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Preface

Many books have been published in recent years that focus on wireless 
communication systems, with some focused on modeling and simulation. 
This book is aimed at the special topic of modeling for RF system design. 
Very high carrier frequencies together with long observation periods result 
in extremely large computation times and requires, therefore, specialized 
modeling methods and simulation tools on all design levels from system 
down to circuit level. To illustrate the application of these methods and 
usage of the tools the book includes numerous models and extensive 
examples. Therefore the book is addressed to graduate students and 
industrial professionals who are engaged in communication system design 
and want to gain insight into the system structure by own simulation 
experiences.

The tools and languages for hardware description of VLSI circuits have 
changed over the years. Nevertheless models are provided on a CD-ROM 
included with this book because models are necessary to reproduce, 
understand and explore the real world behavior on a simulation platform. 
VHDL-AMS and Verilog-A are chosen as description languages which are 
an IEEE standard and a quasi industrial standard respectively. In spite of 
deviations within language implementations in different simulation tools, the 
provided mathematical background to each individual model should enable a 
large audience of readers to use these models. Moreover the given 
introduction into the syntactic elements of the language VHDL-AMS allows 
to modify the given examples to special needs.  

The authors
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INTRODUCTION

1. INTRODUCTION

Modern telecommunication systems are highly complex from an 
algorithmic point of view. The complexity continues to increase due to 
advanced modulation schemes, multiple protocols and standards, as well as 
additional functionality such as color displays, personal organizers, 
navigation aids, cameras, and audio-visual support.  

At the same time both silicon area – which means costs – and power 
consumption of the devices have to be reduced and the design time 
shortened. This is inevitable to keep profitability in this fast evolving high 
volume consumer market.  

These conflictive demands force the need for efficient design and 
verification methods. To have short and reliable design cycles, verification is 
necessary very early in the design process. Modeling and simulation need to 
accompany the design steps from the specification to the overall system 
verification in order to bridge the gaps between system specification, system 
simulation, and circuit level simulation. Therefore this book contains 
application-oriented training material for RF designers which combines the 
presentation of a mixed-signal design flow, an introduction into the 
standardized powerful hardware description language VHDL-AMS, and the 
application of commercially available simulators. The focus lies on RF 
specific modeling and simulation methods and the consideration of system 
and circuit level descriptions. 

An early version of some parts of this book, especially some of the 
VHDL-AMS models, has been tested in a Nokia-internal course with about 
50 designers. In this course a web-based education and simulation 
environment has been used, developed in a European research project LIMA 
(Learning Platform in Microelectronics Applications). 
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The challenges for the designer are especially demanding in the face of 
mixed-signal (analog/digital) and multi-domain (RF/baseband) systems. 
Today’s wireless communication systems use sophisticated modulation and 
coding techniques to transmit the information at very high carrier 
frequencies. Modulation and coding is typically realized in the Digital Signal 
Processing (DSP) subsystem, which is also called baseband signal 
processing. The RF front-end provides the interface between baseband 
(some MHz) and the RF transmission channel (some GHz). 

The DSP part uses more than 95% of the total amount of transistors. 
System level simulators are used for the verification of the DSP algorithms. 
Efficient simulation algorithms are applied to simulate the complete transmit 
path from the transmitter to the receiver. DSP designers often assume that 
the analog part is an ideal device. On the other hand RF designers perform 
analog simulations to design and verify the RF subsystem without 
information regarding the DSP part. This is why the common evaluation of 
the RF and the DSP part becomes increasingly important. This ensures that 
the RF part fulfills the system requirements without over-dimension, which 
means the interaction between both parts is respected without the need to 
include a safety margin in the specification of the RF part. 

RF circuits and systems possess special characteristics that need to be 
considered in modeling and simulation, which are 

very high carrier frequency on the one hand and comparatively low 
signal bandwidth on the other, 
presence of weak nonlinearities, 
importance of noise considerations and the signal-to-noise ratio (SNR), 
necessity to simulate a large number of sample points or data bits in order 
to compute distortion measures, for example bit error rates (BER). 

For RF systems to handle these characteristics specially suited modeling 
methods and simulation algorithms have been developed. They will be 
introduced during the course of this book and demonstrated with examples. 

A number of simulation tools are on the market that specialize in RF 
circuits. Since we want to widen the scope on a design flow from system to 
circuit level with attention to mixed-signal aspects, we used a collection of 
different commercially available simulation tools in the book 

ADVance MS of Mentor Graphics  
SpectreRF of Cadence 
SPW of CoWare 
MATLAB of The MathWorks 
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Many other tools currently available on the market could have been used, 
but the modeling methods and simulation principles remain the same. An 
introduction into the usage of the tools goes beyond the scope of this book. 
For support on the tools, refer to the help function or the online help of the 
tool providers. It is also not intended to include schematic entry and layout 
tools.

Modeling of RF systems ranges from system-level signal-flow oriented 
models (for example MATLAB/Simulink) over mixed-signal block oriented 
models (for example VHDL-AMS) to circuit-level descriptions (for example 
SpectreRF). Therefore a modeling flow, covering different levels of 
abstraction, as well as modeling languages and libraries are essential topics 
of the book (Figure 1-1). A special focus lies on the mixed-signal simulator-
independent modeling language VHDL-AMS.  

Figure 1-1. Overview of the main topics of the book 

Modeling and simulation methods need to be oriented on existing design 
flows in order to establish them in industrial use. Hence we propose a 
modeling and simulation flow that follows the V-diagram as a commonly 
accepted design paradigm (see Chapter 2). The material in this book is 
structured accordingly. Chapter 2 provides an overview of different levels of 
abstraction, the top-down and bottom-up methodologies. Specific simulation 
algorithms and various simulation tools for different phases of RF system 
design are introduced in Chapter 3. 
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The first direction of the design flow is top-down. That means we start 
with specifications at the system level. Chapter 4 describes how RF 
components can be modeled in system level simulators such as CoCentric, 
SPW or MATLAB. It is focused on the development of RF-specific system 
models.  

After initial architectural decisions, specifications for the subsystems are 
derived and an abstract (less detailed) behavioral model of the RF subsystem 
can be developed for simulation. This model is improved and becomes more 
detailed during the design process. On this architecture or block level, 
mixed-signal simulations are often necessary because the partition into 
analog and digital parts is not yet clear and different architectures have to be 
explored. At this point in the book we introduce VHDL-AMS as an 
important language that supports digital, analog, and mixed-signal modeling 
and simulation. It is a strict superset of the digital VHDL 1076-1993. 
Chapter 6 is aimed at designers with knowledge of standard digital VHDL 
1076-1993. The reader should be able to understand and use the provided 
models, change and refine them, as well as develop own simple models. 

A library of RF block level models in VHDL-AMS is fully documented 
in Chapter 7. The enclosed CD-ROM contains the complete source code of 
this model library. Important basic RF building blocks are included 
subdivided into source, processing and measurement blocks. Chapter 8 
introduces the macromodeling principle with examples in VHDL-AMS. 

In Chapter 9 the complex design example of a WLAN receiver according 
to the standard IEEE 802.11a is assembled from basic building blocks of the 
previous chapters. Using the modeling flow methodology from the previous 
chapters the example is modeled in VHDL-AMS, optimized using circuit 
level simulation, and verified by system level simulation. Thereby it is 
shown, how the realistic design task of developing a receiver front-end can 
be supported by modeling and simulation.  

The next step in the top-down design flow is the implementation of 
blocks as circuits. At this level, circuit simulators are available with 
dedicated support for RF analysis and depiction modes. The custom IC 
design environment from Cadence and its analog RF simulator SpectreRF 
are important tools in RF circuit design. SpectreRF uses Verilog-A for 
behavioral modeling, which is the analog part of Verilog-AMS. A library of 
Verilog-A models for typical RF building blocks is provided by Cadence. 
Chapter 10 demonstrates the use of this library for RF system modeling. An 
example of modeling in Verilog-A is provided.  
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Bottom-up techniques are used next in the design flow to verify whether 
design goals are met with the implemented system. The characterization of 
circuit level descriptions allows the refinement of behavioral models for 
system level simulation. It is also applied to generate data for the component 
documentation and reuse. Characterization environments are discussed in the 
Chapter 11. The characterization environment is used to extract RF specific 
parameters of circuit designs and to validate the respective behavioral 
models. An overview of parameters, which can be extracted for RF 
components, is provided. A characterization example is demonstrated by 
using SpectreRF and OCEAN scripts. 

As a last step in the design flow, system verification is necessary with the 
back-annotated knowledge of the circuit properties in the refined models. 
Solutions which will bring analog and system level simulators together are 
introduced in the last Chapter 12. Black box modeling uses a special kind of 
characterization to generate nonlinear transfer functions of a complete RF 
front-end. The transfer functions are stored in files which are read from 
special black box models in the system level simulator. Another method is 
co-simulation, which couples analog and system level simulators. The 
principles of both approaches are explained and illustrated by examples for 
the Cadence design environment. Advantages and disadvantages of the 
different approaches are discussed. 

To summarize, the training material comprises up-to-date knowledge of 
modeling and simulation for the RF system design of modern 
telecommunication systems. The introduction of a general modeling flow is 
supplemented by RF specific simulation algorithms. Commercially available 
tools are used to demonstrate how RF system design can be supported and 
improved by means of modeling and simulation. A second major part is the 
introduction of VHDL-AMS as a standardized hardware description 
language with increasing importance. Because it is the mixed-signal 
extension of the well-established language VHDL it is expected to be used 
for RF and system design tasks in the near future. 

In this application-oriented book the teaching material, which introduces 
the concepts and theoretical background, is followed by illustrative examples 
and sources of further information. Many simulation examples are shown 
with extensive solutions. Thus if the reader has access to the required 
simulation tools he is able to reproduce the example solution, modify it and 
thereby gain own experiences with modeling and simulation of RF systems. 
This book establishes a comprehensive training course in a technologically 
critical area. 
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DESIGN FLOW OVERVIEW 

2. DESIGN FLOW OVERVIEW 

2.1 Design Levels 

Functionality and architecture of electronic devices can be very complex. 
The systems may consist of analog and digital hardware together with 
software parts. A telecommunication system contains for example: 

An analog front-end to the physical transmission channel 
Digital hardware for coding and modulation  
General purpose or signal processors for control, user interface and 
transmission protocol handling 

Many designers with specialization in different areas are involved in 
design and implementation. Several design steps are necessary to realize a 
system concept on silicon. The design process can be classified in several 
design levels as shown in Figure 2.1. 

Each design level is associated with certain design tasks concerning the 
whole system or system parts. Starting from system level the design 
description becomes more and more detailed in a design step. CAD tools 
support the designer at each level. 

The system level is the first design level beginning with an idea of the 
desired system. This level is also called concept engineering. The system 
concept and main algorithms are described at a very abstract level without 
information about the implementation of algorithms. For example, the 
coding algorithm to be used for data transmission is specified, but it is not 
decided to implement the coder in hardware or software. 
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System Level
(Executable Specification)

Block Level
(digital: Register Transfer 

Level)

Circuit / Transistor Level 
(digital: Gate Level)

Layout Level

Figure 2-1. Design levels 

The system specification can be developed on a sheet of paper. More 
powerful is an executable specification supported by system-level simulators 
(for example CoCentric System Studio, MATLAB, and SPW). It allows the 
evaluation of the selected algorithms and provides a reference model for 
following design steps. 

The system is now partitioned into several hardware (analog or digital) 
and software subsystems. This design level is named Block Level or 
Register Transfer Level (RTL) in the digital area. The description of the 
subsystems at this level contains more detail about the design architecture. 
At this level the design consists of different blocks, for example multiplier, 
adder, register, A/D converter, analog filter and amplifier. 

Digital and mixed-signal hardware description language (HDL) 
simulators support the block level design. Commonly used modeling 
languages in this area are VHDL-AMS and Verilog-AMS. The design of 
hardware/software systems is further supported by special tools, for example 
instruction set simulators (ISS).  

The third design level is called gate level in the digital domain and circuit 
level in the analog domain. The blocks of the system are now represented by 
netlists containing gates or active and passive analog elements. Gate level 
models can be generated from RTL descriptions by logic synthesis. In the 
analog design, the circuits are still designed manually. 

Gate level or circuit simulation is used to evaluate the design at block 
level. In the digital domain a timing analysis can be executed, and the blocks 
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are still described in VHDL and Verilog. Circuit simulators such as SPICE 
and Spectre are used in the analog domain to analyze the behavior of the 
designed block. 

Based on the gate level or circuit netlist and data of the circuit technology 
the layout of the circuit is designed. The design is now represented as 
polygons at different layers of an integrated circuit. In the digital domain this 
step is well-automated. The tools will check if the design rules for a 
specified circuit technology are fulfilled. In the analog domain further 
manual optimization of layout may be necessary, for example to minimize 
crosstalk between signals or to achieve a symmetric design. Tools that 
extract parasitic effects that originate from layout also support the layout 
verification.

2.2 Top-down System Design 

System Level
(Executable Specification)

Electrical Block Level
(digital: Register Transfer 

Level)

Circuit / Transistor Level 
(digital: Gate Level)

Layout Level

System Partitioning
(HW and SW)

Circuit Design
(Logic Synthese)

Layout Synthese

System Level Simulation
(CoCentric, Matlab, SPW, 

partially VHDL-AMS)

Behavioral Simulation
(VHDL-AMS, Verilog-AMS, 

SystemC)

Circuit Simulation 
(VHDL-AMS, Spice, 

Spectre)

Layout Simulation, 
Parasitic Extraction

Design Levels Simulation Support 
(analog / mixed signal)

System 
Specification

Analog/Digital
Mixed-Signal 

Simulation

Circuit 
Simulation

VHDL-AMS 
coverage

Figure 2-2. Top-down design and simulation support 
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Top-down design is a method of designing an electronic system that 
starts with the complete system concept and then breaks it down into smaller 
and smaller components (see Figure 2-2). 

The first design level at which top down design starts is the system level. 
For telecommunication systems it is here that is specified which algorithms 
are used to transmit data from the signal source at point A to a sink at point 
B. Algorithms which are specified at this level may be for example: 

data structure and protocol 
forward error correction techniques (FEC) 
modulation techniques (QPSK, QAM, GMSK, OFDM) 
channel equalization and synchronization 

The system level design is supported by system level simulation. 
Efficient simulation techniques (for example event driven or data stream 
driven simulation) allow the simulation of the complete transmission system. 
The simulation also includes a model of the transmission channel (additive 
white Gaussian noise, AWGN, or mobile channels with fading). The goal of 
the system design is an overall system specification. If a system level 
simulation model exists, it can be used as an "executable specification" (see 
Figure 2-3). 

If the system level specification was successfully verified within a 
system level simulation the system is partitioned. The algorithms of the 
system can be implemented in different ways: 

analog hardware 
digital hardware 
software

The second design level is named Block Level or in the digital area 
Register Transfer Level. The system is now partitioned into components and 
subsystems. Now parameters of the components can be specified. 

Figure 2-3. Top level schematic of a WLAN system simulation model (SPW) 
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Figure 2-4. Schematic of the RF subsystem (direct conversion receiver) 

Figure 2-4 shows for example the block level schematic of the RF 
subsystem of the WLAN receiver. At system level the RF subsystem was 
specified either with ideal parameters or with parameters like noise level, 
gain and linearity. Now it is broken down into its components (filter, 
amplifier and mixers) which must be parameterized.  

At block level we use behavioral models for the simulation of the 
subsystems. For the analog and mixed-signal area, models can be written in 
VHDL-AMS and Verilog-AMS. For pure analog simulation, additional 
languages (for example SpectreHDL) are provided with the simulation tools. 
The simulation at block level is used to verify whether the block level 
realization of the subsystem meets the system level requirements. 

After the blocks are specified, the circuit design can start. In the digital 
area, gate level designs can be generated automatically from behavioral 
models. However for analog blocks there are still no synthesis tools 
available. So the analog designers must create the transistor level 
implementation of the components manually. This is supported by transistor 
level simulation. The block level simulation models can be reused as 
testbench or reference models if the circuit level simulator supports 
behavioral modeling languages. Verilog-AMS and VHDL-AMS simulators 
often support the simulation of SPICE netlists; therefore they can also be 
used for verification of the transistor level design.  

If the transistor level design was verified by simulation the layout can be 
developed. With the layout level the top down design flow is finished. The 
layout design is not within the scope of this book. It is possible to extract 
parasitic effects from layout level simulation which can be used to improve 
the accuracy of transistor level simulation. 

2.3 Bottom-up Verification 

The amount of information and number of parameters increases during 
the top-down design process from the system concept to its implementation. 
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At the beginning of the design, the system is described with some 
algorithms. After implementation the system may consist of a large number 
of transistors. Concept verification is needed to check that the 
implementation meets the requirements of the system. 

In the “V” diagram (Figure 2-5) the verification starts from the layout 
level (bottom) and then proceeds up to the block and system levels.  

After layout, simulation parasitic effects can be back-annotated into the 
circuit netlist. The circuit simulation with the extracted netlist is used to 
verify the circuit design. The designed circuits can now be combined into 
functional blocks, which are checked against their specification in a block 
level simulation. Finally the designed blocks can be connected to the system. 
System level simulation verifies that the blocks fit into the system 
environment. 

It is recommended to start verification before the design is completed at 
layout level. After each design step simulation can be used to verify the 
design or component against the specification. 

System Level
(Executable 

Specification)

Implementation

Layout Verification, 
Parasitic Extraction

Circuit Verification 

Block Verification

System Verification

Layout Level

Circuit / Transistor 
Level

Electrical Block 
Level

Verification

Time Time

Figure 2-5. Top -down design and bottom-up verification (V diagram) 
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System level or block level simulation is used to verify large systems or 
circuits. Often a transistor level model of a system cannot be simulated 
because its complexity (number of transistors or gates) is much too large. 
Therefore it is necessary to use behavioral models. 

Figure 2-6 shows the application of behavioral models during block level 
and system level verification. It is assumed that behavioral models were 
already used during the top-down design. In the verification phase it is now 
necessary to calibrate these models as follows: 

Parasitic extraction and back annotation into the circuit netlist improves 
the accuracy of the circuit model (extracted circuit model) 
Simulation with the extracted circuit model is used to gain the circuit 
characteristic and parameters 
Extracted circuit parameters are used to calibrate the behavioral model of 
this component  
Calibrated behavioral models are used on block and system levels for 
verification

System Level
(Executable 

Specification)

Implementation

Layout Verification

Circuit Verification  
(extracted circuit 

model)

Block Verification
(calibrated behavioral 

model)

System Verification

Layout Level

Circuit / Transistor 
(circut model)

Electrical Block Level
(behavioral model)

Verification

Parasitic Extraction & 
back annotation

Parameter Extraction 
& model refinement

Figure 2-6. Refinement of models during bottom-up verification 
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The main advantage of using (calibrated) behavioral models is the 
simulation speedup which enables the simulation of large systems or 
subsystems.  

Different behavioral modeling languages exist. Most of them are specific 
to a particular simulator. To allow the reuse of models it is suggested to use 
standardized languages like VHDL-AMS and Verilog-AMS. 

A characterization environment can support model calibration. 
Characterization is the calculation of component or subsystem characteristics 
and parameters from measured or simulated data. A characterization run 
contains a set of simulation and postprocessing commands that allow the 
determination of significant circuit characteristics. The behavior of the 
circuit description and behavioral model can be compared. If the model is 
inaccurate, the model parameters or algorithms are modified. 
Characterization also supports model and circuit documentation. Chapter 11 
contains more information about characterization environments.  
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SIMULATION TOOLS IN SYSTEM DESIGN 

3. SIMULATION TOOLS IN SYSTEM DESIGN 

3.1 Use of Simulation Tools within the Design Flow 

The application of simulation tools is very important to improve the 
efficiency in system and circuit design. Various simulation tools exist on the 
market to support the design process. This chapter discusses topics that must 
be taken into account when selecting appropriate simulation tools. 

As described in Section 2.2 the top-down design flow starts with the 
system concept which covers the complete system. The system is then 
divided into subcomponents down to the circuit and layout level. The choice 
of simulation tool depends on the design level addressed and the type of 
design (analog, RF, digital or mixed-signal). Simulators may cover more 
than one design level (Figure 3-1). 

We distinguish between four categories of simulators, which are 
described in the following sections. 
System level simulators 

System level simulators provide efficient simulation algorithms to 
achieve a high simulation speed. This allows simulation of complete 
transmission systems containing a transmitter, channel and receiver with 
analog and digital parts. The simulation accuracy is restricted particularly for 
analog system parts. However, it allows the verification of system concepts. 
System modeling is supported by large libraries, which contain models of 
various system components, for example coders, modulators, and channels. 
The primary application of these tools is the system level design, also called 
concept engineering. They may also be partially used in block level design, 
for example to provide testbenches. 
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Figure 3-1. Simulation tool coverage in the mixed-signal design flow 

Mixed-signal simulators 

The main application of mixed-signal simulators is within the block level 
design where the partitioning into analog and digital hardware or software is 
performed. Mixed-signal simulation allows the common verification of 
analog and digital system parts, as well as the interfaces between them. 
Behavioral models are widely used at this design stage. The most important 
mixed-signal modeling languages are VHDL-AMS  and Verilog-AMS.  

The application of mixed-signal simulators can be extended to the system 
level if models of the system components exist. However, at present the 
model libraries of mixed-signal simulators do not achieve the complexity of 
the system level simulator libraries. 

Mixed-signal simulators may also be used in circuit level design. In 
contrast to specialized RF circuit simulators they do not provide RF specific 
analyses. 
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Circuit level simulators 

Most circuit level simulators support the simulation of circuit level 
descriptions (SPICE netlists) as well as analog behavioral models. Some 
simulators provide specialized simulation algorithms for the analysis of RF 
components (circuit envelope, periodic steady state for example). They 
provide an accurate analysis of components, but the simulation performance 
is too low to simulate large system parts. 

With the ability to use behavioral models, circuit level simulators may 
also be used in block level design of analog subsystems. In addition layout 
effects can be included in circuit simulation by extraction of parasitics. 
Layout verification 

Layout verification is used to check if the design rules for a desired 
silicon technology are fulfilled. Layout effects (for example parasitic 
capacitances, substrate coupling) may be extracted and back annotated for 
circuit level simulation. The impact of layout and packaging on the desired 
circuit functionality can be analyzed. Layout verification is not discussed 
further.

Table 3-1. Overview of simulation tools 
Simulator   Main design 

level 
Additionally 
supported levels 

Target Examples 

system simulator system level block level complete system ADS, CoCentric, 
MATLAB, SPW 

mixed-signal
simulator 

block level system level, 
circuit level 

subsystems ADVance MS, 
SMASH, AMS 
Designer, Saber 

circuit simulator circuit level block level,  
(layout level) 

blocks Eldo, Spectre,
Spice, ADS 

layout simulator layout level  components,
packages 

Assura, Calibre, 
Hercules

Some simulators and their application are outlined in Table 3-1. In some 
cases a co-simulation of different tools is used to accelerate the simulation, 
reuse models, or increase simulation accuracy. This topic is outlined in 
Chapter 12. 

3.2 Specific Simulation Algorithms of RF Simulators

The traditional SPICE analyses are essential in analog circuit design. 
Their application to RF circuits may cause some problems resulting from the 
behavior of RF systems such as: 
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The signals which are transmitted are narrowband signals. This means 
that a data signal with a relatively low bandwidth is transmitted at a very 
high carrier frequency. To simulate a sufficient portion of the data signal 
a large number of carrier waves must be simulated. This may exceed the 
performance of traditional transient analyses (memory and time 
consumption). 
RF receivers usually receive weak desired signals while large 
interference signals are present. This implies that the linearity of the 
receiver is a very important task for the designer requiring a precise 
simulation of nonlinearity. 
Improved transistor models are required to represent the behavior of RF 
transistors.

Specialized RF simulation algorithms are provided to improve the 
analysis of RF circuits and systems. They are available in RF simulators like 
ADS and SpectreRF but typically not in VHDL-AMS simulators. An 
exception is ADMS RF which combines ADVance MS and Eldo RF. The 
most important simulation algorithms are: 

Periodic Steady State Analysis (PSS)  
Harmonic Balance (HB) 
Transient Envelope Analyses (Envelope) 

They provide a good accuracy for RF specific measurements at a 
sufficient simulation performance. The principle of these analyses is outlined 
in the following section. 
Analysis for dynamic systems with weak nonlinearities 

Different simulation algorithms can be used to analyze the frequency 
response of dynamic and nonlinear systems such as mixers and LNA’s. The 
algorithms are: 

Periodic Steady State (PSS) in Cadence’s SpectreRF Simulator 
Harmonic Balance (HB) in Agilent’s ADS 

The results of these analyses are the frequency spectra of the signals 
within the system including the wanted and unwanted harmonics (arising 
from nonlinearity).  

The analysis is used to compute the steady state response of a nonlinear 
circuit, which is the response after the start-up transient has died down. The 
stimulus of the circuit is a limited number of sinusoidal signals. In the steady 
state, the system response is periodic according to the period length of the 
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fundamental frequency. All input frequencies of the system must be an 
integer multiple of the fundamental frequency. The methods of computing 
the steady state solution are different in PSS and HB. 

Figure 3-2. Results of a PSS analysis of an LNA 

Figure 3-2 shows the results of a PSS analysis in frequency (left hand 
graphs) and time domain (right hand graphs). The input signal was two-tone 
with 850 and 900 MHz, each with a -10 dBm magnitude (upper graphs). 
Each input frequency must be an integer multiple of the fundamental 
frequency. Thus a fundamental frequency of 50 MHz is used in the example. 
This is equivalent to a period of 20 ns. To visualize frequencies up to 2 GHz, 
40 harmonics of the fundamental frequency were computed. The time 
domain output of the LNA (bottom right hand graph) shows that the LNA is 
operated in the nonlinear area. The 3rd order harmonics at 800 MHz and 
950 MHz are visible in the frequency domain (upper left hand graph). Other 
analyses are based on the steady state operating point, for example: 

periodic AC analysis 
periodic noise analysis  
periodic XF (periodic transfer function) 
periodic SP (periodic S-parameters) 



20 Chapter 3

The PSS analyses and the subsequent analyses are very important to 
determine the characteristics of RF systems and building blocks. 
Transient envelope analyses 

The envelope analyses address the narrow-band problem of wireless 
communication systems: signals with a relatively small bandwidth are 
transmitted at very high carrier frequencies. Transient envelope analyses are 
known as:

Circuit Envelope Analysis (ADS from Agilent) 
Envelope Following Analysis (SpectreRF from Cadence) 

The transient envelope analysis computes the envelope of a modulated 
carrier signal. This is demonstrated with a sine wave of 1 MHz, which is 
amplitude modulated on a carrier frequency of 900 MHz (modulation index 
0.5). The simulation interval is 2 µs (two periods of the modulation signal). 

Figure 3-3 shows the AM modulated carrier resulting from a transient 
analysis. To represent the modulated signal a large number of carrier periods 
must be computed, which is visualized in the detail interval (1…1.02 µs).
This implies that the transient analysis is not efficient enough to evaluate a 
sufficient part of the modulation signal. The transient envelope analysis can 
speed-up the simulation of the modulation signal. 

Figure 3-3. Results of traditional transient analyses (complete wave and detail) 
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Figure 3-4. Result of the envelope following analysis (SpectreRF) 

The envelope analysis was six times faster than the transient analysis of a 
small example LNA. The lower portion of the graph in Figure 3-4 shows the 
time domain signal of the modulated carrier. It can be seen, that the carrier 
signal is only partially computed. The black curve shows the envelope of the 
carrier which represents the modulating signal. There are too few sampling 
points to achieve a clear sine wave. The envelope analyses may be hardly 
applicable for multi-carrier or wideband modulation techniques.  

3.3 Criteria of the Simulator Selection 

A great number of simulation tools are on the market. This section 
presents some criteria which must be taken into consideration to identify the 
best simulation tool for a design task. The decision depends on the 
application, design flow, user interface, costs, and support. 

Application related criteria 

In which design level(s) should the simulator be used?  
Which designs shall be mostly simulated (analog, mixed-signal)? 
Are special analyses needed (for example for RF)? 
Which model libraries are provided to speed-up the modeling of systems 
and testbenches? 
Is it possible to reuse models of former designs? 
Which simulation speed can be obtained? 
Is the size of the designs limited? 
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Design flow related criteria 

Are there interfaces for standardized modeling languages? 
Are there interfaces to other tools in the existing design flow (model 
import/export, simulator coupling)? 
Are there interfaces for tool customization and scripting? 
Is version control supported? 
Which computing platforms are supported (Windows, Unix, Linux, 
others)?

User interface related criteria 

Is a graphical user interface available? 
Schematic or netlist entry or both?  
Quality of documentation? (User guides, examples, reference manuals, 
tutorials, …) 

Cost related criteria 

Costs of licenses? (buying, leasing, public domain)  
Costs of support and version update? 
Time that is needed for user training? 
Costs of user training? 
Time/costs for software installation and maintenance? 

Support Related Criteria 

Software support available? 
Web based support databases? 
Design service (special support on user applications)? 

The criteria mentioned above shows that the selection of a simulation 
tool is very difficult. The integration of a new simulation tool often depends 
on the existing design flow. Some major vendors of EDA tools provide 
design frameworks where different tools have been integrated with a 
common user interface. 

In the future, interfaces for standardized modeling languages, like 
VHDL-AMS, will simplify the exchange of models between simulators. 
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3.4 Internet Resources for Simulation Tools

The simulation tools mentioned in this chapter are continuously being 
improved. Latest information on supported features can be found on the 
internet. The list below shows the current tool vendors and the related 
internet addresses. The tools are assigned to the categories: system 
simulators, mixed-signal simulators, and analog RF simulators. 

System Level Simulators 

Advanced Design System (ADS)  
Provider: Agilent Technologies 
http://eesof.tm.agilent.com/products/ 
CoCentric System Studio  
Provider: Synopsys, Inc. 
http://www.synopsys.com/products/cocentric_studio/ 
MATLAB
Provider: The MathWorks, Inc. 
http://www.mathworks.com/products/matlab/ 
Signal Processing Worksystem (SPW) 
Provider: CoWare 
http://www.coware.com 
APLAC
Provider: APLAC Solutions 
http://www.aplac.com/ 

Mixed Signal Simulators 

ADVance MS  
Provider: Mentor Graphics 
http://www.mentor.com/ams/adms.html 
AMS Designer  
Provider: Cadence Design Systems 
http://www.cadence.com/products/ 
SMASH
Provider: Dolphin Integration 
http://www.dolphin.fr/medal/smash/smash_overview.html 
Saber
Provider: Synopsys, Inc. 
http://www.synopsys.com/products/mixedsignal/saber/ 
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Analog RF Simulators 

Advanced Design System (ADS)  
Provider: Agilent Technologies 
http://eesof.tm.agilent.com/products/ 
Eldo RF
Provider: Mentor Graphics 
http://www.mentor.com/ams/eldorf.html 
SpectreRF
Provider: Cadence Design Systems 
http://www.cadence.com/products/ 
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SYSTEM LEVEL MODELING 

4. SYSTEM LEVEL MODELING 

4.1 System Level Simulation 

The functionality of telecommunication systems has increased 
dramatically during recent years. The systems may support multiple 
standards and high data rates. Due to the cost reduction in chip production, 
modern digital transmission techniques are used. Sophisticated DSP routines 
(for example for protocols, error control coding, and modulation) provide 
high transmission quality in mobile systems.  

Figure 4-1 shows the physical layer signal processing of a wireless local 
area network (WLAN) transmitter. The PDU train (protocol data unit) is a 
data stream, generated by the DLC (data link control) layer of HIPERLAN 
(High Performance Radio Local Area Network). Before the data is 
transmitted over a radio channel, algorithms including scrambling, FEC 
coding, and modulation are performed.  In the receiver the reverse 
operations are used with additional algorithms for synchronization and 
channel equalization.

Figure 4-1. Physical layer of HIPERLAN/2 (transmitter) 
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System level simulation allows the evaluation of signal processing 
algorithms in the system environment. With validated reference libraries, the 
standard compatibility of algorithms can be evaluated as well as the overall 
system bit error rate (BER) over channel signal to noise ratio (SNR). The 
verified system level models are often used as reference for the 
implementation of algorithms. 

Since system level simulators are designed to analyze large DSP systems, 
analog modeling is barely supported. On the other hand, it is important (with 
respect to System-on-Chip implementations) to investigate the impact of the 
RF subsystems on transmission system performance. The modeling of 
analog and RF components in system simulation is discussed in this chapter. 

4.2 Simulation Technology of System Level Simulators 

High level of abstraction 

The simulation of whole transmission paths requires very fast simulation 
techniques. Therefore the models are often idealized: 

Models of DSP components represent the algorithm, but timing behavior 
is usually neglected.  
Analog system parts are sometimes completely neglected or they are 
modeled as ideal devices (for example an amplifier is often represented 
by a multiplication of a signal with a constant value). 

For more accurate simulation of DSP components a co-simulation with a 
VHDL simulator has been provided for some years. This topic is not 
discussed here. 

Due to higher transmission frequencies and more complicated radio 
transmission techniques the nonlinear behavior of the analog system part 
becomes more and more important for the system performance. Analog 
blocks can be modeled in spite of restrictions of system level simulators.  
Distinctions between system level and mixed-signal simulators 

The tools for analog, RF and system design use different simulation and 
modeling methods. The three main differences are discussed below. 

1. Signals are often sampled: most of the system simulators (for example 
CoCentric or SPW) use equidistant samples to represent signals. The 
sampling rate for each signal is constant during simulation. Different 
sampling rates may be used for different signals or system parts. The user 
has to ensure that the sampling frequency is high enough to represent the 
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signal frequency without aliasing. Digital filter models H(z) must be used 
instead of analog ones H(s). This can increase the modeling error. Few 
tools (for example MATLAB and Ptolemy) provide time continuous data 
flow simulation.  

2. Signals instead of nodes: system level simulators use signals, which 
cannot represent voltage and current as a conservative electrical node. 
Therefore it is difficult to model impedance mismatch between connected 
blocks. Often an ideal matching is assumed in system level simulation. 
More realistic port behavior can be achieved with additional modeling 
effort and parameters for port impedance.  

3. No feedback between models: system level tools use a signal or data flow 
based simulation algorithm in a specified direction. There are only output 
and input ports; no bi-directional ports exist. A feedback between blocks 
must be modeled with additional ports and signals. The feedback loop 
must have a delay of at least one sample to enable correct simulation 
scheduling. In contrast an analog simulator solves the complete system at 
each step by iteration. 

4.3 Complex Baseband Simulation 

The very high value of the carrier frequency in wireless communication 
systems is the major problem in system simulation. It implies a very high 
sampling rate in simulation. The consequence is a low simulation 
performance, which results from a large number of iterations. Complex 
baseband modeling provides a more efficient simulation of RF subsystems. 

4.3.1 Principle

Digital modulation techniques use magnitude r and phase  of a carrier 
signal to transmit information. This means that the information does not 
depend on the carrier frequency value. The idea of baseband simulation is to 
transform the carrier frequency to zero. The advantage is that the required 
sampling rate now depends on signal bandwidth, not on carrier frequency 
(Figure 4-2). 
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Figure 4-2. Passband and baseband representation of signals 
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Figure 4-3. Signal transformation into the complex baseband 

Figure 4-3 shows how the transformation of a modulated high-frequency 
carrier signal into the complex baseband can be carried out. The first part 
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depicts the creation of the quadrature representation. The modulated carrier 
signal is a real signal, which contains positive and negative spectral 
components. The down-conversion in the complex baseband requires an 
analytical signal that contains no negative spectral components. For that 
purpose the Hilbert transformed signal of the real signal is built and added as 
an imaginary part to the real signal. The Hilbert transformation can simply 
be seen as a 90° phase shifter. In the last part of Figure 4-3 the analytical 
signal is down-converted into the complex baseband. 

The equivalent baseband signal contains the amplitude- and phase-
modulation information. It consists of two real signals, the inphase 
component I(t) and the quadrature component Q(t). The transfer functions of 
the RF blocks must also be transformed into the complex baseband. Because 
of the complex-valued signal the baseband models possess double the 
number of signal pins. 

The baseband models influence the baseband signal (required signal) in 
their amplitude and their phase. Consequentially the following 
characteristics can be derived: 

AM/AM – amplitude to amplitude conversion 
AM/PM – amplitude to phase conversion 
PM/AM – phase to amplitude conversion 
PM/PM – phase to phase conversion 

AM/AM and AM/PM conversion appears in all nonlinear, active RF 
components. The gain, the compression point, and the area of saturation can 
be read from the AM/AM curve. The AM/PM curve depicts the phase 
rotation, especially at strong input levels. The precise and efficient modeling 
of these characteristics is an important precondition for the system 
simulation of complex RF transmission systems. PM/AM and PM/PM 
conversions appear in modulators/demodulators and in certain mixing 
products. Additionally all mentioned characteristics can depend on 
frequency. 

Noise is another important property to implement in baseband models. 
All noise characteristics have to be considered such as white noise, flicker 
noise, and phase noise. The superposition of different noise sources, filtered 
noise (colored noise) and large-signal modeling using random generators 
make efficient and precise noise modeling very difficult. Phase noise 
appears especially in autonomous blocks like oscillators, colored noise 
appears in amplifiers and mixers. Additionally, passband mixers shift the 
frequency of the noise. This frequency conversion is neglected in the 
baseband simulation.  
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4.3.2 Example for baseband simulation  

The advantage of baseband modeling is illustrated in the wireless LAN 
system HIPERLAN/2 that transmits at a carrier frequency of approximately 
5 GHz. It operates at two bands; the lower band from 5.150 GHz to 
5.350 GHz, and the upper band from 5.470 GHz to 5.725 GHz. The 
bandwidth of the OFDM modulated signal is 20 MHz, split into 52 sub-
carriers. Depending on the mode of operation, data rates from 6 Mbit/s to 36 
Mbit/s are supported. 

For safe data transmission, a raw bit error rate (BER) better than 1.0e-3 is 
required. To evaluate this, the transmission of approximately 10,000 bits is 
simulated. This complies with a transient analysis of 278 µs in 36 Mbit/s 
mode. Table 4-1 displays the simulation steps executed in passband and 
baseband simulation. In this example, the complex baseband simulation 
reduces the number of simulation steps by a factor of 250. 

Table 4-1. Passband versus baseband simulation 
 Passband simulation Baseband simulation 
highest signal frequency carrier of about 5 GHz, 

sampled at 20 GHz 
baseband bandwidth 20 
MHz, sampled at 80 MHz 

simulation step size 1.0/20 GHz = 50 ps 1.0/80 MHz = 12.5 ns 
number of simulation steps  5.56 × 10e6 22.24 × 10e3 

4.3.3 Restrictions and advantages of baseband modeling 

In contrast to simulation with passband behavioral models, baseband 
simulation represents only spectral lines within a specified bandwidth 
around the carrier signal. Signal parts originating from nonlinear behavior 
outside this bandwidth are lost, for example harmonics of the carrier 
frequency. Unfortunately such effects could have an impact on the 
performance of subsequent receiver components. This is the main 
disadvantage of baseband modeling. 

To improve simulation accuracy, an extended approach for baseband 
simulation is published in [Van00]. The multi-rate multi-carrier (MRMC) 
representation of signals uses a number of baseband signals at different 
frequencies and different bandwidths to represent a carrier signal. Harmonics 
of the carrier frequency can be considered in this way. This solution is not 
available as a commercial tool. 

Because of the complex valued baseband signals, a baseband behavioral 
model cannot be replaced by a circuit level description of this block. Signal 
adapters, which convert from baseband to passband and vice-versa, are 
required to validate a circuit level model within a baseband test-bench. 
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Due to these restrictions baseband modeling must be used carefully. In 
full system simulation the speedup provided by this technology is crucial. It 
enables analysis of the impact of RF behavior on digital signal transmission. 

4.4 Model Libraries for System Simulation 

A feature of system level simulators is the availability of numerous 
models. They are used during concept engineering to simplify the 
development of system level models and test-benches. The system level 
simulators CoCentric System Studio and SPW specialize in the development 
of telecommunication applications. They provide large libraries with system 
components such as codec, error correction algorithms, modulators, filters, 
and more. Reference libraries are also available with models that are 
compatible with several communication standards. Table 4-2 shows a 
selection of models provided for the wireless communication domain. 

Table 4-2. Sample reference libraries for wireless communication 
CoCentric SPW 
Bluetooth  
GSM/GPRS  
cdma2000
DECT
IS-136

Bluetooth  
GSM and EDGE 
WCDMA 
Wireless LAN 
IS-136

The traditional application of system level simulators is development and 
verification of digital signal processing (DSP) algorithms. Therefore most of 
the library models belong to the DSP area. Nevertheless it is becoming more 
important to consider the imperfections of analog components in system 
level verification. In wireless systems, the analog components are 
concentrated in the RF front-ends of transmitters and receivers. Hence 
CoCentric and SPW provide a library to model RF front-ends.  

The CoCentric RF library 

The content of the CoCentric RF library is shown in Table 4-2.  

Table 4-3. CoCentric RF library 
Model Description 
ADConverter analog to digital converter, nonlinear distortion 
FrequencyDiv divides the frequency of the input signal 
FrequencyGen_QC generates a frequency signal (complex) 
FrequencySynt frequency synthesizer 
IQ_Mismatch generates IQ amplitude and phase mismatch 
Mixer_QC RF mixer (complex) 
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Model Description 
NonLinAmp_QC nonlinear RF amplifier (complex) 
NonLinAmpS_QC nonlinear RF amplifier, variable gain (complex) 
Oscillator oscillator with frequency/phase error, phase noise 
PhaseComp ideal comparison of the phases of two input signals 
Vrms2dBm converts root mean square voltage to dBm 

The CoCentric RF library is designed for complex baseband modeling of 
the RF subsystems. The models include effects such as noise figure and 
intercept points. The models are coded in “C”. The source code is not 
available.

The SPW RF library 

In contrast to CoCentric, SPW provides models for complex baseband 
and passband signal representation. Table 4-4 shows the model groups 
contained in the SPW RF model library. 

Table 4-4. SPW RF model library 
Model category Model
Amplifier real, cascaded real (subtype of real amplifier)

complex
Mixer real, real lookup table based

real with noise, complex
RF coupler real, complex
Switches ideal real switch (named select real)

nonlinear real switch (named switch real) 
ideal complex switch (named select complex) 
nonlinear complex switch (named switch complex) 

A/D converter conditioning, midtread, simple midtread 
Miscellaneous dB gain real, dB gain complex (ideal amplification) 

pad real, pad complex (attenuation and noise) 
signal sign (returns sign of input signal) 

 phase shift
zero cross (detect zero crossing of input signal) 
ideal frequency multiplier (for complex signals) 
instantaneous frequency (simple frequency estimator) 
triggered sawtooth generator 

These models allow the verification of transmitter and receiver front-end 
architectures with complex baseband or passband simulation techniques. 
Additionally Cadence provides J&K-models, which can represent complete 
receiver and amplifier RF-subsystems. J&K-models are black-box models 
configured with datasets generated automatically in an analog SpectreRF 
simulation. 
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4.5 Creation of Own Primitive and Hierarchical Models 

System simulators provide a wide range of models, however it may be 
necessary to develop own models for user specific components or 
requirements.  

