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Preface

The trend in the miniaturization of electronic devices has naturally led
to the question of whether or not it is possible to use single molecules
as active elements in nanocircuits for a variety of applications. The re-
cent developments in nanofabrication techniques have made possible the
old dream of contacting individual molecules and exploring their electronic
transport properties. Moreover, it has been shown that molecules can in-
deed mimic the behavior of some of today’s microelectronic components,
and even strategies to interconnect molecular devices have already been
developed. These achievements have given rise to what is nowadays known
as Molecular FElectronics. There are still many problems and challenges
to be faced to make this novel electronics a viable technology, but the
exploration of molecular-scale circuits has already led to the discovery of
many fundamental effects. In this sense, molecular electronics has become
a new interdisciplinary field of science, in which knowledge from traditional
disciplines like physics, chemistry, engineering and biology is combined to
understand the electrical and thermal conduction at the molecular scale.
This book provides a comprehensive overview of the rapidly developing
field of molecular electronics. It focuses on our present understanding of
the electrical conduction in single-molecule circuits and presents a thorough
introduction to the experimental techniques and the theoretical concepts.
To be precise, our goal in this monograph is two-fold. On the one hand, we
want to provide a true textbook for advanced undergraduate and graduate
students both in physics and chemistry who are interested in the field of
molecular electronics or nanoelectronics in general. Our idea is to take
a student with a good background in quantum mechanics all the way to
be able to follow the specialized literature in molecular electronics or to
start working in this field. On the other hand, we also want provide a
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thorough review of the recent activities in molecular electronics from which
newcomers and specialists in the field can benefit.

Bearing these goals in mind, this book has been written in a self-
contained and unified way. It contains four parts that can be read indepen-
dently. In the first two ones we review the basic experimental techniques
and the main theoretical concepts concerning the electronic transport in
atomic-scale junctions. These two parts are meant to be textbook material
for an advanced course in molecular electronics. In particular, we have in-
cluded a collection of exercises at the end of most chapters, which in many
cases are motivated by recent experiments in the field. On the other hand,
Part 3 contains two chapters in which we describe at an introductory level
the physics of metallic atomic-size contacts and we also point out some of
the remaining challenges and open problems in this context. Finally, Part
4 is devoted to the electrical and thermal transport in molecular circuits,
with special emphasis on single-molecule junctions. Here, we do not only
review the recent activities in the field of molecular electronics, but we also
introduce the addressed topics at a basic level. In this sense, we have often
included unpublished material and additional exercises to help the reader
to gain a deeper insight into the fundamental concepts involved in the field
of molecular electronics.’

We have tried to cover in this monograph as many aspects of molecular
electronics as possible, but obviously the selection is limited for space rea-
sons and it reflects unavoidably our own research interests. We also want
to apologize with those authors that feel that their contribution was not
properly highlighted in the review part of this monograph, but it is by now
impossible to include all the huge amount of work done in this field. Fi-
nally, we just hope to have achieved, at least partially, the goal that truly
motivated the writing of this book, namely the sincere will to provide a
useful book for the new generation of researchers that should consolidate
molecular electronics as a solid pillar of the emerging nanoscience.

ISee section 1.3 for a more detailed description of the structure and scope of the book.
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Chapter 1

The birth of molecular electronics

How does the electrical current flow through a single molecule? Can a
molecule mimic the behavior of an ordinary microelectronics component or
maybe provide a new electronic functionality? How can a single molecule be
addressed and incorporated into an electrical circuit? How to interconnect
molecular devices and integrate them into complex architectures? These
questions and related ones are by no means new and, as we shall see later in
this chapter, they were already posed many decades ago. The difference is
that we are now in position to at least address them in the usual scientific
manner, i.e. by providing quantitative experimental and theoretical results.
The advances in the last two or three decades, both in nanofabrication
techniques and in the quantum theory of electronic transport, allow us now
to explore and to understand the basic properties of rudimentary electrical
circuits in which molecules are used as basic building blocks. It is worth
stressing right from the start that we do not yet have definitive answers for
the questions posed above. However, a tremendous progress has been made
in recent years and some concepts and techniques have already been firmly
established. In this sense, one of main goals of this book is to review such
progress, but more importantly, this monograph is intended to provide a
solid basis for the new generation of researchers that should take the field
of molecular electronics to the next level.

Molecular electronics, as used in this book, is defined as the field of
science that investigates the electronic and thermal transport properties of
circuits in which individual molecules (or an assembly of them) are used as
basic building blocks.! Obviously, some of the feature dimensions of such

IMolecular electronics, in the sense used here, should not be confused with organic
electronics, the field in which molecular materials are investigated as possible constituents
of a variety of macroscopic electronic devices.
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INORGANIC
CHEMISTRY

Fig. 1.1 Molecular electronics: An interdisciplinary field.

molecular circuits are of the order of nanometers (or even less) and there-
fore, molecular electronics should be viewed as a subfield of nanoscience
or nanotechnology in which traditional disciplines like physics, chemistry,
material science, electrical engineering and biology play a fundamental role
(see Fig. 1.1). Molecular electronics, in the sense of a potential technology,
is based on the bottom-up approach where the idea is to assemble elemen-
tary pieces to form more complex structures, as opposed to the top-down
approach where the idea is to shrink macroscopic systems and components.
Molecular electronics has emerged from the constant quest for new tech-
nologies that could complement the silicon-based electronics, which in the
meantime it has become a true nanotechnology. It seems very unlikely
that molecular electronics will ever replace the silicon-based electronics,
but there are good reasons to believe that it can complement it by provid-
ing, for instance, novel functionalities out of the scope of traditional solid
state devices. More importantly, molecular electronics has become in recent
years a true field of science where many basic questions and quantum phe-
nomena are being investigated. In this sense, the importance of molecular
electronics is unquestionable and we are convinced that different traditional
disciplines will benefit from advances in this new field.

In the rest of this introductory chapter, we shall first try to answer the
questions of why it is worth pursuing molecular electronics research and
why it is interesting to work in a field like this. Then, in section 1.2 we
shall briefly review the complex history of this field to set the stage for
this book. Finally, in section 1.3 we shall clearly define the scope of this
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monograph and explain its structure.

1.1 Why molecular electronics?

Every researcher is sooner or later confronted with natural questions like
“why do you work in your field?” or “what is your research good for?”
Of course, the answers are always personal, but in the case of molecular
electronics they also depend on whether one’s interests are closer to fun-
damental science or to technological applications. From the point of view
of basic science, molecular electronics offers, for instance, the possibility to
investigate electronic and thermal conduction at the smallest imaginable
scale, where the physics is completely dominated by quantum mechanical
effects. The small feature dimensions of molecular circuits together with the
great variety of electrical, mechanical and optical properties of molecules
can give rise to countless new physical phenomena. Molecular junctions are
also ideal systems where to investigate and shed new light into the funda-
mental electron transfer mechanisms that play a key role both in chemistry
and biology. These reasons and many others make molecular electronics a
very attractive field of basic research. Moreover, we should never forget that
the history of science proves that the exploration of new territories and the
subsequent discovery of novel phenomena often lead to unexpected tech-
nological applications. History also teaches us that there is no technology
without basic understanding and thus, the future of molecular electronics
as an emerging technology depends on our ability to understand the funda-
mental mechanisms that govern the electronic conduction at the molecular
scale.

From a technological point of view, there are also good reasons to inves-
tigate the use of molecules as electronically active elements for a variety of
applications. In comparison with the silicon-based technology, which is al-
ready a nanotechnology in the sense that the structure sizes are in the range
of nanometers,? molecular electronics could in principle offer the following
major advantages [2]:

e Size. The reduce size of small molecules (between 1 and 10 nm)
could lead to a higher packing density of devices with the subse-
quent advantages in cost, efficiency, and power dissipation.

2The next generation of transistors for advanced microprocessors will have gate lengths
of 22 nm and a SiO2 gate oxide thickness of less than 1.2 nm [1].
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e Speed. Although most molecules are poorly conductive, good
molecular wires could reduce the transit time of typical transis-
tors (~ 10714 s), reducing so the time needed for an operation.

e Assembly and recognition. One can exploit specific intermolecular
interactions to form structures by nanoscale self-assembly. Molec-
ular recognition can be used to modify electronic behavior, provid-
ing both switching and sensing capabilities on the single-molecule
scale.

e New functionalities. Special properties of molecules, like the exis-
tence of distinct stable geometric structures or isomers, could lead
to new electronic functions that are not possible to implement in
conventional solid state devices.

e Synthetic tailorability. By choice of composition and geometry, one
can extensively vary a molecule’s transport, binding, optical, and
structural properties. The tools of molecular synthesis are highly
developed.

Molecules have also obvious disadvantages such as instabilities at high
temperatures. Moreover, the fabrication of reliable molecular junctions
requires sometimes to control matter at an unprecedented level, which can
be not only difficult, but also slow and costly. Anyway, the advantages
described above are sufficient to motivate the exploration of a molecule-
based electronics.

1.2 A brief history of molecular electronics

It is always difficult to trace back the history of an emerging field and to
summarize it in a few pages. Anyway, even at the risk of being unfair leaving
out some important contributors, we find necessary to say a few words about
the history of molecular electronics as a tribute to those visionary scientists
that made possible that we are now working in this fascinating field. Our
brief account here is partially based on a delightful (non-scientific) article
by Choi and Mody [3], which reviews the history of molecular electronics
paying special attention to its social aspects.

We start this historical review in 1950’s, after the revolution in electron-
ics due to the invention of the transistor and the subsequent introduction
of integrated circuits. In that context and in view of the difficulties to rad-
ically miniaturize the existent electronic components, Arthur von Hippel,
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a German physicist working at the MIT, formulated in 1956 the basis of a
bottom-up approach that he called molecular engineering [4]. He argued:

Instead of taking prefabricated materials and trying to de-
vise engineering applications consistent with their macroscopic
properties, one builds materials from their atoms and molecules
for the purpose at hand ...

The concept of molecular engineering introduced by von Hippel [5] led
to the first notion of “molecular electronics”, which crystallized in a col-
laboration between the company Westinghouse and the US Air Force at
the end of the 1950’s. Westinghouse had begun a program to implement
von Hippel’s ideas and it applied for the financial support of the US Air
Force, which at that time was receptive to new ideas and alternatives to the
recently introduced integrated circuits. The Air Force organized a confer-
ence on “Molecular Electronics” and invited scientists and engineers from
military and private research labs. In this conference, colonel C.H. Lewis,
director of Electronics at the Air Research and Development Command,
expressed the need for a breakthrough in electronics in the following way:

Instead of taking known materials which will perform explicit
electronic functions, and reducing them in size, we should build
materials which due to their inherent molecular structure will
exhibit certain electronic property phenomena. We should syn-
thesize, that is, tailor materials with predetermined electronic
characteristic. Once we can correlate electronic property phe-
nomena with the chemical, physical, structural, and molecu-
lar properties of matter, we should be able to tailor materials
with predetermined characteristics. We could design and create
materials to perform desired functions. Inherent dependability
might eventually result. We call this more exact process of con-
structing materials with predetermined electrical characteristics

MOLECULAR ELECTRONICS.

This is probably the first time that the term molecular electronics was
used publicly, although it originally referred to a new strategy for the fab-
rication of electronic components, and it had yet little to do with the vision
of using individual molecules as electronically active elements. Fig. 1.2
summarizes the vision of colonel Lewis, where molecular electronics should
constitute be the next breakthrough in electronics, although it was not yet
clear what molecular electronics was supposed to mean.

The collaboration between Westinghouse and the US Air Force, which
started after the mentioned conference, lasted a few years and certain
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Fig. 1.2 Graph presented by colonel Lewis of the US Air Force in the first conference
on molecular electronics held in November 1958. Here, one can see the trend in the
miniaturization of the electronic components during the 1940’s and 1950’s. According to
Lewis, molecular electronics should have constituted the next breakthrough in electronics
by the end of the 1950’s. Adapted from [3].

progress was indeed made in the development of new fabrication strategies.
However, these initiatives were not able to compete with the steady minia-
turization of the semiconductor-based electronic devices and they were soon
abandoned.

From a more scientific point of view, one can consider that molecular
electronics, as we understand it today, started at the end of the 1960’s and
the beginning of 1970’s. At that time, different groups started to investi-
gate experimentally the electronic transport through molecular monolay-
ers. For instance, Hans Kuhn, a Swiss chemist working at the University of
Gottingen, and his coworkers studied at that time new ways of fabricating
the so-called Langmuir-Blodgett films.?> They were able to not only master
the fabrication of these molecular films, but also to sandwich them between
metal electrodes and to measure the electrical conductivity of the resulting
junctions. In Fig. 1.3 we reproduce the experimental results of Ref. [6] for
the low-bias conductivity of Al/S(n)/Hg junctions, where S(n) stands for
a monolayer of Cd salt of fatty acid CH3(CHs),,—_oCOOH of different chain
lengths. There one can see the exponential decay of the conductivity with
the length of the molecules, which is still a very important issue in today’s

3A Langmuir-Blodgett film contains one or more monolayers of an organic material,
deposited from the surface of a liquid onto a solid by immersing the solid substrate into
the liquid. A monolayer is adsorbed homogeneously with each immersion or emersion
step, thus films with very accurate thickness can be formed.
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Fig. 1.3 Measurements of the low-bias tunneling conductivity (o) vs. the distance (d)
between the electrodes in Al/S(n)/Hg junctions. Here, S(n) stands for monolayers of
Cd salt of fatty acid CH3(CHz),—2COOH with different lengths (n ranges between 18
and 21). The solid line is a linear fit to the experiment data. The measurements were
performed at two different temperatures: 20 and -35 °C. Reprinted with permission from
[6]. Copyright 1971, American Institute of Physics.

molecular electronics (see Chapter 13). This type of experimental results
can be considered as the starting point of molecular electronics as a modern
field of science.

The idea of molecular electronics reappeared in the States at the be-
ginning of the 1970’s at IBM and thanks to the enthusiasm of Ari Aviram,
a synthetic chemist. Aviram was working at that time on charge-transfer
salts, which had recently been discovered to be reasonably good conduc-
tors in their solid form. Although Aviram’s task at IBM was to synthesize
new types of charge-transfer salts, he started working on the theory of elec-
tron transfer through single organic molecules in collaboration with Mark
Ratner,* at that time at New York University. In the course of their inves-
tigations, Aviram and Ratner saw a clear analogy between charge-transfer
salts like TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane), with
a functional unit (TTF) rich in electrons and another unit (TCNQ) poor
in electrons, and traditional semiconductor diodes. In 1974 they published
a now-famous paper on “molecular rectifiers” [8] in which they described

4Indeed Ratner was officially Aviram’s thesis advisor during that time.
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how a modified charge-transfer salt could operate as a traditional diode
in an electrical circuit. This is probably the first proposal to use a sin-
gle molecule as an electronic component, which is something that lies at
the heart of the modern molecular electronics. Aviram and Ratner’s idea
was considered during a long time a theoretical curiosity that could not be
tested experimentally and in this sense, it did not have much impact in the
scientific community at that time.

In the late 1970’s and early 1980’s other scientists started to work on
ideas similar to Aviram-Ratner’s unimolecular concept. Let us mention for
instance the name of Forrest Carter, a chemist at the Naval Research Lab-
oratory, who was certainly influenced by Feynman’s (1960) famous “Room
at the Bottom” speech [9]. Carter introduced concepts such as molecular
computing or cellular automata, where the essence was to use individual
molecules as the ultimate electronic components or as elementary units
where to store bits of information in a hypothetical molecular computer.
These ideas were to a large extend purely theoretical and they were no sup-
ported by real experiments. However, Carter was able to nucleate a first
molecular electronics community around him and, in particular, the orga-
nization of a series of conferences on molecular electronics in the 1980’s
played an important role in the history of this field. People like Robert
Metzger, Mark Reed and others, who played later an important role in
molecular electronics, attended those conferences and they were inspired
by the discussions held there.

As for many other fields in nanoscience, the invention of the scanning
tunneling microscope (STM) by Gerd Binnig and Heinrich Rohrer (at IBM
Zurich) in 1981 [10, 11] changed the panorama for molecular electronics.
The STM was the first tool that provided a practical way to “see”, “touch”,
and manipulate matter at the atomic scale (see Fig. 1.4). Soon after its
invention, it became clear to the STM could provide a realistic way to
address single molecules and to study their electronic transport properties.

Since the original experiments of Kuhn and coworkers [7], many different
groups studied the electrical conductivity through Langmuir-Blodgett (LB)
multilayers and even monolayers. For instance, Fujihira and co-workers
demonstrated an LB monolayer photodiode already back in 1985 [13], which
is probably the first unimolecular electronic device. In the 1990’s one of
the main goals in this context was to confirm the ideas of Aviram and
Ratner about unimolecular rectification. The Aviram-Ratner mechanism,
slightly modified, was confirmed by Robert Metzger’s group in both macro-
scopic and nanoscopic conductivity measurements through a monolayer of
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Fig. 1.4 Principle of a local probe like the scanning tunneling microscope: The gentle
touch of a nanofinger. If the interaction between tip and sample decays sufficiently
rapidly on the atomic scale, only the two atoms that are closest to each other are able to
“feel” each other. Reprinted with permission from [12]. Copyright 1999 by the American
Physical Society.

~v-hexadecyl-quinolinium tricyanoquinomethanide in 1997 [14].

At the end of the 1980’s and the beginning of the 1990’s the appear-
ance of the metallic atomic-sized contacts had an important impact in the
nanoscience community. Different groups showed that the STM and the
recently introduced mechanically controllable break junction (MCBJ) tech-
nique® could be used to fabricate metallic wires of atomic dimensions (for a
review, see Ref. [15]). Since then these nanowires have become an endless
source of new physical phenomena and have played a crucial role in the fields
of mesoscopic physics and nanoelectronics. The relevance of these systems
for molecular electronics is two-fold. On the one hand, they provide the
basis to contact individual molecules with dimensions on the range of a few
nanometers, which is out of the scope of conventional lithographies. On
the other hand, the atomic contacts (or atomic-size contacts) have allowed
establishing the connection between the quantum properties of single atoms
and the macroscopic electrical properties of the circuits in which they are
embedded, which is an important lesson for molecular electronics.®

In 1997 the collaboration between the groups of Mark Reed (a physicist
at Yale University) and James Tour (a synthetic chemist at the University
of South Carolina) led to the publication of the results of what is often
considered as the first transport experiment in single-molecule junctions
[16].7 These authors used the MCBJ technique to contact benzenedithiol

5This technique will be described in the next chapter.

6The physics of these metallic nanowires will be described in the third part of this
monograph.

"Let us clarify that the first transport measurements involving single molecules were
indeed performed with the STM, but the experiment of Reed et al. is the first one realized
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Fig. 1.5 Schematics of the first transport measurements through single-molecule junc-
tions performed with the MCBJ technique [16]. (a) The gold wire of the break-junction
before breaking and tip formation. (b) After addition of benzene-1,4-dithiol, self-
assembled monolayers (SAMs) form on the gold wire surfaces. (c) Mechanical breakage
of the wire in solution produces two opposing gold contacts that are SAM-covered. (d)
After the solvent is evaporated, the gold contacts are slowly moved together until the
onset of conductance is achieved.

molecules with gold electrodes (the principle of this experiment is schemat-
ically illustrated in Fig. 1.5).® The importance of this experiment is that
it triggered off the realization of many others in the same spirit. Indeed,
our review on single-molecule conduction in the last part of this book will
cover the activities from the appearance of this experiment on.

At the end of the 1990’s new experimental techniques were intro-
duced and additional results were reported showing that molecules can
indeed mimic the behavior of ordinary microelectronics components. Thus
for instance, Reed’s group adapted the so-called nanopore technique (see
Chapter 3) to form metal-self-assembled monolayer-metal heterojunctions.
With this technique it was shown that junctions based on certain organic
molecules can exhibit, for instance, rectifying behavior [17]| or a very pro-
nounced negative differential resistance [18]. On the other hand, James
Heath and Fraser Stoddart groups joined efforts to show that junctions
based on rotaxanes and catenanes could act as reconfigurable switches
(19, 20].

in a symmetric structure that could in principle be integrated in more complex circuits.
8This experiment will be described in detail in section 14.1.1.
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Techniques like electromigration [21], which were specially designed to
contact single molecules, were developed at the turn of the century. These
methods made possible to incorporate a gate electrode in single-molecule
junctions and thus, to mimic the measurements performed in solid state
devices like transistors or in nanostructures like quantum dots. With the use
of these techniques it was possible to show that single-molecule junctions
can behave as a new kind of single-electron transistors [22] or that they
can exhibit basic physical phenomena like Coulomb blockade or the Kondo
effect [23, 24], which are well-known in the context of other nanoscopic
structures.

These results obtained in academic institutions and research laborato-
ries attracted the attention of global players in information technology like
HP, IBM and others that decided to set up small molecular electronics
research groups. This gave a new impulse to the field by providing very
important missing ingredients like, for instance, strategies to link molecular
devices with each other and with external systems. As an example we can
mention the nanoscale circuits based on a configurable crossbar architec-
ture introduced by Stanley Williams and coworkers at the HP Laboratories
in Palo Alto [25], see Fig. 1.6(a-d). This strategy was used, for instance,
to show that molecular crossbar circuits fabricated from a molecular mono-
layer of [2|rotaxanes can function as an ultra-high-density memory [26],
see Fig. 1.6(e-f). The working principle of these molecular memories is
supposed to be based on the ability of molecules like rotaxanes to switch
between two metastable states upon the application of an external bias
voltage. The actual origin of the switching behavior in these molecular
junctions has been heavily debated and, in some cases, it has shown that
the metal electrodes or the metal-molecule interface are responsible for
the switching mechanism rather than the molecules themselves (see e.g.
Ref. [27]). The controversy about these results, and also about some of
the original experiments mentioned above, led to the extended belief that
molecular electronics was going through a midlife crisis [28], although it was
no more than a teenager. In the meantime, the situation concerning the
molecular memories has been clarified to a large extend and more recently
the densest memory circuit ever made (10! bits cm~?2) was fabricated using
a monolayer of bistable [2|rotaxane molecules as the data storage elements
[29]. Although many scientific and engineering challenges, such as device
robustness, remain to be addressed before these devices can be practical,
these results show clearly the potential of a molecule-based electronics.

On the other hand, the efforts in recent years of numerous research
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Fig. 1.6 Nanoscale molecular-switch crossbar circuits. (a) An optical microscope image
of an array of four test circuits, showing that each has 16 contact pads with micron-
scale connections leading to nanoscale circuits in the center. (b) An image taken with
a scanning electron microscope (SEM) showing two mutually perpendicular arrays of
nanowires connected to their micron-scale connections. (c¢) A SEM image showing that
the two sets of nanowires cross each other in the central area. (d) A 3D image of the
crossbar taken with an atomic force microscope. (e) Schematic representation of the
crossbar circuit structure in which monolayer of the [2]rotaxane is sandwiched between
an array of Pt/Ti nanowires on the bottom and an array of Pt/Ti nanowires on the top.
(f) Molecular structure of the bistable [2]rotaxane R. Reprinted with permission from
[26]. Copyright 2003 IOP Publishing Ltd.

groups world-wide have established molecular electronics as a true field of
science, where there is a lot of new physics and chemistry to be learned.
Although it is still difficult to fabricate reliable molecular junctions, in par-
ticular at the single-molecule level, and there are other basic problems to
be solved, many concepts and techniques are by now well established and
they are precisely the subject of this book. For us, it is clear that molec-
ular electronics has reappeared this time to stay forever with us. In the
next years we shall surely contemplate many basic discoveries in this field
and some of them will hopefully lead to new and unforeseen technological
applications.

1.3 Scope and structure of the book

By now molecular electronics is a very broad field with many different inter-
esting aspects and special topics. These topics can be divided in a natural
way into those related to the development and potential applications of
molecular devices and those concerning the novel physical phenomena that
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take place in molecular-scale junctions. In this monograph we are interested
in the latter type of topics and, in particular, we shall focus our attention
on the understanding of the basic mechanisms that dominate the electronic
transport at the molecular scale. To be precise, we shall concentrate on
the analysis of the properties of single-molecule junctions, although some
examples of junctions based on molecular assemblies will also be presented
and discussed.

Our main goal in this monograph is two-fold. On the one hand, we want
to provide a true textbook on molecular electronic for advanced undergrad-
uate and graduate students both in physics and chemistry. The book has
been designed so that, by the end of it, a student with a background in
quantum mechanics and some elementary notions of solid state physics®
and organic chemistry!? should be able to start doing research in the field
of molecular electronics. On the other hand, we also want to provide a
thorough review of the activities on single-molecule conduction over the
last ten years, from which both newcomers and researches working in the
field can profit.

With this double goal in mind, we have divided this monograph into
four parts that can be read independently.!! The first two are meant as
textbook material that can be used for a regular course, while the last two
ones are closer to a topical review. Part 1 includes, apart from this intro-
ductory chapter, a detailed description of the experimental techniques that
are currently being used to fabricate both atomic-scale wires and molecular
junctions as well as the basic principles of transport measurements. Here,
we have tried to explain both the basis of the different techniques as well as
their advantages and disadvantages. Moreover, we have included in section
3.2 a brief discussion about the main molecules used in molecular electron-
ics and their basic properties, which can be viewed as an accelerated course
in organic chemistry.

Part 2 contains an extensive theoretical background that provides a ba-
sic introduction both to the transport mechanisms in nanoscale systems
and to the standard theoretical techniques that are used to describe the
transport in molecular systems. We want to stress that this theory part is
not just meant for theoreticians and theory-inclined students, but for every-

9For the students in chemistry we recommend the brief introduction to solid state
physics provided in Chapter 4 of Ref. [30] or in Chapter 3 of Ref. [31].

OFor the students in physics we recommend the brief introduction to organic chemistry
provided in Chapter 5 of Ref. [31].

HThere is indeed a fifth part that contains an appendix about the second quantization
formalism of quantum mechanics.
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body. All the topics are discussed in a didactic and self-contained manner
so that students without a previous knowledge on these topics should be
able, after reading this part, to follow the theory papers in this field. To
be precise, this part starts in Chapter 4 with an introduction to the scat-
tering (or Landauer) approach, which provides an appealing framework to
describe coherent transport in nanostructures. Then, we go on with several
chapters devoted to Green’s function techniques (Chapters 5-8), which pro-
vide powerful tools to compute equilibrium and nonequilibrium properties
of atomic-scale junctions beyond the capabilities of the scattering approach.
Finally, Chapters 9 and 10 deal with the two most widely used electronic
structure methods in molecular electronics, namely the tight-binding ap-
proach and density functional theory. These methods in combination with
the Green’s function techniques provide the starting point for the realistic
description of the transport properties of atomic and molecular junctions.
Let us emphasize that at the end of every chapter one can find several
exercises that have been chosen to illustrate the main concepts.

Part 3 presents a basic description of the physics of atomic-sized con-
tacts. Although this is not the main topic of the book, it is crucial to
have a basic knowledge about the transport properties of the metallic wires
that are then used as electrodes in molecular junctions. We have divided
this part into two chapters where we describe the physics of non-magnetic
atomic contacts (Chapter 11) and magnetic ones (Chapter 12).

Finally, Part 4 presents a detailed review on the transport through
molecular junctions. We have organized the material according to the phys-
ical mechanism which dominates the transport properties. Thus, we start
this part with two chapters devoted to the coherent transport in molecular
junctions (Chapters 13 and 14). Then, we discuss in Chapter 15 the physics
of the so-called molecular transistors, which are nothing but weakly coupled
molecular junctions where the transport is dominated by electronic corre-
lations that lead to phenomena like Coulomb blockade or the Kondo effect.
We then proceed to discuss in Chapters 16 and 17 the role of molecular
vibrations in the electrical current through molecular junctions. Chapter
19 is devoted to other transport properties beyond conductance and we
discuss there, in particular, shot noise and thermal transport in molecular
conductors. The optical properties of current-currying molecular junctions
are the subject of Chapter 20. Chapter 18 deals with the electronic trans-
port in long molecules where the hopping (or incoherent) transport regime
is realized. Finally, we conclude this part in Chapter 21 with a list of topics
that have not been addressed in this monograph and we indicate where to



The birth of molecular electronics 17

find information about them. It is worth remarking that these chapters
have been written so that they can be read almost independently. This
way a reader can concentrate on those topics or chapters that are of special
interest for him/her.

Parts 3 and 4 are meant for both students and researchers working in
the field. We do not only review what has recently been done in the field,
but we also introduce the different topics at a elementary level. In this
sense, whenever it was possible, we have provided simple arguments and
suggested additional exercises. These two parts are intended for both exper-
imentalists and theoreticians and, most of the time, we have intentionally
avoided the typical separation between experiment and theory, which we
find particularly harmful in this field.

Let us close this chapter with some recommendations about the existent
literature. For those who want a quick overview about molecular electron-
ics, we recommend the short reviews of Refs. [2, 32-37]. A nice general
overview of the field can be found in Chapter 20 of Ref. [31]. For more ex-
tensive introductions, we recommend Ref. [38] for the theory in molecular
systems and Refs. [39-41] for a discussion of the experimental techniques
used in molecular electronics. There already exist several books that deal
with different aspects of molecular electronics, see e.g. Refs. [42-49]. Most
of them consist of a collection of articles written by different authors, but
they are very useful if one wants a more detailed discussion of certain topics.
Concerning the theory of quantum transport or transport in nanoscale sys-
tems, which is one of the central subjects of this manuscript, we recommend
the monographs of Refs. [50-53].
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Chapter 2

Fabrication of metallic atomic-size
contacts

2.1 Introduction

In this chapter we shall present the most common methods which have
been developed during the last years for the fabrication of metallic atomic-
size contacts. Both the contacting methods and the physical properties
of atomic contacts found the basis for contacting single molecules. On
the other hand, these techniques have been further refined for contacting
molecules. These refinements are now also used for studying atomic con-
tacts. Therefore, the decision in which chapter one or the other method
is described is somewhat arbitrary. Manifold variations of the techniques
exist and are permanently improved further. The aim of this chapter is to
introduce into the most important principles and to compare the techniques
regarding their advantages and drawbacks.

As important as the sample preparation is the quality of the electronic
transport measurements. When dealing with tiny contacts, care has to be
taken to reduce the influence of the measurement onto the contact itself.
We will therefore end this chapter with a few brief remarks about the most
common measurement setups and possible artifacts.

2.2 Techniques involving the scanning electron microscope

(STM)

One of the most versatile tools for the fabrication of atomic-size contacts
and atomic chains is the scanning tunneling microscope (STM) (for a re-
view, see Ref. [54]). It has been used for that purpose from the very be-
ginning of its invention [55]. While in the standard application of an STM
a fine metallic tip is held at distance from a counter electrode (in general

19
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Fig. 2.1 Working principle of the fabrication of atomic contacts with an scanning tun-
neling microscope (STM). The electron micrograph shows a STM tip. The width at half
length is in the order of 100 to 200 um. The lower inset gives an artist’s view of the
atomic arrangement of an atomic contact. Courtesy of C. Bacca.

a metallic surface) by making use of the exponential distance dependence
of the tunneling current, the tip can also be indented into the surface and
carefully withdrawn until an atomic size contact or short atomic wire forms.
An artist’s view of the STM geometry and the atomic configuration of a
contact is shown in Fig. 2.1. For many metals it has been shown that the
tip will be covered by several atomic layers of the metal of the counter elec-
trode upon repeated indentation such that clean contacts may be formed
consisting of the same metal for both electrodes.

The main advantages of the STM in this application are its speed and
versatility. When the electrodes forming the contacts are prepared in ultra
high vacuum conditions, the STM furthermore allows to gather information
about the topography of the two electrodes on a somewhat larger than the
atomic scale before or after the formation of the contact. Since however,
the tip is usually pressed into the substrate and the atomic-size contact is
formed when withdrawing, the exact atomic configuration of the atomic-
contact cannot be measured directly.

This problem is partially solved when the contact is formed upon ap-
proaching [56]. For good metals the distance dependence of the conduc-
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tance follows an exponential increase until a sudden “jump to contact”
occurs which is marked by a step-like increase of the conductance. The
jump indicates the formation of a chemical bond between the tip and the
electrode and thus the formation of a single-atom contact. The geometry
of the substrate side of the contact can be well controlled by first preparing
and characterizing a clean terrace of a single crystalline substrate and sub-
sequently evaporating a sub-monolayer small amount of metal atoms onto
it. The surface can then be scanned and the tip can be approached right
on top of one of the extra atoms. This technique enables to form hetero-
junctions, i.e. contacts between two different metals. The determination of
the atomic configuration on the tip-side of the contact remains unsolved,
though.

Spectroscopic measurements on the scale of electron volts allow one to
deduce information about the cleanliness and the electronic structure of the
metal [57].

The main drawbacks are its limited stability with respect to the change
of external parameters such as the temperature or magnetic fields and the
short lifetime of the contacts in general because of the sensitivity of the STM
to vibrations. In the early years of STM-based atomic contact studies they
were furthermore limited to rather high temperatures in the range of 10 K
or higher. This drawback has been overcome in the last years. Nowadays
ultra high vacuum (UHV) STMs, which work with sufficient stability at
temperatures below 1 K and in strong magnetic fields are even commercially
available.

2.3 Methods using atomic force microscopes (AFM)

Another scanning probe technique which complements STM in many as-
pects is the atomic force microscope (AFM). Instead of the tunnel current
an AFM uses the distance dependence of the force between a fine tip and a
surface. Depending on the chemical nature of both the tip and the surface
this force consists of several contributions and its distance dependence may
be complex and even nonmonotonic. The working principle of the AFM
is based on measuring the force by recording the deflection of a cantilever
that carries the tip. The deflection can be detected by optical means or
by the detuning of an oscillator circuit due to the deflection. The AFM
has become a very versatile tool in surface science which works in various
environments and temperature ranges. In surface science the main advan-
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Fig. 2.2 Fabrication and characterization of atomic contacts with an atomic force mi-
croscope (AFM). (a) The conductive AFM uses a conductive cantilever and metallic
tip for recording the electrical signal. The deflection of the cantilever beam is detected
optically and used for recording the topographic information of sample. After Ref. [59].
(b) In the combined AFM-STM the sample is clamped to a cantilever. The metallic
contact is formed between the sample and the metal tip. The metal tip is part of an
STM and records the electrical signal. The deflection of the cantilever is recorded with a
separate AFM. This signal is used for measuring the force acting on the cantilever when
the atomic contact rearranges. After Ref. [58].

tage of AFM as compared to STM is its possibility to work on insulating
substrates. For the fabrication and characterization of atomic contacts the
AFM is in use in two different variations. The first one is the combination
with an STM which records the current while the AFM measures the force
that is necessary to form or break the contacts [58]. The second one is
the so-called conductive AFM which uses a metal-covered tip on a metallic
surface and both quantities, the current and the force, are available simul-
taneously, Fig. 2.2 [54]. The force signal can be used to determine the
topography.

2.4 Contacts between macroscopic wires

Transient atomic chains and contacts with lifetimes in the millisecond range
can also be fabricated in a table-top experiment first demonstrated by N.
Garcia and coworkers [60], which we call here “dangling-wire contacts”.
Two metal wires in loose contact to each other are excited to mechanical
vibrations, such that the contact opens and closes repeatedly. One end
of each wire is connected to the poles of a voltage source and the current
is recorded with a fast oscilloscope. This method is in principle particu-
larly versatile because it enables the formation of heterojunctions between
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Fig. 2.3 Experimental setup used to visualize contacts between macroscopic metallic
electrodes inside a scanning electron microscope (SEM). Adapted with permission from
[61]. Copyright 1997 by the American Physical Society.

various metals. However, in order to provide clean metallic contacts a thor-
ough cleaning of the wires would be required, similar to the tip and surface
preparation in a STM. Another drawback is the lack of control of the dis-
tance of the electrodes. It is thus mostly used as demonstration experiment
in schools with Au-Au contacts. The method has later been improved by
attaching the wires to piezo tubes. This realization thus resembles contacts
fabricated in the STM and have also been used within the chamber of an
scanning electron microscope for simultaneous imaging and conductance
measurements, see Fig. 2.3.

2.5 Transmission electron microscope

Another interesting method for preparing and imaging atomic contacts are
transient structures forming in a transmission electron microscope (TEM)
when irradiating thin metal films onto dewetting substrates [62, 63]. The
high energy impact caused by the intensive electron beam locally melts the
metal film causing the formation of constrictions which eventually shrink
down to the atomic size and finally pinch-off building a vacuum tunnel gap.
A typical system for these studies is Au on glassy carbon substrates. Several
variations of this principle have been developed that allows one to contact
both electrodes forming the contact, see Fig. 2.4. The high electron current
density necessary for imaging causes also high local temperatures resulting
in short lifetimes of these contacts. However, they offer the unique possi-
bility to simultaneously perform conductance measurements and imaging
with atomic precision. Similar results have been obtained with variations
of the STM inside a TEM [64]. This method enabled to directly prove
the existence of single-atom contacts, single-atom wide and several atom
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Fig. 2.4 High resolution TEM images of short atomic wires fabricated with an STM
inside the vacuum chamber of the TEM. The arrows indicate the number of atomic rows.
In panel f the contact is broken and forms a tunnel contact. Reprinted by permission
from Macmillan Publishers Ltd: Nature [63], copyright 1998.

long chains as well as to establish a correlation between contact size and
conductance [63, 62, 65]. For Au and Ag contacts it has been shown that
preferably well ordered contacts with growing directions corresponding to
the symmetry axes of the crystal structure are formed.

2.6 Mechanically controllable break-junctions (MCBJ)

Already before the development of the first STM another technique en-
abling the fabrication of atomic-size contacts and tunable tunnel contacts
has been put forward. The first realizations include the needle-anvil or
wedge-wedge point contact technique pioneered by Yanson and co-workers
(for a review see [66]) and the squeezable tunnel junction method described
by Moreland and Hansma [67] and Moreland and Ekin [68] who used metal
electrodes on two separate substrates which are then carefully adjusted with
respect to each other. The needle-anvil technique was mainly used to form
contacts with diameters of typically several nanometers and thus having
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Fig. 2.5 Working principle of the MCBJ (not to scale) with the metal wire, the elastic
substrate, the insulating sacrificial layer, the pushing rod, the counter supports and the
dimensions used for calculating the reduction ratio (see text).

hundreds or thousands of atoms in the narrowest cross section. These two
techniques formed the starting point for the development of the mechani-
cally controllable break-junctions (MCBJ) by C. Muller and coworkers [69],
which nowadays is applied for the fabrication of atomic contacts in vari-
ous subforms, the most common of which are the so-called notched-wire
[70] and thin-film MCBJs [71]. The working principle which is depicted
in Fig. 2.5 is the same for both variations: A suspended metallic bridge is
fixed on a flexible substrate, which itself is mounted in a three-point bend-
ing mechanism consisting of a pushing rod and two counter-supports. The
position of the pushing rod relative to the counter supports is controlled
by a motor or piezo drive or combinations of both. The electrodes on top
of the substrate are elongated by increasing the bending of the substrate.
The elongation can be reduced again by pulling back the pushing rod and
thus reducing the curvature of the substrate. In order to break a junction
to the tunneling regime, considerable displacements of the pushing rod and
thus important bending of the substrate is required. Therefore the most
common substrates are metals with a relatively high elastic limit like spring
steel or bronze. The substrates are covered by an electrically isolating ma-
terial such as polyimide before the junction can be fixed on it.

The notched-wire MCBJ, an example of which is shown in Fig. 2.6,
uses a thin metallic wire (diameter 50 pm to 200 pm) with a short, knife-
cut constriction to a diameter of 20 pm to 50 pm. The wire is glued at
both sides of the notch to the substrate and connected electrically to the
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Fig. 2.6 The 100 nm wide gold wire is glued with epoxy resin (black) onto the substrate.
The electrical contact is made by thin copper wires glued with silver paint. The inset
shows a zoom into the notch region between the two black drops of epoxy resin. Reprinted
from [15]. Copyright 2003, with permission from Elsevier.

measurement circuit at both ends. The distance between the glue drops is
of the order of 50 ym to 200 pm.

Variations of this method have been put forward which enable contact-
ing of reactive or brittle materials out of which no wires can be formed [72].
For this purpose the sample preparation is performed in protective environ-
ment. A beam-shaped piece of the material is cut in a non-reactive liquid
such as dodecanol or other slowly evaporating alcohols, or glycerine. Four
holes are drilled into the metal and a wedge is cut in the middle between
the holes. An example is shown in Fig. 2.7. The beam is screwed with the
help of two electrically isolating bolts to the substrate, one on each side of
the wedge. The remaining two holes serve for screwing metallic wires to
the beam for the conductance measurements.

For a version which enables scanning the two electrodes with respect to
each other, at first two piezo tubes are glued to the substrate. The metal
wire is then glued on top of the piezos. After mechanically breaking the
wire, the piezos are polarized such that they are bent and the two parts
of the wire are sliding along each other [73]. This realization corresponds
to a high-stability STM, but with very restricted scan possibility. It is
therefore used only sparsely. Finally, simultaneous force and conductance
measurements are possible when adding a tuning fork like in AFMs. Details
of this very sophisticated method are given in Ref. [75].

Fig. 2.8 shows two examples of thin-film MCBJs, which were fabricated
using the usual techniques of nanofabrication, i.e. electron beam lithography
and metal deposition by evaporation. There are mainly two differences to
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Fig. 2.7 Principle of the MCBJ technique adapted for reactive metals. Reprinted from
[15]. Copyright 2003, with permission from Elsevier.

Fig. 2.8 Lithographic MCBJ. (a) Electron micrograph of a thin-film MCBJ made of
cobalt on polyimide taken under an inclination angle of 60° with respect to the normal.
The distance between the rectangular shaped electrodes is 2 pm, the thickness of the thin
film is 100 nm and the width of the constriction at its narrowest part is approximately
100 nm. (b) Electron micrograph of a thin-film MCBJ made of cobalt (medium grey) with
leads made of gold (light grey) taken under an inclination angle of 50° with respect to the
normal. The distance between the rectangular shaped electrodes is 2 pm, the thickness
of the Co film is 80 nm, of the Au film is 100 nm and the width of the constriction at its
narrowest part is approximately 100 nm. The sample has been fabricated using shadow
evaporation through a suspended mask such that two images of the mask exist. The Au
shadow of the bridge is broken off.

standard nanostructuring. The first one is the substrate, which in case
of MCBJs has to provide sufficient elastic flexibility without breaking or
irreversible bending. The second difference is the final etching step which
is needed to suspend the nanobridge (with typical dimensions of 2 um in
length and 100 nm x 100 nm at the narrowest part of the constriction)
above the substrate by partial removal of a sacrificial layer underneath the
metal film. Fig. 2.9 summarizes the fabrication procedure. A piece of metal
with a typical thickness of a few hundred micrometers serves as substrate.
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The metal should have a high elastic deformation limit. Typical metals
are bronze or spring steel. For particular purposes, in particular when
capacitive effects have to be minimized, the metal is replaced by a plastic
substrate. Both metal or plastic are thoroughly polished to reduce the
roughness to less than a micrometer. The remaining corrugations are then
filled with a thin layer of polyimide (thickness 1-2 pym), which is spin-coated
and hardbaked in vacuum. The polyimide also serves as electrical insulator
between the nanostructure and the substrate. Subsequently the electron
resist is spin-coated and thermally treated as required for electron beam
structuring. Fig. 2.9(c) shows an example in which a double-layer resist
is used. The double-layer is necessary for, e.g. evaporation of the metal
under arbitrary angle. The next step is electron-beam writing in a scanning
electron microscope equipped with a pattern generator or in a commercial
electron-beam writer. After development of the resist in a selective solvent
the resist mask remains on top of the polyimide layer. The mask itself may
be partially suspended when using a double-layer resist. Subsequently the
metal will be deposited either by evaporation, sputtering, chemical vapor
deposition or other means. Shadow evaporation, i.e. evaporation of several
materials under different angles can be used for forming contacts between
different metals or for supplying nanobridges of one metal with electrodes
made of another metal. The advantage of the shadow-evaporation technique
lies at first in its self-alignment property because the same mask is used
for all metal depositions. The second advantage is given by the fact that
all depositions can be made in a single vacuum step, which enables one to
fabricate clean interfaces between the metals. After the metal deposition
the mask is stripped in a more aggressive solvent. Finally the structure is
exposed to an isotropic oxygen plasma which attacks the polyimide layer.
Consequently its thickness is reduced and all narrow metal parts, like the
nanobridge become suspended like a bridge.

Both versions of the technique - the notched-wire MCBJs and the litho-
graphic (or thin-film) MCBJs - share the idea of enhanced stability due to
the formation of the contact by breaking the very same piece of metal on a
single substrate and by transformation of the motion of the actuator into
a much reduced motion of the electrodes perpendicular to it. The small
dimensions of the freestanding bridge-arms give rise to high mechanical
eigenfrequencies, much higher than the ones of the setup. As a result the
system is less sensitive to mechanical perturbations by vibrations.

Assuming homogeneous beam-bending of the substrate we can calculate
the reduction ratio r between the length change of the bridge u and the
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Fig. 2.9 Fabrication scheme of thin-film (lithographic) MCBJ. (a) The substrate (metal,
plastic) is polished mechanically. (b) the sacrificial wafer (polyimide) is spin-coated and
baked. (c) The resin (typically a bi-layer electron sensitive organic material) is spin-
coated and baked. (d) The resin is exposed in an electron beam writer or a scanning
electron microscope equipped with a pattern generator in the desired pattern. (e) The
chip is developed in a solvent which selectively removes the exposed parts of the resin.
The result is a mask, which resides on the sacrificial layer, in the shape of the exposed
pattern. (f) The metal is deposited by evaporation or sputtering. (g) The mask with the
metal on top of it is lifted-off in a more aggressive solvent which attacks the unexposed
parts of the resin. The result is a metal layer in the shape of exposed pattern. (h) Finally
the thickness of the sacrificial layer is reduced in an isotropic plasma. The narrow parts
of the metal pattern are suspended and form the bridge which will be broken in the
MCBJ mechanism.

motion of the pushing rod z (see Fig. 2.5).

_ Gtu
LY
where t is the thickness of the substrate, v the length of the free-standing
bridge arms and L the distance of the counter supports. This quantity

r (2.1)

denotes the factor with which any motion of the pushing rod is reduced
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when it is transferred to the point contact. In a real MCBJ setup, however,
the beam-bending is in general non-uniform. Furthermore, also the sacrifi-
cial layer has a finite elasticity and is deformed when bending the MCBJ.
These effects can be accounted for by a correction factor, which enhances
r by a factor of roughly 4 [76]. The effective reduction ratio has a typical
value of 1073 to 10~2 for the notched-wire MCBJs and 10~ to 10~* for the
thin-film MCBJs. The relatively weak reduction ratio of the notched-wire
MCBJs usually requires the use of a piezo drive for controlling and stabiliz-
ing single-atom contacts, while the lithographic MCBJs can be controlled
with purely mechanical drives, i.e. a dc-motor with a combination of gear
boxes, and a differential screw.

A common realization of a bending mechanism suitable for thin-film
MCBJs and use at low temperatures 7' < 1 K is shown in Fig. 2.10. A
rotary axis is connected to a differential screw which consists of a thread,
the two sections of which have a slightly different pitch. The typical values
for the pitches A and B are 0.7 to 0.8 mm and pitch differences 50 yum to
150 pm. Each full turn of the axis changes the distance between the sample
holder and the ground plate by the difference of the pitches. The shape
of the end of the pushing rod can be semi-cylindrical or wedge shaped,
depending on the desired deformation of the substrate. Because of the off-
line axis arrangement of rotary axis and pushing rod several guiding rods
are needed to reduce torque and ensure linear motion of the sample holder
with respect to the ground plate. The pushing rod can be designed such
that it hosts a piezo tube. The MCBJ is electrically contacted via spring
contacts or by gluing the wiring to it via silver paint. The thermal contact
of the sample to the thermal bath can additionally be provided by thick
wires and copper braid. Care has to be taken when choosing the materials
combination of the thread and its counterpart to avoid friction because
lubrification at low temperature and in vacuum is difficult.

Typical motion speeds of the piezo drive lie between 10 nm/s and
10 pm/s corresponding to results in 10 pm/s to 100 nm/s for the electrodes
forming the atomic contacts. For purely mechanical drive these values are
10 nm/s to 1 pm/s for the pushing rod and 10 fm/s to 10 nm/s for the
contact. Due to the in-built reduction also the piezo-driven setups are in
general slower than STM systems. The high stability enables comprehen-
sive studies on the very same atomic contact at various values of control
parameters such as fields and temperature.

On the other hand the small » values require considerable absolute mo-
tion of the pushing rod and deformation of the substrate in order to achieve
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Fig. 2.10 Sample holder with differential screw for thin-film MCBJ. A motor drives a
rotary axis which ends in a thread with two different pitches. Rotating the axis results
in varying distance between ground plate and sample holder. The sample resides on two
counter supports connected to the sample holder. It is bent by the pushing rod which
is attached to the ground plate. Three guiding rods (only one of which is shown) ensure
smooth and linear motion.

sufficient displacements of the electrodes. This reduces the possible choices
of the substrate material considerably.

MCBJ mechanisms have been developed for various environments in-
cluding ambient conditions, vacuum, very low temperatures [77] or liquid
solutions [78]. The latter one is of particular interest for the study of single-
molecule junctions and will be explained in detail in the following Chapter
3. The disadvantages of MCBJs as compared to STM techniques are the
small speed and the fact that the surrounding area of the contact cannot
easily be scanned. As for STM setups clean contacts can only be guaran-
teed when working in good vacuum conditions. The sample preparation
itself, however, does not require clean conditions because the atomic con-
tacts are only formed during the measurement by breaking the bulk of the
electrodes.

2.7 Electromigration technique

A third method for the formation of atomic-size contacts is controlled burn-
ing of a wire by electromigration (see Fig. 2.11). This technique has been
optimized for the formation of nanometer sized gaps for trapping individual
molecules or other nanoobjects [79, 80]. Before the wire finally fails and
the current drops drastically, atomic size contacts are formed for a rather
short time span [81-83]. During the electromigration process the trans-
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L

Fig. 2.11 Electromigration technique. Top: Fabrication via shadow evaporation
through a suspended mask of an electrode structure to be used for producing atomic
contacts by electromigration. The arrows indicate the directions from which the metal is
deposited. The electromigration will nucleate at the thinnest part of the electrode struc-
ture. Bottom: Series of atomic force microscope images taken in the tapping mode of
an electromigrated contact made of Au on Si in different phases of the electromigration
process. From left to right: before electromigration (R = 40 ), R =105 Q, R = 630 ,
R = 30.000 Q2. Courtesy of D. Stoffler and R. Hoffmann.

port changes from ohmic behavior, i.e. limited by scattering events of the
electrons to wave-like electronic transport, which can be described by the
Landauer picture (see Chapter 4).

