

MODELING AND SIMULATION FOR RF SYSTEM DESIGN

Modeling and Simulation
 for RF System Design

RONNY FREVERT
Fraunhofer Institute for Integrated Circuits, Dresden, Germany

JOACHIM HAASE
Fraunhofer Institute for Integrated Circuits, Dresden, Germany

ROLAND JANCKE
Fraunhofer Institute for Integrated Circuits, Dresden, Germany

UWE KNÖCHEL
Fraunhofer Institute for Integrated Circuits, Dresden, Germany

PETER SCHWARZ
Fraunhofer Institute for Integrated Circuits, Dresden, Germany

RALF KAKEROW
Nokia Research Center, Bochum, Germany

and

MOHSEN DARIANIAN
Nokia Research Center, Bochum, Germany

by

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 10 0-387-27584-3 (HB)
ISBN 13 978-0-387-27584-0 (HB)

ISBN 13 978-0-387-27585-7 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springeronline.com

Printed on acid-free paper

All Rights Reserved
© 2005 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

ISBN 10 0-387-27585-1 (e-book)

accepts full responsibility for the use of these models.
The book and the included CD-ROM contain models which may be used for simulation purposes. The user

 The names of software products used in this book are trademarks of their respective producers.

Contents

Preface ix

Acknowledgments xi

1. INTRODUCTION 1

2. DESIGN FLOW OVERVIEW 7
2.1 Design Levels 7
2.2 Top-down System Design 9
2.3 Bottom-up Verification 11

3. SIMULATION TOOLS IN SYSTEM DESIGN 15
3.1 Use of Simulation Tools within the Design Flow 15
3.2 Specific Simulation Algorithms of RF Simulators 17
3.3 Criteria of the Simulator Selection 21
3.4 Internet Resources for Simulation Tools 23

4. SYSTEM LEVEL MODELING 25
4.1 System Level Simulation 25
4.2 Simulation Technology of System Level Simulators 26
4.3 Complex Baseband Simulation 27

4.3.1 Principle 27
4.3.2 Example for baseband simulation 30
4.3.3 Restrictions and advantages of baseband modeling 30

4.4 Model Libraries for System Simulation 31
4.5 Creation of Own Primitive and Hierarchical Models 33

vi MODELING AND SIMULATION FOR RF SYSTEM DESIGN

4.5.1 SPW modeling example 33

5. VHDL-AMS FOR BLOCK LEVEL SIMULATION 39
5.1 Introduction 39
5.2 VHDL-AMS Standardization 40
5.3 A Simple Block Level Example – Analog PLL 41

5.3.1 Mathematical models of basic blocks 42
5.3.2 Structural description of the PLL circuit in VHDL-AMS 44
5.3.3 VHDL-AMS description of basic blocks 47

5.4 Summary 50

6. INTRODUCTION TO VHDL-AMS 51
6.1 Aim of this Introduction 51
6.2 Repetition of Basics of VHDL 1076-1993 52

6.2.1 Design units 52
6.2.2 Logical libraries and compilation of design units 56
6.2.3 Concurrent statements 60
6.2.4 A simple pure digital example – divider 65

6.3 Conservative Systems Description 66
6.3.1 Network analysis problem 67
6.3.2 Nature, terminal and branch quantity declarations 71
6.3.3 Simultaneous statements and free quantity declarations 78
6.3.4 Example of a conservative system – A-law companding 85
6.3.5 Attributes in VHDL-AMS 88
6.3.6 Example – higher order lowpass filter 103

6.4 Description of Nonconservative Systems 105
6.5 Mixed-Signal Simulation 107

6.5.1 Attributes for mixed-signal modeling 108
6.5.2 Mixed-signal simulation cycle 114

6.6 Analysis Domains 116
6.6.1 Supported domains 116
6.6.2 Small-signal and noise domain simulation 118

6.7 Summary 124

7. SELECTED RF BLOCKS IN VHDL-AMS 127
7.1 Library Overview 127
7.2 Signal Sources 128

7.2.1 Independent sources 128
7.2.2 Modulated sources 130
7.2.3 Wobble generator 133
7.2.4 Pseudorandom binary source 135

7.3 Basic RF Building Blocks 137
7.3.1 Low-noise amplifier 137

MODELING AND SIMULATION FOR RF SYSTEM DESIGN vii

7.3.2 Mixer 142
7.3.3 Charge pump 146
7.3.4 Analog VCO 150
7.3.5 Digital VCO 153
7.3.6 Filters 157
7.3.7 Switch 163
7.3.8 General n-bit A/D and D/A converter 164
7.3.9 Simple channel 169

7.4 Measurement and Observation Units 174
7.4.1 Peak detector 174
7.4.2 Frequency measurement unit 175
7.4.3 Power meter 178

7.5 Block Level Example of a Linear PLL 183

8. MACROMODELING IN VHDL-AMS 191
8.1 Introduction 191
8.2 General Methodology 191
8.3 Input and Output Stages 194

8.3.1 Input stages 194
8.3.2 Output stages 197

8.4 OpAmp Macromodel 199

9. COMPLEX EXAMPLE: WLAN RECEIVER 203
9.1 Introduction 203
9.2 Example Specification 204
9.3 Example Modeling 207
9.4 Example Calibration 211
9.5 Example Verification 214

10. MODELING OF ANALOG BLOCKS IN VERILOG-A 219
10.1 Introduction 219
10.2 Writing Custom Behavioral Models 220

10.2.1 Verilog-A principles 220
10.2.2 LNA modeling example 222
10.2.3 Creating a Verilog-A model 226

10.3 Overview of the Cadence Model Library rfLib 231
10.4 Modeling and Simulation of a WLAN Receiver 236

10.4.1 WLAN receiver modeling using Cadence libraries 237
10.4.2 Simulation of the WLAN receiver 240

11. CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 247
11.1 Concept of Characterization 247
11.2 RF Characteristics and Parameters 248

viii MODELING AND SIMULATION FOR RF SYSTEM DESIGN

11.3 Application of Characterization 252
11.4 Example Characterization of an LNA 254
11.5 Characterization Environment 258
11.6 Characterization Using the OCEAN Script Language 262

11.6.1 Creation of the testbench schematic 262
11.6.2 Analysis settings and simulation 263
11.6.3 Combination and extension of the OCEAN scripts 266

12. ADVANCED METHODS FOR OVERALL SYSTEM
SPECIFICATION AND VALIDATION 271
12.1 Gap between System Level and Block Level Simulation 271
12.2 File Coupling of Simulators 272
12.3 Direct Cosimulation of System Level and Analog
 Simulators 273
12.4 Generated Black Box Models 279

References 285

Index 287

Preface

Many books have been published in recent years that focus on wireless
communication systems, with some focused on modeling and simulation.
This book is aimed at the special topic of modeling for RF system design.
Very high carrier frequencies together with long observation periods result
in extremely large computation times and requires, therefore, specialized
modeling methods and simulation tools on all design levels from system
down to circuit level. To illustrate the application of these methods and
usage of the tools the book includes numerous models and extensive
examples. Therefore the book is addressed to graduate students and
industrial professionals who are engaged in communication system design
and want to gain insight into the system structure by own simulation
experiences.

The tools and languages for hardware description of VLSI circuits have
changed over the years. Nevertheless models are provided on a CD-ROM
included with this book because models are necessary to reproduce,
understand and explore the real world behavior on a simulation platform.
VHDL-AMS and Verilog-A are chosen as description languages which are
an IEEE standard and a quasi industrial standard respectively. In spite of
deviations within language implementations in different simulation tools, the
provided mathematical background to each individual model should enable a
large audience of readers to use these models. Moreover the given
introduction into the syntactic elements of the language VHDL-AMS allows
to modify the given examples to special needs.

The authors

Acknowledgments

This book is the result of many years of fruitful project cooperation
between Nokia Research Center, the Fraunhofer Institute for Integrated
Circuits and other partners. After common discussions and successful
research in the field of modeling methodology for wireless system design we
were convinced that it is time to publish our approaches, methods and results
together with illustrating examples.

The authors are grateful to all colleagues inside and outside of our
organizations for sharing their knowledge during discussions and to all
supporters who helped with their valuable hints and corrections to complete
the work on this book. Especially we wish to thank Dean Hobson from
Mentor Graphics who carefully read the manuscript and was always
prepared to discuss matters of language and content. Also, we would like to
thank Mark de Jongh for his encouraging hints and the management task to
publish this book. This also includes of course the staff at Kluwer publishers
who produced this book in a very professional way.

Chapter 1

INTRODUCTION

1. INTRODUCTION

Modern telecommunication systems are highly complex from an
algorithmic point of view. The complexity continues to increase due to
advanced modulation schemes, multiple protocols and standards, as well as
additional functionality such as color displays, personal organizers,
navigation aids, cameras, and audio-visual support.

At the same time both silicon area – which means costs – and power
consumption of the devices have to be reduced and the design time
shortened. This is inevitable to keep profitability in this fast evolving high
volume consumer market.

These conflictive demands force the need for efficient design and
verification methods. To have short and reliable design cycles, verification is
necessary very early in the design process. Modeling and simulation need to
accompany the design steps from the specification to the overall system
verification in order to bridge the gaps between system specification, system
simulation, and circuit level simulation. Therefore this book contains
application-oriented training material for RF designers which combines the
presentation of a mixed-signal design flow, an introduction into the
standardized powerful hardware description language VHDL-AMS, and the
application of commercially available simulators. The focus lies on RF
specific modeling and simulation methods and the consideration of system
and circuit level descriptions.

An early version of some parts of this book, especially some of the
VHDL-AMS models, has been tested in a Nokia-internal course with about
50 designers. In this course a web-based education and simulation
environment has been used, developed in a European research project LIMA
(Learning Platform in Microelectronics Applications).

2 Chapter 1

The challenges for the designer are especially demanding in the face of
mixed-signal (analog/digital) and multi-domain (RF/baseband) systems.
Today’s wireless communication systems use sophisticated modulation and
coding techniques to transmit the information at very high carrier
frequencies. Modulation and coding is typically realized in the Digital Signal
Processing (DSP) subsystem, which is also called baseband signal
processing. The RF front-end provides the interface between baseband
(some MHz) and the RF transmission channel (some GHz).

The DSP part uses more than 95% of the total amount of transistors.
System level simulators are used for the verification of the DSP algorithms.
Efficient simulation algorithms are applied to simulate the complete transmit
path from the transmitter to the receiver. DSP designers often assume that
the analog part is an ideal device. On the other hand RF designers perform
analog simulations to design and verify the RF subsystem without
information regarding the DSP part. This is why the common evaluation of
the RF and the DSP part becomes increasingly important. This ensures that
the RF part fulfills the system requirements without over-dimension, which
means the interaction between both parts is respected without the need to
include a safety margin in the specification of the RF part.

RF circuits and systems possess special characteristics that need to be
considered in modeling and simulation, which are

very high carrier frequency on the one hand and comparatively low
signal bandwidth on the other,
presence of weak nonlinearities,
importance of noise considerations and the signal-to-noise ratio (SNR),
necessity to simulate a large number of sample points or data bits in order
to compute distortion measures, for example bit error rates (BER).

For RF systems to handle these characteristics specially suited modeling
methods and simulation algorithms have been developed. They will be
introduced during the course of this book and demonstrated with examples.

A number of simulation tools are on the market that specialize in RF
circuits. Since we want to widen the scope on a design flow from system to
circuit level with attention to mixed-signal aspects, we used a collection of
different commercially available simulation tools in the book

ADVance MS of Mentor Graphics
SpectreRF of Cadence
SPW of CoWare
MATLAB of The MathWorks

INTRODUCTION 3

Many other tools currently available on the market could have been used,
but the modeling methods and simulation principles remain the same. An
introduction into the usage of the tools goes beyond the scope of this book.
For support on the tools, refer to the help function or the online help of the
tool providers. It is also not intended to include schematic entry and layout
tools.

Modeling of RF systems ranges from system-level signal-flow oriented
models (for example MATLAB/Simulink) over mixed-signal block oriented
models (for example VHDL-AMS) to circuit-level descriptions (for example
SpectreRF). Therefore a modeling flow, covering different levels of
abstraction, as well as modeling languages and libraries are essential topics
of the book (Figure 1-1). A special focus lies on the mixed-signal simulator-
independent modeling language VHDL-AMS.

Figure 1-1. Overview of the main topics of the book

Modeling and simulation methods need to be oriented on existing design
flows in order to establish them in industrial use. Hence we propose a
modeling and simulation flow that follows the V-diagram as a commonly
accepted design paradigm (see Chapter 2). The material in this book is
structured accordingly. Chapter 2 provides an overview of different levels of
abstraction, the top-down and bottom-up methodologies. Specific simulation
algorithms and various simulation tools for different phases of RF system
design are introduced in Chapter 3.

4 Chapter 1

The first direction of the design flow is top-down. That means we start
with specifications at the system level. Chapter 4 describes how RF
components can be modeled in system level simulators such as CoCentric,
SPW or MATLAB. It is focused on the development of RF-specific system
models.

After initial architectural decisions, specifications for the subsystems are
derived and an abstract (less detailed) behavioral model of the RF subsystem
can be developed for simulation. This model is improved and becomes more
detailed during the design process. On this architecture or block level,
mixed-signal simulations are often necessary because the partition into
analog and digital parts is not yet clear and different architectures have to be
explored. At this point in the book we introduce VHDL-AMS as an
important language that supports digital, analog, and mixed-signal modeling
and simulation. It is a strict superset of the digital VHDL 1076-1993.
Chapter 6 is aimed at designers with knowledge of standard digital VHDL
1076-1993. The reader should be able to understand and use the provided
models, change and refine them, as well as develop own simple models.

A library of RF block level models in VHDL-AMS is fully documented
in Chapter 7. The enclosed CD-ROM contains the complete source code of
this model library. Important basic RF building blocks are included
subdivided into source, processing and measurement blocks. Chapter 8
introduces the macromodeling principle with examples in VHDL-AMS.

In Chapter 9 the complex design example of a WLAN receiver according
to the standard IEEE 802.11a is assembled from basic building blocks of the
previous chapters. Using the modeling flow methodology from the previous
chapters the example is modeled in VHDL-AMS, optimized using circuit
level simulation, and verified by system level simulation. Thereby it is
shown, how the realistic design task of developing a receiver front-end can
be supported by modeling and simulation.

The next step in the top-down design flow is the implementation of
blocks as circuits. At this level, circuit simulators are available with
dedicated support for RF analysis and depiction modes. The custom IC
design environment from Cadence and its analog RF simulator SpectreRF
are important tools in RF circuit design. SpectreRF uses Verilog-A for
behavioral modeling, which is the analog part of Verilog-AMS. A library of
Verilog-A models for typical RF building blocks is provided by Cadence.
Chapter 10 demonstrates the use of this library for RF system modeling. An
example of modeling in Verilog-A is provided.

INTRODUCTION 5

Bottom-up techniques are used next in the design flow to verify whether
design goals are met with the implemented system. The characterization of
circuit level descriptions allows the refinement of behavioral models for
system level simulation. It is also applied to generate data for the component
documentation and reuse. Characterization environments are discussed in the
Chapter 11. The characterization environment is used to extract RF specific
parameters of circuit designs and to validate the respective behavioral
models. An overview of parameters, which can be extracted for RF
components, is provided. A characterization example is demonstrated by
using SpectreRF and OCEAN scripts.

As a last step in the design flow, system verification is necessary with the
back-annotated knowledge of the circuit properties in the refined models.
Solutions which will bring analog and system level simulators together are
introduced in the last Chapter 12. Black box modeling uses a special kind of
characterization to generate nonlinear transfer functions of a complete RF
front-end. The transfer functions are stored in files which are read from
special black box models in the system level simulator. Another method is
co-simulation, which couples analog and system level simulators. The
principles of both approaches are explained and illustrated by examples for
the Cadence design environment. Advantages and disadvantages of the
different approaches are discussed.

To summarize, the training material comprises up-to-date knowledge of
modeling and simulation for the RF system design of modern
telecommunication systems. The introduction of a general modeling flow is
supplemented by RF specific simulation algorithms. Commercially available
tools are used to demonstrate how RF system design can be supported and
improved by means of modeling and simulation. A second major part is the
introduction of VHDL-AMS as a standardized hardware description
language with increasing importance. Because it is the mixed-signal
extension of the well-established language VHDL it is expected to be used
for RF and system design tasks in the near future.

In this application-oriented book the teaching material, which introduces
the concepts and theoretical background, is followed by illustrative examples
and sources of further information. Many simulation examples are shown
with extensive solutions. Thus if the reader has access to the required
simulation tools he is able to reproduce the example solution, modify it and
thereby gain own experiences with modeling and simulation of RF systems.
This book establishes a comprehensive training course in a technologically
critical area.

Chapter 2

DESIGN FLOW OVERVIEW

2. DESIGN FLOW OVERVIEW

2.1 Design Levels

Functionality and architecture of electronic devices can be very complex.
The systems may consist of analog and digital hardware together with
software parts. A telecommunication system contains for example:

An analog front-end to the physical transmission channel
Digital hardware for coding and modulation
General purpose or signal processors for control, user interface and
transmission protocol handling

Many designers with specialization in different areas are involved in
design and implementation. Several design steps are necessary to realize a
system concept on silicon. The design process can be classified in several
design levels as shown in Figure 2.1.

Each design level is associated with certain design tasks concerning the
whole system or system parts. Starting from system level the design
description becomes more and more detailed in a design step. CAD tools
support the designer at each level.

The system level is the first design level beginning with an idea of the
desired system. This level is also called concept engineering. The system
concept and main algorithms are described at a very abstract level without
information about the implementation of algorithms. For example, the
coding algorithm to be used for data transmission is specified, but it is not
decided to implement the coder in hardware or software.

8 Chapter 2

System Level
(Executable Specification)

Block Level
(digital: Register Transfer

Level)

Circuit / Transistor Level
(digital: Gate Level)

Layout Level

Figure 2-1. Design levels

The system specification can be developed on a sheet of paper. More
powerful is an executable specification supported by system-level simulators
(for example CoCentric System Studio, MATLAB, and SPW). It allows the
evaluation of the selected algorithms and provides a reference model for
following design steps.

The system is now partitioned into several hardware (analog or digital)
and software subsystems. This design level is named Block Level or
Register Transfer Level (RTL) in the digital area. The description of the
subsystems at this level contains more detail about the design architecture.
At this level the design consists of different blocks, for example multiplier,
adder, register, A/D converter, analog filter and amplifier.

Digital and mixed-signal hardware description language (HDL)
simulators support the block level design. Commonly used modeling
languages in this area are VHDL-AMS and Verilog-AMS. The design of
hardware/software systems is further supported by special tools, for example
instruction set simulators (ISS).

The third design level is called gate level in the digital domain and circuit
level in the analog domain. The blocks of the system are now represented by
netlists containing gates or active and passive analog elements. Gate level
models can be generated from RTL descriptions by logic synthesis. In the
analog design, the circuits are still designed manually.

Gate level or circuit simulation is used to evaluate the design at block
level. In the digital domain a timing analysis can be executed, and the blocks

DESIGN FLOW OVERVIEW 9

are still described in VHDL and Verilog. Circuit simulators such as SPICE
and Spectre are used in the analog domain to analyze the behavior of the
designed block.

Based on the gate level or circuit netlist and data of the circuit technology
the layout of the circuit is designed. The design is now represented as
polygons at different layers of an integrated circuit. In the digital domain this
step is well-automated. The tools will check if the design rules for a
specified circuit technology are fulfilled. In the analog domain further
manual optimization of layout may be necessary, for example to minimize
crosstalk between signals or to achieve a symmetric design. Tools that
extract parasitic effects that originate from layout also support the layout
verification.

2.2 Top-down System Design

System Level
(Executable Specification)

Electrical Block Level
(digital: Register Transfer

Level)

Circuit / Transistor Level
(digital: Gate Level)

Layout Level

System Partitioning
(HW and SW)

Circuit Design
(Logic Synthese)

Layout Synthese

System Level Simulation
(CoCentric, Matlab, SPW,

partially VHDL-AMS)

Behavioral Simulation
(VHDL-AMS, Verilog-AMS,

SystemC)

Circuit Simulation
(VHDL-AMS, Spice,

Spectre)

Layout Simulation,
Parasitic Extraction

Design Levels Simulation Support
(analog / mixed signal)

System
Specification

Analog/Digital
Mixed-Signal

Simulation

Circuit
Simulation

VHDL-AMS
coverage

Figure 2-2. Top-down design and simulation support

10 Chapter 2

Top-down design is a method of designing an electronic system that
starts with the complete system concept and then breaks it down into smaller
and smaller components (see Figure 2-2).

The first design level at which top down design starts is the system level.
For telecommunication systems it is here that is specified which algorithms
are used to transmit data from the signal source at point A to a sink at point
B. Algorithms which are specified at this level may be for example:

data structure and protocol
forward error correction techniques (FEC)
modulation techniques (QPSK, QAM, GMSK, OFDM)
channel equalization and synchronization

The system level design is supported by system level simulation.
Efficient simulation techniques (for example event driven or data stream
driven simulation) allow the simulation of the complete transmission system.
The simulation also includes a model of the transmission channel (additive
white Gaussian noise, AWGN, or mobile channels with fading). The goal of
the system design is an overall system specification. If a system level
simulation model exists, it can be used as an "executable specification" (see
Figure 2-3).

If the system level specification was successfully verified within a
system level simulation the system is partitioned. The algorithms of the
system can be implemented in different ways:

analog hardware
digital hardware
software

The second design level is named Block Level or in the digital area
Register Transfer Level. The system is now partitioned into components and
subsystems. Now parameters of the components can be specified.

Figure 2-3. Top level schematic of a WLAN system simulation model (SPW)

DESIGN FLOW OVERVIEW 11

Figure 2-4. Schematic of the RF subsystem (direct conversion receiver)

Figure 2-4 shows for example the block level schematic of the RF
subsystem of the WLAN receiver. At system level the RF subsystem was
specified either with ideal parameters or with parameters like noise level,
gain and linearity. Now it is broken down into its components (filter,
amplifier and mixers) which must be parameterized.

At block level we use behavioral models for the simulation of the
subsystems. For the analog and mixed-signal area, models can be written in
VHDL-AMS and Verilog-AMS. For pure analog simulation, additional
languages (for example SpectreHDL) are provided with the simulation tools.
The simulation at block level is used to verify whether the block level
realization of the subsystem meets the system level requirements.

After the blocks are specified, the circuit design can start. In the digital
area, gate level designs can be generated automatically from behavioral
models. However for analog blocks there are still no synthesis tools
available. So the analog designers must create the transistor level
implementation of the components manually. This is supported by transistor
level simulation. The block level simulation models can be reused as
testbench or reference models if the circuit level simulator supports
behavioral modeling languages. Verilog-AMS and VHDL-AMS simulators
often support the simulation of SPICE netlists; therefore they can also be
used for verification of the transistor level design.

If the transistor level design was verified by simulation the layout can be
developed. With the layout level the top down design flow is finished. The
layout design is not within the scope of this book. It is possible to extract
parasitic effects from layout level simulation which can be used to improve
the accuracy of transistor level simulation.

2.3 Bottom-up Verification

The amount of information and number of parameters increases during
the top-down design process from the system concept to its implementation.

12 Chapter 2

At the beginning of the design, the system is described with some
algorithms. After implementation the system may consist of a large number
of transistors. Concept verification is needed to check that the
implementation meets the requirements of the system.

In the “V” diagram (Figure 2-5) the verification starts from the layout
level (bottom) and then proceeds up to the block and system levels.

After layout, simulation parasitic effects can be back-annotated into the
circuit netlist. The circuit simulation with the extracted netlist is used to
verify the circuit design. The designed circuits can now be combined into
functional blocks, which are checked against their specification in a block
level simulation. Finally the designed blocks can be connected to the system.
System level simulation verifies that the blocks fit into the system
environment.

It is recommended to start verification before the design is completed at
layout level. After each design step simulation can be used to verify the
design or component against the specification.

System Level
(Executable

Specification)

Implementation

Layout Verification,
Parasitic Extraction

Circuit Verification

Block Verification

System Verification

Layout Level

Circuit / Transistor
Level

Electrical Block
Level

Verification

Time Time

Figure 2-5. Top -down design and bottom-up verification (V diagram)

DESIGN FLOW OVERVIEW 13

System level or block level simulation is used to verify large systems or
circuits. Often a transistor level model of a system cannot be simulated
because its complexity (number of transistors or gates) is much too large.
Therefore it is necessary to use behavioral models.

Figure 2-6 shows the application of behavioral models during block level
and system level verification. It is assumed that behavioral models were
already used during the top-down design. In the verification phase it is now
necessary to calibrate these models as follows:

Parasitic extraction and back annotation into the circuit netlist improves
the accuracy of the circuit model (extracted circuit model)
Simulation with the extracted circuit model is used to gain the circuit
characteristic and parameters
Extracted circuit parameters are used to calibrate the behavioral model of
this component
Calibrated behavioral models are used on block and system levels for
verification

System Level
(Executable

Specification)

Implementation

Layout Verification

Circuit Verification
(extracted circuit

model)

Block Verification
(calibrated behavioral

model)

System Verification

Layout Level

Circuit / Transistor
(circut model)

Electrical Block Level
(behavioral model)

Verification

Parasitic Extraction &
back annotation

Parameter Extraction
& model refinement

Figure 2-6. Refinement of models during bottom-up verification

14 Chapter 2

The main advantage of using (calibrated) behavioral models is the
simulation speedup which enables the simulation of large systems or
subsystems.

Different behavioral modeling languages exist. Most of them are specific
to a particular simulator. To allow the reuse of models it is suggested to use
standardized languages like VHDL-AMS and Verilog-AMS.

A characterization environment can support model calibration.
Characterization is the calculation of component or subsystem characteristics
and parameters from measured or simulated data. A characterization run
contains a set of simulation and postprocessing commands that allow the
determination of significant circuit characteristics. The behavior of the
circuit description and behavioral model can be compared. If the model is
inaccurate, the model parameters or algorithms are modified.
Characterization also supports model and circuit documentation. Chapter 11
contains more information about characterization environments.

Chapter 3

SIMULATION TOOLS IN SYSTEM DESIGN

3. SIMULATION TOOLS IN SYSTEM DESIGN

3.1 Use of Simulation Tools within the Design Flow

The application of simulation tools is very important to improve the
efficiency in system and circuit design. Various simulation tools exist on the
market to support the design process. This chapter discusses topics that must
be taken into account when selecting appropriate simulation tools.

As described in Section 2.2 the top-down design flow starts with the
system concept which covers the complete system. The system is then
divided into subcomponents down to the circuit and layout level. The choice
of simulation tool depends on the design level addressed and the type of
design (analog, RF, digital or mixed-signal). Simulators may cover more
than one design level (Figure 3-1).

We distinguish between four categories of simulators, which are
described in the following sections.
System level simulators

System level simulators provide efficient simulation algorithms to
achieve a high simulation speed. This allows simulation of complete
transmission systems containing a transmitter, channel and receiver with
analog and digital parts. The simulation accuracy is restricted particularly for
analog system parts. However, it allows the verification of system concepts.
System modeling is supported by large libraries, which contain models of
various system components, for example coders, modulators, and channels.
The primary application of these tools is the system level design, also called
concept engineering. They may also be partially used in block level design,
for example to provide testbenches.

16 Chapter 3

System Level
(Executable Specification)

Electrical Block Level

Circuit / Transistor Level

Layout Level

System Partitioning
(HW and SW)

Circuit Design
(Logic Synthesis)

Layout Synthesis

Design Levels Application of Simulation Tools

System
Level

Simulators

Mixed-
signal

Simulators

Circuit
Simulators

(with RF
option)

Layout
Verification

Figure 3-1. Simulation tool coverage in the mixed-signal design flow

Mixed-signal simulators

The main application of mixed-signal simulators is within the block level
design where the partitioning into analog and digital hardware or software is
performed. Mixed-signal simulation allows the common verification of
analog and digital system parts, as well as the interfaces between them.
Behavioral models are widely used at this design stage. The most important
mixed-signal modeling languages are VHDL-AMS and Verilog-AMS.

The application of mixed-signal simulators can be extended to the system
level if models of the system components exist. However, at present the
model libraries of mixed-signal simulators do not achieve the complexity of
the system level simulator libraries.

Mixed-signal simulators may also be used in circuit level design. In
contrast to specialized RF circuit simulators they do not provide RF specific
analyses.

SIMULATION TOOLS IN SYSTEM DESIGN 17

Circuit level simulators

Most circuit level simulators support the simulation of circuit level
descriptions (SPICE netlists) as well as analog behavioral models. Some
simulators provide specialized simulation algorithms for the analysis of RF
components (circuit envelope, periodic steady state for example). They
provide an accurate analysis of components, but the simulation performance
is too low to simulate large system parts.

With the ability to use behavioral models, circuit level simulators may
also be used in block level design of analog subsystems. In addition layout
effects can be included in circuit simulation by extraction of parasitics.
Layout verification

Layout verification is used to check if the design rules for a desired
silicon technology are fulfilled. Layout effects (for example parasitic
capacitances, substrate coupling) may be extracted and back annotated for
circuit level simulation. The impact of layout and packaging on the desired
circuit functionality can be analyzed. Layout verification is not discussed
further.

Table 3-1. Overview of simulation tools
Simulator Main design

level
Additionally
supported levels

Target Examples

system simulator system level block level complete system ADS, CoCentric,
MATLAB, SPW

mixed-signal
simulator

block level system level,
circuit level

subsystems ADVance MS,
SMASH, AMS
Designer, Saber

circuit simulator circuit level block level,
(layout level)

blocks Eldo, Spectre,
Spice, ADS

layout simulator layout level components,
packages

Assura, Calibre,
Hercules

Some simulators and their application are outlined in Table 3-1. In some
cases a co-simulation of different tools is used to accelerate the simulation,
reuse models, or increase simulation accuracy. This topic is outlined in
Chapter 12.

3.2 Specific Simulation Algorithms of RF Simulators

The traditional SPICE analyses are essential in analog circuit design.
Their application to RF circuits may cause some problems resulting from the
behavior of RF systems such as:

18 Chapter 3

The signals which are transmitted are narrowband signals. This means
that a data signal with a relatively low bandwidth is transmitted at a very
high carrier frequency. To simulate a sufficient portion of the data signal
a large number of carrier waves must be simulated. This may exceed the
performance of traditional transient analyses (memory and time
consumption).
RF receivers usually receive weak desired signals while large
interference signals are present. This implies that the linearity of the
receiver is a very important task for the designer requiring a precise
simulation of nonlinearity.
Improved transistor models are required to represent the behavior of RF
transistors.

Specialized RF simulation algorithms are provided to improve the
analysis of RF circuits and systems. They are available in RF simulators like
ADS and SpectreRF but typically not in VHDL-AMS simulators. An
exception is ADMS RF which combines ADVance MS and Eldo RF. The
most important simulation algorithms are:

Periodic Steady State Analysis (PSS)
Harmonic Balance (HB)
Transient Envelope Analyses (Envelope)

They provide a good accuracy for RF specific measurements at a
sufficient simulation performance. The principle of these analyses is outlined
in the following section.
Analysis for dynamic systems with weak nonlinearities

Different simulation algorithms can be used to analyze the frequency
response of dynamic and nonlinear systems such as mixers and LNA’s. The
algorithms are:

Periodic Steady State (PSS) in Cadence’s SpectreRF Simulator
Harmonic Balance (HB) in Agilent’s ADS

The results of these analyses are the frequency spectra of the signals
within the system including the wanted and unwanted harmonics (arising
from nonlinearity).

The analysis is used to compute the steady state response of a nonlinear
circuit, which is the response after the start-up transient has died down. The
stimulus of the circuit is a limited number of sinusoidal signals. In the steady
state, the system response is periodic according to the period length of the

SIMULATION TOOLS IN SYSTEM DESIGN 19

fundamental frequency. All input frequencies of the system must be an
integer multiple of the fundamental frequency. The methods of computing
the steady state solution are different in PSS and HB.

Figure 3-2. Results of a PSS analysis of an LNA

Figure 3-2 shows the results of a PSS analysis in frequency (left hand
graphs) and time domain (right hand graphs). The input signal was two-tone
with 850 and 900 MHz, each with a -10 dBm magnitude (upper graphs).
Each input frequency must be an integer multiple of the fundamental
frequency. Thus a fundamental frequency of 50 MHz is used in the example.
This is equivalent to a period of 20 ns. To visualize frequencies up to 2 GHz,
40 harmonics of the fundamental frequency were computed. The time
domain output of the LNA (bottom right hand graph) shows that the LNA is
operated in the nonlinear area. The 3rd order harmonics at 800 MHz and
950 MHz are visible in the frequency domain (upper left hand graph). Other
analyses are based on the steady state operating point, for example:

periodic AC analysis
periodic noise analysis
periodic XF (periodic transfer function)
periodic SP (periodic S-parameters)

20 Chapter 3

The PSS analyses and the subsequent analyses are very important to
determine the characteristics of RF systems and building blocks.
Transient envelope analyses

The envelope analyses address the narrow-band problem of wireless
communication systems: signals with a relatively small bandwidth are
transmitted at very high carrier frequencies. Transient envelope analyses are
known as:

Circuit Envelope Analysis (ADS from Agilent)
Envelope Following Analysis (SpectreRF from Cadence)

The transient envelope analysis computes the envelope of a modulated
carrier signal. This is demonstrated with a sine wave of 1 MHz, which is
amplitude modulated on a carrier frequency of 900 MHz (modulation index
0.5). The simulation interval is 2 µs (two periods of the modulation signal).

Figure 3-3 shows the AM modulated carrier resulting from a transient
analysis. To represent the modulated signal a large number of carrier periods
must be computed, which is visualized in the detail interval (1…1.02 µs).
This implies that the transient analysis is not efficient enough to evaluate a
sufficient part of the modulation signal. The transient envelope analysis can
speed-up the simulation of the modulation signal.

Figure 3-3. Results of traditional transient analyses (complete wave and detail)

SIMULATION TOOLS IN SYSTEM DESIGN 21

Figure 3-4. Result of the envelope following analysis (SpectreRF)

The envelope analysis was six times faster than the transient analysis of a
small example LNA. The lower portion of the graph in Figure 3-4 shows the
time domain signal of the modulated carrier. It can be seen, that the carrier
signal is only partially computed. The black curve shows the envelope of the
carrier which represents the modulating signal. There are too few sampling
points to achieve a clear sine wave. The envelope analyses may be hardly
applicable for multi-carrier or wideband modulation techniques.

3.3 Criteria of the Simulator Selection

A great number of simulation tools are on the market. This section
presents some criteria which must be taken into consideration to identify the
best simulation tool for a design task. The decision depends on the
application, design flow, user interface, costs, and support.

Application related criteria

In which design level(s) should the simulator be used?
Which designs shall be mostly simulated (analog, mixed-signal)?
Are special analyses needed (for example for RF)?
Which model libraries are provided to speed-up the modeling of systems
and testbenches?
Is it possible to reuse models of former designs?
Which simulation speed can be obtained?
Is the size of the designs limited?

22 Chapter 3

Design flow related criteria

Are there interfaces for standardized modeling languages?
Are there interfaces to other tools in the existing design flow (model
import/export, simulator coupling)?
Are there interfaces for tool customization and scripting?
Is version control supported?
Which computing platforms are supported (Windows, Unix, Linux,
others)?

User interface related criteria

Is a graphical user interface available?
Schematic or netlist entry or both?
Quality of documentation? (User guides, examples, reference manuals,
tutorials, …)

Cost related criteria

Costs of licenses? (buying, leasing, public domain)
Costs of support and version update?
Time that is needed for user training?
Costs of user training?
Time/costs for software installation and maintenance?

Support Related Criteria

Software support available?
Web based support databases?
Design service (special support on user applications)?

The criteria mentioned above shows that the selection of a simulation
tool is very difficult. The integration of a new simulation tool often depends
on the existing design flow. Some major vendors of EDA tools provide
design frameworks where different tools have been integrated with a
common user interface.

In the future, interfaces for standardized modeling languages, like
VHDL-AMS, will simplify the exchange of models between simulators.

SIMULATION TOOLS IN SYSTEM DESIGN 23

3.4 Internet Resources for Simulation Tools

The simulation tools mentioned in this chapter are continuously being
improved. Latest information on supported features can be found on the
internet. The list below shows the current tool vendors and the related
internet addresses. The tools are assigned to the categories: system
simulators, mixed-signal simulators, and analog RF simulators.