There are generally two methods to create new models; both supported 
by CoCentric and SPW: 

hierarchical models  
primitive (custom coded) models 

The development of hierarchical models requires no specific experiences. 
The user combines existing models in the schematic entry into a new 
component. The input and output signals are connected to port blocks. A 
symbol of the new component can be automatically created. Model 
parameters can be exported to the symbol if editing of the parameters on the 
top level is required. 

If a block cannot be realized as a hierarchical model of existing blocks, 
many simulators provide interfaces to create custom coded blocks. 
Supported programming languages are “C”, “C++” and “SystemC”. The 
development of primitive models is more complicated than for hierarchical 
models. Some knowledge about the simulator’s specific model interface 
(parameter and port signal access) is necessary. The simulator environment 
provides some support by generating model templates. An example is shown 
in the next section. 

4.5.1 SPW modeling example  

A low noise amplifier model is used to demonstrate how custom coded 
blocks are created in SPW. The development of primitive and hierarchical 
models is represented step by step in the SPW User Manual. The model shall 
have the parameters described in Table 4-5. 

Table 4-5. LNA parameters 
Parameter Parameter name
Input resistance Rin
Output resistance Rout
Power gain Gp
Noise figure Fnoise
1 dB compression point CP
3 dB corner frequency fc
Sampling rate fs
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SPW system level model concept 

Since SPW provides models for noise generation and frequency 
response, a hierarchical model is used. For the nonlinearity of the amplifier a 
primitive model will be created. The structure of the SPW model is depicted 
in Figure 4-4. 

frequency
response

nonlinear
characteristicnoise

u_in U_in_fS_in S_out

Figure 4-4. Structure of SPW LNA model 

The primitive model for the nonlinear characteristic of LNA 

Since an own primitive model for the nonlinearity of the LNA should be 
used, it must be created first. The model is named nonlin_amp.  

The first step to create a primitive model is the creation of the symbol. 
An existing symbol can be opened in the schematic entry. After modification 
the symbol is saved with the new name in the user model library (Figure 
4-5).

 The model symbol describes the ports and the name of the model. The 
model parameters are specified in a parameter view, which is also created in 
the schematic entry.  

Figure 4-6 depicts the parameter view of the model. The main parameters 
are used to configure the model functionality. Frequency response and noise 
figure are modeled hierarchically, therefore the parameters are not passed to 
this model. The miscellaneous parameter section contains information for 
the error and overflow handling of the simulator. It must not be changed. 

Figure 4-5. Symbol of the primitive model nonlin_amp 
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Figure 4-6. Parameter view of nonlin_amp 

After creation of the symbol and parameter views of the model, the 
source code is created. It is supported by the block wizard, which is 
launched from the Symbol Schematic window. The wizard creates templates 
for the C source code and the header file. They include interfaces for ports 
and parameters used in the model. (This is the reason why the symbol and 
the parameter view must be defined first.) 

With the “View Header” and “View C Code” buttons, the files are 
opened in a text editor for editing. After saving the files, the model is 
compiled by clicking on the “Compile” button. The message area indicates 
success or errors of compilation. If necessary, “View Header” and “View C 
Code” are used again to change the model code. After successful 
compilation, the model is ready for simulation. 

The following presents the method used to modify the templates. In the 
header file the interface of the model is completely defined. Since two state 
variables are used in the model, their definition must be added in the header 
file. (State variables retain their values between the model calls in 
simulation.) 

STRUCT St_nonlin_amp_my_lib { 
  int instance; 
  double k1; 
  double k2; 
};

#define S_k1 (spb_state->k1) 
#define S_k2 (spb_state->k2) 
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The lines marked bold are added to define the state variables. The macro 
#define ... is optional. It makes use of the state variables easier. 

The source code file contains the model functionality. It contains three 
functions:

initialize function 
run output function 
termination function 

The function interface is completely defined, but the signal processing 
operations have to be added. The initialize function is executed at the start of 
each simulation. In this example it is used to compute the coefficients for the 
tanh nonlinearity from the model parameters. The code is shown below. 

int In_nonlin_amp_my_lib(spb_parm, spb_input, spb_output, 
spb_state)
STRUCT Pt_nonlin_amp_my_lib *spb_parm; 
STRUCT It_nonlin_amp_my_lib *spb_input; 
STRUCT Ot_nonlin_amp_my_lib *spb_output; 
STRUCT St_nonlin_amp_my_lib *spb_state; 
{
   double cp_lin,gp_lin,cp_temp; 
   cp_temp =  P_comp_pt - (P_gain+3.0) + 10.0; /*input ref. CP*/ 
   cp_lin   = pow(10.0, (cp_temp-30.0)/10.0); 
   gp_lin   = pow(10.0, (P_gain+3.0)/10.0); 

   S_k1       = 1.0/0.504 / sqrt(cp_lin); 
   S_k2       = 1.0/0.504 * sqrt(gp_lin * cp_lin); 
  return (SYS_OK); 
}

The bold text parts are added. The algorithm is adapted from an analog 
behavioral model and will not be discussed here. The states k1 and k2
(represented by S_k1 and S_k2) are used in the run output function. 

int Ro_nonlin_amp_my_lib(spb_parm, spb_input, spb_output, 
spb_state)
STRUCT Pt_nonlin_amp_my_lib *spb_parm; 
STRUCT It_nonlin_amp_my_lib *spb_input; 
STRUCT Ot_nonlin_amp_my_lib *spb_output; 
STRUCT St_nonlin_amp_my_lib *spb_state; 
{

  O_out = 1.0 * S_k2 * tanh(I_in * S_k1); 

  return(SYS_OK); 
}

The pre-computed coefficients make it easy to compute the model output 
O_out from the input signal I_in.
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The termination function is not changed because the model does not 
require computations at the end of simulation. 
The hierarchical model lna_new 

The primitive model nonlin_amp is now used in the hierarchical LNA 
model. A detail view is created in the schematic entry. It consists of a noise 
generator and a lowpass filter from the SPW model libraries, together with 
our nonlinear amplifier. It is depicted in Figure 4-7. The parameters of the 
model are defined in the box. If the model is instantiated their values can be 
specified in the symbol. From that schematic a symbol view can be 
automatically created. After this the new model lna_new is complete and can 
be used in simulation. 

Figure 4-7. Hierarchical model lna_new 

Model test-bench 

The created model lna_new is inserted in a test-bench to verify gain and 
compression point of the model (Figure 4-8). It creates a one tone test signal 
with a power sweep. The input and output power of the LNA are measured. 
The simulation results are visualized with the SPW Signal Calculator (Figure 
4-9).
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Figure 4-8. Test-bench for LNA compression point 

Figure 4-9. lna_new simulation result output power versus input power 
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VHDL-AMS FOR BLOCK LEVEL SIMULATION 

5. VHDL-AMS FOR BLOCK LEVEL SIMULATION 

5.1 Introduction

Current telecommunication circuits consist of digital and analog blocks. 
In order to describe and simulate these circuits a behavioral description 
language is required that covers both levels and the interaction between 
them. A language that fulfills these expectations is VHDL-AMS.  

VHDL-AMS is a hardware description language for the description and 
simulation of digital, analog, and mixed-signal systems. The language was 
standardized by the Institute of Electrical and Electronic Engineers (IEEE) 
as IEEE Standard 1076.1-1999, VHDL Standard Analog and Mixed-Signal 
Extensions [Std99]. It is a strict superset of the digital VHDL IEEE Std 
1076-1993. The VHDL-AMS standard supports the development of tool-
independent models. Currently, a number of VHDL-AMS simulation 
engines are available (see for example [MGC04]). VHDL-AMS can be used 
in different phases of the design and simulation flow. It is applicable in the 
top-down phase as well as during bottom-up verification (see also [ChB99], 
[APT04]). 

In this and the following chapter we will give a brief introduction to 
VHDL-AMS and its usage in telecommunication applications. These 
explanations should help you to 

Gain an overview of what kind of modeling and simulation tasks can be 
solved using VHDL-AMS 
Understand and apply existing VHDL-AMS models 
Change and refine existing models 
Develop from scratch more complicated or less complicated models 



40 Chapter 5

The text is addressed to readers with a basic knowledge of digital and 
analog simulation. Some knowledge of the digital VHDL 1076-1993 
language is helpful but not absolutely necessary to gain a first impression of 
the language. We will present selected models that can be applied to RF 
design together with special modeling methods and their application using 
some complex examples. 

5.2 VHDL-AMS Standardization 

The hardware description language VHDL was standardized in 1987. 
The language was originally developed to describe large digital integrated 
circuits (ICs) in a unified way. VHDL is an abbreviation for VHSIC 
Hardware Description Language. VHSIC is an abbreviation for Very High 
Speed Integrated Circuits. Users soon appreciated the advantages of the 
language for modeling, documentation, and simulation of simple or complex 
digital systems. As a result of the language’s standardization the exchange of 
VHDL models, developed by different users and for different tools, was 
facilitated. The standard accelerated the development of simulation, and also 
synthesis, tools based on VHDL. This is a benefit from the users’ point of 
view as well as from the EDA companies’ position. Besides this, VHDL 
allows

Structural descriptions of digital systems 
Behavioral descriptions of basic building blocks 

That means users can define their own primitives for the structural 
descriptions in an easy way. This gives them great flexibility to describe 
their system ideas. These possibilities are of particular value if a system 
specification has to be simulated. 

All these advantages were not applicable for analog designers until the 
beginning of the 1990’s. Very powerful network simulation engines based 
on SPICE simulation ideas were available [Kun95]. However, a standard for 
behavioral models and a link to digital simulation engines did not exist. This 
was the starting point for the definition of VHDL-AMS. 

The IEEE 1076.1 Working Group tasked to overcome these limitations 
was created under the auspice of the IEEE Design Automation Standards 
Committee (DASC). The task was to develop analog and mixed-signal 
extensions to the VHDL language. As a result of the activities of the 
working group, the  1076.1-1999 IEEE Standard VHDL Analog and Mixed-
Signal Extensions  was approved in 1999. This Language Reference Manual 
is available from the IEEE. The VHDL 1076.1 language is informally 
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known as VHDL-AMS, where AMS is an abbreviation for Analog and 
Mixed-Signal. 

VHDL-AMS is a strict extension of the digital VHDL 1076-1993 
language. Thus, each VHDL model is also a VHDL-AMS model. New 
language constructs for the description of continuous behavior over time and 
frequency are smoothly included in VHDL. 

Figure 5-1. VHDL-AMS as a superset of VHDL 1076-1993 

VHDL-AMS is a language to model and simulate digital, analog, and 
mixed-signal systems in a unified way. All the organizational capabilities of 
VHDL remain valid. 

The IEEE 1076.1 Working Group that promoted the VHDL-AMS 
development reacts to experiences of the VHDL-AMS deployment. Last 
activities included, for instance, the development of standard packages for 
multiple domain (that is electrical/non-electrical) simulation. The balloting 
concerning IEEE P1076.1.1 Standard VHDL Analog and Mixed-Signal 
Extensions – Packages for Multiple Energy Domain Support [Std03] was 
carried out in 2004. More information is available online from the IEEE 
1076.1 Working Group website: 

http://www.vhdl.org/analog 

5.3 A Simple Block Level Example – Analog PLL 

One of the advantages of VHDL-AMS is the description of circuit blocks 
at a high level of abstraction. This helps to determine and check basic system 
parameters without wasting too much effort considering second order effects 
at the beginning of a design process. Thus, the idea is to use an executable 
specification at the beginning of a top-down design. The high level of 
abstraction helps to reduce simulation times. System parameters and 
structures can be easily modified. 

As an example, we start with modeling a simple analog PLL (Phase 
Locked Loop) in the passband circuit using VHDL-AMS. The starting point 
to model the blocks is a description of their functionality described by 
mathematical expressions. Prior knowledge of the realization of the blocks at 
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the transistor level is not required. Later on in the design process, models 
can be replaced by more detailed descriptions. The interface of the blocks 
will not be changed in this procedure. Only the description of their working 
mechanisms will become more complicated. That means we have to use pin-
compatible models from the beginning. 

5.3.1 Mathematical models of basic blocks  

The behavior of a PLL can be illustrated using a simple description. 
Instead of circuit models of the basic building blocks we use behavioral 
descriptions of 

Signal source described by a series connection of a voltage source and a 
voltage-controlled oscillator 
Phase detector realized by a multiplier 
Ideal first order lowpass filter 
Voltage controlled oscillator 

The output of the signal source is a frequency-modulated signal. 
Demodulation is carried out by the PLL [PeD91], [Kam92]. Figure 5-2 
represents the schematic of the PLL. 

VCO PD TP

VCO

N_IN
FM PD_OUT OUT_PLL

VCO_OUT

UUT2 UUT3 UUT4

UUT5

Figure 5-2. PLL circuit 

The blocks may be realized by ideal voltage-controlled voltage sources. 
Parameters of the models are introduced in the following. The FM input 
signal is demodulated by the PLL. The output voltage should follow the 
input voltage. 
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Signal Source  

An independent voltage source drives the voltage controlled oscillator 
UUT2. The output of the VCO is a frequency-modulated voltage. It is used 
as PLL input. 
Phase detector (PD) 

The phase detector is realized in a simple manner. The values of the two 
input waveforms are multiplied by the gain of the phase detector. Two open 
input branches, which are used to measure the input voltages vin1 and vin2,
and an ideal controlled voltage source that drives the output can be used to 
model the phase detector: 

)()()( 21 tvintvingaintvout

Voltage controlled oscillator (VCO) 

The frequency of the sinusoidal VCO output voltage depends on the 
input voltage vin measured by an open branch. In our simple model we 
assume that the frequency is proportional to the input voltage plus center 
frequency f0. Considering the basic definition that the derivative of the phase 

equals the product of frequency and 2  we start with 

0)(2 ftvinkf
dt
d     and the initial condition 0)0(

The output voltage results from 
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kf is the VCO gain measured in Hz/V. Ampl is the amplitude of the 
output voltage. 
Lowpass filter (LP) 

The lowpass filter is characterized by its cut-off frequency and gain. The 
input voltage vin is measured by an open branch. It controls the voltage vout
of an ideal voltage source. The Laplace transfer function of the lowpass filter 
is given by 
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5.3.2 Structural description of the PLL circuit in VHDL-AMS 

In order to simulate the PLL circuit these mathematical models have to 
be translated into VHDL-AMS descriptions. At the beginning, we assume 
that the models of the basic building blocks are available. We only have to 
connect and parameterize them. The structural description can be done with 
reference to the interface descriptions of the block models. The interfaces are 
described in VHDL by the entity declarations. These declarations contain the 
identifiers of the generic model parameters, their types, and optionally, their 
default values. The connection points are summarized in the port list. The 
declaration of a connection point characterizes an element of the port list. A 
terminal, for instance, is a connection point in a network model. 
Furthermore, identifiers and a characterization by type or nature belong to a 
port declaration. In the case of an electrical network the nature is 
ELECTRICAL.

The entity declaration of the voltage source model used is shown in the 
following lines of code. The parameter WAVE describes the voltage 
waveform as a list of times and values in a similar way as in any well-known 
SPICE simulator [QNP93]. 

entity VPWL is
generic  ( 

      WAVE    : REAL_VECTOR;     -- time value pairs T1, V1, … 
                                 -- units: [s] and [V] 
      ACMAG   : REAL := 0.0;     -- AC magnitude 
      ACPHASE : REAL := 0.0      -- AC phase 
      ); 

port     ( 
terminal P : ELECTRICAL;   -- positive terminal 
terminal N : ELECTRICAL    -- negative terminal 

      ); 
end entity VPWL; 

The VCO entity is declared in a similar way. The assert statement checks 
whether model parameters are assigned in a correct way during instantiation. 

entity VCO is
generic (F0            : REAL := 1.0; -- center frequency [Hz] 

            KF            : REAL := 1.0; -- gain [Hz/V] 
            AMPL          : REAL := 1.0; -- amplitude [V] 
            PHI0          : REAL := 0.0  -- initial phase [rad] 
           ); 

port    (terminal INP  : ELECTRICAL;  -- input terminal 
terminal OUTP : ELECTRICAL   -- output terminal 

           ); 
begin
   assert F0 > 0.0 and KF > 0.0 

report "F0 and KF > 0.0 required." 
severity ERROR; 

end entity VCO; 
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We assume that the other entity descriptions are available in the same 
way. A PLL netlist in accordance with Figure 5-2 can then be described in 
the following way. 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;
use WORK.all;

entity BENCH is end entity BENCH; 

architecture PLL of BENCH is
terminal N_IN, FM, PD_OUT, VCO_OUT, OUT_PLL : ELECTRICAL; 

begin

V1: entity VPWL(SPICE)
generic map (WAVE =>

(0.0, -1.0, 50.0E-6, -1.0, 150.0E-6, 1.0, 200.0E-6, 1.0)) 
      --(time1, value1, time2, value2, ...) 

port map (P => N_IN, N => ELECTRICAL_REF); 

UUT2: entity VCO(BASIC) 
generic map (F0 => 1.0E6, KF => 100.0E3,

AMPL => 4.0, PHI0 => -MATH_PI/2.0) 
port map (INP => N_IN, OUTP => FM); 

UUT3: entity PD(BASIC) 
generic map (GAIN => 2.5) 
port map (IN1 => FM, IN2 => VCO_OUT, OUTP => PD_OUT); 

UUT4: entity FILTER(LP)
generic map (FC => 20.0E3) 
port map (INP => PD_OUT, OUTP => OUT_PLL); 

UUT5: entity VCO(BASIC) 
generic map (F0 => 1.0E6, KF => 100.0E3) 
port map (INP => OUT_PLL, OUTP => VCO_OUT); 

end architecture PLL; 

Thus, existing VHDL-AMS models can be used to describe new 
simulation tasks. The description starts with a context clause. The first two 
lines allow access to the nature ELECTRICAL. Our models were compiled 
into the logical library WORK. The third line is included in the model to 
enable instantiation of design entities that were compiled into the library 
WORK. An empty entity declaration follows as there are no connection 
points to higher hierarchy levels at the top.  

The structural description follows in the architecture PLL. At the 
beginning, the internal nodes N_IN, FM, and so on are declared. After the 
reserved word begin, the instantiations of the models follow. There are 
different methods to instantiate models in VHDL-AMS. Here we use the 
direct instantiation method. The generic map associates actual values with 
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model parameters. If the actual value and the default value of the entity 
declaration are equal, a value assignment is not necessary. Note that only 
parameter values, and no units, are used. In general, models should always 
be written in a way that the usage of SI units can be assumed. However, 
ultimately the user still must check whether this assumption is met. As a 
consequence, a clear documentation of units in the source code of models 
helps to avoid misunderstandings. The port map describes how to connect 
the ports to the nodes of the circuits. In this example we use a named 
association. That means the identifiers of the entity declarations are used in 
the mapping list. We note that each instantiation must start with a label (for 
example UUT2, UUT3,…) and is continued by the reserved word entity
followed by the entity name and the architecture name enclosed within 
parentheses.

Figure 5-3. Results of a passband simulation to 200 s

Different model descriptions can be associated with the same entity. This 
functionality is described in VHDL-AMS in architecture bodies. The name 
of the architecture used follows the entity name in the instantiation statement 
enclosed within parentheses. Last but not least we mention that the electrical 
reference node is named ELECTRICAL_REF in the nature made available 
by the context clause. Figure 5-3 shows the results of the PLL simulation. 
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The input voltage is measured at node N_IN. The result of the demodulation 
is available at node OUT_PLL. 

5.3.3 VHDL-AMS description of basic blocks 

In the previous section we explained how to use existing models. Let us 
now look at three of these models. One of the advantages of VHDL-AMS is 
that you can write your own models in a similar manner. 
Phase detector 

Figure 5-4. Structure of the basic phase detector model 

The internal structure of the phase detector model is shown in Figure 5-4.
The following code lines describe the VHDL-AMS model: 

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity PD is
generic (GAIN          : REAL := 1.0   -- gain 

           ); 
port    (terminal IN1  : ELECTRICAL;   -- first input 

terminal IN2  : ELECTRICAL;   -- second input 
terminal OUTP : ELECTRICAL    -- output terminal 

           ); 
end entity PD; 

architecture BASIC of PD is
quantity VIN1 across IN1;               -- 1 st open input branch 
quantity VIN2 across IN2;               —- 2 nd open input branch 
quantity VOUT across IOUT through OUTP; -- output branch 

begin
  VOUT == GAIN*VIN1*VIN2;                 -- see PD description 
end architecture BASIC; 

The entity declaration describes the model interface. The quantity 
statements in the architecture BASIC declare branches. A probe branch that 
measures the voltage VIN1 between the terminal IN1 and the electrical 
reference is declared by quantity VIN1 across IN1; which is an open 
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branch. The branch current is zero. The second input branch is declared in 
the same way. The third quantity statement presents the output voltage 
source branch. It connects the terminal OUTP and the electrical reference 
node. The branch voltage is VOUT and the branch current IOUT. The value 
of the branch current depends on the interconnection of the phase detector 
with other models. The relationship that has to be fulfilled by the branch 
voltages and currents is given by the simultaneous statement VOUT == 

GAIN*VIN1*VIN2; Thus, the VHDL-AMS model represents the mathematical 
model description given in Section 5.3.1. 
Voltage controlled oscillator 

INP OUTP

VIN VOUT

Figure 5-5. Structure of the basic VCO model 

The VCO model is written in a similar way to the phase detector. The 
entity declaration was already shown in Section 5.3.2. The architecture 
contains an additional declaration for PHI that is neither a branch current nor 
a branch voltage. Furthermore the initial condition is considered during 
operating point analysis (DOMAIN equals QUIESCENT_DOMAIN). 
PHI’DOT is the time derivative of PHI. The SIN function and the 
mathematical constants can be found in the package MATH_REAL that is 
introduced with the first two lines of the following code: 

library IEEE;
use IEEE.MATH_REAL.all;

architecture BASIC of VCO is
quantity VIN across INP;               -- open input branch 
quantity VOUT across IOUT through OUTP; -- output branch 
quantity PHI  : REAL;                   -- free quantity PHI 

begin
if DOMAIN = QUIESCENT_DOMAIN use

     PHI == PHI0;                         -- initial condition 
else

     PHI'DOT == MATH_2_PI*(KF*VIN + F0);  -- see VCO description 
end use;

  VOUT == AMPL*SIN(PHI);                  -- see VCO description 
end architecture BASIC; 
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Lowpass filter 

VHDL-AMS provides the 'LTF attribute to describe the Laplace transfer 
function. This attribute can be applied to quantities, such as analog 
waveforms. Analog waveforms are, for example, branch voltages and 
currents. Thus, the main functionality of the lowpass filter is given by a 
simultaneous statement of the form VOUT == VIN’LTF(numerator, 

denominator). Parameters of the ´LTF attribute are real arrays for the 
numerator and denominator of the Laplace transfer function that contain the 
coefficients of si of numerator and denominator respectively. The two arrays 
can be described using the following form: (0 => coefficient of s0, 1 => 
coefficient of s1,…). The internal structure and the interface of the model are 
similar to the VCO. Thus, we get the following model: 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;

entity FILTER is
generic (GAIN          : REAL := 1.0; -- gain 

            FC            : REAL := 1.0; -- cut-off frequency [Hz] 
            ZF            : REAL := 1.0  -- zero frequency [Hz] 
           ); 

port    (terminal INP  : ELECTRICAL;   -- input terminal 
terminal OUTP : ELECTRICAL);  -- output terminal 

begin
   assert FC > 0.0 and ZF > 0.0           -- parameter conditions 

report "FC and ZF > 0.0 required." 
severity ERROR; 

end entity FILTER; 

architecture LP of FILTER is               -- lowpass description 
quantity VIN across INP;                -- open input branch 
quantity VOUT across IOUT through OUTP;  -- output branch 

begin
  VOUT == VIN'LTF((0 => GAIN), (0 => 1.0, 1 => 1.0/MATH_2_PI/FC)); 
end architecture LP; 

If a pole-zero filter should be used instead of the lowpass filter, a second 
architecture PZ can be combined with the FILTER entity. 

architecture PZ of FILTER is
quantity VIN across INP;                  -- input branch 
quantity VOUT across IOUT through OUTP;    -- output branch 

begin
  VOUT == GAIN*VIN'LTF( 
         (0 => 1.0, 1 => 1.0/MATH_2_PI/ZF),  -- numerator 
         (0 => 1.0, 1 => 1.0/MATH_2_PI/FC)   -- denominator 
          ); 
end architecture PZ; 

The architecture PZ realizes in the Laplace domain 
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This architecture PZ can be instantiated in the PLL description instead of 
the lowpass filter architecture LP. 

5.4 Summary

This chapter provided a short overview of the features of the VHDL-
AMS behavioral description language, which can be used for modeling of 
digital, analog, and mixed-signal systems. We demonstrated how the 
language could be used for block simulation at a high level of abstraction. 
The starting point is always a mathematical description of the behavior of 
the blocks. VHDL-AMS offers powerful statements to translate a 
mathematical model of a block into a model that can be evaluated by a 
simulation tool. Some of the basic language features were introduced and 
used in an informal manner in this chapter. Our aim was to provide an idea 
of how modeling with VHDL-AMS works. However, to exploit the whole 
power of the language a systematic approach to the language is essential. An 
introduction to VHDL-AMS follows in the next chapter. 
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6. INTRODUCTION TO VHDL-AMS 

6.1 Aim of this Introduction  

In this chapter, we will introduce the fundamental concepts of VHDL-
AMS. This will help to understand existing VHDL-AMS models and will 
open the opportunity to modify models and develop new ones. We cannot 
explain all details of the language. Instead, we will touch on the main ideas 
and practices to form a basic understanding useful for the beginning (see 
also [ChB99]). The chapter is subdivided into the following topics: 

Repetition of VHDL 1076-1993, which is the pure digital predecessor of 
VHDL-AMS 
Description of conservative systems where analog blocks of arbitrary 
nature can be described by means of ordinary equations and algebraic 
equations
Description of nonconservative systems where analog blocks can be 
described by means of signal flow diagrams 
Mixed-signal simulation, including basic knowledge concerning the 
combination of analog and digital simulation models 
Analysis domains, i.e. additional frequency domain simulation modes in 
VHDL-AMS 
Further features of VHDL-AMS as an outlook on advanced modeling 
techniques.

In the following, the general syntax of VHDL-AMS statements is 
described using a simple variant of Backus Naur Form (BNF), similar to 
those used in the VHDL-AMS standard [Std99]. 
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6.2 Repetition of Basics of VHDL 1076-1993 

VHDL 1076-1993 is widely used in electronic design. Most of the 
designers are familiar with this language to describe and simulate their 
digital design. 

VHDL-AMS is a strict superset of VHDL 1076-1993. As a preliminary, 
we will look at some basic ideas of digital VHDL and then explain the 
analog extension. We do not provide a detailed introduction into digital 
VHDL, but we will touch on the main topics. More information on VHDL 
1076-1993 can be found in the books [Nav93], [Ash02]  as well as online:  

The Hamburg VHDL Archive 
http://tech-www.informatik.uni-hamburg.de/vhdl 

In the following, we will mainly address VHDL and will consider some 
extensions to VHDL-AMS where applicable.  

6.2.1 Design units 

The basic organizational unit in VHDL-AMS is the design unit. There 
are two classes of design units: primary and secondary. The primary design 
units are: 

entity
package
configuration

Secondary design units depend on primary design units to some extent. 
The secondary design units are 

architecture 
package body  

VHDL-AMS allows building up a system model in a hierarchical way 
with the help of building blocks. The description of the interface of a 
building block together with its associated structural or behavioral 
description defines a design entity. A design entity represents a model of a 
building block. It is provided by a description of its interface and an 
associated architecture. It is possible to define different models for the same 
building block. All these models consist of the same interface but with 
different architectures. A first example was provided at the end of the last 
chapter.
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Design unit entity 

An entity declaration is the description of the interface between a given 
design entity and the environment in which it is used. In VHDL-AMS, the 
connection points of a building block are called ports. An entity declaration 
describes the ports and parameters of a building block. 

The simplified form of an entity declaration is 

entity entity_name is
   generic  (parameter_list); 
   port  (port_list); 

end entity entity_name;

The parameter list defines names and types of constants that can be used 
in an associated architecture. The generic constants can be initialized in the 
entity declaration. The default values can be overwritten during instantiation. 

The port list defines names, directions and types of channels for 
communication between a building block and its environment. These are  

signal ports for digital waveforms with  modes in, out, inout, or buffer
(known from VHDL) 
quantity ports for analog waveforms with modes in or out (new in 
VHDL-AMS) 
terminal ports for conservative connection points that carry analog flow 
and across waveforms without direction (new in VHDL-AMS) 

Example
entity OR2 is
    generic (DELAY_TIME       : TIME := 0 ns); 
       port    (signal IN1, IN2  : in  BIT; 

signal OUT1      : out BIT); 
end entity OR2;

The entity declaration describes the interface of an OR gate. IN1 and IN2 
are the names of the input ports. OUT1 is the name of the output port. 
DELAY_TIME is a constant that describes the delay between the change of 
values of inputs and outputs. 

Note: rules for naming identifiers 

In the example, OR2, DELAY_TIME, IN1, IN2, and OUT1 are all 
simple identifiers that are introduced by the user that developed the model. 
Please keep in mind: 

Identifiers must not be reserved words of the VHDL-AMS language. 
This is why, for instance, the name of the output port cannot be out 
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because out is a reserved word. Reserved words are printed in boldface 
letters in code segments in this chapter. A full list of reserved word can 
be found in the 1076.1-1999 IEEE Standard VHDL Analog and Mixed-
Signal Extensions. 
VHDL as well as VHDL-AMS are not case sensitive. Thus, for instance, 
delay_time, DELAY_TIME, and Delay_Time are all the same. This is 
also true for reserved words. For instance, entity, Entity and ENTITY
are considered the same. 
Simple identifiers must start with an alphabetic letter followed by a letter, 
a digit, or an underline character (‘_’). Identifiers cannot end with an 
underline character. Underline characters must be separated by a letter or 
a digit. Some examples of legal identifiers are:   

legal_identifier
node23
InputVoltage

Design unit architecture 

An architecture associated with an entity declaration describes the 
internal organization or operation of a design entity. An architecture 
describes the behavior, data flow, or structure of a design entity. It can be 
described using concurrent and simultaneous statements. Concurrent 
statements describe digital time-discrete behavior. Simultaneous statements 
describe analog time-continuous behavior.  Concurrent statements are 
known from digital VHDL. Simultaneous statements are new language 
constructs in VHDL-AMS. Signals are the fundamental objects that carry 
digital waveforms. Concurrent statements update the values of signals. 
Quantities are the fundamental objects that carry analog waveforms. 
Simultaneous statements define relationships between quantities. However, 
quantities can be read in concurrent statements and signals can be read in 
simultaneous statements. Thus, not only digital and analog behavior can be 
expressed in VHDL-AMS, but the description of mixed-signal (analog-
digital) behavior is also possible. The order of concurrent and simultaneous 
statements in an architectural body has no influence on the results of a 
simulation. 

In conclusion, a design entity is an entity declaration together with an 
associated architecture body. Please keep in mind that a given entity 
declaration may be shared by many design entities, each of which has a 
different architecture. 
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Examples
architecture SIMPLE of OR2 is
begin
      OUT1 <= IN1 or IN2 after DELAY_TIME; 
end architecture SIMPLE;

SIMPLE is an architecture that belongs to the entity declaration OR2. 
The output signal is determined by the input signals IN1 and IN2 using a 
concurrent statement. In a structural description the design entity which is 
characterized by the entity OR2 and the architecture SIMPLE is referenced 
as OR2(SIMPLE). It can be instantiated directly, for instance by 

LABEL: entity OR2(SIMPLE) 
generic map (DELAY_TIME   => 2 ns) 

       port map   (IN1  => ACTUAL_IN1,
                      IN2  => ACTUAL_IN2,
                      OUT1 => ACTUAL_OUT1); 

The default value of DELAY_TIME is overwritten by the instance 
specification of 2 ns. The interface points are connected to the actual nets 
ACTUAL_IN1, ACTUAL_IN2, and ACTUAL_OUT1. In this example 
named association is used. The formal designators DELAY_TIME, IN1, 
IN2, and OUT1 that are used in the declaration of entity OR2 appear 
explicitly. In addition, positional association is possible. In this case, the 
formal designators do not appear in the parameter and/or port lists. An actual 
designator at a given position in an association list corresponds to the 
interface element at the same position in the interface list of the entity 
declaration. Thus, the following instantiation is also possible:  

LABEL: entity OR2(SIMPLE) 
generic map (2 ns) 

      port map    (ACTUAL_IN1, ACTUAL_IN2, ACTUAL_OUT1); 

Design unit configuration 

Structures can be described with the help of placeholders for the entity 
declarations. These placeholders are called components. The configuration
unit is a construct that binds concrete models of building blocks (that is 
design entities) to placeholders in a structural description. This offers a very 
simple way to exchange design entities in a structural description. At 
present, configuration units are not supported in current implementations of 
some VHDL-AMS simulation engines. This is why we avoid the usage of 
configuration units in the following sections. The structural descriptions are 
mainly done using direct instantiation, which uses the design entity name 
directly. 
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Design unit package 

A package declaration may contain the declarations of types, 
subprograms, files and so on. In this way, the reuse of description parts is 
supported. The declared elements can be made visible to other design units. 
The package STANDARD with declarations of standard types (for example 
BIT, BOOLEAN, REAL, …) is part of the predefined language 
environment. 

Design unit package body 

A package body contains hidden parts of a package. For instance, the 
interface declaration of a subprogram is described in the package 
declaration. The package body contains the full program code. Its details are 
hidden outside the package. 

6.2.2 Logical libraries and compilation of design units 

Administration of analyzed design units 

The design units are compiled into design libraries. The compilation 
consists of 

Analysis of the source code description  
Generation of an intermediary code which is saved in a design library 

A design library must be created and managed using commands that 
depend on the specific simulation engine used. A physically existing design 
library is connected with a specific logical name. In VHDL-AMS 
descriptions, only the logical names are important and used. There are 
several kinds of design libraries. Compilation is usually done in the WORK 
library. Predefined libraries are available in the simulation environment and 
can be used as resource libraries. Examples are the STD library and the 
IEEE library. 

WORK library
Compiled design units are by default placed into the working design 

library named WORK. 

STD library
The STD library contains the standard packages STANDARD and 

TEXTIO. The packages predefine basic language types, subtypes, and 
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functions. There are some extensions in the STANDARD package of 
VHDL-AMS compared to VHDL as follows 

An enumerated domain type is declared. 

type DOMAIN_TYPE is ( 
     QUIESCENT_DOMAIN,   -- initialization phase 
     TIME_DOMAIN,        -- transient analysis 
     FREQUENCY_DOMAIN);  -- AC and noise 

A signal DOMAIN of type DOMAIN_TYPE declared in the standard 
package is set by the simulation engine and can be evaluated in the 
models. 

signal DOMAIN : DOMAIN_TYPE := QUIESCENT_DOMAIN; 

The impure function NOW returns physical or real time. The result 
depends on the context in which the function is used. 

subtype DELAY_LENGTH is TIME range 0 fs to TIME’HIGH; 
impure function NOW return DELAY_LENGTH; -- phys. time 
impure function NOW return REAL;         -- real time 

The predefined real array type is declared. 

type REAL_VECTOR is array (NATURAL range <>) of REAL;

IEEE library 
The IEEE library contains 

Packages where the designer finds standard logic system and the 
corresponding types and functions like STD_LOGIC_1164 
Packages with real-valued and complex-valued types, constants, and 
functions like MATH_REAL and MATH_COMPLEX respectively 
Packages with declarations of energy domains in VHDL-AMS like 
ELECTRICAL_SYSTEMS, MECHANICAL_SYSTEMS, and 
THERMAL_SYSTEMS [Std03] 

EDA vendor specific libraries 
In addition to standardized packages, EDA vendor specific libraries and 

packages exist. These packages often extend the functionality of standard 
packages. They can also be used in cases where standard packages are not 
available, or were not previously available. An example is the 
DISCIPLINES library available in the ADVance MS simulator of Mentor 
Graphics [MGC04] that summarizes declarations of energy domains such as 
ELECTROMAGNETIC_SYSTEM, KINEMATIC_SYSTEM, and so on. 
The library was available a long time before the IEEE finished 
standardization of the corresponding packages. 
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Reference of design units 

The representation of a design unit in a design library is called a library 
unit. Library units can be made available in other design units by context
clauses. These context clauses enable design units to be visible within other 
design units. Thus, design units can be referenced in other design units. A 
context clause is either a library clause or a use clause. A library clause 
defines logical library names that may be referenced in a design unit. The 
simple library clause looks like 

library library_name;

After the reserved word library a list of library names may follow, such 
as:

library IEEE, DISCIPLINES; 

A use clause achieves direct visibility of declarations. Each selected 
name in a use clause identifies one or more declarations that will potentially 
become directly visible. 

use selected_name.item_name;

In addition, a list of selected names and item names can follow the 
reserved word use. If the item_name is the reserved word all, then the use 
clause identifies all declarations that are contained within the package or 
library denoted by the selected name. 

Examples
use WORK.all;    -- comment starts with –- stops at the end of 
line:
                 -- use clause makes all design units (for instance 
                 -- all entity and architectural declarations) 
                 -- from library WORK available 

use IEEE.STD_LOGIC_1164.all;   -- makes all declarations from 
                                -- the package STD_LOGIC_1164 
                      -- from IEEE library available 

The scope of the use clause starts immediately after the use clause. If the 
use clause occurs within the context clause of a design unit, the scope of the 
use clause extends to the end of the declarative region associated with the 
design unit. In practice all context clauses before an entity declaration are 
valid for the entity and all associated architectures. It is assumed that the 
following context clause is implicitly declared for each design unit. It is not 
necessary to add them to a VHDL-AMS description: 
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library STD, WORK; 
use STD.STANDARD.all;

Rules and order of the analysis of design units 

These organizational capabilities suggest complying with the following 
rules. Figure 6-1 demonstrates the procedure. 

Create text files with design units 
If possible follow the rule “One design unit – One design file”. An 
exception is the description of the test-bench. This is the top level 
description. In this case the entity is empty. Entity declaration and 
architecture are generally saved in one file. Text files can be created with 
the preferred text editor. 

Compilation must be done in the correct order 
The rules defining the order in which the design units can be analyzed are 
direct consequences of the visibility rules. The VHDL-AMS standard 
(Section 11.4 of the standard) requires 

A primary design unit whose name is referenced within a given design 
unit must be analyzed prior to the analysis of the given design unit. 
A primary design unit must be analyzed prior to the analysis of any 
corresponding secondary design unit. 

If a design unit is changed, then all library units that are potentially 
affected become obsolete and must be reanalyzed before they can be used 
again. A primary design unit is affected by a change of a library unit 
where it is referenced. A library unit is a compiled design unit. A 
secondary design unit is potentially affected by a change in its 
corresponding primary unit. But a secondary unit does not affect the 
corresponding primary unit. For instance, a package body can be changed 
without recompilation of the corresponding package declaration. 

Simulation 
The simulation can begin after all design units used in a design have been 
compiled. 
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Figure 6-1. Analysis of design units 

The commands to create a design library, compile a design unit and start 
the simulation engine are not part of the VHDL-AMS standard. They differ 
from one simulation engine to another one. For instance, in the simulation 
engine ADVance MS of Mentor Graphics [MGC04] the following 
commands are available in the command line of the operating system: 

valib         to create a design library 
vamap         to change the logical name of a design library 
vacom         to compile a design unit into a design library 
vasim         to invoke the simulation engine 

6.2.3 Concurrent statements 

Signals

A signal is an object with a history of past values. It can be considered a 
time-discrete waveform. Ranges and domains of such waveforms have two 
main properties:

Values of signals may be of any type, for example BIT, BIT_VECTOR, 
and BOOLEAN. REAL and INTEGER value signals are also possible. 
Signals can also be user-defined types. 
The timeline of all signals is of type TIME. The resolution limit is the 
primary unit of type TIME. Any time value is a multiple of the resolution 
limit. 
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Figure 6-2. Signal in VHDL 

The values of signals may only change at discrete time points as shown 
in Figure 6-2. A change in the signal value, which occurs when the signal is 
updated, is called an event. Signal values are constant between two events. 
Signals can be declared in the declaration part of an architecture. The initial 
value of a signal depends on the type (for example ‘0’ for a BIT-valued 
signal) or can be overwritten during the declaration. 

Examples of signal declarations 
signal CLK      : BIT; 
signal DATA1    : BIT_VECTOR (7 downto 0); 
signal DATA2    : BIT_VECTOR (7 downto 0) := ”00001111”; 
signal R_SIGNAL : REAL := 1.0E4;           -- with initial value 

Event-driven simulation 

An appropriate algorithm to update signals is the event-driven simulation 
algorithm. The idea of event-driven simulation is to evaluate signals only at 
time points where a value change can occur. This procedure saves 
computation time by avoiding unnecessary signal evaluations. Concurrent 
statements determine the values of signals. Signal changes, which will occur 
in the future, are administrated using an event queue. 

Simple concurrent signal assignment 

Signal values can be changed by signal assignment statements. The 
concurrent statements are part of an architectural body. The simplest form of 
a concurrent signal assignment statement is 

signal_name <= expression; 
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signal_name is the target of the concurrent statement. expression is the 
driver of the signal. A value may be assigned to a target signal after an 
explicit delay. 
Examples

DATA1 <= ”1010101010”; 
DATA2 <= ”1111111111” after 10 ns;  -- with inertial delay 

It is possible to apply multiple assignments in one statement: 

R_SIGNAL <= 1.0E4, 1.0E3 after 10 ms, 1.0E6 after 100 ms; 

The value of a signal can be determined using a mathematical expression. 
Operands can be signals, constants, and so on. 

CLK <= not CLK after 1 ms;  -- CLK shall be of type BIT 

The value of CLK changes from ’0’ to ’1’ after 1 ms and vice versa. 
Thus, the concurrent statement describes a simple clock generator. 
Note: delay mechanisms in VHDL 

There are two different delay mechanisms in VHDL. inertial delay is 
used by default. An existing transaction is always overwritten by a new 
transaction on the driver of a signal. For inertial delays, a new transaction 
scheduled after an existing transaction overwrites the existing transaction if 
it has a different value. If the delay is of type transport, the new transaction 
is appended to the event queue. 
Example

The signals A and B drive C_INERTIAL_1_ns (A or B with inertial 
delay of 1 ns), C_INTERTIAL_2_ns (A or B with inertial delay of 2 ns), and 
C_TRANSPORT (A or B with transport delay of 2 ns). As a consequence of 
the delay mechanism a pulse that is smaller 2 ns is suppressed in 
C_INTERTIAL_2_ns but not in C_TRANSPORT. 

entity BENCH is end entity BENCH; 

architecture BENCH_DELAY of BENCH is
signal A, B            : BIT; 
signal C_INERTIAL_1_ns : BIT; 
signal C_INERTIAL_2_ns : BIT; 
signal C_TRANSPORT     : BIT; 

begin
  A <= '0', '1' after 10 ns, '0' after 11 ns; 
  B <= '0', '1' after  2 ns, '0' after  5 ns, '1' after 15 ns; 

  C_INERTIAL_1_ns <=           a or b after 1 ns; 
  C_INERTIAL_2_ns <=           a or b after 2 ns; 
  C_TRANSPORT     <= transport a or b after 2 ns; 
end architecture BENCH_DELAY; 
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Figure 6-3. Results bench 

Note: other concurrent statements 

In addition to the simple concurrent signal assignment statement, more 
complex concurrent statements exist: 

Concurrent conditional signal assignment statement 
Concurrent selected signal assignment statement 
Concurrent procedure call statement 
Concurrent assertion statement 
Concurrent instantiation statement 

They are introduced in Chapter 9 of the VHDL-AMS standard and will 
not be repeated in detail here. In the following we will only touch on the 
process statement. 