The term electromigration denotes a process in which ions are moved
due to high electrical current densities. We concentrate here on the electro-
migration behavior of metals. It has been understood that several effects
contribute to the total force acting on a metal atom which forms the con-
ductor, the two most important being the so-called direct force due to the
electric field. It causes the electrical current and thus points into the di-
rection of the field. The second one is caused by momentum transfer of
the conduction electrons onto the ions. It has opposite sign and is called
the wind force. When the total force overcomes the binding force of the
ions, they start to diffuse but can be pinned again at defects or positions
where the current density and driving force falls below this threshold value.
Depending on the material, the temperature, the crystallinity, the surface
roughness, and many other parameters either the direct force may exceed
the wind force or vice versa [84]. Therefore the exact direction of the mate-
rial transport depends on the microscopic structure of the wires. In many
cases the motion of the material is such that the cross section of the con-
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ductor is locally reduced and its electrical resistance increases. The higher
resistance causes higher losses, enhanced dissipation, increasing tempera-
ture in the wire which further enhances the dissipation of ions. An impor-
tant role plays the temperature of the lattice because the diffusion and the
threshold current strongly depend on temperature. Electromigration has
become one of the most important origins of failures in integrated circuits,
due to the miniaturization of the metallic interconnects without reducing
the current by the same factor. Consequently, electromigration has widely
been studied in electrical engineering with the aim to achieve the highest
possible threshold current density for it to set in and the smallest diffusion
speed [85].

For the formation of atomic contacts a high threshold current is not
important but the possibility for controlling speed, shape and size of the
final structure. One of the most important preconditions is to define the
position at which the electromigration starts, and the contact forms. For
this purpose a short and thin metallic wire is fabricated by lithographic
methods as described in the previous section. Typical dimensions are a
length and width of 50 to 100 nm and a thickness of 10 to 20 nm. The
thin wire is connected to wider and thicker electrodes which consequently
have smaller resistivity. A convenient method to fabricate these structures
is shadow evaporation through a suspended mask as shown in Fig. 2.11.
First, thin layers of the metal (typical thickness 10 nm) are evaporated
under the angles © and —©. The angle is chosen such that both layers
slightly overlap underneath the suspended part of the mask. Afterwards a
thick layer of the electrode metal is deposited perpendicular to the substrate
plane. The ideal structure would consist of a single-crystalline wire in the
thin part of the wire, the boundaries of which are covered by the thick
electrodes in order to avoid electromigration of possible contaminants from
the grain boundaries. It is advantageous to work on a substrate with high
thermal conductivity in order to control the temperature.

The electromigration process itself is performed such that an electrical
current is continuously ramped up while the resistivity is monitored. As
soon as the resistance starts to increase a computer-controlled feedback
loop controls the current such that the rate of the resistance increase is
kept constant or slowed down. The resistance increase is partially due to
the temperature increase caused by the Joule heating of the driving current.
Although it has been shown that in the ohmic regime the current density is
the quantity which determines the diffusion of the ions, it is advantageous
to control the voltage in order to produce atomic size contacts. When the
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resistance increases the current becomes smaller, which helps to limit the
migration speed. The low-resistive electrodes ensure that the voltage drops
locally making the driving force acting only locally as well. Consequently,
the dissipation and Joule heat generation are local as well. The procedure
should be stopped when the desired resistance is achieved. For the study
of atomic contacts the interesting regime is reached when the resistance
exceeds roughly one kiloohm. For usual metals this corresponds to contacts
with a narrowest cross section of roughly 10 atoms. An important finding
is that the behavior changes markedly when the size of the smallest cross
section corresponds to a few atoms. However, the exact position of the
position at which the wire finally breaks is difficult to predict. As will be
explained in Chapter 11 the electrical transport of contacts of this size is
determined by the wave properties of the electrons rather than by collisions
with defects. If this happens the resistance may start to decrease again
before the wire finally is burned through. This non-monotonous behavior
complicates the control scheme further. Several control schemes have been
put forward which are optimized for various sample geometries, metals and
working conditions such as vacuum or low temperature [21, 81-83, 86]. So
far only a few studies exist in which the electromigration process has been
imaged in detail, although these kind of studies are very insightful. One
example is shown in Fig. 2.11, where AFM images have been taken after
discrete electromigration steps. A particularly nice series of TEM images
showing that the most dramatic shape changes occur during the final phase
can be found in Ref. [82].

An important difference to STM techniques and MCBJs is the fact that
the wire forming the contact is in solid contact with a substrate. The ad-
vantages are at first ultimate stability which will become important when
studying atomic or molecular junctions as a function of external fields (see
Chapters 12 and 20). The second advantage lies in the fact that no par-
ticular requirements exist for the properties of the substrate, besides the
fact that it should be sufficiently insulating. Often silicon - the standard
substrate in microelectronics - is used. With suitable doping it can be used
as back-gate for inducing an electric potential and building a three-terminal
device. This technique is important for studying effects like Coulomb block-
ade, which will be explained in Chapters 11 and 15.

The main drawback of the electromigration technique is the fact that it
is a single-shot experiment: Once an atomic contact has been established
there is only limited possibility to fine tune its atomic configuration, in par-
ticular coming back to a larger contact is almost impossible. After burning
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Fig. 2.12 Electromigrated MCBJ with gate on silicon substrate. (a) Working principle
and (b) electron micrograph of an electromigrated MCBJ. The substrate is doped silicon
and can be used as back-gate. Reprinted with permission from [86]. Copyright 2005
American Chemical Society.

through the wire it cannot be closed again. As described before, the con-
trol of the final part of the electromigration process is tricky because the
character of the transport changes from ohmic to wave-like. A combina-
tion of electromigration with the lithographic MCBJ technique overcomes
this problem: a thin-film MCBJ is thinned-out by electromigration to a
narrow constriction with a cross section of less than 10 nm (see Fig. 2.12).
The substrate is then bent carefully for completely breaking the wire or
arranging single-atom contacts. This last step is reversible and repeatable
for studying small contacts [87] or trapped nanoobjects [86]. Because only
the very last part of the breaking requires mechanical deformation of the
substrate it is rather fast and enables the use of more brittle substrates
such as silicon.

2.8 Electrochemical methods

A completely distinct method for the formation of atomic-size contacts uses
electrochemical deposition and removal of metal atoms. Electrochemical
deposition of metals is a standard technique for surface treatment and in
micromachining. For the purpose of forming atomic contacts basically the
same principles are used. The main difference to the macroscopic techniques
is the shape of the starting electrodes and the feedback which controls
the deposition speed. Nanocontact formation by electrochemical methods
starts from metal electrodes with a gap or with a continuous wire that is
first broken either mechanically or by electromigration. The working prin-
ciple is depicted in Fig. 2.13. The electrode structure is then immersed into
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an electrolyte containing metal ions. The electrochemical setup is adapted
from the three-electrode cyclic voltammetry principle [88]. The deposition
and dissolution of metal is controlled by applying an electrical potential
difference between a so-called counter electrode and the electrodes forming
the nanocontact, which serve as “working electrodes”. A fourth electrode
defines the reference potential. The conductance is monitored and used as
control signal for the potentiostat which controls the deposition rate. The
typical control voltages are in the range of 20 mV to 1 V and can be ad-
justed to optimize the electrochemical process. It should exceed the bias
voltage if one aims at symmetric deposition on both electrodes forming the
contact. Obviously the place at which the fastest deposition and dissolu-
tion takes place can further be controlled by the size and the polarity of
the bias voltage. A typical metal combination is gold as electrode material
because of its weak chemical reactivity and silver for the formation of the
atomic contacts [89, 90]. Silver is easily dissolved in acids, like e.g. in ni-
tric acid, and simultaneously silver atomic contacts have well understood
transport properties, as will be further detailed in Chapter 11. One main
advantage of this technique is its versatility, since electrochemical deposi-
tion methods on the macroscale have been developed for almost all metals.
A further advantage is the simplicity of the working principle, in particular
the simplicity with which the starting electrodes can be produced: macro-
scopic wires as well as deposited thin films [91, 92] or STM setups [93]
are possible. Furthermore the contacts are mechanically stable because no
suspended parts are required.

Electrochemical contacts are often regarded to be three-terminal de-
vices: The two electrodes forming the contact correspond to source and
drain, the control electrode to the gate electrode in the language of semi-
conductor transistors. Since the electrochemical control involves diffusion
of ions, it is slower than the usual electrostatic gating in semiconductor
technology. It is however much faster than the purely mechanical control
used in the lithographic MCBJ technique. One obvious drawback is the
fact that the control mechanism requires liquid environment. It is not ob-
vious how one can bring the contacts into dry environment, vacuum or low
temperatures. Anyhow, after removal of the electrochemical environment
the contacts cannot be varied anymore (or one of the other techniques, e.g.
MCBJ or electromigration, have to be applied for this purpose).
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Fig. 2.13 Setup for the electrochemical fabrication and control of atomic contacts. For
particular choices of the control potential the atomic contact can be switched between
defined conductance values and thus a ”switching current” is recorded. Reprinted with
permission from [89]. Copyright 2003 by the American Physical Society.

2.9 Recent developments

As mentioned in the introduction of this chapter, many variations of the
standard methods described above have been developed. In particular,
combinations of the archetypical methods have been described. As an ex-
ample we present here two new versions of the MCBJ technique. The first
one has been introduced by Waitz et al. [94]. It uses thin-film-wires on
silicon membranes with a thickness of a few hundred nanometers. The
membrane is deformed by a fine tip on the rear side. At variance to the
MCBJ techniques on bulk substrates the elasticity of the membrane rather
than the bending determines the stretching of the metal wire, see Fig. 2.14.
The deformation of the substrate is applied locally and it is thus possible
to address particular positions while the rest of the circuit on the substrate
remains mainly unaffected. This is important when the MCBJ is embed-
ded in a more complex electronic circuit close to the atomic contact, which
should not be affected when changing the atomic contact. Such complex
circuits are required e.g. for studying Coulomb blockade, which we will de-
scribe in Chapter 15. Another advantage of this method as compared to
bulk substrates is that the membranes are electrically insulating or only
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poorly conducting. This reduces the capacitance of the circuit to ground
and is advantageous when fast measurements are required. A further differ-
ence to standard MCBJ techniques is that smaller suspended length of the
metal wire can be used. This enhances stability and reduces often unde-
sired effects such as magnetostriction when investigating magnetotransport
as explained in Chapter 12. Finally, by combining this membrane MCBJs
with electromigration it is possible to control atomic-size contacts at room
temperature without suspension at all [95].

The second recent improvement, which we want to describe here, is the
successful incorporation of a gate electrode into the lithographic MCBJ
techniques without combination with electromigration [96]. It is based on
the lithographic MCBJ technique on metallic substrates using two lithog-
raphy steps. In the first step a thin and rather narrow metallic gate strip is
patterned. The gate is then covered by an approximately 50 nm thick insu-
lating sacrificial layer and the resist system for the second lithography step
in which the nanobridge is patterned. After evaporation of the nanobridge
metal the sacrificial layer removed by dry etching as in the conventional pro-
cess for lithographic MCBJs. The result is shown in Fig. 2.15: a nanobridge
that is suspended approximately 50 nm above the gate electrode. With this
technique three-terminal devices with controllable source-drain coupling are
now possible.

2.10 Electronic transport measurements

Usually the first electrical characterization of nanoscale contacts is the mea-
surement of the linear conductance as a function of an outer parameter
such as temperature, magnetic field or size of the junction. The next more
complex quantity is the nonlinear conductance, i.e. measurements of the
current-voltage (I-V) characteristics or the differential conductance. Since
these quantities belong to the most common properties of any material
characterization their correct measurement is supposed to be trivial, and
manifold sophisticated equipment is on the market. In fact, several suppli-
ers of electronic measurement units offer information material or seminars
about low-level, high-resolution electronic measurements, and we encourage
our readers to access this literature. Therefore textbooks about nanoscience
only rarely address this issue. However, when dealing with nanoobjects it is
not easy how to perform a good conductance measurement. In this section
we will not give a complete overview over the various techniques. But since
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Fig. 2.14 MCBJ on silicon membranes. Top: Working principle of the membrane MCBJ
(not to scale). One or several lithographic MCBJs are defined on the front side of the
membrane. A glass or graphite tip is scanned along the rear side of the membrane with
the help of micromechanically controlled scan tables. The vertical motion of the tip
controls the deformation of the membrane. The close ups at the right side illustrate the
deformation of the membrane with a graphite tip, the rupture of the nanobridge, and
give an artist’s view of the atomic arrangement of a single-atom contact. The thickness
of the membrane is in the order of 300 nm, the lateral dimension of the membrane is
typically 1 mm X 1 mm. The length of the suspended bridge is smaller than the one for
lithographic MCBJs on massive substrates. The thickness of the sacrificial layer is in the
order of 100 nm only. When reducing the lateral size of the constriction first by electro-
migration, non-suspended metal bridges can be used. Bottom: optical micrograph of a
membrane carrying two MCBJs made of gold. The tip is positioned underneath the lower
bridge where the membrane is deformed. The size of the membrane is 0.6 mm x 0.6 mm.

the scope of this book is to serve as textbook for beginners in the field of
molecular electronics, we want to sensitize the reader to this issue. The par-
ticular facts which have to be taken into account in molecular conductance
measurements are the following:
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Fig. 2.15 MCBJ with gate electrode on bulk substrate. (a) Scanning electron micro-
graph of a lithographic MCBJ with gate electrode, (b) working principle of the MCBJ,
(c) and electronic circuit for the gated MCBJ. Reprinted with permission from [96].
Copyright 2009 American Chemical Society.

e Wide range of conductances from nanosiemens (corresponding to
107° Gy (Gy = 2¢?/h is the conductance quantum with e the ele-
mentary charge and h Planck’s constant) to siemens.!

e Correct choice of bias voltage to assure working in the linear regime
is difficult because the effects giving rise to nonlinearities happen
on varying voltage scales ranging from microvolt to volt.

e Self-heating of the contacts due to Joule dissipation is not always
easy to detect and to discriminate from the intrinsic properties of
the sample.

e Sudden voltage spikes and jumps may destroy the sample. There-
fore abrupt switching actions in the electrical measurement circuit
have to be minimized, often hampering optimum range adjustment.

e Extreme variation of the differential conductance within small
changes of the bias.

e Limited lifetime of the junctions to study.

The typical signal sizes which have to be resolved are of the order of
a few nanovolts for the voltage and picoamperes for the current. For par-

11 Siemens is the inverse of 1 = 1 Volt/Ampere and thus the unit of the conductance
in the international system of units (SI).



Fabrication of metallic atomic-size contacts 41

ticular experiments the requirements might even be stronger. The relative
measurement accuracy which is required for most investigations is 10™% or
better corresponding to a resolution of typically 14 bits when expressed in
digital units. These requirements mean that one often works at the resolu-
tion limit of commercial electronic equipment. When enhancing the size of
the excitation signal to obtain response signals well above the noise floor
one risks to at least smear out the electronic characteristics of the sample
by warming it up. In the worst case the sample is destroyed by the heat
dissipation.

When designing a measurement circuit the first choice that one has to
take is whether one feeds the current and measures the voltage or vice versa.
For measurements of the linear conductance, or when the I-Vs are mainly
linear, the most important criterion is to optimize the signal-to-noise-ratio.
The general rule is that measuring voltage is the better solution for small
conductances whereas measuring current is good for high conductance val-
ues. When, however, a well-defined energy difference between source and
drain is required, e.g. for investigating Coulomb blockade?, a voltage bias is
obviously the best choice. For other purposes the transport current is the
decisive quantity and has to be defined. When dealing with hysteretic I-Vs
or junctions revealing negative differential resistance (NDR) (see section
13.7) the measurement strategy is crucial for reaching all interesting parts
of the I-Vs. Similar choices have to be made concerning the position of the
electric ground level of the circuit and whether one pole of the sample will
be directly connected to it.

Small nonlinearities in the I-Vs may easily disappear in the noise floor
of the electronic circuit. They are much easier to detect with a low-noise
lock-in amplifier working at a small but finite frequency. When the electric
circuit under study is biased with a harmonic voltage signal, the lock-
in detector measures directly the first derivative of the I-V when locking
it on the bias frequency. The second derivative (which is an important
quantity for detecting vibrational excitations (see Chapter 16) can then be
determined by numerical differentiation of the dI/dV. Alternatively it can
be directly measured when recording the response at twice the excitation
frequency.?

In any case the energy scale given by the excitation voltage has to be
kept smaller than the width of the vibrational resonances under study.

2Coulomb blockade and related effects shall be explained in Chapter 15.
3Practically all companies producing lock-in amplifiers offer tutorial material available
online.
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Furthermore the excitation energy has to be smaller than the temperature,
otherwise the spectra will be smeared out.

Abrupt changes of the conductance as a function of the bias or another
parameter, e.g. the conformation of the junction, result in abrupt changes of
the dissipated power as well. On the one hand this is a difficult task for the
measurement electronics to cope with. On the other hand this forces one
to take precautions, i.e. introduce measures for current limitation, which
themselves hamper a perfect voltage bias.

The limited lifetime of the junctions forces one to perform fast measure-
ments, a fact resulting in limited signal to noise ratios and limited statistical
information. Atomic and molecular junctions at room temperature reveal
intrinsic noise caused by atomic motion. Therefore low-temperature exper-
iments are very appealing. In standard cryostats the wires are rather long
and thermalization requires higher cable resistances. Additional measures
for high-frequency filtering are required. All these facts reduce the band-
width of the measurement circuit. As a result it is not trivial to perform
fast measurements at low temperatures.

As will be explained in Chapters 13 and 19, many important properties
of quantum transport cannot be revealed from conductance measurements
alone, but more complex transport properties such as shot noise or ther-
moelectric voltage have to be studied.

Obviously, for a meaningful noise measurement one has to discriminate
the shot noise signal from the undesired but unavoidable noise of the mea-
surement circuit. A fruitful method to do so is a correlation measurement
using two identical sets of cables [97, 98]. All noise signals which originate
from the wiring are uncorrelated to each other. Signals from the sample are
fed into both wires. They are correlated and are recorded in a spectrum
analyzer. Only those parts are processed further. An example of such a
wiring is shown in Fig. 2.16. It is particularly demanding to measure shot
noise at high frequency. A successful solution based on coupled quantum
dots has been reported in Ref. [99] and a version using superconducting
tunnel contacts in Ref. [100].

For measuring the thermopower a small voltage signal has to be detected
which is created by a small temperature gradient across the sample. This
means that this temperature difference has to be applied and detected with
high precision. One example where this has been successfully achieved
is given in Fig. 2.17. It is designed for detecting the conductance and
the thermopower of molecular junctions at room temperature [101, 102].
Another setup used for measuring the thermopower in atomic contacts at
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Fig. 2.16 Schematic experimental setup for measuring the voltage dependence of the
shot noise of an atomic contact. An atomic contact (double triangle symbol), of dynamic
resistance Rp, is current biased through a resistance Rp. The voltage V across the
contact is measured by two low noise preamplifiers through two nominally identical
lossy lines with total resistance Ry, in each line and the total capacitance C introduced
by the setup across the contact. The spectrum analyzer measures the cross-correlation
spectrum of the two voltage lines. The S; (i = B, Amp;,Amps) are the known current
noise sources associated with the bias resistor and the two amplifiers. S} represents the
signal of interest, i.e. the shot noise associated with the current through the contact. Sy,
and Sy, represent the voltage noise sources of each line (amplifier 1 connecting leads).
Reprinted with permission from [98]. Copyright 2001 by the American Physical Society.

low temperature is presented shown in Fig. 19.7 and explained there.

With these examples we will finish our short and incomplete list of
electronic measurement setups. Our aim was to make clear that although
the fabrication of atomic and molecular junctions is not simple, the correct
measurement of their electronic transport properties might be even more
demanding.

2.11 Exercises

2.1 Vacuum: Estimate the number of gas atoms per area impinging on a surface
at normal pressure, in high vacuum (p = 10~° mbar), and in ultra high vacuum
(p = 10~ mbar) during one minute. Let us assume that all incoming gas atoms
stick to the surface. How thick is the gas layer after 10 minutes?

2.2 Nanowires and atomic contacts: Let us consider a cylindrical nanowire
made of Au. Au has a lattice constant of a = 0.41 nm.

(a) Estimate the number of atoms in the cross section for a wire with diameter
10 nm, 5 nm, and 1 nm.

(b) Estimate the number of surface atoms for these wires with a length of 5
nm.

(c) Calculate the ratio between surface atoms and bulk atoms in these
nanowires.
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Fig. 2.17 Schematic description of the experimental setup for measuring thermoelec-
tric voltage based on an STM break junction. Individual molecules (symbolized by a
hexagon) are trapped between the Au STM tip kept at ambient temperature and a heated
Au substrate kept at temperature AT above the ambient. When the tip approaches the
substrate, a voltage bias is applied and the current is monitored to estimate the conduc-
tance. When the conductance reaches a threshold of 0.1 Gy, the voltage bias and the
current amplifier are disconnected. A voltage amplifier is then used to measure the in-
duced thermoelectric voltage, while the tip is gradually pulled away from the substrate.
Reprinted with permission from [102]. Copyright 2008 American Chemical Society.

2.3 Mechanically controllable break-junctions: Let us consider a MCBJ
setup with a separation of the counter supports of L = 10 mm, a substrate
thickness of ¢ = 0.5 mm and a suspended length of u = 2 um. For simplicity
let us neglect the insulating sacrificial layer between substrate and metal wire.
Calculate the required displacement of the pushing rod for elongating the junction
by 10 nm assuming homogeneous bending, when the MCBJ is installed into a
differential screw with a pitch difference of 100 pm.

2.4 Joule heating: (a) Calculate the power dissipated in an atomic contact
(initially at room temperature) with a resistance of 10 k2 when a voltage of 10
mV is applied.

(b) Assume that the dissipated power heats up a spherical volume containing
1000 atoms of a material with a specific heat of 130 J/(kg-K). Assume that the
sample is only possible to dissipate energy into the environment by radiation.
What is the temperature increase?

(c) Perform the same estimation when the sample is surrounded by a material
with heat conductivity of 300 W/(K-m).

(d) Repeat the set of estimations for a molecular contact with a resistance of
10 MS2.
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Chapter 3

Contacting single molecules:
Experimental techniques

3.1 Introduction

In this chapter we shall present the most common methods for contacting
molecules. Although we are mainly interested in single molecule devices, we
shall also introduce the most basic methods which are in use for contacting
molecular ensembles, since many interesting effects in molecular electronics
have first been observed in devices containing these assemblies. Of course,
this list can never be complete because new methods and variations of
existing ones are constantly being developed. Let us remark that we shall
focus here on methods to contact molecules with metal electrodes. Devices
including at least one semiconductor electrode have also been realized and
examples will be briefly described in section 13.7. Finally, as in the previous
chapter, we shall compare the performance of the various techniques and
indicate their most common applications.

In the fabrication of molecular junctions not only the kind of the elec-
trodes used is crucial, but also the deposition method of the molecules.
Thus, any report about electric current through molecular junctions has
to address the “protocol”, i.e. the precise contacting scheme including the
way how, the moment when, and the conditions under which the molecules
are brought into electric contact with the electrodes. For this reason, we
shall introduce in this chapter the most common deposition methods, then
we shall turn to single-molecule contacting schemes and we shall end by
addressing the ensemble techniques.

Particularly interesting are techniques which enable the fabrication of
three-terminal devices. In these systems, two of the terminals serve to inject
the current and measure the voltage, while the third one acts as a gate that
controls the electrostatic potential in the molecule. The incorporation of

45
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this third electrode is crucial for revealing the transport mechanism and it
allows us to tune the current through a molecular junction, very much like
in the transistors fabricated with the standard semiconductor technology.

For the sake of completeness, the first part of this chapter will be devoted
to introduce the standard molecules in use in molecular electronics as well
as to describe their basic properties.

3.2 Molecules for molecular electronics

Part of the fascination of molecular electronics lies in the fact that the
molecular toolbox is almost infinite, which makes us believe that it is pos-
sible to find an appropriate molecule for any imaginable application. So
far, however, only a few classes of molecules have been explored in molec-
ular electronics. In this section we shall introduce some of these molecules
and discuss their basic properties. But before doing that, it is convenient
to recall the most common functional elements in digital electronic circuits
that molecules are supposed to mimic. The main elements and their re-
quirements are the following:

e Conducting wires: low resistance, high ampacity.

e Insulators: high resistivity, high breakdown voltage.

e Switches: high on/off resistance ratio, reliable switching, small leak
current in off position.

e Storage elements: long storage time, low loss.

When extending the scope to cover also logic circuits one additionally
has to consider:

e Diodes: high forward/backward current ratio.
e Amplifiers: high gain.

Finally, since most of the existing devices containing molecules are com-
posite devices in which the molecules are connected to either metal or semi-
conductor electrodes yet another function has to be realized:

e Anchoring groups: reliable contact between functional molecular
unit and electrode.

In order to be able to compete with standard semiconductor technology,
the time constants of all devices have to be small, i.e. capacitances and/or
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Fig. 3.1 Examples of hydrocarbons. Left: Ethane with C-C single bond. Mziddle:
Ethene with one C-C double bond. Right: Ethyne with one C-C triple bond.

resistances have to be small. Since dissipation is already one of the most se-
vere problems in nowadays semiconductor devices, signal sizes, i.e. the level
of the current should be considerably smaller than in those devices. Since
our main interest lies in exploring the fundamental properties of molecular
electronic devices, we shall not pay attention to those requirements for the
rest of this book.

From the very beginning of molecular electronics, it has been become
clear that carbon-based molecules offer the required versatility to realize
most of these desired functionalities. Carbon is the basis of a great variety
of solid structures including graphite, diamond, graphene, and molecules
like the cage-shaped fullerenes and - last but not least - the quasi one-
dimensional nanotubes.

3.2.1 Hydrocarbons

Another very rich class of carbon-based molecules is the hydrocarbons with
the possibility to tune their degree of conjugation. The electronic richness
of both classes stems from the fact that the degree of hybridization of the
molecular orbitals depends on the conformation and the environment. The
carbon atom has four valence electrons which in the case of diamond are
sp? hybridized corresponding to a tetrahedral arrangement of the bonds in
space. This conformation is realized in the saturated hydrocarbons with
the sum formula C,,Ha,, 2 which are called alkanes.® Each carbon atom has
four direct neighbors, either C or H atoms and all bonds are o-bonds, see
Fig. 3.1. Bigger alkanes with n > 4 exist in several isomers, some of which
are ring-shaped (cycloalkanes). Since all electrons are used for forming
chemical bonds they are basically localized and the alkanes are insulating.

I The transport through alkane-based molecular junctions will be discussed in section
14.1.2.
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In graphite the valence electrons are sp? hybridized in the graphite plane
with an angle of 120° between the bonds. The fourth electronic orbital has
p character with its lobes pointing perpendicular to the graphite plane. The
wave functions of neighboring carbon atoms overlap and form the electronic
m-system, which in case of graphite is responsible for the in plane and
the finite plane-to-plane conductance. The same situation takes place in
the alkene hydrocarbons containing one carbon-carbon double bond, see
Fig. 3.1. Interesting for molecular electronics are polyenes with the sum
formula C, H,,+2, which contain more than one double bond. When these
double bonds are alternating with single bonds, the wave function of -
system is extended over the whole molecule. These molecules are called
conjugated or aromatic molecules. The criterion of aromaticity is 4n + 2
m-electrons.

The carbons in hydrocarbons may furthermore be triply bond in sp-
hybrids forming alkynes. When alternated with single-bonds these linear
bonds are very stable and give also rise to delocalized wave functions as in
the conjugated species with double bonds.

The delocalization of the wave function is broken when the double or
triple bonds do not alternate with single bonds. Furthermore, the con-
jugation can be tuned by introducing an angle between the planes of the
individual cyclic parts. The consequences of breaking the conjugation for
the conductance of a molecular junction will be discussed in section 13.5.

In a very common representation only the bonds are shown: single bonds
as single lines, double bonds as double lines, triple bonds as triple lines. The
carbon atoms themselves are not displayed. The positions of the carbon
atoms are at the kinks between these lines. Neither the hydrogen atoms
nor the bonds to them are drawn. The number and positions of them can
be deduced by fulfilling the valence four at each carbon. As an example we
show in Fig. 3.2(a) the polyene hexatriene (consisting of six carbons and
with three double bonds) in various representations.

As for the alkanes larger species of alkenes and alkynes arrive in several
isomers. When two doubly-bond carbon atoms are surrounded by different
groups one has to distinguish between the cis conformation, in which the
neighboring groups are on the same side of the double bond, and the trans
conformation with the neighbor groups being located on opposite sides of
the double bond. A cis-trans conformation change sets the basis for a class
of molecules with in-built switching functionality.?

2The most popular species of molecular switches are those which can be addressed opti-
cally. Many realizations are based on two ground types of switching (cis/trans conforma-
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Fig. 3.2 Various representations of the hexatriene and the benzene molecule. (a) The
polyene hexatriene is chosen as an example for a conjugated linear hydrocarbon molecule.
(b) The benzene molecule. Top and center panel: Because of the delocalization of the
m-electrons the positions of the double bonds are not defined. Therefore, they are often
symbolized by an inner ring.

The typical conformations of polyenes are zigzag-shaped lines reflecting
the preferred 120° orientation of the sp? hybrid. When building the angle
to the same side cyclic molecules are formed. The ideal cyclic polyene
geometry is the benzene molecule consisting of six carbons forming planar
ring with perfect conjugation, see Fig. 3.2(b). Since the m-electrons are
delocalized over the whole ring, it is not obvious between which carbons
the double bonds and where the single bonds have to be drawn. Therefore,
one often uses a notation in which the m-electrons are symbolized by an
inner ring.

Molecules consisting of several benzene rings merged along one bond are
called polycyclic aromates. The most prominent examples are naphtalene,
consisting of two benzene rings, anthracene consisting of three rings in a
linear arrangement, tetracene with four and pentacene with five rings in
series. Also angular arrangements of the rings or combinations with rings
containing five carbon are used. Examples are shown in Fig. 3.3. Also
five-rings (cyclopentadiene) and less often seven-rings (cycloheptatriene)
are possible. They are aromatic if six m-electrons per ring exist. In the case

tion switching and ring opening/ring closure). These types of molecules are introduced
in section 20.7.
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Fig. 3.4 Examples of the most common heterocyclic aromates.

of cyclopentadiene this means that an extra electron has to be added to the
ring to provide a stable m-electron sextet (anion), while in cycloheptatriene
one electron charge has to be withdrawn (cation), see Fig. 3.3.

In heterocyclic molecules one or more carbon atoms are replaced by an
atom of another species. Some heterocycles in use in molecular electron-
ics are depicted in Fig. 3.4. The most common substituents are sulfur,
nitrogen and oxygen. Because of their chemical valence they posses more
electrons than the carbons. In hexagonal rings the additional electrons do
not contribute to the w-system, but may be used for forming bonds to other
atoms, e.g. to the metal electrodes. In five-rings they help stabilizing the
conjugation.

3.2.2 All carbon materials

As mentioned in the beginning, also pure carbon molecules are promising
for molecular electronics. Carbon nanotubes are sheets of graphite which
are rolled together. They have diameters ranging from 1 nm to several tens
of nanometers and length of up to millimeters. Depending on the orienta-
tion of the long axis with respect to the hexagons various nanotubes with
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Fig. 3.5 Line representation of the bonds of the fullerene molecule Cgg.

varying electronic properties are possible.? Since defect-free carbon nan-
otubes are ballistic conductors they may serve as interconnects for bridging
long distances.

Finally, the combination of pure carbon hexagons with pentagons, but
without hydrogen sets the basis for the fullerenes. Since the bond length
in pentagons is smaller than in hexagons, these molecules are not planar
but have a curvature. The most famous fullerene is Cgo (see Fig. 3.5)
consisting of 20 hexagons and 12 pentagons in the same conformation as
in a soccer ball. It has a completely delocalized 7 system, making it also a
good candidate for molecular electronics applications.

3.2.3 DNA and DNA derivatives

A completely different class of molecules is based on our genetic information
carrying molecule DNA. It is very tempting to use DNA because of the rich
versatility, the possibility to tune the length from short to very long, and
its self-reproduction properties. After almost two decades of research on
DNA-based electronics it seems now to be clear that DNA by itself is too
poorly conducting for real electronic applications. However, it may serve
as template for assembling better conducting molecules or metal-molecule
combinations. Furthermore, DNA derivatives are under study which seem
to have more fortunate electronic properties. In section 18.3 we shall discuss
the transport properties of DNA-based molecular junctions.

3An excellent review about the conformation and resulting electronic properties of
nanotubes is given in Ref. [103].
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3.2.4 Metal-molecule contacts: anchoring groups

A common problem in molecular electronics is the difficulty to form stable
and electronically transparent chemical bonds of the molecules to the metal
electrodes. Among the manifold possibilities one particular solution has
been chosen as standard system. This is the combination of a sulfur atom
to gold electrodes. The reason to choose gold lies in the fact that it is
inert to chemical reactions, which allows to prepare clean surfaces and tips.
The drawback of this inertia is the fact that it hardly undergoes chemical
reactions with other species. One of the rare exceptions is sulfur in its thiol
(sulfur-hydrogen) form. This bond is mechanically stable with a force in the
order of 1.5 nN [104]. The thiol-gold binding scheme has successfully been
tested in self-assembled monolayers (SAM) (see below) on flat surfaces as
well as in single-molecule contacts on tips. It provides sufficient electronic
transparency for most applications. This is the reason why alkanedithiols
(i.e. alkanes with thiol endgroups at both ends) and benzenedithiols (a
benzene ring with thiols usually at opposite ends) represent the testbeds
for molecular electronic circuits. The alkanedithiols are the archetypical
insulators, while benzenedithiol is the most simple aromatic molecule which
can be coupled to metal electrodes. However, alternatives to the thiol
bonding scheme are also under study, as it will be described in section 14.2.

3.2.5 Conclusions: molecular functionalities

We want to close this section by pointing out which molecules can be consid-
ered as possible candidates for various electronic components in molecular
circuits:

e Conducting wires: polyenes and alkynes.

e Insulators: alkanes.

e Switches: cis/trans conformation changes of manifold molecules,
the prototype being azobenzene, consisting of two benzene rings
connected via a C=C double bond. In many examples the con-
jugation is reduced in the trans isomer because the 7-systems of
both parts are not coplanar. The second prototype of switches are
ring-opening-ring-closure transformations which can be triggered
optically, see section 20.7. In these switches one of the hydrocarbon
rings or heterocycles is opened thereby affecting the conjugation of
the m-system.

e Storage elements: all kinds of molecules with at least two states
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may serve as storage elements, including among others conforma-
tions, redox states, spin states, and vibrational states. Examples
will be discussed in Chapters 13, 15, and 16.

e Diodes: molecules which consist of two different, and electronically
decoupled parts. An example is the famous suggestion by Aviram
and Ratner [8] mentioned in the first chapter.

e Amplifiers: in principle all molecules the electronic levels of which
can be tuned by a gate electrode might act as amplifiers. Although
electronic three-terminal devices following this principle of bipolar
transistors have been demonstrated, they do not provide current
amplification yet.

e Anchoring groups: thiols, amines, nitros, cyanos or heterocycles
with the substituent atoms serving as linkers to the metal electrodes
(see 14.2).

3.3 Deposition of molecules

Molecular deposition methods are manifold because of the rich variety of
molecules in use. In most experiments the molecules are deposited from
solution onto the metal films forming the electrodes. Various solvents and
a wide range of concentrations are used. The molecules are allowed to
chemisorb to the metal electrodes. After an incubation time the molecular
solution is rinsed away with pure solvent. For low-temperature measure-
ments the devices are then dried in a gas (nitrogen) flow. In some cases
the electronic measurements are performed without drying, in solution -
either in presence of the pure solvent or with the molecular solution. A
variation of this deposition from solution is spin-coating. A drop of the
molecular solution is given on the substrate which is mounted on the chuck
of spin-coater. Upon rotation of the substrate the solution is wide-spread
over the wafer such that a very small concentration of molecules on the sub-
strate is achieved. As an example we mention individual carbon nanotubes,
which after spin-coating can be localized by atomic force microscopy or
other techniques. A particular nanotube can subsequently be contacted via
lithographically defined metal electrodes.

Many molecules, in particular rod-like molecules form self-assembled
monolayers (SAM) on metal surfaces. For that purpose the substrate
covered with the metal layer is dipped into the molecular solution. The
mostly amphiphilic molecules are equipped with one anchoring group that
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facilitates the chemical adsorption on the surface. The most common com-
bination for molecular electronics devices is thiol-terminated molecules for
adsorption on gold surfaces. The molecules organize such that they form
ordered monolayers (see Fig. 3.6). This procedure sounds simple, but in
practice many parameters have to be well controlled for obtaining repro-
ducible SAM quality. A recent review of this technique is given in Ref. [105].

Another highly developed technique is monolayer formation via the
Langmuir-Blodgett (LB) technique [106, 107]. A LB film consists of one
or more monolayers of an organic material, deposited from the surface of
a liquid onto a metal surface by immersing the solid substrate into the lig-
uid. The molecules form a monolayer on the surface of the solution. The
monolayer is transferred to the substrate when dipping it into the solu-
tion. Upon repetition of the immersion a multilayer consisting of several
monolayers and, thus films with very accurate thickness can be formed (see
Fig. 3.6). The film formation relies on the fact that amphiphilic molecules
with a hydrophilic head and a hydrophobic tail are used. These molecules
assemble vertically onto the substrate. For other molecules a horizontal
adsorption may be favored, yielding low-density films. The density and or-
dering can be enhanced by concentrating the molecular layer on the surface
of the solution with a spatula before the substrate is dipped into it.

In particular, for the preparation of samples for low-temperature mea-
surements, remainders of the solvent may hamper the formation of clean
metal-molecule-metal junctions. Therefore, alternative “dry” deposition
methods have been developed. Gaseous molecules (like e.g. hydrogen, oxy-
gen, nitrogen, carbonmonoxide, methane) can be deposited directly from
the gas phase by condensation on the cold metal electrodes. Very stable
molecules, like the fullerenes or DNA bases may be evaporated thermally
from various sources including Knudsen cells or tungsten boats, which are
Joule heated by driving a current through them. More sensitive molecules
can be deposited using electrospray ionization (ESI). The method starts
with a solution in which the molecules to be ionized are dissolved. An
electrospray of this solution is created by a strong electric field, which orig-
inates from a voltage applied between the spray needle and the end of a
capillary. Due to the strong field at the tip apex, charged droplets are
created, which are directed towards the capillary, which forms the connec-
tion to a vacuum chamber where the already prepared metal electrodes are
located [108]. With this method well-controlled submonolayer molecular
films may be deposited onto substrates in ultra-high vacuum (UHV).
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Fig. 3.6 Top: Formation of a self-assembled monolayer (SAM) shown for two species of
alkanethiols on a gold-covered substrate. The substrate is immersed into the molecular
solution. The molecules adsorb assemble with the thiol-terminated end on the substrate.
After an incubation time a self-assembled monolayer is formed. Bottom: Fabrication of a
Langmuir-Blodgett (LB) film. The left panel shows a droplet of an amphiphilic molecule
dissolved in a volatile solvent. It is spread on the water-air interface of the trough. The
solvent evaporates and leaves a diluted and disordered monolayer behind which is then
compressed with the help of a moving barrier. The right panel shows how the monolayer
is transferred onto the substrate. Reprinted with permission from Ref. [106].

3.4 Contacting single molecules

The fabrication of single molecule electronic devices is a difficult task. The
main problem lies in the size of the molecules, which is usually smaller than
the resolution of lithographic methods. Thus, sophisticated techniques have
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to be applied for forming nanometer-size metal gaps. Most of the longer
molecules are not conductive enough to be studied in single-molecule de-
vices, but are rather investigated in ensembles.* Furthermore, the coupling
between the molecule and the electrodes plays an important role. Another
consequence of the small size is the difficulty to image the geometry of the
junction and to prove that one deals indeed with a single-molecule device.
So far, no method exists which allows one to perform systematic measure-
ments of the electronic transport and to characterize the geometry of a
given junction with atomic precision. Therefore, several methods are used
and are permanently improved. This enables to distinguish between the
properties of the metal-molecule combination and the influence of the con-
tacting scheme. The methods may be divided into two main classes. The
first one produces rather stable devices, however, the geometry of it cannot
be varied and contamination cannot be excluded. Besides the stability, the
possibility to add a third electrode is an important advantage. For that
purpose, metal electrodes with small volume are desirable for reducing the
shielding of the electric field. The second class enables clean contacts and
modification of the junction geometry, but offers only limited stability.

The majority of methods in use for contacting individual molecules are
based on one of the techniques described in the previous chapter, since
contacting single molecules requires at least one atomically fine metal elec-
trode.

3.4.1 Electromzigration technique

The electromigration technique described in the previous chapter is suc-
cessfully used for the fabrication of pairs of metal electrodes for contact-
ing single molecules [21, 109, 110]. For this purpose, the electromigration
has to be stopped when the contact is broken and the electrodes form a
nanometer-size gap. In vacuum this would be signaled by a sudden increase
of the resistance above the typical resistance of a single-atom contact. How-
ever, because clean interfaces are needed for achieving well-shaped single-
molecule junctions, the molecules are usually deposited - by one of the
methods mentioned above - before the electromigration process. This com-
plicates the control sequence needed for stopping the electromigration at
the right moment, because molecules short-cut the gap resistance. There-
fore, many junctions are prepared in parallel and the statistical behavior
is determined. Since the metal wire is at ambient conditions before the

4The transport properties of long molecules will be addressed in Chapter 18.
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Fig. 3.7 Three-terminal devices and possible artifacts in molecular contacts. Top panel:
Schematic diagram of electromigration gap and measurement configuration. Bottom
panel: Six models describing possible geometries formed within the electromigration gap
by molecule(s) and contaminant metal particles. (a) Single-molecule contact as desired.
The molecule is chemisorbed with both ends at the metal electrodes. (b) Single-molecule
in the vacuum gap between the electrodes. The molecule is not chemisorbed. (c) Metal-
nanoparticle bridging the gap between the electrodes. (d) Multi-molecule contact. (e)
The molecules are coupled indirectly via a metal nanoparticle to the electrodes. (f)
The molecules are not chemisorbed to the electrodes but to a metal nanoparticle. After
Ref. [109].

deposition of the molecules, all kinds of contaminants might be present and
have to be carefully removed before deposition of the molecules.

With this technique, all kinds of current-voltage characteristics have
been measured ranging from ohmic behavior to Coulomb-blockade be-

® The tunnel contacts may be formed by vacuum gaps (without

havior.
molecules), single-molecule or multi-molecule contacts. Omne particular

problem of the method is the risk to form small metal grains, the transport

5The various possible transport mechanisms will be described in Chapters 13 and 15.
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properties of which resemble molecular contacts [109, 110]. Some examples
of possible contact geometries are given in Fig. 3.7. Finally, the metal grain
may be contacted to both electrodes via one or several molecules. Thus, the
yield of this method, i.e. the probability to have a single-molecule contact
is in the order of a few percent only. On the other hand, the junctions are
extremely stable and well suited for systematic studies of their transport
behavior at varying temperature or magnetic field. Because the electrodes
are in direct contact to a substrate, it can be used as a back-gate form-

6 By applying a gate voltage the transport

ing a three-terminal device.
mechanism can be detected and at least partial information of the contact

geometry can be obtained.

3.4.2 Molecular contacts using the transmaission electron
maicroscope

In order to obtain very strong coupling between the metal electrodes and
the molecule, a particular method has been put forward. It includes further-
more the possibility to image the contact geometry, because the molecules
form suspended junctions over slits in thin membranes and can thus be
inspected by transmission electron microscopy (TEM). Several variations
have been reported, which are optimized for the various molecules. The
common point is that the metal electrodes, which have been pre-patterned
on a thin membrane or a TEM inspection grid, are rapidly heated up by
an intensive electron or laser beam above their melting temperature. Con-
tamination atoms are distilled out of the electrodes and defects are driven
out as well. The molecules are brought into contact while the metal is
liquid. During recrystallization parts of the molecule are soldered into the
electrodes resulting in small contact resistances.

This method has been demonstrated to work for long molecules like
DNA and carbon nanotubes [112] as well as for chains of clusters [113] (see
Fig. 3.8). Possible risks are, of course, destruction of the molecule by the
high-energy impact of the laser or electron beam or the hot metal electrodes
as well as formation of metal whiskers shorting the molecular junction.

6The physical results obtained with these devices are discussed in particular in Chapters
15 and 16.
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Fig. 3.8 Contacting individual molecules in a transmission electron microscope. Top:
Schematics of the sample geometry. A long molecule is suspended over a slit in a thin
membrane and soldered at its ends to two metal electrodes. Bottom: Transmission
electronic micrograph (TEM) of nanotubes, suspended across a slit between two metallic
pads, and detailed view of the contact region showing the metal molten by the laser beam.
Reprinted with permission from [112]. Copyright 2003 by the American Physical Society.

3.4.3 Gold nanoparticle dumbbells

A very elegant method for overcoming the size mismatch between the res-
olution of lithographic methods in use for the definition of the electrodes
and the molecules has been described by T. Dadosh et al. [114]. The au-
thors use gold nanoparticles (GNPs) with a typical diameter of 10 nm.
The molecules to be contacted are functionalized at both ends with thiol
anchoring groups, which have a high affinity to gold. By these thiol bonds
the molecules are attached to the GNPs such that two of them are com-
bined to form a dumbbell. Those dumbbells now have a suitable size for
bridging lithographically defined nanogaps and can be deposited onto them
straightforwardly. A further advantage of the method is that the statisti-
cal behavior of the molecules in contact with the GNPs can be studied by
various non-contact methods such as optical spectroscopic measurements
before deposition onto the electrodes (see Fig. 3.9).



60 Molecular Electronics: An Introduction to Theory and Experiment

BPE HS—{ )0~ ,—sH

(b) : >
==—Dimer ' g
Electrode
. 10 nm

et

Fig. 3.9 (a) The structures of three molecules studied with the dumbbell tech-
nique: 1,4-benzenedimethanethiol (BDMT), 4,4’-biphenyldithiol (BPD) and bis-(4-
mercaptophenyl)-ether (BPE). (b) The dimer contacting scheme. (c¢) TEM image of
a BDMT dimer made of 10-nm colloidal gold particles. The separation between the
two particles corresponds approximately to the BDMT length (0.9 nm). Adapted with
permission from MacMillan Publishers Ltd: Nature [114], copyright 2005.

3.4.4 Scanning probe techniques

Conceptually, the most straightforward method for contacting a singe
molecule with a fine tip is to deposit the molecule on a metallic substrate
and to approach the molecule with the tip until one or several atoms of the
molecule are chemisorbed to the tip. However, this is not as simple as it
sounds and this method is only suitable for certain molecules. Even if the
process is successful, the interpretation of the subsequent conductance mea-
surements is not simple because in STM the electronic signal is convoluted
with the topographic information. Furthermore, the presence of the tip
may disturb or even destroy the molecule.” Therefore, various variations
of the STM technique have been developed. They all have in common the
difficulty to add a third electrode for gating. A certain but nonlocal gate
effect can be achieved via electrochemical gates (see below). STM-based
techniques are particularly suitable for gathering statistical information be-
cause many contacts can be studied in relatively short time. As already
explained in the previous chapter, the price for the high flexibility is the
low stability and the, in general, short lifetimes of the junctions.

3.4.4.1 Direct contact

The direct contacting scheme mentioned above requires first a careful prepa-
ration and characterization of the surface. Subsequently a sub-monolayer
of the molecules is deposited. For stable molecules such as the fullerene

"This can be checked by comparing topographic and spectroscopic results, though.
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Cep this can be performed via evaporation [115, 116]. The surface is then
scanned and a suitable molecule is selected. Depending on the physical
question to study, an isolated molecule or a member of a larger aggregate
can be chosen. As described in the previous chapter, for single-atom con-
tacts, the formation of a single-molecule chemical junction is signaled by a
sudden increase of the conductance. When this is achieved, the approach
can be stopped and spectroscopic investigations can be performed. From
the electronic point of view this contacting method usually results in asym-
metric contacts, meaning that the molecule is electronically better coupled
to the substrate than to the tip. This is important for the interpretation of
the transport properties, which will be discussed in Part 4. Often the cou-
pling to the substrate is in the “strong” regime while the electrons have to

¢

tunnel from the molecule onto the tip and vice versa, i.e. it is in the “weak
coupling” regime. Therefore, this method is most suitable for molecules
which are only loosely bound to the substrate, e.g. by a single atom or a
few atoms, like for Cgp, where the binding is given through one pentagon

or one hexagon of carbon atoms.

3.4.4.2  Contacting rod-like molecules

Rod-like or planar molecules have the tendency to lay flat on the surface.
In that case the current will not flow along the molecule, but most probably
transverse it perpendicularly finding the path of smallest resistance. For
those molecules several variations of the scanning probe technique have
been put forward. The first method is particularly suitable for imaging
and spectroscopy on the molecular orbitals [117]. After preparation of the
clean metallic surface, a monomolecular layer of an insulator, e.g. a salt
is deposited. The molecules are then evaporated on top of this thin layer
which acts as a tunnel barrier between substrate and molecule.

Another possibility is to directly deposit the molecules onto the metal
surface, but to design the molecules such that they have edge atoms with
high chemical affinity to the tip metal. The tip is then approached to one of
these atoms until a chemical bond is formed. Upon carefully withdrawing
the tip the molecule is peeled off the substrate, as illustrated in Fig. 3.10.
During the peel-off process spectroscopic measurements can be performed
which enables to identify the varying charge-transport mechanisms and to
quantify the coupling strength [118, 119]. This will be explained in more
detail in section 14.4.

The spatial resolution of the STM imaging can be enhanced by suit-
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Fig. 3.10 Schematics of the contact formation process of a molecular junction with the
STM. Four stages of the contact formation during approach (1,2) and retraction (3,4) are
shown. At (3) the chemical bond between the contact atom and the substrate is broken
and the molecular wire is formed. Reprinted with permission from [119]. Copyright 2008
IOP Publishing Ltd.

able functionalization of the STM tip, e.g. with hydrogen molecules [122].
Recently, it has been demonstrated that molecular orbitals can be even
better resolved by atomic force microscopy when the tips are terminated
with carbon monoxide (CO) molecules [120, 121].