System Level Simulators

Advanced Design System (ADS)
Provider: Agilent Technologies
http://eesof.tm.agilent.com/products/
CoCentric System Studio
Provider: Synopsys, Inc.
http://www.synopsys.com/products/cocentric_studio/
MATLAB
Provider: The MathWorks, Inc.
http://www.mathworks.com/products/matlab/
Signal Processing Worksystem (SPW)
Provider: CoWare
http://www.coware.com
APLAC
Provider: APLAC Solutions
http://www.aplac.com/

Mixed Signal Simulators

ADVance MS
Provider: Mentor Graphics
http://www.mentor.com/ams/adms.html
AMS Designer
Provider: Cadence Design Systems
http://www.cadence.com/products/
SMASH
Provider: Dolphin Integration
http://www.dolphin.fr/medal/smash/smash_overview.html
Saber
Provider: Synopsys, Inc.
http://www.synopsys.com/products/mixedsignal/saber/

24 Chapter 3

Analog RF Simulators

Advanced Design System (ADS)
Provider: Agilent Technologies
http://eesof.tm.agilent.com/products/
Eldo RF
Provider: Mentor Graphics
http://www.mentor.com/ams/eldorf.html
SpectreRF
Provider: Cadence Design Systems
http://www.cadence.com/products/

Chapter 4

SYSTEM LEVEL MODELING

4. SYSTEM LEVEL MODELING

4.1 System Level Simulation

The functionality of telecommunication systems has increased
dramatically during recent years. The systems may support multiple
standards and high data rates. Due to the cost reduction in chip production,
modern digital transmission techniques are used. Sophisticated DSP routines
(for example for protocols, error control coding, and modulation) provide
high transmission quality in mobile systems.

Figure 4-1 shows the physical layer signal processing of a wireless local
area network (WLAN) transmitter. The PDU train (protocol data unit) is a
data stream, generated by the DLC (data link control) layer of HIPERLAN
(High Performance Radio Local Area Network). Before the data is
transmitted over a radio channel, algorithms including scrambling, FEC
coding, and modulation are performed. In the receiver the reverse
operations are used with additional algorithms for synchronization and
channel equalization.

Figure 4-1. Physical layer of HIPERLAN/2 (transmitter)

26 Chapter 4

System level simulation allows the evaluation of signal processing
algorithms in the system environment. With validated reference libraries, the
standard compatibility of algorithms can be evaluated as well as the overall
system bit error rate (BER) over channel signal to noise ratio (SNR). The
verified system level models are often used as reference for the
implementation of algorithms.

Since system level simulators are designed to analyze large DSP systems,
analog modeling is barely supported. On the other hand, it is important (with
respect to System-on-Chip implementations) to investigate the impact of the
RF subsystems on transmission system performance. The modeling of
analog and RF components in system simulation is discussed in this chapter.

4.2 Simulation Technology of System Level Simulators

High level of abstraction

The simulation of whole transmission paths requires very fast simulation
techniques. Therefore the models are often idealized:

Models of DSP components represent the algorithm, but timing behavior
is usually neglected.
Analog system parts are sometimes completely neglected or they are
modeled as ideal devices (for example an amplifier is often represented
by a multiplication of a signal with a constant value).

For more accurate simulation of DSP components a co-simulation with a
VHDL simulator has been provided for some years. This topic is not
discussed here.

Due to higher transmission frequencies and more complicated radio
transmission techniques the nonlinear behavior of the analog system part
becomes more and more important for the system performance. Analog
blocks can be modeled in spite of restrictions of system level simulators.
Distinctions between system level and mixed-signal simulators

The tools for analog, RF and system design use different simulation and
modeling methods. The three main differences are discussed below.

1. Signals are often sampled: most of the system simulators (for example
CoCentric or SPW) use equidistant samples to represent signals. The
sampling rate for each signal is constant during simulation. Different
sampling rates may be used for different signals or system parts. The user
has to ensure that the sampling frequency is high enough to represent the

SYSTEM LEVEL MODELING 27

signal frequency without aliasing. Digital filter models H(z) must be used
instead of analog ones H(s). This can increase the modeling error. Few
tools (for example MATLAB and Ptolemy) provide time continuous data
flow simulation.

2. Signals instead of nodes: system level simulators use signals, which
cannot represent voltage and current as a conservative electrical node.
Therefore it is difficult to model impedance mismatch between connected
blocks. Often an ideal matching is assumed in system level simulation.
More realistic port behavior can be achieved with additional modeling
effort and parameters for port impedance.

3. No feedback between models: system level tools use a signal or data flow
based simulation algorithm in a specified direction. There are only output
and input ports; no bi-directional ports exist. A feedback between blocks
must be modeled with additional ports and signals. The feedback loop
must have a delay of at least one sample to enable correct simulation
scheduling. In contrast an analog simulator solves the complete system at
each step by iteration.

4.3 Complex Baseband Simulation

The very high value of the carrier frequency in wireless communication
systems is the major problem in system simulation. It implies a very high
sampling rate in simulation. The consequence is a low simulation
performance, which results from a large number of iterations. Complex
baseband modeling provides a more efficient simulation of RF subsystems.

4.3.1 Principle

Digital modulation techniques use magnitude r and phase of a carrier
signal to transmit information. This means that the information does not
depend on the carrier frequency value. The idea of baseband simulation is to
transform the carrier frequency to zero. The advantage is that the required
sampling rate now depends on signal bandwidth, not on carrier frequency
(Figure 4-2).

28 Chapter 4

 passband signal baseband signal

 0 fc fc+b frequency

bandwidth in simulation

 0=fc fc+b frequency

 bandwidth in simulation

Figure 4-2. Passband and baseband representation of signals

- 0 0

() ()cos(())0x t a t t t

() () cos(()) cos() ()sin(())sin()0 0
() ()

x t a t t t a t t t
I t Q t

() () cos() ()sin()0 0x t I t t Q t t

() { ()}x t HT x t

() ()sin() () cos()0 0x t I t t Q t t

() () ()y t x t jx t

0() { () ()}
j t

y t I t jQ t e

0 0() { () ()}
j t j t

z t I t jQ t e e

() () ()z t I t jQ t

creation of the quadrature representation

addition with the Hilbert transformed signal

down-conversion into the complex baseband

real signal

analytical signal

equivalent baseband signal

0

=0

Figure 4-3. Signal transformation into the complex baseband

Figure 4-3 shows how the transformation of a modulated high-frequency
carrier signal into the complex baseband can be carried out. The first part

SYSTEM LEVEL MODELING 29

depicts the creation of the quadrature representation. The modulated carrier
signal is a real signal, which contains positive and negative spectral
components. The down-conversion in the complex baseband requires an
analytical signal that contains no negative spectral components. For that
purpose the Hilbert transformed signal of the real signal is built and added as
an imaginary part to the real signal. The Hilbert transformation can simply
be seen as a 90° phase shifter. In the last part of Figure 4-3 the analytical
signal is down-converted into the complex baseband.

The equivalent baseband signal contains the amplitude- and phase-
modulation information. It consists of two real signals, the inphase
component I(t) and the quadrature component Q(t). The transfer functions of
the RF blocks must also be transformed into the complex baseband. Because
of the complex-valued signal the baseband models possess double the
number of signal pins.

The baseband models influence the baseband signal (required signal) in
their amplitude and their phase. Consequentially the following
characteristics can be derived:

AM/AM – amplitude to amplitude conversion
AM/PM – amplitude to phase conversion
PM/AM – phase to amplitude conversion
PM/PM – phase to phase conversion

AM/AM and AM/PM conversion appears in all nonlinear, active RF
components. The gain, the compression point, and the area of saturation can
be read from the AM/AM curve. The AM/PM curve depicts the phase
rotation, especially at strong input levels. The precise and efficient modeling
of these characteristics is an important precondition for the system
simulation of complex RF transmission systems. PM/AM and PM/PM
conversions appear in modulators/demodulators and in certain mixing
products. Additionally all mentioned characteristics can depend on
frequency.

Noise is another important property to implement in baseband models.
All noise characteristics have to be considered such as white noise, flicker
noise, and phase noise. The superposition of different noise sources, filtered
noise (colored noise) and large-signal modeling using random generators
make efficient and precise noise modeling very difficult. Phase noise
appears especially in autonomous blocks like oscillators, colored noise
appears in amplifiers and mixers. Additionally, passband mixers shift the
frequency of the noise. This frequency conversion is neglected in the
baseband simulation.

30 Chapter 4

4.3.2 Example for baseband simulation

The advantage of baseband modeling is illustrated in the wireless LAN
system HIPERLAN/2 that transmits at a carrier frequency of approximately
5 GHz. It operates at two bands; the lower band from 5.150 GHz to
5.350 GHz, and the upper band from 5.470 GHz to 5.725 GHz. The
bandwidth of the OFDM modulated signal is 20 MHz, split into 52 sub-
carriers. Depending on the mode of operation, data rates from 6 Mbit/s to 36
Mbit/s are supported.

For safe data transmission, a raw bit error rate (BER) better than 1.0e-3 is
required. To evaluate this, the transmission of approximately 10,000 bits is
simulated. This complies with a transient analysis of 278 µs in 36 Mbit/s
mode. Table 4-1 displays the simulation steps executed in passband and
baseband simulation. In this example, the complex baseband simulation
reduces the number of simulation steps by a factor of 250.

Table 4-1. Passband versus baseband simulation
 Passband simulation Baseband simulation
highest signal frequency carrier of about 5 GHz,

sampled at 20 GHz
baseband bandwidth 20
MHz, sampled at 80 MHz

simulation step size 1.0/20 GHz = 50 ps 1.0/80 MHz = 12.5 ns
number of simulation steps 5.56 × 10e6 22.24 × 10e3

4.3.3 Restrictions and advantages of baseband modeling

In contrast to simulation with passband behavioral models, baseband
simulation represents only spectral lines within a specified bandwidth
around the carrier signal. Signal parts originating from nonlinear behavior
outside this bandwidth are lost, for example harmonics of the carrier
frequency. Unfortunately such effects could have an impact on the
performance of subsequent receiver components. This is the main
disadvantage of baseband modeling.

To improve simulation accuracy, an extended approach for baseband
simulation is published in [Van00]. The multi-rate multi-carrier (MRMC)
representation of signals uses a number of baseband signals at different
frequencies and different bandwidths to represent a carrier signal. Harmonics
of the carrier frequency can be considered in this way. This solution is not
available as a commercial tool.

Because of the complex valued baseband signals, a baseband behavioral
model cannot be replaced by a circuit level description of this block. Signal
adapters, which convert from baseband to passband and vice-versa, are
required to validate a circuit level model within a baseband test-bench.

SYSTEM LEVEL MODELING 31

Due to these restrictions baseband modeling must be used carefully. In
full system simulation the speedup provided by this technology is crucial. It
enables analysis of the impact of RF behavior on digital signal transmission.

4.4 Model Libraries for System Simulation

A feature of system level simulators is the availability of numerous
models. They are used during concept engineering to simplify the
development of system level models and test-benches. The system level
simulators CoCentric System Studio and SPW specialize in the development
of telecommunication applications. They provide large libraries with system
components such as codec, error correction algorithms, modulators, filters,
and more. Reference libraries are also available with models that are
compatible with several communication standards. Table 4-2 shows a
selection of models provided for the wireless communication domain.

Table 4-2. Sample reference libraries for wireless communication
CoCentric SPW
Bluetooth
GSM/GPRS
cdma2000
DECT
IS-136

Bluetooth
GSM and EDGE
WCDMA
Wireless LAN
IS-136

The traditional application of system level simulators is development and
verification of digital signal processing (DSP) algorithms. Therefore most of
the library models belong to the DSP area. Nevertheless it is becoming more
important to consider the imperfections of analog components in system
level verification. In wireless systems, the analog components are
concentrated in the RF front-ends of transmitters and receivers. Hence
CoCentric and SPW provide a library to model RF front-ends.

The CoCentric RF library

The content of the CoCentric RF library is shown in Table 4-2.

Table 4-3. CoCentric RF library
Model Description
ADConverter analog to digital converter, nonlinear distortion
FrequencyDiv divides the frequency of the input signal
FrequencyGen_QC generates a frequency signal (complex)
FrequencySynt frequency synthesizer
IQ_Mismatch generates IQ amplitude and phase mismatch
Mixer_QC RF mixer (complex)

32 Chapter 4

Model Description
NonLinAmp_QC nonlinear RF amplifier (complex)
NonLinAmpS_QC nonlinear RF amplifier, variable gain (complex)
Oscillator oscillator with frequency/phase error, phase noise
PhaseComp ideal comparison of the phases of two input signals
Vrms2dBm converts root mean square voltage to dBm

The CoCentric RF library is designed for complex baseband modeling of
the RF subsystems. The models include effects such as noise figure and
intercept points. The models are coded in “C”. The source code is not
available.

The SPW RF library

In contrast to CoCentric, SPW provides models for complex baseband
and passband signal representation. Table 4-4 shows the model groups
contained in the SPW RF model library.

Table 4-4. SPW RF model library
Model category Model
Amplifier real, cascaded real (subtype of real amplifier)

complex
Mixer real, real lookup table based

real with noise, complex
RF coupler real, complex
Switches ideal real switch (named select real)

nonlinear real switch (named switch real)
ideal complex switch (named select complex)
nonlinear complex switch (named switch complex)

A/D converter conditioning, midtread, simple midtread
Miscellaneous dB gain real, dB gain complex (ideal amplification)

pad real, pad complex (attenuation and noise)
signal sign (returns sign of input signal)

 phase shift
zero cross (detect zero crossing of input signal)
ideal frequency multiplier (for complex signals)
instantaneous frequency (simple frequency estimator)
triggered sawtooth generator

These models allow the verification of transmitter and receiver front-end
architectures with complex baseband or passband simulation techniques.
Additionally Cadence provides J&K-models, which can represent complete
receiver and amplifier RF-subsystems. J&K-models are black-box models
configured with datasets generated automatically in an analog SpectreRF
simulation.

SYSTEM LEVEL MODELING 33

4.5 Creation of Own Primitive and Hierarchical Models

System simulators provide a wide range of models, however it may be
necessary to develop own models for user specific components or
requirements.

There are generally two methods to create new models; both supported
by CoCentric and SPW:

hierarchical models
primitive (custom coded) models

The development of hierarchical models requires no specific experiences.
The user combines existing models in the schematic entry into a new
component. The input and output signals are connected to port blocks. A
symbol of the new component can be automatically created. Model
parameters can be exported to the symbol if editing of the parameters on the
top level is required.

If a block cannot be realized as a hierarchical model of existing blocks,
many simulators provide interfaces to create custom coded blocks.
Supported programming languages are “C”, “C++” and “SystemC”. The
development of primitive models is more complicated than for hierarchical
models. Some knowledge about the simulator’s specific model interface
(parameter and port signal access) is necessary. The simulator environment
provides some support by generating model templates. An example is shown
in the next section.

4.5.1 SPW modeling example

A low noise amplifier model is used to demonstrate how custom coded
blocks are created in SPW. The development of primitive and hierarchical
models is represented step by step in the SPW User Manual. The model shall
have the parameters described in Table 4-5.

Table 4-5. LNA parameters
Parameter Parameter name
Input resistance Rin
Output resistance Rout
Power gain Gp
Noise figure Fnoise
1 dB compression point CP
3 dB corner frequency fc
Sampling rate fs

34 Chapter 4

SPW system level model concept

Since SPW provides models for noise generation and frequency
response, a hierarchical model is used. For the nonlinearity of the amplifier a
primitive model will be created. The structure of the SPW model is depicted
in Figure 4-4.

frequency
response

nonlinear
characteristicnoise

u_in U_in_fS_in S_out

Figure 4-4. Structure of SPW LNA model

The primitive model for the nonlinear characteristic of LNA

Since an own primitive model for the nonlinearity of the LNA should be
used, it must be created first. The model is named nonlin_amp.

The first step to create a primitive model is the creation of the symbol.
An existing symbol can be opened in the schematic entry. After modification
the symbol is saved with the new name in the user model library (Figure
4-5).

 The model symbol describes the ports and the name of the model. The
model parameters are specified in a parameter view, which is also created in
the schematic entry.

Figure 4-6 depicts the parameter view of the model. The main parameters
are used to configure the model functionality. Frequency response and noise
figure are modeled hierarchically, therefore the parameters are not passed to
this model. The miscellaneous parameter section contains information for
the error and overflow handling of the simulator. It must not be changed.

Figure 4-5. Symbol of the primitive model nonlin_amp

SYSTEM LEVEL MODELING 35

Figure 4-6. Parameter view of nonlin_amp

After creation of the symbol and parameter views of the model, the
source code is created. It is supported by the block wizard, which is
launched from the Symbol Schematic window. The wizard creates templates
for the C source code and the header file. They include interfaces for ports
and parameters used in the model. (This is the reason why the symbol and
the parameter view must be defined first.)

With the “View Header” and “View C Code” buttons, the files are
opened in a text editor for editing. After saving the files, the model is
compiled by clicking on the “Compile” button. The message area indicates
success or errors of compilation. If necessary, “View Header” and “View C
Code” are used again to change the model code. After successful
compilation, the model is ready for simulation.

The following presents the method used to modify the templates. In the
header file the interface of the model is completely defined. Since two state
variables are used in the model, their definition must be added in the header
file. (State variables retain their values between the model calls in
simulation.)

STRUCT St_nonlin_amp_my_lib {
 int instance;
 double k1;
 double k2;
};

#define S_k1 (spb_state->k1)
#define S_k2 (spb_state->k2)

36 Chapter 4

The lines marked bold are added to define the state variables. The macro
#define ... is optional. It makes use of the state variables easier.

The source code file contains the model functionality. It contains three
functions:

initialize function
run output function
termination function

The function interface is completely defined, but the signal processing
operations have to be added. The initialize function is executed at the start of
each simulation. In this example it is used to compute the coefficients for the
tanh nonlinearity from the model parameters. The code is shown below.

int In_nonlin_amp_my_lib(spb_parm, spb_input, spb_output,
spb_state)
STRUCT Pt_nonlin_amp_my_lib *spb_parm;
STRUCT It_nonlin_amp_my_lib *spb_input;
STRUCT Ot_nonlin_amp_my_lib *spb_output;
STRUCT St_nonlin_amp_my_lib *spb_state;
{
 double cp_lin,gp_lin,cp_temp;
 cp_temp = P_comp_pt - (P_gain+3.0) + 10.0; /*input ref. CP*/
 cp_lin = pow(10.0, (cp_temp-30.0)/10.0);
 gp_lin = pow(10.0, (P_gain+3.0)/10.0);

 S_k1 = 1.0/0.504 / sqrt(cp_lin);
 S_k2 = 1.0/0.504 * sqrt(gp_lin * cp_lin);
 return (SYS_OK);
}

The bold text parts are added. The algorithm is adapted from an analog
behavioral model and will not be discussed here. The states k1 and k2
(represented by S_k1 and S_k2) are used in the run output function.

int Ro_nonlin_amp_my_lib(spb_parm, spb_input, spb_output,
spb_state)
STRUCT Pt_nonlin_amp_my_lib *spb_parm;
STRUCT It_nonlin_amp_my_lib *spb_input;
STRUCT Ot_nonlin_amp_my_lib *spb_output;
STRUCT St_nonlin_amp_my_lib *spb_state;
{

 O_out = 1.0 * S_k2 * tanh(I_in * S_k1);

 return(SYS_OK);
}

The pre-computed coefficients make it easy to compute the model output
O_out from the input signal I_in.

SYSTEM LEVEL MODELING 37

The termination function is not changed because the model does not
require computations at the end of simulation.
The hierarchical model lna_new

The primitive model nonlin_amp is now used in the hierarchical LNA
model. A detail view is created in the schematic entry. It consists of a noise
generator and a lowpass filter from the SPW model libraries, together with
our nonlinear amplifier. It is depicted in Figure 4-7. The parameters of the
model are defined in the box. If the model is instantiated their values can be
specified in the symbol. From that schematic a symbol view can be
automatically created. After this the new model lna_new is complete and can
be used in simulation.

Figure 4-7. Hierarchical model lna_new

Model test-bench

The created model lna_new is inserted in a test-bench to verify gain and
compression point of the model (Figure 4-8). It creates a one tone test signal
with a power sweep. The input and output power of the LNA are measured.
The simulation results are visualized with the SPW Signal Calculator (Figure
4-9).

38 Chapter 4

Figure 4-8. Test-bench for LNA compression point

Figure 4-9. lna_new simulation result output power versus input power

Chapter 5

VHDL-AMS FOR BLOCK LEVEL SIMULATION

5. VHDL-AMS FOR BLOCK LEVEL SIMULATION

5.1 Introduction

Current telecommunication circuits consist of digital and analog blocks.
In order to describe and simulate these circuits a behavioral description
language is required that covers both levels and the interaction between
them. A language that fulfills these expectations is VHDL-AMS.

VHDL-AMS is a hardware description language for the description and
simulation of digital, analog, and mixed-signal systems. The language was
standardized by the Institute of Electrical and Electronic Engineers (IEEE)
as IEEE Standard 1076.1-1999, VHDL Standard Analog and Mixed-Signal
Extensions [Std99]. It is a strict superset of the digital VHDL IEEE Std
1076-1993. The VHDL-AMS standard supports the development of tool-
independent models. Currently, a number of VHDL-AMS simulation
engines are available (see for example [MGC04]). VHDL-AMS can be used
in different phases of the design and simulation flow. It is applicable in the
top-down phase as well as during bottom-up verification (see also [ChB99],
[APT04]).

In this and the following chapter we will give a brief introduction to
VHDL-AMS and its usage in telecommunication applications. These
explanations should help you to

Gain an overview of what kind of modeling and simulation tasks can be
solved using VHDL-AMS
Understand and apply existing VHDL-AMS models
Change and refine existing models
Develop from scratch more complicated or less complicated models

40 Chapter 5

The text is addressed to readers with a basic knowledge of digital and
analog simulation. Some knowledge of the digital VHDL 1076-1993
language is helpful but not absolutely necessary to gain a first impression of
the language. We will present selected models that can be applied to RF
design together with special modeling methods and their application using
some complex examples.

5.2 VHDL-AMS Standardization

The hardware description language VHDL was standardized in 1987.
The language was originally developed to describe large digital integrated
circuits (ICs) in a unified way. VHDL is an abbreviation for VHSIC
Hardware Description Language. VHSIC is an abbreviation for Very High
Speed Integrated Circuits. Users soon appreciated the advantages of the
language for modeling, documentation, and simulation of simple or complex
digital systems. As a result of the language’s standardization the exchange of
VHDL models, developed by different users and for different tools, was
facilitated. The standard accelerated the development of simulation, and also
synthesis, tools based on VHDL. This is a benefit from the users’ point of
view as well as from the EDA companies’ position. Besides this, VHDL
allows

Structural descriptions of digital systems
Behavioral descriptions of basic building blocks

That means users can define their own primitives for the structural
descriptions in an easy way. This gives them great flexibility to describe
their system ideas. These possibilities are of particular value if a system
specification has to be simulated.

All these advantages were not applicable for analog designers until the
beginning of the 1990’s. Very powerful network simulation engines based
on SPICE simulation ideas were available [Kun95]. However, a standard for
behavioral models and a link to digital simulation engines did not exist. This
was the starting point for the definition of VHDL-AMS.

The IEEE 1076.1 Working Group tasked to overcome these limitations
was created under the auspice of the IEEE Design Automation Standards
Committee (DASC). The task was to develop analog and mixed-signal
extensions to the VHDL language. As a result of the activities of the
working group, the 1076.1-1999 IEEE Standard VHDL Analog and Mixed-
Signal Extensions was approved in 1999. This Language Reference Manual
is available from the IEEE. The VHDL 1076.1 language is informally

VHDL-AMS FOR BLOCK LEVEL SIMULATION 41

known as VHDL-AMS, where AMS is an abbreviation for Analog and
Mixed-Signal.

VHDL-AMS is a strict extension of the digital VHDL 1076-1993
language. Thus, each VHDL model is also a VHDL-AMS model. New
language constructs for the description of continuous behavior over time and
frequency are smoothly included in VHDL.

Figure 5-1. VHDL-AMS as a superset of VHDL 1076-1993

VHDL-AMS is a language to model and simulate digital, analog, and
mixed-signal systems in a unified way. All the organizational capabilities of
VHDL remain valid.

The IEEE 1076.1 Working Group that promoted the VHDL-AMS
development reacts to experiences of the VHDL-AMS deployment. Last
activities included, for instance, the development of standard packages for
multiple domain (that is electrical/non-electrical) simulation. The balloting
concerning IEEE P1076.1.1 Standard VHDL Analog and Mixed-Signal
Extensions – Packages for Multiple Energy Domain Support [Std03] was
carried out in 2004. More information is available online from the IEEE
1076.1 Working Group website:

http://www.vhdl.org/analog

5.3 A Simple Block Level Example – Analog PLL

One of the advantages of VHDL-AMS is the description of circuit blocks
at a high level of abstraction. This helps to determine and check basic system
parameters without wasting too much effort considering second order effects
at the beginning of a design process. Thus, the idea is to use an executable
specification at the beginning of a top-down design. The high level of
abstraction helps to reduce simulation times. System parameters and
structures can be easily modified.

As an example, we start with modeling a simple analog PLL (Phase
Locked Loop) in the passband circuit using VHDL-AMS. The starting point
to model the blocks is a description of their functionality described by
mathematical expressions. Prior knowledge of the realization of the blocks at

42 Chapter 5

the transistor level is not required. Later on in the design process, models
can be replaced by more detailed descriptions. The interface of the blocks
will not be changed in this procedure. Only the description of their working
mechanisms will become more complicated. That means we have to use pin-
compatible models from the beginning.

5.3.1 Mathematical models of basic blocks

The behavior of a PLL can be illustrated using a simple description.
Instead of circuit models of the basic building blocks we use behavioral
descriptions of

Signal source described by a series connection of a voltage source and a
voltage-controlled oscillator
Phase detector realized by a multiplier
Ideal first order lowpass filter
Voltage controlled oscillator

The output of the signal source is a frequency-modulated signal.
Demodulation is carried out by the PLL [PeD91], [Kam92]. Figure 5-2
represents the schematic of the PLL.

VCO PD TP

VCO

N_IN
FM PD_OUT OUT_PLL

VCO_OUT

UUT2 UUT3 UUT4

UUT5

Figure 5-2. PLL circuit

The blocks may be realized by ideal voltage-controlled voltage sources.
Parameters of the models are introduced in the following. The FM input
signal is demodulated by the PLL. The output voltage should follow the
input voltage.

VHDL-AMS FOR BLOCK LEVEL SIMULATION 43

Signal Source

An independent voltage source drives the voltage controlled oscillator
UUT2. The output of the VCO is a frequency-modulated voltage. It is used
as PLL input.
Phase detector (PD)

The phase detector is realized in a simple manner. The values of the two
input waveforms are multiplied by the gain of the phase detector. Two open
input branches, which are used to measure the input voltages vin1 and vin2,
and an ideal controlled voltage source that drives the output can be used to
model the phase detector:

)()()(21 tvintvingaintvout

Voltage controlled oscillator (VCO)

The frequency of the sinusoidal VCO output voltage depends on the
input voltage vin measured by an open branch. In our simple model we
assume that the frequency is proportional to the input voltage plus center
frequency f0. Considering the basic definition that the derivative of the phase

equals the product of frequency and 2 we start with

0)(2 ftvinkf
dt
d and the initial condition 0)0(

The output voltage results from

)(sin)(tAmpltvout

kf is the VCO gain measured in Hz/V. Ampl is the amplitude of the
output voltage.
Lowpass filter (LP)

The lowpass filter is characterized by its cut-off frequency and gain. The
input voltage vin is measured by an open branch. It controls the voltage vout
of an ideal voltage source. The Laplace transfer function of the lowpass filter
is given by

)(
)(

2
1

)(
svin
svout

f
s

gainsH

c

, i.e.

cf
s

gainsvinsvout

2
1

)()(.

44 Chapter 5

5.3.2 Structural description of the PLL circuit in VHDL-AMS

In order to simulate the PLL circuit these mathematical models have to
be translated into VHDL-AMS descriptions. At the beginning, we assume
that the models of the basic building blocks are available. We only have to
connect and parameterize them. The structural description can be done with
reference to the interface descriptions of the block models. The interfaces are
described in VHDL by the entity declarations. These declarations contain the
identifiers of the generic model parameters, their types, and optionally, their
default values. The connection points are summarized in the port list. The
declaration of a connection point characterizes an element of the port list. A
terminal, for instance, is a connection point in a network model.
Furthermore, identifiers and a characterization by type or nature belong to a
port declaration. In the case of an electrical network the nature is
ELECTRICAL.

The entity declaration of the voltage source model used is shown in the
following lines of code. The parameter WAVE describes the voltage
waveform as a list of times and values in a similar way as in any well-known
SPICE simulator [QNP93].

entity VPWL is
generic (

 WAVE : REAL_VECTOR; -- time value pairs T1, V1, …
 -- units: [s] and [V]
 ACMAG : REAL := 0.0; -- AC magnitude
 ACPHASE : REAL := 0.0 -- AC phase
);

port (
terminal P : ELECTRICAL; -- positive terminal
terminal N : ELECTRICAL -- negative terminal

);
end entity VPWL;

The VCO entity is declared in a similar way. The assert statement checks
whether model parameters are assigned in a correct way during instantiation.

entity VCO is
generic (F0 : REAL := 1.0; -- center frequency [Hz]

 KF : REAL := 1.0; -- gain [Hz/V]
 AMPL : REAL := 1.0; -- amplitude [V]
 PHI0 : REAL := 0.0 -- initial phase [rad]
);

port (terminal INP : ELECTRICAL; -- input terminal
terminal OUTP : ELECTRICAL -- output terminal

);
begin
 assert F0 > 0.0 and KF > 0.0

report "F0 and KF > 0.0 required."
severity ERROR;

end entity VCO;

VHDL-AMS FOR BLOCK LEVEL SIMULATION 45

We assume that the other entity descriptions are available in the same
way. A PLL netlist in accordance with Figure 5-2 can then be described in
the following way.

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;
use WORK.all;

entity BENCH is end entity BENCH;

architecture PLL of BENCH is
terminal N_IN, FM, PD_OUT, VCO_OUT, OUT_PLL : ELECTRICAL;

begin

V1: entity VPWL(SPICE)
generic map (WAVE =>

(0.0, -1.0, 50.0E-6, -1.0, 150.0E-6, 1.0, 200.0E-6, 1.0))
 --(time1, value1, time2, value2, ...)

port map (P => N_IN, N => ELECTRICAL_REF);

UUT2: entity VCO(BASIC)
generic map (F0 => 1.0E6, KF => 100.0E3,

AMPL => 4.0, PHI0 => -MATH_PI/2.0)
port map (INP => N_IN, OUTP => FM);

UUT3: entity PD(BASIC)
generic map (GAIN => 2.5)
port map (IN1 => FM, IN2 => VCO_OUT, OUTP => PD_OUT);

UUT4: entity FILTER(LP)
generic map (FC => 20.0E3)
port map (INP => PD_OUT, OUTP => OUT_PLL);

UUT5: entity VCO(BASIC)
generic map (F0 => 1.0E6, KF => 100.0E3)
port map (INP => OUT_PLL, OUTP => VCO_OUT);

end architecture PLL;

Thus, existing VHDL-AMS models can be used to describe new
simulation tasks. The description starts with a context clause. The first two
lines allow access to the nature ELECTRICAL. Our models were compiled
into the logical library WORK. The third line is included in the model to
enable instantiation of design entities that were compiled into the library
WORK. An empty entity declaration follows as there are no connection
points to higher hierarchy levels at the top.

The structural description follows in the architecture PLL. At the
beginning, the internal nodes N_IN, FM, and so on are declared. After the
reserved word begin, the instantiations of the models follow. There are
different methods to instantiate models in VHDL-AMS. Here we use the
direct instantiation method. The generic map associates actual values with

46 Chapter 5

model parameters. If the actual value and the default value of the entity
declaration are equal, a value assignment is not necessary. Note that only
parameter values, and no units, are used. In general, models should always
be written in a way that the usage of SI units can be assumed. However,
ultimately the user still must check whether this assumption is met. As a
consequence, a clear documentation of units in the source code of models
helps to avoid misunderstandings. The port map describes how to connect
the ports to the nodes of the circuits. In this example we use a named
association. That means the identifiers of the entity declarations are used in
the mapping list. We note that each instantiation must start with a label (for
example UUT2, UUT3,…) and is continued by the reserved word entity
followed by the entity name and the architecture name enclosed within
parentheses.

Figure 5-3. Results of a passband simulation to 200 s

Different model descriptions can be associated with the same entity. This
functionality is described in VHDL-AMS in architecture bodies. The name
of the architecture used follows the entity name in the instantiation statement
enclosed within parentheses. Last but not least we mention that the electrical
reference node is named ELECTRICAL_REF in the nature made available
by the context clause. Figure 5-3 shows the results of the PLL simulation.

VHDL-AMS FOR BLOCK LEVEL SIMULATION 47

The input voltage is measured at node N_IN. The result of the demodulation
is available at node OUT_PLL.

5.3.3 VHDL-AMS description of basic blocks

In the previous section we explained how to use existing models. Let us
now look at three of these models. One of the advantages of VHDL-AMS is
that you can write your own models in a similar manner.
Phase detector

Figure 5-4. Structure of the basic phase detector model

The internal structure of the phase detector model is shown in Figure 5-4.
The following code lines describe the VHDL-AMS model:

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity PD is
generic (GAIN : REAL := 1.0 -- gain

);
port (terminal IN1 : ELECTRICAL; -- first input

terminal IN2 : ELECTRICAL; -- second input
terminal OUTP : ELECTRICAL -- output terminal

);
end entity PD;

architecture BASIC of PD is
quantity VIN1 across IN1; -- 1 st open input branch
quantity VIN2 across IN2; —- 2 nd open input branch
quantity VOUT across IOUT through OUTP; -- output branch

begin
 VOUT == GAIN*VIN1*VIN2; -- see PD description
end architecture BASIC;

The entity declaration describes the model interface. The quantity
statements in the architecture BASIC declare branches. A probe branch that
measures the voltage VIN1 between the terminal IN1 and the electrical
reference is declared by quantity VIN1 across IN1; which is an open

48 Chapter 5

branch. The branch current is zero. The second input branch is declared in
the same way. The third quantity statement presents the output voltage
source branch. It connects the terminal OUTP and the electrical reference
node. The branch voltage is VOUT and the branch current IOUT. The value
of the branch current depends on the interconnection of the phase detector
with other models. The relationship that has to be fulfilled by the branch
voltages and currents is given by the simultaneous statement VOUT ==

GAIN*VIN1*VIN2; Thus, the VHDL-AMS model represents the mathematical
model description given in Section 5.3.1.
Voltage controlled oscillator

INP OUTP

VIN VOUT

Figure 5-5. Structure of the basic VCO model

The VCO model is written in a similar way to the phase detector. The
entity declaration was already shown in Section 5.3.2. The architecture
contains an additional declaration for PHI that is neither a branch current nor
a branch voltage. Furthermore the initial condition is considered during
operating point analysis (DOMAIN equals QUIESCENT_DOMAIN).
PHI’DOT is the time derivative of PHI. The SIN function and the
mathematical constants can be found in the package MATH_REAL that is
introduced with the first two lines of the following code:

library IEEE;
use IEEE.MATH_REAL.all;

architecture BASIC of VCO is
quantity VIN across INP; -- open input branch
quantity VOUT across IOUT through OUTP; -- output branch
quantity PHI : REAL; -- free quantity PHI

begin
if DOMAIN = QUIESCENT_DOMAIN use

 PHI == PHI0; -- initial condition
else

 PHI'DOT == MATH_2_PI*(KF*VIN + F0); -- see VCO description
end use;

 VOUT == AMPL*SIN(PHI); -- see VCO description
end architecture BASIC;

VHDL-AMS FOR BLOCK LEVEL SIMULATION 49

Lowpass filter

VHDL-AMS provides the 'LTF attribute to describe the Laplace transfer
function. This attribute can be applied to quantities, such as analog
waveforms. Analog waveforms are, for example, branch voltages and
currents. Thus, the main functionality of the lowpass filter is given by a
simultaneous statement of the form VOUT == VIN’LTF(numerator,

denominator). Parameters of the ´LTF attribute are real arrays for the
numerator and denominator of the Laplace transfer function that contain the
coefficients of si of numerator and denominator respectively. The two arrays
can be described using the following form: (0 => coefficient of s0, 1 =>
coefficient of s1,…). The internal structure and the interface of the model are
similar to the VCO. Thus, we get the following model:

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;

entity FILTER is
generic (GAIN : REAL := 1.0; -- gain

 FC : REAL := 1.0; -- cut-off frequency [Hz]
 ZF : REAL := 1.0 -- zero frequency [Hz]
);

port (terminal INP : ELECTRICAL; -- input terminal
terminal OUTP : ELECTRICAL); -- output terminal

begin
 assert FC > 0.0 and ZF > 0.0 -- parameter conditions

report "FC and ZF > 0.0 required."
severity ERROR;

end entity FILTER;

architecture LP of FILTER is -- lowpass description
quantity VIN across INP; -- open input branch
quantity VOUT across IOUT through OUTP; -- output branch

begin
 VOUT == VIN'LTF((0 => GAIN), (0 => 1.0, 1 => 1.0/MATH_2_PI/FC));
end architecture LP;

If a pole-zero filter should be used instead of the lowpass filter, a second
architecture PZ can be combined with the FILTER entity.

architecture PZ of FILTER is
quantity VIN across INP; -- input branch
quantity VOUT across IOUT through OUTP; -- output branch

begin
 VOUT == GAIN*VIN'LTF(
 (0 => 1.0, 1 => 1.0/MATH_2_PI/ZF), -- numerator
 (0 => 1.0, 1 => 1.0/MATH_2_PI/FC) -- denominator
);
end architecture PZ;

The architecture PZ realizes in the Laplace domain

50 Chapter 5

fc
s

zf
s

svingainsvout

2
1

2
1

)()(.

