

enables the formation of single-molecule wires with high probability. To

attach a molecule to the STM tip, usually made also of Au, the tip is low-

ered onto the surface by fixing the tunneling current I0 at relatively high

values and then lifted, while keeping a constant position in the x-y plane.

This procedure is illustrated in Fig. 14.15. The current decay shows distinc-

tive current plateaus when molecular wires bridge the gap between the tip

and substrate, whereas in the absence of wire formation the current simply

decreases nearly exponentially with tip-sample separation, see Fig. 14.15.

The current plateaus obtained with this method have been related to

electron tunneling through molecular wires bridging the STM tip and the

substrate [550, 596]. Statistical analysis of the data using histogram plots

has shown that the current-plateau values group themselves into discrete

values, which are integer multiples of a lowest value. The lowest current

peak in the histogram corresponds to a single molecule, whereas the next

discrete conductance step has been assigned to conduction through two

wires and so on.

An alternative method is the so-called I(t) method [550]. This involves

holding the Au STM tip at a given distance above the substrate while moni-

toring current jumps as molecular wires bridging the tip and substrate form
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Fig. 14.15 Schematic illustration of the I(s) STM method of forming molecular wires.
(A) A low coverage of the studied molecule is formed on the Au(111) surface, and the
set-point current is increased. (B) Attachment of the molecule at one end to the Au STM
tip is achieved, and then (C-D) the tip is retracted from the surface while recording the
current. The graph shows the conductance decay with distance for a clean Au substrate
(lower curve) and for a molecule on Au (upper curve). In the latter curve the different
stages of the contact formation are indicated (B, C and D). Notice the presence of a
plateau before rupture. Courtesy of Edmund Leary.

and subsequently break. It has been shown that both the I(s) and the I(t)

method result in the same single-molecule conductance for alkanedithiols

[550]. A nice application of the I(t) method can be found in Ref. [599],

where the authors showed, in combination with ab initio transport calcu-

lations, that the tilt-angle dependence of the electrical conductance is a

sensitive spectroscopic probe, providing information about the position of

the Fermi energy.

The use of methods in the spirit of the I(s) and the I(t) ones are opening

new ways of looking at molecular conductance. Thus for instance, Temirov

et al. [119] have reported beautiful results on a complex system, PTCDA

(4,9,10-perylenetetracarboxylic-dianhydrid), on a Ag(111) surface. They

demonstrated that one can controllably contact the molecule to the STM

tip at one of the four oxygen corner groups and peel the molecule gradually

from the surface. The conductance clearly varies in the process of peeling,

but when pulled to an upright position the conductance is approximately
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0.15G0. During the process an interesting Kondo-like resonance develops

that can be tuned by the electrode position. Another spectacular exam-

ple has been recently reported by Lafferentz et al. [600]. These authors

have measured the conductance and mechanical characteristics of a single

polyfluorene wire by pulling it up from a Au(111) surface with a STM tip,

thus continuously changing its length up to more than 20 nm. They showed

that the conductance not only decays exponentially but also exhibits char-

acteristics oscillations as one molecular unit after another is detached from

the surface during stretching.

14.5 Conclusions and open problems

Although in this chapter we have only talked about some concrete aspects

of single-molecule conduction, we can already draw a few general conclu-

sions and point out some of the main challenges for the near future. It

is clear that in the last years a significant progress has been made in the

experimental approaches to study single-molecule junctions as well as in

the qualitative understanding of their transport properties. From the ex-

perimental side, the introduction of statistical methods to determine the

conductance has partially eliminated the discrepancies between different

experimental results which appear when only individual traces are com-

pared. The use of new techniques to measure other transport properties

such as shot noise or thermopower provides very valuable additional infor-

mation that is not contained in the standard conductance measurements

(see Chapter 19). The use of low temperatures and the improvement in

the stability of the devices allow now making use of the inelastic tunneling

spectroscopy (see Chapter 16), which gives an essential information about

the presence of the molecules and the geometry of the junctions.

From the theory side, the development of ab initio methods makes now

possible to study both the mechanical and the electrical properties in a

much more reliable way. In particular, DFT-based calculations provide, for

instance, a detailed information about the possible structure of the con-

tacts, the relevant vibration modes and the conductance of the junctions.

These theoretical methods are now able to describe the general experimen-

tal trends, see e.g. Ref. [579], although they still fail in general to describe

quantitatively the transport results.

So in short, there are good reasons to be optimistic about the develop-

ment of this field. However, it has to be acknowledged that there are still



Coherent transport through molecular junctions II: Test-bed molecules 421

basic issues to be resolved. The challenges for the experiments concern,

in the first place, the reproducibility of the results. We have seen that

the statistical methods are not the panacea and the interpretation of the

conductance histograms is not always straightforward. One of the main

goals should be to find strategies to rigidly bind molecules to electrodes

via selective anchoring groups or by means of new trapping techniques. It

would also be desirable to improve the stability of the contacts to be able

to extend the statistical analysis also to the I-V curves [534], which contain

much more information. Most of these requirements are indeed met by the

controlled STM experiments that we discussed in the previous section and,

in this sense, there is no doubt that they will play an important role in the

near future.

The theory has also to face several basic problems. One of the main

things to do is to understand the origin of the discrepancies between the

DFT-based methods which, in principle, are supposed to deliver the same

results. Thus, systematic comparisons between different implementations of

the DFT-NEGF approach are necessary, as proposed in Ref. [545]. On the

other hand, as we explained in section 10.8, DFT as it is used in molecular

electronics has clear limitations. Thus, the biggest challenge for the theory

is the introduction of new methods to describe properly the role of the

electronic correlations in the transport through these systems. DFT does

not describe correctly the energy spectrum of a system and, in particular, it

tends to give small values for the HOMO-LUMO gap, as compared with the

experiment. This is the main reason behind its systematic overestimation

of the low-bias conductance of molecular junctions. Moreover, DFT is not

well-founded in an out-of-equilibrium situation and its use to describe the

transport at finite bias is then doubtful.11 Finally, so far most theoretical

methods used to describe the I-V curves are not able to take into account

the possible conformational changes that may appear when a molecule is

subjected to a rather high electric field. This issue is certainly playing an

important role in many experiments and it is presently out of the scope of

most theories in molecular electronics.

11The reader has surely noticed that we have not presented or discussed any comparison
of the I-V curves and we have focused our attention on the low-bias conductance. There
are several reasons for that. First, there are very few statistical analyses of the I-V
characteristics and there are no yet test systems in which different experiments agree
on the shape of the I-Vs. Second, most of the existent theoretical methods fail to
describe quantitatively the level spectrum of a molecule (or a molecular junction), and
as consequence no quantitative agreement between theory and experiment has been
obtained yet.
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Chapter 15

Single-molecule transistors: Coulomb

blockade and Kondo physics

15.1 Introduction

In the previous two chapters we have considered the coherent transport

regime in which the electrons proceed elastically (without exchanging en-

ergy) through the junctions. What is the range of validity of the coherent

picture? Intuitively, the coherent mechanism will be the dominant one as

long as the time that an electron needs to cross the molecular bridge is

smaller than the time that it takes to interact with other electrons or to ex-

cite vibronic degrees of freedom, i.e. the time that is needed for an electron

to undergo an inelastic scattering event. A problem here is that the time

that an electron spends in a junction, sometimes referred to as tunneling

traversal time, is not easy to define unambiguously. Close to a resonant sit-

uation, i.e. when a molecular level is close to the Fermi energy of the leads,

a measure of this time scale is �/Γ, where Γ is the width of the molecu-

lar resonance due to the coupling to the electrodes. The scale �/Γ can be

viewed as the lifetime of an electron for escaping into the leads. Away from

the resonant condition, the traversal time, τ , is mainly determined by the

injection gap, ΔE, which is the energy difference between the leads’ Fermi

energy and the relevant molecular orbital (HOMO or LUMO).1 Büttiker

and Landauer have shown that the traversal time obtained in the deep

tunneling limit for a square barrier of energy height ΔE and width D is

τ = D
√
m/2ΔE, where m is the electron mass [601]. If, instead, the bridge

is described in terms of a one-dimensional lattice of N equivalent sites, this

time is given by τ = �N/ΔE [602]. Then, for practical purposes we can use

the unified expression τ = �/(
√
ΔE2 + Γ2) as an estimate of the traversal

1In the resonant tunneling model, the injection gap is simply the energy ε0 of the level,
measured with respect to the Fermi energy.
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time, which covers the different situations.2 Thus, if �/τ is larger than the

energy scales associated with inelastic interactions like electron-electron,

U , or electron-vibration, λ, then the transport is mainly coherent. At the

contrary, if a molecule is weakly coupled to the electrodes (Γ < max{U, λ})
and the system is brought close to resonance (ΔE ≈ 0), the transport will

very likely be dominated by the Coulomb interaction in the molecule or by

the excitation of internal degrees of freedom like vibrational modes.

There are by now many examples in nanophysics in which the elec-

tronic transport through a small object which is weakly coupled to metal-

lic electrodes has been explored. Let us mention, for instance, the cases

of semiconductor quantum dots, carbon nanotubes or metallic nanopar-

ticles. In all these systems, the transport in the weak-coupling regime is

governed by single-electron tunneling processes that lead to phenomena like

the Coulomb blockade effect. Moreover, if the coupling is not so weak, other

interesting many-body phenomena, like the Kondo effect, can show up at

show temperatures. We shall see in this chapter that these phenomena also

appear in single-molecule junctions. These effects have been understood

in great detail in different devices with the help of a gate electrode. This

third terminal is only capacitively coupled to the small object and it allows

to tune its energy level spectrum and to explore different charge (or redox)

states. The gate electrode allows us in turn to control the current that flows

through the system with an external field, very much like in the case of field-

effect transistors in microelectronics. Due to this analogy and also to the

fact the transport is usually dominated by single-electron processes, these

weakly coupled systems are known as single-electron transistors (SETs). In

the last decade it has become possible to incorporate a gate electrode into

single-molecule devices. We shall refer to these three-terminal molecular

devices as single-molecule transistors (SMTs).

The goal of this chapter is to discuss the electronic transport through

SMTs with special emphasis in the role of the Coulomb interaction in the

molecules. The role of the vibrational modes in these systems will be dis-

cussed in the next chapter. With this idea in mind, we shall first review

briefly the general conditions necessary to observe charging effects and we

shall recall the basic signatures of these effects in the transport characteris-

tics. Then, in section 15.3 we shall recall the main experimental techniques

that have been used so far to fabricate SMTs. The experimental results in

SMTs are often analyzed in the light of the “orthodox” theory of Coulomb

2See Ref. [38] and references therein for a detailed discussion about the tunneling traver-
sal time.
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blockade. For this reason, we have included a detailed description of this

theory in section 15.4. The attempts to generalize the standard theory to

the specific problem of SMTs are discussed in section 15.5. Section 15.6

is devoted to the intermediate transport regime (Γ not too small) and we

shall pay special attention to the Kondo effect. In the last section we shall

review some of the most representative experimental results obtained in the

context of SMTs.

The physics, results and challenges related to STMs have been discussed

in the reviews of Refs. [39, 603–607].

15.2 Charging effects in transport through nanoscale

devices

In this section we examine the circumstances under which Coulomb charg-

ing effects are important in the transport through small devices and we

briefly recall the main main signatures of these effects in the transport

characteristics.

Following Ref. [608], we want to address first the following question:

How small and how cold should a conductor be so that adding or subtracting

a single electron has a measurable effect? To answer this question, let

us consider the electronic properties of the generic conductor depicted in

Fig. 15.1, which is coupled to three terminals. Particle exchange can occur

with only two of the terminals. These source and drain terminals connect

the small conductor to macroscopic current and voltage meters. The third

terminal provides an electrostatic or capacitive coupling and can be used as

a gate electrode. If we first assume that there is no coupling to the source

and drain contacts, then the small conductor acts as an island for electrons.

The number of electrons on this island is an integer N , i.e. the charge on

the island is quantized and equal to Ne. If we now allow tunneling to the

source and drain electrodes, then the number of electrons N adjusts itself

until the energy of the whole circuit is minimized.

When tunneling occurs, the charge on the island suddenly changes by

the quantized amount e. The associated change in the Coulomb energy

is conveniently expressed in terms of the capacitance C of the island. An

extra charge e changes the electrostatic potential by the charging energy

EC = e2/C. This charging energy becomes important when it exceeds

the thermal energy kBT . A second requirement is that the barriers are

sufficiently opaque such that the electrons are located either in the source,
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Source Drain

Gate

V VG

Fig. 15.1 Schematic representation of a generic three-terminal device. The sphere rep-
resents the dot (or island), which is weakly coupled to the source and drain electrodes
by tunnel junctions. Finally, a third electrode (the gate) is capacitively coupled to the
island.

in the drain, or on the island. This means that quantum fluctuations in

the number N due to tunneling through the barriers are much less than

one over the time scale of the measurement. (This time scale is roughly

the electron charge divided by the current.) This requirement translates

to a lower bound for the tunnel resistances Rt of the barriers. To see this,

consider the typical time to charge or discharge the island Δt = RtC. The

Heisenberg uncertainty relation: ΔEΔt = (e2/C)RtC > h implies that

Rt should be much larger than the resistance quantum h/e2 = 25.813 kΩ

in order for the energy uncertainty to be much smaller than the charging

energy. To summarize, the two conditions for observing effects due to the

discrete nature of charge are

Rt � h/e2 and e2/C � kBT. (15.1)

The first criterion can be met by weakly coupling the small object (or dot) to

the source and drain leads. The second criterion can be met by making the

dot small or by lowering the temperature. Let us recall that the capacitance

of an object scales with its radius R and for a sphere, C = 4πε0R. Thus for

instance, the charging energy of a C60 molecule, which has a radius of ∼ 4

Å, can be estimated to be e2/4πε0R ∼ 3.6 eV. This indicates that charging

effects can in principle be readily observed in single-molecule junctions even

at room temperature, as along as the molecules are weakly coupled to the

electrodes.

The conditions summarized in Eq. (15.1) are met by many different

nanoscale systems and for this reason charging effect have been observed,

among other systems, in metallic islands [609, 610], semiconducting quan-

tum dots [608, 611], nanoparticles [612], carbon nanotubes [613, 614], and

semiconducting nanowire quantum dots [615, 616]. While the behavior of

these type of quantum dots is fairly well understood, the properties of SMTs
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are much less established mainly because it is difficult to fabricate them in

a reliable way (see next section).

When discussing charging effects, an important energy scale is the en-

ergy level spacing ΔE in the dot, i.e. the separation between the discrete

energy states of the small conductor. To be able to resolve these levels,

the spacing must be much larger than kBT . The level spacing at the Fermi

energy EF for a box of size L depends on the dimensionality. Including

spin degeneracy, we have

ΔE =
�
2π2

mL2
×

⎧⎪⎨
⎪⎩

N/4 (1D)

1/π (2D)(
1/3π2N

)1/3
(3D)

, (15.2)

where m is the electron mass and N the number of electrons. The charac-

teristic energy scale is thus �
2π2/(mL2). For a 1D box, the level spacing

grows for increasing N , in 2D it is constant, while in 3D it decreases as N

increases. The level spacing of a 100 nm 2D dot is ∼ 0.03 meV, which is

large enough to be observable at dilution refrigerator temperatures of ∼ 100

mK. Thus, dots made in semiconductor heterostructures are true artificial

atoms, with both observable quantized charge states and quantized energy

levels. Using 3D metals to form a dot, one needs to make nanoparticles as

small as ∼ 5 nm in order to observe atom-like properties. In the case of

molecular junctions, the spacing ΔE, which is basically the HOMO-LUMO

gap, is typically of the order of several electronvolts. Therefore, level quan-

tization should be easily observable in SMTs even at room temperature.

Now that we have identified the relevant scales for the occurrence of

charging effects, let us now see how they are revealed in the transport

characteristics. The tunneling of a single charge changes the electrostatic

energy of the island by a discrete value, a voltage VG applied to the gate

(with capacitance CG) can change the island’s electrostatic energy in a con-

tinuous manner. In terms of charge, tunneling changes the island’s charge

by an integer while the gate voltage induces an effective continuous charge

q = CGVG that represents, in some sense, the charge that the dot would

like to have. This charge is continuous even on the scale of the elementary

charge e. If one sweeps VG, the build up of the induced charge will be com-

pensated in periodic intervals by tunneling of discrete charges onto the dot.

This competition between continuously induced charge and discrete com-

pensation leads to the so-called Coulomb oscillations in a measurement

of the current (or conductance) as a function of gate voltage at a fixed

source-drain voltage.
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(a) (b)

(c) (d)

Fig. 15.2 Coulomb blockade in a single-wall carbon nanotube. (a) AFM image of a
carbon nanotube on top of a Si/SiO2 substrate with two 15-nm-thick Pt electrodes, and
a corresponding circuit diagram. The total length of the tube is 3 μm, with a section
of 140 nm between the contacts to which a bias (source-drain) voltage is applied. A
gate voltage Vgate applied to the third electrode in the upper-left corner of the image is
used to vary the electrostatic potential of the tube. (b) Current versus gate voltage at
Vbias = 30 μV. Two traces are shown that were performed under the same conditions.
(c) Current-voltage curves of the tube at a gate voltage of 88.2 mV (trace A), 104.1
mV (trace B) and 120.0 mV (trace C). (d) Conductance G = I/Vbias versus ΔVgate

at low bias voltage Vbias = 10 μV and different temperatures. Solids lines are fits of
G ∝ cosh−2(eΔVgate/α2kBT ), corresponding to the model of a single molecular level
that is weakly coupled to two electrodes. The factor α is the gate coupling parameter (see
text) and for this peak equals 16. Reprinted by permission from Macmillan Publishers
Ltd: Nature [613], copyright 1997.

An example of these oscillations in a single-wall carbon nanotube weakly

coupled to two metallic electrodes is shown in Fig. 15.2(b). As one can see,

there appear a series of peaks or spikes in the current versus the gate voltage

at very low bias (source-drain) voltage in a quasi-periodic fashion.3 In the

valley of the oscillations, the number of electrons in the nanotube is fixed

and necessarily equal to an integer N . In the next valley to the right the

number of electrons is increased to N + 1. At the crossover between two

stable configurations N and N + 1, a charge degeneracy exists where the

number can alternate between N and N + 1. This allowed fluctuation in
3In this case the bias voltage was quite low (linear regime) and the conductance exhib-

ited the same peak structure as the current.
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the number (i.e. according to the sequence N → N + 1 → N → · · · ) leads
to a current flow and results in the observed peaks.

An alternative measurement is performed by fixing the gate voltage, but

varying the source-drain voltage VSD. As shown in Fig. 15.2(c) for a carbon

nanotube junction, one observes in this case a non-linear current-voltage

characteristic exhibiting a series of steps. This characteristic structure is

known as Coulomb staircase. A new current step occurs at a threshold volt-

age (∼ e2/C) at which an extra electron is energetically allowed to enter the

nanotube. It is seen in Fig. 15.2(c) that the threshold voltage can be mod-

ulated with the gate voltage until the low bias gap completely disappears,

in accordance with the Coulomb oscillations. Finally, as one can see in

Fig. 15.2(d), the conductance versus the gate voltage has a very character-

istic temperature dependence close to a resonance, where the conductance

maximum decreases as the temperature increases.

The origin of these peculiar transport characteristics will be analyzed

in detail in detail in the next sections. Moreover, we shall show that one

can obtain very valuable spectroscopic information about the charge state

and energy levels of the dot by analyzing the precise shape of the Coulomb

oscillations and the Coulomb staircase.

15.3 Single-molecule three-terminal devices

Most of the experiments described in the previous two chapters in our dis-

cussion of the coherent transport have been performed with two-terminal

devices fabricated with the break-junction technique and the STM. These

techniques have several advantages, but it is however very difficult to in-

corporate a gate electrode in their set-ups. This is an important drawback

since, as discussed in the previous section, a gate electrode allows us to

extract much more information about the junctions. Thus for instance, the

gate makes possible to study the conduction through molecules in differ-

ent transport regimes by bringing the energy levels into and out of reso-

nance with the Fermi energy. This way, one can also probe excited states

and different charge states can be accessed. Excited states can either be

vibrational [22, 617, 678], electronic [618], or related to spin transitions

[619, 620]. These excitations serve as a fingerprint of the molecule under

study.

An important parameter in three-terminal devices is the gate coupling

parameter, α. This parameter quantifies the shift of the orbital levels that
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can be induced with a gate electrode potential, VG. In an experiment, the

gate coupling should be as large as possible in order to access as many

charge states as possible. The geometry plays an important role in the gate

coupling and one should take care that the electrodes themselves do not

screen the gate potential as this would decrease α. The electrode separation

(and therefore the length of the molecule) and the breakthrough voltage of

the gate oxide are other important parameters. Currently, two gate mate-

rials are frequently used: heavily doped silicon substrates with thermally

grown SiO2 on top and aluminum strips with a native Al2O3 oxide of only

a few nanometers. For aluminum gates with an oxide thickness of 3 nm, the

gate coupling is about 0.1 so that, with a typical breakthrough voltage of 4

V at low temperatures, the potential of the molecular levels can be shifted

by ±0.4 eV. On the other hand, in silicon devices with an SiO2 thickness

of 250 nm, the gate coupling is about 10−3; with a typical breakthrough

voltage of 100 V, the range over which the potential on the molecule can

be varied equals ± 0.1 eV.

As we have seen in Chapter 3, three-terminal devices have been fab-

ricated using different techniques. We follow here Ref. [606] and we now

proceed to briefly describe the most successful approaches so far. They no-

tably differ in the way the nanogap or the molecular junction is created. The

most popular technique is electromigration, in which a large current den-

sity breaks a narrow and thin metal wire to form two physically separated

electrodes [21]. Electromigration-induced nanogap formation has been im-

aged in situ by transmission (and scanning) electron microscopy [82, 621].

Several of these electrode pairs can be fabricated on top of a conducting

substrate (coated by an insulating layer) which can then serve as a gate elec-

trode. Although some control has been obtained over the electromigration

process by using a feedback mechanism, the resulting nanogap geometry or

size remains uncontrollable. The advantage of electromigrated devices on

a Al/Al2O3 gate electrode is their large gate coupling (αmax ∼ 0.27). The

planar geometry [see Fig. 15.3(a)] offers a large stability for systematic stud-

ies as a function of gate voltage, temperature and magnetic field. Molecules

are deposited from solution either prior to gap formation or afterward.

A second technique involves the fabrication on top of a gate electrode

of two gold electrodes using a shadow mask technique as illustrated in

Fig. 15.3(b). If the tilt angle of evaporation is high there is no overlap

between the source and drain shadows. Reducing the tilt angle decreases

the source-drain gap. In situ measurements of the conductance allow for

fine tuning of the gap distance when performed at low temperatures (∼ 4.2
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Fig. 15.3 Schematic diagrams of different three-terminal device techniques. (a) Elec-
tromigrated thin metal wire on top of a Al/Al2O3 gate electrode. (b) Angle evapo-
ration technique to fabricate planar electrodes with nanometer separation on top of a
Al/Al2O3 gate electrode. (c) Gated mechanical break junction. (d) The dimer contacting
scheme (see text). Reprinted with permission from [606]. Copyright 2008 IOP Publishing
Ltd.

K). Molecules are deposited by quench condensation without disruption of

the vacuum [622, 623]. The advantages of this evaporation technique in-

clude all the ones from the electromigrated devices, plus the control over

the gap distance and the ability for molecule deposition inside a clean en-

vironment. Typical gate coupling values are of the same order as the ones

for electromigrated junctions.

Only recently it has been possible to integrate a gate electrode in MCBJs

[86], see Fig. 15.3(c). So far it has been possible to place the gate electrode

from the gap at a distance of 40 nm [86]. Although the gate coupling

remains low as compared to other techniques with a planar geometry (α ∼
0.006 in Ref. [86]), MCBJs have the clear advantage of precise control over

the gap distance; the reported breakthrough voltage [86] was 12 V. Molecule

deposition is carried out from solution.

Another three-terminal approach was reported by Dadosh et al. [114].

Their method is based on synthesizing in solution a dimer structure con-

sisting of two colloidal gold particles connected by a dithiolated molecule.

The dimer is then electrostatically trapped between two gold electrodes de-
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fined on top of a gate electrode [see Fig. 15.3(d)]. According to the authors,

this dimer-based contacting scheme provides several advantages such as the

ability to fabricate single-molecule devices with high certainty in which the

contacts to the molecule are well defined. The gold particles in this set-up,

however, efficiently screen the gate potential. Moreover, at low tempera-

tures spectroscopic features of the gold particles were sometimes observed

to be superimposed on the characteristics of the molecule conduction.

15.4 Coulomb blockade theory: Constant interaction model

Most of the results obtained so far in single-molecule transistors (SMTs),

i.e. in weakly coupled three-terminal molecular devices, have been analyzed

with the help of the “orthodox” theory of Coulomb blockade [609], which

has been very successful explaining the basic transport properties of semi-

conductor quantum dots. For this reason, and before describing some of

the main experiments reported to date, it is important to discuss in cer-

tain detail this theory, which is often referred to as the constant interaction

model.

In the next subsections we present an introductory description of the

standard theory of Coulomb blockade paying special attention to the rel-

evant regime for molecular devices. In a later section we shall present an

alternative formulation of this theory which is better adapted to SMTs, but

it is much more involved. The next subsections are based on Refs. [624, 625]

and on the didactic review of Ref. [605]. We also recommend the review on

single-molecule junctions of Ref. [39].

15.4.1 Formulation of the problem

We consider a quantum dot or molecule,4 which is weakly coupled via

tunnel barriers to two metallic electrodes and it is also capacitively coupled

to a gate electrode. The quantum dot has single-particle energy levels at

Ep (p = 1, 2, · · · ), labeled in ascending order and measured relative to

the equilibrium chemical potential of the electrodes, which we set to zero

(EF = 0). Each level contains either one or zero electrons. Spin degeneracy

can be included by counting each level twice, and other degeneracies can be

included similarly. Each electrode is considered to be in thermal equilibrium

4Although we have in mind molecular junctions, we shall use throughout this section
the name quantum dot to refer generically to a small island weakly coupled to the source
and drain.
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Fig. 15.4 Schematic drawing of the energy level diagram and electrostatic potential
profile of a generic quantum dot. The dot possesses a single-particle spectrum with
discrete levels, Ep. The Fermi levels in the left and right reservoirs are indicated. We
measure the levels Ep with respect to EF, which from now on we set to zero. The single
particle spectrum may be shifted by the external potential. Here, η is the portion of the
bias voltage that drops at the right interface and VG corresponds to the gate voltage.

at temperature T and the continuum of states in the reservoirs is occupied

according to the Fermi-Dirac distribution

f(E) =

[
1 + exp

(
E

kBT

)]−1

. (15.3)

In Fig. 15.4(a) we show schematically the energy level diagram of the quan-

tum dot as well as the profile of the electrostatic potential.

Because in the weak coupling regime the number N of electrons localized

in the dot can take integer values only, a charge imbalance, and hence a

potential difference Vdot(Q) can arise between the dot and reservoirs in

equilibrium (Q = −Ne is the charge on the dot). Following the orthodox

model of the Coulomb blockade [609], one can express Vdot in terms of an

effective N independent capacitance C between dot and the outside world,

Vdot(Q) = Q/C + Vext, (15.4)

where Vext is a contribution from external charges (in particular those on a

nearby gate electrode). The electrostatic energy U(N) =
∫ −Ne

0 Vdot(Q)dQ

then takes the form

U(N) = (Ne)2/2C −NeVext. (15.5)

Thus, the result for the total energy of a dot that contains N electrons,

including the quantum energy due to the orbital energies is

Edot(N) = U(N) +

N∑
p=1

Ep. (15.6)
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This expression for the total energy summarizes the constant interaction

model, in which the capacitance C does not vary with N .

It is important to clarify the meaning of the external potential in

Eq. (15.5). This can be done with the help of the equivalent circuit shown

in Fig. 15.5. Elementary electrostatics gives the following relation between

the different potentials and the charge Q on the island:

CVdot − CSVS − CDVD − CGVG = Q, (15.7)

where C = CS + CD + CG. Comparing this expression with Eq. (15.4) we

arrive at the following result for the external potential

Vext = (CSVS + CDVD + CGVG)/C. (15.8)

Thus, we see that the potential on the dot depends on the induced potential

Vext of the source, drain and gate. Notice that the change in the external

potential due to a change in the gate voltage carries a factor α = CG/C,

which is the gate coupling parameter that was mentioned in the previous

section. On the other hand, assuming that the drain is grounded as in

Fig. 15.5, the factor η introduced in Fig. 15.4 can now be simply expressed

as the capacitance ratio η = CS/C.

A key quantity determining whether the current can flow through the

dot is its chemical potential, which is the minimum energy required to add

an extra electron to the dot. From Eq. (15.6) it is easy to see that this

chemical potential is given by

μdot(N) = Edot(N)− Edot(N − 1) =

(
N − 1

2

)
e2

C
− eVext + EN . (15.9)

Before discussing the main predictions of this theory, it is important to

be aware of the conditions for which the constant interaction model gives

CS CD

GC

VdotSource Drain

VS V

Gate

G

Fig. 15.5 Schematic representation of the capacitance model of a quantum dot. The dot
is connected to source and drain electrodes with tunnel junctions and the gate electrode
shifts the electrostatic potential of the dot. Here, we assume that drain electrode is
grounded (VD = 0).
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a reliable description of the device. This is first of all weak coupling to the

leads. A second condition is that the size of the device should be sufficiently

large to make a description with single values for the capacitances possible.

Finally, the single-particle spectrum Ep should not vary with the charge

N residing on the dot. The constant interaction model works well for

weakly coupled quantum dots for which it is very often used. However,

the previous conditions are not fulfilled in general in molecular devices.

Neither the charging energy nor the energy level spectrum are expected

to be independent of the number of electrons in the molecule, specially

for small ones. Thus, the constant interaction model should be used with

caution in this case.

15.4.2 Periodicity of the Coulomb blockade oscillations

Let us now discuss the expected periodicity of the Coulomb oscillations,

i.e. the distance between the peaks in the conductance as a function of the

gate voltage in the limit of small (linear regime) source-drain voltage.

Electrons can flow from left to right when μdot is between the potentials,

μL and μR, of the leads (with eVSD = μL − μR), i.e. μL > μdot > μR, see

Fig. 15.6. For small bias voltages, VSD ≈ 0, the N -th Coulomb peak is a

direct measure of the lowest possible energy state of an N -electron dot, i.e.

the ground state electrochemical potential μdot(N). From Eqs. (15.9) and

(15.8) we obtain

μdot(N) = (N − 1/2)e2/C − eαVG + EN , (15.10)

where α = CG/C is the gate coupling. The addition energy is given by

Δμ(N) = μdot(N +1)−μdot(N) =
e2

C
+EN+1 −EN =

e2

C
+ΔE, (15.11)

where ΔE = EN+1 − EN is the level spacing mentioned in section 15.2.

In the absence of charging effects, the addition energy, Δμ(N), is deter-

mined by the irregular spacing ΔE of the single-electron levels in the quan-

tum dot. The charging energy e2/C regulates the spacing, once e2/C � ΔE.

If there is spin degeneracy of the levels, it is lifted by the charging energy.

In the limit (e2/C)/ΔE → 0, Eq. (15.11) is the usual condition for reso-

nant tunneling. In the limit (e2/C)/ΔE → ∞, Eq. (15.11) describes the

periodicity of the classical Coulomb-blockade oscillations in metallic islands

where the level spacing is negligible [609]. In molecular physics the related

energies are defined as A = Edot(N)−Edot(N +1) for the electron affinity
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Coulomb Blockade N−−−>N+1−−−>N−−−>N+1−−−>...

Fig. 15.6 Potential landscape through a quantum dot. The states in the contacts are
filled up to the electrochemical potentials μL and μR, which are related by the external
voltage VSD = (μL − μR)/e. The discrete single-particle states in the dot are filled
with N electrons up to μdot(N). The addition of one electron to the dot raises μdot(N)
(i.e. the highest solid curve) to μdot(N + 1) (i.e. the lowest dashed curve). In (a) this

addition is blocked at low temperatures. In (b) and (c) the addition is allowed since here
μdot(N + 1) is aligned with the reservoir potentials by means of the gate voltage. (b)
and (c) show two parts of the sequential tunneling process at the same gate voltage. (b)
shows the situation with N and (c) with N + 1 electrons on the dot.

and I = Edot(N − 1)−Edot(N) for the ionization energy. Their relation to

the addition energy is Δμ(N) = I −A.

From an experimental point of view, the Coulomb oscillations are mea-

sured as a function of the gate voltage. The peak spacing in terms of the

gate voltage is given by

ΔVG = Δμ(N)/eα = (e2/C +ΔE)/eα, (15.12)

while the condition eαV N
G = (N − 1/2)e2/C +EN gives the gate voltage of

the N -th Coulomb peak.

15.4.3 Qualitative discussion of the transport

characteristics

Before discussing how to compute the transport properties in the Coulomb

blockade regime, it is convenient to describe qualitatively the main expected

features. Here, we shall follow Ref. [605] closely. As said in the previous

subsection, in the weak coupling regime and at low temperature, the cur-

rent is suppressed when all chemical potential levels lie outside of the bias

window. As we can tune the location of these levels using the gate voltage,

it is interesting to study the current and differential conductance of the

device as a function of the bias and of the gate voltage. A two-dimensional

plot of the current or conductance as a function of the two voltages is often
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referred to as stability diagram.

Let us now determine the line in the stability diagram (VSD-VG plane)

that separates a region of suppressed current from a region with finite

current. This line is given by the condition that the chemical potential

of the source (or drain) is aligned with that of a level on the dot. We

again assume the drain to be grounded as in Fig. 15.5. From the expression

of Eq. (15.9) for the chemical potential and using the definition for Vext,

Eq. (15.8), we find the following condition for the dot chemical potential to

be aligned with the source one (μL = eV ) keeping the dot’s charge constant

VSD = β(VG − VC), (15.13)

where β = CG/(CG +CD) and VC = (N − 1/2)e/CG+CEN/(eCG), which

can be seen as the voltage corresponding to the chemical potential on the

dot in the absence of an external potential. If the chemical potential is

aligned with the drain (μR = 0), we have

VSD = γ(VC − VG), (15.14)

with γ = CG/CS . The expressions given here are specific for a grounded

drain electrode.5

Each dot resonance generates two straight lines in the VSD-VG plane,

separating regions of suppressed current from those with finite current.

For a sequence of resonances, one obtains generically the picture shown in

Fig. 15.7(a). The diamond-shaped regions are traditionally called Coulomb

diamonds, as they are often studied in the context of metallic dots, where

the chemical potential difference of the levels is mainly made up of the

Coulomb energy. The name is also used in molecular transport, although

this is strictly speaking not justified since in this case the level spacing can

be of the same order as the Coulomb interaction.

From the Coulomb diamond picture we can infer the values of some im-

portant quantities. Thus for instance, the addition energy, see Eq. (15.11),

can be read off from the height of the diamond, see Fig. 15.7(a), or from

the distance of the degeneracy points, although in this case one needs to

know the gate coupling parameter, α. If the addition energy is dominated

by the charging energy, we can find the total capacitance. Combining this

with the slopes of the diamond sides, which give us the relative values of

CG, CS and CD, we can find all these capacitances explicitly.
5It is easily verified that, irrespective of the grounding, it holds that

C

CG
=

1

α
=

1

β
+

1

γ
.
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Fig. 15.7 (a) Generic two-dimensional plot of the current as a function of bias and
gate voltage (stability diagram) for a quantum dot in the Coulomb blockade regime. For
small bias current only flows in the three degeneracy points indicated with circles. Upper
shadow region: positive currents. Lower shadowed region: negative currents. White:
blockade, no current. The dotted lines indicate the presence of excitations (see text).
(b) Measured stability diagram of a metallic single-walled carbon nanotube showing the
expected fourfold shell filling. Blockade regime is white. Reprinted with permission from
[626]. Copyright 2005 by the American Physical Society.

An interesting consequence of the previous analysis is that, if the ca-

pacitances do not depend on the particular state we are looking at, the

height of successive Coulomb diamonds is constant. If, in addition to the

Coulomb energy, the level splitting is significant, this homogeneity will be

destroyed, as can be seen in Fig. 15.7(b), which shows the diamonds for

a carbon nanotube [626]. The alternation of a large diamond with three

smaller ones can be explained in terms of the electronic structure of the

nanotubes [627]. In the case of transport through molecules there is no

obvious underlying structure in the diamonds.

A stability diagram cannot only be used for finding addition energies,

but it can also constitute a spectroscopic tool for revealing subtle excita-

tions that arise on top of the ground state configurations of a dot with a

particular number of electrons on it. This fact has been exploited in dif-

ferent contexts to study the level spectroscopy of a variety of systems such

as metallic nanoparticles [612] or few-electron quantum dots [628]. The

excitations appear as lines running parallel to the Coulomb diamond edges,



Single-molecule transistors: Coulomb blockade and Kondo physics 439

see dotted lines in the upper panel of Fig. 15.7. At such a line, a new

(electronically or vibrationally) excited state enters the bias window, cre-

ating an additional transport channel. The result is a step-wise increase of

the current and a corresponding peak in the differential conductance. The

energy of an excitation, ΔE in Fig. 15.7(a), can be determined by reading

off the bias voltage of the intersection point between the excitation line and

the Coulomb diamond edge through the same argument that we used for

finding addition energies. The excitations correspond to the charge state of

the Coulomb diamond they end up in [see Fig. 15.7(a)]. The width of the

lines in the dI/dVSD plot (or, equivalently, the voltage range over which the

step-wise increase in the current occurs) is determined by the larger one

of the energies kBT and Γ, which in the Coulomb blockade regime must

be the first one. In practice, this means that sharp lines and thus accurate

information on spectroscopic features are obtained at low temperatures and

for weak coupling to the leads.

There are other important issues like the role of the asymmetry in the

coupling that can be discussed at a qualitative level. For more details,

recommend the review of Ref. [605].

15.4.4 Amplitudes and line shapes: Rate equations

We now want to put in more quantitative terms the statements of the

previous subsection. For this purpose, we shall introduce here the so-called

rate or master equations that allow us to compute, among other things,

the amplitudes of the Coulomb blockade oscillations, the shape of the I-

V curves (Coulomb staircase) and the stability diagrams. This section is

based on Ref. [624].

In the weak coupling regime that we are interested in, the transport is

determined by the tunnel rates from a given level p to the left and right

reservoirs, see Fig. 15.4, which we shall denote by Γ
(p)
L and Γ

(p)
R , respec-

tively.6 We assume here that kBT, ΔE � (ΓL + ΓR) (for all levels partic-

ipating in the conduction), so that the finite width Γ = (ΓL + ΓR) of the

transmission resonance through the quantum dot can be disregarded. This

assumption allows us to characterize the state of the quantum dot by a set

6To be consistent with our notation in previous chapters, the rates Γ
(p)
L,R have dimen-

sions of energy. Thus, Γ
(p)
L,R/� gives the probability per unit of time of having a tunneling

event that connects the level p of dot with the leads. The definition the rates in this
chapter are a factor two larger than those used, for instance, in our discussion of the
resonant tunneling model in Chapter 13.
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of occupation numbers, one for each energy level. Notice that the restric-

tion kBT, ΔE � Γ results in the conductance being much smaller than

e2/h. We also assume conservation of energy in the tunneliing processes,

thus neglecting contributions of higher order in Γ from tunneling via virtual

intermediate states in the quantum dot. We finally assume that inelastic

scattering takes place exclusively in the reservoirs — not in the quantum

dot. The effect of inelastic scattering in the quantum dot is considered in

Ref. [624] (see also Exercise 15.4).

Energy conservation upon tunneling from an initial state p in the quan-

tum dot (containing N electrons) to a final state in the left reservoir at

energy Ef,l
p (in excess of the local electrostatic potential energy), requires

that7

Ef,l
p (N) = Ep + U(N)− U(N − 1)− (1 − η)eV. (15.15)

Here η is the fraction of the applied voltage V which drops over the right

barrier,8 see Fig. 15.4. The energy conservation condition for tunneling

from an initial state Ei,l
p in the left reservoir to a final state p in the quantum

dot is

Ei,l
p (N) = Ep + U(N + 1)− U(N)− (1 − η)eV, (15.16)

where N is the number of electrons in the dot before the tunneling event.

Similarly, for tunneling between the quantum dot and the right reservoir

one has the conditions

Ef,r
p (N) = Ep + U(N)− U(N − 1) + ηeV, (15.17)

Ei,r
p (N) = Ep + U(N + 1)− U(N) + ηeV, (15.18)

where Ei,r
p and Ef,r

p are the energies of the initial and final states in the

right reservoir.

The stationary current through the left barrier equals that through the

right barrier, and is given by

I =
e

�

∞∑
p=1

∑
{ni}

Γ
(p)
L P ({ni})

[
δnp,0f(E

i,l
p (N))− δnp,1f̄(E

f,l
p (N))

]
. (15.19)

where we have used the shorthand notation f̄(E) ≡ 1− f(E). The second

summation is over all realizations of occupation numbers {n1, n2, . . .} ≡
7Let us remind that the energies Ep are measured with respect to the Fermi energy of

the leads.
8Notice that this definition differs from the one of Ref. [624]. This change has been

introduced to preserve the convention our convention about the current direction and
the sign of the bias voltage.
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{ni} of the energy levels in the quantum dot, each with stationary proba-

bility P ({ni}). here, the numbers ni can take only the values 0 and 1. In

equilibrium, this probability distribution is the Gibbs distribution in the

grand canonical ensemble

Peq({ni}) = 1

Z
exp

[
− 1

kBT

( ∞∑
i=1

Eini + U(N)−NEF

)]
, (15.20)

where N ≡ ∑
i ni, and Z is the partition function given by

Z =
∑
{ni}

exp

[
− 1

kBT

( ∞∑
i=1

Eini + U(N)−NEF

)]
. (15.21)

The non-equilibrium probability distribution P is a stationary solution

of the kinetic equation

�
∂

∂t
P ({ni}) = 0

= −
∑
p

P ({ni})δnp,0

[
Γ
(p)
L f(Ei,l

p (N)) + Γ
(p)
R f(Ei,r

p (N))
]

−
∑
p

P ({ni})δnp,1

[
Γ
(p)
L f̄(Ef,l

p (N)) + Γ
(p)
R f̄(Ef,r

p (N))
]

+
∑
p

P (n1, . . . np−1, 1, np+1, . . .)δnp,0

×
[
Γ
(p)
L f̄(Ef,l

p (N + 1)) + Γ
(p)
R f̄(Ef,r

p (N + 1))
]

+
∑
p

P (n1, . . . np−1, 0, np+1, . . .)δnp,1

×
[
Γ
(p)
L f(Ei,l

p (N − 1)) + Γ
(p)
R f(Ei,r

p (N − 1))
]
, (15.22)

The kinetic equation, Eq. (15.22), for the stationary distribution function is

equivalent to the set of detailed balance equations (one for each p = 1, 2, . . .)

P (n1, . . . np−1, 1, np+1, . . .)[Γ
(p)
L f̄(Ef,l

p (Ñ + 1)) + Γ
(p)
R f̄(Ef,r

p (Ñ + 1))]

= P (n1, . . . np−1, 0, np+1, . . .)[Γ
(p)
L f(Ei,l

p (Ñ)) + Γ
(p)
R f(Ei,r

p (Ñ))], (15.23)

with the notation Ñ ≡∑
i�=p ni. A similar set of equations formed the basis

for the work of Averin, Korotkov, and Likharev on the Coulomb staircase

in the non-linear I-V characteristics of a quantum dot [629–631].

Eq. (15.22), together with the normalization condition∑
{ni}

P ({ni}) = 1, (15.24)

form a set of linear algebraic equations that can be easily solved numerically.

For those readers not familiar with rate or master equations, we recommend

Exercise 15.1, in which a single-level dot is considered.
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15.4.4.1 Linear response

As shown by Beenakker in Ref. [624], in the linear response regime,

the conductance can be calculated analytically, see also Exercise 15.2.

The result can be expressed in terms of the equilibrium joint probabil-

ity Peq(N,np = 1) that the quantum dot contains N electrons and that

level p is occupied is

Peq(N,np = 1) =
∑
{ni}

Peq({ni})δN,
∑

i ni
δnp,1. (15.25)

In terms of this probability distribution, the conductance is given by

G =
e2

�kBT

∞∑
p=1

∞∑
N=1

Γ
(p)
L Γ

(p)
R

Γ
(p)
L + Γ

(p)
R

Peq(N,np = 1)f̄(Ef,l
p (N)), (15.26)

where in this case Ef,l
p (N) = Ep + U(N) − U(N − 1) since the bias volt-

age is vanishingly small. This particular product of distribution functions

expresses the fact that tunneling of an electron from an initial state p in

the dot to a final state in the reservoir requires an occupied initial state

and empty final state. The same formula was obtained independently by

Meir, Wingreen, and Lee [632] by solving an Anderson model in the limit

kBT � Γ (see Exercise 8.9).

Eq. (15.26) is valid irrespective of the relative values of the temperature,

charging energy and level splitting. The most relevant limit for molecular

devices is kBT � e2/C,ΔE. In this case Eq. (15.26) can be written in a

simplified form. Now, the single term with p = N = N0 gives the dominant

contribution to the sum over p and N . If we consider that V0 is the gate

voltage at which the resonance associated with N0 is reached, the depen-

dence of linear conductance on the gate voltage, VG, around V0 is given

by

G(VG, T ) =

(
e2

h

)
π

2kBT

Γ
(N0)
L Γ

(N0)
R

Γ
(N0)
L + Γ

(N0)
R

cosh−2

(
eα(VG − V0)

2kBT

)
. (15.27)

This line shape is characterized by a maximum value of Gmax =

(e2/2hkBT )Γ
(N0)
L Γ

(N0)
R /(Γ

(N0)
L + Γ

(N0)
R ) attained when the gate voltage

reaches the resonance V0; this is the so-called Coulomb peak. The full-

width at half maximum (FWHM) of this peak is 3.525kBT/(eα), and the

peak height decreases with temperature as 1/T . Notice that Eq. (15.27) is

nothing but the result that we obtained in section 13.2.3 in the context of

the coherent tunneling through a single resonant level, see Eq. (13.6).9 It is
9Let us remind that in Eq. (15.27) we do not consider spin degeneracy and the tunneling

rates are a factor 2 larger than in Chapter 13.
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natural to recover this result, since in the Coulomb blockade theory detailed

in this section we have only considered elastic tunneling processes. Indeed,

it is sometimes difficult to distinguish experimentally between Coulomb

blockade effect and coherent transport through a weakly coupled system.

From the theory side, there is an obvious difference. While in the coherent

case the electrons tunnel through the single-particle levels of the dot, in

the Coulomb blockade regime the resonances are also determined by the

charging energy.

15.4.4.2 Non-linear transport: A simple example

In order to illustrate the main features of the non-linear transport char-

acteristics of a quantum dot in the Coulomb blockade regime within the

constant interaction model, we discuss now in detail an example of a two-

level system, see Fig. 15.8(a). This system has two non-degenerate single-

particle levels with energies E1 = 50 meV and E2 = 80 meV, which are

measured with respect to the equilibrium chemical potential of the leads

(set to zero). Level 2 plays the role of an excited state and we shall show

how it is revealed in the different transport characteristics. We assume that

the charging energy is e2/C = 100 meV, which is larger than the excita-

tion energy ΔE = E2 − E1 = 30 meV. For simplicity, we assume that all

tunneling rates are identical and equal to Γ
(p)
L,R = 1 meV (p = 1, 2). The

temperature is kBT = 2.5 meV (i.e. T ≈ 30 K) and we take η = 0.6, where η

is the parameter that describes the portion of the voltage that drops at the

right barrier. Finally, we assume an arbitrary value for the gate coupling

parameter, α, and in the different plots the gate voltage, VG, will carry the

factor α.

In this model there are four possible configurations for the dot: {ni} =

(n1, n2), with (0, 0), (1, 0), (0, 1) and (1, 1). The first configuration has

zero electrons in the dot, the second and the third ones correspond to one

electron in the dot, and the fourth one to two electrons. To determine the

different transport properties we have solved the stationary kinetic equa-

tion, see Eq. (15.22), to obtain the probabilities of the four configurations

and we have then computed the current using Eq (15.19). The details of

this simple calculation can be found in Exercise 15.3. Let us now proceed

to describe the results of this model:

(i) Coulomb oscillations: As we explained in section 15.4.2, in the lin-

ear response regime (VSD ≈ 0), the current can flow when the chemi-

cal potential of the dot equals the equilibrium chemical potential of the
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Fig. 15.8 (a) Two-level model to illustrate the transport characteristics of a quantum
dot in the Coulomb blockade regime within the constant interaction model. The single-
particle energies are E1 = 50 meV and E2 = 80 meV (measured with respect to the
equilibrium chemical potential of the leads). The excitation energy is thus ΔE = E2 −
E1 = 30 meV. The charging energy is chosen to be e2/C = 100 meV and all tunneling
rates are assumed to be equal to Γ = 1 meV. The temperature is kBT = 2.5 meV (i.e.
T ≈ 30 K) and η = 0.6. (b) Differential conductance vs. the gate voltage (including the
gate coupling constant α) corresponding to the model of panel (a). The source-drain (or
bias) voltage is 20 μV (linear regime). The numbers 0, 1 and 2 indicate the number of
electrons in the different regions separated by the Coulomb peaks. (c) Corresponding
non-linear current-voltage characteristics for several gate voltages.

leads (which we have set to zero): μdot(N, VSD ≈ 0) = (N − 1/2)e2/C +

EN − eαVG = 0. This implies that conductance peaks will appear at

eαV N
G = (N − 1/2)e2/C + EN , which in this example correspond to

αV 1
G = 100 mV and αV 2

G = 230 mV. This is illustrated in Fig. 15.8(b).

Notice that the distance between the Coulomb peaks times the electron

charge is equal to the addition energy e2/C +ΔE = 130 meV.

(ii) Coulomb staircase: In Fig. 15.8(c) we show the corresponding results

for the current as a function of the source-drain or bias voltage (VSD) for

several values of the gate voltage. Notice that the I-V curves exhibit a
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series of steps, which correspond to the opening of new channels when the

reservoir chemical potentials cross the different resonances in the dot. Thus

for instance, at VG = 0 and positive bias voltage, the current is blocked

until μdot(N = 1) equals the chemical potential of the left reservoir, i.e.

μdot(N = 1) = e2/2C + E1 + ηeVSD = eVSD. This occurs at VSD = 250

mV. Then, the next step corresponds to the crossing of the excited state

without changing the net charge in the dot. This requires an additional bias

voltage equal to ΔE/e(1− η) = 75 mV, which explains the appearance of

a step at VSD = 325 mV. Following this line of reasoning, one can explain

the position of all the steps in the I-V curves.

Two additional features in Fig. 15.8(c) are worth mentioning. First,

notice that the gap in the low-bias voltage region can be completely closed

by increasing the gate voltage, in accordance with the Coulomb oscillations.

Second, notice that the I-V curves are not symmetric with respect to the

inversion of the bias voltage. This is simply due to the fact that we have

chosen an asymmetric electrostatic profile with η �= 0.5.

(iii) Stability diagrams: As we discussed in section 15.4.3, the different

energy scales and capacitances of the problem can be extracted from the

so-called stability diagrams, where either the current or the differential

conductance are plotted as a function of both the gate voltage and the

bias voltage. In Fig. 15.9 we show the stability diagrams for our two-level

example, which nicely illustrate the main conclusions of our qualitative

discussion in section 15.4.3. In particular, notice that the addition energy

can be extracted from the height of the middle diamond or from its width

(distance between two consecutive degeneracy points). On the other hand,

the energy of the excitation, ΔE = 30 meV, can be read off from the

bias voltage of the intersection point between the excitation line and the

Coulomb diamond edge. The excitation line is particularly visible in the

diagram of the differential conductance. Finally, notice that the diamonds

are “inclined” due to the asymmetric potential profile (η = 0.6).