Finally, an elegant way to contact rod-like molecules is to embed the
molecules into a matrix of less conducting molecules, such that the long axis
of the molecules is almost perpendicular to the substrate, see Fig. 3.11(a).
With the techniques described in section 3.3 a self-assembled layer of weakly
conducting molecules is prepared. A standard combination would be alka-
nes with one thiol anchor group on a gold substrate. The thiol binds chem-
ically to the gold releasing the non-thiolated ends to the top of the SAM.
The properties of the SAM are chosen such that free places or defects ex-
ist at which the study molecule can be incorporated. When scanning the
sample with an STM tip the positions of the better conducting molecules
can be located and spectroscopic measurements can be performed [123].

In a variation of this technique the study molecules are equipped with
two highly reacting anchoring groups, e.g. thiols. One end attaches to
the gold surface, the other one pointing to the top of the SAM. These
thiols can the be used as binding places for gold nanoparticles (GNPs) , see
Fig. 3.11(b). Depending on the density of the study molecule and the size
of the GNPs, one or several molecules are contacted with the same GNP. In
this way a very stable molecular junction consisting of substrate, molecule
and GNP is fabricated. The prepared sample is then investigated with
an STM [124] or a conductive AFM [125]. The tip is either brought into
strong contact with the GNP, such that the tip-GNP contact has negligible
resistance. Or the transport properties due to the presence of the GNP have
to be incorporated in modeling the transport for deducing the properties of
the molecular junction. The obvious advantage of this latter method is the
high stability of the device. Both variations share the in-built possibility
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Fig. 3.11 (a) Scanning tunneling microscopy (STM) study of electron transport through
a target molecule inserted into an ordered array of reference molecules. (b) STM or
conducting atomic force microscopy (AFM) measurement of conductance of a molecule
with one end attached to a substrate and the other end bound to a metal nanoparticle.
After Ref. [40].

to perform statistical investigations because hundreds of junctions can be
prepared on the same chip. The main drawbacks are the complex sample
preparation and the limited versatility because successful embedding into

the matrix is not obvious.®

3.4.4.3 STM in liquid environment

A very powerful tool is the use of an STM in liquid environment. The
surface and the tip are prepared as usual for forming atomic contacts, but
immersed into a solvent, in which the molecules under study can be dis-
solved. The tip can be sharpened and covered with substrate atoms by
repeated indentation into the substrate. Then molecules are added to the
solvent. After an incubation time needed for chemical binding to the sub-
strate, the tip is repeatedly approached to the surface and withdrawn while
the conductance is recorded. Upon closing the gap a metal-molecule-metal
junction consisting of several molecules is formed. When withdrawing the
tip, the molecules loose the contact to the electrodes not all at once but in
an irregular series. The result is a step-like decrease of the conductance as
a function of the distance which varies from repetition to repetition. After
breaking the contact to the last molecule, a new junction can be formed.
The molecules which get stuck to either the substrate or the tip are re-
placed by fresh molecules diffusing in from the solution. After a while a

8Examples of transport measurements performed with this technique will be described
in Chapter 13.
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new position on the substrate can be chosen. The method is very suitable
for gathering statistical information about the preferred conductance values
of molecular junctions. However, the stability of the molecular junctions is
usually not sufficient for spectroscopic measurements [36, 126].9

3.4.5 Mechanically controllable break-junctions (MCBJs)

Mechanically controllable break-junctions (MCBJs) (see section 2.6) are
used for contacting molecules in various environments. For measurements
at room temperature under ambient conditions, the molecules are usually
deposited from solution. After a reaction period, the remainder of the
molecular solution is rinsed in pure solvent and blew dry with nitrogen.
At variance to the electromigrated junctions, the molecules are usually de-
posited after forming the electrode gap by breaking the MCBJ. For polar-
izable molecules it might be helpful to apply a voltage in order to pull one
or several molecules into the junction. The junction is then carefully closed
until a measurable current flows. Depending on the molecule, the closing
traces show plateaus which signal the formation of a molecular junction
containing one or several molecules. At room temperature the electrode
atoms are rather mobile and the molecular junctions have only limited life-
time of a few minutes. This is, however, a much longer time span than
usually achieved with STM setups and is sufficient for measuring I-V char-
acteristics. On the other hand, only limited statistical information can be
acquired because of aging effects of the junctions. After several opening or
closing cycles no molecular junctions form any more. For recording con-
ductance histograms it is advantageous to perform the measurements in
liquid environment, as it was first proposed by Griiter et al. [78]. Fig. 3.12
shows a slightly different setup. A pipette is pressed onto the inner part
of MCBJ electrodes and sealed with gasket made of a flexible and solvent
resistant material (polydimethylsiloxane (PDMS)). The molecular solution
is continuously pulled through the pipette, while the MCBJ is opened and
closed and the conductance is recorded. Molecules which leave the junc-
tions are replaced by fresh ones from the solution as discussed earlier for
STM setups.

Much longer lifetimes of molecular junctions can be achieved at low
temperature. Furthermore, the thermal smearing of the electronic proper-
ties is considerably reduced. For that purpose several protocols have been

9This technique has been applied for transport measurements through DNA. Examples
will be discussed in section 18.3.



Contacting single molecules: Experimental techniques 65

electrlcal\wmng glass pipette contaiinng

molecular solution

spring-borne
contact
plug hosting pipette

and contacts \
m
.. 0
-

MCBJ sample PDMS gasket

bolt

Fig. 3.12 A PDMS-sealed glass pipette, in which the molecular solution circulates, is
pressed onto the central part of MCBJ chip with the help of a plug screwed to the sample
holder. The electrical contacts are realized in this case via spring-borne contacts outside
the gasket.

developed. When starting with a deposition of the molecules from solution,
the solvent and any humidity has to be carefully removed in order to obtain
clean molecular junctions without tunnel barriers due to ice formation. For
this purpose it is helpful to make use of strong metal molecule binding: A
molecular junction is formed at room temperature. When breaking it again
it may happen that the breaking does not occur between the molecule and
the metal electrode, but that one or several gold atoms remain attached to
the molecule leaving a gap between two metal atoms. The junction is then
cooled down and the metal-metal gap is closed again. Of course, water
films or other kinds of contamination may form on the metal surfaces as
well, but they can be pushed out of the contact such that a good electrical
contact can be established.

The problem of ice formation can be solved when forming the electrode
gap at low temperatures under cryogenic vacuum conditions. Even though
the surface of the native break-junction might be covered with water or
other contaminants fresh and clean metal tips are formed. Small molecules,
which at ambient conditions are in the gaseous phase (like e.g. hydrogen,
oxygen, carbonmonoxide, methane), may be condensed directly onto the
cold MCBJ electrodes with a nanometer-size separation [127]. Other small
molecules with low evaporation temperature (e.g. water) are first vaporized
and then condensed. Similarly, stable molecules like the fullerenes can be
evaporated on an opened MCBJ at low temperature [128].
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3.5 Contacting molecular ensembles

One main problem in single-molecule studies lies in the fact that the
electronic transport depends crucially on the exact coupling between the
molecule and the metal electrodes, i.e. on the precise atomic arrangement
of the contacts.!® As a result pronounced sample-to-sample and junction-
to-junction variations are observed. Repeated measurements are needed to
deduce the typical behavior of a given metal-molecule system. The influence
of varying contact geometry averages out in devices containing ensembles
of molecules. Furthermore, these ensembles are contacted with rigid and
robust electrodes. These devices usually provide better mechanical stability
and longer life-times allowing long-time systematic measurements and the
variation of outer control parameters like temperature or magnetic field.

However, when interpreting data recorded on ensemble devices one has
to bear in mind possible interaction effects between the molecules them-
selves which might affect their electronic properties. Furthermore, also
without interaction effects it is not straightforward to infer the single-
molecule junction behavior from the ensemble because the number of
molecules which contribute to the transport may be smaller than the total
number of molecules in the ensemble, if not all are contacted equally. For
instance, some of the molecules forming the ensemble might be in strong
coupling to the electrodes while others are only weakly coupled. As a result
the transport characteristics may show superpositions of various transport
mechanisms. Furthermore, ensemble structures are necessarily larger in
space than single-molecule devices giving limits to their maximum integra-
tion density. From the point of view of fundamental research the most
promising strategy is to compare the results from single-molecule contact
schemes with ensemble measurements for revealing the robust properties
of the given molecule-metal system. We shall restrict ourselves to methods
suitable for small ensembles ranging from roughly a few hundred molecules
to several thousand molecules. Very efficient methods have been developed
for contacting large area molecular films, which are however, out of scope
of this monograph.

3.5.1 Nanopores

One technique which produces rather small ensembles of molecules uses
pores in thin freestanding membranes. The method has been used in

10T his issue will be addressed in Chapters 13 and 14.
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the 1980’s and 1990’s for fabricating nanometer-sized metallic contacts for
point contact spectroscopy [129]. However, no single-atom contacts can be
achieved. A single crystalline silicon wafer is covered from both sides with
a thin layer of silicon nitride with a typical thickness of 50 nm to 100 nm.
The rear side of the wafer is patterned by optical lithography with squares
of typical lateral size of 100 pm. Using first plasma etching for attacking
through the nitride, then wet-etching in hydrofluoric acid the squares are
etched through the bulk of the silicon wafer. The wet etching process is
anisotropic. It attacks particular crystal orientations of the silicon much
faster than others. As a result inclined etch walls are formed thereby re-
ducing the size of the squares. The inclined walls become covered with a
native silicon oxide layer during the following process steps. Furthermore,
the acid attacks silicon much faster than silicon nitride. The process can
thus be stopped controllably when a suspended silicon nitride membrane is
obtained. Now the membranes are patterned from the front side via elec-
tron beam lithography with a small dot in each membrane. Using plasma
etching a small pore is drilled into the membrane with a typical diameter
of 10 to 50 nm.

The formation of molecular junctions requires three further steps [130].
First, a metal electrode - usually gold - is evaporated from the top side.
The device is then immersed into the molecular solution until a SAM has
formed. After a suitable reaction time which depends on the molecule-
metal combination the sample is rinsed and dried and the second metal
electrode is deposited by evaporation onto the rear side, see Fig. 3.13. Care
has to be taken that the SAM is not destroyed by thermal impact com-
ing from the metal atoms. With this technique thermally stable molecular
ensemble junctions are obtained which are particularly suitable for studies
of the temperature dependence of the transport properties. A difficulty of
the method lies in the fact that the quality of the first deposited electrode
cannot be characterized; it might be covered with water or other contami-
nants which could hamper the formation of a high-quality SAM. A similar
objection was made concerning the second molecule-metal interface: The
molecular layer is exposed to ambient conditions before the deposition of
the second electrode.!!

H'We will discuss data recorded with this sample species in Chapter 13.
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Alkanethiol

Fig. 3.13 Molecular junctions in nanopores. A small molecular ensemble is contacted
with metal electrodes in a nanometer-sized pore in a silicon-nitride membrane. Top
schematic is the cross section of a silicon wafer with a nanometer-scale pore etched
through a suspended silicon nitride membrane. Middle and bottom schematics show a
Au-SAM-Au junction formed in the pore area. The structure of octanethiol is shown as
an example. Reprinted with permission from [130]. Copyright 2003 by the American
Physical Society.

3.5.2 Shadow masks

Another method to fabricate small ensemble devices uses the self-alignment
property of shadow masks. The sample fabrication scheme is shown in
Fig. 3.14. Via e-beam lithography a suspended mask is produced with
a geometry of a wire that is interrupted by a small gap. A first metal
layer is evaporated perpendicularly through this mask. The next step is
the deposition of a SAM of the molecules. Alternatively molecules can
be evaporated on top of the metal under the same angle. Subsequently a
second metal layer is evaporated under an inclined angle such that the edge
of the metal film covers the molecular layer. The resolution limits of the
lithography used for the preparation of the mask restrict the contact size
to roughly 50 nm in width. The overlay length is given by the evaporation
angle and is usually chosen in the range of 20 to 50 nm. It has been
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Fig. 3.14 Production of shadow mask on silicon substrate. (a) The shadow mask is
defined via electron-beam lithography in a SizgN4/SiO2 double layer using two dry etching
steps. (b) The bridge in the center of the structure is used to separate two metal
contacts, which are evaporated vertically onto the substrate. A SAM is deposited on
both electrodes. In a second step metal is evaporated under an angle that allows a small
overlap between this top electrode and one of the bottom electrodes. If this overlap is
small enough, transport through single or a few molecules can be possibly measured.
Reprinted with permission from [111]. Copyright 2005, American Institute of Physics.

shown that the smoothness of the first metal layer is mandatory for avoiding
shortcuts between both electrodes. A second problem of this method is the
risk of destroying the SAM by the heat impact during the evaporation of
the top electrode or of creating metal grains [109].

3.5.3 Conductive polymer electrodes

These problems are partially overcome by a technique described by Akker-
man et al. [131]. The fabrication method is shown in Fig. 3.15. In a first
lithography step metal lines are fabricated and then a second resist is spread
over the sample. In the next step this resist is patterned with holes via
electron-beam lithography. The molecular ensemble is deposited into these
holes. Next, the whole substrate is overcast with a highly conductive poly-
mer which provides the second electrode. The polymer is finally capped
by a planar top metal electrode. The result is a very robust molecular
junction because the SAM remains embedded into the resist. Furthermore,
the deposition of the conductive polymer is less aggressive to the SAM
than standard metal deposition techniques. At variance to most of the
previously described methods the contact scheme intrinsically gives rise to
asymmetric contacts.'?> The fact that at least one of the metal electrodes
is not in direct contact with the molecular ensemble can be helpful when
exciting the molecular system optically, as described in Chapter 20.

12The importance of the metal-molecule contact shall be discussed in detail in section
14.2.
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Fig. 3.15 Processing steps of a large-area molecular junction. (a) Gold electrodes are
vapor-deposited on a silicon wafer and a photoresist is spin-coated. (b) Holes are pho-
tolithographically defined in the photoresist. (¢) An alkane dithiolSAM is sandwiched
between a gold bottom electrode and the highly conductive polymer PEDOT:PSS as
a top electrode. (d) The junction is completed by vapor-deposition of gold through a
shadow mask, which acts as a self-aligned etching mask during reactive ion etching of the
PEDOT:PSS. The dimensions for these large-area molecular diodes range from 10 to 100
mm in diameter. Reprinted with permission from MacMillan Publishers Ltd: Nature
[131], copyright 2006.

3.5.4 M:icrotransfer printing

A method which combines gentle deposition of the top electrode with the
ability to fabricate arrays of molecular junctions with similar contact prop-
erties is given by the micro- or nanotransfer printing technique. It produces
stable contacts on a substrate and involves also the formation of a SAM
(Fig. 3.16). At first an array of bottom electrodes is fabricated using litho-
graphic methods or evaporation through a mechanical mask. Subsequently
a SAM of the molecules to study is formed on the substrate. The molecules
are functionalized at their top ends with an anchoring group suitable for
binding to the metal of the top electrode. In a separate fabrication line a
stamp made of a flexible material such as PDMS is fabricated. The stamp is
topographically patterned in the geometry of the top electrodes. The metal
of the top electrode is evaporated onto it. This stamp is then pressed onto
the substrate. During this step the metal is transferred from the stamp to
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(a) (b) Metal-

evaporation

(d)

-
SAM
Substrate

Fig. 3.16 Production of nanoscale features by nano transfer printing (nTP). (a) The
features are defined by electron beam lithography in a polymethylmethacrylate (PMMA)
double layer on a silicon substrate. The elastomeric polydimethylsiloxane (PDMS) is cast
into the structures and cured at 60° C. Fluorination of the substrate before this step
ensures easy separation of PDMS and substrate after the curing. (b) Layers of 10-30 nm
metal gold are evaporated onto the PDMS stamp. (c) Alkanedithiols form a monolayer
on a GaAs substrate. The gold on the PDMS stamp binds to this monolayer and is
transferred to the substrate. (d) The patterned gold film that forms is transferred on
top of the GaAs substrate. Good binding to the monolayer is proved by the scotch
tape test. Reprinted with permission from [111]. Copyright 2005, American Institute of
Physics.

the substrate, thus forming an array of molecular junctions. This technique
enables junctions with areas ranging from less than a micrometer squared -
and thus named nanotransfer printing (nTP) - up to several hundred square
micrometers - microtransfer printing (¢ TP) [111, 132]. Besides the in-built
statistical information of molecular ensembles the quality of the SAM and
the contacts can be investigated by comparing contacts with varying area.
Furthermore, the contacts may be gated by applying voltages to the sub-
strate.

3.5.5 Gold nanoparticle arrays

Finally, it is possible to form networks of single-molecule junctions combin-
ing the robustness and statistical richness of ensemble studies with the fact
that each junction is formed by a single molecule or a very small number of
molecules only [133, 134]. The fabrication scheme is shown in Fig. 3.17. At
first gold nanoparticles (GNP) with a diameter of roughly 10 nanometers
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Fig. 3.17 Contacting molecular networks with gold nanoparticles. (a) Electron mi-
croscopy image of a device: two square-shaped gold contacts were evaporated on top
of a nanoparticle array line of width w. (b) Electron micrographs of the array struc-
ture before and after OPE (oligo-phenylene-ethynylene) exchange. (c) Schematic of the
molecular-exchange process. Left: self-assembled alkanethiol-capped nanoparticles be-
fore exchange. Right: During the exchange process. The OPE molecules displace part of
the alkane chains and interlink neighboring nanoparticles to form a network of molecular
junctions. Adapted with permission from [133]. Copyright Wiley-VCH Verlag GmbH &
Co. KGaA.

are covered with a spherical ligand shell. The thickness of the ligand shell
corresponds to half the length of the molecules which shall be assembled
between the GNPs later. A dense-packed, well-ordered, two-dimensional
array with an approximate size of 10 ym x 20 pm of these dressed GNPs
is deposited onto a substrate which is subsequently patterned with metallic
electrodes for performing the contacts to the measurement circuit. The ar-
ray contains approximately a million nanoparticles. The molecules forming
the ligand shell can be replaced with an exchange reaction by the molecules
to be studied electrically. By using network analysis methods the typical
properties of an individual molecular junction can be at least partially de-
duced from the behavior of the network. Besides the particular stability
and in-built ensemble averaging, this method is suitable for the investiga-
tion of very small signals, such as electrical response to optical activation
of photochromic molecules [135], see section 20.7.
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3.6 Exercises

3.1 Molecular ensembles: Estimate the number of alkanedithiol molecules in
the cross section of a nanopore with a diameter of 50 nm (see section 3.5.1). For
estimating the diameter of a molecule assume a C-C bond length of 0.15 nm, a
C-H bond length of 0.11 nm and a bonding angle of 110° between adjacent C-C
bonds. Furthermore, assume a densely packed SAM in a triangular arrangement.

3.2 Molecular arrays: Let us consider the technique shown in Fig. 3.17. As-
sume that the exchange reaction was perfect. Furthermore, assume that each
pair of nanoparticles is connected via a single molecule. How many molecules
will contribute to the transport if the array has a size of 20 pm x 10 gm. What
is the effective circuit diagram of this network? What happens when the exchange
reaction has a yield of 50%7 What is the minimum rate for the exchange reaction
in order to obtain at least one conducting path between the ends of the array
(percolation threshold)?

3.3 Optical activation of molecules: In Chapter 20 we will present experi-
ments in which molecular contacts were excited by light irradiation. Therefore, we
want to estimate here the probability that a molecule in contact with metal elec-
trodes will be hit by a photon of the light source. Assume a single decanedithiol
molecule which spans the gap between two gold electrodes. The electrodes have
been fabricated with the MCBJ technique and have a cross section of 100 nm
times 100 nm. The break forms a slit with perfectly flat walls perpendicular to
the direction of light irradiation. The width of the slit is given by the length of
the molecule. Typical light intensities of the experiments are P =1 mW focused
on an area of s = 100 um? with a light wavelength of A = 400 nm. Consider
different positions of the molecule in the slit: (a) Top of the slit. (b) Center of
the slit. (c) Bottom of the slit.
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Chapter 4

The scattering approach to
phase-coherent transport in
nanocontacts

4.1 Introduction

The electrical conduction in macroscopic metallic wires is described by
Ohm’s law, which establishes that the current is proportional to the ap-
plied voltage. The constant of proportionality is simply the conductance,
G, which for a given sample grows linearly with the transverse area S and
it is inversely proportional to its length L, i.e.

S
— o= 4.1
G O'L, (4.1)

where ¢ is the conductivity of the sample, which is a material specific
property. The conductance will be a key quantity in our analysis of the
transport properties of atomic and molecular junctions. However, concepts
like Ohm’s law are not applicable at the atomic scale. Atomic-size conduc-
tors are a limiting case of mesoscopic systems in which quantum coherence
plays a central role in the transport properties.

In mesoscopic systems one can identify different transport regimes ac-
cording to the relative size of various length scales. These scales are, in turn,
determined by different scattering mechanisms. A fundamental length scale
is the phase-coherence length, L,, which measures the distance over which
the information about the phase of the electron wave function is preserved.
Phase coherence can be destroyed by inelastic scattering mechanisms such
as electron-electron and electron-phonon interactions. Scattering of elec-
trons by magnetic impurities, with internal degrees of freedom, also de-
grades the phase but elastic scattering by (static) non-magnetic impurities
does not affect the coherence length. Information on the coherence length
can be obtained experimentally, for instance, by studying the so-called weak
localization [50]. A typical value for Au at "= 1K is around 1 pm [136],

T
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Fig. 4.1 Schematic illustration of a diffusive (left) and ballistic (right) conductor.

while at room temperature it becomes of the order of a few tens of nm.
The mesoscopic regime is determined by the condition L < L, where L is
a typical length scale of our sample.

Another important length scale is the elastic mean free path ¢, which
roughly measures the distance between elastic collisions with static impu-
rities. The regime ¢ < L is called diffusive. In a semi-classical picture
the electron motion in this regime can be viewed as a random walk of step
size ¢ among the impurities. On the other hand, when ¢ > L we reach
the ballistic regime in which the electron momentum can be assumed to be
constant and only limited by scattering with the boundaries of the sample.
These two regimes are illustrated in Fig. 4.1.

In the previous discussion we have implicitly assumed that the typical
dimensions of the sample are much larger than the Fermi wavelength Ap.
However, when dealing with atomic-scale junctions the contact width W is
of the order of a few nanometers or even less and thus we have W ~ Ag.
We thus enter into the full quantum limit which cannot be described by
semi-classical arguments. A main challenge for the theory is to derive the
conductance of an atomic-scale conductor from microscopic principles.

In this chapter we shall introduce the scattering (or Landauer) approach,
which is presently the most popular theoretical formalism to describe the
coherent transport in nanodevices. The central idea of this approach, al-
ready put forward by Rolf Landauer in the late 1950’s [137], is that if one
can ignore inelastic interactions, a transport problem can always be viewed
as a scattering problem. This means in practice that transport proper-
ties like the electrical conductance are intimately related to the transmis-
sion probability for an electron to cross the system. Our introduction to
the scattering approach will be divided into two main parts. First, using
heuristic arguments we shall show the relation between conductance and
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transmission, which is summarized in the so-called Landauer formula. This
formula will then be used to discuss basic concepts such as the tunnel effect
or resonant tunneling. Second, we shall present a more rigorous formulation
of this approach that will be used to compute various transport properties
such as shot noise and thermoelectric coefficients. Finally, we shall conclude
this chapter with a discussion of the limitations of the scattering formalism.

4.2 From mesoscopic conductors to atomic-scale junctions

On the basis of Ohm’s law one would expect the conductance of a metallic
wire to scale as R?, where R is its radius. Deviations from such a scaling law
were already discussed by Maxwell [138], who studied with classical argu-
ments the conductance of a diffusive constriction, where the contact radius
is large compared to the mean free path. He found that the conductance
scales linearly with the contact radius, i.e.

G = 2Ro. (4.2)

where o is the conductivity.

As we shrink a conductor to well below the mean free path, the con-
ductance departs from the value expected from the previous expression. In
1965 Sharvin [139] considered the propagation of electrical current through
a ballistic contact by approximating it with a classical problem of dilute
gas flow through an orifice. He reasoned that if the potential difference be-
tween the two half-spaces is eV, the conduction electrons passing through
the orifice should change their velocity by the amount Av = +eV/pp, where

1 The net current will be I = neAvS, where

pr is the Fermi momentum.
S = mR? is the contact area and taking into account the Fermi-Dirac statis-
tics for electrons, n = 47p?./(3h3), one gets the conductance for a circular

ballistic point-contact

22 (TR\? 22 krR 2
o5 (5) =7 (%) 4

where e is the electron charge and h is the Planck’s constant. Notice that
for ballistic contacts the conductance is proportional to the contact area,
like in Ohm’s law, but the proportionality constant 2e2/h has a quantum
nature. An important difference between the two lies in the fact that G is

IThis is just an approximation and the exact treatment includes an integration of
the projection of Av along the orifice axis over the solid angle of 27w. Anyway, the
phenomenological result is only a factor 8/3 different from the exact one [140].
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independent of the length of the conductor and is determined only by its
cross-section radius R. It is remarkable that the Sharvin formula, being
based on semiclassical arguments, holds well for all ballistic contacts with
diameters down to a few nanometers. In the context of atomic contacts, it
is customary to use a slightly modified version of this equation in which the
so-called Weyl correction is introduced [141, 142]. This correction comes
from the fact that the Heisenberg uncertainty principle for Fermi electrons
in a narrow contact, 2pp R > h, gives a small correction to the conductance
and the resulting semiclassical formula takes the form

262 ]{ZFR 2 2

where kg is the wave vector. This equation is valid for a contact in the
form of a wire. For an orifice the numerator of the last fraction should
be 1 instead of 2. Eq. (4.4), valid for contacts down to a few nanometers
in diameter [143], is often used to establish the relationship between the
conductance and the radius of a contact.

Due to limitations of the semiclassical approach, Eq. (4.4) does not
account for purely quantum effects which dominate when the size of the
contact becomes so small that the wave nature of an electron can no longer
be ignored. Rolf Landauer [137] showed, already back in the 1950’s, that
in the latter case “conductance is transmission”, i.e. in order to determine
the total conductance one has to solve the Schrodinger equation, find the
current-carrying eigenmodes, calculate their transmission values and sum
up their contributions. Mathematically, this is summarized by in the Lan-
dauer formula

2 N
=5 g (4.5)

where the summation is performed over all available conduction modes and
T, are their individual transmissions. If the transmission of a mode is per-
fect, it contributes exactly one quantum unit of conductance, Gy = 2¢2?/h ~
(12.9 kQ)~!. This formula shows that by changing the size of the contact,
one can change the number of modes contributing to the conductance and
thus the conductance itself in a step-like manner (see discussion below).
This is clearly at variance with the situations described above. The deriva-
tion of the Landauer formula and the discussion of its physical implications
is the subject of the rest of the next sections.
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Fig. 4.2 Wave function (plane wave) impinging on a potential barrier. The wave is
partially reflected with a probability amplitude r and partially transmitted with a prob-
ability 7' = [t|2.

4.3 Conductance is transmission: Heuristic derivation of
the Landauer formula

In a typical transport experiment on a nanoscale device, the sample is
connected to macroscopic electrodes by a set of leads (or electrodes) which
allow us to inject currents and fix voltages. The electrodes act as ideal
electron reservoirs in thermal equilibrium with a well-defined temperature
and chemical potential. The basic idea of the scattering approach is to relate
the transport properties with the transmission and reflection probabilities
for carriers incident on the sample. In this one-electron approach phase-
coherence is assumed to be preserved on the entire sample and inelastic
scattering is restricted to the electron reservoirs only. Instead of dealing
with complex processes taking place inside the reservoirs, they enter into
the description as a set of boundary conditions. In spite of its simplicity,
this approach has been very successful in explaining many experiments on
nanodevices.

Before turning to the description of the general scattering formalism, it
is instructive to understand the relation between current and transmission
with a simple heuristic argument. Let us consider a one-dimensional situ-
ation, like the one depicted in Fig. 4.3. Here, the potential simulates the
central part of a junction, where electrons are elastically scattered before
reaching one of the electrodes. We assume that when the electrons are in-
side the reservoirs, they are in thermal equilibrium at the temperature of
the corresponding electrode. Let us now consider a plane wave, (1/v/L)e***,
that is impinging on the potential barrier from the left (L represents the
length of the system). This wave is partially reflected with a probability
amplitude r and partially transmitted with a probability T = [t|>. We
can now compute the electrical current density, Ji, carried by an electron
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described by this wave function. It is given by the quantum-mechanical
expression

h

- 2ma

v+l e
| = pe(R)T (k). (4.6)

RN
Jk (G (9«")% — ¢(x)
where v(k) = hk/m is the group velocity and we have computed the current
on the right hand side of the scattering potential (remember that the current
is conserved and thus its value is independent of where it is evaluated).

In a solid state device there are many electrons contributing to the
current. Therefore, we have to introduce a sum over k (strictly speak-
ing over the positive values). Moreover, we have to take into account the
Pauli principle, which means in practice that we have to introduce a factor
fr(k)[1 — fr(k)], where fr g is the Fermi function of the electron reservoir
on the left (L) or on the right (R) of the potential barrier. These Fermi
functions take also into account the fact that the corresponding chemical
potential can be shifted by an applied bias voltage, V. The blocking factor
above ensures that only those states that were initially occupied on the left
and empty on the right contribute to the current flowing from left to right,
Jr—r, which adopts the form

Jisr =7 Y o) T (k) fL(R)[L = Fr(k)]. (4.7)

L
k

Now, we can convert the sum into an integral with the usual replacement:

(1/L)>>, g(k) — 1/(27) [ g(k)dk. Thus,

Tin= o [ Ak oBTLLEIL - Fo(h) (4.8)

We now change from the variable k to energy, E, introducing the density
of states dk/dE = (dE/dk)~' = m/(h%k), since E = h%k?/(2m).2 Due to
the cancellation between the group velocity and the density of states, the
left-to-right current can be written as

e
Tion = [AET(E)LEL - falE)) (4.9
Analogously, we can show that the current from right to left can be
written as
e
Tnow =5 [ AET(E)fR(B)L - fu(E) (410

2Here, we are assuming that the conduction electrons can be described by a non-
interacting electron (or Fermi) gas.
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where we have used the fact that the transmission probability is the same,
no matter in which direction the barrier is crossed.

Now, the total current® I(V) = J, g — Jr_ 1 can be simply expressed
as

1) =2 [~ B T@B)a(E) - (D)L (4.11)

h — 0o

Here, we have introduced an extra factor 2 to account for the spin degener-
acy that usually exists in the systems that we shall analyze. This expression
is the simplest version of the so-called Landauer formula and it illustrates
the close relation between current and transmission. At zero temperature
fo(E) and fr(F) are step functions, equal to 1 below Ep + eV/2 and
Er — eV/2, respectively, and 0 above this energy. If we moreover assume
low voltages (linear regime), this expression reduces to I = GV, where the
conductance is G = (2e¢2/h)T, where the transmission is evaluated at the
Fermi energy.

This simple calculation demonstrates that a perfect single mode conduc-
tor between two electrodes has a finite resistance, given by the universal
quantity h/2e? ~ 12.9 k. This is an important difference with respect to
macroscopic leads, where one expects to have zero resistance for the per-
fectly conducting case. The proper interpretation of this result was first
pointed out by Imry [144], who associated the finite resistance with the
resistance arising at the interfaces between the leads and the sample.

4.4 Penetration of a potential barrier: Tunnel effect

As it is clear from Eq. (4.11), the transmission probability plays a central
role in Landauer approach. For this reason, it is worth reminding how this
quantum mechanical quantity can be computed in some simple situations of
special interest. For the sake of concreteness, we shall focus our discussion
in this section on the analysis of the transmission through a single potential
barrier. This simple problem not only illustrates some fundamental issues,
but it also provides a basic model widely used for the understanding of
tunneling currents in a great variety of situations such as tunnel junctions
based on insulating barriers, STM and even single-molecule junctions, as
we shall show later in this book.

3Since we are in a 1D situation, there is no difference between total current and current
density.
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Fig. 4.3 Rectangular potential barrier of height Vi and width L.

Let us consider the potential barrier of height Vy depicted in Fig. 4.3.
Our goal is to compute the probability to cross such a barrier as a function
of the energy, E, of an incoming electron. Classical mechanics tell us that
an incident particle will always be reflected when E < Vj, and it will always
be transmitted when E > Vj. We all know that in quantum mechanics a
particle can pass through a barrier, even when its energy is lower than the
barrier height. This phenomenon is known as quantum tunneling or simply
tunnel effect and it lies at the heart of the whole physics discussed in this
book.

In order to compute the transmission we proceed in the standard way.
We first determine the wave functions in the three different regions defined
in Fig. 4.3, and then we match these functions and their first spatial deriva-
tives at the boundaries (z = 0 and x = L). Let us first consider the case of
E < V4. In this case, the solutions of the Schrodinger equation in the three
regions are of the form

Yr = apeF® 4 ble_mlw, = ase?® 4+ bge_k”, Y = agelk?’x, (4.12)

where

2mE 2m(Vy — F
5 and ko = (ho )

Note that we have assumed that the effective mass is the same everywhere

ky = ks = (4.13)

and we have discarded the incoming term (bze~%3%) in ¢11; because we are
considering here the problem of an a wave function impinging on the barrier
from the left.

Using now the continuity of the wave function and its first derivative at
x =0 and z = L, we arrive at the following relationships

a1+ b1 = as + bs 5 tkiar — ik1by = koag — kobo (414)

ase?l 4 poe Rl = guettr L : koase®?t — koboe F2l = jkyage™ L.
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Fig. 4.4 (a) Transmission probability vs. energy for a symmetric potential barrier of
height Vj = 4 eV and width L = 1 nm. The inset shows a blow-up of the region £ < V.
(b) Transmission as a function of the width of the potential barrier (Vo = 4 eV) for
different values of the energy. In both cases the mass is assumed to be the electron mass.

Solving these equations, we obtain the following expression for the energy
dependence of the transmission coefficient

2 1 AE(Vy — E)

as
ai

- 2 - 2 :
14 (l;%]:r:%) sinh2(k2L) 4E(Vy — E) + VZ sinh” (ko L)
12
(4.15)
Proceeding in a similar way, one can compute the transmission for £ >

Vo and the result is (see Exercise 4.2)
1 _
T = — — AE(E ‘2/0) 5 . (4.16)
14 (kl—kQ) sin?(kaL) AE(E — Vp) + Vi sin® (ko L)

T =

2k1 ko

The energy and length dependence of the transmission of this potential
barrier are illustrated in Fig. 4.4. The most prominent feature is maybe
the exponential dependence of the transmission on the barrier width for
energies F < Vp, see Fig. 4.4(b). According to Eq. (4.15), this decay is
given by T o< exp(—2ksL) = exp(—2L+/2m(Vy — E)/h), i.e. the slopes
in Fig. 4.4(b) are mainly determined by the square root of the difference
between the electron energy and the barrier height. Since the transmission
determines the conductance, this model provides a natural explanation for
the exponential decay of the low-bias conductance as a function of the
distance between the electrodes in all kind of tunnel barriers. It also tells
us that such decay is simply governed by the work function of the metals
involved.

Landauer formula shows that the linear conductance at low tempera-
tures is determined by the transmission at the Fermi energy. However, the
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analysis of the current-voltage (I-V) characteristics requires the knowledge
of the energy dependence and, strictly speaking, also of the voltage de-
pendence of the transmission probability, see Eq. (4.11). In the case of a
rectangular barrier, the voltage can be introduced in an approximate way
as shown in Fig. 4.5(a). The computation of the transmission and in turn of
the I-V curves is then a simple problem, see Exercise 4.3. A more appropri-
ate way of describing the effect of the voltage is shown in Fig. 4.5(b), where
a linear drop in the potential with the barrier region has been assumed.

- %
L eV

Fig. 4.5 Rectangular potential barrier under the application of a voltage: (a) approxi-
mation and (b) actual potential profile.

The analysis of the transmission through a potential like the one of
Fig. 4.5(b), or any other smooth barrier, can be tackled with the help of
the WKB approximation [145, 146] (see Exercise 4.4). This is precisely
what Simmons did in 1963 [147] in his celebrated model. He considered the
problem of the tunnel effect between metallic electrodes separated by a thin
insulating film. He derived a general formula for the I-V curves for a barrier
of arbitrary shape, and we reproduce here his result for the particular case of
a rectangular barrier. Simmons showed that zero-temperature net current
density in this case can be written as [147]

J=Jy {QDB exp(—A/eB) — (¢B + eV) exp(—A\/ B + €V) } (4.17)

where ¢p is the average barrier height relative to the negative electrode
and sp is the barrier width sp, see Fig. 4.6. Moreover,

2a8p e
A= 7 V2m and J() m, (418)

where « is a dimensionless correction factor of order unity. Eq. (4.17) can

be simplified in three distinct cases depending on the applied voltage:
Low-voltage range. For very small voltages (eV ~ 0), see Fig. 4.6(a),

the average barrier height ¢p is independent of the applied voltage and

equals the zero voltage barrier height po = (p1 + v2)/2. Then, Eq. (4.17)

can be simplified into

o2 \/27

J =J,V with Jp, = T VP al2sg

exp(—Ay/75). (4.19)



The scattering approach to phase-coherent transport in nanocontacts 87

@o s ] s ©
2 1 B 1
I Q)
Metal 1 Metal 2 eV Sy 0 eV
Insulator 2

Fig. 4.6 Tunneling through a junction in which two metallic electrodes are separated
by a thin insulating film, which is modeled as a rectangular potential barrier. The three
panels show the three distinct voltage ranges discussed in the text.

Here, « = 1. As it can be seen in Eq. (4.19), the current density is a linear
function of the applied voltage V' (Ohmic regime).

Intermediate-voltage range. For a medium applied voltage eV < (g,
see Fig. 4.6(b), the average barrier height g is given by (¢1 + @2 —eV)/2.
The current density can then be simplified to (assuming that o = 1)

(Ae)? B Ae?

J = J(V +~V3) with ~ = .

(4.20)

This expression can be used to determine both the height and the barrier
width in terms of the coefficients v and Ji,.

High-voltage range. For voltages eV > ¢, see Fig. 4.6(c), the aver-
age barrier height is reduced to (1 /2 and even the barrier width is reduced.
Eventually, the voltage is high enough so that the Fermi level of electrode
2 is lower than the conduction band of electrode 1. In this case, tunneling
from electrode 2 in electrode 1 is not possible since there are no empty
states in electrode 1 to tunnel to. As for electrons tunneling from electrode
1 into electrode 2, all states in electrode 2 are empty. This is analog to
field emission from a metal into vacuum. Then, the current density can be
simplified to

2.9¢3 F2 V2me?
J= 2= p< STV2mey ) (4.21)

sth o1 P\ T 2.96ehF

with the electric field strength in the insulator F' = V/s, where s is the
thickness of the insulating field.

In the case of vacuum tunneling (or tunneling through an insulator), we
should be aware of the fact that whilst the electron is in the tunnel gap,
it will induce image charges in the two electrodes. This serves to modify
the barrier potential. The net effect of this is to reduce the average barrier
height and hence increase the transmission probability. For an analysis of
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Fig. 4.7 The potential V(z) under consideration varies in an arbitrary way within the
interval —L/2 <z < +L/2 and goes to zero outside this interval.

these “image forces” for the case of the rectangular barrier discussed here,
see Ref. [147].

It is worth mentioning that the problem of the rectangular barrier under
an applied voltage, see Fig. 4.5(b), can be solved exactly using the full Airy
functions. This was done by Grundlach [148], who showed that the current
exhibits oscillations as a function of voltage that are superimposed in the
WKB result discussed above.

4.5 The scattering matrix

In the next section we shall present a more rigorous discussion of the scat-
tering formalism, where the concept of scattering matrix plays a central
role. The definition and properties of this matrix are described in many
quantum mechanics textbooks, but for the sake of completeness, we have
included here a brief discussion of this subject.

4.5.1 Definition and properties of the scattering matrix

In order to keep our discussion at a simple level, we study here a one-
dimensional situation. Let us consider a potential V' (z) which is zero out-
side the region defined by |z| > L/2, but which varies in an arbitrary
way inside this interval, see Fig. 4.7. The equation satisfied by every wave
function ¢ (x) associated with a stationary state of energy E is

{40+ 5E - vl foia) =o. (1.22)

The most general solution ¥ (z) of Eq. (4.22) in the region = < —L/2
(region 1) for a given value of E can be written as

V() = ar1e™ + bre” ", (4.23)
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where k = \/2mFE/h?, while in the region x > +L/2 (region 2) it has the
form

Ur(x) = age™ ™ 4 boe™™, (4.24)

Here, the different coefficients depend on k, as well as on the shape of the
potential under study. Notice that with our notation, the amplitudes a;
(¢ = 1,2) correspond to the incoming waves impinging on the potential
region, whereas the amplitudes b; correspond to the outgoing waves.

The scattering matrix is defined as the 2 x 2 matrix that relates the
incoming and outgoing amplitudes as follows

() =5 () am

where S is usually written as
5 rt
S = (t r’) : (4.26)

Here, » and r’ are reflection amplitudes and ¢ and ¢’ are the transmission
amplitudes associated to this potential.

Are all these four elements independent? What are the properties of the
scattering matrix? A first property of the S-matrix can be deduced from
the conservation of the current. Let us remind that in quantum mechanics,
the current associated with a wave function ¢ (x) is given by

_ b Ay dy*
) = g 6@ 5~ vle) G| (4.27
Differentiating, we find
d B[ . d2 B2
@) = g ) T v | (428)
Taking into account Eq. (4.22), we obtain
iJ(SU) = 0. (4.29)

dx

Therefore, the current J(x) associated with a stationary state is the same
at all points of the z-axis. Note, moreover, that Eq. (4.29) is simply the
one-dimensional analog of the relation (continuity equation)

V.- J(r) =0, (4.30)

which is valid for any stationary state of a particle moving in three-
dimensional space. According to Eq. (4.29), the current J(z) has the same
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value, no matter in which region it is evaluated. Then, computing the
current in regions 1 and 2 we have

hk hk
J(z) = po [lai[* = |b1]%] = p [[b2]* — |azl?] , (4.31)
which implies that
a1 ? + |az|® = [b1|* + [b2]?. (4.32)

This relation can be used to establish the first property of the scattering
matrix in the following way

* gk b x o+ ata @
’bl|2—|— ’bg|2 = (b7,053) (b;) = (al,a2)5’TS< 1) =

a2
a
@) (0) =P el @33)

which simply implies that Sis a unitary matrix, i.e.
St=6-1. (4.34)
In terms of the matrix elements, this relation reads
P>+ [t =1;rt +t 7 =0
E)Vr+ ) t=0; "+ [t']? =1 (4.35)
Notice that the second and third relations are indeed the same.
If the potential V' (x) is real, which means in particular that there is no
magnetic field applied, an additional property can be derived as follows. If

Y(x) is a solution of Eq. (4.22), then ¢*(x) is also a solution. This new
solution can be written as

Y (z) = ale ™ £ bt if o< —L/2
Y (z) = a5e™ + e T if x> 4+ L/2.

Notice that in this solution the coefficients a] correspond to the outgoing
amplitudes, while 0] represent the incoming amplitudes. Therefore, by
definition they are related via the scattering matrix as follows

<ai>zé<bi>, (4.36)
) b3
which can be rewritten as

B e
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If we now compare this relation with Eq. (4.25), we arrive at
(S)~t = 5" (4.38)

If we now combine this with the fact that the scattering matrix is unitary,
we have that S is symmetric

T =S=t =t (4.39)
In the presence of a magnetic field, this latter relation changes and one
can show that reversing the magnetic field B transposes the S-matrix

S(B) = 8T(-B) = t(B) = t(-B). (4.40)

The demonstration is left to the reader as an exercise (see Exercise 4.7).

4.5.2 Combining scattering matrices

It is interesting to discuss how one can combine different scattering matri-
ces in a problem in which there are several scattering potentials. Let us
for instance consider the case of two potential barriers of arbitrary shape.
This situation is schematically represented in Fig. 4.8. We shall include in
the scattering matrix a superindex indicating to which potential barrier it
corresponds, S (i = 1,2). These matrices S relate the incoming and
outgoing amplitudes across the corresponding potential barrier as follows

(see Fig. 4.8)
bl (1) aq . as &(2) b2
( b2> =5 ) ) =5 o) (4.41)

Notice that we have already used the fact that ao is at the same time
the incoming amplitude for the potential 1 and the outgoing amplitude for
potential 2. Something similar happens with bs.

Our problem is to find in terms of the matrix elements of S the total
scattering matrix Stot that relates the incoming and outgoing amplitudes
of the two scatterers, i.e.

bl A ai \ . A (T t/
<l)3) - STot <CL3> ) STot — (t 7“/> . (442)

This can be easily done eliminating as and by from Eq. (4.41) and the
final result can be written as

= (D) 4 (1)) [1 _ T/<1>r(2>} RO I [1 _ T/<1>T<2>] e

v =1/ 4 [1 0] Ty [1-+2p0)] o)
(4.43)
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V(x)
4 b, b,
b, a a3
-~ - . -
potential 1 potential 2
Vel X

Fig. 4.8 Combination of two potential barriers of arbitrary shape. The coefficients a;
and b; represent the different incoming and outgoing amplitudes with respect to the
potential barrier z.

This result allows us to compute now very easily, for instance, the total
transmission through the combined structure. According to the previous
equations

T
1 —2VRiRycos+ RiRy’

where T; = [tO2 = @12, R; = |r® 2 = [’@|? and = phase(r’(D) +
phase(r(?)) is the phase shift acquired in one round-trip between the scat-

T =|t]* = (4.44)

terers.

This result can be used to study a very important phenomenon for us,
namely the resonant tunneling. In a double barrier system (or in a potential
well) one can have bound states in the region between the two scattering
centers. Then, the transmission probability in this system exhibits reso-
nances at energies close to the position of those bound states. The width
of the transmission peaks depends upon the transmissivity of the barriers,
while the distance between peaks is mainly determined by the distance be-
tween the barriers. These facts can be shown with the help of Eq. (4.44),
as it is illustrated in Exercise 4.8.

4.6 Multichannel Landauer formula

We present in this section a more rigorous derivation of Landauer formula,
where the important concept of conduction channel will arise. This for-
mulation will also be the starting point for the extension of the scattering
formalism to the description of other transport properties such as shot noise
or thermoelectric coefficients. This section is based on Refs. [149, 150] and
we refer the reader to them for more details.
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We consider a mesoscopic sample connected to two reservoirs (terminals,
probes), to be referred to as “left” (L) and “right” (R). It is assumed that
the reservoirs are so large that they can be characterized by a temperature
17, r and a chemical potential pr, r; the distribution functions of electrons
in the reservoirs, defined via these parameters, are then Fermi distribution
functions

folE) = [exp[(E — po)/ksTs] +1]7, a=L,R (4.45)

(see Fig. 4.9). Far from the sample, we can assume that transverse (across
the leads) and longitudinal (along the leads) motion of electrons are sepa-
rable. In the longitudinal (from left to right) direction the system is open,
and is characterized by the continuous wave vector k;. It is advantageous
to separate incoming (to the sample) and outgoing states, and to introduce
the longitudinal energy E; = thlQ /2m as a quantum number. Transverse
motion is quantized and described by the discrete index n (corresponding
to transverse energies Ey, g.,, which can be different for the left and right
leads). These states are in the following referred to as transverse (quan-
tum) channels. We write thus F = E,, + Ej. Since E; needs to be positive,
for a given total energy F only a finite number of channels exists. The
number of incoming channels is denoted Ny, r(E) in the left and right lead,
respectively.

ay, aR
L% J%
TL sample TR
b, R

Fig. 4.9 Two-terminal scattering problem for the case of one transverse channel.

We now introduce creation and annihilation operators of electrons in
the scattering states.* In principle, we could have used the operators which
refer to particles in the states described by the quantum numbers n, k;.
However, the scattering matrix relates current amplitudes and not wave
function amplitudes. Thus, we introduce operators dTLn(E) and ar,(F)
which create and annihilate electrons with total energy E in the transverse

4The second quantization language will be used here at a very simple level. A discussion
of this formalism is included in Appendix A and it will be widely used in the following
chapters.
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channel n in the left lead, which are incident upon the sample.® In the
same way, the creation bTLn(E) and annihilation by, (F) operators describe
electrons in the outgoing states. They obey anti-commutation relations

Al (B (B) + ap (E')al, (B) = b d(E — E)

&Ln(E)&Ln’ (El) + &Ln’(E/)dLn(E) =0

A (Bl (B') + af (E')al, () = 0. (4.46)
Similarly, we introduce creation and annihilation operators d%n(E) and
aprn(FE) for incoming states and b%n(E) and br, (F) for outgoing states in

the right lead (Fig. 4.9).
The operators a and b are related via the scattering matrix .S,

bri \ ar1
brn Al an
INe [ g | @ENe | (4.47)
bri aRr1
brRNR 4RNg

The creation operators a' and bt obey a similar relation with the Hermitian
conjugated matrix St

The matrix S has dimensions (Nz + Ng) % (N + Ng). Its size, as well
as the matrix elements, depends on the total energy F. It has the block

(i
s (31, s

Here the square diagonal blocks 7 (size N, x Np) and #' (size Ng X Npg)

structure

describe electron reflection back to the left and right reservoirs, respectively.
The off-diagonal, rectangular blocks # (size Ng x Np) and # (size Np x
Np) are responsible for the electron transmission through the sample. The
properties of the matrix S are a straightforward generalization to a multi-
mode case of those discussed in the previous section. Thus for instance, the
flux conservation in the scattering process implies that S is quite generally
unitary. In the presence of time-reversal symmetry the scattering matrix is
also symmetric.

5We shall denote here the operators with a “hat” to distinguish them from the ampli-
tudes of the previous section.
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The current operator in the left lead (far from the sample) is expressed
in a standard way,

- he - 0 - 0 -~ .
Ip(z.t) = 5 /dn [\p}(r,t)&%(r,t) - (aﬁlz(r,t)) \pL(r,t)] :
(4.49)
where the field operators ¥ and Ut are defined as
By (r,t) = /dEe—iEt/h NLZ(E) Xn(rL) {dL ¢ikinz 4 o G_ikL"Z}
9 - 1/2 n n
oyt (2mhvr, (E))Y
(4.50)
and
vl (r,t) = /dEeiEt/h NLZ(E) XTn(TL) [&T e~ ikrnz 4 pt eikL“z]
o 2 @rhora ()72 Mn £
(4.51)

Here r; is the transverse coordinate(s) and z is the coordinate along the
leads (measured from left to right), Y% are the transverse wave functions,
and we have introduced the wave vector, kr, = A~ [2m(E — E’Ln)]l/2
(the summation only includes channels with real k1, ), and the velocity of
carriers v, (E) = hkr,/m in the n-th transverse channel.