This architecture PZ can be instantiated in the PLL description instead of
the lowpass filter architecture LP.

5.4 Summary

This chapter provided a short overview of the features of the VHDL-
AMS behavioral description language, which can be used for modeling of
digital, analog, and mixed-signal systems. We demonstrated how the
language could be used for block simulation at a high level of abstraction.
The starting point is always a mathematical description of the behavior of
the blocks. VHDL-AMS offers powerful statements to translate a
mathematical model of a block into a model that can be evaluated by a
simulation tool. Some of the basic language features were introduced and
used in an informal manner in this chapter. Our aim was to provide an idea
of how modeling with VHDL-AMS works. However, to exploit the whole
power of the language a systematic approach to the language is essential. An
introduction to VHDL-AMS follows in the next chapter.

Chapter 6

INTRODUCTION TO VHDL-AMS

6. INTRODUCTION TO VHDL-AMS

6.1 Aim of this Introduction

In this chapter, we will introduce the fundamental concepts of VHDL-
AMS. This will help to understand existing VHDL-AMS models and will
open the opportunity to modify models and develop new ones. We cannot
explain all details of the language. Instead, we will touch on the main ideas
and practices to form a basic understanding useful for the beginning (see
also [ChB99]). The chapter is subdivided into the following topics:

Repetition of VHDL 1076-1993, which is the pure digital predecessor of
VHDL-AMS
Description of conservative systems where analog blocks of arbitrary
nature can be described by means of ordinary equations and algebraic
equations
Description of nonconservative systems where analog blocks can be
described by means of signal flow diagrams
Mixed-signal simulation, including basic knowledge concerning the
combination of analog and digital simulation models
Analysis domains, i.e. additional frequency domain simulation modes in
VHDL-AMS
Further features of VHDL-AMS as an outlook on advanced modeling
techniques.

In the following, the general syntax of VHDL-AMS statements is
described using a simple variant of Backus Naur Form (BNF), similar to
those used in the VHDL-AMS standard [Std99].

52 Chapter 6

6.2 Repetition of Basics of VHDL 1076-1993

VHDL 1076-1993 is widely used in electronic design. Most of the
designers are familiar with this language to describe and simulate their
digital design.

VHDL-AMS is a strict superset of VHDL 1076-1993. As a preliminary,
we will look at some basic ideas of digital VHDL and then explain the
analog extension. We do not provide a detailed introduction into digital
VHDL, but we will touch on the main topics. More information on VHDL
1076-1993 can be found in the books [Nav93], [Ash02] as well as online:

The Hamburg VHDL Archive
http://tech-www.informatik.uni-hamburg.de/vhdl

In the following, we will mainly address VHDL and will consider some
extensions to VHDL-AMS where applicable.

6.2.1 Design units

The basic organizational unit in VHDL-AMS is the design unit. There
are two classes of design units: primary and secondary. The primary design
units are:

entity
package
configuration

Secondary design units depend on primary design units to some extent.
The secondary design units are

architecture
package body

VHDL-AMS allows building up a system model in a hierarchical way
with the help of building blocks. The description of the interface of a
building block together with its associated structural or behavioral
description defines a design entity. A design entity represents a model of a
building block. It is provided by a description of its interface and an
associated architecture. It is possible to define different models for the same
building block. All these models consist of the same interface but with
different architectures. A first example was provided at the end of the last
chapter.

INTRODUCTION TO VHDL-AMS 53

Design unit entity

An entity declaration is the description of the interface between a given
design entity and the environment in which it is used. In VHDL-AMS, the
connection points of a building block are called ports. An entity declaration
describes the ports and parameters of a building block.

The simplified form of an entity declaration is

entity entity_name is
 generic (parameter_list);
 port (port_list);

end entity entity_name;

The parameter list defines names and types of constants that can be used
in an associated architecture. The generic constants can be initialized in the
entity declaration. The default values can be overwritten during instantiation.

The port list defines names, directions and types of channels for
communication between a building block and its environment. These are

signal ports for digital waveforms with modes in, out, inout, or buffer
(known from VHDL)
quantity ports for analog waveforms with modes in or out (new in
VHDL-AMS)
terminal ports for conservative connection points that carry analog flow
and across waveforms without direction (new in VHDL-AMS)

Example
entity OR2 is
 generic (DELAY_TIME : TIME := 0 ns);
 port (signal IN1, IN2 : in BIT;

signal OUT1 : out BIT);
end entity OR2;

The entity declaration describes the interface of an OR gate. IN1 and IN2
are the names of the input ports. OUT1 is the name of the output port.
DELAY_TIME is a constant that describes the delay between the change of
values of inputs and outputs.

Note: rules for naming identifiers

In the example, OR2, DELAY_TIME, IN1, IN2, and OUT1 are all
simple identifiers that are introduced by the user that developed the model.
Please keep in mind:

Identifiers must not be reserved words of the VHDL-AMS language.
This is why, for instance, the name of the output port cannot be out

54 Chapter 6

because out is a reserved word. Reserved words are printed in boldface
letters in code segments in this chapter. A full list of reserved word can
be found in the 1076.1-1999 IEEE Standard VHDL Analog and Mixed-
Signal Extensions.
VHDL as well as VHDL-AMS are not case sensitive. Thus, for instance,
delay_time, DELAY_TIME, and Delay_Time are all the same. This is
also true for reserved words. For instance, entity, Entity and ENTITY
are considered the same.
Simple identifiers must start with an alphabetic letter followed by a letter,
a digit, or an underline character (‘_’). Identifiers cannot end with an
underline character. Underline characters must be separated by a letter or
a digit. Some examples of legal identifiers are:

legal_identifier
node23
InputVoltage

Design unit architecture

An architecture associated with an entity declaration describes the
internal organization or operation of a design entity. An architecture
describes the behavior, data flow, or structure of a design entity. It can be
described using concurrent and simultaneous statements. Concurrent
statements describe digital time-discrete behavior. Simultaneous statements
describe analog time-continuous behavior. Concurrent statements are
known from digital VHDL. Simultaneous statements are new language
constructs in VHDL-AMS. Signals are the fundamental objects that carry
digital waveforms. Concurrent statements update the values of signals.
Quantities are the fundamental objects that carry analog waveforms.
Simultaneous statements define relationships between quantities. However,
quantities can be read in concurrent statements and signals can be read in
simultaneous statements. Thus, not only digital and analog behavior can be
expressed in VHDL-AMS, but the description of mixed-signal (analog-
digital) behavior is also possible. The order of concurrent and simultaneous
statements in an architectural body has no influence on the results of a
simulation.

In conclusion, a design entity is an entity declaration together with an
associated architecture body. Please keep in mind that a given entity
declaration may be shared by many design entities, each of which has a
different architecture.

INTRODUCTION TO VHDL-AMS 55

Examples
architecture SIMPLE of OR2 is
begin
 OUT1 <= IN1 or IN2 after DELAY_TIME;
end architecture SIMPLE;

SIMPLE is an architecture that belongs to the entity declaration OR2.
The output signal is determined by the input signals IN1 and IN2 using a
concurrent statement. In a structural description the design entity which is
characterized by the entity OR2 and the architecture SIMPLE is referenced
as OR2(SIMPLE). It can be instantiated directly, for instance by

LABEL: entity OR2(SIMPLE)
generic map (DELAY_TIME => 2 ns)

 port map (IN1 => ACTUAL_IN1,
 IN2 => ACTUAL_IN2,
 OUT1 => ACTUAL_OUT1);

The default value of DELAY_TIME is overwritten by the instance
specification of 2 ns. The interface points are connected to the actual nets
ACTUAL_IN1, ACTUAL_IN2, and ACTUAL_OUT1. In this example
named association is used. The formal designators DELAY_TIME, IN1,
IN2, and OUT1 that are used in the declaration of entity OR2 appear
explicitly. In addition, positional association is possible. In this case, the
formal designators do not appear in the parameter and/or port lists. An actual
designator at a given position in an association list corresponds to the
interface element at the same position in the interface list of the entity
declaration. Thus, the following instantiation is also possible:

LABEL: entity OR2(SIMPLE)
generic map (2 ns)

 port map (ACTUAL_IN1, ACTUAL_IN2, ACTUAL_OUT1);

Design unit configuration

Structures can be described with the help of placeholders for the entity
declarations. These placeholders are called components. The configuration
unit is a construct that binds concrete models of building blocks (that is
design entities) to placeholders in a structural description. This offers a very
simple way to exchange design entities in a structural description. At
present, configuration units are not supported in current implementations of
some VHDL-AMS simulation engines. This is why we avoid the usage of
configuration units in the following sections. The structural descriptions are
mainly done using direct instantiation, which uses the design entity name
directly.

56 Chapter 6

Design unit package

A package declaration may contain the declarations of types,
subprograms, files and so on. In this way, the reuse of description parts is
supported. The declared elements can be made visible to other design units.
The package STANDARD with declarations of standard types (for example
BIT, BOOLEAN, REAL, …) is part of the predefined language
environment.

Design unit package body

A package body contains hidden parts of a package. For instance, the
interface declaration of a subprogram is described in the package
declaration. The package body contains the full program code. Its details are
hidden outside the package.

6.2.2 Logical libraries and compilation of design units

Administration of analyzed design units

The design units are compiled into design libraries. The compilation
consists of

Analysis of the source code description
Generation of an intermediary code which is saved in a design library

A design library must be created and managed using commands that
depend on the specific simulation engine used. A physically existing design
library is connected with a specific logical name. In VHDL-AMS
descriptions, only the logical names are important and used. There are
several kinds of design libraries. Compilation is usually done in the WORK
library. Predefined libraries are available in the simulation environment and
can be used as resource libraries. Examples are the STD library and the
IEEE library.

WORK library
Compiled design units are by default placed into the working design

library named WORK.

STD library
The STD library contains the standard packages STANDARD and

TEXTIO. The packages predefine basic language types, subtypes, and

INTRODUCTION TO VHDL-AMS 57

functions. There are some extensions in the STANDARD package of
VHDL-AMS compared to VHDL as follows

An enumerated domain type is declared.

type DOMAIN_TYPE is (
 QUIESCENT_DOMAIN, -- initialization phase
 TIME_DOMAIN, -- transient analysis
 FREQUENCY_DOMAIN); -- AC and noise

A signal DOMAIN of type DOMAIN_TYPE declared in the standard
package is set by the simulation engine and can be evaluated in the
models.

signal DOMAIN : DOMAIN_TYPE := QUIESCENT_DOMAIN;

The impure function NOW returns physical or real time. The result
depends on the context in which the function is used.

subtype DELAY_LENGTH is TIME range 0 fs to TIME’HIGH;
impure function NOW return DELAY_LENGTH; -- phys. time
impure function NOW return REAL; -- real time

The predefined real array type is declared.

type REAL_VECTOR is array (NATURAL range <>) of REAL;

IEEE library
The IEEE library contains

Packages where the designer finds standard logic system and the
corresponding types and functions like STD_LOGIC_1164
Packages with real-valued and complex-valued types, constants, and
functions like MATH_REAL and MATH_COMPLEX respectively
Packages with declarations of energy domains in VHDL-AMS like
ELECTRICAL_SYSTEMS, MECHANICAL_SYSTEMS, and
THERMAL_SYSTEMS [Std03]

EDA vendor specific libraries
In addition to standardized packages, EDA vendor specific libraries and

packages exist. These packages often extend the functionality of standard
packages. They can also be used in cases where standard packages are not
available, or were not previously available. An example is the
DISCIPLINES library available in the ADVance MS simulator of Mentor
Graphics [MGC04] that summarizes declarations of energy domains such as
ELECTROMAGNETIC_SYSTEM, KINEMATIC_SYSTEM, and so on.
The library was available a long time before the IEEE finished
standardization of the corresponding packages.

58 Chapter 6

Reference of design units

The representation of a design unit in a design library is called a library
unit. Library units can be made available in other design units by context
clauses. These context clauses enable design units to be visible within other
design units. Thus, design units can be referenced in other design units. A
context clause is either a library clause or a use clause. A library clause
defines logical library names that may be referenced in a design unit. The
simple library clause looks like

library library_name;

After the reserved word library a list of library names may follow, such
as:

library IEEE, DISCIPLINES;

A use clause achieves direct visibility of declarations. Each selected
name in a use clause identifies one or more declarations that will potentially
become directly visible.

use selected_name.item_name;

In addition, a list of selected names and item names can follow the
reserved word use. If the item_name is the reserved word all, then the use
clause identifies all declarations that are contained within the package or
library denoted by the selected name.

Examples
use WORK.all; -- comment starts with –- stops at the end of
line:
 -- use clause makes all design units (for instance
 -- all entity and architectural declarations)
 -- from library WORK available

use IEEE.STD_LOGIC_1164.all; -- makes all declarations from
 -- the package STD_LOGIC_1164
 -- from IEEE library available

The scope of the use clause starts immediately after the use clause. If the
use clause occurs within the context clause of a design unit, the scope of the
use clause extends to the end of the declarative region associated with the
design unit. In practice all context clauses before an entity declaration are
valid for the entity and all associated architectures. It is assumed that the
following context clause is implicitly declared for each design unit. It is not
necessary to add them to a VHDL-AMS description:

INTRODUCTION TO VHDL-AMS 59

library STD, WORK;
use STD.STANDARD.all;

Rules and order of the analysis of design units

These organizational capabilities suggest complying with the following
rules. Figure 6-1 demonstrates the procedure.

Create text files with design units
If possible follow the rule “One design unit – One design file”. An
exception is the description of the test-bench. This is the top level
description. In this case the entity is empty. Entity declaration and
architecture are generally saved in one file. Text files can be created with
the preferred text editor.

Compilation must be done in the correct order
The rules defining the order in which the design units can be analyzed are
direct consequences of the visibility rules. The VHDL-AMS standard
(Section 11.4 of the standard) requires

A primary design unit whose name is referenced within a given design
unit must be analyzed prior to the analysis of the given design unit.
A primary design unit must be analyzed prior to the analysis of any
corresponding secondary design unit.

If a design unit is changed, then all library units that are potentially
affected become obsolete and must be reanalyzed before they can be used
again. A primary design unit is affected by a change of a library unit
where it is referenced. A library unit is a compiled design unit. A
secondary design unit is potentially affected by a change in its
corresponding primary unit. But a secondary unit does not affect the
corresponding primary unit. For instance, a package body can be changed
without recompilation of the corresponding package declaration.

Simulation
The simulation can begin after all design units used in a design have been
compiled.

60 Chapter 6

Figure 6-1. Analysis of design units

The commands to create a design library, compile a design unit and start
the simulation engine are not part of the VHDL-AMS standard. They differ
from one simulation engine to another one. For instance, in the simulation
engine ADVance MS of Mentor Graphics [MGC04] the following
commands are available in the command line of the operating system:

valib to create a design library
vamap to change the logical name of a design library
vacom to compile a design unit into a design library
vasim to invoke the simulation engine

6.2.3 Concurrent statements

Signals

A signal is an object with a history of past values. It can be considered a
time-discrete waveform. Ranges and domains of such waveforms have two
main properties:

Values of signals may be of any type, for example BIT, BIT_VECTOR,
and BOOLEAN. REAL and INTEGER value signals are also possible.
Signals can also be user-defined types.
The timeline of all signals is of type TIME. The resolution limit is the
primary unit of type TIME. Any time value is a multiple of the resolution
limit.

INTRODUCTION TO VHDL-AMS 61

Figure 6-2. Signal in VHDL

The values of signals may only change at discrete time points as shown
in Figure 6-2. A change in the signal value, which occurs when the signal is
updated, is called an event. Signal values are constant between two events.
Signals can be declared in the declaration part of an architecture. The initial
value of a signal depends on the type (for example ‘0’ for a BIT-valued
signal) or can be overwritten during the declaration.

Examples of signal declarations
signal CLK : BIT;
signal DATA1 : BIT_VECTOR (7 downto 0);
signal DATA2 : BIT_VECTOR (7 downto 0) := ”00001111”;
signal R_SIGNAL : REAL := 1.0E4; -- with initial value

Event-driven simulation

An appropriate algorithm to update signals is the event-driven simulation
algorithm. The idea of event-driven simulation is to evaluate signals only at
time points where a value change can occur. This procedure saves
computation time by avoiding unnecessary signal evaluations. Concurrent
statements determine the values of signals. Signal changes, which will occur
in the future, are administrated using an event queue.

Simple concurrent signal assignment

Signal values can be changed by signal assignment statements. The
concurrent statements are part of an architectural body. The simplest form of
a concurrent signal assignment statement is

signal_name <= expression;

62 Chapter 6

signal_name is the target of the concurrent statement. expression is the
driver of the signal. A value may be assigned to a target signal after an
explicit delay.
Examples

DATA1 <= ”1010101010”;
DATA2 <= ”1111111111” after 10 ns; -- with inertial delay

It is possible to apply multiple assignments in one statement:

R_SIGNAL <= 1.0E4, 1.0E3 after 10 ms, 1.0E6 after 100 ms;

The value of a signal can be determined using a mathematical expression.
Operands can be signals, constants, and so on.

CLK <= not CLK after 1 ms; -- CLK shall be of type BIT

The value of CLK changes from ’0’ to ’1’ after 1 ms and vice versa.
Thus, the concurrent statement describes a simple clock generator.
Note: delay mechanisms in VHDL

There are two different delay mechanisms in VHDL. inertial delay is
used by default. An existing transaction is always overwritten by a new
transaction on the driver of a signal. For inertial delays, a new transaction
scheduled after an existing transaction overwrites the existing transaction if
it has a different value. If the delay is of type transport, the new transaction
is appended to the event queue.
Example

The signals A and B drive C_INERTIAL_1_ns (A or B with inertial
delay of 1 ns), C_INTERTIAL_2_ns (A or B with inertial delay of 2 ns), and
C_TRANSPORT (A or B with transport delay of 2 ns). As a consequence of
the delay mechanism a pulse that is smaller 2 ns is suppressed in
C_INTERTIAL_2_ns but not in C_TRANSPORT.

entity BENCH is end entity BENCH;

architecture BENCH_DELAY of BENCH is
signal A, B : BIT;
signal C_INERTIAL_1_ns : BIT;
signal C_INERTIAL_2_ns : BIT;
signal C_TRANSPORT : BIT;

begin
 A <= '0', '1' after 10 ns, '0' after 11 ns;
 B <= '0', '1' after 2 ns, '0' after 5 ns, '1' after 15 ns;

 C_INERTIAL_1_ns <= a or b after 1 ns;
 C_INERTIAL_2_ns <= a or b after 2 ns;
 C_TRANSPORT <= transport a or b after 2 ns;
end architecture BENCH_DELAY;

INTRODUCTION TO VHDL-AMS 63

Figure 6-3. Results bench

Note: other concurrent statements

In addition to the simple concurrent signal assignment statement, more
complex concurrent statements exist:

Concurrent conditional signal assignment statement
Concurrent selected signal assignment statement
Concurrent procedure call statement
Concurrent assertion statement
Concurrent instantiation statement

They are introduced in Chapter 9 of the VHDL-AMS standard and will
not be repeated in detail here. In the following we will only touch on the
process statement.

Process statement

A special concurrent statement is the process statement. It allows
defining the drivers of signals in a sequential way in the process statement
part. The general form is

[process_label :] process [(sensitivity_list)] is
process_declarative_part
begin
process_statement_part
end process [process_label];

A process is activated if an event occurs in one of the signals in the
sensitivity list and runs until the end of the process is reached.

Processes without a sensitivity list must contain at least one wait
statement. The wait statement causes the suspension of the process
statements. The condition clause of a wait statement specifies a condition
that must be met for the process to be executed. The execution of a process

64 Chapter 6

with wait statements consists of the repetitive execution of process statement
part. A process with wait statements must not contain a sensitivity list.

The general form of the wait statement (VHDL-AMS standard Section
8.1) is

wait [on signal_name {, signal_name}]
 [until condition]
 [for time_or_real_expression] ;

A process must contain either a sensitivity_list and no wait statement or
no sensitivity_list and at least one wait statement.

Example
-- INPUT is of type BIT_VECTOR (7 downto 0);
-- SIGNAL_OUT is a signal of type INTEGER
-- shall represent input as integer number

-- CLK the conversion is done when an event
-- occurs on CLK

P1: process (CLK) is
variable RESULT : INTEGER;

begin
 RESULT := 0;

for I in 7 downto 0 loop
if INPUT(I) = ’1’ then

 RESULT := 2 * RESULT + 1;
end if;

end loop;
 SIGNAL_OUT <= RESULT;
end process P1;

Process statements define the behavior in a sequential manner. In a
process, variables can be declared. They can save intermediary results of an
algorithm. The variables retain their value from one process call to the next.
In contrast to a signal, the assignment of the value is performed immediately.
The update of the signal value is not done until the next delta cycle of the
event-driven simulation algorithm starts (see also Section 6.5.2).

Note: concurrent and sequential statements

In some cases the concurrent and sequential form of a statement are
similar. In a process, only the sequential form of the statements can be
applied.

 concurrent conditional statement

TARGET_SIGNAL <= 5.0 when clk = ’1’ else 0.0;

INTRODUCTION TO VHDL-AMS 65

sequential conditional statement

if CLK = ’1’ then
 TARGET_SIGNAL <= 5.0;
else
 TARGET_SIGNAL <= 0.0;
end if;

6.2.4 A simple pure digital example – divider

In this example we want to develop a VHDL model of a divider with the
following requirements:

Interface with input and output ports INP and OUTP respectively of type
BIT
Input signal frequency shall be divided by a positive integer number N

The model shall be tested with a test-bench with a BIT-valued clock
signal that changes value after 1 ms. The clock signal is connected to the
divider’s input and shall be divided by N=5.

To follow the rules and order of the analysis of design units given in
Section 6.2.2 we save entity, architecture and test-bench descriptions in
different files:

-- File: divider_ent.vhd
-- Content: entity declaration of the DIVIDER
entity DIVIDER is

generic (N : POSITIVE);
port (INP : in BIT;

 OUTP : out BIT);
end entity DIVIDER;

-- File: divider_simple.vhd
-- Content: architecture SIMPLE of the DIVIDER
architecture SIMPLE of DIVIDER is
begin

process is
variable COUNTER : INTEGER := N-1;

begin
wait until INP = '1'; -- process with wait, no sens. list

 COUNTER := (COUNTER + 1) mod N;
if COUNTER = 0 then

 OUTP <= '1';
elsif COUNTER = N/2 then

 OUTP <= '0';
end if;

 end process;
end architecture SIMPLE;

-- File: bench.vhd
-- Contents: DIVIDER testbench

66 Chapter 6

use WORK.all; -- makes DIVIDER(SIMPLE) available

entity BENCH is end entity BENCH;

architecture BENCH_SIMPLE of BENCH is
signal CLK, OUTP : BIT;

begin
 CLK <= not CLK after 1 ms;

UUT: entity DIVIDER(SIMPLE)
generic map (5) -- positional association
port map (CLK, OUTP);

end architecture BENCH_SIMPLE;

The compilation must begin with the file divider_ent.vhd (primary design
unit on the lowest level of the model hierarchy). It is continued with the file
divider_simple.vhd (secondary design unit of entity DIVIDER). At the end
the file bench.vhd should be compiled. All files will be compiled into the
logical library WORK. Thus, the context clause “use WORK.all;” was
included in the test-bench description to allow direct instantiation of the
design entity DIVIDER(SIMPLE). After five input pulses a new output
pulse is created. The result is shown in Figure 6-4.

Figure 6-4. Results of divider simulation

6.3 Conservative Systems Description

Conservative semantics describe parts of the analog portion of a system.
The modeled analog portions are similar to lumped systems, which can be
described by ordinary differential equations and algebraic equations.
Electrical networks are a special kind of conservative system.

The structure of a conservative system is characterized by the connection
of its branches. The branches carry

Across quantities (similar to branch voltages in the electrical case)
Through quantities (similar to branch currents in the electrical case)

INTRODUCTION TO VHDL-AMS 67

The following requirements have to be fulfilled by the solution of a
conservative system

Kirchhoff’s Current Law (KCL)
Kirchhoff’s Voltage Law (KVL)
Constitutive relations that describe requirements for branch voltages and
currents

In this section, we will introduce some basic VHDL-AMS language
constructs used to model conservative systems. Both electrical and
nonelectrical systems can be modeled.

Background knowledge on network modeling approaches can be found in
a wide range of books, such as [DeK69], [ChD87]. The description and
simulation of the analog portion uses many ideas known from SPICE-like
simulation engines. There are many books with more information (for
example [Vla93], [VlS94], [Kun95]).

6.3.1 Network analysis problem

By means of an example we will look at the formulation of a network
analysis problem and discuss the consequences concerning the language
constructs required. The following circuit shall be considered.

Figure 6-5. Network analysis problem

The input voltage vin(t) is given. The branch voltages and currents of all
other branches shall be determined.

68 Chapter 6

R1

Cvin (t)

iDiq

vR1

iR1

iC

vD vCvq

Definition of node names
(names of connection points)

A B

Definition of names and orientation of
branch voltages and branch currents

Determination of a reference node

Figure 6-6. Schematic with node names and definition of branches

To establish the network equations we usually have to make some
preparations:

Definition of node names (names of connection points)
Definition of names and orientation of branch voltages and branch
currents
Determination of a reference node

The structure of the circuit is given by its network graph. It describes
how nodes are connected by oriented branches. Kirchhoff’s Current and
Voltage Law equations result from this graph.

Kirchhoff’s Current Law:

Node A => iq + iR1 = 0

 Node B => -iR1 + iD + iC = 0

Kirchhoff’s Voltage Law:

vR1 + vD – vq = 0

 vC – vD = 0

Figure 6-7. Network graph and equations resulting from Kirchhoff’s laws

Kirchhoff’s Current Law (KCL) requires that the sum of branch currents
at a node with respect to their orientation equals zero. The equation for the

INTRODUCTION TO VHDL-AMS 69

reference node linearly depends on the equations for the other nodes. Thus, it
will not be part of the system of network equations. Kirchhoff’s Voltage Law
(KVL) requires that the sum of branch voltages of a mesh with respect to
their orientation equals zero. The equations which result from Kirchhoff’s
laws can be automatically established on the base of the network graph. That
means they only depend on the network topology (see Figure 6-7 for the
example).

Furthermore, the voltage-current constitutive relations of the branches
must be fulfilled. These equations define further restrictions to branch
voltages and currents (see Figure 6-8 for the example). They must be
independent of the equations given by Kirchhoff’s laws.

R1

vR1

iR1

vin (t)

iq

vq

C

iD iC

vD vC

voltage source => 0)(tvv inq

 resistor R1 => 11 1 RR iRv

diode => ,...)(DD vfi

capacitor =>
dt

dv
Ci C

C

Figure 6-8. Symbols to describe the constitutive relations of branches

Conclusions

All these conditions (KCL, KVL, constitutive relations) must be fulfilled
by the branch voltages and currents that solve the network analysis problem.
A differential algebraic system of equations has to be evaluated:

0),,,(tp
dt
dxxF

with nRx),0[: (time),0[x and fixed parameters mRp)

70 Chapter 6

The examples demonstrate the main tasks in modeling and simulating
conservative systems:

Objective of modeling
Description of network topology (network graph, that is node names,
names and orientation of branch voltages and currents)
Description of the constitutive relation of the branches

Task of the simulation engine
Elaboration of the model and establishing the system of network
equations
Numeric solution of the network equations (see for example [LiZ97],
Chapter 4)

What does the modeling language have to support?

The analog extensions of VHDL have to support the following modeling
requirements for analog systems.

Figure 6-9. Requirements concerning analog extensions of VHDL

New interface descriptions
Beside signal ports it must be possible to describe conservative
connection points (for example electrical pins, called terminal ports in
VHDL-AMS) and, as will be shown later, also nonconservative
connection points (for example signal flow pins of control blocks, called
quantity ports in VHDL-AMS).

New objects and data types
The kind of a conservative connection point has to be declared. This can
be done using a nature declaration in VHDL-AMS. The network
branches can be described in VHDL-AMS using branch quantity
declarations as will be shown later. Furthermore, additional unknowns

INTRODUCTION TO VHDL-AMS 71

that may help to define the constitutive relations may be declared. They
are called free quantities. Nodes with connected conservative interfaces
points can also be declared. They are also called terminals.

New statements
The description of the constitutive relations can be done using
simultaneous statements. VHDL-AMS has many facilities available to
express these relations. Powerful attributes help to handle analog
waveforms like 'DOT (for differentiation), 'INTEG (for integration),
'LTF (to describe Laplace transfer functions), and so on.

VHDL-AMS also defines how to exchange values between the analog
and digital portions of a system during the simulation, which is the mixed-
signal simulation cycle.

6.3.2 Nature, terminal and branch quantity declarations

Quantity

Analog waveforms in the time domain can be considered time-
continuous waveforms.

The range of values must be floating point types or subtypes.
The timeline is of type REAL.
Typical analog waveforms are branch across quantities, branch through
quantities, and free quantities.

Figure 6-10. Analog waveform (quantity) in VHDL-AMS

The conditions concerning the analog waveforms are expressed by sets of
so-called characteristic expressions. A consistent assignment of values to the

72 Chapter 6

quantities of a model is called the analog solution point (ASP), see Figure
6-10.
Nature declaration

A nature characterizes a node or a conservative interface connection
point of an entity. Branches can only connect terminals of the same nature.
The nature declaration specifies the types of the associated branch voltages
and currents. That generally means across and through quantities. The
declaration also includes the name of the associated reference terminal. The
across quantity between a terminal of a given nature and its associated
reference terminal is known as a “node voltage” in electrical networks. The
type of this across quantity is the same type that was specified in the nature
declaration. The general form is as follows:

nature nature_name is
across_type across
through_type through
reference_name reference;

Figure 6-11. Elements of NATURE declaration

Example
nature ELECTRICAL is
 VOLTAGE across
 CURRENT through
 ELECTRICAL_REF reference;

The nature declaration in this example is used in the IEEE package
ELECTRICAL_SYSTEMS. VOLTAGE and CURRENT are subtypes of
REAL. ELECTRICAL_REF can be used like a terminal without explicit
declaration in an architecture. Natures may be of scalar and composite type.
Composite natures are used to define a collection of terminals. They include
arrays of terminals and records of terminals.

INTRODUCTION TO VHDL-AMS 73

nature ELECTRICAL_VECTOR is
array (NATURAL range <>) of electrical;

Packages with nature declarations

Nature declarations are usually collected in packages. In the IEEE library
the ELECTRICAL_SYSTEMS package with the ELECTRICAL nature is
given by the following code:

package ELECTRICAL_SYSTEMS is
 -- electrical domain
 -- subtype declarations

subtype VOLTAGE is REAL tolerance "DEFAULT_VOLTAGE";
subtype CURRENT is REAL tolerance "DEFAULT_CURRENT";

 -- ...
 -- nature declarations

nature ELECTRICAL is
 VOLTAGE across
 CURRENT through
 ELECTRICAL_REF reference;

nature ELECTRICAL_VECTOR is
array (NATURAL range <>) of ELECTRICAL;

end package ELECTRICAL_SYSTEMS;

The reference node ELECTRICAL_REF of the nature ELECTRICAL
means the same as node 0 in SPICE-like simulation engines. The reserved
word tolerance in the subtype declarations provides a possibility of how to
handle the accuracy of the associated quantities during the numerical
simulation. The VHDL-AMS language does not give an exact definition of
how to do this. Thus, presently it is handled in different manners in the
simulation or simply ignored. To use the declarations of these packages a
context clause has to be included in the VHDL-AMS descriptions. For
instance, to use the nature ELECTRICAL and also ELECTRICAL_REF you
have to add

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

As it is clear that this context clause has to be included we often omit it
in the following text.
Port terminal declaration

The general form of port declarations in an entity declaration is given by

port (port_interface_list);

An element of the port interface list, which describes conservative
connection points of the nature nature_name, consists of

terminal port_terminal_name_list : nature_name

74 Chapter 6

Example

Let us have a look at the entity declaration of a resistor.

Figure 6-12. Interface description of a resistor

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity RESISTOR is
generic (VALUE_R : REAL := 1.0);
port (terminal P1, P2 : ELECTRICAL);

end entity RESISTOR;

Declaration of terminals for structural descriptions

Terminals can also be declared in an architecture body with a terminal
declaration. From a network point of view they can be used as nodes. To
connect port terminals in a structural description they have to be assigned to
the same terminal (node). It is a similar situation as in digital VHDL where
we declare signal ports and assign them to declared signals of an
architecture. However, in VHDL-AMS the difference is that a terminal
cannot carry any value. It is only the name of a connection point. The
general form of a terminal declaration is

terminal node_name_list : nature_name;

Example

It is assumed that the entity declarations of a resistor and capacitor are
compiled into the WORK library:

entity RESISTOR is
generic (VALUE_R : REAL := 1.0);
port (terminal P1, P2 : ELECTRICAL);

end entity RESISTOR;

entity CAPACITOR is
generic (VALUE_C : REAL := 1.0);
port (terminal P1, P2 : ELECTRICAL);

end entity CAPACITOR;

INTRODUCTION TO VHDL-AMS 75

The V1 architectures V1 of the RESISTOR and CAPACITOR are also
available in the WORK library. We show how to describe an RC chain in a
hierarchical way. We start with the description of a simple RC subcircuit.

R1

C1

T2

T3

T1

Figure 6-13. Simple RC subcircuit

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use WORK.all;

entity RC is
generic (RES : REAL := 1.0;

 CAP : REAL := 1.0);
port (terminal T1, T2, T3 : ELECTRICAL);

begin
 assert (RES > 0.0) and (CAP > 0.0)

report "ERROR: RES and CAP must be > 0.0"
severity ERROR;

end entity RC;

architecture V1 of RC is
begin

R1: entity RESISTOR(V1) generic map (RES) port map (T1, T2);
C1: entity CAPACITOR(V1) generic map (CAP) port map (T2, T3);

end architecture V1;

The context clause has to be included in order to make available the
nature ELECTRICAL and the design entities RESISTOR(V1) and
CAPACITOR(V1). The design entities are directly instantiated.

The test-bench consists of a chain of two of these simple RC circuits
connected to a voltage source. The interface of the voltage source is
described by

entity STEP is
generic (AMPL : REAL := 1.0;

 T_DELAY : TIME := 1 ms;
 T_RISE : REAL := 1.0);

port (terminal P, N : ELECTRICAL);
end entity STEP;

76 Chapter 6

The value of the voltage between P1 and P2 changes after time
T_DELAY from 0 to AMPL with the rise time T_RISE. The top circuit
description follows.

Figure 6-14. Test-bench for RC subcircuits

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use WORK.all;

entity BENCH is end entity BENCH;

architecture BENCH_RC of BENCH is
terminal A, B, C : ELECTRICAL;

begin

VS1: entity STEP(V1) generic map (T_RISE => 2.0E-3)
port map (A, ELECTRICAL_REF);

RC1: entity RC(V1) generic map (4.0E2, 1.0E-6)
port map (A, B, ELECTRICAL_REF);

RC2: entity RC(V1) generic map (1.0E3, 1.0E-6)
port map (B, C, ELECTRICAL_REF);

end architecture BENCH_RC;

The simulation delivers the following results.

Figure 6-15. Simulation results

INTRODUCTION TO VHDL-AMS 77

Branch quantity declaration

Branch quantities can be declared in an architecture body with a branch
quantity declaration. The general form is

quantity [across_aspect] [through_aspect] terminal_aspect ;

across_aspect ::= quantity_list [:= expression] across
through_aspect ::= quantity_list [:= expression] through
terminal_aspect ::= start_terminal_name [to end_terminal_name]

A quantity named in an across aspect is an across quantity. Similarly, a
quantity named in a through aspect is a through quantity. Both terminals of
the terminal aspect must be of the same nature. The nature of the terminals
determines the types of across and through aspects. Terminals may be port
terminals of the associated entity of an architecture, or internally declared. If
the terminal aspect only consists of a start terminal, the end terminal is the
reference node of the nature of the start terminal. A branch quantity
declaration terminals of an architecture.