15.5 Towards a theory of Coulomb blockade in molecular

transistors

There are two assumptions of the constant interaction model that are not

met in general in SMTs. Neither the charging energy nor the level spectrum

are expected to be independent of the number of electrons in a molecule. In

this sense, the orthodox theory of Coulomb blockade may not be adequate
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Fig. 15.9 Stability diagrams corresponding to the example of Fig. 15.8. (a) Current
vs. gate voltage and source-drain (or bias) voltage. (b) Differential conductance vs. gate
voltage and source-drain voltage.

for SMTs. The natural question is now how to generalize the standard

theory to deal with molecular devices. It is worth mentioning that this

question has also emerged in the other contexts like few-electron quantum

dots [628] and ultrasmall metallic grains [633].

Part of the answer to this question is rather simple, at least conceptually

speaking. Any theory of Coulomb blockade in SMTs should include an

appropriate description of the molecular many-body spectrum as a function

of the number of electrons in the molecule. In other words, we need as a

starting point the ground state and excited states of the molecules not

only for the neutral species, but also for the stable cations and anions.

In principle, this requires the use of ab-initio (post Hartree-Fock) quantum

chemistry methods like, for instance, the configuration interaction approach

[176]. In practice, both model Hamiltonians and approximate methods like

density functional theory10 have been used for this purpose. Once the

many-body spectrum for different number of electrons is known, one needs

to solve a master equation to determine the occupation of the different

states and finally their contribution to the current. By now many authors
10Density functional theory is not designed to give the level spectrum of a system and,
although it may give reasonable results for neutral molecules, it has severe problems with
charged species (anions and cations) [273].
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have implemented such a procedure at different levels of sophistication, and

we just mention here a few works from which it should be easy to trace back

the entire literature [634–645].

Another important aspect that a theory of Coulomb blockade in SMTs

should account for is the possible renormalization of the molecular levels due

to the surrounding electrodes. As we shall discuss in the section 15.7, the

addition energies found experimentally in SMTs are clearly much smaller

than what is expected from the known ionization potential and the electron

affinity of the molecules in gas phase. It has been suggested that this

reduction of the addition energies is caused by image charges in the metallic

electrodes [622], giving rise to a localization of the charges near the leads.

This issue is a crucial one and surprisingly it has received little attention

so far. Fortunately, some groups are starting to tackle this problem, see

Ref. [646] and references therein, but this issue is by no means yet settled.

In the rest of this section, we shall sketch how more realistic single-

tunneling theories for SMTs are formulated, and we shall present a simple

example to illustrate those theories. The rest of this subsection is rather

technical and it can be skipped in a first reading.

15.5.1 Many-body master equations

We describe in this subsection how to compute the current through a SMT

in the weak-coupling regime within a model where the molecular part is

described with a truly microscopic many-body approach. This discussion

is based on Ref. [635], which we strongly recommend.

The starting point of our description of a molecular junction is the

following model Hamiltonian: H = HM +
∑

r Hr+HT , which incorporates

the molecule (M), reservoirs r = L,R and the tunneling (T ). The last two

terms are given by

Hr =
∑
kσ

εkσa
†
kσrakσr (15.28)

HT =
∑
kiσr

tria
†
kσrciσ + h.c. (15.29)

The molecular part HM is chosen to contain the various strong interac-

tions on the molecule which require an exact treatment. Generally, it is

expressed in a basis of single-electron operators ciσ for orbitals on the

molecule labeled by i and spin projection σ. After diagonalization one can

write HM =
∑

sEs|s〉〈s|, where the discrete molecular many-body states

have a summary label s which includes the total chargeN , spin S, and other
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possible quantum numbers. Eq. (15.28) models the electrodes r = L,R as

non-interacting quasi-particle reservoirs which are fixed at electro-chemical

potential μr = μ± eV/2 and temperature T . Here, akσr are electron oper-

ators of electrode r labeled by k and spin σ. For simplicity, the density of

states in the electrodes ρe is assumed to be flat around the Fermi-energy

in order to focus on effects of the molecular part. The tunneling term,

Eq. (15.29), describes charge transfer between electrode and molecule on

a very small time scale. The level-dependent coupling strength is charac-

terized by the intrinsic line width Γr
i = 2π|tri |2ρe, where ρe is the density

of states of the electrodes at the Fermi energy. Γ = max {Γr
i } denotes the

overall coupling strength (in units of energy) between electrodes and the

molecule and serves to define the scale of the current. The molecular states

may additionally be coupled to the electromagnetic field (photons) and/or

a mechanical environment which dissipate the energy accumulated on the

molecule due to the tunneling. Whereas this does not change the charge

on the molecule, it does have an effect on the non-equilibrium distribution

of the molecular states and may thereby strongly influence the current, see

Ref. [635] for more details. We do not explicitly discuss here the coupling

to such bosonic reservoirs.11

Since we are particularly interested in the Coulomb blockade regime, it

is important to treat the strong intramolecular interactions exactly, while

the tunneling to the reservoirs is treated in a systematic perturbation theory

in the electrode-molecule tunneling, Eq. (15.29). Assuming that Γ � kBT ,

one only needs to compute the current to the lowest order in Γ. As in the

constant interaction model, such a lowest order perturbation theory leads

to master equations for the occupation probabilities ps of molecular many-

body states s. In principle, this approach can be improved systematically

by going to higher orders in Γ. We summarize now the equations necessary

to compute the current in lowest order perturbation theory in the coupling

strengths Γ. Their systematic derivation using a diagrammatic technique

has been discussed in [647, 648]. For time-independent applied bias, the

time derivative of the probabilities ps vanishes in the stationary state. The

stationary nonequilibrium probabilities psts are uniquely determined by the

transition rates Wss′ from state s′ to s (forming a matrix Ŵ ) through the

stationary master equation Ŵ �p st = 0 together with the normalization of

11This will be done in section 17.3.1 in the context of the study of the influence of the
electron-phonon interaction in the transport properties of a molecular junction in the
Coulomb blockade regime.
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the distribution ps for arbitrary times. We can then write

�p st = ( ˆ̃W )−1�v, (15.30)

where the matrix ˆ̃W is identical to Ŵ but with one (arbitrarily chosen) row

s0 replaced with (Γ, · · · ,Γ) and �v is a vector, vs = Γδs,s0 . The transition

rates Wss′ , with s �= s′ (in the absence of bosonic coupling) are the sum

Wss′ =
∑

rW
r
ss′ of the Golden rule rates for the tunneling of an electron

to/from electrode r = L,R:

W r
ss′ = 2πρe

∑
σ

{
fr(Es − Es′)

∣∣∑
i t

r
i 〈s|c†iσ |s′〉

∣∣2 Ns′ < Ns

f̄r(Es′ − Es)
∣∣∑

i t
r
i 〈s|ciσ |s′〉

∣∣2 Ns′ > Ns

, (15.31)

where f(x) = 1/(exp(x/kBT )+ 1) is the Fermi function, fr(x) = f(x−μr)

and f̄r(x) = 1− f(x− μr). The decay rates are Wss = −∑
s′ �=sWs′s.

The stationary current I = 〈I〉 is related to the current operator

I = (IR − IL)/2. We can use the symmetrized combination of currents

Ir = −i(e/�)∑ikσ(t
r
ia
†
kσrciσ − h.c.) into electrode r = L,R since in the

stationary limit 〈IR〉 = −〈IL〉. The current can be explicitly calculated

from the expression

I =
e

2�
�eT Ŵ I�p st. (15.32)

The vector �e is given by es = 1 for all s. The rates entering the current are

W I
ss′ = ±(WR

ss′ −WL
ss′ ), Ns ≶ Ns′ . (15.33)

The inclusion of dissipative environments (photons, phonons) modifies only

the rates Ŵ and thereby �p st, but the rates Ŵ I are not affected. For an

alternative, but equivalent, formulation of these master equations, see for

instance Ref. [637].

15.5.2 A simple example: The Anderson model

In order to illustrate the formalism discussed above, let us now apply it to

a simple example. We first need a Hamiltonian for the molecular part. Let

us assume that its electronic structure can be described by a single-level

Anderson model (see section 5.4.3 and Appendix A)

HM =
∑
σ

ε0nσ + Un↑n↓. (15.34)

Here, ε0 is the energy of a (spin-degenerate) resonant level, nσ = c†σcσ is

the number operator which describes the occupation of that level for spin σ
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Fig. 15.10 (a) Differential conductance vs. the gate voltage (including the gate coupling
constant α) for a molecular transistor described with the Anderson model. Here, ΓL =
ΓR = 1 meV, ε0 = 50 meV and U = 100 meV. The temperature is kBT = 2.5 meV (i.e.
T ≈ 30 K) and the bias voltage is 20 μV (linear regime). The numbers 0, 1 and 2 indicate
the number of electrons in the different regions separated by the Coulomb peaks. (b)
Corresponding non-linear current-voltage characteristics for several gate voltages. The
voltage is assumed to drop symmetrically at the interfaces.

and U is the Coulomb repulsion energy on the molecule. This Hamiltonian

has four eigenstates: |1〉 ≡ |00〉 with N = 0, |2〉 ≡ |10〉 and |3〉 ≡ |01〉 with
N = 1 and |4〉 ≡ |11〉 with N = 2, where N is the number of electrons

on the molecule. Here, we have used the notation |n↑n↓〉, where nσ = 0, 1

is the occupation number of the single-particle level with spin σ. The

corresponding eigenenergies are: E1 = 0, E2 = E3 = ε0 and E4 = 2ε0 +

U . In this case, it is straightforward to compute the transition rates of

Eq. (15.31) (see Exercise 15.5). They are determined by the scattering rates

Γr ≡ 2πρe|tr|2 (r = L,R). Once the transition rates have been computed,

one can obtain the stationary probabilities ps (s = 1, ..., 4) for the four

states by solving numerically the 4 × 4 master equation, see Eq. (15.30).

Finally, the current can be calculated from Eq. (15.32).

In Fig. 15.10 we present the results of this model for ΓL = ΓR = 1 meV,

ε0 = 50 meV and U = 100 meV. Panel (a) of this figure shows the linear

conductance versus the gate voltage. Here, this voltage has been introduced

by shifting rigidly the level position, i.e. ε → ε − αVG, where α is the gate

coupling parameter. As one can see, the conductance exhibits Coulomb

peaks at the degeneracy points. Notice that these peaks are separated by

a distance U/e, which indicates that U plays here the role of the charging

energy (the level splitting is zero in this case).

Fig. 15.10(b) shows the current as a function of the bias (source-drain)

voltage for different values of the gate voltage. Here, we have assumed that

the bias voltage drops symmetrically at both interfaces, i.e. η = 0.5. Due
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to the spin degeneracy, the I-V curves only exhibit two plateaus. Notice

that the two steps (for a given voltage polarity) are separated by a distance

U/(eη).

In this example the transport characteristics are very similar to those

obtained with the constant interaction model (orthodox theory). The differ-

ences become more pronounced when there are more charge states involved

or additional quantum numbers play a fundamental role.

15.6 Intermediate coupling: Cotunneling and Kondo effect

So far in this chapter, we have focused on the limit where the tunnel cou-

pling, Γ, is much smaller than any other energy scale in the problem. If

this coupling strength is increased, higher-order tunneling processes begin

to give a significant contribution to the transport properties [649]. In the

opposite limit (strong coupling regime) where Γ � e2/C,ΔE, kBT , the

electronic states in the molecule and electrodes are strongly hybridized. In

that case, as we have discussed in previous chapters, the elastic coherent

tunneling dominates transport and signatures of the Coulomb blockade are

washed out by quantum fluctuations of the molecular charge. Between the

weak coupling and strong coupling regime one can identify a third regime

which we shall refer to as the intermediate coupling regime. In this regime

it is still possible to observe Coulomb diamonds, but higher-order processes

lead to a non-negligible current inside the blockade regions. In this section

we shall discuss three different types of higher-order tunneling processes:

elastic and inelastic cotunneling and spin-flip cotunneling. This latter pro-

cess is behind the appearance of the Kondo effect.

15.6.1 Elastic and inelastic cotunneling

The first process that we want to describe is the so-called elastic cotunnel-

ing process. This second-order process is illustrated in Fig. 15.11. In the

situation depicted in this figure, energy conservation forbids the number of

electrons to change as this would cost an energy ΔE, which is not avail-

able at the bias voltage considered in Fig. 15.11. Nevertheless, an electron

can tunnel off the molecule, leaving it temporarily in a classically forbid-

den virtual state (middle diagram in Fig. 15.11). By virtue of Heisenberg’s

energy-time uncertainty principle this is allowed as long as another electron

tunnels into the molecule in the same quantum process in order not to vi-
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Fig. 15.11 Elastic cotunneling process. The Nth electron on the dot jumps to the drain
(virtual state) to be immediately replaced (final state) by an electron from the source
(black arrow sequence). A similar process involves the unoccupied state (light arrow
sequence). In both examples, an electron is effectively transported from source to drain.

olate energy conservation. The final state then has the same energy as the

initial one, but one electron has been transported through the molecule.

This elastic cotunneling process is analogous to the superexchange mecha-

nism in chemical electron transfer theory [582]. It occurs at arbitrarily low

bias as the energy of the tunneling electron and the molecule are unchanged

and leads to a nonzero background conductance in the blockade regions.

A cotunneling event that leaves the molecule in an excited state is called

inelastic. An example of such a process is depicted in Fig. 15.12. As one can

see, the onset of the cotunneling event occurs at eVSD = ΔE, the condition

dictated by the energy conservation principle. In transport measurements,

inelastic cotunneling appears in the stability diagram inside the Coulomb

diamonds as two symmetric lines running parallel to the gate axis as repre-

sented by grey lines in Fig. 15.14(a). Their energy, ΔE, is the distance of

the excitation to the zero-bias axis as illustrated in Fig. 15.14(a). Further-

more, the inelastic cotunneling line is expected to intersect, at the diamond

boundary, the corresponding excitation line inside the single-electron tun-

neling region [650].

It is worth stressing that that higher-order coherent processes appear as

sharp spectroscopic features as the conductance of the i-th order process is

proportional to Γi, while for first-order incoherent single-electron tunneling,

the current is proportional to Γ.

If the electron spin is taken into account, one can encounter another

elastic cotunneling process connected to the Kondo effect. This will be

analyzed in detail in the next subsection.
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Fig. 15.12 Inelastic cotunneling process. For eVSD ≥ ΔE, the Nth electron on the dot
may jump from the ground state to the drain (virtual state) to be immediately replaced
by an electron from the source (final state), which enters the excited state.

15.6.2 Kondo effect

The Kondo effect is a many-body phenomenon that occurs when a local-

ized spin interacts with surrounding conduction electrons [651]. This effect

is known to be the origin of the resistance increase at low temperatures

in metals with magnetic impurities [652]. In recent years, there has been

a renewed interest in the Kondo effect thanks to its observation in a va-

riety of nanodevices [653]. Thus for instance, Kondo physics has been

reported in the last decade in semiconductor quantum dots [654–656], in

magnetic impurities on the surface of metals [657–659], and carbon nan-

otubes [660, 661]. More importantly for our discussion, this phenomenon

has also been observed in single-molecule transistors [23, 24, 662–664] and

for this reason, we shall briefly review in this section the basics of this ef-

fect. For a detailed discussion of the Kondo physics in different mesoscopic

systems, see Refs. [653, 665–667].

In molecular transistors, and quantum dots in general, the Kondo effect

can arise when the molecule has a net spin (magnetic moment). This,

for example, occurs for an odd occupancy in the molecule (one electron

is unpaired, S = 1/2). We shall mainly consider this simple case. The

conduction mechanism for the Kondo effect involves spin-flip events such

as the one illustrated in Fig. 15.13(a). The Heisenberg uncertainty principle

allows the electron to tunnel out for only a short time of about �/|ε0|, where
ε0 is the energy of the electron relative to the Fermi energy. During this

time, another electron from the Fermi level at the opposite lead can tunnel

onto the dot, keeping the total energy of the system conserved (elastic

cotunneling). The exchange interaction causing the majority spin in the

leads to be opposite to the original spin of the dot causes the probability
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Fig. 15.13 (a) Spin-flip cotunneling. A spin-up electron jumps out of the dot (virtual
state) to be immediately replaced by a spin-down electron (final state). (b) Kondo
resonance in the density of states that appears as a consequence of the spin-flip tunneling
processes.

for the new electron to have spin opposite to the first to be very high.

This spin exchange qualitatively changes the energy spectrum of the

system. When many such processes are taken together, one finds that a

new state, known as Kondo resonance, is generated exactly at the Fermi

level, see Fig. 15.13(b).12 In this situation, the localized spin is completely

screened and the many-boy ground state turns out to be a singlet state

(S = 0). It is important to note that the Kondo state is always “on reso-

nance” since it is fixed to the Fermi energy. Even though the system may

start with an energy, ε0, which is very far away from the Fermi energy, the

Kondo effect alters the energy of the system so that it is always on reso-

nance. For this reason, these many-body correlations can lead to a great

enhancement of the conductance. The only requirement for this effect to

occur is that the system is cooled to sufficiently low temperatures below

the Kondo temperature TK (see next paragraph).

The width of the Kondo resonance is proportional to the characteristic

energy scale for Kondo physics, the so-called Kondo temperature TK. For

ε0 � Γ, TK is given by [668]

kBTK =

√
ΓU

2
exp

[
πε0(ε0 + U)

ΓU

]
. (15.35)

Here, Γ is the coupling strength and U can be seen as the charging en-

ergy, e2/C. Typical Kondo temperatures are TK ∼ 1 K for semiconductor

quantum dots [655], TK ∼ 1 − 10 K for carbon nanotubes [660, 661] and

TK ∼ 20− 50 K for molecular devices [23, 24, 662, 664]. This increase of

TK with decreasing dot size can be understood from the prefactor, which

12In section 6.9 we presented a discussion of the origin and description of the Kondo
resonance in the framework of the Anderson model.
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Fig. 15.14 Schematic representation of the main characteristics of the Kondo effect in
electron transport through a molecular quantum dot. (a) In the stability diagram, the
Kondo effect results in a zero-bias resonance (white line) for an odd number of electrons
in the dot. Inelastic cotunneling excitations appear as lines running parallel to the gate
axis at finite bias. (b) For T � TK, the full width at half-maximum (FWHM) of the
Kondo resonance is ∼ kBTK. (c) Temperature dependence of the Kondo-peak height in
the middle of the Coulomb diamond. Reprinted with permission from [606]. Copyright
2008 IOP Publishing Ltd.

contains the charging energy (U = e2/C). Notice that the Kondo temper-

ature depends on the position of the level and therefore it can be tuned in

three-terminal devices by means of the gate voltage.

The theoretical description of the Kondo effect is very challenging. The

reason is that below TK, high order spin-flip processes contribute signifi-

cantly to both the electronic structure and the transport properties. This

implies that one needs to employ non-perturbative methods to describe

properly this phenomenon. Different many-body methods have been used

to account for the Kondo correlations in quantum dots and related struc-

tures. The description of such techniques is out of the scope of this book

and in the rest of this subsection we shall concentrate ourselves on the dis-

cussion of its main transport characteristics and refer the interested reader

to Refs. [651, 652, 669, 670, 665, 666] for more details about the theory.

The Kondo effect is manifested in the stability diagrams as a zero-

bias resonance in the differential conductance, dI/dVSD, versus VSD, in-

side the Coulomb diamond connecting both degeneracy points as shown

in Fig. 15.14(a). For an even number of electrons with all spins paired,

S = 0 and there is no Kondo resonance. This even-odd asymmetry is very

helpful in assigning the parity of the charge state which can then add extra

information to the understanding of the spectroscopic features observed in

the stability plots. In the low temperature limit (T � TK), the full width

at half-maximum (FWHM) of the Kondo resonance, as observed in a plot
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of the differential conductance versus VSD, is of the order of kBTK, see

Fig. 15.14(b). In the middle of the Coulomb diamond, the linear conduc-

tance exhibits a characteristic temperature dependence given by [670, 655]

G(T ) =
G0[

1 + (21/s − 1)(T/TK)2
]s , (15.36)

where G0 = 2e2/h and s = 0.22 for S = 1/2. (Sometimes in this formula a

temperature-independent offset is included.) This dependence is schemat-

ically drawn in Fig. 15.14(c). Notice that the conductance increases loga-

rithmically with decreasing temperature and saturates at a value 2e2/h at

the lowest temperatures in the case of symmetric lead-dot coupling. The

latter is commonly referred to as the Kondo effect in the unitary limit [671]

(see Exercise 8.10).

In a magnetic field the Zeeman splitting of the Kondo resonance leads

to the observation of two Kondo peaks symmetric in bias, separated by

twice the Zeeman energy. On the other hand, although we have been only

considering S = 1/2, it is important to note that other types of Kondo

systems are possible owing to orbital degeneracies [672] or triplet states

[673–675]; these can lead to a violation of the parity effect.

15.7 Single-molecule transistors: Experimental results

In this section we shall review some of most representative results obtained

in single-molecule transistors (SMTs). We also recommend the following

reviews on this subject [39, 603, 604, 606].

The question of whether charging effects play a major role in the con-

duction through molecular contacts arose immediately after the report of

the first transport measurements in single-molecule junctions. Thus for

instance, in the work of Reed and coworkers on benzenedithiol molecules

[16], see section 14.1.1, one may argue that the conductance gap observed

at low bias, see Fig. 14.1, is due to Coulomb blockade rather than to the

HOMO-LUMO gap of this molecule.13 Similar questions emerged in the

early work of Kergueris et al. [676]. In this case, the authors reported room

temperature measurements of the I-V characteristics of bisthiolterthiophene

molecules using the technique of microfabricated MCBJ. Zero-bias conduc-

13The first maximum in the conductance in Fig. 14.1 at voltages above 1 V has a width
that is larger than the temperature. This indicates that, strictly speaking, this system
is not in the Coulomb blockade regime. Of course, this does not exclude that electronic
correlations of some sort are at work.
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Fig. 15.15 I-V curves recorded at room temperature in a gold-bisthiolterthiophene-gold

junction formed with the microfabricated MCBJ technique. Curves are shifted vertically
for clarity. Reprinted with permission from [676]. Copyright 1999 by the American
Physical Society.

tances were measured in the 10-100 nS range and different kinds of nonlinear

I-V curves with steplike features were reproducibly obtained. An example

of the results of these measurements can be seen in Fig. 15.15. Notice

that the I-V curves resemble very much the Coulomb staircase observed in

quantum dots. Indeed, the authors were able to fit the experimental results

within the framework of the ortodox Coulomb blockade theory described

in section 15.4, taking into account the discrete nature of the electronic

spectrum of the molecule. Let us mention that charging energies of the

order of 0.2 eV were used in the fits (see Ref. [676] for more details).

As we have discussed in previous sections, an unambiguous confirmation

that characteristics like the ones shown in Fig. 15.15 are a consequence of

the occurrence of charging effects requires the implementation of a gate elec-

trode, which is very challenging in the case of MCBJs. To our knowledge,

the first three-terminal single-molecule experiment was reported by Park et

al. [22] in 2000. These authors prepared single-C60 junctions by depositing

a dilute toluene solution of C60 onto a pair of connected gold electrodes

fabricated using e-beam lithography. A gap of 1 nm between these elec-

trodes was then created by electromigration [21]. The entire structure was

defined on a SiO2 insulating layer on top of a degenerately doped silicon

wafer which served as a gate electrode that modulates the electrostatic po-
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Fig. 15.16 I-V curves obtained at T = 1.5 K from a single-C60 transistor fabricated with
the electromigration technique. The curves corresponds to five different gate voltages.
The inset shows a schematic diagram of an idealized single-C60 transistor. Reprinted by
permission from Macmillan Publishers Ltd: Nature [22], copyright 2000.

tential of C60. A schematic diagram of an idealized single-C60 transistor is

shown in the inset of Fig. 15.16.

Fig. 15.16 shows some typical I-V curves obtained in Ref. [22] at differ-

ent gate voltages. Notice that the device exhibited a strongly suppressed

conductance near zero bias voltage followed by step-like current jumps at

higher voltages. The voltage width of the zero-conductance region (con-

ductance gap) could be changed in a reversible manner by changing the

gate voltage. These transport features clearly confirm that the conduction

in this device is dominated by the Coulomb blockade effect and it can thus

be stated that this experiment constitutes the first true example of a SMT

reported in the literature.

A further confirmation of the underlying transport mechanism came

from the analysis of the stability diagrams. In Fig. 15.17 we reproduce

the results for the differential conductance as a function the bias and gate

voltages. As one can see, two diamond-like regions can be identified cor-

responding to two charge states of the C60 molecules. In these plots, the

peaks in the conductance, which correspond to the step-like features in

Fig. 15.16, show up as lines. As seen clearly in Fig. 15.17, the size of he

conductance gap and the peak positions evolve smoothly as the gate voltage

is varied. As the gate voltage is varied further away in both positive and

negative directions, the conductance gap continues to widen and exceeds

150 mV in some devices. This indicates that the charging energy of the C60
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Fig. 15.17 Different conductance plots as a function of the bias voltage V and the gate
voltage Vg obtained from four different devices. The dark triangular regions correspond
to the conductance gap, and the bright lines represent peaks in the differential conduc-
tance. The arrows mark the point where the conductance lines intercept the conductance
gap. Reprinted by permission from Macmillan Publishers Ltd: Nature [22], copyright
2000.

molecule in this geometry can exceed 150 meV. This value is much larger

than in semiconductor quantum dots.

Notice that in the stability diagrams of Fig. 15.17 there are running

lines that intersect the main diamonds or conductance gap regions. As

we explained in previous sections, this indicates the presence of internal

excitations of the C60 molecules. The energies of these excitations (of a few

meV) are too small to correspond to electronic excitations. Moreover, some

of these lines are observed for both charge states and multiple excitations

with the same spacing are observed (see Fig. 15.16). These observations

suggest that these lines may correspond to the excitation of vibration modes

of the C60 molecules. The lowest-energy mode is known to have around

33 meV and this could explain some of the lines seen in the experiment.

However, internal vibrational modes cannot account for the observed 5-

meV features in Fig. 15.17. The authors of Ref. [22] suggested that this

line could correspond to the excitation of the center-of-mass oscillation of

C60 within the confinement potential that binds it to the gold surface.14

14The signatures of the excitation of vibration modes in the transport characteristics
will be discussed in detail in the next two chapters.
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After the first observation of the Coulomb blockade in molecular junc-

tions, it was clear that to observe other single-electron tunneling phenom-

ena was just a matter of time. Two years after the experiment on the

C60 transistor, the observation of the Kondo effect was reported simultane-

ously and independently by two groups [23, 24]. In the work of Park et al.

[23], two related molecules were examined containing a Co ion bonded to

polypyridyl ligands, attached to insulating tethers of different length. The

two molecules ([Co(tpy-(CH2)5-SH)2]
2+ and [Co(tpy-SH)2]

2+) differed by

a five-carbon alkyl chain within the linker molecules. These molecules were

selected because it is known from electrochemical studies that the charge

state of the Co ion can be changed from 2+ to 3+ at low energy. The role

of the linkers was to control the strength of the metal-molecule coupling. In

this work the SMTs were fabricated using the electromigration technique

with Au wires coated with the molecules. For the longer molecule, the

transport results at temperatures of ∼ 100 mK exhibited all the character-

istic features of the Coulomb blockade effect. In particular, they observed

two diamond-like regions which were associated to the two charge states of

the Co ion.

For the shorter molecule, a significantly larger conductance owing to the

shorter tether length was expected. The main results for this molecule are

summarized in Fig. 15.18. The differential conductance for one such device

is shown in Fig. 15.18(b). The most notable property is a peak at V = 0.

The peak has a logarithmic temperature dependence between 3 and 20 K,

see Fig. 15.18(c). The peak also splits in an applied magnetic field, as one

can see in Fig. 15.18(d), with a splitting equal to 2gμBH , where g ≈ 2 and

μB is the Bohr magneton.

As we explained in section 15.6.2, all these observations are consistent

with the occurrence of the (S = 1/2) Kondo effect. The observation of this

effect is consistent with the fact that the Co2+ ion has S = 1/2. By setting

the low-temperature full-width at half-maximum of the Kondo peak equal

to 2kBTK/e, where TK is the Kondo temperature, the authors estimated

that TK in different devices varied between 10 and 25 K. These large Kondo

temperatures indicate that the coupling between the localized state and the

electrodes is strong, consistent with the high conductances found for the

shorter linker molecule.

In the work of Liang et al. [24], the Kondo effect in SMTs was reported,

where an individual divanadium molecule served as a spin impurity. These

authors also used electromigrated break-junctions to form the molecular

contacts. In Fig. 15.19 we show the results for the stability diagrams for
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Fig. 15.18 Observation of the Kondo effect in a single-molecule transistor fabricated
with the electromigration technique. (a) Breaking trace of a gold wire with adsorbed
[Co(tpy-SH)2]2+ at 1.5 K. After the wire is broken the current level suddenly increases
(dot) owing to the incorporation of a molecule in the gap. (b) Differential conductance
of a [Co(tpy-SH)2]2+ device at 1.5 K showing a Kondo peak. The inset shows ∂I/∂V
for bare gold point contacts for comparison. (c) The temperature dependence of the
Kondo peak for the device shown in (b). The inset shows the V = 0 conductance as a
function of temperature. The peak height decreases logarithmically with temperature
and vanishes around 20 K. (d) Magnetic-field dependence of the Kondo peak. The peak
splitting varies linearly with magnetic field. Reprinted by permission from Macmillan
Publishers Ltd: Nature [23], copyright 2002.

two single-molecule devices, designated as D1 and D2. Two distinct char-

acteristics are evident in the behavior of both devices. Each displays two

conductance-gap regions, I and II, bounded by two broad ∂I/∂V peaks that

slope linearly as a function of the gate voltage, Vg. These peaks cross at a

gate voltage at which the conductance gaps vanish. Moving away from this

point, the gaps in both regions continue to widen even beyond V = 100 mV.

Most significantly, the devices also exhibit a sharp zero-bias ∂I/∂V peak

in region I, whereas this peak is clearly absent in region II. This feature

strongly suggests the occurrence of the Kondo effect. In order to confirm

this impression, the authors carried out an analysis of the temperature and

magnetic field dependence of the differential conductance. Most of the re-

sults were relatively well explained in terms of the S = 1/2 Kondo effect,

but in particular the behavior of TK suggested that maybe also the orbital
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Fig. 15.19 Observation of the Kondo effect in a V2 single-molecule transistor fabricated
with the electromigration technique. The two panel show plots of differential conductance
∂I/∂V as a function of bias voltage (V ) and gate voltage (Vg) obtained from two different
single-V2 transistors. Both measurements were performed at T = 300 mK. The values are
represented by the color scale, which changes in (a), from dark (0) to bright (1.55e2/h)
and in (b), from dark (0) to bright (1.3e2/h). The labels I and II mark two conductance-
gap regions, and the diagrams indicate the charge and spin states of the V2 molecule
in each region. Reprinted by permission from Macmillan Publishers Ltd: Nature [24],
copyright 2002.

degrees of freedom were playing an important role in the Kondo resonance

(due to the V ion spin structure), see Ref. [24] for details.

Most three-terminal single-molecule experiments have been carried out

with the electromigration technique. An interesting exception is the work

of Kubatkin and coworkers of Ref. [622], where the angle evaporation tech-

nique that we described in section 15.3 was employed. These authors

reported transport measurements through a single p-phenylenevinylene

oligomer, which has five benzene rings connected through four double

bonds (OPV5). The main experimental result of this work is reproduced in

Fig. 15.20, where one can see up to eight different diamonds in the stability

diagram. This suggests that the transport experiment had access to many

different charge or redox states, which is very unusual in molecular tran-

sistors. Electrochemistry confirms however that this molecule can indeed

have several stable redox states [677]. Even more surprising is the fact the

addition energies extracted from the stability diagrams differ largely from

those obtained from electrochemistry and computational methods. Spe-

cially dramatic is the deviation in the case of the neutral molecule. While

the spectroscopic HOMO-LUMO gap for this molecule is of the order of 2.5

eV, the extracted one from the central Coulomb diamond was one order of

magnitude smaller (∼ 0.2 eV). The authors argued that this discrepancy

is due to the fact that the intrinsic electronic levels of the molecules are
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Fig. 15.20 Experimental results of the transport characteristic of an OPV5 single-
molecule transistor. (a) Differential conductance as a function of bias voltage, Vs−d,
and gate voltage, Vg. The full solid line at the top of the figure shows a representative
trace of the current versus Vg . (b) Examples of the I-V curves at different gate poten-
tials (T = 4.2 K). Curves are shifted vertically for clarity. Reprinted by permission from
Macmillan Publishers Ltd: Nature [622], copyright 2003.

significantly altered in the metallic junction. In particular, they suggested

that image charges generated in the source and drain electrodes by the

charges on the molecule are probably the origin of this effect. This is a

very interesting suggestion that may explain similar discrepancies in other

experiments [678, 679].

Surprisingly, this important issue has not received much attention. A

notable exception is the work of Kaasbjerg and Flensberg [646] in which a

realistic description of the screening environment in a SMT was combined

with quantum chemical calculations. These authors concluded that the

addition energies in a junction are indeed strongly reduced as compared

with naive expectations based on the ionization potentials and electron

affinities of the molecules in gas phase. They explained that this is a con-

sequence of both (a) a reduction of the electrostatic molecular charging

energy and (b) polarization-induced level shifts of the HOMO and LUMO

levels. These conclusions are at variance with most DFT-based calcula-

tions for two-terminal systems that suggest that the level spacing for small

molecules inside the junctions is still rather large and comparable to the

one of the isolated molecules. In this sense, it would be highly desirable

to have further theoretical and experimental work to clarify this important

issue.

SMTs have not only allowed to observe single-electron tunneling phe-
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nomena that were well-known in other nanodevices, but they have also

made possible to access new transport regimes and to discover novel physi-

cal phenomena. In the context of Kondo physics, we would like to mention

the work of Pasupathy et al. [663] where the Kondo effect in the presence

of ferromagnetism has been reported for the first time. In this work the

authors measured the transport through single-C60 transistors with ferro-

magnetic nickel electrodes. They showed that Kondo correlations persisted

despite the presence of ferromagnetism, but the Kondo peak in the differ-

ential conductance was split by an amount that decreased (even to zero)

as the spin polarizations in the two electrodes were turned from parallel to

antiparallel alignment. Although, the reported splitting was too large to

be explained by a local magnetic field, the voltage, temperature, and mag-

netic field dependence of the signal agreed with predictions for an exchange

splitting of the Kondo resonance [680, 681].

SMTs have also allowed to study the interplay between Kondo physics

and the electron-vibration interaction. The signatures of vibrational modes

have been shown to persist in the Kondo regime [617, 664, 682] and we

shall discuss this issue in certain detail in the next chapter. It is also worth

mentioning that although most of the experiments on the Kondo effect in

molecular junctions have been performed with the electromigration tech-

nique, the Kondo physics has also been studied with breakjunctions by

Ralph’s group [682]. Although in this case a gate electrode was not opera-

tive, the authors could tune the Kondo resonance in a single-C60 junction

by adjusting the metal-molecule distance that is a capability of the break-

junction technique that is lacking in electromigration-based experiments.

Changing the metal-molecule coupling the authors were able to tune the

Kondo temperature and showed that the temperature dependence of the lin-

ear conductance agreed with the scaling function expected for the S = 1/2

Kondo problem [682].

SMTs have also been used to explore other basic aspects of the Kondo

physics. Thus for instance, Roch et al. [684] have recently reported the

observation of a quantum phase transition between a singlet and a triplet

spin state at zero magnetic field in a single-C60 transistor. The analysis

of the transport through three-terminal molecular devices has also allowed

to study the fundamental scaling laws that govern the non-equilibrium the

standard S = 1/2 Kondo effect [683].

Another aspect to which SMTs have contributed enormously is the un-

derstanding of the role of vibrational modes in the transport through single

molecules. The signatures of the excitation of vibronic degrees of freedom
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Fig. 15.21 (a) Side view of a Mn12 molecule with tailor made ligands containing acetyl-
protected thiol end groups (R=C6H4). The diameter of the molecule is about 3 nm.
(b) Schematic drawing of the Mn12 molecule (circle) trapped between electrodes. A
gate can be used to change the electrostatic potential on the molecule enabling energy
spectroscopy. (c) Scanning electron microscopy image of the electrodes. The gap is not
resolvable. Scale-bar corresponds to 200 nm. Reprinted with permission from [619].
Copyright 2006 by the American Physical Society.

are specially visible in the transport characteristics in the limit of weak cou-

pling between the molecule and the metallic electrodes [22, 685]. Moreover,

in this regime the electron-vibration interaction can lead to a great variety

of novel physical phenomena. This subject will be discussed in detail in the

next chapter.

We now turn to a class of experiments where the transport through

single-molecule magnets (SMMs) has been investigated (see Ref. [686] for a

progress article on this subject). This type of molecules exhibits magnetic

hysteresis due to their large spin and high anisotropy barrier, which ham-

pers magnetization reversal [687, 688]. The first transport experiment on

a SMM was performed by the group of van der Zant [619]. These authors

studied the prototypical SMM, Mn12 acetate, which has a total spin S = 10

and an anisotropy barrier of about 6 meV. The molecules that were inves-

tigated were [Mn12O12(O2C-R-SAc)16(H2O)4] (Mn12 from now on), where

R={C6H4, C15H30}, see Fig. 15.21(a). These molecules were designed with

thiol groups in the outer ligand shell to ensure a strong affinity for gold

surfaces. On the other hand, the ligands are believed to serve as tunnel

barriers, so that the molecules are only weakly coupled electronically to the

gold and their magnetic properties are preserved. The molecules were in-

corporated in a SMT geometry with gold electrodes using electromigration,

see Fig. 15.21(b).

In Fig. 15.22(a) we reproduce some of the results of this work for the

differential conductance as a function of gate (Vg) and bias voltage (Vb)

for one of the devices (T = 3 K, R=C6H4). The lines separating the con-
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Fig. 15.22 (a) Differential conductance (gray-scale) as a function of gate voltage (Vg)
and bias voltage (Vb) (T = 3 K, R=C6H4). A region of complete current suppression
(left degeneracy point, arrow) and low-energy excitations with negative differential con-
ductance (right degeneracy point) are observed. The dashed line near the left degeneracy
point indicates the suppressed diamond edge. (Gray-scale from -0.8 nS [black] to 1.4 nS
[white]). (b) I − Vb at the gate voltage indicated in (a) with a line. NDC is clearly
visible as a decrease in |I| upon increasing |Vb|. Upon applying a magnetic field, current
is increased for negative bias. Reprinted with permission from [619]. Copyright 2006 by
the American Physical Society.

ducting regions from the diamond-shaped Coulomb blockade regions have

different slopes for the three different charge transport regions. Within the

orthodox Coulomb blockade theory this implies that the transport regions

belong to different quantum dots, since the capacitance to the environment

is assumed constant for each dot. However, for molecular quantum dots it

is not possible to rule out that these three regions come from three different

charge states of the same molecule.

The focus of the work of Ref. [619] was on transport features at low-

energy (� 5 meV): a region of complete current suppression (CCS) and a

strong negative differential conductance (NDC) excitation line in the sta-

bility diagrams. Both are visible in Fig. 15.22(a). At the left degeneracy

point in this figure the current is fully suppressed at positive bias voltage

above the left diamond edge (dashed line). Transport is restored beyond an

excitation that lies at 5 meV. Remarkably, the right diamond edge does con-

tinue all the way down to zero bias, defining a narrow strip (∼ 1 mV wide)

where transport is possible. In the right conductive regime in Fig. 15.22(a),

two excitations at an energy of 2 meV and 3 meV are the most pronounced

features. The 2 meV excitation is visible as a bright line with positive dif-

ferential conductance (PDC); the 3 meV excitation as a black line (NDC).

The strength of the NDC is clearly visible in the I-Vb plot in Fig. 15.22(b).

The observations of CSS and NDC lines at low energy do not follow in
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a straightforward way from conventional Coulomb blockade theory. The

authors of Ref. [619] explained qualitatively those features with the help

of sequential tunneling model that takes into account the high-spin ground

state and magnetic excitations of the molecule. They showed that sequen-

tial tunneling processes can result in spin blockade of the current, providing

a possible explanation for the observed NDC and CCS. This effect is differ-

ent from conventional spin-blockade [689], where there is no spin anisotropy.

The transport through similar Mn12-based molecules, with short but

weak binding ligands, were studied independently by Jo et al. [620]. In par-

ticular, these authors presented an extensive analysis of the magnetic-field

dependence of the transport characteristics. They found two main signa-

tures of magnetic molecular states and magnetic anisotropy in the data: an

absence of energy degeneracy between spin states at zero magnetic field (B)

and a nonlinear evolution of energy level positions with B. The magnitude

of zero-field splitting between spin states was found to vary from device to

device, and they interpreted this as evidence for magnetic anisotropy varia-

tions upon changes in molecular geometry and environment. On the other

hand, they did not observe hysteresis in the electron-tunneling spectrum as

a function of swept magnetic field, as one might expect to find in analogy

to magnetization measurements on large ensembles of Mn12 molecules in

bulk crystals. They pointed out that the absence of hysterisis might be due

to the fact that sequential tunneling transitions can populate a sequence

of excited magnetic levels that surmount the anisotropy barrier and enable

rapid magnetic relaxation [690].

Another example of transport through individual magnetic molecules

has been reported by Grose et al. [691]. In this case, the authors fabricated

molecular transistors with individual molecules of the spin-3/2 endohedral

fullerene N@C60 and measured its spin excitations. N@C60 is an attrac-

tive model system because of its simple spin structure and because of the

possibility of doing control experiments with non-magnetic C60 molecules.

N@C60 molecules also have the advantage of being stable at the high tem-

peratures present during the electromigration process by which the molec-

ular junctions were formed in this work. In the experiments on SMMs that

we have reviewed above, the molecular magnetism was usually destroyed

during device fabrication. However, in the work of Ref. [691], it was ob-

served that the N@C60 devices exhibit clear magnetic character, meaning

that they exhibit a spin-state transition as a function of applied magnetic

field. The nature of this transition enabled the authors to identify the

charge and spin states of the molecule inside the junctions. The spectra
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of N@C60 also exhibited low-energy excited states and signatures of non-

equilibrium spin excitations predicted for this molecule [692]. The existence

of a spin transition in N@C60 accessible at laboratory magnetic fields was

associated with the scale of the exchange interaction between the nitrogen

spin and electron(s) on the C60 cage.

As mentioned above, in the transport experiments on SMMs reported

so far, no magnetic hysterisis has been observed, which is probably due to

structural deformations of the molecules. In this sense, it would be inter-

esting to test other (more robust) compounds. For instance, Mannini et al.

[693] have shown recently that tailor-made Fe4 complexes retain magnetic

hysterisis on gold surfaces. These results demonstrate that isolated SMMs

can be used for storing information and they open the way to address these

molecules individually in their blocked magnetization state.

15.8 Exercises

15.1 Rate equations in a single-level model: For those who are not familiar
with rate (or master) equations, it is convenient to start by analyzing the following
situation. Let us consider a quantum dot with a single (non-degenerate) level of
energy E1, which is measured with respect to the equilibrium Fermi energy of
the leads, which we set to zero. (The energy E1 can depend on the gate voltage,
the exact electrostatic profile and the charging energy). This dot has only two
possible configurations with n1 = 0 (empty dot) and n1 = 1 (one electron in level
E1). We shall denote the corresponding probabilities as P0 and P1, respectively.
As usual, we denote the left and right tunneling rates (in units of energy) as ΓL

and ΓR, respectively, and we assume them to be energy-independent.
(a) Write down the kinetic equation for the probability distribution and show

that in the stationary case the probabilities Pi are given by

P0 =
ΓLf̄L + ΓRf̄R

ΓL + ΓR
, P1 =

ΓLfL + ΓRfR
ΓL + ΓR

.

Here, fL,R = f(E1 ∓ eV/2), where V is the bias voltage and f(E) is the Fermi
function.

(b) Use the previous solution to show that the current through the dot can
be written as

I =
e

�

ΓLΓR

ΓL + ΓR
[fL − fR] .

Notice that this expression coincides with the expression for the current obtained
in the single resonant tunneling model in the limit of weak coupling.

(c) Using the previous expression, show that the linear conductance is given
by Eq. (15.26).
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15.2 Linear conductance in the Coulomb blockade regime: Derive the
formula of Eq. (15.26) for the linear conductance of a quantum dot in Coulomb
blockade regime. For this purpose, follow the next steps:

(a) In the linear response regime the distribution function can be written as

P ({ni}) ≡ Peq({ni})
(
1 +

eV

kBT
Ψ({ni})

)
.

Linearize the detailed balance equation (15.23) and solve it to show that Ψ can
be written as

Ψ({ni}) = constant +

∞∑
i=1

ni

(
Γ
(i)
R

Γ
(i)
L + Γ

(i)
R

− η

)
,

where the constant first term takes care of the normalization of P to first order
in V and it does not need to be determined explicitly. Hint: Use the following
relations:

1− f(ε) = f(ε)eε/kBT , kBTf
′(ε)(1 + e−ε/kBT ) = −f(ε),

Peq(n1, . . . np−1, 1, np+1, . . .) = Peq(n1, . . . np−1, 0, np+1, . . .)e
−ε/kBT ,

where the prime symbol in the Fermi function stands for derivative with respect
to its argument.

(b) Linearize the formula for the current in Eq. (15.19) and use the expression
for Ψ({ni}) to obtain Eq. (15.26).

15.3 Coulomb oscillations, Coulomb staircase and stability diagrams:
The goal of this exercise is to compute transport characteristics in the Coulomb
blockade regime within the two-level model discussed in section 15.4.4.2.

(a) As a first step, compute the occupation probabilities of the four possible
configurations of the dot. For this purpose, show that the stationary kinetic
equation, Eq. (15.22), together with the normalization condition of Eq. (15.24)
can be written in the following matrix form: Ŵ�p = �v. Here, �p is the column
vector containing the probabilities of the four configurations of the dot, i.e. �pT =
(P1, P2, P3, P4), where 1 ≡ (0, 0), 2 ≡ (1, 0), 3 ≡ (0, 1) and 4 ≡ (1, 1). The vector
�v is simply given by �vT = (1, 0, 0, 0) and the different elements of the matrix Ŵ
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adopt the form

W1i = 1 (i = 1, ..., 4), W23 =W32 =W41 = 0,

W21 = Γ
(1)
L f(Ei,l

1 (N = 1)) + Γ
(1)
R f(Ei,r

1 (N = 1)),

W22 = −Γ
(1)
L f̄(Ef,l

1 (N = 1))− Γ
(1)
R f̄(Ef,r

1 (N = 1))

−Γ
(2)
L f(Ei,l

2 (N = 1))− Γ
(2)
R f(Ei,r

2 (N = 1)),

W24 = Γ
(2)
L f̄(Ef,l

2 (N = 2))− Γ
(2)
R f̄(Ef,r

2 (N = 2)),

W31 = Γ
(2)
L f(Ei,l

2 (N = 0)) + Γ
(2)
R f(Ei,r

2 (N = 0)),

W33 = −Γ
(1)
L f(Ei,l

1 (N = 1))− Γ
(1)
R f(Ei,r

1 (N = 1))

−Γ
(2)
L f̄(Ef,l

2 (N = 1))− Γ
(2)
R f(Ef,r

2 (N = 1))

W34 = −Γ
(1)
L f̄(Ef,l

1 (N = 1))− Γ
(1)
R f̄(Ef,r

1 (N = 1)),

W42 = Γ
(2)
L f(Ei,l

2 (N = 1)) + Γ
(2)
R f(Ei,r

2 (N = 1)),

W43 = Γ
(1)
L f(Ei,l

1 (N = 1)) + Γ
(1)
R f(Ei,r

1 (N = 1)),

W44 = −Γ
(1)
L f̄(Ef,l

1 (N = 2))− Γ
(1)
R f̄(Ef,r

1 (N = 2))

−Γ
(2)
L f̄(Ef,l

2 (N = 2))− Γ
(2)
R f̄(Ef,r

2 (N = 2)).

Here, the Γ
(p)
L,R (p = 1, 2) are the tunneling rates, while the expressions for the

energies appearing in the arguments of the Fermi functions can be found in section
15.4.4.

(b) Solve numerically the 4 × 4 system Ŵ�p = �v and use the expression of
Eq. (15.19) to reproduce the results of Figs. 15.8 and 15.9.

(c) In a molecular transistor the level splitting ΔE may be larger than the
charging energy, e2/C. Study how the stability diagrams in this case differ from
those shown in Figs. 15.9. Choose for instance e2/C = 30 meV and Δ = 100
meV, while keeping the other parameters equal to those in the example of section
15.4.4.2.

(d) An important experimental issue is that for a particular charge state
lines are often only visible on one side of the Coulomb diamond. This is due to
an asymmetry in the coupling. Illustrate this fact with the example of section
15.4.4.2 by choosing very different tunneling rates for the left and right barriers.

15.4 Effects of inelastic scattering in the Coulomb blockade regime: In
the Coulomb blockade theory described in section 15.4.4 inelastic scattering was
assumed to take place exclusively in the reservoirs. One of the effects of inelastic
scattering in the dot is the thermalization of the electrons inside the dot. In the
limiting case of full thermalization, the probability distribution function P ({ni})
is given by the equilibrium expression of Eq. (15.20). Use this expression in the
example of section 15.4.4.2 (and of the previous exercise) to study the effect of
inelastic scattering in the different transport characteristics (Coulomb oscillations,
Coulomb staircase and stability diagrams).
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15.5 Coulomb blockade theory for single-molecule transistors: The goal
of this problem is to compute the different transport characteristics of a SMT in
the Coulomb blockade regime within the model of section 15.5.2. (a) Show first
that the transition rates of Eq. (15.31) are given by

W r
11 = −Γr [fr(E2 − E1) + fr(E3 − E1)]

W r
12 = Γr f̄r(E2 −E1) =W r

13

W r
21 = Γrfr(E2 −E1)

W r
22 = −Γr

[
f̄r(E2 − E1) + fr(E4 −E2)

]
W r

24 = Γr f̄r(E4 −E2)

W r
31 = Γrfr(E3 −E1)

W r
33 = −Γr

[
f̄r(E3 − E1) + fr(E4 −E3)

]
W r

34 = Γr f̄r(E4 −E3)

W r
42 = Γrfr(E4 −E2) =W r

43

W r
44 = −Γr

[
f̄r(E4 − E2) + f̄r(E4 −E3)

]
W r

14 = 0 =W r
23 =W r

32 =W r
41,

where r = L,R. The numbers 1 to 4 correspond to the four eigenstates of the
molecular Hamiltonian, as defined in section 15.5.2.

(b) Using the numerical values chosen in section 15.5.2, reproduce the results
of Fig. 15.10 and compute the corresponding stability diagram.
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Chapter 16

Vibrationally-induced inelastic

current I: Experiment

16.1 Introduction

In the previous chapter we discussed the transport phenomena that occur

in molecular junctions when the conduction is dominated by the Coulomb

interaction in the molecular bridge. We now want to focus on the corre-

sponding effects that originate from another inelastic interaction, namely

the electron-phonon interaction.1 When an electron proceeds through a

molecule, it can exchange energy by exciting its vibrational modes. De-

pending on the molecule, the energy of these modes ranges from a few meV

to several hundreds of meV [694]. This is comparable to the excess energy

of conduction electrons at the usual bias voltages applied in the junctions.