Process statement 

A special concurrent statement is the process statement. It allows 
defining the drivers of signals in a sequential way in the process statement 
part. The general form is 

[process_label :] process [ (sensitivity_list) ] is
process_declarative_part
begin
process_statement_part
end process [process_label];

A process is activated if an event occurs in one of the signals in the 
sensitivity list and runs until the end of the process is reached.  

Processes without a sensitivity list must contain at least one wait
statement. The wait statement causes the suspension of the process 
statements. The condition clause of a wait statement specifies a condition 
that must be met for the process to be executed. The execution of a process 
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with wait statements consists of the repetitive execution of process statement 
part. A process with wait statements must not contain a sensitivity list. 

The general form of the wait statement (VHDL-AMS standard Section 
8.1) is 

wait [ on signal_name {, signal_name} ]
     [ until condition ]
     [ for   time_or_real_expression] ; 

A process must contain either a sensitivity_list and no wait statement or 
no sensitivity_list and at least one wait statement. 

Example
-- INPUT      is of type BIT_VECTOR (7 downto 0); 
-- SIGNAL_OUT is a signal of type INTEGER 
--            shall represent input as integer number 

-- CLK        the conversion is done when an event
--            occurs on CLK 

P1: process (CLK) is
variable RESULT : INTEGER; 

begin
  RESULT := 0; 

for I in 7 downto 0 loop
if INPUT(I) = ’1’ then

         RESULT := 2 * RESULT + 1; 
end if;

end loop;
  SIGNAL_OUT <= RESULT; 
end process P1;

Process statements define the behavior in a sequential manner. In a 
process, variables can be declared. They can save intermediary results of an 
algorithm. The variables retain their value from one process call to the next. 
In contrast to a signal, the assignment of the value is performed immediately. 
The update of the signal value is not done until the next delta cycle of the 
event-driven simulation algorithm starts (see also Section 6.5.2). 

Note: concurrent and sequential statements 

In some cases the concurrent and sequential form of a statement are 
similar. In a process, only the sequential form of the statements can be 
applied.

 concurrent conditional statement 

TARGET_SIGNAL <= 5.0 when clk = ’1’ else 0.0; 
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sequential conditional statement 

if CLK = ’1’ then
   TARGET_SIGNAL <= 5.0; 
else
   TARGET_SIGNAL <= 0.0; 
end if;

6.2.4 A simple pure digital example – divider  

In this example we want to develop a VHDL model of a divider with the 
following requirements: 

Interface with input and output ports INP and OUTP respectively of type 
BIT
Input signal frequency shall be divided by a positive integer number N 

The model shall be tested with a test-bench with a BIT-valued clock 
signal that changes value after 1 ms. The clock signal is connected to the 
divider’s input and shall be divided by N=5.  

To follow the rules and order of the analysis of design units given in 
Section 6.2.2 we save entity, architecture and test-bench descriptions in 
different files: 

-- File:     divider_ent.vhd
-- Content:  entity declaration of the DIVIDER 
entity DIVIDER is

generic (N    : POSITIVE); 
port    (INP  : in   BIT; 

                OUTP : out  BIT); 
end entity DIVIDER; 

-- File:     divider_simple.vhd
-- Content:  architecture SIMPLE of the DIVIDER 
architecture SIMPLE of DIVIDER is
begin

process is 
variable COUNTER : INTEGER := N-1; 

begin
wait until INP = '1';  -- process with wait, no sens. list 

    COUNTER := (COUNTER + 1) mod N; 
if COUNTER = 0 then

       OUTP <= '1'; 
elsif COUNTER = N/2 then

       OUTP <= '0'; 
end if; 

  end process; 
end architecture SIMPLE; 

-- File:     bench.vhd 
-- Contents: DIVIDER testbench 
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use WORK.all;  -- makes DIVIDER(SIMPLE) available 

entity BENCH is end entity BENCH; 

architecture BENCH_SIMPLE of BENCH is
signal CLK, OUTP : BIT; 

begin
  CLK <= not CLK after 1 ms;

UUT: entity DIVIDER(SIMPLE) 
generic map (5)          -- positional association 
port map    (CLK, OUTP); 

end architecture BENCH_SIMPLE;

The compilation must begin with the file divider_ent.vhd (primary design 
unit on the lowest level of the model hierarchy). It is continued with the file 
divider_simple.vhd (secondary design unit of entity DIVIDER). At the end 
the file bench.vhd should be compiled. All files will be compiled into the 
logical library WORK. Thus, the context clause “use WORK.all;” was 
included in the test-bench description to allow direct instantiation of the 
design entity DIVIDER(SIMPLE). After five input pulses a new output 
pulse is created. The result is shown in Figure 6-4. 

Figure 6-4. Results of divider simulation 

6.3 Conservative Systems Description 

Conservative semantics describe parts of the analog portion of a system. 
The modeled analog portions are similar to lumped systems, which can be 
described by ordinary differential equations and algebraic equations. 
Electrical networks are a special kind of conservative system.  

The structure of a conservative system is characterized by the connection 
of its branches. The branches carry  

Across quantities (similar to branch voltages in the electrical case) 
Through quantities (similar to branch currents in the electrical case) 
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The following requirements have to be fulfilled by the solution of a 
conservative system 

Kirchhoff’s Current Law (KCL) 
Kirchhoff’s Voltage Law (KVL) 
Constitutive relations that describe  requirements for branch voltages and 
currents

In this section, we will introduce some basic VHDL-AMS language 
constructs used to model conservative systems. Both electrical and 
nonelectrical systems can be modeled.  

Background knowledge on network modeling approaches can be found in 
a wide range of books, such as [DeK69], [ChD87]. The description and 
simulation of the analog portion uses many ideas known from SPICE-like 
simulation engines. There are many books with more information (for 
example [Vla93], [VlS94], [Kun95]). 

6.3.1 Network analysis problem 

By means of an example we will look at the formulation of a network 
analysis problem and discuss the consequences concerning the language 
constructs required. The following circuit shall be considered. 

Figure 6-5. Network analysis problem 

The input voltage vin(t) is given. The branch voltages and currents of all 
other branches shall be determined. 
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Definition of node names 
(names of connection points)
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Definition of names and orientation of 
branch voltages and branch currents

Determination of a reference node

Figure 6-6. Schematic with node names and definition of branches 

To establish the network equations we usually have to make some 
preparations:

Definition of node names (names of connection points) 
Definition of names and orientation of branch voltages and branch 
currents
Determination of a reference node 

The structure of the circuit is given by its network graph. It describes 
how nodes are connected by oriented branches. Kirchhoff’s Current and 
Voltage Law equations result from this graph.  

Kirchhoff’s Current Law: 

Node A => iq + iR1 = 0 

     Node B  => -iR1 + iD + iC = 0 

Kirchhoff’s Voltage Law: 

vR1 + vD – vq = 0 

         vC – vD = 0 

Figure 6-7. Network graph and equations resulting from Kirchhoff’s laws 

Kirchhoff’s Current Law (KCL) requires that the sum of branch currents 
at a node with respect to their orientation equals zero. The equation for the 
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reference node linearly depends on the equations for the other nodes. Thus, it 
will not be part of the system of network equations. Kirchhoff’s Voltage Law
(KVL) requires that the sum of branch voltages of a mesh with respect to 
their orientation equals zero. The equations which result from Kirchhoff’s 
laws can be automatically established on the base of the network graph. That 
means they only depend on the network topology (see Figure 6-7 for the 
example). 

Furthermore, the voltage-current constitutive relations of the branches 
must be fulfilled. These equations define further restrictions to branch 
voltages and currents (see Figure 6-8 for the example). They must be 
independent of the equations given by Kirchhoff’s laws.  

R1

vR1

iR1

vin (t)

iq

vq

C

iD iC

vD vC

voltage source   => 0)(tvv inq

      resistor R1   => 11 1 RR iRv

diode           => ,...)( DD vfi

capacitor     => 
dt

dv
Ci C

C

Figure 6-8. Symbols to describe the constitutive relations of branches 

Conclusions 

All these conditions (KCL, KVL, constitutive relations) must be fulfilled 
by the branch voltages and currents that solve the network analysis problem. 
A differential algebraic system of equations has to be evaluated: 

0),,,( tp
dt
dxxF

with nRx ),0[:   (time ),0[x  and fixed parameters mRp )
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The examples demonstrate the main tasks in modeling and simulating 
conservative systems: 

Objective of modeling 
Description of network topology (network graph, that is node names, 
names and orientation of branch voltages and currents) 
Description of the constitutive relation of the branches 

Task of the simulation engine 
Elaboration of the model and establishing the system of network 
equations
Numeric solution of the network equations (see for example [LiZ97], 
Chapter 4) 

What does the modeling language have to support?  

The analog extensions of VHDL have to support the following modeling 
requirements for analog systems. 

Figure 6-9. Requirements concerning analog extensions of VHDL 

New interface descriptions 
Beside signal ports it must be possible to describe conservative 
connection points (for example electrical pins, called terminal ports in 
VHDL-AMS) and, as will be shown later, also nonconservative 
connection points (for example signal flow pins of control blocks, called 
quantity ports in VHDL-AMS). 

New objects and data types 
The kind of a conservative connection point has to be declared. This can 
be done using a nature declaration in VHDL-AMS. The network 
branches can be described in VHDL-AMS using branch quantity 
declarations as will be shown later. Furthermore, additional unknowns 
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that may help to define the constitutive relations may be declared. They 
are called free quantities. Nodes with connected conservative interfaces 
points can also be declared. They are also called terminals. 

New statements 
The description of the constitutive relations can be done using 
simultaneous statements. VHDL-AMS has many facilities available to 
express these relations. Powerful attributes help to handle analog 
waveforms like 'DOT (for differentiation), 'INTEG (for integration), 
'LTF (to describe Laplace transfer functions), and so on. 

VHDL-AMS also defines how to exchange values between the analog 
and digital portions of a system during the simulation, which is the mixed-
signal simulation cycle. 

6.3.2 Nature, terminal and branch quantity declarations 

Quantity

Analog waveforms in the time domain can be considered time-
continuous waveforms.  

The range of values must be floating point types or subtypes. 
The timeline is of type REAL. 
Typical analog waveforms are branch across quantities, branch through 
quantities, and free quantities. 

Figure 6-10. Analog waveform (quantity) in VHDL-AMS 

The conditions concerning the analog waveforms are expressed by sets of 
so-called characteristic expressions. A consistent assignment of values to the 
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quantities of a model is called the analog solution point (ASP), see Figure 
6-10.
Nature declaration 

A nature characterizes a node or a conservative interface connection 
point of an entity. Branches can only connect terminals of the same nature. 
The nature declaration specifies the types of the associated branch voltages 
and currents. That generally means across and through quantities. The 
declaration also includes the name of the associated reference terminal. The 
across quantity between a terminal of a given nature and its associated 
reference terminal is known as a “node voltage” in electrical networks. The 
type of this across quantity is the same type that was specified in the nature 
declaration. The general form is as follows:  

nature nature_name  is
across_type across
through_type through
reference_name reference;

Figure 6-11. Elements of NATURE declaration 

Example
nature ELECTRICAL is
   VOLTAGE         across
   CURRENT         through
   ELECTRICAL_REF   reference;

The nature declaration in this example is used in the IEEE package 
ELECTRICAL_SYSTEMS. VOLTAGE and CURRENT are subtypes of 
REAL. ELECTRICAL_REF can be used like a terminal without explicit 
declaration in an architecture. Natures may be of scalar and composite type. 
Composite natures are used to define a collection of terminals. They include 
arrays of terminals and records of terminals. 
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nature ELECTRICAL_VECTOR is
array (NATURAL range <>) of electrical;

Packages with nature declarations 

Nature declarations are usually collected in packages. In the IEEE library 
the ELECTRICAL_SYSTEMS package with the ELECTRICAL nature is 
given by the following code: 

package ELECTRICAL_SYSTEMS is
   -- electrical domain 
   -- subtype declarations 

subtype VOLTAGE is REAL tolerance "DEFAULT_VOLTAGE"; 
subtype CURRENT is REAL tolerance "DEFAULT_CURRENT";

   -- ... 
   -- nature declarations 

nature ELECTRICAL is
      VOLTAGE across
      CURRENT through
      ELECTRICAL_REF reference;

nature ELECTRICAL_VECTOR is
array (NATURAL range <>) of ELECTRICAL; 

end package ELECTRICAL_SYSTEMS; 

The reference node ELECTRICAL_REF of the nature ELECTRICAL 
means the same as node 0 in SPICE-like simulation engines. The reserved 
word tolerance in the subtype declarations provides a possibility of how to 
handle the accuracy of the associated quantities during the numerical 
simulation. The VHDL-AMS language does not give an exact definition of 
how to do this. Thus, presently it is handled in different manners in the 
simulation or simply ignored. To use the declarations of these packages a 
context clause has to be included in the VHDL-AMS descriptions. For 
instance, to use the nature ELECTRICAL and also ELECTRICAL_REF you 
have to add 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;

As it is clear that this context clause has to be included we often omit it 
in the following text. 
Port terminal declaration 

The general form of port declarations in an entity declaration is given by 

port (port_interface_list);

An element of the port interface list, which describes conservative 
connection points of the nature nature_name, consists of 

terminal port_terminal_name_list  : nature_name



74 Chapter 6

Example

Let us have a look at the entity declaration of a resistor. 

Figure 6-12. Interface description of a resistor 

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity RESISTOR is
generic (VALUE_R         : REAL := 1.0); 
port    (terminal P1, P2 : ELECTRICAL); 

end entity RESISTOR; 

Declaration of terminals for structural descriptions 

Terminals can also be declared in an architecture body with a terminal 
declaration. From a network point of view they can be used as nodes. To 
connect port terminals in a structural description they have to be assigned to 
the same terminal (node). It is a similar situation as in digital VHDL where 
we declare signal ports and assign them to declared signals of an 
architecture. However, in VHDL-AMS the difference is that a terminal 
cannot carry any value. It is only the name of a connection point. The 
general form of a terminal declaration is 

terminal node_name_list : nature_name; 

Example

It is assumed that the entity declarations of a resistor and capacitor are 
compiled into the WORK library: 

entity RESISTOR is
generic (VALUE_R         : REAL := 1.0); 
port    (terminal P1, P2 : ELECTRICAL); 

end entity RESISTOR; 

entity CAPACITOR is
generic (VALUE_C         : REAL := 1.0); 
port    (terminal P1, P2 : ELECTRICAL); 

end entity CAPACITOR; 
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The V1 architectures V1 of the RESISTOR and CAPACITOR are also 
available in the WORK library. We show how to describe an RC chain in a 
hierarchical way. We start with the description of a simple RC subcircuit. 

R1

C1

T2

T3

T1

Figure 6-13. Simple RC subcircuit 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use WORK.all;

entity RC is
generic  (RES             : REAL := 1.0; 

              CAP             : REAL := 1.0); 
port     (terminal T1, T2, T3 : ELECTRICAL); 

begin
    assert (RES > 0.0) and (CAP > 0.0) 

report "ERROR: RES and CAP must be > 0.0" 
severity ERROR; 

end entity RC; 

architecture V1 of RC is
begin

R1: entity RESISTOR(V1) generic map (RES) port map (T1, T2); 
C1: entity CAPACITOR(V1) generic map (CAP) port map (T2, T3); 

end architecture V1;  

The context clause has to be included in order to make available the 
nature ELECTRICAL and the design entities RESISTOR(V1) and 
CAPACITOR(V1). The design entities are directly instantiated. 

The test-bench consists of a chain of two of these simple RC circuits 
connected to a voltage source. The interface of the voltage source is 
described by 

entity STEP is
generic (AMPL     : REAL := 1.0; 

          T_DELAY  : TIME := 1 ms; 
          T_RISE   : REAL := 1.0); 

port    (terminal P, N : ELECTRICAL); 
end entity STEP;
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The value of the voltage between P1 and P2 changes after time 
T_DELAY from 0 to AMPL with the rise time T_RISE. The top circuit 
description follows. 

Figure 6-14. Test-bench for RC subcircuits 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use WORK.all;

entity BENCH is end entity BENCH; 

architecture BENCH_RC of BENCH is
terminal A, B, C : ELECTRICAL; 

begin

VS1: entity STEP(V1) generic map (T_RISE => 2.0E-3) 
port map    (A, ELECTRICAL_REF); 

RC1: entity RC(V1) generic map (4.0E2, 1.0E-6) 
port map    (A, B, ELECTRICAL_REF); 

RC2: entity RC(V1) generic map (1.0E3, 1.0E-6) 
port map    (B, C, ELECTRICAL_REF); 

end architecture BENCH_RC;

The simulation delivers the following results. 

Figure 6-15. Simulation results 
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Branch quantity declaration 

Branch quantities can be declared in an architecture body with a branch 
quantity declaration. The general form is 

quantity [across_aspect] [through_aspect] terminal_aspect ; 

across_aspect   ::= quantity_list  [:= expression] across
through_aspect  ::= quantity_list  [:= expression] through
terminal_aspect ::= start_terminal_name [ to end_terminal_name ] 

A quantity named in an across aspect is an across quantity. Similarly, a 
quantity named in a through aspect is a through quantity. Both terminals of 
the terminal aspect must be of the same nature. The nature of the terminals 
determines the types of across and through aspects. Terminals may be port 
terminals of the associated entity of an architecture, or internally declared. If 
the terminal aspect only consists of a start terminal, the end terminal is the 
reference node of the nature of the start terminal. A branch quantity 
declaration terminals of an architecture.  

If there is more than one quantity in the through aspect, parallel branches 
are declared must include at least an across or a through aspect. If a branch 
quantity declaration includes neither an across nor a through aspect it results 
in an error. 
Notes

A branch quantity declaration without a through aspect only declares a 
voltage between two terminals. A constitutive relationship must not be 
defined for a branch that is declared without a through aspect. In an 
electrical application a branch without a through aspect is an open 
branch.
For each branch quantity declaration with a through aspect a constitutive 
relation has to be defined. In an electrical application that means a 
current can flow through such a branch. 
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Examples

I

V

P1 P2

I1

I2

T2T1

V12

OUTP

VINP N

IOUT

   -- general form 
quantity V across I through P1 to P2; 

-- two parallel branches 
quantity V12 across I1, I2 through T1 to T2; 

   -- branch ended with reference node 
quantity VOUT across IOUT through OUTP; 

   -- open branch (branch current equal 0.0) 
quantity VIN across P to N; 

Figure 6-16. Branch quantity declarations (branch diagrams) 

6.3.3 Simultaneous statements and free quantity declarations 

Simultaneous statements express explicit and implicit differential and 
algebraic equations that constrain the values of the quantities of a model. In 
the case of conservative systems they describe the constitutive relations of 
network branches. The simultaneous statements must be placed in the 
architecture body as well as the concurrent statements. The order of 
simultaneous and concurrent statements does not matter. 

General form:

[context_clause]

architecture architecture_name of entity_name is

{declaration_part}

begin

{simultaneous_statement | 
 concurrent_statement}

end [architecture] [architecture_name];

description of the behavior,
constitutive relations, ...

declaration of internal 
terminals, branch 
quantities, ... 

Figure 6-17. Simultaneous statements in an architecture 
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Example

Let us look at a simple resistor. The interface is described by the entity 
declaration. In the architecture the internal branches and the constitutive 
relations of branches have to be described. 

Figure 6-18. Structure of the resistor model 

The internal branch is described by a branch quantity declaration. The 
voltage current relationship has to be expressed by a simultaneous statement. 
We show how this can be done in the following. 

Figure 6-19. Resistor model with branch quantity declaration 
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Note

A simultaneous statement is required for each branch quantity declaration 
with a through aspect. 

Simple simultaneous statement 

The evaluation of a simple simultaneous statement creates a new 
characteristic expression that has to be taken into consideration during the 
solution of the network equations. The general form of a simple 
simultaneous statement is 

[label:] simple_expression == simple_expression ; 

The left-hand and right-hand side expressions must be real or of the same 
real subtype.  Composite real types or subtypes are possible. The expressions 
are constructed using constants and quantities. The simulation engine 
determines the values of the quantities so that the difference of both 
expressions equals zero or is near to zero. That means, the simultaneous 
statement expresses a condition that has to be fulfilled. The equals sign == is 
not an assignment operator. The order of simultaneous and concurrent 
statements in an architecture does not influence the simulation results.  

Example (resistor) 

Now we can complete the architecture of the resistor. 

Figure 6-20. Complete resistor model 
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library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;

entity RESISTOR is
generic (VALUE_R         : REAL := 1.0); 
port    (terminal P1, P2 : ELECTRICAL); 

end entity RESISTOR; 

architecture V1 of RESISTOR is
quantity V across I through P1 to P2; 

begin
    V == VALUE_R * I; 
end architecture V1; 

Example (sinusoidal voltage source) 

Figure 6-21. Sinusoidal voltage source 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;      -- for access to SIN and MATH_2_PI 

entity SINE is
generic (V0   : REAL := 0.0; 

             A    : REAL := 1.0; 
             FREQ : REAL := 50.0); 

port (terminal P, N  : ELECTRICAL); 
end entity SINE; 

architecture V1 of SINE is
quantity V across I through P to N; 

begin
    V == V0 + A*SIN(MATH_2_PI*FREQ*NOW); 
end architecture V1; 

The function NOW delivers the current simulation time (t in the 
constitutive relation). 
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Example (voltage controlled voltage source) 

Figure 6-22. Voltage controlled voltage source 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;

entity VCVS is
generic (V     : REAL := 1.0);     -- gain 
port    (terminal IN1, IN2, OUTP : ELECTRICAL); 

end entity VCVS; 

architecture V1 of VCVS is
quantity VIN across IN1 to IN2;   -- open branch 
quantity VOUT across IOUT through OUTP; 

begin
   VOUT == V*VIN; 
end architecture V1; 

The open input branch declaration is without a through aspect. The 
current in this branch is zero. Thus, there is only one branch declaration with 
a through aspect and one simultaneous statement in the architectural body. 
Free quantity declaration 

In the previous examples we expressed the constitutive relations with 
only the help of branch voltages and currents. In some cases we need 
auxiliary quantities to express the behavior. Therefore, we can declare so-
called free quantities in an architecture. Each declared free quantity 
increases the number of required simultaneous statements. By default the 
initial value of the real-valued free quantity is 0.0. This value can be 
overwritten by a real-valued expression in the free quantity declaration. The 
general form of a free quantity declaration is 

quantity name_list : real_type_or_subtype_name [ := expression] ; 
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Example

We add an input resistor and a series resistor to the output branch of the 
voltage controlled voltage source. The amplified input voltage equals the 
declared free quantity VCTRL. In a similar way, other blocks with input and 
output resistors can be modeled. 

Figure 6-23. Voltage controlled voltage source with output resistor 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all; 

entity VCVS_R is
generic (V    : REAL :=  1.0;   -- gain 

            RIN  : REAL := 50.0;   -- input resistor [Ohm] 
            ROUT : REAL := 50.0);  -- output resistor [Ohm]

port    (terminal IN1, IN2, OUTP : ELECTRICAL); 
end entity VCVS_R; 

architecture V1 of VCVS_R is
quantity VIN across IIN through IN1 to IN2;   -- input branch 
quantity VOUT across IOUT through OUTP;         -- output branch 
quantity VCTRL : REAL;             -- free quantity 

begin
VIN   == RIN*IIN; 

   VCTRL == V*VIN;                -- description of functionality 
   VOUT  == VCTRL + ROUT*IOUT; 
end architecture v1; 

Further simultaneous statements 

Simultaneous if statement 

The simultaneous if statement selects one statement part for evaluation. 
The selection depends on the values of one or more conditions. Dynamic 
conditions are possible. That means the conditions may depend on values of 
signals and quantities that can change during the simulation. If one of the 
conditions evaluates to TRUE, then the corresponding simultaneous 
statement is evaluated. The general form is 
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[if_label :] if boolean_condition use
    simultaneous_statement_part 
 { elsif boolean_condition use
    simultaneous_statement_part } 
 [ else
    simultaneous_statement_part ] 

end use [if_label] ; 

In a special case the selection is done between two simultaneous 
statements. Either the first or the second one must be evaluated. 

if condition use
     simultaneous_statement_1 

else
     simultaneous_statement_2 
end use ; 

Simultaneous case statement 

A simultaneous case statement selects one of a number of alternative 
statement parts for evaluation. The general form is 

[case_label :] case expression use
      when choice { | choice } =>
              { simultaneous_statement } 
    { when choice { | choice } =>
              { simultaneous_statement }  } 
end case [case_label] ; 

The expression must be a discrete type or a one-dimensional array type, 
whose element base type is a character type (for example BIT_VECTOR 
with a given length). Each value chosen must be the same type as the 
expression. The simple expression and discrete ranges specified as choices 
must be locally static. The choice others covers all values not specified in 
the choices of previous alternatives. It is only allowed for the last alternative. 

An others choice is required in a case statement if the expression is a 
universal integer type (for example INTEGER), since this is the only way to 
cover all values of the universal integer type.  

This is explained by the example below. The data object I is an integer 
valued expression. VOUT and VIN are branch quantities. KP, KI, and KD 
are real valued constants. 

case I use 
when 1 => VOUT == KP*VIN; 
when 2 => VOUT == KI*VIN’INTEG; 
when 3 => VOUT == KD*VIN’DOT; 
when others => VOUT == KP*VIN + KI*VIN’INTEG + VIN’DOT; 

end case;
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Simultaneous procedural statement 

The simultaneous procedural statement provides a sequential notation 
for expressing differential and algebraic equations. In the statement part, the 
sequential form of the statements must be applied in a similar way to their 
usage in a process statement. The procedural statement is a simultaneous 
equivalent to the concurrent process statement. The general form is  

[procedural_label :] procedural [ is ] 
      declaration_statement_part 
begin
      sequential_statement_part 
end procedural [ procedural_label ] ; 

In the statement part, values can be assigned to quantities in a sequential 
order. Values of quantities can also be determined by a function. With the 
help of a simple simultaneous statement a quantity and the function value 
can be required to be equal. Thus, the simultaneous procedural statement 
always has an equivalent simple simultaneous statement. Nevertheless, it 
offers many advantages if similar expressions have to be computed in 
various simple simultaneous statements. This can be applied in transistor 
modeling for instance. 

6.3.4 Example of a conservative system – A-law companding 

To reduce the influence of noise in data transmission systems 
companding (compressing-expanding) is used. The waveform to be 
transmitted is compressed using a nonlinear amplitude characteristic 
[Kam92]. 

Figure 6-24. Interface of compression block 

To reconstruct the waveform it must be expanded using the inverse 
characteristic. One scheme preferred in Europe is A-law companding. We 
model the block to compress the waveform in VHDL-AMS. The range of 
the input voltage VIN is between –VMAX and VMAX. The output voltage 
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shall be given by the following formula. The ranges of input and output 
voltage shall be equal. 
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Table 6-1 shows the coefficients of A. 

Table 6-1. Coefficients of A 
K 1 2 3 4 5 6 
A 1.00 5.36 14.77 36.85 87.56 201.84 

With A=1.0 a linear response is given. The commonly adopted value is 
A=87.56. We have to consider the following steps in the modeling 
procedure:

Writing a VHDL-AMS for the compression block 
Generic parameters of the block shall be K and VMAX 
Check the model for K=5 and an input voltage of frequency F=1 kHz 
with

)2sin(0.2 tfvin

Proposed solution 

The entity description of the compression block is given by 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;

entity COMPRESS is
generic (K    : POSITIVE  := 1;  -- index for A array 

             VMAX : REAL      := 1.0); 
port (terminal INP, OUTP : ELECTRICAL); 

begin
assert K <= 6 

report "ERROR: 1 <= K <= 6 required." 
severity ERROR; 
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assert VMAX > 0.0 
report "ERROR: VMAX > 0.0 required." 

      severity ERROR; 
end entity COMPRESS;

The architecture is given by 

architecture V1 of COMPRESS is
quantity VIN across INP; 
quantity VOUT across IOUT through OUTP; 
constant AK  : REAL_VECTOR (1 to 6) 

       := (1.0, 5.36, 14.77, 36.85, 87.56, 201.84); 
constant A   : REAL  := Ak(k); 

begin
if ABS(VIN/VMAX) < 1.0/A use

  VOUT == A/(1.0+LOG(A))*vin; 
else

  VOUT == VMAX*SIGN(VIN/VMAX)*(1.0+LOG(A*ABS(VIN/VMAX))) 
                                                /(1.0+LOG(A)); 
end use; 

 assert VIN'ABOVE(-VMAX) and not VIN'ABOVE(VMAX)
   report "WARNING: VIN out of range."
   severity WARNING;
end architecture V1;

The 'ABOVE attribute which is used for dynamic range checking of VIN 
will be explained in Section 6.5.1. We will use the following description as a 
test-bench. An input branch is declared that connects N_IN and the reference 
node. The sinusoidal branch voltage is VIN and is defined by a simultaneous 
statement. The unit under test UUT is directly instantiated by a concurrent 
statement. Note that simultaneous and concurrent (for example instantiation) 
statements can be mixed in an architecture. 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all; 
use WORK.all; 

entity BENCH is end entity BENCH; 

architecture BENCH_A_LAW of BENCH is
terminal N_IN, N_OUT : ELECTRICAL; 
quantity VIN across IIN through N_IN; 
constant AMPL : REAL := 2.0; 
constant FREQ : REAL := 1.0E3; 

begin
    VIN == AMPL*SIN (MATH_2_PI*FREQ*NOW); 

UUT: entity COMPRESS(V1) 
generic map (K => 5, VMAX => AMPL) 
port map    (INP => N_IN, OUTP => N_OUT); 

end architecture BENCH_A_LAW;
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Figure 6-25 shows the result of the simulation (node voltages at N_IN 
and N_OUT). 

Figure 6-25. Input and output voltages versus time 

We can represent the output voltage versus input voltage and obtain the 
A-law characteristic for A=87.56. 

Figure 6-26. A-law characteristic 

6.3.5 Attributes in VHDL-AMS 

What is an attribute in VHDL-AMS? 

An attribute is a definition of some characteristic of a named object. 
Some attributes are predefined for types, ranges, values, signals, quantities, 
and functions. A predefined attribute may return a constant value, a type, or 
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a range. In some other cases it can create a new implicit signal or quantity. 
Many attributes are known from digital VHDL. 

Table 6-2. Attributes in VHDL 
Attribute name Prefix Result 
T'LEFT T is scalar type Left bound of T 
T'RIGHT T is scalar type Right bound of T 
T'HIGH T is scalar type Upper bound of T 
T'lLOW T is scalar type Lower bound of T 
A'LENGTH (N) A is an array Length of the Nth index range. 

N=1 is omitted 
A'LENGTH A is an array (one dimensional) Length of the first index range 
A'LEFT A is an array (one dimensional) Left bound of the index range 
A'RIGHT A is an array (one dimensional) Right bound of the index range 
A'RANGE A is an array (one dimensional) Index range of A 

New important attributes on quantities to describe the analog behavior 
are explained in the following: 

'DOT      to derive a quantity 
'INTEG     to integrate a quantity 
'SLEW      to smooth a quantity 
'DELAYED    to delay a quantity 
'LTF      to describe an analog filter 
'ZOH      to sample and hold a quantity 
'ZTF      to describe a digital filter 

Other new attributes are introduced to describe mixed-signal behavior 
(see Section 6.5.1). The remaining attributes are user-defined and always 
constant. User-defined attributes are not taken into consideration. 

Attribute 'DOT 

The 'DOT attribute is characterized in the following way: 

Q'DOT is a quantity that is the derivative with respect to time of quantity 
Q at the time the attribute is evaluated.  
Q'DOT is an implicit quantity. It must not be declared. 
By default during the quiescent domain analysis (DC analysis) Q'DOT is 
zero.
At a discontinuity by default Q is continuous if Q'DOT is used 
somewhere in a model. 
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Example

dt
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Figure 6-27. Capacitance

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;

entity CAPACITOR is
generic (VALUE_C         : REAL := 1.0); 
port    (terminal P1, P2 : ELECTRICAL); 

end entity CAPACITOR; 

architecture V1 of CAPACITOR is
quantity V across I through P1 to P2; 

begin
    I == VALUE_C * V'DOT; 
end architecture V1; 

Attribute 'INTEG 

The 'INTEG attribute is characterized in the following way: 

Q'INTEG is a quantity that is the time integral of quantity Q from time 0 
to the time the attribute is evaluated. 
Q'INTEG is an implicit quantity. It must not be declared. 
By default during the quiescent domain analysis (DC analysis) Q is zero 
if Q'INTEG is used somewhere in the model. 
At a discontinuity by default Q'INTEG is continuous. 

Example

ICVINtVOUT
t

0
)()(

Figure 6-28. Integrator with electrical terminals
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library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;

entity INTEGRAL_BLOCK is
generic (IC    : REAL := 0.0);   -- initial value 
port (terminal INP  : ELECTRICAL; 

terminal OUTP : ELECTRICAL); 
end entity INTEGRAL_BLOCK; 

architecture IDEAL of INTEGRAL_BLOCK is
quantity VIN across INP;               -- open input branch 
quantity VOUT across IOUT through OUTP; -- voltage source 

begin
if DOMAIN = QUIESCENT_DOMAIN use

     VOUT == IC;              -- during DC analysis 
else

     VOUT == VIN'INTEG + IC;  -- in transient analysis 
end use; 

end architecture IDEAL;

The DOMAIN signal depends on the actual status of the simulation. 
During operating point (DC) analysis its value is QUIESCENT_DOMAIN. 

Attribute 'SLEW 

Figure 6-29. Quantities Q and Q'SLEW(MAX_RISING_SLOPE) 

The 'SLEW attribute is characterized in the following way: 

Suppose Q is a scalar or composite quantity. 
 Q'SLEW (MAX_RISING_SLOPE, MAX_FALLING_SLOPE) is a 
quantity where each scalar subelement follows the corresponding scalar 
subelement of Q, but its derivative with respect to time is limited by 
specified slopes.
MAX_RISING_SLOPE is a static expression of type REAL that 
evaluates to a positive value. If omitted it defaults to REAL'HIGH, which 
is interpreted as an infinite slope. MAX_FALLING_SLOPE is a static 
expression of type REAL that evaluates to a negative value. If omitted it 



92 Chapter 6

defaults to the negative of MAX_RISING_SLOPE. The value 
REAL'LOW is interpreted as a negative infinite slope. 
Q'SLEW is an implicit quantity. It must not be declared. 
The derivative of Q'SLEW is between MAX_FALLING_SLOPE and 
MAX_RISING_SLOPE, that is 

MAX_FALLING_SLOPE <= Q’SLEW (MAX_R…,MAX_F…)’DOT <= MAX_RISING_SLOPE 

Q'SLEW follows Q as long as Q'DOT is between 
MAX_FALLING_SLOPE and MAX_RISING_SLOPE 

Example

INP OUTP

VIN
VOUT

)(max)( VINtVOUT
t

Figure 6-30. Peak detector [CoC92] 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;

entity PEAKDETECTOR is
port (terminal INP, OUTP : ELECTRICAL); 

end entity PEAKDETECTOR; 

architecture IDEAL of PEAKDETECTOR is
quantity VIN across              INP; 
quantity VOUT across IOUT through OUTP; 

begin
    VOUT == VIN'SLEW(REAL'HIGH, -1.0e-38); 
end architecture IDEAL;

VOUT follows VIN if VOUT is increasing. Otherwise it retains the last 
value of VIN. MAX_FALLING_SLOPE value of -1.0E-38 is similar to 0.0. 
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       Input voltage source 

)2sin()( tFREQeAMPtVIN tA

Figure 6-31. Test-bench for peak detector 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;

    use IEEE.MATH_REAL.all, WORK.all;

entity BENCH is end entity BENCH; 

architecture BENCH_PEAKDETECTOR of BENCH is
terminal N1, N2     : ELECTRICAL; 
quantity VIN across IIN through N1; 
constant AMP  : REAL := 1.0; 
constant A    : REAL := 1.0e3; 
constant FREQ : REAL := 1.0e3; 

begin
    VIN == AMP*EXP(A*NOW)*SIN(MATH_2_PI*FREQ*NOW); 

UUT: entity PEAKDETECTOR(IDEAL) 
port map (INP => N1, OUTP => N2); 

end architecture BENCH_PEAKDETECTOR; 

Figure 6-32. Simulation results of peak detector 
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Attribute 'DELAYED 

Figure 6-33. Quantity Q and delayed waveform Q'DELAYED(T_DELAY) 

The 'DELAYED attribute is characterized in the following way: 

Q'DELAYED(T_DELAY) is a quantity equal to quantity Q delayed by 
T_DELAY. T_DELAY is a static expression of type REAL that 
evaluates to a non-negative number. If omitted it defaults to 0.0. 
Q'DELAYED is an implicit quantity. It must not be declared. 
During DC analysis (DOMAIN equals QUIESCENT_DOMAIN) 
Q'DELAYED equals Q. 
Between time 0 and time T_DELAY the value of 
Q'DELAYED(T_DELAY) equals the value of Q at time 0. 

Example (delay block) 

VOUT(t) = VIN(t-T_DELAY) 

Figure 6-34. Delay block 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;

entity DELAY_BLOCK is
generic (T_DELAY : REAL);  -- delay time [s] 
port (terminal INP, OUTP : ELECTRICAL); 

begin
assert T_DELAY >= 0.0 

report "T_DELAY must be >= 0.0" severity ERROR; 



INTRODUCTION TO VHDL-AMS 95

end entity DELAY_BLOCK; 

architecture IDEAL of DELAY_BLOCK is
quantity VIN across              INP; 
quantity VOUT across IOUT through OUTP; 

begin
    VOUT == VIN'DELAYED(T_DELAY); 
end architecture IDEAL; 

Figure 6-35. Examples for input and output voltages VIN and VOUT respectively 

Example (lossless line) 

Figure 6-36. Network model of lossless line 

The lossless line model is based on Branin’s approach [Bra67]. 
Parameters of the model are the length l of line, the inductance L’ per unit 
length, and the capacitance C’ per unit length. The parameters determine the 

wave resistance Z0 and the delay time T:
'
'

0 C
LZ and lCLTD ''

respectively. Then the following equations describe the line model: 

)()()( 101 tetiZtv s , )()(2)( 1 TDteTDtvte sr ,
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)()()( 202 tetiZtv r , )()(2)( 2 TDteTDtvte rs .

The VHDL-AMS model implements these equations using the 
'DELAYED attribute. 

Figure 6-37. Terminals of lossless line 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;

entity LINE is
generic (Z0 : REAL := 50.0;     -- wave resistance [Ohm] 

             TD : REAL := 1.0e-3);  -- delay time [s] 
port (terminal T1, T2, T3, T4 : ELECTRICAL); 

end entity LINE; 

architecture LOSSLESS of LINE is
quantity V1 across I1 through T1 to T2; 
quantity V2 across I2 through T3 to T4; 
quantity ER, ES    : REAL; 

begin
    V1 == Z0*I1 + ES; 
    V2 == Z0*I2 + ER; 
    ER == 2.0*V1'DELAYED(TD) - ES'DELAYED(TD); 
    ES == 2.0*V2'DELAYED(TD) - ER'DELAYED(TD); 
end architecture LOSSLESS; 

The model is tested with a simple circuit. A 1 ms pulse is used as input. 

Figure 6-38. Test-bench for lossless line model 
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library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use WORK.all;

entity BENCH is end entity BENCH; 

architecture BENCH_LOSSLESS_LINE of BENCH is
constant R_LOAD     : REAL := 20.0; 
terminal N1, N2     : ELECTRICAL; 

begin

V1: entity V_SOURCE(PULSE) 
generic map (DURATION => 1 ms) 
port map (P => N1, N => ELECTRICAL_REF); 

UUT: entity LINE(LOSSLESS) 
generic map (TD => 1.5e-3) 

       port map (T1 => N1, T2 => ELECTRICAL_REF, 
                 T3 => N2, T4 => ELECTRICAL_REF); 

R1: entity RESISTOR(V1) 
generic map (VALUE_R => R_LOAD) 
port map (N2, ELECTRICAL_REF); 

end architecture BENCH_LOSSLESS_LINE; 

Figure 6-39. Results for R_LOAD=20  and R_LOAD=50 

Attribute 'LTF 

The 'LTF attribute is characterized in the following way: 

Q'LTF (NUM, DEN) is a quantity that results in the application of 
Laplace transfer function on a quantity Q.  
Assume the Laplace transfer function is given by 
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NUM is a static expression of type REAL_VECTOR that contains the 
numerator coefficients, that is NUM equals (a0, a1, a2, …, am). 
DEN is a static expression of type REAL_VECTOR that contains the 
denominator coefficients, that is DEN equals (b0, b1, b2, …, bm). The 
first scalar subelement of DEN must not be 0.0. 
Q'LTF is an implicit quantity. It must not be declared. 

Example

   Laplace transfer function  

2

2

( )
1.3617 0.6181

2 2c c

gainH s
s s
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Figure 6-40. Interface of lowpass model 

The Laplace transfer function describes a second order Bessel lowpass 
filter with cut-off frequency fc [TiS02]. 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all; 

entity LOWPASS is
generic (FC              : REAL; 

GAIN            : REAL := 1.0); 
port (terminal INP, OUTP : ELECTRICAL); 

end entity LOWPASS; 

architecture BESSEL_2 of LOWPASS is
constant W   : REAL := MATH_2_PI*FC; 
constant NUM : REAL_VECTOR := (0 => 1.0); 
constant DEN : REAL_VECTOR

             := (1.0, 1.3617/W, 0.6180/W/W);
quantity VIN across              INP; 
quantity VOUT across IOUT through OUTP; 

begin
    VOUT == GAIN*VIN'LTF(NUM,DEN); 
end architecture BESSEL_2; 
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Figure 6-41. Test-bench of lowpass model (5 ms input pulse) 

Figure 6-42. Results of test-bench simulation (Bessel lowpass filter, fc = 1 kHz) 

Attribute 'ZOH 

The 'ZOH attribute is characterized in the following way: 

Q'ZOH (T, INITIAL_DELAY) is a quantity where the value of each 
scalar subelement is set to the value of the corresponding scalar 
subelement of Q at the sampling times INITIAL_DELAY + k T (where 
k is any non-negative integer) and held constant until the next sampling 
time.
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Figure 6-43. Quantity Q and waveform Q'ZOH (INITIAL_DELAY, T)  

INITIAL_DELAY is a static expression of type REAL. The first 
sampling will occur after INITIAL_DELAY seconds. If omitted it 
defaults to 0.0.  
T is a static expression of type REAL that evaluates to a positive value. 
This is the sampling period. 
Q'ZOH is an implicit quantity. It must not be declared. 