If there is more than one quantity in the through aspect, parallel branches
are declared must include at least an across or a through aspect. If a branch
quantity declaration includes neither an across nor a through aspect it results
in an error.
Notes

A branch quantity declaration without a through aspect only declares a
voltage between two terminals. A constitutive relationship must not be
defined for a branch that is declared without a through aspect. In an
electrical application a branch without a through aspect is an open
branch.
For each branch quantity declaration with a through aspect a constitutive
relation has to be defined. In an electrical application that means a
current can flow through such a branch.

78 Chapter 6

Examples

I

V

P1 P2

I1

I2

T2T1

V12

OUTP

VINP N

IOUT

 -- general form
quantity V across I through P1 to P2;

-- two parallel branches
quantity V12 across I1, I2 through T1 to T2;

 -- branch ended with reference node
quantity VOUT across IOUT through OUTP;

 -- open branch (branch current equal 0.0)
quantity VIN across P to N;

Figure 6-16. Branch quantity declarations (branch diagrams)

6.3.3 Simultaneous statements and free quantity declarations

Simultaneous statements express explicit and implicit differential and
algebraic equations that constrain the values of the quantities of a model. In
the case of conservative systems they describe the constitutive relations of
network branches. The simultaneous statements must be placed in the
architecture body as well as the concurrent statements. The order of
simultaneous and concurrent statements does not matter.

General form:

[context_clause]

architecture architecture_name of entity_name is

{declaration_part}

begin

{simultaneous_statement |
 concurrent_statement}

end [architecture] [architecture_name];

description of the behavior,
constitutive relations, ...

declaration of internal
terminals, branch
quantities, ...

Figure 6-17. Simultaneous statements in an architecture

INTRODUCTION TO VHDL-AMS 79

Example

Let us look at a simple resistor. The interface is described by the entity
declaration. In the architecture the internal branches and the constitutive
relations of branches have to be described.

Figure 6-18. Structure of the resistor model

The internal branch is described by a branch quantity declaration. The
voltage current relationship has to be expressed by a simultaneous statement.
We show how this can be done in the following.

Figure 6-19. Resistor model with branch quantity declaration

80 Chapter 6

Note

A simultaneous statement is required for each branch quantity declaration
with a through aspect.

Simple simultaneous statement

The evaluation of a simple simultaneous statement creates a new
characteristic expression that has to be taken into consideration during the
solution of the network equations. The general form of a simple
simultaneous statement is

[label:] simple_expression == simple_expression ;

The left-hand and right-hand side expressions must be real or of the same
real subtype. Composite real types or subtypes are possible. The expressions
are constructed using constants and quantities. The simulation engine
determines the values of the quantities so that the difference of both
expressions equals zero or is near to zero. That means, the simultaneous
statement expresses a condition that has to be fulfilled. The equals sign == is
not an assignment operator. The order of simultaneous and concurrent
statements in an architecture does not influence the simulation results.

Example (resistor)

Now we can complete the architecture of the resistor.

Figure 6-20. Complete resistor model

INTRODUCTION TO VHDL-AMS 81

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity RESISTOR is
generic (VALUE_R : REAL := 1.0);
port (terminal P1, P2 : ELECTRICAL);

end entity RESISTOR;

architecture V1 of RESISTOR is
quantity V across I through P1 to P2;

begin
 V == VALUE_R * I;
end architecture V1;

Example (sinusoidal voltage source)

Figure 6-21. Sinusoidal voltage source

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all; -- for access to SIN and MATH_2_PI

entity SINE is
generic (V0 : REAL := 0.0;

 A : REAL := 1.0;
 FREQ : REAL := 50.0);

port (terminal P, N : ELECTRICAL);
end entity SINE;

architecture V1 of SINE is
quantity V across I through P to N;

begin
 V == V0 + A*SIN(MATH_2_PI*FREQ*NOW);
end architecture V1;

The function NOW delivers the current simulation time (t in the
constitutive relation).

82 Chapter 6

Example (voltage controlled voltage source)

Figure 6-22. Voltage controlled voltage source

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity VCVS is
generic (V : REAL := 1.0); -- gain
port (terminal IN1, IN2, OUTP : ELECTRICAL);

end entity VCVS;

architecture V1 of VCVS is
quantity VIN across IN1 to IN2; -- open branch
quantity VOUT across IOUT through OUTP;

begin
 VOUT == V*VIN;
end architecture V1;

The open input branch declaration is without a through aspect. The
current in this branch is zero. Thus, there is only one branch declaration with
a through aspect and one simultaneous statement in the architectural body.
Free quantity declaration

In the previous examples we expressed the constitutive relations with
only the help of branch voltages and currents. In some cases we need
auxiliary quantities to express the behavior. Therefore, we can declare so-
called free quantities in an architecture. Each declared free quantity
increases the number of required simultaneous statements. By default the
initial value of the real-valued free quantity is 0.0. This value can be
overwritten by a real-valued expression in the free quantity declaration. The
general form of a free quantity declaration is

quantity name_list : real_type_or_subtype_name [:= expression] ;

INTRODUCTION TO VHDL-AMS 83

Example

We add an input resistor and a series resistor to the output branch of the
voltage controlled voltage source. The amplified input voltage equals the
declared free quantity VCTRL. In a similar way, other blocks with input and
output resistors can be modeled.

Figure 6-23. Voltage controlled voltage source with output resistor

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity VCVS_R is
generic (V : REAL := 1.0; -- gain

 RIN : REAL := 50.0; -- input resistor [Ohm]
 ROUT : REAL := 50.0); -- output resistor [Ohm]

port (terminal IN1, IN2, OUTP : ELECTRICAL);
end entity VCVS_R;

architecture V1 of VCVS_R is
quantity VIN across IIN through IN1 to IN2; -- input branch
quantity VOUT across IOUT through OUTP; -- output branch
quantity VCTRL : REAL; -- free quantity

begin
VIN == RIN*IIN;

 VCTRL == V*VIN; -- description of functionality
 VOUT == VCTRL + ROUT*IOUT;
end architecture v1;

Further simultaneous statements

Simultaneous if statement

The simultaneous if statement selects one statement part for evaluation.
The selection depends on the values of one or more conditions. Dynamic
conditions are possible. That means the conditions may depend on values of
signals and quantities that can change during the simulation. If one of the
conditions evaluates to TRUE, then the corresponding simultaneous
statement is evaluated. The general form is

84 Chapter 6

[if_label :] if boolean_condition use
 simultaneous_statement_part
 { elsif boolean_condition use
 simultaneous_statement_part }
 [else
 simultaneous_statement_part]

end use [if_label] ;

In a special case the selection is done between two simultaneous
statements. Either the first or the second one must be evaluated.

if condition use
 simultaneous_statement_1

else
 simultaneous_statement_2
end use ;

Simultaneous case statement

A simultaneous case statement selects one of a number of alternative
statement parts for evaluation. The general form is

[case_label :] case expression use
 when choice { | choice } =>
 { simultaneous_statement }
 { when choice { | choice } =>
 { simultaneous_statement } }
end case [case_label] ;

The expression must be a discrete type or a one-dimensional array type,
whose element base type is a character type (for example BIT_VECTOR
with a given length). Each value chosen must be the same type as the
expression. The simple expression and discrete ranges specified as choices
must be locally static. The choice others covers all values not specified in
the choices of previous alternatives. It is only allowed for the last alternative.

An others choice is required in a case statement if the expression is a
universal integer type (for example INTEGER), since this is the only way to
cover all values of the universal integer type.

This is explained by the example below. The data object I is an integer
valued expression. VOUT and VIN are branch quantities. KP, KI, and KD
are real valued constants.

case I use
when 1 => VOUT == KP*VIN;
when 2 => VOUT == KI*VIN’INTEG;
when 3 => VOUT == KD*VIN’DOT;
when others => VOUT == KP*VIN + KI*VIN’INTEG + VIN’DOT;

end case;

INTRODUCTION TO VHDL-AMS 85

Simultaneous procedural statement

The simultaneous procedural statement provides a sequential notation
for expressing differential and algebraic equations. In the statement part, the
sequential form of the statements must be applied in a similar way to their
usage in a process statement. The procedural statement is a simultaneous
equivalent to the concurrent process statement. The general form is

[procedural_label :] procedural [is]
 declaration_statement_part
begin
 sequential_statement_part
end procedural [procedural_label] ;

In the statement part, values can be assigned to quantities in a sequential
order. Values of quantities can also be determined by a function. With the
help of a simple simultaneous statement a quantity and the function value
can be required to be equal. Thus, the simultaneous procedural statement
always has an equivalent simple simultaneous statement. Nevertheless, it
offers many advantages if similar expressions have to be computed in
various simple simultaneous statements. This can be applied in transistor
modeling for instance.

6.3.4 Example of a conservative system – A-law companding

To reduce the influence of noise in data transmission systems
companding (compressing-expanding) is used. The waveform to be
transmitted is compressed using a nonlinear amplitude characteristic
[Kam92].

Figure 6-24. Interface of compression block

To reconstruct the waveform it must be expanded using the inverse
characteristic. One scheme preferred in Europe is A-law companding. We
model the block to compress the waveform in VHDL-AMS. The range of
the input voltage VIN is between –VMAX and VMAX. The output voltage

86 Chapter 6

shall be given by the following formula. The ranges of input and output
voltage shall be equal.

maxln1 v
vin

A
Avout for

Av
vin 1
max

0

A
v

vinA

v
vinsignvvout

ln1

)
max

ln(1
)

max
(max for 1

max
1

v
vin

A

Table 6-1 shows the coefficients of A.

Table 6-1. Coefficients of A
K 1 2 3 4 5 6
A 1.00 5.36 14.77 36.85 87.56 201.84

With A=1.0 a linear response is given. The commonly adopted value is
A=87.56. We have to consider the following steps in the modeling
procedure:

Writing a VHDL-AMS for the compression block
Generic parameters of the block shall be K and VMAX
Check the model for K=5 and an input voltage of frequency F=1 kHz
with

)2sin(0.2 tfvin

Proposed solution

The entity description of the compression block is given by

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;

entity COMPRESS is
generic (K : POSITIVE := 1; -- index for A array

 VMAX : REAL := 1.0);
port (terminal INP, OUTP : ELECTRICAL);

begin
assert K <= 6

report "ERROR: 1 <= K <= 6 required."
severity ERROR;

INTRODUCTION TO VHDL-AMS 87

assert VMAX > 0.0
report "ERROR: VMAX > 0.0 required."

 severity ERROR;
end entity COMPRESS;

The architecture is given by

architecture V1 of COMPRESS is
quantity VIN across INP;
quantity VOUT across IOUT through OUTP;
constant AK : REAL_VECTOR (1 to 6)

 := (1.0, 5.36, 14.77, 36.85, 87.56, 201.84);
constant A : REAL := Ak(k);

begin
if ABS(VIN/VMAX) < 1.0/A use

 VOUT == A/(1.0+LOG(A))*vin;
else

 VOUT == VMAX*SIGN(VIN/VMAX)*(1.0+LOG(A*ABS(VIN/VMAX)))
 /(1.0+LOG(A));
end use;

 assert VIN'ABOVE(-VMAX) and not VIN'ABOVE(VMAX)
 report "WARNING: VIN out of range."
 severity WARNING;
end architecture V1;

The 'ABOVE attribute which is used for dynamic range checking of VIN
will be explained in Section 6.5.1. We will use the following description as a
test-bench. An input branch is declared that connects N_IN and the reference
node. The sinusoidal branch voltage is VIN and is defined by a simultaneous
statement. The unit under test UUT is directly instantiated by a concurrent
statement. Note that simultaneous and concurrent (for example instantiation)
statements can be mixed in an architecture.

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;
use WORK.all;

entity BENCH is end entity BENCH;

architecture BENCH_A_LAW of BENCH is
terminal N_IN, N_OUT : ELECTRICAL;
quantity VIN across IIN through N_IN;
constant AMPL : REAL := 2.0;
constant FREQ : REAL := 1.0E3;

begin
 VIN == AMPL*SIN (MATH_2_PI*FREQ*NOW);

UUT: entity COMPRESS(V1)
generic map (K => 5, VMAX => AMPL)
port map (INP => N_IN, OUTP => N_OUT);

end architecture BENCH_A_LAW;

88 Chapter 6

Figure 6-25 shows the result of the simulation (node voltages at N_IN
and N_OUT).

Figure 6-25. Input and output voltages versus time

We can represent the output voltage versus input voltage and obtain the
A-law characteristic for A=87.56.

Figure 6-26. A-law characteristic

6.3.5 Attributes in VHDL-AMS

What is an attribute in VHDL-AMS?

An attribute is a definition of some characteristic of a named object.
Some attributes are predefined for types, ranges, values, signals, quantities,
and functions. A predefined attribute may return a constant value, a type, or

INTRODUCTION TO VHDL-AMS 89

a range. In some other cases it can create a new implicit signal or quantity.
Many attributes are known from digital VHDL.

Table 6-2. Attributes in VHDL
Attribute name Prefix Result
T'LEFT T is scalar type Left bound of T
T'RIGHT T is scalar type Right bound of T
T'HIGH T is scalar type Upper bound of T
T'lLOW T is scalar type Lower bound of T
A'LENGTH (N) A is an array Length of the Nth index range.

N=1 is omitted
A'LENGTH A is an array (one dimensional) Length of the first index range
A'LEFT A is an array (one dimensional) Left bound of the index range
A'RIGHT A is an array (one dimensional) Right bound of the index range
A'RANGE A is an array (one dimensional) Index range of A

New important attributes on quantities to describe the analog behavior
are explained in the following:

'DOT to derive a quantity
'INTEG to integrate a quantity
'SLEW to smooth a quantity
'DELAYED to delay a quantity
'LTF to describe an analog filter
'ZOH to sample and hold a quantity
'ZTF to describe a digital filter

Other new attributes are introduced to describe mixed-signal behavior
(see Section 6.5.1). The remaining attributes are user-defined and always
constant. User-defined attributes are not taken into consideration.

Attribute 'DOT

The 'DOT attribute is characterized in the following way:

Q'DOT is a quantity that is the derivative with respect to time of quantity
Q at the time the attribute is evaluated.
Q'DOT is an implicit quantity. It must not be declared.
By default during the quiescent domain analysis (DC analysis) Q'DOT is
zero.
At a discontinuity by default Q is continuous if Q'DOT is used
somewhere in a model.

90 Chapter 6

Example

dt
dVCVALUEI _

Figure 6-27. Capacitance

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity CAPACITOR is
generic (VALUE_C : REAL := 1.0);
port (terminal P1, P2 : ELECTRICAL);

end entity CAPACITOR;

architecture V1 of CAPACITOR is
quantity V across I through P1 to P2;

begin
 I == VALUE_C * V'DOT;
end architecture V1;

Attribute 'INTEG

The 'INTEG attribute is characterized in the following way:

Q'INTEG is a quantity that is the time integral of quantity Q from time 0
to the time the attribute is evaluated.
Q'INTEG is an implicit quantity. It must not be declared.
By default during the quiescent domain analysis (DC analysis) Q is zero
if Q'INTEG is used somewhere in the model.
At a discontinuity by default Q'INTEG is continuous.

Example

ICVINtVOUT
t

0
)()(

Figure 6-28. Integrator with electrical terminals

INTRODUCTION TO VHDL-AMS 91

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity INTEGRAL_BLOCK is
generic (IC : REAL := 0.0); -- initial value
port (terminal INP : ELECTRICAL;

terminal OUTP : ELECTRICAL);
end entity INTEGRAL_BLOCK;

architecture IDEAL of INTEGRAL_BLOCK is
quantity VIN across INP; -- open input branch
quantity VOUT across IOUT through OUTP; -- voltage source

begin
if DOMAIN = QUIESCENT_DOMAIN use

 VOUT == IC; -- during DC analysis
else

 VOUT == VIN'INTEG + IC; -- in transient analysis
end use;

end architecture IDEAL;

The DOMAIN signal depends on the actual status of the simulation.
During operating point (DC) analysis its value is QUIESCENT_DOMAIN.

Attribute 'SLEW

Figure 6-29. Quantities Q and Q'SLEW(MAX_RISING_SLOPE)

The 'SLEW attribute is characterized in the following way:

Suppose Q is a scalar or composite quantity.
 Q'SLEW (MAX_RISING_SLOPE, MAX_FALLING_SLOPE) is a
quantity where each scalar subelement follows the corresponding scalar
subelement of Q, but its derivative with respect to time is limited by
specified slopes.
MAX_RISING_SLOPE is a static expression of type REAL that
evaluates to a positive value. If omitted it defaults to REAL'HIGH, which
is interpreted as an infinite slope. MAX_FALLING_SLOPE is a static
expression of type REAL that evaluates to a negative value. If omitted it

92 Chapter 6

defaults to the negative of MAX_RISING_SLOPE. The value
REAL'LOW is interpreted as a negative infinite slope.
Q'SLEW is an implicit quantity. It must not be declared.
The derivative of Q'SLEW is between MAX_FALLING_SLOPE and
MAX_RISING_SLOPE, that is

MAX_FALLING_SLOPE <= Q’SLEW (MAX_R…,MAX_F…)’DOT <= MAX_RISING_SLOPE

Q'SLEW follows Q as long as Q'DOT is between
MAX_FALLING_SLOPE and MAX_RISING_SLOPE

Example

INP OUTP

VIN
VOUT

)(max)(VINtVOUT
t

Figure 6-30. Peak detector [CoC92]

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity PEAKDETECTOR is
port (terminal INP, OUTP : ELECTRICAL);

end entity PEAKDETECTOR;

architecture IDEAL of PEAKDETECTOR is
quantity VIN across INP;
quantity VOUT across IOUT through OUTP;

begin
 VOUT == VIN'SLEW(REAL'HIGH, -1.0e-38);
end architecture IDEAL;

VOUT follows VIN if VOUT is increasing. Otherwise it retains the last
value of VIN. MAX_FALLING_SLOPE value of -1.0E-38 is similar to 0.0.

INTRODUCTION TO VHDL-AMS 93

 Input voltage source

)2sin()(tFREQeAMPtVIN tA

Figure 6-31. Test-bench for peak detector

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

 use IEEE.MATH_REAL.all, WORK.all;

entity BENCH is end entity BENCH;

architecture BENCH_PEAKDETECTOR of BENCH is
terminal N1, N2 : ELECTRICAL;
quantity VIN across IIN through N1;
constant AMP : REAL := 1.0;
constant A : REAL := 1.0e3;
constant FREQ : REAL := 1.0e3;

begin
 VIN == AMP*EXP(A*NOW)*SIN(MATH_2_PI*FREQ*NOW);

UUT: entity PEAKDETECTOR(IDEAL)
port map (INP => N1, OUTP => N2);

end architecture BENCH_PEAKDETECTOR;

Figure 6-32. Simulation results of peak detector

94 Chapter 6

Attribute 'DELAYED

Figure 6-33. Quantity Q and delayed waveform Q'DELAYED(T_DELAY)

The 'DELAYED attribute is characterized in the following way:

Q'DELAYED(T_DELAY) is a quantity equal to quantity Q delayed by
T_DELAY. T_DELAY is a static expression of type REAL that
evaluates to a non-negative number. If omitted it defaults to 0.0.
Q'DELAYED is an implicit quantity. It must not be declared.
During DC analysis (DOMAIN equals QUIESCENT_DOMAIN)
Q'DELAYED equals Q.
Between time 0 and time T_DELAY the value of
Q'DELAYED(T_DELAY) equals the value of Q at time 0.

Example (delay block)

VOUT(t) = VIN(t-T_DELAY)

Figure 6-34. Delay block

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity DELAY_BLOCK is
generic (T_DELAY : REAL); -- delay time [s]
port (terminal INP, OUTP : ELECTRICAL);

begin
assert T_DELAY >= 0.0

report "T_DELAY must be >= 0.0" severity ERROR;

INTRODUCTION TO VHDL-AMS 95

end entity DELAY_BLOCK;

architecture IDEAL of DELAY_BLOCK is
quantity VIN across INP;
quantity VOUT across IOUT through OUTP;

begin
 VOUT == VIN'DELAYED(T_DELAY);
end architecture IDEAL;

Figure 6-35. Examples for input and output voltages VIN and VOUT respectively

Example (lossless line)

Figure 6-36. Network model of lossless line

The lossless line model is based on Branin’s approach [Bra67].
Parameters of the model are the length l of line, the inductance L’ per unit
length, and the capacitance C’ per unit length. The parameters determine the

wave resistance Z0 and the delay time T:
'
'

0 C
LZ and lCLTD ''

respectively. Then the following equations describe the line model:

)()()(101 tetiZtv s ,)()(2)(1 TDteTDtvte sr ,

96 Chapter 6

)()()(202 tetiZtv r ,)()(2)(2 TDteTDtvte rs .

The VHDL-AMS model implements these equations using the
'DELAYED attribute.

Figure 6-37. Terminals of lossless line

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity LINE is
generic (Z0 : REAL := 50.0; -- wave resistance [Ohm]

 TD : REAL := 1.0e-3); -- delay time [s]
port (terminal T1, T2, T3, T4 : ELECTRICAL);

end entity LINE;

architecture LOSSLESS of LINE is
quantity V1 across I1 through T1 to T2;
quantity V2 across I2 through T3 to T4;
quantity ER, ES : REAL;

begin
 V1 == Z0*I1 + ES;
 V2 == Z0*I2 + ER;
 ER == 2.0*V1'DELAYED(TD) - ES'DELAYED(TD);
 ES == 2.0*V2'DELAYED(TD) - ER'DELAYED(TD);
end architecture LOSSLESS;

The model is tested with a simple circuit. A 1 ms pulse is used as input.

Figure 6-38. Test-bench for lossless line model

INTRODUCTION TO VHDL-AMS 97

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use WORK.all;

entity BENCH is end entity BENCH;

architecture BENCH_LOSSLESS_LINE of BENCH is
constant R_LOAD : REAL := 20.0;
terminal N1, N2 : ELECTRICAL;

begin

V1: entity V_SOURCE(PULSE)
generic map (DURATION => 1 ms)
port map (P => N1, N => ELECTRICAL_REF);

UUT: entity LINE(LOSSLESS)
generic map (TD => 1.5e-3)

 port map (T1 => N1, T2 => ELECTRICAL_REF,
 T3 => N2, T4 => ELECTRICAL_REF);

R1: entity RESISTOR(V1)
generic map (VALUE_R => R_LOAD)
port map (N2, ELECTRICAL_REF);

end architecture BENCH_LOSSLESS_LINE;

Figure 6-39. Results for R_LOAD=20 and R_LOAD=50

Attribute 'LTF

The 'LTF attribute is characterized in the following way:

Q'LTF (NUM, DEN) is a quantity that results in the application of
Laplace transfer function on a quantity Q.
Assume the Laplace transfer function is given by

n
n

m
m

sbsbsbb

sasasaa
sH

...

...
)(

2
210

2
210

98 Chapter 6

NUM is a static expression of type REAL_VECTOR that contains the
numerator coefficients, that is NUM equals (a0, a1, a2, …, am).
DEN is a static expression of type REAL_VECTOR that contains the
denominator coefficients, that is DEN equals (b0, b1, b2, …, bm). The
first scalar subelement of DEN must not be 0.0.
Q'LTF is an implicit quantity. It must not be declared.

Example

 Laplace transfer function

2

2

()
1.3617 0.6181

2 2c c

gainH s
s s

f f

Figure 6-40. Interface of lowpass model

The Laplace transfer function describes a second order Bessel lowpass
filter with cut-off frequency fc [TiS02].

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;

entity LOWPASS is
generic (FC : REAL;

GAIN : REAL := 1.0);
port (terminal INP, OUTP : ELECTRICAL);

end entity LOWPASS;

architecture BESSEL_2 of LOWPASS is
constant W : REAL := MATH_2_PI*FC;
constant NUM : REAL_VECTOR := (0 => 1.0);
constant DEN : REAL_VECTOR

 := (1.0, 1.3617/W, 0.6180/W/W);
quantity VIN across INP;
quantity VOUT across IOUT through OUTP;

begin
 VOUT == GAIN*VIN'LTF(NUM,DEN);
end architecture BESSEL_2;

INTRODUCTION TO VHDL-AMS 99

Figure 6-41. Test-bench of lowpass model (5 ms input pulse)

Figure 6-42. Results of test-bench simulation (Bessel lowpass filter, fc = 1 kHz)

Attribute 'ZOH

The 'ZOH attribute is characterized in the following way:

Q'ZOH (T, INITIAL_DELAY) is a quantity where the value of each
scalar subelement is set to the value of the corresponding scalar
subelement of Q at the sampling times INITIAL_DELAY + k T (where
k is any non-negative integer) and held constant until the next sampling
time.

100 Chapter 6

Figure 6-43. Quantity Q and waveform Q'ZOH (INITIAL_DELAY, T)

INITIAL_DELAY is a static expression of type REAL. The first
sampling will occur after INITIAL_DELAY seconds. If omitted it
defaults to 0.0.
T is a static expression of type REAL that evaluates to a positive value.
This is the sampling period.
Q'ZOH is an implicit quantity. It must not be declared.

Example

Figure 6-44. Sample and hold block

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;

entity SAMPLE_AND_HOLD is
generic (TSAMPLE : REAL := 1.0E-3;

 DELAY : REAL := 0.0);
port (terminal INP, OUTP : ELECTRICAL);

end entity SAMPLE_AND_HOLD;

INTRODUCTION TO VHDL-AMS 101

architecture IDEAL of SAMPLE_AND_HOLD is
quantity VIN across INP;
quantity VOUT across IOUT through OUTP;

begin
 VOUT == VIN'ZOH(TSAMPLE, DELAY);
end architecture IDEAL;

Figure 6-45. Results of a test
 (1 kHz sinusoidal input voltage sampled after 250 s with a period of 50 s)

Attribute 'ZTF

The 'ZTF attribute is characterized in the following way:

Q'ZTF (NUM, DEN, T, INITIAL_DELAY) is a quantity that results in
the application of a z-domain transfer function on a quantity Q.
Assume the z-domain transfer function is given by

n
n

m
m

zbzbzbb

zazazaa
zH

...

...
)(

2
210

2
210

NUM is a static expression of type REAL_VECTOR that contains the
numerator coefficients, that is NUM equals (a0, a1, a2, …, am).
DEN is a static expression of type REAL_VECTOR that contains the
denominator coefficients, that is DEN equals (b0, b1, b2, …, bm). The
first scalar subelement of DEN must not be 0.0.
T is the sampling period and INITIAL_DELAY is the time of the first
sampling. If omitted it defaults to 0.0.
Q'ZTF is an implicit quantity. It must not be declared.

102 Chapter 6

Example

The z-domain transfer function of a digital second order Bessel lowpass
filter with cut-off frequency fc and sampling frequency fs = 4 fc is given
[Sch92].

 z-domain transfer function

21

21

0860.02564.01
3356.06712.03356.0)(

zz
zzgainzH

Figure 6-46. Interface of digital lowpass model

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;

entity LOWPASS is
generic (FC : REAL;

GAIN : REAL := 1.0);
port (terminal INP, OUTP : ELECTRICAL);

end entity LOWPASS;

architecture BESSEL_2_DIGITAL of LOWPASS is
constant FS : REAL := 4.0*FC; -- only in this case
constant TSAMPLE : REAL := 1.0/FS;
constant NUM : REAL_VECTOR

 := (0.3356, 0.6712, 0.3356);
constant DEN : REAL_VECTOR

 := (1.0000, 0.2564, 0.0860);
quantity VIN across INP;
quantity VOUT across IOUT through OUTP;

begin
 VOUT == GAIN*VIN'ZTF(NUM,DEN, TSAMPLE, 0.0);
end architecture BESSEL_2_DIGITAL;

Figure 6-47. Test-bench of digital lowpass model (5 ms input pulse)

INTRODUCTION TO VHDL-AMS 103

Figure 6-48. Results of test-bench simulation (digital Bessel lowpass filter)

Further Attributes

Table 6-3 summarizes additional new attributes of VHDL-AMS to
describe analog behavior in detail.

Table 6-3. Further VHDL-AMS attributes
Attribute name Prefix Result
N'ACROSS N is any nature Across type of the nature denoted

by N
N'THROUGH N is any nature Through type of the nature denoted

by N
T'REFERENCE T is any terminal Across quantity whose plus

terminal is T and whose minus
terminal is the reference terminal of
the nature of T (“node voltage”)

T'CONTRIBUTION T is any terminal Contribution quantity of terminal T
T'TOLERANCE T is any floating point type or

subtype T
String with the tolerance group of T

Q'TOLERANCE Q is any scalar quantity
denoted by the static name Q

String with the tolerance group of Q

6.3.6 Example – higher order lowpass filter

The 'LTF attribute, mentioned in the previous section, provides a very
simple mechanism in VHDL-AMS to describe filter functions using their
coefficients. The transfer functions of lowpass filters are often described as a
product of second order filters

)1(
1)(2SdSc

SH

i
ii

 where
cf

sS
2

104 Chapter 6

The coefficients are specified by tables of filter coefficients. A higher
order filter can be expressed by a combination of lower order filters using
free quantities for intermediate quantities.

Table 6-4. Bessel filter coefficients [TiS02]
order i ci di

1 1 1 0.0
2 1 1.3617 0.6180
3 1 0.7650 0.0
3 2 0.9996 0.4772
4 1 1.3397 0.4889
4 2 0.7743 0.3890

Looking at the table, the transfer function of a 4th order Bessel lowpass
filter is, for instance using cf2 , given by

)()(

3890.07743.01

1

4889.03397.11

)(21

2

2

2

2
sHsH

ssss

gain
sH

A free quantity Q1 is declared in the VHDL-AMS model. Q1 results
from filtering the input voltage VIN by H1(s). The output voltage VOUT
equals Q1 filtered by H2(s). In a similar way other filters of a higher order
can be described. The model for the Bessel lowpass filter follows:

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;

entity LOWPASS is
generic (FC : REAL ;

 GAIN : REAL := 1.0);
port (terminal INP, OUTP : ELECTRICAL);

end entity LOWPASS;

architecture BESSEL_4 of LOWPASS is
quantity VIN across INP;
quantity VOUT across IOUT through OUTP;
quantity Q1 : REAL;

constant W : REAL := MATH_2_PI*FC;
 constant NUM1 : REAL_VECTOR := (0 => GAIN);

constant DEN1 : REAL_VECTOR
 := (1.0, 1.3397/W, 0.4889/W/W);

constant NUM2 : REAL_VECTOR := (0 => 1.0);
constant DEN2 : REAL_VECTOR

 := (1.0, 0.7743/W, 0.3890/W/W);
begin
 Q1 == VIN'LTF(NUM1, DEN1);
 VOUT == VIN'LTF(NUM2, DEN2);
end architecture BESSEL_4;

INTRODUCTION TO VHDL-AMS 105

6.4 Description of Nonconservative Systems

Nonconservative semantics describe parts of analog systems where
Kirchhoff’s laws do not apply. The energy in nonconservative systems does
not remain constant, but it is added from or lost to the outside of the system.

In modeling we usually name those systems nonconservative, where
unidirectional signals instead of through and across quantities are present,
for instance when modeling control systems. Ports of nonconservative
terminals carry only analog waveforms. Control subsystems can be modeled
using nonconservative ports. These ports are characterized in the following
way:

Nonconservative ports are so-called quantity ports. They also carry a
direction mode in or out.
The general form of the interface description of nonconservative
 input ports look like
 quantity identifier_list : in real_type

 The mode in can be omitted.
 output ports look like
 quantity identifier_list : out real_type

If a quantity interface element within an interface list includes a default
expression as for example
quantity port_identifier : in real_typ := expression;

if the port is unassociated the value of the input quantity equals the
expression.
The identifiers of the quantity ports can be used in the associated
architecture just like quantities.
Each quantity port of mode out increases the number of required
simultaneous statements in the associated architecture.

In a structural description

Quantity ports can be associated to quantities.
A quantity port of mode in may be unconnected or unassociated only if
its declaration includes a default expression.
A quantity port of mode out may be unconnected if its type is not an
unconstrained array.
If any quantity is associated as an actual with more than one formal of
mode out an error results.

It should be checked whether the simulation tool being used supports
unassociated ports.

106 Chapter 6

Example

An ideal proportional plus integral plus derivative controller with input
Q_IN and output Q_OUT is described by the following equation:

t
t

dt
INdQ

TVdINQ
TN

tINQKRtOUTQ
0

)(
_

)(_1)(_)(_

Figure 6-49. Interface of a PID controller

The architecture IDEAL of the entity PID realizes this functionality. The
initial value of the integral is zero and not considered during operating point
analysis (DOMAIN is QUIESCENT_DOMAIN).

entity PID is
generic (KR : REAL := 1.0; -- controller gain

 TN : REAL := 1.0; -- reset time
 TV : REAL := 0.0); -- derivative time

port (quantity Q_IN : in REAL; -- input quantity
quantity Q_OUT : out REAL); -- output quantity

begin
assert TN /= 0.0

report "ERROR: Reset time unequal 0.0 required."
severity ERROR;

end entity PID;

architecture IDEAL of PID is
begin

if DOMAIN = QUIESCENT_DOMAIN use
 Q_OUT == KR*(Q_IN + TV*Q_IN'DOT);

else
 Q_OUT == KR*(Q_IN + 1.0/TN*Q_IN'INTEG + TV*Q_IN'DOT);

end use;
end architecture IDEAL;

An instantiation of the model is shown in the following listing. The
design entity QPWL(BASIC) provides the controller with the input
waveform which is determined by the time value pairs that build up the
parameter WAVE. Both models used were compiled into the WORK library.
The free quantities INPUT and OUTPUT carry analog waveforms and are
used as connections to the nonconservative ports of the PID controller.

INTRODUCTION TO VHDL-AMS 107

use WORK.all;

entity BENCH is end entity BENCH;

architecture BENCH_PID of BENCH is
quantity INPUT, OUTPUT : REAL; -- connection points

begin
Q1: entity QPWL(BASIC)

generic map (WAVE =>
 (0.0, 0.0, 1.0, 1.0, 2.0, 1.0, 4.0, -1.0, 5.0, -1.0,
 6.0, 0.0, 10.0, 0.0))

port map (INPUT);

UUT: entity PID(IDEAL)
generic map (KR => 5.0, TN => 2.0, TV => 1.0)
port map (Q_IN => INPUT, Q_OUT => OUTPUT);

end architecture BENCH_PID;

Figure 6-50. Results of PID controller test (KR=5.0, TN=2.0, TV=1.0)

6.5 Mixed-Signal Simulation

A mixed-signal simulation must always be carried out if the system being
simulated includes both analog and digital parts. In VHDL-AMS analog and
digital behavior (simultaneous and concurrent statements, respectively) can
be described within the same architecture. You must consider:

Method of description to allow exchanging data between the analog and
the digital part of a model
An extended simulation cycle that takes into account the solving of
DAE’s (differential algebraic equations but leaves the previous VHDL
simulation cycle untouched
Synchronization between analog and digital simulators due to different
time scales.

108 Chapter 6

6.5.1 Attributes for mixed-signal modeling

Interaction between analog and digital parts

The handling of analog-digital, or in other words mixed-signal systems,
is one of the advantages of VHDL-AMS. Besides the introduction of
standard statements to describe the analog behavior this is another
innovative feature of VHDL-AMS.

Let us consider some basic ideas of how to handle mixed-signal systems
in order to understand the language constructs required to describe mixed-
signal systems. Analog and digital parts of a model are solved with different
algorithms. The solution of the analog part can depend on the values of
digital signals. You can imagine that at an analog solution time point the
analog solver reads the values of digital signals. Between digital events the
values of signals do not change. On the other hand digital signals may
depend on analog quantities.

analog part
determines
quantitys

digital part
 updates
 signals

analog part reads digital signals

digital part reads analog quantities

event driven digital
solver determines next
event time NET

analog solver
evaluates DAE
system

Figure 6-51. Exchange of values between analog and digital parts

How are these ideas supported by the language? The following problems
have to be considered:

If a signal is read by the analog part a signal transaction may cause a
discontinuity in the analog part. To overcome this problem the following
approaches are possible:

The analog solver must be given a hint that a discontinuity can occur.
This happens for instance if a quantity directly equals a real-valued
signal. The discontinuity can be announced with the break statement
as will be shown.
Discontinuities can be avoided if quantities do not immediately follow
signals. The changes can be carried out within a given time or with a

INTRODUCTION TO VHDL-AMS 109

given slope. This is supported by 'RAMP and 'SLEW attributes that
can be applied on real-valued signals.

The digital event time points are normally only determined by the event
driven solution algorithms. Only at these time points can new values of
quantities be evaluated in the digital part. To force the event-driven
algorithm to evaluate quantity values earlier, an event has to be
generated. This can be done using 'ABOVE attribute.
The interactions and the order of calling the analog and digital solvers
have to be determined by the standard. This defines the mixed-signal
simulation cycle.