Thus, these internal degrees of freedom may influence the transport prop-

erties of molecular junctions. Indeed, the interplay between electronic and

nuclear dynamics does give rise to a great variety of transport phenomena,

as we shall show in this chapter.

When is the electron-phonon interaction expected to play an important

role in the electrical conduction through molecular junctions? As we ex-

plained in the introduction of the previous chapter, this will occur when

the time needed to interact with a vibrational mode, �/λ, becomes com-

parable to the traversal time, τ = �/
√
ΔE2 + Γ2. Let us remind that

here, λ is the electron-phonon coupling constant, ΔE is the injection en-

ergy and Γ is the width of the molecular resonance (or strength of the

metal-molecule electronic coupling). In the limit of weak electron-phonon

coupling, λ � √
ΔE2 + Γ2, the vibrational modes give rise to a small in-

elastic current that is superimposed in a background determined by the

1The term “phonon” in this chapter is used for vibrational modes associated with any
nuclear motion.
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elastic contribution. This inelastic current has typically well-defined signa-

tures at energies that are basically the energies of the vibrational modes

of the neutral molecules inside the junctions. Thus, the analysis of the

inelastic current provides a local molecular spectroscopy and in turn, it

gives indirect information on the presence of the molecules, their structure,

orientation and coupling to the leads.

In the opposite limit of strong electron-phonon coupling, λ �√
ΔE2 + Γ2, vibronic effects can dominate the transport characteristics of

molecular junctions. Thus for instance, in a resonant situation (ΔE ≈ 0)

and if the coupling Γ is not very large, as in the molecular transistors of the

previous chapter, the electron-phonon interaction can lead to pronounced

current steps, which contain valuable spectroscopic information about the

vibrational modes of the molecule in different charge states. On the other

hand, if the electron-phonon interaction is sufficiently strong, one can reach

a regime in which the vibrations make the electronic motion completely in-

coherent such that it can be described by successive classical rate processes,

usually referred to as hopping. The discussion of this hopping regime, where

the transport is mediated by thermally activated processes, will be deferred

until Chapter 18.

Apart from the energy scales mentioned in the previous paragraphs,

there are other important factors that determine the impact of vibrations

in the transport properties. Thus for instance, the temperature plays an

important role in determining the dominant transport mechanism. While

low temperatures favor the coherent transport, high temperatures reduce

drastically the inelastic scattering length by increasing the phonon popula-

tions and making the transport incoherent. On the other hand, the length

of the molecules is another important factor. Incoherent transport becomes

more important for longer molecules both because dephasing is more effec-

tive and (for off-resonant tunneling) because of the exponential fall off of

the coherent component.

We initiate here a series of two chapters in which we shall review our

present understanding of the role of molecular vibrations in the transport

properties of single-molecule junctions. In particular, we shall concentrate

on the analysis of their influence in the electrical current. The role of vi-

brational modes in other properties, including thermal transport, will be

discussed in the Chapter 19. We would like to remark that, following the

spirit of this monograph, we shall present a pedagogical introduction to this

subject, rather than a detailed review of the huge amount of work reported

in the last years. To be precise, after reading these two chapters the reader
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should have a clear idea about: (i) what are the basic experimental signa-

tures of vibrational modes in the current through single-molecule junctions,

(ii) what are the physical mechanisms giving rise to those signatures and

(iii) what are the main open problems related to this subject.

In this first chapter we shall describe some of the main experiments that

have illustrated the role of vibrations in the electrical conduction through

molecular junctions. We have grouped these experiments in three differ-

ent categories. First of all, we shall discuss situations where the electron-

phonon interaction is weak, in the sense explained above, and the electron

tunneling is off-resonant. The analysis of the vibronic signatures in this

regime is known as inelastic electron tunneling spectroscopy (IETS) for the

historical reasons that will be explained in section 16.2. Then, we shall fo-

cus our attention in section 16.3 on the case of highly conductive junctions,

where the electron-phonon interaction is also weak. In this regime, and

again for historical reasons, the study of the vibrational modes is known as

point-contact spectroscopy (PCS). Section 16.4 is devoted to a discussion

of the relation between IETS and PCS. In section 16.5 we shall discuss the

third group of experiments that correspond to the regime sometimes known

as resonant inelastic electron tunneling. This regime corresponds to a situ-

ation where the transport is resonant and the electron-phonon interaction

can be very strong. This regime is realized, in particular, in the molecular

transistors described in the previous chapter. The discussion below will

end with a brief summary of the main vibrational signatures that can be

observed in the different transport regimes. If you are an impatient reader

(as we are), please feel free to jump directly to section 16.6 and then come

back to this point.

The recent progress in the understanding of vibrational effects in molec-

ular transport junctions has been thoroughly described by Galperin, Ratner

and Nitzan in the review of Ref. [695], which contains close to 500 references

related to the main subject of these two chapters. For those who prefer a

quick overview, we recommend them the shorter review of Ref. [696] of the

same authors.

16.2 Inelastic electron tunneling spectroscopy (IETS)

The first studies of the influence of the electron-phonon interaction on the

transport through molecules go back to the 1960’s. In a pioneering work,

Jaklevic and Lambe discovered in 1966 that vibrational spectra can be ob-
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Fig. 16.1 Recorded traces of d2I/dV 2 versus voltage for three Al-Al oxide-Pb junctions
taken at 4.2 K. The zero of the vertical scale is shifted for each curve, and all three are
normalized to the same arbitrary units. The largest peaks represent increases of 1% in
the conductance. Also indicated are intervals associated with the energy of IR-active
molecular vibrational modes. Curve A is obtained from a “clean” junction. Curves B and
C are obtained from junctions exposed to propionic acid [CH3(CH2)COOH] and acetic
acid (CH3COOH), respectively. The peaks positions are independent of the polarity.
Reprinted with permission from [697]. Copyright 1966 by the American Physical Society.

tained from molecules adsorbed at the buried metal-oxide interface of a

metal-oxide-metal tunneling junction [697]. In their experiment, the tun-

neling current I was measured as a function of the voltage V across the

junction. Small, but sharp increases in the differential conductance, dI/dV ,

were observed when the energy of the tunneling electrons reached the en-

ergy of a vibrational mode for molecules in the junction. These increases

represented changes in the differential conductance of about 1%. They

were interpreted as the result of electrons losing their energies to the vibra-

tional mode, giving rise to an inelastic tunneling channel, which is forbidden

when tunneling electrons have energies below the quantized vibrational en-

ergy. In the experiment, a peak at each vibrational energy was observed in

d2I/dV 2, see Fig. 16.1. This method, known as inelastic electron tunneling

spectroscopy (IETS), has been applied to a wide range of systems and has

led to a better understanding of molecules in the adsorbed state [698–704].

It is convenient for our discussions below to briefly review some of the

basic predictions of IETS theory concerning the following issues:
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(1) Tunneling mechanism: The explanation for the appearance of the

peaks in the tunneling spectra is the following [697, 705]. As shown

schematically in Fig. 16.2, when the bias voltage applied to the junction

is increased and crosses the threshold for excitation of a vibrational

mode, electrons can tunnel either elastically or by emitting a vibrational

mode. The opening of this latter inelastic channel is accompanied by an

increase of the differential conductance (dI/dV ) at eV = ±�ω, where ω

is the frequency of the excited mode. As mentioned above, this change

is more clearly seen in the derivative of the conductance, d2I/dV 2,

where the signature related to the excitation of a vibrational mode is

a peak (dip) for positive (negative) bias, see Fig. 16.2.

hω

hω

d I/dV22

hωhω

hω

EF

Tip Metal
Vacuum/
Molecule
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dI/dV
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(a) (b)
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eV−

−

Fig. 16.2 (a) Schematic representation of the inelastic tunneling above the threshold
for a vibrational excitation. An electron can tunnel losing part of its energy which is
employed to excite a vibration mode of energy �ω. This process is only possible when
eV ≥ �ω. (b) The opening of the inelastic channel gives rise to an increase in the
conductance at eV = ±�ω. (c) The onset of the inelastic process is seen in the second
derivative of the current, d2I/dV 2, as a peak (dip) for positive (negative) bias.

(2) Spectral linewidth: The full width at half maximum (FWHM) of the

d2I/dV 2 vibrational peak is given by W = [(1.7Vm)2 + (5.4kBT/e)
2 +

W 2
I ]

1/2, where Vm is the modulation voltage in the lock-in technique,

kB is the Boltzmann constant, T is the temperature, and WI is the

intrinsic width (due to the finite phonon lifetime) [705, 706].

(3) Selection rules: Although there are no selection rules in IETS as there

are in infrared (IR) and Raman spectroscopy, certain selection prefer-

ences have been established. According to the IETS theory [707, 708],

molecular vibrations with net dipole moments perpendicular to the in-

terface of the tunneling junction have larger peak intensities than vibra-

tions with net dipole moments parallel to the interface (for dipoles close

to the electrodes). For a more complete description of the propensity
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Fig. 16.3 STM inelastic tunneling spectra of acetylene molecules. The plot shows back-
ground difference d2I/dV 2 spectra for C2H2 (1) and C2D2 (2), taken with the same STM
tip. Notice the presence of peaks at 358 mV and 266 mV, respectively. The difference
spectrum (1−2) yields a more complete background subtraction. From [709]. Reprinted
with permission from AAAS.

rules, see Ref. [704].

Soon after the invention of the STM, it was clear that this tool could

serve to extend IETS all the way down to single molecules. However, this

turned out to be very challenging since it requires the use of low tempera-

tures (∼ 4 K) and very high mechanical stability. The breakthrough came

from Ho’s group that reported in 1998 the first study of the vibrational

spectra for a single molecule adsorbed on a solid surface [709]. To be pre-

cise, these authors measured the inelastic electron tunneling spectra for an

isolated acetylene (C2H2) molecule adsorbed on the copper (100) surface

using a STM under UHV conditions at a temperature of 8 K. They observed

an increase in the tunneling conductance at 358 mV, which was attributed

to the excitation of the C-H stretch mode. The increase in conductance is

typically rather small (around 3-6% in these experiments depending on the

tip) and for this reason the features related to the vibrational modes are

better seen in the second derivative of the current, d2I/dV 2, where they

appear as peaks (for positive bias), very much like in the IETS in planar

tunnel junctions. We show an example of the original data in Fig 16.3.

To confirm the interpretation of the origin of the peak in d2I/dV 2, the

authors used isotopic substitution, i.e. they replaced the hydrogen atoms

by deuterium ones in the molecules. In the case of the deuterated acetylene

(C2D2), they showed that the peak in d2I/dV 2 is shifted to 266 mV, which

corresponds to the expected change in energy of the C-H stretch mode.
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Fig. 16.4 Single-molecule vibrational spectra of oxygen molecules on an Ag(110) surface
measured with a STM. Curve a corresponds to 16O2, curve b to 18O2 and curve c to
a clean Ag(110) surface. The difference spectra (curve a-c, curve b-c) are also shown.
Reprinted with permission from [711]. Copyright 2000 by the American Physical Society.

Indeed, these values are in close agreement with those obtained by electron

energy loss spectroscopy (EELS). This experiment inspired an enormous

amount of work in which the chemical sensitivity of the single-molecule

IETS has been exploited. This has led in the last years to a better under-

standing and control of surface chemistry at the atomic level. The activities

of the first years on STM-IETS have been reviewed by Ho in Ref. [710].

The first STM-IETS experiments raised several fundamental questions

related, for instance, to the selection (or propensity) rules that apply in

this case. With respect to the tunneling process that gives rise to the peaks

seen in the spectra, it was believed that there is no fundamental difference

with respect to the traditional IETS in oxide tunnel junctions. In other

words, the process responsible for the vibrational signatures was believed

to be the phonon emission process described in Fig. 16.2. However, it is

worth stressing that the electron-phonon interaction in these systems does

not always lead to an increase of the conductance at the phonon energies.

Thus for instance, Ho and coworkers have reported in Ref. [711] STM-

IETS studies that revealed two vibrational modes showing a decrease in the

conductance at 682.0 and 638.3 mV for single oxygen molecules chemisorbed

on the fourfold hollow sites of an Ag(110) surface at 13 K. These results can

be seen in Fig. 16.4, where one can observe the presence of two well-defined

dips at positive bias. It is worth remarking that in this case the change in
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Fig. 16.5 IETS spectrum of a C11 junction formed with gold cross wires. The dashed
line is a simple polynomial background and is presented as a guide to the eye. Mode
assignments are from comparison to previous experimental results. Reprinted with per-
mission from [712]. Copyright 2004 American Chemical Society.

the conductance at the vibrational energies continues to be rather small (a

few percent). Let us mention that also more complicated line shapes have

been observed in the context of STM-IETS studies [710].

The use of IETS to measure to the vibrational spectrum of metal-

molecule-metal junctions relevant to molecular electronics was first reported

in 2004 simultaneously by two different groups.2 Kushmerick and coworkers

presented in Ref. [712] in situ vibrational spectroscopy of metal-molecule-

metal junctions containing prototypical molecular wires: C11 (an alkane

chain with 11 carbon atoms), OPE, and OPV. The transport measure-

ments were performed with a cryogenic crossed-wire tunnel junction, where

one of the gold wires was coated with a monolayer of the molecule of inter-

est. The experiments were conducted at 4 K and standard ac modulation

techniques, along with two lock-in amplifiers, were utilized to measure di-

rectly both dI/dV and d2I/dV 2. An example of the results for C11 is

shown in Fig. 16.5. Here, the second derivative of the current is normalized

by the conductance. Notice that, as in the traditional IETS, the signature

of the molecular vibrations is a series of peaks, which were observed to have

2These experiments were not the first ones to investigate the role of vibronic coupling
in molecular transport junctions, but they were the first ones that explored the regime
discussed in this section, where the transport through the junctions takes place in a
non-resonant manner and the current probes the vibrational modes of the ground state
of the molecule.
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Fig. 16.6 IET spectrum of a C8 dithiol SAM measured with the nanopore technique.
The spectrum was obtained from lock-in second-harmonic measurements with an ac
modulation of 8.7 mV (rms value) at a frequency of 503 Hz (T = 4.2 K). Reprinted with
permission from [713]. Copyright 2004 American Chemical Society.

the same height in the positive and negative bias polarity.

Based on previous infrared, Raman, and high-resolution electron energy

loss spectroscopy studies of alkanethiolate monolayers, the authors were

able to assign the observed peaks in the C11 junction to specific molecular

vibrations. The C-H stretch at 362 mV is the most intense vibrational

mode observed, but they also observed a number of lower energy vibrations

in the region from 70 mV to 200 mV. An interesting observation in this

work was the fact that most, although not all, of the modes that were

identified corresponded to longitudinal molecular modes, which shows that

this type of modes couples more strongly to the tunneling electrodes.

Reed’s group reported simultaneously an IETS study of an alkanedithiol

self-assembled monolayer (SAM) using the nanopore technique [713]. The

second-harmonic signal d2I/dV 2 was measured directly with a lock-in tech-

nique and an example of the results can be seen in Fig. 16.6. Notice that

in this case the IET spectrum exhibits peaks with shapes that clearly differ

from those of Fig. 16.5.3 As in Ref. [712], the authors used known results

from infrared, Raman, and high-resolution electron energy loss spectra of

SAM-covered gold surfaces to identify some of the vibrational modes. Some-

thing remarkable in this work is the fact that the authors were able to verify

3Kushmerick and coworkers have argued that the discrepancies in the IET spectra
between these two experiments could be due to the presence of metal nanoparticles in
the nanopore devices of Wang et al. [713], see Ref. [714] for a detailed discussion of this
issue.
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Fig. 16.7 Single-molecule IETS measurements using STM break-junctions. (a) Semilog
conductance histogram with a peak at G0, and an additional peak at 6 × 10−3 G0,
which is attributed to the conductance of propanedithiol. (b) A conductance curve with
steps for a single molecule measurement. The four symbols represent four stretching
distances where the bias was swept and the I-V and first derivative were recorded. (c) The
corresponding four first derivative curves (offset for clarity), and (d) the corresponding
IET spectra obtained numerically. The curves are antisymmetric, and certain features
are very reproducible along the conductance plateau. Reprinted with permission from
[722]. Copyright 2008 American Chemical Society.

that the observed spectra were indeed valid IETS data by examining the

peak width as a function of temperature. This important test is usually

very difficult to carry out with other techniques.

IETS has become quite popular in the field of molecular electronics

over the last years and it has distinguished itself as a unique spectroscopic

probe of molecular junctions. From comparison between experiments and

computations, IETS can be useful for characterizing numerous aspects of

molecular junctions such as the confirmation of the presence of the molecule,

information on the nature of the interfaces, the orientation of the molecule

and even electronic pathways can be identified. For further experimental

examples of the use of the of IETS in the regime described in this section

see Refs. [574, 715–721].

The experiments that we have just described correspond to situations
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where the transport is probed through an ensemble of molecules. In this

sense, it is highly desirable to perform similar experiments, but with single-

molecule junctions. However, such experiments in the off-resonant regime

that we are discussing in this section are rather scarce. The main problem is

to achieve the required stability, which can only be done by working at very

low temperatures. Recently, this difficulty has been overcome by Hihath et

al. [722] who reported IET spectra of a single 1,3-propanedithiol molecule

using an STM break-junction at cryogenic temperatures. In particular,

these authors were able to measure IET spectra at different stages of the

formation of the molecular contacts, see Fig. 16.7. This allows them to

correlate changes in the conductance with changes in the configuration of a

single-molecule junction. Moreover, the authors were able to do a statistical

analysis of the phonon spectra to identify the most relevant modes. Finally,

the vibrational modes found for propanedithiol matched well with IR and

Raman spectra and were described by a simple one-dimensional model.

This type of experiment provides very important information about the

formation of single-molecule junctions and in this sense, we are sure that

many more experiments of this kind will be reported in the near future (for

a more recent one see Ref. [723]).

16.3 Highly conductive junctions: Point-contact

spectroscopy (PCS)

In this section we shall discuss the experimental signatures of the electron-

phonon interaction in the case of molecular junctions with a high conduc-

tance (close to G0). To be precise, the junctions discussed here are char-

acterized by the presence of a broad electronic resonance around the Fermi

energy with a width, Γ, considerably larger than the electron-phonon cou-

pling constant, λ. The analysis of the electron-phonon interaction in this

regime has its historical origin in the so-called point contact spectroscopy

(PCS) [724–726]. Thus, we shall start this section by briefly explaining the

basics of this technique.4

Many years before the rise of nanofabrication, ballistic metallic point

contacts were widely studied [724–726]. The fabrication principle was in-

troduced by Yanson in the 1970’s [727] and later developed by his group

and by Jansen et al. [728]. The technique has been worked out with var-

ious refinements for a range of applications, but essentially it consists of

4Our discussion follows closely Ref. [15].
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Fig. 16.8 An example of an electron-phonon spectrum measured for a gold point contact
by taking the second derivative of the voltage with respect to the current. The long-
dashed curve represents the phonon density of states obtained from inelastic neutron
scattering. Reprinted with permission from [728]. Copyright 1980 IOP Publishing Ltd.

bringing a needle of a metal gently into contact with a metal surface. With

this technique stable contacts are typically formed having resistances in

the range from ∼ 0.1 to ∼ 10 Ω, which corresponds to contact diameters

between d � 10 and 100 nm. The elastic and inelastic mean free path

can be much longer than this length d, when working with clean metals

at low temperatures, and the ballistic nature of the transport in such con-

tacts has been demonstrated in many experiments. The main application of

the technique has been to study the electron-phonon interaction in metals.

Here, one makes use of the fact that the (small but finite) probability for

back-scattering through the contact is enhanced as soon as the electrons ac-

quire sufficient energy from the electric potential difference over the contact

that they are able to excite the main phonon modes of the material. The

differential resistance, dV/dI, of the contact is seen to increase at the char-

acteristic phonon energies of the material. Notice that this is at variance

with the typical signature in IETS. A spectrum of the energy-dependent

electron-phonon scattering can be directly obtained by measuring the sec-

ond derivative of the voltage with respect to the current, d2V/dI2, as a

function of the applied bias voltage. An example is given in Fig. 16.8.

Peaks in the spectra are typically observed between 10 and 30 mV, and

are generally in excellent agreement with spectral information about the

phonons of the corresponding metal obtained from other experiments (e.g.

neutron scattering), and with calculated spectra.

Traditionally, electron-phonon spectroscopy in large metallic contacts
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Fig. 16.9 Electron distribution function in the vicinity of the orifice. Here, kF is the
equilibrium Fermi wave vector, μ1 and μ2 are the chemical potentials for each side,
which, far from the orifice and in the presence of an applied potential V , are equal to
EF − eV/2 and EF + eV/2, respectively.

is described by considering the non-equilibrium electron distribution near

the contact that results from the applied bias voltage, as illustrated in

Fig. 16.9 [727–729]. Electrons that arrive at the left electrode, coming from

the right, are represented in a Fermi surface picture by a cone with an angle

corresponding to the solid angle at which the contact is viewed from that

position in the metal. These electrons have eV more energy that the other

Fermi surface electrons, and they can be scattered inelastically to all other

angles outside the cone. Only those that scatter back into the contact will

have a measurable effect on the current.

As the energy difference eV increases, this backscattering increases due

to the larger phonon density of states, which will be observed as a decreas-

ing conductance. Ignoring higher order processes, the decrease of the con-

ductance comes to an end for energies higher than the top of the phonon

spectrum, which is typically 20–30meV. By taking the derivative of the

conductance with respect to the voltage one obtains a signal that directly

measures the strength of the electron-phonon coupling. An example for

gold is illustrated in Fig. 16.8. Several authors have derived an expression

for the spectrum [728, 730], which adopts the following form

d2I

dV 2
=

4

3π

e3m2vF
�4

a3α2Fp(eV ), (16.1)

where a is the contact radius, vF is the Fermi velocity, m the electron mass

and the function α2F is given by

α2Fp(E) =
m2vF
4πh3

∫
d2n

∫
d2n′|gnn′ |2η(θ(n,n′))δ(E − �ωnn′). (16.2)

Here, the integrals run over the unit vectors of incoming and outgoing

electron wave vectors (n = k/k), gnn′ is the matrix element for the electron-
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Fig. 16.10 Differential conductance as a function of the applied bias voltage for a one-
atom Au contact at 4.2K. The contact was tuned to have a conductance very close
to 1G0, which suppresses the amplitude of the conductance fluctuations. This allows
the observation of a phonon signal, which is seen as a maximum at zero bias. Inset: By
taking the derivative of the conductance the transverse (T) and longitudinal (L) acoustic
branches can be recognized symmetrically positioned around zero. Note the expanded
scale of the voltage axis in the inset. Reprinted with permission from [731]. Copyright
2000 by the American Physical Society.

phonon interaction, and η is a function of the scattering angle that takes the

geometry into account, such that only backscattering through the contact is

effective, η(θ) = (1− θ/ tan θ)/2. From this expression, and by considering

Fig. 16.9, one can see that the contribution of scattering events far away

from the contacts is suppressed by the effect of the geometric angle at

which the contact is seen from that point. The probability for an electron

to return to the contact decreases as (a/d)2, with a the contact radius

and d the distance from the contact. This implies that the spectrum is

dominantly sensitive to scattering events within a volume of radius a around

the contact, thus the effective volume for inelastic scattering in the case of

a clean opening (the contact) between two electrodes is proportional to

a3. Clearly, this effective volume must depend on the geometry of the

contact. For a long cylindrical constriction, the electrons scattered within

the constriction will have larger return probability, the effective volume, in

this case, increases linearly with the length [724].

The point-contact spectroscopy has been extended in recent years to

atomic-sized contacts. As the contact becomes smaller, the signal comes

from scattering on just a few atoms surrounding the contact. The spectrum

no longer measures the bulk phonons, but rather local vibrational modes of

the contact atoms. In attempting to measure the phonon signal for small
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Fig. 16.11 Point contact spectroscopy of gold atomic chain. (a) Short and long atomic
wire, ∼ 0.4 and ∼ 2.2 nm, respectively, as given by the length of the conductance plateau.
Panels (b–d) show the differential conductance and its derivative at points S, M , and
L, respectively. The various curves in (b–d) were acquired at intervals of 0.03, 0.03 and
0.05 nm, respectively. Note that the vertical scales for the last thee panels are chosen
to be identical, which brings out the relative strength of the electron-phonon interaction
for the longer chains. The wire in (d) has a length of about 7 atoms. Reprinted with
permission from [732]. Copyright 2002 by the American Physical Society.

contact sizes one encounters the problem that the phonon signal intensity

decreases, according to Eq. (16.2), while the amplitude of the conductance

fluctuations5 remains roughly constant, or slightly increases. The result

is that the phonon signal is sometimes hidden in the conductance fluctua-

tions for the smallest contacts. A solution to this problem is obtained for

the special and interesting case of a contact made up of a single channel

with nearly perfect transmission probability, where these fluctuations are

suppressed. Under these conditions the features due to phonon scattering

become clearly visible. This is illustrated in Fig. 16.10 where we show an

example of the point contact spectrum of a gold one-atom contact [731].

Surprisingly, one observes a spectrum (see inset of the figure) that still

closely resembles the bulk phonon spectrum, although the relative intensi-

ties of the features in the spectrum are different.

5These fluctuations were described in detail in section refsec-cond-fluct.
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The point contact spectroscopy was pushed to study the phonon modes

in Au atomic chains by Agräıt and coworkers [732, 733]. As we described

in section 11.8, atomic chains of certain metals can be formed with the

STM and break junction techniques. These chains constitute in some sense

the simplest molecules that one can think of. Thus, the PCS of gold chains

of Refs. [732, 733] is of special interest for us. In these experiments, the

differential conductance was measured using a lock-in detection with a 1

mV modulation voltage, from which dG/dV was calculated numerically.

The energy resolution was limited by the temperature of 4.2K to 2meV.

The results for the differential conductance and its derivative for a long

atomic chain (∼ 7 atoms) are shown in Fig. 16.11(d). Notice that at ±15

mV bias the conductance exhibits a rather sharp drop by about 1%. In the

second derivative d2I/dV 2 this produces a pronounced single peak, point-

symmetric about zero bias. The chains of Au atoms have the fortuitous

property of having a single nearly perfectly transmitted conductance mode,

which suppresses conductance fluctuations that would otherwise mask the

phonon signal. Some asymmetry that can still be seen in the conductance

curves is attributed to the residual elastic scattering and interference con-

tributions.

The fact that only one conductance drop is clearly seen was interpreted

by the authors as follows. By energy and momentum conservation the

signal can only arise from electrons that are back-scattered, changing their

momentum by 2kF. With �ω2kF
the energy for the corresponding phonon,

the derivative of the conductance is expected to show a single peak at

eV = ±�ω2kF
. The transverse phonon mode cannot be excited in this one-

dimensional configuration and only the longitudinal mode is visible. We

shall see in the next chapter that this argument is, strictly speaking, only

valid for infinite chains, while it is approximate for the finite chains realized

in the experiments.

Another interesting feature of the point-contact spectra of gold atomic

chains is that the position of the peak in dG/dV shifts as a function of the

strain in the wire. As one can see in Fig. 16.11(d), the frequency of the

mode associated to the peak decreases as a function of the tension because of

the decreasing bond strength between the atoms. However, the amplitude

(peak height) increases, until an atomic rearrangement takes place, signaled

by a small jump in the conductance (not shown here). At such points the

amplitude and energy of the peak in dG/dV jump back to smaller and

larger values, respectively. This is consistent with the phonon behavior

of Au atomic chains found in ab initio calculations [360]. The growing
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Fig. 16.12 Left panel: Differential conductance curve for D2 contacted by Pt leads.
The dI/dV curve (top) was recorded over 1 min, using a standard lock-in technique with
a voltage bias modulation of 1 meV at a frequency of 700 Hz. The lower curve shows the
numerically obtained derivative. The spectrum for H2 in the inset shows two phonon
energies, at 48 and 62 meV. Right panel: Distribution of vibrational energies observed
for H2, HD, and D2 between Pt electrodes, with a bin size of 2 meV. The peaks in
the distribution for H2 are marked by arrows and their widths by error margins. These
positions and widths were scaled by the expected isotope shifts,

√
2/3 for HD and

√
1/2

for D2, from which the arrows and margins in the upper two panels have been obtained.
Reprinted with permission from [567]. Copyright 2005 by the American Physical Society.

amplitude is due to the softening of the phonon modes with tension.

The first application of point-contact spectroscopy to the characteriza-

tion of a molecular junction was carried out by Ruitenbeek’s group in their

study of the transport through hydrogen molecules that we discussed in

section 14.1.3. The original study of Ref. [127] was extended in Ref. [567]

with a thorough analysis of the stretching behavior of point-contact spectra

as well as DFT calculations of the vibrational modes of the Pt-H2 junctions.

The left panel of Fig. 16.12 shows examples for Pt-H2 and Pt-D2 junc-

tions at a conductance near 1G0. The conductance is seen to drop by

about 1 or 2%, symmetrically at positive and negative bias, very muck like

in the Au atomic chains just described. The energies of the conductance

drops are in the range of 50-60 meV, well above the Debye energy of ∼
20 meV for Pt. A high energy for a vibrational mode implies that a light

element is involved, since the frequency is given by ω =
√
κ/M with κ

an effective spring constant and M the mass of the vibrating object. The

proof that the spectral features are indeed associated with hydrogen vibra-

tional modes came from further experiments where H2 was substituted by
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the heavier isotopes D2 and HD. The positions of the peaks in the spec-

tra of d2I/dV 2 vary within some range between measurements on different

junctions, which can be attributed to variations in the atomic geometry of

the leads to which the molecules bind. Fig. 16.12 (right panel) shows his-

tograms for the vibrational modes observed in a large number of spectra for

each of the three isotopes. Two pronounced peaks are observed in each of

the distributions, that scale approximately as the square root of the mass of

the molecules, as expected. The two modes can often be observed together,

as in the inset of the left panel of Fig. 16.12. For D2 an additional mode

appears near 90 meV. This mode cannot easily be observed for the other

two isotopes, since the lighter HD and H2 mass shifts the mode above 100

meV where the junctions become very unstable. For a given junction with

spectra as in Fig. 16.12 (left panel), it is often possible to stretch the contact

and follow the evolution of the vibrational modes. The frequencies for the

two lower modes were seen to increase with stretching, while the high mode

for D2 is seen to shift downwards. This unambiguously identifies the lower

two modes as transverse modes and the higher one as a longitudinal mode

for the molecule. This interpretation agrees well with DFT calculations for

a configuration of a Pt-H-H-Pt bridge in between Pt pyramidally shaped

leads [567, 571]. The fact that the vibrational modes observed for HD that

are intermediate between those for H2 and D2 confirms that the junction

is formed by a molecule, not an atom.

A drop in the conductance as a fingerprint of the presence of a molecule

in highly conductive junctions has also been reported, for instance, in

Ref. [385]. In this work, PCS was used to identify the presence of oxygen

intercalated in Au atomic chains. More recently, similar vibration-induced

steps down in the conductance have been also observed in various small

molecules directly bonded to Pt electrodes [474].

16.4 Crossover between PCS and IETS

As we have seen in the previous two subsections, electron-phonon inter-

action leads to an increase in the conductance for junctions in the tunnel

regime (e.g. IETS done in STM); however, it decreases the conductance

for junctions in the contact regime (e.g. PCS across a Pt-H2 junction). In

spite of this difference, all these physical systems have in common that the

traversal time, τ = �/
√
ΔE2 + Γ2, is much smaller than the time that it

takes to interact with a vibrational mode, �/λ. In IETS this is due to the
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fact that the tunneling is typically off-resonant, and therefore the injection

energy ΔE is rather large. In the PCS case, however, this occurs because

the molecule is strongly coupled to the leads and thus Γ is very large. In

view of this similarity, one may wonder whether there is any fundamen-

tal difference between IETS and PCS in molecular junctions. As we shall

discuss in the next chapter, recent theoretical work has shown that IETS

and PCS are indeed two sides of the same coin and they can be described

in a unified manner. In other words, these two techniques are based on

the same underlying physics and they simply refer to two different limiting

cases depending on the junction transparency.

In recent years, different experiments on highly conductive single-

molecule junctions, but with conductances not to close to 1G0, have clearly

suggested the idea that there is a smooth crossover between IETS and PCS.

Thus for instance, experiments on Pt-H2 junctions [734], Ag atomic wires

decorated with oxygen [605] and Pt-benzene junctions [473] with conduc-

tances between 0.1 and 0.4G0 have shown that the signature of vibrational

modes is a step up in the conductance at the vibrational energies, i.e. exactly

like in the standard IETS case. The experiment that has finally clarified

this issue was reported recently by Tal et al. [735] and we now proceed to

describe it in certain detail.

In Ref. [735] the authors presented PCS and shot noise measure-

ments across a single-molecule junction formed by Pt electrodes and H2O

molecules. The Pt/H2O molecular junctions were formed using a MCBJ

setup at about 5 K. The formation of a clean Pt contact was verified by

conductance histograms, which exhibited a single peak around 1.4G0, pro-

viding so a fingerprint of a clean Pt contact [127]. Water molecules were

then introduced to the junction through a heated capillary, while the Pt

junction was broken and formed repeatedly. Following the introduction of

water, the typical Pt peak in the conductance histogram was suppressed

and contributions from a wide conductance range were detected with mi-

nor peaks around 0.2, 0.6, and 1.0G0. The continuum in the conductance

counts implies a variety of stable junction configurations that the authors

exploited for spectroscopy measurements on junctions with different con-

ductance.

In Fig. 16.13 we reproduce the results for the differential conductance as

a function of the voltage across the Pt/H2O junction at two different linear

conductance values: 1.02 ± 0.01G0 (a) and 0.23 ± 0.01G0 (b). Junctions

with different zero-bias conductance were formed by altering the distance

between the Pt contacts or by re-adjusting a new contact. The steps in



492 Molecular Electronics: An Introduction to Theory and Experiment

������������ � �� �� �� ��
����

����

����

����

���

�

�

�
��
�
�
��
�

�
�

��������	�
�����

�	�����

������������ � �� �� �� ��

����

	���

	���

�	�������

�

�
��
�
�
��
�

�
�

��������	�
�����

���

Fig. 16.13 Differential conductance (dI/dV ) as a function of the bias voltage for two

different Pt-H2O-Pt junctions with linear conductance of 1.02 ± 0.01G0 (a) and 0.23
± 0.01 G0 (b). Reprinted with permission from [735]. Copyright 2008 by the American
Physical Society.

the conductance that appear at 46 mV in Fig. 16.13(a), and 42 mV in

Fig. 16.13(b) indicate the onset of a vibrational excitation at these volt-

ages. Notice that while in (a) the differential conductance is decreased

(“step down”), the curve (b) taken at lower linear conductance shows an

increase in the differential conductance (“step up”). These two examples

demonstrate that both conductance suppression and enhancement can be

observed at a relatively high conductance (much higher than the typical

tunneling conductance).

As we shall show in the next chapter, the theory predicts that in the

regime of weak electron-phonon coupling, the transition from a step down

to a step up in the conductance occurs at a transmission equal to 0.5 for

a single channel model [736, 737]. In order to confirm these predictions

Tal and coworkers collected many dI/dV spectra at different zero-voltage

conductance values. They found that curves with steps up appear below

0.57 ± 0.03G0 and curves with steps down were detected only above 0.72 ±
0.03G0. Thus, they demonstrated that the crossover between conductance

enhancement and conductance reduction by the electron-vibration inter-

action occurs between these two values. Since more than one conduction

channel can contribute to the conductance in these junctions, the authors

carried out shot noise measurements to determine the number of channels

and their transmission probabilities. They concluded that there were typ-

ically two conduction channels. More importantly, they showed that the

dominant channel had a transmission 0.51 ± 0.01 at the crossover con-

ductance, which is nicely consistent with the predictions of single-channel

models (see Ref. [735] for more details).
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16.5 Resonant inelastic electron tunneling spectroscopy

(RIETS)

In this section we shall discuss the signatures of the electron-phonon in-

teraction in the case of resonant situations, when the traversal time is not

small in comparison with the time �/λ, where λ is the electron-phonon

coupling constant. This occurs when the injection energy, ΔE, is rather

small and the molecular orbital width, Γ, is not too large. In this regime,

strong vibronic effects are expected and the transport characteristics pro-

vide in this case what is sometimes referred to as resonant inelastic electron

tunneling spectroscopy (RIETS) [695]. This physical situation is realized,

in particular, in the single-molecule transistors (SMT) discussed in the pre-

vious chapter. In these junctions the electronic states can be brought close

to the chemical potentials of the reservoirs by means of a gate voltage.

The additional flexibility provided by the third electrode together with the

strong electron-phonon coupling give rise to a rich phenomenology that we

now want to describe.

The experiment performed by Park et al. [22] that we described at the

beginning of section 15.7 was also the first SMT experiment that revealed

vibronic effects. Let us remind that in this work, the transport through

a single C60 molecule was studied in a three-terminal device. In this case

the fingerprint of the vibrational modes can be seen directly in the I-V

characteristics, see Fig. 15.16. In that figure one can see that (for positive

bias) the I-V curves exhibit a first step that corresponds to the crossing of an

electronic resonance. There is a second step that is separated from the first

one by a distance of around 5-10 mV. As discussed in section 15.7, there are

good reasons to attribute that signature to the excitation of a vibrational

mode that corresponds to the center-of-mass oscillation of C60. Notice that,

contrary to the cases discussed so far, the signature of a vibrational mode

is now a step in the I-V curves (or a peak in the differential conductance).

Moreover, this feature does not appear at a voltage equal to �ω/e, where

ω is the vibration frequency, but rather at a bias voltage that is equal to

the bias that is necessary to cross the electronic resonance (at a given gate

voltage) plus a voltage of the order of �ω/e.6

What is the origin of this peculiar signature? This will be explained

in detail in the next chapter, but let us briefly say that this feature origi-

nates from the same inelastic tunneling process (phonon emission) discussed

6The exact distance between the Coulomb peak and the first sideband depends on the
voltage profile, i.e. on how the resonant level is shifted by the bias voltage.
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above, see Fig. 16.2. The difference is now that this process is much more

probable when the energy of the electron surpasses the energy of the elec-

tronic level by an amount that is equal to �ω (corrected by a factor that

depends on how the voltage drops across the junction). The reason is that

an electron with that energy may lose an energy equal to �ω (by emitting

a vibrational mode) and then it crosses the molecule exactly at resonance

with the molecular level. The enhanced probability of this inelastic process

gives rise to a peak in the differential conductance at a bias voltage of the

order of �ω/e away from the Coulomb blockade peak. From this argument,

it is also easy to understand that in order to observe a pronounced current

step, the width of the electronic resonance, Γ, must be smaller than �ω. In

any case, the bias voltage must be larger than �ω for this inelastic process

to take place.

As it was also explained in section 15.7, the signature of a vibrational

mode can be also seen in the stability diagrams, see Fig. 15.17. In these

plots, the peaks in the conductance, which correspond to the step-like fea-

tures in Fig. 15.16, show up as lines. In particular, the vibration mode

with energy 5 meV appears there as running lines that intersect the main

diamonds or conductance gap regions. The energy of this excitation is too

small to correspond to an electronic excitation. Moreover, some of these

lines are observed for both charge states, which would be very unlikely for

an electronic excitation. Even more convincing is the fact that multiple

excitations with the same spacing are observed, see Fig. 15.17(d). This

corresponds most likely to the excitation of several vibrational quanta of

the same mode, i.e. multi-phonon processes. Let us also say to conclude

this discussion that signatures of intrinsic vibrational modes of the C60

molecules were also observed in the stability diagram of some devices, see

in particular Fig. 3 in Ref. [22].

The experiment just described was followed by other experiments with

weakly coupled molecules where signatures of the vibrational modes in

the transport characteristics were also observed. For instance, Zhitenev et

al. [738] reported transport measurements through a small self-assembled

monolayer of thiolated organic molecules in which the conductance exhib-

ited a series of equally spaced peaks, the position of which could be con-

trolled by a gate voltage. These peaks were attributed to the lowest molec-

ular vibrations of the molecules. The most surprising thing in this exper-

iment was the observation of a large number of conductance peaks with

slowly decreasing amplitudes. This would mean that phonon processes of

very high-order were taking place in these junctions. On the other hand,
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Fig. 16.14 Stability diagrams (dI/dV vs. V and Vg) for four C140 SMTs fabricated
with the electromigration technique. White arrows indicate excited levels at 11 and
22 meV. dI/dV is represented by a color scale from black (zero) to white (maximum),
with maximum values 200 nS (device I), 600 nS (II), 15 nS (III), and 100 nS (IV).

Measurements were done at 1.5 K for I-III and 100 mK for IV. Reprinted with permission
from [685]. Copyright 2005 American Chemical Society.

Park et al. [23] observed low-lying excitations in the stability diagrams of

SMTs based on coordination complexes with Co ions. These excitations ap-

peared in the Coulomb blockade regime in the two charge states observed

in the diagrams, which clearly suggested that they might correspond to

vibrational modes.

In the previous experiments it was difficult to determine the precise

nature of the vibrational modes. In the transistors made from C60 [22]

the mode observed was not intrinsic to the molecule itself. In this sense,

experiments like the one of Pasupathy et al. [685] were important. In this

case, the authors reported the study of single-molecule transistors made

using a C140 molecule, in which it was possible to clearly identify low-

energy internal vibrational modes. Such modes were clearly visible in the

stability diagrams, see Fig. 16.14, and an excitation at 11 ± 1 meV was

seen in most devices. By means of a detailed molecular modeling, it was

possible to identify this mode as an internal stretching mode of the molecule.

The modeling also explained the strong coupling of this mode to tunneling

electrons, relative to other molecular modes.

An impressive example of resonant inelastic electron tunneling has

been reported by Osorio et al. [678]. These authors performed trans-

port measurements in electromigrated single-molecule junctions based on
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Fig. 16.15 Stability diagrams of a three-terminal junction with OPV-5, measured at 1.6
K. Plotted in (a) is dI/dV as measured with a lock-in technique (modulation amplitude
0.4 mV) and in (b) the numerically calculated second derivative, which serves to highlight
the fine structure of the excitations. The current levels are the same near both degeneracy
points, which is a strong indication that they belong to the same molecule. Three
different charge states are probed. The N+1 state is not indicated; for low bias voltages
it starts at gate voltages larger than 2.2 V. The data yield an addition energy of 210
meV and a gate coupling of 0.05. Reproduced with permission from [678]. Copyright
Wiley-VCH Verlag GmbH & Co. KGaA.

an oligophenylenevinylene derivative (OPV-5). An example of the stabil-

ity diagrams obtained in these experiments is shown in Fig. 16.15. This

diagram clearly shows the presence of sets of excitation lines for all three

charge states accessible in the experiment. A close inspection reveals that

the point of intersection between the lines and the diamond edge are sym-

metric with respect to the bias polarity, and that their position is almost

independent of the charge state. This observation makes it unlikely that

the excitations are a result of electronic states, because these are expected

to depend strongly on the charging of the molecule. Moreover, the 17 exci-

tations present in the experimental data are unlikely to reflect precisely 17

available electronic states that differ by only 5-10 meV in energy. Therefore,

the excitations were attributed to the vibrational modes of the single OPV-5

molecule trapped between the electrodes. The authors compared the vibra-

tional modes probed in the transport experiment with those probed with

light by using Raman and IR spectroscopy and found a good agreement for

the ones with the highest energies (see Ref. [678] for further details).

Molecular junctions offer the possibility to examine transport regimes

that are difficult to access in other systems. In particular, single-molecule

transistors are ideal systems where to study the interplay between vibronic

effects and Kondo physics. As we explained in section 15.7, the Kondo

effect have been observed in SMTs by several groups. Already in the first

observations of this effect there were clear hints of the coexistence of the
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Fig. 16.16 Maps of d2I/dV 2
SD as a function of VSD and VG at 5 K for two Co-ion-based

SMTs fabricated with the electromigration technique. Brightness scales are −8 × 10−5

A/V2 (black) to 3 × 10−5 A/V2 (white), and −2 × 10−5 A/V2 (black) to 2 × 10−5

A/V2, respectively. The zero-bias features correspond to Kondo peaks in ∂I/∂VSD.
Prominent inelastic features are indicated by black arrows. In both devices, when the
inelastic features approach the boundaries of the Coulomb blockade region, these levels
shift and alter the line shape (white arrows). Black dashed line in left map traces
an inelastic feature across the Coulomb blockade region boundary and into the Kondo
regime. Reprinted with permission from [617]. Copyright 2004 by the American Physical
Society.

Kondo resonance and vibrational sidebands [23, 662]. The first work in

which this coexistence was studied in detail was reported by Natelson’s

group [617]. Using electromigration-based SMT junctions they analyzed

the transport through a molecule comprising a single Co ion coordinated

by conjugated ligands. In many devices they observed the Kondo effect

and a Kondo temperature of ∼ 40 K was deduced from the temperature

dependence of the zero-bias conductance. Moreover, in some cases, the

conductance in the classically blockaded region and/or outside the Kondo

resonance was large enough to allow clean measurements of ∂2I/∂V 2
SD. In

Fig. 16.16 we reproduce results from Ref. [617] where maps of this quan-

tity are shown as a function of VSD (source-drain voltage) and VG (gate

voltage) in two different devices at 5 K. The left panel shows mainly a

diamond-like region corresponding to a charge state exhibiting standard

Coulomb blockade, while the right one focuses on the next diamond where

the Kondo resonance is visible at zero bias. Two prominent features within

the blockaded (Kondo) regime are indicated with black arrows. Features in

∂2I/∂V 2
SD of opposite sign are symmetrically located around zero source-

drain bias, consistent with inelastic tunneling expectations.

The ∂2I/∂V 2
SD features in the blockaded region occur at essentially con-

stant values of VSD until VG is varied such that the feature approaches the
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edge of the blockaded region. This independence of VG resembles the signa-

ture of inelastic cotunneling (see section 15.6.1) which has been observed,

for instance, in semiconductor single-electron devices [650]. The inelastic

modes occur at energies low compared to the expected level spacing (> 100

meV), implying that the modes being excited are unlikely to be electronic.

Indeed, the authors compared the energies of these features with Raman

and IR data and found a nice correlation supporting the idea that they

correspond to vibration modes.

Another work in which the interplay between the Kondo physics and

vibration-assisted tunneling was investigated is that of Parks et al. [682]. In

this experiment the Kondo resonance in a C60 junction was tuned mechan-

ically using the MCBJ technique. They also observed pronounced peaks

in the differential conductance at symmetric values of the bias voltage (see

Fig. 4 in Ref. [682]). The main observed feature appeared at ± 33 mV,

which was attributed to the lowest intracage vibrational mode of a C60

molecule. Additionally, as the electrodes were pulled apart, the energies of

the modes were observed to shift due to the change in the strength of the

metal-molecule coupling.

Let us mention that a Kondo resonance accompanied by vibrational

sidebands has also been observed in STM experiments on the transport

through a single molecular layer of a purely organic charge-transfer salt

grown on a metal surface [739].

To conclude this section, we now want to briefly mention two experi-

ments of special relevance. In the first one, Dekker and coworkers stud-

ied the current through a suspended single-wall carbon nanotube injected

from a STM tip [740, 741]. They showed that the current exhibited usual

features of the Coulomb blockade, i.e. a series of peaks in the differen-

tial conductance. Moreover, they found that these peak were accompanied

not only by the usual RIETS satellite peaks on the right hand side of the

Coulomb peaks (for positive bias), but also by peaks on the left hand side.

The satellite peaks on the right are a signature of phonon emission (the

mode excited in this experiment was believed to be the radial breathing

modes of the tube). The peaks on the left were interpreted as a fingerprint

of phonon absorption. Since the bath temperature of the experiment was

much smaller than the energy of the modes (and therefore they could not be

excited thermally), it was concluded that these anomalous peaks were the

signature of nonequilibrium phonons that are created by the electrical cur-

rent. This experiment illustrates that “hot” (or nonequilibrium) phonons

can play an important role in the transport through a molecular structure.
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Fig. 16.17 Summary of the main vibrational signatures in the transport characteristics
of molecular junctions in various transport regimes.

The other experiment that we want to briefly comment was reported

by Ho’s group [742]. The experiments described so far in this section were

mainly performed with the electromigration technique and with the aid of

a third terminal. However, this is not the only way to reach the transport

regime that we are discussing. For instance, in Ref. [742] a STM was used

to define a double-barrier junction by positioning the STM tip over an indi-

vidual copper phthalocyanine molecule adsorbed on a thin (approximately

0.5 nm) insulating Al2O3 film grown on the NiAl(110) surface. The two

tunnel barriers in the junction were the vacuum gap between the STM tip

and the molecule, and the oxide film between the molecule and NiAl. The

current through this double junction was found to exhibit clear signatures

of molecular vibronic states that were observed to change dramatically by

varying the tip-molecule separation, which in turn controls the ratio of

electron tunneling rates through the two tunnel barriers.

16.6 Summary of vibrational signatures

Let us now briefly summarize the main vibrational signatures that we have

shown to appear in the different transport regimes (see Fig. 16.17):

• In off-resonant situations (low transmissive junctions), in which the

electron-phonon interaction is weak, the typical signature of vibrational
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modes is a small increase of the differential conductance at the mode

energies. These features are usually better seen in the second derivative

of the current (d2I/dV 2), where they appear as peaks (for positive

bias), see Fig. 16.17(a). This regime is realized in STM junctions in the

tunneling limit and in strongly coupled contacts where the conductance

is smaller than approximately 0.5G0. Let us stress that in the case

of STM tunnel junctions, the observation of dips in d2I/dV 2 is also

possible.

• In the case of strongly coupled metal-molecule-metal junctions with

conductances close to G0 and weak electron-phonon interaction, the

vibrations are manifested in the conductance as small drops at the mode

energies and therefore, as dips in d2I/dV 2, see Fig. 16.17(b).7 This

regime is realized, for instance, in atomic gold chains and hydrogen-

based junctions.

• In the case of resonant transport, if the metal-molecule coupling is

not very strong, like it is usually the case in SMTs, the excitation of

vibrational modes leads to steps in the current versus the bias voltage,

or a series of peaks in the dI/dV , see Fig. 16.17(c). If a gate electrode is

available, the vibronic excitations can be seen in the Coulomb blockade

regime as running lines in the stability diagrams. In the Kondo regime

the modes induce sidebands at the phonon energies. These sidebands

are seen in the stability diagrams as horizontal lines (i.e. independent

of the gate voltage), parallel to the zero-bias Kondo resonance.

The reader should bear in mind that this summary is slightly oversim-

plified and more complex signatures are also possible. Thus for instance,

Thijssen et al. [743] have reported the observation of anomalous spikes in

the differential conductance of a variety of junctions, which were attributed

to vibrationally induced two-level systems. On the other hand, vibronic

effects can also be responsible for other strong non-linearities in the I-V

characteristics (see section 8 of Ref. [695] for a detailed discussion of this

issue).

7Here, we are assuming that the conductance is dominated by highly transmissive
conduction channels. However, one can have situations in which several channels combine
to give a conductance close to G0. In this case, the signature of the vibrational modes
can be a step down in the conductance, depending on the precise value of transmission
coefficients.



Chapter 17

Vibrationally-induced inelastic

current II: Theory

This chapter is devoted to the theoretical description of the vibrational

effects detailed in the previous one. In particular, our main goal is to

explain the origin of the different signatures summarized in section 16.6

(see also Fig. 16.17).

At the moment, there is no unified theory covering all the different

regimes explored experimentally. However, a lot of progress has been made

in several important limiting cases that will the main subject of our discus-

sion here. The first one corresponds to the limit of weak electron-phonon

coupling, in the sense explained in the introduction of the previous chapter.