Example

Figure 6-44. Sample and hold block 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;

entity SAMPLE_AND_HOLD is 
generic (TSAMPLE  : REAL := 1.0E-3; 

             DELAY    : REAL := 0.0); 
port (terminal INP, OUTP : ELECTRICAL); 

end entity SAMPLE_AND_HOLD; 
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architecture IDEAL of SAMPLE_AND_HOLD is
quantity VIN across              INP; 
quantity VOUT across IOUT through OUTP; 

begin
    VOUT == VIN'ZOH(TSAMPLE, DELAY); 
end architecture IDEAL; 

Figure 6-45. Results of a test 
 (1 kHz sinusoidal input voltage sampled after 250 s with a period of 50 s)

Attribute 'ZTF 

The 'ZTF attribute is characterized in the following way: 

Q'ZTF (NUM, DEN, T, INITIAL_DELAY) is a quantity that results in 
the application of a z-domain transfer function on a quantity Q.  
Assume the z-domain transfer function is given by 
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NUM is a static expression of type REAL_VECTOR that contains the 
numerator coefficients, that is NUM equals (a0, a1, a2, …, am). 
DEN is a static expression of type REAL_VECTOR that contains the 
denominator coefficients, that is DEN equals (b0, b1, b2, …, bm). The 
first scalar subelement of DEN must not be 0.0. 
T is the sampling period and INITIAL_DELAY is the time of the first 
sampling. If omitted it defaults to 0.0. 
Q'ZTF is an implicit quantity. It must not be declared. 
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Example

The z-domain transfer function of a digital second order Bessel lowpass 
filter with cut-off frequency fc and sampling frequency fs = 4 fc is given 
[Sch92]. 

 z-domain transfer function 

21

21

0860.02564.01
3356.06712.03356.0)(

zz
zzgainzH

Figure 6-46. Interface of digital lowpass model 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all; 

entity LOWPASS is
generic (FC              : REAL; 

GAIN            : REAL := 1.0); 
port (terminal INP, OUTP : ELECTRICAL); 

end entity LOWPASS; 

architecture BESSEL_2_DIGITAL of LOWPASS is
constant FS      : REAL := 4.0*FC;  -- only in this case 
constant TSAMPLE : REAL := 1.0/FS; 
constant NUM : REAL_VECTOR

             := (0.3356, 0.6712, 0.3356); 
constant DEN : REAL_VECTOR

             := (1.0000, 0.2564, 0.0860);
quantity VIN across              INP; 
quantity VOUT across IOUT through OUTP; 

begin
    VOUT == GAIN*VIN'ZTF(NUM,DEN, TSAMPLE, 0.0); 
end architecture BESSEL_2_DIGITAL; 

Figure 6-47. Test-bench of digital lowpass model (5 ms input pulse) 
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Figure 6-48. Results of test-bench simulation (digital Bessel lowpass filter) 

Further Attributes 

Table 6-3 summarizes additional new attributes of VHDL-AMS to 
describe analog behavior in detail. 

Table 6-3. Further VHDL-AMS attributes 
Attribute name Prefix Result 
N'ACROSS N is any nature Across type of the nature denoted 

by N 
N'THROUGH N is any nature Through type of the nature denoted 

by N 
T'REFERENCE T is any terminal Across quantity whose plus 

terminal is T and whose minus 
terminal is the reference terminal of 
the nature of T (“node voltage”) 

T'CONTRIBUTION T is any terminal Contribution quantity of terminal T 
T'TOLERANCE T is any floating point type or 

subtype T 
String with the tolerance group of T 

Q'TOLERANCE Q is any scalar quantity 
denoted by the static name Q 

String with the tolerance group of Q

6.3.6 Example – higher order lowpass filter 

The 'LTF attribute, mentioned in the previous section, provides a very 
simple mechanism in VHDL-AMS to describe filter functions using their 
coefficients. The transfer functions of lowpass filters are often described as a 
product of second order filters 
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The coefficients are specified by tables of filter coefficients. A higher 
order filter can be expressed by a combination of lower order filters using 
free quantities for intermediate quantities. 

Table 6-4. Bessel filter coefficients [TiS02] 
order i ci di

1 1 1 0.0 
2 1 1.3617 0.6180 
3 1 0.7650 0.0 
3 2 0.9996 0.4772 
4 1 1.3397 0.4889 
4 2 0.7743 0.3890 

Looking at the table, the transfer function of a 4th order Bessel lowpass 
filter is, for instance using cf2 , given by 
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A free quantity Q1 is declared in the VHDL-AMS model. Q1 results 
from filtering the input voltage VIN by H1(s). The output voltage VOUT 
equals Q1 filtered by H2(s). In a similar way other filters of a higher order 
can be described. The model for the Bessel lowpass filter follows: 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;

entity LOWPASS is
generic (FC    : REAL ; 

             GAIN  : REAL := 1.0); 
port (terminal INP, OUTP : ELECTRICAL); 

end entity LOWPASS; 

architecture BESSEL_4 of LOWPASS is
quantity VIN across              INP; 
quantity VOUT across IOUT through OUTP; 
quantity Q1   : REAL; 

constant W    : REAL        := MATH_2_PI*FC; 
    constant NUM1 : REAL_VECTOR := (0 => GAIN); 

constant DEN1 : REAL_VECTOR 
                    := (1.0, 1.3397/W, 0.4889/W/W); 

constant NUM2 : REAL_VECTOR := (0 => 1.0); 
constant DEN2 : REAL_VECTOR 

                    := (1.0, 0.7743/W, 0.3890/W/W); 
begin
    Q1   == VIN'LTF(NUM1, DEN1);
    VOUT == VIN'LTF(NUM2, DEN2); 
end architecture BESSEL_4;
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6.4 Description of Nonconservative Systems 

Nonconservative semantics describe parts of analog systems where 
Kirchhoff’s laws do not apply. The energy in nonconservative systems does 
not remain constant, but it is added from or lost to the outside of the system.  

In modeling we usually name those systems nonconservative, where 
unidirectional signals instead of through and across quantities are present, 
for instance when modeling control systems. Ports of nonconservative 
terminals carry only analog waveforms. Control subsystems can be modeled 
using nonconservative ports. These ports are characterized in the following 
way: 

Nonconservative ports are so-called quantity ports. They also carry a 
direction mode in or out.
The general form of the interface description of  nonconservative  
    input ports look like 
      quantity  identifier_list : in real_type

          The mode in can be omitted. 
    output ports look like 
      quantity  identifier_list : out real_type 

If a quantity interface element within an interface list includes a default 
expression as for example 
quantity port_identifier : in real_typ := expression; 

if the port is unassociated the value of the input quantity equals the 
expression.
The identifiers of the quantity ports can be used in the associated 
architecture just like quantities. 
Each quantity port of mode out increases the number of required 
simultaneous statements in the associated architecture. 

In a structural description 

Quantity ports can be associated to quantities. 
A quantity port of mode in may be unconnected or unassociated only if 
its declaration includes a default expression.  
A quantity port of mode out may be unconnected if its type is not an 
unconstrained array. 
If any quantity is associated as an actual with more than one formal of 
mode out an error results. 

It should be checked whether the simulation tool being used supports 
unassociated ports. 
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Example

An ideal proportional plus integral plus derivative controller with input 
Q_IN and output Q_OUT is described by the following equation: 

t
t
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Figure 6-49. Interface of a PID controller 

The architecture IDEAL of the entity PID realizes this functionality. The 
initial value of the integral is zero and not considered during operating point 
analysis (DOMAIN is QUIESCENT_DOMAIN). 

entity PID is
generic (KR : REAL := 1.0;  -- controller gain 

           TN : REAL := 1.0;  -- reset time 
           TV : REAL := 0.0); -- derivative time 

port (quantity Q_IN  : in  REAL;  -- input quantity 
quantity Q_OUT : out REAL); -- output quantity 

begin
assert TN /= 0.0 

report "ERROR: Reset time unequal 0.0 required." 
severity ERROR; 

end entity PID; 

architecture IDEAL of PID is
begin

if DOMAIN = QUIESCENT_DOMAIN use
     Q_OUT == KR*(Q_IN + TV*Q_IN'DOT); 

else
     Q_OUT == KR*(Q_IN + 1.0/TN*Q_IN'INTEG + TV*Q_IN'DOT); 

end use; 
end architecture IDEAL; 

An instantiation of the model is shown in the following listing. The 
design entity QPWL(BASIC) provides the controller with the input 
waveform which is determined by the time value pairs that build up the 
parameter WAVE. Both models used were compiled into the WORK library. 
The free quantities INPUT and OUTPUT carry analog waveforms and are 
used as connections to the nonconservative ports of the PID controller. 
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use WORK.all;

entity BENCH is end entity BENCH; 

architecture BENCH_PID of BENCH is 
quantity INPUT, OUTPUT : REAL;  -- connection points 

begin
Q1: entity QPWL(BASIC) 

generic map (WAVE =>
          (0.0, 0.0, 1.0, 1.0, 2.0, 1.0, 4.0, -1.0, 5.0, -1.0, 
           6.0, 0.0, 10.0, 0.0)) 

port map (INPUT); 

UUT: entity PID(IDEAL) 
generic map (KR => 5.0, TN => 2.0, TV => 1.0) 
port map (Q_IN => INPUT, Q_OUT => OUTPUT); 

end architecture BENCH_PID; 

Figure 6-50. Results of PID controller test (KR=5.0, TN=2.0, TV=1.0) 

6.5 Mixed-Signal Simulation 

A mixed-signal simulation must always be carried out if the system being 
simulated includes both analog and digital parts. In VHDL-AMS analog and 
digital behavior (simultaneous and concurrent statements, respectively) can 
be described within the same architecture. You must consider:  

Method of description to allow exchanging data between the analog and 
the digital part of a model 
An extended simulation cycle that takes into account the solving of 
DAE’s (differential algebraic equations but leaves the previous VHDL 
simulation cycle untouched 
Synchronization between analog and digital simulators due to different 
time scales. 
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6.5.1 Attributes for mixed-signal modeling 

Interaction between analog and digital parts 

The handling of analog-digital, or in other words mixed-signal systems, 
is one of the advantages of VHDL-AMS. Besides the introduction of 
standard statements to describe the analog behavior this is another 
innovative feature of VHDL-AMS. 

Let us consider some basic ideas of how to handle mixed-signal systems 
in order to understand the language constructs required to describe mixed-
signal systems. Analog and digital parts of a model are solved with different 
algorithms. The solution of the analog part can depend on the values of 
digital signals. You can imagine that at an analog solution time point the 
analog solver reads the values of digital signals. Between digital events the 
values of signals do not change. On the other hand digital signals may 
depend on analog quantities. 

analog part
determines
quantitys

digital part
  updates 
  signals

analog part reads digital signals

digital part reads analog quantities

event driven digital 
solver determines next 
event time NET

analog solver 
evaluates DAE 
system

Figure 6-51. Exchange of values between analog and digital parts 

How are these ideas supported by the language? The following problems 
have to be considered: 

If a signal is read by the analog part a signal transaction may cause a 
discontinuity in the analog part. To overcome this problem the following 
approaches are possible: 

The analog solver must be given a hint that a discontinuity can occur.  
This happens for instance if a quantity directly equals a real-valued 
signal. The discontinuity can be announced with the break statement 
as will be shown. 
Discontinuities can be avoided if quantities do not immediately follow 
signals. The changes can be carried out within a given time or with a 
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given slope. This is supported by 'RAMP and 'SLEW attributes that 
can be applied on real-valued signals. 

The digital event time points are normally only determined by the event 
driven solution algorithms. Only at these time points can new values of 
quantities be evaluated in the digital part. To force the event-driven 
algorithm to evaluate quantity values earlier, an event has to be 
generated. This can be done using 'ABOVE attribute. 
The interactions and the order of calling the analog and digital solvers 
have to be determined by the standard. This defines the mixed-signal 
simulation cycle. 

Attribute 'ABOVE 

Figure 6-52. Quantity Q and BOOLEAN signal Q'ABOVE(E) 

The 'ABOVE attribute is characterized in the following way: 

Q'ABOVE(E) is a BOOLEAN signal that is TRUE if the scalar quantity 
Q is greater than the value of E, or FALSE if Q is less than E. Otherwise, 
the value does not change. 
E is a real-valued expression. Any quantity appearing in this expression 
must be denoted by a static name. The expression is not required to be 
static.
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Example

The following model converts an electrical voltage to a digital signal of 
type STD_LOGIC. 

Figure 6-53. Interface of a simple A/D converter (electrical input INP) 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.STD_LOGIC_1164.all;

entity A2D is
generic (LEVEL : REAL := 2.5;   -- threshold level [V] 

           HYST  : REAL := 0.0);  -- hysteresis [V] 
port    (terminal INP   : ELECTRICAL; 

signal   S_OUT : out STD_LOGIC := '0'); 
begin

assert HYST >= 0.0 
report "ERROR: Hysteresis HYST >= 0.0 required." 
severity ERROR; 

end entity A2D; 

architecture IDEAL of A2D is
quantity VIN across INP;

begin
  S_OUT <= '1' when VIN'ABOVE(LEVEL) else '0'; 
end architecture IDEAL; 

architecture EXTENDED of A2D is
quantity VIN across INP;

begin
  S_OUT <= '1' when VIN'ABOVE(LEVEL + HYST/2.0) else
           '0' when not VIN'ABOVE(LEVEL - HYST/2.0); 
end architecture EXTENDED; 

An open branch connects the electrical terminal INP and the electrical 
reference. VIN measures the input voltage. If the value of VIN is above the 
value of LEVEL, the signal S changes to ‘1’ in the architecture IDEAL. 
Otherwise the output signal value is set to ‘0’. The BOOLEAN signal 
VIN'ABOVE(LEVEL) is used as the condition in the conditional signal 
assignment statement. The architecture EXTENDED works in a similar way. 
However, the threshold values are determined by LEVEL +/- half of the 
hysteresis parameter HYST. 
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Attribute 'RAMP 

The 'RAMP attribute is characterized in the following way: 

Suppose S is a signal of floating point type. 
S'RAMP(TRISE, TFALL) is a quantity where each scalar subelement 
follows S. If S changes its value, S'RAMP changes the value with rising 
time TRISE and falling time TFALL. 
TRISE is a static expression of floating point type that evaluates to a 
nonnegative number. If omitted, it defaults to 0.0. TFALL is a static 
expression of floating point type that evaluates to a nonnegative number. 
If omitted, it defaults to TRISE.  
S'RAMP is an implicit quantity. It must not be declared. 

Figure 6-54. Signal S and quantity S'RAMP(TRISE, TFALL) 

The signal S must be initialized otherwise numerical problems can occur 
in the initialization phase. If no explicit initial value is specified the default 
value of a signal S is S'LEFT. This would also be the initial value of 
S'RAMP. If S is of type REAL, the initial value would be REAL'LEFT (this 
is approximately -1.0E38). Analog solution points cannot normally be found 
for such values. 
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Example

Figure 6-55. Interface and behavior of a simple D/A converter 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.STD_LOGIC_1164.all;

entity D2A is
generic (VHIGH : REAL := 5.0;  -- high voltage [V]

             TD_01 : TIME := 0 ns; -- posedge delay   
             TD_10 : TIME := 0 ns; -- negedge delay 
             TRISE : REAL := 0.0;  -- rising time [s] 
             TFALL : REAL := 0.0); -- falling time [s] 

port
     (signal   S_IN  : in STD_LOGIC; 

terminal OUTP  : ELECTRICAL); 
begin

assert VHIGH > 0.0 and TRISE >= 0.0 and TFALL >= 0.0 
report "ERROR: Wrong parameters." 
severity ERROR; 

end entity D2A; 

architecture IDEAL of D2A is
quantity  VOUT across IOUT through OUTP; 
signal    SOUT : REAL  := 0.0; 

begin
   SOUT <= VHIGH after TD_01 when To_Bit(S_IN) ='1' else 
           0.0 after TD_10; 

   VOUT == SOUT'RAMP (TRISE, TFALL);
end architecture IDEAL; 

The input signal S_IN updates the real-valued internal signal SOUT. 
Amplitude VHIGH and delay times TD_01 and TD_10 are taken into 
consideration. The output voltage source with value VOUT between the 
electrical terminal OUTP and the electrical reference node is derived from 
SOUT using the 'RAMP attribute. 
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Attribute 'SLEW 

The 'SLEW attribute is characterized in the following way: 

Suppose S is a signal of floating point type. 
S'SLEW(RISING_SLOPE, FALLING_SLOPE) is a quantity where each 
scalar subelement follows S. If S changes its value, S'SLEW changes the 
value with rising slope RISING_SLOPE and falling slope 
FALLING_SLOPE. 
RISING_SLOPE is a static expression of floating point type that 
evaluates to a positive number. If omitted, it defaults to REAL'HIGH. 
FALLING_SLOPE is a static expression of floating point type that 
evaluates to a negative value. If omitted, it defaults to RISING_SLOPE.  
S'SLOPE is an implicit quantity. It must not be declared. 

The signal S must be initialized. The reasons were discussed in the notes 
for the 'RAMP attribute. If no explicit initial value is specified the default 
value of a real-valued signal is REAL'LEFT. This would also be the initial 
value of S'SLEW in the first iteration step. Analog solution points cannot 
normally be found for such values. 

Figure 6-56. Signal S and quantity S'SLEW(RISING_SLOPE, FALLING_SLOPE) 

Concurrent break statement 

'RAMP and 'SLEW attributes support the digital to analog interaction. A 
smooth change of analog waveforms which depend on digital signals is 
achieved if these attributes are applied. However, there are other situations 
where the continuity of analog waveforms cannot be assured if digital 
signals change their values. 
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This can occur, for instance, if a real-valued S is directly used in a 
simultaneous statement. An example is 

V == S; 

Here V is a branch voltage. In this case, a discontinuity of V results from 
an event on S. Such a situation can produce problems for the analog solver. 
This is one reason the break statement is available in VHDL-AMS. It 
announces the possibility of discontinuities to the analog solver. The 
simplest form is 

break on signal_list ; 

That means a discontinuity is notified if an event occurs in one of the 
signals of the signal list. In this manner discontinuities of the derivatives of 
quantities can also be indicated. The break is implicitly included if 'ZOH, 
'ZTF, 'RAMP, and 'SLEW attributes are used. The concurrent form can be 
used like a concurrent statement. 

The break statement can be extended by conditions and requirements for 
initial conditions in the initialization phase and after discontinuities. 
However, this is beyond the scope of this introduction. 

6.5.2 Mixed-signal simulation cycle 

Figure 6-57. Initialization phase 
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After the elaboration of a design the initialization phase starts. The 
operating point is determined. The following rules are applied 

The DOMAIN signal is set to QUIESCENT_DOMAIN. 
The time NOW is set to 0.0. 
The initial values for the determination of signals S and quantities are by 
default S'LEFT and 0.0 respectively. 
At the beginning the analog solver attempts to find a solution for the 
given initial signal values. That is why signals that are used in 
simultaneous statements must be initialized explicitly. 
Afterwards the digital solver determines new values of digital signals.  
If analog and digital values are not in accordance the analog solver is 
called again. 
Otherwise the simulation continues with time or frequency domain 
simulation. 
As a consequence of the simulation cycle, real signals, which are used in 

simultaneous statements, should be initialized. Otherwise, the analog solver 
has to take into consideration their default initial values REAL’LEFT during 
the first call. This produces numerical problems. 

Figure 6-58. Simulation in the time domain (principle) 

During the time domain simulation the DOMAIN signal is set to 
TIME_DOMAIN. The simulator repeats the simulation cycle shown Figure 
6-58. It is done in the following way 
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Tc is the current simulation time. Tn is the next time point where a digital 
event can be found in the digital event queue. 
The analog solver starts to simulate from Tc to Tn. Remember that 
between event time points the signals do not change their values. That 
means that the analog solver does not have to wait for new results from 
the digital solver. 
If Q'ABOVE(E) is used and Q crosses E then an event is placed into the 
event queue. Tn is set to Tn', that is the time point where the crossing 
occurs.
At Tn digital signals and analog quantities are determined within a so-
called delta-cycle until they are in accordance. 
After the delta-cycle is stable the analog solver can again continue until 
the new next event time point. 

Digital time values are of type TIME. Analog time values are of type 
REAL. The following expressions allow converting TIME values to REAL 
values and vice versa: 

REAL (TIME’POS (time_of_type_time)) * 1.0E-15  => time of type REAL 
INTEGER (time_of_type_real * 1.0E15) * 1 fs    => time if type TIME 

6.6 Analysis Domains 

In order to describe and to analyze physical systems the underlying 
domains have to be considered. The most common domains are operating 
point analysis, time domain analysis, and frequency domain analysis. 

Other domains are used for special analyses (for example noise 
simulation) or for a special kind of systems (for example periodic steady 
state analysis for RF circuits as described in Chapter 3 “Simulation Tools in 
System Design”). In the following we will describe the analysis domains that 
are supported by VHDL-AMS. We will pay special attention to the 
frequency domain analyses.  

6.6.1 Supported domains 

VHDL-AMS supports different kinds of analyses. The DOMAIN signal 
is updated by the simulation engine, which provides a hint of which kind of 
analysis is used. The following kinds of analyses are possible 

Determination of operating point 
Quiescent domain analysis is used to determine the operating point. The 
DOMAIN signal is set to QUIESCENT_DOMAIN. The time NOW 
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equals zero (0.0 or 0 fs). By default, the set of characteristic expressions 
is augmented by 

Q'DOT = 0.0 
if  Q'DOT is used somewhere in the simultaneous statements. 
Q = 0.0 
if Q'INTEG is used somewhere in the simultaneous statements. 
Q'DELAYED(T) – Q = 0 
if Q'DELAYED(T) is used somewhere in the simultaneous 
statements. 

The operating points determine the initial values for time domain 
simulation.   
Time domain analysis 
Time domain analysis is used to determine the behavior of a system over 
time. It begins after the determination of the operating point at time 
NOW=0.0. The DOMAIN signal is set to TIME_DOMAIN.  
Frequency domain analysis  
Frequency domain analysis is used to determine the small signal behavior 
for sinusoidal waveforms around the operating point. After quiescent 
domain analysis the network equations are linearized at the operating 
point. The characteristic expressions are derived by the simulation engine 
from the time domain simultaneous statements using linearization. Thus, 
frequency domain analysis can be applied for linear systems or systems 
that are linearized at the operating point, and systems with sinusoidal 
sources where all sources are evaluated at the same frequency. The 
results of the frequency domain analysis only describe the steady state. 
Frequency analysis can be done as small signal frequency domain 
analysis or small signal noise analysis. 

In conclusion, in the execution phase of a VHDL-AMS simulation, a 
quiescent domain analysis is performed first. Immediately after quiescent 
domain analysis either time domain analysis or frequency domain analysis is 
performed. Time domain analysis uses the result of the quiescent domain 
analysis as its initial value. Frequency domain analysis uses a system that is 
linearized at the operating point. Table 6-5 shows how the kinds of analysis 
in VHDL-AMS simulation engines are in close relation with those found in 
SPICE-like simulation engines. 
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Table 6-5. Kinds of analysis 
Kinds of analysis VHDL-AMS simulation 

engine
SPICE-like simulation 
engine (cicuit level 
simulator) 

Determination of operating 
point

DOMAIN equals 
QUIESCENT_DOMAIN 

Determination of DC (direct 
current) operating point 
(.OP)

Time domain analysis DOMAIN equals 
TIME_DOMAIN 

Transient analysis (.TRAN) 

Small signal frequency 
domain analysis 

DOMAIN equals 
FREQUENCY_DOMAIN; 
Sinusoidal spectrum sources 
are described by magnitude 
and phase 

AC (alternating current) 
analysis (.AC) 

Small signal noise domain 
analysis 

DOMAIN equals 
FREQUENCY_DOMAIN; 
Noise sources are described 
by their spectral density 

Noise analysis (.NOISE) 

6.6.2 Small-signal and noise domain simulation 

AC analysis basics 

Linear systems that are described by linear differential systems of 
equations can be handled in a special way. In AC analysis (alternating
current), we assume that independent voltage and current sources (across 
and through respectively) are sinusoidal waveforms of the same frequency. 
In the steady state, all quantities are also sinusoidal waveforms of the same 
frequency. The notion of AC analysis is to solve a linear system of complex 
equations instead of the linear system of differential equations. 

Table 6-6. Correspondence between time and frequency domains 
Time domain Small signal analysis (AC) 

General waveform 
description

x X 

Sinusoidal waveform with 
known frequency =2 f

C·cos( ·t+ ) C·ej

Differentiation x·d/dt j ·X 
Integration x X·1/ j
Delay for waveform x of 
known frequency =2 f

x(t-T) X· e-j T

In the AC calculus a complex linear system of equations is assigned to 
the system of linear differential equations applying the rules given in the 
table. This complex system of equations is solved. The results can be 
interpreted as time domain waveforms. The transformation and solving of 
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the systems of equations is done for a special (fixed) frequency. Figure 6-59 
illustrates this approach. 

in VHDL-AMS =>  DOMAIN = FREQUENCY_DOMAIN

Solve a system of differential equations

Solve a system of complex equations

A* x` + B* x = c
x(t) = X cos( t+ )c(t) = C cos( t+ )

(A*j +B)* X(j ) = C(j )
X(j ) = X*ej

special 

magnitude phaseCej

Figure 6-59. System with sinusoidal input 

What are the consequences of taking into consideration the modeling 
requirements? After determination of the operating point the linearization of 
the network equations can be done automatically by the simulation engine 
(see Table 6-6). That means that in general no special description for 
frequency analysis is necessary. The description for frequency analysis can 
be derived from the description for time domain analysis. Only AC voltage 
and current sources (across and through respectively) that are characterized 
by magnitude and phase have to be added to the description for frequency 
domain analysis.  

The AC linear circuit is analyzed over a user-specified range of 
frequencies. The frequencies normally start with frequency fstart and step 
with a specified number of points per decade to the final frequency fstop
(DEC mode). Alternatively, they step with a specified number of points per 
octave to the final frequency fstop (OCT mode) or step with a specified 
number of points that are linearly distributed between fstart and fstop.

This AC method was introduced into electrical engineering by Charles 
Proteus Steinmetz at the end of the 19th century. For the first time it offered 
a widely accepted way to design alternating current electrical equipment 
using mathematical methods. The frequency domain representation of a 
sinusoid is usually called phasor.
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Declaration of a spectral source quantity 

Spectral source quantities can be declared in an architecture body with a 
spectral source quantity declaration. The general form of the declaration is 

quantity q_name : real_type spectrum magnitude, phase;

where q_name is an identifier that names the spectral source quantity. 
real_type is scalar or composite floating-point type (for example REAL). 
magnitude specifies the real valued magnitude of the phasor. The magnitude 
can be determined using the predefined function FREQUENCY. This 
function delivers the current frequency that is used for spectral analysis. 
phase specifies the phase of q_name.

The quantity q_name can be applied in simultaneous statements. It is 
only taken into consideration if the DOMAIN signal equals 
FREQUENCY_DOMAIN otherwise it is set to zero. 

Example

To determine the transfer characteristic of a circuit we use an input 
voltage with magnitude one and phase zero. This voltage source is connected 
to UUT1 (the linear analog lowpass filter from Section 6.3.5) and UUT2 (the 
linear digital lowpass filter from Section 6.3.5). You can observe the transfer 
characteristic of UUT1 at node N_ANA_OUT and the transfer characteristic 
of UUT2 at node N_DIG_OUT (see Figure 6-60). 

N_IN N_ANA_OUT
UUT1

VIN

UUT2

N_DIG_OUT

Figure 6-60. Test circuit for AC analysis 

In the VHDL-AMS description of the test circuit, a branch with branch 
quantity VIN is declared that connects terminal N_IN and the electrical 
reference node. A spectrum quantity V_AC is declared with magnitude 1 
and phase 0. For frequency domain simulation VIN equals V_AC. Otherwise 
it is described by a sinusoidal voltage waveform in the time domain. Other 
waveforms are of course also possible in the time domain. The cut-off 
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frequency of both filters is 2 kHz, and the sampling frequency of the digital 
filter is 8 kHz. Thus, the first break in the magnitude of the digital filter is at 
4 kHz. 

library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all; use IEEE.MATH_REAL.all;
use WORK.all;   -- for UUT1 and UUT2 

entity BENCH is end entity BENCH; 

architecture BENCH_AC of BENCH is
terminal N_IN      : ELECTRICAL; 
terminal N_ANA_OUT : ELECTRICAL;      -- output analog filter 
terminal N_DIG_OUT : ELECTRICAL;      -- output digital filter 
quantity VIN across IIN through N_IN;
quantity V_AC : REAL spectrum 1.0, 0.0;    -- spectrum source 

begin
if DOMAIN /= FREQUENCY_DOMAIN use

      VIN == SIN(MATH_2_PI*1.0E3*NOW);        -- other waveforms 
else

       VIN == V_AC; 
end use;

UUT1: entity LOWPASS(BESSEL_2)
generic map (FC => 2.0E3) 
port map (INP => N_IN, OUTP => N_ANA_OUT); 

UUT2: entity LOWPASS(BESSEL_2_DIGITAL)
generic map(FC => 2.0E3) 
port map (INP => N_IN, OUTP => N_DIG_OUT); 

end architecture BENCH_AC; 

Figure 6-61. Frequency response of analog and digital filter 

Noise analysis basics 

Small signal noise analysis presumes:  

Small signal noise analysis can be applied to linear circuits and circuits 
that are linearized around an operating point. 
Amplitudes of noise sources are Gaussian distributed. The variances of 
the distributions are constant over time. The mean values are supposed to 
be zero. 
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Noise sources are characterized by their noise spectral density. All noise 
spectral densities Sv and Si (voltages and currents respectively) are in 
squared units (V2/Hz and A2/Hz for spectral density). 
In the case of a noise source the relation between spectral noise density 
S(f) and the root mean square (effective value) Veff is given by 

stopf

startf
eff dffSV )(2

fstart  and fstop are the limits of the frequency range that has to be taken into 
consideration to describe the noise source. In the case of constant spectral 
density S it follows 

fSffSV startstopeff )(2

The spectral density SA of a random waveform that results from a source 
with spectral density SE is given by the squared transfer function times 
SE, see Figure 6-62 ( f2 ).

SA jSE j
H j

SA(j ) = |H(j )|2 * SE(j )

Figure 6-62. Calculation of spectral noise densities 

The spectral densities of uncorrelated noise contributions are added (see 
also [Std99], Section 12.8). 

In a simulation engine noise analysis is done in a specified frequency 
range.
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Declaration of a noise quantity source 

Noise quantities are characterized in the following way: Noise quantities 
can be declared in an architecture body with a noise quantity declaration. 
The general form of the declaration is 

quantity q_name : real_type noise density;

where q_name is an identifier that names the quantity. real_type is scalar 
or composite floating-point type (for example REAL). density specifies the 
spectral noise density depending on the predefined function frequency. If it 
does not depend on the frequency, the spectral density is constant over the 
frequency range. 

The quantity q_name can be applied in simultaneous statements. It is 
only taken into consideration if the DOMAIN signal equals 
FREQUENCY_DOMAIN otherwise it is set to zero. 

Example
Thermal noise of a resistor can be modeled as shown in Figure 6-63. A 

current noise source is in parallel with the noiseless resistor (see for example 
[LuB00], Appendix H). The noise source is characterized by a constant 

spectral density
R
kTSI

4 . k is the Boltzmann constant (
K

Ws231038.1 ). T is 

the absolute temperature in degree Kelvin and R the value of the resistor. In 
the VHDL-AMS model Boltzmann’s constant equals PHYS_K which is 
declared in the IEEE library in package FUNDAMENTAL_CONSTANTS. 

Figure 6-63. Noise models of a linear resistor 
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library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all, IEEE.FUNDAMENTAL_CONSTANTS.all;

entity RESISTOR is
generic (VALUE_R         : REAL := 1.0;    -- resistance [Ohm] 

            TEMP            : REAL := 300.0); -- temperature [K] 
port    (terminal P1, P2 : ELECTRICAL); 

begin
assert VALUE_R > 0.0 and TEMP > 0.0 

report "ERROR: Parameters are not correct." severity ERROR; 
end entity RESISTOR; 

architecture NOISY of RESISTOR is
quantity V across I, INOISE through P1 to P2; -- parallel br. 
quantity SI : REAL noise 4.0*PHYS_K*TEMP/VALUE_R; 

begin
    V      == VALUE_R * I; 
    INOISE == SI; 
end architecture NOISY; 

6.7 Summary

In this chapter we gave a short introduction to VHDL-AMS. The basic 
language constructs and ideas of VHDL-AMS were explained. More 
information can be found in the IEEE Std 1076.1. We focused on the analog 
extension of VHDL-AMS compared to the pure digital oriented VHDL. 
Some new features in VHDL-AMS consist of:   

Language constructs to describe conservative network semantics 
(terminals, natures, branch quantity declarations) 
Language constructs to describe nonconservative signal flow 
semantics (quantity ports) 
Simultaneous statements to describe analog constitutive relations 
Special support to model analog behavior ('DOT, 'INTEG, 
'DELAYED, 'LTF, 'ZOH, 'ZTF, and other attributes) 
Support to model mixed-signal interaction between analog and 
digital parts ('ABOVE, 'RAMP, 'SLEW attributes, and break 
statement) 
Definition of the mixed-signal simulation cycle 
Usage of the DOMAIN signal to distinguish between different kinds 
of analysis (QUIESCENT_DOMAIN, TIME_DOMAIN, and 
FREQUENCY_DOMAIN including small signal AC and noise 
analysis) 

In this chapter we did not consider facilities to model multi-domain 
systems consisting of electrical and nonelectrical parts. Some other language 
extensions were also not considered (for example the full break statement). 
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To readers interested in these features we recommend the VHDL-AMS 
standard [Std99] and other textbooks (for example [APT03]) for further 
reading.
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SELECTED RF BLOCKS IN VHDL-AMS 

7. SELECTED RF BLOCKS IN VHDL-AMS 

7.1 Library Overview 

The previous chapter introduced some fundamental concepts and the 
description syntax of the VHDL-AMS language. This chapter presents a 
library of typical RF building blocks in VHDL-AMS.  

The models are subdivided into three categories of blocks: 

Signal sources 
System blocks for signal processing 
Measurement and observation units 

For all blocks behavioral models with RF specific properties are 
provided. They are uniformly documented with: 

Functional description 
Model interface 
Model implementation 
Simulation example with results if necessary 

In Chapter 9 a complex model of a WLAN receiver is assembled from 
these basic building blocks. The chapter describes how to instantiate and 
parameterize the models, and how to run the simulation. 
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7.2 Signal Sources 

Table 7-1. Signal source blocks overview 
Model Properties 
Independent voltage sources Sinusoidal source as single- or two-tone source
Modulated sources AM or FM sinusoidal source 
Wobble generator Sinusoidal source with swept frequency 
Pseudorandom binary source Feedback shift register with variable length 

7.2.1 Independent sources 

Functional description 

In this section different sources are provided in a SPICE-like notation but 
with RF-specific extensions. They are named p_sin since the sinusoidal 
output of the source is specified in terms of power. Also, in contrast to 
SPICE sources, a positive and finite value for the output resistor is required. 
By calling different architectures it is possible to decide whether to use a 
single- or a two-tone source. Refer to the next section for further architec-
tures of the same source. 

Output impedance

out

Signal source

Figure 7-1. Block diagram of an RF-specific source model 

The main characteristics of the independent source models are as follows. 

A sinusoidal source is modeled with single-tone output 

2 [ sin(2 )]srcv vo va freq t phase

where va denotes the voltage amplitude that is computed from the power 
amplitude parameter pa_dBm by 

_ 30
102 10

pa dBm

va rout
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A sinusoidal source with two-tone output is also available 

2 [ sin(2 ) 2 sin(2 2 2)]srcv vo va freq t phase va freq t phase

where va and va2 denote the voltage amplitudes that are computed from 
the power amplitude parameters pa_dBm and pa2_dBm respectively by 

_ 30
102 10

pa dBm

va rout ,
2 _ 30

102 2 10
pa dBm

va rout

Note: A factor of two is added in both cases since a power source has its 
maximum power output when used in a matched system, where an 
external resistor equal to the internal resistance is connected. In this case 
the specified power amplitude can be measured. 
The impedance of the output port is modeled as an ohmic resistance. A 
typical value of a matched system is: 

50outR

Model interface 

Figure 7-2. Schematic symbol of the source model 

Table 7-2. Model ports 
Name Type Description 
P ELECTRICAL Positive pin
M ELECTRICAL Negative Pin 
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Table 7-3. Model parameters 
Name Unit Default value Description 
VO V 0.0 Offset voltage 
PA_DBM dBm -100.0 Power amplitude of sine wave 
FREQ Hz 1.0e03 Frequency of sine wave 
PHASE rad 0.0 Phase of sine wave 
PA2_DBM dBm -100.0 Power amplitude of sine wave (second tone) 
FREQ2 Hz 1.0e03 Frequency of sine wave (second tone) 
PHASE2 rad 0.0 Phase of sine wave (second tone) 
ROUT Ohm 50.0 Output resistance 

Model implementation  
architecture SINGLE_TONE of P_SIN is

constant PA:    REAL:= 10**((PA_DBM-30.0)/10.0);
constant PA:    REAL:= SQRT(PA * 2.0 * ROUT);
terminal N_INT: ELECTRICAL; 
quantity V_ROUT across I_ROUT through P to N_INT; 
quantity V_SRC across I_SRC through N_INT to M; 

begin

  -- signal source 
  V_SRC == 2.0 * (VO + VA * SIN(NOW * MATH_2_PI*FREQ + PHASE)); 

  -- output port resistance 
  V_ROUT == ROUT * I_ROUT; 

end architecture SINGLE_TONE; 

The complete model is included on the CD-ROM that is provided with 
this book. 
Simulation example 

For a simulation example using independent sources see Section 7.3.2. 

7.2.2 Modulated sources 

Functional description 

In this section different sources are provided in a SPICE-like notation but 
with RF-specific extensions. They are named p_sin since the sinusoidal 
output of the source is specified in terms of power. Also, in contrast to 
SPICE sources, a positive and finite value for the output resistor is required. 
By calling different architectures it is possible to decide whether to use an 
amplitude modulated (AM) or a frequency modulated (FM) sinusoidal 
source. Refer to the previous section for further architectures of the same 
source.
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Output impedance

out

Signal source

Figure 7-3. Block diagram of an RF-specific source model 

The main characteristics of the modulated source models are as follows. 

A sinusoidal source is modeled with amplitude modulation  (AM)  

2 1 sin(2 ) sin(2 )srcv vo va mdi freqm t phasem freq t phase

where va denotes the voltage amplitude that is computed from the power 
amplitude parameter pa_dBm by 

_ 30
102 10

pa dBm

va rout

Another architecture for the sinusoidal source is included with frequency 
modulation  (single frequency FM - SFFM)  

2 sin 2 sin(2 )srcv vo va freq t phase mdi freqm t phasem

where va denotes the voltage amplitude that is computed from the power 
amplitude parameter pa_dBm by 

_ 30
102 10

pa dBm

va rout

Note: A factor of two is added in both cases since a power source has its 
maximum power output when used in a matched system, where an 
external resistor equal to the internal resistance is connected. In this case 
the specified power amplitude can be measured. 
The impedance of the output port is modeled as an ohmic resistance. A 
typical value of a matched system is: 

50outR
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Model interface 

Figure 7-4. Schematic symbol of the source model 

Table 7-4. Model ports 
Name Type Description 
P ELECTRICAL Positive pin
M ELECTRICAL Negative Pin 

Table 7-5. Model parameters 
Name Unit Default value Description 
VO V 0.0 Offset voltage 
PA_DBM dBm -100.0 Power amplitude of sine wave 
FREQ Hz 1.0e03 Frequency of sine wave 
PHASE rad 0.0 Phase of sine wave 
MDI - 0.0 Modulation index 
FREQM Hz 1.0 Modulation frequency  
PHASEM rad 0.0 Modulation phase 
ROUT Ohm 50.0 Output resistance 

Model implementation 
architecture SFFM of P_SIN is

constant PA:    REAL:= 10**((PA_DBM-30.0)/10.0);
constant VA:    REAL:= SQRT(PA * 2.0 * ROUT);
terminal N_INT: ELECTRICAL; 
quantity V_ROUT across I_ROUT through P to N_INT; 
quantity V_SRC across I_SRC through N_INT to M; 

begin

  -- signal source 
  V_SRC == 2.0 * (VO + VA * SIN(NOW * MATH_2_PI*FREQ + PHASE 
                + MDI*SIN(NOW * MATH_2_PI*FREQM + PHASEM))); 
  -- output port resistance 
  V_ROUT == ROUT * I_ROUT; 

end architecture SFFM; 
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The complete model is included on the CD-ROM that is provided with 
this book. 
Simulation example 

For a simulation example using a modulated source see Section 7.4.3. 

7.2.3 Wobble generator 

Functional description 

A sinusoidal source is provided, where the frequency of the output signal 
is swept over a parameter specified range. 

Output impedance

out

Signal source

Figure 7-5. Block diagram of a wobble source model 

The main characteristics of the wobble generator model are as follows. 

The sinusoidal source has a single-tone output 

2 sin( ), 2src effv amp f

where amp denotes the voltage amplitude that is computed from the 
power amplitude parameter amp_dBm by 

_ 30
102 10

amp dBm

amp rout

and feff denotes the actual frequency 

if 
( ) if  and 

if 

start init

eff start sweep init init eff stop

stop eff stop

f t t
f f f t t t t f f

f f f
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The start time of the sine wave is delayed by InitDelayinitt
The frequency changes with SweepRatesweepf  (Hz/s) 
The Impedance of the output port is modeled as an ohmic resistance. A 
typical value of a matched system is: 

50outR

Model interface 

P

M

Figure 7-6. Schematic symbol for wobble generator 

Table 7-6. Model ports 
Name Type Description 
P ELECTRICAL Positive pin
M ELECTRICAL Negative Pin 

Table 7-7. Model parameters 
Name Unit Default value Description 
AMP_DBM dBm -100.0 Power amplitude of sine wave 
INITDELAY s 0.0 Initial time delay before oscillator starts 
STARTFREQ Hz 1.0 Initial frequency where sweep starts 
STOPFREQ Hz 1.0e07 End frequency where sweep stops 
SWEEPRATE Hz/s 1.0 Rate of change for frequency sweep 
ROUT Ohm 50.0 Output resistance 

Model implementation 
architecture BHV of WOBBEL is

constant AMP_LIN : REAL:= 10**((AMP_DBM-30.0)/10.0);
constant AMP     : REAL:= SQRT(AMP_LIN * 2.0 * ROUT); 
terminal N_INT   : ELECTRICAL; 
quantity PHI     : REAL;
quantity EFFFREQ : REAL := STARTFREQ; 
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quantity V_ROUT across I_ROUT through P to N_INT; 
quantity V_SRC across I_SRC through N_INT to M; 

begin
if NOW > INITDELAY and EFFFREQ < STOPFREQ use

    EFFFREQ == STARTFREQ + SWEEPRATE*(NOW-INITDELAY); 
elsif EFFFREQ >= STOPFREQ use

    EFFFREQ == STOPFREQ; 
else

    EFFFREQ == STARTFREQ; 
end use;

if DOMAIN = QUIESCENT_DOMAIN USE
    PHI == 0.0; 

else
    PHI'DOT == MATH_2_PI*EFFFREQ; 

end use;

-- signal source 
  V_SRC == 2.0 * AMP * SIN(PHI); 

-- output port resistance 
  V_ROUT == ROUT * I_ROUT; 
end architecture BHV; 

The model implementation is included on the CD-ROM that is provided 
with this book. 

7.2.4 Pseudorandom binary source 

Functional description 

This model provides a pseudorandom sequence at its binary output. It is 
constructed as a maximum-length feedback shift register with variable 
register length. 

bit_out
DD D...