After some algebra, the expression for the current can be cast into the
form®

In(t) = %Z / dEdE' ¢i(B-Et/h [@TL”(E)ELL”(E') - BTLH(E)BM(E’)} .

(4.52)
Using Eq. (4.47) we can now express the current in terms of the @ and af
operators alone,

7 _ € ! i(E—E")t/h At mn(r. I\ A /
IL(t) = hzﬁ:;/dEdEe b (E)ATE (L E, E)agn (E').
(4.53)
Here the indices o and ( label the reservoirs and may assume values L or

R. The matrix A is defined as
ML B E') = 6mnbardsr — Y S} oo (B)SLamn(E'), (4.54)
k

and Sra:mk(E) is the element of the scattering matrix relating BLm(E) to
aor(E). Note that Eq. (4.53) is independent of the coordinate z along the
lead.

6Here, we have used the fact that the velocities vy, (E) vary with energy quite slowly,
typically on the scale of the Fermi energy, and neglected their energy dependence.
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Let us now derive the average current from Eq. (4.53). For a system at
thermal equilibrium the quantum statistical average of the product of an
electron creation operator and annihilation operator of a Fermi gas is

(@l (B)apn(E')) = Sapdmnd(E — E') folE). (4.55)

Using Eq. (4.53) and Eq. (4.55) and taking into account the unitarity of
the scattering matrix S, we obtain

r=in) =5 [ aB n[ED)] uE) - faB)]. (150)

—00
Here the matrix ¢ is the off-diagonal block of the scattering matrix, t,,, =

SRrLymn- In the zero-temperature limit and for a small applied voltage
Eq. (4.56) gives a conductance

G = e—hQTr [#1(Ep)t(Er)], (4.57)

where Ey is the Fermi energy. Eq. (4.57) establishes the relation between
the scattering matrix evaluated at the Fermi energy and the conductance.
It is a basis invariant expression. The matrix t'¢ can be diagonalized;
it has a real set of eigenvalues (transmission coefficients) T,,(E) (not to be
confused with temperature), each of them assumes a value between zero and
one. The corresponding eigenfunctions will be referred to as eigenchannels
or conduction channels. In this natural basis we have instead of Eq. (4.56)

e oo
1=y / dE T, (E) [f1(E) — fr(E)]. (4.58)
and thus for the conductance

G=— > T, (4.59)

Eq. (4.59) is known as a multi-channel generalization of Landauer formula.

Notice also that in the last formulas there is a difference of a factor 2 with
respect to Eq. (4.11). The reason is that in the discussion above we have
not assumed spin degeneracy.

For a constriction of only one atom in cross section one can estimate
the number of conductance channels as N ~ (kpR/2)?, which is between
1 and 3 for most metals. We shall see that the actual number of channels
is determined by the valence orbital structure of the atoms. In the case of
molecular junctions, it turns out that, apart from a few notable exceptions,
the conductance is dominated by a single conduction channel.
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(b) ky
Gate voltage )
o} KF
/ N\
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Fig. 4.10 (a) Schematic representation of a point contact defined in a two-dimensional
electron gas (2DEG) by means of a split gate on top of the heterostructure. (b) Allowed
states in the point contact constriction, which correspond to quantized values for ky =
+nm /W, and continuous values for k;. The formation of these 1D subbands gives rise
of a quantized conductance.

Let us emphasize that we have focused our discussion on a two-
terminal configuration. The scattering approach was extended by Biittiker
to describe the electronic transport in multi-terminal situations and this
formalism (generally referred to as Landauer-Biittiker’s formalism) has
been widely used in the interpretation of mesoscopic experiments. We
shall not discuss this generalization here and we refer the reader to
Refs. [50, 149, 150, 171] for more details about this formalism.

4.6.1 Conductance quantization in 2DEG:
Landauer formula at work

As a simple illustration of the use of Landauer formula, we shall now briefly
discuss the conductance quantization in quantum point contacts defined in
semiconductor hetero-structures (for a detailed discussion of this topic, see
Refs. [151, 152]). It is well-known that in a semiconductor heterostructure
like GaAs-AlGaAs one can confine the electrons in the two-dimensional
interface between the two materials. Additionally, one can define electro-
statically a point contact by means of a split gate on top of the heterostruc-
ture. This is schematically represented in Fig. 4.10(a). In this way one can
define short and narrows constrictions in the two-dimensional electron gas
(2DEG), of variable width 0 < W < 250 nm comparable to the Fermi
wavelength \p =~ 40 nm and much shorter than the mean free path [ ~ 10
pam.

Van Wees et al. [153] and Wharam et al. [154] independently discov-
ered a sequence of steps in the conductance of such a point contact as its
width was varied by means of the voltage on the split gate (see Fig. 4.11).
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-
= |

Conductance (2e2/ h)

Gate Voltage (V)

Fig. 4.11 Point contact conductance as a function of gate voltage at 0.6 K, demonstrat-
ing the conductance quantization in units of 2e2/h. The constriction width increases
with increasing voltage on the gate (see inset). Reprinted with permission from [153].
Copyright 1988 by the American Physical Society.

The steps are near integer multiples of 2e2/h, after correction for a gate-
voltage-independent series resistance from the wide 2DEG regions. This
phenomenon is referred to as conductance quantization.

An elementary explanation of this effect relies on two facts: (i) the
2DEGs are ballistic systems (at least along the constriction) and the only
scattering takes place against the potential walls defined by the split gates
and (ii) the momentum of the electron is quantized in the transverse direc-
tion giving rise to 1D subbands. Since every subband that contributes to
the transport (or conduction channel) has a perfect transparency and the
number of them is obviously an integer, it follows from the two-terminal
Landauer formula that the low temperature conductance G is quantized,

G = (2¢*/h)N, (4.60)

as observed experimentally. Here, NV is the total number of open conduc-
tion channels and the prefactor 2 accounts for the spin degeneracy. This
number can be simply calculated assuming a square-well lateral confining
potential of width W. In the constriction, the electron momentum along
the transport direction (x-direction) can take any value, while the trans-
verse momentum k, is quantized and can only take the following values:
ky = nw /W withn = 1,2, ..., N, see Fig. 4.10(b). Since the current is only
carried by those electrons at the Fermi energy (or with momentum equal
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to the Fermi momentum kp), the number of subbands is simply given by
N = Int[kpW/mx]|. Therefore, a new subband is made available for transport
every time the width of the gate is increased by approximately half of the
Fermi wavelength. This explains the stair-like behavior seen in Fig. 4.11.

A detailed explanation of the necessary conditions to observe the con-
ductance quantization requires a more rigorous treatment of the confine-
ment potential and the corresponding analysis of the mode coupling at the
entrance and exit of the constriction. A more realistic model is discussed
in Exercise 4.9.

4.7 Shot noise

Shot noise is another important quantity for characterizing the transport
properties of nanoscale systems [150, 155]. It refers to the time-dependent
current fluctuations due to the discreteness of the electron charge. In a
mesoscopic conductor these fluctuations have a quantum origin, arising
from the quantum mechanical probability of electrons being transmitted or
reflected from the sample. In contrast to thermal noise, shot noise only
appears in the presence of transport, i.e. in a non-equilibrium situation.

Shot noise measurements provide information on temporal correlations
between the electrons. In a tunnel junction, where the electrons are trans-
mitted randomly and correlation effects can be neglected, the transfer of
carriers of charge ¢ is described by Poisson statistics and the amplitude of
the current fluctuations is 2¢/. In nanoscale conductors correlations may
suppress the shot noise below this value. Even when electron-electron inter-
actions can be neglected the Pauli principle provides a source for electron
correlations.

The relation between shot noise and the transmitted charge unit ¢ has
allowed the detection of the carrier charge in exotic situations such as the
fractional quantum Hall regime [156, 157], where the charge can be frac-
tional and depends on the filling factor. It has also allowed to show that
the sub-gap transport in superconducting atomic contacts takes place in
big shots of multiple ne charges associated with multiple Andreev reflec-
tion processes [158, 159, 98].

The interest in shot noise in molecular electronics lies in the fact that
this quantity depends on the transmission coefficients in a nonlinear man-
ner. Thus, the shot noise can provide valuable information, not contained
in the conductance, about the number of conduction channels and their
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Fig. 4.12 In a quantum point contact with bias voltage, V', the transmission probability,
T}, determines the distribution function, n(E), of a transmitted state as a function of its
energy, E. In the right reservoir, states with energy lower than the Fermi energy are all
occupied, while right-moving states with higher energy can only be coming from the left
reservoir, and therefore their average occupation is equal to the transmission probability,
Ty. This argument applies to every individual conduction channel.

transmission coefficients. This will be discussed in detail in Chapter 19.

Qualitatively, the shot noise in nanocontacts can be understood from
the diagram in Fig. 4.12. Let us consider the right moving states in this
contact, which have been transmitted through the junction with an excess
energy between 0 and eV. Their average occupation number, 7, is given
by the transmission probability 7;,. For the fluctuations in this number we
find

An2 =n2 -7 =T,(1 - T,), (4.61)

where in the last step we used the fact that n2 = 7, since for fermions n
is either zero or one. Hence, the fluctuations in the current are suppressed
both for 7,, = 1 and for T,, = 0. According to Eq. (4.61) the fluctuations
will be maximal when the electrons have a probability of one half to be
transmitted. The shot noise is thus a non-linear function of the transmission
coefficients, as we anticipated above.

We shall now derive in a rigorous manner the main results concerning
shot noise in a two-terminal device within the scattering formalism. For
this purpose, we follow again Ref. [150]. Since are concerned with the
fluctuations of the current away from its average value, we then introduce
the operators AI(t) = I(t) — (I), where I is the current operator evaluated
in a given reservoir, let us say, the left one. We define the correlation
function P(t —t') of the current in a given contact as

Pt—t) = % (ARAL() + AL)AL(D)) (4.62)
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Note that in the absence of time-dependent external fields, as we assume
here, the correlation function must be function of only ¢ — t’. Its Fourier
transform,

276 (w + w')P(w) = <Af(w)Af(w’) + Af(w’)Af(w)> , (4.63)

is sometimes referred to as noise power.

To find the noise power we need the quantum statistical expectation
value of products of four operators a. For a Fermi gas at equilibrium this
expectation value is

(al 4 (BDasi(E2)al . (Bs)asn (1)) -

(al (B asu(E2) ) (@), (Ba)asn (Ex))
= 60503 OknOmi6(Ey — E4)0(Ey — E3) fa(Ey) [L — f5(Es)]. (4.64)

Here f,(F) is the corresponding Fermi distribution. Now, making use of
the current operator of Eq. (4.53) and of the expectation value of Eq. (4.64),
we arrive at the following expression for the noise power

= ZZ/dE "(L; B, E + hw) A" (Ly E + hw, E)

¥ mn
X ASHE) L= f6(E+ hw)] + [1 = [ (E)] fs(E 4+ hw)} . (4.65)

Note that with respect to frequency, it has the symmetry properties P(w) =
P(—w). In the rest of this discussion, we shall only be interested in the
zero-frequency noise.” For the noise power at w = 0 we obtain

P=P(0 hZZ/dE "(L; E,E)Ay"(L; E,E)  (4.66)

¥6 mn
X {H(E)[1 = fs(B)] +[1 = [ (E)] f5(E)}.
Eq. (4.66) can now be used to predict the low frequency noise properties of
arbitrary multi-channel phase-coherent conductors. But before presenting
the general result, let us first discuss two limiting cases of special interest:
Equilibrium noise. If the system is in thermal equilibrium at tem-
perature T', the distribution functions in both reservoirs coincide and are
equal to f(E). Using the property f(1— f) = —kgT0f/OFE and employing
the unitarity of the scattering matrix, one can arrive at the following result

P = 4kpTG, (4.67)

7Zero-frequency noise actually means that the frequency is small in comparison with
the relevant frequency scales of the problem, but large enough to neglect the 1/f noise
that is present in almost any system.
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where G is the linear conductance given by

G = %/_(: dE (—S—é) Tr [(1(B)H(E)] . (4.68)

This is the thermal, or Nyquist-Johnson noise. In the approach discussed
here it is a consequence of the thermal fluctuations of occupation numbers
in the reservoirs. This is the manifestation of the fluctuation-dissipation
theorem: equilibrium fluctuations are proportional to the corresponding
generalized susceptibility, in this case to the conductance.

Zero-temperature shot noise. In the zero-temperature limit the
Fermi distribution in each reservoir is a step function f,(E) = 0(ue — E).
Utilizing the representation of the scattering matrix (4.48), and taking into
account that the unitarity of the matrix S implies 717 + ¢t = 1, after some
algebra we can rewrite Eq. (4.66) as

2e? 4ty
P = TTr (PT7t't) eV, (4.69)

where the scattering matrix elements are evaluated at the Fermi level. Like
the expression of the conductance, Eq. (4.57), we can express this result in
the basis of eigenchannels with the help of the transmission probabilities
T,, and reflection probabilities R, =1 —T,,

2e3|V|
P==— ;Tnu—Tn). (4.70)

We see that the non-equilibrium (shot) noise is not simply determined by
the conductance of the sample. Instead, it is determined by a sum of prod-
ucts of transmission and reflection probabilities of the conduction channels.
Only in the limit of low-transparency 7;, < 1 in all conduction channels is
the shot noise given by the Poisson value, discussed by Schottky;,

2e3|V|
P== ;Tn = 2e(I). (4.71)

It is clear that zero-temperature shot noise is always suppressed in com-
parison with the Poisson value. In particular, neither closed (T}, = 0) nor
open (T, = 1) channels contribute to shot noise; the maximal contribution
comes from channels with T,, = 1/2. The suppression below the Poissonian
limit given by Eq. (4.71) was one of the aspects of noise in mesoscopic sys-
tems which triggered many of the subsequent theoretical and experimental
works. A convenient measure of sub-Poissonian shot noise is the Fano fac-
tor F', which is the ratio of the actual shot noise and the Poisson noise that
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would be measured if the system produced noise due to single independent
electrons,
P
F =
2e(I)

. (4.72)

For energy-independent transmission and/or in the linear regime the Fano
factor is

S, TL(1-T,)
F = Zn T .

The Fano factor assumes values between 0 (all channels are transparent)

(4.73)

and 1 (Poissonian noise). In particular, for one channel it becomes (1 —T').
The general result for arbitrary temperature and voltage for the noise
power of the current fluctuations in a two-terminal conductor is

P = 2_52/_0; dE { T, (E)[fr(1 = fr) + fr(1 — fr)] +

Tu(E) L= Tu(E) (fr — fr)’} . (474)

Here the first two terms are the equilibrium noise contributions, and the
third term is the non-equilibrium or shot noise contribution to the power
spectrum. Note that this term is second order in the distribution function.
At high energies, in the range where the Fermi distribution function is well
approximated by a Maxwell-Boltzmann distribution, it is negligible com-
pared to the equilibrium noise described by the first two terms. According
to Eq. (4.74) the shot noise term enhances the noise power compared to
the equilibrium noise.

In the practically important case, when the scale of the energy depen-
dence of transmission coefficients T),(F) is much larger than both the tem-
perature and applied voltage, these quantities in Eq. (4.74) may be replaced
by their values taken at the Fermi energy. We obtain then

2¢?

B 5 eV
P == ZkBTzn:Tn + €V coth <2kBT) ;Tn (1-T,)

where V is again the voltage applied between the left and right reservoirs.

. (4.75)

The full noise is a complicated function of temperature and applied voltage
rather than a simple superposition of equilibrium and shot noise. For low
voltages eV < kgT one recovers the result of pure thermal noise, i.e. P =
4kpTG. Eq. (4.75) is the starting point for the analysis of experimental
results on noise in atomic and molecular junctions, see section 19.1.
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4.8 Thermal transport and thermoelectric phenomena

The scattering formalism is by no means restricted to the description of
the electronic transport. It has also been extended to describe thermal
transport and thermoelectric cross-effects [160-163] and in what follows
we present a discussion of these transport properties within the scattering
approach.®

Let us consider a generic two-terminal device like in the previous sec-
tions. In equilibrium, the electron reservoirs are at chemical potential u
and temperature T'. In the regime of linear response, the current I and
heat flow @) are related to the chemical potential difference Ay and the
temperature difference AT by the constitutive equations

<éz> B (J\iflg) <AA%€)- (4.76)

The thermoelectric coefficients L and M are related by an Onsager relation,
which in the absence of a magnetic field is

M = —LT. (4.77)

Equation (4.76) is often re-expressed with the current I rather than the
electrochemical potential Ay as an independent variable,

(Age> N (ﬁ —Sm) <AIT> (4.78)

The resistance R is the reciprocal of the isothermal conductance G. The
thermopower S is defined as

S = (A“/€>I:0 ~- _L/G. (4.79)

AT
The Peltier coefficient 1I, defined as

= (%)AT:O — M/G = ST, (4.80)

is proportional to the thermopower S in view of the Onsager relation (4.77).
Finally, the thermal conductance « is defined as

(L) ok (+EE) am

In order to compute all the thermoelectric coefficients, we still need to

determine the heat current, which in the spirit of the scattering formalism

81t is worth stressing that we shall only consider the contribution of the electrons to
the thermal transport properties. In general, phonons can also play an important role.
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will be expressed in terms of the transmission and reflections coefficients
of the system. Let us assume that the left electrode has a temperature 77,
while the right one has a temperature T,. Following Ref. [160], the total
entropy current moving to the right on the left lead will be given by

g == [lfmp+0-poma-plae. @8

where f1 = f(F, p1,T1) denotes the Fermi function on the left electrode.
On the other hand, the entropy current going to the left on the same lead
is given by

kB

Jis = — / [(R11f1 + Thafo) In(Ra1 f1 + Thaf2)+

(1 — R11f1 — T12f2) 111(1 — R11f1 — Tlgfg)] dE, (483)

where Ti, = Tr{fo} is the total transmission of the contact and Ry =
Tr{#7#} is the corresponding reflection coefficient.

By subtracting (4.82) and (4.83) the following expression for the heat
current is obtained [160]

@ =Ths = [TuB)E-n)(h - £IdE, (480

where T" and p are the average temperature and chemical potential.
Therefore, the thermoelectric coefficients are given in the scattering for-
malism by [160, 162]

2¢e? a5
- 262 ]CB 8f ,u

K 2¢ (kg of E—ul?
T‘T(?)/ dE&ETm(E)lkBTl

These integrals are convolutions of T12(FE), which characterizes the conduc-
tor, and a kernel of the form €™df /de, m = 0,1,2, with e = (F — p)/kpT,
and f the Fermi function f(e) = [exp(e) +1]~!. Both df /de and €df /de are
symmetric functions of €, which is why the conductance, GG, and the thermal
conductances K and k are determined to first order by T12(u). (The term

(4.87)

9Notice that the expression in the square bracket is the entropy density of noninteracting
electrons, distributed according to an arbitrary non-equilibrium distribution function fi,
see pag. 54 of Ref. [164].
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within brackets in equation (4.81) is usually small.) In contrast, edf /de is
an antisymmetric function of €, so that the thermoelectric cross-coefficients
L, S, M, and II are determined mainly by the derivative dT12(F)/dE at
E = p. This is substantiated by a Sommerfeld expansion of the integrals
in Eqgs. (4.85)-(4.87), valid for a smooth function T12(FE) to lowest order in
kgT/p [162]

2e?
G~ TTH(M) (4.88)
2e? dThs(E
L~ =" LoeT (%) (4.89)
E=pu
2¢?
K=~ —TL()TT:[Q(,UJ), (490)

with Ly = (kp/e)?w?/3 the Lorentz number. In this approximation K =
—LoTG, so that for S? < Lg one finds from Eq. (4.81) the Wiedemann-
Franz relation: x ~ LyT'G.

Thermoelectrical effects have been experimentally studied in detail in
2DEG quantum point contacts by van Houten et al. [163]. In the context
of atomic and molecular junctions, special attention has been paid to the
thermopower. As we shall discuss in section 19.3, the thermopower con-
tains valuable information about these systems that is not contained in the
electrical conductance.

4.9 Limitations of the scattering approach

The scattering formalism has been very successful explaining many basic
transport phenomena in a great variety of nanostructures. It has also been
extended to other situations of interest for the purpose of this book, such
as e.g. photon-assisted transport [165]. For space reasons we have to end
here our discussion of this formalism, and for more details we recommend
the the reviews of Refs. [150, 151, 166-168], the didactic book of S. Datta
[50] and the book on mesoscopic physics of Y. Imry [169].

In spite of its great success, the scattering approach is far from being a
complete theory of quantum transport. In this sense, it is important to be
aware of its limitations. Among them we want to emphasize two of special
interest for the scope of this book:

(i) The scattering approach gives no hints on how to compute the trans-
mission or, more generally, the scattering matrix. In particular, it does not
tell us how to determine the actual transmission of an atomic contact or
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a molecular circuit. In this sense, one might think that this formalism
has merely replaced a problem by another. This would be, of course, un-
fair. The scattering approach can be combined with simple models, as we
showed in section 4.4, or with more sophisticated techniques like random
matrix theory [170] to predict the transport properties of a great variety
of systems such as diffusive wires, chaotic cavities, superconducting nanos-
tructures, resonant tunneling systems, tunnel junctions, etc.

(ii) The scattering picture is an one-electron theory which is valid only
as long as inelastic scattering processes can be neglected. In this formalism
one assumes that the electron propagation is a fully quantum coherent
process over the entire sample. According to normal Fermi-liquid theory,
such a description would be strictly valid at zero temperature and only
for electrons at the Fermi energy. At finite bias the coherent propagation
may be limited by inelastic scattering processes due to electron-phonon
and electron-electron collisions. The theoretical description of transport
in situations where inelastic interactions play an important role requires
more sophisticated methods like the Green’s function techniques that will
be described in the next chapters.

Let us mention that there is a phenomenological way of describing the
effect of inelastic or phase-breaking mechanisms within the scattering ap-
proach, which is due to Biittiker [171]. In this description the inelastic scat-
tering events are simulated by the addition of voltage probes distributed
over the sample. The chemical potential on these probes is fixed by im-
posing the condition of no net current flow through them. Thus, although
the presence of the probes does not change the total current through the
sample, they introduce a randomization of the phase which tends to destroy
phase coherence. The current in such a structure will contain a coherent
component, corresponding to those electrons which go directly from one
lead to the other, and an inelastic component, corresponding to those elec-
trons which enter into at least one of the voltage probes in their travel
between the leads.

4.10 Exercises

4.1 Transmission through a potential step: Show that the transmission
probability as a function of energy, F, for the potential step shown in Fig. 4.13
is given by

. 4k1k2/(k1 +k2)2 if B> Vp
T(E)_{ 0 if &< Vo
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where k1 = \/2mE/h2, ks = \/2m(E — Vy)/h? and m is the electron mass.

V(x) 4
v

0

0 X

Fig. 4.13 Potential step of height V4.

4.2 Penetration of a rectangular barrier: Show that the probability for an
electron to cross the rectangular barrier shown in Fig. 4.3 for energies £ > Vj is
given by Eq. (4.16).

4.3 A rectangular barrier under an applied voltage: Consider the rectan-
gular barrier under an applied bias shown in Fig. 4.5(a). Show that the energy
and voltage dependence of the transmission for £ < Vj is given by

Aker ko * ks
(k’lkg — k%) Sinh(k?QL) + Qikg(k’l =+ k’3) COSh(kzL) k1 ’

T(E, V)= 5

where k1 = V2mE/h, ko = \/2m(Vo — E)/h and ks = /2m(E + eV) /h.

Use this result and the Landauer formula [Eq. (4.11)] to compute the zero-
temperature current-voltage characteristics for a barrier of height Vy = 4 eV and
width L =1 nm.

4.4 Penetration of an arbitrary potential barrier: Let us consider the
potential barrier shown in Fig 4.14. Here, in a region = < a (region I), V(x) =
Vo = const.; when = > a, V(x) is a positive and smooth function decreasing
monotonically from the positive value V, = V(a) to V(c0) = 0.

V(x)
\Y

V,

0

Fig. 4.14 Arbitrary potential barrier.

Use the WKB approximation to show that the transmission coefficient
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through that barrier is given by

VU BE-T) [PV @) ]
T(E)=14 Vo e ", where 7= /a o dz.

Hint: The WKB approximation is nicely explained, e.g., in Ref. [146].

4.5 Resonant tunneling in a finite square well: Analyze the transmission
coefficient in the case of the square well shown in Fig 4.15. In particular, show
that in the energy range E > V3 this coefficient is given by

T(E) = Ak1 ksk3
 Kk2(k1 + k3)2 cos?(kaL) + (k2 + k1ks)? sin?(koL)’

where L = a — b and k; is the electron momentum in the region ¢ =I,I1,III.

‘V(X) A
ar

on
<

a
Fig. 4.15 Square well.

Show also that the transmission coefficient above exhibits resonances as a
function of energy. In particular, calculate the position of those resonances and
show that the transmission maxima are given by 4k1ks/(k1 + k3)®.

4.6 Transmission through a delta function barrier: Let us model a one-
dimensional conductor with the following Hamiltonian

oo
H= _%ﬁ + ‘/05(56),

where V) is the strength of the delta potential that acts at x = 0.

(a) Demonstrate that the boundary conditions for the scattering states ¥ (x),
k being the electron momentum, are: (i) continuity at z = 0 and (ii) ¥ (x =
0") —Yp(z = 07) = (2mVo/h)Y(z = 0), where the prime symbol indicates
derivative with respect to x.

(b) Use the previous result to show that the transmission probability through
this delta potential can be expressed as: T' = 1/(1 4+ Z?), where Z = mVy/(h*k).

4.7 Scattering matrix:
(a) Show that in the presence of a magnetic field the scattering matrix fulfills
the property of Eq. (4.40).
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(b) Derive the relations of Eq. (4.43).

4.8 Resonant tunneling through a symmetric double barrier: Consider
a symmetric double barrier system formed by combining two square barriers (see
Exercise 4.2) of height V and width L that are separated a distance d.

(a) Compute the total transmission through this system for energies smaller
than V5. Hint: Use the idea of the combination of scattering matrices, see
Eq. (4.44) in section 4.5.2, and the results of Exercise 4.2.

(b) As in the case of the potential well of Exercise 4.5, the transmission in
this double barrier system exhibits pronounced resonances. Find the position of
those resonances and show that, in the limit in which they are well separated,
the transmission around one of those resonances can be written as

4I''r

TE) = FaZ + ML TE

where € is the position of the resonance and I'r r are the scattering rates as-
sociated to the left and right potential barriers. Find an expression for these
rates in terms of the transmissions of the barriers. Hints: (i) The resonances are
well separated when the transmissions 77 and T are small (R, R ~ 1). (ii)
The round-trip phase shift that appears in Eq. (4.44) is 6 = 2kd, where k is the
electron momentum in the region between the two barriers.

4.9 Conductance quantization in a 2DEG: One of the most successful ap-
plications of the Landauer formula is the explanation of the conductance quan-
tization that takes place in split-gate constrictions (or quantum-point contacts)
in a two-dimensional electron gas (2DEG). A useful model to study the occur-
rence of conductance steps is the so-called saddle point model used by Biittiker in
Ref. [172]. In this model it is assumed that near the bottleneck of the constriction
the electrostatic potential can be expressed as

1 1
Viz,y) = Vo — §mwix2 + §mw§y2. (4.91)

Here, V4 is the electrostatic potential at the saddle, w, characterizes the curvature
of the potential barrier in the constriction and w, the lateral confinement. Show
that for this potential the transmission probabilities are given by

1
exp[r(E— Vo — (n+ 1/2)wy)/wy] +1°

T (E) =

Using this expression in combination with the Landauer formula, find the criteria
for the observation of well-defined conductance steps at low temperatures.

4.10 Shot noise and thermopower in a quantum point contact: Use the
saddle point model of the previous exercise to study the shot noise [155] and the
thermopower [161, 163] in a quantum point contact as a function of the Fermi
energy (or gate voltage).
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Chapter 5

Introduction to Green’s function
techniques for systems in equilibrium

The discussion of the scattering formalism in the previous chapter has left
two basic questions open: (i) How to calculate the elastic transmission
of real systems such as atomic and molecular junctions? and (ii) how to
generalize Landauer formula to take into account correlation effects and
inelastic mechanisms? Indeed, both questions can be answered, at least
to a large extent, with the help of Green’s function techniques. For this
reason, we initiate here a series of three chapters devoted to this subject.

We are aware of the fact that at this point part of the readership will be
certainly tempted to jump to the next part of the book. The words Green’s
functions cause in many people an immediate rejection because they asso-
ciate them to some obscure theoretical techniques reserved to specialists.
We believe that this judgment is a bit unfair. The degree of difficulty of
the Green’s function techniques depends primarily on the type of prob-
lems addressed. Thus for instance, we shall show that what is required to
answer the first question posed above reduces to a standard problem of lin-
ear algebra that should be accessible to any student with a background in
quantum mechanics. The answer to the second question requires however
more elaborate methods, which will also be presented in this book. With
this distinction in mind, we shall guide you through the next three chapters
indicating the type of problems that we have in mind and we shall warn
you about the possible difficulties.

In our discussion on the Green’s function techniques we shall start in
this chapter by introducing the subject concentrating ourselves on the case
of electronic systems in equilibrium. This chapter is meant to give a first
insight into what Green’s functions in quantum mechanics are, what kind of
physical information they contain and how they can be calculated in some
simple situations. Having in mind the first question above, we shall focus

111
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on the analysis of noninteracting systems. Then, the next chapter will deal
with the diagrammatic theory, which provides a systematic perturbative
approach to compute the Green’s functions of many-body systems where
correlations and inelastic mechanisms in general play a fundamental role.
Finally, since our final goal is the analysis of the transport properties of
atomic-scale junctions, we shall present in Chapter 7 the Keldysh formalism
that allows us to compute the Green’s functions of nonequilibrium systems.
Then, at the end of that chapter, we shall apply this formalism to the
calculation of the transmission in some illustrative examples.

This chapter is organized as follows. First, we shall remind the reader
of the basics of the Schrodinger and Heisenberg representations of quantum
mechanics. Then, we shall introduce the retarded and advanced Green’s
functions in energy space for a noninteracting electron system and show how
they can be computed in certain simple examples. We shall then define
the general (valid also for interacting systems) time-dependent retarded,
advanced and causal Green’s functions and analyze their main analytical
properties, their relation with the observables of interest and how they can
be computed, in principle, with the so-called equation-of-motion method.

One last comment before we get started. We shall constantly make
use of the second quantization formalism in our discussion of the Green’s
functions techniques. So, if you are not very familiar with this formalism,
we strongly recommend you to read Appendix A.

5.1 The Schrodinger and Heisenberg pictures

Let us start by reviewing the two most standard pictures or representations
in quantum mechanics. The usual way to introduce quantum mechanics
makes use of the so-called Schrodinger picture, which is based on the time-
dependent Schrodinger equation

ih%‘l’g(t) = H\Ifs(t), (5.1)
where H is the time-independent Hamiltonian of the system and Wg(t) is
the time-dependent wave function. Let us stress that in what follows, unless
said otherwise, we shall set A = 1 to simplify the different formulas and the
operators will be written in boldface.

The previous equation has the formal solution

Us(t) = e~ HE—t0) gy 1), (5.2)
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where t( is an arbitrary initial time. Here, the exponential of any operator
A is defined, as usual, by means of its Taylor series

=1

exp(A) = HATL' (5.3)

n=0
From this result, it is obvious that the operator exp|—iH(t — tg)] is the
time-evolution operator in the Schrodinger picture, in the sense that by
acting on the wave function at a initial time, ¢, this operator transforms
it into the wave function at the time t. If we take t5 = 0, we have

Ug(t) = e FPg(0). (5.4)

For the moment, since we are only interested in equilibrium situations,
we shall assume that the operators describing the observables in this rep-
resentation, Og, do not have any explicit time dependence.

Another typical representation in quantum mechanics is the so-called
Heisenberg picture, which can be defined from the Schrédinger one by means
of the following unitary transformation

Ty (t) = e Wg(t) = Ug(0)
Ou(t) = ™M Oge Y, (5.5)

Thus, in Heisenberg picture the time dependence has been transferred
from the wave functions to the operators. The wave function in this rep-
resentation is stationary and equal to the wave function in Schrodinger
picture at time zero, i.e. Uy = Wg(0), whereas the operators, Oy(t), do
depend explictly on time. Their time evolution can be obtained by taking
the derivative with respect to time in the previous equation

i%OH =[Oy, H], (5.6)
which is the equation of motion of an operator in this representation (see
Exercise 5.1).

Both representations are equivalent in the sense that the expectation
values are the same, irrespective of the picture used. This is a simple
consequence of the fact that both representations are related by means of
a unitary transformation.

5.2 Green’s functions of a noninteracting electron system

Green’s functions are commonly used in traditional contexts such as clas-
sical mechanics and electromagnetism. In those cases, Green’s functions
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are defined as the inverse of differential operators. One can indeed pro-
ceed in a similar way with the Schrédinger equation, which is a second
order differential equation. As an illustration, let us consider the prob-
lem of an electron in an one-dimensional system, which is described by the
Schrodinger equation

H(x)¥(z) = EV(z). (5.7)
Now, we define the electron Green’s function (or propagator) as
[E — H(2)] G(z,2") = é(z — '), (5.8)
where
1 92

V(z) being an external potential acting on the electron. Notice that the
Green’s function is a complex function that depends both on the spatial
coordinates and on the energy, FE.

In the case of a free electron, V' (z) = V = constant, the Green’s function
can be obtained exactly (see Exercise 5.2). Indeed, one can show that a
solution is given by

G(x — 2/ F) = —%eik|x_””/|, (5.10)
where k = /2m(E —Vp), v = k/m and we have included the energy,
E, as an argument. As it will become clear later on, one can interpret the
Green’s function as the propagation amplitude of an electron. In this sense,
the previous expression corresponds to the propagation of a free electron
at energy F from the position z’ to the right (x — 2’ > 0) or to the left
(x — 2’ <0).

It is important to notice that there is another solution that corresponds
to the time-reserved solution as compared with the previous one:

G(x — 2’ F) = L emikle—a’], (5.11)
v

This simply reflects the fact that the Green’s function is not completely de-
termined until we specify the boundary conditions for its differential equa-
tion.

Eq. (5.10) corresponds to the so-called retarded Green’s function, G",
while Eq. (5.11) corresponds to the advanced Green’s function, G*. Al-
though the time does not appear explicitly in these functions, we shall show
later that one can relate G™ [Eq. (5.10)] with the propagation of an electron
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forwards in time, while G* [Eq. (5.11)] is the corresponding time-reversed
function (describing the electron propagation backwards in time).

An easy way to obtain the retarded/advanced function in the previous
problem is by introducing an infinitesimal imaginary part in the energy in
the expression defining G(z—x’). Thus, the substitution £ — E+in selects
the retarded Green’s function for the plus sign and the advanced one for
the minus sign. A rigorous definition of the retarded Green’s function for
this one-dimensional problem would then be

lim, o [E + in — H(z)| G" (x,2") = §(x — 2'), (5.12)

and a similar one for the advanced function.

This definition for the one-dimensional problem can be generalized to
any single-particle problem. If H is the Hamilton operator of the system,
we can define the retarded and advanced Green’s functions as

G™(E) = lim [(E+in)l—H] ", (5.13)

where we have written the equation as an operator identity in order to have
an expression that is independent of the representation. Here, 1 is the iden-
tity operator. It is possible to write the previous equation in an alternative
form in terms of the eigenfunctions and eigenvalues of H (H|v,,) = €,|1y,)):

G =Y % (5.14)

where from now on the limit lim,_, is implicitly assumed in all the ex-
pressions in which the parameter 7 appears. Are you able to show the
equivalence of Egs. (5.13) and (5.14)? If not, see hints in Exercise 5.3.
Eq. (5.14) shows that the Green’s functions (for a noninteracting case)
have poles precisely at the eigenenergies, €, of the system. This is the first
important piece of information contained in these functions.

From the previous equations, one can deduce a number of important
properties of the functions G™®. Let us discuss the most useful ones for our
purposes:

Property 1. The imaginary part of the Green’s functions is related to
the density of states of the system. To demonstrate this, let us remind that
the local density of states in a given position r can be written in terms of
the eigenstates of H as follows

p(r, B) =Y [ {x|vn)?6(E — €). (5.15)
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From Eq. (5.14) we can write

G (r,E) =) % (5.16)

and comparing these last two equations, one obtains
1
p(r, E) = F—Im {G"%(r,E)}. (5.17)
T
Here, we have used the relation

Eim =P <%) Find(E), (5.18)

where P denotes a Cauchy principal value.

If we use a discrete basis of atomic orbitals, we would have

1 T,a
pi(E) = F-Im {GL(E)} (5.19)
where ¢ indicates that the density of states has been projected onto the
atom (or site) i.
Property 2. The diagonal Green’s functions satisfy in any basis that
Im{GL,(FE)} <0 and Im{G%(E)} > 0. This is obvious from Eq. (5.14).
Property 3. The real and imaginary parts of G are related through
a Hilbert transformation:
> dE Im{G"*(E")}
Re{G"*(F)} =
clerm) =3P [

(5.20)

This is a consequence of the pole structure of Eq. (5.14) and it can be easily
shown with the help of Eq. (5.18). As a result of this relation, G™*(F) can
be written as

o o0 ,0 El

— 00

where we have defined the density operator p(E) = FIm{G"™*(E)} /7. This
way of writing the Green’s function in terms of the density of states is known
as spectral representation and, as we shall show below, it is also valid in the
case of interacting systems.

Property 4. An important consequence of the spectral representation
is the asymptotic form of the diagonal Green’s functions for £ — oo. As
pi(E) is a bounded function, one has

1
lim Gq-nﬂ(E) = E

1
E—oo

(5.22)
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This is a consequence of the fact that the energy integral of p;(FE) is equal
to 1, i.e.

(o] 1 [e.e]
/ dE pi(F) = q:—/ dE Im{G};"(E)} = 1. (5.23)
oo T J_ oo

Property 5. As one can easily see from Eq. (5.13), the following simple
relation between G" and G* holds:

G'(E) = [GYE)]". (5.24)

This means in practice that we only need to compute one of these two type
of functions.

Property 6. As a last issue, let us consider the case in which the
Hamiltonian H can be written as

H=H,+V, (5.25)

where Hy is the Hamiltonian of a problem for which the Green’s functions
are known, g™ and V is an arbitrary single-particle perturbation. We
want to express the Green’s functions of the full problem in terms of the
unperturbed Green’s functions. This can be easily done starting from the

definition of Eq. (5.13)
G (E)=[(E+in)l1—Hy—V] . (5.26)
Taking into account that for the unperturbed problem we have
g (E) = [(E+in)1 - Ho| ", (5.27)
it is easy to obtain the following relation (see Exercise 5.4)
G™(E) = g™ (E) + g™ (E)VG"“(E), (5.28)

The previous equation is known as Dyson’s equation and it can also be
derived in the interacting case, as we shall show in the next chapter. How-
ever, in the general case the operator V is replaced by a energy-dependent
operator, X(E), known as self-energy. Dyson’s equation is extremely useful
to compute the Green’s functions in different situations, as we shall illus-
trate in the next section. We shall also show that it is possible to have
a energy-dependent self-energy in single-particle problems when one deals
with a subspace of the full Hilbert space of the problem.
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5.3 Application to tight-binding Hamiltonians

In this section we shall apply what we have learned so far to the computa-
tion of the Green’s functions of several simple electronic systems described
in terms of tight-binding Hamiltonians.! Such Hamiltonians, as we shall
see in the next chapters, play a fundamental role in the field of molecular
electronics. A generic tight-binding Hamiltonian adopts the following form
in the language of second quantization (see Appendix A)

H = Z EiCIUCiU + Z tijczgcja- (529)
io i£J;0

Here, the indexes i and j run over of the sites (atoms) of the system and
o represents the electron spin (o =1,]). The different operators have the
following meaning. For instance, c;-ra is the operator that creates an elec-
tron in the site ¢ with spin o, while c;, annihilates such an electron. For
the sake of simplicity, we shall assume in this discussion that there is a
single relevant orbital per site. The parameters ¢; are the on-site energies,
while the hoppings t;; describe the coupling between the different sites (see
Appendix A for a precise definition of all these parameters).

Our goal is the calculation of the different Green’s functions G*(E) in
this local basis representation. In principle, we have three methods at our
disposal: (i) the definition of Eq. (5.13), (ii) the spectral representation of
Eq. (5.14) and (iii) Dyson’s equation, see Eq. (5.28). We shall illustrate the
use of these different approaches with the analysis of three basic examples
that will be frequently used in subsequent chapters.

5.3.1 Exzample 1: A hydrogen molecule

We describe a hydrogen molecule with the following two-sites tight-binding
Hamiltonian (see Fig. 5.1)

H=¢ Z(nlg + no, ) + tZ(chQU + cgacla). (5.30)

Here, n;, = c;racw, €o is the 1s-level of the hydrogen atoms and t is the
hopping connecting these two levels and it is assumed to be real. Our goal
is to compute the retarded /advanced diagonal Green’s function of site 1, i.e.

I The tight-binding approach is briefly described in Appendix A and it is explained in
detail in Chapter 9. Here, we shall use the term tight-binding to refer to models or
Hamiltonians where the electronic structure is described in terms a local (atomic-like)
basis. We shall not discuss here how the matrix elements of such a Hamiltonian are
actually computed, and we shall just use them as parameters.
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Fig. 5.1 (a) Model for the hydrogen molecule. We consider a single orbital per site
(atom) with energy €, and the coupling is described by a hopping t. (b) Level scheme
of the hydrogen molecule in which the two orbitals hybridize to form the bonding and
antibonding states with energies eg %+ |¢].

G711 (E) (since the problem has spin degeneracy, we omit the spin indexes
in the Green’s functions). For symmetry reasons, this Green’s function is
equal to Goy'(F). In order to compute this function, we shall employ the
three methods mentioned above:

Method 1: Direct definition. According to the definition of Eq. (5.13),
the matrix Green’s function can be simply calculated by inverting the
Hamiltonian of Eq. (5.30). In the basis of the atomic states localized in

the hydrogen atoms, {|1),|2)}, this Hamiltonian adopts the following ma-

H= (60 t), (5.31)

tEO

trix form

and therefore the matrix Green’s function is given by

. Ert —ey  —t
arem) = (70 L)

where E™* = E +1in, n being the infinitesimal imaginary part of the energy
appearing in the definition of Eq. (5.13). Thus, the element (1,1) that we
are looking for reads

E™% — ¢ B 1/2 n 1/2
(Ena _ 60)2 _ t2 - Era _ (EO + t) Era — (60 _ t) .

! (5.32)

Gy (B) = (5.33)

One can show that this expression fulfills the different properties of
a Green’s function discussed in the previous section. Thus for instance,
notice that Eq. (5.33) has precisely the form of the spectral representation
of Eq. (5.14). The poles in this case are nothing else but the energies e =
€o £ t of the bonding and antibonding orbitals of the hydrogen molecule,?

2The hooping t is indeed a negative quantity and thus e, = ep + t corresponds to the
lowest energy level (bonding state).
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see Fig. 5.1. Notice also that the sum of the weights (coefficients appearing
in the numerators) is equal to 1.

On the other hand, the density of states projected onto the site 1 is
given in this case by

p1(B) = F I (G} (B)) = J0(F — ) + 50(E—c),  (534)

i.e. it is a sum of delta functions evaluated at the molecular energies. This
is a consequence of the fact that we are dealing with a finite system. In a
similar way, one could demonstrate that the rest of the properties listed at
the end of the previous section are satisfied. In particular, properties 4 and
5 are rather obvious from Eq. (5.33).

Method 2: Spectral representation. Let us now use the spectral repre-
sentation of Eq. (5.14). To evaluate this expression we need both the eigen-
functions and the eigenvalues of the hydrogen molecule. For this purpose
we just need to diagonalize the Hamiltonian of Eq. (5.31). The eigenfunc-
tions are simply the bonding (|1+)) and antibonding (|i)_)) states given
by: |¢+) = (]1) £+ |2))/v/2 with the corresponding eigenvalues ei. Thus,
the function G77'(F) is then given by

1 1 1 2

Gii(E)=(1G[1) = > n) Wull) gf?ﬁ(_‘bi ) _ 755@; (5.35)

n=-,— n=+,—

Using the fact that (1|¢p+) = 1/4/2, we arrive immediately at the expres-
sion of Eq. (5.33). Obviously, this method is not very practical in general
since it requires the knowledge of the eigenfunctions of the system, which
are typically unknown.

Method 3: Dyson’s equation. Now, our starting point is Eq. (5.28).
The first thing to do is to divide the Hamiltonian of Eq. (5.30) into the
unperturbed part Hg and the perturbation V. The natural choice is that
the perturbation be the coupling term between the two atoms (second term
in Eq. (5.30)). Thus, these two parts of the Hamiltonian adopt the following

H0:<€(§)2)>; V:(?é) (5.36)

To solve Dyson’s equation we also need the Green’s functions of the

matrix form

unperturbed system, g™“. These functions are simply given by

E™ — € 0 >

1
= —1. (.37
0 E™% — ¢ ( )

g = [E""1—Ho| ' = (
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Now, we can determine the function G717 (F) by taking the element (1, 1)
in Eq. (5.28), i.e.

Gi1(E) = g11 (E) + 911 (E)Vi2 Gy (E). (5.38)

Remember that g™ is diagonal, while V is purely off-diagonal. In order to
get a closed equation for G77", we still need an equation for G5;". Taking
now the element (2,1) in Eq. (5.28), we get

o1 (EB) = 925 (E)Va1 G117 (E). (5.39)
Substituting this expression now in Eq. (5.38), we arrive at
1 (B) = 917" (E) + 911 (E)V12g5 (B)Var G171 (E). (5.40)

This equation can now be trivially inverted and using the explicit expression
of the unperturbed Green’s functions one arrives once more at the result of
Eq. (5.33).

We can use the discussion above to illustrate the concept of self-energy,
which was briefly mentioned at the end of the last section. In the previous
equation, we can identify the following energy-dependent function

U1 (B) = Viagyy (E)Var = t°g23"(E). (5.41)

This function describes how the properties of the atom 1 are modified via
the interaction with the second atom. This can be better seen by rewriting
Eq. (5.40) as

1
- Eh— e = B(E)

Gy (E) (5.42)
where we have used the expressions of the unperturbed Green’s functions.
In this equation we see that the self-energy renormalizes dynamically (de-
pending on the energy) both the position (€p) and the lifetime of the en-
ergy level in the atom 1 (this latter point will become clearer in the next
examples). Notice that the self-energy depends both on the coupling to
the second atom and on the electronic structure of this second atom. We
shall see in the next examples that, no matter the problem, the concept
of self-energy appears naturally and it describes the renormalization of the
properties of a finite system due to its interaction with an external sys-
tem. In particular, we shall show in the next chapter that the concept of
self-energy remains valid even in the presence of interactions.
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5.3.2 Exzample 2: Semi-infinite linear chain

As a first example of an infinite solid, we consider now a semi-infinite linear
chain with only nearest-neighbor couplings. This system, which is schemat-
ically illustrated in Fig. 5.2(a), will be sometimes used in the next chapters
as a model for a metallic electrode. The corresponding tight-binding Hamil-
tonian of this system reads

H = €0 Z n,, +1 Z (ngci-i-ld + CI_HJCZ'J) s (543)
2o 10

where ¢ = 1,2, 3, ... represents the different sites starting from the surface.
We shall carry out here the calculation of the surface Green’s function,
G711 (E). As in the previous example, there are, in principle, three methods
avaliable. However, the first two are rather impractical. The first one would
require the inversion of an infinite matrix, while the second would need
the calculation of the eigenfunctions and eigenvalues of this infinite (non-
periodic) system. For these reasons, we shall resort to Dyson’s equation.
The first step in this method is to choose the unperturbed problem and
the corresponding perturbation. One possible choice would be to select the
uncoupled atoms as unperturbed system and the coupling between them
as the perturbation. Such a legitimate choice would lead us to an infinite
algebraic system, which is really difficult to solve (try it, just for fun!).
There is an alternative “trick” that does the job in a few steps. The idea
goes as follows. Let us consider that the unperturbed system is composed of
two uncoupled systems, namely the atom 1 and the rest of the chain. Then,
the perturbation is simply the coupling between these two subsystems, i.e.

V = tz (cL,cQo— + cgaclg) ) (5.44)

This means in practice that the only two non-zero elements of the pertur-
bation are Vio = Vo1 = t.

Now, we can use Dyson’s equation [Eq (5.28)] to obtain the equation
for G1y"(F). Taking the element (1,1) we have

G11(E) = g11(F) + g11(E)V12G21 (E)

G21(E) = g22(E)Va1G11(E),
where the second relation is necessary to obtain a closed equation for
G11(F). Here, we have omitted again the spin index o since there is spin
degeneracy in this problem and we have also dropped the superindexes

r,a because the equations are valid for both retarded and advanced func-
tions. The unperturbed function g;; of the site ¢+ = 1 is simply given by
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Fig. 5.2 (a) Semi-infinite linear chain with a single orbital per site and only nearest-
neighbor couplings. (b) Real and imaginary parts of the advanced surface Green’s func-
tion, G'{y, of the semi-infinite chain as a function of the energy, see Eq. (5.46).

911(E) = 1/(E — €y). On the other hand, the unperturbed function goy
is nothing else but the surface Green’s function of a semi-infinite chain,?
which is precisely what we are looking for, i.e. goo = G11. This allows us
to obtain the following closed equation for G11(E)

(E —€)G11(E) =1+ t*G3,(E). (5.45)

This is a quadratic equation that possesses two possible solutions. In order
to choose the “physical” one, it is necessary to take into account the bound-
ary condition ¥ — E™* = E +in to distinguish between the retarded and
advanced solutions. As a practical advice, remember that the imaginary
part of these functions has a well-defined sign. The final solution adopts
the following expression

. 1 [ Eme — ¢ Ere — ¢y
AE) = = = S —-11. 5.46

The real and imaginary parts of the advanced function are depicted in

Fig. 5.2(b). Notice that the imaginary part, and therefore the density of
states, is only non-zero in the region |E — €p| < 2|t|, which defines the

3The removal of an atom from the chain does not modify the fact that the remaining
chain is again a semi-infinite chain.
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energy band of the linear chain. In this region, the Green’s function adopts
the following form

r,a 1 E—EO . E—EO 2
arm = (Egewni-(552)). 6o

This expression can be written in a form that is very useful to do algebraic
manipulations (see Exercise 5.5) by defining cos(¢) = (E — €g)/2t:

Gy (B) = %exp(qtiaﬁ) (5.48)

The density of states in the surface atom of the chain can be then
expressed as

2
pmmzimm@um}=%¢r—CZfﬁ,|E—@s2M (5.49)
and it can be seen in Fig. 5.2(b). Contrary to the example of the hydrogen
molecule, in this case there is an infinite number of states that are grouped
in an energy band of width 4¢. Notice that we have not specified the actual
occupation of this band. If we had an electron per site, the band would be
half-filled (with the Fermi energy equal to €p) and there would be electron-
hole symmetry.