In this case, a perturbative approach has been quite successful in explain-

ing the basic experimental observations. In the opposite limit of strong

electron-phonon interaction, when the electronic metal-molecule coupling

is weak, it is possible to describe the physics in terms of the rates equations

that take into account the vibronic effects in a non-perturbative manner.

In between these two extreme limits there is a loosely-defined crossover

regime of intermediate electron-phonon coupling. The next three sections

are devoted to the analysis of these three different regimes, and we shall

finish this chapter with some comments and a brief discussion of the basic

open problems for both theory and experiment.

17.1 Weak electron-phonon coupling regime

In this section we shall address the limit in which the traversal time is much

smaller than the time needed for an electron to feel the molecular vibrations.

In this case, the usual approach is to treat the electron-electron interaction

at a mean field level and to make a perturbative expansion in the electron-

phonon interaction. Our discussion of this regime will be divided into two
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subsections. In the first one, we shall discuss in detail the results obtained

from the resonant tunneling model including in addition the coupling to a

single phonon mode. This model will help us to understand the origin of the

different vibrational signatures in this regime. Then, the next subsection

will be devoted to a description of the ab initio methods that have been

developed so far to elucidate the propensity rules in this regime and to

establish a quantitative comparison with experimental results.

17.1.1 Single-phonon model

In this subsection we shall discuss the predictions of a toy model for the

regime of weak electron-phonon interaction. As we shall see, this simple

model explains the origin of the different experimental signatures described

in sections 16.2-16.4 and provides a deep insight into the tunneling pro-

cesses responsible for these signatures. We find this subsection particularly

important and in order to make it accessible to everybody, we have avoided

very technical discussions.1

The simplest model to study the electron-phonon interaction in a molec-

ular junction is a natural extension of the resonant tunneling model, which

includes the interaction with a single vibrational mode. Let us recall that

in the resonant tunneling model an electronic level with energy ε0 is cou-

pled to two metallic reservoirs. The strength of this coupling is described

by the scattering rates ΓL and ΓR, where L and R denote the left and

right leads, respectively. For the sake of simplicity, we shall assume here

that these rates are energy-independent. In order to describe the role of

the electron-phonon interaction, we now assume that this resonant level is

also coupled to a single vibrational mode of energy �ω (see Fig. 8.2). The

Hamiltonian describing this system has the following form

H = He + �ω
(
b†b+ 1/2

)
+ λd†d

(
b† + b

)
. (17.1)

Here, He describes the electronic part of this problem as it is given by

Eq. (7.93). The second term corresponds to the vibrational (or phonon)

mode, which is described here as a simple harmonic oscillator. The oper-

ators b† and b are the creation and annihilation operators related to the

phonon mode, and they satisfy the bosonic commutation relations. Finally,

the last term describes the electron-phonon interaction in the molecule,

where λ is the electron-vibration coupling constant and d† and d are the

1The technical details of the calculations reported in this subsection can be found in
section 8.2.1.
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fermionic operators related to the electronic level.2 Let us remark that we

ignore here the electron-electron interaction in the molecule. This model is

sometimes referred to as the (single-level) Holstein model.

This model has been analyzed in the last years by numerous authors

to study different aspects of the problem that we are addressing here

[736, 744–751]. In spite of its apparent simplicity, there is no known ex-

act solution for this model and approximations have to be made. To keep

our discussion as simple as possible, in what follows, unless we state oth-

erwise, we shall make use of the following two approximations: (i) the

electron-phonon interaction is treated perturbatively and we include only

the lowest-order corrections (second order in λ) and (ii) we assume that

the phonons are in thermal equilibrium at the bath temperature. The first

approximation is referred to as the lowest-order expansion (LOE). The sec-

ond one means that the phonon mode is occupied according to the Bose

function and it requires the existence of a mechanism that equilibrates the

local vibrations (e.g. coupling to bulk phonons). Later, we shall discuss the

consequences of relaxing these two approximations.

Our goal is to compute the I-V characteristics when a constant bias

voltage is applied. The details of the calculation can be found in section

8.2.1 and we concentrate here on the analysis of the results. In the absence

of electron-phonon interaction, the transport characteristics of this model

have been discussed in sections 7.4.3 and 13.2. Within the LOE approxi-

mation, i.e. collecting all the contributions up to order λ2, the current can

be written as (see section 8.2.1)

I = I0el + δIel + Iinel. (17.2)

Here, I0el is the elastic current in the absence of electron-vibration interac-

tion (see section 13.2). The other two terms constitute the correction to

the current due to the electron-vibration interaction and we now proceed

to explain their physical meaning.

The term Iinel is the inelastic contribution coming from the emission

and absorption of a single vibrational mode. At temperatures much lower

than �ω/kB, the emission process dominates. This latter process is exactly

the one considered in the standard IETS (see section 16.2) and we show

it again schematically in Fig. 17.1(a). At zero temperature the emission

process has a threshold voltage equal to �ω/e below which it cannot occur.

Above this voltage this term gives always a positive contribution to the

2The spin does not play any role in this problem and we have dropped it in the previous
expression.
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Fig. 17.1 Second-order inelastic processes contributing to the low-temperature current
in a molecular junction due to electron-phonon interaction: (a) phonon emission and (b)

elastic correction.

current, which means that it contributes to a step up in the conductance

at a voltage equal to �ω/e.

The term δIel corresponds to the contribution of a process which in-

volves the emission and re-absorption of a virtual vibrational mode, see

Fig. 17.1(b). In this process, which was first discussed by Davis back in

1970 [752], there is a net conservation of the energy of the electrons and

for this reason we shall refer to its contribution as elastic correction. This

process has in general no threshold voltage and it gives a contribution to

the current that can be positive or negative depending on the voltage,

transmission and other factors, as we shall show below. This process has

traditionally been ignored in the context of IETS and also in many publi-

cations related to vibronic effects in molecular junctions, which has led to

some confusion.

The additional elastic contribution δIel can be interpreted as arising

from the interference between the zero order elastic amplitude and the

second order amplitude of the process in which a phonon is created and

destroyed [752]. The idea goes as follow. The total quantum-mechanical

amplitude of an electron tunneling event in the presence of the electron-

phonon interaction can be written as a series: A = A(0)+A(1)+A(2)+ · · · ,
where the superindex indicates the order of the contribution in the electron-

phonon coupling constant, λ. The corresponding probability is obtained by

taking the modulus square. Thus, collecting all the terms up to second

order one gets3 |A|2 ≈ |A(0)|2 + |A(1)|2 + 2Re{A(0)A(2)}. The term |A(1)|2
corresponds to the processes involving the emission or absorption of a sin-

gle phonon, while the last one arises from the interference mentioned above

3The term proportional to λ in this series vanishes because it does not conserve the
number of phonons in the system.
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Fig. 17.2 Results of the single-phonon (or Holstein) model for a highly transmissive
contact: ε0 − EF = 0, λ = 2�ω and ΓL = ΓR = 10�ω. (a) Zero-temperature total
conductance (G = dI/dV ) and elastic conductance (Gel = dI0el/dV ) as a function of the
bias voltage. (b) Elastic (δGel = dδIel/dV ) and inelastic (δGinel = dIinel/dV ) conduc-
tance corrections vs. voltage for the parameters of (a). (c) Temperature dependence of
the total conductance. (d) The corresponding d2I/dV 2 vs. voltage for the temperatures
considered in (c).

and it is the origin of the elastic correction. Depending on whether this

interference is constructive (enhancing the forward scattering probability)

or destructive (enhancing the backscattering probability), this process can

give a positive or a negative contribution to the conductance, respectively.

So in short, the actual signature of the vibration modes observed in an ex-

periment in the weak electron-phonon regime is a result of the competition

between the emission term and the elastic correction.

Now we turn to the analysis of the results of this model. These results

have been calculated numerically using the formulas detailed in section

8.2.1. Let us start by discussing the case of a highly conductive junction in

the spirit of PCS, see section 16.3. In Fig. 17.2(a) we present the results

for the differential conductance for an on-resonant situation where ε0 = 0

(measured with respect to the Fermi energy) and ΓL = ΓR = 10�ω. With

these values the conductance is equal to G0 at zero bias and it shows a

very weak voltage dependence. As one can see in Fig. 17.2(a), the zero-

temperature conductance (sum of the elastic and inelastic contributions)
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exhibits an abrupt step down (of about 1%) at eV = �ω. This result re-

produces the typical signature observed in the gold atomic chains or in the

Pt-H2 junctions discussed in section 16.3. As one can see in Fig. 17.2(b),

the step down in the conductance is due to the dominant negative con-

tribution coming from the elastic correction (δGel = dδIel/dV ). In other

words, the elastic correction gives rise in this limit to a finite backscatter-

ing that reduces the conductance of the junction [745]. After all, this is

natural because the (elastic) transmission is already close to one and thus,

an incoming electron can only be backscattered.

In Fig. 17.2(c) and (d) we show for this high transmission case the tem-

perature dependence of the differential conductance and the corresponding

d2I/dV 2, respectively. First, notice that the signature of the inelastic cur-

rent in d2I/dV 2 is a dip and second, notice also that for temperatures of

the order of 0.2�ω/kB the signature is no longer visible.

We now consider a low-transmissive situation by simply shifting the level

away from the Fermi energy (ε0 − EF = 80�ω), but keeping the values of

the scattering rates of the previous example unchanged. Thus, the (elastic)

zero-bias conductance is equal to 0.059G0. In Fig. 17.3(a) we show the

contributions δGel and δGinel versus the voltage, as well as the sum of the

two (δG). In this case, we have assumed that the temperature is kBT =

0.05�ω. Notice that there several basic differences with respect to the

previous example. First, the change in the conductance at eV = �ω is

dominated this time by the phonon emission process giving rise to a step

up. Second, the contribution δGel is positive for every voltage, but it

decreases slightly at the phonon energy. Third, the emission term has no

abrupt onset because of the finite temperature.

As one can see in Fig. 17.3(b), the signature of the vibrational mode is

barely visible in the differential conductance and one has to resort to its

derivative to see it clearly, see Fig. 17.3(c). Of course, the order of mag-

nitude of the inelastic current depends primarily on the electron-phonon

coupling constant, λ, which we have chosen small in comparison with the

scattering rates to ensure the validity of the perturbative approach. On the

other hand, notice that d2I/dV 2 exhibits a linear background, typically

seen in the experiments, which is due to the contribution of the elastic

current, which contains a tiny cubic term (∝ V 3).

The model also describes the crossover between the two situations just

described, as we illustrate in Fig. 17.4. In this example, we have kept

constant the values of the scattering ΓL = ΓR = 10�ω (symmetric junction)

and changed the level position. As one can see in this figure, the vibrational
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Fig. 17.3 Results of the single-phonon model for a low transmissive contact: ε0 −
EF = 80�ω, λ = 2�ω, ΓL = ΓR = 10�ω and kBT = 0.05�ω. (a) Elastic (δGel),
inelastic (δGinel) and total (δG = δGel+δGinel) conductance corrections versus voltage.
(b) Corresponding total conductance and elastic conductance versus voltage. (c) The
corresponding d2I/dV 2.

signature in d2I/dV 2 evolves from dip in an on-resonant situation to a peak

in an off-resonant case. It is also worth stressing that the crossing point of

this transition occurs exactly at an (elastic) transmission equal to 0.5.

It is possible to get an analytical insight into the previous results by

assuming that the elastic transmission is energy-independent. This is a

good approximation in two cases: (i) when the coupling to the leads is so

strong that the broadening of the resonant level (ΓL + ΓR) is much larger

than �ω, eV and |EF − ε0| or (ii) when the resonant level is far away from

the Fermi energy, i.e. |ε0 − EF| � ΓL,R, eV, �ω. As we have shown in sec-

tion 8.2.1, under this assumption, one can prove that the zero-temperature

conductance for a symmetric contact (ΓL = ΓR = Γ) exhibits a jump at

eV = ±�ω given by (λ2/Γ2)τ2(1 − 2τ)/4, where τ is the transmission of

the contact. This result suggests that in a symmetric situation the con-

ductance shows a step down for τ > 1/2 and a step down for τ < 1/2,

while the signature vanishes for τ = 1/2. This result, which has been

coined as the 1/2 rule, was first derived by Paulsson et al. [736] using the

model that we are discussing and by de la Vega et al. [737] using an al-

ternative model. Both models differ in the exact transmission dependence

of the conductance jump, but both of them predict a crossover at exactly
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Fig. 17.4 Results of the single-phonon model for the crossover between PCS and IETS:
λ = 2�ω, ΓL = ΓR = 10�ω and kBT = 0.05�ω. Second derivative of the current as a
function of the voltage for different values of the level position (measured with respect
to EF) as indicated in the different panels. We also indicate in the panels the value of
the zero-bias elastic conductance.

τ = 1/2. Moreover, one can show that while the phonon emission term

gives a contribution equal to +(λ2/Γ2)τ2/4 to the conductance jump, the

elastic correction gives a negative contribution equal to −(λ2/Γ2)τ3/2. No-

tice that this result suggests that for very low transparencies, and if one

is only interested in the signature at the phonon energy, the contribution

of the elastic correction can be ignored, which is usually done in the IETS

context.

With respect to the temperature dependence of the phonon signature,

Paulsson et al. [736] have shown that for a symmetric contact, and ignoring

the energy dependence of the elastic transmission, the full width at half

maximum (FWHM) of the peak in d2I/dV 2 is approximately 5.4kBT , i.e.

like in the standard IETS case [705].

Let us address now the typical situation realized in the STM contacts,

where there is a large asymmetry in the couplings between the molecule

and the surface and the molecule and the STM tip. In Fig. 17.5 we show

IET spectra for a junction in which ΓL = 10�ω and ΓR = 0.01ΓL. In

this figure the level position has been varied from a resonant case in panel

(a) to an off-resonant situation in panels (c) and (d). As one can see in
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and kBT = 0.05�ω. Second derivative of the current as a function of the voltage for
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the latter panels, the vibrational mode is manifested in the d2I/dV 2 as

a peak at the mode energy, as it is usually observed in most STM-IETS

experiments. Notice, however, that when the level is brought close to the

Fermi energy, the signature progressively changes into a dip, as it is shown

in panel (a). As we explained in section 16.2, a dip is sometimes observed in

STM experiments and these results nicely clarify the necessary conditions

for the observation of dips. The origin of this crossover is the same as for

symmetric junctions, i.e. the elastic correction gives a dominant negative

contribution in the resonant case, while the phonon emission dominates in

off-resonant situations leading to a peak in the spectra.

To our knowledge, Persson and Baratoff were the first to point out the

possibility of a decrease in the conductance of a molecule in a STM experi-

ment due to resonant tunneling [753]. The issue of peaks and dips observed,

in particular, in the STM experiments has been revisited by Galperin and

coworkers going beyond the LOE [748, 749]. More recently, Egger and

Gogolin have reported analytic results for the zero-temperature inelastic

current in a molecule within the LOE approximation [750]. They have es-

tablished the criteria for the sign change of the step in the conductance.

In particular, they have shown that this transition, in general, not only

depends on the transmission of the junction, but it is governed by essen-

tially all system parameters (scattering rates and level position), as we have

shown here.

The single-phonon model is able to describe in a unified manner the ba-
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Fig. 17.6 Phase diagram for the single-phonon level model discussed in this section
(inset) illustrating the sign of the conductance change at the onset of phonon emission.
At a given asymmetry factor α the elastic transmission τ has an upper bound τmax (solid
line), and the inelastic conductance change undergoes a sign change at τcrossover =
τmax/2 (dashed line). Reprinted with permission from [751]. Copyright 2008 by the
American Physical Society.

sic vibrational signatures observed in the experiments in which the electron-

phonon interaction is weak. We can summarize the results discussed so far

following Paulsson et al. [751] with the phase diagram of Fig. 17.6. This

diagram describes the parameter range in which an increase or decrease of

the conductance is expected due to the phonon mode. This diagram has

been constructed assuming that the transmission can be considered energy-

independent (see discussion above). The diagram is plotted for the ratio

of the coupling to the two leads α = ΓR/ΓL and the transmission τ at EF.

In this model the maximal transmission is τmax = 4α/(1 +α)2 correspond-

ing to the on-resonance case. Notice that the crossover from a decrease to

an increase in the conductance is given by the 1/2 rule [735–737], i.e. at

τcrossover = τmax/2.

So far, we have assumed that the phonon mode in this model is in ther-

mal equilibrium at the bath temperature. In principle, the current flow can

drive this mode out of the equilibrium creating a finite population even at

zero temperature (as long as eV > �ω). From a technical point of view, the

correct description of this nonequilibrium effect requires the evaluation of

the “phonon self-energies” that contain the information about the phonon

occupation and the phonon lifetime [748, 749]. This is a complicated task

that it is not easy to carry out in a consistent manner. For this reason



Vibrationally-induced inelastic current II: Theory 511

we will follow here Paulsson et al. [736] and describe this effect at a phe-

nomenological level. The simplest way to include non-equilibrium heating

is to write down a rate equation for the phonon occupation, n, including

an external damping rate γd of the phonons [736]

ṅ =
P

�ω
+ γd [nB(�ω)− n] , (17.3)

where P is the power dissipated into the phonon mode and nB is the

Bose function. The external damping can be due to either the interac-

tion with the phonons of the electrodes or the electron-phonon interaction

in the molecule. From this equation, the steady state occupation n is easily

found. To complete the calculation we need now an expression for both the

power and the current in terms of the nonequilibrium phonon occupation.

Assuming that the transmission is energy-independent and considering a

symmetric junction (ΓL = ΓR = Γ), Paulsson et al. [736] showed that these

quantities can be expressed within the LOE approximation as follows

PLOE = γeh�ω [nB(�ω)− n] +
γeh
4

π�

�ω
P , (17.4)

ILOE =
2e2

h
τV + eγeh

1− 2τ

4

π�

e�ω
ISym, (17.5)

where γeh = (ω/π)λ2τ2/Γ2 is the electron-hole damping rate.4 Here, P and

ISym are universal functions of the voltage, phonon frequency, temperature

and phonon occupation given by

P =
�ω

π�

[
cosh

(
eV
kBT

)
− 1

]
coth

(
�ω

2kBT

)
�ω − eV sinh

(
eV
kBT

)
cosh

(
�ω
kBT

)
− cosh

(
eV
kBT

) (17.6)

ISym =
2e

h

(
2eV n+

�ω − eV

e
�ω−eV
kBT − 1

− �ω + eV

e
�ω+eV
kBT − 1

)
. (17.7)

Eq. (17.5) reproduces the zero-temperature transmission dependence

of the conductance jump discussed above. However, there is a small dis-

crepancy between these two results, namely the zero-temperature inelastic

conductance in Eq. (17.5) vanishes for eV < �ω, while this is not the case

in the results presented above. The origin of this little difference is unclear

to us.

Eqs. (17.3)-(17.5) were used by Paulsson et al. in Ref. [736] to fit the

experimental results of Pt-H2 junctions [127, 567]. As one can see in
4There is difference of a factor 4 in the expression of γeh with respect to Ref. [736]

because of the different definition of the scattering rates.
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Fig. 17.7 Single level model [Eqs. (17.4) and (17.5)] fitted to the experimentally mea-
sured conductance through a deuterium molecule [567]. The parameters used for the
fit are �ω = 50 meV, τ = 0.9825, γeh = 1.1 × 1012 s−1, and T = 17 K. (b) A simple
model (see Ref. [736] for details) fitted to the measured conductance through an atomic
gold wire (experimental data from Ref. [732]). The fit yields the following parameters:
�ω = 13.8 meV, T = 10 K, γeh = 12 × 1010 s−1, and γd = 3γeh. Reprinted with
permission from [736]. Copyright 2005 by the American Physical Society.

Fig. 17.7(a), an excellent fit of the experimental data can be achieved by

using γeh and γd as adjustable parameters. The best fit was obtained using

a negligible external damping of the phonon mode (γd � γeh), which can

be understood physically from the mass difference between the hydrogen

molecule and the platinum atoms of the break-junction. The nonequilib-

rium occupation gives rise to the conductance slope that is seen in the

experiments for eV > �ω. This feature in absent in the model with ther-

malized phonons.

Using a similar single-phonon model designed for the atomic gold chains,

Paulsson et al. were also able to fit the experimental results of Ref. [732],

as one can see in Fig. 17.7(b). In this case the external damping γd =

3γeh is not negligible in contrast to the hydrogen case. This indicates that

presumably there is a strong interaction between the modes of the gold

chains and the phonons of the leads.

17.1.2 Ab initio description of inelastic currents

Although the simple model discussed in the previous section has proven to

be very useful, there are still many basic questions that are out of its scope.

Probably the most important one is related to the issue of the selection

or propensity rules. An understanding of the factors that determine why
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certain vibrational modes show up in transport experiments, while others

remain hidden, requires a microscopic modeling of the problem. In this

section we shall briefly review the work done in this direction in recent

years.

Probably the first ab initio calculations to investigate the inelastic cur-

rent through molecules were carried out by Lorente and Persson [754, 755].

They used a combination of DFT and Green’s function techniques to in-

terpret the STM experiments of Ho and coworkers [709, 756, 757]. In par-

ticular, Ref. [755] represents a first attempt to formulate propensity rules

for inelastic tunneling spectra. Since then, numerous authors have applied

microscopic methods to the description of vibrationally-induced inelastic

currents in molecular transport junctions with different levels of sophisti-

cation [202, 566, 751, 758–779].5 In what follows, we shall first formulate

the general problem of electron-phonon interaction in molecular junctions.

This will serve us to appreciate the ingredients that are required to calculate

vibrationally-induced inelastic currents. Then, we shall briefly comment on

the different approximations that have been put forward to perform these

calculations in realistic systems. Additionally, we shall describe the propen-

sity rules that have been derived so far and we shall show some examples

of the comparison between experiment and theory.6

17.1.2.1 Formulation of the problem

The general objective is to describe the effect of vibrations on the transport

through molecular junctions, when a voltage is applied. The coupled sys-

tem of electrons and vibrations in a molecular contact can be generically

modeled by the following Hamiltonian: H = He +Hvib +He−vib, where

He =
∑
ij

d†iHijdj

Hvib =
∑
α

�ωα

(
b†αbα + 1/2

)
He−vib =

∑
ij

∑
α

d†iλ
α
ijdj(b

†
α + bα). (17.8)

Here ωα are the vibrational frequencies, Hij = 〈i|H|j〉 are the matrix ele-

ments of the single-particle electronic Hamiltonian H in the atomic-orbital
5This list is by no means complete, but it should be easy to trace back from it the

whole relevant literature on this subject.
6What follows is more technical than usual and it is meant for the theoretical reader-

ship. The reader not interested in this theoretical discussion can jump directly to the
description of the propensity rules in section 17.1.2.4.
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basis {|i〉}, and λαij are the electron-vibration coupling constants. The index

i denotes collectively the atomic sites and orbitals, and α runs from 1 to

3Nvib, where Nvib is the number of atoms in the system, which are allowed

to vibrate. The creation and annihilation operators for vibrational modes

b†α and bα satisfy the bosonic commutation relation [bα,b
†
β ] = δαβ . The

electronic basis is in general non-orthogonal, with overlap matrix elements

Sij = 〈i|j〉. The calculation of the electronic structure of the junction, i.e.

the determination of the Hamiltonian He, is usually done within the DFT

framework (see Chapter 10) or with sophisticated tight-binding parameter-

izations (see Chapter 9).

In practice, the calculation of the vibrational modes is restricted to a

central region that includes the molecule and a small portion of the elec-

trodes. In principle, one should also describe how these central (or primary)

vibrations are coupled to the phonons in the electrodes. This is very dif-

ficult to do in a rigorous manner and such a coupling is usually taking

into account by means of a phenomenological parameter that enters as a

broadening in the density of states of the primary vibrations [695].

The solution of the inelastic transport problem involves a few rather

separate sub-problems: (i) the optimization of the geometry and evaluation

of the vibrational modes, (ii) computation of the electron-vibration coupling

constants and (iii) the calculation of the transport. Let us now discuss these

sub-problems in certain detail.

17.1.2.2 Vibrational modes and electron-vibration coupling con-

stants

The calculation of the vibrational modes requires knowledge of the total

ground-state energy of the system as a function E(�Rk) of the ionic coor-

dinates �Rk with k = 1, . . . , Nvib. This energy is usually determined in the

framework of DFT. This energy needs to be minimized in order to find

the equilibrium configuration { �R(0)
k }. Now consider small displacements

�Qk = �Rk − �R
(0)
k around the equilibrium positions. The Hamiltonian (in

first quantization) describing the oscillations of the ions around �R
(0)
k is

given in the harmonic approximation by

Hion =
1

2

∑
kμ

MkQ̇
2
kμ +

1

2

∑
kμ,lν

Hkμ,lνQkμQlν , (17.9)

where Mk are the ionic masses, μ, ν = x, y, z denote the Carte-

sian components of vectors and H is the Hessian matrix: Hkμ,lν =
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∂2E/∂Rkμ∂Rlν . This matrix can be diagonalized by the transformation

Qkμ =
∑3Nvib

α=1 Akμ,αqα, where qα are the normal coordinates. Thus, we

obtain Hion = 1
2

∑
α(q̇

2
α + ω2

αq
2
α), where ωα (α = 1, . . . , 3Nvib) are the

vibrational frequencies. The transformation matrix A is normalized ac-

cording to ATMA = 1, M being the diagonal mass matrix Mij = Miδij .

Using the canonical quantization prescription qα = (�/2ωα)
1/2 (b†α + bα)

and q̇α = i (�ωα/2)
1/2 (b†α − bα), one finally obtains Hvib in Eq. (17.8).

The electron-vibration interaction may be derived as follows [174, 202].

Assume that the electronic single-particle Hamiltonian H is a function

of the ionic coordinates, denoted collectively as �R. Then, we may ex-

pand H(�R(0) + �Q) ≈ H(�R(0)) +
∑

k
�Qk · �∇kH|�Q=0. Defining H′e =∑

ij d
†
i 〈i|H(�R(0) + �Q)|j〉dj , inserting the expansion, and using the canoni-

cal quantization for qα again, one finds H′e = He +He−vib. Here He and

He−vib are given by Eq. (17.8), with H being given by H(�R(0)) and the

electron-vibration coupling constants by

λαij =

(
�

2ωα

)1/2∑
kμ

Mkμ
ij Akμ,α, (17.10)

where Mkμ
ij = 〈i|∇kμH|�Q=0|j〉. From Eq. (17.10) one can see that the

calculation of the coupling constants requires to compute derivatives of the

Hamiltonian matrix elements with respect to the atomic position. Indeed,

since the employed basis sets are usually nonorthogonal, things are slightly

more complicated and the coupling constants are often calculated using the

ideas of Head-Gordon and Tully [780], see e.g. Ref. [775].

17.1.2.3 Inelastic current

The electric current is usually computed making use of the nonequilibrium

Green’s function (NEGF) techniques that we have described in Chapter 7.

In section 8.2 we derived the general current expression for an interacting

junction. As we explained there, there are indeed several possibilities for

this formula. Following Caroli et al. [209], we write the current as the sum

of two contributions, I = Iel + Iinel, where [see Eqs. (8.34)-(8.35)]7

Iel =
8e

h

∫ ∞

−∞
dE Tr [GrΓRG

aΓL] (fL − fR), (17.11)

7Here the current has been evaluated at the left interface. Let us recall that to compute
the current one first divides the system into three parts: the leads (L and R) and a central
region (C), which contains the molecule and part of the electrodes. The electron-phonon
interaction is assumed to be restricted to this central part.
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Iinel =
4ie

h

∫ ∞

−∞
dE Tr

{
GaΓLG

r
[
(fL − 1)Σ+−

e−vib − fLΣ
−+
e−vib

]}
,

where fL,R(E) = f(E − μL,R), f(E) = [1 + exp(βE)]−1 is the Fermi func-

tion and β = 1/kBT is the inverse temperature. Here, the full retarded

and advanced Green functions Gr,a are given by Gr = [ESCC − HCC

−Σr
L − Σr

R − Σr
e−vib]

−1 and Ga = [Gr]†. On the other hand, Σr,a
L,R are

the electronic self-energies that describe the electronic coupling between

the central region and the leads. The imaginary part of the advanced self-

energies are the corresponding scattering rate matrices, ΓL,R. The self-

energies Σr
e−vib and Σ±∓e−vib are due to the electron-vibration interaction in

the central region. Since they vanish in the absence of λα, we call the Iinel
part an “inelastic” current, while Iel is the “elastic” part.

Up to now the expression of the current is exact, but we must now spec-

ify an approximation for the electron-vibration self-energies. Most of the

realistic calculations done so far have been carried out within the lowest-

order expansion (LOE), which we already used in the single-phonon model

above [736, 202]. More accurate approximations, like the so-called self-

consistent Born approximation (SCBA), have also been used [763], but

this latter approximation is computationally very costly. In the LOE ap-

proximation the Green’s functions are expanded to second order in λα, i.e.

Gr = G̃r + G̃rΣr
e−vibG̃

r + · · · . In this way the elastic current is split into

two parts as Iel = I0el + δIel, where δIel is an “elastic correction”. We find

I0el =
8e

h

∫
dE Tr[G̃rΓRG̃

aΓL](fL − fR) (17.12)

δIel =
16e

h

∫
dE ReTr[ΓLG̃

rΣr
e−vibG̃

rΓRG
a](fL − fR)

Iinel =
4ie

h

∫
dE Tr{G̃aΓLG̃

r[(fL,R − 1)Σ+−
e−vib − fL,RΣ

−+
e−vib]}.

Notice that this division was also made in the analysis of the single-phonon

model. The expressions of the second-order self-energies can be found, for

instance, in Appendix C of Ref. [202], and they are natural extension of

those in Eq. (8.43). It is worth mentioning that within this approximation

one can rigorously prove the conservation of the current.

Even in the LOE, the current formulas [see Eqs. (17.12)] involve double

energy integrals which can be very cumbersome to evaluate. A further

simplification is achieved by assuming that the elastic transmission has no

pronounced energy dependence in the energy window where the vibrational

modes show up in the current. This approximation is not valid in the case
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where sharp resonances are present, but it turns out to be quite reasonable

in many situations of interest. With this assumption, the retarded and

advanced Green’s functions, as well as the scattering rates, can be evaluated

at the Fermi energy and some of the integrals can be done analytically,

which simplifies enormously the calculations. The detailed formulas for the

current within this approximation can be found in Refs. [736, 202].

Another important issue is the expression of the phonon occupation

that enters in the current formula via the electron-vibration self-energies.

The simplest approximation, which is fully consistent with the LOE, is to

assume that the phonons are in thermal equilibrium at the bath tempera-

ture. Heating effects, due to the nonequilibrium established at finite bias,

can be described in a various ways. For instance, as we explained for the

single-phonon model, the authors of Refs. [763, 736, 775] determine the

phonon occupation in a self-consistent manner by imposing that the power

transferred by electrons from the leads into to the device is balanced by the

power transferred from the device electrons to the phonons. Another phe-

nomenological way of introducing the nonequilibrium effects is discussed in

Ref. [777].

17.1.2.4 Propensity rules

One of the most surprising aspects revealed by the experiments is the fact

that only a small number out of the many possible vibrational modes gives

a signal in the transport characteristics. Motivated by this fact, many re-

searchers have employed the formalism detailed above, or variations of it,

to establish the rules that govern the contribution of a mode to the inelas-

tic signal. Let us emphasize that there are no strict selection rules like in

optical spectroscopies, but rather propensity rules. It is also worth remark-

ing that the contribution of a mode to the inelastic spectra does not only

depend on the symmetry of the mode itself, but also on the nature of the

orbitals that contribute to the current. In the search for these rules, some

general trends have been identified. For instance, the most significant con-

tributions typically come from modes with large longitudinal component,

i.e. motion along the tunneling direction [760, 766, 768]. On the other

hand, the calculations indicate a high sensitivity of the computed spectra

to the structure of the molecular bridge [760, 767, 768].

One of the most systematic studies of the propensity rules has been

carried out by Troisi and Ratner [765, 769, 770]. These authors have de-

veloped a simplified computational method that, although it does not allow
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them to compute the line shapes of the IET spectra, it provides a conve-

nient way to determine the intensities of the peaks in off-resonant situations.

More importantly, this appealing formulation has allowed the authors to

get a deeper insight into the propensity rules. With this approach, Troisi

and Ratner have again emphasized the importance of modes with large

component in the tunneling direction. Thus for instance, they have shown

that for a linear chain with one orbital per atom, only totally symmetric

modes contribute to IETS signal. For molecules with side chains any nor-

mal mode dominated by side chain motion will contribute only weakly to

IETS. The authors have also employed group theory to identify the main

normal modes for planar conjugated molecules with C2h symmetry.

Gagliardi et al. [776] have also presented a detailed study of the propen-

sity rules in the case of low-transmissive junctions, extending the work of

Troisi and Ratner. The approach of this work is based on the idea that

both the elastic and inelastic current can be expressed as the sum of a

small number of essentially noninteracting paths or conduction channels

through the device.

More recently, Paulsson et al. [751] have reported a method to determine

the propensity rules in junctions with arbitrary transparency (within the

weak electron-phonon coupling regime). Similar to Ref. [751], the key idea

in this work is to analyze the inelastic transport in terms of just a few

selected electronic scattering states, namely those belonging to the most

transmitting channels at the Fermi energy. These scattering states typically

have the largest amplitude inside the junction and thus account for the

majority of the electron-phonon scattering.

17.1.2.5 Quantitative comparison with experiments

The theory has been quite successful in reproducing the experimental in-

elastic spectra in the limit of weak electron-phonon interaction. By now,

there are many examples of satisfactory agreement between experiment and

theory. It is impossible review all these examples and here we shall just

mention a few illustrative cases.

One of the first comparisons was reported by Pecchia et al. [762],

who found reasonable agreement between their calculations on Au-

octanethiolate-Au junctions and the IETS results of Ref. [713]. Frederiksen

et al. [763] reported quantitative agreement between their calculation of the

IETS signal for atomic gold wires and experimental results [732]. These

authors found that the modes responsible for the inelastic signal are lon-
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Fig. 17.8 IET spectra of an anthracene thiol junction. The upper curve corresponds to
the experimental spectra and the lower curve to the computed one. Labels refer to the
normal modes of the molecule computed in the absence of metal and numbered from the
lowest energy vibration. Reprinted with permission from [718].

gitudinal ones with alternating bond length. Moreover, their calculations

showed the decrease in conductance with increase in the inelastic signal

and softening of the modes resulting from straining the wire. These cal-

culations were extended by Viljas et al. [202] who studied systematically

how the position and height of the conductance steps vary as a gold wire is

stretched and more atoms are added to it, and found good agreement with

the experiments.

Troisi and Ratner have applied their approach to several experimental

examples and they have found consistently a good agreement in all these

cases [765, 574, 718, 720]. In Fig. 17.8 we show a comparison between

theory and experiment for an anthracene thiol junction that was reported

in Ref. [718].

Another impressive example of agreement between theory and experi-

ment has been reported by Paulsson and coworkers [751]. These authors

studied very different model systems that range from atomic gold chains,

as an example of highly conductive junction, to off-resonant situations typ-

ically realized in STM-IETS experiments, see Fig. 17.9. The satisfactory

agreement with the experiment in these very different cases nicely illustrates

the level of understanding achieved in the weak electron-phonon coupling
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Fig. 17.9 Calculated (black lines) and experimental (blue lines) IETS. (a) OPE molecule
with Au(111) leads, (b) Au chain connected to Au(100) leads, (c) O2 molecule on
Ag(110), and (d) CO molecule on Cu(111). In case (c) the Fermi energy has been
shifted manually to match the experiment (dashed red line). The experimental data
originates from Refs. [712, 732, 711, 781]. For the STM configurations (c) and (d), the
calculated IETS is compared with a rescaled d2I/dV 2. Reprinted with permission from
[751]. Copyright 2008 by the American Physical Society.

regime. This agreement of the calculated and measured IET spectra makes

this spectroscopy, in combination with theory, a very useful diagnostic tool.

17.2 Intermediate electron-phonon coupling regime

The perturbative methodology discussed above describes correctly off-

resonant situations encountered in standard IETS experiments as well as

the resonant tunneling regime in cases where weak vibronic coupling re-

sults from strong electronic coupling to the leads (large electronic width

Γ) that ensures short electron lifetime on the bridge. The electronic trans-

port through a junction with a strong electron-phonon interaction is very

different from the weak coupling limit. Physically, in the course of the

transmission process the electron occupies the bridge long enough to affect

polarization of the bridge and its environment. In the ultimate limit of

this situation, decoherence and thermal relaxation are sufficient to render

the processes of bridge occupation and de-occupation, and often also trans-
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mission between different sites on the bridge, independent of each other.

This makes it possible to treat the transmission process as a sequence of

consecutive statistically decoupled kinetic events. In this section we want

to discuss intermediate situations where effects of transient polaron forma-

tion on the bridge have to be accommodated, however dephasing is not fast

enough to make a simple kinetic description possible.

In this intermediate regime, the LOE fails and new theoretical ap-

proaches are necessary. A strategy is to improve systematically the per-

turbation theory by including higher orders. Thus for instance, differ-

ent authors have used the self-consistent Born approximation (SCBA)

[746–749, 782]. In this case, the lowest-order Feynman diagrams taken

into account in the LOE are “dressed” by using the full Green’s functions.

Additionally, the description of the phonons can be improved by including

the corresponding phonon self-energies that describe the renormalization of

the phonon energies and their finite lifetimes. This method provides a way

to sum up certain diagrams up to infinite order, but it misses important

contributions of other high-order diagrams (vertex corrections). In this

sense, its validity is restricted to rather weak electron-phonon coupling.

In recent years, many other theoretical schemes have been introduced

to describe this intermediate regime [783, 785–791]. It is important to

emphasize that the application of all these methods has been restricted

to model Hamiltonians, in particular, to the single-phonon mode dis-

cussed above. Some of these works are based on the NEGF methodol-

ogy [783, 786–788, 790, 791] and others are based on an extension of the

equation-of-motion (EOM) method described in section 5.4.3 to include the

phonon dynamics [785, 789]. A central idea in most of these approaches is

the application of the polaron (or Lang-Firsov) transformation [792, 174] to

the single-phonon model. This transformation, which will be described be-

low, replaces the additive electron-phonon coupling [last term in Eq. (17.1)]

by a renormalization of the electronic coupling elements by phonon dis-

placement operators. The renormalized electronic coupling contains then

the effects of electron-phonon interaction to all orders and the transformed

Hamiltonian provides a more adequate starting point for situations where

the electron-phonon coupling is rather strong.

All the different approaches reported so far are approximate and the ex-

act description of vibrational effects for arbitrary strength of the electron-

phonon interaction, even ignoring electron-electron interaction, remains

as an open problem, at least in nonequilibrium situations. However, the

works mentioned above have been extremely useful to elucidate the essential
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Fig. 17.10 Differential conductance versus source-drain voltage calculated with the
EOM method applied to the single-phonon model of Eq. (17.1). The parameters have
the following values: ΓL = ΓR = 0.02 eV, T = 10 K, ε0 = 2 eV, �ω = 0.2 eV, and
λ = 0.01 eV. The solid line corresponds to the self-consistent result and the dashed line
to the zero-order result (see Ref. [789] for details). The inset shows a blow-up of the
phonon absorption peak that appears on the left of the main resonance. Reprinted with
permission from [789]. Copyright 2006 by the American Physical Society.

physics in the intermediate regime. In particular, these approaches nicely

describe the appearance of phonon sidebands, which is the main vibrational

signature in resonant situations (when the metal-molecule coupling is not

too strong). As an illustration, we reproduce in Fig. 17.10 results reported

by Galperin et al. [789]. These authors applied the EOM method to the

Holstein model of Eq. (17.1). In particular, Fig. 17.10 shows the differential

conductance as a function of the bias voltage for a set of parameter val-

ues that corresponds to the case of a relatively narrow electronic resonance

(see figure caption). The first thing to notice in this figure is the appear-

ance of a main conductance peak at (at ∼ 3.6 V). This is the usual elastic

peak that appears when the resonant level crosses the chemical potential

of one of the reservoirs. In the absence of electron-vibration coupling this

peak would appear at 4 eV in this example because the voltage was ap-

plied symmetrically. As one can see in Fig. 17.10, the position of the level

has been renormalized by the interaction with the vibrational mode. The

most important consequence of phonon-assisted resonant tunneling is the
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Fig. 17.11 Resonant inelastic tunneling processes in molecular junctions: (a) resonant
phonon emission and (b) resonant phonon absorption. This latter process does not have
a threshold voltage and it requires a finite occupation of the vibration modes due to a
finite temperature or to nonequilibrium phonon generation.

appearance of satellite peaks on the right hand side of the elastic peak.

Notice that these peaks are separated by a distance ∼ 2�ω/e. The factor 2

is again due to the choice of the voltage profile.

As we explained earlier, the fact that vibrations are in this case mani-

fested as peaks in the conductance, rather than peaks in d2I/dV 2, is simply

due to the fact that we are now dealing with a resonant situation. As shown

schematically in Fig. 17.11(a), the probability of the phonon emission tun-

neling process is greatly enhanced when the energy of an incoming electron

is such that by emitting a phonon it loses exactly the energy necessary

to cross the molecular level on resonance. This implies the appearance of

a peak in the differential conductance when the bias exceeds the voltage

necessary to see the resonant level in a quantity equal to �ω/e times a cor-

rection factor that accounts for the shift of the level due to the voltage (this

factor equals 2 in Fig. 17.10). This argument applies for a single-phonon

process. If the electron-phonon coupling is large enough, emission of sev-

eral vibrational quanta becomes possible and it results in the appearance of

additional peaks in the conductance separated in this example by a voltage

equal to ∼ 2�ω/e, see Fig. 17.10. It is important to emphasize that in order

to resolve such satellite vibronic peaks, both the electronic coupling (Γ) and

the thermal energy (kBT ) must be smaller than �ω, as in the example of

Fig. 17.10. Of course, at very low temperatures the voltage must be larger

than �ω/e for the emission process to happen at all.

Another remarkable feature in Fig. 17.10 is the appearance of an ad-

ditional peak at Φ ∼ 3.25 V (see inset). As we show schematically in

Fig. 17.11(b), the resonant absorption of phonon could lead in this case

to the appearance of a peak on the left side of the elastic one. However,
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at the temperature of the calculation, the probability to thermally excite

phonons is negligible. Therefore, such feature must be a result of the heat-

ing of the phonon subsystem by electron flux. In other words, it probably

originates from the absorption of nonequilibrium phonons generated by the

current flow. As we explained at the end of section 16.5, such nonequilib-

rium absorption peaks were reported by LeRoy and coworkers in tunneling

experiments with suspended carbon nanotubes [740, 741].

17.3 Strong electron-phonon coupling regime

The impact of the vibrations on the transport characteristics increases with

both the strength of the electron-phonon interaction and the time that elec-

trons reside in the molecule. The former factor is not easy to tune, while

the second one can be controlled via the length of the molecule or the

metal-molecule coupling. In particular, when the electronic coupling be-

tween the molecule and the electrodes is weak, as in the case of molecular

transistors, the electrons in the molecule have sufficient time to interact

strongly with vibrations leading to the polaron formation (a mixed state

in which an electron is “dressed” by a phonon cloud [174]). What compli-

cates the theoretical description of this strong coupling regime is the fact

that the vibronic effects coexist with strong electronic correlations due to

the Coulomb interaction. Thus, electron-phonon interaction and electron-

electron interaction must be described in an equal footing.8 In this section

we shall review the present status of the theoretical understanding of this

strong coupling regime, which is realized in molecular transistors. We have

divided the discussion into two main parts. First, we shall consider vi-

bronic effects in the Coulomb blockade regime and then, we shall focus in

the interplay between Kondo physics and electron-phonon interaction.

17.3.1 Coulomb blockade regime

Let us now consider the case in which a molecule is weakly coupled to

metallic electrodes so that the transport is dominated by the Coulomb

blockade effect. In this regime the coupling to vibrational degrees of free-

dom leads to the emergence of sidebands in the I-V characteristics. This

phenomenon, which we have already discussed in the previous section, was

8Notice that in the previous sections the electron-electron interaction was either ignored
or just described at a mean-field level.
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already described at the end of the 1980’s [794, 795]. In the context of

molecular transistors, Boese and Schoeller [796] were the first to analyze

vibronic effects in the Coulomb blockade regime. Motivated by the ex-

periments on C60 SMTs by Park et al. [22], these authors generalized the

many-body master equations described in section 15.5.1 to include vibronic

effects. Since then, many authors have used rate equations to study differ-

ent aspects of this problem, see e.g. Refs. [747, 797–807]. In what follows,

we shall first describe how this transport problem is formulated in terms of

rate equations and then, we shall briefly discuss some of the main physical

effects that have been predicted to occur in this regime.

The different formulations of rate (or master) equations differ only in

minor details and we have chosen to follow Ref. [747]. The starting point

is the single-phonon model (Holstein model) that we have extensively dis-

cussed in previous sections, but now with the inclusion of the electron-

electron interaction in the molecule. In this model, often referred to as

Anderson-Holstein model, the transport through the molecule is assumed

to be dominated by a single level of degeneracy dg with energy ε in the pres-

ence of one vibrational mode with frequency ω0. This system is described

by the Hamiltonian H = Hmol +Hleads +Ht, where
9

Hmol = εnd +
U

2
nd(nd − 1) + λ�ω0(b

† + b)nd + �ω0(b
†b+ 1/2),

Hleads =
∑

a=L,R

∑
p,σ

εpc
†
apσcapσ ,

Ht =
∑

a=L,R; i=1,dg

∑
p, σ

(
tac

†
apσdiσ + h.c.

)
. (17.13)

Here, Hmol describes the molecular degrees of freedom, Hleads the leads and

Ht the tunneling between the leads and the molecule. The Coulomb block-

ade is taken into account via the charging energy U . We focus on the regime

of strong Coulomb blockade, U → ∞, appropriate when eV, kBT � U . The

operator diσ (d†iσ) annihilates (creates) an electron with spin projection σ

on degenerate level i of the molecule and nd =
∑

i=1,dg; σ
d†iσdiσ denotes

the corresponding occupation-number operator. Similarly, capσ (c†apσ) an-
nihilates (creates) an electron in lead a (a = L,R) with momentum p and

spin projection σ. Notice that now the strength of the electron-phonon

interaction is measured in units of �ω0 and it is characterized by the di-

mensionless constant λ.

9Here, we ignore the dependence of the hopping integrals (ta) on the indexes i and p.
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It is convenient to choose a representation which is diagonal in the

molecule degrees of freedom. In the present model this is achieved via the

polaron or Lang-Firsov canonical transformation [792, 174]. Defining S =

λ(
∑

i,σ d
†
i,σdi,σ)

(
b† − b

)
and transforming all operators O via eSOe−S

leads to a transformed Hamiltonian H′ = H′mol +Hleads +H′t with

H′mol = ε′nd + �ω0(b̃
†b̃+ 1/2) +

Ũ

2
nd (nd − 1) (17.14)

H′t =
∑

a=L,R;i

∑
p,σ

(
taXc†apσdiσ + h.c.

)
, (17.15)

where the transformed phonon operator b̃ = b−λ∑i,σ d
†
iσdiσ, so that the

phonon ground state depends on the dot occupancy. Moreover ε′ = ε−λ2ω0

is the “polaron shift” in the energy for adding one electron to the molecule

and the interaction parameter U is also renormalized: Ũ = U − 2λ2�ω0.

This renormalization will not be important below, since we shall focus here

on the limit U → ∞. The crucial phonon renormalization of the electron-

lead coupling is given by

X = exp
[
−λ

(
b̃† − b̃

)]
. (17.16)

We are now in a position to write rate (master) equations for the

electron-phonon joint probabilities, which take the form10

Ṗn
q =

∑
a,q′

{
fa ((q − q′)�ω0 + U(n− 1)) Γa

q,q′P
(n−1)
q′

+ [1− fa ((q
′ − q)�ω0 + Un)] Γa

q,q′P
(n+1)
q′

− [1− fa ((q − q′)�ω0 + U(n− 1))] Γa
q′,qP

n
q

−fa ((q′ − q)�ω0 + Un) Γa
q′,qP

n
q

}
. (17.17)

Here, Pn
q is the probability to find the molecule with n electrons n (n =

0, · · · , 2dg) and q phonons, while fa(x) is a short form for the Fermi function

f(x+ ε′ − μa), μa being the chemical potential of lead a.

Thus, the rate for going from a state with n electrons and q phonons on

the molecule to a state with n− 1 electrons and q′ phonons is Wn→n−1
q→q′ =∑

a=L,R fa ((q − q′)�ω0 + U(n− 1)) Γa
q,q′ , where Γ

a
q′,q represents the transi-

tion rate involving hopping of an electron from the dot to lead a by chang-

ing the phonon occupancy from q (measured relative to the ground state

of H′mol with occupancy n) to q′ (measured relative to the ground state

10These equations are a straightforward generalization of those discussed in sections
15.4.4 and 15.5.1 in the absence of the electron-phonon interaction.
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of H′mol with occupancy n − 1). This rate is equal to the transition rate

involving hopping of an electron from the lead a to the dot by changing the

phonon occupancy from q (measured relative to the ground state of H′mol

with occupancy n− 1) to q′ (measured relative to the ground state of H′mol

with occupancy n). More explicitly

Γa
q′,q = Γa |〈q′|X|q〉|2 . (17.18)

The matrix elements 〈q′|X|q〉 are known as the Franck-Condon matrix ele-

ments because they also govern the transitions between different vibrational

states in molecular physics. They can be computed by standard methods

[174] and their absolute value |〈q|X |q′〉|2 ≡ X2
qq′ , which are symmetric un-

der interchange of q and q′, are given by (see Exercise 17.1)

X2
q<q′ =

∣∣∣∣∣
q∑

k=0

(−λ2)k(q!q′!)1/2λ|q−q′|e−λ2/2

(k)!(q − k)!(k + |q′ − q|)!

∣∣∣∣∣
2

. (17.19)

It is interesting to write down explicitly a few elements:

X0n = e−λ2/2 λ
n

√
n!

; X11 =
(
1− λ2

)
e−λ2/2 (17.20)

X21 =
√
2λ

(
1− λ2

2

)
e−λ2/2 ; X22 =

(
1− 2λ2 +

λ4

2

)
e−λ2/2.

Notice that for certain values of λ some of the matrix elements vanish.

This unusual behavior is an interference phenomenon. A state which has q

phonons excited above the ground state of the system with n = 0 electrons

is a superposition (with varying sign) of many multi-phonon states, when

viewed in the basis which diagonalizes the n = 1 electron problem, and

therefore the transition described by Xqq′ is really a superposition of many

different transitions, which for some values of λ may destructively interfere.

The current through the lead a in terms of the joint probability distri-

bution functions is given by

Ia =
∑
n,q,q′

(2dg − n)Pn
q fa ((q

′ − q)�ω0 + Un) Γa
q,q′ (17.21)

−(n+ 1)Pn+1
q [1− fa ((q − q′)�ω0 + Un)] Γa

q′,q,

where the sum on n is from 0 to (2dg − 1), 2dg being the maximum occu-

pation of the dot.

Eq. (17.17) describes the nonequilibrium dynamics of the molecular vi-

brations. We shall now discuss the opposite limit, of phonons equilibrated

to an independent heat bath, assumed to be at the same temperature as
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the leads. To implement this, one forces the probability distributions on

the right hand side of Eq. (17.17) to have the phonon-equilibrium form

Pn
q = Pne−q�ω0/kBT (1 − e−�ω0/kBT ). In the U → ∞ limit this Ansatz

implies that the probability P 0 that the molecule is empty is given by

P 0 =

∑
a,q,q′ Γ

a
q,q′e

−q�ω0/kBT f̄a,q,q′∑
a,q,q′ 2Γ

a
q,q′e−q′�ω0/kBT fa,q,q′ + Γa

q,q′e
−q�ω0/kBT f̄a,q,q′

, (17.22)

where f̄a,q,q′ = 1− fa ((q − q′)�ω0), fa,q,q′ = 1− f̄a,q,q′ and P
1 = 1− P 0.