...

kx 1kx 2kx 1k nx k nx

1h nh2h 1nh

Figure 7-7. Block diagram of a pseudorandom binary source (PRBS) 
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The main characteristics of the modulated source models are as follows. 

The feedback shift register has a length polygrad, where 
2 34polygrad . The generated binary sequence is of maximum 
length, that is it has a period of 2 1polygrad .
The generator polynomial for order 2 to 34 is built into the model 

1 2

1 3

1 4

2 :
3:
4 :

k k k

k k k

k k k

polygrad x x x
polygrad x x x
polygrad x x x

where the addition is modulo 2. For a complete list of generator 
polynomials see [BLM04]. 

The initial state of the shift register can be set with parameter seed.
The frequency of the binary sequence is adjustable with the parameter 
bit_time.
An initial time delay (before the sequence starts) can be applied using the 
parameter bit_del.

Model interface 

prbs

bit_out

Figure 7-8. Schematic symbol of the pseudorandom binary source 

Table 7-8. Model ports 
Name Type Description 
BIT_OUT out BIT Binary output 
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Table 7-9. Model parameters 
Name Unit Default value Description 
POLYGRAD - 2 Order of generator polynomial 
SEED - “01” Initial bit vector of feedback shift register 
BIT_TIME s 1us Time duration of binary values 
BIT_DEL s 0us Initial time delay of binary sequence 

Model implementation 

The model implementation is included on the CD-ROM that is provided 
with this book. 
Simulation example 

For a simulation example using a pseudorandom binary source see 
Section 7.3.8. 

7.3 Basic RF Building Blocks 

Table 7-10. Overview on basic RF building blocks 
Model Properties 
Low-noise Amplifier RF specific operational amplifier 
Mixer Gilbert mixer with LNA 
Charge pump Mixed-signal charge pump for PLL 
Analog VCO Sine wave with tunable frequency 
Digital VCO Square wave with tunable frequency 
Filters Lowpass and highpass Butterworth filters 
Switch Varying resistance with digital control 
General n-bit A/D and D/A converter Mixed-signal model with n-bit vector interface 
Simple channel model AWGN channel with time delay 

7.3.1 Low-noise amplifier 

Functional description 

Low-noise amplifiers (LNA) are central elements in RF applications for 
amplifying signals over a wide frequency range with low signal to noise 
distortion. In contrast to low-frequency amplifiers the main focus is on the 
large signal behavior and the nonlinear distortion due to harmonics and 
intermodulation. Also power transmission and therefore matching 
impedances have to be considered. Figure 7-9 shows a typical block diagram 
of an LNA model, which is divided into input, output and transmission 
blocks.
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Figure 7-9. Block diagram of a simple low-noise amplifier model 

The main characteristics of the low-noise amplifier model are as follows. 

Signal amplification is specified as power gain and converted to voltage 
gain

_
10

, 10
gp dB

out
voltage linear

in

Rgain
R

Nonlinear gain characteristic is expressed in terms of a 3rd order 
intercept point 

3
out in inv a v b v

where

, 2

3_ 30
10

4, ,
3 3

3 10 2

voltage linear

ip dBm

in

aa gain b
ip

ip R

Note: The intercept point in this context refers to a single-tone signal, 
while for other circuits, IP2 and IP3 are measured by two tones. 
Frequency response is provided by the dominant pole (and further poles 
and zeros) 

1( )
1 / g

H j
j

where g=2 fg, and fg is the frequency of the dominant pole. 
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Input and output impedances are modeled as ohmic resistances. Typical 
values of a matched system are 

50in outR R

Often you will find these characteristics expressed in terms of the S-
parameters. 

Additional characteristics, that were not modeled here, include second 
order effects such as temperature and power supply dependency of the gain 
function, recovery time after output limitation, higher order nonlinearities, 
and power consumption. Also, noise contribution of the amplifier stage is 
not included in the model since noise quantities are not supported by 
ADVance MS. 
Model interface 

Figure 7-10. Schematic symbol of the low-noise amplifier 

Table 7-11. Model ports 
Name Type Description 
P_IN ELECTRICAL Input pin 
P_OUT ELECTRICAL Output pin 
VDD ELECTRICAL Supply voltage 
GND ELECTRICAL Reference node 

Table 7-12. Model parameters 
Name  Unit Default value Description 
GP_DB dB 0.0 Open loop power gain 
IP3_DBM dBm -30.0 Referenced IP3 
FNOISE_DB dB 0.0  Noise figure of stage 
FG Hz real’HIGH Frequency of dominant pole 
RIN Ohm 50.0 Input resistance 
ROUT Ohm 50.0 Output resistance 
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Model implementation 
architecture RF of LNA is

constant GP_LIN   : REAL:= 10**(GP_DB/10.0);
                              -- linear value of power gain 

constant IP3_LIN  : REAL:= 10**((IP3_DBM-30.0)/10.0);
                              -- linear value of ip3 

constant A        : REAL:= SQRT(GP_LIN*ROUT/RIN);
                              -- linear value of voltage gain 

constant IP3      : REAL:= SQRT(IP3_LIN*2.0*RIN);
                              -- linear value of ip3 voltage 

constant B        : REAL:= A/(IP3*IP3)*4.0/3.0;
                              -- third order coefficent 

constant INMAX    : REAL:= SQRT(A/(3.0*B));
                              -- maximum input voltage for clipping 

constant OUTMAX   : REAL:= 2.0*A/3.0*INMAX;
                              -- output voltage at clipping 

terminal U_IN     : ELECTRICAL; 
terminal U_IN_F   : ELECTRICAL; 
terminal U_OUT    : ELECTRICAL; 
quantity V_NOISE across I_NOISE through P_IN to U_IN; 
quantity V_RIN across I_RIN through U_IN to GND; 
quantity V_UINF across I_UINF through U_IN_F to GND; 
quantity V_LIM across I_LIM through U_OUT to GND;
quantity V_ROUT across I_ROUT through U_OUT to P_OUT;

begin

  -- input stage: noise figure, input resistance 
  V_NOISE == 0.0; 
  V_RIN == RIN * I_RIN; 

  -- transmission stage:
  -- gain, voltage limitation, transfer function 
  V_UINF == V_RIN'LTF((0 => 1.0), (1.0, 1.0/MATH_2_PI/FG)); 

if abs(V_UINF)<INMAX use
    V_LIM == 2.0*(A - B*V_UINF*V_UINF)*V_UINF; 

elsif V_UINF > 0.0 use
    V_LIM == 2.0*OUTMAX; 

else
    V_LIM == -2.0*OUTMAX; 

end use;

  -- output stage:  output resistance 
  V_ROUT == ROUT * I_ROUT;

end architecture RF; 

The complete model is included on the CD-ROM that is provided with 
this book. 
Simulation example 

As a stimulation signal a single-tone of 1.0 kHz and –30.0 dBm was 
used. The LNA model was instantiated with the following parameters: 
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   LNA1: entity LNA(RF) 
generic map (GP_DB => 6.0,

                 IP3_DBM => -23.0, 
                 FNOISE_DB => 2.5
              ) 

port map (P_IN => N_1, 
              P_OUT => N_2, 
              VDD => N_VDD, 
              GND => ELECTRICAL_REF 
             ); 

The complete test bench is included on the CD-ROM that is provided 
with this book. 

Figure 7-11. Simulation of amplifying a single-tone with nonlinear characteristic 

As shown in Figure 7-11 the input signal, which should be doubled in 
magnitude (power gain of 6dB), is distorted while passing the LNA. The 
effect of the intercept point IP3 (and finally clipping) is a limitation of the 
LNA output signal for large input signals. The nonlinear characteristic can 
be seen in the second diagram. 



142 Chapter 7

7.3.2 Mixer

Functional description 

A mixer block uses nonlinear circuit characteristics for frequency 
conversion in RF applications. An analog passband mixer can be realized as 
a Gilbert cell, which multiplies an RF input signal with a local oscillator 
(LO) signal to obtain the output signal at an intermediate frequency (IF) 
together with other spurious signals. This configuration can be found in RF 
receiver front ends for down conversion. Figure 7-12 shows a simple mixer 
model, where the Gilbert cell is modeled as a simple multiplier. 

Figure 7-12. Block diagram of a simple mixer model 

The main characteristics of the mixer model are as follows. 

LNA characteristics (see Section 7.3.1) 
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Note: The intercept point in this context refers to the single-tone IP3 of 
the LNA, while the usually specified IP2 and IP3 for a mixer, which are 
not parametrizable here, are measured by two tones. 
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Simplified Gilbert cell characteristic 

IF HF LOv v v

Input and output impedances are modeled as ohmic resistances. Typical 
values of a matched system are 

50in outR R

Model interface 

Figure 7-13. Schematic symbol of a mixer 

Table 7-13. Model ports 
Name Type Description 
P_IN ELECTRICAL Input pin 
P_CLOCK ELECTRICAL Local oscillator pin 
P_OUT ELECTRICAL Output pin 
VDD ELECTRICAL Supply voltage 
GND ELECTRICAL Reference node 

Table 7-14. Model parameters 
Name  Unit Default value Description 
GP_DB dB 0.0 Open loop power gain 
IP3_DBM dBm -30.0 Input referenced IP3 
FNOISE_DB dB 0.0  Noise figure of stage 
FG Hz real’HIGH Frequency of dominant pole 
RIN Ohm 50.0 Input resistance 
RIN_CLK Ohm 50.0 Clock input resistance 
ROUT Ohm 50.0 Output resistance 



144 Chapter 7

Model implementation 
architecture RF of MIXER is

constant GP_LIN   : REAL:= 10**(GP_DB/10.0);
                              -- linear value of power gain 

constant IP3_LIN  : REAL:= 10**((IP3_DBM-30.0)/10.0);
                              -- linear value of ip3 

constant A        : REAL:= SQRT(GP_LIN*ROUT/RIN);
                              -- linear value of voltage gain 

constant IP3      : REAL:= SQRT(IP3_LIN*2.0*RIN);
                              -- linear value of ip3 voltage 

constant B        : REAL:= A/(IP3*IP3)*4.0/3.0;
                              -- third order coefficent 

constant INMAX    : REAL:= SQRT(A/(3.0*B));
                              -- maximum input voltage for clipping 

constant OUTMAX   : REAL:= 2.0*A/3.0*INMAX;
                              -- output voltage at clipping 

terminal IN_G     : ELECTRICAL; 
terminal OUT_G    : ELECTRICAL; 
terminal OUT_F    : ELECTRICAL; 
terminal U_OUT    : ELECTRICAL; 
quantity V_NOISE across I_NOISE through P_IN to IN_G; 
quantity V_RIN across I_RIN through IN_G to GND; 
quantity V_OUTG across I_OUTG through OUT_G to GND; 
quantity V_CLK across I_CLK through P_CLOCK to GND; 
quantity V_OUTF across I_OUTF through OUT_F to GND; 
quantity V_LIM across I_LIM through U_OUT to GND;
quantity V_ROUT across I_ROUT through U_OUT to P_OUT;

begin

  -- input stage: noise figure, input impedances 
  V_NOISE == 0.0; 
  V_RIN == RIN * I_RIN; 
  V_CLK == RIN_CLK * I_CLK; 

  -- gilbert cell 
  V_OUTG == V_RIN * V_CLK; 

  -- lna 
  V_OUTF == V_OUTG'LTF((0 => 1.0), (1.0, 1.0/MATH_2_PI/FG)); 

if abs(V_OUTF)<INMAX use
    V_LIM == 2.0*(A - B*V_OUTF*V_OUTF)*V_OUTF; 

elsif V_OUTF > 0.0 use
    V_LIM == 2.0*OUTMAX; 

else
    V_LIM == -2.0*OUTMAX; 

end use;

  -- output impedance 
  V_ROUT == ROUT * I_ROUT;

end architecture RF; 

The complete model is included on the CD-ROM that is provided with 
this book. 
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Simulation example 

For demonstration purposes an RF two-tone signal (1 kHz, -30 dBm and 
1.1 kHz, -40 dBm) and a local oscillator of 1 kHz and -30 dBm are used. 
The carrier is mixed with itself, which is known as a Direct Conversion
receiver, since no intermediate frequency is used for demodulation.  

Figure 7-14. Simulation of downconverting (mixing) an RF signal 
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The mixer model was instantiated with the following parameters: 

  MIX: entity MIXER(RF) 
generic map ( GP_DB => 0.0,

                  IP3_DBM => -30.0, 
                  FNOISE_DB => 2.5 
                  ) 

port map (P_IN => N_1, 
              P_OUT => N_2, 
              P_CLOCK => N_CLK, 
              VDD => N_VDD, 
              GND => ELECTRICAL_REF 
              );

The complete test bench is included on the CD-ROM that is provided 
with this book. 

Figure 7-14 shows the results of the simulation before (node n_1) and 
after (node n_2) the mixer stage in both time and frequency domains. The 
two-tone input signal (carrier 1 kHz, signal 1.1 kHz) can be found after 
down conversion at DC (0 Hz and 100 Hz, respectively) and at twice the 
carrier frequency (2 kHz and 2.1 kHz, respectively). The carrier and signal 
are reduced in magnitude according to the formula: 

1 2
1 2sin sin 1 sin 2

2 2
a aa t a t t

Other spurious signals appear after conversion well below carrier and 
signal.

7.3.3 Charge pump 

Functional description 

The charge pump is an essential building block of mixed-signal phase-
locked loops (PLL). It converts two digital pulse trains for up and down 
signals respectively into analog up and down current pulses. The current 
sources are built from external positive and negative voltage sources and 
internal resistances. Figure 7-15 shows the block diagram of the charge 
pump model. 



SELECTED RF BLOCKS IN VHDL-AMS 147

S_up

Output impedance
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positive current 
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negative current 
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Figure 7-15. Block diagram of a charge pump model 

The main characteristics of the charge pump model are as follows. 

Positive and negative current pulses are generated with respective 
amplitudes 

Vdd
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isrc
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where UVdd and UVss are the external positive and negative voltage 
sources, and Risrc is a model parameter. 
The stability of the current can be increased by using high external 
voltages together with large values for the internal resistors. However, 
this high voltage may then unwantedly occur at the output of the charge 
pump when operated without a load. 
In addition, the measurable amplitude of the current pulse at the output 
pin depends on the specified output resistance and the load resistance, 
which are both 50  in the often used 50  systems. 
The switches are modeled with two resistances, 1  and 1 M , for the on 
and off state of the switch, respectively. 

Additional characteristics, that were not modeled here, include the 
explicit voltage limitation of the current sources and nonlinearity. 
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Model interface 

S_up

CP

Vdd

Vss

P_out
S_down

Figure 7-16. Schematic symbol of the charge pump 

Table 7-15. Model ports 
Name Type Description 
S_UP BIT Up signal 
S_DOWN BIT Down signal 
P_OUT ELECTRICAL Output pin 
VDD ELECTRICAL Positive voltage 
VSS ELECTRICAL  Negative voltage 

Table 7-16. Model parameters 
Name  Unit Default value Description 
R_ISRC Ohm 1.0e3 Current source resistance 
ROUT Ohm 50.0 Output resistance 

Model implementation 
architecture SIMPLE of CP is

constant RON   : REAL:=1.0; 
constant ROFF  : REAL:=1.0E9; 
terminal N_up  : ELECTRICAL; 
terminal N_down: ELECTRICAL; 
terminal N_int : ELECTRICAL; 
signal   R_SWUP: REAL:=ROFF; 
signal   R_SWDN: REAL:=ROFF; 
quantity V_SWUP across I_SWUP through N_UP to N_INT; 
quantity V_SWDN across I_SWDN through N_INT to N_DOWN; 
quantity V_ROUT across I_ROUT through P_OUT to N_INT; 
quantity V_RUP across I_RUP through VDD to N_UP; 
quantity V_RDN across I_RDN through VSS to N_DOWN; 
quantity V_R1 across I_R1 through N_INT to ELECTRICAL_REF; 

begin

  R_SWUP <= RON when S_UP='1' else ROFF; 
  R_SWDN <= RON when S_DOWN='1' else ROFF; 
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  V_SWUP == R_SWUP * I_SWUP;
  V_SWDN == R_SWDN * I_SWDN; 
  V_RUP  == R_ISRC * I_RUP; 
  V_RDN  == R_ISRC * I_RDN; 
  V_ROUT == ROUT * I_ROUT; 
  V_R1 == 1.0E6 * I_R1; 

end architecture SIMPLE; 

The complete model is included on the CD-ROM that is provided with 
this book. 
Simulation example 

This example shows the simulation of a digital PLL, which contains, in 
contrast to the linear PLL, a phase frequency detector and a charge pump. 
The connected voltage sources have values of +/-5 V. 

The charge pump model was instantiated with the following parameters: 

CHARGEPUMP: entity CP(SIMPLE) 
generic map (R_ISRC => 1.0e6) 
port map (S_UP => S_1,

              S_DOWN => S_2,
              P_OUT => N_TP,
              VDD => P_VDD,
              VSS => N_VSS); 

The complete test bench is included on the CD-ROM that is provided 
with this book. 

Figure 7-17. Simulation of a charge pump within a digital phase-locked loop (DPLL) 
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As shown in Figure 7-17, where the output current through the load 
resistor is shown, the amplitude of the current source equals +/-5 A
according to whether the positive or negative pulse signal is present. 

7.3.4 Analog VCO 

Functional description 

Voltage controlled oscillators (VCO) are used to generate a single-tone 
sine wave with tunable frequency. Tuning is done using a control voltage at 
the input pin. Without input voltage the oscillator runs at its free running 
frequency. Figure 7-18 shows a block diagram of a simple VCO model. 

Figure 7-18. Block diagram of a simple VCO model 

The main characteristics of the VCO model are as follows. 

The analog VCO has a sinusoidal output with tunable frequency 
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where freq0 is the free running frequency, phase0 is an initial phase, and  
kfreq is the slope of the frequency with regard to the input voltage. ampl
denotes the voltage amplitude of the sine wave that is computed from the 
power amplitude ampl_dBm by 

30
102 10

ampl_dBm

ampl rout

In order to ensure a consistent initial solution a condition for the phase 
angle during the operating point analysis has been added 
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0w  for 0t .

Input and output impedances are modeled as ohmic resistances. Typical 
values of a matched system are:   

50in outR R

Additional characteristics, that were not modeled here, include  
Timing jitter and phase noise (see [Lee01]) 
Nonlinear tuning characteristic 
Second order effects such as temperature and power supply dependency 
of the tuning characteristic 
Dead time of the control input 
Power consumption 

Model interface 

Figure 7-19. Schematic symbol of VCO 

Table 7-17. Model ports 
Name Type Description 
P_CTRL ELECTRICAL Control pin 
P_OUT ELECTRICAL Output pin 
VDD ELECTRICAL Supply voltage 
GND ELECTRICAL Reference node 
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Table 7-18. Model parameters 
Name  Unit Default value Description 
DC V 0.0 DC offset voltage of oscillator 
AMPL_DBM dBm -100.0 Amplitude of sine wave 
FREQ_0 Hz 1.0e+03 Free running oscillator frequency 
PHASE_0 rad 0.0 Constant phase offset 
K_FREQ Hz/V 1.0e+06 Sensitivity of voltage input 
RIN Ohm 50.0 Input resistance 
ROUT Ohm 50.0 Output resistance 

Model implementation 
architecture ANALOG of VCO is

constant AMPL_LIN : REAL:= 10**((AMPL_DBM-30.0)/10.0);
constant AMPL     : REAL:= SQRT(AMPL_LIN * 2.0 * ROUT);
terminal N_INT    : ELECTRICAL; 
quantity V_RIN across I_RIN through P_CTRL to GND; 
quantity V_ROUT across I_ROUT through P_OUT to N_INT; 
quantity V_SRC across I_SRC through N_INT to GND; 
quantity PHI_W : REAL; 

begin
-- input impedance 
  V_RIN  == RIN * I_RIN; 

-- tunable oscillator 
if DOMAIN = QUIESCENT_DOMAIN use

    PHI_W == 0.0; 
else

    0.0 == PHI_W'DOT - MATH_2_PI*K_FREQ*V_RIN; 
end use;

  V_SRC == 2.0 * (DC + AMPL * SIN(NOW * MATH_2_PI*FREQ_0
                                      + PHI_W + PHASE_0)); 
-- output impedance 
  V_ROUT == ROUT * I_ROUT; 

end architecture ANALOG;

The complete model is included on the CD-ROM that is provided with 
this book. 
Simulation example 

A step signal was applied as the control voltage, which changes at 
10.2 ms from 0 to –5 mV. The VCO model was instantiated with the 
following parameters: 

  LO: entity VCO(ANALOG) 
generic map ( AMPL_DBM => -30.0, 

                      FREQ_0 => 1.0e03, 
                      K_FREQ => 1.0e05) 

port map (P_CTRL => N_CTRL, 
                 P_OUT => N_CLK, 
                 VDD => N_VDD, 
                 GND => ELECTRICAL_REF); 
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The complete test bench is included on the CD-ROM that is provided 
with this book. 

Figure 7-20. Simulation of frequency changes when altering the control voltage 

Figure 7-20 shows the simulation results. When the control voltage is 
zero, the output oscillates at the free running frequency of 1 kHz. At time 
10.2 ms a negative control voltage of –5 mV is applied. This leads to half the 
original frequency 
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Although the frequency does not change at a zero crossing the phase 
continuously changes. 

7.3.5 Digital VCO 

Functional description 

Digital voltage controlled oscillators (VCO) are used to generate a 
single-tone square wave with tunable frequency. Tuning is done using a 
control voltage at the input pin. Without input voltage the oscillator runs at 
its free running frequency. Figure 7-21 shows a block diagram of a simple 
VCO model. 
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Figure 7-21. Block diagram of a simple digital VCO model 

The main characteristics of the VCO model are as follows. 

The digital VCO has a square wave output with tunable frequency 

0,out freq inv dc ampl f freq k v

where freq0 is the free running frequency, kfreq is the slope of the 
frequency with regard to the control voltage. ampl denotes the voltage 
amplitude of the sine wave that is computed from the power amplitude 
ampl_dBm by 

30
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ampl_dBm

ampl rout

For a nonpositive frequency f the model stops oscillating until 0f  is 
satisfied.

In this simple model the frequency f can only change at transition times, 
that is at a rising or falling edge. For more accurate modeling the 
frequency should be changeable all the time, which means that the 
scheduling time of the subsequent edge has to be permanently adjusted. 
Input and output impedances are modeled as ohmic resistances. Typical 
values of a matched system are  

50in outR R

Additional characteristics, that were not modeled here, include  

Transition times for rising and falling edge 
Timing jitter and phase noise (see [Lee01])  
Nonlinear tuning characteristic 
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Second order effects such as temperature and power supply dependency 
of the tuning characteristic 
Dead time of the control input 
Power consumption 

Model interface 

Figure 7-22. Schematic symbol of VCO 

Table 7-19. Model ports 
Name Type Description 
P_CTRL ELECTRICAL Control pin 
P_OUT ELECTRICAL Output pin 
VDD ELECTRICAL Supply voltage 
GND ELECTRICAL Reference node 

Table 7-20. Model parameters 
Name  Unit Default value Description 
DC V 0.0 DC offset voltage of oscillator 
AMPL_DBM dBm -100.0 Amplitude of sine wave 
FREQ_0 Hz 1.0e+03 Free running oscillator frequency 
K_FREQ Hz/V 1.0e+06 Sensitivity of voltage input 
RIN Ohm 50.0 Input resistance 
ROUT Ohm 50.0 Output resistance 

Model implementation 
architecture DIGITAL of VCO is

constant AMPL_LIN : REAL:= 10**((AMPL_DBM-30.0)/10.0);
constant AMPL     : REAL:= SQRT(AMPL_LIN * 2.0 * ROUT); 
signal   STATE    : bit:='0'; 
signal   FACTOR   : real:=0.0; 
terminal N_INT    : ELECTRICAL; 
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quantity V_RIN across I_RIN through P_CTRL to GND; 
quantity V_ROUT across I_ROUT through P_OUT to N_INT; 
quantity V_SRC across I_SRC through N_INT to GND; 

begin

process (STATE,V_RIN'ABOVE(-FREQ_0/K_FREQ)) 
    VARIABLE F: REAL; 

begin
if STATE='1' THEN

      FACTOR<=1.0; 
else

      FACTOR<=-1.0; 
end if;

    F := FREQ_0 + K_FREQ*V_RIN; 
if F>0.0 then

      STATE <= not STATE after 0.5/F*SEC; 
end if;

end process;
break on STATE; 

-- input impedance 
  V_RIN  == RIN * I_RIN; 

-- tunable oscillator 
  V_SRC == 2.0*(DC+FACTOR*AMPL); 

-- output impedance 
  V_ROUT == ROUT * I_ROUT; 

end architecture digital;

The complete model is included on the CD-ROM that is provided with 
this book. 
Simulation example 

A piecewise linear signal was applied as the control voltage, which 
changes at 10.2 ms from 0 to –15 mV, and at 12.2 ms to –5 mV. The VCO 
model was instantiated with the following parameters: 

  LO: entity VCO(DIGITAL) 
generic map ( AMPL_DBM => -30.0, 

                      FREQ_0 => 1.0e03, 
                      K_FREQ => 1.0e05) 

port map (P_CTRL => N_CTRL, 
                  P_OUT => N_CLK, 
                  VDD => N_VDD, 
                 GND => ELECTRICAL_REF); 

The complete test bench is included on the CD-ROM that is provided 
with this book. 
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Figure 7-23. Simulation of frequency changes when altering the control voltage 

Figure 7-23 shows the simulation results. When the control voltage is 
zero, the output oscillates at the free running frequency of 1 kHz. At time 
10.2 ms a negative control voltage of –15 mV is applied. This leads to a 
negative frequency of 
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Therefore the oscillation stops after the next transition. At 12.2 ms a 
voltage of 5 mV is applied to the control input, which leads to a frequency of 

3 5 3
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Thus, the oscillator restarts with a halfperiod of 1 ms, that is a falling 
edge at approximately 13.2 ms. 

7.3.6 Filters

Functional description 

Filters are mainly characterized by their behavior in the frequency 
domain. Some frequencies of the input signal pass through the filter 
(passband), while others are rejected (stopband). Real filters have, in 
contrast to ideal filters, a transition band in between, where the frequency 
response changes continuously from passing to rejection (see Figure 7-24). 
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Figure 7-24. Frequency response of a real lowpass filter 

We may distinguish between highpass, lowpass, bandpass and bandstop 
filters. Depending on the type of polynomial used in the transition function 
H(s), different types of filters are available such as Chebyshev, Butterworth, 
elliptical, etc. The frequency responses differ in the tolerances of passband, 
stopband and the slope of the transition. Other categories of filters are 
possible, for example analog or digital, finite or infinite impulse response 
(FIR and IIR). A general block diagram is shown in Figure 7-25. 

Figure 7-25. Block diagram of an RF filter model 

In this section we only consider Butterworth type filters, which are 
known to have a maximally flat frequency response. For a lowpass filter this 
is expressed in the Laplace domain as 
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where S is the complex variable normalized on the frequency fg.
Through transformation of the variables a highpass description can be 

obtained from this lowpass transfer function. 
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The main characteristics of the lowpass filter are as follows: 

The filter gain is measured at zero frequency 
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The grade n of filter, which is the exponent of the highest power of S in 
H(S) and determines the range of the transition band as well as the 
attenuation in the stopband. 
Note: In our implementation the grade n of the filter is limited to 6, since 
a more general model using the GENERATE construct of VHDL-AMS is 
not yet supported by the simulator. 
Coefficients of the transition function H(S) are for even values of grade n
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and for odd values of grade n
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The cut-off frequency fg (or 3dB frequency) is measured where the gain 
drops to 

0

2
a

Input and output impedances are modeled as ohmic resistances. Typical 
values of a matched system are: 50in outR R

Additional characteristics, that were not modeled here, include second 
order effects such as temperature and power supply dependency of the filter 
characteristic, and power consumption. 
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Model interface 
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Figure 7-26. Schematic symbols of different filters 

Table 7-21. Model ports 
Name Type Description 
INP ELECTRICAL Positive input pin 
INN ELECTRICAL Negative input pin 
OUTP ELECTRICAL Positive output pin 
OUTN ELECTRICAL Negative output pin 

Table 7-22. Model parameters 
Name Unit Default value Description 
GAIN dB 0.0 Maximum power gain of amplifier 
FG Hz 1.0 Cut-off frequency 
GRAD   1 Grade of filter 
RIN Ohm 50.0 Input resistance 
ROUT Ohm  50.0 Output resistance 

Model implementation 

The filter coefficients are precomputed within a package and given to the 
model as a vector.  

function LOWPASS_BUTTERWORTH_A (GRAD : INTEGER)
return REAL_VECTOR is
constant NU  : INTEGER := (GRAD+1)/2; 
variable A   : REAL_VECTOR (1 to NU); 

begin
if GRAD mod 2 = 0 then

    for I in 1 to GRAD/2 loop
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      A(I) := 2.0*COS((2.0*REAL(I)-1.0)*MATH_PI/2.0/REAL(GRAD)); 
end loop;

else
    A(1) := 1.0; 

for I in 2 to (GRAD+1)/2 loop
      A(I) := 2.0*COS((REAL(I)-1.0)*MATH_PI/REAL(GRAD)); 

end loop;
end if;
return A; 

end function LOWPASS_BUTTERWORTH_A; 

function LOWPASS_BUTTERWORTH_B (GRAD : INTEGER)
return REAL_VECTOR is
constant NU  : INTEGER := (GRAD+1)/2; 
variable B   : REAL_VECTOR (1 to NU); 

begin
if GRAD mod 2 = 0 then

for I in 1 to GRAD/2 loop
      B(I) := 1.0; 

end loop;
else

    B(1) := 0.0; 
for I in 2 to (GRAD+1)/2 loop

      B(I) := 1.0; 
end loop;

end if;
return B; 

end function LOWPASS_BUTTERWORTH_B; 

The model implementation is included on the CD-ROM that is provided 
with this book. 
Simulation example 

The simulation is performed with six lowpass filters in parallel, which 
have an increasing filter grade from one to six. A step signal of amplitude 
one is applied to all filter blocks. The model call for the filter with degree 
one looks like: 

UUT1: entity LOWPASS_FILTER (BHV_RF) 
generic map (GAIN, FG, 1) 
port map (I1, ELECTRICAL_REF, O1, ELECTRICAL_REF); 

The complete test bench is included on the CD-ROM that is provided 
with this book. 
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Figure 7-27. Simulation of filter responses in time and frequency domain 

Figure 7-27 shows the simulation results. In the frequency domain it can 
be seen how the attenuation in the stop-band increases with the filter grade 
( 20dB decaden , n…filter grade). The attenuation of 3 dB compared to a0
at the cut-off frequency is common to all six curves. 

In the time domain, filters with a higher grade show a slower step 
response and more overshooting. 
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7.3.7 Switch

Functional description 

Opening or closing a branch in a network always requires a structural 
change in the describing system of equations. Therefore these changes are 
difficult to model and to handle by the simulator. Here we use a simple 
modeling method where only the resistance of a network branch changes 
from a very high to a very low value. 

Figure 7-28. Block diagram of the switch model 

The main characteristics of the switch model are as follows. 

Switching between two adjustable resistances Ron and Roff according to 
the control signal. 
Adjustable transition time for on and off switching (ton and toff) using 
the ‘ramp construct. 
Further refined models would include a nonlinear transition behavior 

instead of a piecewise linear characteristic. 
Model interface 

p

switch

c

m

Figure 7-29. Schematic symbol of a switch 
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Table 7-23. Model ports 
Name Type Description 
P ELECTRICAL Positive pin
M ELECTRICAL Negative pin
C in STD_LOGIC Control port 

Table 7-24. Model parameters 
Name  Unit Default value Description 
RON Ohm 1.0e-03 Resistance when switch is closed 
ROFF Ohm 1.0e06 Resistance when switch is open 
TON s 1.0e-06 Transition time for rising edge (off to on) 
TOFF s 1.0e-06 Transition time for falling edge (on to off) 

Model implementation 
architecture RAMP of SWITCH is

signal   R_VAL : REAL := ROFF; 
quantity V_SW across I_SW through P to M; 

begin

  R_VAL <= RON when C = '1' else
           ROFF when C = '0'; 

  V_SW == R_VAL'RAMP(TON, TOFF)*I_SW; 

end architecture RAMP; 

The complete model is included on the CD-ROM that is provided with 
this book. 

7.3.8 General n-bit A/D and D/A converter 

Functional description 

An analog to digital and a digital to analog converter are presented with a 
general n-bit vector interface at the digital side. The equivalent analog power 
is parameterizable by a model parameter. The A/D converter is triggered 
with an additional clock input. Figure 7-30 shows the block diagrams of both 
the A/D and the D/A converter. 
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Figure 7-30. Block diagram of A/D and D/A converter models 

The main characteristics of the converter models are as follows. 

Bit vector input has arbitrary width. 
Maximum power at the analog pin can be parameterized by pmax_dBm
and leads to a maximum voltage of 

30
102 10

pmax_dBm

va rout

When a bit vector of width d’length is used, the maximum power is 
subdivided into '2 1d length  steps, so the least significant bit corresponds 
to a voltage of 

'2 1lsb d length

vav

Transition times for rising and falling edge are included. 
The output impedance is modeled as an ohmic resistance 

Additional characteristics, that were not modeled here, include  
Dead time and hysteresis for conversion 
Nonlinear conversion characteristic 
Power consumption 
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Model interface 

a2d

a d

gnd

clk

Figure 7-31. Schematic symbol of A/D converter 

Table 7-25. Model ports of A/D converter 
Name  Type Description 
A ELECTRICAL Analog input 
GND ELECTRICAL Analog ground 
D out BIT_VECTOR Digital output 
CLK in BIT Clock input 

Table 7-26. Model parameters of A/D converter 
Name  Unit Default value Description 
PMAX_DBM dBm -100.0 Maximum power amplitude 
RIN Ohm 50.0 Input resistance 

d2a

ad

gnd

Figure 7-32. Schematic symbol of D/A converter 

Table 7-27. Model ports of A/D converter 
Name  Type Description 
D in bit_vector Digital input 
A ELECTRICAL Analog output 
GND ELECTRICAL Analog ground 
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Table 7-28. Model parameters of A/D converter 
Name  Unit Default value Description 
PMAX_DBM dBm -100.0 Maximum power amplitude 
T_RISE s 1.0e-09 Transition time for rising edge 
T_FALL s 1.0e-09 Transition time for falling edge 
ROUT Ohm 50.0 Output resistance 

Model implementation 

The VHDL-AMS code of the digital process for D/A conversion is given. 

  -- conversion process 
process (D) is

variable NUMBER  : INTEGER; 
begin

      NUMBER := 0; 
for I in D'HIGH downto D'LOW loop

        NUMBER := 2 * NUMBER; 
if D(I) = '1' then

          NUMBER := NUMBER + 1; 
end if;

end loop;

      VALUE <= REAL(NUMBER)*VSB; 
end process;

The complete source code of A/D and D/A converter models are included 
on the CD-ROM that is provided with this book. 
Simulation example 

A pseudorandom binary source was used as the input for the digital to 
analog converter. It has been parameterized with a generator polynomial 
length of six, corresponding to a sequence period of 127 bits, and an output 
frequency of 5 MHz, corresponding to a bit time of 200 ns. The source and 
the D/A converter were instantiated with the following parameters. 

  SRC3: entity PRBS(SHIFT_REGISTER) 
generic map (POLYGRAD => 6, 

                       BIT_TIME => 1.0/(5.0e06)*1sec) 
port map (BIT_OUT => S_BIT(0)); 

  CONV: entity D2A(BHV_RF) 
generic map(PMAX_DBM => -30.0) 

          port map (D => S_BIT,
                    A => N_A, 
                    GND => ELECTRICAL_REF); 

The complete test-bench is included on the CD-ROM that is provided 
with this book. 

The D/A converter computes a new output voltage as the input bitstream 
changes. The maximum output power value of –30 dBm corresponds to a 
voltage of 10 mV at the standard terminating resistor of 50 .



168 Chapter 7

Figure 7-33. Simulation of the D/A conversion process 

Figure 7-33 shows the simulation results in the analog and the digital 
domain. In the upper half of the results window the whole sequence of 150 
bits over 30 µs is depicted. The lower half shows a zoom view of the region 
of 20 ns. There is to be seen that after a change on the digital side the analog 
voltage immediately follows with a rising edge of 1 ns duration (default 
value).

A second example was created to test the A/D converter in series with the 
D/A converter. Therefore as the input signal a sine wave is first sampled and 
converted to a digital signal. Then the sine wave is reconstructed by 
converting the digital signal back to the analog domain. The converters were 
instantiated with the following parameters. 

  A2DC: entity A2D(BHV_RF) 

generic map(PMAX_DBM => -30.0) 
port map (A => N_A,

                    GND => ELECTRICAL_REF, 
                   D => S_BIT,  
                    CLK => S_CLK); 

  D2AC: entity D2A(BHV_RF) 

generic map(PMAX_DBM => -30.0, 
                      TRISE => 1.0E-10, 
                      TFALL => 1.0E-10) 

port map (D => S_BIT,
                    A => N_A2, 
                    GND => ELECTRICAL_REF); 
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The complete test-bench is included on the CD-ROM that is provided 
with this book. 

Figure 7-34. Simulation of sampling and reconstructing a sine wave 

The results window in Figure 7-34 shows the analog input waveform at 
node n_a. It has a frequency of 50 kHz. It is sampled by the A/D converter 
with a clock signal of 5 MHz. The 4-bit vector with values between 0 and 15 
is then fed to the D/A converter. The analog result is displayed as a voltage 
at node n_a2 and follows the original sine wave. 

7.3.9 Simple channel 

Functional description 

In system level simulation, channel models often comprise all the effects 
that occur on a signal between the analog front-ends of a transmitter and 
receiver. The channel model described here only includes the basic effects of 
additive white Gaussian noise (AWGN) and delay. Figure 7-35 shows the 
block diagram of a simple channel model. 
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Figure 7-35. Block diagram of a simple channel model 

The main characteristics of the simple channel model are as follows. 

Additive white Gaussian noise (AWGN) with power level pn_dBm,
which is specified by the input signal power ps_dBm and the signal-to-
noise ratio s_to_n

_ 30
10

010
pn dBm

vn Z , where pn_dBm ps_dBm s_to_n

1
1 22 log( ) cos(2 )noisev vn x x , where x1, x2 are uniformly 

distributed random numbers ( 1,2 10 1, 0x x )
For the input signal a delay td can be specified. 
Input and output impedances are modeled as ohmic resistances with 
default values 

0 50in outZ R R

Additional characteristics, that were not modeled here, include multi-path 
propagation of the signal due to reflection with different delays and damping 
factors for different paths, frequency response, nonlinear distortion, etc. 
Thus far the model is very general and suited to RF applications as well as to 
wired data transmission, where effects like crosstalk and reflection due to 
mismatch are predominant. 
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Model interface 

Figure 7-36. Schematic symbol of AWGN channel 

Table 7-29. Model ports 
Name Type Description 
P_IN ELECTRICAL Connection pin 
P_OUT ELECTRICAL Connection pin 

Table 7-30. Model parameters 
Name   Unit Default value Description 
PS_DBM dBm -100.0 Input signal power in dBm 
S_TO_N dB 100.0 Signal-to-noise ratio 
FS_NOISE Hz 1.0e06 Sampling frequency of noise signal 
TD s 0.0 Time delay for input signal 
RIN Ohm 50.0 Input resistance 
ROUT Ohm 50.0 Output resistance 

Model implementation 

The core of the model is the following digital process that generates time 
discrete white Gaussian noise. 

process is
variable X1,X2,X: REAL := 0.0; 
variable SD1: POSITIVE := 111; 
variable SD2: POSITIVE := 333; 

begin
    UNIFORM(SD1, SD2, X1);     -- uniform gives a value 0<x<1 
    UNIFORM(SD1, SD2, X2);     -- defined in ieee.math_real
    X:=VN*COS(MATH_2_PI*X1)*SQRT(-2.0*LOG(X2)); 
    S_NOISE<=X; 

wait for PERIOD; 
end process;

The complete model is included on the CD-ROM that is provided with 
this book. 
Simulation example 

In the simulation example a single-tone of 1 kHz and –30 dBm was fed 
to the channel model, which is parameterized with a signal-to-noise ratio of 
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20 dB and a sampling frequency for the noise signal of 1 MHz. The channel 
model was instantiated with the following parameters. 

CHN: entity CHANNEL(AWGN) 
generic map (PS_DBM => -30.0, 

                    S_TO_N => 20.0, 
                    FS_NOISE => 1.0e06)

port map (P_IN=>N_1, P_OUT=>N_2); 

The complete test-bench is included on the CD-ROM that is provided 
with this book. 

Figure 7-37. Results of the AWGN channel simulation in time domain 

Figure 7-37 shows the simulation results. The input signal is 
superimposed by a noisy signal, which is depicted as the difference (diff)
between the input and the output signal (V:bench:n_2).
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Figure 7-38. Time domain analysis of the noise signal 

In the frequency domain (upper part of Figure 7-38) a peak of –40 dB at 
1 kHz is seen, which corresponds to input power of –30 dBm. The noise 
floor is around –90 dB and “white” up to 1 MHz (although it is only 
displayed to 100 kHz to allow visibility of the input signal at 1 kHz). In 
addition the analysis of the signal-to-noise ratio is shown. The integration 
yields 

Fmax

Fmin
Fmax

Fmin

( )
SNR 20.01dB

( )

S

N

S f df

S f df

where SX(f) is the power spectral density (PSD) of signal X. This value 
matches the chosen parameter value S_TO_N=20 dB. 

From the difference signal in the time domain a histogram is computed 
using the post processing capabilities of the waveform tool (lower part of 
Figure 7-38). In the histogram the Gaussian nature of that noise can be 
observed.
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7.4 Measurement and Observation Units 

Table 7-31. Overview on measurement and observation units 
Model Properties
Peak detector Simple model using 'SLEW attribute 
Frequency measurement unit Frequency measurement for periodic signals 
Power meter Logarithmic measure of the average power 

7.4.1 Peak detector 

Functional description 

The function of this block is to keep track of the maximum value of a 
signal. Whenever the input signal rises the output immediately follows. If 
the input signal falls, the output remains constant. Figure 7-39 shows the 
block diagram of the peak detector. 

Figure 7-39. Block diagram of an ideal peak detector 

The main characteristics of the peak detector model are as follows. 

The ‘slew-Attribute is applied to the input signal with an infinite slew 
rate for the rising edge (REAL'HIGH) and an almost zero slope for the 
falling edge (-10-38)
Additional characteristics, that were not modeled here, include input 

impedance, and exponential decay. 
Model interface 

Figure 7-40. Schematic symbol of a peak detector 



SELECTED RF BLOCKS IN VHDL-AMS 175

Table 7-32. Model ports 
Name Type Description 
INP ELECTRICAL Input pin 
OUTP ELECTRICAL Output pin 

There are no parameters for the peak detector model. 
For a model implementation and an example test-bench see Section 6.3.5. 

The complete model is included on the CD-ROM that is provided with this 
book. 

7.4.2 Frequency measurement unit 

Functional description 

The frequency measurement unit determines the timing distance between 
two rising edges for a given threshold value. The reciprocal value is output 
as frequency. Figure 7-41 shows the block diagram of the frequency 
measurement unit. 