Attribute 'ABOVE

Figure 6-52. Quantity Q and BOOLEAN signal Q'ABOVE(E)

The 'ABOVE attribute is characterized in the following way:

Q'ABOVE(E) is a BOOLEAN signal that is TRUE if the scalar quantity
Q is greater than the value of E, or FALSE if Q is less than E. Otherwise,
the value does not change.
E is a real-valued expression. Any quantity appearing in this expression
must be denoted by a static name. The expression is not required to be
static.

110 Chapter 6

Example

The following model converts an electrical voltage to a digital signal of
type STD_LOGIC.

Figure 6-53. Interface of a simple A/D converter (electrical input INP)

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.STD_LOGIC_1164.all;

entity A2D is
generic (LEVEL : REAL := 2.5; -- threshold level [V]

 HYST : REAL := 0.0); -- hysteresis [V]
port (terminal INP : ELECTRICAL;

signal S_OUT : out STD_LOGIC := '0');
begin

assert HYST >= 0.0
report "ERROR: Hysteresis HYST >= 0.0 required."
severity ERROR;

end entity A2D;

architecture IDEAL of A2D is
quantity VIN across INP;

begin
 S_OUT <= '1' when VIN'ABOVE(LEVEL) else '0';
end architecture IDEAL;

architecture EXTENDED of A2D is
quantity VIN across INP;

begin
 S_OUT <= '1' when VIN'ABOVE(LEVEL + HYST/2.0) else
 '0' when not VIN'ABOVE(LEVEL - HYST/2.0);
end architecture EXTENDED;

An open branch connects the electrical terminal INP and the electrical
reference. VIN measures the input voltage. If the value of VIN is above the
value of LEVEL, the signal S changes to ‘1’ in the architecture IDEAL.
Otherwise the output signal value is set to ‘0’. The BOOLEAN signal
VIN'ABOVE(LEVEL) is used as the condition in the conditional signal
assignment statement. The architecture EXTENDED works in a similar way.
However, the threshold values are determined by LEVEL +/- half of the
hysteresis parameter HYST.

INTRODUCTION TO VHDL-AMS 111

Attribute 'RAMP

The 'RAMP attribute is characterized in the following way:

Suppose S is a signal of floating point type.
S'RAMP(TRISE, TFALL) is a quantity where each scalar subelement
follows S. If S changes its value, S'RAMP changes the value with rising
time TRISE and falling time TFALL.
TRISE is a static expression of floating point type that evaluates to a
nonnegative number. If omitted, it defaults to 0.0. TFALL is a static
expression of floating point type that evaluates to a nonnegative number.
If omitted, it defaults to TRISE.
S'RAMP is an implicit quantity. It must not be declared.

Figure 6-54. Signal S and quantity S'RAMP(TRISE, TFALL)

The signal S must be initialized otherwise numerical problems can occur
in the initialization phase. If no explicit initial value is specified the default
value of a signal S is S'LEFT. This would also be the initial value of
S'RAMP. If S is of type REAL, the initial value would be REAL'LEFT (this
is approximately -1.0E38). Analog solution points cannot normally be found
for such values.

112 Chapter 6

Example

Figure 6-55. Interface and behavior of a simple D/A converter

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.STD_LOGIC_1164.all;

entity D2A is
generic (VHIGH : REAL := 5.0; -- high voltage [V]

 TD_01 : TIME := 0 ns; -- posedge delay
 TD_10 : TIME := 0 ns; -- negedge delay
 TRISE : REAL := 0.0; -- rising time [s]
 TFALL : REAL := 0.0); -- falling time [s]

port
 (signal S_IN : in STD_LOGIC;

terminal OUTP : ELECTRICAL);
begin

assert VHIGH > 0.0 and TRISE >= 0.0 and TFALL >= 0.0
report "ERROR: Wrong parameters."
severity ERROR;

end entity D2A;

architecture IDEAL of D2A is
quantity VOUT across IOUT through OUTP;
signal SOUT : REAL := 0.0;

begin
 SOUT <= VHIGH after TD_01 when To_Bit(S_IN) ='1' else
 0.0 after TD_10;

 VOUT == SOUT'RAMP (TRISE, TFALL);
end architecture IDEAL;

The input signal S_IN updates the real-valued internal signal SOUT.
Amplitude VHIGH and delay times TD_01 and TD_10 are taken into
consideration. The output voltage source with value VOUT between the
electrical terminal OUTP and the electrical reference node is derived from
SOUT using the 'RAMP attribute.

INTRODUCTION TO VHDL-AMS 113

Attribute 'SLEW

The 'SLEW attribute is characterized in the following way:

Suppose S is a signal of floating point type.
S'SLEW(RISING_SLOPE, FALLING_SLOPE) is a quantity where each
scalar subelement follows S. If S changes its value, S'SLEW changes the
value with rising slope RISING_SLOPE and falling slope
FALLING_SLOPE.
RISING_SLOPE is a static expression of floating point type that
evaluates to a positive number. If omitted, it defaults to REAL'HIGH.
FALLING_SLOPE is a static expression of floating point type that
evaluates to a negative value. If omitted, it defaults to RISING_SLOPE.
S'SLOPE is an implicit quantity. It must not be declared.

The signal S must be initialized. The reasons were discussed in the notes
for the 'RAMP attribute. If no explicit initial value is specified the default
value of a real-valued signal is REAL'LEFT. This would also be the initial
value of S'SLEW in the first iteration step. Analog solution points cannot
normally be found for such values.

Figure 6-56. Signal S and quantity S'SLEW(RISING_SLOPE, FALLING_SLOPE)

Concurrent break statement

'RAMP and 'SLEW attributes support the digital to analog interaction. A
smooth change of analog waveforms which depend on digital signals is
achieved if these attributes are applied. However, there are other situations
where the continuity of analog waveforms cannot be assured if digital
signals change their values.

114 Chapter 6

This can occur, for instance, if a real-valued S is directly used in a
simultaneous statement. An example is

V == S;

Here V is a branch voltage. In this case, a discontinuity of V results from
an event on S. Such a situation can produce problems for the analog solver.
This is one reason the break statement is available in VHDL-AMS. It
announces the possibility of discontinuities to the analog solver. The
simplest form is

break on signal_list ;

That means a discontinuity is notified if an event occurs in one of the
signals of the signal list. In this manner discontinuities of the derivatives of
quantities can also be indicated. The break is implicitly included if 'ZOH,
'ZTF, 'RAMP, and 'SLEW attributes are used. The concurrent form can be
used like a concurrent statement.

The break statement can be extended by conditions and requirements for
initial conditions in the initialization phase and after discontinuities.
However, this is beyond the scope of this introduction.

6.5.2 Mixed-signal simulation cycle

Figure 6-57. Initialization phase

INTRODUCTION TO VHDL-AMS 115

After the elaboration of a design the initialization phase starts. The
operating point is determined. The following rules are applied

The DOMAIN signal is set to QUIESCENT_DOMAIN.
The time NOW is set to 0.0.
The initial values for the determination of signals S and quantities are by
default S'LEFT and 0.0 respectively.
At the beginning the analog solver attempts to find a solution for the
given initial signal values. That is why signals that are used in
simultaneous statements must be initialized explicitly.
Afterwards the digital solver determines new values of digital signals.
If analog and digital values are not in accordance the analog solver is
called again.
Otherwise the simulation continues with time or frequency domain
simulation.
As a consequence of the simulation cycle, real signals, which are used in

simultaneous statements, should be initialized. Otherwise, the analog solver
has to take into consideration their default initial values REAL’LEFT during
the first call. This produces numerical problems.

Figure 6-58. Simulation in the time domain (principle)

During the time domain simulation the DOMAIN signal is set to
TIME_DOMAIN. The simulator repeats the simulation cycle shown Figure
6-58. It is done in the following way

116 Chapter 6

Tc is the current simulation time. Tn is the next time point where a digital
event can be found in the digital event queue.
The analog solver starts to simulate from Tc to Tn. Remember that
between event time points the signals do not change their values. That
means that the analog solver does not have to wait for new results from
the digital solver.
If Q'ABOVE(E) is used and Q crosses E then an event is placed into the
event queue. Tn is set to Tn', that is the time point where the crossing
occurs.
At Tn digital signals and analog quantities are determined within a so-
called delta-cycle until they are in accordance.
After the delta-cycle is stable the analog solver can again continue until
the new next event time point.

Digital time values are of type TIME. Analog time values are of type
REAL. The following expressions allow converting TIME values to REAL
values and vice versa:

REAL (TIME’POS (time_of_type_time)) * 1.0E-15 => time of type REAL
INTEGER (time_of_type_real * 1.0E15) * 1 fs => time if type TIME

6.6 Analysis Domains

In order to describe and to analyze physical systems the underlying
domains have to be considered. The most common domains are operating
point analysis, time domain analysis, and frequency domain analysis.

Other domains are used for special analyses (for example noise
simulation) or for a special kind of systems (for example periodic steady
state analysis for RF circuits as described in Chapter 3 “Simulation Tools in
System Design”). In the following we will describe the analysis domains that
are supported by VHDL-AMS. We will pay special attention to the
frequency domain analyses.

6.6.1 Supported domains

VHDL-AMS supports different kinds of analyses. The DOMAIN signal
is updated by the simulation engine, which provides a hint of which kind of
analysis is used. The following kinds of analyses are possible

Determination of operating point
Quiescent domain analysis is used to determine the operating point. The
DOMAIN signal is set to QUIESCENT_DOMAIN. The time NOW

INTRODUCTION TO VHDL-AMS 117

equals zero (0.0 or 0 fs). By default, the set of characteristic expressions
is augmented by

Q'DOT = 0.0
if Q'DOT is used somewhere in the simultaneous statements.
Q = 0.0
if Q'INTEG is used somewhere in the simultaneous statements.
Q'DELAYED(T) – Q = 0
if Q'DELAYED(T) is used somewhere in the simultaneous
statements.

The operating points determine the initial values for time domain
simulation.
Time domain analysis
Time domain analysis is used to determine the behavior of a system over
time. It begins after the determination of the operating point at time
NOW=0.0. The DOMAIN signal is set to TIME_DOMAIN.
Frequency domain analysis
Frequency domain analysis is used to determine the small signal behavior
for sinusoidal waveforms around the operating point. After quiescent
domain analysis the network equations are linearized at the operating
point. The characteristic expressions are derived by the simulation engine
from the time domain simultaneous statements using linearization. Thus,
frequency domain analysis can be applied for linear systems or systems
that are linearized at the operating point, and systems with sinusoidal
sources where all sources are evaluated at the same frequency. The
results of the frequency domain analysis only describe the steady state.
Frequency analysis can be done as small signal frequency domain
analysis or small signal noise analysis.

In conclusion, in the execution phase of a VHDL-AMS simulation, a
quiescent domain analysis is performed first. Immediately after quiescent
domain analysis either time domain analysis or frequency domain analysis is
performed. Time domain analysis uses the result of the quiescent domain
analysis as its initial value. Frequency domain analysis uses a system that is
linearized at the operating point. Table 6-5 shows how the kinds of analysis
in VHDL-AMS simulation engines are in close relation with those found in
SPICE-like simulation engines.

118 Chapter 6

Table 6-5. Kinds of analysis
Kinds of analysis VHDL-AMS simulation

engine
SPICE-like simulation
engine (cicuit level
simulator)

Determination of operating
point

DOMAIN equals
QUIESCENT_DOMAIN

Determination of DC (direct
current) operating point
(.OP)

Time domain analysis DOMAIN equals
TIME_DOMAIN

Transient analysis (.TRAN)

Small signal frequency
domain analysis

DOMAIN equals
FREQUENCY_DOMAIN;
Sinusoidal spectrum sources
are described by magnitude
and phase

AC (alternating current)
analysis (.AC)

Small signal noise domain
analysis

DOMAIN equals
FREQUENCY_DOMAIN;
Noise sources are described
by their spectral density

Noise analysis (.NOISE)

6.6.2 Small-signal and noise domain simulation

AC analysis basics

Linear systems that are described by linear differential systems of
equations can be handled in a special way. In AC analysis (alternating
current), we assume that independent voltage and current sources (across
and through respectively) are sinusoidal waveforms of the same frequency.
In the steady state, all quantities are also sinusoidal waveforms of the same
frequency. The notion of AC analysis is to solve a linear system of complex
equations instead of the linear system of differential equations.

Table 6-6. Correspondence between time and frequency domains
Time domain Small signal analysis (AC)

General waveform
description

x X

Sinusoidal waveform with
known frequency =2 f

C·cos(·t+) C·ej

Differentiation x·d/dt j ·X
Integration x X·1/ j
Delay for waveform x of
known frequency =2 f

x(t-T) X· e-j T

In the AC calculus a complex linear system of equations is assigned to
the system of linear differential equations applying the rules given in the
table. This complex system of equations is solved. The results can be
interpreted as time domain waveforms. The transformation and solving of

INTRODUCTION TO VHDL-AMS 119

the systems of equations is done for a special (fixed) frequency. Figure 6-59
illustrates this approach.

in VHDL-AMS => DOMAIN = FREQUENCY_DOMAIN

Solve a system of differential equations

Solve a system of complex equations

A* x` + B* x = c
x(t) = X cos(t+)c(t) = C cos(t+)

(A*j +B)* X(j) = C(j)
X(j) = X*ej

special

magnitude phaseCej

Figure 6-59. System with sinusoidal input

What are the consequences of taking into consideration the modeling
requirements? After determination of the operating point the linearization of
the network equations can be done automatically by the simulation engine
(see Table 6-6). That means that in general no special description for
frequency analysis is necessary. The description for frequency analysis can
be derived from the description for time domain analysis. Only AC voltage
and current sources (across and through respectively) that are characterized
by magnitude and phase have to be added to the description for frequency
domain analysis.

The AC linear circuit is analyzed over a user-specified range of
frequencies. The frequencies normally start with frequency fstart and step
with a specified number of points per decade to the final frequency fstop
(DEC mode). Alternatively, they step with a specified number of points per
octave to the final frequency fstop (OCT mode) or step with a specified
number of points that are linearly distributed between fstart and fstop.

This AC method was introduced into electrical engineering by Charles
Proteus Steinmetz at the end of the 19th century. For the first time it offered
a widely accepted way to design alternating current electrical equipment
using mathematical methods. The frequency domain representation of a
sinusoid is usually called phasor.

120 Chapter 6

Declaration of a spectral source quantity

Spectral source quantities can be declared in an architecture body with a
spectral source quantity declaration. The general form of the declaration is

quantity q_name : real_type spectrum magnitude, phase;

where q_name is an identifier that names the spectral source quantity.
real_type is scalar or composite floating-point type (for example REAL).
magnitude specifies the real valued magnitude of the phasor. The magnitude
can be determined using the predefined function FREQUENCY. This
function delivers the current frequency that is used for spectral analysis.
phase specifies the phase of q_name.

The quantity q_name can be applied in simultaneous statements. It is
only taken into consideration if the DOMAIN signal equals
FREQUENCY_DOMAIN otherwise it is set to zero.

Example

To determine the transfer characteristic of a circuit we use an input
voltage with magnitude one and phase zero. This voltage source is connected
to UUT1 (the linear analog lowpass filter from Section 6.3.5) and UUT2 (the
linear digital lowpass filter from Section 6.3.5). You can observe the transfer
characteristic of UUT1 at node N_ANA_OUT and the transfer characteristic
of UUT2 at node N_DIG_OUT (see Figure 6-60).

N_IN N_ANA_OUT
UUT1

VIN

UUT2

N_DIG_OUT

Figure 6-60. Test circuit for AC analysis

In the VHDL-AMS description of the test circuit, a branch with branch
quantity VIN is declared that connects terminal N_IN and the electrical
reference node. A spectrum quantity V_AC is declared with magnitude 1
and phase 0. For frequency domain simulation VIN equals V_AC. Otherwise
it is described by a sinusoidal voltage waveform in the time domain. Other
waveforms are of course also possible in the time domain. The cut-off

INTRODUCTION TO VHDL-AMS 121

frequency of both filters is 2 kHz, and the sampling frequency of the digital
filter is 8 kHz. Thus, the first break in the magnitude of the digital filter is at
4 kHz.

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all; use IEEE.MATH_REAL.all;
use WORK.all; -- for UUT1 and UUT2

entity BENCH is end entity BENCH;

architecture BENCH_AC of BENCH is
terminal N_IN : ELECTRICAL;
terminal N_ANA_OUT : ELECTRICAL; -- output analog filter
terminal N_DIG_OUT : ELECTRICAL; -- output digital filter
quantity VIN across IIN through N_IN;
quantity V_AC : REAL spectrum 1.0, 0.0; -- spectrum source

begin
if DOMAIN /= FREQUENCY_DOMAIN use

 VIN == SIN(MATH_2_PI*1.0E3*NOW); -- other waveforms
else

 VIN == V_AC;
end use;

UUT1: entity LOWPASS(BESSEL_2)
generic map (FC => 2.0E3)
port map (INP => N_IN, OUTP => N_ANA_OUT);

UUT2: entity LOWPASS(BESSEL_2_DIGITAL)
generic map(FC => 2.0E3)
port map (INP => N_IN, OUTP => N_DIG_OUT);

end architecture BENCH_AC;

Figure 6-61. Frequency response of analog and digital filter

Noise analysis basics

Small signal noise analysis presumes:

Small signal noise analysis can be applied to linear circuits and circuits
that are linearized around an operating point.
Amplitudes of noise sources are Gaussian distributed. The variances of
the distributions are constant over time. The mean values are supposed to
be zero.

122 Chapter 6

Noise sources are characterized by their noise spectral density. All noise
spectral densities Sv and Si (voltages and currents respectively) are in
squared units (V2/Hz and A2/Hz for spectral density).
In the case of a noise source the relation between spectral noise density
S(f) and the root mean square (effective value) Veff is given by

stopf

startf
eff dffSV)(2

fstart and fstop are the limits of the frequency range that has to be taken into
consideration to describe the noise source. In the case of constant spectral
density S it follows

fSffSV startstopeff)(2

The spectral density SA of a random waveform that results from a source
with spectral density SE is given by the squared transfer function times
SE, see Figure 6-62 (f2).

SA jSE j
H j

SA(j) = |H(j)|2 * SE(j)

Figure 6-62. Calculation of spectral noise densities

The spectral densities of uncorrelated noise contributions are added (see
also [Std99], Section 12.8).

In a simulation engine noise analysis is done in a specified frequency
range.

INTRODUCTION TO VHDL-AMS 123

Declaration of a noise quantity source

Noise quantities are characterized in the following way: Noise quantities
can be declared in an architecture body with a noise quantity declaration.
The general form of the declaration is

quantity q_name : real_type noise density;

where q_name is an identifier that names the quantity. real_type is scalar
or composite floating-point type (for example REAL). density specifies the
spectral noise density depending on the predefined function frequency. If it
does not depend on the frequency, the spectral density is constant over the
frequency range.

The quantity q_name can be applied in simultaneous statements. It is
only taken into consideration if the DOMAIN signal equals
FREQUENCY_DOMAIN otherwise it is set to zero.

Example
Thermal noise of a resistor can be modeled as shown in Figure 6-63. A

current noise source is in parallel with the noiseless resistor (see for example
[LuB00], Appendix H). The noise source is characterized by a constant

spectral density
R
kTSI

4 . k is the Boltzmann constant (
K

Ws231038.1). T is

the absolute temperature in degree Kelvin and R the value of the resistor. In
the VHDL-AMS model Boltzmann’s constant equals PHYS_K which is
declared in the IEEE library in package FUNDAMENTAL_CONSTANTS.

Figure 6-63. Noise models of a linear resistor

124 Chapter 6

library IEEE;
use IEEE.ELECTRICAL_SYSTEMS.all, IEEE.FUNDAMENTAL_CONSTANTS.all;

entity RESISTOR is
generic (VALUE_R : REAL := 1.0; -- resistance [Ohm]

 TEMP : REAL := 300.0); -- temperature [K]
port (terminal P1, P2 : ELECTRICAL);

begin
assert VALUE_R > 0.0 and TEMP > 0.0

report "ERROR: Parameters are not correct." severity ERROR;
end entity RESISTOR;

architecture NOISY of RESISTOR is
quantity V across I, INOISE through P1 to P2; -- parallel br.
quantity SI : REAL noise 4.0*PHYS_K*TEMP/VALUE_R;

begin
 V == VALUE_R * I;
 INOISE == SI;
end architecture NOISY;

6.7 Summary

In this chapter we gave a short introduction to VHDL-AMS. The basic
language constructs and ideas of VHDL-AMS were explained. More
information can be found in the IEEE Std 1076.1. We focused on the analog
extension of VHDL-AMS compared to the pure digital oriented VHDL.
Some new features in VHDL-AMS consist of:

Language constructs to describe conservative network semantics
(terminals, natures, branch quantity declarations)
Language constructs to describe nonconservative signal flow
semantics (quantity ports)
Simultaneous statements to describe analog constitutive relations
Special support to model analog behavior ('DOT, 'INTEG,
'DELAYED, 'LTF, 'ZOH, 'ZTF, and other attributes)
Support to model mixed-signal interaction between analog and
digital parts ('ABOVE, 'RAMP, 'SLEW attributes, and break
statement)
Definition of the mixed-signal simulation cycle
Usage of the DOMAIN signal to distinguish between different kinds
of analysis (QUIESCENT_DOMAIN, TIME_DOMAIN, and
FREQUENCY_DOMAIN including small signal AC and noise
analysis)

In this chapter we did not consider facilities to model multi-domain
systems consisting of electrical and nonelectrical parts. Some other language
extensions were also not considered (for example the full break statement).

INTRODUCTION TO VHDL-AMS 125

To readers interested in these features we recommend the VHDL-AMS
standard [Std99] and other textbooks (for example [APT03]) for further
reading.

Chapter 7

SELECTED RF BLOCKS IN VHDL-AMS

7. SELECTED RF BLOCKS IN VHDL-AMS

7.1 Library Overview

The previous chapter introduced some fundamental concepts and the
description syntax of the VHDL-AMS language. This chapter presents a
library of typical RF building blocks in VHDL-AMS.

The models are subdivided into three categories of blocks:

Signal sources
System blocks for signal processing
Measurement and observation units

For all blocks behavioral models with RF specific properties are
provided. They are uniformly documented with:

Functional description
Model interface
Model implementation
Simulation example with results if necessary

In Chapter 9 a complex model of a WLAN receiver is assembled from
these basic building blocks. The chapter describes how to instantiate and
parameterize the models, and how to run the simulation.

128 Chapter 7

7.2 Signal Sources

Table 7-1. Signal source blocks overview
Model Properties
Independent voltage sources Sinusoidal source as single- or two-tone source
Modulated sources AM or FM sinusoidal source
Wobble generator Sinusoidal source with swept frequency
Pseudorandom binary source Feedback shift register with variable length

7.2.1 Independent sources

Functional description

In this section different sources are provided in a SPICE-like notation but
with RF-specific extensions. They are named p_sin since the sinusoidal
output of the source is specified in terms of power. Also, in contrast to
SPICE sources, a positive and finite value for the output resistor is required.
By calling different architectures it is possible to decide whether to use a
single- or a two-tone source. Refer to the next section for further architec-
tures of the same source.

Output impedance

out

Signal source

Figure 7-1. Block diagram of an RF-specific source model

The main characteristics of the independent source models are as follows.

A sinusoidal source is modeled with single-tone output

2 [sin(2)]srcv vo va freq t phase

where va denotes the voltage amplitude that is computed from the power
amplitude parameter pa_dBm by

_ 30
102 10

pa dBm

va rout

SELECTED RF BLOCKS IN VHDL-AMS 129

A sinusoidal source with two-tone output is also available

2 [sin(2) 2 sin(2 2 2)]srcv vo va freq t phase va freq t phase

where va and va2 denote the voltage amplitudes that are computed from
the power amplitude parameters pa_dBm and pa2_dBm respectively by

_ 30
102 10

pa dBm

va rout ,
2 _ 30

102 2 10
pa dBm

va rout

Note: A factor of two is added in both cases since a power source has its
maximum power output when used in a matched system, where an
external resistor equal to the internal resistance is connected. In this case
the specified power amplitude can be measured.
The impedance of the output port is modeled as an ohmic resistance. A
typical value of a matched system is:

50outR

Model interface

Figure 7-2. Schematic symbol of the source model

Table 7-2. Model ports
Name Type Description
P ELECTRICAL Positive pin
M ELECTRICAL Negative Pin

130 Chapter 7

Table 7-3. Model parameters
Name Unit Default value Description
VO V 0.0 Offset voltage
PA_DBM dBm -100.0 Power amplitude of sine wave
FREQ Hz 1.0e03 Frequency of sine wave
PHASE rad 0.0 Phase of sine wave
PA2_DBM dBm -100.0 Power amplitude of sine wave (second tone)
FREQ2 Hz 1.0e03 Frequency of sine wave (second tone)
PHASE2 rad 0.0 Phase of sine wave (second tone)
ROUT Ohm 50.0 Output resistance

Model implementation
architecture SINGLE_TONE of P_SIN is

constant PA: REAL:= 10**((PA_DBM-30.0)/10.0);
constant PA: REAL:= SQRT(PA * 2.0 * ROUT);
terminal N_INT: ELECTRICAL;
quantity V_ROUT across I_ROUT through P to N_INT;
quantity V_SRC across I_SRC through N_INT to M;

begin

 -- signal source
 V_SRC == 2.0 * (VO + VA * SIN(NOW * MATH_2_PI*FREQ + PHASE));

 -- output port resistance
 V_ROUT == ROUT * I_ROUT;

end architecture SINGLE_TONE;

The complete model is included on the CD-ROM that is provided with
this book.
Simulation example

For a simulation example using independent sources see Section 7.3.2.

7.2.2 Modulated sources

Functional description

In this section different sources are provided in a SPICE-like notation but
with RF-specific extensions. They are named p_sin since the sinusoidal
output of the source is specified in terms of power. Also, in contrast to
SPICE sources, a positive and finite value for the output resistor is required.
By calling different architectures it is possible to decide whether to use an
amplitude modulated (AM) or a frequency modulated (FM) sinusoidal
source. Refer to the previous section for further architectures of the same
source.

SELECTED RF BLOCKS IN VHDL-AMS 131

Output impedance

out

Signal source

Figure 7-3. Block diagram of an RF-specific source model

The main characteristics of the modulated source models are as follows.

A sinusoidal source is modeled with amplitude modulation (AM)

2 1 sin(2) sin(2)srcv vo va mdi freqm t phasem freq t phase

where va denotes the voltage amplitude that is computed from the power
amplitude parameter pa_dBm by

_ 30
102 10

pa dBm

va rout

Another architecture for the sinusoidal source is included with frequency
modulation (single frequency FM - SFFM)

2 sin 2 sin(2)srcv vo va freq t phase mdi freqm t phasem

where va denotes the voltage amplitude that is computed from the power
amplitude parameter pa_dBm by

_ 30
102 10

pa dBm

va rout

Note: A factor of two is added in both cases since a power source has its
maximum power output when used in a matched system, where an
external resistor equal to the internal resistance is connected. In this case
the specified power amplitude can be measured.
The impedance of the output port is modeled as an ohmic resistance. A
typical value of a matched system is:

50outR

132 Chapter 7

Model interface

Figure 7-4. Schematic symbol of the source model

Table 7-4. Model ports
Name Type Description
P ELECTRICAL Positive pin
M ELECTRICAL Negative Pin

Table 7-5. Model parameters
Name Unit Default value Description
VO V 0.0 Offset voltage
PA_DBM dBm -100.0 Power amplitude of sine wave
FREQ Hz 1.0e03 Frequency of sine wave
PHASE rad 0.0 Phase of sine wave
MDI - 0.0 Modulation index
FREQM Hz 1.0 Modulation frequency
PHASEM rad 0.0 Modulation phase
ROUT Ohm 50.0 Output resistance

Model implementation
architecture SFFM of P_SIN is

constant PA: REAL:= 10**((PA_DBM-30.0)/10.0);
constant VA: REAL:= SQRT(PA * 2.0 * ROUT);
terminal N_INT: ELECTRICAL;
quantity V_ROUT across I_ROUT through P to N_INT;
quantity V_SRC across I_SRC through N_INT to M;

begin

 -- signal source
 V_SRC == 2.0 * (VO + VA * SIN(NOW * MATH_2_PI*FREQ + PHASE
 + MDI*SIN(NOW * MATH_2_PI*FREQM + PHASEM)));
 -- output port resistance
 V_ROUT == ROUT * I_ROUT;

end architecture SFFM;

SELECTED RF BLOCKS IN VHDL-AMS 133

The complete model is included on the CD-ROM that is provided with
this book.
Simulation example

For a simulation example using a modulated source see Section 7.4.3.

7.2.3 Wobble generator

Functional description

A sinusoidal source is provided, where the frequency of the output signal
is swept over a parameter specified range.

Output impedance

out

Signal source

Figure 7-5. Block diagram of a wobble source model

The main characteristics of the wobble generator model are as follows.

The sinusoidal source has a single-tone output

2 sin(), 2src effv amp f

where amp denotes the voltage amplitude that is computed from the
power amplitude parameter amp_dBm by

_ 30
102 10

amp dBm

amp rout

and feff denotes the actual frequency

if
() if and

if

start init

eff start sweep init init eff stop

stop eff stop

f t t
f f f t t t t f f

f f f

134 Chapter 7

The start time of the sine wave is delayed by InitDelayinitt
The frequency changes with SweepRatesweepf (Hz/s)
The Impedance of the output port is modeled as an ohmic resistance. A
typical value of a matched system is:

50outR

Model interface

P

M

Figure 7-6. Schematic symbol for wobble generator

Table 7-6. Model ports
Name Type Description
P ELECTRICAL Positive pin
M ELECTRICAL Negative Pin

Table 7-7. Model parameters
Name Unit Default value Description
AMP_DBM dBm -100.0 Power amplitude of sine wave
INITDELAY s 0.0 Initial time delay before oscillator starts
STARTFREQ Hz 1.0 Initial frequency where sweep starts
STOPFREQ Hz 1.0e07 End frequency where sweep stops
SWEEPRATE Hz/s 1.0 Rate of change for frequency sweep
ROUT Ohm 50.0 Output resistance

Model implementation
architecture BHV of WOBBEL is

constant AMP_LIN : REAL:= 10**((AMP_DBM-30.0)/10.0);
constant AMP : REAL:= SQRT(AMP_LIN * 2.0 * ROUT);
terminal N_INT : ELECTRICAL;
quantity PHI : REAL;
quantity EFFFREQ : REAL := STARTFREQ;

SELECTED RF BLOCKS IN VHDL-AMS 135

quantity V_ROUT across I_ROUT through P to N_INT;
quantity V_SRC across I_SRC through N_INT to M;

begin
if NOW > INITDELAY and EFFFREQ < STOPFREQ use

 EFFFREQ == STARTFREQ + SWEEPRATE*(NOW-INITDELAY);
elsif EFFFREQ >= STOPFREQ use

 EFFFREQ == STOPFREQ;
else

 EFFFREQ == STARTFREQ;
end use;

if DOMAIN = QUIESCENT_DOMAIN USE
 PHI == 0.0;

else
 PHI'DOT == MATH_2_PI*EFFFREQ;

end use;

-- signal source
 V_SRC == 2.0 * AMP * SIN(PHI);

-- output port resistance
 V_ROUT == ROUT * I_ROUT;
end architecture BHV;

The model implementation is included on the CD-ROM that is provided
with this book.

7.2.4 Pseudorandom binary source

Functional description

This model provides a pseudorandom sequence at its binary output. It is
constructed as a maximum-length feedback shift register with variable
register length.

bit_out
DD D...

...

kx 1kx 2kx 1k nx k nx

1h nh2h 1nh

Figure 7-7. Block diagram of a pseudorandom binary source (PRBS)

136 Chapter 7

The main characteristics of the modulated source models are as follows.

The feedback shift register has a length polygrad, where
2 34polygrad . The generated binary sequence is of maximum
length, that is it has a period of 2 1polygrad .
The generator polynomial for order 2 to 34 is built into the model

1 2

1 3

1 4

2 :
3:
4 :

k k k

k k k

k k k

polygrad x x x
polygrad x x x
polygrad x x x

where the addition is modulo 2. For a complete list of generator
polynomials see [BLM04].

The initial state of the shift register can be set with parameter seed.
The frequency of the binary sequence is adjustable with the parameter
bit_time.
An initial time delay (before the sequence starts) can be applied using the
parameter bit_del.

Model interface

prbs

bit_out

Figure 7-8. Schematic symbol of the pseudorandom binary source

Table 7-8. Model ports
Name Type Description
BIT_OUT out BIT Binary output

SELECTED RF BLOCKS IN VHDL-AMS 137

Table 7-9. Model parameters
Name Unit Default value Description
POLYGRAD - 2 Order of generator polynomial
SEED - “01” Initial bit vector of feedback shift register
BIT_TIME s 1us Time duration of binary values
BIT_DEL s 0us Initial time delay of binary sequence

Model implementation

The model implementation is included on the CD-ROM that is provided
with this book.
Simulation example

For a simulation example using a pseudorandom binary source see
Section 7.3.8.

7.3 Basic RF Building Blocks

Table 7-10. Overview on basic RF building blocks
Model Properties
Low-noise Amplifier RF specific operational amplifier
Mixer Gilbert mixer with LNA
Charge pump Mixed-signal charge pump for PLL
Analog VCO Sine wave with tunable frequency
Digital VCO Square wave with tunable frequency
Filters Lowpass and highpass Butterworth filters
Switch Varying resistance with digital control
General n-bit A/D and D/A converter Mixed-signal model with n-bit vector interface
Simple channel model AWGN channel with time delay

7.3.1 Low-noise amplifier

Functional description

Low-noise amplifiers (LNA) are central elements in RF applications for
amplifying signals over a wide frequency range with low signal to noise
distortion. In contrast to low-frequency amplifiers the main focus is on the
large signal behavior and the nonlinear distortion due to harmonics and
intermodulation. Also power transmission and therefore matching
impedances have to be considered. Figure 7-9 shows a typical block diagram
of an LNA model, which is divided into input, output and transmission
blocks.

138 Chapter 7

Figure 7-9. Block diagram of a simple low-noise amplifier model

The main characteristics of the low-noise amplifier model are as follows.

Signal amplification is specified as power gain and converted to voltage
gain

_
10

, 10
gp dB

out
voltage linear

in

Rgain
R

Nonlinear gain characteristic is expressed in terms of a 3rd order
intercept point

3
out in inv a v b v

where

, 2

3_ 30
10

4, ,
3 3

3 10 2

voltage linear

ip dBm

in

aa gain b
ip

ip R

Note: The intercept point in this context refers to a single-tone signal,
while for other circuits, IP2 and IP3 are measured by two tones.
Frequency response is provided by the dominant pole (and further poles
and zeros)

1()
1 / g

H j
j

where g=2 fg, and fg is the frequency of the dominant pole.

SELECTED RF BLOCKS IN VHDL-AMS 139

Input and output impedances are modeled as ohmic resistances. Typical
values of a matched system are

50in outR R

Often you will find these characteristics expressed in terms of the S-
parameters.