For both equilibrated and unequilibrated cases the rate equations may

be written in the matrix form

Ṗ = M̂P. (17.23)

Therefore under steady state conditions (Ṗn = 0), the problem reduces to

finding the eigenvector corresponding to the zero eigenvalue of the matrix

M̂ , which is easy to do numerically.

Let us now turn to analysis of the results of this approach. In Fig. 17.12

we reproduce some results of Ref. [747] where the current is depicted as a

function of the source-drain voltage (Vsd = (μL−μR)/e). In these examples

the level position was assumed to be ε′ = 0, i.e. the electronic level is at

resonance at zero bias. The two panels in Fig. 17.12 correspond to two

different values of the gate voltage defined as Vg = (μL+μR)/e. The upper

panel corresponds to Vg = 0 (μL = −μR), while the lower one corresponds

to Vg = Vsd/2 (μR = 0). In both cases the results are shown for equilibrated

and unequilibrated phonons.

As one can see in Fig. 17.12, steps (broadened by the temperature)

in the current associated with “phonon sidebands” are observed when the

source-drain voltage passes through an integer multiple of the phonon fre-

quency. As we explained in the previous section, these steps originate from

resonant phonon emission processes. Notice that these I-V characteristics

reproduce the main features observed in the experiments in this regime,

see e.g. Fig. 15.16. In the linear response limit Vsd → 0 (not shown here),

as Vg is varied one finds one main step in the I-V curves. This is natural

since, as explained above, the appearance of phonon sidebands requires a

bias voltage larger than �ω0.

Fig. 17.12 also reveals that in some cases the current is larger for equili-

brated phonons than for the unequilibrated case. This is surprising because

one expects that in the unequilibrated case the phonons arrange themselves

so as to maximize the current. The authors of Ref. [747] attributed this

behavior to the special dependence of the Franck-Condon matrix elements

on the coupling constant λ.
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Fig. 17.12 Current (I) vs source-drain voltage Vsd for coupling constant λ = 1.0, �ω0 =
1 and kBT = 0.05. Upper panel is for Vg = 0.0, while lower panel is for Vg = Vsd/2, μR =
0. I is in units of ekBT/�. Reprinted with permission from [747]. Copyright 2004 by
the American Physical Society.

The steps in current may be conveniently parameterized by the height

(or the area, as the width is simply proportional to T ) of the corresponding

peaks Gmax in the differential conductance G = dI/dV . Ratios of peak

heights (or areas) provide a convenient experimental measure of whether the

phonons are in equilibrium. At low T , the equilibrium phonon distribution

corresponds to occupancy only of the n = 0 phonon state, so the n-th

sideband involves a transition from the 0 phonon to the n phonon state.

Therefore the ratios of the peak heights or areas are controlled by ratios of

|Xn0|2. In particular, Eqs. (17.20) and (17.21) imply that if μL = −μR and

kBT � �ω0,

Gn
max

G0
max

∣∣∣∣∣
eq

=
|Xn0|2
2|X00|2 =

λ2n

2(n!)
. (17.24)

This equation also gives a simple rule of thumb to estimate how many

phonon sidebands are expected for a given coupling constant λ. In particu-

lar, multiple steps arise only if λ is of the order of 1 or larger. Let us mention

that Sapmaz et al. [793] reported I-V characteristics of suspended single-

wall carbon nanotube quantum dots exhibiting a series of steps equally

spaced in voltage. These features were attributed to the excitation of the

stretching mode of the nanotubes. By comparing the I-V curves with the

model above for equilibrated phonons, a reasonable agreement was found
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with coupling constants of order unity.

Now that we have described the basic formalism, let us briefly discuss

some of the main physical effects that have been predicted in this regime:

Negative differential conductance (NDC).– It has been shown by several

authors that the interaction with vibronic degrees of freedom can lead to

negative differential conductance (NDC). This was first discussed by Boese

and Schoeller [796] and then by others [797, 801, 803, 804]. See in partic-

ular Ref. [804] for a detailed discussion of the conditions for the appearance

of NDC in this regime. This phenomenon has indeed been reported in

tunneling experiments with suspended carbon nanotubes [793].

Franck-Condon blockade.– When the electron-phonon interaction is very

strong, the Franck-Condon physics leads to a significant current suppres-

sion at low bias voltages, which has been termed as Franck-Condon (FC)

blockade [801, 805]. This phenomenon is illustrated in Fig. 17.13 where

we reproduce the results reported by Koch and von Oppen in Ref. [801].

This figure illustrates the strong dependence of the transport characteris-

tics on the electron-phonon coupling strength λ. In particular, Fig. 17.13(a)

shows the I-V curves for λ = 1 (intermediate coupling) and λ = 4 (strong

coupling), as obtained from the rate-equation approach. These results cor-

respond to ε′ = 0, i.e. the molecular single-particle level and the lead Fermi

energies are aligned at zero bias voltage. Notice that for λ = 1, the current

increases sharply due to resonant tunneling when switching on a small bias

voltage, and it exhibits the characteristic steps. In contrast, for λ = 4 the

current is significantly suppressed at low bias voltages.

The current suppression originates from the behavior of the FC matrix

elements determining the rates of phononic transitions q1 → q2. For weak

coupling, λ� 1, transitions mainly occur along the diagonal q1 → q1. For

intermediate coupling, λ ≈ 1, the distribution of transition rates becomes

wider, and transitions slightly off-diagonal are favored. For strong electron-

phonon coupling, λ � 1, the distribution widens considerably and a gap

of exponentially suppressed transitions between low-lying phonon states

opens, see Fig. 17.13(b). Finally, let us mention that the observation of

FC blockade has recently been reported in the context of suspended carbon

nanotube quantum dots [808].

Pair-tunneling.– The coupling to molecular vibrations induces a polaron

shift and can lead to a negative effective charging energy. In this case a

ground state with even number of electrons is favored. Moreover, the charge

transport through such molecules can be dominated by tunneling of electron

pairs and the I-V characteristics can exhibit striking differences from the
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Fig. 17.13 (a) I-V characteristics for intermediate (λ = 1) and strong (λ = 4) electron-
phonon coupling for ε′ = 0 and kBT = 0.05�ω0 for equilibrated and unequilibrated
phonons. The strong electron-phonon coupling leads to a significant current suppres-
sion at low bias voltages. This Franck-Condon blockade arises from the behavior of the
Franck-Condon rates for phonon transitions q1 → q2 plotted in (b). The rates Γq1q2 ,
shown for λ = 1 (left) and λ = 4 (right), are given in units of the ordinary electronic
coupling Γ (here a symmetric junction is considered). For strong electron-phonon cou-
pling, transitions between low-lying phonon states are exponentially suppressed. The
corresponding current suppression cannot be lifted by a gate voltage, which may serve
as a fingerprint of FC blockade. This is depicted in the plot of dI/dV in the V –Vg plane
for unequilibrated phonons with λ = 4 (c). The case of intermediate coupling with λ = 1
(d) is shown for comparison. Reprinted with permission from [801]. Copyright 2005 by
the American Physical Society.

conventional Coulomb blockade. For a discussion of this phenomenology,

see Ref. [809].

Absorption sidebands.– As we discussed in the previous section, the cur-

rent flow can drive the vibrational modes far out of thermal equilibrium,

which will, in turn, act back on the current. This can be reflected in the

transport, in particular, with the appearance of vibrational sidebands in

the differential conductance on the left side of the Coulomb peaks (for pos-

itive bias). This is due to resonant absorption of nonequilibrium phonons

generated by the current, see Fig. 17.11(b). This phenomenon, observed in

suspended nanotubes [740], has also been studied in the Coulomb blockade

regime, see Refs. [810, 811].

Vibrational nonequilibrium effects with multiple electronic states.– The

phenomena discussed above referred to a situation where the transport was
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assumed to be dominated by a single electronic molecular level. Härtle

et al. [812] have shown recently that if multiple electronic states of the

molecular bridge are involved in the transport, a number of additional vi-

bronic processes take place and they may have a profound influence on the

current-voltage characteristics.

To conclude this section, let us say that most of the theoretical investi-

gations on vibrational effects in the Coulomb blockade regime have so far

concentrated on model systems with only one vibrational mode. Only re-

cently, several groups have started to combine ab initio methods with rate

equations to investigate more realistic systems. Thus for instance, Chang

et al. [806] reported the calculation of various phonon overlaps and their

corresponding phonon emission probabilities for the problem of an elec-

tron tunneling onto and off of the fullerene-dimer molecular quantum dots

C72 and C140. In their approach, they do not assume that the vibrational

modes are identical for different charge states, as it is usually done. An-

other example along this direction is the work of Seldenthuis et al. [807]. In

this case, the authors have developed a method to calculate the vibrational

spectrum of a sizable molecule in the sequential tunneling regime, based

on DFT calculations to obtain the vibrational modes in a three-terminal

setup. This method takes the charge state and contact geometry of the

molecule into account and predicts the relative intensities of vibrational

excitations. In addition, transitions from excited to excited vibrational

state are accounted for by evaluating the Franck-Condon factors involving

several vibrational quanta. Thus, this method can predict qualitatively dif-

ferent behavior compared to calculations that only include transitions from

ground state to excited vibrational state.

17.3.2 Interplay of Kondo physics and vibronic effects

When the metal-molecule coupling is not too weak, high-order tunneling

processes become possible and their interplay with the Coulomb repulsion in

the molecules can lead to many-body phenomena like the Kondo effect (see

section 15.6.2). As we discussed in section 16.5, different experiments have

shown that the Kondo effect can coexist with vibronic effects. In this section

we shall present a brief discussion of the theoretical work done to clarify

the interplay between Kondo physics and electron-phonon interaction in

molecular junctions.

Since the Kondo effect is a coherent many-body phenomenon, one may

wonder under which circumstances this effect can survive in the presence of



Vibrationally-induced inelastic current II: Theory 533

vibrationally-induced inelastic scattering. This question has been answered

to a large extend by Cornaglia and coworkers in a series of papers [813–817].

These authors have applied the numerical renormalization group (NRG) to

the Anderson-Holstein model in order to study the ground state and linear

conductance for a broad range of parameters. They have found that at low

temperatures and weak electron-phonon coupling (2λ2�ω0 � U) the prop-

erties of the conductance can be explained in terms of the standard Kondo

model with renormalized parameters. In particular, the electron-phonon in-

teraction leads surprisingly to an increase of the Kondo temperature in this

regime. In the limit of strong electron-phonon interaction (2λ2�ω0 � U)

the problem can be mapped onto an anisotropic Kondo model where the

Kondo temperature decreases as λ increases [813].

Cornaglia et al. [817] also applied NRG to the Anderson-Holstein model

to explain the anomalous gate voltage dependence of the Kondo temper-

ature (TK) found by Yu et al. [664] in SMTs based on transition metal

complexes. They found that, as the frequency of the vibrational mode

decreases, an anomalous gate dependence of TK and of the transport prop-

erties emerges. This effect arises because soft vibrational modes in the

molecular transistor drive the system into a new regime where the charac-

teristic energy scales for spin and charge fluctuations are not related as in

the conventional theory of the Kondo effect.

As shown in section 16.5, the clearest signature of the coexistence of

Kondo physics and vibronic effects is the appearance of sidebands at the

vibrational energies in the differential conductance versus the bias voltage.

This is in clear contrast to what it is found the Coulomb blockade regime.

What does the theory say about this nonequilibrium effect? This is an

extremely challenging problem since, even in absence of electron-phonon

interaction, there is no exact description of the finite-bias Kondo effect. In

this context, we would like to mention the work of Paaske and Flensberg

[818] where this problem has been addressed. These authors studied the

Anderson-Holstein model for a very asymmetric contact (ΓL � ΓR) and

found that the nonlinear conductance exhibits Kondo sidebands located

at bias voltages equal to multiples of the vibrational frequency. Moreover,

due to selection rules, the side-peaks were found to have strong gate-voltage

dependences. An example of the results is shown in Fig. 17.14. The left

panel shows a gray-scale plot of ∂2I/∂V 2 as a function of bias-voltage V

and mean occupation number (gate voltage) N = CgVg/e. The right panel

shows three cuts revealing the side-band resonances on the flanks of the

central zero-bias resonance.
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Fig. 17.14 Left panel: ∂2I/∂V 2 vs. bias and gate voltage, for λ2 = 3, N(0)|tL|2 =
0.1�ω0, U = 16�ω0, and kBT = 0.01�ω0. The junction is considered to be very asym-
metric (ΓL � ΓR). Black/white indicates large negative/positive values. Right panel:
Conductance vs. bias voltage for three values of Vg corresponding to the vertical black
lines (a,b,c) in the upper panel. The lower curve (a) corresponds to the symmetric point
N = 1 − λ2

�ω0/EC . Reprinted with permission from [818]. Copyright 1999 by the
American Physical Society.

We conclude here our brief discussion of this transport regime by rec-

ommending Refs. [819–826] for further details on this problem.

17.4 Concluding remarks and open problems

Although we have discussed many different vibrationally-induced transport

phenomena in molecular junctions, it must be clear that our list is by no

means complete. For instance, we have not touched at all the dramatic

nonlinear effects that might appear due to a strong electron-phonon cou-

pling. It has been predicted by Galperin et al. [509] that the charging of

a molecular bridge (stabilized by the electron-phonon interaction) can lead

to a modification of the molecular geometry and in turn to effects like neg-

ative differential conductance, multistability and hysteresis. Such issues

have been addressed by several authors [827–829].

As we have seen in this chapter, the role of vibrations in the transport

through molecular junctions is one of the most studied topics in molecular

electronics. There several good reasons for that. On the one hand, as we

have shown throughout this chapter, the understanding of the vibrational

signatures in the transport characteristics is crucial for the detection of

internal modes of the junctions. In turn, the observation of these modes
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provides a valuable in situ characterization of the contacts. The modes

contain information not only about the presence of the molecule, which is

a non-trivial issue with most experimental techniques, but also about the

orientation of the molecule, its structure, the presence of defects and many

other aspects. On the other hand, molecular junctions provide an ideal

system to investigate new transport regimes where vibronic effects play an

essential role. In this sense, molecular transport junctions are becoming an

endless source of new physical phenomena.

The progress made in the last years in the understanding of vibronic

effects in molecular electronics is certainly remarkable. However, there are

still many challenges and basic open problems. Let us just mention a few of

them. From the experimental side, it would highly desirable to have more

IETS-like experiments with single-molecule junctions. Such experiments

could be very important to obtain structural information which could help

us to understand how the junctions are actually formed. In the context

of three-terminal devices, it would be interesting to characterize in more

detail the vibronic features in the Kondo regime. There are by now clear

predictions, for instance, about how the Kondo temperature is affected

by the electron-phonon interaction or about the gate dependence of the

Kondo sidebands at finite bias. These predictions await for experimental

confirmation.

The major open problem for the theory is the development of methods

that are able to interpolate between the different transport regimes that we

have discussed in this chapter. On the other hand, most theoretical models

avoid considering the back action produced by the excitation of vibration

modes. Such excitation, especially at high bias, may lead to structural

changes that can affect dramatically the transport properties. With respect

to the strong-coupling regime, little has done to describe microscopically

how the energy and coupling of the modes depend on the charge state of

the molecule. Of course, the description of the nonequilibrium “vibronic”

Kondo effect needs further investigation. Finally, irrespective of the trans-

port regime, more work is required to understand the role and signatures

of anharmonicity.

17.5 Exercises

17.1 Franck-Condon matrix elements: Show that the Franck-Condon matrix
elements in the Anderson-Holstein model are given by Eq. (17.19).
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17.2 Phonon sidebands in the Coulomb blockade regime: Solve the rate
equations both for equilibrated and unequilibrated phonons to reproduce the
results of Fig. 17.12. Using the parameters of the upper panel of Fig. 17.12,
compute the corresponding stability diagram.

17.3 Franck-Condon blockade: Use the rate-equation formalism described
in section 17.3.1 to study the Franck-Condon blockade in the regime of strong
electron-phonon coupling. In particular, solve the master equations for both
for equilibrated and unequilibrated phonons to compute the different transport
characteristics and reproduce the results of Fig. 17.13.



Chapter 18

The hopping regime and transport

through DNA molecules

In Chapters 15-17 we have discussed how the electronic transport is modi-

fied when the quantum coherence is partially destroyed by either Coulomb

correlations or the excitation of molecular vibrations. One of the central

subjects of this chapter will be the analysis of the charge transport in sit-

uations in which this coherence is completely lost. As we explained in

previous chapters, this incoherent regime is realized when the tunneling

traversal time is considerably larger that the time scales associated to the

inelastic interactions. Obviously, this becomes more likely as the length

of a molecular bridge increases. In the extreme case in which the inelas-

tic scattering time is much smaller than the tunneling time, the current

is transported by electrons that hop sequentially from one segment of the

molecule to another. For this reason this transport regime is also referred

to as the hopping regime.

In long molecules, especially in biological ones, there are additional

issues that should be considered when exploring the electronic transport

through them. Thus for instance, the environment (solvent, atmosphere,

etc.) in which the experiments are carried out plays a decisive role. In order

to illustrate these issues, we shall also discuss in this chapter the transport

through DNA molecules, which is one of the most emblematic and difficult

topics in the field of molecular electronics.

The two main goals described above will be addressed in the following

sections. First, we shall discuss in section 18.1 the characteristic signatures

of the hopping transport regime. Then, in section 18.2 we shall describe

some representative examples of experiments in which the hopping regime

has been realized. Finally, section 18.3 is devoted to a brief review of the

recent activities on the electronic transport through DNA-based molecular

junctions.
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Fig. 18.1 Schematic representation of the model discussed in text to describe the inco-
herent tunneling through a molecular junction. Here, N sites with the same energy are
connected via nearest-neighbor transfer rates kj,j±1. The continua on the left and right
correspond to the metallic states in the electrodes and ΔE is the activation energy.

18.1 Signatures of the hopping regime

The question that we want to address in this section is: How can we identify

the occurrence of the hopping regime in an experiment? As we saw in

Chapter 13, the coherent transport in off-resonant situations is manifested

in the linear conductance as an exponential dependence on the length of

the molecule and as an independence on the temperature. The hopping

regime is however characterized by the following two main signatures:

• The conductance decays linearly with the length of the molecular wire.

• The conductance depends exponentially on the temperature as

exp(−ΔE/kBT ), where ΔE is an activation energy that depends on

the system under study.

Following the spirit of this monograph, we now proceed to discuss a sim-

ple model that illustrates how these two signatures come about. The model

for a metal-molecule-metal junction, which is borrowed from the field of

electron transfer [830, 831], is schematically represented in Fig. 18.1. Here,

the molecular bridge has N sites (or states) and the incoherent tunneling

between them is described by the transfer rates ki,j (from state j to state

i).1 For the sake of simplicity, we assume that all the states in the wire have

the same energy, which differs by ΔE from the equilibrium Fermi energy

of the leads. The quantity ΔE, which is nothing but the injection energy,

plays here the role of an activation energy.

1We assume that only nearest-neighbor sites are directly connected, i.e. the only non-
zero rates are kj,j±1.
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In this model the current between sites j and j+1 is determined by the

occupations Pj and Pj+1 in those two sites as follows2

Ij = e (kj+1,jPj − kj,j+1Pj+1) . (18.1)

Assuming that the tunneling between the different sites is incoherent, the

occupations Pj fulfill then the following classical kinetic equations

Ṗ1 = −(k0,1 + k2,1)P1 + k1,0P0 + k1,2P2

... (18.2)

Ṗj = −(kj−1,j + kj+1,j)Pj + kj,j−1Pj−1 + kj,j+1Pj+1

...

ṖN = −(kN−1,N + kN+1,N )PN + kN,N−1PN−1 + kN,N+1PN+1,

where Ṗj stands for dPj/dt, P0 = fL and PN+1 = fR, fL,R being the

Fermi functions describing the electron occupations on the left and right

electrodes. We are interested in a stationary situation where Ṗj = 0. In

this case, the previous kinetic equations reduce to the following algebraic

equations

(k0,1 + k2,1)P1 = k1,0P0 + k1,2P2 (18.3)

...

(kj−1,j + kj+1,j)Pj = kj,j−1Pj−1 + kj,j+1Pj+1

...

(kN−1,N + kN+1,N )PN = kN,N−1PN−1 + kN,N+1PN+1.

As a further simplification, we assume that all the internal rates in the

bridge are equal: kj,j±1 = k. Moreover, the detailed balance condition

leads to the following relations for the rates involving the leads3

k1,0 = kLe
−(ΔE−eV )/kBT ; k0,1 = kL (18.4)

kN,N+1 = kRe
−ΔE/kBT ; kN+1,N = kR. (18.5)

Here, we have taken into account the influence in the activation energy, ΔE,

of the bias voltage, V , which we assume to be applied in the left electrode.
2The current is, of course, conserved and therefore, it is irrelevant where it is evaluated.
3In equilibrium the current must vanish and this leads to the relations: kj+1,jP

eq
j =

kj,j+1P
eq
j+1, known as detailed balance conditions. Here, P eq

j is the occupation probabil-

ity of the site j in equilibrium. Therefore, kj+1,j/kj,j+1 = P eq
j+1/P

eq
j = exp[−(Ej+1 −

Ej)/kBT ], if Ej+1 > Ej and 0 otherwise.



540 Molecular Electronics: An Introduction to Theory and Experiment

It is straightforward to solve Eqs. (18.3) and to show that the charge

current is given by (see Exercise 18.1)

I = e
e−ΔE/kBT

[1/kL + 1/kR + (N − 1)/k]
[eeV/kBT fL − fR]. (18.6)

Therefore, the corresponding linear conductance can be expressed as

G =
e2

kBT

e−ΔE/kBT

[1/kL + 1/kR + (N − 1)/k]
. (18.7)

Here, for the sake of simplicity, we have neglected the temperature depen-

dence coming from the Fermi functions of the leads.

From Eq. (18.7) one can deduce the two signatures described at the be-

ginning of this section. First, notice that the conductance decays linearly

with the number of sites (or incoherent segments) and therefore with the

length of the molecular bridge. This is nothing else but the classical Ohm’s

law, which is a consequence of the loss of quantum coherence. Notice that

if we ignore the activation process, the conductance simply adopts the stan-

dard expression of the conductance of a combination of resistors in series.4

On the other hand, the conductance depends exponentially on the tem-

perature, as in any thermally activated process. In our particular model,

this process takes place at the metal-molecule interfaces, but in general it

can occur at any point along the junction and there can even be several

activation centers with their corresponding activation energies.

It is worth stressing that this model just provides a simple argument to

understand the origin of the main signatures of the hopping regime, but one

cannot expect quantitative predictions from it. An important issue that this

model fails to describe is the transition from the coherent to the incoherent

regime as function of the temperature and the length of the molecular

bridge. Such transition, which is a key signature in the experiments (see

next section), has been described by several authors using, for instance,

the reduced density matrix formalism [830, 832–834]. In these models, the

dephasing and relaxation is provided by a generic thermal bath. For a

discussion on the unified description of coherent tunneling and the hopping

mechanism, see Ref. [835].

The problem with these simple bath models is that they do not shed light

on the microscopic origin of the loss of coherence. The main physical mech-

anism that makes the transport incoherent is believed to be the electron-

phonon interaction inside the molecular bridge. In particular, when the
4Here, the resistors are the two metal-molecule interfaces, with resistances

kBT/(e
2kL,R), and the N − 1 connections between the bridge sites, with a resistance

kBT/(e
2k) each.
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coupling between different segments of a molecule is weak, the charge car-

riers can be localized over a single or a few segments. In this case, the

molecule tends to change its conformation in order to lower its energy when

charged. This process is known as polaron formation. As explained in the

previous chapter, a polaron is a combination of a charge carrier and lo-

calized deformation. At room temperature, charge transport can be then

dominated by incoherent hopping of polarons along the molecule. Such

incoherent hopping gives rise to the exponential temperature dependence

described above, with an activation energy which is the polaron binding

energy.

The polaronic mechanism has been extensively studied in the context

of conduction in solids [836]. This mechanism plays a fundamental role, for

instance, in the conduction properties of organic materials used in organic

electronics. In principle, the polaronic effects in molecular junctions can

be described with an extension of the theoretical methods discussed in the

previous chapter. However, such an extension is not straightforward. In

practice, the polaron formation have mainly been analyzed with the help of

single-level models [509, 827, 837], and polaron hopping in long molecules

has typically been described using simple rate equations [838, 839]. For a

discussion on the difficulties in describing polaron formation and hopping

in molecular junctions and on recent advances in the treatment of this

problem, see Ref. [840] and references therein.

18.2 Hopping transport in molecular junctions: Experi-

mental examples

Experiments showing clear indications of the occurrence of hopping trans-

port are rather scarce, especially at the level of single molecules. The main

reason for this is the difficulty of measuring the temperature dependence

of the transport characteristics. In this section we shall review a couple of

representative examples in which the observation of hopping transport has

been claimed.

The observation of thermally activated transport in single-molecule

junctions was first claimed by Selzer et al. [841]. These authors

studied the transport through individual 1-nitro-2,5-di(phenylethynyl-4′-
mercapto)benzene molecules, see inset of Fig. 18.2(a), with gold electrodes

using the electromigration technique. In this experiment, I-V measurements

were taken at a temperature range of 13-296 K over a ±1 V bias range.
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(a) (b)

Fig. 18.2 (a) A set of I-V curves measured at different temperatures in Au-molecule-Au
junctions fabricated with the electromigration technique. The molecule is shown in the
upper inset, where a junction is schematically represented. (b) Arrhenius plots of Ln
current (amperes) versus inverse T (K−1) at different bias voltages showing a transition
in conductance from T -independent tunneling behavior at low T to a thermally activated
process at high T . The bias increment between curves is 0.1 V, and the bias of the lowest
curve is 0.1 V. The transition temperatures between coherent and incoherent behavior

are marked by the intersection between lines; see, for example, the arrow for 0.3 V.
Reprinted with permission from [841]. Copyright 2004 American Chemical Society.

A representative set of I-V curves for different temperatures is shown in

Fig. 18.2(a), where one can see that the current is quite sensitive to the

bath temperature. An Arrhenius plot for a typical junction is shown in

Fig. 18.2(b). Here, one can clearly see the transition from temperature-

independent behavior at low T , where the conduction is dominated by

coherent tunneling, to temperature-independent hopping behavior at high

T , where presumably the transport is incoherent (hopping regime).

As one can see in Fig. 18.2(b), the transition from coherent to inco-

herent behavior is shifted to lower temperatures with increasing bias. As

pointed out by the authors, there may be two complementary reasons for

this behavior. First, the activation energy ΔE for hopping decreases as

a function of bias. As the current in the hopping mechanism is propor-

tional to exp(−ΔE/kBT ), it is initiated at a lower bath temperature as

ΔE decreases. Second, due to heat dissipation, the effective temperature

of the molecule increases with bias, which can also induce a transition to

incoherent tunneling at a lower bath temperature.

Let us also mention that the activation energy at zero bias was found to

be 0.13 eV, which is probably too small to correspond to the injection energy

(distance between the Fermi energy and the closest molecular level) for
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Fig. 18.3 Measurements of the temperature dependence of the current in three-terminal
molecular junctions with sulfur end-functionalized tercyclohexylidenes. The different
curves correspond to four values of the source-drain voltage as denoted in the figures.
The panel (a) corresponds to a gate voltage of -1.0 V and the panel (b) to 1.0 V. The
solid lines represent the best fits to the resonant tunneling model (see text). Reprinted
with permission from [471]. Copyright 2006 American Chemical Society.

this molecule. This suggests that the rate-limiting process in the hopping

mechanism is not thermal population of electrons/holes from the electrodes

into the first hopping site, but rather an intramolecular hopping process

(along the molecule).

Although the evidence presented in Ref. [841] is rather convincing, one

cannot completely exclude an interpretation of the data of Fig. 18.2 in terms

of coherent tunneling. As we explained in section 13.2, coherent tunneling

can also lead to a pronounced temperature dependence of the I-V charac-

teristics (see discussion below). This has been illustrated by Poot et al.

[471], who reported data similar to those of Fig. 18.2(b) in a three-terminal

device fabricated with the electromigration technique. In particular, these

authors investigated the gate and temperature dependence of the current

in molecular junctions containing sulfur end-functionalized tercyclohexyli-

denes. In Fig. 18.3 we reproduce some of the results of Ref. [471] in which

one can see the current as a function of temperature for four different bias

voltages at two gate voltages on a semilog scale. Notice that at low bias

the curves of Fig. 18.3 show thermally activated transport at high tem-

perature and temperature-independent transport at low temperature, i.e.,

very much like in Fig. 18.2(b). The crossover temperature is about 150

K in Fig. 18.3(a) and it decreases slightly as the bias is increased. The

slope of the exponential increase above this crossover temperature yields

and activation energy of 120 meV at low bias and this value decreases with

increasing bias.
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The authors of Ref. [471] use the simple resonant tunneling model de-

scribed in detail in section 13.2 to analyze their data. Let us recall that in

this model the temperature dependence comes from the Fermi distribution

function in the leads and that the current becomes temperature-dependent

when kBT is not too small in comparison with the injection energy (or level

position measured with respect to the Fermi energy), which is the case in

this experiment and in the previous one described above. As one can see

in Fig. 18.3, the authors were able to fit the experimental data with this

model using as adjustable parameters the level position, ε0, and the scatter-

ing rates ΓL and ΓR. It is important to remark that the two gate voltages

in Fig. 18.3 were far away from the degeneracy points, i.e. the transport is

not completely at resonance. In the fits, the values found for ε0 were very

similar to the activation energy mentioned above of 120 meV, which shows

the consistency of the fits. The total broadening of the level, Γ = ΓL +ΓR,

was found to be in the range from 0.1 to 5 meV and it increased with

increasing bias voltage.5 In addition, the ratio Γ/ε0 was found to range

between 10−3 and 10−2.6

The previous discussion shows that an unambiguous identification of

the hopping regime requires additional information beyond the tempera-

ture dependence of the current. As we explained in the previous section,

another key signature of the hopping regime is the linear decay of the con-

ductance/current with the length of the molecule. To our knowledge, this

signature, which is well-known in the context of electron transfer (see e.g.

Ref. [842]), has not yet been reported in single-molecule junctions. How-

ever, Choi et al. [843] have reported recently the transition from coherent

to hopping regime as a function of the molecular length in junctions based

on monolayers of conjugated oligophenyleneimine (OPI) molecules ranging

in length from 1.5 to 7.3 nm. The OPI wires were grown on a gold substrate

and contacted by a metal-coated AFM as a second electrode. In Fig. 18.4(a)

we reproduce the results of this experiment concerning the resistance (R)

versus molecular length (L) for a series of OPI molecules with different

numbers of phenyl units (n). As one can see, there is a clear transition of

the length dependence near 4 nm (OPI 5). In short wires, the linear fit in

Fig. 18.4(a) indicates that the data are well described with the standard

formula of coherent non-resonant tunneling: R = R0 exp(βL). The β value

5Here, Γ corresponds to the full width of the resonance at half maximum, while in
section 13.2 it represents the half width at half maximum.
6The temperature dependence of the current within the resonant tunneling model is

further discussed in Exercise 18.2.
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Fig. 18.4 Measurements of molecular wire resistance with a conducting probe AFM. A
gold coated tip was brought into contact with an OPI monolayer on a gold substrate.
(a) Semilog plot of R versus L for the gold/wire/gold junctions. Each data point is the
average differential resistance obtained from 10 I-V traces in the range -0.3 to +0.3 V.
Straight lines are linear fits to the data according to R = R0 exp(βL). The inset shows
a linear plot of R versus L, demonstrating linear scaling of resistance with length for the
long OPI wires. (b) Arrhenius plot for OPI 4, OPI 6, and OPI 10. Each data point is
the average differential resistance obtained at six different locations on samples in the
range -0.2 to +0.2 V. Straight lines are linear fits to the data. From [843]. Reprinted
with permission from AAAS.

was found to be 0.3 Å−1, which is within the range of β values of typical

conjugated molecules.

For long OPI wires, there is a much flatter resistance versus molecular

length relation (β ∼ 0.09 Å−1). The extremely small β suggests that the

principal transport mechanism is hopping. As one can see in the inset of

Fig. 18.4(a), a plot of R versus L for long wires is linear, which is consis-

tent with hopping. The change in transport mechanism was also verified

by the temperature dependence. Fig. 18.4(b) shows that the resistance

for OPI 4 is independent of temperature from 246 to 333 K, as expected

for non-resonant coherent tunneling. However, both OPI 6 and OPI 10

display the strongly thermally activated transport that is characteristic of

hopping. The activation energies determined from the slopes of the data

are identical at 0.28 eV for both OPI 6 and OPI 10. Concerning the ques-

tions on the nature of the hopping sites and the origin of this activation

energy, the authors suggested that three-repeat conjugated subunits are

the charge-hopping sites in the long wires and that the hopping activation

energy corresponds to the barrier for rotation of the aromatic rings, which

transiently couples the conjugated subunits.
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18.3 DNA-based molecular junctions

When the transport through a long molecule is investigated additional in-

gredients not discussed so far in this book, such as the presence of a solvent

or the interaction with a substrate, may play a decisive role. This is spe-

cially clear in the case of biological molecules, where these factors can affect

dramatically their conduction properties. In order to illustrate these ideas,

we shall discuss in this section the transport through DNA molecules.

The great interest in the DNA molecule as a possible component of

molecular electronic devices is due to its unique recognition and self-

assembling properties. These properties offer in principle the possibility

to build complex circuits with a bottom-up approach using this biological

molecule as a building block. Obviously, the understanding of the electron

transport in DNA molecules is a necessary prerequisite for the develop-

ment of a DNA-based molecular electronics [844–847]. For this reason, a

great effort has been devoted in the last 20 years to elucidate the transport

properties of this molecule. However, due to the complexity of DNA, there

are still many open questions in this subject. In this section, and taking

into account the scope of this book, we shall briefly review the experiments

in which the electronic transport through single DNA molecules has been

investigated. For the vast literature on multi-molecule measurements we

refer to the review articles by Porath, Cuniberti and Di Felice [848] and by

Endres, Cox, and Singh [849].

Let us remind that natural DNA consists of two long polymers of simple

units called nucleotides, with backbones made of sugars and phosphate

groups joined by ester bonds. Each of these strands is called single-stranded

DNA (ssDNA). These two strands form a double helix with the backbones

pointing outwards, the so-called double-stranded DNA (dsDNA). Attached

to each sugar is one of four types of molecules called bases: adenine (A),

cytosine (C), guanine (G) and thymine (T). Each type of base on one

strand forms a bond with just one type of base on the other strand. This is

called complementary base pairing or Watson-Crick pairing. In particular,

A binds only to T, while C binds only to G. This arrangement of two

nucleotides binding together across the double helix is called a base pair.

Double-stranded DNA exists in several conformations, among which the

B-conformation is the natural one, which is, however, only stable in aqueous

environment. In the B-conformation CG and AT pairs are stacked above

each other at a distance of 3.4 Å between each pair, see Fig. 18.5. Each

strand is stabilized by the backbone keeping the bases at this distance. In
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1 turn = 10 base pairs = 3.4 nm

major groove minor groove

2 nm

Fig. 18.5 Double helical structure of DNA in B-conformation. Taken from Wikipedia
Commons.

the B-conformation the long axis of neighboring base pairs are twisted with

respect to each other by an average angle of 36o such that 10 base pairs

make a full turn. This conformation is stabilized by water molecules and

other counter ions. In dry conditions (less than 5 H2O molecules per base

pair) the stable conformation is the so-called A-conformation that differs

from the B-conformation by an inclination of the base pairs with respect

to the molecule’s axis and a somewhat weaker twist [850].

With respect to the conduction mechanism in DNA, it is generally ac-

cepted that the electron transfer in DNA takes place via the overlap between

the π-orbitals of neighboring base pairs. This is similar to what happens

in certain stacked aromatic crystals, like the Beechgard salts, which are in-

deed metallic. This electron transfer mechanism in DNA suggests that the

base sequence can be very important since the π-system of the individual

bases may be different. Moreover, the conformation is important because

it determines the overlap between the base pairs. Finally, in order to have

a measurable electrical current in a DNA junction, it is crucial to make

sure that the π-system hybridizes strongly with the metallic states of the

electrodes.

Now, we turn to the discussion of the transport experiments in DNA-

based junctions. Let us start by summarizing the main findings. Most of

the transport measurements on single DNA molecules reported so far can be

divided into three classes. First, there are experiments showing that DNA

is an insulator for lengths larger than 40 nm at room temperature, with

essentially no discernible conductance up to 10 V. This suggests that the

electronic states of DNA are completely localized [851, 852]. Second, some



548 Molecular Electronics: An Introduction to Theory and Experiment

experiments show that it is possible to transport charge through short DNA

molecules of up to 20 nm with currents of the order of 1 nA at 1 V. This

suggests that short DNA pieces behave as large-bandgap semiconductors

[853, 854]. Third, some experiments show that if special care is taken to

tailor the interaction with the substrate and to provide good contacts to

the leads, semiconducting-like I-V characteristics with currents exceeding

200 nA at 1 V can be achieved even under ambient conditions [855].

It is worth remarking that there are several experiments that do not

fall into any of these three categories. Thus for instance, Fink and

Schönenberger [856] reported ohmic behavior in 16 μm-long DNA molecules

in experiments performed with a field-emission microscope. On the other

hand, Kasumov et al. [857] found the induction of proximity superconduc-

tivity in experiments where a peculiar contacting scheme was used (see

Chapter 3). This observation can only be explained if DNA turns out to

be a very good conductor.

Several experiments have been designed to elucidate the origin of the

discrepancies mentioned above. Thus for instance, both Kasumov et al.

[858] and Heim et al. [859] using a STM or a conducting AFM, respectively,

showed that the interaction between DNA and the underlying substrate

plays a fundamental role in the conduction properties of this molecule. Such

interaction turns out to be in some cases strong enough to deform the DNA

molecule and to induce conformational changes. These changes may be

responsible for the blocking of the current along the molecule, which results

in the insulating behavior observed in many experiments. The importance

of the molecule-substrate interaction have also been emphasized by several

groups in the case of different polymers [504, 860]. For DNA, it is known

that external forces can stabilize several helical conformations [861].

As mentioned above, the transport through DNA is expected to depend

on the exact base sequence. This has been nicely illustrated by Tao’s group

in experiments on short DNA pieces (eight GC base pairs plus a varying

number of AT base pairs) performed with the STM break junction tech-

nique in liquid environment [862]. These authors found qualitative differ-

ences between the transport mechanism for GC base pairs and AT ones, see

Fig. 18.6. The interpretation of this experiment is that coherent transport

would be possible through CG-only DNA, while the AT base pairs act as

tunneling barrier over which the transport takes place via incoherent hop-

ping from site to site. The reported sequence dependence is in agreement

with theoretical predictions [838, 863, 864].

It is interesting to mention at this point a related experiment by Giese
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Fig. 18.6 The left panels show conductance histograms of three DNA duplexes mea-
sured with the STM break-junction technique: (a) 5′-CGCGCGCG-3′-thiol linker, (b)
5′-CGCGATCGCG-3′-thiol linker, and (c) 5′-CGCGAATTCGCG-3′-thiol linker. (d)
Schematic illustration of a single DNA conductance measurement. (e) Natural loga-
rithm of GCGC(AT)mGCGC conductance vs. length (total number of base pairs). The
solid line is a linear fit that reflects the exponential dependence of the conductance on
length. (f) Conductance of (GC)n vs. 1/length (in total base pairs). Reprinted with
permission from [862]. Copyright 2004 American Chemical Society.

et al. [842], where the charge transfer rate in DNA molecules was measured.

Some of these results are shown in Fig. 18.7. As compared to the experi-

ment just described, Giese et al. found a weaker length dependence of the

transfer rates when several AT base pairs were inserted between CG base

pairs. These experiments showed the existence of two different processes for
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Fig. 18.7 Sequence dependence of the charge transfer in DNA. Plot of log(PGGG/PG)
(PGGG/PG is proportional to the charge transfer rates) against the number n of the AT
base pairs. Each experiment was performed three times, and their relative errors are
within ±10 − 20%. The steep line corresponds to the coherent superexchange charge
transfer (tunneling). The flat line is drawn in order to make clear the weak distance de-
pendence. The arrows in the depicted DNA strands indicate the superexchange charge
transfer between the guanine radical cation G+

22 and the GGG sequence for short dis-
tances (n = 2), or the hopping mechanism for long distances (n = 5), where - in addition
adenines act as charge carriers. For clarity, only the double strands with n = 2 and n = 5
are shown. The nucleotides in grey indicate all charge carriers. Reprinted by permission
from MacMillan Publishers Ltd: Nature [842], copyright 2001.

the hole transfer between guanines in DNA: (i) A coherent superexchange

reaction (single-step tunneling), where the bridging adenines are indirectly

affecting the transfer mechanism by mediating the electronic coupling be-

tween the guanines, and (ii) a thermally induced hopping process, where the

guanines oxidize the intervening adenine bases and directly involve them in

charge transport. The efficiency of the tunneling reaction decreases rapidly

with the number of the intervening AT base pairs, whereas the hopping

process is only slightly influenced by the number of the AT base pairs.

The discussion of these two experiments shows that one cannot talk

about a single transport mechanism in DNA. From these experiments it is

expected that CG-DNA could serve as a molecular wire. However, it has

been shown that longer DNA species with a percentage of CG pairs above

approximately 75% undergo a conformational change to the presumably

conductive quartet geometry (nicknamed G4-wires) [865]. Recent experi-

ments on G4 derivatives show an enhanced electrical polarizability, while

dsDNA oligomers appeared electrically “silent” in an equivalent experiment

[866]. This instability makes it difficult to investigate the sequence depen-
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dence of the transport mechanisms for longer molecules.

On the other hand, a lot of progress has been made in the last years

concerning the relation between electronic properties and the sequence by

using transverse scanning tunneling microscopy and spectroscopy [867, 868]

or theoretical modeling [869]. Thus for instance, Shapir et al. [867] showed

that GC and AT base pairs have very distinct I-V spectra. The authors of

Ref. [868] used this difference for developing a method for determining the

sequence of a DNA strand by measuring their electronic properties.

From the theory side, it has been predicted that a junction with a single

DNA (in B-form) should exhibit a non-monotonic behavior of the electrical

response as a function of its elongation [870]. This non-monotonic behav-

ior originates from a competition between a stretching and a de-twisting

process of the helical structure. To be precise, the elongation of a helix is

predicted to reduce the angle between neighboring base pairs, which results

in an enhancement of the overlap of the conducting orbitals. Simultane-

ously, the stretching enhances the distance and thus reduces the overlap

again.

An important characteristic of the DNA molecule is its remarkable

flexibility. It can be stretched in excess of 1.7 times its B-form length.

Single-molecule stretching experiments have shown that DNA undergoes a

pronounced and abrupt structural transformation to a yet unknown struc-

ture, which is elongated by more than 50% and called S-conformation [871].

This conformation is presumably associated with rotations of specific or-

bitals along the helix axis, in turn influencing the effective orbital overlap

between neighboring base pairs. Theoretical calculations indicate that this

pronounced conformational transition has a strong impact in the conduc-

tion properties of DNA molecules [872–874].

In summary, there are at least three important factors that influence

the conduction properties of single DNA molecules:

• The environment: The presence (or the absence) of a solvent plays a

key role. This is evident in the case of the most conductive form of

DNA, namely the B-conformation, which only exists in solution. On

the other hand, the interaction with an underlying substrate may give

rise to a conformational change, which in turn can modify dramatically

the transport properties of DNA-based junctions [858, 859].

• The contacting method: As usual, the metal-molecule interface plays a

very important role. In this sense, the highest currents through DNA

have been achieved with dithiolated molecules, i.e. with covalent bonds
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to gold electrodes at both ends of the molecules [855, 862]. Also, rel-

atively high currents have been measured through dsDNA molecules

covalently attached to single-walled carbon nanotubes (SWNT) [875]

and through duplex DNA coupled to SWNT electrodes via amide link-

ages [876].

• The sequence: The exact base sequence determines finally the level of

the current that can flow through DNA molecules [842, 862, 864]. In

particular, a sequence rich in CG pairs is expected to exhibit a higher

current.

18.4 Exercises

18.1 Length and temperature dependence of the conductance in the
hopping regime: Show that the conductance in the incoherent model of section
18.1 is given by Eq. (18.7). Hint: In order to learn how to solve Eq. (18.3),
consider first the case in which the molecular bridge is composed of only two
sites.

18.2 Activation-like temperature dependence in the resonant tunneling
model: The goal of this exercise is to show that an exponential dependence of the
current on temperature is also possible in the coherent regime. For this purpose,
use the resonant tunneling model of section 13.2 and compute the current as a
function of ε0/kBT for ΓL = ΓR = 0.005ε0 for several bias voltages: eV/ε0 =
0.1, 0.5, 1.0, 1.5, 2.0. Hint: The solution can be found in Fig. 3(a) of Ref. [471].



Chapter 19

Beyond electrical conductance: Shot

noise and thermal transport

In the previous chapters we have addressed the main transport regimes that

are realized in molecular junctions. In our discussion so far, we have fo-

cused our attention on the analysis of the electrical conductance. However,

there are many other transport properties that provide valuable informa-

tion, which often is not contained in the conductance. A paradigmatic ex-

ample is the current fluctuations or noise. Its investigation has contributed

decisively to our understanding of the transport mechanisms in a great va-

riety of mesoscopic and nanoscale devices [150]. On the other hand, the

charge transport is not the only important aspect in the context of conduc-

tion in molecular junctions. Thermal transport is also a key issue in the field

of molecular electronics from a fundamental as well as a from a practical

viewpoint. Molecular-scale contacts provide a new territory to study heat

conduction in regimes never explored before and, issues like heating will

have to be faced and understood, if molecular electronics wants to become

a viable technology. Obviously, the study of thermoelectric phenomena

in molecular junctions, resulting from the interplay between electrical and

thermal transport, can also give a new insight into the physics of these

nanocircuits.

For these reasons, we shall put aside the electrical conductance for a

while, and in this chapter we shall concentrate on the discussion of other

transport properties. To be precise, in section 19.1 we shall discuss the

basic physics of noise in molecular junctions and describe the first noise

experiments in this field. Then, we shall turn our attention to thermal

transport and in section 19.2 we shall present a detailed discussion of heat-

ing and heat conduction in molecular wires. Finally, section 19.3 is devoted

to the analysis of the thermopower, which is becoming a vital source of

novel information on molecular transport junctions.
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As in previous chapters, we shall present here both a discussion of the

basic concepts related to these transport properties as well as a review of

the work reported on this subject in recent years. In any case, we shall

concentrate on the analysis of aspects that have been already investigated

experimentally or that are likely to be investigated in the near future. Let

us also say that in some cases we have also included a brief description

of the corresponding phenomena in metallic atomic contacts, since these

systems often paved the way for a later analysis in the context of molecular

junctions.

19.1 Shot noise in atomic and molecular junctions

The electrical current through any conductor exhibits temporal fluctuations

(or noise). As it was already pointed out by Schottky in 1918 [877], when

all sources of spurious noise are eliminated, there remain two types of noise

in the electrical current, namely the thermal noise and the shot noise.

The thermal noise, which is also known as Johnson-Nyquist noise (after

the experimentalist [878] and the theorist [879] who investigated it), is

due to the thermal motion of the electrons and occurs in any conductor.

The nonequilibrium fluctuations known as shot noise are caused by the

discreteness of the charge of the carriers of the electrical current. We have

discussed this transport property within the scattering formalism in section

4.7 and for further details we recommend to the reader the excellent reviews

of Refs. [150, 155].

Noise is characterized by its spectral density or power spectrum P (ω),

which is the Fourier transform at frequency ω of the current-current corre-

lation function,

P (ω) = 2

∫ ∞

−∞
dt eiωt〈ΔI(t+ t0)ΔI(t0)〉. (19.1)

Here ΔI(t) denotes the time-dependent fluctuations in the current at a

given voltage V and temperature T. The brackets 〈· · · 〉 indicate an ensem-

ble average. Both thermal and shot noise have a white power spectrum, i.e.

the noise power does not depend on ω over a very wide frequency range.

Thermal noise (V = 0, T �= 0) is directly related to the conductance G by

the fluctuation-dissipation theorem [880],

P = 4kBTG, (19.2)

as long as �ω � kBT . Therefore, the thermal noise of a conductor does

not give any new information as compared to the conductance.
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Shot noise (V �= 0, T = 0) is more interesting, because it gives infor-

mation on the temporal correlation of the electrons, which is not contained

in the conductance. In devices such as tunnel junctions, Schottky bar-

rier diodes, p-n junctions, and thermionic vacuum diodes, the electrons

are transmitted randomly and independently of each other. The transfer of

electrons can be described by the Poisson statistics, which is used to analyze

events that are uncorrelated in time. For these devices the zero-frequency

shot noise has its maximum value

P = 2eI ≡ PPoisson , (19.3)

which is proportional to the time-averaged current I. Correlations suppress

the low-frequency shot noise below PPoisson. One source of correlations,

operative even for non-interacting electrons, is the Pauli principle, which

forbids multiple occupancy of the same single-particle state. A typical ex-

ample is a ballistic point contact in a metal, where P = 0 because the

stream of electrons is completely correlated by the Pauli principle in the

absence of scattering. In single-channel quantum point contacts, and in the

absence of inelastic scattering, shot noise is predicted to be suppressed by

a factor proportional to τ(1− τ), where τ is the transmission probability of

the conduction channel1 [881–883]. This quantum suppression was first ob-

served in point contact devices in a two-dimensional electron gas [884, 97].

For a general multichannel contact in the limit of very low temperatures

the shot noise power is predicted to be [883]

P = 2eV G0

∑
n

τn(1− τn), (19.4)

where G0 = 2e2/h is the quantum of conductance. For arbitrary tempera-

ture and voltage the noise is a mixture of thermal noise and shot noise and,

assuming that the transmission coefficients do not depend on energy, it is

given by Eq. (4.75), which we reproduce here2

P = 2G0

[
2kBT

∑
n

τ2n + eV coth

(
eV

2kBT

)∑
n

τn (1− τn)

]
. (19.5)

Since the shot noise depends on the sum over the second power of the

transmission coefficients, this quantity is independent of the conductance,

G = G0

∑
n τn, and the simultaneous measurement of these two quantities

1Throughout this chapter we shall denote the transmission as τ in order to avoid con-
fusions with the temperature.
2Here, we have taken into account the spin degeneracy that will be assumed in our

discussion throughout this section.
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Fig. 19.1 Noise measurements on Au atomic contacts using the MCBJ technique. The
symbols correspond to the measured excess noise values for 27 contacts at 4.2K with
a bias current of 0.9μA. The different lines show the calculations using Eq. (19.5) in
the case of one single partially transmitted channel (full curve) and for various amounts
of contributions of other modes according to the model described in the inset (dashed
curves). In the limit of zero conductance, these curves all converge to full shot noise,
i.e. 2.9 10−25 A2/Hz. Inset: transmission of modes in the case of x=10% contribution
from neighboring modes. Reprinted with permission from [885]. Copyright 1999 by the
American Physical Society.

should give information about the transmission coefficients of the contact.

The relevant quantity is conveniently expressed in terms of the Fano factor

F , which is the ratio of the shot noise to the noise that the same current

would produce in the classical Schottky limit,

F =
P

2eI
=

∑
n τn(1− τn)∑

n τn
. (19.6)

Shot noise in atomic-scale contacts was first measured by van den Brom

and J.M. van Ruitenbeek using the MCBJ technique [885]. The measure-

ments were conducted at low temperatures to reduce the thermal noise.