It is worth mentioning that in Eq. (5.45) one can identify the self-energy
Y (E) = t2GY(E), which plays exactly the same role as in the case of
the hydrogen molecule and it has the same functional form.

Let us say to conclude this discussion that one can check that the expres-
sion of Eq. (5.46) satisfies the different properties discussed in the previous
section. The reader is encouraged to show, in particular, that

1

Jlim Re{GT{(E)} = (5.50)
and that the following sum rule is fulfilled
/ dE p1(E) = 1. (5.51)

5.3.3 FExzample 3: A single level coupled to electrodes

We consider now the case of single energy level coupled to two infinite
electrodes. This is a very important example that will teach us a couple
of important lessons for molecular electronics. The system that we are
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Fig. 5.3 (a) A single level of energy ¢g is coupled to two infinite electrodes via the hop-
pings t7, and tg. (b) The corresponding energy scheme where one can see the continuum
of states in the electrodes filled up to the Fermi energy and the resonant level, which
has acquired a half width at half maximum equal to I' = I';, + I'r due to the coupling
to the reservoirs.

interested in is schematically represented in Fig. 5.3(a), and it is described
by the following Hamiltonian
H=H,+Hg+)» ech,cor + (5.52)

Z tr (C(JSC,CLU + CTLUCOJ) + Z lr (CEUCRU + CEUCOU) .

Here, the Ha;niltonians H; and Hp desc;ibe the left and right electrodes
that are coupled to a single energy level. It will not be necessary for the
present discussion to specify anything about the shape or concrete electronic
structure of these two leads. The subindex 0 refers to the localized level,
the energy of which is denoted by €. This level is coupled to the electrodes
via the hoppings ¢, and tr, which are assumed to be real. The subindexes
L and R refer here to the outermost sites of the left and right electrodes
(we have in mind again that there is a single relevant orbital per site in
these leads).

The question that we want to address is: How is this level modified
by the coupling to the electrodes? This question is very relevant for many
different contexts. We have in mind the problem of a molecule (or atom)
coupled to metallic leads, but it is also important for problems like the
chemisorption of molecules on surfaces (in this case there would be only one
electrode). In order to answer this question, we will compute the local den-
sity of states projected onto the level. This requires the calculation of the
Green’s function Goo(E) (no matter whether it is retarded or advanced).
For this purpose, we resort to Dyson’s equation. Our choice for the un-
perturbed Hamiltonian Hg is the sum of the Hamiltonians of the three
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uncoupled subsystems, i.e. the right hand side of the first line of Eq. (5.52).
Thus, the perturbation V is the term that describes the coupling between
the localized level and the electrodes (second line in Eq. (5.52)). Notice
that we are assuming that there is no direct coupling between the leads.

With this choice in mind, we take the element (0,0) in Eq. (5.28) to
obtain

Goo(E) = goo(E) + goo(E)WVor.Gro(E) + goo(E)VorGro(E), (5.53)

where Vo, =t and Vo = tr and goo(E) = 1/(E — €) is the unperturbed
Green’s function of the single-level system. As usual, to close this equation,
we have to determine the functions Gy and Gro. This can be done by
taking the corresponding elements in Dyson’s equation, i.e.

Gro(E) = g1 (E)VioGoo(E)
Gro(E) = grr(E)VRroGoo(F),

where VI, rg = t1,/r and grr and grr are the Green’s functions of the two
outermost sites of the left and right electrodes, respectively. Substituting
these expressions in Eq. (5.53), we obtain the following closed equation

Goo(E) = goo(E) + goo(E)Vorgrr(E)VioGoo(E) (5.54)
+ 900(E)Vorgrr(E)VroGoo(E).

In this expression one can identify, as in the previous examples, the self-
energy Yoo(E) = t2gr1(E) + t%9rr(E), which in this case is the sum of
two contributions associated to the two leads. In terms of the self-energy
we can express the function Ggo(E) as

1

GoolB) = E—e¢ —Xo(E)’

(5.55)

where we have used the expression of goo(E). Here, we see once more that
the self-energy describes how the resonant level is modified by the inter-
action with the leads. In particular, its real part is responsible for the
renormalization of the level position, which becomes €y = €y +Re{¥o(E)},
while its imaginary part describes the finite energy “width” acquired by
the level via the interaction with the leads. This latter point becomes
more clear by using the following approximation. Let us assume that the
Green’s functions of the leads are imaginary for energies in the vicinity
of €y and that they do not depend significantly on energy in this region.*
Thus, we can approximate these functions by g7’y pp ~ Fi/Wr r, where

4This approximation is usually known as wide-band approzimation.
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Wi, r are energy scales related to the density of states of the leads at the
energy €o.° For instance, if we modeled the electrodes by the semi-infinite
chains like in the previous example, Wi, r would then be the bulk hop-
ping element of these chains. Within this approximation, the self-energy
becomes Xy = Fi (' + I'r), where we have defined the scattering rates
I'nr = ti r/Wr, r. Obviously, with this approximation the level position
remains unchanged (see Exercise 5.9). Finally, the function Goo(FE) adopts

in this case the form
1

00 (B) = o —cgti(Tn 1 Ta)

Thus, the local density of states that we wanted to calculate is given by
1 ra 1 I't+Tr

po(E) = ZF;Im{ 0 (B)} = ju (FE—c)?+ (1 +TR)2

which is a Lorentzian function, where I' = I';, + I'g is the half-width at

half-maximum (HWHM). This result shows clearly that the resonant level,

which originally had zero width (it was an eigenstate of the isolated central

(5.56)

(5.57)

system), acquires a finite width I" via the coupling to the leads. This fact
is illustrated in Figs. 5.3(b). It is worth stressing that the width depends
both on the strength of the coupling to the electrodes (via ti r) and on
the local electronic structure of the leads (via Wi, g or, more generally, via
grr.rr)- The time scale h/I" that can be interpreted as the finite lifetime of
the resonant level due to the interaction with the leads, or in other words,
as the time that an electron spends in the resonant level.

Thus, the take-home message of this example is that when an isolated
molecule (or an atom) is coupled to a continuum of states, its levels are,
in general, shifted and they acquire a width that depends on the strength of
the coupling and on the local electronic structure of the leads.

Let us finally say that we hope that the reader has realized that all the
calculations of this section involved simple algebraic manipulations. Indeed,
we shall show in the next chapters that, as long as we deal with systems
with only elastic interactions (described by mean-field Hamiltonians), the
evaluation of the Green’s functions, both in equilibrium and out of equilib-
rium, reduces to straightforward exercises of linear algebra. So maybe, this
Green’s function stuff is not so scary after all, don’t you think?

For more detailed discussion of Green’s functions in the framework of
tight-binding models, we recommend the book of Ref. [181], as well as the
exercises 5-9 at the end of this chapter.

5This energy scales are simply given by Wy g = 1/[rpr r(E = €0)], where pr, g are
the local densities of states of the two outermost sites of the leads.
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5.4 Green’s functions in time domain

The energy-dependent retarded and advanced Green’s functions introduced
in the previous section for single-particle problems can be considered as
Fourier transforms of time-dependent Green’s functions, the definition of
which is much more general and they are still valid in the case of interacting
systems. The utility of these new definitions will become apparent in the
next chapter when we deal with the perturbation theory. Moreover, it will
be clear that we need to introduce a new kind of function known as the
causal Green’s function.

Using the second quantization formalism and an arbitrary representa-
tion (or basis), the retarded Green’s function that depends on two time
arguments can be defined as follows

Gy (1, ¢) = =ib(t = )| {eio (0, el (1)} 1), (5.58)

where |Wy) = |¥g(0)) is the wave function of the ground state of the system
(that can include interactions) and the operators are in Heisenberg picture.
We shall only include explicitly the spin index ¢ in G7; in those problems
where the spin symmetry is broken. In this definition, the step function, 6,
ensures that ¢ > ¢’ and the symbol { , } stands for the anticommutator.
The Green’s functions are often defined using the basis {|r)} formed by
the eigenfunctions of the position operator. The corresponding creation and
annihilation operators in this representation are known as field operators

and they are denoted by W¥!(r) and W, (r), These operators are simply
1.

10

(1) = Y 6il)cio and Wi() =Y i)l (559)

related to ¢ and c;, by the basis transformation

where ¢;(r) are the basis wave functions of the discrete representation.
These field operators satisfy the standard type of anticommutation rela-
tions, i.e.

(W, (r), ¥, (t')} = 0(r —1')d5.0/; et (5.60)

In terms of these field operators, the retarded Green’s function is defined
as

G"(rt,x't') = —if(t — ') (Uu| { T, (r,t), T (', ¥)} V), (5.61)

which is a complex function that depends on two spatial arguments and
two time arguments.



Introduction to equilibrium Green’s function techniques 129

The advanced Green’s function has a similar definition, the only differ-
ence being that the propagation takes place backwards in time

G (4,t') = i0(t' — ) (Tl {cw(t), c;a(t’)} Ty). (5.62)

Finally, it is convenient to define an additional Green’s function, namely
the one known as causal Green’s function, which is defined as follows

G5, (t,1') = =i (Wy|T [cw(t)c}(,(t')} Ty), (5.63)

where T is the time-ordering operator. It acts on a product of time-
dependent operators by ordering them chronologically from right to left.
Thus for instance, the previous function has the following explicit form

—i(Puleir (t)el, ()| Un) t > ¢/

@ (t.t) :{ i(Wnlel, ()i (0] Tn) > 1. (564)

Notice the sign change for t' > ¢t due to the anticommutation of fermion
operators.

So far, our discussion in this section has been a bit mathematical and
there are questions that arise naturally. The first one is: What is the
physical meaning of the Green’s functions? To answer this question no-

tice that these functions contain factors like <\IJH|ci0(t)c;0(t')|\IlH>. Here,

;r-o_(t’ )| WUy) describes the creation (or injection) in the ground state of an

electron at time ¢’ in the state j. Then, the previous expectation value

C

yields the probability amplitude of finding such an electron at a later time
t in the state 7. In other words, the Green’s functions simply describe the
probability amplitude of the occurrence of certain processes. The type of
processes described depends on the arguments of these functions. Thus for
instance, they can describe the propagation of electrons in time domain or
in energy space, propagation in real space, in momentum space or simply
in an atomic lattice.”

Another natural question is: What is the relation between this definition
of the Green’s functions and the one put forward in the previous section?
At a first glance, it seems that there is no relation at all. However, we
shall show below that if the system is noninteracting, the Fourier transform
with respect to the time arguments of these new Green’s functions fulfill
Egs. (5.13) and (5.14), i.e. these two type of functions are equivalent.

Simple example: degenerate electron gas. To illustrate the previ-
ous definitions, we consider now the example of a free electron gas at zero

6In this sense, it is not surprising that the elastic transmission of any real system can
be naturally expressed in terms of these functions.
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temperature, which is discussed in Exercise 5.1. As we know, the ground
state of this noninteracting system is a Fermi sea, where the single-particle
states are occupied up to the Fermi energy, Er (or chemical potential ).
These states, |ko), are plane waves characterized by an energy e = k%/2m,
where k is the electron momentum. In this case, it is easy to compute both
the exact time evolution of the Heisenberg operators (see Exercise 5.1)
and the expectation values over this ground state (Fermi sea). Thus for
instance,

<\IIH|CLUCk/J|\IJH> = (5k’k/9(k’p — ]{7), (5.65)

where kp is the Fermi momentum.

Bearing these ideas in mind, it is easy to show that the retarded and
advanced Green’s functions defined in Egs. (5.58) and (5.62) can be written
in the k-basis (momentum space) as

G (k,t —t') = —if(t — t')e k(1) (5.66)
Gk, t —t') = +if(t' — t)e k1),

while the causal function can be written as

—if(k — kp)e () ¢ > ¢/
Gkt =) = { w(ECF - k)()a—ifk(t—t’) <t (5.67)
Notice first that these functions depend on the difference of the time ar-
guments, which is a general property for equilibrium systems. Notice also
that they are diagonal in k-space. Having in mind the physical meaning of
the Green’s functions, it is easy to understand why they have such a simple
time dependence. Since we are injecting electrons in a state |ko), which
is an eigenstate of the system, the probability of finding it at a later time
in such state must be equal to one. This is precisely what the previous
expressions illustrate.

It is instructive to make contact with the results of the previous section.
For this purpose we must now Fourier transform the previous functions with
respect to the time difference, i.e.

o9}
Groe(k, B) = / dt G (k, t)eE ), (5.68)

— 00
In the course of doing the Fourier transformations, one gets the impression
that the time integrals diverge. This can be cured by introducing a small
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imaginary part in the energy (E — E £1in).” So finally, the retarded and
advanced Green’s functions in energy space are given by
1
Gk, F)= ——.
( ’ ) E— €k + i77
This is exactly the result that one would have obtained directly from

(5.69)

Eq. (5.13) in this plane wave basis.
On the other hand, the causal function adopts the form
Ge(k, E) = e(k—]ﬂ:‘? N Q(kjp—k? _ .1
E—e+in FE—¢e —in FE — e, +isgn(k — kp)n
Therefore, for the free electron gas, the causal Green’s function is equal to
the retarded one for ' > p and equal to the advanced one for E' < y. This
relation is true in general, as we shall show below.

. (5.70)

5.4.1 The Lehmann representation

The goal is now to get an insight into the energy dependence of the Green’s
functions introduced above for a general interacting system. For this pur-
pose, we shall derive here the spectral representation of a Green’s function,
which for the noninteracting case reduces to Eq. (5.14). We shall focus our
analysis on the causal function defined in Eq. (5.63). In equilibrium, this
function depends only on the difference of the time arguments. Choosing
t' = 0 we have

G5y (t) = =W T |eio (t)el, (0)] 195), (5.71)
where we have added the superindex N in the ground state wave function,
W) = |Wy), to indicate the total number of electrons in the system.

Writing explicitly the time-evolution of Heisenberg operators (see Eq. (5.5))
one has

Gi(t) = —i0(t) (T [eM e el |WiY) (5.72)

+i0(—t) (T el e Mo W),
We now use the fact that H|WY) = EY| W), where EJ is the ground state
energy of the system with N electrons, to arrive at

G5 (t) = —if(t) (U [cipe et [l yeiFot (5.73)

jo
+if(—t) (U el el ey | Ye~iEo T,

7A more rigorous way of solving this problem involves the introduction of the integral
representation of the step function:

ot —t) ——/OO dE e~ (1)
) 2w E4in



132 Molecular Electronics: An Introduction to Theory and Experiment

We now insert Y, [UNFTLN(WNFL in the part for ¢ > 0 and
S NI (WY in the part for ¢ < 0, where [N T!) and [N ~1) are
the eigenfunctions of the system with one more and one less electrons, re-
spectively. The resulting expression reads

Gi;(t) = —if(1) Z<\I/év|cw‘\1/%+1><\p%+1|C;U‘\I;(J)V>e—i(E7JX+1—Eé\’)t

. _ _ _i(EN_gN-1
+i0(—t) Y (W' el (ORI U i [ W )eF0 —Fm Dt
We now Fourier transform with respect to the time argument to obtain
the expression of the Green’s function in energy space
g ) = 3 (e A (R e 95
+ E — (ENTY — EN) +in

m

(5.74)

Z (T el (TN -1 (TN~ e | TY)
E+(ENTY—EN)y—in

m

which in the diagonal case adopts the form

UN+HL el gy 2 YN—1ie, [T
G%(E):Z K mN+|1czo'| ]ov>| . Z K mN|1c | ](3]>| .
(5.75)
This expression, referred to as Lehmann or spectral representation,

m m

shows clearly the pole structure of the Green’s functions of a general elec-
tron system. The poles appear at the energy of the quasi-particles of the
system, that is, at the energies that are necessary to add or remove an elec-

8 Before analyzing in more detail

tron in the ground state of the system.
the properties of G°(E), let us see how the spectral representation of the
retarded /advanced function looks like. One can repeat the process above
to arrive at
o) = 3 Il T e, )
& E— (BN —EN)+in

m

(5.76)

3 (9 Iefo 100~ (N feio | 29))
E+(EN'-EN)Y+in

m
The previous expressions of the Green’s functions in energy space can be
written in a slightly different way in the thermodynamical limit (N — o0).
Let us focus on the expressions of the denominators. Considering first the

8Due to the factors +in, the poles appear slightly shifted with respect to the real axis
in the complex plane.
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part of electrons, we can add and subtract the energy of the ground state
with NV + 1 electrons:

E—(En™ —E))=E— (B - E)) = (B ™ =B ). (5.77)

The energy difference Eév o E{ in the limit N — oo is the chemical po-
tential 4 of the system, while EN 1 —Eév *1 s the energy of the excited state
of the system with N + 1 electrons. Repeating the same operations for the
hole part, one can finally write the Green’s functions in the thermodynamic
limit as (we only consider diagonal elements)

Z | \I/N+1|C |\IJN |2 Z | \IfN 1|Cza|\I’N>|2 (5 78)
N+1+m E—pu+el1_ip :
Gra Z | \I,N—H’C |\I’N ’2 Z ‘ \IJN 1|Cw‘\I/N>|2 (5.79)
NHj:m E — ,u—i—em lj:m’
where eVt = Eﬂ]\{“—EéVJrl and e 1 :Eﬂ]\{_l—EéV_l are the excitation

energies of the system with N + 1 and N — 1 electrons, respectively.

From the previous expressions one can show that the spectral represen-
tation reduces to Eq. (5.14) in the noninteracting case (this exercise is left
to the reader). This is one way to establish the connection between the
definitions introduced in this section and those of section 5.2.

From the general spectral representation, it is possible to derive the
following important properties of the exact Green’s functions of an arbitrary
electronic system, which are practically identical to those of section 5.2:

Property 1. It is possible to define a spectral density related to the
imaginary part of the Green’s functions as (we only write the diagonal
elements)

ZI‘I'N“IC [TV PO(E — i — e ™) + (5.80)

Z (W eio UG P0(E — p+ e ™).

In a case in which ¢ stands for a site index in a tight-binding problem,
the previous expression represents the quasiparticle density of states of the
system projected onto that site. The relation of the previous function to the
imaginary part of the Green’s functions is obvious. Comparing Eq. (5.80)
with Eqgs. (5.78) and (5.79), one obtains

pi(B) = ¥~ Tm (G} (B)) (5.81)

pi(B) = —sgn(E — p)~Tm {G5(B)} (5.82)
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Property 2. The diagonal Green’s functions satisfy in any basis that
Im{G};(F)} <0 and Im{G%(E)} > 0.

Property 3. Due to the pole structure of the Green’s functions in
energy space, their real and imaginary parts are related through a Hilbert

transformation:
E'1 mYE!
Re {G7" 73/ d mf é, )} (5.83)
he(Gy(E)) = -p [ T RICGHENEE =N )

As in the single-particle case, it is possible to write the Green’s functions
in terms of the spectral density as

r,a > pl(El)
DR = dEp/ ——— -~ .
Gy (E) /_OO B b i (5.85)
Oo pi(E")
C(FE) = dE'’ : :
alE) /_oo E — E' +sgn(E" — p)in (5.86)
Property 4. The previous expressions imply that
r,a _ C 1
o O (B) = Jim GLE) = 7 (5:87)

where we have used the fact that the spectral density is normalized to 1.
Property 5. From the spectral representations, one can easily deduce
the following relations

. GL.(E),if E>p
(B = [G". (B =9 7
sz (E) [GJZ(E)} and Gw (E) {G%.(E), if E<p

5.4.2 Relation to observables

So far, we have seen that the Green’s functions provide important informa-
tion such as the density of states of states (or the excitation spectrum). But
the main reason for studying the Green’s functions is that the expectation
value of any one-electron operator in the ground state of the system can be
expressed in terms of the functions that we have just introduced. Thus for
instance, the electronic density n(r) in the ground state is given by

n(r) = (n(r)) = Y ()T, (r)), (5.88)

o

which is directly related to the causal Green’s function

GS(rt,x't') = —i(Uy|T [¥, (rt) ] (r't)] |Th), (5.89)
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by means of

n(r) = —iZGg(rt,rﬁ'), (5.90)

where tT is an abbreviation that means that ¢ tends ¢ from above.
Analogously, if we use a discrete basis {|i) }, the occupation of the state
1 will be given by

(n;e) = —iGS, (¢, t7). (5.91)

1o
For instance, for the free electron gas, the time-dependent Green’s func-

tion is given by Eq. (5.67) and thus, the occupation of a state with wave
vector k in the ground state (Fermi sphere) is

(ni) = O(kp — k). (5.92)

Let us now demonstrate the general statement made above. One-
electron operators can be expressed generically in second quantized form
as

V=> Vel cjo, (5.93)
jo
where V;; = (i|V(r)|j).
Now, we want to compute the expectation value of this operator in the
ground state, i.e.

(V)= Viy(Wulcl,cjo | n). (5.94)
,J,0
The expectation values appearing in the previous expression can be related

to the Green’s functions. For instance, if we recall the definition of the
causal Green’s functions in the time representation, we have

G5;(t) = —i(Tu|T(cio (t)eh, (0)][ ). (5.95)
If we evaluate this function at t = 0~
Gi;(07) = _i<‘I’H’C;UCw!‘I’H>, (5.96)
and therefore
(Trlc!,cio|Tn) = —iGS;(07). (5.97)
On the other hand,
Gi;(07) = /_ O:O Z—ngj(E)eiE‘)*. (5.98)
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Making use of the spectral representation for G§;(E), we obtain
w

1 1
T _ c _ c
<\I/H|ngcia‘\I/H> =55 }ng Gij(E) = ;/ dE Im {ng(E)} . (5.99)

—c0

Similar expressions can also be found in terms of the retarded and ad-
vanced functions.

Let us consider as an example the case in which the index ¢ stands for a
site in a tight-binding model. The average occupation per spin of this site
is

1 [P
(n10) = (Ualel,cioW0) =+ [ dE T (G5,(B)). (5.100)
— 00
as it should be, since Im{G¢,(E)}/m is nothing else than the local density
of states projected onto the state i.

To conclude this subsection, let us say that in general the expectation in
the ground state of two-electron operators, i.e. those containing two creation
and two annihilation operators (see Appendix A), cannot be expressed in
terms of the one-particle Green’s functions that we have introduced in this
chapter. However, a notable exception is the total energy of the system
(for a discussion of this issue, see e.g. Ref. [173]).

5.4.3 FEquation of motion method

So far we have discussed some of the properties of the “new” Green’s func-
tions and we have seen that they contain very important information. Now,
let us discuss how they can be computed. In particular, we shall describe
in this section a method referred to as equation of motion. Let us illus-
trate it in an example that is already familiar to us, namely in the case of
an electron system described by a simple tight-binding Hamiltonian of the
form
H=> tijcl,cj. (5.101)
ijo
Here, the diagonal matrix elements ¢;i correspond to the on-site energies,
€;, in the notation used in previous sections.
Our goal is the calculation of, for instance, the retarded Green’s function

G0 (8) = =i0(t) (Prleio (t)ch, (0) + ¢l (0)ciq (1) ). (5.102)

For this purpose, let us calculate its time derivative

%GZ} o(t) = —i5(t)<‘11H|Cw(t)CT- (0) + ¢l (0)cio (1) W) (5.103)

D i () W),

—i@(t)<‘I'H| Cw() 10(0) +cl, (O)at
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where we have used the fact that the derivative of the step function is a
d-function.

Now, in order to compute the time derivative of the annihilation oper-
ator appearing in the previous equation, we make use of the equation of
motion for operators in the Heisenberg picture, see Eq. (5.6). Thus,

i%cw [Cio, H] =i Z tikCko, (5.104)

where we have used Eq. (5.101) to obtain the last result. Substituting this
expression in Eq. (5.103), we arrive at

i Gl (8) = 0(6)0i; + thka] (). (5.105)

It is now convenient to Fourier transform to energy space to convert this
differential equation into an algebraic one. Thus, introducing

1 [ .
—/ dE e *Ft (5.106)

ar. () i/_OOdE —zEtGr ()aé(t):2ﬂ_

ij,0 o7 ij,0
in Eq. (5.105), we obtain the following algebraic equation of the Green’s
function in energy space

EG:] a( ) 51] + ZtZka] a( ) (5107)

This is nothing else but the element (i, j) of the matrix equation
G'(E)=[F1-H] ", (5.108)

which is precisely the expression that we used as a definition in section 5.2
[see Eq. (5.13)]. Thus, we have shown again the equivalence of the two type
of definitions for the case of noninteracting electron systems.

It is important to emphasize that the equation-of-motion method
illustrated above is by no means restricted to noninteracting system.
However, if the Hamiltonian contains two-electron terms (with four cre-
ation/annihilation operators), in general there is no straightforward way to
get a closed system of equations, as in the previous example. The problem
is that the equation of motion for the one-particle Green’s function couples
this function to higher-order ones containing an increasing number of oper-
ators and the resulting algebraic system has, strictly speaking, an infinite
dimension. In practice, one has to find an appropriate way of truncating
the system, which is not an easy task in general.

In order to illustrate what we meant in the previous paragraph, let us
consider the Anderson model that describes the interaction of a single level
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(including the electron-electron interaction in this level) with a continuum
of states. This model can describe, for instance, a magnetic impurity in a
metal or a quantum dot (or a molecule) coupled to metallic reservoirs. The
Hamiltonian of this model adopts the form (see Appendix A)

H = Z €xNko + Z (VkOCLJCOU + kacggcko> + Z eonos + Ungrngy,
k,o k,o o

(5.109)
where the subindex 0 refers to the correlated level and k to the metallic
states in the reservoirs. Our goal is to compute the (retarded or advanced)
Green’s function Goo,»(F) in the impurity. For this purpose, we proceed as
above and determine the time derivative of this function. This calculation
requires the evaluation of the time derivative of the operator co,(t), which
in turn requires the determination of the commutator of this operator with
the Hamiltonian. The novel term, as compared with the tight-binding

example above, is Ungsng; and the corresponding commutator with it is

[COU, UnOTnN] = UCOUII()&, (5110)
where we have used the notation ¢ = —o. Inserting this term in the

equation of motion, it is straightforward to show that one arrives at (after
Fourier transforming to energy space)

(E — €0)Goos(E) =1+ Y VoxGuo(E) (5.111)
k

—iU0(t) (V| {coo (t)n05(t), Coo } [V1),
where { } stands for the anticommutator. Here, the novelty with respect to
Eq. (5.107) is the appearance of the term in the second line that contains
four operators. To close the equation, we need now an equation for this new
expectation value. The reader can convince himself, that such an equation
would generate terms containing expectation values of six operators. Then,
the equation for these functions would involve terms with eight operators
and so on and so forth. So, the only way to solve these equations in practice
is to truncate the system with sensible arguments, but in most cases it is not
clear how to do it. In the next chapter we shall discuss a more systematic
approach to obtain the Green’s functions in interacting problems.

There is one limit in which it is possible to obtain the exact Green’s
function, namely in the limit where the coupling to the reservoirs tends to
zero (Vox — 0 with U finite). In this case the equation of motion can be
truncated and one obtains (see Problem 5.11)

1 — (ngs) (noz)
Gooa(B) =~ T e

(5.112)
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where (ng,) is the occupation of the level ¢ for spin o, which in turn has
to be calculated with the full Green’s function of Eq. (5.112). Thus, in this
limit the Green’s functions exhibit poles at energies equal to €y and €y + U.
This tells us in particular that U is the energy that one has to supply to
accommodate a second electron in the level. The expression of Eq. (5.112)
can be used as an starting point to analyze the so-called Coulomb blockade
in quantum dots or molecular transistors (see Exercise 8.9).

Let us conclude this section by recommending Chapter 9 of Ref. [185]
for a more detailed discussion about the equation-of-motion method.

5.5 Exercises

5.1 Time evolution of the operators in Heisenberg picture:
(a) Let us consider a free electron gas described by the Hamiltonian

_ § : T
H= ekckacka.
k,o

Show that the time evolution of the operators cJ,LO_ and cg, in Heisenberg

picture is given by
cl (1) =cl_(0)e’*" and cpo(t) = cho(0)e <"

(b) Let us consider a diatomic molecule described by the following two-sites
tight-binding Hamiltonian

H=¢ Z(nla +mn2,) + tZ(CLC% +cb,cio).

Obtain the temporal evolution of the operators ci, and c2, in Heisenberg
picture.

5.2 Green’s function of a free electron in 1D: Let us consider the
Schrodinger equation of a free electron in a 1D potential

——7 + Vo} \I/(CL‘) = E‘I/(:E),

where 1} is a spatially constant potential. Show that the electron Green’s function
is given by the expressions detailed in section 5.2.

5.3 Equivalence of expressions (5.13) and (5.14): Show the equivalence
of Eq. (5.13) and Eq. (5.14). Hints: (i) Multiply both sides of Eq. (5.13) by
[(E £ in) — H]. (ii) Introduce then the closure relation )  |¢n)(¢n| = 1, where
1y are the eigenfunctions of H. (iii) Use H|¢n) = €,]1hn) and (iv) multiply by
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the inverse of the operator on the left hand side of the Green’s function to obtain
Eq. (5.14).

5.4 Dyson’s equation: Starting from Eq. (5.26), show that the Green’s func-
tions fulfill the Dyson’s equation (5.28).

5.5 Semi-infinite tight-binding chain: Let us consider the Hamiltonian of
Eq. (5.43) for a semi-infinite chain. Calculate the off-diagonal retarded Green’s
functions G7,; of the chain (where 1 is the first site and n an arbitrary one) and
demonstrate that it is given by the following expression for |E — eg| < 2[t|:

efz'nqﬁ

Ggl(E) =

where cos¢ = (E — €)/2t.

5.6 Infinite tight-binding chain: Let us consider an infinite chain of identical
atoms with only nearest-neighbor hoppings, t.

(a) Making use of the eigenvalues of this problem, €, = €y + 2¢ cos(ka), where
a is the lattice constant, and the corresponding eigenfunctions, demonstrate that
the advanced Green’s functions G7;(FE) are given by

Giy(F) = e eos g for 119 cal < 2t}

(b) An infinite chain can be viewed as two coupled semi-infinite chains. In this
sense, consider the coupling between the semi-infinite chains as a perturbation
and use Dyson’s equation to obtain the diagonal advanced Green’s functions in a
site of the chain and demonstrate that it coincides with the result derived in (a)
for i = j.

5.7 Tight-binding chain with a defect: Let us consider an infinite chain as
in the previous problem in which a diagonal perturbation is introduced in one
of the sites, let us say in site i, such that its on-site energy becomes ¢y + A.
Calculate the local density of states in the site ¢ and, in particular, investigate
the possibility of having a localized state outside the band. Study also the spatial
extension of such a state by calculating the occupation of this state in different
sites away from the one in which the defect is located.

5.8 Finite tight-binding chain: Let us consider a finite chain with N sites
and only nearest-neighbor interactions. Calculate the advanced Green’s function
Gp1(FE), where 1 refers to the atom in one of the extremes of the chain and n to
an arbitrary site. Demonstrate in particular that for |E — eo| < 2|¢|

n[(N —n+1)¢] .

a _ 1si
GmlB) = 5 sin[(N + 1)¢]

5.9 Resonant level coupled to metallic electrodes: In the example 3 of
section 5.3 we considered a single site with energy ep connected to two electron
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reservoirs. We computed the local density of states in the wide-band approx-
imation, see Eq. (5.57). Assume now that the electrodes are modeled by the
semi-infinite linear chain of the example 2 of section 5.3 with on-site energy equal
to zero and a hopping integral ¢. Study the local density of states in the central
site as a function of the values of €y and the coupling elements ¢;, and tr. Discuss
in particular how the level position is renormalized.

5.10 Time-dependent Green’s functions: Make use of the expressions of
the time dependence of the creation and annihilation operators of the two-sites
problem of Exercise 5.1.(b) to compute the time-dependent retarded Green’s func-
tions. Show that the energy-dependent Green’s functions that can be obtained
from the previous solution coincide with the result of Eq. (5.13).

5.11 Equation of motion: Atomic limit of the Anderson’s model: Let us
consider the Anderson’s Hamiltonian given in Eq. (5.109). Use the equation-of-
motion method to show that in the atomic limit (Vox — 0) the Green’s function
of the level can indeed be written as in Eq. (5.112).



This page intentionally left blank



Star Diwa

Chapter 6

Green’s functions and Feynman
diagrams

In the previous chapter we have seen that the calculation of the zero-
temperature Green’s functions of a non-interacting system in equilibrium
reduces to solve an algebraic linear system, summarized in Dyson’s equa-
tion. This is practically all we need to tackle the problem of the determi-
nation of the elastic transmission of realistic systems. However, if we want
to go beyond and treat systems where the electron correlations or inelastic
interactions play a major role, we need many-body techniques. For this
reason, we present in this chapter a systematic perturbative approach for
the calculation of zero-temperature equilibrium Green’s functions.! This
formalism is valid for any type of system and interaction and constitutes
the most general method for the computation of Green’s functions. More-
over, the nonequilibrium formalism introduced in the next chapter follows
closely the perturbative approach that we are about to describe.

The perturbative (or diagrammatic) approach is nicely explained in dif-
ferent many-body textbooks (see e.g. Refs. [173-175, 182-185]) and for this
reason, our description here will be rather brief.?2 This approach is concep-
tually rather simple, but it contains several technical points that usually
make it rather obscure. In the spirit of this monograph, we shall avoid
very formal discussions and we shall provide instead simple plausibility ar-
guments or we shall simply refer the reader to the adequate literature.

Before the trees do not let us see the forest, let us give a brief overview
of what we are about to see. First, we shall learn how to write down a
perturbative series for the Green’s functions, i.e. how to express systemat-
ically the corrections to the Green’s function due to a perturbation such

In some sense, this approach is simply a generalization of the perturbation theory for
the wave functions that one studies in elementary courses of quantum mechanics.
2This chapter is mainly based on Chapter 3 of Ref. [173].

143
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as an external potential, electron-electron interaction, etc. Then, we shall
discuss how these contributions can be “visualized” with the help of the so-
called Feynman diagrams. These diagrams will in turn help us to organize
and simplify the perturbative series. Finally, we shall show that this series
can be formally resumed and cast in the Dyson’s equation, which we have
already introduced for case of non-interacting systems. Dyson’s equation
is expressed in terms of the concept of self-energy. This concept was also
introduced in the previous chapter and in this one its precise meaning will
be clarified.

So, it is time get started. The general problem that we want to tackle
in this chapter is the analysis of an electron system in equilibrium that is
described by a Hamiltonian of the following form

H=H,+V, (61)
where Hj is a single-particle Hamiltonian and V is a perturbation that may
contain an external potential and any type of interaction. Our goal is the
compute the Green’s functions of the system in terms of the unperturbed
Green’s functions, i.e. those associated with the Hamiltonian Hy, which
are supposed to be known. For this purpose, we shall develop a system-
atic perturbation theory, but before doing that we shall now introduce a
convenient representation of quantum mechanics, known as the interaction
picture, that will be very useful in what follows.

6.1 The interaction picture

Let us consider a system described by the Hamiltonian of Eq. (6.1). We
define the interaction picture starting from the Schrodinger one by means
of the following unitary transformation?®

y(t) = et Wg(t) and Of(t) = e™MofOg(t)eHot, (6.2)

Notice that, contrary to the case of the Schrodinger and Heisenberg pic-
tures, in the interaction picture both wave functions and operators depend
explicitly on time.

Let us analyze first the time evolution of the operators. It is obvious
from Eq. (6.2) that the operators in this representation are the Heisenberg
operators of the unperturbed system. Taking the derivative with respect to
time in the definition of an operator in the interaction picture, one obtains

.0
ILEOI == [OI, Ho] . (63)

3In this chapter we shall also set i = 1.
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Therefore, the dynamics of the operators in this representation is governed
by Hg and it is thus known.

Turning to the wave functions, we can make use of the evolution of the
wave function in Schrodinger picture to obtain

Wi(t) = el Wg(t) = Mol iy (). (6.4)
Let us remind that

e

iHot ,—iHt 4 =iVt
since, in general, [Hy, H] # 0.

In order to find the equation that describes the time evolution of the
wave function in this picture, we now take the derivative with respect to
time in Eq. (6.2)

0 : b O
zallll(t) = —Hye™Molug(t) + ZeZHOta\IIS(t), (6.5)

and making use of the Schrédinger equation on the right hand side of the
previous expression, one obtains

i%\l!l(t) = MO (H — Ho) s (t) = e Ve Hole™olug(t),  (6.6)
which can be simply written as
.0
ZE‘I’I(t) = Vi(t)¥1(t). (6.7)

This equation plays the role of the standard Schrodinger equation in this
new picture. Notice that the dynamics of the wave functions is governed
by the perturbation. This is very important because it makes possible, by
means of an adiabatic hypothesis in which the perturbation is adiabatically
switched on, to relate the perturbed and unperturbed ground states of the
system by means of the evolution of the wave function in this picture. Due
to this fact, the operator that describes the time evolution of the wave
functions is of special interest and it will be discussed in detail in the next
section.

To end this section, let us discuss now the relation between the Heisen-
berg picture and the interaction picture. Using the definitions of Eq. (6.2),
one can easily show that

\IJI(t) = eiHoteith\IfH (6.8)
OI (t) _ GiHote_thOH(t)GthG_iHot.

The inverse transformation is obviously given by
Ty (t) = eBleHoly,(t) (6.9)

OH(t) — €th€_iH0t01(t)eiHOte_th.
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6.2 The time-evolution operator

We define the time-evolution operator in the interaction picture as
Uy(t) = S(t,t0)Vi(to). (6.10)

It is easy to find a formal expression for the operator S in terms of the
system Hamiltonian. From the definition of the interaction picture one has

y(t) = eMHolWg (1), (6.11)

Making use of the expression of the time evolution of the wave function
in the Schrodinger picture we can write

Wi(t) = eHote=HIE—t0) gy (4). (6.12)

Transforming the wave function Wg(ty) to the interaction picture, one
has finally

p(t) = etotemH(t—to) o=iHotoy (4. (6.13)

Comparing this expression with the definition of Eq (6.10), we can iden-
tify

S(t,tg) = eHot o —iH(t—to) ;—iHoto (6.14)

From the definition of the time-evolution operator or from its formal
expression, one can easily show the following properties:

The operator S is unitary, i.e. S~! = ST.
S(t,t) =1.

S(t,t")S(t',t") = S(¢,t").

S(t,t") = ST(t',t) .

The time-evolution operator is also related to the unitary transformation
that relates Heisenberg and interaction pictures. From Eq. (6.14) one has

S(0,t) = et~ Hot, (6.15)
Comparing now with Eq. (6.9), we can write
Uy = S(0,t)Wr(t) (6.16)
Oy (t) = S(0,t)Or(t)S(t,0).
The operator S satisfies its own equation of motion, which is very similar

to the equation for the wave functions in this representation. Taking the
derivative with respect to time in Eq. (6.14) one has

i%S(t,to) — Vi(t)S(t, to). (6.17)
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Finally, the time-evolution operator can be expressed as a perturbative
series in the interaction Vi(t). This can be shown either by solving itera-
tively the previous equation or by using the equation for the wave function
Ui(t). We choose the second option and write Eq. (6.7) as an integral
equation

Ui(t) = Wy(to) — i / L Vi) (e, (6.18)

to

This equation can now be solved iteratively. To zero order we have
Wi(t) = Wi(to). (6.19)

Substituting this zero-order result in Eq. (6.18) we obtain the first-order
result

Uy(t) = [1 — / ity VI(tl)] U1 (to). (6.20)

to

Iterating we can arrive at

Uy(t) =

14> (=i)" /tt dty Vi(ty)x (6.21)

/tl dts Vi(ta) - /tn_l dt,, VI(tn)l T (ty).

to to

The expression inside the brackets is just the time-evolution operator
S(t,t9) expanded as a power series in the operator Vi(t). This expres-
sion is not very inconvenient because the upper and lower limits of the
time integrals are different. It is possible to rewrite the previous expres-
sion in more adequate manner by noticing that the integration variables
fulfill £ > t1 > to > --- > t, > tg. This makes possible to rewrite the
time-evolution operator in the interaction picture as

S(t,to) = i %/t dt, /tdtg---/t dt,, T [Vi(t1)Vi(ts) - -- Vi(tn)],
n—=0 : to to to

(6.22)
where the n = 0 term is the unit operator and T is the time-ordering
operator that we introduced in the last chapter. The demonstration of this
last step is left to the reader as an exercise.
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6.3 Perturbative expansion of causal Green’s functions

Our goal now is the calculation of a generic causal Green’s function, which
in a discrete basis is given by

(| T |ein (t)c], ()] [¥n)

(Un|Vh)
Here, the expectation value is evaluated in the ground state of the system

Gij(t,t') = (6.23)

described by the Hamiltonian of Eq. (6.1) and the operators are written in
Heisenberg picture. Notice that we omit the superindex ¢ to abbreviate the
notation and we introduce the denominator for normalization reasons that
will become clear later on.

As explained in the previous section, it is convenient to use the interac-
tion picture. We first transform the operators:

(Wh|T |S(0, )y (BS(E t)ele ()8 (¢, 0)] i)

(Uu|Va)
Here, we have used the superindex (0) to emphasize that the operators in

Gij(t,t') = (6.24)

the interaction picture correspond to Heisenberg operators of the unper-
turbed system. We now transform the wave function by using

W) = S(0,t)|¥1(t)), (6.25)

where ¢ is an arbitrary time. Now, we want to relate the state |WUy(¢)) with
the unperturbed ground state (for V.= 0), |¢o). This can be done using
the so-called adiabatic hypothesis. In this hypothesis, one assumes that
if the perturbation is switched on at an initial time, let us say ¢t = —oo,
and grows slowly to its actual value at t = 0, the physics is not modified.
This adiabatic switch on is achieved by replacing the perturbation V by
VeIl where € is an infinitesimally small positive parameter. In this
way, at t = +oo the perturbation vanishes and the system tends to the
unperturbed ground state

[Wi) = S(0, —00)|¢o). (6.26)

This procedure is not completely well-defined and one can show that
during the evolution of the ground state from ¢ = —oo to ¢ = 0 with the
operator S, the wave function acquires a phase that diverges as € tends to
zero. These phase factors are finally canceled by the terms in the denomi-
nator of the expectation value. The rigorous statement of this fact is known
as the Gell-Mann and Low theorem and for more information we refer the
reader to the book of Fetter and Walecka [173].
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We now make use of Eq. (6.26) to write the causal Green’s function as
follows

(90lS(o0, 0)T [S(0,6)ely) (DS (£, #)cly) ()S(¢,0)] $(0,—00) o)

Gij(t 1) = {¢0lS(00, —00)lg0)
(6.27)

Here, we have used the time symmetry of the problem that implies in par-
ticular that the ground state wave function is recovered at t = 400 (apart
from a phase factor). On the other hand, it is obvious that in the previous
expression we can introduce the time-evolution operators appearing next to
the wave functions inside the time-ordered products. Thus, the expectation
value now reads

(0T [y (11ele! (1)8 (00, o) | 90)
(0[S (00, —00) o)

where we have grouped all the pieces of the operator S since the operator

Gij(t,t) = , (6.28)

T ensures the proper ordering. Now, we use the expansion of Eq. (6.22) for
the operator S to write the expectation value as a perturbative expansion

oo

e 1 (=) [~ "
Gij(t,t") = EAEICRSIEn Lz:% — /oo dty... dt,x  (6.29)

(@0|T ey (e @)V (1) - VO (2)] o)

where the zero-order term (n = 0) corresponds to the unperturbed Green’s
function, which we shall denote as G’l(.?)(t,t’ ). The previous expression is
the central result of this section.

The perturbative expansion adopts the same form, irrespectively of the
basis used. Thus for instance, if one uses a spatial representation, the
previous expression becomes

1IN 1 - (_z)n =
G(rt, r't') = 9oT8(%0. —5)[u] LZ:O — /_oodtl dt,x  (6.30)

(60| T [ @O )T )V (11) - VO (1) )|

6.4 Wick’s theorem

With the perturbative formalism that we have developed so far, the problem
of calculating a Green’s function or any expectation value of an operator
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in the ground state reduces to the calculation of expectation values in the
unperturbed ground state of the following type

(¢olT |2 ()T )V O (1) - VO ()] |do)- (6.31)

This is something that we can, in principle, calculate in an exact manner
because we know the evolution of the operators in the unperturbed problem.
However, in practice, the direct calculation of expectation values like the
one in Eq. (6.31) is extremely cumbersome. Fortunately, Wick’s theorem
simplifies enormously this task.

Wick’s theorem is the mathematical expression of the fact that the
electrons in the unperturbed problem are uncorrelated. Before stating the
theorem, let us illustrate it with a simple example. Let us consider the
following two-sites tight-binding Hamiltonian

H=) e(mo+ny)+ty (CJ{OCQU + cgaclg) . (6.32)

Let us also assume that we have two electrons in total. If |¢g) is the wave
function of the noninteracting problem, it seems natural that

(¢olm1rmyy|do) = (Po|n1t|¢o) (o [m1y|Po), (6.33)
since in the absence of interactions the probability of finding two electrons
simultaneously in |1 |) and in |1 1) must be equal to the product of the
probabilities (see Exercise 6.1).

Wick’s theorem generalizes this result to the expectation value in a non-
interacting ground state of a product of an arbitrary number of operators.
Without many-body interactions, an average like the one in Eq. (6.31) look
like

(@[T [T (@) e (1) e (ta)| I0).  (6.34)
Wick’s theorem establishes that such an expectation value is equal to the
sum of all possible factorizations of averages of two operators. Since in
our case the operators are fermionic and therefore anticommute, one has
to follow the usual criterion, i.e. the factorization that respects the origi-
nal order does not contain any minus sign, whereas the factorization that
differs by an odd number of permutations from the original configuration
introduces a minus sign. Thus for instance, the following expectation value
of the product of four operators can be decomposed as follows

(@olT e (1)l (#)efe) (t1)ely (t2)] |o) = (6.35)
(@0|T ey’ (el (1] 160) (00| T [ (t1)efy" (82)] 160)
~(@0lT [ (0)cfy) " (t2)] 190} {0 T [ (1)) ()] o).
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Notice that in the previous factorization one could have had additional
terms containing expectation values like for instance

(00[T [ ()ef) (1) 190}, (6olT [l (#)ely" (t2)] |eo)
v (90| T [l (1)) (1] Ieo).

However, they usually vanish for different reasons. In the first two cases,
the combinations of operators do not conserve the number of electrons.
The third expectation value vanishes, unless the ground state is magnetic.
Thus, usually the only terms that survive are those with the following form:
(¢o|T [ (O)( t)c (O)T(t )] |po), i.e. those with a combination of a creation and

an annihilation operator. As a convention, we shall always place the cre-
ation operator on the right hand side in these factors.

To end this section, notice that the basic factor appearing in the de-
composition that results from Wick’s theorem is closely related to a single-
particle Green’s function of the unperturbed system

0 0 0
(00T [y (Dele (1] Iéo) = G (2, 1). (6.36)
Thus for instance, the expectation value of the previous example can be
written as
(@[T ey (e (#)el (t)ely (t2)] o) = (6:37)
G (1) Gy (b1, t2) + Gl (1 1) G (1, 7).

6.5 Feynman diagrams

Feynman diagrams are a graphical representation of the different contribu-
tions of the perturbative expansion of a Green’s function, which result from
the application of Wick’s theorem. Let us recall that Green’s functions can
be interpreted as the propagation amplitude of an electron from one state
to another. In this sense, the Feynman diagrams turn out to have a simple
interpretation in terms of processes that contribute to the total amplitude
of propagation of an electron. Moreover, apart from the physical insight
that these diagrams provide, they also help in classifying and identifying
the contributions resulting from the application of Wick’s theorem.

Before describing the Feynman diagrams, we need a “dictionary” that
assigns a convenient graphical representation to the different functions



152 Molecular Electronics: An Introduction to Theory and Experiment

that appear in the perturbation theory. Thus for instance, the unper-
turbed causal Green’s functions, which appear in the perturbative expan-
sion through the application of Wick’s theorem, will be represented by a
solid line. This is shown in Fig. 6.1(a) for the function G (rt,r't') in real
space. For this case, the arrow points from the second set of arguments
(or event) to the first one (indicating the propagation of an electron from
r't’ to rt). If the problem depends explicitly on the spin, we would have to
label the different events with the corresponding spin. If we use a discrete
basis, the corresponding line will look like in Fig. 6.1(b).

(@) vt (b) |it (c) || Tt (d)
rM’

Pt it 't rt

Fig. 6.1 Basic elements of Feynman diagrams. (a) Propagator line between the events
r't’ to rt. (b) Propagator line between the states jo’ and io. (c) Full propagator line.
(d) Interaction line between the events r’t’ to rt. (e) Interaction line for an external
potential.

The full (or dressed) Green’s function that corresponds to the total
amplitude for the electron propagation will be represented as a double
line, as shown in Fig. 6.1(c). On the other hand, the electron-electron
interaction between two events will be represented by a wavy line, as in
Fig. 6.1(d). Notice that, in general, the interaction is instantaneous and
therefore U(rt,r't") o< 6(t —t'). In the case in which the perturbation is an
external potential, V' (r), this will then be represented by a dashed line, see
Fig. 6.1(e).

The structure of perturbative series and the corresponding Feynman
diagrams depends on the type of perturbation under study. In what follows,
we shall illustrate the diagrammatic approach with the analysis of two
examples where the perturbation is (i) the electron-electron interaction and
(ii) an external static potential.