Additional characteristics, that were not modeled here, include second
order effects such as temperature and power supply dependency of the gain
function, recovery time after output limitation, higher order nonlinearities,
and power consumption. Also, noise contribution of the amplifier stage is
not included in the model since noise quantities are not supported by
ADVance MS.
Model interface

Figure 7-10. Schematic symbol of the low-noise amplifier

Table 7-11. Model ports
Name Type Description
P_IN ELECTRICAL Input pin
P_OUT ELECTRICAL Output pin
VDD ELECTRICAL Supply voltage
GND ELECTRICAL Reference node

Table 7-12. Model parameters
Name Unit Default value Description
GP_DB dB 0.0 Open loop power gain
IP3_DBM dBm -30.0 Referenced IP3
FNOISE_DB dB 0.0 Noise figure of stage
FG Hz real’HIGH Frequency of dominant pole
RIN Ohm 50.0 Input resistance
ROUT Ohm 50.0 Output resistance

140 Chapter 7

Model implementation
architecture RF of LNA is

constant GP_LIN : REAL:= 10**(GP_DB/10.0);
 -- linear value of power gain

constant IP3_LIN : REAL:= 10**((IP3_DBM-30.0)/10.0);
 -- linear value of ip3

constant A : REAL:= SQRT(GP_LIN*ROUT/RIN);
 -- linear value of voltage gain

constant IP3 : REAL:= SQRT(IP3_LIN*2.0*RIN);
 -- linear value of ip3 voltage

constant B : REAL:= A/(IP3*IP3)*4.0/3.0;
 -- third order coefficent

constant INMAX : REAL:= SQRT(A/(3.0*B));
 -- maximum input voltage for clipping

constant OUTMAX : REAL:= 2.0*A/3.0*INMAX;
 -- output voltage at clipping

terminal U_IN : ELECTRICAL;
terminal U_IN_F : ELECTRICAL;
terminal U_OUT : ELECTRICAL;
quantity V_NOISE across I_NOISE through P_IN to U_IN;
quantity V_RIN across I_RIN through U_IN to GND;
quantity V_UINF across I_UINF through U_IN_F to GND;
quantity V_LIM across I_LIM through U_OUT to GND;
quantity V_ROUT across I_ROUT through U_OUT to P_OUT;

begin

 -- input stage: noise figure, input resistance
 V_NOISE == 0.0;
 V_RIN == RIN * I_RIN;

 -- transmission stage:
 -- gain, voltage limitation, transfer function
 V_UINF == V_RIN'LTF((0 => 1.0), (1.0, 1.0/MATH_2_PI/FG));

if abs(V_UINF)<INMAX use
 V_LIM == 2.0*(A - B*V_UINF*V_UINF)*V_UINF;

elsif V_UINF > 0.0 use
 V_LIM == 2.0*OUTMAX;

else
 V_LIM == -2.0*OUTMAX;

end use;

 -- output stage: output resistance
 V_ROUT == ROUT * I_ROUT;

end architecture RF;

The complete model is included on the CD-ROM that is provided with
this book.
Simulation example

As a stimulation signal a single-tone of 1.0 kHz and –30.0 dBm was
used. The LNA model was instantiated with the following parameters:

SELECTED RF BLOCKS IN VHDL-AMS 141

 LNA1: entity LNA(RF)
generic map (GP_DB => 6.0,

 IP3_DBM => -23.0,
 FNOISE_DB => 2.5
)

port map (P_IN => N_1,
 P_OUT => N_2,
 VDD => N_VDD,
 GND => ELECTRICAL_REF
);

The complete test bench is included on the CD-ROM that is provided
with this book.

Figure 7-11. Simulation of amplifying a single-tone with nonlinear characteristic

As shown in Figure 7-11 the input signal, which should be doubled in
magnitude (power gain of 6dB), is distorted while passing the LNA. The
effect of the intercept point IP3 (and finally clipping) is a limitation of the
LNA output signal for large input signals. The nonlinear characteristic can
be seen in the second diagram.

142 Chapter 7

7.3.2 Mixer

Functional description

A mixer block uses nonlinear circuit characteristics for frequency
conversion in RF applications. An analog passband mixer can be realized as
a Gilbert cell, which multiplies an RF input signal with a local oscillator
(LO) signal to obtain the output signal at an intermediate frequency (IF)
together with other spurious signals. This configuration can be found in RF
receiver front ends for down conversion. Figure 7-12 shows a simple mixer
model, where the Gilbert cell is modeled as a simple multiplier.

Figure 7-12. Block diagram of a simple mixer model

The main characteristics of the mixer model are as follows.

LNA characteristics (see Section 7.3.1)

3
out in inv a v b v

where

_
1010

gp dB
out

in

Ra
R

, 2

4
3 3

ab
ip

,
3_ 30

103 10 2
ip dBm

inip R

Note: The intercept point in this context refers to the single-tone IP3 of
the LNA, while the usually specified IP2 and IP3 for a mixer, which are
not parametrizable here, are measured by two tones.

SELECTED RF BLOCKS IN VHDL-AMS 143

Simplified Gilbert cell characteristic

IF HF LOv v v

Input and output impedances are modeled as ohmic resistances. Typical
values of a matched system are

50in outR R

Model interface

Figure 7-13. Schematic symbol of a mixer

Table 7-13. Model ports
Name Type Description
P_IN ELECTRICAL Input pin
P_CLOCK ELECTRICAL Local oscillator pin
P_OUT ELECTRICAL Output pin
VDD ELECTRICAL Supply voltage
GND ELECTRICAL Reference node

Table 7-14. Model parameters
Name Unit Default value Description
GP_DB dB 0.0 Open loop power gain
IP3_DBM dBm -30.0 Input referenced IP3
FNOISE_DB dB 0.0 Noise figure of stage
FG Hz real’HIGH Frequency of dominant pole
RIN Ohm 50.0 Input resistance
RIN_CLK Ohm 50.0 Clock input resistance
ROUT Ohm 50.0 Output resistance

144 Chapter 7

Model implementation
architecture RF of MIXER is

constant GP_LIN : REAL:= 10**(GP_DB/10.0);
 -- linear value of power gain

constant IP3_LIN : REAL:= 10**((IP3_DBM-30.0)/10.0);
 -- linear value of ip3

constant A : REAL:= SQRT(GP_LIN*ROUT/RIN);
 -- linear value of voltage gain

constant IP3 : REAL:= SQRT(IP3_LIN*2.0*RIN);
 -- linear value of ip3 voltage

constant B : REAL:= A/(IP3*IP3)*4.0/3.0;
 -- third order coefficent

constant INMAX : REAL:= SQRT(A/(3.0*B));
 -- maximum input voltage for clipping

constant OUTMAX : REAL:= 2.0*A/3.0*INMAX;
 -- output voltage at clipping

terminal IN_G : ELECTRICAL;
terminal OUT_G : ELECTRICAL;
terminal OUT_F : ELECTRICAL;
terminal U_OUT : ELECTRICAL;
quantity V_NOISE across I_NOISE through P_IN to IN_G;
quantity V_RIN across I_RIN through IN_G to GND;
quantity V_OUTG across I_OUTG through OUT_G to GND;
quantity V_CLK across I_CLK through P_CLOCK to GND;
quantity V_OUTF across I_OUTF through OUT_F to GND;
quantity V_LIM across I_LIM through U_OUT to GND;
quantity V_ROUT across I_ROUT through U_OUT to P_OUT;

begin

 -- input stage: noise figure, input impedances
 V_NOISE == 0.0;
 V_RIN == RIN * I_RIN;
 V_CLK == RIN_CLK * I_CLK;

 -- gilbert cell
 V_OUTG == V_RIN * V_CLK;

 -- lna
 V_OUTF == V_OUTG'LTF((0 => 1.0), (1.0, 1.0/MATH_2_PI/FG));

if abs(V_OUTF)<INMAX use
 V_LIM == 2.0*(A - B*V_OUTF*V_OUTF)*V_OUTF;

elsif V_OUTF > 0.0 use
 V_LIM == 2.0*OUTMAX;

else
 V_LIM == -2.0*OUTMAX;

end use;

 -- output impedance
 V_ROUT == ROUT * I_ROUT;

end architecture RF;

The complete model is included on the CD-ROM that is provided with
this book.

SELECTED RF BLOCKS IN VHDL-AMS 145

Simulation example

For demonstration purposes an RF two-tone signal (1 kHz, -30 dBm and
1.1 kHz, -40 dBm) and a local oscillator of 1 kHz and -30 dBm are used.
The carrier is mixed with itself, which is known as a Direct Conversion
receiver, since no intermediate frequency is used for demodulation.

Figure 7-14. Simulation of downconverting (mixing) an RF signal

146 Chapter 7

The mixer model was instantiated with the following parameters:

 MIX: entity MIXER(RF)
generic map (GP_DB => 0.0,

 IP3_DBM => -30.0,
 FNOISE_DB => 2.5
)

port map (P_IN => N_1,
 P_OUT => N_2,
 P_CLOCK => N_CLK,
 VDD => N_VDD,
 GND => ELECTRICAL_REF
);

The complete test bench is included on the CD-ROM that is provided
with this book.

Figure 7-14 shows the results of the simulation before (node n_1) and
after (node n_2) the mixer stage in both time and frequency domains. The
two-tone input signal (carrier 1 kHz, signal 1.1 kHz) can be found after
down conversion at DC (0 Hz and 100 Hz, respectively) and at twice the
carrier frequency (2 kHz and 2.1 kHz, respectively). The carrier and signal
are reduced in magnitude according to the formula:

1 2
1 2sin sin 1 sin 2

2 2
a aa t a t t

Other spurious signals appear after conversion well below carrier and
signal.

7.3.3 Charge pump

Functional description

The charge pump is an essential building block of mixed-signal phase-
locked loops (PLL). It converts two digital pulse trains for up and down
signals respectively into analog up and down current pulses. The current
sources are built from external positive and negative voltage sources and
internal resistances. Figure 7-15 shows the block diagram of the charge
pump model.

SELECTED RF BLOCKS IN VHDL-AMS 147

S_up

Output impedance

P_out

S_down

positive current
source

negative current
source

Vdd

Vss

Figure 7-15. Block diagram of a charge pump model

The main characteristics of the charge pump model are as follows.

Positive and negative current pulses are generated with respective
amplitudes

Vdd
pos

isrc

UI
R

 and Vss
neg

isrc

UI
R

where UVdd and UVss are the external positive and negative voltage
sources, and Risrc is a model parameter.
The stability of the current can be increased by using high external
voltages together with large values for the internal resistors. However,
this high voltage may then unwantedly occur at the output of the charge
pump when operated without a load.
In addition, the measurable amplitude of the current pulse at the output
pin depends on the specified output resistance and the load resistance,
which are both 50 in the often used 50 systems.
The switches are modeled with two resistances, 1 and 1 M , for the on
and off state of the switch, respectively.

Additional characteristics, that were not modeled here, include the
explicit voltage limitation of the current sources and nonlinearity.

148 Chapter 7

Model interface

S_up

CP

Vdd

Vss

P_out
S_down

Figure 7-16. Schematic symbol of the charge pump

Table 7-15. Model ports
Name Type Description
S_UP BIT Up signal
S_DOWN BIT Down signal
P_OUT ELECTRICAL Output pin
VDD ELECTRICAL Positive voltage
VSS ELECTRICAL Negative voltage

Table 7-16. Model parameters
Name Unit Default value Description
R_ISRC Ohm 1.0e3 Current source resistance
ROUT Ohm 50.0 Output resistance

Model implementation
architecture SIMPLE of CP is

constant RON : REAL:=1.0;
constant ROFF : REAL:=1.0E9;
terminal N_up : ELECTRICAL;
terminal N_down: ELECTRICAL;
terminal N_int : ELECTRICAL;
signal R_SWUP: REAL:=ROFF;
signal R_SWDN: REAL:=ROFF;
quantity V_SWUP across I_SWUP through N_UP to N_INT;
quantity V_SWDN across I_SWDN through N_INT to N_DOWN;
quantity V_ROUT across I_ROUT through P_OUT to N_INT;
quantity V_RUP across I_RUP through VDD to N_UP;
quantity V_RDN across I_RDN through VSS to N_DOWN;
quantity V_R1 across I_R1 through N_INT to ELECTRICAL_REF;

begin

 R_SWUP <= RON when S_UP='1' else ROFF;
 R_SWDN <= RON when S_DOWN='1' else ROFF;

SELECTED RF BLOCKS IN VHDL-AMS 149

 V_SWUP == R_SWUP * I_SWUP;
 V_SWDN == R_SWDN * I_SWDN;
 V_RUP == R_ISRC * I_RUP;
 V_RDN == R_ISRC * I_RDN;
 V_ROUT == ROUT * I_ROUT;
 V_R1 == 1.0E6 * I_R1;

end architecture SIMPLE;

The complete model is included on the CD-ROM that is provided with
this book.
Simulation example

This example shows the simulation of a digital PLL, which contains, in
contrast to the linear PLL, a phase frequency detector and a charge pump.
The connected voltage sources have values of +/-5 V.

The charge pump model was instantiated with the following parameters:

CHARGEPUMP: entity CP(SIMPLE)
generic map (R_ISRC => 1.0e6)
port map (S_UP => S_1,

 S_DOWN => S_2,
 P_OUT => N_TP,
 VDD => P_VDD,
 VSS => N_VSS);

The complete test bench is included on the CD-ROM that is provided
with this book.

Figure 7-17. Simulation of a charge pump within a digital phase-locked loop (DPLL)

150 Chapter 7

As shown in Figure 7-17, where the output current through the load
resistor is shown, the amplitude of the current source equals +/-5 A
according to whether the positive or negative pulse signal is present.

7.3.4 Analog VCO

Functional description

Voltage controlled oscillators (VCO) are used to generate a single-tone
sine wave with tunable frequency. Tuning is done using a control voltage at
the input pin. Without input voltage the oscillator runs at its free running
frequency. Figure 7-18 shows a block diagram of a simple VCO model.

Figure 7-18. Block diagram of a simple VCO model

The main characteristics of the VCO model are as follows.

The analog VCO has a sinusoidal output with tunable frequency

0 0sin 2 ,
0 2

out w

d
w freq indt

v dc ampl freq t phase
k v

where freq0 is the free running frequency, phase0 is an initial phase, and
kfreq is the slope of the frequency with regard to the input voltage. ampl
denotes the voltage amplitude of the sine wave that is computed from the
power amplitude ampl_dBm by

30
102 10

ampl_dBm

ampl rout

In order to ensure a consistent initial solution a condition for the phase
angle during the operating point analysis has been added

SELECTED RF BLOCKS IN VHDL-AMS 151

0w for 0t .

Input and output impedances are modeled as ohmic resistances. Typical
values of a matched system are:

50in outR R

Additional characteristics, that were not modeled here, include
Timing jitter and phase noise (see [Lee01])
Nonlinear tuning characteristic
Second order effects such as temperature and power supply dependency
of the tuning characteristic
Dead time of the control input
Power consumption

Model interface

Figure 7-19. Schematic symbol of VCO

Table 7-17. Model ports
Name Type Description
P_CTRL ELECTRICAL Control pin
P_OUT ELECTRICAL Output pin
VDD ELECTRICAL Supply voltage
GND ELECTRICAL Reference node

152 Chapter 7

Table 7-18. Model parameters
Name Unit Default value Description
DC V 0.0 DC offset voltage of oscillator
AMPL_DBM dBm -100.0 Amplitude of sine wave
FREQ_0 Hz 1.0e+03 Free running oscillator frequency
PHASE_0 rad 0.0 Constant phase offset
K_FREQ Hz/V 1.0e+06 Sensitivity of voltage input
RIN Ohm 50.0 Input resistance
ROUT Ohm 50.0 Output resistance

Model implementation
architecture ANALOG of VCO is

constant AMPL_LIN : REAL:= 10**((AMPL_DBM-30.0)/10.0);
constant AMPL : REAL:= SQRT(AMPL_LIN * 2.0 * ROUT);
terminal N_INT : ELECTRICAL;
quantity V_RIN across I_RIN through P_CTRL to GND;
quantity V_ROUT across I_ROUT through P_OUT to N_INT;
quantity V_SRC across I_SRC through N_INT to GND;
quantity PHI_W : REAL;

begin
-- input impedance
 V_RIN == RIN * I_RIN;

-- tunable oscillator
if DOMAIN = QUIESCENT_DOMAIN use

 PHI_W == 0.0;
else

 0.0 == PHI_W'DOT - MATH_2_PI*K_FREQ*V_RIN;
end use;

 V_SRC == 2.0 * (DC + AMPL * SIN(NOW * MATH_2_PI*FREQ_0
 + PHI_W + PHASE_0));
-- output impedance
 V_ROUT == ROUT * I_ROUT;

end architecture ANALOG;

The complete model is included on the CD-ROM that is provided with
this book.
Simulation example

A step signal was applied as the control voltage, which changes at
10.2 ms from 0 to –5 mV. The VCO model was instantiated with the
following parameters:

 LO: entity VCO(ANALOG)
generic map (AMPL_DBM => -30.0,

 FREQ_0 => 1.0e03,
 K_FREQ => 1.0e05)

port map (P_CTRL => N_CTRL,
 P_OUT => N_CLK,
 VDD => N_VDD,
 GND => ELECTRICAL_REF);

SELECTED RF BLOCKS IN VHDL-AMS 153

The complete test bench is included on the CD-ROM that is provided
with this book.

Figure 7-20. Simulation of frequency changes when altering the control voltage

Figure 7-20 shows the simulation results. When the control voltage is
zero, the output oscillates at the free running frequency of 1 kHz. At time
10.2 ms a negative control voltage of –5 mV is applied. This leads to half the
original frequency

3 5 3
0 1 10 1 10 5 10 500 Hzout f inf f k v

Although the frequency does not change at a zero crossing the phase
continuously changes.

7.3.5 Digital VCO

Functional description

Digital voltage controlled oscillators (VCO) are used to generate a
single-tone square wave with tunable frequency. Tuning is done using a
control voltage at the input pin. Without input voltage the oscillator runs at
its free running frequency. Figure 7-21 shows a block diagram of a simple
VCO model.

154 Chapter 7

Figure 7-21. Block diagram of a simple digital VCO model

The main characteristics of the VCO model are as follows.

The digital VCO has a square wave output with tunable frequency

0,out freq inv dc ampl f freq k v

where freq0 is the free running frequency, kfreq is the slope of the
frequency with regard to the control voltage. ampl denotes the voltage
amplitude of the sine wave that is computed from the power amplitude
ampl_dBm by

30
102 10

ampl_dBm

ampl rout

For a nonpositive frequency f the model stops oscillating until 0f is
satisfied.

In this simple model the frequency f can only change at transition times,
that is at a rising or falling edge. For more accurate modeling the
frequency should be changeable all the time, which means that the
scheduling time of the subsequent edge has to be permanently adjusted.
Input and output impedances are modeled as ohmic resistances. Typical
values of a matched system are

50in outR R

Additional characteristics, that were not modeled here, include

Transition times for rising and falling edge
Timing jitter and phase noise (see [Lee01])
Nonlinear tuning characteristic

SELECTED RF BLOCKS IN VHDL-AMS 155

Second order effects such as temperature and power supply dependency
of the tuning characteristic
Dead time of the control input
Power consumption

Model interface

Figure 7-22. Schematic symbol of VCO

Table 7-19. Model ports
Name Type Description
P_CTRL ELECTRICAL Control pin
P_OUT ELECTRICAL Output pin
VDD ELECTRICAL Supply voltage
GND ELECTRICAL Reference node

Table 7-20. Model parameters
Name Unit Default value Description
DC V 0.0 DC offset voltage of oscillator
AMPL_DBM dBm -100.0 Amplitude of sine wave
FREQ_0 Hz 1.0e+03 Free running oscillator frequency
K_FREQ Hz/V 1.0e+06 Sensitivity of voltage input
RIN Ohm 50.0 Input resistance
ROUT Ohm 50.0 Output resistance

Model implementation
architecture DIGITAL of VCO is

constant AMPL_LIN : REAL:= 10**((AMPL_DBM-30.0)/10.0);
constant AMPL : REAL:= SQRT(AMPL_LIN * 2.0 * ROUT);
signal STATE : bit:='0';
signal FACTOR : real:=0.0;
terminal N_INT : ELECTRICAL;

156 Chapter 7

quantity V_RIN across I_RIN through P_CTRL to GND;
quantity V_ROUT across I_ROUT through P_OUT to N_INT;
quantity V_SRC across I_SRC through N_INT to GND;

begin

process (STATE,V_RIN'ABOVE(-FREQ_0/K_FREQ))
 VARIABLE F: REAL;

begin
if STATE='1' THEN

 FACTOR<=1.0;
else

 FACTOR<=-1.0;
end if;

 F := FREQ_0 + K_FREQ*V_RIN;
if F>0.0 then

 STATE <= not STATE after 0.5/F*SEC;
end if;

end process;
break on STATE;

-- input impedance
 V_RIN == RIN * I_RIN;

-- tunable oscillator
 V_SRC == 2.0*(DC+FACTOR*AMPL);

-- output impedance
 V_ROUT == ROUT * I_ROUT;

end architecture digital;

The complete model is included on the CD-ROM that is provided with
this book.
Simulation example

A piecewise linear signal was applied as the control voltage, which
changes at 10.2 ms from 0 to –15 mV, and at 12.2 ms to –5 mV. The VCO
model was instantiated with the following parameters:

 LO: entity VCO(DIGITAL)
generic map (AMPL_DBM => -30.0,

 FREQ_0 => 1.0e03,
 K_FREQ => 1.0e05)

port map (P_CTRL => N_CTRL,
 P_OUT => N_CLK,
 VDD => N_VDD,
 GND => ELECTRICAL_REF);

The complete test bench is included on the CD-ROM that is provided
with this book.

SELECTED RF BLOCKS IN VHDL-AMS 157

Figure 7-23. Simulation of frequency changes when altering the control voltage

Figure 7-23 shows the simulation results. When the control voltage is
zero, the output oscillates at the free running frequency of 1 kHz. At time
10.2 ms a negative control voltage of –15 mV is applied. This leads to a
negative frequency of

3 5 3
0 1 10 1 10 15 10 500Hzout f inf f k v

Therefore the oscillation stops after the next transition. At 12.2 ms a
voltage of 5 mV is applied to the control input, which leads to a frequency of

3 5 3
0 1 10 1 10 5 10 500Hzout f inf f k v

Thus, the oscillator restarts with a halfperiod of 1 ms, that is a falling
edge at approximately 13.2 ms.

7.3.6 Filters

Functional description

Filters are mainly characterized by their behavior in the frequency
domain. Some frequencies of the input signal pass through the filter
(passband), while others are rejected (stopband). Real filters have, in
contrast to ideal filters, a transition band in between, where the frequency
response changes continuously from passing to rejection (see Figure 7-24).

158 Chapter 7

2
0a
0a

1 S

)(SH

Figure 7-24. Frequency response of a real lowpass filter

We may distinguish between highpass, lowpass, bandpass and bandstop
filters. Depending on the type of polynomial used in the transition function
H(s), different types of filters are available such as Chebyshev, Butterworth,
elliptical, etc. The frequency responses differ in the tolerances of passband,
stopband and the slope of the transition. Other categories of filters are
possible, for example analog or digital, finite or infinite impulse response
(FIR and IIR). A general block diagram is shown in Figure 7-25.

Figure 7-25. Block diagram of an RF filter model

In this section we only consider Butterworth type filters, which are
known to have a maximally flat frequency response. For a lowpass filter this
is expressed in the Laplace domain as

0
2() ,

(1)i i
i

aH S
a S b S

 with 1,...,
2 g

si S
f

,

where S is the complex variable normalized on the frequency fg.
Through transformation of the variables a highpass description can be

obtained from this lowpass transfer function.

SELECTED RF BLOCKS IN VHDL-AMS 159

The main characteristics of the lowpass filter are as follows:

The filter gain is measured at zero frequency

10
0 10

gain
out

in

Ra
R

The grade n of filter, which is the exponent of the highest power of S in
H(S) and determines the range of the transition band as well as the
attenuation in the stopband.
Note: In our implementation the grade n of the filter is limited to 6, since
a more general model using the GENERATE construct of VHDL-AMS is
not yet supported by the simulator.
Coefficients of the transition function H(S) are for even values of grade n

(2 1)2 cos , 1, 1,...,
2 2i i

i na b i
n

and for odd values of grade n

1

1

(1)1, 2 cos ,

10, 1, 2,...,
2

i

i

ia a
n
nb b i

The cut-off frequency fg (or 3dB frequency) is measured where the gain
drops to

0

2
a

Input and output impedances are modeled as ohmic resistances. Typical
values of a matched system are: 50in outR R

Additional characteristics, that were not modeled here, include second
order effects such as temperature and power supply dependency of the filter
characteristic, and power consumption.

160 Chapter 7

Model interface

inp

Lowpass

inn outn

outp

inp

Highpass

inn outn

outp

Figure 7-26. Schematic symbols of different filters

Table 7-21. Model ports
Name Type Description
INP ELECTRICAL Positive input pin
INN ELECTRICAL Negative input pin
OUTP ELECTRICAL Positive output pin
OUTN ELECTRICAL Negative output pin

Table 7-22. Model parameters
Name Unit Default value Description
GAIN dB 0.0 Maximum power gain of amplifier
FG Hz 1.0 Cut-off frequency
GRAD 1 Grade of filter
RIN Ohm 50.0 Input resistance
ROUT Ohm 50.0 Output resistance

Model implementation

The filter coefficients are precomputed within a package and given to the
model as a vector.

function LOWPASS_BUTTERWORTH_A (GRAD : INTEGER)
return REAL_VECTOR is
constant NU : INTEGER := (GRAD+1)/2;
variable A : REAL_VECTOR (1 to NU);

begin
if GRAD mod 2 = 0 then

 for I in 1 to GRAD/2 loop

SELECTED RF BLOCKS IN VHDL-AMS 161

 A(I) := 2.0*COS((2.0*REAL(I)-1.0)*MATH_PI/2.0/REAL(GRAD));
end loop;

else
 A(1) := 1.0;

for I in 2 to (GRAD+1)/2 loop
 A(I) := 2.0*COS((REAL(I)-1.0)*MATH_PI/REAL(GRAD));

end loop;
end if;
return A;

end function LOWPASS_BUTTERWORTH_A;

function LOWPASS_BUTTERWORTH_B (GRAD : INTEGER)
return REAL_VECTOR is
constant NU : INTEGER := (GRAD+1)/2;
variable B : REAL_VECTOR (1 to NU);

begin
if GRAD mod 2 = 0 then

for I in 1 to GRAD/2 loop
 B(I) := 1.0;

end loop;
else

 B(1) := 0.0;
for I in 2 to (GRAD+1)/2 loop

 B(I) := 1.0;
end loop;

end if;
return B;

end function LOWPASS_BUTTERWORTH_B;

The model implementation is included on the CD-ROM that is provided
with this book.
Simulation example

The simulation is performed with six lowpass filters in parallel, which
have an increasing filter grade from one to six. A step signal of amplitude
one is applied to all filter blocks. The model call for the filter with degree
one looks like:

UUT1: entity LOWPASS_FILTER (BHV_RF)
generic map (GAIN, FG, 1)
port map (I1, ELECTRICAL_REF, O1, ELECTRICAL_REF);

The complete test bench is included on the CD-ROM that is provided
with this book.

162 Chapter 7

Figure 7-27. Simulation of filter responses in time and frequency domain

Figure 7-27 shows the simulation results. In the frequency domain it can
be seen how the attenuation in the stop-band increases with the filter grade
(20dB decaden , n…filter grade). The attenuation of 3 dB compared to a0
at the cut-off frequency is common to all six curves.

In the time domain, filters with a higher grade show a slower step
response and more overshooting.

SELECTED RF BLOCKS IN VHDL-AMS 163

7.3.7 Switch

Functional description

Opening or closing a branch in a network always requires a structural
change in the describing system of equations. Therefore these changes are
difficult to model and to handle by the simulator. Here we use a simple
modeling method where only the resistance of a network branch changes
from a very high to a very low value.

Figure 7-28. Block diagram of the switch model

The main characteristics of the switch model are as follows.

Switching between two adjustable resistances Ron and Roff according to
the control signal.
Adjustable transition time for on and off switching (ton and toff) using
the ‘ramp construct.
Further refined models would include a nonlinear transition behavior

instead of a piecewise linear characteristic.
Model interface

p

switch

c

m

Figure 7-29. Schematic symbol of a switch

164 Chapter 7

Table 7-23. Model ports
Name Type Description
P ELECTRICAL Positive pin
M ELECTRICAL Negative pin
C in STD_LOGIC Control port

Table 7-24. Model parameters
Name Unit Default value Description
RON Ohm 1.0e-03 Resistance when switch is closed
ROFF Ohm 1.0e06 Resistance when switch is open
TON s 1.0e-06 Transition time for rising edge (off to on)
TOFF s 1.0e-06 Transition time for falling edge (on to off)

Model implementation
architecture RAMP of SWITCH is

signal R_VAL : REAL := ROFF;
quantity V_SW across I_SW through P to M;

begin

 R_VAL <= RON when C = '1' else
 ROFF when C = '0';

 V_SW == R_VAL'RAMP(TON, TOFF)*I_SW;

end architecture RAMP;

The complete model is included on the CD-ROM that is provided with
this book.

7.3.8 General n-bit A/D and D/A converter

Functional description

An analog to digital and a digital to analog converter are presented with a
general n-bit vector interface at the digital side. The equivalent analog power
is parameterizable by a model parameter. The A/D converter is triggered
with an additional clock input. Figure 7-30 shows the block diagrams of both
the A/D and the D/A converter.

SELECTED RF BLOCKS IN VHDL-AMS 165

Figure 7-30. Block diagram of A/D and D/A converter models

The main characteristics of the converter models are as follows.

Bit vector input has arbitrary width.
Maximum power at the analog pin can be parameterized by pmax_dBm
and leads to a maximum voltage of

30
102 10

pmax_dBm

va rout

When a bit vector of width d’length is used, the maximum power is
subdivided into '2 1d length steps, so the least significant bit corresponds
to a voltage of

'2 1lsb d length

vav

Transition times for rising and falling edge are included.
The output impedance is modeled as an ohmic resistance

Additional characteristics, that were not modeled here, include
Dead time and hysteresis for conversion
Nonlinear conversion characteristic
Power consumption

166 Chapter 7

Model interface

a2d

a d

gnd

clk

Figure 7-31. Schematic symbol of A/D converter

Table 7-25. Model ports of A/D converter
Name Type Description
A ELECTRICAL Analog input
GND ELECTRICAL Analog ground
D out BIT_VECTOR Digital output
CLK in BIT Clock input

Table 7-26. Model parameters of A/D converter
Name Unit Default value Description
PMAX_DBM dBm -100.0 Maximum power amplitude
RIN Ohm 50.0 Input resistance

d2a

ad

gnd

Figure 7-32. Schematic symbol of D/A converter

Table 7-27. Model ports of A/D converter
Name Type Description
D in bit_vector Digital input
A ELECTRICAL Analog output
GND ELECTRICAL Analog ground

SELECTED RF BLOCKS IN VHDL-AMS 167

Table 7-28. Model parameters of A/D converter
Name Unit Default value Description
PMAX_DBM dBm -100.0 Maximum power amplitude
T_RISE s 1.0e-09 Transition time for rising edge
T_FALL s 1.0e-09 Transition time for falling edge
ROUT Ohm 50.0 Output resistance

Model implementation

The VHDL-AMS code of the digital process for D/A conversion is given.

 -- conversion process
process (D) is

variable NUMBER : INTEGER;
begin

 NUMBER := 0;
for I in D'HIGH downto D'LOW loop

 NUMBER := 2 * NUMBER;
if D(I) = '1' then

 NUMBER := NUMBER + 1;
end if;

end loop;

 VALUE <= REAL(NUMBER)*VSB;
end process;

The complete source code of A/D and D/A converter models are included
on the CD-ROM that is provided with this book.
Simulation example

A pseudorandom binary source was used as the input for the digital to
analog converter. It has been parameterized with a generator polynomial
length of six, corresponding to a sequence period of 127 bits, and an output
frequency of 5 MHz, corresponding to a bit time of 200 ns. The source and
the D/A converter were instantiated with the following parameters.

 SRC3: entity PRBS(SHIFT_REGISTER)
generic map (POLYGRAD => 6,

 BIT_TIME => 1.0/(5.0e06)*1sec)
port map (BIT_OUT => S_BIT(0));

 CONV: entity D2A(BHV_RF)
generic map(PMAX_DBM => -30.0)

 port map (D => S_BIT,
 A => N_A,
 GND => ELECTRICAL_REF);

The complete test-bench is included on the CD-ROM that is provided
with this book.

The D/A converter computes a new output voltage as the input bitstream
changes. The maximum output power value of –30 dBm corresponds to a
voltage of 10 mV at the standard terminating resistor of 50 .

168 Chapter 7

Figure 7-33. Simulation of the D/A conversion process

Figure 7-33 shows the simulation results in the analog and the digital
domain. In the upper half of the results window the whole sequence of 150
bits over 30 µs is depicted. The lower half shows a zoom view of the region
of 20 ns. There is to be seen that after a change on the digital side the analog
voltage immediately follows with a rising edge of 1 ns duration (default
value).

A second example was created to test the A/D converter in series with the
D/A converter. Therefore as the input signal a sine wave is first sampled and
converted to a digital signal. Then the sine wave is reconstructed by
converting the digital signal back to the analog domain. The converters were
instantiated with the following parameters.

 A2DC: entity A2D(BHV_RF)

generic map(PMAX_DBM => -30.0)
port map (A => N_A,

 GND => ELECTRICAL_REF,
 D => S_BIT,
 CLK => S_CLK);

 D2AC: entity D2A(BHV_RF)

generic map(PMAX_DBM => -30.0,
 TRISE => 1.0E-10,
 TFALL => 1.0E-10)

port map (D => S_BIT,
 A => N_A2,
 GND => ELECTRICAL_REF);

SELECTED RF BLOCKS IN VHDL-AMS 169

The complete test-bench is included on the CD-ROM that is provided
with this book.

Figure 7-34. Simulation of sampling and reconstructing a sine wave

The results window in Figure 7-34 shows the analog input waveform at
node n_a. It has a frequency of 50 kHz. It is sampled by the A/D converter
with a clock signal of 5 MHz. The 4-bit vector with values between 0 and 15
is then fed to the D/A converter. The analog result is displayed as a voltage
at node n_a2 and follows the original sine wave.

7.3.9 Simple channel

Functional description

In system level simulation, channel models often comprise all the effects
that occur on a signal between the analog front-ends of a transmitter and
receiver. The channel model described here only includes the basic effects of
additive white Gaussian noise (AWGN) and delay. Figure 7-35 shows the
block diagram of a simple channel model.

170 Chapter 7

Figure 7-35. Block diagram of a simple channel model

The main characteristics of the simple channel model are as follows.

Additive white Gaussian noise (AWGN) with power level pn_dBm,
which is specified by the input signal power ps_dBm and the signal-to-
noise ratio s_to_n

_ 30
10

010
pn dBm

vn Z , where pn_dBm ps_dBm s_to_n

1
1 22 log() cos(2)noisev vn x x , where x1, x2 are uniformly

distributed random numbers (1,2 10 1, 0x x)
For the input signal a delay td can be specified.
Input and output impedances are modeled as ohmic resistances with
default values

0 50in outZ R R

Additional characteristics, that were not modeled here, include multi-path
propagation of the signal due to reflection with different delays and damping
factors for different paths, frequency response, nonlinear distortion, etc.
Thus far the model is very general and suited to RF applications as well as to
wired data transmission, where effects like crosstalk and reflection due to
mismatch are predominant.

SELECTED RF BLOCKS IN VHDL-AMS 171

Model interface

Figure 7-36. Schematic symbol of AWGN channel

Table 7-29. Model ports
Name Type Description
P_IN ELECTRICAL Connection pin
P_OUT ELECTRICAL Connection pin

Table 7-30. Model parameters
Name Unit Default value Description
PS_DBM dBm -100.0 Input signal power in dBm
S_TO_N dB 100.0 Signal-to-noise ratio
FS_NOISE Hz 1.0e06 Sampling frequency of noise signal
TD s 0.0 Time delay for input signal
RIN Ohm 50.0 Input resistance
ROUT Ohm 50.0 Output resistance

Model implementation

The core of the model is the following digital process that generates time
discrete white Gaussian noise.

process is
variable X1,X2,X: REAL := 0.0;
variable SD1: POSITIVE := 111;
variable SD2: POSITIVE := 333;

begin
 UNIFORM(SD1, SD2, X1); -- uniform gives a value 0<x<1
 UNIFORM(SD1, SD2, X2); -- defined in ieee.math_real
 X:=VN*COS(MATH_2_PI*X1)*SQRT(-2.0*LOG(X2));
 S_NOISE<=X;

wait for PERIOD;
end process;

The complete model is included on the CD-ROM that is provided with
this book.
Simulation example

In the simulation example a single-tone of 1 kHz and –30 dBm was fed
to the channel model, which is parameterized with a signal-to-noise ratio of

172 Chapter 7

20 dB and a sampling frequency for the noise signal of 1 MHz. The channel
model was instantiated with the following parameters.

CHN: entity CHANNEL(AWGN)
generic map (PS_DBM => -30.0,

 S_TO_N => 20.0,
 FS_NOISE => 1.0e06)

port map (P_IN=>N_1, P_OUT=>N_2);

The complete test-bench is included on the CD-ROM that is provided
with this book.

Figure 7-37. Results of the AWGN channel simulation in time domain

Figure 7-37 shows the simulation results. The input signal is
superimposed by a noisy signal, which is depicted as the difference (diff)
between the input and the output signal (V:bench:n_2).

SELECTED RF BLOCKS IN VHDL-AMS 173

Figure 7-38. Time domain analysis of the noise signal

In the frequency domain (upper part of Figure 7-38) a peak of –40 dB at
1 kHz is seen, which corresponds to input power of –30 dBm. The noise
floor is around –90 dB and “white” up to 1 MHz (although it is only
displayed to 100 kHz to allow visibility of the input signal at 1 kHz). In
addition the analysis of the signal-to-noise ratio is shown. The integration
yields

Fmax

Fmin
Fmax

Fmin

()
SNR 20.01dB

()

S

N

S f df

S f df

where SX(f) is the power spectral density (PSD) of signal X. This value
matches the chosen parameter value S_TO_N=20 dB.

From the difference signal in the time domain a histogram is computed
using the post processing capabilities of the waveform tool (lower part of
Figure 7-38). In the histogram the Gaussian nature of that noise can be
observed.