However, in these experiments the noise level of the pre-amplifiers in gen-

eral exceeds the shot noise to be measured. Using two sets of pre-amplifiers

in parallel and measuring the cross-correlation, this undesired noise is re-

duced. By subtracting the zero-bias thermal noise from the current-biased

noise measurements, the pre-amplifier noise, present in both, is further

eliminated. For currents up to 1 μA the shot noise level was found to

have the expected linear dependence on current. For further details on the

measurement technique, we refer to [885].

In Fig. 19.1 we show the results of Ref. [885] for the noise of gold atomic

contacts as a function of the conductance of the junctions. The measured

shot noise is given relative to the classical shot noise value 2eI. All data are
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Fig. 19.2 Noise measurements on Al atomic contacts using microfabricated MCBJs.
Symbols: measured average current noise power density 〈SI〉 and noise temperature T ∗,
defined as T ∗ = SI/4kBG, as a function of reduced voltage, for a contact in the normal
state at three different temperatures (from bottom to top: 20, 428, 765 mK). The solid
lines are the predictions of Eq. (19.5) for the set of transmissions {0.21,0.20,0.20} mea-
sured independently from the I-V in the superconducting state. (b) Symbols: measured
effective noise temperature T ∗ versus reduced voltage for four different contacts in the
normal state at T = 20 mK. The solid lines are predictions of Eq. (19.5) for the cor-
responding set of transmissions (from top to bottom: {0.21,0.20,0.20}, {0.40,0.27,0.03},
{0.68,0.25,0.22}, {0.996,0.26}. The dashed line is the Poisson limit. Reprinted with
permission from [98]. Copyright 2001 by the American Physical Society.

strongly suppressed compared to the full shot noise value, with minima close

to 1 and 2 times the conductance quantum. For contacts with conductance

below 1G0 the data are consistent with a single conduction channel having

a transmission probability τ = G/G0, as expected for this monovalent

metal. For larger contacts there is a tendency for the channels to open

one-by-one, but admixture of additional channels grows rapidly. There

is a very strong suppression, down to F = 0.02, for G = 1G0, which

unambiguously shows that the current is carried dominantly by a single

channel. It needs to be stressed that this holds for gold contacts. There is a

fundamental distinction between this monovalent metal and the multivalent

metal aluminum, which shows no systematic suppression of the shot noise

at multiples of the conductance quantum, and the Fano factors lie between

about 0.3 and 0.6 for G close to G0 [886].

Shot noise measurements by Cron et al. [98] have provided a very strin-

gent experimental test of the multichannel character of the electrical con-

duction in Al atomic contacts. In these experiments the set of transmis-

sions τn were first determined independently by the technique of fitting the

subgap structure in the superconducting state, discussed in section 11.4.
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The knowledge of the transmission coefficients allows a direct quantitative

comparison of the experimental results on the shot noise with the the-

oretical predictions of Eq. (19.5). The experiments were done using Al

nanofabricated break-junctions which exhibit a large mechanical stability.

The superconducting I-V curves for the smallest contacts were measured

below 1 K and then a magnetic field of 50 mT was applied in order to

switch into the normal state. The measured voltage dependence of the in-

trinsic current noise is shown in Fig. 19.2(a) for a typical contact in the

normal state at three different temperatures, together with the predictions

of Eq. (19.5), using the set of transmission coefficients measured indepen-

dently. The noise measured at the lowest temperature for four contacts

having different sets of transmission coefficients is shown in Fig. 19.2(b),

together with the predictions of the theory. This excellent agreement be-

tween theory and experiments provides an unambiguous demonstration of

the presence of several conduction channels in the smallest Al contacts and

serves as a test of the accuracy that can be obtained in the determination

of the τ ’s from the subgap structure in the superconducting I-V curve.

In the last years, van Ruitenbeek’s group has performed shot noise mea-

surements in highly conductive molecular junctions to determine the chan-

nel decomposition of the conductance. A first example was reported by

Djukic and van Ruitenbeek for the hydrogen molecule bridge [568]. In this

case, a Pt-H2 junction was adjusted so as to have a clear vibrational mode

signal, and the shot noise signal was measured for the same junction. An

example of this measurement is shown in Fig. 19.3. Although shot noise

generally does not allow determining the full set of transmission values,

one can obtain information from the property that the noise increases the

more channels are partially transmitted. The result of Fig. 19.3 for a junc-

tion with conductance G = 1.021G0 was fitted using two channels with

transmissions τ1 = 1.000 and τ2 = 0.021. In principle, the conductance in

this example can be redistributed over more than just two channels. How-

ever, when the transmission τ1 = 1.000 is broken up into more channels this

strongly increases the Fano factor. Thus, the only freedom is to redistribute

the transmission τ2 = 0.021 over two or more channels, that will all have a

very small contribution. Therefore, one can conclude that the conductance

is largely dominated by a single channel with nearly perfect transmission,

which was found to be a very robust result of these measurements. As we

explained in section 14.1.3, this result was decisive to discriminate between

the different possible geometries for the hydrogen bridge which had been

proposed theoretically.
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Fig. 19.3 Shot noise measurements in Pt-D2 break-junctions. The left panel shows the
point-contact spectroscopy (PCS) signal for this junction, with a clear vibrational mode
at 76 meV. The right panel shows the excess noise (the white noise in the current above
the thermal noise) as a function of the current. The noise is strongly suppressed below
the full Schottky noise for a tunnel junction. After each measurement of noise at a given
current, the PCS was measured again to verify that the contact had not changed. The
total conductance for this junction is G = 1.021G0, and the shot noise can be fitted with
two channels, τ1 = 1.000, and τ2 = 0.021, giving a Fano factor of F = 0.020. Adapted
with permission from [568]. Copyright 2006 American Chemical Society.

More recently, shot noise measurements have also been used to charac-

terize Pt-H2O-Pt junctions [735] and Pt-benzene-Pt junctions [473]. In the

former case, the noise results indicated that for conductance below 1G0

there are typically two conduction channels, although one clearly domi-

nates the transport. These results were very important to understand the

crossover between PCS and IETS and to test the so-called 1/2-rule (see

section 16.4). In the case of Pt-benzene junctions (see section 14.1.4),

the analysis of the shot noise results showed that for conductances around

1G0 (and also well below) several channels contribute significantly to the

transport, while when the conductance is reduced to 0.2G0, the number of

channels is eventually reduced to one. As opposed to Pt-H2O-Pt junctions,

in this case there is no dominant transmission channel when more than a

single channel exists. It was shown theoretically in same work [473] that

the number of channels is roughly determined by the number or carbon

atoms directly coupled to the Pt electrodes.

So far the shot noise measurements in molecular junctions have been

used to extract the channel transmissions in highly conductive junctions,

where the transport is supposed to be coherent. Notice that this applica-

tion is restricted to junctions with a high conductance, let us say above

0.1G0. Below that, the quadratic term in the transmission coefficients is

negligible and the shot noise becomes proportional to the conductance (i.e.
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linear in the transmission coefficients). Anyway, the shot noise can provide

very important information also in other transport regimes. For instance,

shot noise measurements in the Coulomb blockade regime [887, 888] or in

the Kondo regime [889] have been only reported very recently in the con-

texts of carbon nanotubes and semiconductor quantum dots. In this sense,

weakly coupled molecular junctions (molecular transistors) can be an ideal

playground to further explore the noise in these transport regimes.

On the other hand, the vibrational effects discussed in previous chap-

ters can be further investigated with the help of the noise. For instance,

it has been predicted that the Franck-Condon blockade (see section 17.3.1)

is characterized by remarkably large Fano factors (102-103 for realistic pa-

rameters), which arise due to avalanche-like transport of electrons [801].

The vibrationally-induced inelastic effects on noise properties of molec-

ular junctions in different transport regimes have been studied using NEGF

techniques by Zhu and Balatsky [784] and by Galperin and coworkers [890].3

Very recently, several theoretical groups have discussed the noise induced

by vibrations in the limit of weak electron-phonon coupling [891–893]. One

of the central issues of these papers was the discussion of the sign of the

inelastic noise as a function of the transmission, which is related to our dis-

cussion of the sign of the inelastic conductance in this regime (see section

16.4). The predictions of these papers could be in principle tested in the

type of experiments discussed above.

19.2 Heating and heat conduction

As mentioned in the introduction, so far we have only discussed the trans-

port of electrical charge in molecular junctions, but heat transport is also

very important for several reasons. From a practical point of view, the

understanding of heat generation in molecular contacts is crucial. When

an electrical current flows through a junction, there is an energy trans-

fer (Joule heating) from the electrons to the vibrations that might cause

a large temperature increase that in turn can affect the stability and in-

tegrity of molecular junctions. From a more fundamental point of view,

it is very exciting to investigate how the heat is conducted through the

tiniest circuits ever built, namely atomic-scale junctions. These structures

3The approach used in these two references has been criticized in Ref. [893], where it is
claimed that it misses vertex corrections even at the lowest order in the electron-phonon
interaction.
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have dimensions that are much smaller than the inelastic mean free path

for phonons, even at room temperature, and thus they offer the possibility

to study phonon transport (and their contribution to thermal conduction)

in a very special regime.

Heat generation and heat conduction are intimately connected. Indeed,

heat conduction is an essential ingredient in the balance of the processes

that determines local heat generation. For this reason, we have chosen to

organize this section in the following way. After some general comments

about the problem of describing heating and heat conduction in molec-

ular junctions, we shall briefly review the work done so far on thermal

conductance. Then, we shall discuss the issue of heat generation in molec-

ular junctions and, in particular, we shall describe the main experiments

reported to date on this topic.

The subject of thermal properties of molecular junctions is presently

dominated by the theory. The experiments are rather scarce due to the

difficulties of measuring thermal transport at the nanoscale (for a review

on this subject see Ref. [894]). Although it is a very interesting subject,

we shall not discuss here in depth the theoretical techniques to describe

heat transport in molecular junctions, and we shall merely point out the

main ideas and challenges. For a more detailed discussion on the theory,

see section 9 of Ref. [695].

19.2.1 General considerations

In general, both electrons and phonons contribute to the thermal transport

properties. In insulators heat is conducted by atomic vibrations, while in

metals electrons are the dominant carriers, at least at low temperatures.

In molecular junctions, both types of carriers exist and mutually interact.

Therefore, a complete description of the thermal transport in these systems

requires to take into account the energy transport due to both electrons

and phonons, as well as the energy exchange between them due to the

electron-phonon interaction. This problem is quite complicated and so far

no realistic calculations have been performed taking into account all the

ingredients mentioned above.

Even though practical applications can be difficult, a unified description

of both heat generation and heat transport is in principle possible within the

framework of the nonequilibrium Green’s function formalism (NEGF). This

formalism was first applied to thermal transport by Datta and coworkers

[895, 896] and it has been extended by several groups to treat different
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aspects of this problem [897–900].

The analysis of heat transport can be greatly simplified, in particu-

lar, when electrons and phonons can be considered separately (e.g. when

the electron-phonon interaction is negligible). For instance, in highly con-

ductive molecular junctions the low-temperature thermal conductance is

expected to be dominated by electrons. Assuming that the transport is co-

herent, the contribution of electrons can be computed within the scattering

formalism, as we have shown in section 4.8. In this case, the heat cur-

rent is simply determined by the (electronic) transmission coefficient and

it is given by Eq. (4.84). In this sense, it can be computed from the usual

methods for coherent transport like DFT-based ones.

In the case of junctions with a low electrical conductance, the dominant

contribution to thermal transport comes from phonons (or vibrations). Ig-

noring anharmonic effects and the electron-phonon interaction, the heat

current can be expressed in terms of a Landauer-like formula [901–903],

where the phonon transmission can be determined using Green’s function

techniques analogous to those of the corresponding electronic problem, see

e.g. Ref. [899].

19.2.2 Thermal conductance

We consider now the heat conduction through a molecular wire suspended

between two reservoirs characterized by different temperatures. In particu-

lar, we shall focus here on situations where the heat transfer is dominated by

phonons. The theoretical analysis of the transport of phonons and the cor-

responding thermal transport goes back to Peierls’ early work [904]. In the

recent years, it has become clear that the thermal properties of nanowires

can be very different from the corresponding bulk properties. For example,

Rego and Kirczenow [901] have shown theoretically that in the low temper-

ature ballistic regime, the phonon thermal conductance of one-dimensional

(1D) quantum wires is quantized in units of π2k2BT/3h, where T is the

temperature. This prediction was confirmed experimentally by Schwab et

al. [905] in a nanofabricated 1D structure, which behaves essentially like a

phonon waveguide.

An aspect that has attracted a lot of attention in the last decades is the

validity of the macroscopic Fourier law of heat conduction in 1D systems

[906–912]. The Fourier law is a relationship between the heat current J per
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unit area A and the temperature gradient ∇T
J/A = −K̃∇T, (19.7)

whereA is the cross-section area normal to the direction of heat propagation

and K̃ is the thermal conductivity (the thermal conductance K is defined

as K = J/∇T ). In spite of all the work on this subject, there is yet

no convincing and conclusive result about the validity of this law in 1D

systems.

Another aspect that has been the subject of recent discussions is the

possibility of having an asymmetry in the directionality of heat transfer.

Several authors have proposed both classical and quantum-mechanical mod-

els that exhibit heat rectification [913–918]. In these models, rectification

is usually associated with a non-linear (anharmonic) response.

From the experimental point of view, remarkable progress has been

made in the last decade in nanoscale thermometry, and measurements on

the scale of the mean free path of phonons and electrons are now possible.

Using scanning thermal microscopy methods one can obtain the spatial tem-

perature distribution of the sample surface, study local thermal properties

of materials, and perform calorimetry at nanometric scale [894, 919, 920].

These advances have allowed, for instance, studying the thermal transport

in single carbon nanotubes (see e.g. [921] and references therein) and es-

tablishing a quantitative comparison with the theory (see e.g. [922] and

references therein).

Experimental work on thermal transport in molecular junctions is how-

ever very limited. The first thermal conductance measurements that we

are aware of were reported by Wang et al. [923]. These authors studied

solid-solid junctions with an interfacial self-assembled monolayer (SAM). To

be precise, Au-SAM-GaAs junctions were made using alkanedithiol SAMs

and fabricated by nanotransfer printing. Measurements of thermal conduc-

tance were very robust and no thermal conductance dependence on alkane

chain length was observed. The thermal conductances using octanedithiol,

nonanedithiol, and decanedithiol SAMs at room temperature were found

to be 27.6 ± 2.9, 28.2 ± 1.8, and 25.6 ± 2.4 MW m−2 K−1, respectively.

The thermal conductance of an alkanedithiol SAM anchored to a gold

substrate was studied by ultrafast heating of the gold with a femtosecond

laser pulse in Ref. [924]. It was found that when the heat reached the methyl

groups at the chain ends, a nonlinear coherent vibrational spectroscopy

technique detected the resulting thermally induced disorder. The flow of

heat into the chains was limited by the interface conductance. The leading
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Fig. 19.4 Theoretical results for the heat transport coefficient (heat flux per unit T
difference between hot and cold bath) displayed as a function of alkane bridge length,
for a particular model of molecule-heat bath coupling at 50 K (full line), 300 K (dotted
line) and 1000 K (dashed line). Reprinted with permission from [903]. Copyright 2003,
American Institute of Physics.

edge of the heat burst traveled ballistically along the chains at a velocity

of 1 kilometer per second. The molecular conductance per chain was 50

pW/K.

The thermal conductance of alkane-based junctions was indeed ad-

dressed theoretically by Segal et al. [903] a few years before the realization

of the experiments mentioned above. These authors computed the phonon

contribution to the heat current, which should be the dominant one in these

low transmissive junctions. To be precise, they computed the heat flux for

a harmonic molecule characterized by a set of normal modes and coupled

through its end atoms to harmonic heat reservoirs. They have also per-

formed classical mechanics simulations in order to assess the role played by

anharmonicity. The general conclusions of this work are: (i) At room tem-

perature and below, molecular anharmonicity is not an important factor

in the heat transport properties of alkanes of length up to several tens of

carbon atoms. (ii) At room temperature, the efficiency of heat transport by

alkane chains decreases with chain size above 3-4 carbons, then saturates

and becomes length independent for moderate sizes of up to a few tens

of carbon atoms (this prediction agrees with the observations of Ref. [923]

mentioned above). (iii) At low temperature, the heat transport efficiency

increases with chain length. This is a quantum effect: at low temperatures

only low frequency modes can be populated and contribute to phonon trans-

port, however such modes are not supported by short molecules and become

available only in longer ones. In Fig. 19.4 we reproduce the results for the

thermal conductance of Segal et al. [903] that illustrate these conclusions.
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To conclude this discussion, let us simply say that the investigation of

heat transport in molecular junctions is still in its infancy both theoretically

and experimentally and this is one of the issues in which a lot of progress

is expected (and desired) in the next years.

19.2.3 Heating and junction temperature

In the context of thermal properties of molecular junctions, heating or heat

generation is the most studied aspect from the experimental point of view.

When an electrical current is driven through an atomic or molecular junc-

tion, there is a continuous energy transfer from the conduction electrons to

the vibrational degrees of freedom that, loosely speaking, tends to increase

the local temperature inside junction. This heating effect is partially allevi-

ated by the conduction out of the junction via phonon thermal conduction.

The balance between these two mechanisms determines the excess energy

that is deposited in the phonon subsystem.

This energy transfer is usually described in terms of an effective local

temperature. This is, of course, questionable since the system is out of

equilibrium and the phonon distribution can differ significantly from that

described by the Bose function. From a theoretical point of view, the ef-

fective temperature is sometimes defined by forcing the phonon occupation

to adopt the form of the Bose function with an effective temperature, Teff .

Other definitions have been introduced and for a detailed discussion of this

issue we refer to Refs. [894, 899].

From the experimental point of view, indirect information about the

local temperature is obtained by measuring temperature-dependent prop-

erties like the switching rate between two different configurations in atomic

sized contacts [925, 926], the fracture rate in atomic chains [927], the force

required to break a molecule-electrode bond [928] or the distance over which

molecular junctions can be stretched before breakdown [929]. The exper-

imental data on the current-induced local heating are typically analyzed

with the help of the theory of Todorov and coworkers [930, 267, 931]. This

theory provides a simple estimate for the voltage dependence of the local

effective temperature. In particular, it predicts that the temperature in the

center of a general ballistic nanoscale junction of length L at a voltage V

is given by

Teff = (T 4
0 + T 4

V )
1/4, (19.8)

where T0 is the ambient temperature and TV = γ
√
L|V |, where γ is a
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material-dependent parameter. For a typical metal contact, γ = 60 K

V−1/2 nm−1/2. This means that with L ≈ 2 nm and V = 1.5 V, TV ≈ 100

K. Three factors are taken into account in this estimate: (i) heating by

the electrons due to creation of phonons in the junction, (ii) cooling by the

electrons due to absorption of phonons, and (iii) cooling by the thermal

transport of energy away from the contact into the metal reservoirs.

Eq. (19.8) was experimentally tested by Smit et al. [927]. These authors

investigated the breaking mechanism of Au and Pt atomic chains as a func-

tion of the bias voltage. The chain breaking is a thermally activated process

and the fracture rate contains information about the bias-dependent local

temperature. An analysis of the data showed a reasonable agreement with

the predictions based on Eq. (19.8). From this analysis, the authors could

estimate the effective (lattice) temperature inside the atomic wire. It rises

in proportion to the square root of the bias voltage for sufficiently high bias,

and for a monatomic gold chain of length L = 1 nm at V = 1 V it reaches

a temperature of 60 K, which is well above the bath temperature of 4.2 K

in the experiments.

The derivation of Eq. (19.8) assumes a bulk T 3 law for heat capacity

of the contact, which is an approximation only valid for temperatures well

below the Debye temperature. Therefore, it should not be surprising to

find deviations from the square-root dependence of Eq. (19.8) at elevated

temperatures. In this respect, Tsutsui et al. [926] found the effective tem-

perature of Zn atomic-sized contacts at 77 K rises more rapidly with bias

than the
√
V dependence of Eq. (19.8).

In the case of molecular junctions, Tao’s group measured the local ef-

fective temperature. In this case, the authors studied the force required

to break Au-octanedithiol-Au junctions under finite bias. The breakdown

process is thermally activated, which can be used to extract the effective

temperature. The data could be roughly fitted with Eq. (19.8). It was

found that at a bias voltage of 1 V, the temperature of the junction is

raised ∼ 30 K above the ambient room temperature. Above this bias, the

molecular junctions become increasingly unstable.

In another work of Tao’s group, the effective temperature of single-

molecule (n-alkanedithiol) junctions due to current-induced local heating

was measured as a function of molecular length and applied bias voltage. In

this case the method was based on analyzing the average stretching length

over which a molecular junction can be stretched before breakdown, us-

ing the STM break-junction approach. By measuring the stretching length

as a function of stretching rate and temperature, the authors showed that
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the breakdown of the molecular junctions is thermally activated and the

dependence of the stretching length on temperature was used to extract

the effective temperature of single-molecule junctions. They reported the

following two notable findings. First, at a given bias, the local ionic heating

increases with decreasing molecular length, in agreement with the theoret-

ical predictions of Ref. [766] (see discussion below). Second, for a given

molecule, the effective local temperature first increases with bias, and then

decreases after reaching a maximum value at ∼ 0.8 V. This is in agreement

with a transport theory based on a hydrodynamic approach [933], which

predicts that effective cooling of the temperature at high biases can occur

due to electron-electron interaction with consequent local electron heating

at the junction.

In attempts to go beyond the simple estimate of Eq. (19.8), Di Ventra

and co-workers have reported quantitative calculations of the temperature

rise in realistic models of atomic and molecular junctions [766, 932, 934].

These calculations are based on a microscopic description of the heat gen-

eration, while the heat conduction is estimated via a simplified approach.

The following important observations based on these calculations have been

made: (i) For the same voltage, the temperature rise in a benzenedithiol

junction is considerably smaller than that of a gold wire of similar size

because of the larger conduction (therefore higher current) in the latter.

In absolute terms, the temperature rise is predicted to be about 15 and

130 K above ambient temperatures at a voltage bias of ∼ 1 V [932]. (ii)

In dithiolate alkane chains, the estimated temperature rise is a few tens

degrees at 0.5 V and depends on the chain length, see Fig. 19.5. The tem-

perature rise is smaller in longer chains characterized by smaller electrical

conduction [766], which is in agreement with the experimental results of

Ref. [929]. In this case, decreasing conduction with molecular lengths over-

shadows the less efficient heat dissipation in these systems. (iii) In contrast

to alkanes, in Al wires the temperature rise in current carrying wires is

more pronounced for longer chains [934]. In these good conductors the

balance between the length effects on conduction and heat dissipation is

tipped the opposite way from their molecular counterparts, because length

dependence of conduction is relatively weak.

The main difficulty in the calculation of the effective temperature is

the description of the energy transfer between the local vibrations and the

phonons in the reservoirs. Some progress has been made in the last years,

see e.g. Refs. [777, 935, 936], but the description of the phonon transport in

molecular junctions has not yet reached the level of sophistication achieved
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Fig. 19.5 Estimated junction temperature as a function of bias in alkane-dithiol junc-
tions of various chain lengths. Reprinted with permission from [766]. Copyright 2005
American Chemical Society.

for the electron transport problem.

Recently, new experimental methods have been introduced to study the

mechanisms of heating and heat dissipation induced by the flow of current

across a single molecule. For instance, in the context of STM experiments,

Schulze et al. [937] have used a method based on detecting the maximum

power that one molecule can sustain. In particular, these authors used

a low temperature STM to control the flow of electrons through a single

C60 molecule at an increasing rate until the molecule decomposes. By

comparing the power applied for decomposition of the molecule (Pdec) in

the tunneling regime and in contact with the STM tip, they found that

it depends significantly on two factors: (i) Pdec decreases when molecular

resonances participate in the transport, evidencing that they enhance the

heating; (ii) Pdec increases as the molecule is contacted to the source and

drain electrodes, revealing the heat dissipation by phonon coupling to the

leads. A good contact between the single-molecule device and the leads

is hence an important requirement for its operation under large current

densities.

Probably the most direct method to investigate local heating in molec-

ular junctions has been reported by Ioffe et al. [938]. These authors have

shown that the effective temperature of current-carrying junctions can be

monitored with surface-enhanced Raman spectroscopy (SERS) that in-

volves measuring both the Stokes and anti-Stokes components of the Ra-

man scattering. The ratio of these two components for each Raman active

vibrational mode gives direct information about its steady-state nonequi-

librium population. This ratio can be translated into a mode-specific effec-

tive temperature [939]. In Ref. [938], Ag-SAMBPDT-Ag junctions were

studied, where SAMBPDT stands for self-assembled monolayer of 4,4′-
biphenyldithiol. In Fig. 19.6 we reproduce the results of this work for
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Fig. 19.6 Measurements using surface enhanced Raman spectroscopy of the mode-
specific effective temperature [Teff (ν)] as a function of bias for two representative Ag-
SAMBPDT-Ag junctions. (a) Plot of Teff (ν) as a function of bias voltage for a mode
with 1,585 cm−1 (triangles) and 1,083 cm−1 (squares) modes (532 nm laser). (b) Plot of
Teff (ν) as a function of bias voltage for a mode with 1,585 cm−1 (triangles), 1,280 cm−1

(circles) and 1,083 cm−1 (squares) modes (671 nm laser). Reprinted by permission from
Macmillan Publishers Ltd: Nature Nanotechnology [938], copyright 2008.

the effective temperature of several modes as a function of the voltage for

two representative junctions. As one can see, the apparent dependence of

the effective temperature on the applied bias reveals two types of behavior:

(i) Between 0 and ∼ |0.2 V| in both polarities an apparent cooling process

is observed and (ii) at bias values higher than |0.2 V|, heating of the vibra-

tional modes takes place. As explained by the authors, these experimental

results reveal a rich heating/cooling behavior that is inexplicable using ex-

isting models. The calculations of the bias dependence of heat dissipation

in molecular junctions described above do not include the additional in-

termolecular dissipation channel prevailing in these monolayer junctions.

The explanation of these experimental results constitutes at the moment

an interesting open problem.

19.3 Thermoelectricity in molecular junctions

A property closely related to heat transport, namely the thermopower, has

recently received considerable attention and it deserves a separate discus-

sion. The thermopower (also called the Seebeck coefficient) of a material

is a measure of the magnitude of an induced thermoelectric voltage in re-

sponse to a temperature difference across that material.4 Classically, an

4A brief discussion of thermoelectric phenomena in nanocontacts, including the Seebeck
effect, can be found in section 4.8.
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applied temperature difference causes charged carriers in the material to

diffuse from the hot side to the cold side, similar to a gas that expands

when heated.

Mobile charged carriers migrating to the cold side leave behind their

oppositely charged and immobile nuclei at the hot side thus giving rise to

a thermoelectric voltage.5 Since a separation of charges also creates an

electric field, the build-up of charged carriers on the cold side eventually

ceases at some maximum value since there exists an equal amount of charge

carriers drifting back to the hot side as a result of the electric field at

equilibrium.

The thermopower of a (bulk) material, represented as S, depends on the

material temperature and crystal structure. Typically, metals have small

thermopower because most have half-filled bands. Electrons and holes both

contribute to the induced thermoelectric voltage thus canceling each other’s

contribution to that voltage and making it small. In contrast, semiconduc-

tors can be doped with an excess amount of electrons or holes and thus

can have large negative (for n-type materials) or positive values (for p-type

materials) of the thermopower depending on the charge of the excess carri-

ers. The sign of the thermopower can thus determine which charge carriers

dominate the electric transport in both metals and semiconductors. This is

one of the key ideas that makes the thermopower interesting for molecular

electronics.

If the temperature difference ΔT between the terminals of a junction

(or the two ends of a material) is small, then the thermopower of a material

is conventionally defined as6

S = −ΔV

ΔT
, (19.9)

where ΔV is the thermoelectric voltage seen at the terminals. In general,

there are two main contributions to the thermopower, namely an electronic

one and the contribution of phonons, the so-called phonon drag7 [940]. It

has been argued that for point contacts (and in general for nanoconstric-

5Thermoelectric refers to the fact that the voltage is created by a temperature differ-
ence.
6Strictly speaking, this expression is only approximate. The numerator should be the

difference in electrochemical potential divided by −e, not the electric potential, see
Eq. (4.79). However, the chemical potential is often relatively constant as a function of
temperature, so using electric potential alone is in these cases a very good approximation.
7Any thermal gradient gives rise to the transport of heat by the phonons, while an

electric current, though carried by the electrons, cannot fail to transfer some of its
momentum to the lattice vibration, and drag them along with it.
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tions), the phonon drag contribution to the thermopower becomes neg-

ligible [941], which simplifies enormously the theoretical analysis of this

property. As we have shown in section 4.8, if the transport is assumed to

be phase-coherent (no inelastic scattering), the electronic contribution to

the thermopower can be expressed in terms of the zero-bias transmission

function τ(E) as [160]

S =
1

eT

∫∞
−∞ (E − μ) τ(E) [∂f(E, T )/∂E]dE∫∞

−∞ τ(E) [∂f(E, T )/∂E]dE
, (19.10)

where f(E, T ) = {exp [(E − μ) /kBT ] + 1}−1
is the Fermi function and μ

the chemical potential with μ ≈ EF. From the numerator of Eq. (19.10), it

is evident that a non-vanishing thermopower requires a certain electron-hole

asymmetry in the transmission function. This asymmetry also determines

the sign of this transport property.

At low temperatures, the leading-order term in the Sommerfeld expan-

sion for the thermopower yields

S = −π
2k2BT

3e

τ ′(EF)

τ(EF)
, (19.11)

where the prime denotes derivative with respect to energy. Let us remind

that the linear conductance in this limit is given by G = G0τ(EF).

As the in the case of shot noise, experiments in metallic atomic-sized

contacts paved the way for the analysis of thermopower in molecular junc-

tions. In 1999 Ludoph and van Ruitenbeek reported the first thermopower

measurements in gold atomic contacts [942]. The principle of the measure-

ment is illustrated in the left panel of Fig. 19.7. By applying a constant

temperature difference over the contacts, the thermally induced potential

could be measured simultaneously with the conductance. In this experi-

ment, large thermopower values were obtained, which jump to new values

simultaneously with the jumps in the conductance. The values are ran-

domly distributed around zero with a roughly bell-shaped distribution, as

one can see in the right panel of Fig. 19.7. Negative values of the ther-

mopower are not expected in simple adiabatic models for point contacts

[161, 163, 943]. Ludoph and van Ruitenbeek proposed a convincing inter-

pretation in terms of coherent backscattering of the electrons with impu-

rities near the contact [942]. As a result of the interference of waves with

different path length, the transmission of the contact shows fluctuations as

a function of energy, which according to Eq. (19.10) lead to a finite ther-

mopower with a sign that can be either positive or negative. So in other
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Fig. 19.7 Left panel: Schematic diagram of the modified MCBJ configuration, used
for the simultaneous measurement of conductance and thermopower of metallic atomic
contacts. Right panel: Density plot of thermopower of gold atomic contacts against con-
ductance constructed from 220 breaking curves for for two samples. Black represents no
data points and white more than 100. Reprinted with permission from [942]. Copyright
1999 by the American Physical Society.

words, the thermopower signal was shown to be dominantly of the same

origin as the conductance fluctuations discussed in Chapter 11.

In the context of molecular junctions, Paulsson and Data stressed in

a theoretical study the importance of measuring the thermopower [944].

They showed that in molecular contacts this transport property is large

enough to be measured, it is rather insensitive to the detailed coupling

to the contacts and it provides valuable information about the position of

the Fermi energy relative to the molecular levels. Let us illustrate these

ideas with a simple model. Following Ref. [944], let us assume that the

transmission function exhibits a double-peak structure described by two

independent Lorentzian:

τ(E) =

2∑
i=1

4ΓLΓR

(E − εi)2 + (ΓL + ΓR)2
, (19.12)

were εi is the energy of the two levels, and ΓL and ΓR the broadenings

by contacts L and R. For simplicity, we assume here that the broadenings

are the same for both levels. Eq. (19.12) describes a typical situation that

is realized in many organic molecules where the two levels typically cor-

respond to the HOMO and LUMO of the molecule and the Fermi energy

lies somewhere between them. The transmission function of Eq. (19.12) is

illustrated in Fig. 19.8(a) for a case in which ε1 = −7 eV, ε2 = −3 eV and

two values of the broadenings, 100 and 30 meV, which are assumed to be

equal for both contacts. The exact value of the linear conductance depends
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Fig. 19.8 (a) Transmission as a function of the Fermi energy computed from Eq. (19.12).
The values of the parameter are: ε1 = −7 eV, ε2 = −3 eV and ΓL = ΓR = 100 meV
(solid line) and ΓL = ΓR = 30 meV (dashed line). (b) Corresponding thermopower as a
function of the Fermi energy calculated from Eqs. (19.12) and (19.11).

on the position of the Fermi level, which we leave as a free parameter. Us-

ing Eq. (19.11) one can compute the thermopower and the result is shown

in Fig. 19.8(b). Notice that depending on the position of the Fermi energy

with respect to molecular levels, the thermopower can be either positive or

negative. If EF is closer to the HOMO, the sign is positive and one talks

about hole-dominated transport. If at the contrary, the LUMO is closer

to EF, then the thermopower is negative and one has electron-dominated

transport. Notice also that the thermopower is in the range of μV/K (or

larger), like in the case of atomic contacts, and therefore it should be mea-

surable. Finally, when EF is not too close to one of the frontier orbitals,

the thermopower is very similar for the two cases shown in Fig. 19.8(b),

although the broadenings differ by a factor of three. Indeed, if the Fermi

energy is located between the HOMO and LUMO and far away from them,

it is easy to show from Eqs. (19.12) and (19.11) that, to first order, the

thermopower is independent of the metal-molecule coupling [944].

The first experiment measuring the thermopower in single-molecule

junctions was reported by Reddy et al. [101]. These authors used STM

break-junctions to trap molecules between two gold electrodes with a tem-

perature difference across them. In this way they were able to measure

the thermopower (or Seebeck coefficient) of 1,4-benzenedithiol (BDT), 4,4′-
dibenzenedithiol (DBDT), and 4,4′′-tribenzenedithiol (TBDT) in contact

with gold at room temperature and found the values +8.7 ± 2.1 μV/K,

+12.9 ± 2.2 μV/K, and +14.2 ± 3.2 μV/K, respectively. As explained

above, the positive sign indicates p-type (hole) conduction in these hetero-

junctions, i.e. the transport is dominated by the HOMO of the molecules.
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Fig. 19.9 Histograms obtained by analyzing approximately 1000 consecutive thermo-
electric voltage curves obtained in measurements of Au-BDT-Au junctions with tip-
substrate temperature differential (A) ΔT = 10 K, (B) ΔT = 20 K, and (C) ΔT = 30
K. a.u., arbitrary units. (D) Plot of the peak values of the thermoelectric voltage in his-
tograms as a function of the temperature differential. The error bars represent FWHM
of the corresponding histograms. It can be seen that the measured voltage varies linearly
with the temperature differential, as expected. (E) Plot of measured junction Seebeck
coefficient as a function of molecular length for BDT, DBDT, and TBDT. From [101].
Reprinted with permission from AAAS.

It was also observed that S grows roughly linearly with the number N of

the phenyl rings in the molecule. These results are illustrated in Fig. 19.9.

This pioneering experiment motivated new theoretical work on this sub-

ject. Thus for instance, Pauly et al. [546] presented an ab initio (DFT-

based) study of the thermopower in metal-molecule-metal junctions made

up of dithiolated oligophenylenes contacted to gold electrodes. It was found

that, in agreement with the experiment, the transport is dominated by

the HOMO of these molecules. Moreover, it was shown that while the

conductance decays exponentially with increasing molecular length, the

thermopower increases linearly as in the experiments of Ref. [101]. This

is illustrated in Fig. 19.10, where the conductance and thermopower for

oligophenylenes with up to 4 phenyl rings are shown in panel (c) and (d),

respectively. Notice that the transmission functions for these molecules, see

Fig. 19.10(a), resemble those obtained with the simple model of Eq. (19.12).
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Fig. 19.10 Ab initio calculations for the conductance and thermopower of dithiolated
oligophenylenes contacted to gold electrodes. N is the number of phenyl rings in the
molecules. (a,b) Transmission function and the negative of its logarithmic derivative.
(c,d) The corresponding conductance (G) and thermopower (S). The experimental data
in (d) are form Ref. [101]. The straight lines are the best fits to the numerical results.

Adapted with permission from [546]. Copyright 2008 by the American Physical Society.

As one can see in Fig. 19.10(b), there is a qualitative agreement with the ex-

perimental results which, taking into account the usual theory-experiment

disagreement for the conductance, is certainly encouraging.

Pauly et al. also explained in simple terms the origin of the linear

increase of the thermopower with the length of the molecules (see also

Ref. [945]). As mentioned above, the transport in oligophenylenes proceeds

through the tail of the HOMO and the off-resonant tunneling is reflected

in the typical exponential decay of the linear conductance: G/G0 ∼ e−βN ,

where N is the number of phenyl rings. This off-resonant transport is

the origin of the linear increase in the thermopower. The idea goes as

follows. Assuming that the transmission around E = EF is of the form

τ(E) = α(E)e−β(E)N , then Eq. (19.11) yields S = SC + βSN , where

SC = −π
2k2BT

3e
[lnα(EF)]

′ and βS =
π2k2BT

3e
β′(EF). (19.13)

It is important to notice that, while SC depends on the prefactor α(E), βS
does not. Since α(E) contains the most significant uncertainties related to

the contact geometries, one expects βS to be described at a higher level

of confidence than SC . This linear dependence of the thermopower on
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molecular length has also been obtained in model calculations [222].

Another interesting suggestion of the work of Pauly et al. [546] is the

idea that the thermopower can be tuned to a large extend by modifying

the molecules with the inclusion of appropriate side-groups. In particu-

lar, in that work the introduction of methyl groups in the oligophenylenes

molecules was shown to have a two-fold effect: (i) the substituents push the

energies of the π electrons up as a result of their electron-donating behav-

ior and (ii) they increase the tilt angles between the phenyl rings through

steric repulsion. The latter effect tends to decrease both G and S due to

a reduction of the degree of the π-electron delocalization, while the former

opposes this tendency by bringing the HOMO closer to EF, see Ref. [546]

for further details.

Indeed, thermopower measurements were used by Majumdar’s group

[102] to elucidate the role of side-groups on the electronic structure and

charge transport in molecular junctions. Again, this group used a STM

break-junction technique to study the thermopower of several benzene

derivatives. To be precise, 1,4-benzenedithiol (BDT) was modified by the

addition of electron-withdrawing or -donating groups such as fluorine, chlo-

rine, and methyl on the benzene ring. Moreover, the thiol end groups

on BDT were replaced by cyanide end groups. It was observed that the

thermopower of the molecular junction decreases for electron-withdrawing

substituents (fluorine and chlorine) and increases for electron-donating

substituents (methyl). The authors interpreted these results as follows.

Electron-withdrawing groups remove electron density from the σ-orbital

of the benzene ring allowing the rings high energy π-system to stabilize.

Because the HOMO has a largely π-character, its energy is therefore de-

creased, shifting it further away from EF. According to the simple model

discussed above, such a shift results obviously in a decrease of the ther-

mopower. Alternatively, the addition of electron-donating groups increases

the σ-orbital electron density in the benzene ring, leading to an increase

in the energy of the π-system and thereby shifting the HOMO closer to

EF. This shift causes in this case the enhancement of the thermopower.

Finally, let us say that cyanide end groups were found to radically change

transport relative to BDT. The thermopower in this case was found to be

negative, which indicates that transport in 1,4-benzenedicyanide is domi-

nated by the LUMO. For a recent theoretical study of thermopower of some

of these molecules, see Ref. [946].

In yet another experiment of Majumdar’s group, the alignment and cou-

pling of the molecular orbitals with the states in the metal contacts were
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Fig. 19.11 Measurements of the Seebeck coefficient vs. molecular length for N-unit
phenylenedithiols (N = 1, 2, 3), phenylenediamines (N = 1, 2, 3), and alkanedithiols
(N = 2, 3, 4, 5, 6, 8). Fit lines to the data indicate that thermopower increases with
length at a similar rate (βS) for phenylenediamines and phenylenedithiols but decreases
with length for alkanedithiols. Reprinted with permission from [947]. Copyright 2009
American Chemical Society.

investigated [947]. For this purpose, thermopower measurements were con-

ducted for a series of phenylenes and alkanes with varying binding groups.

As shown in Fig. 19.11, the thermopower increases linearly with length for

phenylenediames and phenylenedithiols while it decreases linearly in alka-

nedithiols. The comparison between the two phenylenes series suggests that

the molecular backbone determines the length dependence of S, while the

binding group determines the zero length or contact S. Notice that for

both thiol and amine end groups, the transport in phenylenes is dominated

by the HOMO. Analyzing the data in terms of the model of Eq. (19.12),

the authors concluded that for phenylenes the HOMO aligns closer to the

Fermi energy of the contacts as L−1, but becomes more decoupled from

them as e−L. Notice that this approximate behavior is reproduced by the

ab initio results for the phenylenedithiols shown in Fig. 19.10(a). There,

one can see that the HOMO shifts progressively towards the Fermi energy,

while the corresponding resonance becomes narrower. The shift of the level

can be traced back to the electronic structure of the isolated molecules. As

shown in Fig. 2 of Ref. [546], the HOMO of the molecules moves closer to

the gold Fermi energy as the number of phenyl rings increases.

The case of the alkanedithiols is more complicated to understand. As

shown in Eq. (19.13), the linear coefficient βS is determined by β′(EF),

i.e. the derivative with respect to energy of the attenuation factor β at
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the Fermi energy. As shown in section 13.4, one can use simple bridge

models to obtain an expression of the energy dependence of the β-factor.

Assuming off-resonant tunneling, we obtained in section 13.4 the expres-

sion of Eq. (13.15) for β. Such a simple model predicts that a positive

thermopower is accompanied by an increase with length. This explains the

trend for the phenylenes, but not for the alkanes.8 The authors of Ref. [947]

suggested an explanation of this peculiar behavior in terms of gold-sulfur

metal induced gap states residing between the HOMO and the LUMO. As

we mentioned in section 14.1.2, several theoretical groups have concluded

that the transport in alkanes can be influenced by states that originate from

the hybridization of gold and sulfur orbitals with localized orbitals of the

alkane chain [948–950]. Indeed, evidence of the existence of these states has

been reported in STM experiments [951]. These hybrid states are localized

at the interfaces and therefore, they are expected to have a major impact

on the conductance for short molecules, while for long ones the transport is

expected to be dominated by the HOMO of the alkane chains. The different

length dependence of the metal induced gap states and the HOMO of the

chains could be the origin of the decreasing thermopower [947].

As we already discussed in section 13.6, the transmission function of

a molecular contact can exhibit lineshapes that completely differ from the

double-peak structure shown in Fig. 19.8(a). One way to increase the ther-

mopower is by “engineering” a much more pronounced energy dependence

of the transmission function. As shown recently by Finch et al. [487], some

molecules can exhibit sharp Fano resonances very close to the Fermi energy

that in turn can lead to a huge thermopower in molecular junctions.

In the discussion so far we have focused on the thermopower in the co-

herent transport regime. However, this transport property can also provide

very valuable information in many other transport regimes. For instance,

Koch et al. [800] have shown theoretically that the thermopower of weakly

coupled molecular junctions can give access to the electronic and vibrational

excitation spectrum of the molecule even in a linear-response measurement.

To summarize, we have shown in this section that thermopower mea-

surements in molecular junctions provide very important information not

contained in the conductance. In this sense, we believe that measurements

of this thermoelectric property will play a crucial role in the immediate

future of molecular electronics.

8The simple bridge model of section 13.4 suggests that a decreasing S with length can
only be obtained when the transport is dominated by the LUMO and therefore, the
thermopower is negative.



Chapter 20

Optical properties of current-carrying

molecular junctions

We have discussed so far different ways of controlling the current through

a molecular junction such as gating or appropriate chemical synthesis. An-

other possibility is the use of an external electromagnetic field, which has

been widely explored in larger mesoscopic structures [214]. In addition to

controlling transport with external radiation, many other issues related to

the optical properties of molecular junctions are of interest and some of

them have been recently studied [211, 952]. In this sense, the goal of this

chapter is to discuss the physical phenomena that emerge as a result of the

interplay between current-carrying molecular junctions and an electromag-

netic field.

The optical properties of molecular transport junctions involve many

different aspects and it is certainly impossible to address all of them. Here,

we shall focus our attention on the topics related to the following funda-

mental questions:

(1) Is it possible to use conventional optical spectroscopies to characterize

molecular transport junctions?

(2) What is the effect of an electromagnetic radiation on molecular con-

duction?

(3) Can we use an external electromagnetic field to control the current or to

learn something about the electronic structure of molecular contacts?

(4) What are the new transport phenomena than can be expected in ac

driven molecular junctions?

(5) How does a molecular transport junction radiate?

(6) Different molecules have very peculiar and interesting optical proper-

ties. Can those molecules be used to design novel optoelectronic de-

vices?
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With those questions in mind, we have organized the rest of this chapter

as follows. First, we shall describe recent experiments in which molecu-

lar junctions have been characterized using surface-enhanced Raman spec-

troscopy. Then, we shall discuss the physical mechanisms that are expected

to play a major role in irradiated atomic and molecular junctions. In par-

ticular, we shall pay special attention to the so-called photon-assisted tun-

neling or current rectification.1 Section 20.4 presents a description of some

recent experimental results on the electronic transport through irradiated

atomic and molecular contacts. In section 20.5 we shall briefly discuss the

phenomenon of current amplification and other novel transport phenom-

ena that have been predicted to appear in ac driven molecular junctions.

Section 20.6 is devoted to the analysis of fluorescence of current carrying

junctions. Finally, in section 20.7 we shall review some of the experiments

in which the optical properties of certain molecules have been exploited to

design primitive molecular optoelectronic devices.

20.1 Surface-enhanced Raman spectroscopy of molecular

junctions

With respect to the first question posed above, it is obvious that combined

optical and transport experiments on molecular transport junctions could

reveal a wealth of additional information beyond that available from purely

electronic measurements. It is, however, very challenging to use conven-

tional optical spectroscopies to obtain local information about molecular

junctions. First of all, it is not easy to inject light into slits of molecu-

lar size between two metal leads and second, the molecular emission may

be strongly damped because of the proximity to a metal surface. Fortu-

nately, recent work has shown that surface-enhanced Raman spectroscopy

(SERS) can offer a way out of these problems [953–956]. The idea is based

on the fact that metallic nanostructures, similar to those used to form the

electrodes of molecular junctions, can act as effective plasmonic antennas,

leading to a dramatic enhancement of the electric field locally at the junc-

tion region (see e.g. Ref. [957]). This enhanced field can then be used to

perform Raman spectroscopy of objects placed in these nanogaps (for a

review on SERS, see e.g. Ref. [958]). This idea has been explored recently

in the context of molecular electronics, in particular, by Natelson’s group

1These two terms are sometimes believed to refer to two different physical mechanisms.
However, we shall show in section 20.3 that they are indeed identical.
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in two works that we now proceed to describe [955, 956].2

This group has performed a series of optical experiments in Au nanogap

structures prepared with the electromigration technique. The measure-

ments were made with a confocal Raman microscope with a 785 nm

diode laser at room temperature in air. The initial experiments of this

group examined nanogaps as a potential SERS substrate [955], with para-

mercaptoaniline (pMA) as the molecule of interest. Following electromi-

gration, the authors observed a SERS response strongly localized to the re-

sulting gaps. Successive spectra measured directly over the SERS hot-spot

revealed “blinking” and spectral diffusion, phenomena often associated with

single-or few-molecule Raman sensitivity. Blinking was observed to occur

when the Raman spectrum rapidly changed on the second timescale with

the amplitudes of different modes changing independently of one another.

Spectral shifts as large as ±20 cm−1 were observed, making it difficult

to directly compare SERS spectra with other published results. Blinking

and spectral shifts are attributed to movement or rearrangement of the

molecule relative to the metallic substrate. It is unlikely that an ensemble

of molecules would experience the same rearrangements synchronously and

thus blinking and wandering are expected to be observed only in situations

where a few molecules are probed.

In a second experiment, the same group performed simultaneous SERS

and transport measurements [956], including Raman microscope observa-

tions over the center of nanogap devices during electromigration. The

molecules of interest, pMA or a fluorinated oligomer (FOPE), were as-

sembled on the Au surface prior to electromigration. It was observed that

once the resistance exceeds approximately 1 kΩ, SERS can be seen. This

indicates that localized plasmon modes responsible for the large SERS en-

hancements may now be excited. As the gap further migrates the SERS

response was seen to scale logarithmically with the device resistance until

the resistance reaches approximately 1 MΩ. In most samples the Raman re-

sponse and conduction of the nanogap became decoupled at this point with

the conduction typically changing little while uncorrelated Raman blinking

occurred.

In some devices, however, the Raman response and conduction showed

very strong temporal correlations. A typical correlated SERS time spec-

trum and conductance measurement for a FOPE device are presented in

Fig. 20.1. The temporal correlations between SERS and conduction are

2These experiments have been reviewed by the authors in Ref. [607].
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Fig. 20.1 The upper panel shows the Raman spectrum (1 s integration) for a single
FOPE molecule in a gold junction formed by electromigration. The lower panel shows
the correlated measurement of the conductance of this junction. The Raman mode ob-
served between 1950 and 2122 cm−1 is believed to be for the same 2122 cm−1 mode
associated with the C≡C stretch of the FOPE molecule. The large spectral shifts ob-
served for this mode are attributed to interactions between the molecule and its nanogap
environment. Clear correlations between the Raman structure and conductance can be
seen. In particular in region B and for part of region E the Raman spectrum is observed
to disappear while the conductance drops to zero. Reprinted with permission from [607].
Copyright 2008 IOP Publishing Ltd.

evident. Since the conduction in nanogaps is dominated by approximately

a single molecular volume, the observed correlations between conductance

and Raman measurements strongly indicate that the nanogaps have single-

molecule Raman sensitivity. It is then possible to confirm that electronic

transport is taking place through the molecule of interest, via the char-

acteristic Raman spectrum. Data sets such as those of Fig. 20.1 contain

implicitly an enormous amount of information about the configuration of

the molecule in the junction.

Let us mention that Tian et al. [954] have used the MCBJ technique

to study the intensity of the surface-enhanced Raman signal of molecular

junctions. They showed that this signal depends critically on the separation

of the electrodes and the incident light polarization. In particular, it was

shown that when the incident laser polarization is along the two electrodes,

the field in the nanogap is the strongest because of the coupling to the

localized surface plasmon resonance of two gold electrodes [957].

It would be highly desirable to perform simultaneous measurements of
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Raman and IET spectra, which, unfortunately, was not yet possible in the

experiments just described. As we explained in the previous chapter, IETS

requires cryogenic temperatures, at which it is not easy to operate a Raman

microscope. However, in the experiment of Ioffe et al. [938], which was dis-

cussed in section 19.2.3, a comparison between vibrational modes revealed

by Raman scattering and IETS could be established, although these two

type of measurements were not performed at the same time. Let us re-

mind that these authors reported SERS measurements of junctions based

on biphenyldithiol SAMs3. In this experiment the Raman spectra were

acquired at room temperature, while the IET spectra were obtained in

transport measurements at 4 K. Interestingly, all Raman active vibrational

modes were revealed in the IETS measurements, in spite of the fact that the

selection/propensity rules are different in these two types of spectroscopies.