6.5.1 Feynman diagrams for the electron-electron interac-
tion

Let us analyze the case of an electron system in which the electron-electron
interaction is considered to be the perturbation. In this case the Hamilto-
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nian has the following generic form in first quantization

N 1 N
H=H;+V =) h(r;)+ 5 > Ulri,xy), (6.38)

n=1 i3

where h(r) is single-electron Hamiltonian and U(r,r’) is the electron-
electron (Coulomb) potential. Using the second quantization language and
the basis of the eigenfunctions of the position operator {|r)}, the previous
Hamiltonian can be expressed in terms of the field operators as follows

H = Z/dr Ul (r)h(r)®, (1) (6.39)
+- Z/dr/dr Ol ()@, (U (r, )0, (v )0, (r).

oo’

Thus, the perturbation V appearing in the perturbative expansion of the
causal Green’s function of Egs. (6.30) is given by

VO (¢ Z / dr / dr’ OO ety OO (U (0, )T () WO (rt).

UU’
(6.40)
Using this expression in Eq. (6.30) and applying Wick’s theorem, we
arrive at the following expression for the first-order correction for the causal
Green’s function?

G (x,x") /dxl/dxl (x1,x7){ (6.41)

OGO (x,%1)G O (x1, %) + G (x,x1)GO (x1, %)) GO (x], x)
+iG (%, x7) GO (x1,%1) GO (x1, %) + 0V (1) GO (x, x1) GV (%], X)
GO (%) GO (x4, 31) G (x1,%) — 1@ (1)@ (1) GO (x,x) )

where we have used the shorthand x = rt to simplify the notation. In

Eq. (6.41) it was necessary to write the causal Green’s function with equal

time arguments, i.e. G(°)(¢,t), which has an ambiguous mathematical ex-

pression. We have used the following criterion that provides the correct
result: G(O(¢,t1), i.e. in Eq. (6.41) we have used

GO (x,x) = GO (rt,rt™) (6.42)

= i{go| TP () TP (rt) g0) = inV(x).  (6.43)

Now, we can use the graphical conventions introduced in Fig. 6.1 to

represent the six different contributions to the first-order correction of the
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X X
(1) ) 3 =
X X X
o Q A X]
X, X’ X’
X 4) X (%) X (6)
X
X O | @ | O’\f\/@
X X{ X X
X, X’ X’

Fig. 6.2 First-order Feynman diagrams for the electron-electron interaction.

causal Green’s function. This can be seen in Fig. 6.2, where we have num-
bered the terms from 1 to 6 following the order of Eq. (6.41).

Let us summarize some of the main features of these diagrams, which
are also found in higher-order contributions:

e The only thing that matters in the diagrams is their topology, i.e.
the way in which the different events are connected.

e The Green’s functions with equal time arguments are represented
by a closed loop and their value is equal to in(o)(r). If we used a
local representation {|i)}, then we would have

Gt 1) = i), (6.44)

e Notice that all the intermediate events are linked by an interaction
line and they have an incoming and an outgoing propagator, which
correspond to the scattering process that the electron undergoes
due to the electron-electron interaction. These intermediate events
are known as vertexes (see Fig. 6.3).

e In Fig. 6.2 there are diagrams that have parts that are not con-
nected to the the rest of the diagram and, in particular, to the
initial and final events. Since there is an integration over the in-
termediate arguments appearing in these disconnected parts, they

4We assume here that there is spin symmetry in the unperturbed problem. Thus, all
the Green’s functions are diagonal in spin space and we will not write explicitly their
spin index to abbreviate the notation.
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Fig. 6.3 Vertex: point where two propagator lines and an interaction line meet.

simply give a constant that multiplies the contribution of the rest
of the diagram. More importantly, one can show that these type of
diagrams do not contribute to the final expansion because they are
exactly canceled by the denominator of the full Green’s functions.
For a demonstration of this fact we refer the reader to the Exercise
6.3.

e As we can see in Fig. 6.2, several diagrams are topologically equiva-
lent (e.g. diagrams 1 and 3 or 2 and 4) and the only difference is the
order in which the arguments appear. However, since there are in-
tegrations over such intermediate variables, see Eq. (6.41), all these
equivalent diagrams give exactly the same contribution. This hap-
pens indeed at any order of the perturbative expansion. Thus, at
order n, any topologically connected diagram appears 2"n! times.
The factor 1/2 in the expression of V(?) together with the factor
1/n! in the perturbative expansion (see Eq. (6.30)) cancel exactly
this multiplicity. Therefore, we need to consider the topologically
connected diagrams only once.

Summarizing, the series of diagrams that contribute to the expansion
of the causal Green’s function are formed by the topologically distinct con-
nected diagrams. Moreover, the denominator in Eq. (6.30) drops. There-
fore, we can finally write the diagrammatic series of Eq. (6.30) as

G(rt,r't') = GO (rt, r't’)+Z(—z’)”+l/ dtl---/ dt, x (6.45)
n=1

— o0 — 00

(ol T [EO VO (1) -+ VO )T )] 60) comnected:
where only the contribution of the topologically distinct connected diagrams
is considered. Of course, there would be a similar expression for the Green’s
functions in a discrete representation (or basis).

It is a very useful exercise to find the 10 topologically distinct connected
Feynman diagrams that contribute to the second-order correction of the
causal Green’s function (see Exercise 6.4). In Fig. 6.4 we show some of
these diagrams.
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3 el el [

Fig. 6.4 Some of the 10 second-order topologically distinct connected Feynman dia-
grams for the electron-electron interaction.

The Feynman diagrams provide a very intuitive way of evaluating the
different contributions to the perturbative expansion of a causal Green’s
function. In this sense, one proceeds sometimes by identifying directly
the relevant diagrams rather than calculating the systematic perturbative
series. Indeed, one can derive simple rules to quantify the contribution of
the different diagrams. For the sake of completeness, we state here these
rules for obtaining diagrammatically the contribution at a given order n to
the causal Green’s function in the case of the electron-electron interaction:

(1) Draw all the topologically distinct connected diagrams containing n
interaction lines and 2n + 1 propagator lines between the initial and
the final events.

(2) Every event must be labeled with its corresponding space-time coordi-
nate rt (or it, if one works with a discrete basis |i)). All the events,
apart from the initial and final ones, contain a vertex as the one of
Fig. 6.3.

(3) Every propagator line connecting the events xo = raty and x; = rity
contributes with a factor G°(x1,xz2).

(4) Every interaction line connecting the events xo = rots and x; = rity
introduces a factor U(x1,x2) = U(ry,r2)d(ty — t2). In the case of a
discrete basis, this factor would be Ujj;; (corresponding matrix element
of the Coulomb potential).

(5) One has to include integrals over all intermediate variables.

(6) Every diagram of order n contains a pre-factor i".

(7) Finally, there is a sign (—1)%, where F is the number of closed loops
in the diagram. The closed loop can be formed either by a single
propagator or by a combination of several of them. Moreover, a Green’s
function with equal time variables must be interpreted as G (xt, x"t™).

As an illustration of these rules, let us compute the contribution corre-
sponding to the last diagram in Fig. 6.4. This second-order contribution is
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equal to

—z'2/alxl/dx’l/de/dx/2 GO (x,%,)U(x1,x})GO(x], x5) GO (x, %)
GO (x1,x2)U (x2,%5)G® (x5, %).

6.5.2 Feynman diagrams for an external potential

Now, we assume that the electrons are subjected to an external time-
independent perturbation of the form

N
V= Z V(r:), (6.46)

which in second quantization can be written as (in the interaction picture)

Vo =3%" / dr O (rt)V ()& (rt). (6.47)
|
I X
| +  ---- X + | F e
N X
|

Fig. 6.5 Diagrammatic series for the propagator in the case of an external potential.

For the sake of simplicity, we have assumed that the potential does
not depend on the electron spin. In this case, the diagrammatic series
is very simple. Applying Wick’s theorem to Eq. (6.30), one obtains the
diagrammatic series shown in Fig. 6.5. This means that in the propagation
of the electron from the initial instance to the final one, one simply has a
series of sequential scattering events with the external potential. The rules
for computing the contribution to the nth-order correction of the causal
Green’s functions are very simple in this case:

(1) Draw the sequential diagrams like in Fig. 6.5 with n + 1 propagators
and n interaction lines.

(2) Associate the corresponding Green’s function to every propagator line.

(3) Assign the corresponding external potential to every interaction line.

(4) Integrate over the intermediate variables.



158 Molecular Electronics: An Introduction to Theory and Experiment

(5) The prefactor is 1.

Due to the simplicity of the diagrammatic series in this case, it is often
possible to sum up all the contributions up infinite order (notice that the
diagrammatic expansion leads to a geometrical series). As an illustration of
the previous rules, the second-order diagram in Fig. 6.5 gives a contribution
equal to

/dxl/dxz GO (x, %)V (r1)G (x1,%x2)V (r2) G (x5, %'). (6.48)

6.6 Feynman diagrams in energy space

In spite of all the simplifications that we have introduced in the last section,
it is still very difficult to compute the different terms of the perturbative
series. This is due to the presence of the integrals over the intermediate
arguments. Thus for instance, a diagram of order 1 for the electron-electron
interaction contains up to six integrals.

The problem can be simplified by noticing first that in an equilibrium
situation the Green’s functions depend exclusively on the difference of the
time arguments. Thus, we can Fourier transform with respect to time and
work in the energy space. The introduction of the Fourier transformation
modifies the Feynman diagrams and we now study how this occurs in detail.

On the other hand, if the system is spatially homogeneous, the prob-
lem can be simplified even further since then the Green’s functions de-
pend only on the difference of the space coordinates. We shall first discuss
this case and later on, we shall generalize the results to an arbitrary non-
homogeneous system.

As we have just said, if the system is spatially homogeneous and in
equilibrium, the Green’s functions satisfy

G(rt,v't") =G(x — 1/, t — t'), (6.49)

or, using the four-dimensional notation (x = rt), G(x,x’) = G(x — x'). If
we assume that the interaction potential also satisfies U(x,x") = U(x—x/),
we can then Fourier transform

dk [ dE .
G(rt) = g / ge(k EY Gk, t). (6.50)

In what follows, we shall use the following simplified notation: p =
(k, E) and p - x = kr — Et. With this notation, the different Fourier
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transforms read

G = [ Gmre™Go): V) = [ B um). )

where dp = d*kdFE is the volume element in (k, E)-space.

In order to illustrate how the diagrams are modified in energy space, we
choose a first-order diagram for the electron-electron interaction, namely
diagram 2 in Fig. 6.2. The contribution of this diagram, which we shall
denote as D(x — x'), is given by

D(x—x') = i/dxl /dx’l GO(x —x)U(x; — x}) (6.52)

GO (x; —x))GO (x| — x)).

Substituting in the right hand side of this expression the Fourier trans-
form of G©) and U, one has

. dp dq / dp’ / dq’
D — — / .
Ge=x) / d"l/ d"l/ <2w>4/ eni | ot ) o )
GO (p)U(q)GO ()G (p)eP 1) gialx—x1) gia’ (x1—x7) o i’ (x) =)

This expression can be greatly simplified in the following way. First, we
regroup the exponential terms as follows

ePX gix1(—pt+ata’) yixi (p'—a—q’) ,—ip'x" (6.54)
Now, we integrate over the variables x; and x/:

/dxl exi(ptatd) — om)'5(p-q-qd)=>q =p-q  (6.55)

/dxll exiP'-a=d) — om)i5(p' —q—q )= p' =q+dq =p.

The previous equations simply express the conservation of the four-
dimensional moment (momentum and energy) in every vertex, as we illus-
trate in Fig. 6.6, where the momentum lost by the electron in the scattering
process is carried by the interaction line. If we now substitute Eq. (6.55)
in Eq. (6.52), we obtain

Dex—x) =i [ Rrere) [ S u@e m)6" m - 96O )

(2m)* (2m)*
(6.56)
This implies that the Fourier transform of the diagram can be written as
. dq
D) =i [ G U@E I (P -G E). (657
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Fig. 6.6 Energy and momentum conservation in a vertex.

The previous derivation would be similar for any diagram. The key idea
is that the energy and the momentum are conserved in every vertex. Thus,
one can view the diagrams as flow diagrams in which the propagator lines
and the interaction lines carry momentum and energy. The momentum k
and the energy E carried by the initial propagator are also carried by the
final one, due to the conservation of momentum and energy in every vertex
of the diagram. This is illustrated in Fig. 6.7 with two first-order diagrams
and a second-order one. Notice that, since the interaction lines carry both
momentum and energy, one has to assign to them a direction, which is
indicated by an arrow in the diagram.

Fig. 6.7 Feynman diagrams in momentum and energy space.

As in the case of real space, it is possible to establish the diagrammatic
rules for computing the perturbative expansion of the causal Green’s func-
tion in energy space. Those rules for the nth-order correction now read:

(1) Draw all the topologically distinct connected diagrams with n interac-
tion lines and 2n 4+ 1 propagator lines. These diagrams are the same as
in the ones in (r,t)-space.

(2) Assign the flow direction (arrows) of the momentum and energy to
every interaction and propagator line.

(3) The momentum and the energy must be conserved in every vertex.

(4) Every propagator with momentum k and energy E contributes with a
factor that is equal to the unperturbed causal Green’s function, which
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for a homogeneous electron gas has the form
1
E —ex —insgn(k — kp)’

GOk, E) = (6.58)

(5) Every interaction line with momentum k introduces an interaction po-
tential in momentum space. For the homogenous system and for the
Coulomb potential, it has the form

4rre?
L2

(6) We have to integrate over all intermediate momenta and energies (for

U(k) = (6.59)

a non-homogeneous systems only over the energies).

(7) As a consequence of the previous rule, there is a factor for a diagram
of order n equal to 1/(27)*" (equal to 1/(27)", if one only needs to
integrate over the energies). Moreover, there is a factor i”, as in the
case of real space.

(8) As in the case of real space, there is a sign (—1)¥, where F' is the
number of closed loops.

(9) Finally, let us remind that for the diagrams in real space, there was
an ambiguity that occurs when the time arguments of the causal
Green’s function are equal. This problem was solved with the crite-
rion GO (t,t) = GO (t,tT). The consequence of this choice when we
Fourier transform is the introduction of a convergence factor exp(iEn),
which must appear associated to every propagator that forms a closed
loop and to those that are connected by an interaction line (if the in-
teraction is instantaneous).

As an example, let us write the contribution of the second-order diagram
in Fig. 6.7. The result is

/ 17 /
= b A s
GO, E )G<0><k’+q E'+ ENGOY(k E).

To conclude this section, it is convenient to generalize the results ob-
tained so far to the case of non-homogeneous systems. Indeed, this gen-
eralization is quite simple. Since the momentum is not a good quantum
number, it makes no sense to Fourier transform with respect to the spatial
coordinates. However, since the system is in equilibrium, one can still in-
troduce the Fourier transform with respect to the time arguments. This is
done exactly in the way explained above for the homogeneous system.
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Fig. 6.8 Second-order Feynman diagrams in energy space for the Anderson model.

As an example, let us calculate the contribution of second-order diagram
of Fig. 6.8 for the Anderson model that we discussed in section 5.4.3:

dE"
vt [ S [ GBI, (B — BGEL (E)GR, (B + BG, (B),

Here, the index 0 refers to the impurity level.

6.7 Electronic self-energy and Dyson’s equation

In the previous sections we have analyzed the structure of the diagrammatic
series of an electronic Green’s function. In this section we shall show that
it is possible to sum formally the diagrams up to infinite order, leading to
the Dyson’s equation. But before describing this further simplification of
the perturbative expansion, let us introduce the concept of self-energy.

In Fig. 6.9 we show again the diagrammatic expansion for the Green’s
function in the cases in which the perturbation is an external potential and
the electron-electron interaction. Notice that in both cases the diagrams
have the same type of structure in the following sense. They are formed by
an initial and a final Green’s function (the same in all diagrams) and by
a central part where one can find all the scattering processes. Obviously,
this latter part is the interesting one. This structure of the diagrammatic
series allows us to define the (improper) electronic self-energy as the sum
of the central part of the diagrams to all orders (X; in Fig. 6.10). Thus,
the diagrammatic series for the self-energy insertion has the form shown
in Fig. 6.11 for the cases of an external potential and the electron-electron
interaction.

Notice that in the previous discussion we have neither specified the rep-
resentation nor the space (time/energy). In this sense, the result discussed
in the previous paragraphs is quite general. The diagrammatic expansion
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(a)
----- X
N = “ + - - —X + + -------
----- X
e J—
m = |\ }vw@ M """"
Fig. 6.9 Diagrammatic expansion for the propagator for (a) an external potential and

(b) the electron-electron interaction.

of Fig. 6.9 can be summarized in the following equation in real space (r-
representation)

G(x,x") :G(O)(X,x’)—f—/dxl/dxz GO (x, %) 87 (x1,%2) GO (%9, x).

(6.60)
The equation in momentum-energy space (for a homogeneous case) reads
as follows

Gk, E)=GOK,E)+ Gk E)2(k, E)GY (k, E). (6.61)
In the case of a localized basis (like in a tight-binding model), the previous
equation adopts the form

Gii(E) =G +ZG§,3 )1 (E)GL (B). (6.62)

To avoid explicit reference to any particular representation or space, we
shall write the previous equation in matrix form:

G=G"4+GcOx,;GO, (6.63)

Fig. 6.10 Self-energy insertion.
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@ [T X
----- X
= -2 X + + ----- X N TP
----- X
----- X

(b)

Fig. 6.11 Diagrammatic expansion for the self-energy insertion. (a) External potential.
(b) Electron-electron interaction.

where the internal integrals and sums are implicitly assumed. It is possi-
ble to write this equation in a more convenient way by inspection of the
perturbative series of G or ;. Let us illustrate this fact first with the
example of an external potential. As we explained in previous sections, the
diagrammatic expansion has in this case the form of a geometrical series
where the diagram of order n is simply the repetition of n identical pieces.
If we define in this case the proper self-energy, 3, as the part of the diagram
that includes only a single scattering process, which in this case is simply
the external potential, we have the following identity

»,GO = 3G, (6.64)

This is evident when it is expressed diagrammatically as in Fig. 6.12.

---X

Fig. 6.12 Relation between the self-energy insertion, 3; and the proper self-energy, 3.

The proper self-energy, or from now on just self-energy, does not con-
tain repetitions of the same process, but only one scattering event. Then,
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Eq. (6.63) can be written in terms of the self-energy as
G=G9 +GcY%aG, (6.65)

which constitutes the so-called Dyson’s equation and was first obtained by
F. Dyson in 1949 in the context of the quantum electrodynamics.

Let us now discuss the derivation of this result in the case of the electron-
electron interaction. Notice first that in this case the diagrams that con-
tribute to the self-energy insertion to all orders can be classified in two
different ways. On the one hand, we have diagrams that cannot be sep-
arated in two parts by cutting a propagator line, i.e. they do not contain
repetitions of the same elementary process. These diagrams are called r-
reducible [see Fig. 6.13(a)]. On the other hand, we have diagrams that can
be divided into parts of lower order by cutting a propagator line, these are
called reducible diagrams [see Fig. 6.13(b)].

Fig. 6.13 (a) Examples of irreducible self-energy diagrams for the electron-electron
interaction. (b) Reducible diagrams.

We define the proper self-energy (or simply self-energy) in this case as
the sum of all the irreducible self-energy diagrams. With this definition, the
Dyson’s equation is also verified in this case. The proof is more complicated
than in the case of an external potential and it will not be detailed here.

The Dyson’s equation can be represented graphically as shown in
Fig. 6.14. Notice that the due to the symmetry of the diagrammatic series,
we could have chosen to close the Dyson’s equation in an alternative way:

G=GY +G=Gg,. (6.66)

On the other hand, notice that the Dyson’s equation obtained in the
previous chapter for single-electron problems, see Eq. (5.28), is just a par-
ticular example of Eq. (6.65), which is valid for any electronic system.



166 Molecular Electronics: An Introduction to Theory and Experiment

Fig. 6.14 Pictorial representation of the Dyson’s equation.

For systems in equilibrium it is convenient to write the Dyson’s equation
in energy space

G(E)=GY(E)+ GOE)Z(E)G(E), (6.67)

which will be our starting point for the description of the equilibrium prop-
erties of any system.

Taking into account the definition of the single-particle Green’s function
in energy space introduced in the previous chapter, we can rewrite the
previous Dyson’s equation as

—1
GOE)|  GE) =1+ 3(B)G(E) (6.68)
[E1-H)|G(E) =1+ X(E)G(E),
which allows us to write the Green’s function matrix of the full system as

G(E) = [E1—H, - Z(E)]". (6.69)

From this expression, one can interpret the self-energy as the matrix
whose elements renormalize dynamically the matrix elements of the unper-
turbed system. Thus for instance, for the homogeneous electron gas with
electron-electron interaction, the problem is diagonal in the plane wave
basis that diagonalizes Hy and the previous Dyson’s equation becomes

1
E—e -k E)

In summary, the perturbative analysis reduces to the evaluation of the

Gk, E) =

(6.70)

proper self-energy (or just self-energy) of the electronic system. For the
two cases considered in the last sections, namely external potential and
electron-electron interaction, this implies to calculate the diagrammatic
series depicted in Fig. 6.15.

Finally, let us conclude this section with some comments and the main
analytical properties of the electronic self-energy:
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Fig. 6.15 Diagrammatic expansion for the proper self-energy. (a) External potential
and (b) electron-electron interaction.

e The Dyson’s equation relates directly the self-energy with the full
Green’s function. Therefore, the analytical properties of 3(F) can
be derived from those of G(E).

e One can interpret Eq. (6.69) as a definition of ¥(F) in terms of G(FE).
Thus, it is also possible to define a retarded and advanced self-energy.

e From Lehmann’s representation of the Green’s functions, one can de-
duce the following properties that we state here without any proof:

Im{X(E)} <0;Im{2%(E)} >0 (6.71)
Im{X5(E)} >0 if E<p;Im{35(E)} <0, if E> pu.

e Im¥;;(F) and ReX;;(E) are related through a Hilbert transformation:

dE" Tm{X;*(E")}

1%

Re{Zizz (E)} - :FP/ . E — E!

Re {3,(E)} = —P / df’ Im{E%(Ebj )isgfl(E’—u)

(6.72)

6.8 Self-consistent diagrammatic theory: The Hartree-Fock
approximation

Apart from the Dyson’s equation, there exist other ways to include certain
diagrams in the expansion of the self-energy up to infinite order. By inspec-
tion of the set of diagrams that contribute to the self-energy, it is possible
to distinguish two types of diagrams. On the one hand, there are diagrams,
like the one shown in Fig. 6.16, in which in one of the propagators there
is a self-energy insertion. On the other hand, there exist diagrams that do
not contain insertions and they are called skeleton diagrams. An example
of a second-order skeleton diagram is shown in Fig. 6.15(b).

Analyzing the diagrammatic series of the self-energy, one realizes that if
we consider any skeleton diagram, there appear diagrams at higher orders
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a
a

Fig. 6.16 Example of diagram with a self-energy insertion in one of the propagators.

with the same structure (or skeleton), but with all possible self-energy in-
sertions in their propagators. This fact makes possible to sum up to infinite
order all the diagrams that share the same skeleton, which leads to effective
diagrams like the one depicted in Fig. 6.17. Here, we have taken into ac-
count the fact that by adding all the diagrams with the same structure, the
propagator in the skeleton diagram can be replaced by the full (dressed)
propagator.

Fig. 6.17 Second-order skeleton diagram.

The previous result implies that it is possible to write the self-energy
as an expansion that contains exclusively skeleton diagrams, where the
propagators are the full ones (they are sometimes referred to as dressed or
renormalized propagators). This is illustrated in Fig. 6.18.

Zzwwv@+@+ o

Fig. 6.18 Expansion of the self-energy in terms of skeleton diagrams.

It is worth stressing that the propagators that appear in these skeleton
diagrams are the perturbed ones, which are unknown and they have to be
determined by solving the Dyson’s equation. This means that the expansion
of Fig. 6.18, together with the corresponding Dyson’s equation provide two
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equations that have to be solved in a self-consistent manner. The most
common practice is to include just a few diagrams in the expansion of
Fig. 6.18. An interesting example that illustrates this procedure is the
Hartree-Fock approximation, which from a diagrammatic point of view, is
given by the approximation for the self-energy schematized in Fig. 6.19.

o= MWQ+@

Fig. 6.19 Hartree-Fock approximation for the self-energy.

Let us show now this approximation is indeed equivalent to the well-
known Hartree-Fock approximation in the more standard wavefunction-
based language (see section 10.1.3). The diagram that contains the bubble
(Hartree diagram) has the following expression in the representation |r)

>H(r) = Z/dr' Ul —1 )Gy (2t r't'T) (6.73)

— ;/dr’ Ul —r')ne (r') = Z/dr’ —f:i/ S]),

which is nothing else but the Hartree potential, where n, (r) is the perturbed
electron density with spin ¢ that has to be determined self-consistently.

Analogously, the second diagram in Fig. 6.19 is given by (in the repre-
sentation |r))

YX(r,r') = iU(r — 1')Gy(rt,r'tT). (6.74)

One can show that this expression leads to the known nonlocal (Fock)
exchange potential. For this purpose, one just needs to expand the field
operators in the previous expression in terms of an arbitrary single-electron
basis and take into account that the ground state is noninteracting. This
leads to

2 !
X AN € qbia(r )qbia(r)
Ea(r,r)——z P (6.75)
1

As an additional illustration of the Hartree-Fock approximation, we
discuss now the calculation of the energy bands in this approximation of a
homogeneous electron gas (see Exercise 6.5). In this case, it is not neces-
sary to do the self-consistency because it is automatically guaranteed due

homogeneity of the system with a constant density n = N/V. Instead of
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using the expressions derived above, we compute now the self-energy in this
approximation in the (k, E')-space. Evaluating the Hartree-Fock diagrams
in this space, one arrives at

U0y [ X,

Since the Fourier transform of the Coulomb potential, U(q) = 4me?/q?,
diverges at ¢ = 0, we replace the potential U(q) by lim, 0 4me?/(¢* + u?),
which allows us to control the divergence. This new expression is simply

E' -
/d2—7rGU/(k’,E’)eZE". (6.76)

the Fourier transform of a Yukawa-like potential exp(—ur)/r. Thus, if one
computes the integral in the expression of X one obtains

4 2
= T, (6.77)
14

Although this result diverges when p — 0, it is exactly canceled in the jel-

lium model by the potential created by the uniform background of positive
charge. Thus, the only remaining contribution is the exchange one that can
be expressed as

X , dq dv dk’  4me?
S50 =i [ o [ SU@G(—aB-) = - [ G5 o ).
(6.78)
Now using the Dyson’s equation in this representation, G(k,E) =
[E — e — B(k, E)] ", we see that the energy bands in the Hartree-Fock
approximation are given by ex gr = €k + ¥X (k). The explicit expression of

the dispersion relation is computed in Exercise 6.5.

6.9 The Anderson model and the Kondo effect

The goal of this section is two-fold. On the one hand, we shall use the
Anderson model, already discussed in section 5.4.3 and Appendix A, to
illustrate the perturbative approach described in this chapter. On the other
hand, we shall use this model to get a flavor of the Kondo effect. This is
a many-body phenomenon which can appear in molecular junctions and it
will be described in much more detail in Chapter 15.

The Anderson model describes the interaction of a localized level with
electron-electron interaction with the continuum of states of a metallic sys-
tem. It was introduced by Anderson to describe a magnetic impurity in
a metal host, but it can also be used to describe a metal-molecule-metal
junction, which is the problem that we are interested in. In this model, the
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Hamiltonian is given by Eq. (5.109), where in particular, the U-term de-
scribes the electron-electron interaction in this level. In the absence of this
interaction, this model reduces to the resonant tunneling model of section
5.3.3.

Our goal now is to study the influence of the electron-electron inter-
action in the equilibrium properties of a molecular junction, with special
attention to the local density of states. For this purpose, we shall make use
of the perturbative approach described in this chapter. In this approach we
shall consider the entire system without electron-electron interaction as the
unperturbed system and this interaction, i.e. the last term in Eq. (5.109),
will be considered as the perturbation. The unperturbed Green’s functions
projected onto the localized level were already obtained in section 5.3.3, see
Eq. (5.56). In particular, the causal function adopts the following form in
the wide-band approximation® )

0
Goo (E) = E —¢eq —isgn(E — p)’
where p is the chemical potential of the system and I' = I'f, 4+ 'y is the

(6.79)

total broadening of the level acquired via the interaction with the metal
electrodes. In what follows, we shall only consider symmetric situations
(', =T'g). As we saw in section 5.3.3, in this approximation the density
of states in the localized level is a Lorentzian with I' as its half width at
half maximum.

In the rest of this section, and in order to study the effect of the electron-
electron interaction, we shall first discuss the so-called Friedel sum rule,
which is an exact result that relates the local density of states at the Fermi
energy to the occupation of the level, and then we shall do a perturbative
analysis up to second order in the interaction U.

6.9.1 Friedel sum rule

We discuss now an important exact result, known as Friedel’ sum rule,
which is a consequence of the Fermi liquid properties of the system described
by the Anderson model.® This sum rule can be derived as follows. The effect
of the electron-electron interaction in the localized level can be included via
the exact self-energy of the problem, Yoo »(E).” The (retarded) full Green

5Notice that this function is independent of the spin.

6 Although we have not discussed the Fermi liquid theory in this book, we find important
to introduce this discussion about Friedel sum rule because it provides a simple way to
understand the appearance of the Kondo effect.

"Notice that we have now included the spin index o in the self-energy.
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function projected onto the level can written in terms of the self-energy as
1
bo.o(F) = .
00.0(E) E — e+l — 3 ,(E)
Taking now into account that the density of states in the level is given
by poo(E) = —(1/7)ImGyq , (F), the corresponding occupation can be ex-
pressed as
" 1 [ 1
o) = dE poo(E) = —— dFE . (6.81
(o) / pos () 7T/ E —eo+il" = X, , (E) (6:81)

— 00 — o0

(6.80)

We can now use the relation

1 0
= Smn[E— T — X0, (E
o+l -, @) o Pt =S (B)]+

6200 U( )/aE

6.82
together with the Ward identity (see Exercise 6. 6)
g 9%0,0 (F)
dE G —— =0 .8
[ e G () =52~ (6.83)
to write the occupation as
1 H 0 , ,
(npy) = —%Im N dE 9B In [E — €9+ 1" — Eoo,a(E)] . (6.84)
Integrating this expression we arrive at
1 1 [eo—p—ReXfy, (1)
(nos) = 5 - tan l T (6.85)

Here, we have used the fact that in a Fermi liquid Im>3{, (1) = 0, which
physically means that the quasiparticles have an infinite lifetime at the
Fermi energy.

Thus, we can write the local density of states as

1 I' + ImXg, a(E)
L o 6.86
poo (E) . [E e — ReZSO,a(M)] [F + Im.j, O'(E):| ( |

Using Eq. (6.85), we can relate the exact density of states at the Fermi

energy with the occupation of the level as follows

.
poo (1) = —= sin? [w(no,)] , (6.87)
nl’
which is known as Friedel sum rule. In a case with electron-hole symmetry
and (ng,) = 1/2, the previous expression reduces to

poo (1) = ;%:- (6.88)
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Fig. 6.20 First (a) and second (b) order self-energy diagrams in the Anderson model.

Notice that this equation implies that in the symmetric case, the density
of states at the Fermi energy coincides with the corresponding one in the
unperturbed problem, i.e. po, (1) = pé?,) ().

Friedel sum rule implies the appearance of a narrow peak in the density
of states in the limit U/T" — 0. Let us discuss how this comes about. In
section 5.4.3 we saw that the level Green’s function in the limit U/T" — 0
(atomic limit) is given by Eq. (5.112). This equation suggests that when
U > T, the density of states consists mainly of two subbands (of width
~ I') around €y and €y + U, which have most of the total spectral weight.
However, Eq. (6.88) tells us that there is a finite density at the Fermi
energy. Therefore, the exact density of states must exhibit a narrow peak
at the Fermi energy, known as Kondo peak or Kondo resonance, the width
of which tends to zero in the limit U/I"' — 0. Indeed, it can be shown that

this weight decays exponentially in this limit.

6.9.2 Perturbative analysis

We now want to calculate the properties of the system via a perturbative
expansion of the Green’s functions. For this purpose, we need an approx-
imation for the self-energy, which can be obtained from the lowest-order
diagrams. Expanding up to second order in U, one finds only two self-
energy diagrams that give a finite contribution, namely those depicted in
Fig. 6.20. The first-order diagram, see Fig. 6.20(a), is the Hartree diagram
and it yields the following contribution

oo E/ o,
ESB),O'(E) = U/ d2ﬂ_ G(()%),U(E/)GZE N — U<n06'>' (689)

— 00

The standard Hartree approximation requires to determine the occupation

(nps) in a self-consistent manner, i.e. by dressing the Green’s function line
in the Hartree diagram.

The level Green’s function can then be written within this approxima-
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tion as
1
E — ¢y +il'sgn(E) — U(ngs)’

where we have set u = 0. Notice that the role of the interaction is to

Goo,o(E) = (6.90)

shift the position of the resonant level, which moves to €y + U(nps). In
the special case in which ¢g = —U/2, known as the symmetric case, the
self-consistent solution, assuming that there is no magnetic solution, is
(nps) = (nos) = 1/2. The problem exhibits in this case electron-hole
symmetry around g = 0 and the density of states is still described by a
Lorentzian of width I'.

Let us now analyze the contribution of the second-order diagram, see
Fig. 6.20(b). Such contribution is given by

oo dE// oo dE/
SReE) =v* [ G [ S 6B - NG (ENGHL (B + )

2w 2w
(6.91)
This expression is not easy to evaluate, but the main features of this self-

— o0 — o0

energy can be reproduced in a simple analytical calculation in which one
assumes a constant density of states for the unperturbed problem (see Ex-
ercise 6.7).

If in the diagram of Fig. 6.20(b) the Green’s function line is dressed with
the Hartree diagram and one considers the symmetric case (¢ = —U/2), the
second-order approximation preserves the electron-hole symmetry around
p = 0 and one has (ng,) = (né?,)) Moreover, in this case one can show that
ReEé%),a(u) = ImZ(()%{U(,u) = 0. This implies that pp, = ,0(()(2,) and therefore
the Friedel sum rule is satisfied. This is one of the reasons why this second-
order approximation gives an excellent description in the symmetric case,
even if U is not too small in comparison with I'.

In order to illustrate the effect of the electron-electron interaction in the
density of states, we have computed it numerically in the symmetric case
using the second-order self-energy of Eq. (6.91). The results for different
values of the ratio U/T" are shown in Fig. 6.21.% As one can see, as the U/T’
increases, the density of states exhibits two subbands around ¢y and €g+ U
and a narrow peak at the Fermi energy (the Kondo peak). Notice that the
height of this peak remains constant and it is equal to 1/(#«T’), as in the

case without electron-electron interaction. The appearance of this peak at

8In this figure we explore cases in which U is considerably larger than I', which in
principle should be out of the scope of this second-order approximation. However, as
stated above, this approximation works nicely in the symmetric case and it reproduces
the main features of the exact solution [651].
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Fig. 6.21 Density of states projected onto the localized level as a function of the energy
in the Anderson model for ¢¢ = —U/2 and different values of the ratio U/T". The
calculation has been done including the self-energy diagrams up to second order. The
inset shows a blow-up of the energy region close to the Fermi energy.

the Fermi energy has very important consequences for the low-temperature
transport properties of molecular junctions. This will be discussed in detail
in section 15.6.2.

6.10 Final remarks

In this chapter we have presented a systematic perturbative approach to
compute zero-temperature Green’s functions of an electronic system. The
next natural step in most textbooks is to discuss the generalization of this
approach to finite temperatures. However, we shall skip this extension and
jump in the next chapter to the nonequilibrium formalism in which the
temperature will enter in a natural manner. Anyway, the reader is now in
position to study the finite-temperature formalism, which can be found in
different textbooks, see e.g. Refs. [173, 174, 182, 185].

It is worth stressing that in this chapter we have focused on the de-
scription of electronic systems, but a similar perturbative approach can be
extended to other types of systems. For instance, in nanoscale junctions
phonons or local vibrations play an important role both in the electronic
and thermal transport properties. In this sense, it is interesting to learn
how the diagrammatic formalism described in this chapter can be applied
to phonons and other bosonic degrees of freedom. This subject will not be



176 Molecular Electronics: An Introduction to Theory and Experiment

address in this monograph and for those readers interested in this topic we
recommend Refs. [173, 174, 182, 185].

Finally, we would like to emphasize that at this stage the reader is ready
to study many important topics in solid state physics which are out of the
scope of this book. For instance, the formalism detailed in this chapter
is the starting point to understand the Fermi liquid theory, which is very
important to get a deeper insight into the physics of metals. The reader is
now also prepared to study the physics of the homogeneous electron gas,
which is a model system where one can learn many important lessons related
to the relevance of electronic correlations. Again, Refs. [173, 174, 182, 185]
are very recommendable for studying these topics.

6.11 Exercises

6.1 Wick’s theorem I: Let us consider the two-sites tight-binding Hamiltonian
of Exercise 5.1(b). Compute the ground state wave function, |¢o), for the case in
which there are 2 electrons in the system. Then, show that the following relations
hold:

(Polnirni|¢o) = (Po|nit|po)(Po|niy|po)
(¢o[natnzy|do) = (Po|n2t|po)(Po|nzy|po).

6.2 Wick’s theorem II: Starting from the results of Exercise 5.1(b) about the
time evolution of the creation and annihilation operators of the two-sites system,
show without applying Wick’s theorem that

(60IT [e10 (0)eks (el (V)ers ()] 160) = ~Ga (6 = )G (0 )

which is the result that one obtains using Wick’s theorem.

6.3 Cancellation of the disconnected diagrams: Compute the denomina-
tor of the Green’s function, (¢o|S|po) up to first order for the electron-electron
interaction and show that it exactly cancels the contribution of the disconnected
diagrams that appear in the numerator of the Green’s function (see Fig. 6.2).
Hint: Show that (¢o|S|¢po) has the following diagrammatic expansion up to first

order:
L+ OwO + &

Fig. 6.22 Diagrammatic expansion of the denominator of the Green’s function up to
first order in the electron-electron interaction.
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6.4 Feynman diagrams for the electron-electron interaction: Let us con-
sider a system of interacting electrons with the electron-electron interaction as a
perturbation. Use Wick’s theorem to compute the different contributions of the
10 second-order topologically distinct diagrams. Check that the rules presented
in section 6.5.1 reproduce these results.

6.5 Hartree-fock approximation for the homogeneous electron gas: De-
rive the expression for the exchange potential of an interacting electron gas and
demonstrate that the energy dispersion relation in this case is equal to

|\

where ko = k/kr. Show also that the derivative of the dispersion relation exhibits
a logarithmic divergence at k = kr.

6.6 Ward identity: Demonstrate the Ward identity of Eq. (6.83).

1+ ko
1— ko

oo W 2e%ke [T 1—ko
ST T om T T (20 dke

6.7 Density of states and Kondo resonance in the Anderson model:
Compute the second-order contribution to the retarded self-energy in the Ander-
son model, see Eq. (6.91), in the symmetric e¢ = —U/2 by assuming that the
unperturbed density of states adopts the form

(0) 1w, =-W/2< E<W/2
pOo’(E)_{ 0, |E| > W/2

where W is a constant. Use this result to plot the density of states in the level
as a function of energy for different values of the ratio U/I". Hint: Use first the
spectral representation to write the unperturbed Green’s function appearing in

Eq. (6.91) in terms of the density of states p(()?,).
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Chapter 7

Nonequilibrium Green’s functions
formalism

So far we have shown how the Green’s function techniques can help us to
understand the physics of systems in equilibrium. Since our goal is the
analysis of the transport properties of different nanocontacts, we have to
generalize those techniques to deal with situations in which the systems
are driven out of equilibrium. This is precisely the goal of this chapter
in which we shall discuss the so-called nonequilibrium Green’s function for-
malism (NEGF). This formalism was developed independently by Kadanoff
and Baym [186] and Keldysh [187] in the early 1960’s. Here we shall follow
Keldysh formulation of this approach and we shall refer to it as the Keldysh
formalism. This formalism is a natural extension of the diagrammatic the-
ory that we have presented in the previous chapter. The importance of
the Keldysh formalism lies in the fact that it allows us to go beyond the
usual linear response in a systematic manner. Since its appearance, it has
been used in a great variety of topics (see Refs. [188, 189] and references
therein). In particular, it has been applied to the study of electronic trans-
port in many types of nanoscale devices and it constitutes a basic tool that
will be used throughout the rest of the book.

Apart from the original paper [187], there exist a number of excellent
reviews devoted to the Keldysh formalism in the literature [188-191]. We
try to explain it here in a didactic manner, concentrating ourselves on its
application to the problems of molecular electronics that we have in mind,
rather than entering into very technical discussions about its foundation.
Bearing this in mind, we have organized this chapter as follows. We first
present the general ideas of the Keldysh formalism. Then, we shall briefly
discuss how to perform the diagrammatic expansion within this formalism.
We shall finish the formal discussion by reviewing both the main properties
of the functions appearing in this nonequilibrium formalism and the main
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practical equations. Finally, the last part of this chapter is devoted to the
application of the Keldysh formalism to some simple transport problems.

7.1 The Keldysh formalism

In an out-of-equilibrium situation the perturbative approach detailed in the
previous chapter is not applicable. However, its generalization to nonequi-
librium situations is straightforward. Let us consider an electron system
that is described by the following Hamiltonian

H=H,+ V(t), (71)

where Hy is a noninteracting Hamiltonian and V(¢) is a time-dependent
perturbation that can contain external potentials and interaction terms.

As in the equilibrium case, we are interested in the calculation of ex-
pectation values of operators like the following one

(Vu|Au(t)|YH)

(Uu|Pn)
where, for the sake of clarity, we consider the expectation value of a single
operator rather than the usual product of two of them.

We now change to the interaction picture, where this expectation value
becomes

(A) = (7.2)

(W1 Ar(t)[Vr)

A) = 7.3
Although the perturbation in this case may depend on time, one can still
assume that the interaction is adiabatically switched on and off at t = —o0

and t = oo, respectively. As usual, this can be done by the replacement
V(t) — exp(—¢|t|)V(t), where € is an infinitesimally small positive param-
eter. In the equilibrium case, the time symmetry is preserved and at time
t = oo we recover the same noninteracting state |¢g) that we had at t = —oo
(apart from a phase factor). However, out of equilibrium this symmetry
is in general broken and the starting point for the perturbative expansion
must be the following one

<¢0|S(—OO, t)AI(t)S(tv _OO)|¢O>
(¢>0|S(—oo,t)S(t,—oo)|¢o> .

At a first glance, one might think that now the perturbative expansion

(A) = (7.4)

becomes very cumbersome because we cannot group all the pieces of the
time-evolution operator into a single one. Keldysh showed that one can
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— upper branch (+)
'
) +00
-}
— o0

lower branch (—)
Fig. 7.1 The Keldysh contour.

still order the time arguments along a modified time contour. This contour
is referred to as the Keldysh contour and it is depicted in Fig. 7.1.

On this contour, the time runs from —oo to 400 in the upper branch,
whereas it does it backwards in the lower one, i.e. from +o00 to —oo. In
order to indicate in which branch the time arguments lie, we introduce
a subindex that will be equal to + for the upper branch and — for the
lower one. With this notation, we can write now the expectation value of
Eq. (7.4) as

(0[S (—00,00)8 (00, 1) A1(t)S 4 (£, —00)|¢o)

A = S (—o0, )81 (00 D8+ (1 —o0ld) © )
if ¢ lies in the upper branch or
<A> _ <¢0|S—(_OO? t)AI(t)S— (t7 OO)S+(OO7 _OO)|¢O> (76)

(do]S—(—00,)S_(t,00)S+ (00, —00)[do)
if ¢ lies in the lower one. Defining the operator T. that orders the time
arguments along the Keldysh contour, we can rewrite the expectation value
as

(90| Te [A1(t)S— (—00,00)S 1 (00, —00)] [Po)
(#0]S— (=00, 00)S (00, —00)|¢o) '

This expression can be in turn rewritten in a more familiar way by defining

(A) =

(7.7)

the operator that describes the time-evolution along the Keldysh contour
Sc(00, —00) = S_(—00,0)S 4 (00, —00). (7.8)

With this definition we can finally write the expectation value (A) as
follows

(90| T [A1(t)Sc(00, —20)] |¢0)
<¢O|Sc(oo7 _OO)|¢O>

Analogously, one can express the expectation value of any operator product.

(A) = . (7.9)

The expectation value of Eq. (7.9) has formally the same structure as
in an equilibrium situation. The main difference is the fact that one has
to keep track of the branch in which the time arguments lie ({4 and ¢_).
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This implies that when defining the propagators in this formalism, there
are four different possibilities depending on the two time arguments. These
definitions are analogous to those of the causal function in the equilibrium
formalism

(| Te e (ta)el, (th)] 1)

Gij(ta,ty) = —i T (7.10)
I [, (et ) W) | )
G(rta,r'ty) = —i Tl , (7.11)

depending on whether we use the representation |i) or |r). The subindexes
«a and (§ take the values + and — and indicate in which branch the time
arguments lie. Let us now discuss in detail the expression for the four
possible functions:

(1) t=ty and t' =t/ :
In this case both time arguments lie in the upper branch and the cor-

responding Green’s function reads (for a discrete representation)
g N . Ty
GH (1) = =T [ein (e, (1)), (7.12)

where, from now on, the subindexes o, = +,— will appear as su-
perindexes of the Green’s functions. Moreover, in order to simplify the
notation, we shall drop the wave functions in the expectation values and
we shall not include the denominator (Uy|Wy), which indeed turns out
to be equal to 1 (see discussion below). Notice that this function is
nothing else but the causal Green’s function.
(2) t=ty and t' =1t":
In this case, since any time in the lower branch of the Keldysh contour

is “larger” than any time in the upper branch, one has
G (t,t) = i(e], (e (1)) (7.13)

This function plays a fundamental role in the nonequilibrium Green’s
functions theory and, as we shall see later, it contains information about
the distribution function of the electrons.

(3) t=t_and t' =t :
In this case we have

G (t,t) = —ifcis (t)el, (). (7.14)

jo

This function contains essentially the same information as Gj;-* (t,t).
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(4) t=t_ and t' =1t"
In this last possibility, both time arguments lie in the lower branch,

where the arguments are ordered in an antichronological way. There-
fore, this new function reads

G (t, 1) = —i(T [cw (t)c}(,(t')} ), (7.15)

where the operator T orders the time arguments in the opposite way as
compared with the usual time-ordering operator T, i.e. in a antichrono-
logical order.

The four Green’s functions defined above can be grouped in a matrix

3 G+t gt-
6 (8787) -

where the check symbol (V) indicates that we are dealing with a 2 x 2

as follows

matrix in Keldysh space. The perturbative expansion couples the different
components of this matrix, which effectively leads to an enlargement of the
propagator space in a factor of 2. This enlargement is indeed quite natural
since in an out-of-equilibrium situation we have to determine not only the
states, the information of which is contained in the causal function, but also
the distribution function that describes how such states are occupied. This
latter information is provided by the off-diagonal functions in Eq. (7.16).

Formally speaking, the perturbative expansion is very similar to the
equilibrium one, and one has only to keep track of the matrix structure. A
additional complication is that in time-dependent problems, the products
are replaced by convolutions over intermediate arguments, which makes the
calculations considerably more complicated. Fortunately, transport prob-
lems often admit a stationary solution and then, the application of the
nonequilibrium formalism is not more complicated than the equilibrium
one.

As stated above, apart from the matrix structure introduced by the
Keldysh formalism, the rest of the perturbative approach is very similar to
the equilibrium one. To derive the perturbative expansion of the matrix
propagator of Eq. (7.16), one can use the expression of Eq. (7.9) and expand
the operator S.. Let us recall that S.(co, —00) = S_(—00, 00)S 4 (00, —00)
and the perturbative expansions of both time-evolution operators are given
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by

Sy

S_(—o0,00) = Z

After expanding the operators S; and S_, one applies the Wick’s theo-

|M8

_Z)n/ dtlm/oo T [Vi(t) - Vi(ta)] (7.17)

— o0

- dty - - /_oo dt, T [Vi(t1) - Vi(ta)].

rem in the standard way. Therefore, the resulting diagrammatic structure
is analogous to the one in equilibrium, the main difference being the en-
largement of the space that is encoded in the indexes a and 5. We shall
discuss the peculiarities of the nonequilibrium diagrammatic expansion in
the next section.

Finally, since the structure of the diagrammatic expansion is identical to
the equilibrium one, such an expansion can be also summarized in a Dyson’s
equation, which in the nonequilibrium case has the following matrix form

G(t,t) =g(t,t) /dtlfdtQ g(t,t1)3(t1, t2)G(ta, t'). (7.18)

Here, we have denoted the unperturbed propagators by g instead of GO to
simplify the notation. Here, the self-energy has a 2 x 2 matrix structure in
Keldysh space analogous to Eq. (7.16). In general, the functions appearing
in Eq. (7.18) depend on two time arguments and the Dyson’s equation is
an integral equation. However, in many stationary situations, both the
propagators and the self-energies depend on the time difference and, after
Fourier transforming, Eq. (7.18) recovers its standard equilibrium form of
an algebraic equation with the frequency as the argument, i.e.

G(E) = g(FE) + g(E)X(E)G(E). (7.19)

7.2 Diagrammatic expansion in the Keldysh formalism

Let us discuss now some of the peculiarities of the diagrammatic expansion
in the Keldysh formalism. One of them is the fact that in this formalism
the denominator of the Green’s functions does not play any role (indeed
(¢o|Sc|po) = 1, see Exercise 7.1). One can show that in the expansion of S,
the terms of order higher than zero cancel each other order by order. One
might think that this fact creates a problem related to the cancellation of
the disconnected diagrams. However, this is not the case because, as it is
easy to show by applying Wick’s theorem, these diagrams also cancel each
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other. Therefore, as in equilibrium, one needs to consider the topologically
distinct diagrams only once.
Let us discuss the diagrammatic structure in two situations of interest:

e Case 1: Time-dependent external potential.
Let us consider a system with N noninteracting electrons subjected to
an external potential that can be time-dependent. The Hamiltonian in
first quantization reads in this case

H=H,+ V(t), (7.20)

where

N
V(t) = ZV(ri,t). (7.21)

The diagrams in this case are trivial because, as in the case of a static
potential, they consist of the repetition of identical scattering events.
The matrix self-energy is therfore given by (see Exercise 7.2)

$(r, 1) = (V(;’t) —V(()r,t)> | (7.22)

It is interesting to note that for this single-electron perturbation the
components X7~ and X~ vanish. The existence of off-diagonals com-
ponents of the self-energies in the Keldysh space is only possible in
the case of inelastic mechanisms such as electron-electron interaction
or electron-phonon interaction (see next case).
e Case 2: Electron-electron interaction.