Figure 7-41. Block diagram of the frequency measurement unit 

The main characteristics of the VCO model are as follows. 

The voltage across P_1 and P_2 is measured without influencing the 
connected network, that is no internal resistance is modeled. 
The event, when a threshold is crossed, is determined using the ‘above
attribute, which leads to a time discrete signal. In this realization the 
threshold value is fixed and specified by a parameter of the model. 
The time discrete signal is handled in a digital process. When a rising 
edge is detected, the timing difference and the reciprocal value are 
computed. 
The resulting signal is converted back into a time continuous real 
quantity using the break statement. 
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For noisy signals at the input, errors may occur due to many threshold 
crossings at a single positive edge. 
For the first period, the frequency output is set to zero. 

Model interface 

P_1

freq

f_Hz

P_2

1/f

Figure 7-42. Schematic symbol of the frequency measurement block 

Table 7-33. Model ports 
Name Type Description 
P_1 ELECTRICAL First pin 
P_2 ELECTRICAL Second pin 
F_HZ out REAL Output frequency 

Table 7-34. Model parameters 
Name Unit Default value Description 
THRESHOLD V 0.0 Threshold value for period measurement 

Model implementation 

The central element of the model is the digital process, where edge 
detection and timing difference calculation, including initialization and 
reciprocal generation, take place. 

  -- digital process 
process (S_12) is

begin
if S_12 then

        T_OLD<=NOW; 
if NOW>T_OLD and T_OLD>0.0 then

          S_FREQ<=1.0/(NOW-T_OLD); 
else

          S_FREQ<=0.0; 
end if;

end if;
end process;
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The complete model is included on the CD-ROM that is provided with 
this book. 
Simulation example 

For the simulation example a VCO is controlled by a sinusoidal 
waveform. The VCO has a free running frequency of 1.5 kHz and a 
sensitivity of 100 kHz/V. The controlling sine wave has an amplitude of 
5 mV, which produces a frequency variation at the output of the VCO of 
+/-500 Hz.

The frequency measurement unit is instantiated without any parameter 
values, therefore the default threshold value of 0.0 applies. 

Figure 7-43. Simulation of the frequency measurement at the output of a VCO 

Figure 7-43 shows the controlling sine wave (n_ctrl) at the input of the 
VCO, the frequency modulated sine wave (n_clk) at the output of the VCO, 
and the output of the frequency measurement unit (frequency). The 
quantization of that signal is due to the frequency only being determined at 
zero crossings of the observed signal. This also leads to a time delay 
between the controlling voltage and the resulting frequency measurement 
signal. Both effects are shown here to demonstrate the model behavior, and 
they are less severe at higher frequencies of the input signal. 

For the first period, where the frequency is not known yet, the value of 
the frequency measurement signal is set to zero. 
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7.4.3 Power meter 

Functional description 

The power meter can be used as a post processing element in RF 
simulations. The average power of a periodic signal is computed and 
provided on a logarithmic scale. There are two architectures of this model 
for different applications: a feedthrough power meter and a terminating 
power meter. 

Figure 7-44. Block diagrams of power meter architectures: a) feedthrough, b) terminating 

The main characteristics of the power meter model are as follows. 

Determination of the instantaneous power 
architecture feedthrough: 1 12( ) ( ) ( )p t v t i t
architecture terminating: 12 12( ) ( ) ( )p t v t i t
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Integration over specified period 

1 ( )i

i

t t_integ

i t
p p t dt

t_integ

Note: An input signal is assumed which is periodic with a period of 
t_integ, but is not necessarily sinusoidal. 

Logarithmic output as a real quantity 

1010 log
1mW

ipp_dBm , with 0ip

Note: The logarithmic measure can only be computed from positive 
power values. Therefore the model is restricted to measure the power of 
consumers, where the integrated power over time is positive.  
For zero and negative values of power the logarithmic measure is set to 
-300 dBm, which corresponds to 10-33 W.

Current measurement source for the feedthrough architecture with value 
12 0v

Termination impedance for the terminating architecture, modeled as 
ohmic resistance: 50termr

Model interface 

P_1

power_meter

p_dBm

P_2

u*i dt

t_integ

Figure 7-45. Schematic symbol of power meter 



180 Chapter 7

Table 7-35. Model ports 
Name Type Description 
P_1 ELECTRICAL First measurement pin 
P_2 ELECTRICAL Second measurement pin 
P_DBM out REAL Output power 

Table 7-36. Model parameters 
Name Unit Default value Description 
T_INTEG s 1.0e-03 Integration period 
R_TERM Ohm  50.0 Termination resistance (feedthrough only) 

Model implementation 

There is little difference between both architectures. Architecture 
feedthrough uses a source with zero voltage and can therefore be used as a 
connection between matched blocks. 

…
  V_12 == 0.0; 
  P_INT'DOT == V_1 * I_12; 
…

In contrast, architecture terminating uses a termination resistor and is 
therefore suitable at the end of an analog signal processing chain where 
matching is required. 

…
  V_12 == I_12 * R_TERM; 
  P_INT'DOT == V_12 * I_12; 
…

The complete models of both architectures are included on the CD-ROM 
that is provided with this book. 
Simulation example 

For the simulation example a sinusoidal signal of 1 kHz is used as input, 
whose amplitude is modulated by a second signal of 1 Hz. Since both 
frequencies are so distanced from each other, the amplitude during one 
period of the first frequency can be regarded as constant. 

This signal is fed to an LNA with 6 dB power gain and a 3rd order 
intercept point of 23 dBm. The signal power is monitored at the input and 
output of the LNA using feedthrough and terminating architectures of the 
power meter, respectively (see Figure 7-46).   



SELECTED RF BLOCKS IN VHDL-AMS 181

Figure 7-46. Schematic of the simulation example 

The models were instantiated with the following parameters.   

  SRC1: entity P_SIN(AM) 
generic map (PA_DBM => -40.0, 

                       FREQ   => 1.0e03, 
                       FREQM  => 1.0, 
                       MDI    => 10.0)

port map (P => N_1,
                    M => ELECTRICAL_REF); 

  LNA1: entity LNA(RF) 
generic map (GP_DB   => 6.0,

                       IP3_DBM => -23.0) 
port map (P_IN => N_10,

                    P_OUT => N_2,
                    VDD => N_VDD, 
                    GND => ELECTRICAL_REF); 

  PWRi: entity POWER_METER(FEEDTHROUGH) 
generic map (T_INTEG => 1.0e-03) 
port map (P_1 => N_1, 

                    P_2 => N_10,
                    P_DBM => P_IN); 

  PWRo: entity POWER_METER(TERMINATING) 
generic map (T_INTEG => 1.0e-03) 
port map (P_1 => N_2, 

                    P_2 => ELECTRICAL_REF,
                    P_DBM => P_OUT); 

The complete test bench is included on the CD-ROM that is provided 
with this book. 
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Figure 7-47. Simulation of the nonlinear characteristic of the LNA 

As shown in Figure 7-47 the input signal, which should be doubled in 
magnitude (power gain of 6 dB), is distorted while passing the LNA. Since 
the amplitude of the sine wave varies slowly, it is nearly constant during a 
single period, as displayed in the enlarged diagram. The power of the input 
and output signal is measured using the power meter. The resulting transfer 
characteristic is displayed in Figure 7-48. 
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Figure 7-48. Transfer characteristic of the LNA computed with the power meter 

This diagram enables improved verification of the power level behavior. 
In the linear region the gain is approximately 6 dB, which we expect from 
the specification. If the input power is increased, the output is distorted an 
increasing amount by the nonlinearity of the LNA. At nearly -33 dBm the 
gain drops to 5 dB, which is therefore said to be the 1 dB compression point.  

From theory (see [Kun02]) we know that the 1 dB compression point is 
9.6 dB below the IIP3 in systems where the compression point is largely 
determined by the 3rd order distortion. In this simulation example we 
specified an IIP3 for the LNA of -23 dBm and measured a 1dB compression 
point of nearly -33 dBm, which meets all our expectations. 

7.5 Block Level Example of a Linear PLL 

In this section an example is reused and extended that was the 
introductory example of the VHDL-AMS chapter in Section 5.3 – the linear 
phase-locked loop (PLL). After the previous sections introduced a library of 
basic RF building blocks, the PLL will be now build up from these blocks by 
instantiating and parameterizing them. Some background information is 
initially provided to give a starting point for the following detailed analysis. 
Then the behavior of the assembled block level example can be verified by 
means of simulation and mathematical computations.  
Background

The phase-locked loop is a circuit where the output signal tracks the 
input signal with respect to phase and frequency. A PLL is used in many 
applications specifically as a frequency synthesizer and frequency divider. 
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The name phase-locked loop indicates the structure, which is a closed 
control loop as depicted in Figure 7-49. 

Figure 7-49. Block diagram of a phase-locked loop 

The phase of the signal is compared to the phase of a reference input 
signal. The phase detector converts the phase difference into a proportional 
voltage, which is then followed by a loop filter to reject unwanted 
frequencies. The filtered signal is a measure for the frequency of the input 
signal. To close the loop, the loop filter output is fed to a voltage controlled 
oscillator (VCO), which generates a sine wave with proportional frequency. 
Now the loop starts again with a phase comparison in the phase detector. If 
the input frequency increases the lowpass filtered output signal rises and in 
turn produces a higher frequency in the VCO until the frequency of both the 
reference and the internal signal are equal. 

Analyzing the PLL is rather complex, especially its dynamic behavior. 
For a detailed study of static and dynamic parameters like lock range, pull-
out range, pull-in range, and hold-in range see [Bes03].  

We want to keep the analysis simple and consider only a PLL which is 
already locked and remains locked. In this case the behavior can be treated 
as linear and the transfer function of the whole system can be obtained by 
combining the individual transfer characteristics of the building blocks. 
Furthermore, we restrict the calculation to a linear PLL (LPLL). Other types 
are known, such as digital PLL (DPLL), all-digital PLL (ADPLL), and 
software PLL (SPLL). For all types, the basic working principles remain the 
same.  

Consider two sinusoidal signals, one a cosine wave from the reference 
source

1 1 1 1( ) cos( ( ))u t a t t
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and the other a sine wave from the VCO 

2 2 2 2( ) sin( ( ))u t a t t .

Both are fed into a mixer, which is the phase detector for a linear PLL 
and in the simplest case is essentially a multiplier. 

1 2 1 2 1 1 2 2( ) ( ) cos( ( )) sin( ( ))u t u t a a t t t t

In the locked state we have equal frequencies 1 2 , but maybe a 
phase error 2 1( ) ( ) ( )e t t t  is present. With the theorem for 
trigonometric functions  

1
2cos sin sin( ) sin( )x y x y x y

we yield at the output of the mixer 

1 2
1 2 1 2 1 2

1 2 1 2
2 1 1 2

( ) ( ) sin 2 ( ) ( ) sin ( ) ( )
2

sin ( ) ( ) sin 2 ( ) ( )
2 2

a au t u t t t t t t

a a a at t t t t

If we suppress the term at the double frequency by filtering, and 
substitute for small phase errors sin x x , we have 

1 2

1 2
2 1

1 2
2 1

( ) ( ) ( )

sin ( ) ( )
2

( ) ( )
2

du t u t u t
a a t t

a a t t

In the Laplace domain with 2 1( ) { ( )} { ( ) ( )}es t t tL L  and  

1 2 2dK a a  the mixer characteristic can be described as

( ) (s)d d eU s K

For the filter characteristic we choose a first order lowpass filter  
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0( ) 1( )  with 
( ) 1 2

f
g

d g g

U s AF s
U s s f

where 0A  is the filter gain and g  is the time constant of the first order 
pole.

The VCO is defined by the equation  

2 2 2 2( ) sin( ( ))u t a t t

where the phase is controlled by the input voltage via 

2 ( ) ( )f ft K u t

Thus, the VCO behaves like an integrator if we consider the phase of the 
VCO signal 2 ( )t  with respect to the control voltage ( )fu t . In the Laplace 
domain the VCO characteristic is therefore 

2 ( ) ( )f
f

K
s U s

s

The theoretical system behavior of the linearized PLL model is 
summarized in Figure 7-50, where the block names are replaced by their 
transfer functions in the Laplace domain. 

1( )s

2 ( )s
( ) ( )d d eU s K s ( )fU s

Figure 7-50. Linearized PLL model in the Laplace domain 

The overall characteristic of the PLL can now be obtained using control 
theory, which says that the transfer function of a closed loop is the transfer 
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function of the open loop divided by this function plus one. The phase-
transfer function is therefore given by 

2

1

0

0

( )( )
( )
( )

1 ( )

(1 )

d f

d f

d f

d f g

sH s
s

F s K K s
F s K K s

A K K
A K K s s

From the denominator, which is in the normalized form written as 
2 22 n ns s , we obtain an estimate of the natural frequency n and the 

damping factor  of the PLL 

0

0

1
2

n d f g

d f g

A K K

A K K

These parameters are important to evaluate the performance and the 
stability of the circuit. 
Objective

A phase-locked loop will be constructed according to the block diagram 
in Figure 7-49 using the following list of parameters. 

Table 7-37. PLL block parameters 
Block Parameter Value 
Mixer Power gain 12.0 dB 
 IP3 -10 dBm
Filter Gain  0 dB

Corner frequency 100 kHz 
 Filter grade 1 
VCO Amplitude -30 dBm

Free running frequency 1 MHz 
 Sensitivity 1 Hz/V

A reference signal is applied to the input of the PLL using a piecewise 
linear voltage source and a VCO with a cosine output signal and the 
following list of parameters. 
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Table 7-38. PLL test-bench parameters 
Block Parameter Value 
Piecewise linear source Amplitude 0 s (initial) 0 µV 

Amplitude 100 µs 50 µV 
Amplitude 200 µs 100 µV 

VCO Amplitude -30 dBm
Free running frequency 1 MHz 

 Sensitivity 1 GHz/V

The PLL is simulated over 300 µs with particular attention to 
– input control signal 
– input reference clock signal 
– output clock signal (output of the PLL internal VCO) 
– lowpass filtered signal 

With the specified set of parameters the control loop of the PLL should 
perform a damped oscillation when the input reference signal is abruptly 
changed. This oscillation can be observed at the output of the filter and 
has a period Tr. Figure 7-51shows the period of the damped oscillation. 

t

x(t)

1
2 2
r

r

T
f

Figure 7-51. Period measurement of the damped oscillation 

The PLL model can then be verified by mathematical analysis. The 
theoretical period of the damped oscillation can be computed from the 
model parameters of the PLL using the relationship for the angular 
frequency 2 2 2(1 )r n , where the natural frequency n and the 
damping factor  are specified above. The theoretical period will be 
compared to the simulation result. 
Note: Since we use a first order filter here for simplicity, there will still 
be some oscillation on the filtered signal. Nevertheless an estimation of 
the period should be possible, which is sufficient to verify the 
fundamental conformity.    



SELECTED RF BLOCKS IN VHDL-AMS 189

Solution

The complete models of the PLL and the test-bench for the example 
solution are included on the CD-ROM that is provided with this book. 
Simulation results for the control voltage at node N_ctrl and for the 
output of the lowpass filter N_tp are shown in Figure 7-52. 

Figure 7-52. Results of the PLL simulation  

The period of the damped oscillation can be estimated to / 2 3.8 µsfT
from the simulation results in Figure 7-53. 

Figure 7-53. Period measurement in the simulation results 
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For the exact computation of the frequency we need the individual 
transfer factors of the blocks  
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Consequently for the damped oscillation frequency we get 
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This yields a theoretical value for the half period of / 2 3.8µsfT , which 
matches the value obtained from the simulation results. 
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8. MACROMODELING IN VHDL-AMS 

8.1 Introduction

The term macromodeling has been used for different meanings in the 
past. Therefore the term we use here is first clarified together with an 
overview of the modeling method. 

Afterwards, a set of building blocks that can be used for macromodeling 
is presented. We use the VHDL-AMS hardware description language here to 
describe the behavior of the blocks. 

Using these building blocks a simple but extendible macromodel is 
constructed for the operational amplifier (OpAmp), which is a very 
important system component. 

8.2 General Methodology 

Macromodeling is a well known and frequently used modeling method 
for many years [BCP74], [CaS91]. Historically the term is used for structural 
modeling for SPICE-like network simulators [CoC92]. It is assumed that the 
original circuit can be subdivided into smaller blocks (macros) which are 
describable independently of each other, that is, they are only weakly 
coupled. Each block of the circuit contains a number of active and passive 
elements. During the modeling step the block is replaced by a network of 
ideal controlled sources and other ideal basic elements. Thus the resulting 
macromodel consists of blocks which are individually modeled by idealized 
network elements to represent a particular functionality of the overall circuit. 

Presently macromodeling is mostly used in a wider sense. The circuit is 
divided again into smaller weakly coupled subsystems. However, these 
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blocks or macros can be modeled by many different means of description, 
including:

Substitution network with idealized network elements 
Behavioral description with suitable HDL 
Hierarchical composition of behavioral and structural descriptions 
Coupling to a specialized simulator 

A very common method of subdividing a circuit into blocks is shown in 
Figure 8-1. 

Figure 8-1. General structure of a macromodel 

The input and output stages are modeled very precisely using, for 
instance, the first and last transistor stages from the circuit, respectively. 
Between both stages the functional characteristic is modeled by a transfer 
stage. This subdivision has a number of advantages: 

Since input and output stages use the same transistors at the border as the 
circuit, the model “looks like” the circuit from the outside world of the 
surrounding circuitry.  
This implies that the circuit and model can be exchanged with each other, 
which is called pin-compatibility, because both are compatible with 
respect to their pins. 
In the transfer stage the functionality can be modeled in a very abstract 
way without too many details, since it is not directly connected to the 
outside world. 
This significantly saves computing time and therefore even allows 
simulation of very complex circuits together with their overall 
applications.

The separation of the functionality from the pin behavior is an important 
aspect for choosing the appropriate means of description. For input and 
output stages electrical terminals with conservative behavior must be used, 
whereas the transfer blocks can be described with non-conservative signals. 
This allows to apply signal flow models, or even data driven descriptions, 
that are especially well suited for functional blocks. 
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The methodology described proves especially useful for digital circuits in 
an analog environment. In this case the input and output stages remain 
analog, whereas the transfer stage is modeled using abstract digital means of 
description (for example logic gates, register transfers). Between the stages 
a-to-d and d-to-a converters must be inserted. Usually it is sufficient to use 
simple conversion characteristics for the converters (see Figure 8-2). 

Figure 8-2. Structure of a mixed-signal macromodel 

In a chain of digital blocks the d-to-a converters at the output and the a-
to-d converters at the input of the next stage can be omitted, provided that 
the internal signals do not need to be monitored. 

The macromodels described require a true mixed-signal simulation. 
Behavioral descriptions of these macromodels are best supported by mixed-
signal HDLs, such as VHDL-AMS. They allow seamless integration of 
analog and digital together with conservative and non-conservative parts into 
one behavioral model. 

To further generalize the macromodeling principle we can extend the 
macromodel structure as exemplified in Figure 8-3. 

Input
stage

Output 
stage

Input
stage

Input
stage

Figure 8-3. Extended structure of a macromodel 
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Between the input and output stages several blocks are placed, each 
representing a part of the overall functionality (for example biasing, linear 
gain, nonlinear distortion, frequency characteristic, current/voltage 
limitations, power supply dependency). 

The key point is the assumption that certain functions of the circuit can 
be individually modeled independently of each other and then superimposed 
to form the resulting macromodel. 

In the following section typical examples of input and output (I/O) stages 
are presented. Thereafter a simple example of an OpAmp macromodel is 
constructed from simplified stages for input, output, and transfer. 

8.3 Input and Output Stages 

The macromodeling methodology presented in the previous section is a 
common way to describe integrated circuits for system simulation. For input 
and output stages typical building blocks can be defined that are usable for 
many applications. 

This section provides building blocks by means of a schematic of the 
stage followed by a list of properties and a table detailing the VHDL-AMS 
implementation. 

8.3.1 Input stages 

Ideal differential input 

Figure 8-4. Network schematic of an ideal differential input stage 

Properties
Infinite internal resistance 

Table 8-1. Implementation of an ideal differential input stage 
VHDL-AMS notation 

quantity V across             P1 to P2; 
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Real differential input 

Figure 8-5. Network schematic for a real differential input stage 

Properties
Finite internal resistance 
Differential input resistance 
Input capacitances 

Table 8-2. Implementation of a real differential input stage 
VHDL-AMS notation 

quantity V1 across I1 through P1; 
quantity V2 across I2 through P2; 
quantity V12 across I12 through P1 to P2; 
 I1  == C * V1’DOT; 
 I2  == C * V2’DOT; 
 V12 == R * I12; 

Differential input with offset 

Vp1

p2

n1

voff

Figure 8-6. Network schematic for a differential input stage with offset 

Properties
Offset voltage 
Infinite internal resistance 
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Table 8-3. Implementation of a differential input with offset 
VHDL-AMS notation 

quantity V11 across I11 through P1 to N1; 
quantity V12 across             N1 to P2; 
 V11 == VOFF; 

Termination resistor to ground 

Figure 8-7. Network schematic for a termination resistor to ground 

Properties
Single ended pin 

Table 8-4. Implementation of a termination resistor to ground 
VHDL-AMS notation 

quantity V1 across I1 through P1; 
 V1 == R * I1; 

Termination resistor to supply voltage 

Figure 8-8. Network schematic for a termination resistor to supply voltage 

Properties
Single ended pin 

Table 8-5. Implementation of a termination resistor to supply voltage 
VHDL-AMS notation 

quantity V1 across I1 through P1 to NUB; 
 V1 == R * I1; 
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8.3.2  Output stages 

Ideal output 

Figure 8-9. Network schematic for an ideal output 

Properties
Controlled source 
Zero internal resistance 

Table 8-6. Implementation of an ideal output 
VHDL-AMS notation 

quantity V1 across I1 through P1; 
 V1 == K * VOUT; 

Real output 

Figure 8-10. Network schematic for a real output 

Properties
Controlled source 
Internal resistance 

Table 8-7. Implementation of a real output 
VHDL-AMS notation 

quantity V1 across I1 through P1; 
 V1 == K * VOUT + R * I1; 
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Voltage limitation, structural 

Up

Um

UD

UD

p1n1 r

Figure 8-11. Network schematic for a structural voltage limitation stage 

Properties
Limitation to m D p DU U U U U  with smooth transition 
No decoupling 
Very high currents through the diodes may occur in case of limitation 

Table 8-8. Implementation of a structural voltage limitation 
VHDL-AMS notation 

quantity V1 across I1 through N1 to P1; 
quantity VP across IP through p1 to NUP; 
quantity VM across IM through NUM to P1; 
 V1 == R * I1; 
 IP == I0 * EXP(VP / UT – 1.0); 
 IM == I0 * EXP(VM / UT – 1.0); 

Voltage limitation, behavioral 

Figure 8-12. Network schematic for a behavioral voltage limitation stage 

Properties
Controlled source 
Different limiting functions possible, for example piece-wise linear, 
polynomial, logarithmic, tanh 
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Table 8-9. Implementation of a behavioral voltage limitation 
VHDL-AMS notation 

quantity V1 across I1 through P1; 
 V1 == k * VOUT – C * VOUT**3; 

Current limitation, behavioral 

Figure 8-13. Network schematic for a behavioral current limitation stage 

Properties
Controlled source 
Internal resistance depending on current flowing through it 

Table 8-10. Implementation of a behavioral current limitation 
VHDL-AMS notation 

quantity V1 across I1 through N1; 
quantity VR across IR through N1 to P1; 
 V1 == K * VOUT; 
 IR == IMAX * TANH(VR/ROUT/IMAX); 

The presented I/O macros in VHDL-AMS are just a few examples that 
typically occur in macromodels. They can be used in combination, adjusted 
with different functional forms, or extended to the specific needs of the 
designer.

The source code shown includes only the most necessary lines. 
Additional effort must be made for a working model in terms of entity and 
architecture structure, terminal declarations, and so on. However, since these 
lines of code are meant as macros, they should be inserted into working 
models. 

8.4 OpAmp Macromodel 

The operational amplifier is a building block that is very often used in 
analog circuits. It gained its name from the initial application purpose in 
analog computers. The OpAmp can easily be used for mathematical 
operations like summing, integrating, or comparing (electrical) values.  
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Although we use digital computers today, the OpAmp is applied 
everywhere in analog signal processing or signal conditioning, for example 
signal amplification, integration, buffering, impedance transformation, and 
so on. In most applications the OpAmp works within a feedback loop where 
the nominal amplification is not the primary focus. Instead linearity and 
large signal behavior have to be considered. 

The ideal operational amplifier can be characterized as follows: 

Infinite open loop gain and bandwidth 
Infinite common mode rejection ratio (CMRR) 
Infinite differential and common mode input resistance 
Zero output resistance 
Negligible offset voltage and input current 
No noise and no feedback from the output to the input 

Real OpAmps possess finite values for these characteristics. 

When modeling OpAmps the choice of which characteristics have to be 
included depends on the intended purpose. Usually we differentiate between 
first order effects that are essential for the function of the block (for example 
gain) and second order effects that can sometimes be neglected (for example 
thermal behavior). A list of examples for both categories is provided next. 

First order characteristics 
Open loop gain 
Corner frequency (3dB frequency) 
Output limitation 
Input and output impedances 

Second order characteristics 
Offset voltage 
Power dissipation 
Common mode voltage and common mode range 
Common mode rejection ratio (CMRR) 
Power supply rejection ratio (PSRR) 
Slewrate
Settling time 
Signal to noise ratio (SNR) 
Higher order poles and zeros of the transfer function 
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inp
outpOutput

stage
Input 
stage

Gain
stageinm

Frequency 
response

Figure 8-14. Block diagram of a simple OpAmp macromodel 

Figure 8-14 shows the block diagram of a simple OpAmp macromodel, 
where mainly first order effects are included. Each individual block can be 
refined according to the required accuracy of the model.  

Input and output stages may be selected from the library in the previous 
section, Section 8.2. They are responsible for the electrical behavior of the 
model to the outside world. Therefore conservative pins are used for inp,
inm, and outp. Between the stages non-conservative signals can also be used. 
This prevents feedback from the output to the input, which is not always an 
advantage in analog modeling. 

According to the macromodeling strategy more effects can now be added 
if required. Examples could include additional blocks for power dissipation 
and power supply rejection. This would require additional power supply 
pins, which again must be conservative since they have contact with the 
surrounding circuitry. 

As an example the VHDL-AMS macromodel of an operational amplifier 
is provided below. 

-- -------------------------------------------------------- 
-- Description: Behavioral model for Operational Amplifier 
-- -------------------------------------------------------- 
library IEEE; 

use IEEE.ELECTRICAL_SYSTEMS.all; 
use IEEE.MATH_REAL.all; 

entity OPAMP is
generic (AVD0 : REAL := 106.0;   -- DC differential gain [dB] 

           FP1  : REAL := 5000.0;  -- dominant pole [Hz] 
           FP2  : REAL := 2.0E6;   -- pole frequency [Hz] 
           ROUT : REAL := 75.0     -- output resistance [Ohm] 
           );

port (terminal INP: ELECTRICAL;  -- input plus terminal 
terminal INM: ELECTRICAL;  -- input minus terminal 
terminal OUTP: ELECTRICAL  -- output terminal 

        ); 
end entity OPAMP; 

architecture MACRO of OPAMP is

-- Input stage
quantity V_IN across INP to INM; 

-- Frequency Response
constant NUM_2 : REAL_VECTOR := (0 => 1.0); 
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constant DEN_2 : REAL_VECTOR := (1.0, 1.0/MATH_2_PI/FP2); 
quantity q_fr3 : REAL; 

-- Gain stage
constant AVD0_VAL : REAL := 10.0**(Avd0/20.0);
constant NUM_1 : REAL_VECTOR := (0 => 1.0); 
constant DEN_1 : REAL_VECTOR := (1.0, 1.0/MATH_2_PI/FP1); 
quantity Q_SUM : REAL; 
quantity Q_FP1 : REAL; 

-- Output stage
quantity v_out across i_out through outp; 

begin

-- Input stage 
  I_IN == 0.0; 

-- Frequency Response 
  Q_FR3 == V_IN'LTF(NUM_2, DEN_2); 

-- Gain stage 
  Q_SUM == AVD0_VAL*Q_FR3; 
  Q_FP1 == Q_SUM'LTF(NUM_1, DEN_1);   

-- Output stage 
  I_OUT == (V_OUT – Q_FP1)/ROUT; 

end architecture MACRO; 

In this example the input stage is modeled simply as an ideal differential 
input with infinite resistance and no capacitances. The following frequency 
stage represents a second pole and has a non-conservative real quantity as its 
output. This is passed to the gain stage, which is responsible for linear 
amplification of the signal and the dominant first pole. In the output stage we 
have conservative signals again and a driving voltage source with internal 
resistance. 

This simple demonstrative OpAmp macromodel contains only the most 
essential functionality. It could be modified or extended by adding additional 
stages to include the previously mentioned second order effects. 
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9. COMPLEX EXAMPLE: WLAN RECEIVER 

9.1 Introduction

Mixed-signal modeling and simulation support both top-down design and 
bottom-up verification. A general flow from system level to transistor or 
layout level and back to system level was introduced in Chapter 2 and 
detailed in the subsequent chapters. 

In this chapter the modeling methodology is applied to a practical design 
example from industry. The example shows in detail how modeling and 
simulation can support designers’ tasks. 

All modeling is performed with VHDL-AMS using the RF library 
presented in previous chapters. 

To demonstrate the major aspects of RF modeling and simulation a 
realistic design example for an industrial RF application is provided. It 
serves as a complex example demonstrating how modeling and simulation 
can support the work of RF designers. The following aims are addressed: 

Application of the VHDL-AMS hardware description language for 
behavioral and hierarchical modeling of complex circuits 
Usage of an industrial design case instead of trivial examples to 
demonstrate the benefits of modeling and simulation in the design flow 
Seamless integration of analog and digital parts of a circuit into a 
simulation of the overall behavior 
Analysis of RF specific circuit level impairments on the system level 
performance
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The complex design example is based on a system level architecture for 
wireless high-speed data transmission according to the wireless local area 
network (WLAN) standard IEEE 802.11a. For educational purposes this 
example has been simplified in a way that it might not conform to the 
standard. The example concentrates on the important parameters and 
neglects some effects to keep the example manageable.  

First the specification of the design case is covered in detail in Section 
9.2. This informal specification would be the RF part of the system 
specification provided to the RF design engineer. Next, as described in the 
top-down design flow, the system level description has to be modeled to 
obtain an executable specification, see Section 9.3. It can then be refined 
towards a circuit level model for each individual block. In the example 
provided, we begin with a circuit level simulation thereby simplifying the 
transition from system to circuit level. Using knowledge from the circuit 
level implementation, the behavioral models can be calibrated as it is shown 
in Section 9.4. The overall system behavior is then simulated with 
behavioral models for the blocks to analyze whether the designed system 
matches the one specified in terms of critical parameters. This verification is 
covered in Section 9.5. 

9.2 Example Specification 

The WLAN receiver design example consists of the RF receiver shown 
in Figure 9-1.  

Figure 9-1. Double conversion receiver architecture 
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The receiver exhibits a heterodyne architecture that is frequently used in 
wireless and radio systems. As a special case the intermediate frequency (IF) 
at the output of the first mixer is chosen to be half the radio frequency, 
resulting in an architecture known as a double conversion receiver. The main 
components of the architecture are a low-noise amplifier (LNA), mixer 
(Mixer1 and Mixer2), baseband filter (BB filter), baseband amplifier (BB 
amplifier), and frequency synthesizer. The frequency synthesizer consists of 
a reference oscillator (LO), a phase-locked loop (PLL), and a 90° phase 
shifter.

The incoming RF signal is assumed to be a 5.2 GHz OFDM (Orthogonal 
Frequency Division Multiplex) signal. For simplification of this example, 
effects of the antenna and duplexer are neglected. After signal amplification 
by a low-noise amplifier (LNA) the signal is downconverted by two mixer 
stages, both working at the same local oscillator (LO) frequency of 2.6 GHz. 
The first mixer stage converts the RF input signal to half of the RF 
frequency, with an image frequency around zero. As there is no signal at 
0 Hz, this architecture overcomes problems concerning image rejection. At 
the second mixer stage the RF input signal and the LO signal both have the 
same frequency and therefore DC-problems exist, caused by the selfmixing 
products. DC-offsets and flicker noise (1/f) are filtered out by highpass 
filtering using the capacitors between the mixer stages. In the analog 
baseband section channel selection is done by lowpass filtering, suppressing 
the adjacent and non-adjacent channels. After filtering the signal is amplified 
by an automatic gain controlled (AGC) amplifier. The following stages of 
the receiver, that is, analog-digital converter (ADC) and digital baseband, 
are not considered in this complex design example. Table 9-1 shows the 
specification of the input signal. The specification of the individual blocks is 
shown in Table 9-2. 

Table 9-1. Input signal specification 
Parameter  Unit Channel 1st adjacent 2nd adjacent 
signal power dBm -88 … -23 (=ch) ch + 16 ch + 32 
lower 3dB BB frequency MHz -8.3 … 8.3 11.7 … 28.3 31.7 … 48.3 

Table 9-2. Block specification 
Parameter Unit LNA Mixer 1 Mixer 2 BB Filter BB Amp 
RF input GHz 5.18 … 5.32 5.18 … 5.32 2.59 … 2.66 BB BB 
R_in Ohm 50 50 50 50 50 
input level dBm -88 … -23 -68 … -18 -63 … -13 -58 … -8 -58 … -8 
gain dB 5 … 20 5 5 0 12 … 62 
noise figure dB 2.5 10 10   5 
CP1dB dBm -20     
IIP2 dBm  20 20   
IIP3 dBm -5 5 5   
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The input level of the LNA is between –88 dBm and –23 dBm. This input 
signal contains the channel signal and the signals in the adjacent (1st 
adjacent) or non-adjacent (2nd adjacent) channels. Depending on this input 
level the LNA must provide a gain between 5 dB and 20 dB. The maximum 
output power must be below –15 dBm to avoid overloading of the following 
stage.

Both mixer stages have the same LO frequency of 2.6 GHz applied, that 
is half of the carrier frequency. As a consequence, the channel signal is 
around 0 Hz after being downconverted two times. The RF input frequency 
is between 5.18 GHz and 5.32 GHz for the first mixer and between 
2.59 GHz and 2.66 GHz for the second mixer. The local oscillator (LO) 
input frequency is between 2.59 GHz and 2.66 GHz for both mixers. Both 
IIP2 (input referred 2nd order intercept point, see Section 10.4.2 for details) 
and noise figure are important parameters for the mixers.  

The baseband filter is a bandpass filter used for channel selection. DC 
offsets and adjacent and non-adjacent channels have to be rejected to a level 
that ensures a sufficient sensitivity for the channel signal. In OFDM systems, 
the center subcarrier contains no data. This allows DC offsets to be filtered 
out. The distance from the center subcarrier to the next data subcarrier is 
156.25 kHz, resulting in a corner frequency of 150 kHz at the highpass pole.  

Attenuation of the adjacent and non-adjacent channels is achieved using 
lowpass filters. The highest frequency of the wanted channel is around 
8.3 MHz, so that the lowpass poles are positioned at a frequency of 9 MHz. 
A fifth-order lowpass filter is sufficient to reject the unwanted channels.

The gain of the baseband amplifier (AGC) is dependent on the signal 
level at its input. The output of the amplifier should not exceed 1 Vpp (peak-
to-peak voltage), which means 4dBm assuming an output resistance of 50 .

The frequency synthesizer generates the local oscillator signals for the RF 
mixer and for both I/Q mixers. Using the double conversion architecture 
allows the same LO frequency to be used. The orthogonality of the local 
oscillator signal generation for the I and Q components is a critical 
parameter, as a phase shift of 90° is required to guarantee a sufficient image 
rejection of the receiver. The same applies for the phase noise due to the low 
subcarrier spacing in the targeted IEEE 802.11a OFDM transmission. 

The frequency synthesizer is realized by a phase-locked loop structure, 
including a voltage controlled oscillator (VCO), and a phase shifting block. 
For simplicity the frequency synthesizer is modeled with the parameters 
shown in Table 9-3. 



COMPLEX EXAMPLE: WLAN RECEIVER 207

Table 9-3. Specification of the frequency synthesizer 
Parameter Unit Value (range) 
tunable center frequency GHz 2.59-2.66
phase noise (at 2 MHz) dBc/Hz -103
phase noise (at 20 MHz) dBc/Hz -121
orthogonality error Degrees 2

9.3 Example Modeling 

The top-down methodology begins with a very rough view of the 
transmission system as shown in Figure 9-2. A signal – which is not yet 
specified – has to be carried from a source to a sink by means of a limited 
transmission channel. These limitations require the use of a transmitter 
before and a receiver after the channel in order to compensate the non-ideal 
properties of the transmission medium. At the sending end (transmitter) the 
signal is coded and modulated, while at the opposite end (receiver) matched 
demodulators and decoders are required. 

Figure 9-2. General view of a transmission system 

According to the specification of the discussed example the transmission 
is performed in a wireless radio frequency propagation channel. A number of 
channel impairments may disturb the transmission, including: 

Additive white Gaussian noise (AWGN) 
Fading effects and echoes due to reflection 
Damping 
Nonlinear distortion 
Doppler effects 

When refining the models we focus on the receiver. This part of the 
system usually requires the most effort to implement since timing 
information of the signal is not available and therefore the signal has to be 
reconstructed after being distorted on the channel. 

The receiver is constructed with elements of the RF library introduced in 
previous chapters. These are behavioral models or hierarchical compositions 
of behavioral models written in VHDL-AMS. Figure 9-3 shows the structure 
of the receiver that is similar to the one specified except for the additional 



208 Chapter 9

splitter blocks. The VHDL-AMS model implementation of the receiver can 
be found on the CD-ROM that is provided with this book. 

I

LNA

LO

Q

Mixer2 BB Filter BB Amplifier
RF

0
90

Mixer1

PLL

Figure 9-3. Block structure of the modeled receiver 

The LNA model (see Section 7.3.1 for detailed information) only accepts 
the 3rd order intercept point as a parameter for the nonlinearity. The 1dB 
compression point cannot be chosen independently of IP3, since the model 
uses a single polynomial nonlinearity. For a detailed analysis of the same 
WLAN receiver example using RF specific model parameters and 
simulation modes see Chapter 10. 

Gain and input impedance are model parameters and are set accordingly, 
while input frequency and level are not parameters of the model.  

For mixers 1 and 2 an identical model is used from the library (see 
Section 7.3.2), which internally contains an LNA model for gain and 
nonlinearity. Again, the 3rd order intercept point is provided to the model as 
specified and the 2nd order intercept point and 1dB compression point 
cannot be parameterized. For the other parameters the same applies as for 
the LNA. 

The baseband filter is realized as a Butterworth filter with lowpass 
characteristic (see Section 7.3.6). The model describes a 5th order filter with 
corner frequency of 9 MHz as specified.  

The baseband amplifier uses the same model as the LNA. The gain is 
provided by a manually determined power budget calculation and presented 
as a fixed parameter value to the model. 

Concerning the frequency synthesizer a further refinement in the model is 
necessary. The modeled PLL is a hierarchical composition of basic building 
blocks from the RF library. We use here a similar block diagram to that in 
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Section 7.5. Additional ideal splitter blocks are introduced in order to split 
the signal without any loss due to impedance mismatch. For the intended 
application of the PLL as a frequency synthesizer, the output outclk is 
relevant, whereas other applications such as FM demodulators require the 
output out after the loop filter. 

phase 
detector loop filter

voltage 
controlled 
oscillator

refclk

outclk

out

Figure 9-4. Block diagram of the modeled PLL 

The center frequency of the PLL can be parameterized with the free 
running frequency of the VCO and is set to 2.6 GHz. Also, the initial phase 
offset and the signal power of the local oscillator can be adjusted in the VCO 
of the PLL.

Phase noise and orthogonality error are not included here. An oscillator 
model including phase noise is used in Chapter 10 for RF analyses of the 
WLAN receiver. The VHDL-AMS model of the PLL in Figure 9-4 can be 
found on the CD-ROM. 

The PLL is fed by another VCO that has the same center frequency of 
2.6 GHz. At the output of the PLL a phase shifter to splits the local oscillator 
clock into in-phase (I) and quadrature (Q) components. A simple ideal phase 
shifter model has been implemented that works at the specified LO 
frequency.  

Other elements of the receiver include the highpass filter between the 
stages. Here we use simple capacitors that, together with the input 
impedance of the following stage, form a first-order highpass filter. A corner 
frequency of 1 GHz has been chosen to suppress DC offsets effectively.  

The splitter block in the receiver is again ideal and identical to the one 
used for the PLL. Ideal in this sense means that the input signal is identically 
transferred to both outputs without any loss. To overcome the effect that the 
power is doubled in this case, which is unrealistic, further model refinements 
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are necessary. The model is sufficient if only the in-phase path of the signal 
is examined. 

In order to test the receiver a simple transmitter model needs to be 
established. Figure 9-5 shows the structure of the modeled transmitter. The 
dashed line part of the diagram is not modeled; it is drawn here only for 
completeness and to show the analogy to the receiver structure. The intended 
test simulation uses the in-phase channel (I) only. Therefore the phase shifter 
is also neglected. 

LO

RF

Q

MixerTransmit filter

0
90

Figure 9-5. Block structure of the modeled transmitter 

The upconversion of the transmitter signal to the passband of 5.2 GHz is 
done here in a single step without using an intermediate frequency. 

A simple first-order lowpass filter with corner frequency of 8 MHz forms 
the transmit filter. It does not fulfill the Nyquist criterion, so intersymbol 
interference may distort the signal. But for first test runs of the receiver it 
might suffice. The VHDL-AMS model of the transmitter can be found on 
the CD-ROM. 

As for the receiver only the RF section of the transmitter is modeled. 
Source and channel coding of the signal to be transmitted belong to 
baseband digital signal processing and are not included in this simulation. 
Specialized system simulators are available to develop this section. 
Nevertheless, since we use the mixed-signal language VHDL-AMS for 
modeling, the digital part of the circuit can be seamlessly integrated as 
VHDL blocks into the overall simulation. 

To demonstrate this procedure, a pseudorandom binary source is used as 
the input signal. It is described completely in VHDL and can be used to 
represent any baseband digital signal processing block in VHDL. 
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9.4 Example Calibration 

At this point of the design flow the initial specification of the receiver is 
subdivided into basic building blocks. The respective behavioral models in 
VHDL-AMS are basically developed from theory based on the system 
specification. Further refinement is necessary in order to improve the 
behavioral models in the way of accuracy and to fit them to circuit level 
models. 

In this section an algebraic equation is fitted to a chosen characteristic 
that is extracted from a circuit level model. The equation can be used to 
describe the behavioral model. This step introduces an abstraction to reduce 
the simulation effort of the behavioral model compared to the circuit level 
model. Simulation effort is determined by the simulation time and the 
computational power that is required to execute the model. Furthermore the 
behavioral model should not strongly deviate from the extracted 
characteristic. 

In the WLAN receiver model three amplifiers are specified, one low-
noise amplifier at the input and two baseband amplifiers (I- and Q-channel) 
at the output of the receiver. The circuit level model lnaSimple is chosen 
from the Cadence library. This model is assumed to be the circuit level 
model of the baseband amplifiers. As an example characteristic the operating 
voltage dependency of the power gain is chosen. The nominal operating 
voltage of lnaSimple is 15 V. The input frequency is set to 1 MHz because 
the input signal of the baseband amplifier is a downconverted OFDM signal. 