Let us also recall that the main goal of this work was to measure the voltage

dependence of the effective temperature of these current-carrying junctions.

This was achieved by measuring both the Stokes and anti-Stokes compo-

nents of the Raman scattering. Then, the effective temperature Teff (ν) for

each mode was calculated at each bias using the following expression4

IAS

IS
=

(νL + νν)
4

(νL − νν)4
exp (−hνν/kBTeff(ν)) σAS

σS

A2
AS

A2
S

, (20.1)

where IAS(S) is the intensity of the anti-Stokes (Stokes) Raman mode,

νL(ν) is the frequency of the laser (Raman mode), σAS(S) is the anti-Stokes

(Stokes) scattering cross-section of the adsorbed molecules and AAS(S) is

the average local field enhancement at the molecules at the anti-Stokes

(Stokes) frequency. Strictly speaking, this expression is only valid in ther-

modynamical equilibrium and one may wonder whether this relation still

holds at a finite bias voltage. For a discussion of this issue we refer the

reader to Refs. [959, 960], where a detailed theoretical study of Raman

scattering in current-carrying molecular junctions is presented.

20.2 Transport mechanisms in irradiated molecular

junctions

A prerequisite to answer questions 2-4 in the list presented in the introduc-

tion, i.e. to understand how an electromagnetic field alters the electrical

current of a molecular junction, is to identify the physical mechanisms that
3The use of SAMs facilitates the acquisition of Raman spectra.
4It was assumed that σASA

2
AS = σSA

2
S .
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can play a role in this problem, which is by no means a trivial task. The

theoretical and experimental work reported so far on this subject suggests

that the main “suspects” are the following:

• Current rectification or photon-assisted tunneling: When an electrical

contact is irradiated, the ac field may induce an alternating voltage in

the junction with a frequency equal to that of the field. This ac bias

in turn gives rise not only to an ac current, but also modifies the dc

component. This phenomenon, in which an ac signal is converted to

a dc current, is known as current rectification. The phenomenon is

also known as photon-assisted tunneling (PAT) due to the nature of

the inelastic tunneling processes that govern the electrical conduction

in the presence of an ac bias (see discussion below).5

• Internal molecular transitions: While electronic transitions in the pre-

vious mechanism take place at the electrode-molecule interfaces, the

radiation can also induce the standard optical transitions inside the

molecules. This requires radiation frequencies comparable to the en-

ergy of the electronic excitations of the molecules, which are typically

in the optical range. The induction of such transitions can in principle

lead to phenomena like the resonant current amplification that will be

discussed in section 20.5.

• Hot electrons: If the radiation frequency is close to the plasma fre-

quency of the metal electrodes, the field can penetrate in the leads and

excite the conduction electrons to high energy (hot electrons) . If these

electrons are sufficiently close to the junction (closer than the inelas-

tic mean free path at the corresponding energy), they can contribute

significantly to the transport characteristics [961, 962].

• Heating: At optical frequencies a metal does not completely reflect the

radiation and part of it can be absorbed. This absorption is usually

accompanied by heating, which has several important consequences.

First of all, heating can result in thermal expansion of the samples,

which can be reflected in the junction current. This is well documented

in the STM context [215], where a change in tip-sample distance due

to thermal excitation has a dramatic effect on the tunneling current.

On the other hand, heating can also create a temperature gradient

5Photon-assisted tunneling is maybe not a good name for this phenomenon since no real
photons are emitted or absorbed in the tunneling processes. However, it is commonly
used in the mesoscopic physics community, in which current rectification is rarely used.
We shall use here both terms, but it must be clear that they refer to the same physical
mechanism.
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or a temperature difference between the electrodes. In both cases,

thermoelectrical currents can appear in the junctions [215].

This list is not complete, and other effects can also play an important

role. In particular, some readers might miss surface plasmons in this list.

In this respect, we would like to say that for optical frequencies there is no

doubt that plasmons play a key role. Surface plasmons are responsible for

the local field distribution at the junction and, in particular, for its enhance-

ment with respect to the incident field. In this sense, we can consider that

plasmons determine the effective amplitude (and frequency dependence) of

the ac potential induced in the junction, but the transport mechanism is

still PAT or current rectification. In other words, we rather prefer to say

that plasmons play an important role in the PAT mechanism than to say

they constitute a different mechanism. After all, an ac field would also

appear in the absence of plasmons and their role is only to modify the field

distribution.

As we have already mentioned above, the importance of the different

mechanisms depends primarily on the radiation frequency. For instance, in

the microwave range PAT (or current rectification) largely dominates the

transport. This has been firmly established in a great variety of mesoscopic

structures [214] and more recently in atomic and molecular junctions (see

discussion below). In the optical range, however, the other three mecha-

nisms can also be very important.

20.3 Theory of photon-assisted tunneling

In the this section we shall present a description of the PAT theory for

several reasons. First, this mechanism is likely to operate in almost any

situation since when a junction is illuminated most of the radiation indeed

impinges on the electrodes. Second, it is believed to be the dominant one

at low frequencies and finally, recent experiments in atomic and molecular

contacts seem to suggest that this mechanism is the dominant one even at

optical frequencies. In what follows, we shall first present the basic theory

of PAT and then, we shall discuss the basic predictions of this theory for

atomic and molecular junctions.
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20.3.1 Basic theory

In order to explain the steps in the current-voltage characteristics of

microwave-irradiated superconductor-insulator-superconductor junctions

[963], Tien and Gordon [213] proposed a heuristic theoretical treatment

of electron tunneling in the presence of an ac field, which is of appealing

simplicity. The central idea goes as follows.6 First of all, the presence of

the ac field is represented by a time-dependent voltage applied across the

junction in addition to the dc bias7

V (t) = V + Vac cos(ωt). (20.2)

Indeed, Tien and Gordon assumed that this ac voltage is applied to one

of the electrodes, while the other remains grounded. This applied voltage

is assumed to modulate adiabatically the potential energy for each quasi-

particle level on the ungrounded side of the barrier. This assumption is

expected to be valid below the plasma frequencies of the two electrodes,

typically well into the ultraviolet. The time dependence of the wave func-

tion for every single-electron state in the ungrounded electrode is therefore

modified according to

ψi(x, t) = ψi(x) exp

[
− i

�

∫ t

dt′ [Ei + eV (t′)]
]

(20.3)

= ψi(x) exp [−i(Ei + eV )t/�]

∞∑
n=−∞

Jn(α)e
−inωt,

where Ei is the unperturbed energy of the single-electron state, Jn is the

Bessel function of the first kind (of order n) and α ≡ eVac/�ω. The adia-

batic modulation of the Fermi sea on this side of the junction can be thus

viewed in terms of a probability amplitude Jn(α) for each quasiparticle

level to be displaced in energy by n�ω. This interpretation is illustrated

schematically in Fig. 20.2. Since all electron states are modulated together,

these displacements in energy are equivalent to dc voltages (V + n�ω/e)

applied across the junction with a probability J2
n(α) that depends upon the

ac signal amplitude. The resulting dc tunneling current is, therefore, given

by the expression

I(V ;α, ω) =
∞∑

n=−∞
J2
n(α)I0(V + n�ω/e), (20.4)

6We present here an extension of the original Tien-Gordon argument due to Tucker
[212].
7The dc part of the voltage will be simply denoted as V to follow the notation used

so far. The total time-dependent voltage will always be denoted as V (t), i.e. including
explicitly the time argument.
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Fig. 20.2 Virtual energy levels generated according to Eq. (20.3) by adiabatic modula-
tion of the energy Ei(t) for each quasiparticle state within the ungrounded electrode of
a junction in the presence of an ac field.

where I0(V ) represents the current in the absence of radiation. This is a

remarkable result that tell us that the I-V characteristics in the presence

of radiation can be understood in terms of the I-V curves in the absence of

external ac driving.

Notice that in this Tien-Gordon picture electrons undergo virtual tran-

sitions in the ungrounded electrode by “absorbing” or “emitting” an integer

number of electromagnetic energy quanta (n�ω) and then they tunnel elas-

tically through the junction. In this sense, one can interpret the tunneling

processes as photon-assisted events and this is the reason why the asso-

ciated phenomenon is known as photon-assisted tunneling (PAT). Notice,

however, that no “real” photons are involved in these processes and, in

particular, the description of this phenomenon does not involve the quan-

tization of the electromagnetic field. In this sense, the name PAT is maybe

not very accurate, but since it is so commonly used, we shall also employ

it here.

On the other hand, notice that Eq. (20.4) expresses how the dc current

is modified by the radiation, i.e. it tells us how an ac signal results in a dc

current. As we already mentioned above, this conversion process is known

as current rectification and in this context, PAT and current rectification

will be considered as synonyms.

A rigorous treatment of the electronic transport through an arbitrary

junction subjected to an ac field can be done in the framework of differ-

ent approaches such as the scattering formalism [165], the Floquet the-

ory [211, 214] and the nonequilibrium Green’s function formalism (NEGF)

[214, 216–221]. This latter approach has been explained in detail in Chap-

ter 8. In particular, we have shown there that the current through a junction

in the presence of an ac voltage can be written in the form of the Tien-
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Gordon formula of Eq. (20.4) under the following assumptions: (i) The

energy dependence of the lead density of states is negligible and (ii) the

ac potential does not vary spatially along the central part of the junction

(i.e. across the molecule in the case of molecular junctions). While the first

assumption is often justified, the second one may seem rather restrictive.

However, Viljas et al. [221, 222] have shown that if the amplitude of the

ac voltage is not too large, the precise shape of the profile does not play a

crucial role.

In the derivation of Eq. (20.4) it was assumed that the ac voltage is

applied to one of the electrodes, while the other is grounded. If we consider

that the ac voltage is applied symmetrically, i.e. it drops equally at both

interfaces, the current can be then written as

I(V ;α, ω) =

∞∑
n=−∞

[
Jn

(α
2

)]2
I0(V + 2n�ω/e). (20.5)

Here, assuming that the transport in the absence of ac drive is elastic, the

current I0 is given by the standard Landauer formula. At low temperatures

and in the linear response regime (vanishing dc bias), the conductance takes

the particularly simple form

G(V = 0;α, ω) = G0

∞∑
n=−∞

[
Jn

(α
2

)]2
τ(EF + n�ω), (20.6)

where τ(E) is the zero-bias equilibrium transmission and EF is the Fermi

energy. This quantity will be of special interest in our discussion below,

and it will be referred to as photoconductance. Note that if the transmission

does not depend on energy in the range probed by the inelastic processes,

the conductance reduces to the conductance in the absence of drive, i.e.

G(V = 0;α, ω) = G0τ(EF).
8

It is interesting to consider the limit of small ac amplitudes. Using

J0(x) ≈ x2/4 and J±n(x) ≈ (±x/2)n/n! in Eq. (20.5) and retaining only

the lowest-order terms in the ac potential Vac, the correction to the current

in this limit can be expressed as

ΔIdc(V ;α, ω) ≡ I(V ;α, ω)− I0(V ) (20.7)

=
1

4
V 2
ac

[
I0(V + 2�ω/e)− 2I0(V ) + I0(V − 2�ω/e)

(2�ω/e)2

]
.

The quantity in large parentheses is a finite second difference of the I-

V characteristics in the absence of radiation that reflects the emission or
8This can be easily shown using the relation

∑
n J2

n(x) = 1.
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absorption of a single quantum during the tunneling. All higher-order pro-

cesses n = 2, 3, . . . , contributing to the dc current may be neglected in the

limit of small ac amplitude. When the photon energy �ω/e is smaller than

the voltage scale of the dc nonlinearity, the finite difference can be replaced

by the second derivative of the current, i.e.

ΔIdc(V ;α, ω) ≈ 1

4
V 2
ac

(
d2I0
dV 2

)
. (20.8)

This expression reproduces the classical result for rectification [212] and

illustrates the connection between PAT and current rectification. This is a

very important relation since it provides a direct way to test whether the

dominant transport mechanism is indeed PAT/current rectification. Such

test requires to measure independently the induced dc current and the

second derivative of the current with respect to the bias in the absence

of radiation. Moreover, according to Eq. (20.8), the ratio of these two

quantities gives the amplitude of the ac bias, which is typically unknown.

This amplitude gives information about the field enhancement locally in

the junction region.

Notice that Eq. (20.8) suggests that if the I-V characteristics in the

absence of radiation exhibit an asymmetry at vanishingly bias voltage due

to material and/or geometrical asymmetries (i.e. if d2I0/dV
2 �= 0 at V = 0),

a radiation-induced current can flow in the system even in the absence

of any dc bias voltage. This phenomenon of rectification at zero dc bias

voltage was predicted by Cutler et al. in 1987 [964] and it was first reported

by Walther’s group in 1991 in laser-driven STM experiments on graphite

surfaces [965] (for a detailed discussion of this phenomenon, see the review

of Ref. [215]). The current generated by the ac field in the absence of dc

bias is often referred to as photocurrent.9

The classical expression of Eq. (20.8) is probably valid in a wide range

of molecular junctions for microwave frequencies, while in the optical range

significant deviations from this expression are likely to appear and it has

to be replaced by its quantum version of Eq. (20.7) [see Exercise 20.2(ii)].

On the other hand, it is interesting to derive similar expressions for the

linear conductance. Defining the induced linear conductance correction as

ΔGdc(α, ω) ≡ G(V = 0;α, ω)−G(ω = 0), whereG(ω = 0) = G = G0τ(EF),

9Later in this chapter we shall discuss the so-called ratchet effect in molecular junctions,
which is just another name for rectification at zero bias.
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the relative correction for small ac amplitudes becomes

ΔGdc(α, ω)

G
=

(eVac)
2

16τ(EF)

[
τ(EF + �ω)− 2τ(EF) + τ(EF − �ω)

(�ω)2

]

≈ (eVac)
2

16

τ ′′(EF)

τ(EF)
, (20.9)

where the last expression has been obtained assuming that �ω/e is smaller

than the energy scale over which the transmission varies significantly. We

thus see that in this limit ΔGdc gives experimental access to the second

derivative of the transmission function at the Fermi energy.

In the next section we shall review recent transport experiments per-

formed with irradiated atomic and molecular junctions. In this sense, it is

interesting to know the basic predictions of PAT theory for these systems.

This is addressed in the next two subsections.

20.3.2 Theory of PAT in atomic contacts

In metallic atomic-sized contacts, the I-V curves in the absence of radia-

tion are rather linear up to voltages of the order of 0.5-1.0 V. This is a

consequence of the fact that the transmission does not change significantly

around the Fermi level in an energy window of a few tenths of eV. According

to Eqs. (20.8) and (20.9), this suggests that no significant changes in the

transport characteristics are expected under irradiation up to frequencies

close to the optical range.

As a side remark, let us say that in the superconducting state, atomic

contacts are very sensitive to microwave frequencies. The reason is the pres-

ence of a gap in the spectrum, which ranges from 0.1 to 1 meV depending

on the material. Recently, the subgap transport in superconducting atomic

contacts under microwave irradiation was studied experimentally [966]. It

was found that the subharmonic gap structure in the dc current is strongly

modified in quantitative agreement with the theory of photon-assisted mul-

tiple Andreev reflections [967]. The importance of these results for our

discussion here is that they provide firm support for the PAT mechanism

in the microwave range.

A detailed theoretical study of PAT in atomic contacts has been re-

ported by Viljas and one of the authors [221]. In this work the NEGF

formalism of section 8.3 was used to compute the photoconductance as a

function of frequency in one-atom thick contacts of several metals (Au, Pt

and Al). In Fig. 20.3 we show an example of the results for a dimer con-
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Fig. 20.3 Theoretical results for the photoconductance of Au and Pt atomic contacts.
(a) Equilibrium transmission τtotal and its decomposition into conduction channels
τ1,2,3,4 for an Au dimer contact. (b) Zero-temperature photoconductance for several
values of α as a function of frequency ω computed using Eq. (20.6). In (b) the wave-
lengths λ with a tick spacing of 400 nm are shown. The range of visible light is indicated
by vertical dotted lines. (c-d) The same as in panels (a-b) but for a Pt contact. Adapted
with permission from [221]. Copyright 2007 by the American Physical Society.

tact10 of Au and Pt. Here, we just reproduce the results obtained with the

simple approximation of Eq. (20.6), which was usually found to reproduce

qualitatively the more rigorous results obtained with the NEGF formalism

[221]. In the case of Au, as can seen in Fig. 20.3(a), the conductance for

ω = 0 is equal to 1G0 with a single open channel arising from the contri-

bution of the 6s orbitals. Moreover, notice that the transmission around

EF is very flat. Due to this flatness, for frequencies up to �ω ≈ 1.5 eV

(λ ≈ 827 nm) the effect of radiation is practically negligible. In the red

part of the visible range (�ω � 2 eV) ΔGdc > 0 and it can reach up to 20%

depending on the value of α.11 This increase in the conductance is due to

the contribution of the 5d bands located 2 eV below EF, where the number

of open transmission channels is higher than at EF.

10The exact geometry of this dimer contact can be seen in Fig. 1 of Ref. [221]. This
type of geometry is typically responsible for the last conductance plateau in the breaking
process of an atomic contact.
11It is important to remark that for the case of Au it was found that the results were
quite sensitive to the exact profile of the ac voltage. For the other metals the profile did
not play a major role.
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Fig 20.3(c-d) show the corresponding results for Pt. In the absence

of radiation the conductance is close to 2.1G0 due to the contributions

of mainly three conduction channels, which originate from the 6s and 5d

orbitals. In this case, and in general in the contact regime for Pt, the effect

of the radiation is always a significant reduction in conductance. This

is understandable, since EF lies at the edge of the d band, and photon

absorption leads to an energy region where less open transmission channels

are available and τtotal is smaller.

To conclude, the key message is that the photoconductance simply re-

flects the energy dependence of the transmission of the contacts. The sign

of the induced correction can be both positive (like for Au) and negative

(like for Pt) depending on the material. With respect to the order of mag-

nitude of the correction, it can reach up to 50%-100% in some special cases

depending on the geometry, frequency and power of the radiation, but it is

usually below those values.

20.3.3 Theory of PAT in molecular junctions

From the discussion above, it is obvious that irradiation can lead to more

dramatic effects in the case of molecular junctions. These junctions typi-

cally exhibit a much more pronounced energy dependence of the transmis-

sion function, which can lead to much larger modifications of the trans-

port characteristics than in atomic contacts. In section 8.3.1 we have used

the resonant tunneling model to illustrate some of the effects that may be

expected from PAT in molecular junctions. The most prominent one is

the resonant enhancement of the photoconductance. The idea is the fol-

lowing. The transmission function of most molecular junctions exhibit a

deep pseudo-gap in the energy region between the HOMO and LUMO of

the molecule, while the Fermi level lies somewhere in between. Then, if

the photon energy is equal to the distance between the Fermi energy of

the closest frontier orbital, the low-bias conductance can be greatly en-

hanced. This fact together with other interesting predictions are further

illustrated in Exercise 20.2 at the end of the chapter with the use of the

double-Lorentzian transmission function that we employed in section 19.3

to understand the thermopower of molecular junctions.

More realistic models of PAT in molecular junctions confirm these con-

clusions [968, 969]. Thus for instance, Viljas et al. [970] have reported a

study of the photoconductance in organic single-molecule contacts. This

study is based on Eq. (20.6), whereas the equilibrium transmission was
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computed using a DFT-based method. It was found that the radiation

can indeed lead to large enhancements of the conductance of such contacts

by bringing off-resonant levels into resonance through photon-assisted pro-

cesses. The conductance enhancement was demonstrated for oligophenylene

molecules between gold electrodes. It was shown that the exponential decay

of the conductance with the length of the molecule can be replaced by a

length-independent value in the presence of radiation. In other words, the

photon-assisted processes turn the off-resonant tunneling into on-resonance

transport. Results of this work are reproduced in Fig. 20.4. Notice first

that the transmission in the absence of radiation exhibits a pseudo-gap

in the region between the HOMO and LUMO (see panel (a) in the right

figure). The HOMO lies closer to the Fermi energy in this case (∼1 eV

away). Second, in all of cases the low-bias conductance is greatly enhanced

(for still reasonable values of α) and the onset of the enhancements is well

inside the infrared region of the electromagnetic spectrum. Finally, panel

(f) of the right figure shows how the typical exponential decay of the con-

ductance with length is replaced by constant conductance in the presence

of the radiation.

The fact that the conductance enhancement takes place in this case in

the infrared region has important consequences. First, at these frequencies

no internal transitions inside the molecules are possible. Second, metals

do not absorb in the infrared and thus the associated heating effects are

minimal. Therefore, this mechanism for enhanced photoconductance should

be quite robust and, in principle, it could take place for a great variety of

molecules since the only requirement is the existence of a pronounced gap

in the transmission function. In this sense, molecular junctions can behave

similarly to superconductor-insulator-superconductor systems, which have

been used as microwave detectors in a variety of applications [212].

To conclude this section, let us also say that Viljas et al. [222] have

studied the photon-assisted tunneling in more detail using simplified mod-

els and they have made further predictions that can be used as fingerprints

of the PAT mechanism. First, in off-resonant situations, where the con-

ductance in the absence of radiation decays exponentially with the length

of the molecule, the correction to the dc linear conductance grows as the

length square, i.e. the conductance enhancement is more pronounced for

longer molecules. Second, at low frequencies additional steps can appear in

I-V characteristics. Their separation, in the case of a symmetric junction,

is roughly 2�ω. For a discussion of the origin of these steps see section 8.3.1

or Exercise 20.2(iv) at the end of the chapter.
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Fig. 20.4 Calculations of the photoconductance of oligophenylene-based single-molecule
junctions. Left figure: (a) The four studied molecular contacts R1–R4, containing
oligophenylenes with one to four phenyl rings and coupled to Au [111] pyramids through
sulfur atoms. (b) In the calculation it was assumed the induced ac voltage Vac to drop
in a double-step manner. Right figure: (a) Transmission versus energy [T (E)] for the
contacts R1–R4 (dash-dot-dotted, dash-dotted, dashed, and solid lines, respectively).
(b)–(e) The photoconductance versus external frequency ω for the contacts R1–R4, re-
spectively. For each case the results for the following values of α are shown: 0.2, 0.6,
1.0., 1.4, and 1.8, in order of increasing conductance. (f) The dc conductances in the
absence (G1, dots) and presence (G2, crosses) of radiation with �ω = 1.5 eV and α = 1.8
for an increasing number n of phenyl rings. The gray line is a fit of the G1 results to an
exponential law. Reprinted with permission from [970]. Copyright 2007 by the American
Physical Society.

20.4 Experiments on radiation-induced transport in atomic

and molecular junctions

The experimental study of the electronic transport in irradiated atomic-

scale junctions started around 20 years ago in the context of STM. In

particular, in the early 1990’s there was an intense activity related to the

study of rectification (for a review see Ref. [215]). Although the observation

of radiation-induced dc currents in STM experiments has been reported

by many groups, it has always been difficult to show unambiguously that

those currents were due to rectification and not to other mechanisms like,

for instance, the generation of thermocurrents.

A convincing evidence of atomic-scale rectification was reported by Ho’s

group in 2006 [971]. This group presented STM experiments in which
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microwave-induced dc currents were measured for Mn atoms and MnCO

molecules adsorbed on NiAl(110). The frequency of the microwave signal

was 800 MHz. In Fig. 20.5(a) one can see results from this work for the

differential conductance measured through a single Mn atom as a function

of the bias voltage. In this figure VB denotes the dc voltage, VJ is the local

amplitude of the ac voltage and VIN denotes the ac signal far away from

the contact. In the absence of microwave (VIN = 0), the differential con-

ductance has a narrow peak at 2.0 V and a broad peak at 1.3 V, associated

with the spin splitting of Mn sp states from magnetic interaction with its d

electrons [971]. As VIN is increased, the peak at 2.0 V becomes broader and

eventually splits into two. In order to find out whether this modification of

the dc current was due to rectification, the authors fitted the results with

a classical rectification formula where the dc current is given by [971]

I(VB , VJ ) =
ω

2π

∫ 2π/ω

0

I
[
VB +

√
2VJ cos(ωt)

]
dt. (20.10)

Here, the function I(V ) in the integrand has the same form as the static

I-V characteristics measured in the absence of microwave, but with a time

dependent argument. An example of the fits is shown in Fig. 20.5(b) for

VIN = 5 mV. Notice the high accuracy of the fit, which provides a strong

support for the interpretation of the results in terms of rectification. More-

over, from the fits the value of VJ could be extracted. A plot of VJ versus

VIN is shown in Fig. 20.5(c), yielding a slope 45.5 from the best linear fit.

This slope gives a direct information about the field enhancement at the

contact.

On the other hand, it was also shown that the induced dc current as

a function of voltage for a single Mn atom follows closely the d2I/dV 2

spectrum in the absence of microwaves (see Fig. 2 of Ref. [971])12. This

can be understood from Eq. (20.8), which tells us that the correction to

the dc current is proportional to the d2I/dV 2 spectrum without radiation.

Notice that such relation can also be derived from Eq. (20.10) in the limit

of small VJ by expanding the integrand up to second order in VJ . The close

relation between the induced dc current and the d2I/dV 2 spectra was also

found in the case of transport through individual MnCO molecules, which

constitutes a convincing proof of the fact that the rectification mechanism

dominates the transport in irradiated atomic-scale junctions at microwave

frequencies.

12The main difference between this experiment and previously reported ones was the use
of low temperatures (∼ 18 K) that made possible to measure directly d2I/dV 2 spectra.



596 Molecular Electronics: An Introduction to Theory and Experiment

Fig. 20.5 Differential conductance spectra of a single Mn atom adsorbed on NiAl(110)
surface with constant microwave input (no amplitude modulation). (b) The spectrum
with VIN = 5 mV was fitted numerically (line) to extract VJ , the microwave amplitude
across the STM junction. (c) Plot of extracted VJ vs VIN . The line is a linear fit with the
constraint of zero intercept, which yields VJ = 45.5 × VIN . Reprinted with permission
from [971]. Copyright 2006, American Institute of Physics.

Let us emphasize that the occurrence of PAT (or rectification) in the

microwave regime has been firmly established in a variety of nanostructures

[214], including carbon nanotube quantum dots [972], which are very closely

related to our systems of interest.

Let us turn now to experiments in the optical regime. Recently, two

different experiments have explored the influence of laser light on the trans-

port through gold atomic contacts. The first one has been performed by

the group of one of the authors [973]. In this case, the microfabricated ver-

sion of the MCBJ technique was employed to fabricate gold atomic-sized

contacts at room temperature. As a light source an argon-krypton cw laser

was used, which allows to select a wavelength in the range between 480

nm and 650 nm. Moreover, pulsed light was used (with pulse durations of

∼ 700 μs) to avoid irreversible deformations of the atomic junctions.13 The

conductance with and without light was measured simultaneously during

the opening and closing of the atomic bridges. Fig. 20.6 shows an example

of the results obtained for green light with λ = 515 nm. Notice that the

13It was found that continuous irradiation of the devices with λ = 488 nm for several
seconds with a power of a few mW results in irreversible conductance changes.
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Fig. 20.6 Conductance and light-induced relative conductance change ΔG/Gi versus
time when opening the break-junction continuously. Inset: close-up of the few-atom
region with Gi < 9G0. Reprinted with permission from [973]. Copyright 2007 by the
American Physical Society.

relative change14 in the conductance induced by the light is positive and it

can reach up to more than 100% for G ≈ 2G0.

A statistical analysis revealed the following important findings: (i) Illu-

mination always results in an enhancement of the conductance (ΔG > 0),

(ii) ΔG is usually smallest in the tunnel regime (when the contacts are bro-

ken) and (iii) ΔG depends very much on the wavelength of the light, the

size and geometry of the contact and even on the exact spot in which laser

light is focused on. In particular, the largest enhancements were found for

λ = 488 nm with ΔG reaching up to 200%. However, for longer wavelengths

the enhancements were typically below 20-30%. Findings (i) and (ii) rule

out thermal expansion as a dominant mechanism in these experiments. On

the other hand, the fact that ΔG > 0 and the order of magnitude of the

light-induced correction are compatible with the PAT mechanism explained

in the previous section [221]. However, a quantitative comparison was not

possible because the theoretical analysis of Ref. [221] focused on the case of

single-atom contacts, which are not easy to stabilize at room temperature

with the MCBJ technique.

Such a quantitative comparison with the theory has been done by Ittah

et al. [974]. This group has developed a new method to form atomic contacts

14This relative change is defined as ΔG ≡ (Gf −Gi)/Gi, where Gf is the conductance
under illumination and Gi the conductance without light.
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Fig. 20.7 Conductance measurements in 1G0 gold contacts under laser irradiation. A
comparison between the conductance-enhancement as a function of laser power for two
contacts (marked by dark and open circles) under irradiation with two wavelengths. The
solid lines correspond to a fit with Eq. (20.6) using α as an adjustable parameter (see
text). Adapted with permission from [974]. Copyright 2009 American Chemical Society.

in which the gold wires are fully anchored onto Si/SiO2 substrates [975]. As

a result the atomic junctions are mechanically highly stable even at room

temperature, and under irradiation their heat dissipation characteristics

are far more efficient than those of suspended MCBJs, resulting in only

residual heating. Thanks to this method the authors were able to carry out

a detailed study of the influence of laser light in the conductance of gold

atomic contacts with conductances equal to 1G0.

In this work, the junctions were irradiated with three different lasers

with wavelengths of 532 nm (2.33 eV), 658 nm (1.88 eV), 781 nm (1.58 eV).

The maximum used power of the lasers was ∼ 20 mW, all measurements

were performed under ambient conditions at room temperature and the

junctions were placed with their long axis parallel to the laser polarization.

Fig. 20.7 shows representative results of the conductance as a function

of laser intensity for two different contacts and two different wavelengths.

Notice that in the absence of light the conductance (measured at 30 mV)

is ∼ 1G0. In all cases the conductance is enhanced by laser irradiation and

the relative changes, which increase with decreasing wavelength, are below

10%. In order to establish a comparison with the results of PAT theory,

Eq. (20.6) was used with the transmission curve of Fig. 20.3(a). The results

for different values of α = eVac/�ω are shown in Fig. 20.3(b). Using α

as an adjustable parameter the authors were able to fit the experimental

results with a reasonable accuracy, see solid lines in Fig. 20.7. Notice in

particular the nonlinear behavior, which is a remnant of the Bessel functions

of Eq. (20.6).
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These results suggest that the irradiated transport at the wavelengths

in Fig. 20.7 is dominated by the PAT mechanism. However, for the 532

nm (2.33 eV) laser, deviations from the PAT theory were found. This

is understandable since at this wavelength the absorption of Au is not

negligible anymore (reflectance ∼ 0.64 to be compared with 0.97 and 0.95

for Au at 781 and 658 nm, respectively). In this case, the enhancement of

the conductance could additionally be due to the generation of hot electrons

(see discussion in section 20.2). Such mechanism was termed photoinduced

transport (PIT) in Ref. [974], where the authors presented a theoretical

estimate of the contribution of photo-excited electrons (hot electrons) to

the conductance and they showed that it could account for the discrepancy

with PAT theory. Further support for the important role of PIT under the

532 nm laser was the finding of a linear dependence of the conductance on

the laser power, which is expected from this mechanism.

In addition to the SERS experiments described in section 20.1, Natel-

son’s group reported transport experiments in which significant dc currents

in electromigrated molecular junctions under illumination were observed

using different molecules such as para-mercaptoaniline (pMA) and fluori-

nated oligomers (FOPE) [607]. According to the authors, their observations

are consistent with rectification at optical frequencies. Let us briefly repeat

the arguments of Ref. [607]. In the presence of an oscillating potential

V (t) = V + Vac cos(ωt) the current at small ac amplitudes can be written

via a Taylor expansion as

I(t) = I(V0) +

(
∂I

∂V

)
V

Vac cos(ωt) +
1

2

(
∂2I

∂V 2

)
V

V 2
ac cos

2(ωt) + · · · .
(20.11)

Applying the trigonometric identity 2 cos2(ωt) = 1 + cos(2ωt), we see that

the current nonlinearities lead to a second-harmonic ac signal as well as

an additional dc current, both linearly proportional to ∂2I/∂V 2. Notice

that the expression of the additional dc current was already obtained in

Eq. (20.8). This latter relation suggests that a comparison between mea-

surements of the ac current at 2ω and the correction of the dc current could

be used to test the occurrence of the rectification mechanism. In the case

of ideal rectification, Eq. (20.11) tell us that the ratio of those two currents

should be equal to one. Obviously, the current at 2ω can only be measured

at frequencies much lower than the optical laser frequencies (e.g. 200 Hz),

which weakens the usefulness of this test.

The measurements showed that the dc current under illumination

changes proportionally to the low frequency ac current at 2ω, which is
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an indication of the occurrence of rectification, although it does not ex-

actly follows the dependence expressed in Eq. (20.11). On the other hand,

the induced dc currents at optical frequencies were found to depend lin-

early on the incident intensity, which is again consistent with the optical

rectification mechanism. However, that this linear dependence (at small ac

amplitudes) is also expected from other mechanisms like the PIT mentioned

above. Therefore, the interpretation of these experimental results in terms

of rectification is not unambiguous.

The same group repeated similar experiments but this time at lower

temperature (80 K) and with radio frequencies (10 MHz). In this case it

was possible to measure directly the second derivative of the current in the

absence of radiation and it was shown that the rectified current followed

exactly Eq. (20.8) or Eq. (20.11). This is again a demonstration that at

low frequencies the rectification mechanism dominates the transport.

The last experiment that we shall mention in this section has been per-

formed by Ho’s group [976]. In this case the laser-assisted transport was

studied in a single-molecule double-barrier junction that was defined by

positioning a STM tip over an individual molecule adsorbed on a thin (∼
0.5 nm) insulating alumina film grown on a NiAl(110) surface. The two

tunnel barriers in the junction are the vacuum gap between the STM tip

and the molecule, and the oxide film between the molecule and NiAl. In

this case the target molecule was a magnesium porphine (MgP), a simple

metalloporphyrin molecule that is involved in photosynthesis, and the ex-

periments were conducted at low temperatures (∼ 10 K). In the absence of

laser illumination, the differential tunneling conductance (dI/dV ) spectra

were shown to exhibit stepwise changes (with well-defined threshold volt-

ages) and hysteresis. Upon illumination with three different lasers (532, 633

and 800 nm) the threshold voltage was shown to decrease linearly with the

photon energy, suggesting a resonant mechanism. The authors argued that

transport mechanism responsible for this behavior is a two-step process in-

volving excited states of the tip (i.e. photo-induced resonant tunneling), as

opposed to photon-assisted tunneling resonant tunneling from the tip di-

rectly to the molecule. In our opinion, without a quantitative analysis it is

not easy to discriminate between these two different mechanism since both

of them may lead to similar features in the current-voltage characteristics.
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20.5 Resonant current amplification and other transport

phenomena in ac driven molecular junctions

As it is clear from the previous section, photon-assisted tunneling is a crucial

transport mechanism in atomic-scale junctions even at optical frequencies.

However, it must be emphasized again that the PAT theory in the spirit of

Tien-Gordon original work has clear limitations and it is only valid when

the spatial dependence of the field-matter interaction along the junction

can be ignored. If such spatial dependence becomes important, which must

be always the case for large ac field amplitudes, the problem has to be

addressed with other formalisms such as the so-called Floquet theory (see

Ref. [211] for a review) or the NEGF approach detailed in section 8.3.

In most of the theoretical studies of the transport properties of irra-

diated molecular junctions the field-matter interaction is assumed to be

restricted to the molecular bridge. Moreover, the molecular wire is usually

described with a simple tight-binding Hamiltonian. This is represented

schematically in Fig. 20.8. In this type of models, the time-dependent

Hamiltonian that describes the molecular wire adopts a form like the fol-

lowing one [211]

Hwire(t) = Δ
N−1∑
n=1,σ

(
c†n+1σcnσ + h.c.

)
+
∑
n,σ

[εn + xna(t)]c
†
nσcnσ, (20.12)

where Δ is the hopping matrix elements that describes the coupling of each

orbital to its nearest neighbors and εn stands for the one-site energies. The

time-dependent part in the second term of this Hamiltonian describes the

coupling to an oscillating dipole field that causes time-dependent level shifts

xna(t), where xn = (N + 1 − 2n)/2 denotes the scaled position of site n.

The energy a(t), which is periodic in time, is determined by the electrical

field strength multiplied by the electron charge and the distance between

two neighboring sites.

At a first glance, one might have the impression that models based on

the Hamiltonian of Eq. (20.12) describe very different physics from the

Tien-Gordon PAT theory detailed above. However, one can show that

if the spatial dependence of the field-matter interaction in Eq. (20.12) is

neglected, i.e. if the driving shifts all the wire levels simultaneously, it is

possible to map the driving field by a gauge transformation to oscillating

chemical potentials. In other words, models based on Hamiltonians like

the one in Eq. (20.12) reproduce the simple Tien-Gordon-like results in the

limiting case of spatially homogeneous field-matter interaction.
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Fig. 20.8 Schematic representation of the level structure of a molecular bridge with
N = 5 sites coupled to metallic electrodes.

The transport properties in models based on Eq. (20.12) are usually

computed within the Floquet theory. It is not our intention to describe

here this theory or other similar theoretical tools. Instead, the rest of the

section is devoted to a brief description of the main physical effects that

have been predicted with the help of models like the one in Eq. (20.12).

Most of these effects have not yet been confirmed experimentally, but there

are good reasons to believe that they will be observed in the near feature.

Resonant current amplification.– The application of laser fields in molec-

ular junctions can lead to resonant excitation of the molecular bridge states,

which in turn can be manifested as an enhancement of the dc current when

the driving field is in resonance. This phenomenon, sometimes referred to

as resonant current amplification, was already discussed in the context of

PAT in section 20.3.3. It was first predicted by several authors using mod-

els similar to that of Eq. (20.12). Thus for instance, treating the driving as

a perturbation, Keller et al. [978, 979] demonstrated that resonant electron

excitations result in peaks of the current as a function of the driving fre-

quency. Kohler et al. [980] studied the same problem including the driving

exactly within a Floquet master equation approach and later derived an an-

alytical expression [981]. In related work, Tikhonov et al. [968, 969] have

studied this problem with more realistic models for the molecular bridge

based on the extended Hückel approach. The central result of these studies

is that such resonant excitations enhance the current significantly. In par-

ticular, Kohler et al. [981, 211] have shown that at the resonant frequencies

the dc current decays linearly with the length of the molecule, in contrast

to exponential decay of the current in the absence of ac driving.

Ratchet effect and light-induced currents.– A widely studied phe-

nomenon in driven transport is the so-termed ratchet effect: the conver-
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sion of ac forces without any net bias into directed motion. In the context

of molecular junctions the question is whether it is possible to induce a

dc current with an ac field in the absence of a dc bias voltage. As we

commented in section 20.3.1, in the context of STM it is well-known that

this is indeed possible if there are left-right asymmetries in the junctions

[964, 965, 215, 216]. There, the ratchet effect is referred to as rectification

at zero dc bias. In the context of molecular junctions, this issue has been

extensively studied by Lehmann et al. [982–984] and the main results have

been reviewed in Ref. [211]. These authors have shown that it possible

to generate a dc current with a pure ac driving (i.e. a photocurrent) by

introducing certain asymmetries in the problem.15 For instance, using a

conductor with an asymmetric level structure, one can generate a dc cur-

rent even with a purely harmonic dipole driving. Another possibility is to

use a driving field in which several frequencies are mixed. In this case, a

dc current is generated even in spatially symmetric molecules bridges.

Related to the ratchet effect, Galperin and Nitzan [977] have predicted

that light-induced current in unbiased junctions (i.e. photocurrents) can

flow when the bridging molecule is characterized by a strong charge-transfer

transition. Such a current reaches its maximum when the light frequency

matches the internal transition frequencies of the molecule. Using realistic

estimates of molecule-lead coupling and molecule-radiation field interaction,

these authors showed that such an effect should be observable.

Coherent destruction of tunneling.– As we saw in our discussion of PAT

in section 20.3, the current as a function of the amplitude of the ac driv-

ing is modulated according to the behavior of the Bessel functions, see

Eqs. (20.4) and (20.5). If the parameter α is such that J0 vanishes, there

is a pronounced reduction of the current [see Exercise 20.2(iv)]. This phe-

nomenon appears in many different ac driven systems and it is known as

coherent destruction of tunneling [985]. For a detailed discussion of this

phenomenon in the context of molecular wires, see section 7 in Ref. [211]

and references therein.

Role of electron excitation in the leads.– As we discussed in section 20.2,

apart from modulating the electronic levels in the leads, the electromagnetic

field can produce hot electrons in the leads by direct photon absorption.

These electronic excitations can in turn contribute to the transport. Sim-

ple estimates of the contribution of these inelastic processes to the total

current have been put forward long ago in the context of the STM [961].

15To be precise, the generation of a photocurrent requires the breaking of the so-called
generalized parity [211].
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More recently, Galperin and coworkers have studied in detail the influ-

ence of electronic excitations in the leads on the current through molecular

transport junctions [962]. These authors have concluded that in certain

situations such excitations can give a significant contribution to the cur-

rent and moreover, this contribution can be distinguished from the direct

current because it scales differently with the distance between the molecule

and the leads.

Let us conclude this section by saying that the different physical effects

discussed in the previous paragraphs can also have a big impact in other

transport properties like shot noise. The theoretical activities along these

lines have been reviewed by Kohler et al. in Ref. [211].

20.6 Fluorescence from current-carrying molecular

junctions

In this section we shall face the question number 5 of our list in the in-

troduction of this chapter. When a sufficiently high bias voltage is applied

to a molecular junction, two molecular orbitals can be partially populated

and then optical transitions between them become, in principle, possible

with the subsequent light emission (or fluorescence). Is the light emission

from a single molecule measurable? If so, what can we learn about the

junctions from this local optical spectroscopy? The goal of this section is

to briefly describe the recent experimental and theoretical efforts devoted

to answer these and other basic questions related to the current-induced

light emission from single molecules in transport junctions.

The fact that electron tunneling can lead to emission of light was first

discovered by Lambe and McCarthy in 1976 in the context of metal-oxide-

metal tunnel junctions [986]. In the context of atomic-scale junctions, light

emission has been frequently observed in STM experiments. Thus for in-

stance, it has been reported in clean metal [987, 988] and semiconductor

surfaces [989], as well as for atomic and molecular adsorbates on metal sub-

strates [990–993]. However, often the reported photon emission spectra do

not show identifiable molecule-related features [992]. On a metal surface,

the electronic levels of a molecule are considerably broadened whereas light

emission is strongly quenched, making it difficult to detect and identify any

molecule-specific emission.

In recent years, it has been demonstrated by means of STM experi-

ments that electric-current flow through a molecule may indeed cause the
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molecule to luminesce due to electronic transitions [994, 995]. Photon emis-

sion from single-molecule contacts had already been discussed by Buker

and Kirczenow in 2002 [996], and the appearance of those experiments has

motivated additional theoretical work [977, 952, 997]. However, a theoret-

ical understanding of single-molecule electroluminescence is in the earliest

stages and contact between theory and specific experiments is just begin-

ning to be made [998].

The basic idea of molecular electroluminescence as observed in STM ex-

periments is as follows: By positioning a STM tip above a single molecule on

a substrate and applying a bias voltage between the tip and the substrate,

electron transmission through the molecule may occur, mediated by the

molecule’s electronic orbitals, and the molecule may be found to luminesce.

In a simplified picture, when a bias voltage is applied, the molecule moves

out of equilibrium with a flux of electrons passing through it. If two molec-

ular orbitals are located in the energy window between the electrochemical

potentials of the STM tip and substrate, they will both be partially occu-

pied and if optical transitions between them are not forbidden, transitions

from the higher-energy orbital to the lower-energy orbital will occur re-

sulting in photon emission [996]. Such optical transitions will most likely

involve vibrational levels of both electronic states. This is schematically

represented in Fig. 20.9 as process B.

Molecular fluorescence always competes with the light emission channel

known as inelastic electron tunneling that takes place even in the absence of

molecules [961, 999, 1000]. This latter mechanism involves inelastic tun-

neling from the tip electronic states into the lower-lying states of the sample

with a simultaneous release of the excess energy in the form of a plasmon.16

The excited plasmon then decays into a far-field photon. The spectrum of

this emission is typically quite broad and has a characteristic energy cut-off

determined by the sample bias. This process is described schematically in

Fig. 20.9 (process A).17

In order to avoid the quenching of molecular fluorescence, the metal-

molecule coupling strength has to be reduced [996]. This was achieved by

Ho’s group [994] by adsorbing porphyrin molecules on an ultrathin alumina

film grown on a NiAl(110) surface and using the STM as a second weakly

16By plasmon we mean here an electromagnetic mode of the tip-substrate system.
17Other light-emitting processes involving the injection of hot electrons or the creation of
electron-hole pairs are also possible [961]. For photon energies �ω < eV , where V is the
bias voltage, the single-electron process described above dominates the light emission.
However, some of the additional processes have no threshold voltage and therefore, they
can be responsible for the light emission with photon energies �ω > eV [386].
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Fig. 20.9 Diagram showing the two major processes contributing to STM-excited light

emission from a molecule adsorbed on a surface. In process A, the inelastic electron
tunneling channel, an electron tunnels from the Fermi level of the STM tip into an
unoccupied molecular orbital with simultaneous excitation of a plasmon. In process B,
the fluorescence channel, an electron tunnels into the higher unoccupied orbital of the
molecule. The charged molecule typically relaxes to a lower vibrational level of the same
electronic level, with subsequent radiative (excitation of a plasmon) transition to the
lower electronic level. The final step involves tunneling of this extra electron into the
substrate.

coupled electrode. Some characteristic photon emission spectra obtained

in this work are reproduced in Fig. 20.10. The results of panels A and B

were obtained with the STM positioned directly above a molecule. As one

can see, the spectra exhibit sharp features as compared with those related

to light emission from NiAl and oxide film (also shown in panels A and B).

Furthermore, the light-emission on top of the molecules was found to be

very sensitive to the tip position inside the molecule, which indicates that

the emission has submolecular resolution.

The series of emission spectra for different sample biases shown in panels

C and D in Fig. 20.10 further clarifies the nature of the observed spectral

features. In panel C, the spectral peaks do not shift when the bias voltage

is varied. This result indicates that these peaks did not originate from tran-

sitions between the electronic states of the tip and those of the substrate.

They were attributed to transitions inside the molecule. The existence of a

cut-off voltage (approximately 2 V in panel C) for excitation of the sharp

features is expected if an excited electronic level of the molecule participates

in the emission. The difference between this cut-off voltage and the photon

energy of the shortest-wavelength feature in the spectra (∼ 1.57 eV), lies

in the range of the low-energy dI/dV peak for this molecule, which further
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Fig. 20.10 (A-B) Light-emission spectra acquired on porphyrin molecules on an ultra-
thin alumina film grown on a NiAl(110) surface using the STM. The spectra acquired
on bare NiAl and Al2O3/NiAl(110) surfaces are also shown for comparison. The spectra
are offset vertically for clarity. Series A and B were taken with two different Ag tips. In
(A), the spectra were acquired at a voltage bias Vbias = 2.35 V and a current I = 0.5
nA, with an exposure time of 100 s; the NiAl and oxide spectra have been multiplied by
factors of 4 and 15, respectively. In (B), Vbias = 2.2 V, I = 0.5 nA, and exposure time
= 300 s; the oxide spectrum has been multiplied by a factor of 3. (C) Variation of curve
1 in (A) as a function of Vbias [the same tip was used as in (A)]. The inset shows the
dependence of the 800-nm peak intensity on current (Vbias = 2.35 V). Linear dependence
was found for all wavelengths in the measured spectral region. (D) Variation of curve 1
in (B) as a function of Vbias [the same tip was used as in (B)]. From [994]. Reprinted
with permission from AAAS.

supports this interpretation.

The authors concluded that the total light emission was a result of the

contribution of the two main processes discussed above (see Fig. 20.9). A

careful analysis of the emission spectra revealed that in the optical transi-

tions between two electronic states of the molecule, most likely the molecule

relaxed to the vibrational ground state of the excited electronic state be-

fore exciting a plasmon. Moreover, the vibrational features observed in

the light-emission spectra were found to depend sensitively on the different

molecular conformations and the corresponding electronic states.
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In another remarkable experiment Dong et al. [995] observed intrinsic

molecular fluorescence from porphyrin molecules on Au(100) by using a

nanoscale multimonolayer decoupling approach with nanoprobe excitation

in the tunneling regime. They observed well-defined vibrationally resolved

fluorescence excited by STM that matched nearly perfectly with the stan-

dard photoluminescence data of the molecule. The linewidths of spectral

peaks were found to narrow down with increased thickness, i.e. by making

the junctions more symmetric. On the other hand, a quantum efficiency of

∼ 10−5 photons per tunneling electron was obtained for the molecular fluo-

rescence at both polarities. Interestingly, emission of photons with energies

exceeding the energy of tunneling electrons was reported. The authors at-

tributed tentatively this phenomenon to an excitation mechanism via hot

electron injection from either tip or substrate.

From the theory side, simple bridge models have been used to elucidate

the basic facts related to the fluorescence of current-carrying molecular

junctions. Buker and Kirczenow [996] predicted that the photon emission

rate is more sensitive than the electric current to coupling asymmetries

between the molecule and contacts. They also showed that electrolumines-

cence may be used to measure the HOMO-LUMO gap and the location of

the Fermi level of the contacts relative to the HOMO and LUMO. This has

already become clear from our description of the experiments above.

On the other hand, Galperin and Nitzan [977, 952] have used the NEGF

formalism in combination with a simple two-level model to compute the de-

pendence of the emission rate on essential parameters such as bias voltage,

metal-molecule coupling strength and level separation. In particular, they

have derived a very transparent and intuitive relation in which the emission

rate is expressed in terms of the level occupations.

On the way to more quantitative descriptions of current-induced single-

molecule light emission, Harbola et al. [997] have developed a nonequilib-

rium superoperator Green’s function theory which can be combined with

DFT. More recently, Buker and Kirczenow [998] have presented a detailed

analysis of the experiments of Ref. [994] where the electronic structure cal-

culations were done using the extended Hückel approach.

20.7 Molecular optoelectronic devices

Time has come to address the last question posed in the introduction.

One of the dreams in molecular electronics is to use the amazing optical
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properties of molecules to develop novel optoelectronic devices. One idea is

to use compounds in which the excited states have very different character

as compared with the ground state. Thus, upon optical excitation one

could in principle populate those states and in turn change the conduction

properties of the junctions in which they are embedded. The problem with

this idea and similar ones is the need to continuously inject light into the

molecules to induce the transitions. As commented above, at present this

is challenging and the fundamental limitations, if any, are not known.

A class of molecules known as photochromic molecules offers a way

out for this problem. Photochromism is defined as a reversible photo-

transformation of a chemical species between two forms having different

absorption spectra. During the photoisomerization, not only the absorp-

tion spectra but also various physicochemical properties change, such as

the refractive index, dielectric constant, oxidation/reduction potential, and

geometrical structure. These molecular property changes can be exploited

in various photonic devices, such as erasable optical memory media and

photo-optical switch components, and they could also lead to applications

in the context of molecular electronics. A key idea is that photoisomer-

ization does not require to continuously photo-excite a molecule, and the

absorption of a single photon is enough to trigger its transformation.

There are many photochromic compounds, sometimes referred to as

photochromic molecular switches, but two classes of them have attracted

special attention in the field of molecular electronics. The first one is formed

by azobenzene and its derivatives. Azobenzene is composed of two phenyl

rings linked by a N=N double bond. One of the most intriguing properties

of azobenzene is the photoisomerization of trans and cis isomers. The two

isomers can be switched with particular wavelengths of light: ultraviolet

light for trans-to-cis conversion and blue light for cis-to-trans isomerization.