174 Chapter 7

7.4 Measurement and Observation Units

Table 7-31. Overview on measurement and observation units
Model Properties
Peak detector Simple model using 'SLEW attribute
Frequency measurement unit Frequency measurement for periodic signals
Power meter Logarithmic measure of the average power

7.4.1 Peak detector

Functional description

The function of this block is to keep track of the maximum value of a
signal. Whenever the input signal rises the output immediately follows. If
the input signal falls, the output remains constant. Figure 7-39 shows the
block diagram of the peak detector.

Figure 7-39. Block diagram of an ideal peak detector

The main characteristics of the peak detector model are as follows.

The ‘slew-Attribute is applied to the input signal with an infinite slew
rate for the rising edge (REAL'HIGH) and an almost zero slope for the
falling edge (-10-38)
Additional characteristics, that were not modeled here, include input

impedance, and exponential decay.
Model interface

Figure 7-40. Schematic symbol of a peak detector

SELECTED RF BLOCKS IN VHDL-AMS 175

Table 7-32. Model ports
Name Type Description
INP ELECTRICAL Input pin
OUTP ELECTRICAL Output pin

There are no parameters for the peak detector model.
For a model implementation and an example test-bench see Section 6.3.5.

The complete model is included on the CD-ROM that is provided with this
book.

7.4.2 Frequency measurement unit

Functional description

The frequency measurement unit determines the timing distance between
two rising edges for a given threshold value. The reciprocal value is output
as frequency. Figure 7-41 shows the block diagram of the frequency
measurement unit.

Figure 7-41. Block diagram of the frequency measurement unit

The main characteristics of the VCO model are as follows.

The voltage across P_1 and P_2 is measured without influencing the
connected network, that is no internal resistance is modeled.
The event, when a threshold is crossed, is determined using the ‘above
attribute, which leads to a time discrete signal. In this realization the
threshold value is fixed and specified by a parameter of the model.
The time discrete signal is handled in a digital process. When a rising
edge is detected, the timing difference and the reciprocal value are
computed.
The resulting signal is converted back into a time continuous real
quantity using the break statement.

176 Chapter 7

For noisy signals at the input, errors may occur due to many threshold
crossings at a single positive edge.
For the first period, the frequency output is set to zero.

Model interface

P_1

freq

f_Hz

P_2

1/f

Figure 7-42. Schematic symbol of the frequency measurement block

Table 7-33. Model ports
Name Type Description
P_1 ELECTRICAL First pin
P_2 ELECTRICAL Second pin
F_HZ out REAL Output frequency

Table 7-34. Model parameters
Name Unit Default value Description
THRESHOLD V 0.0 Threshold value for period measurement

Model implementation

The central element of the model is the digital process, where edge
detection and timing difference calculation, including initialization and
reciprocal generation, take place.

 -- digital process
process (S_12) is

begin
if S_12 then

 T_OLD<=NOW;
if NOW>T_OLD and T_OLD>0.0 then

 S_FREQ<=1.0/(NOW-T_OLD);
else

 S_FREQ<=0.0;
end if;

end if;
end process;

SELECTED RF BLOCKS IN VHDL-AMS 177

The complete model is included on the CD-ROM that is provided with
this book.
Simulation example

For the simulation example a VCO is controlled by a sinusoidal
waveform. The VCO has a free running frequency of 1.5 kHz and a
sensitivity of 100 kHz/V. The controlling sine wave has an amplitude of
5 mV, which produces a frequency variation at the output of the VCO of
+/-500 Hz.

The frequency measurement unit is instantiated without any parameter
values, therefore the default threshold value of 0.0 applies.

Figure 7-43. Simulation of the frequency measurement at the output of a VCO

Figure 7-43 shows the controlling sine wave (n_ctrl) at the input of the
VCO, the frequency modulated sine wave (n_clk) at the output of the VCO,
and the output of the frequency measurement unit (frequency). The
quantization of that signal is due to the frequency only being determined at
zero crossings of the observed signal. This also leads to a time delay
between the controlling voltage and the resulting frequency measurement
signal. Both effects are shown here to demonstrate the model behavior, and
they are less severe at higher frequencies of the input signal.

For the first period, where the frequency is not known yet, the value of
the frequency measurement signal is set to zero.

178 Chapter 7

7.4.3 Power meter

Functional description

The power meter can be used as a post processing element in RF
simulations. The average power of a periodic signal is computed and
provided on a logarithmic scale. There are two architectures of this model
for different applications: a feedthrough power meter and a terminating
power meter.

Figure 7-44. Block diagrams of power meter architectures: a) feedthrough, b) terminating

The main characteristics of the power meter model are as follows.

Determination of the instantaneous power
architecture feedthrough: 1 12() () ()p t v t i t
architecture terminating: 12 12() () ()p t v t i t

SELECTED RF BLOCKS IN VHDL-AMS 179

Integration over specified period

1 ()i

i

t t_integ

i t
p p t dt

t_integ

Note: An input signal is assumed which is periodic with a period of
t_integ, but is not necessarily sinusoidal.

Logarithmic output as a real quantity

1010 log
1mW

ipp_dBm , with 0ip

Note: The logarithmic measure can only be computed from positive
power values. Therefore the model is restricted to measure the power of
consumers, where the integrated power over time is positive.
For zero and negative values of power the logarithmic measure is set to
-300 dBm, which corresponds to 10-33 W.

Current measurement source for the feedthrough architecture with value
12 0v

Termination impedance for the terminating architecture, modeled as
ohmic resistance: 50termr

Model interface

P_1

power_meter

p_dBm

P_2

u*i dt

t_integ

Figure 7-45. Schematic symbol of power meter

180 Chapter 7

Table 7-35. Model ports
Name Type Description
P_1 ELECTRICAL First measurement pin
P_2 ELECTRICAL Second measurement pin
P_DBM out REAL Output power

Table 7-36. Model parameters
Name Unit Default value Description
T_INTEG s 1.0e-03 Integration period
R_TERM Ohm 50.0 Termination resistance (feedthrough only)

Model implementation

There is little difference between both architectures. Architecture
feedthrough uses a source with zero voltage and can therefore be used as a
connection between matched blocks.

…
 V_12 == 0.0;
 P_INT'DOT == V_1 * I_12;
…

In contrast, architecture terminating uses a termination resistor and is
therefore suitable at the end of an analog signal processing chain where
matching is required.

…
 V_12 == I_12 * R_TERM;
 P_INT'DOT == V_12 * I_12;
…

The complete models of both architectures are included on the CD-ROM
that is provided with this book.
Simulation example

For the simulation example a sinusoidal signal of 1 kHz is used as input,
whose amplitude is modulated by a second signal of 1 Hz. Since both
frequencies are so distanced from each other, the amplitude during one
period of the first frequency can be regarded as constant.

This signal is fed to an LNA with 6 dB power gain and a 3rd order
intercept point of 23 dBm. The signal power is monitored at the input and
output of the LNA using feedthrough and terminating architectures of the
power meter, respectively (see Figure 7-46).

SELECTED RF BLOCKS IN VHDL-AMS 181

Figure 7-46. Schematic of the simulation example

The models were instantiated with the following parameters.

 SRC1: entity P_SIN(AM)
generic map (PA_DBM => -40.0,

 FREQ => 1.0e03,
 FREQM => 1.0,
 MDI => 10.0)

port map (P => N_1,
 M => ELECTRICAL_REF);

 LNA1: entity LNA(RF)
generic map (GP_DB => 6.0,

 IP3_DBM => -23.0)
port map (P_IN => N_10,

 P_OUT => N_2,
 VDD => N_VDD,
 GND => ELECTRICAL_REF);

 PWRi: entity POWER_METER(FEEDTHROUGH)
generic map (T_INTEG => 1.0e-03)
port map (P_1 => N_1,

 P_2 => N_10,
 P_DBM => P_IN);

 PWRo: entity POWER_METER(TERMINATING)
generic map (T_INTEG => 1.0e-03)
port map (P_1 => N_2,

 P_2 => ELECTRICAL_REF,
 P_DBM => P_OUT);

The complete test bench is included on the CD-ROM that is provided
with this book.

182 Chapter 7

Figure 7-47. Simulation of the nonlinear characteristic of the LNA

As shown in Figure 7-47 the input signal, which should be doubled in
magnitude (power gain of 6 dB), is distorted while passing the LNA. Since
the amplitude of the sine wave varies slowly, it is nearly constant during a
single period, as displayed in the enlarged diagram. The power of the input
and output signal is measured using the power meter. The resulting transfer
characteristic is displayed in Figure 7-48.

SELECTED RF BLOCKS IN VHDL-AMS 183

Figure 7-48. Transfer characteristic of the LNA computed with the power meter

This diagram enables improved verification of the power level behavior.
In the linear region the gain is approximately 6 dB, which we expect from
the specification. If the input power is increased, the output is distorted an
increasing amount by the nonlinearity of the LNA. At nearly -33 dBm the
gain drops to 5 dB, which is therefore said to be the 1 dB compression point.

From theory (see [Kun02]) we know that the 1 dB compression point is
9.6 dB below the IIP3 in systems where the compression point is largely
determined by the 3rd order distortion. In this simulation example we
specified an IIP3 for the LNA of -23 dBm and measured a 1dB compression
point of nearly -33 dBm, which meets all our expectations.

7.5 Block Level Example of a Linear PLL

In this section an example is reused and extended that was the
introductory example of the VHDL-AMS chapter in Section 5.3 – the linear
phase-locked loop (PLL). After the previous sections introduced a library of
basic RF building blocks, the PLL will be now build up from these blocks by
instantiating and parameterizing them. Some background information is
initially provided to give a starting point for the following detailed analysis.
Then the behavior of the assembled block level example can be verified by
means of simulation and mathematical computations.
Background

The phase-locked loop is a circuit where the output signal tracks the
input signal with respect to phase and frequency. A PLL is used in many
applications specifically as a frequency synthesizer and frequency divider.

184 Chapter 7

The name phase-locked loop indicates the structure, which is a closed
control loop as depicted in Figure 7-49.

Figure 7-49. Block diagram of a phase-locked loop

The phase of the signal is compared to the phase of a reference input
signal. The phase detector converts the phase difference into a proportional
voltage, which is then followed by a loop filter to reject unwanted
frequencies. The filtered signal is a measure for the frequency of the input
signal. To close the loop, the loop filter output is fed to a voltage controlled
oscillator (VCO), which generates a sine wave with proportional frequency.
Now the loop starts again with a phase comparison in the phase detector. If
the input frequency increases the lowpass filtered output signal rises and in
turn produces a higher frequency in the VCO until the frequency of both the
reference and the internal signal are equal.

Analyzing the PLL is rather complex, especially its dynamic behavior.
For a detailed study of static and dynamic parameters like lock range, pull-
out range, pull-in range, and hold-in range see [Bes03].

We want to keep the analysis simple and consider only a PLL which is
already locked and remains locked. In this case the behavior can be treated
as linear and the transfer function of the whole system can be obtained by
combining the individual transfer characteristics of the building blocks.
Furthermore, we restrict the calculation to a linear PLL (LPLL). Other types
are known, such as digital PLL (DPLL), all-digital PLL (ADPLL), and
software PLL (SPLL). For all types, the basic working principles remain the
same.

Consider two sinusoidal signals, one a cosine wave from the reference
source

1 1 1 1() cos(())u t a t t

SELECTED RF BLOCKS IN VHDL-AMS 185

and the other a sine wave from the VCO

2 2 2 2() sin(())u t a t t .

Both are fed into a mixer, which is the phase detector for a linear PLL
and in the simplest case is essentially a multiplier.

1 2 1 2 1 1 2 2() () cos(()) sin(())u t u t a a t t t t

In the locked state we have equal frequencies 1 2 , but maybe a
phase error 2 1() () ()e t t t is present. With the theorem for
trigonometric functions

1
2cos sin sin() sin()x y x y x y

we yield at the output of the mixer

1 2
1 2 1 2 1 2

1 2 1 2
2 1 1 2

() () sin 2 () () sin () ()
2

sin () () sin 2 () ()
2 2

a au t u t t t t t t

a a a at t t t t

If we suppress the term at the double frequency by filtering, and
substitute for small phase errors sin x x , we have

1 2

1 2
2 1

1 2
2 1

() () ()

sin () ()
2

() ()
2

du t u t u t
a a t t

a a t t

In the Laplace domain with 2 1() { ()} { () ()}es t t tL L and

1 2 2dK a a the mixer characteristic can be described as

() (s)d d eU s K

For the filter characteristic we choose a first order lowpass filter

186 Chapter 7

0() 1() with
() 1 2

f
g

d g g

U s AF s
U s s f

where 0A is the filter gain and g is the time constant of the first order
pole.

The VCO is defined by the equation

2 2 2 2() sin(())u t a t t

where the phase is controlled by the input voltage via

2 () ()f ft K u t

Thus, the VCO behaves like an integrator if we consider the phase of the
VCO signal 2 ()t with respect to the control voltage ()fu t . In the Laplace
domain the VCO characteristic is therefore

2 () ()f
f

K
s U s

s

The theoretical system behavior of the linearized PLL model is
summarized in Figure 7-50, where the block names are replaced by their
transfer functions in the Laplace domain.

1()s

2 ()s
() ()d d eU s K s ()fU s

Figure 7-50. Linearized PLL model in the Laplace domain

The overall characteristic of the PLL can now be obtained using control
theory, which says that the transfer function of a closed loop is the transfer

SELECTED RF BLOCKS IN VHDL-AMS 187

function of the open loop divided by this function plus one. The phase-
transfer function is therefore given by

2

1

0

0

()()
()
()

1 ()

(1)

d f

d f

d f

d f g

sH s
s

F s K K s
F s K K s

A K K
A K K s s

From the denominator, which is in the normalized form written as
2 22 n ns s , we obtain an estimate of the natural frequency n and the

damping factor of the PLL

0

0

1
2

n d f g

d f g

A K K

A K K

These parameters are important to evaluate the performance and the
stability of the circuit.
Objective

A phase-locked loop will be constructed according to the block diagram
in Figure 7-49 using the following list of parameters.

Table 7-37. PLL block parameters
Block Parameter Value
Mixer Power gain 12.0 dB
 IP3 -10 dBm
Filter Gain 0 dB

Corner frequency 100 kHz
 Filter grade 1
VCO Amplitude -30 dBm

Free running frequency 1 MHz
 Sensitivity 1 Hz/V

A reference signal is applied to the input of the PLL using a piecewise
linear voltage source and a VCO with a cosine output signal and the
following list of parameters.

188 Chapter 7

Table 7-38. PLL test-bench parameters
Block Parameter Value
Piecewise linear source Amplitude 0 s (initial) 0 µV

Amplitude 100 µs 50 µV
Amplitude 200 µs 100 µV

VCO Amplitude -30 dBm
Free running frequency 1 MHz

 Sensitivity 1 GHz/V

The PLL is simulated over 300 µs with particular attention to
– input control signal
– input reference clock signal
– output clock signal (output of the PLL internal VCO)
– lowpass filtered signal

With the specified set of parameters the control loop of the PLL should
perform a damped oscillation when the input reference signal is abruptly
changed. This oscillation can be observed at the output of the filter and
has a period Tr. Figure 7-51shows the period of the damped oscillation.

t

x(t)

1
2 2
r

r

T
f

Figure 7-51. Period measurement of the damped oscillation

The PLL model can then be verified by mathematical analysis. The
theoretical period of the damped oscillation can be computed from the
model parameters of the PLL using the relationship for the angular
frequency 2 2 2(1)r n , where the natural frequency n and the
damping factor are specified above. The theoretical period will be
compared to the simulation result.
Note: Since we use a first order filter here for simplicity, there will still
be some oscillation on the filtered signal. Nevertheless an estimation of
the period should be possible, which is sufficient to verify the
fundamental conformity.

SELECTED RF BLOCKS IN VHDL-AMS 189

Solution

The complete models of the PLL and the test-bench for the example
solution are included on the CD-ROM that is provided with this book.
Simulation results for the control voltage at node N_ctrl and for the
output of the lowpass filter N_tp are shown in Figure 7-52.

Figure 7-52. Results of the PLL simulation

The period of the damped oscillation can be estimated to / 2 3.8 µsfT
from the simulation results in Figure 7-53.

Figure 7-53. Period measurement in the simulation results

190 Chapter 7

For the exact computation of the frequency we need the individual
transfer factors of the blocks

0
9

1 2

2
/10 /10

5

1

2 10 Hz V

2
110 10 2
2

0.2mV
1/(2 10 Hz)

f

d mixer

gp_dB ampl_dB

g

A

K
a aK gain

R

Consequently for the damped oscillation frequency we get

2
0

2
0

2 2 2

0
2

1/(4)

(1)

1
4

/ 2 132kHz

n d f g

d f g

r n

d f

g g

r r

A K K

A K K

A K K

f

This yields a theoretical value for the half period of / 2 3.8µsfT , which
matches the value obtained from the simulation results.

Chapter 8

MACROMODELING IN VHDL-AMS

8. MACROMODELING IN VHDL-AMS

8.1 Introduction

The term macromodeling has been used for different meanings in the
past. Therefore the term we use here is first clarified together with an
overview of the modeling method.

Afterwards, a set of building blocks that can be used for macromodeling
is presented. We use the VHDL-AMS hardware description language here to
describe the behavior of the blocks.

Using these building blocks a simple but extendible macromodel is
constructed for the operational amplifier (OpAmp), which is a very
important system component.

8.2 General Methodology

Macromodeling is a well known and frequently used modeling method
for many years [BCP74], [CaS91]. Historically the term is used for structural
modeling for SPICE-like network simulators [CoC92]. It is assumed that the
original circuit can be subdivided into smaller blocks (macros) which are
describable independently of each other, that is, they are only weakly
coupled. Each block of the circuit contains a number of active and passive
elements. During the modeling step the block is replaced by a network of
ideal controlled sources and other ideal basic elements. Thus the resulting
macromodel consists of blocks which are individually modeled by idealized
network elements to represent a particular functionality of the overall circuit.

Presently macromodeling is mostly used in a wider sense. The circuit is
divided again into smaller weakly coupled subsystems. However, these

192 Chapter 8

blocks or macros can be modeled by many different means of description,
including:

Substitution network with idealized network elements
Behavioral description with suitable HDL
Hierarchical composition of behavioral and structural descriptions
Coupling to a specialized simulator

A very common method of subdividing a circuit into blocks is shown in
Figure 8-1.

Figure 8-1. General structure of a macromodel

The input and output stages are modeled very precisely using, for
instance, the first and last transistor stages from the circuit, respectively.
Between both stages the functional characteristic is modeled by a transfer
stage. This subdivision has a number of advantages:

Since input and output stages use the same transistors at the border as the
circuit, the model “looks like” the circuit from the outside world of the
surrounding circuitry.
This implies that the circuit and model can be exchanged with each other,
which is called pin-compatibility, because both are compatible with
respect to their pins.
In the transfer stage the functionality can be modeled in a very abstract
way without too many details, since it is not directly connected to the
outside world.
This significantly saves computing time and therefore even allows
simulation of very complex circuits together with their overall
applications.

The separation of the functionality from the pin behavior is an important
aspect for choosing the appropriate means of description. For input and
output stages electrical terminals with conservative behavior must be used,
whereas the transfer blocks can be described with non-conservative signals.
This allows to apply signal flow models, or even data driven descriptions,
that are especially well suited for functional blocks.

MACROMODELING IN VHDL-AMS 193

The methodology described proves especially useful for digital circuits in
an analog environment. In this case the input and output stages remain
analog, whereas the transfer stage is modeled using abstract digital means of
description (for example logic gates, register transfers). Between the stages
a-to-d and d-to-a converters must be inserted. Usually it is sufficient to use
simple conversion characteristics for the converters (see Figure 8-2).

Figure 8-2. Structure of a mixed-signal macromodel

In a chain of digital blocks the d-to-a converters at the output and the a-
to-d converters at the input of the next stage can be omitted, provided that
the internal signals do not need to be monitored.

The macromodels described require a true mixed-signal simulation.
Behavioral descriptions of these macromodels are best supported by mixed-
signal HDLs, such as VHDL-AMS. They allow seamless integration of
analog and digital together with conservative and non-conservative parts into
one behavioral model.

To further generalize the macromodeling principle we can extend the
macromodel structure as exemplified in Figure 8-3.

Input
stage

Output
stage

Input
stage

Input
stage

Figure 8-3. Extended structure of a macromodel

194 Chapter 8

Between the input and output stages several blocks are placed, each
representing a part of the overall functionality (for example biasing, linear
gain, nonlinear distortion, frequency characteristic, current/voltage
limitations, power supply dependency).

The key point is the assumption that certain functions of the circuit can
be individually modeled independently of each other and then superimposed
to form the resulting macromodel.

In the following section typical examples of input and output (I/O) stages
are presented. Thereafter a simple example of an OpAmp macromodel is
constructed from simplified stages for input, output, and transfer.

8.3 Input and Output Stages

The macromodeling methodology presented in the previous section is a
common way to describe integrated circuits for system simulation. For input
and output stages typical building blocks can be defined that are usable for
many applications.

This section provides building blocks by means of a schematic of the
stage followed by a list of properties and a table detailing the VHDL-AMS
implementation.

8.3.1 Input stages

Ideal differential input

Figure 8-4. Network schematic of an ideal differential input stage

Properties
Infinite internal resistance

Table 8-1. Implementation of an ideal differential input stage
VHDL-AMS notation

quantity V across P1 to P2;

MACROMODELING IN VHDL-AMS 195

Real differential input

Figure 8-5. Network schematic for a real differential input stage

Properties
Finite internal resistance
Differential input resistance
Input capacitances

Table 8-2. Implementation of a real differential input stage
VHDL-AMS notation

quantity V1 across I1 through P1;
quantity V2 across I2 through P2;
quantity V12 across I12 through P1 to P2;
 I1 == C * V1’DOT;
 I2 == C * V2’DOT;
 V12 == R * I12;

Differential input with offset

Vp1

p2

n1

voff

Figure 8-6. Network schematic for a differential input stage with offset

Properties
Offset voltage
Infinite internal resistance

196 Chapter 8

Table 8-3. Implementation of a differential input with offset
VHDL-AMS notation

quantity V11 across I11 through P1 to N1;
quantity V12 across N1 to P2;
 V11 == VOFF;

Termination resistor to ground

Figure 8-7. Network schematic for a termination resistor to ground

Properties
Single ended pin

Table 8-4. Implementation of a termination resistor to ground
VHDL-AMS notation

quantity V1 across I1 through P1;
 V1 == R * I1;

Termination resistor to supply voltage

Figure 8-8. Network schematic for a termination resistor to supply voltage

Properties
Single ended pin

Table 8-5. Implementation of a termination resistor to supply voltage
VHDL-AMS notation

quantity V1 across I1 through P1 to NUB;
 V1 == R * I1;

MACROMODELING IN VHDL-AMS 197

8.3.2 Output stages

Ideal output

Figure 8-9. Network schematic for an ideal output

Properties
Controlled source
Zero internal resistance

Table 8-6. Implementation of an ideal output
VHDL-AMS notation

quantity V1 across I1 through P1;
 V1 == K * VOUT;

Real output

Figure 8-10. Network schematic for a real output

Properties
Controlled source
Internal resistance

Table 8-7. Implementation of a real output
VHDL-AMS notation

quantity V1 across I1 through P1;
 V1 == K * VOUT + R * I1;

198 Chapter 8

Voltage limitation, structural

Up

Um

UD

UD

p1n1 r

Figure 8-11. Network schematic for a structural voltage limitation stage

Properties
Limitation to m D p DU U U U U with smooth transition
No decoupling
Very high currents through the diodes may occur in case of limitation

Table 8-8. Implementation of a structural voltage limitation
VHDL-AMS notation

quantity V1 across I1 through N1 to P1;
quantity VP across IP through p1 to NUP;
quantity VM across IM through NUM to P1;
 V1 == R * I1;
 IP == I0 * EXP(VP / UT – 1.0);
 IM == I0 * EXP(VM / UT – 1.0);

Voltage limitation, behavioral

Figure 8-12. Network schematic for a behavioral voltage limitation stage

Properties
Controlled source
Different limiting functions possible, for example piece-wise linear,
polynomial, logarithmic, tanh

MACROMODELING IN VHDL-AMS 199

Table 8-9. Implementation of a behavioral voltage limitation
VHDL-AMS notation

quantity V1 across I1 through P1;
 V1 == k * VOUT – C * VOUT**3;

Current limitation, behavioral

Figure 8-13. Network schematic for a behavioral current limitation stage

Properties
Controlled source
Internal resistance depending on current flowing through it

Table 8-10. Implementation of a behavioral current limitation
VHDL-AMS notation

quantity V1 across I1 through N1;
quantity VR across IR through N1 to P1;
 V1 == K * VOUT;
 IR == IMAX * TANH(VR/ROUT/IMAX);

The presented I/O macros in VHDL-AMS are just a few examples that
typically occur in macromodels. They can be used in combination, adjusted
with different functional forms, or extended to the specific needs of the
designer.

The source code shown includes only the most necessary lines.
Additional effort must be made for a working model in terms of entity and
architecture structure, terminal declarations, and so on. However, since these
lines of code are meant as macros, they should be inserted into working
models.

8.4 OpAmp Macromodel

The operational amplifier is a building block that is very often used in
analog circuits. It gained its name from the initial application purpose in
analog computers. The OpAmp can easily be used for mathematical
operations like summing, integrating, or comparing (electrical) values.

200 Chapter 8

Although we use digital computers today, the OpAmp is applied
everywhere in analog signal processing or signal conditioning, for example
signal amplification, integration, buffering, impedance transformation, and
so on. In most applications the OpAmp works within a feedback loop where
the nominal amplification is not the primary focus. Instead linearity and
large signal behavior have to be considered.

The ideal operational amplifier can be characterized as follows:

Infinite open loop gain and bandwidth
Infinite common mode rejection ratio (CMRR)
Infinite differential and common mode input resistance
Zero output resistance
Negligible offset voltage and input current
No noise and no feedback from the output to the input

Real OpAmps possess finite values for these characteristics.

When modeling OpAmps the choice of which characteristics have to be
included depends on the intended purpose. Usually we differentiate between
first order effects that are essential for the function of the block (for example
gain) and second order effects that can sometimes be neglected (for example
thermal behavior). A list of examples for both categories is provided next.

First order characteristics
Open loop gain
Corner frequency (3dB frequency)
Output limitation
Input and output impedances

Second order characteristics
Offset voltage
Power dissipation
Common mode voltage and common mode range
Common mode rejection ratio (CMRR)
Power supply rejection ratio (PSRR)
Slewrate
Settling time
Signal to noise ratio (SNR)
Higher order poles and zeros of the transfer function

MACROMODELING IN VHDL-AMS 201

inp
outpOutput

stage
Input
stage

Gain
stageinm

Frequency
response

Figure 8-14. Block diagram of a simple OpAmp macromodel

Figure 8-14 shows the block diagram of a simple OpAmp macromodel,
where mainly first order effects are included. Each individual block can be
refined according to the required accuracy of the model.

Input and output stages may be selected from the library in the previous
section, Section 8.2. They are responsible for the electrical behavior of the
model to the outside world. Therefore conservative pins are used for inp,
inm, and outp. Between the stages non-conservative signals can also be used.
This prevents feedback from the output to the input, which is not always an
advantage in analog modeling.

According to the macromodeling strategy more effects can now be added
if required. Examples could include additional blocks for power dissipation
and power supply rejection. This would require additional power supply
pins, which again must be conservative since they have contact with the
surrounding circuitry.

As an example the VHDL-AMS macromodel of an operational amplifier
is provided below.

-- --
-- Description: Behavioral model for Operational Amplifier
-- --
library IEEE;

use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;

entity OPAMP is
generic (AVD0 : REAL := 106.0; -- DC differential gain [dB]

 FP1 : REAL := 5000.0; -- dominant pole [Hz]
 FP2 : REAL := 2.0E6; -- pole frequency [Hz]
 ROUT : REAL := 75.0 -- output resistance [Ohm]
);

port (terminal INP: ELECTRICAL; -- input plus terminal
terminal INM: ELECTRICAL; -- input minus terminal
terminal OUTP: ELECTRICAL -- output terminal

);
end entity OPAMP;

architecture MACRO of OPAMP is

-- Input stage
quantity V_IN across INP to INM;

-- Frequency Response
constant NUM_2 : REAL_VECTOR := (0 => 1.0);

202 Chapter 8

constant DEN_2 : REAL_VECTOR := (1.0, 1.0/MATH_2_PI/FP2);
quantity q_fr3 : REAL;

-- Gain stage
constant AVD0_VAL : REAL := 10.0**(Avd0/20.0);
constant NUM_1 : REAL_VECTOR := (0 => 1.0);
constant DEN_1 : REAL_VECTOR := (1.0, 1.0/MATH_2_PI/FP1);
quantity Q_SUM : REAL;
quantity Q_FP1 : REAL;

-- Output stage
quantity v_out across i_out through outp;

begin

-- Input stage
 I_IN == 0.0;

-- Frequency Response
 Q_FR3 == V_IN'LTF(NUM_2, DEN_2);

-- Gain stage
 Q_SUM == AVD0_VAL*Q_FR3;
 Q_FP1 == Q_SUM'LTF(NUM_1, DEN_1);

-- Output stage
 I_OUT == (V_OUT – Q_FP1)/ROUT;

end architecture MACRO;

In this example the input stage is modeled simply as an ideal differential
input with infinite resistance and no capacitances. The following frequency
stage represents a second pole and has a non-conservative real quantity as its
output. This is passed to the gain stage, which is responsible for linear
amplification of the signal and the dominant first pole. In the output stage we
have conservative signals again and a driving voltage source with internal
resistance.

This simple demonstrative OpAmp macromodel contains only the most
essential functionality. It could be modified or extended by adding additional
stages to include the previously mentioned second order effects.

Chapter 9

COMPLEX EXAMPLE: WLAN RECEIVER

9. COMPLEX EXAMPLE: WLAN RECEIVER

9.1 Introduction

Mixed-signal modeling and simulation support both top-down design and
bottom-up verification. A general flow from system level to transistor or
layout level and back to system level was introduced in Chapter 2 and
detailed in the subsequent chapters.

In this chapter the modeling methodology is applied to a practical design
example from industry. The example shows in detail how modeling and
simulation can support designers’ tasks.

All modeling is performed with VHDL-AMS using the RF library
presented in previous chapters.

To demonstrate the major aspects of RF modeling and simulation a
realistic design example for an industrial RF application is provided. It
serves as a complex example demonstrating how modeling and simulation
can support the work of RF designers. The following aims are addressed:

Application of the VHDL-AMS hardware description language for
behavioral and hierarchical modeling of complex circuits
Usage of an industrial design case instead of trivial examples to
demonstrate the benefits of modeling and simulation in the design flow
Seamless integration of analog and digital parts of a circuit into a
simulation of the overall behavior
Analysis of RF specific circuit level impairments on the system level
performance

204 Chapter 9

The complex design example is based on a system level architecture for
wireless high-speed data transmission according to the wireless local area
network (WLAN) standard IEEE 802.11a. For educational purposes this
example has been simplified in a way that it might not conform to the
standard. The example concentrates on the important parameters and
neglects some effects to keep the example manageable.

First the specification of the design case is covered in detail in Section
9.2. This informal specification would be the RF part of the system
specification provided to the RF design engineer. Next, as described in the
top-down design flow, the system level description has to be modeled to
obtain an executable specification, see Section 9.3. It can then be refined
towards a circuit level model for each individual block. In the example
provided, we begin with a circuit level simulation thereby simplifying the
transition from system to circuit level. Using knowledge from the circuit
level implementation, the behavioral models can be calibrated as it is shown
in Section 9.4. The overall system behavior is then simulated with
behavioral models for the blocks to analyze whether the designed system
matches the one specified in terms of critical parameters. This verification is
covered in Section 9.5.

9.2 Example Specification

The WLAN receiver design example consists of the RF receiver shown
in Figure 9-1.

Figure 9-1. Double conversion receiver architecture

COMPLEX EXAMPLE: WLAN RECEIVER 205

The receiver exhibits a heterodyne architecture that is frequently used in
wireless and radio systems. As a special case the intermediate frequency (IF)
at the output of the first mixer is chosen to be half the radio frequency,
resulting in an architecture known as a double conversion receiver. The main
components of the architecture are a low-noise amplifier (LNA), mixer
(Mixer1 and Mixer2), baseband filter (BB filter), baseband amplifier (BB
amplifier), and frequency synthesizer. The frequency synthesizer consists of
a reference oscillator (LO), a phase-locked loop (PLL), and a 90° phase
shifter.

The incoming RF signal is assumed to be a 5.2 GHz OFDM (Orthogonal
Frequency Division Multiplex) signal. For simplification of this example,
effects of the antenna and duplexer are neglected. After signal amplification
by a low-noise amplifier (LNA) the signal is downconverted by two mixer
stages, both working at the same local oscillator (LO) frequency of 2.6 GHz.
The first mixer stage converts the RF input signal to half of the RF
frequency, with an image frequency around zero. As there is no signal at
0 Hz, this architecture overcomes problems concerning image rejection. At
the second mixer stage the RF input signal and the LO signal both have the
same frequency and therefore DC-problems exist, caused by the selfmixing
products. DC-offsets and flicker noise (1/f) are filtered out by highpass
filtering using the capacitors between the mixer stages. In the analog
baseband section channel selection is done by lowpass filtering, suppressing
the adjacent and non-adjacent channels. After filtering the signal is amplified
by an automatic gain controlled (AGC) amplifier. The following stages of
the receiver, that is, analog-digital converter (ADC) and digital baseband,
are not considered in this complex design example. Table 9-1 shows the
specification of the input signal. The specification of the individual blocks is
shown in Table 9-2.

Table 9-1. Input signal specification
Parameter Unit Channel 1st adjacent 2nd adjacent
signal power dBm -88 … -23 (=ch) ch + 16 ch + 32
lower 3dB BB frequency MHz -8.3 … 8.3 11.7 … 28.3 31.7 … 48.3

Table 9-2. Block specification
Parameter Unit LNA Mixer 1 Mixer 2 BB Filter BB Amp
RF input GHz 5.18 … 5.32 5.18 … 5.32 2.59 … 2.66 BB BB
R_in Ohm 50 50 50 50 50
input level dBm -88 … -23 -68 … -18 -63 … -13 -58 … -8 -58 … -8
gain dB 5 … 20 5 5 0 12 … 62
noise figure dB 2.5 10 10 5
CP1dB dBm -20
IIP2 dBm 20 20
IIP3 dBm -5 5 5

206 Chapter 9

The input level of the LNA is between –88 dBm and –23 dBm. This input
signal contains the channel signal and the signals in the adjacent (1st
adjacent) or non-adjacent (2nd adjacent) channels. Depending on this input
level the LNA must provide a gain between 5 dB and 20 dB. The maximum
output power must be below –15 dBm to avoid overloading of the following
stage.

Both mixer stages have the same LO frequency of 2.6 GHz applied, that
is half of the carrier frequency. As a consequence, the channel signal is
around 0 Hz after being downconverted two times. The RF input frequency
is between 5.18 GHz and 5.32 GHz for the first mixer and between
2.59 GHz and 2.66 GHz for the second mixer. The local oscillator (LO)
input frequency is between 2.59 GHz and 2.66 GHz for both mixers. Both
IIP2 (input referred 2nd order intercept point, see Section 10.4.2 for details)
and noise figure are important parameters for the mixers.

The baseband filter is a bandpass filter used for channel selection. DC
offsets and adjacent and non-adjacent channels have to be rejected to a level
that ensures a sufficient sensitivity for the channel signal. In OFDM systems,
the center subcarrier contains no data. This allows DC offsets to be filtered
out. The distance from the center subcarrier to the next data subcarrier is
156.25 kHz, resulting in a corner frequency of 150 kHz at the highpass pole.

Attenuation of the adjacent and non-adjacent channels is achieved using
lowpass filters. The highest frequency of the wanted channel is around
8.3 MHz, so that the lowpass poles are positioned at a frequency of 9 MHz.
A fifth-order lowpass filter is sufficient to reject the unwanted channels.

The gain of the baseband amplifier (AGC) is dependent on the signal
level at its input. The output of the amplifier should not exceed 1 Vpp (peak-
to-peak voltage), which means 4dBm assuming an output resistance of 50 .

The frequency synthesizer generates the local oscillator signals for the RF
mixer and for both I/Q mixers. Using the double conversion architecture
allows the same LO frequency to be used. The orthogonality of the local
oscillator signal generation for the I and Q components is a critical
parameter, as a phase shift of 90° is required to guarantee a sufficient image
rejection of the receiver. The same applies for the phase noise due to the low
subcarrier spacing in the targeted IEEE 802.11a OFDM transmission.