The circuit level model lnaSimple is simulated using SpectreRF. The 
power gain is plotted versus the operating voltage in a range from 0 V to 
20 V. Figure 9-6 shows the simulation results. 

Figure 9-6. Power gain versus operating voltage of lnaSimple 
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The characteristic obtained can be handled by several curve fitting 
algorithms provided by tools like MATLAB or Mathematica. In this case 
MATLAB is used. The MATLAB plot in Figure 9-7 shows the characteristic 
obtained from the circuit level model. 

Figure 9-7. Power gain versus operating voltage in MATLAB 

The range of the operating voltage that is used for fitting by a polynomial 
equation must be selected carefully. Close fitting of the complete curve 
results in a high degree of the polynomial and consequently leads to a high 
simulation effort of the model. Therefore only the region (12 V to 18 V) 
around the operating point of 15 V is chosen. In this region the dependency 
of the power gain from the operating voltage is linearly approximated. A 
strong deviation from the linear region can only be seen in the circuit 
characteristic below 4 V, which is far from the nominal operation point of 
15 V. The resulting deviation from the circuit model must be considered 
with respect to the required accuracy of the relevant parameter in each 
individual case. The accuracy can be enhanced by increasing the degree of 
the polynomial or by using a different function for the algebraic equation.  

MATLAB provides the function polyfit(x,y,n) where x and y are the data 
vectors of the plot (operating voltage and power gain) and n is the degree of 
the polynomial. Because the region considered is assumed to be linear, n is 
set to 1. This is also called linear regression. The output of the polyfit
function is a row vector of the polynomial coefficients, in this case: 

0.1525 14.8412p
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Thus, a dependency of the power gain from the operating voltage of 
approximately 6.5 dB/V is observed. The algebraic equation to describe the 
chosen characteristic for the behavioral model is 

0.1525 14.8412y x

where y is the power gain and x is the operating voltage. For the 
behavioral model the equation is valid in the range 12V 18Vx .

Outside of this region the behavioral model can still be used, but it will 
not reproduce the circuit behavior. A warning could be issued if the model 
range has been exceeded. 

The statistic R-square is a measure for the accuracy of the model fit and 
represents the variation of the data. R-square can be determined easily by the 
Curve Fitting Toolbox that is provided by MATLAB. The range of R-square 
is between 0 and 1, with the latter value representing a perfect fit. In the 
example R-square is 0.9906 for the considered linear region which indicates 
a suitable fitting of the behavioral model to the circuit level model.  

The MATLAB plot in Figure 9-8 shows the original curve and the fitted 
curve in a single window. 

Figure 9-8. Linear regression of the operating point region 
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9.5 Example Verification 

Verification of the WLAN receiver example is done using hierarchical 
composition of the modeled subblocks in terms of a bottom-up verification. 
Usually the subblock models have been individually calibrated and 
optimized using circuit models. After combining the optimized subblock 
models the overall system behavior is simulated. It is then possible to 
analyze whether the overall design goals and performance measures are met, 
bearing in mind the limited accuracy of the behavioral models. 

For system level verification of the receiver design example we use the 
behavioral models that were described in Section 9.3. A system level test-
bench for the receiver should include: 

Complete system level model for the design under test (DUT) 
Signal source to stimulate the DUT 
Signal processing block to adapt the source signal to the needs of the 
DUT
Analysis blocks 

Once a test-bench with these elements is established individual blocks 
can be replaced by more accurate ones or by circuit level implementations of 
the same block. Thereby the influence of this block on system level 
performance measures can be explored without needing to simulate the 
whole design at circuit level.  

The treated receiver design example is completed with a binary source, a 
digital-to-analog converter (DAC) and the test transmitter to form the system 
level test-bench. Strictly speaking this is a pure RF test-bench since all 
baseband signal processing is neglected. Figure 9-9 shows the test-bench 
configuration to verify the receiver design example. 

Figure 9-9. Testbench for system level verification 

For the sake of simplicity only the in-phase channel (I) of the 
transmission system is considered in this example. A pseudorandom binary 
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source (PRBS) supplies the input signal. The bit_vector-output of the PRBS 
is fed into a digital-to-analog converter (DAC) from the RF library yielding 
a time continuous representation of the binary sequence. This signal is to be 
transmitted over the channel. The simple transmitter model introduced 
modulates the signal on the carrier. The channel itself is, for the purpose of 
this example, not modeled, that is, it is an ideal channel without any loss. 
The receiver is used as described earlier. 

The VHDL-AMS model of the complete test-bench can be found on the 
CD-ROM.

Only a few bits are simulated since the simulation takes a very long time. 
This is mainly because of the very high carrier frequency of 5.2 GHz. This 
frequency has to be simulated because we use real passband models instead 
of complex baseband representations. For overall system parameters like bit 
error rate estimation, complex baseband models are better-suited (see 
Section 4.3) whereas our passband simulation allows us to study harmonic 
distortion due to intermodulation at the nonlinearities. 

Figure 9-10. Transmission of random bits over the RF channel 



216 Chapter 9

Figure 9-10 shows the simulation of the receiver design example in the 
testbench. The signal waveforms are shown in the time domain. 20 Bits were 
simulated at a rate of 5 kBit/s. The simulation took almost 30 minutes to 
complete over 2 µs real-time on a Sun Ultra 250 with a 400 MHz clock. A 
complete circuit level passband simulation of the same system would take 
days to simulate. 

The binary sequence is generated by a linear feedback shift register 
(LFSR) of length 3n , that is, it has a period of 32 1 7 . At the input of 
the transmitter (node n_i_in) the signal is already converted into the analog 
domain. It has a power level of  

 ( ) 30dBmp n_i_in dBm

which corresponds to  

 ( ) 10ppv n_i_in mV

at R=50  according to the formula 

( )
10( ) 10 2

dBmp n_i_in

ppv n_i_in R

The signal on the channel (node n_rf) has a frequency of 5.2 GHz and 
cannot be resolved in this diagram. 

After the receiver the waveform n_i is observed. As shown in the time 
domain representation (Figure 9-10) the original binary pattern can be 
reconstructed after transmission. The whole transmission system inserts a 
time delay of approximately 0.1 µs. A subsequent baseband section has to 
estimate this delay in order to sample the signal correctly in an analog-to-
digital converter (ADC). The output amplitude of  

 ( ) 0.889ppv n_i V

nearly matches the specified value of 1 Vpp. The difference occurs 
because of a phase error in the receiver, which leads to spurious components 
of the in-phase signal in the quadrature path. 

The method of processing the signal in the receiver can also be displayed 
in the frequency domain. Therefore an FFT was performed with input, 
output, and intermediate signals, as shown in Figure 9-11.  

The input frequency (node n_rf) lies at 5.2 GHz. Both downconverter 
stages have the same LO frequency of 2.6 GHz applied, which is half of the 
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carrier frequency. Thus after the first mixer stage the signal n_if can be 
found at both 2.6 GHz and 7.8 GHz. The second mixer stage converts the 
signal down to baseband (n_bbi). Other (partly mirrored) images of the 
required signal lie at 5.2 GHz and 6 GHz. These images are rejected by the 
bandpass filter at the receiver output. Therefore, the output signal n_i only 
contains the required baseband component. It can be observed that the gain 
of the amplifiers and the mixers raise both the signal and the noise level. 

Figure 9-11. Signal transformation in the frequency domain 
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MODELING OF ANALOG BLOCKS IN 
VERILOG-A 

10. MODELING OF ANALOG BLOCKS IN 

VERILOG-A

10.1 Introduction

This chapter deals with the modeling of analog blocks and systems in 
Verilog-A and their simulation in the Cadence Analog Design Environment
(ADE).

Verilog-A is a high-level hardware description language standard which 
is a subset of the mixed-signal modeling language Verilog-AMS. It is used 
to describe the structure and behavior of analog systems. The analog 
statements of Verilog-A can be used to describe a wide range of systems, 
such as electrical, mechanical, fluid dynamic, and thermodynamic systems. 
To specify the behavior of individual modules, mathematical relationships 
between their input and output signals can be defined. 

The simulator Spectre is the analog circuit simulation tool from Cadence 
ADE. The RF option, SpectreRF [Cad03a], provides specific simulation 
algorithms for the analysis and characterization of RF components, which 
may include frequency conversion effects. The components can be described 
at circuit level using netlists or schematics. Behavioral models can be used 
to describe higher levels of abstraction of the design. Therefore the 
simulation can be accelerated to quickly evaluate different system 
architectures. Spectre supports two behavioral modeling languages: 

SpectreHDL, which is a Cadence specific non-standard language 
Verilog-A, which has been standardized by OVI (Open Verilog 
International)
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Because of the standardization and the interoperability, Verilog-A is 
widely used. Section 10.2 is dedicated to the development of behavioral 
models in Verilog-A. Section 10.3 provides an overview of the behavioral 
models of the Cadence library rfLib. Their usage is illustrated on the 
simulation of a WLAN receiver in Section 10.4. 

10.2 Writing Custom Behavioral Models 

This section describes the development of user-defined behavioral 
models. In the first part a short overview of Verilog-A is given with respect 
to the requirements of RF modeling. An example shows the implementation 
and simulation of an RF model using Verilog-A, Cadence ADE, and 
SpectreRF. In the last section a tutorial is introduced where the reader can 
learn how to create a behavioral model in Verilog-A. 

10.2.1  Verilog-A principles 

Verilog-A (see [Acc04] and [Cad03c]) uses two different approaches to 
describe analog behavior. There are conservative systems (Kirchhoff’s laws) 
and nonconservative systems (signal flow). Both systems can be described in 
terms of mathematical equations or by interconnected systems. These 
concepts can be realized by means of ports, nodes and branches. 
Furthermore the description of time continuing systems using differential
algebraic equations (DAE) is possible. 

Conservative systems always represent two quantities, namely potential 
and flow natures. In the electrical domain this leads to the representation of 
voltages and currents for example. Signal flow systems only represent 
potential natures. Natures define the characteristics of physical dimensions, 
tolerance requirements and access functions. The disciplines in Verilog-A 
correspond to the natures in VHDL-AMS. Verilog-A contains operators for 
the modeling of noise and the modeling of frequency and transfer functions. 

Table 10-1 provides a short outline of functions which are available in 
Verilog-A. Among other application areas they are useful to model the 
behavior of high-frequency systems. 

Table 10-1. Verilog-A functions useful for RF modeling 
Modeling task Verilog-A functions 
Frequency and transfer functions laplace_zp, laplace_zd, laplace_np, laplace_nd, 

zi_zp, zi_zd, zi_np, zi_nd, delay, idt, ddt 
Large-signal noise $dist_normal, $rdist_normal, … 

(a total of 7 different distributions) 
Small-signal noise white_noise, flicker_noise, noise_table 
Event detection cross, timer 
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The basis for behavioral and structural descriptions are modules. The 
module lp_filter (see listing below) shows the basic structure of a Verilog-A 
module. Port and signal declarations are used to describe the interface of the 
module. In the parameter declaration electrical or other physical values are 
defined. Other declaration types like real or integer are also possible. The 
underlying description of the module behavior is done with a structural or a 
behavioral part. All description types, system types, and disciplines can be 
combined in a single Verilog-A model. 

module lp_filter (sig1, sig2, gnd); 
inout sig1, sig2, gnd; 
electrical sig1, sig2, gnd; 
parameter real R = 1k; 
parameter real C = 1u; 

   // structural description, see lp_filter_str 
   // behavioral description, see lp_filter_beh 
endmodule

In a structural description several modules can be instantiated and 
connected. In this case the design becomes hierarchical and facilitates the 
top-down design process. The module lp_filter_str shows the structural 
description of a lowpass filter, where the modules of the resistor and the 
capacitor are instantiated. 

module lp_filter_str (sig1, sig2, gnd); 
inout sig1, sig2, gnd; 
electrical sig1, sig2, gnd; 

   res res_inst (.r_in(sig1), .r_out(sig2)); 
   cap cap_inst (.c_in(sig2), .c_out(gnd)); 
endmodule

A behavioral description contains the mathematical relationships between 
input signals, output signals and parameters. For that purpose Verilog-A 
contains a rich set of analog operators and functions. The module 
lp_filter_beh shows the behavioral description of the lowpass filter using the 
ddt time derivative operator. 

module lp_filter_beh (sig1, sig2, gnd); 
inout sig1, sig2, gnd; 
electrical sig1, sig2, gnd; 
parameter real R = 1k; 
parameter real C = 1u 

   analog begin 
      I(sig1, sig2) <+ V(sig1, sig2)/R; 
      I(sig2, gnd) <+ ddt(V(sig2, gnd)*C); 
   end 
endmodule
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This section does not provide a complete overview of Verilog-A. 
Examples corresponding to the different assignment and control statements, 
data types or lexical conventions are omitted here. The following sections 
describe more comprehensive examples and describe Verilog-A in a more 
detailed manner. 

10.2.2 LNA modeling example 

In this section analog behavioral modeling with Verilog-A and the 
Cadence ADE is shown at an example of a low-noise amplifier (LNA). The 
functional description and important main characteristics are already 
described in Section 7.3.1 as a VHDL-AMS model. 

Verilog-A model of a LNA 

The VHDL-AMS model is transferred to Verilog-A and additionally 
includes the modeling of noise. A few structural and mathematical 
deviations were also made. Table 10-2 gives a short overview of the model 
parameters. The model parameter IP3 can be directly calculated with special 
RF analyses and postprocessing capabilities provided by SpectreRF.

Table 10-2. LNA parameters 
Parameters Unit Value Description 
gain dB 6.8 Power gain
ip3 dBm 1.9 3rd order intercept point  
fnoise dB 5 Noise figure
fg Hz 10M 3dB frequency 
rin  50 Input resistance 
rout  50 Output resistance 

Model implementation 

Since this model implementation of the LNA is derived from the VHDL-
AMS model, a repeated description is omitted. A more detailed description 
of a Verilog-A module can be found in the Section 10.2.3 where a mixer is 
implemented. 

`include "constants.h" 
`include "discipline.h" 

module amp (in, out, gnd); 

inout in, out, gnd; 
electrical in, out, gnd; 
electrical p1, p2, p3; 
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parameter real gain = 6.8;       // Gain in dB 
parameter real rin = 50;         // Input resistance 
parameter real rout = 50;        // Output resistance 
parameter real fg = 10M;         // 3 dB frequency 
parameter real fnoise = 5;       // Noise figure in dB 
parameter real ip3 = 1.9;        // IP3 in dBm 

real gain_lin, ip3_lin, noise, a, b, inmax, outmax; 

  analog begin 
    @ (initial_step) begin 
      gain_lin = pow (10, gain/10); 
      ip3_lin = sqrt ((pow (10, ip3/10)) * 2*rin*0.001); 
      noise = 4*`P_K*(pow(10,fnoise/10)-1)*$temperature*rin;
      a = sqrt((gain_lin*rout)/rin);
      b = (4*a)/(3*ip3_lin*ip3_lin); 
      inmax = sqrt(a/(3*b));
      outmax = (2*a*inmax)/3; 
    end 

    // noise source 
    V(in,p1) <+ white_noise (noise, "noise"); 

    // input resistance 
    V(p1,gnd) <+ I(p1,gnd) * rin; 

    // frequency response 
    V(p2,gnd) <+ laplace_nd(V(p1,gnd), {1}, {1, 1/`M_TWO_PI/fg});

    // nonlinear characteristic 
if (abs(V(p2,gnd)) < inmax) 

       V(p3,gnd) <+ 2 * (a - b*V(p2,gnd)*V(p2,gnd)) * V(p2,gnd); 
else if (V(p2,gnd) > 0) 

       V(p3,gnd) <+ 2 * outmax; 
    else 
       V(p3,gnd) <+ -2 * outmax; 

    // output resistance 
    V(out,p3) <+ I(out,p3) * rout; 

  end 

endmodule

Simulation results 

This part describes the simulation results of the LNA model. Most of the 
analyses (for example DC analysis, AC analysis) are conventional analyses 
used in Spectre. In contrast the IP3 and the 1dB CP measurements are 
executed by RF analyses providing the required postprocessing of simulation 
data.
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Figure 10-1 shows the transient simulation results. The input and the 
output signals are plotted in the time domain. The input signal is amplified 
by the model parameter gain. 

Figure 10-1. Transient response of the LNA 

Figure 10-2 depicts the nonlinearities modeled in the corresponding 
section of the Verilog-A model. The gain of the LNA is limited by the 
parameter outmax which represents an internal variable. 

Figure 10-2. DC response of the LNA 

The frequency response with the corner frequency fg = 10 MHz is 
modeled using the laplace_nd operator and is performed by an AC analysis.
In Figure 10-3 the cross marker A labels the fg and 3 dB loss. The gain of 
6.8 dB can be read off the graph. Instead of the conventional AC analysis the 
Periodic AC (PAC) analysis may be used for the LNA. The AC analysis 
would be unsuitable for the mixer due to the frequency conversion effects. 
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Figure 10-3. AC response of the LNA 

Figure 10-4 shows the noise figure (NF) of the model according to the 
parameter fnoise = 5 dB. The noise figure is the ratio of SNRin to SNRout and 
is usually expressed in terms of dB. Using SpectreRF the noise figure could 
be calculated with the PNoise analysis, which is a periodic small-signal 
analysis. In circuit level models the noise figure depends on the frequency. 

Figure 10-4. Noise figure of the LNA 

The next LNA parameter is the 3rd order Intercept Point (IP3). The 
measurement results are achieved by a combined PSS/PAC analysis using 
two tones of 1 kHz and 1.1 kHz. Figure 10-5 depicts the IP3 of 
approximately 1.9 dBm. A detailed explanation of the IP3 can be found in 
Section 11.2. 



226 Chapter 10

Figure 10-5. IP3 of the LNA 

Figure 10-6 depicts the 1dB Compression Point (1dB CP) which has a 
distance of approximately 10 dBm to the IP3. The 1dB CP is the point where 
the output power falls 1 dB below the 1dB/dB curve. Beyond the 1dB CP the 
model is in the saturation region. 

Figure 10-6. 1dB CP of the LNA 

10.2.3 Creating a Verilog-A model 

Objective

A Verilog-A model of a mixer shall be created. The inputs are p_rf (RF 
signal), p_lo (local oscillator signal) and the output is p_if (intermediate 
frequency signal). Important parameters of the mixer are: 

Port impedances each of 50 
Gain of 0 dB  
Corner frequency of 1 GHz 
Noise figure of 5 dB 
IP3 of -30 dBm 
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The following formulas are used to describe the behavior of the model. 
They are partially described in Section 7.3.1. 

Conversion of logarithmic power gain into a linear power gain: 

gain
10gain_lin 10

Conversion of the logarithmic 3rd order intercept point (IP3) into a 
linear IP3 (refers to a single-tone signal), r_rf specifies the input 
impedance: 

30ip3
10ip3_lin 10 2 r_rf

The small-signal noise is calculated by the following relationship using 
the Boltzmann constant k, the temperature T, and the variable fnoise
which specifies the value of the noise figure: 

fnoise
10noise 4 k (10 1) T r_rf

The nonlinearity is modeled using the depicted characteristic which 
includes 3rd order effects: 

3
out in inv a v b v

The values a and b represent the coefficients of the nonlinear 
characteristic, r_if specifies the output impedance: 

r_ifa gain_lin
r_rf 2

4 ab
3 ip3_lin

Frequency response which is implemented in numerator-denominator 
form: 

1( ) 11
g

H s
s
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Proposal for solution 

The head of the mixer module includes the interface declarations (for 
example inout ports of type electrical). For the internal usage electrical 
signals are additionally declared. All parameters for the mathematical 
description and variables are defined next. 

`include "constants.h" 
`include "discipline.h" 

module mixer (rf_in, lo_in, if_out, gnd); 

inout rf_in, lo_in, if_out, gnd; 
electrical rf_in, lo_in, if_out, gnd; 
electrical p1, p2, p3, p4; 

parameter real gain = 0;         // Gain in dB 
parameter real r_rf = 50;        // Input resistance RF Input 
parameter real r_lo = 50;        // Input resistance LO Input 
parameter real r_if = 50;        // Output resistance IF Output 
parameter real fg = 1G;          // 3dB frequency 
parameter real fnoise = 5;       // Noise figure in dB 
parameter real ip3 = -30;        // IP3 in dBm 

real gain_lin, ip3_lin, noise, a, b, inmax, outmax; 

The parameters can also be changed in the properties form of the 
modules symbol view, which can be generated after Verilog-A creation in 
Cadence ADE. 

The keyword analog introduces the analog section of Verilog-A 
modules. It defines the behavior as a procedural sequence of different 
statement types (see also [Acc04]) and is executed at every simulation point. 
The keyword initial_step generates a global event at the first simulation 
point in an analysis. In the listing necessary transformations are made to 
precalculate the specified parameters of the mixer into an internal 
representation. Logarithmic values are transformed into linear values for 
example. Here, the given formulas are used. 

analog begin 
  @ (initial_step) begin 
    gain_lin = pow (10, gain/10); 
    ip3_lin = sqrt (pow (10, (ip3/10)) * 2*r_rf*0.001); 
    noise = 4*`P_K*(pow(10,fnoise/10)-1)*$temperature*r_rf;
    a = sqrt((gain_lin*r_if)/r_rf);
    b = (4*a)/(3*ip3_lin*ip3_lin); 
    inmax = sqrt(a/(3*b));
    outmax = (2*a*inmax)/3; 
  end

After the initial_step the behavior of the model can be described. These 
are for example noise, frequency response, and nonlinear characteristics.  
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The characteristics of the mixer are encapsulated into subblocks and 
connected within the Verilog-A module. Figure 10-7 gives an overview of 
the model. 

Figure 10-7. Overview of the mixer model 

The input and output resistances are modeled using current-voltage 
relationships. The noise source is modeled using the white_noise function 
which is provided by Verilog-A. This function is only active during small-
signal analyses, otherwise it returns zero. The frequency response is 
described with the laplace_nd function. Nonlinearity is modeled using the 
introduced characteristic and the limitation of input and output amplitudes. 
The simple model of a Gilbert cell multiplies the signals p1 and lo_in.
Compared to the LNA described in Section 10.2.2 only the second input 
lo_in and the model of the Gilbert cell are added. 

    // noise source 
    V(rf_in,p1) <+ white_noise (noise, "noise"); 

    // input resistance 
    V(p1,gnd) <+ I(p1,gnd) * r_rf; 
    V(lo_in,gnd) <+ I(lo_in,gnd) * r_lo; 

    // Gilbert cell 
    V(p2,gnd) <+ V(p1,gnd) * V(lo_in,gnd); 

    // frequency response 
    V(p3,gnd) <+ laplace_nd(V(p2,gnd), {1}, {1, 1/`M_TWO_PI/fg});

    // nonlinear characteristic 
if (abs(V(p3,gnd)) < inmax) 

       V(p4,gnd) <+ 2 * (a - b*V(p3,gnd)*V(p3,gnd)) * V(p3,gnd); 
else if (V(p2,gnd) > 0) 

       V(p4,gnd) <+ 2 * outmax; 
    else 
       V(p4,gnd) <+ -2 * outmax; 

    // output resistance 
    V(if_out,p4) <+ I(if_out,p4) * r_if; 

  end 

endmodule
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Simulation results 

With the following simulation examples the functionality of selected 
model characteristics are verified. 

Figure 10-8 shows the frequency translation of the input signal 
(900 MHz, -50 dBm) according to the local oscillator (LO) signal (1 GHz, 
-10 dBm). The IF output shows the expected output frequencies (100 MHz, 
-76 dBm and 1.9 GHz, -83 dBm). For simulation the periodic steady state 
(PSS) analysis is used.  

Figure 10-8. Frequency translation 

Figure 10-9 depicts the conversion gain (-6 dB) and the 3dB corner 
frequency (1 GHz) of the mixer. A strong LO signal of 10 dBm, which is 
equivalent to 1 V at 50 , is used in this combined PSS/PXF (PXF, Periodic 
Transfer Function) analysis. Since the conversion gain of this mixer also 
depends on LO power, the chosen value of 1 V neglects this effect. 
Furthermore the conversion gain originates from the signal split into 
downconversion and upconversion. 
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Figure 10-9. Conversion gain and 3 dB frequency 

10.3 Overview of the Cadence Model Library rfLib 

The modeling of systems and components can be simplified by using 
existing model libraries. To meet the aspects of reuse Cadence provides a 
number of libraries containing analog behavioral models, which can be 
applied especially in a top-down design flow. The library rfLib provides 
models dedicated to RF system design [Cad03a]. 

An overview of the rfLib is given in this section, subdivided into three 
parts. The first part of this section contains models of the most common RF 
building blocks used for top-down design. They can be building blocks for 
complex RF systems or executable specifications at the behavioral level. The 
models are described in Verilog-A and can be inserted into regular RF 
circuits for simulation. The required block parameters are translated into 
internal coefficients and equations that describe the relations between the 
voltages and currents at the connecting nodes. 

Figure 10-10. Top-down design elements 
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Figure 10-10 shows several top-down design elements: filters, balun, 
low-noise amplifier (LNA), mixer, power amplifier (PA), oscillator, 
quadrature oscillator, and phase shifter. 

Filter

Filter properties are specified in the frequency domain. Lowpass, 
highpass, bandpass and bandstop filters are implemented, and each can be a 
Butterworth or Chebyshev type filter. 

Balun

A balun is used in circuits that require single to differential signal 
transformation. Although in reality a passive network is used to realize the 
balun, this implementation employs a three-port network. 

LNA

Low-noise amplifiers are commonly used in the receiver design to 
amplify the signal with a low noise figure. A typical low-noise amplifier has 
three sets of parameters: linear model, nonlinear model, and noise model 
parameters. 

Mixer

Mixers are used for frequency translation in RF circuits. Basically a 
mixer has the following three sets of parameters: time-varying linear model, 
nonlinear model, and noise model parameters. The rfLib model describes the 
typical behavior of integrated mixers. The LO signal switches the input 
signal on and off. When the LO power exceeds the specified limit it is 
effectively clipped off. 

PA

Power amplifiers are used in RF transmitters to achieve the high power 
output levels. The power amplifier model differs from the LNA in having 
greater power delivery capabilities with less stress on matching capabilities. 

Oscillator

This model describes the essential information for an oscillator or local 
power source in the Verilog-A language. Among other important issues, 
phase noise can be modeled in the small-signal domain. 
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Quadrature oscillator 

This oscillator is used in quadrature receiver design. A phase shifter is 
ordinarily used to generate the quadrature signal from one signal source. 
However, it is difficult to implement a phase shifter into a wide band model. 
A quadrature signal consists of two signals with a 90° phase difference but 
with identical noise and amplitude. 

Phase shifter 

In digital RF system designs the quadrature signal processing involves 
the phase splitting of high-frequency signals. The most common use of such 
components is to generate two signals that have a 90° phase difference based 
on one signal source. 

Most of the itemized models are provided in two different versions for 
passband and baseband signal handling. In this second part of the section 
the baseband principle and the equivalent baseband models are briefly 
introduced.

The complex baseband simulation is a commonly used technique in 
system level simulation. The principle of complex baseband simulation is 
presented in Section 4.3. Starting with the release IC 4.4.6 Cadence also 
provides analog behavioral models for complex baseband signals. 

As shown in Figure 10-11 each input and output signal of a baseband 
model has two components (pins) in contrast to a passband model. They 
represent a complex valued signal. It can be interpreted as amplitude and 
phase of a modulated carrier transformed from polar to rectangular 
coordinates. The inphase component is represented by the signal I and the 
quadrature component is represented by the signal Q. The transformation of 
a passband signal to its equivalent baseband representation is also described 
in Section 4.3. 

Figure 10-11. Equivalent baseband model 
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Complex baseband models can be used during the specification process 
of the RF subsystem to reduce the simulation time. Since these models deal 
with complex valued input and output signals, they cannot be connected 
directly to circuit level block models. If baseband models are connected to 
circuit level or behavioral passband models appropriate signal converters 
(for example an IQ-modulator) must be inserted. The signal converters 
combine the baseband signal with the specified carrier frequency or vice 
versa. Thereby the signal representation changes. 

Figure 10-12. BB_testbench circuit 

Figure 10-12 shows two equivalent circuits, the first modeled using 
passband models and the second using equivalent baseband models. The 
same baseband signal drives both circuits. In the passband circuit the 
baseband signals are first mixed up with the passband using the model 
IQ_modulator. In the equivalent baseband model IQ_mod_BB only 
modulation and mixing effects like nonlinearities are added to the signal. 

This last part of this section describes elements used in test-benches 
representing sources and sinks for system simulation. Three different sources 
of digital modulated signals are provided to test RF circuits with practically 
used input signals. The eye-diagram generator provides a special signal plot, 
which allows us to visualize the quality of digital modulated signals. The 
library rfLib contains the following elements: 

CDMA Signal Source (CDMA_reverse_xmit) 

The CDMA (Code Division Multiple Access) signal source generates a 
reverse-link (handset-to-base-station) signal conforming to the IS-95 
standard. The modulation is an offset QPSK (Quadrature Phase Shift 
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Keying) with a symbol rate of 1.2288 Mega-symbols/s and a sample rate of 
4.9152 Mega-samples/s. Two separate 16-bit pseudo-noise generators 
generate the I and Q spreading sequences operating at the sample rate. Each 
sequence is filtered with a 48-tap FIR filter. 

GSM Signal Source (GSM-xmtr) 

Using GMSK (Gaussian Minimum Shift Keying) modulation the GSM
(Group Special Mobile) source generates a signal conforming to the GSM
mobile communication standard. The first part of the GSM signal source is a 
random binary generator with a bit rate of 270833.333 bits/s. The following 
FIR filter is a Gaussian filter implemented with 32 taps and signal gain. In 
the next step the signal is integrated using a modulo 2  integrator and split 
into I and Q channels. 

/4-DQPSK Signal Source (pi_over4_dqpsk) 

The /4 differential QPSK baseband signal source generates random 
binary data with a bit rate of 48.6 kbits/s. The data is converted from serial 
to parallel (2 bits). A phase state coder maps pairs of bits to phase shift and 
the following differential encoder shifts the symbol phase. Next the I and Q 
channels are filtered. The FIR filter used is implemented with 64 taps. 

The constellation diagram in Figure 10-13 depicts how the differential 
encoded binary signal is mapped to the carrier phase. 

0001
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Figure 10-13. Constellation diagram 

Eye-diagram generator 

The eye-diagram is a widely used plot format to evaluate the quality of 
digital modulated signals. The signals are plotted over a period of an integer 
multiple of the symbol duration. This functionality is realized in the 
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waveform viewers of system level simulators as postprocessing. To provide 
such functionality in the Cadence Analog Artist waveform viewer an 
appropriate generator is delivered. The input to the eye-diagram generator is 
the I or Q component of a complex baseband signal. The eye-diagram 
generator provides two outputs labeled “y-axis” and “x-axis”. The eye-
diagram is generated by plotting the y-axis output against the x-axis output 
in the Analog Artist waveform viewer. An example of an eye-diagram is 
shown in Figure 10-14. To generate eye-diagrams the transient simulation 
must be used. 

Figure 10-14. Eye-diagram 

10.4 Modeling and Simulation of a WLAN Receiver 

This design example is based on a complex system level architecture for 
a wireless high-speed data transmission conforming to the WLAN standard 
IEEE 802.11a. It has been simplified to concentrate on the main parameters 
and to keep the example practical. Figure 10-15 shows the WLAN receiver 
corresponding to a double conversion receiver architecture. 

This example is the same as that used in Chapter 9. The input signal and 
block specification are described there. While it is treated there extensively 
at system level, we focus here on circuit level simulations. 

The task of the WLAN receiver is to receive a broadband signal at radio 
frequency from the antenna and to transform the signal (for example in 
frequency, power and phase) for digital baseband processing. The incoming 
signal is assumed to be an OFDM (Orthogonal Frequency Division 
Multiplex) signal. It is first amplified by an LNA and then downconverted to 
baseband at two mixer stages working at the same local oscillator (LO) 
frequency. 
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Figure 10-15. Block diagram of the WLAN receiver 

Between the mixer stages the signal is split into I and Q signals using a 
90° phase shifter for oscillator frequency. After that the required channel is 
filtered by a bandpass filter and amplified by a baseband amplifier. 

10.4.1 WLAN receiver modeling using Cadence libraries 

Figure 10-16 shows the realized WLAN receiver model, which basically 
consists of RF components located in the rfLib library [Cad03a]. The models 
used like LNA, mixer, filter or oscillator are already introduced in Section 
10.3. Further elements of the receiver are sources and sinks using psin and 
gnd elements provided by the analogLib library.  

In order to simplify the receiver model and its simulation, the specified 
PLL is not realized. Instead an oscillator producing a fixed frequency of 
2.6 GHz and phase noise is used to drive the first mixer and the phase 
shifter. The phase shifter splits the oscillator signal and feeds both mixers of 
the second stage with a phase difference of 90°. 

Figure 10-16. WLAN receiver modeled using Cadence ADE 

The specified bandpass filter and baseband amplifier (AGC) are replaced 
by a lowpass filter and an LNA with fixed gain. The capacitors (analogLib)
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in front of all the mixer blocks are useful to filter out DC offsets and flicker
noise (1/f) because of their highpass behavior. The value of each capacitor is 
chosen as 3 pF, which results in a 3 dB corner frequency of 1 GHz. In the 
following section the most important parameters of all components are 
given. Regarding all applied models, it has to be mentioned that unspecified 
block parameters (for example LNA: return loss, isolation) are set to 
reasonable values. They also influence the simulation results. The 
specification of all block parameters can be found in the Section 9.2. 

LNA and BB Amp 

Table 10-3 and Table 10-4 show the parameters for the LNA elements 
used for the passband LNA and the baseband amplifiers. The gain of the 
passband LNA is set to 20 dB (specification 5-20 dB), input impedance, 
noise figure and IIP3 are set according to the specification. 

Table 10-3. LNA parameters 
Parameter Value 
Noise Figure (dB) 2.5
Input referred IP3 (dBm) -5
Gain (dB) 20
Reverse isolation (dB) 100
Reference impedance of port 1 ( ) 50 
Reference impedance of port 2 ( ) 50 
Input return loss (dB) -100
Output return loss (dB) -100

Other parameters defined in the specification (for example 1dB CP) are 
not part of the LNA model. The gains of the baseband amplifiers are set to 
54 dB (specification 12-62 dB) which results in a receiver output power of 
4 dBm. The input impedance and noise figure are also set according to the 
specification.

Table 10-4. BB amp parameters 
Parameter Value 
Noise Figure (dB) 5
Input referred IP3 (dBm) -10
Gain (dB) 54
Reverse isolation (dB) 100
Reference impedance of port 1 ( ) 50 
Reference impedance of port 2 ( ) 50 
Input return loss (dB) -100
Output return loss (dB) -100
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Mixer

Table 10-5 shows the parameters of the mixer blocks. Input impedance, 
gain, noise figure, IIP2 and IIP3 are set according to the specification. All 
mixers work at the same LO frequency of 2.6 GHz. Unspecified parameters 
of the model are the LO power and isolation values which are not itemized 
in the table. The declaration of LO power is used to exclude the impact of 
LO power on the gain of the mixer. The isolation values determine the 
strength of signal transmission from one port to another one. For example 
the transmission of phase noise from the oscillator to the first mixer output 
can be influenced with LO to OUT isolation.

Table 10-5. Mixer parameters 
Parameter Value 
Gain (dB) 5
Input impedance ( ) 50 
Output impedance ( ) 25 (50 in the second mixer stage) 
Input impedance for LO ( ) 100 
Input referred IP2 (dBm) 20
Input referred IP3 (dBm) 5
SSB Noise Figure (dB) 10

Lowpass filter 

For the specified signal characteristics an appropriate bandpass filter 
model is difficult to realize. Therefore a 5th order Chebyshev lowpass filter 
is used. The properties of the lowpass filter are shown in Table 10-6. The 
input impedance and the corner frequency are set according to the 
specification.

Table 10-6. Lowpass filter parameters 
Parameter Value 
Filter order 5
Input impedance ( ) 50 
Output impedance ( ) 50 
Corner frequency (Hz) 9M
Insertion loss (dB) 0

Oscillator

The parameters of the oscillator determine output frequency (2.6 GHz) 
and signal power (-30 dBm) as well as several noise properties. The noise 
parameters (for example phase noise) are used for small-signal noise
analysis. They can be seen in Table 10-7. Phase noise is a drawback of 
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oscillators and PLLs which must not be neglected. Phase noise modeling and 
simulation within transmission systems is an important task. 

Table 10-7. Oscillator parameters 
Parameter Value 
Output frequency (Hz) 2.6G
Output power (dBm) -30
Output impedance ( ) 50 
Noise floor (dBc/Hz) -150
Frequency point f1 (Hz) 2M
Phase noise at f1 (dBc/Hz) -103
Corner frequency (Hz) 0

Phase shifter 

Table 10-8 shows the properties of the phase shifter which combines a 
shifter and a signal splitter. The operation frequency is set to 2.6 GHz. 

Table 10-8. Phase shifter parameters 
Parameter Value 
Operating frequency (Hz) 2.6G
Internal resistance ( ) 100 

10.4.2 Simulation of the WLAN receiver 

Frequency conversion 

The depiction of the frequency conversion inside the WLAN receiver can 
be realized using SpectreRF [Cad03a] with a Periodic Steady State (PSS) 
analysis. This large-signal analysis uses harmonics of a determined beat 
frequency (also known as PSS fundamental frequency) to calculate the 
output signal. In the PSS setup the beat frequency can be calculated 
automatically according to the available sources and their frequencies. For a 
better visualization of the results a beat frequency of 50 MHz is chosen. 
Figure 10-17 shows the results of the PSS simulation calculating 180 
harmonics. The RF signal lies at 5.2 GHz with a power amplitude of -
76.5 dBm. The LO signal frequency is 2.6 GHz with a chosen amplitude of -
30 dBm. As already mentioned the impact of the LO power on the receiver 
gain is neglected. The third part of the figure shows the signal at the first 
mixer output, where the RF signal is mixed down to 2.6 GHz and amplified 
by 24 dB. Another mixing product lies at 7.8 GHz but remains unconsidered. 
The inphase output with an amplitude of about 4 dBm is shown last. This 
DC signal is not filtered because only a lowpass filter is used in the receiver 
model. 
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Figure 10-17. Frequency conversion of the receiver 

Conversion gain 

The conversion gain can be simulated using PSS and a subsequent 
Periodic Transfer Function (PXF) analysis. PXF is a small-signal analysis 
which analyzes the frequency conversion over the whole receiver. The signal 
contribution of all the inputs to one output is calculated. The beat frequency 
for PSS and PXF analysis is set to 2.6 GHz according to RF = DC and LO = 
2.6 GHz input signals. In the PXF settings the frequency sweep range is set 
from 1 Hz to 300 MHz. The number of sidebands is set to three to generate 
four curves at multiples of 2.6 GHz. As output voltage the net I_out (inphase 
output) is chosen. Figure 10-18 first shows the contributions of all sidebands 
to I_out and then the contribution of only the input signal (sidebands -2 and 
2). The conversion gain of the receiver, from input to the inphase output, can 
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be read off as approximately 80 dB. The defined 3dB corner frequency of 
the lowpass filter (9 MHz) is situated at 5.209 MHz. 

Figure 10-18. Conversion gain 

Noise figure 

The noise figure of the receiver model can be simulated using a PSS and 
a small-signal PNoise analysis. Figure 10-19 shows the overall noise figure 
at I_out with a measured value of 7.2 dB. The PSS settings are the same as 
the conversion gain measurement using PSS/PXF analysis. In the PNoise 
settings the frequency sweeps from -100 MHz to 100 MHz, which is a 
reasonable area at the baseband output. The number of maximum sidebands 
is set to 10 to ensure that enough sidebands contribute noise to the output. 
The positive output node is set to I_out and the source is set to the RF input 
port. The reference sideband is k = 2 according to |fin| = |fout + k · fpss|, 
where fin = 5.1 GHz … 5.3 GHz, fout = -100 MHz … 100 MHz and fpss = 
2.6 GHz. 



MODELING OF ANALOG BLOCKS IN VERILOG-A 243

Figure 10-19. Noise figure 

Phase noise 

An important contribution to the noise of a system is the phase noise
which can be seen in Figure 10-20. An oscillator does not produce a signal 
that runs exactly at one frequency. Small variations in the zero-crossings of 
the signal (called jitter in the time domain) result in phase noise. A further 
but marginal noise contribution of oscillators is the amplitude noise, which 
indicates small variations in the signal amplitude. 

Figure 10-20. Phase noise 
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1dB Compression Point (input referred) 

The input referred 1dB Compression Point (1dB CP) is the value of the 
input power where the gain of the component is 1dB below the ideal 
1dB/1dB projection. This point characterizes the region of input power 
where the output power is compressed. 

The measurement is performed by a swept PSS, which means a PSS 
analysis sweeping a variable or a parameter, in this case the input power 
over a defined range. The input power range used for simulation of the 
WLAN receiver spreads from -80 dBm up to -10 dBm. After simulation the 
CP is calculated applying the postprocessing function Compression Point in 
the PSS results form. Figure 10-21 shows the 1dB CP measured at the 
inphase output. 

Figure 10-21. 1dB Compression Point 

Nonlinearity and IP2 

The 2nd order Intercept Point (IP2) is a measurement often used to 
characterize the nonlinearity of mixers. It is comparable to the IP3, the main 
difference can be seen in the frequencies which are applied to construct the 
intercept point. The used 3rd order frequencies of the IP3 are adjacent to the 
1st order frequencies whereas the 2nd order frequencies of the IP2 lie 
outside of the band. Figure 10-22 clarifies the context at the first LNA. A 
closer description of the IP3 can be found in Section 11.2. 

IP2 is the value of input power where the extrapolated 2nd order 
sideband crosses the extrapolated output signal of the fundamental (1st 
order) frequency. Two signals f1 and f2 are used to cause intermodulation 
distortion and to create intermodulation products. For an IP2 measurement 
one of the 2nd order intermodulation products f1 - f2 or f1 + f2 is necessary. 
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IP2 measurement can be performed using a combined swept PSS/PAC 
(Periodic AC) or only a swept PSS analysis. 

Figure 10-22. Distortion due to nonlinearity 

For an exemplary measurement of IP2 a single mixer model (rfLib) is 
used. The model and the corresponding signal sources and sinks are depicted 
in Figure 10-23. 

Figure 10-23. Mixer test-bench 
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Figure 10-24 shows the simulation results of the IP2 measurement. The 
input power is swept over a defined range between -60 dBm and 40 dBm. 
The extrapolated 2nd order harmonic crosses the extrapolated 1st order 
harmonic at an input power level of 19.9 dBm according to the specified 
parameter of 20 dBm. This intersection point is called input referred IP2. 

The used input frequencies are f1 = 5.2 GHz flo = 2 GHz. For the 
measurement the corresponding frequency pair f1 - flo and 2 · (f1 - flo) is 
chosen.