This is schematically represented in Fig. 20.11(a). The cis isomer is less

stable than the trans one and thus, cis-azobenzene thermally relaxes back

to the trans via cis-to-trans isomerization.

A second promising group of switches is formed by diarylethene

molecules, which were pioneered by Irie [1001, 1002]. These molecules

can be converted from a conjugated (“on” or closed state) to a cross-

conjugated (“off” or open) state upon illumination in the visible region,

see Fig. 20.11(b). The reverse process is possible with ultraviolet (UV)

light. Diarylethenes have additional attractive properties. First and fore-

most, they are fatigue resistant. Furthermore, their length change upon

isomerization is negligible. This allows for minimal mechanical stress when
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(a) (b)

Fig. 20.11 Photochromic molecular switches. (a) Azobenzene photoisomerization.
Dithienylethene (a member of the diarylethene class) photochemistry.

a molecule between two electrodes changes conformation.

Light-induced switching of conductance of a molecular junction based

on a photochromic molecule was first reported by Dulić et al. [587]. In

this work the MCBJ technique was used to investigate the transport of

single thiophene-substituted diarylethenes. The switching of the molecules

was observed from the conducting (closed) state to the insulating (open)

state upon illumination with visible light (546 nm). This switching results

in a significant resistance increase of over two orders of magnitude. How-

ever, the reverse process, which should occur upon illumination with UV

light (313 nm), was not observed. This one-way switching was further con-

firmed by means of UV/Vis spectroscopy to measure absorption of these

molecules self-assembled on gold. The authors attributed this observation

to quenching of the excited state of the molecule in the open form by the

presence of gold. Additional support for these conclusions was obtained by

the same group in STM measurements on monothiol thiophene-substituted

diarylethene switches in a dodecanethiol matrix [1003].

Theoretical studies have pointed out that the possibility to switch re-

versibly depends critically on the linker used [1004–1006]. In this sense,

it is believed that the one-way switching of the experiments above might

be due to the strong electronic hybridization between molecule and metal.

Indeed, He et al. [1007] reported photoisomerization in both directions for

diarylethenes with a methyl spacer and a phenyl linker in the para posi-

tion. In this case the transport data were obtained with a break-junction

method and the authors reported single-molecule resistances of 526 ± 90

MΩ in the open form and 4 ± 1 MΩ in the closed form. It is important

to emphasize that the resistances of the two isomers were measured inde-

pendently, i.e. no conductance switching was observed in situ in the same

junction. In this experiment, the photoisomerization was demonstrated

with optical spectroscopy of self-assembled monolayers of these molecules

on gold surfaces. The crucial role of the linker was further illustrated by

Katsonis et al. [1008]. These authors demonstrated in STM experiments



Optical properties of current-carrying molecularjunctions 611

light-controlled reversible conductance switching for meta-phenyl-linked di-

arylethenes on gold. This is drastically different from the behavior of the

switch mentioned above [587], which had a thiophene linker. Interestingly,

the meta-phenyl spacer forms a cross-conjugated system, whereas the thio-

phene is fully conjugated with the switching unit. This suggests that the

reversibility of switching is directly related to the conjugation between the

switching unit and the substrate.

In a remarkable experiment, Whalley et al. [1009] used single-walled

carbon nanotubes (SWNTs) to contact single (or a few) diarylethene

molecules. These authors showed that the thiophene-based devices can be

switched from the insulating open form to the conductive closed form but

not back again, as in the experiments of Dulić et al. [587]. However, pyrrole-

based devices were shown to cycle between the open and closed states. In

particular, in a device with semiconducting nanotubes and pyrrole-based

diarylethenes initially in the open state, it was found that with UV irra-

diation the bridge transforms to the closed state and the current increases

by more than 5 orders of magnitude. Irradiation with visible light did not

restore the initial, low-conductance state; however, the low-conductance

state reappeared when the device aged at room temperature overnight.

The on/off cycle can be toggled many times.

One of the most impressive examples of reversible conductance switch-

ing in molecular devices has been reported by Kronemeijer et al. [1010].

In this work junctions with self-assembled monolayers of photochromic

diarylethene-based switches were studied. Large-area molecular junctions

were processed in vertical interconnects in an insulating photoresist matrix,

see left panel of Fig. 20.12. The diarylethene monolayer is self-assembled

in the individual interconnects and topped off with a highly conductive

organic top electrode. This organic top electrode is used to prevent the

formation of short-circuits from top to bottom electrode. Then, upon irra-

diation with a specific wavelength range, the conductance of these devices

can be optically switched. The major advantage of this approach is that

the two distinct isomers of the diarylethene can be individually synthesized

and, therefore, separately assembled in a device. Consequently, the ON

and OFF state can be independently measured in the devices, without any

involvement of a switching event. Optically induced switching of the con-

ductance of the devices in between these two states then provides a direct

proof of the molecular origin of the switching events.

In Fig. 20.12 (right panel) we reproduce the results of this experiment

for the current density versus voltage (J-V ) for devices with molecules ex-
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Fig. 20.12 Left panel: Schematic cross section of the device layout of a large-area
molecular junction in which the diarylethene is sandwiched between Au and poly(3,4-
ethylenedioxythiophene): poly(4-styrenesulphonic acid) (PEDOT:PSS)/Au. Using UV
(312 nm) illumination the open, nonconjugated isomer can be converted to the closed,
conjugated isomer. Visible irradiation of 532nm reverses the photoisomerization process.
Right panel: Current density (J) versus voltage (V ) of the closed (circles) and open
(squares) isomers as self-assembled in the molecular junctions, and J-V characteristics
of the junctions with the open isomer self-assembled and subsequently photoisomerized

to the closed isomer with UV irradiation (triangles). Averaged data (at least 35 de-
vices) from devices with diameters of 10-100 mm. Error bars by standard deviation.
Reproduced with permission from [1010]. Copyright Wiley-VCH Verlag GmbH & Co.
KGaA.

clusively in the open or closed states. The conductance through the closed,

more-conducting state of the switch is shown to be 16 times higher at 0.75

V bias. On the other hand, devices with the open isomer were illuminated

for 15 min with 312 nm UV irradiation to convert the molecular switches in

the devices to the closed isomer. The J-V characteristics of the converted

open-state isomer after UV irradiation show an increase of the conductance

through the monolayer, as expected from the devices with closed isomers

present, see Fig. 20.12 (right panel). Following UV irradiation and consecu-

tive measurements, these devices were illuminated with 532 nm irradiation

(visible light) to achieve ring opening of the switches in the SAM. The

observed J-V characteristics show a significant decrease (by a factor 3)

of the conductance upon visible light irradiation, but the conductance of

the devices with the open isomer is not fully recovered. The origin of this

behavior was not fully understood (see Ref. [1010] for more details).

Let us mention that light-controlled conductance switching of molec-

ular devices based on photochromic diarylethene molecules has also been

demonstrated by van der Molen et al. [135]. In this case, the devices con-

sisted of ordered, two-dimensional lattices of gold nanoparticles, in which
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neighboring particles are bridged by the switchable molecules. In this work,

it was independently confirmed by means of optical spectroscopy that re-

versible isomerization of the diarylethenes employed is at the heart of the

room-temperature conductance switching.

As mentioned above, azobenzene and its derivatives are also possible

candidates for molecular switches [1011]. These molecules perform a cis-

trans isomerization upon illumination, accompanied by a significant change

in molecular length and dipole moment. Precisely, this significant change in

the length of the molecule can be a problem to fabricate photo-switchable

metal-molecule-metal junctions based on these compounds. Indeed, the ex-

periments reporting isomerization and reversible photo-switching of azoben-

zene molecules have been performed with these molecules bound to metallic

surfaces [1012–1015], i.e. without a second electrode. In these experiments a

STM (or a conductive AFM) tip was just used to probe the conformational

changes of the molecules after isomerization.

20.8 Final remarks

As we have seen in this chapter, the interplay between electromagnetic fields

and molecular transport junctions gives rise to fascinating possibilities and

new physical phenomena. We have shown that thanks to the phenomenon

of surface-enhanced Raman scattering the spectroscopy of single molecules

in transport junctions is indeed possible. The challenge is now to com-

bine SERS and transport measurements at low temperatures, which could

provide an unprecedented characterization of molecular junctions.

On the other hand, we have seen that different transport mechanisms

can play a role in the transport properties of irradiated junctions. The

existent experiments in atomic and molecular contacts suggest that the

photon-assisted tunneling mechanism (or rectification) is at work even at

optical frequencies, although more experiments are certainly needed to con-

firm it.

From the theory side, many novel transport phenomena have been pre-

dicted and await for experimental confirmation. The problems to observe

them are related both to the difficulty of injecting light in such tiny objects

surrounded by metallic electrodes and to the fact that other effects can

mask their appearance.

Current-induced light emission is an extraordinary physical phe-

nomenon that can provide the most direct spectroscopy of the electronic
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states in a molecular junction. So far, there have been very few experi-

ments where molecular signatures have been unambiguously identified in

the fluorescence spectra and more experiments are needed. For the theory

the challenge is now to provide quantitative predictions that can be directly

compared with the experiments.

The last topic that we have discussed in this chapter is very important

from the technological point of view. Molecular electronics is often seen as a

field that aims at reproducing the standard microelectronic components and

devices, but at a smaller scale. However, the future of molecular electronics

depends crucially on our ability to provide devices with new functionalities

out of the scope of more traditional technologies. The optical properties

of many molecules may offer a down-to-earth possibility for the future. In

principle, they can be used in transport junctions to control the current at

will and many researchers believe by now that molecular optoelectronics

will soon grow as a field of its own. However, so far it has been difficult

to take advantage of those optical properties and the only successful imple-

mentations have made use of photochromic molecular switches. At present,

it is not clear whether the difficulties encountered so far are just of techni-

cal nature or there are true fundamental limitations. In any case, the next

years will be certainly exciting for the scientists working on this subject.

20.9 Exercises

20.1 Photon-assisted tunneling in atomic gold chains: In the Exercise 7.5
a tight-binding model was used to show that the conductance of atomic chains
can exhibit parity oscillations, i.e. that it depends on whether the number of
atoms N in the chain is even or odd. Use that model to show that the sign of
correction to the linear conductance due to irradiation, ΔGdc, can also exhibit
an even-odd effect. In particular, show that for low frequencies ΔGdc < 0, if N is
odd; while ΔGdc > 0, if N is even. Hint: For the last task use the low-frequency
formula of Eq. (20.9).

20.2 Photon-assisted tunneling in molecular junctions: The goal of this
exercise is to gain some insight into PAT in molecular junctions. For this purpose,
let us assume that the transmission function of a molecular junction is given by
the following double Lorentzian18

τ (E) =

2∑
i=1

4ΓLΓR

(E − εi)2 + (ΓL + ΓR)2
,

18This model was extensively used in section 19.3 to describe the thermopower in molec-
ular junctions.
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were ε1 and ε2 is the energy of HOMO and LUMO, respectively, and ΓL and
ΓR the broadenings by contacts L and R. For the sake of concreteness, we
shall assume throughout this exercise that ε1 = −7.0 eV, ε2 = −3.0 eV and
ΓL = ΓR = 30 meV.

(i) Use the second equality in Eq. (20.9), i.e. the classical rectification formula,
to analyze the low-frequency radiation-induced correction to the conductance
(ΔGdc) as a function of the Fermi level position (EF). In particular, show that
ΔGdc is negative only when EF is very close to one of the frontier orbitals.

(ii) Let us now assume that the Fermi level lies in the middle of the HOMO-
LUMO gap, i.e. EF = −5.0 eV and consider the limit of small ac amplitudes
(α 	 1). Compute ΔGdc as a function of photon energy and show that for
�ω � 0.5 eV, the classical rectification formula fails to describe the correction to
the conductance given by the first equality in Eq. (20.9).

(iii) Now assume that EF = −6.0 eV and use Eq. (20.6) to compute ΔGdc

as a function of the photon energy in the interval �ω ∈ [0 eV, 4 eV] for different
values of α. For α	 1 you will find the appearance of two peaks at 1 and 3 eV.
What is the origin of these peaks? Finally, compare the results obtained with the
exact formula of Eq. (20.6) and with the approximation of Eq. (20.9) to establish
in which range of α this approximation is valid.

(iv) One of the key signatures of PAT is the appearance of additional steps
in the I-V characteristics. Assume that EF = −6.0 eV and �ω = 0.5 eV and
use Eq. (20.5) or Eq. (8.74) to compute the I-V curves and the corresponding
differential conductance for α = 0, 1, 2, 4. Discuss the origin of current steps (or
the corresponding peaks in the differential conductance) induced by the radia-
tion. Finally, analyze the phenomenon of coherent destruction of tunneling by
computing the I-V curves and differential conductance for values of α for which
J0 in Eq. (20.5) vanish, i.e. α/2 = 2.405, 5.520, . . . .
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Chapter 21

What is missing in this book?

At this stage in the development of molecular electronics it is already im-

possible to cover all the aspects of this multidisciplinary field in a single

monograph. Our selection of topics has been biased, as it could not be oth-

erwise, by our own backgrounds and research interests and we are aware of

the fact that important issues have been left out. Therefore, we would like

to close this manuscript by pointing out some of those topics and suggesting

some references where the reader can find information about them.

Among the topics not covered in this monograph, we believe that the

following ones are of special relevance:

• Molecules for molecular electronics: In section 3.2 we presented

a brief discussion about the typical molecules considered in molec-

ular electronics. We also mentioned briefly the electronic functions

for which they are well suited. A detailed discussion of this is-

sue can be found in several monographs and review articles, see e.g.

Refs. [583, 1002, 1016, 33, 47, 1017].

• Electron transfer: Electron transfer, the process by which an elec-

tron moves from one atom or molecule to another atom or molecule,

is one the simplest and most important reactions both in chemistry

and biology. In particular, electron transfer in donor-bridge-acceptor

complexes is in many respects very similar to the conduction of an

electron through a molecular transport junction.1 Thus, it is obvious

that molecular electronics can profit a lot from the much more ma-

ture field of electron transfer in chemistry and biology. In the sense,

researchers working in our field should at least know the basics of the

1Although the driving forces are different in these two types of experiments, the mech-
anisms by which the electron is transferred through the bridge/molecular wire are essen-
tially the same.
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standard theory of electron transfer, known as Marcus theory. This

theory is nicely explained in the monograph of Kuznetsov and Ulstrup

[582], but we specially recommend Chapters 16 and 17 of Nitzan’s book

on chemical dynamics in condensed phases [30]. For an introduction to

the techniques used to measure electron transfer rates, see Ref. [583].

This reference also contains countless experimental results for many

different chemical compounds. Finally, for a discussion of the connec-

tion between electron transfer rates and electrical conductance, see e.g.

Refs. [38, 830, 1018, 831].

• SAM-based molecular junctions: Since we are interested in the

basic conduction mechanisms in molecular systems, we have focused our

attention on the study of transport through single-molecule junctions.

However, the technological applications of molecular electronics will

surely come from devices containing of a large number of molecules,

like in the junctions based on self-assembled monolayers (SAM). In this

sense, there are many basic questions to be addressed like for instance

whether or not we can straightforwardly extrapolate the results for

single-molecule junctions to those devices.2 On the other hand, such

SAM-based devices require fabrication techniques that differ from the

ones described here. Some of these issues are discussed in the review

of Ref. [41].

• Scaling and integration of molecular devices: Important topics

for the future of molecular electronics, which are related to the pre-

vious issue, are the reliable mass production of molecular devices and

the integration of molecular junctions into macroscopic circuits. The

strategies and ideas explored so far in this respect have been reviewed

by Lu and Lieber in Ref. [1019].

• Carbon nanotubes: These molecules are considered to be something

in between a solid and a molecule and the study of their electrical and

thermal properties constitutes a field in its own. For this reason, we

have rarely talked about carbon nanotubes (CN) in this monograph.

However, it is obvious that many of the concepts, ideas and techniques

that we have discussed here are directly applicable to the problem of

transport through CN-based junctions. For a recent review on the

electronic and transport properties of carbon nanotubes, see Ref. [1020].

2It is not obvious what is the role of inter-molecular interactions in these systems and in
some cases, the transport characteristics may differ significantly from the corresponding
ones of a single-molecule device.
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• Strongly correlated methods for molecular electronics: One of

the main challenges for the theory in our field is the development of

new methods that are able to describe properly the transport through

systems that exhibit strong electronic correlations, as it is often the case

in molecular junctions. Such methods should (and they will) replace

DFT in the near future as the main theoretical tool for the description

of transport in molecular junctions. We have not said much about

this topic in this monograph because those methods are still under

development and their performance has still to be established. For

recent advances on this subject we recommend [634, 1021–1023] and

references therein.
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Appendix A

Second Quantization

All the relevant systems in molecular electronics are composed of many

identical particles such as electrons, protons, phonons (or vibrations), etc.

As we all know, these particles obey their corresponding quantum statis-

tics depending on whether there are fermions or bosons. This statistics

is reflected in the symmetry of the many-particle wave functions. Thus

for instance, a fermionic wave function is expressed in the form of Slater

determinants to ensure its antisymmetry (Pauli’s exclusion principle).

The algebra with many-particle wave functions is quite cumbersome,

and it has been shown that the description of a many-body system can

be greatly simplified by using the so-called second quantization formalism

of quantum mechanics. This is just an alternative formalism (with no

new physics) in which the symmetry of the wave functions is transferred to

some convenient operators which fulfill simple commutation rules. Then, in

this formalism all the standard calculations can be done using the algebraic

properties of these operators, rather than using lengthy many-particle wave

functions.

The second quantization approach will be used throughout this book

and therefore, in order to make this manuscript more self-contained, we

have included a brief review of this formalism in this appendix. For a more

detailed discussion of the second quantization formalism, we recommend

the many-body textbooks of Refs. [173–176].
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A.1 Harmonic oscillator and phonons

A.1.1 Review of simple harmonic oscillator quantization

One convenient way to introduce the subject of creation and annihilation

operators, which is the essence of the second quantization formalism, is to

review the physics of a quantum-mechanical harmonic oscillator. Let us

consider a particle of mass m that is subjected to a one-dimensional (1D)

harmonic potential. The Hamiltonian describing this system can be written

as

H =
p2

2m
+
K

2
x2, (A.1)

where x and p = −i�(∂/∂x) are the position and momentum operators,

respectively, which satisfy [x, p] = xp− px = i�.

To diagonalize this Hamiltonian, we introduce the frequency ω and the

dimensionless coordinate ξ:

ω2 =
K

m
; ξ = x

(mω
�

)1/2

. (A.2)

In terms of these new parameters, we can write the Hamiltonian simply as

H =
�ω

2

(
− ∂2

∂ξ2
+ ξ2

)
. (A.3)

The harmonic oscillator has a solution in terms of Hermite polynomials.

The corresponding eigenvalues are given by

Hψn = �ω

(
n+

1

2

)
ψn, (A.4)

where n is an integer. From now on, we shall use the Dirac notation for

the eigenstate: |n〉 = ψn.

We now introduce two dimensionless operators as follows

a =
1√
2

(
ξ +

∂

∂ξ

)
=
(mω
2�

)1/2
(
x+

ip

mω

)
(A.5)

a† =
1√
2

(
ξ − ∂

∂ξ

)
=
(mω
2�

)1/2
(
x− ip

mω

)
.

They are Hermitian conjugates of each other. They are sometimes called

raising and lowering operator (or ladder operators), but here we call them

creation (a†) and annihilation (a) operators. In terms of these new opera-

tors, the Hamiltonian can now be written as

H =
�ω

2

[
aa† + a†a

]
. (A.6)
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It is easy to show from their definitions that these operators satisfy the

following commutation relations

[a, a†] = 1 ; [a, a] = 0 ; [a†, a†] = 0. (A.7)

With these relations, the Hamiltonian adopts the following form

H =
�ω

2

[
aa† + a†a

]
= �ω

[
a†a+

1

2

]
. (A.8)

The three commutators above plus this Hamiltonian completely specify

the harmonic oscillator problem in terms of operators. With these four

relationships, one can show that the eigenvalue spectrum is indeed that of

Eq. (A.4). The eigenstates are

|n〉 = (a†)n√
n!

|0〉, (A.9)

where |0〉 is the ground state which obeys

a|0〉 = 0 (A.10)

and where the n! is for normalization. Operating on this state by a creation

operator gives

a†|n〉 = (a†)n+1

√
n!

|0〉 = (n+ 1)1/2|n+ 1〉 (A.11)

the state with the next highest integer. In the same way, one can show that

a|n〉 = (n)1/2|n− 1〉, (A.12)

which shows that the annihilation operator a lowers the quantum number.

Then operating by the sequence

a†a|n〉 = a†(n)1/2|n− 1〉 = n|n〉 (A.13)

gives an eigenvalue n, which verifies the eigenvalue relation A.4. Further-

more, using the original definition of Eq. (A.5) permits us to express x and

p in terms of these operators as

x =

(
�

2mω

)1/2

(a+ a†) (A.14)

p = i

(
m�ω

2

)1/2

(a† − a). (A.15)

The description of the harmonic oscillator in terms of operators is equiv-

alent to the conventional method of using wave functions ψn(ξ) of position.
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A.1.2 1D harmonic chain

With the material of the previous subsection, we are now in position to

discuss briefly our first many-body problem, namely the physics of phonons.

This will illustrate in an informal way the second quantization formalism

for bosons.

In a solid there are many atoms, which mutually interact. The vibration

modes are collective motions involving many atoms. A simple introduction

to this problem is obtained by studying the normal modes of an infinite

one-dimensional harmonic chain:

H =
∑
i

p2i
2m

+
K

2

∑
i

(xi − xi+1)
2. (A.16)

Here, we have assumed that an atom is only coupled to its nearest neighbors

and that all the atoms are identical.

The classical solution is obtained by solving the equation of motion:

−mẍj = mω2xj = K(2xj − xj+1 − xj−1). (A.17)

A solution is assumed of the form xj = x0 cos(kaj), where a is the inter-

atomic distance. Then, the normal modes have the solution

ω2
k =

2K

m
[1− cos(ka)] =

4K

m
sin2(ka/2). (A.18)

To quantize the theory, let us impose canonical commutation relations

on the position and momentum of the lth and jth atoms: [xl, pj ] = i�δlj and

construct collective variables which describe the modes themselves (recall

k is wave vector, l is position):

xl =
1√
N

∑
k

eikalxk ; xk =
1√
N

∑
l

e−ikalxl

pl =
1√
N

∑
k

e−ikalpk ; pk =
1√
N

∑
l

eikalpl, (A.19)

which leads to canonical commutation relations in wave vector space:

[xk, pk′ ] =
1

N

∑
l,m

e−ikaleik
′am[xl, pm]

=
i�

N

∑
l

e−ial(k−k′) = i�δk,k′ . (A.20)

Let us now express the Hamiltonian of Eq. (A.16) in terms of the new

variables. We have, with a little algebra,∑
l

p2l =
∑
k

pkp−k (A.21)

K

2

∑
l

(xl − xl+1)
2 =

m

2

∑
k

ω2
kxkx−k.
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Then the Hamiltonian may be written in wave vector space as

H =
1

2m

∑
k

pkp−k +
m

2

∑
k

ω2
kxkx−k. (A.22)

Note that the energy is now expressed as the sum of kinetic plus po-

tential energy of each mode k, and there is no more explicit reference to

the motion of the atomic constituents. To second quantize the system, we

write down creation and annihilation operators for each mode k. We define

ak =
(mωk

2�

)1/2 (
xk +

i

mωk
p−k

)
(A.23)

a†k =
(mωk

2�

)1/2 (
x−k − i

mωk
pk

)
, (A.24)

which can be shown, just as in the single harmonic oscillator case, to obey

commutation relations[
ak, a

†
k′

]
= δk,k′ , [ak, ak′ ] = 0,

[
a†k, a

†
k′

]
= 0 (A.25)

and the Hamiltonian can be simply expressed as

H =
∑
k

�ωk

(
a†kak +

1

2

)
. (A.26)

These collective modes of vibrations are called phonons. They are the

quantized version of the classical vibrational modes in a solid. Each wave

vector state behaves independently, as a harmonic oscillator, with a possible

set of quantum numbers nk = 0, 1, 2, ... The state of the system at any time

is

Ψ = |n1, n2, ..., nn〉 =
∏
k

|nk〉 =
∏
k

(a†k)
nk

√
nk!

|0〉 (A.27)

so that the expectation value of the Hamiltonian is

〈H〉 =
∑
k

�ωk

(
nk +

1

2

)
. (A.28)

In thermal equilibrium the states have an average value of nk which

is given in terms of the temperature β = 1/kBT by the Bose distribution

function:

〈nk〉 ≡ Nk =
1

eβ�ωk − 1
≡ nB(�ωk). (A.29)

So in summary, we have shown that the physics of these collective modes

can be described in terms of creation and annihilation operators that satisfy

simple commutation relations. In the next section we shall show in a more

formal manner that these basic ideas can be extended to any many-body

system, focusing on the case of fermionic particles.
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A.2 Second quantization for fermions

The systems that we will be dealing with are composed of many identi-

cal particles such as electrons or phonons. In quantum mechanics those

identical particles are indistinguishable. Thus for instance, no electron can

be distinguished from another electron, except by saying where it is, what

quantum state it is in, etc. Internal quantum-mechanical consistency re-

quires that when we write down a many-identical-particle state, we make

that state noncommittal as to which particle is in which single-particle

state. For example, we say that we have electron 1 and electron 2, and we

put them in states a and b respectively, but exchange symmetry requires

(since electrons are fermions) that a satisfactory wave-function has the form

Φ(r1, r2) = A [φa(r1)φb(r2)− φa(r2)φb(r1)] , (A.30)

i.e. the wave function is antisymmetric with respect to the exchange of the

two electrons: Φ(r1, r2) = −Φ(r2, r1). This is a consequence of Pauli’s

exclusion principle that states that there cannot be two fermions in the

same quantum sate.

If we have N particles, the wave functions must be either symmetric or

antisymmetric under exchange depending on the nature of the particles:

ΦB(r1, ..., ri, ..., rj , ..., rN ) = ΦB(r1, ..., rj , ..., ri, ..., rN ) (Bosons)

ΦF(r1, ..., ri, ..., rj , ..., rN ) = −ΦF(r1, ..., rj , ..., ri, ..., rN ) (Fermions).

In particular, in the fermionic case the antisymmetry of the wave func-

tion can be ensured by using Slater determinants. But, can we satisfy the

antisymmetry principle without using Slater determinants? Second quan-

tization is a formalism in which the antisymmetry property of the wave

function has been transferred onto the algebraic properties of certain oper-

ators. Second quantization introduces no new physics. It is just another,

although very elegant, way of treating many-electron systems, which shifts

the emphasis away from N -electron wave functions to the one- and two

electron matrix elements of the different operators. This has been illus-

trated already in the case of bosons with the analysis of the phonons in a

1D chain in the previous section, and we shall now concentrate on the case

of fermions.

A.2.1 Many-body wave function in second quantization

The total wave function for the ground state and excited states of non-

interacting particles is the product of single-particle wave functions. How-
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ever, because we are considering identical fermions, this product must be

anti-symmetrized (Pauli’s exclusion principle) and the proper wave function

is the Slater determinant

Φk1,...,kN (r1, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣

φk1
(r1) φk1

(r2) · · · φk1
(rN )

φk2
(r1) φk2

(r2) · · · φk2
(rN )

...
...

...
...

φkN (r1) φkN (r2) · · · φkN (rN )

∣∣∣∣∣∣∣∣∣
, (A.31)

where N is the number of particles and the φk’s are a set of single-particle

states with ki as quantum number (e.g. energy). If the particles are allowed

to interact with each other, or with an external potential, then the exact

wave functions of the system are no longer that of Eq. (A.31), but a linear

combination of Φ’s:

Ψ(r1, ..., rN ) =
∑

k1,...,kN

Ak1,...,kNΦk1,...,kN (r1, ..., rN ). (A.32)

That is, the Φk1,...,kN (r1, ..., rN ) for the non-interacting system are the basis

states used to describe the interacting system.

Now these are rather clumsy expressions to carry around, so it would

be desirable to have a more compact way of writing them. This may be

achieved by noting that since all particles are indistinguishable, the essential

information in Eq. A.31 is just how many particles there are in each single-

particle state. Therefore, we could equally well specify the state of the

non-interacting system by writing Φ as

Φk1,...,kN (r1, ..., rN ) = Φnp1 ,np2 ,...,npi
,...(r1, ..., rN ). (A.33)

For short, we shall represent this as

Φnp1 ,np2 ,...,npi
,...(r1, ..., rN ) ≡ |np1

, np2
, ..., npi , ...〉 (A.34)

meaning: np1
particles in state φp1

, np2
in φp2

, etc., where nk = 0 or 1

by the Pauli principle. This is called “occupation number notation”. For

brevity, from now on we shall drop the p’s and just use the numerical

subscripts. Then

Φ = |n1, n2, ..., ni, ...〉. (A.35)

It is important to remember that the |n1, n2, ..., ni, ...〉 are orthonormal

because the Φk1,...,kN are, and we may write this in the following way

〈n′1, n′2, ..., n′i, ...|n1, n2, ..., ni, ...〉 = δn′

1
,n1
δn′

2
,n2
...δn′

i,ni
... (A.36)

Up to this point we have been dealing with systems containing a fixed

number of particles. Now we take an important step, and, even though the
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particle number in a real system is fixed, allow N to be variable, running

from 0 to ∞. This generates the following set of basis functions

0 Φ0 |000...〉
1 Φ1,Φ2,Φ3, ... |100...〉, |010...〉, |001...〉, ...
2 Φ12,Φ13,Φ23, ... |1100...〉, |1010...〉, |0110...〉, ...
...

...
...

N Φk1,k2,...,kN |n1, n2, ..., ni, ...〉
...

...
... (A.37)

The state Φ0 or |000...〉 with no particles at all in it is called the true

vacuum. The set of all |n1, ..., ni, ...〉 in Eq. (A.37) is a complete orthogonal

set of basis functions in an extended Hilbert space in which the number

of particles is variable. This set is often called occupation number basis,

and the whole formalism is sometimes referred to as occupation number

representation.

States like the ones appearing in Eq. (A.37) can describe the state of

a non-interacting fermionic systems. In the presence of interactions the

correct eigenstates of the system can be obtained as linear combination of

the states |n1, ..., ni, ...〉, i.e.

Ψ =
∑

n1,...,ni,...

An1,...,ni,...|n1, ..., ni, ...〉. (A.38)

A.2.2 Creation and annihilation operators

We shall go on constructing the formalism of second quantization by show-

ing how the properties of determinants can be transferred onto the algebraic

properties of operators. For this purpose, we begin by associating a creation

operator c†i and an annihilation operator ci with each single-particle state

φi. We define c†i and ci by their action on an arbitrary Slater determinant

|n1, ..., ni, ...〉 as follows

c†i |n1, ..., ni, ...〉 = (−1)Σi(1− ni)|n1, ..., ni + 1, ...〉 (A.39)

ci|n1, ..., ni, ...〉 = (−1)Σini|n1, ..., ni − 1, ...〉, (A.40)

where

Σi = n1 + n2 + ...+ ni−1. (A.41)
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That is, we get a factor of (−1) for each particle (i.e., each occupied state)

standing to the left of the state i in the wave function. For example

ci|..., 0i, ...〉 = 0 , c†i |..., 1i, ...〉 = 0

c3|11111000...〉 = +|11011000...〉
c†4|1110100...〉 = −|11111000...〉

c†2c3c
†
1c2c

†
3c1|1100...〉 = −|1100...〉. (A.42)

One of the nice properties of the c†i operators is that by applying them

repeatedly to the true vacuum state (state with no particles in it), it is

possible to generate all other states, thus:

|n1, n2, ...〉 = (c†1)
n1(c†2)

n2 ...|0000...〉. (A.43)

For example

|011000...〉 = c†2c
†
3|0000...〉. (A.44)

Another important property of the c†i , ci operators is that they are

hermitian adjoint of each other, i.e. c†i = (ci)
†. The demonstration is left

to the reader. This property shows that c†i , ci are non-hermitian and are

therefore not observables. It is, however, easy to construct a hermitian

operator from c†i and ci as follows. The combination

n̂i = c†ici (N̂ =
∑
i

c†i ci) (A.45)

is obviously hermitian and is an extremely important observable called num-

ber operator (N̂ = total number operator). To understand its properties,

let it operate on some typical state vectors:

c†ici|n1, n2, ..., 1i, ...〉 = (−1)Σic†i |n1, n2, ..., 0i, ...〉
= (−1)Σi+Σi |n1, n2, ..., 1i, ...〉
= (+1)|n1, n2, ..., 1i, ...〉.

Similarly

c†ici|n1, n2, ..., 0i, ...〉 = 0|n1, n2, ..., 0i, ...〉,
so that in general

c†i ci|n1, n2, ..., ni, ...〉 = ni|n1, n2, ..., ni, ...〉. (A.46)

Thus, the eigenvalue of the number operator for the state φi is just the

occupation number for that state. Hence, in the occupation number ba-

sis, all number operators are diagonal and the total system wave function
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|n1, ..., ni, ...〉 are just simultaneous eigenfunctions of the number operators

n̂1, ..., n̂i, ....

The c†i , ci operators obey the following important fermion commutation

rules :

{cl, c†k} = clc
†
k + c†kcl = δlk ; {cl, ck} = {c†l , c†k} = 0. (A.47)

These can be easily proved from the definitions of Eqs. (A.39) and (A.40).

Thus for instance, the second relation can be shown as follows:

clck|n1, ..., nl, ..., nk, ...〉 = (−1)Σknkcl|n1, ..., nl, ..., nk − 1, ...〉 (A.48)

= (−1)Σk+Σlnknl|n1, ..., nl − 1, ..., nk − 1, ...〉
ckcl|n1, ..., nl, ..., nk, ...〉 = (−1)Σlnlck|n1, ..., nl − 1, ..., nk, ...〉

= (−1)(−1)Σk+Σlnknl|n1, ..., nl − 1, ..., nk − 1, ...〉,
where the extra (−1) on line four comes from the fact that there is one less

particle to the left of state k. Adding the two equations yields the second

rule in Eq. (A.47). The other rules may be established in a similar fashion.

The importance of the above set of anti-commutation relations lies in

the fact that all the antisymmetry properties are built into them. Therefore,

by using them in the right places, we do not have to worry either about the

symmetry of the wave functions themselves, or even about the awkward

(−1)Σ factors.

A.2.3 Operators in second quantization

We have seen that we can represent determinants by using creation and

annihilation operators, which obey a set of anti-commutation relations,

and a vacuum state. To be able to develop the entire theory of many-

electron systems without using determinants, we must express the many-

body operators in terms of the creation and annihilation operators. This is

the goal of this subsection.

All the operators that we shall encounter, in particular for electronic

systems, can be written in first quantization as the sum of two types of

operators. The first type is a sum of one-electron operators

O1 =

N∑
i=1

h(i), (A.49)

where h(i) is any operator involving only the ith electron. These operators

represent dynamic variables that depend only on the position or momentum

of the electron in question, independent of the position or momentum of
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other electrons. Examples are operators for the kinetic energy, attraction

of an electron to a nucleus, dipole moment, and most of the other operators

that one encounters. The second type of operator is a sum of two-electron

operators

O2 =
1

2

N∑
i�=j

V (i, j), (A.50)

where V (i, j) is an operator that depends on the position (or momentum)

of both the ith and jth electron. The Coulomb interaction between two

electrons

V (i, j) =
e2

|ri − rj | (A.51)

is a two-electron operator.

Obviously, the expression for an operatorO in second quantization must

be such that the value of the matrix element 〈K|O|L〉, |K〉 and |L〉 being
two arbitrary Slater determinants, is the same irrespective of whether we

obtain it using the properties of determinants or using the algebra of cre-

ation and annihilation operators. The appropriate expressions for O1 (our

sum of one-electron operators) andO2 (the two-electron operator) in second

quantization are

O1 =
∑
ij

hijc
†
icj (A.52)

O2 =
1

2

∑
ijkl

Vijklc
†
i c
†
jclck, (A.53)

where the sums run over the set {ψi}. Here, the different matrix elements

are defined as follows

hij ≡
∫
dr1 ψ

∗
i (r1)h(r1)ψj(r1) (A.54)

Vijkl ≡
∫
dr1

∫
dr2 ψ

∗
i (r1)ψ

∗
j (r2)V (r1, r2)ψk(r1)ψl(r2). (A.55)

Let us now sketch the demonstration of this result. Consider the

following N -electron Slater determinant |Ψ〉 = |ψ1, ..., ψa, ψb, ..., ψN 〉 =

|11, ..., 1a, 1b, ..., 1N 〉. From the first quantization formalism (this is a simple

exercise), we know that the expectation value of the one-electron operator

O1 is equal to

〈Ψ|O1|Ψ〉 =
∑
i

hii. (A.56)
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Let us now demonstrate that we can also recover this result using the second

quantization expression for the operator O1. In this case,

〈Ψ|O1|Ψ〉 =
∑
ij

hij〈Ψ|c†icj |Ψ〉. (A.57)

Since both cj and c†i are trying to destroy an electron (cj to the right and

c†i to the left), the indices i and j must belong to the set {a, b, ...} and thus

〈Ψ|O1|Ψ〉 =
∑
ab

hab〈Ψ|c†acb|Ψ〉. (A.58)

Using

c†acb = δab − cbc
†
a (A.59)

to move c†a to the right, we have

〈Ψ|c†acb|Ψ〉 = δab〈Ψ|Ψ〉 − 〈Ψ|cbc†a|Ψ〉. (A.60)

The second term on the right is zero since c†a is trying to create an electron

in ψa, which is already occupied in |Ψ〉. Since 〈Ψ|Ψ〉 = 1, we finally have

〈Ψ|O1|Ψ〉 =
∑
ab

habδab =
∑
a

haa. (A.61)

in agreement with the first quantization result above. We can proceed

in a similar way to demonstrate the result for two-electron operators (see

Exercise A.4 at the end of this appendix).

Note that the form of the operators above is independent of the number

of electrons. One of the advantages of second quantization is that it treats

systems with different numbers of particles on an equal footing. This is

particularly convenient when one is dealing with infinite systems such as

solids or molecular junctions.

A.2.4 Some special Hamiltonians

Our description of the electronic structure of any electronic system will

start always by presenting the corresponding Hamiltonian. In this sense,

it is important to get familiar with the form that some basic Hamiltonians

adopt in second quantization.

The Hamiltonian of an electron system has the following generic form

in first quantization

H =
∑
i

[
p2i
2m

+ U(ri)

]
+

1

2

∑
i�=j

V (ri − rj) (A.62)
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with the electrons interacting with a potential U(r), such as the lattice

potential in a solid, and with each other through particle-particle interac-

tions V (ri − rj), typically the Coulomb interaction. As we have learned

above, this Hamiltonian can be written in terms of the fermionic creation

and annihilation operators as

H =
∑
ij

hijc
†
i cj +

1

2

∑
ijkl

Vijklc
†
i c
†
jclck, (A.63)

where

hij =

∫
dr ψ∗i (r)

[
−�

2∇2

2m
+ U(r)

]
ψj(r)

Vijkl =

∫
dr1

∫
dr2 ψ

∗
i (r1)ψ

∗
j (r2)V (r1 − r2)ψk(r1)ψl(r2).

The precise form of this Hamiltonian depends primarily on the single-

particle basis {ψi} used. For the study of electron in solids, a popular basis

set is plane waves: ψi(r) = ψk,σ(r) = L−3/2eik·ruσ, where k is the electron

momentum, σ is the spin index and uσ is a spinor. The Hamiltonian then

has the form

H =
∑
kσ

εkc
†
kσckσ +

∑
q

U(q)ρq +
1

2V

∑
kk′qσσ′

vqc
†
k+qσc

†
k′−qσ′ck′σ′ckσ,

(A.64)

where V is the total volume of the system and εk = �
2k2/2m. The second

term represents the interaction between the electrons and the atoms or ions

of the solid, where ρq is the electron density operator given by

ρq =
∑
kσ

c†k+qσckσ. (A.65)

Finally, vq is the Fourier transform of the Coulomb potential e2/r and it is

given by vq = 4πe2/q2.

The full electron gas Hamiltonian of Eq. (A.64) is too complicated and

it is often approximated by a model Hamiltonian which has a simpler form.

Some of these popular models are discussed next.

The homogeneous electron gas is a model which is studied frequently to

learn about correlation effects. It has the Hamiltonian

H =
∑
kσ

εkc
†
kσckσ +

1

2V

∑
kk′,q �=0,σσ′

vqc
†
k+qσc

†
k′−qσ′ck′σ′ckσ. (A.66)

The basic premise is to get rid of the atoms and to replace them with

a uniform positive background charge of density n0. The homogeneous
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electron gas is also called jellium model. One can think of taking the

positive charge of the ions and spreading it uniformly about the unit cell

of the crystal. Of course, the homogeneous electron gas has no crystal

structure. To preserve charge neutrality, the average particle density of the

electron gas must also be n0. This model, although a bit academic, has

played a key role to understand basic issues about the Coulomb interaction

of a many-particle system. A detailed discussion of this model can be found

in Ref. [174].

The plane-wave model is often a poor approximation of electron be-

havior in solids where the electrons are localized on atomic sites and only

occasionally hop to neighboring sites. This behavior is described by the

tight-binding model, where the basis is formed by localized atomic-like or-

bitals.3 One simple form of this model is bilinear in the operators:

H =
∑
ijσ

tijc
†
iσcjσ . (A.67)

The index j denotes a site at point Rj , while i represents the nearest

neighbor atoms. The matrix elements tij are given by

tij =

∫
dr φ∗(r−Ri)

[
− �

2

2m
∇2 + U(r)

]
φ(r −Rj), (A.68)

where the orbitals φ(r) are localized in the sites Ri and Rj. Thus, the

element tij (for j �= i) represents processes where the electron jumps from

site j to i, while tii is the site energy. Simple versions of the model usually

have a single orbital state for each atomic site. More realistic versions of

the tight-binding model allow for multiple orbitals characteristic of p- or

d-electrons (see Chapter 9).

The tight-binding Hamiltonian may also contain the Coulomb interac-

tion between electrons. In its most general form, the interaction term is

1

2

∑
ijkl

Vijklc
†
i c
†
jclck (A.69)

where

Vijkl =

∫
dr1

∫
dr2 φ

∗(r1−Ri)ψ
∗(r2−Rj)

e2

|r1 − r2|ψ(r1−Rk)ψ(r2−Rl).

The four orbitals could be centered on four different sites. These are called

four-center integrals. They are usually small and often neglected in many-

body calculations.
3Tight-binding models and their used in molecular electronics are the subject of Chapter

9.
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The Hubbard model [177] retains only the Coulomb integral which is the

largest, namely that in which all four orbitals φ(r) are centered on the same

site. This term describes the interaction between two electrons which are

on the same atom. Since two electrons cannot be in the same state, the two

on the same atom must be in different atomic states. In the simplest model,

which considers only a single orbital state on each atom, the two electrons

must have different spin configurations. One has spin up, while the other

has spin down. The Hubbard model considers the following Hamiltonian

H = ε0
∑
i

c†iσciσ + t
∑
ij

c†iσcjσ + U
∑
i

ni↑ni↓ (A.70)

U = Viiii =

∫
dr1

∫
dr2 |φ∗(r1)|2 e2

|r1 − r2| |φ
∗(r1)|2. (A.71)

The hopping term is usually limited to nearest neighbors. The Hamilto-

nian was also introduced by Gutzwiller [178], who studied the properties of

electrons in d-bands in ferromagnets. It is thought to be a good model for

electron conduction in narrow band materials, for example, in transition

metal oxides. The Hubbard model has been investigated thoroughly over

the past forty years, and its properties are starting to be understood [179].

A simplified version of the Hubbard model is the so-called Anderson

model [180]. In this model the Hubbard-like interaction is considered to

be only present in a single site. This model was introduced to study the

interaction of localized magnetic impurities with the conduction electrons

of a metal. In recent years, it has been widely used to study the electronic

and transport properties of quantum dots and molecular transistors (see

Chapters 15 and 17).

A.3 Second quantization for bosons

The second quantization formalism for bosons was already outlined when

we discussed the physics of phonons in section A.1.2. Anyway, for the sake

of completeness, we summarize here the main results of this formalism for

the case of bosons:

(1) The many-body wave functions for a bosonic system has to be sym-

metric with respect to the particle exchange. In this sense, the Slater
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determinant of the fermionic case is replaced now by

Φk1,k2,...,kN (r1, ..., rN ) =

(
n1!n2!...

N !

)1/2∑
P

(+1)P [φk1
(r1)...φkN (rN )]

= Φn1,...,ni,...(r1, ..., rN ) = |n1, ..., ni, ...〉, (A.72)

where P is the permutation operator which interchanges the ri’s in all

possible ways. Moreover, the occupation number can take any integer

value: ni = 0, 1, 2, 3, ....

(2) The c†i , ci operators are now defined by

c†i |n1, ..., ni, ...〉 =
√
ni + 1|n1, ..., ni + 1, ...〉 (A.73)

ci|n1, ..., ni, ...〉 = √
ni|n1, ..., ni − 1, ...〉. (A.74)

(3) The commutation relations now read:[
cl, c

†
k

]
= clc

†
k − c†kcl = δlk ; [cl, ck] =

[
c†l , c

†
k

]
= 0. (A.75)

(4) The one- and two-body operators are expressed in terms of the creation

and annihilation operators in the same way as in the fermion case.

A.4 Exercises

A.1 Find c1c
†
5c2|111000...〉.

A.2 Find 〈Ψ|N̂ |Ψ〉, where |Ψ〉 = A|100...〉 + B|111000...〉, and N̂ is the total
number operator.

A.3 Demonstrate the first and third fermion commutation rules of Eq. (A.47).

A.4 Verify that for a two-particle system, the matrix elements of the two-body op-
erator O2 in Eq. A.53 between two-particle states 〈0...1p...1q ...| and |0...1r ...1s...〉
are the same as the matrix elements of the first quantization version of O2 taken
between the corresponding two-particle Slater determinants.

A.5 Prove that the components of the total spin operator, S, in second quantized
form are:

Sx =
1

2

∑
k

(
c†k↑ck↓ + c†k↓ck↑

)

Sy = − i

2

∑
k

(
c†k↑ck↓ − c†k↓ck↑

)

Sz =
1

2

∑
k

(
c†k↑ck↑ − c†k↓ck↓

)
.
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Untiedt, N. Agräıt, Evolution of conducting channels in metallic atomic



654 Molecular Electronics: An Introduction to Theory and Experiment

contacts under elastic deformation, Phys. Rev. Lett. 81, 2990 (1998).
[265] T.N. Todorov, J. Hoekstra, A.P. Sutton, Current-induced forces in atomic-

scale conductors, Phil. Mag. B 80, 421 (2000).
[266] J. Hoekstra, A.P. Sutton, T.N. Todorov, A.P. Horsfield, Electromigration

of vacancies in copper, Phys. Rev. B 62, 8568 (2000).
[267] T.N. Todorov, J. Hoekstra, A.P. Sutton, Current-induced embrittlement

of atomic wires, Phys. Rev. Lett. 86, 3606 (2001).
[268] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136,

B864 (1964).
[269] W. Kohn and L.J. Sham, Self-consistent equations including exchange and

correlation effects, Phys. Rev. 140, A1133 (1965).
[270] W. Kohn, Nobel Lecture: Electronic structure of matter–wave functions

and density functionals, Rev. Mod. Phys. 71, 1253 (1998).
[271] R.O. Jones and O. Gunnarsson, The density functional formalism, its

applications and prospects, Rev. Mod. Phys. 61, 689 (1989).
[272] R.G. Parr and W. Yang, Density-Functional Theory of Atoms and

Molecules, (Oxford University Press, New York, USA, 1989).
[273] W. Koch and M.C. Holthausen, A Chemist’s Guide to Density Functional

Theory. (Wiley-VCH, Weinheim, D, 2001).
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Cuevas, G. Schön, Cluster-based density-functional approach to quantum
transport through molecular and atomic contacts, New J. Phys. 10, 125019
(2008).

[577] A. Ulman, Formation and structure of self-assembled monolayers, Chem.
Rev. 96, 1533 (1996).

[578] S.Y. Quek, L. Venkataraman, H.J. Choi, S.G. Louie, M.S. Hybertsen,
J.B. Neaton, Amine-gold linked single-molecule circuits: Experiment and
theory, Nano Lett. 7, 3477 (2007).



Bibliography 673

[579] M.S. Hybertsen, L. Venkataraman, J.E. Klare, A.C. Whalley, M.L.
Steigerwald and C. Nuckolls, Amine-linked single-molecule circuits: sys-
tematic trends across molecular families, J. Phys.: Condens. Matter 20,
374115 (2008).
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in atomic-sized point-contacts, Phys. Rev. B 62, 9962 (2000).
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[842] B. Giese, J. Amaudrut, A.K. Köhler, M.Spormann, S. Wessely, Direct ob-
servation of hole transfer through DNA by hopping between adenine bases
and by tunneling, Nature 412, 318 (2001).

[843] S.H.Choi, B. Kim, C.D. Frisbie, Electrical resistance of long conjugated
molecular wires, Science 320, 1482 (2008).

[844] E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly
and electrode attachment of a conducting silver wire, Nature 391, 775
(1998).

[845] Z. Hermon, S. Caspi, E. Ben-Jacob, Prediction of charge and dipole soli-
tons in DNA molecules based on the behaviour of phosphate bridges as
tunnel elements, Europhys. Lett. 43, 482 (1998).

[846] E. Ben-Jacob, Z. Hermon, S. Caspi, DNA transistor and quantum bit
element: Realization of nano-biomolecular logical devices, Phys. Lett. A
263, 199 (1999).

[847] N.C. Seeman, DNA nicks and nodes and nanotechnology, Nano Lett. 1,
22 (2001).

[848] D. Porath, G. Cuniberti, R. Di Felice, Charge transport in DNA-based
devices, Top. Curr. Chem. 237, 183 (2004).

[849] R.G. Endres, D.L. Cox, R.R.P. Singh, Colloquium: The quest for high-
conductance DNA, Rev. Mod. Phys. 76, 195 (2004).

[850] V.A. Bloomfield, D.M. Crothers, I. Tinoco (Ed.), Nucleic Acids: Struc-
tures, Properties, Functions, p. 475 (University Science Books, New York,
USA, 2000).

[851] P.J. de Pablo, F. Moreno-Herrero, J. Colchero, J. Gómez Herrero, P.
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[893] F. Haupt, T. Novotnaý, W. Belzig, Phonon-assisted current noise in
molecular junctions, Phys. Rev. Lett. 103, 136601 (2009).

[894] D. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J.
Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport, J. Appl.
Phys. 93, 793 (2003).

[895] R.K. Lake and S. Datta, Nonequilibrium Green’s-function method applied
to double-barrier resonant-tunneling diodes, Phys. Rev. B 45, 6670 (1992).

[896] R.K. Lake and S. Datta, Energy balance and heat exchange in mesoscopic
systems, Phys. Rev. B 46, 4757 (1992).

[897] J.-S. Wang, J. Wang, N. Zeng, Nonequilibrium Green’s function approach
to mesoscopic thermal transport, Phys. Rev. B 74, 033408 (2006).

[898] N. Mingo, Anharmonic phonon flow through molecular-sized junctions,
Phys. Rev. B 74, 125402 (2006).

[899] M. Galperin, A. Nitzan, M.A. Ratner, Heat conduction in molecular trans-
port junctions, Phys. Rev. B 75, 155312 (2007).
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phonon-assisted resonant tunneling,

522
photochromic molecules, 609
photochromism, 609
photoconductance, 230, 588
photocurrent, 589
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scattering approach, 78
Schrödinger picture, 112
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