Let us consider an electronic system where the electron-electron in-
teraction is assumed to be the perturbation. The system might be
out of equilibrium due to, for instance, the presence of a current. For
the sake of concreteness, let us assume that the unperturbed system

can be described by a tight-binding Hamiltonian and the interaction is
Hubbard-like (see Appendix A)

H=H,+ Z UniTnu. (723)

The diagrams are topologically identical to the equilibrium ones and the
only difference is the fact that one has to indicate where the time argu-
ments reside on the Keldysh contour. In this respect, every equilibrium
diagram gives rise to several diagrams for the different components of
the self-energy in Keldysh space. We illustrate this fact in Fig. 7.2,
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Fig. 7.2 Examples of second-order self-energy diagrams in the Keldysh space for the
electron-electron interaction. The indexes + and — indicate in which branch the time
arguments lie.

where we show the self-energy diagrams of second order in U for the
components L+ and ¥t ~. The expression of the self-energy X7~ for
instance, would be (ignoring the spin dependence)
_ _ 2 _
Zz—'iz—' (tat/) = U2 [gz_: (tvt/)} gii+(t/7t)' (7'24)

7.3 Basic relations and equations in the Keldysh formalism

In the previous section we have seen that the Dyson’s equation has acquired
an additional 2 x 2 matrix structure, which gives the impression that one
has to solve four times more equations than in the equilibrium case. Indeed,
one can show that the different functions in the 2 x 2 matrix of Eq. (7.16)
are not independent and the number of equations that one has to solve in
practice can be reduced to only two. In this sense, the goal of this section
is to derive those equations and to discuss the general properties of the
Keldysh-Green’s functions.

7.3.1 Relations between the Green’s functions

Let us explore the different relations between the functions appearing in the
Keldysh formalism. We start by showing that the four Green’s functions
GT™, GT™~, G=" and G~ are not independent, but satisfy

GTT+G =G +G™ . (7.25)
This is a direct consequence of the definition of these functions. Thus for
instance,

GIH(t,¢) = =ib(t — ) (cio (t)e, (#)) + i8¢ = t){el, (F)ein (1)

= 0(t — "G T(t, 1)+ 0(t' — )G~ (¢, t). (7.26)
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Analogously,
- _ +- —+
Gy (t,t) =0t =G (t, 1) + 0t — )G (t,1). (7.27)

Adding these two equations, we obtain the relation stated above.

On the other hand, from this relation and using the Dyson’s equation
in Keldysh space, see Eq. (7.18), one can show the following relation be-
tween the different elements of the self-energy matrix in Keldysh space (see
Exercise 7.3)

ST =— (T 427 ). (7.28)

Other important relations are those between the Keldysh-Green’s func-
tions and the advanced and retarded functions G* and G". Such relations
can be found as follows. Using the expression of Eq. (7.26), one obtains

G t) = GE () = =00t —t') (G5 (t,t') — G, 7 (t,1)],  (7.29)
and using the definitions of GT~ and GT~, we arrive at

GHF(8,1) = GI(8,1) = =i(t — ') {cio (D)€, (') + €], (' )ein (t)

= Gi(t, t') (7.30)

Proceeding in an analogous way, one can show the following relations
G =G""-G" =G "T-G~ (7.31)
G'=G"" -G T=G"" -G . (7.32)

These relations are crucial for the discussion of next section.

7.3.2 The triangular representation

As we have seen above, there are redundancies in the Green’s functions and
in that sense it is natural to try to get rid of them to simplify the equations
as much as possible. In what follows, we shall try to eliminate G** and
G~ in favor of G" and G*. For this purpose, we will apply a unitary
transformation to perform the following change

++ Q+- a
<S_+ g__) N (c‘; SK> | (7.33)
where G¥ = Gt 4+ G~ = Gt~ 4+ G~ is known as the Keldysh function.

It is easy to show that the unitary transformation has the form

1 (1-1 1.
R:E<1 1>=ﬁ(1—wy), (7.34)
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where &, is the corresponding Pauli matrix. The representation above
is known as the triangular representation and it is important from the
practical point of view. Let us now denote the standard Keldysh matrix
by G and the corresponding matrix in the triangular representation as G.
They are related by G = RGR ™. Applying the transformation R to the
Dyson’s equation®

G =g+g>G, (7.35)

we obtain the corresponding Dyson’s equation in the triangular represen-
tation

G =g+ g>G, (7.36)
where the self-energy in this representation has the form
~ K3
3= : 7.37
(3% ) (7.57)
Here, the new self-energy components are expressed in terms of those of
the original representation as follows

K=ttt 43 =— (T +x277) (7.38)
Y=ytteytt=— (=7 +327) (7.39)
=St 43 = (27 4+ 37). (7.40)

From Eqs. (7.36) and (7.37) one can show that the advanced and re-
tarded Green’s functions satisfy independent Dyson’s equations, i.e.

GT,a _ gT',a + gnazﬁaGﬁa. (741)

Notice that this equation is formally identical to the equilibrium one. In
the case in which the perturbation is an external potential, as we showed
in the previous section, the corresponding self-energies reduce to %%(r, t) =
¥ (r,t) = V(r,t), i.e. like in equilibrium.

On the other hand, the Keldysh function G¥ fulfills the following equa-
tion

GE =gl 4 gf39G* + g"2"GE + g"EEGe. (7.42)
Notice now that G is coupled to G™® and this equation requires to solve

first Dyson’s equation for these latter functions. Let us recall that the
retarded and advanced functions are related, which in practice means that

n this equation, as in the next ones, the integrations over the intermediate arguments
are implicitly assumed.
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there are only two functions to be determined, as we stated at the beginning
of this section.

The previous equation can be written in a more symmetric way as fol-
lows. We first group on the left hand side all the terms containing G
and then we multiply from the left by (1 — g"%")"" on both sides of the
equation to arrive at

GE=(1-g'2) 'gf1+2°G")+(1-g'E") 'g'sKGe. (7.43)
Then, using the Dyson’s equation for the retarded function, we finally ob-
tain

G =1+G"Z")g" (1+XG) +G"=FGe. (7.44)

In this book, we shall mainly use the function G, rather than the

Keldysh function G¥. For this reason, we now proceed to derive the corre-

sponding equation for GT—. We first take the element +— in the Dyson’s
equation, i.e.

Gt~ =g" +(g=G)"". (7.45)

Then, we make use of the relations derived above between the different
functions to arrive at (see Exercise 7.3)

Gt =gt 4+g"" 3G+ g"'¥"'GT™ —g"=" G, (7.46)
The function G~ fulfills a similar equation that can be obtained from the
previous one by exchanging + by — and vice versa. Eq. (7.46) for GT~ can

be written in a more symmetric way, in analogy with what we did for the
function G¥. Thus, we obtain finally

G =1+G"Y)g" (1+X°G%) - G'ZT G (7.47)
The function G~ satisfies a similar equation given by

G T=1+G"¥)g T(1+2G") -G"'E TG (7.48)

7.3.3 Unperturbed Keldysh-Green’s functions

In the Keldysh formalism the time dependence is introduced through the
perturbation and the unperturbed Hamiltonian Hy must correspond to
a noninteracting electron system in equilibrium. Thus, all unperturbed
Green’s functions depend only on the time difference and they are easy
to obtain in energy space. The form and properties of the unperturbed
retarded, advanced and causal functions in energy space were studied in
detail in Chapter 5, whereas the properties of the functions g~ (E) can
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be easily deduced from those of g™ (F). Thus, we concentrate now on the
analysis of the functions g*~(E) and g~ (F). From its definition in the
time domain (and in a discrete basis)

G (t) = ilch, (0)eir (1)), (7.49)

it is obvious that this function is related to the electron distribution in
equilibrium. Although the temperature does not appear explicitly in the
Keldysh formalism, one uses the previous fact to introduce it. Thus, the
previous expression for £ = 0 and ¢ = j reads

G 0) =itir) = [ 61 () (7.50)
2T

This implies that G, (E) = 27ip;(E) f(E), where f(E) is the Fermi func-

tion and p;(F) is the local density of states in the site 7. In the same way,

one can show that G;; 7 (E) = —27ip;(E)[1 — f(E)]. Taking into account

this result, it is clear that Gt~ o« f(F) and G=F « 1 — f(F). This fact

together with the general relation

G*(t)—G"(t) =Gt (t) - G~ (1), (7.51)
leads to the following relations

G (E) = [G“(E) - G"(E)] /(E) (7.52)
G (E) = —[G*(E) - G"(B)][1 - f(E)]. (7.53)

It is worth stressing that we have written the previous expressions using
capital letters to indicate that these expressions are always valid in equi-
librium, even in an interacting case. In the Keldysh formalism the unper-
turbed system is moreover non-interacting, which implies that in a basis |7)
one has

g;;‘(E) = [9"3 (E) gl} (E)} f(E) (7.54)

As a consequence, these functions are proportional to the spectral den-
sities and to the thermal distribution function. The way in which we have
introduced the temperature in the Keldysh formalism is certainly not very
satisfactory. However, one can show that a rigorous derivation leads exactly
to the result that we have just described (see for instance Ref. [192]).
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7.3.4 Some comments on the notation

The notation used here for the different Keldysh-Green’s functions is not
shared by all the authors. In this sense, it is important to devote a few lines
to make contact with other texts where the Keldysh formalism is described.

Frequently, the functions G*~ and G~ are denoted by G< and G~,
respectively. Sometimes, the Keldysh function G¥ is denoted by G¥ or
simply by F. On the other hand, the triangular representation is often
written in a slightly different way. One first defines a new matrix function
as G = O'ZG, where o, is the Pauli matrix, and then the unitary trans-
formation of Eq. (7.34) is applied. This leads to a 2 x 2 matrix with the

form
G GK
(G ). (7.55)

which is often used in the field of superconductivity [193].

7.4 Application of Keldysh formalism to simple transport
problems

In this section we shall illustrate the utility of the Keldysh formalism by
applying it to the description of the electronic transport in some simple
situations of special interest. Our goal is two fold. First, we want to
illustrate how this formalism is used in practice and second, we want to
show how the elastic transmission can be computed from an atomistic point
of view.

Most of the systems that we have in mind (atomic contacts, molecular
junctions, etc.) are conveniently described by a tight-binding Hamiltonian
of the following form

H = Z €N, + Z tij (C;[UC]'U + C;‘O.Cio') , (756)
io ijo
where we have assumed, without loss of generality, that the hopping ele-
ments ?;; are real. Our first task is to derive an expression for the electrical
current operator in this local basis. For this purpose, we first consider the
simple case of a tight-binding chain with only nearest-neighbor hoppings,
denoted by t. Such a chain is schematically represented in Fig. 7.3. Let us
compute now the current between the sites £ and k£ 4+ 1. Without doing
any calculation, one can guess that the operator must adopt somehow the
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following form?
Tty [cla(t)ckﬂa(t) — ¢l (Ders (1)) (7.57)

where the first term in the sum represents the current flowing in one direc-
tion and second one corresponds to the current flowing in the opposite one.
Let us see if a rigorous calculation confirms our intuition.

1B 1A
ot
......../\CD/\Q/F\W/\O/\.......
k—1§ k k+1

Fig. 7.3 Schematic representation of a linear chain with only nearest-neighbor hoppings.

The current operator must be obtained from the continuity equation
that describes the charge conservation. Such equation can be written in a
discrete representation as

Ipx,

I,-1 — =0 7.58
A B+ ot ) ( )

where A represents a point between the sites k£ and k + 1 and B a point
between k£ — 1 and k, see Fig. 7.3. Here, pj is the operator that describes
the charge in the site k

Pp =€ Z c,tac;w (7.59)
and satisfies the equation of motion of Heisenberg operators

8pk 1

o5 = "3 e HI (7.60)

Notice that we have reintroduced h, and we shall write it explicitly from
now on. Using the expression of Eq. (7.56) for the homogeneous chain that
we are considering, it is straightforward to compute the commutator that
appears in the previous equation of motion and thus, one arrives at

0 k —iet
5_pt B h Z {Czoclﬂ‘la o chrﬂ—I—lackU T C;Eﬂfck—la B Cz_lacka} '
g

Rewriting this expression in the form of the continuity equation, see

Eq. (7.58), we can identify the current operator, which at point A takes the
form
La(t) = T > {cls (Dersia () — el e ()} (7.61)

2We believe that no confusion can arise between the hopping ¢ and the time appearing
as an argument in the creation and annihilation operators.
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Notice that this has exactly the intuitive form that we had anticipated
above.

This expression can be easily generalized to any 3D system described by
a tight-binding Hamiltonian as in Eq. (7.56). The electrical current through
an arbitrary surface that separates two regions A and B is given by

= 3 >t {el, (Do (1) — e, (e (1)} (7.62)

zEA,jEB o

Let us now compute the expectation value of the current operator, for
instance, for the case of the chain. According to Eq. (7.61), one can write
(dropping the subindex A)

tet

1) = > {lel, (Dersa(®) = (e, Mo @) ). (763)

The expectation values appearing in the previous equation can be expressed
in terms of the Keldysh functions G™~ as follows

10) = =t > {Gin D = Gl (D)) (7.64)

and there is a similar expression for the most general case of Eq. (7.62).
In many situations, for instance when there is a constant voltage applied
in a junction, the problem admits a stationary solution and the Green’s
functions depend exclusively on the difference of the time arguments. In
those cases, Eq. (7.64) can be written in terms of the Green’s functions in
energy space as

7 Z/ G:J; K (E) = GZ—,;—H(E)} : (7.65)

We are now in position to discuss the electronic transport in some simple
examples of special interest.

7.4.1 Electrical current through a metallic atomic contact

As a first example, we consider an atomic constriction. As we learned
in the first part of this book, such contacts can nowadays be fabricated
with the scanning tunneling microscope or with the mechanically control-
lable break-junctions. For the sake of simplicity, we consider the case of
a metal described by a tight-binding Hamiltonian with a single relevant
atomic orbital per site. We assume that the two electrodes forming the
atomic junction are only coupled through their outermost atoms, denoted
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Fig. 7.4 Schematic representation of a single-channel atomic contact. The electrodes
are coupled via the hopping element t that describes the coupling between the two
outermost atoms of both leads, denoted by L and R. There is a bias voltage applied
across the system giving rise to a difference in the chemical potential of the electrodes:

eV = pur — pR-

as L and R, via a single hopping element ¢. This situation is schematically
represented in Fig. 7.4. Here, the specific shape of the electrodes is irrele-
vant for our discussion. As it will become clear later, this is a model for a
contact with a single conduction channel and if everything is consistent, we
should arrive at the Landauer formula. However, contrary to the scattering
approach, we will now be able to obtain a microscopic expression for the
transmission coefficient in terms of the coupling element ¢ and the local
electronic structure of the electrodes.

This model system is described by the following tight-binding Hamilto-
nian

H=H,+Hp+ Y t(c],cro+chyers ). (7.66)

where Hy, and Hp are the Hamiltonians describing the left and right elec-
trodes, respectively. We assume that there is a bias voltage V' applied across
the contact and that the potential drops abruptly in the interface region.
The task in this example is to compute the current-voltage characteris-
tics. According to Egs. (7.63-7.65), the current evaluated at the interface
between the electrodes is given by?

[=1) = % / T 4B [Gh(E) - G (B)], (7.67)

— o0

3We assume that the voltage is time-independent and therefore the problem admits a
stationary solution. This allows us to write the current in terms of the Fourier transform
of the Green’s functions with respect to the difference of the time arguments.
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where the factor 2 is due to the spin degeneracy in this problem. At
this stage the problem is to determine the Green’s functions appearing
in Eq. (7.67). For this purpose, we employ the perturbative method that
we have just described in the previous sections. Therefore, the first thing
that we need to do is to choose the perturbation. Let us remind that in
the Keldysh formalism the unperturbed system has to be in equilibrium.
One possibility would be to introduce the voltage as a perturbation, but
this is not very convenient because such a perturbation is extended over
the whole system and the calculation would be rather cumbersome. The
most convenient choice is to treat the coupling term in Eq. (7.66) as the
perturbation and include the voltage in the unperturbed Hamiltonians by
shifting the corresponding chemical potential (e.g. uz, = €V and ugr = 0).*

With this choice, the retarded and advanced self-energies associated to
this single-particle perturbation adopt the form

DA S (7.68)

while the Keldysh self-energies vanish: X7~ = X~ = 0 (there are no in-
elastic interactions). Now, the functions ng and GEZ appearing in the
expression of the current can be determined in terms of the Green’s func-
tions of the uncoupled electrodes (unperturbed functions) using Eq. (7.47).
But before doing so, we can simplify the algebra by writing the current in
terms of the diagonal Green’s functions of both electrodes. For this pur-
pose, we compute G  making use of Eq. (7.46) by writing it as (remember
that X7~ = 0 in this problem)

Gt =gt 4+ g™ 2G* +g"¥"G", (7.69)

while we compute GEE using this equation, but written in the following
alternative form:

G =g +GT X% +G"Xrgt. (7.70)

It is important to emphasize that these equations are algebraic equations
in energy space and we shall often omit, as we have just done, the energy
argument of the Green’s functions, F/, to abbreviate the notation.

Using the last two equations, we can write GJLF}; and GEZ as

Gin =91 50rGhr + 915 G LR (7.71)
GLr = GErYh9ts + Grr¥hrols. (7.72)

4This does not mean that the unperturbed system is out of equilibrium since in the
absence of coupling, there is no current and the electron distributions in both leads are
the equilibrium one.
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Substituting now G}, and GL; in Eq. (7.67) and using the general
relation G* — G" = G~ — G~ 1, one arrives at
2e

I= FtQ /_ h dE (g1 1 (E)GRE(E) — g1 (E)GER(E)] . (7.73)

We now compute the functions G and G5}, by using Eqs. (7.47) and
(7.48)

Gha T =0+Gy, LR>g;R/ TA+TL,.G )+ (T74)

RrZreoin 2t RG R (7.75)
Introducing these expressions in Eq. (7.73) we obtain
2e > . _ _ _ _
1=250 [ aB 4 1GR B)F (617 (B)gii (B) - 91 (Bl (B)]
(7.76)

Here, we have used the explicit expression of the self-energies, see Eq. (7.68),
and the fact that G*(E) = [G"(E)]" (thus e.g., G¢ »(E) =[G (E)]*).

To complete the calculation we still have to determine the retarded
function G';; (E). This can be done, very much like in equilibrium, using
its Dyson’s equation, see Eq. (7.41). Taking the element (R, L) we arrive
at

L = 9rr>ZRr1GLL- (7.77)
To close this equation, we need now an equation for G ;, which is obtained
by taking the element (L, L) in the Dyson’s equation, i.e.

Grr =911 + 9. XLrRGRL- (7.78)
Substituting back into the equation for G';;, we obtain finally
oo t9RRILL and 14+ tG7,, — 1 . (7.79)
- Pghper, T — g0,

Before coming back to the expression of current, let us remind that the
unperturbed Keldysh functions gt—/~% can be expressed in terms of the
retarded and advanced ones using Eq. (7.54). Thus, the functions appearing
in Eq. (7.76) can be written as

911 (B) = 9i(E —eV) = gp (B —eV)] f(E —eV) (7.80)
=2mipr(E —eV)f(E —eV)

ng_(E) = —[97(E —eV) —gp (E—eV)][1 = f(E —eV)]
= 2mip(E —eV) [l — f(E —eV)]

9kr(E) = 9r(E) — grr(E)] f(E) = 2mipr(E) f(E)

Ik (E) = = [95r(E) — grr(E)] [1 - f(E)] = —2mipr(E) [1 - f(E)],
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where f(E) is the Fermi function and py,/p is the local density of states of
the leads projected onto the sites L and R. Notice that we have already
taken into account the relative shift of the chemical potentials due to the
bias voltage V.

Using Egs. (7.79) and (7.80), we can finally write the current as follows®

_ 2 /Oo 4rt?pr(E — eV)pr(E)

I dE
h

E—eV)—f(E).
(7.81)
Notice that Eq. (7.81) has exactly the form of the Landauer formula,
ie.
2 (o.¢]
1== [ dBT(E,V)[f(E-eV) - f(E)], (7.82)

where we can identify T'(F, V') as an energy and voltage-dependent trans-
mission probability given by
Art*pr(E — eV)pr(E)
TE,V)= . 7.83
V) = g, (B = eV )gnn B 75

As it can be seen, the transmission depends primarily on the coupling

element ¢ and the local electronic structure of the leads.

For sufficiently low voltages, there is a linear regime where the current is
proportional to the voltage. In this limit, the conductance is given by G =
(2¢2/h)T (Er,V = 0), where T(Ep,V = 0) is the zero-bias transmission at
the Fermi energy given by

Amt*pr (Er)pr(Er)
11 —12911(Er)grr(Er)|?

One can often consider that the Green’s functions are constant around the

T(Ep,V =0) =

(7.84)

Fermi energy and one can also neglect their real part (this is the wide-band
approximation introduced in Chapter 5). This means that the lead Green’s
functions can be approximated by
7
N o—, 7.85
grr W ( )

where W = 1/7pr/r(Er) (we are assuming a symmetric contact (grr =
grr) for simplicity). Within this approximation, one obtains the following
expression for the transmission

42 /W2
(14 t2/W2)2

5This expression for the current was first derived in Ref. [194] for a more realistic model.

T —

(7.86)
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This expression illustrates the transition from the tunnel regime, when
the electrodes are separated by a large distance, to the contact regime at
small distances. In the former limit, the transmission given in Eq. (7.86)
can be approximated by 4t2/W?2. This means that the dependence of the
transmission on the distance between the electrodes, and therefore that of
the linear conductance, is determined by t?. At large distances, a hopping
element is roughly proportional to the overlap of the atomic orbitals and
decays exponentially with the distance between the corresponding atoms.
This is how the exponential length dependence, which we already discussed
in section 4.4, comes about from an atomistic point of view. From the scat-
tering approach, see section 4.4, we concluded that the length dependence
of a metallic tunnel junction is determined by the metal work function.
However, with this simple model, we get the impression that such a de-
pendence is governed by a local property, namely the coupling between the
outermost orbitals of the electrodes. These two pictures, which at first
glance look contradictory, can indeed be reconciled. This is, however, a
subtle issue that is out of the scope of this book and we refer the reader to
Ref. [195] for a discussion of this question.

When the electrodes approach each other the hopping ¢ becomes of the
same order as the energy scale W and the transmission can reach unity
and in turn the conductance approaches the quantum of conductance Gy =
2¢?/h. The transition from tunnel to contact was first discussed within
this type of atomistic models in Ref. [194] in connection with the first
experiment that explored such a transition [55]. For an overview on recent
experiments exploring the tunnel-to-contact transition both in single atoms
and molecules, see Refs. [196, 197].

Let us now study in more detail the tunnel limit (¢ — 0). In this case,
the non-linear current of Eq. (7.81) can be approximated by

8me >

=558 [ dB pu(E - V)or(B) [~ V)~ F(B), (787
which tell us that the current in this limit is determined by the convolution
of the local density of states of both electrodes. This well-known expression
is a fundamental result for the theory of STM and provides a simple inter-
pretation of the STM images. Assuming that the left electrode represents
a STM tip with a constant density of states around the Fermi energy, the
differential conductance at low temperatures is simply given by

_dI 2e2

G(V) = 57 = 54t pr(Er)pr(Er + eV), (7.88)
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i.e. the conductance is a measure of the local density of states of the sample
(or right electrode in our case).

7.4.2 Shot noise in an atomic contact

Another interesting transport property that can easily be calculated with
the Keldysh formalism is the shot noise (or nonequilibrium current fluc-
tuations), which was introduced in Chapter 4. Let us consider the model
for an atomic contact discussed in the previous subsection. Our goal now
is the calculation of the current fluctuations in the zero-temperature limit
and finite bias (shot noise).

The noise is characterized by the fluctuation spectral density that is
defined as

Pw)="h / dt €™ (5T(t)51(0) + 61(0)51(t)), (7.89)
where 61(t) = I(t) — (I(t)).
We are specially interested in the zero-frequency noise, P(0),

P(0) = h/ dt (01(t)6I(0) + 61(0)0I(t)). (7.90)
If we now substitute the expressions for I(t) and (I(¢)) for an atomic
contact and we write the result in terms of the Green’s functions, we obtain

PO) =2 [ 4B [G1a(E)GH(B) + Gl (BYG T (B)-

Gl (E)GRi(E) = Grp(E)GLL (E)]. (1.91)

Here, in order to obtain this expression, we have made use of Wick’s theo-
rem to decouple the averages of four operators (let us remind that this is
valid since our electron system is noninteracting).

At this stage the calculation of the shot noise has been reduced to
the computation of the different Keldysh-Green’s functions that appear in
Eq. (7.91). These functions can be calculated following exactly the same
procedure detailed in the previous subsection. If we now assume zero tem-
perature and use the wide-band approximation of Eq. (7.85) for the un-
perturbed Green’s functions, we can obtain the following expression (see
Exercise 7.5)

P(0) = 47€2T(1 ~T)V, (7.92)

which is the result derived in section 4.7 using the scattering approach.



200 Molecular Electronics: An Introduction to Theory and Experiment

7.4.3 Current through a resonant level

Let us now discuss the calculation of the current for the resonant level
model discussed in section 5.3.3. Let us remind that in this model a single
quantum level is coupled to two metallic electrodes and the corresponding
Hamiltonian is given by

H=H,+Hg+ ) eno, + (7.93)

ZE:tL (CEUCOU-+-CEUCLU) +—§£:tR (CEUCOU-+-CEUCRU),
(o2 (o2

where €; is the position of the resonant level, which in principle can also
depend on the bias voltage, and t7, r are the matrix elements describing
the coupling to the reservoirs. Here, L. and R denote the outermost sites
of the left and right electrodes, respectively. On the other hand, we now
assume that there is a constant bias voltage across the system and our task
is to compute the current-voltage characteristics.

We start by evaluating the current at the interface between the left
electrode and the level, which in terms of the Green’s functions G~ can
be written as follows

I= 26}? / B (G5 (B) - G (B)] . (7.94)

In order to determine the Green’s functions in the previous expression,

— 00

we use again the Keldysh formalism and we treat the coupling terms be-
tween the level and the electrodes, i.e. the second line in Eq. (7.93), as
a perturbation. With this choice the only non-vanishing elements of the
self-energy are: X770 = X7 = t1, and X750 = X5 = tr.

Following now the same steps as in section 7.4.1, we can write the current
in terms of diagonal elements of the Green’s functions as

=20 [ 4 (g (B)Ga (B) - 0z (GG (B)]. (1.9)

Now, to determine the full Green’s functions, we use the Dyson’s equa-
tion, Eq. (7.47), to write

Go/ T = (14 G T )0l T (1 4+ 2°GY),, + (7.96)

+—/—+ +—/—+
SOZSLQLL/ ¥70Goo + GSOZSRQRR/ Y%R0Goo-

— o0

If we now substitute this expression into the current formula, the term

/—+ +—/—+

containing g}fg ' is canceled. Moreover, the term proportional to g,

does not contribute either. The reason is that gg_o_/_+(E) x 6(E —€p) and
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the prefactor of this term vanishes at E = €. Thus, the current can now
be expressed as
2e o
I=Fawtty [ dB pu(B)on(B)Gio (B 1L(B) - fa(B), (797

— 00

where it is implicitly assumed that the density of states (and distribution
function) of the left electrode is shifted by eV. Notice that we have already
used the expression of the lead Green’s functions in terms of the local
density of states and Fermi functions.

At this point, the only remaining task is the calculation of Gf,(E), but
this is something that we have already done in section 5.3.3 and we just

recall here the result .

bo(E) = : 7.98

W) = o B g (B) BB 7%

Therefore, the current adopts again the form of the Landauer formula
2 [e e}

1=2 [ dET(BV)[f(E=eV) = f(E), (7.99)

where this time the transmission T'(E, V') is given by

4221201 (E — eV)pr(E)
T(E,V) = LR . 7.100
(E,V) |E—ey—t2gh(E—eV) — t%gn(E)|? ( )

To simplify this expression, we use now as in section 5.3.3 the wide-

band approximation and neglect the energy dependence introduced by the
leads. This way, 9r/r ® —impr/r(E£r) and we define the scattering rates
I'pr = Wt%/RpL/R(EF). In this approximation the transmission can be
written as

A't'g

(E—€)?+ (' +Tg)2%
In this case, the voltage dependence of the transmission may only stem from

T(E,V) = (7.101)

the eventual voltage dependence of the level position. This expression is
the well-known Breit-Wigner formula that was derived in Chapter 4 within
the scattering approach (see Exercises 4.5 and 4.8) and it will be used
extensively in later chapters.

Again, in the linear regime the low-temperature conductance is simply
given by G = (2¢*/h)T(Er,0). This expression shows that the maximum
conductance is reached when Er = ¢y, which is the resonant condition.
In the symmetric case (I';, = I'g), this maximum is equal to Gy = 2¢?/h,
irrespectively of the value of the scattering rates. These facts are illustrated
in Fig. 7.5. The non-linear current-voltage characteristics of this model will
be discussed in detail in Chapter 15.

6Physically speaking, it is quite reasonable that this term does not contribute to the
current. It makes no sense that the current depends on the occupation of the level before
being coupled to the electrodes.
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Fig. 7.5 Zero-temperature linear conductance in the resonant tunneling model. (a)
Linear conductance (normalized by Go = 2e?/h) as a function of the level position, €
for a symmetric contact I'r, = ' = I'. (b) Linear conductance at resonance (eg = EF)
as a function of the ratio between the scattering rates.

7.5 Exercises

7.1 Diagrammatic expansion in the Keldysh formalism: Show explicitly
that (¢o|Sc|¢po) = 1 by using the expansion of the operator S.. For this purpose,
expand S. up to second order and show that the contributions of order higher
than zero cancel.

7.2 Time-dependent external potential: Let us consider a system with N
noninteracting electrons subjected to a time-dependent external potential:

V(t) = V(rit). (7.102)

Apply Wick’s theorem to demonstrate that the self-energy is given by Eq. (7.22).

7.3 Properties of the Keldysh-Green’s functions:

(a) Demonstrate the property of Eq. (7.28). Hint: Use the property of
Eq. (7.25) and the Dyson’s equation in Keldysh space.

(b) Demonstrate Eq. (7.46).

7.4 Shot noise in a single-channel point contact:

Derive the expression of the zero-frequency shot noise of a single-channel point
contact following the discussion of the example of section 7.4.2 and demonstrate
that it is given by

2
P(0) = %T(l —T)eV,

where T is the energy-independent transmission coefficient of the contact given
by Eq. (7.86).

7.5 Electrical current through a linear chain: Consider the electronic trans-
port in a finite one-dimensional system formed by a tight-binding chain with N
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sites such that the site 1 is connected to the left electrode through a hopping tr,
and the site IV is connected to the right electrode with a hopping tr. Show that
the current formula in this case is given by

I= 2_;1647r2t%t?% /OO dE p1(E — eV)pr(E)|Gin(E)* [f(E —eV) = f(E)].

— 00
For the sake of simplicity, consider that in the chain there are only hoppings
between nearest-neighbor atoms, t, and that the on-site energy is given by ¢o.
Study the linear conductance of this system as a function of the number of sites
N in the chain and show that it may exhibit parity oscillations, depending on
whether N is even or odd.

7.6 Thermopower of a single-channel point contact: Using the model
of section 7.4.1, derive the expression for the thermopower for a single-channel
contact and show that it coincides with the result obtained with the scattering
approach in section 4.8.
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Chapter 8

Formulas of the electrical current:
Exploiting the Keldysh formalism

In the previous chapter we showed how the Keldysh formalism can be com-
bined with simple Hamiltonians to compute the current in model systems.
In this chapter we shall exploit this technique and derive some general
expressions for the electrical current that can be combined with realistic
methods for the determination of the electronic structure. To be precise,
we shall address three basic issues:

(1) Derivation of Landauer formula in the framework of the non-
equilibrium Green’s function techniques. Here, the goal is the determi-
nation of the microscopic expression for the elastic transmission valid
for any atomic and molecular junction.

(2) Generalization of Landauer formula to include inelastic and correlation
effects.

(3) Description of the current in atomic-scale junctions subjected to time-
dependent potentials.

This chapter is rather technical and it can be skipped by those who are
not so interested in the algebra behind the current formulas. Anyway, we
recommend to read the next section about the derivation of the Landauer
formula, since the expression obtained there for the elastic transmission will
be frequently used in subsequent chapters.

8.1 Elastic current: Microscopic derivation of the Landauer
formula

In section 7.4 we discussed two simple examples of atomic-scale contacts. In
both cases we ended up with a Landauer-like formula for the elastic current,

205
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Fig. 8.1 Schematic representation of an atomic-scale contact of arbitrary geometry. We
divide this system into three parts: a central region, C, and the two leads, L. and R.

the only difference being the expression for the transmission coefficient. In
this section we shall demonstrate that this was not a coincidence and we
shall derive a general expression for the elastic current valid for any type
of atomic and molecular junction.

Let us consider a contact with arbitrary geometry like the one depicted
in Fig. 8.1. Such a contact can be either an atomic contact or a molecular
junction. Since we shall ignore inelastic interaction in this discussion, one
can describe the system in terms of the following generic tight-binding
Hamiltonian

H = Z hia.jp Cza,acjﬂ,aa (8.1)

ij,af,0

where 7, run over the atomic sites and «, 8 denote the different atomic
orbitals. The number of orbitals in each site can be arbitrary. For the sake
of simplicity, we assume that the local basis is orthogonal. Later in this
section, we shall generalize the results to the case of nonorthogonal basis
sets. Notice also that we are assuming that matrix elements are independent
of the spin, i.e. for the moment we do not consider magnetic situations.
We now distinguish three different parts in this contact: the reservoirs
L and R, and a central region that can have arbitrary size and shape.
In principle, the reservoirs L and R could also have an arbitrary shape
and we assume that an electron in these subsystems has a well-defined
temperature and chemical potential. In other words, these regions play the
role of electron reservoirs, in the spirit of the scattering approach of Chapter
4. The separation of the contact in these three subsystems is somewhat
arbitrary, especially in the linear response regime, and one can play with
that, as we shall discuss below. We also assume that there is no direct
coupling between the reservoirs. With this assumption the Hamiltonian
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above can be written in the following matrix form

Hir tre O
H=| tcr Hee ter | (8.2)
0 trc Hgr

where the diagonal terms Hyxx with X = L, C, R are the Hamiltonian of
the three subsystems and the t’s describe the coupling between them.

Our aim is to determine the current through the contact induced by a
constant bias voltage, eV = ur — pgr. For this purpose, we first evaluate
the current at the interface between the left lead L and central region C,
which in the tight-binding representation adopts the form (see section 7.4)

I :% > (hz‘a,mcza,ocyﬁ,d - hjﬁ,ia<C;ﬁ,aCia,a>)’ (8.3)
i€eL;jeCia,B,0
where ¢ runs over the atoms of the left electrode which are connected with
the atoms in the central region C, and j runs over the atoms of the central
region coupled to the left electrode (in principle, all of them). The indexes
« and S indicate the different atomic orbitals in every site.

Following the ideas of the last section of the previous chapter, we make
use of nonequilibrium Green’s function techniques to calculate the current.
First of all, we express the expectation values appearing in the current
expression in terms of the Keldysh-Green’s function G*~. This function
gives information about the distribution function of the system and in a
local basis it adopts the following form

GlLog7 (1) =ilely . (t)Ciao(t)). (8.4)

Using this expression one can write the current as
< +-,00 +—,00
= [ Z [tia’jﬂGjﬁ,ia (t,t) — tJﬂ,iaGm,jg (t, 1) - (8.5)
i€L;jeCia,B,0

The current can be expressed in a more compact way in terms of the
hopping matrices t o and tor [see Eq. (8.2)] whose elements are given by

(tLC)ia,jﬂ = hia,jﬂ with 1 € L; Jj e C (86)
(tor) = (tro)'.
Analogously, one can define similar matrices for the Green’s functions
GT~. With this new notation, one can express the current as
2e

I = %TI' [Gg;(t,t)th — tC’LGza (t,t)} , (8.7)
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where Tr denotes the trace over atoms and orbitals in the central region C.
The prefactor 2 comes from the sum over spins, since for the moment we
do not consider any magnetic situation. For the same reason, we drop the
superindex o in the Green’s functions.

This transport problem admits a stationary solution and therefore, the
different Green’s functions only depend on the difference of time arguments.
Thus, we can Fourier transform with respect to the difference of the time
arguments and write the current as

2e [

I " dE Tr [GLL (E)tre — terGio(E)]. (8.8)

Notice that the current is expressed in terms of the trace of a matrix whose

— o0

dimension is the number of orbitals in the central region, which we denote as
N¢. At this stage, the problem has been reduced to the determination of the
functions G~ in terms of matrix elements of the Hamiltonian of Eq. (8.1).
We shall calculate these functions considering the coupling terms between
the electrodes and the central region as a perturbation. Then, starting from
the Green’s functions for the three isolated systems, we shall determine the
corresponding functions for the whole system. With this choice, the self-
energies of the problem are the hopping matrices defined in Eq. (8.6) and
the equivalent ones for the interface between the central region and the
right electrode R.

We now follow the ideas of section 7.4.3 and make use of Dyson’s equa-
tion in Keldysh space, see Eq. (7.46), to write the functions G~ as follows'

Glc =811 trcGhe + 8ritreGec (8.9)
G(p = Glctorglir + Goctorglr,
where gy are the (retarded, advanced) Green’s functions of the uncoupled

reservoirs (X = L, R). Introducing this equation in the current expression
and making use of the relation G~ — G~ = G% — G", we obtain

I'= Q_he _O; dE Tr [Geootorgiptie — Géotorgrftoe].  (8.10)
Then, we determine Gt~/~+ by means of the relation
Gt /T =14+G"t)g" /"t (1+tGY). (8.11)
Taking the element (C,C) in this expression we obtain
Gt = Glhotorgl ] T TtoGhe+ Ghptorghn TtreGlhe. (8.12)

n order to abbreviate the notation, we do not write the energy argument E explicitly.
Moreover, since there are no inelastic processes involved in this model, the self-energies
31~ associated with them vanish.
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Notice that there is an additional contribution containing gga/ ~ " that was

left out in the previous expression. The reason for this is that, in analogy
with our discussion of the resonant tunneling model in section 7.4.3, one
can show that such a term does not contribute to the final expression of
the current.

Substitution of the previous equation in the expression of the current

yields
2e > T —+ a +—
— 00
GTCCtCRgEJ_QtRCGC(LthC’LgEgtLC’} . (8.13)
Let us recall that the unperturbed functions g™~ and g~ satisfy the

following relations?

g =(g"—¢g")f=2iIm(g?) f
g =(g"—¢g")(f-1)=2iIm(g") (f - 1),
where f is the Fermi function. Thus, the current can be expressed as

8e [
I =— dE Tr [GTCCtCRIm {gaRR}tRCG%CtOLIm {g%L}th]

h —0o0
x(fo— fr). (8.15)

Here, fr,/R is the Fermi function of the corresponding electrode, which takes

(8.14)

into account the shift of the chemical potential induced by the voltage.
One can further simplify the expression of the current by defining

qua = tCLgEZtLC and Ega = tCRg%’(]l%tRc, (816)
These matrices are nothing else but the self-energies of this problem for the
subspace of the central region. These self-energies describe the influence of
the reservoir in the central region and they depend both on the coupling
between the reservoirs and the central region and on the local electronic
structure of the leads. Notice that these matrices have a dimension equal
to the number of orbitals in the central region. Using these definitions, the
current can now be rewritten in the following familiar form

2e [

L= dET(E,V)(fL - [r), (8.17)

where T'(E,V) is the energy- and voltage-dependent total transmission

— 00

probability of the contact given by
T(E,V)=4ATr [T G T'rGEA] - (8.18)

2Notice that in Eq. (8.14) we have assumed that that Hamiltonian is real, i.e. there is
time reversal symmetry. One can easily show that this implies that g"(E) = [g*(E)]*.
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where we have defined the scattering rate matrices as I', p = Im{X%¢ p}.%
The voltage dependence of the transmission comes through the scattering
rates (i.e. via the leads), but also through the possible voltage dependence
of the Hamiltonian matrix elements of the central region.

We can further symmetrize this expression by using the cyclic
property of the trace and write T(E,V) = Tr[¢(E,V)tI(E,V)] =
Tr [¢1(E, V)t(E, V)], where

t(E,V) = 2T}/ *GL TH? (8.19)

is the transmission matrix of the system. The existence of I''/? as a real
matrix is warranted by I' being positive definite (see Exercise 8.1).

Finally, the current adopts the form
_ 2e [*

=5 dE Tr [t1(E, V)¢(BE, V)] (f1 — fr), (8.20)

valid for arbitrary bias voltage. In the linear regime this expression reduces

— o0

to the standard Landauer formula for the zero-temperature conductance

G = 2—€2T [tT(Er,0)t(Er,0)] = 2 iT- (8.21)
- h r F7 F7 - h — 19 .

where T} are the eigenvalues of t't (or tt) at the Fermi level. As one can
see, in principle the number of channel would be N, which is the dimension
of the matrix t't. However, as we stated at the beginning of this section, the
separation in three subsystems in somewhat arbitrary and one can evaluate
the current at any point. Thus, it is evident that the actual number of
channels is controlled by the narrowest part of the junction. This fact will
be very important in our discussion of the conduction channels in metallic
single-atom contacts, see section 11.5. Notice also that in this formulation,
the conduction channels , defined as the eigenfunctions of t't, are linear
combinations of the atomic orbitals in the central system.

As a result of the discussion above, we have not only re-derived the
Landauer formula, but more importantly, we have also obtained an explicit
formula for the transmission as a function of the microscopic parameters of
the system. As one can see in Eq. (8.18) or in Eq. (8.19), the determination
of the transmission requires the calculations of both the retarded /advanced
Green’s functions of the central system and the scattering rate matrices.

These functions can be determined from their Dyson’s equation

a r . a a1—1
¢ =(Goe) = [(E—i0T)1 - Hee -39 — %], (8.22)

3We have assumed without loss of generality that the hopping matrix elements are real.
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where Heo is the Hamiltonian of the central region and the self-energies
Yx (X = L, R) are given by Eq. (8.16).

On the other hand, the calculation of the scattering rate matrices,
which are the imaginary part of the self-energies of Eq. (8.16), requires
the knowledge of the Green’s functions of the uncoupled reservoirs, gx x
(with X = L, R). The leads are semi-infinite systems and thus they cannot
possess in practice a very complicated geometry. A typical option is to
describe these leads as ideal surfaces of the corresponding material and the
unperturbed Green’s functions are then computed using special recursive
techniques like the so-called decimation [198].

Let us end this section with a brief technical discussion. The quantity
t(F, V) appearing in Eq. (8.19) has been called transmission matrix without
a real justification. We should demonstrate that this matrix fulfills the
properties of a transmission matrix. In particular, we should at least prove
that the eigenvalues of tt' are bounded between 0 and 1. Indeed, this
property can be shown using a few algebraic manipulations (see Exercise
8.2).

Another way of showing that t(E£, V) in Eq. (8.19) is indeed the trans-
mission matrix of the contact is via the so-called Fisher-Lee relation [199],
which expresses the elements of the scattering matrix in terms of Green’s
functions. For the readers interested in this route, we recommend the orig-
inal work of Ref. [199] and the discussion on this matter in Chapter 3 of
Ref. [50].

8.1.1 An example: back to the resonant tunneling model

As an application of the general formula derived above and in order to
illustrate its use, let us now re-derive the current formula for the resonant
tunneling model considered in section 7.4.3.

Our starting point is the expression for the transmission of Eq. (8.18).
We need first to compute the retarded/advanced Green’s functions of the
central region. In this case this region consists of a single site with an on-
site energy €p. Therefore, the Green’s functions of the central region are
scalars with the following form

ne = [E4i0T —eg— S — x5 7 (8.23)

r,a ) r,a
/R = t1/RILL/RR"
section 7.4.3 that the local Green’s functions g} /RR AT€ purely imaginary

where the self-energies are the scalars X Assuming as in

and independent of the energy around Er, the advanced self-energies reduce
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to E“L/R = il'r /g, where I'p /g = t%/RIm{g%L/RR(EF)} are the scattering
rates at the Fermi energy. Substituting now Eq. (8.23) and the expressions
of the self-energy in Eq. (8.18), we arrive again at the well-known Breit-
Wigner formula

4I' TR
(E—co)? + (T, 1T

Analogously, we can easily re-derive all the different formulas obtained

T(E) =

(8.24)

in the last chapter like for instance, the current expression of the Exercise
7.5 for a linear tight-binding chain (see Exercise 8.3).

8.1.2 Nomnorthogonal basis sets

In the context of molecular electronics the use of nonorthogonal local basis
is quite common. In this sense, we have to discuss how to generalize the
current formula derived above for this type of bases. We shall address this
issue using a simple argument put forward by Emberly and Kirczenow [200]
and we refer the reader to different entry points in the literature for more
rigorous discussions.

In an orthogonal basis set, the overlap between the different basis states
is: (i|j) = Si; = di;, while the corresponding secular equation that provides
the eigenstates of the systems reads: Hp — F1 = 0. Here, the subindex
O indicates that we are working with an orthogonal basis set. Finally, the
Green’s functions are simply obtained by inverting the Hamiltonian in the
usual way, i.e. Go = [E1 — Hp| L.

For a nonorthogonal basis, the overlap matrix differs from the unity
and the secular equation adopts the form: Hy — ES = 0. Here, N denotes
nonorthogonal basis set. The left hand side of the secular equation can be
rewritten as follows

Hy - ES=Hy — E(S—1) - E1=H), — E1. (8.25)

Notice that the secular equation has now the same form as in the orthog-
onal case, but with an effective energy-dependent Hamiltonian: H’, =
Hy—E(S—1). In this Hamiltonian, the on-site energies remain unchanged,
as compared with the original one, whereas the hopping matrix elements
become energy dependent: h}; = h;; — ES;;. This argument suggests that
the only effect that the nonorthogonal basis introduces is the renormaliza-
tion of the hopping elements and therefore, the current formula is identical
to the one derived above after replacing the orthogonal parameters by the

nonorthogonal ones. Additionally, the retarded/advanced Green’s functions
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appearing in the expression of the transmission have to be calculated by
means of the following Dyson’s equation

r,a : r,a ral—1
Ggo = [((E£i07)Sco —Hee - 27 = 23], (8.26)

where Hoe is now the nonorthogonal Hamiltonian of the central region
and Sc¢ is the sector of the overlap matrix corresponding to the central
region. On the other hand, in the expression of the self-energies we have to
replace the hopping matrices txo by txc — ESxc, where X = L, R.

There is another way of deriving the result above [201]. The idea is to
transform every quantity from an orthogonal representation to a nonorthog-
onal one via the so-called Lowdin’s transformation. This transformation is
defined by S~'/2, where S is the overlap matrix and it transforms an opera-
tor Mo in the orthogonal basis to the corresponding one in the nonorthog-
onal basis, My, as follows

My = SY2MSY/2. (8.27)

Inserting 1 = S~1/281/2 in the current formula in the orthogonal repre-
sentation, we arrive after some straightforward algebra at the same conclu-
sions as those stated above. For more detailed discussion of the derivation
of this result, we recommend Refs. [202, 203].

8.1.3 Spin-dependent elastic transport

So far we have only considered situations where there was spin symmetry.
We proceed now to generalize the Landauer formula derived above to sit-
uations where the spin symmetry is broken. Those situations include very
prominent examples in molecular electronics such as the transport through
ferromagnetic atomic-sized contacts (see Chapter 12) and molecular junc-
tions with ferromagnetic leads.

For the sake of concreteness, let us first consider the case of a metallic
atomic-sized contact made of a ferromagnetic material (like Fe, Co or Ni).
It is customary to analyze the transport properties of these junctions within
the two-current model put forward by N.F. Mott [204, 205]. Mott realized
that at sufficiently low temperature, where the magnon scattering in a
ferromagnet becomes vanishingly small, electrons of majority and minority
spin, with magnetic moment parallel and antiparallel to the magnetization,
respectively, do not mix in the scattering processes. This means in practice
that the total current can then be expressed as the sum of two independent
contribution coming from the two different spin projections, which implies
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that in ferromagnets the current is spin polarized. Therefore, the Landauer
formula of Eq. (8.20) adopts now the form

(&

=5 [ aETE VUL o), (5.28)

where T'(E, V) is the total transmission sum of the transmissions of the two

T=)> T,=) Tr{tht,} =) T, (8.29)

o=, o

where t, is the transmission matrix of the spin sector o and T,,, are the

spin bands

corresponding transmission coefficients. The transmission t, is given by
Eq. (8.19), where all the quantity are referred to the spin band o.

The previous current formula describes any (elastic) situation where
there is no mixing of the two spin bands. This is what occurs in most of
the atomic-scale junctions that we have in mind, where the system size is
clearly smaller than the spin-diffusion length. However, this is no longer
true if, for instance, there is a small domain wall of atomic size in the
junction or a strong spin-orbit interaction is present. Let us show how the
formula for the elastic current is modified in those situations.

A system in which the majority and minority spin bands are mixed can
be generically described by the following tight-binding Hamiltonian

H= > hi7scl,ciso, (8.30)
ijafoa’

where 7, j run over the atomic sites, «, 8 denote the different atomic orbitals,
and o = 1, ] the spin. Within this model, the current can be computed fol-
lowing the same steps as in the case with spin symmetry and we only sketch
here the main idea and the final result. Briefly, the atomic-scale contact is
divided into three parts, a central region C containing the constriction and
the left/right (L/R) leads. The retarded Green’s functions of the central
part read?

Lo =[EScc —Heo — 7 — 257, (8.31)

where 3% = (tcx — EScx)g8% x (tcx — EScx)' are the lead self-energies
(X = L, R). Here, tox and S x are the hoppings and overlaps between the
C region and the lead X, and g'y y is a lead Green’s function. Notice that
the dimension of all the matrices in the previous equation is equal to the
total number of orbitals in the central region multiplied by two. This factor

4Notice that we take into account the possibility of using non-orthogonal basis sets.
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two comes from the structure in spin space. As before, the transmission
matrix is given by t = 21‘2/2 ’éCI‘}f, but this time the scattering rate
matrices are given by where I'x = i[X% — (X% )7]/2. The reason for this is
that, in general, the Hamiltonian is not real and g%y = (g% ). Finally,
the current then adopts the standard Landauer form of Eq. (8.28), but now
the trace includes not only a sum over the orbitals in the central part, but
also over spins. Finally, the low-temperature linear conductance can be
written as G = (e?/h) Y., T, where T,, are the transmission coefficients,

i.e. the eigenvalues of tTt at Fermi energy.