Figure 10-24. IP2 of the mixer 
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CHARACTERIZATION FOR BOTTOM-UP 
VERIFICATION 

11. CHARACTERIZATION FOR BOTTOM-UP 

VERIFICATION 

11.1 Concept of Characterization 

Characterization can be considered as the manual or automated 
determination of characteristics and parameters of a component. A 
component which is characterized is referred to as a Design Under Test
(DUT). In the case of characterization by simulation it is referred to as a 
DUT model. Within a design flow a component may be a subsystem (for 
example mixer or LNA) of the communication system. Characterization can 
be done from: 

Measurement of manufactured components 
Simulation of component models (for example circuit level descriptions) 

Figure 11-1. DUT within a testbench 
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For a characterization the DUT has to be inserted in a testbench (Figure 
11-1). The testbench provides the stimuli (analog or digital signal sources) to 
the input ports and the measurements of the DUT output signals. For a 
complete characterization of a DUT a set of measurements with different 
stimuli may be necessary. Additional postprocessing is performed to 
compute the parameters of the DUT from the measured data. 

Characterization based on simulation is described in the following 
sections. Examples show the development of testbenches and control scripts 
which allow the automation of simulation and postprocessing. 

11.2 RF Characteristics and Parameters 

Characteristics and parameters are extracted to document components 
and to parameterize behavioral models. Additionally, characteristics can be 
used for the generation of behavioral models which is explained shortly in 
Section 11.3. One main difference between parameters (for example 1dB 
CP) and characteristics (for example AM/AM conversion) is the fact that 
parameters are often parts of mathematical relationships whereas 
characteristics may represent a mathematical relationship. Depending on its 
step size a characteristic provides higher accuracy during representation of 
circuit properties. Characteristics can be stored in tables and may be 
multidimensional. Examples of important characteristics are depicted below. 

The AM/AM conversion represents the dependency of the output signal 
power on the input signal power. The gain can be read off in the linear area 
of the curve. In the area of saturation the output power is compressed and the 
gain therefore decreases. The AM/AM conversion curve is the base for the 
measurement of the 1dB CP (Figure 11-2). For the extraction of this curve a 
periodic steady state (PSS) analysis can be used, where the input power is 
swept.

Figure 11-2. AM/AM conversion 
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In the saturation area of RF components the phase of the input signal is 
often shifted. Therefore another characteristic arises, the AM/PM conversion
(Figure 11-3). The output signal phase depends on the input signal power. In 
addition to the already mentioned conversion types there also exist PM/AM 
and PM/PM conversions. They only play a secondary role, PM/PM 
conversion for example can be encountered at mixers or IQ-modulators. 

Figure 11-3. AM/PM conversion 

The aforementioned aspect of multidimensional characteristics lead to 
characteristics which depend on more than one input value. Apart from the 
dependency on the input signal power, an AM/AM conversion may for 
example depend on the input frequency or other signal parameters. Figure 
11-4 shows AM/AM conversion curves which depend on the input 
frequency. 

Figure 11-4. AM/AM conversion depending on frequency 

In comparison to characteristics, parameters can be chosen with respect 
to the following points: 
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Parameters that are needed to document the characteristics of a 
component 
Parameters that must be calibrated or optimized in a behavioral model 

The parameters which are needed for documentation may differ from 
parameters of the behavioral model. 

The most important parameters to document for RF components may be 
categorized in the following way: 

Impedances at the component ports 
Frequency response, S-parameters  
Gain or attenuation 
Nonlinearity (intercept points, compression points) 
Noise

Some parameters are described below. 
S-parameters can be used to represent impedances and frequency 

response in the small-signal region. The port impedances are important 
parameters to ensure correct matching to the component environment. They 
may depend on the signal frequency. 

The frequency response is significant for filters. Parameters include for 
example corner frequencies for lowpass and highpass filters, and center 
frequency and bandwidth for bandpass and bandstop filters. Other 
components like amplifiers or mixers may also have a frequency response 
because of the limited transit frequency of their active devices. 

Each component of an RF system influences the power level. Active 
components often amplify the signal (gain), while passive components 
(filter, power splitter) come with an attenuation. 

The measurement of parameters of the nonlinearity is important for the 
characterization of active components. Due to saturation effects the gain of 
amplifiers and mixers will decrease with increasing input level. This effect is 
represented by the parameter Compression Point (CP). Other nonlinearities 
produce harmonic distortions. Their strength can be depicted by Intercept
Points (IP). The determination of compression points and intercept points is 
explained in more detaile in the following section. 

Figure 11-5 shows a plot of the 1dB compression point (1dB CP). The 
output power of a mixer is plotted versus its input power level. The plot was 
generated from a PSS simulation with an input power sweep. A straight line 
is drawn 1dB below the linear area of the mixer (in the example the linear 
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gain is -3.4 dB). The 1dB CP is the point where the output power crosses 
this line. Its value can be read off from the x-axis (input power = input 
referred) or from the y-axis (output power = output referred). 

Figure 11-5. 1dB compression point 

A two-tone input signal is used for the determination of the 3rd order 
intercept point (IP3) of the mixer. For the example (Figure 11-6) the input 
frequencies f1 = 900 MHz, f2 = 920 MHz, and flo = 1 GHz are chosen with 
a power sweep from -30 to 20 dBm. The 1st order output power (flo - f1 = 
100 MHz) and the 3rd order output power (flo - (2 · f2 - f1) = 60 MHz) are 
plotted versus the input power. Straight lines are drawn through the linear 
area of the curves. The intercept point of the lines marks the IP3. For the 
computation of the IP2 (2nd order intercept point) a 2nd order spectral line is 
used instead of the 3rd order line. 

Figure 11-6. 3rd order intercept point (IP3) 
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11.3 Application of Characterization 

Three main applications of characterization are introduced in this section: 

Model refinement 
Model generation 
Component/model documentation (basis for design reuse) 

Circuit level implementations of system components are developed 
during the design process. They should be verified within their system 
environment. However, the simulation of large system parts requires 
efficient models. Therefore behavioral models of the components are used. 
Characterization provides the data necessary to configure behavioral models 
as accurately as possible. 

Figure 11-7. Model refinement 

It is assumed that the behavioral models can be configured by a set of 
model parameters. The refinement of the behavioral parameters can be done 
in the following way (shown in Figure 11-7): 

1. Run a characterization of the circuit level description to determine the 
parameter values of the behavioral model. 

2. The behavioral model is inserted into a testbench and configured with the 
computed parameters. 
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3. A second characterization of the behavioral model verifies if the model 
accurately represents the characteristics of the circuit. 

4. If the model accuracy is not good enough, the model or its parameters 
can be improved and again verified with the characterization. 

The use of a characterization environment simplifies the configuration 
and verification of the behavioral model. 

The generation of behavioral models based on the characterization of 
circuit level models is an efficient solution to support the bottom-up 
verification. The aim is to obtain a behavioral model which as close as 
possible represents the circuit level model. According to the simulation 
settings (for example step size, sweep range) the extracted characteristics, 
and consequently the generated model, can provide a high level of accuracy. 
The designer does not require knowledge about special modeling techniques, 
like complex baseband modeling. Figure 11-8 shows possible steps of the 
model generation. 

Figure 11-8. Model generation 

1. A characterization of the circuit level model is performed. Several signal 
parameters can be swept to achieve multidimensional characteristics. 

2. The characteristics can be stored in tables. 
3. Each circuit type (for example LNA) requires a model template, which is 

implemented in the environment of the model generator. 
4. The behavioral model consists of the model template and the inserted 

characteristics. 
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5. At last the circuit level model and the generated behavioral model can be 
compared for validation purposes (for example regarding accuracy). 

Model reuse has a great importance to increase the design efficiency. A 
good model documentation is the base of reuse (Figure 11-9). The designer 
A has developed a circuit or a model. It is characterized to determine the 
information that is needed for documentation. The documentation is inserted 
into an intranet or internet database from which it can be found by another 
designer B using selection and search functionality. 

Figure 11-9. Model documentation 

The usage of a characterization environment provides some advantages 
compared to manual documentation: 

Reduced time of the documentation 
Using standardized testbenches and simulation algorithms for parameter 
determination 
The format of documentation can be standardized to simplify the import 
into the database 

11.4 Example Characterization of an LNA 

An LNA model (lnaSimple) at circuit level is characterized to determine 
the parameters for a behavioral model. The schematic of the LNA is shown 
in Figure 11-10. 
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Figure 11-10. LNA schematic 

The schematic of the LNA is packed into a symbol and inserted into a 
testbench (Figure 11-11). It consists of two port models psin and a vdc
source. The left side port generates the input signal. The right side port is 
used to terminate the LNA and to measure the output signal.  

Figure 11-11. LNA testbench 

The behavioral model LNA_PB, which is the target model supports the 
following parameters to be characterized: 
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Available power gain 
Input and output resistance 
Input referred IP3 
Noise figure 

The simulator SpectreRF provides the analyses and postprocessing 
functions for the determination of the required parameters. A PSS analysis is 
used to compute power gain and IP3. The resulting plots are depicted below. 

Figure 11-12. Power gain 

A power gain of 14.9 dB is measured in the linear area of the LNA 
(Figure 11-12). The gain decreases with increasing input level. The 1dB 
compression point is reached at -10.5 dBm input power. 

Figure 11-13. IP3 

The IP3 plot (Figure 11-13) is generated using the IPN Curves plot 
function. The LNA is designed for a frequency of 900 MHz. For the 
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extraction a two-tone signal with the frequencies 880 MHz and 900 MHz is 
used.

The noise figure is computed by means of a PSS/PNoise analysis. The 
sweep parameter can be either input frequency or input power. Figure 11-14 
shows the noise figure versus the input frequency. At the operating 
frequency of 900 MHz a noise figure of 4.1 dB is measured.  

Figure 11-14. Noise figure 

The S-parameter analysis is used for the simulation of the input and 
output impedances. Figure 11-15 depicts Z-parameters plotted against the 
input frequency. Z11 represents the input impedance and Z22 the output 
impedance. The impedances are complex values. An input impedance of 
40.5  and an output impedance of 33.7  are computed at the frequency of 
900 MHz.

Figure 11-15. S-Parameter 

The behavioral model LNA_PB can now be configured with the 
determined parameters. They are depicted in Table 11-1. 
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Table 11-1. LNA parameters 
Parameter Value 
Gain 14,9 dB
IP3 2 dBm
Noise figure 4,1 dB 
Z11 40,5 
Z22 33,7 

The characterization may now be repeated to verify LNA_PB.
Differences may appear because behavioral models cannot represent all 
effects of a circuit level model. An example is the plot of the port 
impedances depicted in Figure 11-16. The impedance values are now 
independent from the input frequency in contrast to the circuit level model. 

Figure 11-16. S-Parameter 

11.5 Characterization Environment 

An exemplary characterization is described in Section 11.4. It is 
recognizable that manual characterization is time-consuming. 
Characterization can be simplified through an environment which automates 
all steps of the characterization, like simulation settings and postprocessing. 
It consists of two main components: 

Testbenches represent the test circuit which provides stimuli and the 
measurement environment for the characterization of the DUT model. 
More than one testbench may be needed to characterize all required 
parameters of the model. 
Simulation control scripts are used to set up the analyses and to provide 
additional computation of parameters in a postprocessing step. 

The combination of predefined testbenches and simulation control scripts 
simplifies the execution of a characterization. This is demonstrated in the 
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following by using the Cadence Design Framework II (DFII). Figure 11-17 
demonstrates the usage of the Cadence tools in a characterization 
environment. 

Figure 11-17. Characterization in the DFII 

First, the DUT model is inserted into the testbench schematic. The 
schematic contains the test environment (sources and measurement blocks). 
The port model, psin for example, can be used to realize a signal source for 
various analyses as well as for output termination and power measurement. 
Predefined testbenches can be stored in libraries.  

The schematic is ready for the simulation with the analog simulators after 
insertion of the DUT model. Then it is necessary to set up the analyses and 
to adjust the simulation environment settings. These configurations are also 
part of the characterization environment. Cadence provides two facilities to 
store such analysis setups. The first one is to store the analysis and plot 
settings of the Cadence Analog Design Environment (ADE) in states. The 
second facility insists on the application of OCEAN and SKILL scripts which 
can be used for batch mode simulation. The next section provides a short 
overview of the use of OCEAN scripts followed by an example. 

Using OCEAN scripts for characterization 

In addition to the interactive simulation with ADE it is possible to run 
analyses, visualization and postprocessing in a batch mode. Therefore the 
script languages SKILL and OCEAN are used. 
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SKILL is a script language with various functions which allow to 
configure and control the complete DFII. 
OCEAN [Cad03b] is a subset of SKILL with functions that are needed to 
control the simulation environment with the appropriate postprocessing. 
Both OCEAN and SKILL functions can be used in OCEAN scripts. 

simulation setup 
commands 

simulation run
commands 

data access
commands

OCEAN commands

 specify 
- analysis to be run
- internals to save
- simulator options
- design variables

  starts the simulator

  plot the results
  perform calculations
  print results

purpose

Figure 11-18. Subdivision of OCEAN commands 

An easy way to develop an OCEAN script starts with an interactive 
simulation in the ADE. The menu command Session->Save Script creates an 
OCEAN script that contains the actual simulation settings. It can be 
modified and extended, for example, by several postprocessing 
functionalities.  

The OCEAN script can be loaded in an OCEAN shell or the Cadence 
Command Interpreter Window (CIW) to run the analyses and the 
postprocessing. The advantages are: 

Different analyses can run subsequently 
Postprocessing and computation of parameters and characteristics is 
automated
Results can be stored in ASCII files or plots 

Testbench and OCEAN scripts provide an automated characterization. 

Example OCEAN script of an AC analysis 

A simple OCEAN script is represented in the following. It starts an AC 
analysis of the test circuit lowpass. The frequency response is displayed 
graphically, the insertion loss and the corner frequency of the lowpass are 
computed.   
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The simulator, the netlist file, and the output directory are specified in the 
first section of the script. 

;Simulation environment for Spectre 
simulator('spectre)
design("./simulation/lowpass/spectre/schematic/netlist/netlist")
resultsDir("./simulation/lowpass/spectre/schematic")

The AC analysis is set to the frequency range from 500 MHz to 1.5 GHz 
(logarithmically 100 points per decade). Operating voltage, bias current, and 
temperature are specified and the simulation is started. 

; AC ANALYSIS 
analysis('ac ?start "500M"  ?stop "1.5G"  ?dec "100") 
desVar("UB" 2.8) 
desVar("Ibias" 1.0m) 
temp(25.0)
run()

The output directory is automatically opened after the analysis has 
finished. The results of the AC analysis are selected. A labeled plot window 
is opened and the output voltage is logarithmically plotted. 

; Plot the resuls 
acwave = selectResult("ac") 
winAC=newWindow()
plot(db20( v("/OUT") )) 
label = addWindowLabel(list( 0.50 0.95 ) "Frequenzgang") 

Finally the corner frequency and insertion loss are determined from the 
frequency characteristic. In addition the type of filter (in the example low for 
lowpass) must be specified. "3.0" indicates that the 3dB corner frequency 
must be determined. The maximum of the difference between output and 
input signal is computed for the determination of the insertion loss. Insertion 
loss and corner frequency are finally printed in the OCEAN shell. 

;bandwidth and insertion loss calculation 
b=bandwidth(v("/OUT") 3.0 "low") 
il=ymax(db20(v("/OUT")) - dB20(v("/IN"))) 

;print the results to the shell 
printf("corner frequency: %5.3f   insertion loss: %5.3f dB\n" b il) 

To meet today’s requirements of a characterization environment special 
tools have been developed. They contribute especially to the bottom-up 
verification and provide solutions according to automated characterization, 
model generation and optimization. Cadence Virtuoso Specification-driven 
Environment (VSdE) has to be mentioned in this aspect. 
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11.6 Characterization Using the OCEAN Script 
Language 

Objective

Designing an environment for the characterization of an LNA. The 
following parameters shall be determined in the frequency range of 
approximately 900 MHz: 

Gain
IP3
Noise figure 

The characterization environment shall consist of a testbench schematic 
and an OCEAN script. It shall be tested with characterization of the 
behavioral model LNA_PB from rfLib. The behavioral model is predefined 
with gain = 20 dB, IP3 = -10 dBm, noise figure = 2 dB and impedances each 
of 50 .

Proposed solution 

The following three sections describe how to design a characterization 
environment based on the OCEAN script language. 

11.6.1 Creation of the testbench schematic 

As already described, a characterization environment basically consists 
of a testbench which embeds the DUT, a source which provides the stimuli, 
a sink, and several analysis and postprocessing settings. 

The testbench of the characterization environment must ensure that all 
analyses, for example small- and large-signal, can be used in one 
characterization flow without changing the testbench manually in between. 
Small-signal analyses in SpectreRF like PNoise require that the source 
operates as a DC source. Since the signal types of a source cannot be 
controlled by design variables a switch must be used. A switch connects the 
DUT with different ports. It has to be mentioned that the original switch 
sp2tswitch (analogLib) must be modified before using in your own 
testbench. A Verilog-A module which switches between the different 
sources could also be used as an alternative. 

Besides the signal types both sources provide the design variables prf
(power amplitude in dBm), frf1 (first signal frequency) and frf2 (second 
signal frequency, only in sine source). The switch is controlled by a fourth 
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design variable called switch_pos. For the sink a DC port is used. Figure 11-
19 shows the complete testbench with the inserted DUT and its parameters. 

Figure 11-19. Testbench schematic 

11.6.2 Analysis settings and simulation 

The analysis types to use for the extraction of the specified parameters 
can now be considered. The following combinations are proposed. 

Gain     PSS analysis 
IP3     Two-tone PSS analysis with sweeping input power 
Noise figure  PSS/PNoise analysis 

The design variables for the gain measurement are prf = -40 dBm, frf1 = 
900 MHz, and frf2 = 0. The variable switch_pos is set to 1 to ensure that the 
sinusoidal source is used for this measurement. The PSS analysis settings 
include a beat frequency of 900 MHz. An output harmonic of 1 is sufficient 
to calculate the gain at this frequency. 

Now the first simulation run can be started. After simulation the gain is 
plotted using the function power gain in the PSS results form. Figure 11-20 
depicts a value of approximately 20 dB. In the ADE the analysis settings can 
be saved in a first OCEAN script which is shown below. 

simulator('spectre)
design("./simulation/LNA_PB_lab/spectre/schematic/netlist/netlist")
resultsDir("./simulation/LNA_PB_lab/spectre/schematic")
analysis('pss ?fund "900M"  ?harms "1"  ?errpreset "moderate") 
desVar("frf2" 0) 
desVar("frf1" 900M) 
desVar("prf" -40) 
desVar("switch_pos" 1) 
save('i "/PORT0/PLUS" "/PORT1/PLUS" "/PORT2/PLUS") 
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temp(27)
run()

Figure 11-20. Power gain 

For the noise figure measurement the PSS/PNoise analysis is applied. 
The design variable switch_pos is set to 2 to connect the DUT with the DC 
source. All other design variables are left unchanged. The PSS beat 
frequency is set to 900 MHz. The number of output harmonics is 1. In the 
PNoise settings the frequency sweep is set from 700 MHz to 1200 MHz. 
This range is a reasonable area to consider the impact of noise. The 
maximum count of sidebands is set to 10 and the reference sideband is 0, 
because no frequency conversion occurs between input and output. Output 
net6 has been chosen and the input port is PORT1.

The noise measurement can be executed next. In the PNoise results form 
the noise figure can be directly plotted. It is calculated with approximately 
2.08 dB (Figure 11-21) and complies with the specified model parameter. 
The settings can be saved in an OCEAN script. 

simulator('spectre)
design("./simulation/LNA_PB_lab/spectre/schematic/netlist/netlist")
resultsDir("./simulation/LNA_PB_lab/spectre/schematic")
analysis('pss ?fund "900M"  ?harms "1"  ?errpreset "moderate") 
analysis('pnoise ?start "700M"  ?stop "1.2G"  ?maxsideband "10" ?p 
"/net6"  ?n ""  ?oprobe ""  ?iprobe "/PORT1" ?refsideband "0") 
desVar("frf2" 0) 
desVar("frf1" 900M) 
desVar("prf" -40) 
desVar("switch_pos" 2) 
save('i "/PORT0/PLUS" "/PORT1/PLUS" "/PORT2/PLUS") 
temp(27)
run()
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Figure 11-21. Noise figure 

The IP3 measurement requires a second sinusoidal tone. Therefore the 
sinusoidal source is switched to the DUT (switch_pos = 1) and the design 
variable frf2 is set to 910 MHz, which is closely adjacent to frf1 = 900 MHz. 
In the PSS settings the beat frequency is now automatically calculated to 10 
MHz. To reach the output values of approximately 900 MHz the number of 
harmonics is set to 100. Therefore the largest output frequency can be 100 · 
10 MHz = 1 GHz. In the sweep section of the analysis settings form the 
input power prf is swept from -50 dBm to 0 dBm. A small step size increases 
the accuracy and may be set to 1. 

The settings for a swept PSS are complete and the simulation can now be 
started. For an IP3 measurement the PSS/PAC (PAC - Periodic AC) 
approach could also be used. In the results form the function IPN curves is 
used to plot the IP3. The input power is set to variable sweep and the 
extrapolation point can be set to -45 dBm, which lies in the lower third of 
the sweep range. The most important part to construct the IP3 is the choice 
of the correct frequencies. In this case, for example, a 1st order frequency of 
fout1 = frf2 = 910 MHz and a 3rd order frequency of fout2 = 2 · frf1 – frf2 = 
890 MHz are chosen. The value of the input referred IP3 is -10 dBm 
according to the specified LNA parameter (Figure 11-22). As described for 
the first two parameters the associated OCEAN script can be generated in 
the ADE. 

simulator('spectre)
design("./simulation/LNA_PB_lab/spectre/schematic/netlist/netlist")
resultsDir("./simulation/LNA_PB_lab/spectre/schematic")
analysis('pss ?fund "10M"  ?harms "100"  ?errpreset "moderate" 
?param "prf" ?start "-50" ?stop "0" ?step "1") 
desVar("frf2" 910M) 
desVar("frf1" 900M) 
desVar("prf" -40) 
desVar("switch_pos" 1) 
save('i "/PORT0/PLUS" "/PORT1/PLUS" "/PORT2/PLUS") 
temp(27)
run()
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Figure 11-22. IP3 

As can be seen, all parameters which were defined in the LNA model are 
correctly extracted. Therefore the testbench and the analysis settings are 
suitable for a simple characterization environment. 

11.6.3 Combination and extension of the OCEAN scripts 

The three generated OCEAN scripts follow the same scheme. The design 
environment settings (for example simulator, design, results directory) are 
located at the top. The analyses are then defined as well as the design 
variables. Several nodes are saved and the temperature is set. The command 
run() starts the simulation. 

The scripts do not contain commands for plot and postprocessing 
capabilities, therefore it is necessary to manually extend them. Furthermore 
the scripts must be merged to realize the extraction of parameters within one 
characterization run. 

The choice of the following OCEAN commands [Cad03b] can be used to 
extend the scripts: 

selectResults  # selects the results from a particular analysis 
plot      # plots waveform 
value # returns the Y value of a waveform 

  for a given X value 
ip3Plot    # plots the IP3 curves 
ipn      # performs a nth-order intercept measurement 
harmonic    # returns the waveform for a given harmonic index 

The first OCEAN script is extended by a section which plots the power
gain. First the PSS frequency domain (pss_fd) is selected as the result. Then 
a window is opened to plot the power gain from the PSS data. A complex 
command for the calculation is necessary. The result is stored in the variable 
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powergain and plotted using the plot command. Before the definition of the 
second analysis the current settings must be deleted. 

; plots power gain 
selectResults('pss_fd)
newWindow()
powergain = db10((let(((vn (v("/net6") - 0.0))) spectralPower((vn / 
resultParam("PORT2:r")) vn)) / harmonic(spectralPower(-
i("/PORT0/PLUS") (v("/net08") - 0.0)) '1))) 
plot( powergain ?expr '("Power Gain")) 

; deletes analysis settings of first simulation run 
delete('analysis)

In the second OCEAN script the commands to plot the noise figure are 
added. For this purpose the appropriate result (pnoise) must be selected. NF
is a predefined variable which contains the plot data for the noise figure. As 
seen in the first script extension the analysis settings must be deleted. 

; plot noise figure 
selectResults('pnoise)
newWindow()
noisefigure = getData("NF") 
plot(noisefigure ?expr '("Noise Figure")) 

; deletes analysis settings of second simulation run 
delete('analysis)

The last OCEAN script for IP3 measurement must be extended by 
special intercept point plot functions. After selecting the results (pss_fd) a 
special function (ip3Plot) plots the curves which are necessary for IP3. It 
requires information about the net to examine, the sideband indices (89, 91) 
and the extrapolation point (-45). Furthermore, two variables are used to 
store the data for the 1st order frequency (refWave) and the 3rd order 
frequency (spurWave). The function ipn uses the variables to perform an IP3 
measurement. 

; plots IP3 curves and prints output for IP3 value 
selectResults('pss_fd)
newWindow()
ip3Plot(v("/net6") 89 91 -45) 
spurWave=dB20(harmonic(v("/net6") 89)) 
refWave=dB20(harmonic(v("/net6") 91)) 
ip3_loc=ipn(spurWave refWave 3 1 -45 -45) 

The complete OCEAN script for the characterization of the LNA_PB is 
shown below. This simple environment can also be used to characterize 
other amplifiers. To obtain a good overview a few comments have been 
added.
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Complete OCEAN script 
; environment settings 
simulator('spectre)
design("./simulation/LNA_PB_lab/spectre/schematic/netlist/netlist")
resultsDir("./simulation/LNA_PB_lab/spectre/schematic")

; analysis settings and design variables for gain measurement 
analysis('pss ?fund "900M"  ?harms "1"  ?errpreset "moderate") 
desVar("frf2" 0) 
desVar("frf1" 900M) 
desVar("prf" -40) 
desVar("switch_pos" 1) 
save('i "/PORT0/PLUS" "/PORT1/PLUS" "/PORT2/PLUS") 
temp(27)

; simulation start 
run()

; plot power gain 
selectResults('pss_fd)
newWindow()
powergain = db10((let(((vn (v("/net6") - 0.0))) spectralPower((vn / 
resultParam("PORT2:r")) vn)) / harmonic(spectralPower(-
i("/PORT0/PLUS") (v("/net08") - 0.0)) '1))) 
plot( powergain ?expr '("Power Gain")) 

; deletes analysis settings of first simulation run 
delete('analysis)

; analysis settings and design variables for noise measurement 
analysis('pss ?fund "900M"  ?harms "1"  ?errpreset "moderate") 
analysis('pnoise ?start "700M"  ?stop "1.2G"  ?maxsideband "10" ?p 
"/net6"  ?n ""  ?oprobe ""  ?iprobe "/PORT1" ?refsideband "0") 
desVar("frf2" 0) 
desVar("frf1" 900M) 
desVar("prf" -40) 
desVar("switch_pos" 2) 

; simulation start 
run()

; plot noise figure 
selectResults('pnoise)
newWindow()
noisefigure = getData("NF") 
plot(noisefigure ?expr '("Noise Figure")) 

; deletes analysis settings of second simulation run 
delete('analysis)

; analysis settings and design variables for IIP3 measurement 
analysis('pss ?fund "10M"  ?harms "100"  ?errpreset "moderate" 
?param "prf" ?start "-50" ?stop "0" ?step "1") 
desVar("frf2" 910M) 
desVar("frf1" 900M) 
desVar("prf" -40) 
desVar("switch_pos" 1) 
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; simulation start 
run()

; plots IP3 curves and prints output for IP3 value 
selectResults('pss_fd)
newWindow()
ip3Plot(v("/net6") 89 91 -45) 
spurWave=dB20(harmonic(v("/net6") 89)) 
refWave=dB20(harmonic(v("/net6") 91)) 
ip3_loc=ipn(spurWave refWave 3 1 -45 -45) 
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ADVANCED METHODS FOR OVERALL 
SYSTEM SPECIFICATION AND VALIDATION 

12. ADVANCED METHODS FOR OVERALL 
SYSTEM SPECIFICATION AND VALIDATION 

12.1 Gap between System Level and Block Level 
  Simulation  

Current electronic systems consist of analog and digital parts in most 
cases. Typical analog subsystems are sensors and actuators in the automation 
area and analog front-ends to transmission channels in the 
telecommunication area. The analog functionality is connected to digital 
units like signal processors and controllers. The system performance 
depends on the accuracy of the analog components, the performance of the 
digital algorithms, and on the proper specification of the mixed-signal 
interface. The system performance can be validated and improved by overall 
system simulation. The simulation environment must be efficient for 
complex DSP algorithms and accurate for analog subsystems. Specialized 
simulation technologies are discussed in this section by means of a wireless 
communication system simulation. 

Digital transmission technology is used for all current date transmission 
standards. DSP algorithms realized in hardware and software perform source 
coding, forward error correction, modulation, synchronization, and other 
algorithms. The complexity of DSP functionality has grown with new 
standards for the 3rd generation wireless systems and beyond.  

At the interface to the transmission channel analog and mixed-signal 
components (like A/D converter, mixer and amplifier) are used to adapt the 
modulated data to the physical transmission channel. The quality of this RF 
front-end has a great impact on the performance of the communication 
system. Nonlinearity of analog components may cause transmission errors 
while interferers are present.  
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System level simulators like ADS Ptolemy, CoCentric System Studio, 
MATLAB, and SPW are used in system specification. Compiled C-coded 
models are often used together with event or data stream driven scheduling 
algorithms. These models provide high simulation performance for the 
analysis of complex DSP algorithms. On the other hand these simulators 
have no special algorithms to simulate analog and mixed-signal components. 

Simplified models of the analog part within the system level simulator 
may be sufficient for the first estimation of how the analog components 
influence the system performance. However, for an accurate simulation of 
the analog part it may be necessary to combine analog and system level 
simulation. Different solutions can be used to closing the gap between 
system-level and analog modeling: 

File coupling of simulators (Section 12.2) 
Direct cosimulation of system level and analog simulators (Section 12.3) 
Generated black box models (Section 12.4) 

12.2 File Coupling of Simulators 

File coupling is the simplest way to exchange data between analog and 
digital design domains. It can be used if no feedback between the domains 
exists. File input and output is available in most simulators. The data file 
format can be different for time discrete system simulators and continuous 
time analog simulators. In this case file converters must be used. This 
solution can be used, for example, to provide realistic test patterns to the RF 
designer. In this case the system level is used to generate digital modulated 
signals. The RF designer uses these signals to evaluate the performance of 
the RF subsystem. In some cases the output of the RF design is again stored 
in a file for further postprocessing with system level models. This solution is 
more applicable to support RF design than for overall system validation. 
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Figure 12-1. File coupling of simulators 

12.3 Direct Cosimulation of System Level and Analog
 Simulators 

In contrast to file coupling, in this solution different simulators are 
running simultaneously in direct cosimulation. This allows feedback loops 
between subsystems modeled in different simulators. The communication 
between the tools is usually realized by sockets or shared memory. For 
shared memory coupling both tools are executed on the same host. Socket 
connection allows the communication between tools on the same or different 
host in a computer network. 

The implementation of a simulator coupling requires some experience in 
simulation and software programming. The coupling is sometimes provided 
by the simulator vendors. Otherwise it can be implemented by the user if 
both simulators have an interface for C-coded models. A C-coded interface 
model can then be used to exchange the data with the corresponding 
interface model in the other simulator. The principle of direct cosimulation is 
shown in Figure 12-2. 

The system level simulation is a time domain analysis. It corresponds to 
the transient analysis of analog simulators. By coupling both simulation 
algorithms the time points for data exchange must be synchronized. System 
simulators use a discrete time scale, while analog simulators use a time 
continuous signal representation. 
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Figure 12-2. Principle of cosimulation 

The main advantage of direct cosimulation is that optimized simulation 
tools for each system part and design level can be used. It provides the 
optimum accuracy level for each system part as well as debugging and 
visualization capabilities from both tools well suited to the design tasks. 
Additionally, models from both design domains can be reused in the full 
system simulation. In summary the direct cosimulation provides an overall 
system analysis with high accuracy. 

Unfortunately there are some disadvantages of cosimulation. The main 
disadvantage is the low simulation performance as a consequence of process 
communication overheads and very detailed simulation of the analog parts. 
The development of a cosimulation interface requires some experience in 
simulation technology. The user needs at least some basic knowledge about 
each of the tools. Since both simulators are executed simultaneously the 
costs for software licensing is increased. 
Time synchronization in cosimulation  

As shown in Figure 12-3 system level simulators use a different signal 
representation than analog simulators. Continuous time signal representation 
is used in analog simulation. The width of the simulation steps varies during 
the simulation, depending on the gradient of the signals. The signal values 
are represented by a pair consisting of time and value. 
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Figure 12-3. Continuous and discrete time signals 

The system level simulator uses equidistant samples for signal 
representation. Therefore the timing information does not need to be stored 
with the signal values. The signal is characterized by the sequence of values 
and the sampling rate or sampling frequency parameter. 

At the border between analog and system level domains a signal 
conversion must be done. This is usually realized within interface blocks. 
They may be generated automatically depending on the implementation of 
the simulator coupling. 

Figure 12-4 shows the conversion from the time continuous analog 
domain to the time discrete signal representation. Since the discrete signal 
requires values at defined equidistant points, the continuous wave is re-
sampled. Interpolation can be used if the sampling point is located between 
two computed signal values. In some cases the analog simulator can be 
controlled to compute additional signal points at the desired sampling times. 

The opposite conversion from the time discrete domain to the continuous 
domain is shown in Figure 12-5. The timing information must be added into 
the interface blocks. The interfaces may count the samples and produce the 
timing value. The analog simulator updates the values from the time discrete 
domain only at the sampling points. Problems with convergence and 
performance of the analog simulation arise if the gradient between two 



276 References

subsequent signal values is high. This problem can be reduced by decreasing 
the time between successive sampling points. However this will also slow 
down the simulation speed in the discrete domain. Another way is the use of 
functions, which reduce the gradient of the signals. Such functions are often 
available in mixed-signal simulators. For example Verilog-AMS provides 
the operators transition and slew.

Figure 12-4. Conversion from continuous to time discrete signals 

Figure 12-5. Conversion from time discrete signals to continuous signals 

Cosimulation example (SPW and AMS Designer) 

The usage of cosimulation is illustrated by means of the commercial 
cosimulation solution for the system level simulator SPW (Coware) and the 
mixed-signal simulator AMS Designer (Cadence). The digital baseband 
processing of a wireless LAN system is modeled and analyzed in SPW. A 
detailed analog behavioral model of the RF subsystem is included by 
cosimulation with AMS designer. The modeling flow is outlined below. 
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The RF subsystem is modeled in the Cadence Design Framework DFII. 
Analog behavioral models written in Verilog-A are used to describe the 
building blocks of the RF front-end. It contains an amplifier, filters, and a 
mixer. Transistor level models can also be used. Behavioral models are 
selected for performance reasons. The resulting model can be analyzed with 
the RF simulator SpectreRF as well as with the AMS Designer, which 
performs a transient simulation of the subsystem in the cosimulation. With 
the enabled AMS option, a Verilog-AMS netlist of the subsystem is 
generated after each “Check and Save” command. 

Figure 12-6. Schematic of the RF subsystem within DFII 

Cosimulation Interface

Figure 12-7. Generated interface model in the SPW schematic (detail) 

The Verilog-AMS netlist is compiled. Based on this, an SPW symbol can 
be created in an SPW library. It is supported by the SPW block wizard. The 
symbol can be easily placed in the SPW schematic of the WLAN testbench 
as depicted in Figure 12-7. 

The cosimulation is started from the SPW simulation manager. SPW-
AMS simulator is chosen as the simulation engine. The AMS Designer can 
be executed in the background (batch mode) or interactively (GUI) with full 
debugging and visualization features for the RF subsystem. 

Some extensions to the existing models may be necessary to achieve the 
desired simulation results. The RF subsystem model can add delay and phase 
shift to the signal path. If the digital baseband model of the receiver does not 
contain synchronization and phase recovery algorithms, the evaluation of 
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BER (bit error rate), PER (packet error rate) and constellation diagrams can 
fail. The user should pay attention to the following points: 

Signal level adaptation: In system level simulation the signal power is 
often normalized. Signal power adapters are inserted to provide 
appropriate signal levels for the analog blocks. 

Scheduling of simulation: Defined sampling rates are used in digital 
baseband processing, while the analog part is simulated with continuous 
time. Correct scheduling of the simulators must be ensured. Resampling 
is necessary in some cases. 

Signal delay adjustment: The system level model often uses a hard 
synchronization of DSP algorithms to the signal flow. For example it is 
assumed that the first received bit is also the first bit of a signal frame. If 
the analog subsystem introduces additional delay in the signal path the 
algorithms have to be synchronized by a proper delay setup. 

The output of the demonstration systems is a BER statistic written into an 
ASCII file. The BER data is only available when the simulation has 
successfully finished. Probes must be added to observe some waveforms 
during the simulation. This can be done in the schematic entry or in the 
simulation manager. If it is necessary to add probes within hierarchical 
models of the wlan_lib library it is proposed to specify the probes from the 
simulation manager to avoid changes in the SPW libraries. Another 
advantage of this method is that the probes can be enabled or disabled in the 
"Simulation Manager" window.  

The signal calculator Sigcalc can be started during a running simulation. 
It may take some time before Sigcalc has received enough data, then the 
selected signals are displayed. The correctness of delay correction and input 
and output scale parameters can be checked from the RF_in and RF_out
waveforms. The scat function can be used with default parameters to see the 
scatter plot of the quadrature amplitude modulation (QAM) signal. The 
channel model was set to “AWGN” instead of “Fading” in the top level 
schematic of the IEEE demo. Otherwise the effects from fading will hide the 
effects from the nonlinearity of the RF subsystem. Two different 
configurations of the cosimulation are shown in Table 12-1. 
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Figure 12-8. Scatter diagrams from IEEE 802.11a demo (left configuration: low input level, 
right configuration: high input level) 

Table 12-1. Simulation of different system configurations 
Configuration Low Input Level High Input Level 
Input scale 0.1 0.2
Output scale 0.008 0.004
Compression Point 10.0 10.0
Result (100 OFDM blocks) RF out is compressed 

partially, scatter diagram with 
few deviations, BER is 0 

RF out is compressed 
partially, worse scatter 
diagram, BER is still 0 

The result plots in Figure 12-8 depict the scatter diagrams. A significant 
signal deviation can be at high input levels. While the scatter plot is strongly 
disturbed the digital error correction algorithms can still achieve a bit error 
rate (BER) of zero. Only further increasing of the input scale causes bit 
errors. A BER of 5.6 10-4 was measured in the simulation for an input scale 
of 0.3.  

This example demonstrates how the impact of a nonlinear RF subsystem 
could be considered in system simulation. The BER measurement shows the 
impact of the RF subsystem on the system performance. 

12.4 Generated Black Box Models  

The cosimulation method allows very accurate analog and RF subsystem 
modeling up to transistor level accuracy. However in some cases the 
simulation performance is not sufficient for extensive system analyses like 
BER evaluation. Black box behavioral models can be used to accelerate the 
simulation. The principle of table based models is depicted in Figure 12-9. 
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Figure 12-9. Principle of black box modeling 

Generated black box models are suited for bottom-up verification, since 
these models are extracted from detailed models at block or transistor level. 
They represent a component or a subsystem without information about its 
structure. This can be realized by using data sets with measured 
characteristics.  

In a design flow for communication systems this modeling technique is 
helpful to bring the behavior of analog system parts into the system level 
simulation of the full system. Analog or RF simulators are used to extract the 
transfer functions of the RF front-end. They provide high simulation 
accuracy. Non-ideal effects between components (for example impedance 
mismatch) are considered. RF simulation technology as outlined in Section 
3.2 is used to analyze and characterize the RF subsystem. The extraction of 
the model dataset can be automated. 

Corresponding models in the system simulator represent the behavior of 
the analog front-end based on the generated data files. A great benefit of this 
technology is the automated generation of complex baseband behavioral 
models (Section 4.3) for RF front-ends from passband behavioral or 
transistor level models, which provide high simulation performance. 

The end-to-end transmission system can be tested with signal distortions 
that originate from the RF subsystem. Now it is possible to adjust and 
optimize the DSP part in a number of simulations. Since the analog part is a 
black box model, no optimization of the RF subsystem is feasible in the 
system level simulator. New model data sets must be extracted if the analog 
part was changed. 

Good model accuracy and improved simulation performance are the main 
advantages of these models. An extracted model can be used many times. 
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The analog simulator is only used for model extraction. This reduces 
licensing costs. The IP of the underlying circuit is protected due to the black 
box architecture. So the model can be provided to third-party system 
designers.

Characterization and generation of the model data sets can be very time 
consuming. This is disadvantageous because the model must be extracted 
after each change of the RF subsystem. Since the RF subsystem is modeled 
as black box no optimization of the RF part is feasible in system level 
simulation. It restricts the application of this modeling technology to bottom-
up system verification. 

Black box models can represent single building blocks of the RF front-
end like mixer, filter and amplifier (for example low pass equivalent models 
[JBS00]) as well as complete RF subsystems [MoC98]. 

The J&K model approach 

J-models are designed for modeling complete transmitter front-ends. K-
models represent receiver front-ends. This means that the transmitter 
subsystem has a complex baseband signal input and a passband (carrier 
frequency) output. The receiver subsystem has a passband (carrier 
frequency) signal input and a complex baseband signal output. The model 
extraction is based on SpectreRF simulations. The generated models can be 
used within the system level simulator SPW. 

If J&K models should be extracted for separate parts of the RF 
subsystem it is necessary to add ideal mixers to ensure that the type of input 
or output signal is correct. After extraction (on the SPW side) the models 
have complex baseband input and output ports. 

The J-model can be used to evaluate adjacent channel power ratio 
(ACPR) and error vector magnitude (EVM) of transmitters at system level 
comprising intermodulation, spectral regrowth and harmonic distortion. The 
K-model provides end-to-end bit error rate (BER) evaluation for receivers. 
To evaluate the impairment of a blocker it is necessary to model the blocker 
in SpectreRF for it to be present during model extraction. 
K-model example 

The direct conversion receiver model which was designed for the 
cosimulation was also used for the K-model extraction. Some modifications 
are necessary to use the model for K-model extraction. An ideal mixer was 
added in front of the receiver to convert the input passband signal 
immediately down to the complex baseband representation. This is because 
the receiver front-end is described completely with complex baseband 
behavioral models. Input and output jig were added. These are specialized 
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port models, which are used to determine input and output ports of the RF 
front-end. The resulting schematic is shown in the upper part of Figure 
12-10.

The analog design environment ADE is started from the schematic 
window. Some simulation parameters (for example simulation sweep 
ranges) must be specified in the ADE window. Then an OCEAN script is 
generated, which contains all analysis commands for the model extraction. 

The script is executed in a shell. It starts a set of simulations and manages 
the generation of the K-model dataset. SpectreRF is used as the simulation 
engine. Periodic steady state analyses are used to extract the transfer 
function of the receiver. 

The model extraction can take some minutes or up to several hours 
depending on the complexity of the receiver model. During this time the 
SPW schematic can be modified. The nonlinear K-model template is placed 
from the SpectreRF-SPW-Link library into the schematic (bottom of Figure 
12-10). It is configured by specifying the directory that contains the 
extracted data. The full system model is now ready for simulation. 

Figure 12-10. Schematic for K-model extraction (DFII) and instantiated K-model (SPW) 
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The K-model was used within a QAM16 transmission testbench. The 
simulation result (Figure 12-11) shows the effects of compression and 
AM/PM conversion of the QAM symbols. 

Figure 12-11. Scatter plot from QAM 16 testbench with K-model 
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