8.2 Current through an interacting atomic-scale junction

As we explained in previous chapters, one of the main advantages of the
Green’s functions techniques with respect to the scattering approach is the
possibility to describe the influence of correlation and inelastic effects in
the transport characteristics. The goal of this section is to show how the
Landauer formula derived in the previous section is modified when such
effects are present in an atomic-scale junction. The derivation of the current
formula for an interacting system in the framework of Hamiltonian written
in a local basis was first done by Caroli and coworkers [209]. Later, Meir
and Wingreen re-derived this formula to express the current in a more
appealing way [210]. Although this latter formula is widely used in the
context of mesoscopic physics, its simplest form is not generally valid for
atomic-scale systems (see discussion below). We follow now the formulation
of Caroli and coworkers [209] and then discuss the Meir-Wingreen formula
in section 8.2.2.

Let us consider again the generic junction of Fig. 8.1. For the sake
of simplicity, we assume that the interactions (such as electron-electron or
electron-phonon interactions) are restricted to the central region. The cal-
culation of the current is identical to that of the elastic case up to Eq. (8.10).
At this point we have to determine the functions G+—/~% of the central re-
gion, which can be done using the general Keldysh relations [see Eqgs. (7.47)
and (7.48)]

GH/ "t =(1+Gt)gm /T (1+tG") -GSt /TG,  (8.32)

where £T~/=% are the Keldysh components of the self-energy describing
the inelastic effects. Notice that the last term was absent in the elastic
case. We now take the block-element (C,C) in the previous equation and
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obtain
Gl T =gld T+ Glctorgr TtLeGle + (8.33)
GERtCRgJ}%}_z/_JFtRCG%C - gczgc_:/_Jr ¢o-

Here we have used the fact that the interactions are restricted to the central
region, which in practice means that the inelastic self-energies 3+t—/—+
have only a (CC) component. Introducing now these Green’s functions in
Eq. (8.10), one can readily show that the current can be written as the sum
of two contributions: I = I.; + I;pe;, where

8e [
Lo = = dE Tr [GoeTrRGECT L] (fL — [R) (8.34)
die [ _ _
Linet = == | dETr{GEcT1LGee [(fr — Db — frE66] }(8:35)

Again, the trace in these expressions has to be understood as a sum over all
the orbitals in the central region. The first term, I.;, represents the elastic
current and it has the same form as the Landauer formula derived in the
previous section. The second term, I;,.;, which we call inelastic current,
is the new contribution due to the inelastic interactions. Notice that this
term has a rather asymmetric form, which is a consequence of our choice of
computing the current in the left interface. If wanted, one can symmetrize
this expression by combining it with the inelastic current evaluated in right
interface® and using current conservation to define the inelastic current as
Tiner = (Iz'%zel + Iﬁel)/z

From Eq. (8.35) it is not obvious that the inelastic current vanishes at
zero bias. However, this can be shown by using the general relations for a
system in equilibrium

2T(E) = (2" -2 f(B); ZTH(E) = (2" -2 (f(E) - 1), (8:36)
where f(F) is the Fermi function.
It is important to emphasize that the retarded and advanced Green’s

functions of the central region are computed through a Dyson’s equation
that now also includes the new inelastic self-energies

to = (Goe)' = [(E—i0")1 -~ Hee - 2] - 3% -3¢, (8.37)

5Such expression reads

die [° o . _ _
a=-""[ dBTr {GecTrGEe [(fr - VZ8c - frZcd] }-

— 00
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where ¢, is the advanced component of the self-energy describing the
inelastic interactions in the central region and 3¢  are given by Eq. (8.16).

The precise form of the inelastic self-energies and in turn of the con-
tribution of the inelastic term to the total current depends on the specific
nature of the inelastic interactions. In order to illustrate the use of this
new current formula, we present in the next subsection an important ex-
ample concerning the role of the electron-phonon interaction in molecular
junctions.

8.2.1 Electron-phonon interaction in the resonant tunnel-
ing model

In most transport experiments in molecular junctions, there is no certainty
that the current is indeed flowing through a molecule. Thus, it is to find
unambiguous signatures of the presence of the molecule, for instance, in
the current-voltage (I-V) characteristics. As we shall discuss extensively
in Chapter 16, presently the most convincing signatures are those related
to the excitation of vibration modes of the molecules used to form the
junctions. For this reason, it has become very important to understand
how the local interaction between the conduction electrons and molecular
vibrations is manifested in the I-V curves. We shall address this issue here
with a toy model that will also serve us to illustrate the use of the inelastic
current formula derived above.

Let us consider the resonant tunneling model that was already discussed
in section 7.4.3. Let us recall that in this model an electronic level with
energy ¢g is coupled to two metallic reservoirs via hopping elements t; and
tr, where L and R denote the left and right leads, respectively. Now, we
assume that this resonant level is also coupled to a single local vibrational
mode of energy hw. This model is schematically represented in Fig. 8.2.
Our goal is to compute the current-voltage characteristics when a constant
bias voltage, V', is applied. In particular, we shall pay special attention to
the correction of the current due to the electron-vibration interaction.

The Hamiltonian of the system that we have just described has the
following form

H = He + Hvib + He—viba (838)

where H,. describes the electronic part of this problem as it is given by
Eq. (7.93). The vibrational mode is described as a simple harmonic oscil-
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Metal Molecule Metal

Fig. 8.2 Schematic representation of the resonant tunneling model where the electronic
level is coupled to a single vibrational mode of frequency w with an electron-phonon
coupling constant A.

lator of energy hw by

1
H,i, = hw (b*b + 5) : (8.39)

where the creation and annihilation operators b' and b satisfy the bosonic
commutation relations, e.g. [b, b’] = 1. Finally, the interaction between the
vibration mode and the conduction electrons is described by the following
Hamiltonian [174]

H, i = Achco(bT 4+ b), (8.40)

where A is the electron-vibration coupling constant and cg and cg are the
fermionic operators related to the electronic level.%

In this simple model, the central region consists of a single site and
therefore the Green’s functions, scattering rates and self-energies appearing
in the current formulas of Eqgs. (8.34) and (8.35) are just scalars. Such
formulas reduce to the following expressions

8e

I = %rLrR/ dE G2 (1 — fr), (8.41)

die > _ _
T = 5Te [ dEIGTP [(f1 = VE5 — 1E7,,). (5.2

Here, the Green’s function G"(F) refers to the central site or resonant
level. Moreover, as usual, we have assumed that the scattering rates, I'r, g,
that describe the strength of the coupling between the resonant level and
the leads are independent of the energy. Now, we have to determine the

6The spin does not play any role in this problem and we have dropped it in the previous
expression.
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self-energy associated to the electron-vibration interaction, Ye_wip. The
simplest approximation for this self-energy can be obtained by applying
perturbation theory and keeping only the lowest order correction. Physi-
cally, this means that one only takes single-phonon processes into account.
As it is shown in Exercise 8.5, the first non-vanishing correction to the
self-energy is proportional to A\? and its different components are given by”

e—vib

ro(E) = ix? /Oo D ()G H(E - ) + D (B)E (B - B}

oo 2m
+- 2 dE’ +—( "\t — !
S w(B) = N [ =D (ENGT (B~ E),
—+ o [AE L A /
S (E) = —iX [ D HENGTH(E - E). (8.43)

Here, the functions with tilde are the electronic Green’s functions of the
resonant site where the coupling to the leads is taken into account and
the electron-vibration is not included, i.e. these are, loosely speaking, the
unperturbed functions of this problem, which are given by

G'(E) =[(E+in) —e +i(lL +TR)] ",
Gt (F) = 2i|G"(E)]* T1fr + Trfr],
G™H(E) = =2i|G"(B)]*[TL(1 = fr) + Tr(1 — fr)], (8.44)

where n = 0%.

On the other hand, the D’s are the phonon Green’s functions of this
problem and their general definitions can be found in Exercise 8.4. Assum-
ing that the vibration mode is in thermal equilibrium at the temperature
of the electrodes, these functions are given by (see Exercise 8.4)

1 1
D" (F) = —
(E) E—ho+in FE+hw+in’
DT (E) = —27i {(ng + 1)6(E + hw) + nd(E — hw)},
D™ (E) = —27i{(ng + 1)6(E — hw) + npd(E + hw)}, (8.45)

where np = 1/[exp(Bhw) — 1], with 8 = 1/kpT is the Bose function that
describes the thermal occupation of the vibration mode.

"There is an additional contribution to X7 iy () which is equal to

—iX2D"(0) /_O:O

This gives a constant contribution that simply renormalizes the position of the resonant

B -
d Gt (E).
2m

level and we ignore it in what follows.
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Now, we expand the current to lowest order in the coupling constant \.
To do so, in the inelastic term of Eq. (8.42) we just need to introduce the
expressions of ¥._,; and replace the full G by G". In the elastic term
of Eq. (8.41) we have to insert the lowest order correction of the Green’s
functions, i.e. G ~ ér+ér27;_vibér, and collect all the terms up to second
order in A. Doing this, the current can be expressed as the sum of three
terms: I = Igl + 01c; + Ijner, where the different contributions are given by

15 =Yrure [ B GHEIP L) - fa(B), (5.40)
61, = %FLFR /_O; dE |G"(E)|* x
Re {G"(E)ZL_,(B) | [f1(E) - fr(E)]. (8.47)
Tinet = 8€hA2rLrR /_o:o dE {(np +1)|G"(B)G"(E — hw)[*x

fL(E)A = fr(E — hw)) — fr(E)(1 = fL(E — hw))]

+np|G"(E)G"(E + hw)|* x

fL(E)(L = fr(E + hw)) = frE)(1 — fL(E + hw))]} . (8.48)
The first contribution, I

el
absence of electron-vibration interaction that we have studied in section
7.4.3, see Fig. 8.3(a). The third term, I;,.;, is the inelastic contribution

coming from the emission and absorption of a vibrational mode. Notice

is nothing else but the elastic current in the

that the term in I;,.; proportional to ng corresponds to the contribution
of processes assisted by the absorption of a mode, see Fig. 8.3(b), whereas
the term proportional to (np + 1) is the contribution of tunneling pro-
cesses mediated by the stimulated and spontaneous emission of a mode, see
Fig. 8.3(c). At temperatures much lower than iw/kpg, the second one dom-
inates. Moreover, it is easy to see that at low temperatures the emission
term has a threshold voltage equal to the vibration energy (hw/e) below
which it vanishes. Above this voltage this term gives always a positive con-
tribution, which means that it gives rise to a step up in the conductance.
The second term, d1.;, has a less obvious interpretation. It is an elastic term
that involves the emission and absorption of a virtual vibrational mode, see
Fig. 8.3(d). This term will be referred to as elastic correction.

It is easy to evaluate numerically the different contributions to the cur-
rent for an arbitrary range of parameters. However, in order to gain some
insight, we concentrate here on a limiting case that can be worked out
analytically. Let us assume that the energy dependence in the retarded
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(a) Elastic process (b) Phonon absorption
eV ho |ev
L L
80 R 80 R
Metal Molecule Metal Metal Molecule Metal
(c) Phonon emission (d) Elastic correction
% ho |ev % § ho |ev
L L
80 R 80 R
Metal Molecule Metal Metal Molecule Metal

Fig. 8.3 Schematic representation of the elastic (a) and inelastic (b-d) tunneling pro-
cesses that can occur in the model in which an electronic level is coupled to a single
vibration mode. Here, we have assumed that the electron-phonon interaction is weak
and the processes (b-d) are responsible for the inelastic correction to the elastic current
up to order \2.

electronic Green’s functions can be neglected, i.e. G"(E) = G"(Er). This
means in practice that we assume that both the local density of states
and the transmission are energy-independent. This is a good approxima-
tion in two cases: (i) when the coupling to the leads is so strong that
't +Tr >> hw, eV, |Er — €| and (ii) when the resonant level is far away
from the Fermi energy, i.e. |[Ep — €g| > I'r g, eV, hw. With this approxi-
mation the different terms can be computed analytically. At temperatures
well below the vibrational energy, the correction to the elastic current is a
competition between the emission term in [;,.; and the elastic correction
0lg;. Assuming a symmetric junction, I'y = I'r = I, the three contri-
butions to the zero-temperature differential conductance are given by (see
Exercise 8.6)

Ga _

Go

6Ga(V) N [ T*(1-T)/2; |eV]| < hw

Go 12\ T2(1 - 2T)/2; |eV] > hw
Ginet (V) N { 0; l|eV| < hw

— 4
Go 2 | T?/4; |eV| > hw’ (8.49)
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(a) T>172 (b) T<1/2
drdv drdv
|~(WD)

—ﬁw +ﬁw eV —ﬁm +he eV

Fig. 8.4 Signature of a vibration mode in the zero-temperature differential conductance
of a resonant level. (a) For transmissions greater than 1/2, the differential conductance
exhibits a step down at eV = thw due to electron-vibration interaction. The height of
the step is mainly determined by the ratio A?/T'? and it has been exaggerated for clarity.
(b) The signature of the vibration mode in the differential conductance for transmissions
less than 1/2 is a step up at eV = +fw.

where T = 4T?|G"(Er)|? is the elastic transmission in the absence of
electron-vibration interaction. Notice that dG.; has a discontinuity (step
down) at eV = £hw proportional to —72/2, while the emission term con-
tributes to this jump as ~ +72/4. This means that the sign of the con-
ductance jump depends on the junction transmission and it is given by:
(A2/T%)T?(1 — 2T)/4. Notice that the magnitude is determined by the ra-
tio of the two relevant coupling constants, A and I', which has been assumed
to be small. On the other hand, the conclusion of this analysis is that the
electron-vibration interaction in this simple model is reflected in the appear-
ance of a jump in the low-temperature conductance at eV = +hw. This
jump is seen as a step up in conductance for 7' < 1/2 and as step down
for T' > 1/2. This conclusion is summarized schematically in Fig. 8.4. The
signature of the vibration modes can be seen more clearly in the second
derivative of the current, d2I/dV?, where it appears as a peak or as a dip
depending on the junction transmission.® The results of this model will be
discussed in much more detail in section 17.1.1.

8.2.2 The Meir- Wingreen formula

As we mentioned in the introduction of this section, Meir and Wingreen
proposed in 1992 [210] an alternative form for the formula of the current
through an interacting region. This formula has been widely used in meso-
scopic physics and, in particular, for studying the transport through all kind
of quantum dots and molecular transistors. For this reason and for the sake

8The signature is antisymmetric with respect to the voltage polarity in the sense that
if it appears as peak for positive bias, it appears as dip for negative one.



Formulas of the electrical current 223

of completeness, we include here a short discussion of the derivation of this
formula. Further technical details can be found in Exercise 8.7.

Once more, we consider the system of Fig. 8.1, where the central part
represents an interacting region. The current evaluated at the left interface
is given by Eq. (8.8). Now, to determine the Keldysh-Green’s functions
appearing in that expression we make use of Dyson’s equation in Keldysh
space as follows

Gic =glltreGlc — gl teGog (8.50)
Glp = Gidtorglr — Gootorsrr-
Using the general relations Gt~ +G T =Gt T+G ~ and GT~ -G~ 1 =

G® — G", it is straightforward to show that the current evaluated at the
left interface, I, is given by
_ die [

IL—h

where the scattering rate I'y, is defined in the usual way.

dE Tr{T';, [G{e + (Goe — GEe)fL] } (8.51)

— o0

Analogously, one can obtain the expression of the current, evaluated
this time at the right interface, Ir. Writing then the current in a more
symmetric manner as I = (I, + Ir)/2, one arrives at

=2 [T apt o r a
= ) T {(TL —Tr)GSe + (fiTr —Trfr)(GEe — GEo) ) -

(8.52)

This is the Meir-Wingreen formula in its most general form. It is completely

equivalent to the expression derived above and in the non-interacting case

it reduces to the Landauer formula (see Exercise 8.7). The “popularity”

of this formula is due to the fact that it takes an appealing form in the

case in which the couplings to the leads differ only by a constant factor,

I'tL(E) = AT'r(E). In this case, the current reads

I= S—he " dE T {TAY (fr — fn), (8.53)

where I' = I';T'r/(Tr + I'r) and A = (Gl — G&()/2 is the spectral
function of the central region. The division in the expression of I" has to
be understood as multiplication by the inverse of the matrix appearing in
the denominator. The nice thing about this formula is that the current is
expressed in terms of the spectral function, A. Unfortunately, the condition
of proportionality of the scattering rates is quite restrictive and most cases

it is not really fulfilled. For applications of this latter formula, see Exercises
8.9 and 8.10.
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8.3 Time-dependent transport in nanoscale junctions

Up to now we have only considered stationary situations where the current
was time-independent. In this section we shall illustrate the use of the
Keldysh formalism for computing the transport properties of a system that
is subjected to an externally applied time-dependent drive.

As a model problem, which will be very important for Chapter 20,
we consider here the calculation of the current in an atomic or molec-
ular contact under the presence of an oscillating bias voltage: V(t) =
V + Vyesin(wt), where V' is the dc part of the bias and V. and w are the
amplitude and the frequency of this periodic potential, respectively. This
ac field can be simply due to an applied chemical potential difference, but
one can also imagine that it is induced in the junction by the application of
an external radiation, which is a situation is of special interest for us. The
question of how the current through an atomic-scale junction can be modi-
fied by irradiation is a very important subject in molecular electronics [211].
In other contexts, like for instance in the case of superconducting tunnel
junctions, this problem has a long history [212]. From the theory side, the
“photon-assisted” transport has been traditionally addressed following the
seminal work of Tien and Gordon (TG) [213], where this phenomenon was
described by a harmonic voltage at the radiation frequency w applied to
one of the leads of a junction. Such a simple approach have been quite
successful in gaining a qualitative understanding of radiation-induced cur-
rents in many situations like superconducting systems [212], semiconductor
heterostructures [214], STM [215], and and other mesoscopic systems [211].
Our discussion in this section provides the basis to address similar problems
in the context of atomic and molecular junctions.

Different theoretical approaches have been applied to the problem that
we are about to tackle such as the scattering approach [165] or Floquet
theory [211, 214]. We shall follow here the nonequilibrium Green’s func-
tion formalism used in the previous sections of this chapter (see also
Refs. [216-220]). This approach allows us to describe the photo-transport
in realistic atomic and molecular contacts, in the sense that it can be com-
bined by advanced electronic structure methods.

Let us consider the generic geometry of Fig. 8.1, which again represents
an atomic or molecular contact of arbitrary shape. For simplicity, we as-
sume that the correlation and inelastic effects do not play a mayor role in
this case. In other words, we assume that the transport in the absence of
the ac drive is coherent. We describe the system with the following time-
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dependent Hamiltonian: H(¢) = Ho + H;(¢). Here, Hy is the Hamiltonian
of Eq. (8.1) that contains the full microscopic information about the sys-
tem in the absence of dc and ac voltages.” The time-dependent part H(¢)
describes the driving potential and it can be written generically as

Hl(t) = Z Wm (t)C;-rCZ', (854)

where W;;(t) = U + Uf< sin(wt) describe the shifts in the on-site energies
induced by the dc and ac parts of voltage. Here, the U;’s are the amplitudes
of the local potential at site 7 and equal for all the orbitals in the same atom.
We assume that the potential is spatially constant in the L and R leads and
equal to Ux () = U¥ + U sin(wt), and X = L, R. The applied dc voltage
is V = (U —Ud) /e and the corresponding ac part is V,. = (U —U%)/e.
We shall calculate the current for an arbitrary potential profile in the central
region (encoded in the functions Uj;(t)), the actual shape of which should
in principle be obtained self-consistently [165].

In order to derive the current formula in this situation, we shall follow
the same steps taken in section 8.1 and we shall emphasize here only the
main differences with respect to that calculation. Our starting point is the
expression of the time-dependent current evaluated at the left interface,
which can be written in terms of the Green’s functions as follows

2e
I(t) = 5T [GEp(t e — torGro(tb)]. (8.55)

To determine the Green’s functions we follow the same perturbative ap-
proach as in section 8.1. The essential difference now is that the Green’s
functions depend explicitly on two time arguments (rather than on their dif-
ference), which introduces an extra complication, as we are about to show.
Using the Dyson’s equation [see Eq. (7.46)] we can express the functions
appearing in the current as'®

GJLFE (t> t/) = {gz[_, otrco G%C + gEL otrco GgE} (tv t/) (8'56)
Gt t)={Gicoterogl, + Goootarogiy } (1),
where the product o is defined by (AoB)(t,t') = [dt; A(t,t1)B(t1,1), L.e.
it is a convolution over the intermediate time arguments. This means that

any Dyson’s equation is no longer an algebraic equation as before, but rather
an integral equation. Anyway, if we handle carefully this non-commutative

9We shall assume throughout this discussion that this Hamiltonian is written is a local
orthogonal basis.

10Here, the time-dependent hopping matrices are defined, for instance, as: tpc(t,t') =
trod(t —t').
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product, the derivation still follows the same steps as in section 8.1. Thus,

we can easily arrive at the following expression for the current
2e

I(t) = - Tr [GecoZgrT 0GEoXf™—

Co © ZR_ o G¢o o ZZJF} (t,t), (8.57)

which is the analog of Eq. (8.13). Here, we have define the “lead self-
energies”

ST/ t) = [tex oghd T o txc} (t,1), (8.58)

where X = L, R.

The lead Green’s functions have now a more complicated time depen-

dence. Due to the ac voltage they oscillate on time as follows!!

g5 (t,1') = e X Wg (¢ — t')e?x (), (8.59)

where ¢ = r,a,+—, —+. Here, 0¢x(t)/0t = ux(t)/h, where ux(t) is the
chemical potential of the corresponding electrode. Therefore, ¢x(t) =
(U4 /h)t + ax cos(wt), with ax = U%/(hw).

As usual, it is more convenient to work in energy space and for this
reason we now Fourier transform with respect to the two time arguments

g% (t, 1) / dE / dE' e EthE Y [hge (B E'). (8.60)

From Eq. (8.59) it is easy to show that the lead Green’s functions admit a
Fourier expansion of the form

E
Zezmwt /d —ZE(t t)/h < (E E+mhw) (861)

In other words, the functions g% (£, E’) satisfy the following relation

g5 (B, E") =) [85]on(E)(E — E' + nhw), (8.62)
where [g5]o.n(E) = g% (E, E4+nhw). Other Fourier components are related
by [8%]n.m(E) = [85%lom—n(E + nhw). These Fourier components can be
seen as the matrix elements of the Green’s functions in energy space. We

HThis time dependence can be shown by solving the Dyson’s equation for the lead
Green’s function, which e.g. for the retarded component reads:

<ih% —Hxx — WXX(t)) g x(t,t') = ho(t —t'),

where W x x (t) is nothing else but a spatially constant term equal to the chemical
potential of the electrode.
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denote the matrices in this space with a “hat” symbol. The previous rela-
tion is the mathematical expression of the fact that all physical quantities
in this problem oscillate in time with the driving frequency and all its har-
monics.

With the help of the relation

PRI cos(wt) _ Z imJ,, (Oz)eimwt, (863)
m
where J,,, is the Bessel function of first kind of order m, one can show that
the Fourier components of the lead Green’s functions are given by

85 nm(B) = ™" Jpi(ax)Jm—i(ax)gUE — UE + lhw), (8.64)
!
where g“? are the equilibrium Green’s functions of the lead X, i.e. the
usual lead Green’s function for us. With these expressions, it is straight-
forward to show that the self-energies, like the ones in Eq. (8.58), and the
corresponding scattering rates are related to the corresponding equilibrium
quantities as follows

S el - (1
S5dmn = > B s Exlmn = > L% mn,  (8.65)
l l

where we define the components

L) (B) = ™" Ty () Tt (ax) TSUE — USE + lhw),  (8.66)

A

with a similar equation for 2§§Z)(E).

The full Green’s functions in the central region have a similar structure
in energy space and their different Fourier components are given by the
following matrix Dyson’s equation

[Gg%]il —E— Hcci — WCC — Sza — Sg%’a. (8.67)
Here [El,m = (E 4+ nhw)dmnl, [Weclnm = WEobnm + WE(0n_1,m +
On+1.m)/2. This means that the Fourier components of the Green’s func-
tions can be obtained by inverting the usual matrix, but this time in an
extended space. This is a (0o X 00) matrix that has to be truncated and its
actual dimension is determined by the amplitude of the ac voltage.

Now, we can bring all these results into the current expression, see
Eq. (8.57). The first thing to notice is that, as we have already pointed
out, all the quantities in this problem, Green’s functions, self-energies, etc.,
admit a Fourier expansion of the form of Eq. (8.61). It is easy to show
that the convolution (or o-product) of two quantities with this property is
a function that also fulfills this property. Therefore, it is obvious that the
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current in Eq. (8.57), in which the two time arguments are equal, has the
following time dependence

I(t) =) Ine™", (8.68)

i.e. as anticipated, it oscillates with the external frequency and all its har-
monics. We are only interested here in the dc component, Iy, which from
now on we will simply denote as I.

Using the generic Fourier expansion of Eq. (8.61) for all the quantities
appearing in the current expression, see Eq. (8.57), it is easy to show that
the dc current can be written in terms of the different Fourier components
in energy space defined above as

= 87/ > e {IG o s N[ G e BT o} (£ = 157,
Kk ,m,n,n!

(8.69)
where f)({n)(E) = f(E — U% + nhw). At this stage it is already obvious
that in the absence of an ac field, this formula reduces to the Landauer
formula derived in section 8.1. We can write the current in numerous
ways by changing summation indices and the integration variable. Thus
for instance, it is not difficult to show that the dc current can be expressed
as follows'?

I(V;a,w):% 3 /_OO dE [TY)E, Vo w)fL(E) —  (8.70)

k=—oc0

T (B, V;a,w) fr(E)],

where fx(E) = f(E — U¥), the parameter a = ay, — ag = eV./hw is
the strength of the ac drive and the coefficients appearing inside the energy
integral are given by

T8 (E) = 4Tr, [G"(E)IW (B)Ge(BE)D' (B)), (8.71)
T*(E) = 4T, [G*(B)TY (B)G™(E)TY (B)), (8.72)

where trace Tr,, includes a summation over the “harmonic” indexes, i.e.
over the Fourier components in energy space, and over the usual site and
orbital indexes of the central region. Here T]%IZ)(E) can be interpreted as
a transmission coefficient that describes processes taking an electron from
left (L) to right (R), under the absorption of a total of k energy quanta

2For the sake of clarity, we make explicit the dependence of the current on the dc
voltage, V, the frequency, w, and the strength of the ac drive, « = af, — ap = eV /hw.
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hw. The coefficient Tg}:{)(E) has a similar interpretation. By the way,

these interpretations are the reason why one usually talks about photo-
assisted processes in this problem, although there is indeed no quantized
electromagnetic field interacting with the conduction electrons in our model.

Let us summarize the discussion above. The current of Eq. (8.70) de-
scribes the dc current in the presence of an oscillating potential and it
adopts a form similar to the standard Landauer formula. The main differ-
ence is that all the quantities have now a matrix structure in an extended
Hilbert space, which includes both the orbital and the energy space. The
appearance of off-diagonal elements in energy space is a natural conse-
quence of the occurrence of the inelastic processes that take place in this
problem. In those inelastic tunneling processes, a certain number of en-
ergy quanta (multiples of hw) can be either absorbed or emitted. The
retarded /advanced Green’s functions appearing in the current formula are
determined by solving the matrix equation (8.67), while the scattering rates
are given by Eq. (8.66). All these matrices have, in principle, an infinite
dimension in energy space, but they can be truncated in practice and their
actual dimension is governed by the amplitude of the ac drive, a.

The formalism above has been recently used to discuss both the photon-
assisted transport in atomic [221] and molecular wires [222]. This formalism
is a bit cumbersome and numerically demanding due to the large size of
the matrices involved. However, the current formula above can be greatly
simplified in the case in which we can ignore the energy dependence in the
leads, which is frequently a very good approximation. In this situation the
self-energies 3 x become diagonal (see Exercise 8.8)

Exlnm(E) = Zx(E)6p.m. (8.73)

If in addition we assume that the ac potential profile is such that it is
constant in the central region (i.e. the drops occur at the interfaces), the
current formula reduces to [165, 211, 214]

2e

I(Viayw) = 5 i [Jl (%)}Q/dE T(E+ 1) [fr(E) — fr(E)], (8.74)

where T'(E) is the transmission in the absence of ac drive.!> Moreover, we
have assumed here that the ac potential drops symmetrically at both inter-
faces, i.e. ar, g = /2. The result of Eq. (8.74) is quite remarkable and it
tell us that the current under a periodic time-dependent field depends pri-
marily on the energy dependence of the elastic transmission. This becomes

13This transmission may include the dc part of the voltage.
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even more apparent in the case of the conductance. At low temperatures
and in the linear response regime (vanishing dc bias), the conductance,
which will be referred to as photoconductance, takes the particularly simple
form

GV =0a,w) =Gy > [Jl (5)} T(Ep + lhw), (8.75)
l=—00

where T'(F) is the zero-bias equilibrium transmission. Let us remind that
here [ can be interpreted as the number of absorbed or emitted photons,
Ji(z) is a Bessel function of the first kind (of order 1), and o = eV,./hw is
the dimensionless parameter describing the strength of the ac drive. Note
that if the transmission does not depend on energy in the range explored
by the inelastic processes, the conductance reduces to the conductance in
the absence of drive, i.e. GoT(EF).

In the limit @ < 1 and frequencies small in comparison with the energy
scale in which transmission changes significantly, we can expand T'(F) and
the Bessel functions in Eq. (8.75) to leading order in these small quantities,
yielding G(w) = GoT(Er) + Go(ahw)?*T"(FEr)/16, where T" denotes the
second derivative respect to energy. Defining then the induced conductance
correction AG(w) = G(w) — G(w = 0), where G(w = 0) = G = GyT'(Ew),
the relative correction becomes

AG(o,w)  (ahw)? T"(Er)

G 16 T(Ep)

We thus see that this quantity gives experimental access to the second
derivative of the transmission function at ¥ = Er. Note that in this ap-

(8.76)

proximation, which can be seen as an adiabatic or “classical” limit [212],
the conductance correction depends only on the driving field through the
ac amplitude V,. = ahw/e.

Finally, let us mention that Eq. (8.74) may equally well be written in
the form [213, 212]

I(Via,w) =Y [Jl (3>]210(V+2mw/e), (8.77)
— 2
where Iy(V') is the I-V characteristic in the absence of light.

The main assumption leading to these simplified formulas is the fact
that the profile is flat across the central part of the constriction. However,
it has been shown in Refs. [221, 222] that the detailed shape of the profile
does not change significantly the main results, unless the ac amplitude is
very large.
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8.3.1 Photon-assisted resonant tunneling

In order to illustrate the previous time-dependent formalism, let us now
apply it to the resonant tunneling model (see section 7.4.3). This problem
has been analyzed by Jauho et al. [218]. As we have discussed many times
by now, this simple model gives useful insight into the conduction through
a single-molecule junction. Now, the question is: How is the resonant
transport modified in the presence of radiation? Following the discussion
above, we assume here that an electromagnetic field simply induces an ac
voltage of frequency w across the junction. If, as usual, we neglect the
energy dependence of the scattering rates, we can analyze this problem in
terms of the simplified formulas presented at the end of the previous section.

The first issue that we want to address is the modification of the non-
linear conductance. For this purpose, we use the expression of Eq. (8.74)
to determine the current-voltage characteristics and in turn the differential
conductance dI(V;a,w)/dV, where V is the dc voltage. In this formula
we make use of the expression of Eq. (8.24) for the elastic transmission
through the resonant level in the absence of radiation. We assume that
both the bias voltage and the ac drive drop symmetrically at the interfaces.
This means in practice that the chemical potentials of both electrodes are
shifted by +eV/2, while the resonant level is not shifted by the bias. An
example of the zero-temperature I-V characteristics for different values of «
is shown in Fig. 8.5(a). In this example, the level position (measured with
respect to the equilibrium chemical potential of the electrodes) is €9 = 5hw
and I'y = I'r = 0.1hw. The corresponding differential conductance as a
function of the bias voltage is shown in Fig. 8.5(b). Notice that in the
absence of the external ac field, the conductance is simply given by a Breit-
Wigner resonance centered around 2¢ (see curve for a = 0). The factor two
is due to the symmetric voltage profile adopted here. When the radiation is
applied, one can see the appearance of additional steps in the current and
satellite peaks in the conductance with a regular spacing equal to 2hw. In
the case of the conductance, the peaks on the left hand side of the central
elastic resonance are due to the photon absorption, i.e. due to tunneling
processes in which an incoming electron with energy F = ¢y — eV/2 — khw
absorbs k£ photons and crosses the level exactly at resonance. Similarly,
the peaks on the right hand side are due to emission processes in which an
electron loses energy emitting a certain number of photons. The number
of satellite peaks (or side bands) depends on the strength of the ac drive,
«, which is basically a measure of the local field intensity at the junction.
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Fig. 8.5 Photon-assisted transport in the resonant tunneling model. In this example we
consider a symmetric junction with 'y = I'r = 0.1/w and all the results are obtained at
zero temperature. (a) Current as a function of the dc bias voltage V for ¢g — Ep = bhw
and different values of @ = eV c/fiw. (b) The differential conductance corresponding to
the I-V curves of panel (a). (c¢) Photoconductance normalized by the conductance in the
absence of radiation as a function of the radiation frequency for different values of a.
(d) Photoconductance versus level position measured with respect to the Fermi energy.

An important quantity for us is the photoconductance G(V = 0; o, w),
i.e. the conductance when the dc voltage is infinitesimally small. In
Fig. 8.5(c) we show an example of this quantity as a function of the ra-
diation frequency. The fact that we want to illustrate here is that when
the frequency matches the distance between the Fermi energy and the level
position, one observes a huge enhancement of the conductance that can
reach up to several orders of magnitude. The additional peaks that one
can see in Fig. 8.5(c) are due to multi-photon processes. Finally, in some
situations the position of the resonant level can be tuned by means of, for
instance, a gate voltage. Therefore, it is interesting to know what is the
expected dependence of the photoconductance on the level position. This
can be seen in Fig. 8.5(d), where one can observe that in this case the in-
elastic tunneling events give rise to satellite peaks that are separated by an
energy equal to hw.
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8.4 Exercises

8.1 Scattering rate matrices: Show that the scattering rate matrices defined
in section 8.1 as I'x = Im{¥x} (X = L, R), where X x are the self-energies of
Eq. (8.16), are positive definite and therefore their square roots are well-defined.

8.2 Transmission matrix: The goal of this exercise is to show that the matrix
defined in Eq. (8.19) has indeed the basic properties of a transmission matrix. For
this purpose, it must be shown that the eigenvalues of tt" are bounded between
0 and 1. Demonstrate this property following the next steps:

(i) Using the result of the previous exercise, show that tt' is positive definite
and therefore all its eigenvalues are real and positive.

(ii) Use the definition of the scattering rate matrices and Dyson’s equation
for the retarded and advanced Green’s functions to prove the following relation

Qe Mo +Tr] G = & [Ghe — el
(iii) Use the previous relation to demonstrate the following relation
1=rr' + ttT,
where r is the reflection matrix given by
r=1-2T,GqcT)/>.
(iv) Using this last relation, show that the all eigenvalues of tt' are less than

(or equal to) one.

8.3 Formula for the current through an atomic chain: Consider the model
for an atomic chain described in Exercise 7.5. Use the general expression of
Eq. (8.20) to re-derive the formula for the electrical current obtained in that
exercise.

8.4 Phonon Green’s functions: The phonon Green’s functions are defined in
analogy with the electronic ones as

D7 () = —i0(t — ) ([A@), AT(®)]),  D(t) = —io(t' — t)([A@), AT(2)]),

DY (t,t") = i(AT(1)A(t), D™T(t,t') = —i(A(DAT()),

where A = b+ b and the creation and annihilation operators b’ and b satisfy
the bosonic commutation relations (see Appendix A). Show that for the case of
a free phonon (or vibration) mode, described by the Hamiltonian of Eq. (8.39),
these functions are by given Eq. (8.45). Hint: Compute first the time evolution
of the bosonic operators by solving the equation of motion of an operator in the
Heisenberg picture.
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8.5 Lowest order expansion of the electron-vibration self-energy: The
goal of this exercise is to demonstrate that Eq. (8.43) gives the correct expression
for the lowest order correction to the electronic self-energy in the problem of
section 8.2.1. For this purpose, follow the next steps:

(i) Use the Hamiltonian of Eq. (8.40) as the perturbation in this problem.
With this choice, show that the second order correction in A of an electronic
Green’s function is equal to

_. 3
Gg2)(ta,t5) = >\2( 22') /dt1/dt2 X

(Te [C(ta)cT (t)e(t)[b' (t1) + b(t)]e! (t2)c(t2) (b (t2) + b(tZ)]CT(tﬁ)] )-

Here, the subindex c indicates that the Green’s functions can be any of the four
components in Keldysh space depending upon where the time arguments, £, and
tg (a, B =+, —), lie on the Keldysh contour. The integrations above have to be

understood as follows
/dti 2/ dti,_|_ —/ dti,_.

(ii) Apply Wick’s theorem to the previous expression and keep only the con-
tributions of topologically distinct connected diagrams. Show that the only two
relevant self-energy diagrams are the ones shown in Fig. 8.6.

Fig. 8.6 Lowest-order electronic self-energy diagrams associated to the electron-phonon
interaction in the resonant tunneling model. The solid lines represent electronic Green’s
functions, while the dashed ones correspond to phonon Green’s functions.

(iii) Evaluate the contribution of the diagrams of Fig. 8.6 to the different com-
ponents of the self-energy in energy space. Show that the contributions coming
from the diagram on the left hand side lead to the results of Eq. (8.43). Discuss
also the relevance of the contributions coming from the other diagram.

8.6 Signature of a vibrational mode in the differential conductance:
Consider the model used in section 8.2.1 to understand the signature of a vibration
mode in the current through a single resonant level. Assume that the density of
states in that level and the corresponding transmission are energy-independent
and show that the zero-temperature differential conductance is given by Eq. (8.49)
in the case of a symmetric junction.

Hint: The only complicated term in the expression for the current is the elastic
correction, which contains the self-energy 37_, ... Separating the contributions
of the real and imaginary part of the retarded phonon Green’s function D", this
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self-energy can be written as

S0 in(B)/A = 2/_0; dff { =
{65y ]

L
@2 (w2’ E)}+

(ng +1)G"(E + hw) + npG" (E — hw).

The first term, which has to be understood as principle value, does not contribute
to the conductance in the case of a symmetric junction, while the others are
responsible for the contribution of the elastic correction to Eq. (8.49).

8.7 The Meir-Wingreen formula:

(i) Follow the steps indicated in section 8.2.2 to show that the current through
an interacting region is given by Eq. (8.52).

(ii) Show that the current given by Eq. (8.52) vanishes in equilibrium.

(iii) Demonstrate that in the noninteracting case the Meir-Wingreen formula
of Eq. (8.52) reduces to the Landauer formula derived in section 8.1.

(iv) Assume that the scattering rates fulfill I'z, (E) = AI'r(F) and prove that
the Meir-Wingreen formula adopts the form given in Eq. (8.53).

8.8 Photo-current formula in the wide-band approximation:

(i) Show that the general formula of Eq. (8.70) for the current in a nanocontact
under an ac field reduces to Eq. (8.74) when (i) the energy dependence of the
density of states in the leads can be neglected (wide-band approximation) and
(ii) the ac potential is assumed to be flat in the central region of the system.

(ii) Starting from Eq. (8.75), show that in the limit of @ < 1 and small
frequencies, the conductance correction induced by the ac drive is a measure of the
second derivative of the transmission around the Fermi energy, i.e. demonstrate
Eq. (8.76).

Hint: Use the following properties of Bessel’s functions

Y (@) mii(2) = Gum, Y D@ =1,

l=—o0 l=—0o0

- 1 T 42
Jifr <L, 1>0) = = z!/2) a (j(tl J/r21))!

8.9 Linear conductance in the Coulomb blockade regime: As we shall
explain in Chapter 15, the Coulomb blockade is a transport phenomenon that
takes place in weakly coupled quantum dots and molecular junctions. The sig-
natures of Coulomb blockade in the linear conductance (i.e. at vanishingly small
bias voltage) are: (i) the appearance of peaks as a function of the gate voltage
(or chemical potential) known as Coulomb oscillations and (ii) a characteristic
temperature dependence that is described by the derivative of the Fermi function
with respect to energy. The goal of this exercise is to explain these two signa-
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tures by combining the Meir-Wingreen formula of Eq. (8.53) and the single-level
Anderson model of Eq. (5.109). For this purpose, carry out the following tasks:

(i) Adapt the Meir-Wingreen formula to the case of a single-level Anderson
model and derive an expression for the linear conductance in terms of the spectral
function in the resonant level.

(ii) Use the approximation of Eq. (5.112) to compute the spectral function in
the weak coupling limit.

(iii) Combine the results of (i) and (ii) to obtain the gate voltage and temper-
ature dependence of the linear conductance and show that this model reproduces
the two signatures described above.

Hint: This problem was addressed by Meir et al. in Ref. [632].

8.10 Kondo effect in molecular transistors: Unitary limit. The Kondo
effect in molecular junctions is manifested in the appearance of a pronounced
resonance in the density of states at the Fermi energy. This many-body effect is
usually described with the help of the Anderson model (see section 6.9). Apply
the Meir-Wingreen formula to this model and show that in the Kondo regime the
low-temperature linear conductance in a symmetric junction (I', = I'r) is equal
to the conductance quantum (Go). This is referred to as the unitary limit. Hint:
Use the Friedel sum rule discussed in section 6.9.1.



Star Diwa

Chapter 9

Electronic structure I: Tight-binding
approach

In the previous chapters we have shown how to compute the transport
properties of an atomic-scale junction once the corresponding Hamilto-
nian is known. Therefore, in order to make our theoretical background
self-contained, at least to a certain extent, we need to discuss how those
Hamiltonians are determined in practice. In other words, we have to de-
scribe adequate methods for the description of the electronic structure of
atomic and molecular junctions. Such methods are based on the stan-
dard approaches for the calculation of the electronic structure of atoms,
molecules and solids that are used in atomic physics, theoretical chemistry
and solid state physics. There is a great variety of electronic structure
methods and, obviously, we cannot review all of them here. We shall fo-
cus our attention on the two methods that have had the largest impact
so far in the field of molecular electronics. First, in this chapter we shall
discuss the tight-binding approach, which is a very intuitive empirical or
semi-empirical method that has been crucial to elucidate the physics of, in
particular, metallic atomic-sized contacts. Then, the next chapter is de-
voted to the density functional theory (DFT), which is the most widely
used approach among the so-called ab initio methods.

The tight-binding approach is reviewed in several textbooks and we
recommend in particular Refs. [223-226] to the physics-oriented readership
and Ref. [227] for a chemistry view on this subject.

9.1 Basics of the tight-binding approach
The main idea of the tight-binding approach was already introduced in Ap-

pendix A and indeed it has been extensively used in the previous chapters
devoted to the Green’s function techniques. Anyway, let us now define

237
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more precisely what we mean by tight-binding approach or by a tight-
binding model. The problem that we are interested in is the determination
the electronic structure of a system composed of a collection of atoms that
are located in different positions denoted by R,;. The corresponding Hamil-
tonian, H, of this system can be written in a local basis, i.e. in a basis
formed by single-particle wave functions that are localized around the dif-
ferent atomic positions. This is the spirit of the method known as linear
combination of atomic orbitals (LCAQO), which is so popular in theoretical
chemistry. The first approximation in the tight-binding approach is to as-
sume that the Hamiltonian adopts the form of Eq. (A.67), which in first
quantization language reads (using Dirac’s notation)?

H= Y Hiagsylic) (i8], (9.1)
ij,03

where |ic) denotes the state that corresponds to the localized orbital «
that is centered around R, i.e. (r|ia) = ¢ (r) = ¢ (r — R;). This generic
form for the Hamiltonian implies that either the many-body interactions
such as the electron-electron interaction are neglected or they are taken
into account in a mean field manner by an appropriate choice of the matrix
elements. In the former case, the matrix elements are rigorously defined as

Hosa= [ar 6,0 -R) -0+ V0| 6se-R). 0

where V(r) is the potential that describes the Coulomb interaction between
the electrons and ions. Finally, in the tight-binding approach, as it is used
in this book, the matrix elements are not determined from first principles,
i.e. from a direct evaluation of the integral in Eq. (9.2), but they are used
merely as parameters that may be derived approximately or may be fitted
to experiment or to other theories. Thus, by tight-binding model we mean
here a model in which the system is described in terms of a single-particle
Hamiltonian written in a local basis, the elements of which are determined
in a empirical or semi-empirical way. The different tight-binding models
differ in the way in which these parameters are obtained.

There are two situations where the wave function associated to a tight-
binding model can be determined in a straightforward manner. The first
one corresponds to the case of a small finite system such as a molecule and

IThis Hamiltonian in our usual second quantization language reads

_ t
H= ) Higjcl,cis
ij,af
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the second one corresponds to the case of an infinite periodic system. In
the first case, the Hamiltonian can be diagonalized by writing first the wave
function as a combination of the localized orbitals:

O(r) =) cinndis(r). (9.3)
iB
This leads immediately to the following set of equations for the coefficients
(see Exercise 9.1)

> [Hiajs — ESia,j8) Ciojp = 0, (9.4)
iB
where E is the energy and
Sia,jp = /dr ¢a(r — Ri)gs(r — R;), (9.5)

is the overlap between the states |ic) and |j3). Here, we have taken into
account the possibility that the localized orbitals centered in different atoms
can be non-orthogonal. These equations have non-trivial solutions if

det (H — ES) =0, (9.6)

where the symbol “det” denotes the determinant of the matrix appearing
inside the brackets. The roots of this secular equation yield the eigenen-
ergies or energy levels of the finite problem and the eigenfunctions are the
corresponding waves functions (or molecular orbitals) of this system. The
dimension of the matrices in Eq. (9.6) is simply the total number of local-
ized orbitals in the problem and therefore, the solution of the generalized
eigenvalue problem of Eq. (9.6) requires typically to resort to numerics.

In the case of an infinite periodic system, typical of solid state physics,
one can diagonalize the Hamiltonian making use of Bloch’s theorem (see
for instance Ref. [223]). The idea goes as follows. Consider a periodically
replicated unit cell, where the lattice vectors are denoted as R,,, with a set
of atoms 7 located at positions b; in each unit cell. Associated with each
atom is a set of atomic-like orbitals ¢;,, where a denotes both the orbital
and angular quantum number of the atomic state. The Hamiltonian can
be easily diagonalized in reciprocal space as follows. We first construct the
following wavefunctions (Bloch sums)

Breia(r) = \/% S exp(ik - Ro)dia(r — Ry — by), (9.7)

where k is the Bloch wave vector, which is restricted to the Brillouin zone,
and N is the number of unit cells in the sum. The solution to Schrodinger
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equation for wave vector k then requires the diagonalization of the Hamil-
tonian matrix using the basis functions of Eq. (9.7). Since the Hamilto-
nian has the periodicity of the lattice, this basis will block-diagonalize the
Hamiltonian, with each block having a single value of k. Within one of
these blocks, the matrix elements can be written in the form

Hio,jp(k) = ) _exp(ik - Ry) /fbfa(r — Ry, —b;)He;s(r — bj)d’r, (9.8)

n
where we have used the translation symmetry of the lattice to remove one of
the sums over the lattice vector R (see Exercise 9.2). In the same way, one
can also define the overlap matrix in reciprocal space where the different
elements adopt the form

Siajs(k) = ) exp(ik - Rn) /@bfa(r — Ry = bi)djs(r —bj)d’r.  (9.9)

n

The corresponding secular equation reads this time
det (H(k) — ES(k)) = 0. (9.10)

The solution of this generalized eigenvalue problem yields the different en-
ergy bands, €, (k) of the solid and the corresponding eigenvectors Q,, (k).
Notice that the number of bands, i.e. the number of solutions of Eq. (9.10),
equals the number of atoms in the unit cell times the number of orbitals per
atom. Thus, in some simple cases the solution can be found analytically
and, in general, this problem can be easily solved numerically.

An important quantity for many purposes is the density of states (DOS)
per unit energy F. The local DOS projected onto a given atom, orbital and
spin (summarized by the index v) is defined in terms of the energy bands
€. (k) as follows

Z (Quon(K)|?0(e (k) — E) (9.11)

Z/ 0K [Qup (K)[20(e,, () — B),

where BZ denotes the Brillouin zone, €)..; is the volume of the unit cell

and d is the dimensionality of the system.

In the case of infinite non-periodic systems, like the atomic-scale junc-
tions that we are interested in, the determination of the wavefunction is
literally impossible. However, the use of the Green’s function techniques
described in Chapter 5 allows to extract most of the relevant information
about the electronic structure from a tight-binding Hamiltonian.
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9.2 The extended Hiuckel method

The history of quantum chemistry is plagued with examples of approxima-
tions in the framework of the LCAO method, which fall into our definition
of tight-binding approach. One of the oldest and most familiar of such
approaches in quantum chemistry is the “extended Hiickel approximation”
[228]. Let us explain briefly the idea behind this approach. It was developed
by Roald Hoffmann in 1963 [228] to describe the electronic structure of a
variety of organic molecules. It is based on the Hiickel method [229-232]
but, while the original Hiickel method only considers m-orbitals, the ex-
tended method also includes the o-orbitals. The idea goes as follows. We
seek matrix elements of the Hamiltonian between atomic orbitals on adja-
cent atoms, (i|H|j). If |j) were an eigenstate of the Hamiltonian, we could
replace H|j) by €;]j), where ¢;, the on-site energy of the atom j, is the
eigenvalue. Then, if the overlap (i|j) is written S;;, the matrix element be-
comes €;9;;. This, however, treats the two orbitals differently, so we might
use the average instead of €;. Finding that this does not give good values,
we introduce a scale factor K, to be adjusted to fit the properties of heavy
molecules (a value of K = 1.75 is usually taken); this leads to the extended
Hiickel formula?

(t[H[j) = KSij(ei +€5)/2. (9.12)

In the extended Hiickel method, only valence electrons are considered;
the core electron energies and wave functions are supposed to be more or
less constant between atoms of the same type. The method uses a series of
parameterized energies calculated from atomic ionization potentials or the-
oretical methods to fill the diagonal of the Hamiltonian matrix. After filling
the non-diagonal elements (with the formula above) and diagonalizing the
resulting Hamiltonian matrix, the energies (eigenvalues) and wavefunctions
(eigenvectors) of the valence orbitals are found.

Th