The frequency synthesizer is realized by a phase-locked loop structure,
including a voltage controlled oscillator (VCO), and a phase shifting block.
For simplicity the frequency synthesizer is modeled with the parameters
shown in Table 9-3.

COMPLEX EXAMPLE: WLAN RECEIVER 207

Table 9-3. Specification of the frequency synthesizer
Parameter Unit Value (range)
tunable center frequency GHz 2.59-2.66
phase noise (at 2 MHz) dBc/Hz -103
phase noise (at 20 MHz) dBc/Hz -121
orthogonality error Degrees 2

9.3 Example Modeling

The top-down methodology begins with a very rough view of the
transmission system as shown in Figure 9-2. A signal – which is not yet
specified – has to be carried from a source to a sink by means of a limited
transmission channel. These limitations require the use of a transmitter
before and a receiver after the channel in order to compensate the non-ideal
properties of the transmission medium. At the sending end (transmitter) the
signal is coded and modulated, while at the opposite end (receiver) matched
demodulators and decoders are required.

Figure 9-2. General view of a transmission system

According to the specification of the discussed example the transmission
is performed in a wireless radio frequency propagation channel. A number of
channel impairments may disturb the transmission, including:

Additive white Gaussian noise (AWGN)
Fading effects and echoes due to reflection
Damping
Nonlinear distortion
Doppler effects

When refining the models we focus on the receiver. This part of the
system usually requires the most effort to implement since timing
information of the signal is not available and therefore the signal has to be
reconstructed after being distorted on the channel.

The receiver is constructed with elements of the RF library introduced in
previous chapters. These are behavioral models or hierarchical compositions
of behavioral models written in VHDL-AMS. Figure 9-3 shows the structure
of the receiver that is similar to the one specified except for the additional

208 Chapter 9

splitter blocks. The VHDL-AMS model implementation of the receiver can
be found on the CD-ROM that is provided with this book.

I

LNA

LO

Q

Mixer2 BB Filter BB Amplifier
RF

0
90

Mixer1

PLL

Figure 9-3. Block structure of the modeled receiver

The LNA model (see Section 7.3.1 for detailed information) only accepts
the 3rd order intercept point as a parameter for the nonlinearity. The 1dB
compression point cannot be chosen independently of IP3, since the model
uses a single polynomial nonlinearity. For a detailed analysis of the same
WLAN receiver example using RF specific model parameters and
simulation modes see Chapter 10.

Gain and input impedance are model parameters and are set accordingly,
while input frequency and level are not parameters of the model.

For mixers 1 and 2 an identical model is used from the library (see
Section 7.3.2), which internally contains an LNA model for gain and
nonlinearity. Again, the 3rd order intercept point is provided to the model as
specified and the 2nd order intercept point and 1dB compression point
cannot be parameterized. For the other parameters the same applies as for
the LNA.

The baseband filter is realized as a Butterworth filter with lowpass
characteristic (see Section 7.3.6). The model describes a 5th order filter with
corner frequency of 9 MHz as specified.

The baseband amplifier uses the same model as the LNA. The gain is
provided by a manually determined power budget calculation and presented
as a fixed parameter value to the model.

Concerning the frequency synthesizer a further refinement in the model is
necessary. The modeled PLL is a hierarchical composition of basic building
blocks from the RF library. We use here a similar block diagram to that in

COMPLEX EXAMPLE: WLAN RECEIVER 209

Section 7.5. Additional ideal splitter blocks are introduced in order to split
the signal without any loss due to impedance mismatch. For the intended
application of the PLL as a frequency synthesizer, the output outclk is
relevant, whereas other applications such as FM demodulators require the
output out after the loop filter.

phase
detector loop filter

voltage
controlled
oscillator

refclk

outclk

out

Figure 9-4. Block diagram of the modeled PLL

The center frequency of the PLL can be parameterized with the free
running frequency of the VCO and is set to 2.6 GHz. Also, the initial phase
offset and the signal power of the local oscillator can be adjusted in the VCO
of the PLL.

Phase noise and orthogonality error are not included here. An oscillator
model including phase noise is used in Chapter 10 for RF analyses of the
WLAN receiver. The VHDL-AMS model of the PLL in Figure 9-4 can be
found on the CD-ROM.

The PLL is fed by another VCO that has the same center frequency of
2.6 GHz. At the output of the PLL a phase shifter to splits the local oscillator
clock into in-phase (I) and quadrature (Q) components. A simple ideal phase
shifter model has been implemented that works at the specified LO
frequency.

Other elements of the receiver include the highpass filter between the
stages. Here we use simple capacitors that, together with the input
impedance of the following stage, form a first-order highpass filter. A corner
frequency of 1 GHz has been chosen to suppress DC offsets effectively.

The splitter block in the receiver is again ideal and identical to the one
used for the PLL. Ideal in this sense means that the input signal is identically
transferred to both outputs without any loss. To overcome the effect that the
power is doubled in this case, which is unrealistic, further model refinements

210 Chapter 9

are necessary. The model is sufficient if only the in-phase path of the signal
is examined.

In order to test the receiver a simple transmitter model needs to be
established. Figure 9-5 shows the structure of the modeled transmitter. The
dashed line part of the diagram is not modeled; it is drawn here only for
completeness and to show the analogy to the receiver structure. The intended
test simulation uses the in-phase channel (I) only. Therefore the phase shifter
is also neglected.

LO

RF

Q

MixerTransmit filter

0
90

Figure 9-5. Block structure of the modeled transmitter

The upconversion of the transmitter signal to the passband of 5.2 GHz is
done here in a single step without using an intermediate frequency.

A simple first-order lowpass filter with corner frequency of 8 MHz forms
the transmit filter. It does not fulfill the Nyquist criterion, so intersymbol
interference may distort the signal. But for first test runs of the receiver it
might suffice. The VHDL-AMS model of the transmitter can be found on
the CD-ROM.

As for the receiver only the RF section of the transmitter is modeled.
Source and channel coding of the signal to be transmitted belong to
baseband digital signal processing and are not included in this simulation.
Specialized system simulators are available to develop this section.
Nevertheless, since we use the mixed-signal language VHDL-AMS for
modeling, the digital part of the circuit can be seamlessly integrated as
VHDL blocks into the overall simulation.

To demonstrate this procedure, a pseudorandom binary source is used as
the input signal. It is described completely in VHDL and can be used to
represent any baseband digital signal processing block in VHDL.

COMPLEX EXAMPLE: WLAN RECEIVER 211

9.4 Example Calibration

At this point of the design flow the initial specification of the receiver is
subdivided into basic building blocks. The respective behavioral models in
VHDL-AMS are basically developed from theory based on the system
specification. Further refinement is necessary in order to improve the
behavioral models in the way of accuracy and to fit them to circuit level
models.

In this section an algebraic equation is fitted to a chosen characteristic
that is extracted from a circuit level model. The equation can be used to
describe the behavioral model. This step introduces an abstraction to reduce
the simulation effort of the behavioral model compared to the circuit level
model. Simulation effort is determined by the simulation time and the
computational power that is required to execute the model. Furthermore the
behavioral model should not strongly deviate from the extracted
characteristic.

In the WLAN receiver model three amplifiers are specified, one low-
noise amplifier at the input and two baseband amplifiers (I- and Q-channel)
at the output of the receiver. The circuit level model lnaSimple is chosen
from the Cadence library. This model is assumed to be the circuit level
model of the baseband amplifiers. As an example characteristic the operating
voltage dependency of the power gain is chosen. The nominal operating
voltage of lnaSimple is 15 V. The input frequency is set to 1 MHz because
the input signal of the baseband amplifier is a downconverted OFDM signal.

The circuit level model lnaSimple is simulated using SpectreRF. The
power gain is plotted versus the operating voltage in a range from 0 V to
20 V. Figure 9-6 shows the simulation results.

Figure 9-6. Power gain versus operating voltage of lnaSimple

212 Chapter 9

The characteristic obtained can be handled by several curve fitting
algorithms provided by tools like MATLAB or Mathematica. In this case
MATLAB is used. The MATLAB plot in Figure 9-7 shows the characteristic
obtained from the circuit level model.

Figure 9-7. Power gain versus operating voltage in MATLAB

The range of the operating voltage that is used for fitting by a polynomial
equation must be selected carefully. Close fitting of the complete curve
results in a high degree of the polynomial and consequently leads to a high
simulation effort of the model. Therefore only the region (12 V to 18 V)
around the operating point of 15 V is chosen. In this region the dependency
of the power gain from the operating voltage is linearly approximated. A
strong deviation from the linear region can only be seen in the circuit
characteristic below 4 V, which is far from the nominal operation point of
15 V. The resulting deviation from the circuit model must be considered
with respect to the required accuracy of the relevant parameter in each
individual case. The accuracy can be enhanced by increasing the degree of
the polynomial or by using a different function for the algebraic equation.

MATLAB provides the function polyfit(x,y,n) where x and y are the data
vectors of the plot (operating voltage and power gain) and n is the degree of
the polynomial. Because the region considered is assumed to be linear, n is
set to 1. This is also called linear regression. The output of the polyfit
function is a row vector of the polynomial coefficients, in this case:

0.1525 14.8412p

COMPLEX EXAMPLE: WLAN RECEIVER 213

Thus, a dependency of the power gain from the operating voltage of
approximately 6.5 dB/V is observed. The algebraic equation to describe the
chosen characteristic for the behavioral model is

0.1525 14.8412y x

where y is the power gain and x is the operating voltage. For the
behavioral model the equation is valid in the range 12V 18Vx .

Outside of this region the behavioral model can still be used, but it will
not reproduce the circuit behavior. A warning could be issued if the model
range has been exceeded.

The statistic R-square is a measure for the accuracy of the model fit and
represents the variation of the data. R-square can be determined easily by the
Curve Fitting Toolbox that is provided by MATLAB. The range of R-square
is between 0 and 1, with the latter value representing a perfect fit. In the
example R-square is 0.9906 for the considered linear region which indicates
a suitable fitting of the behavioral model to the circuit level model.

The MATLAB plot in Figure 9-8 shows the original curve and the fitted
curve in a single window.

Figure 9-8. Linear regression of the operating point region

214 Chapter 9

9.5 Example Verification

Verification of the WLAN receiver example is done using hierarchical
composition of the modeled subblocks in terms of a bottom-up verification.
Usually the subblock models have been individually calibrated and
optimized using circuit models. After combining the optimized subblock
models the overall system behavior is simulated. It is then possible to
analyze whether the overall design goals and performance measures are met,
bearing in mind the limited accuracy of the behavioral models.

For system level verification of the receiver design example we use the
behavioral models that were described in Section 9.3. A system level test-
bench for the receiver should include:

Complete system level model for the design under test (DUT)
Signal source to stimulate the DUT
Signal processing block to adapt the source signal to the needs of the
DUT
Analysis blocks

Once a test-bench with these elements is established individual blocks
can be replaced by more accurate ones or by circuit level implementations of
the same block. Thereby the influence of this block on system level
performance measures can be explored without needing to simulate the
whole design at circuit level.

The treated receiver design example is completed with a binary source, a
digital-to-analog converter (DAC) and the test transmitter to form the system
level test-bench. Strictly speaking this is a pure RF test-bench since all
baseband signal processing is neglected. Figure 9-9 shows the test-bench
configuration to verify the receiver design example.

Figure 9-9. Testbench for system level verification

For the sake of simplicity only the in-phase channel (I) of the
transmission system is considered in this example. A pseudorandom binary

COMPLEX EXAMPLE: WLAN RECEIVER 215

source (PRBS) supplies the input signal. The bit_vector-output of the PRBS
is fed into a digital-to-analog converter (DAC) from the RF library yielding
a time continuous representation of the binary sequence. This signal is to be
transmitted over the channel. The simple transmitter model introduced
modulates the signal on the carrier. The channel itself is, for the purpose of
this example, not modeled, that is, it is an ideal channel without any loss.
The receiver is used as described earlier.

The VHDL-AMS model of the complete test-bench can be found on the
CD-ROM.

Only a few bits are simulated since the simulation takes a very long time.
This is mainly because of the very high carrier frequency of 5.2 GHz. This
frequency has to be simulated because we use real passband models instead
of complex baseband representations. For overall system parameters like bit
error rate estimation, complex baseband models are better-suited (see
Section 4.3) whereas our passband simulation allows us to study harmonic
distortion due to intermodulation at the nonlinearities.

Figure 9-10. Transmission of random bits over the RF channel

216 Chapter 9

Figure 9-10 shows the simulation of the receiver design example in the
testbench. The signal waveforms are shown in the time domain. 20 Bits were
simulated at a rate of 5 kBit/s. The simulation took almost 30 minutes to
complete over 2 µs real-time on a Sun Ultra 250 with a 400 MHz clock. A
complete circuit level passband simulation of the same system would take
days to simulate.

The binary sequence is generated by a linear feedback shift register
(LFSR) of length 3n , that is, it has a period of 32 1 7 . At the input of
the transmitter (node n_i_in) the signal is already converted into the analog
domain. It has a power level of

 () 30dBmp n_i_in dBm

which corresponds to

 () 10ppv n_i_in mV

at R=50 according to the formula

()
10() 10 2

dBmp n_i_in

ppv n_i_in R

The signal on the channel (node n_rf) has a frequency of 5.2 GHz and
cannot be resolved in this diagram.

After the receiver the waveform n_i is observed. As shown in the time
domain representation (Figure 9-10) the original binary pattern can be
reconstructed after transmission. The whole transmission system inserts a
time delay of approximately 0.1 µs. A subsequent baseband section has to
estimate this delay in order to sample the signal correctly in an analog-to-
digital converter (ADC). The output amplitude of

 () 0.889ppv n_i V

nearly matches the specified value of 1 Vpp. The difference occurs
because of a phase error in the receiver, which leads to spurious components
of the in-phase signal in the quadrature path.

The method of processing the signal in the receiver can also be displayed
in the frequency domain. Therefore an FFT was performed with input,
output, and intermediate signals, as shown in Figure 9-11.

The input frequency (node n_rf) lies at 5.2 GHz. Both downconverter
stages have the same LO frequency of 2.6 GHz applied, which is half of the

COMPLEX EXAMPLE: WLAN RECEIVER 217

carrier frequency. Thus after the first mixer stage the signal n_if can be
found at both 2.6 GHz and 7.8 GHz. The second mixer stage converts the
signal down to baseband (n_bbi). Other (partly mirrored) images of the
required signal lie at 5.2 GHz and 6 GHz. These images are rejected by the
bandpass filter at the receiver output. Therefore, the output signal n_i only
contains the required baseband component. It can be observed that the gain
of the amplifiers and the mixers raise both the signal and the noise level.

Figure 9-11. Signal transformation in the frequency domain

Chapter 10

MODELING OF ANALOG BLOCKS IN
VERILOG-A

10. MODELING OF ANALOG BLOCKS IN

VERILOG-A

10.1 Introduction

This chapter deals with the modeling of analog blocks and systems in
Verilog-A and their simulation in the Cadence Analog Design Environment
(ADE).

Verilog-A is a high-level hardware description language standard which
is a subset of the mixed-signal modeling language Verilog-AMS. It is used
to describe the structure and behavior of analog systems. The analog
statements of Verilog-A can be used to describe a wide range of systems,
such as electrical, mechanical, fluid dynamic, and thermodynamic systems.
To specify the behavior of individual modules, mathematical relationships
between their input and output signals can be defined.

The simulator Spectre is the analog circuit simulation tool from Cadence
ADE. The RF option, SpectreRF [Cad03a], provides specific simulation
algorithms for the analysis and characterization of RF components, which
may include frequency conversion effects. The components can be described
at circuit level using netlists or schematics. Behavioral models can be used
to describe higher levels of abstraction of the design. Therefore the
simulation can be accelerated to quickly evaluate different system
architectures. Spectre supports two behavioral modeling languages:

SpectreHDL, which is a Cadence specific non-standard language
Verilog-A, which has been standardized by OVI (Open Verilog
International)

220 Chapter 10

Because of the standardization and the interoperability, Verilog-A is
widely used. Section 10.2 is dedicated to the development of behavioral
models in Verilog-A. Section 10.3 provides an overview of the behavioral
models of the Cadence library rfLib. Their usage is illustrated on the
simulation of a WLAN receiver in Section 10.4.

10.2 Writing Custom Behavioral Models

This section describes the development of user-defined behavioral
models. In the first part a short overview of Verilog-A is given with respect
to the requirements of RF modeling. An example shows the implementation
and simulation of an RF model using Verilog-A, Cadence ADE, and
SpectreRF. In the last section a tutorial is introduced where the reader can
learn how to create a behavioral model in Verilog-A.

10.2.1 Verilog-A principles

Verilog-A (see [Acc04] and [Cad03c]) uses two different approaches to
describe analog behavior. There are conservative systems (Kirchhoff’s laws)
and nonconservative systems (signal flow). Both systems can be described in
terms of mathematical equations or by interconnected systems. These
concepts can be realized by means of ports, nodes and branches.
Furthermore the description of time continuing systems using differential
algebraic equations (DAE) is possible.

Conservative systems always represent two quantities, namely potential
and flow natures. In the electrical domain this leads to the representation of
voltages and currents for example. Signal flow systems only represent
potential natures. Natures define the characteristics of physical dimensions,
tolerance requirements and access functions. The disciplines in Verilog-A
correspond to the natures in VHDL-AMS. Verilog-A contains operators for
the modeling of noise and the modeling of frequency and transfer functions.

Table 10-1 provides a short outline of functions which are available in
Verilog-A. Among other application areas they are useful to model the
behavior of high-frequency systems.

Table 10-1. Verilog-A functions useful for RF modeling
Modeling task Verilog-A functions
Frequency and transfer functions laplace_zp, laplace_zd, laplace_np, laplace_nd,

zi_zp, zi_zd, zi_np, zi_nd, delay, idt, ddt
Large-signal noise $dist_normal, $rdist_normal, …

(a total of 7 different distributions)
Small-signal noise white_noise, flicker_noise, noise_table
Event detection cross, timer

MODELING OF ANALOG BLOCKS IN VERILOG-A 221

The basis for behavioral and structural descriptions are modules. The
module lp_filter (see listing below) shows the basic structure of a Verilog-A
module. Port and signal declarations are used to describe the interface of the
module. In the parameter declaration electrical or other physical values are
defined. Other declaration types like real or integer are also possible. The
underlying description of the module behavior is done with a structural or a
behavioral part. All description types, system types, and disciplines can be
combined in a single Verilog-A model.

module lp_filter (sig1, sig2, gnd);
inout sig1, sig2, gnd;
electrical sig1, sig2, gnd;
parameter real R = 1k;
parameter real C = 1u;

 // structural description, see lp_filter_str
 // behavioral description, see lp_filter_beh
endmodule

In a structural description several modules can be instantiated and
connected. In this case the design becomes hierarchical and facilitates the
top-down design process. The module lp_filter_str shows the structural
description of a lowpass filter, where the modules of the resistor and the
capacitor are instantiated.

module lp_filter_str (sig1, sig2, gnd);
inout sig1, sig2, gnd;
electrical sig1, sig2, gnd;

 res res_inst (.r_in(sig1), .r_out(sig2));
 cap cap_inst (.c_in(sig2), .c_out(gnd));
endmodule

A behavioral description contains the mathematical relationships between
input signals, output signals and parameters. For that purpose Verilog-A
contains a rich set of analog operators and functions. The module
lp_filter_beh shows the behavioral description of the lowpass filter using the
ddt time derivative operator.

module lp_filter_beh (sig1, sig2, gnd);
inout sig1, sig2, gnd;
electrical sig1, sig2, gnd;
parameter real R = 1k;
parameter real C = 1u

 analog begin
 I(sig1, sig2) <+ V(sig1, sig2)/R;
 I(sig2, gnd) <+ ddt(V(sig2, gnd)*C);
 end
endmodule

222 Chapter 10

This section does not provide a complete overview of Verilog-A.
Examples corresponding to the different assignment and control statements,
data types or lexical conventions are omitted here. The following sections
describe more comprehensive examples and describe Verilog-A in a more
detailed manner.

10.2.2 LNA modeling example

In this section analog behavioral modeling with Verilog-A and the
Cadence ADE is shown at an example of a low-noise amplifier (LNA). The
functional description and important main characteristics are already
described in Section 7.3.1 as a VHDL-AMS model.

Verilog-A model of a LNA

The VHDL-AMS model is transferred to Verilog-A and additionally
includes the modeling of noise. A few structural and mathematical
deviations were also made. Table 10-2 gives a short overview of the model
parameters. The model parameter IP3 can be directly calculated with special
RF analyses and postprocessing capabilities provided by SpectreRF.

Table 10-2. LNA parameters
Parameters Unit Value Description
gain dB 6.8 Power gain
ip3 dBm 1.9 3rd order intercept point
fnoise dB 5 Noise figure
fg Hz 10M 3dB frequency
rin 50 Input resistance
rout 50 Output resistance

Model implementation

Since this model implementation of the LNA is derived from the VHDL-
AMS model, a repeated description is omitted. A more detailed description
of a Verilog-A module can be found in the Section 10.2.3 where a mixer is
implemented.

`include "constants.h"
`include "discipline.h"

module amp (in, out, gnd);

inout in, out, gnd;
electrical in, out, gnd;
electrical p1, p2, p3;

MODELING OF ANALOG BLOCKS IN VERILOG-A 223

parameter real gain = 6.8; // Gain in dB
parameter real rin = 50; // Input resistance
parameter real rout = 50; // Output resistance
parameter real fg = 10M; // 3 dB frequency
parameter real fnoise = 5; // Noise figure in dB
parameter real ip3 = 1.9; // IP3 in dBm

real gain_lin, ip3_lin, noise, a, b, inmax, outmax;

 analog begin
 @ (initial_step) begin
 gain_lin = pow (10, gain/10);
 ip3_lin = sqrt ((pow (10, ip3/10)) * 2*rin*0.001);
 noise = 4*`P_K*(pow(10,fnoise/10)-1)*$temperature*rin;
 a = sqrt((gain_lin*rout)/rin);
 b = (4*a)/(3*ip3_lin*ip3_lin);
 inmax = sqrt(a/(3*b));
 outmax = (2*a*inmax)/3;
 end

 // noise source
 V(in,p1) <+ white_noise (noise, "noise");

 // input resistance
 V(p1,gnd) <+ I(p1,gnd) * rin;

 // frequency response
 V(p2,gnd) <+ laplace_nd(V(p1,gnd), {1}, {1, 1/`M_TWO_PI/fg});

 // nonlinear characteristic
if (abs(V(p2,gnd)) < inmax)

 V(p3,gnd) <+ 2 * (a - b*V(p2,gnd)*V(p2,gnd)) * V(p2,gnd);
else if (V(p2,gnd) > 0)

 V(p3,gnd) <+ 2 * outmax;
 else
 V(p3,gnd) <+ -2 * outmax;

 // output resistance
 V(out,p3) <+ I(out,p3) * rout;

 end

endmodule

Simulation results

This part describes the simulation results of the LNA model. Most of the
analyses (for example DC analysis, AC analysis) are conventional analyses
used in Spectre. In contrast the IP3 and the 1dB CP measurements are
executed by RF analyses providing the required postprocessing of simulation
data.

224 Chapter 10

Figure 10-1 shows the transient simulation results. The input and the
output signals are plotted in the time domain. The input signal is amplified
by the model parameter gain.

Figure 10-1. Transient response of the LNA

Figure 10-2 depicts the nonlinearities modeled in the corresponding
section of the Verilog-A model. The gain of the LNA is limited by the
parameter outmax which represents an internal variable.

Figure 10-2. DC response of the LNA

The frequency response with the corner frequency fg = 10 MHz is
modeled using the laplace_nd operator and is performed by an AC analysis.
In Figure 10-3 the cross marker A labels the fg and 3 dB loss. The gain of
6.8 dB can be read off the graph. Instead of the conventional AC analysis the
Periodic AC (PAC) analysis may be used for the LNA. The AC analysis
would be unsuitable for the mixer due to the frequency conversion effects.

MODELING OF ANALOG BLOCKS IN VERILOG-A 225

Figure 10-3. AC response of the LNA

Figure 10-4 shows the noise figure (NF) of the model according to the
parameter fnoise = 5 dB. The noise figure is the ratio of SNRin to SNRout and
is usually expressed in terms of dB. Using SpectreRF the noise figure could
be calculated with the PNoise analysis, which is a periodic small-signal
analysis. In circuit level models the noise figure depends on the frequency.

Figure 10-4. Noise figure of the LNA

The next LNA parameter is the 3rd order Intercept Point (IP3). The
measurement results are achieved by a combined PSS/PAC analysis using
two tones of 1 kHz and 1.1 kHz. Figure 10-5 depicts the IP3 of
approximately 1.9 dBm. A detailed explanation of the IP3 can be found in
Section 11.2.

226 Chapter 10

Figure 10-5. IP3 of the LNA

Figure 10-6 depicts the 1dB Compression Point (1dB CP) which has a
distance of approximately 10 dBm to the IP3. The 1dB CP is the point where
the output power falls 1 dB below the 1dB/dB curve. Beyond the 1dB CP the
model is in the saturation region.

Figure 10-6. 1dB CP of the LNA

10.2.3 Creating a Verilog-A model

Objective

A Verilog-A model of a mixer shall be created. The inputs are p_rf (RF
signal), p_lo (local oscillator signal) and the output is p_if (intermediate
frequency signal). Important parameters of the mixer are:

Port impedances each of 50
Gain of 0 dB
Corner frequency of 1 GHz
Noise figure of 5 dB
IP3 of -30 dBm

MODELING OF ANALOG BLOCKS IN VERILOG-A 227

The following formulas are used to describe the behavior of the model.
They are partially described in Section 7.3.1.

Conversion of logarithmic power gain into a linear power gain:

gain
10gain_lin 10

Conversion of the logarithmic 3rd order intercept point (IP3) into a
linear IP3 (refers to a single-tone signal), r_rf specifies the input
impedance:

30ip3
10ip3_lin 10 2 r_rf

The small-signal noise is calculated by the following relationship using
the Boltzmann constant k, the temperature T, and the variable fnoise
which specifies the value of the noise figure:

fnoise
10noise 4 k (10 1) T r_rf

The nonlinearity is modeled using the depicted characteristic which
includes 3rd order effects:

3
out in inv a v b v

The values a and b represent the coefficients of the nonlinear
characteristic, r_if specifies the output impedance:

r_ifa gain_lin
r_rf 2

4 ab
3 ip3_lin

Frequency response which is implemented in numerator-denominator
form:

1() 11
g

H s
s

228 Chapter 10

Proposal for solution

The head of the mixer module includes the interface declarations (for
example inout ports of type electrical). For the internal usage electrical
signals are additionally declared. All parameters for the mathematical
description and variables are defined next.

`include "constants.h"
`include "discipline.h"

module mixer (rf_in, lo_in, if_out, gnd);

inout rf_in, lo_in, if_out, gnd;
electrical rf_in, lo_in, if_out, gnd;
electrical p1, p2, p3, p4;

parameter real gain = 0; // Gain in dB
parameter real r_rf = 50; // Input resistance RF Input
parameter real r_lo = 50; // Input resistance LO Input
parameter real r_if = 50; // Output resistance IF Output
parameter real fg = 1G; // 3dB frequency
parameter real fnoise = 5; // Noise figure in dB
parameter real ip3 = -30; // IP3 in dBm

real gain_lin, ip3_lin, noise, a, b, inmax, outmax;

The parameters can also be changed in the properties form of the
modules symbol view, which can be generated after Verilog-A creation in
Cadence ADE.

The keyword analog introduces the analog section of Verilog-A
modules. It defines the behavior as a procedural sequence of different
statement types (see also [Acc04]) and is executed at every simulation point.
The keyword initial_step generates a global event at the first simulation
point in an analysis. In the listing necessary transformations are made to
precalculate the specified parameters of the mixer into an internal
representation. Logarithmic values are transformed into linear values for
example. Here, the given formulas are used.

analog begin
 @ (initial_step) begin
 gain_lin = pow (10, gain/10);
 ip3_lin = sqrt (pow (10, (ip3/10)) * 2*r_rf*0.001);
 noise = 4*`P_K*(pow(10,fnoise/10)-1)*$temperature*r_rf;
 a = sqrt((gain_lin*r_if)/r_rf);
 b = (4*a)/(3*ip3_lin*ip3_lin);
 inmax = sqrt(a/(3*b));
 outmax = (2*a*inmax)/3;
 end

After the initial_step the behavior of the model can be described. These
are for example noise, frequency response, and nonlinear characteristics.

MODELING OF ANALOG BLOCKS IN VERILOG-A 229

The characteristics of the mixer are encapsulated into subblocks and
connected within the Verilog-A module. Figure 10-7 gives an overview of
the model.

Figure 10-7. Overview of the mixer model

The input and output resistances are modeled using current-voltage
relationships. The noise source is modeled using the white_noise function
which is provided by Verilog-A. This function is only active during small-
signal analyses, otherwise it returns zero. The frequency response is
described with the laplace_nd function. Nonlinearity is modeled using the
introduced characteristic and the limitation of input and output amplitudes.
The simple model of a Gilbert cell multiplies the signals p1 and lo_in.
Compared to the LNA described in Section 10.2.2 only the second input
lo_in and the model of the Gilbert cell are added.

 // noise source
 V(rf_in,p1) <+ white_noise (noise, "noise");

 // input resistance
 V(p1,gnd) <+ I(p1,gnd) * r_rf;
 V(lo_in,gnd) <+ I(lo_in,gnd) * r_lo;

 // Gilbert cell
 V(p2,gnd) <+ V(p1,gnd) * V(lo_in,gnd);

 // frequency response
 V(p3,gnd) <+ laplace_nd(V(p2,gnd), {1}, {1, 1/`M_TWO_PI/fg});

 // nonlinear characteristic
if (abs(V(p3,gnd)) < inmax)

 V(p4,gnd) <+ 2 * (a - b*V(p3,gnd)*V(p3,gnd)) * V(p3,gnd);
else if (V(p2,gnd) > 0)

 V(p4,gnd) <+ 2 * outmax;
 else
 V(p4,gnd) <+ -2 * outmax;

 // output resistance
 V(if_out,p4) <+ I(if_out,p4) * r_if;

 end

endmodule

230 Chapter 10

Simulation results

With the following simulation examples the functionality of selected
model characteristics are verified.

Figure 10-8 shows the frequency translation of the input signal
(900 MHz, -50 dBm) according to the local oscillator (LO) signal (1 GHz,
-10 dBm). The IF output shows the expected output frequencies (100 MHz,
-76 dBm and 1.9 GHz, -83 dBm). For simulation the periodic steady state
(PSS) analysis is used.

Figure 10-8. Frequency translation

Figure 10-9 depicts the conversion gain (-6 dB) and the 3dB corner
frequency (1 GHz) of the mixer. A strong LO signal of 10 dBm, which is
equivalent to 1 V at 50 , is used in this combined PSS/PXF (PXF, Periodic
Transfer Function) analysis. Since the conversion gain of this mixer also
depends on LO power, the chosen value of 1 V neglects this effect.
Furthermore the conversion gain originates from the signal split into
downconversion and upconversion.

MODELING OF ANALOG BLOCKS IN VERILOG-A 231

Figure 10-9. Conversion gain and 3 dB frequency

10.3 Overview of the Cadence Model Library rfLib

The modeling of systems and components can be simplified by using
existing model libraries. To meet the aspects of reuse Cadence provides a
number of libraries containing analog behavioral models, which can be
applied especially in a top-down design flow. The library rfLib provides
models dedicated to RF system design [Cad03a].

An overview of the rfLib is given in this section, subdivided into three
parts. The first part of this section contains models of the most common RF
building blocks used for top-down design. They can be building blocks for
complex RF systems or executable specifications at the behavioral level. The
models are described in Verilog-A and can be inserted into regular RF
circuits for simulation. The required block parameters are translated into
internal coefficients and equations that describe the relations between the
voltages and currents at the connecting nodes.

Figure 10-10. Top-down design elements

232 Chapter 10

Figure 10-10 shows several top-down design elements: filters, balun,
low-noise amplifier (LNA), mixer, power amplifier (PA), oscillator,
quadrature oscillator, and phase shifter.

Filter

Filter properties are specified in the frequency domain. Lowpass,
highpass, bandpass and bandstop filters are implemented, and each can be a
Butterworth or Chebyshev type filter.

Balun

A balun is used in circuits that require single to differential signal
transformation. Although in reality a passive network is used to realize the
balun, this implementation employs a three-port network.

LNA

Low-noise amplifiers are commonly used in the receiver design to
amplify the signal with a low noise figure. A typical low-noise amplifier has
three sets of parameters: linear model, nonlinear model, and noise model
parameters.

Mixer

Mixers are used for frequency translation in RF circuits. Basically a
mixer has the following three sets of parameters: time-varying linear model,
nonlinear model, and noise model parameters. The rfLib model describes the
typical behavior of integrated mixers. The LO signal switches the input
signal on and off. When the LO power exceeds the specified limit it is
effectively clipped off.

PA

Power amplifiers are used in RF transmitters to achieve the high power
output levels. The power amplifier model differs from the LNA in having
greater power delivery capabilities with less stress on matching capabilities.

Oscillator

This model describes the essential information for an oscillator or local
power source in the Verilog-A language. Among other important issues,
phase noise can be modeled in the small-signal domain.

MODELING OF ANALOG BLOCKS IN VERILOG-A 233

Quadrature oscillator

This oscillator is used in quadrature receiver design. A phase shifter is
ordinarily used to generate the quadrature signal from one signal source.
However, it is difficult to implement a phase shifter into a wide band model.
A quadrature signal consists of two signals with a 90° phase difference but
with identical noise and amplitude.

Phase shifter

In digital RF system designs the quadrature signal processing involves
the phase splitting of high-frequency signals. The most common use of such
components is to generate two signals that have a 90° phase difference based
on one signal source.

Most of the itemized models are provided in two different versions for
passband and baseband signal handling. In this second part of the section
the baseband principle and the equivalent baseband models are briefly
introduced.

The complex baseband simulation is a commonly used technique in
system level simulation. The principle of complex baseband simulation is
presented in Section 4.3. Starting with the release IC 4.4.6 Cadence also
provides analog behavioral models for complex baseband signals.

As shown in Figure 10-11 each input and output signal of a baseband
model has two components (pins) in contrast to a passband model. They
represent a complex valued signal. It can be interpreted as amplitude and
phase of a modulated carrier transformed from polar to rectangular
coordinates. The inphase component is represented by the signal I and the
quadrature component is represented by the signal Q. The transformation of
a passband signal to its equivalent baseband representation is also described
in Section 4.3.

Figure 10-11. Equivalent baseband model

234 Chapter 10

Complex baseband models can be used during the specification process
of the RF subsystem to reduce the simulation time. Since these models deal
with complex valued input and output signals, they cannot be connected
directly to circuit level block models. If baseband models are connected to
circuit level or behavioral passband models appropriate signal converters
(for example an IQ-modulator) must be inserted. The signal converters
combine the baseband signal with the specified carrier frequency or vice
versa. Thereby the signal representation changes.

Figure 10-12. BB_testbench circuit

Figure 10-12 shows two equivalent circuits, the first modeled using
passband models and the second using equivalent baseband models. The
same baseband signal drives both circuits. In the passband circuit the
baseband signals are first mixed up with the passband using the model
IQ_modulator. In the equivalent baseband model IQ_mod_BB only
modulation and mixing effects like nonlinearities are added to the signal.

This last part of this section describes elements used in test-benches
representing sources and sinks for system simulation. Three different sources
of digital modulated signals are provided to test RF circuits with practically
used input signals. The eye-diagram generator provides a special signal plot,
which allows us to visualize the quality of digital modulated signals. The
library rfLib contains the following elements:

CDMA Signal Source (CDMA_reverse_xmit)

The CDMA (Code Division Multiple Access) signal source generates a
reverse-link (handset-to-base-station) signal conforming to the IS-95
standard. The modulation is an offset QPSK (Quadrature Phase Shift

MODELING OF ANALOG BLOCKS IN VERILOG-A 235

Keying) with a symbol rate of 1.2288 Mega-symbols/s and a sample rate of
4.9152 Mega-samples/s. Two separate 16-bit pseudo-noise generators
generate the I and Q spreading sequences operating at the sample rate. Each
sequence is filtered with a 48-tap FIR filter.

GSM Signal Source (GSM-xmtr)

Using GMSK (Gaussian Minimum Shift Keying) modulation the GSM
(Group Special Mobile) source generates a signal conforming to the GSM
mobile communication standard. The first part of the GSM signal source is a
random binary generator with a bit rate of 270833.333 bits/s. The following
FIR filter is a Gaussian filter implemented with 32 taps and signal gain. In
the next step the signal is integrated using a modulo 2 integrator and split
into I and Q channels.

/4-DQPSK Signal Source (pi_over4_dqpsk)

The /4 differential QPSK baseband signal source generates random
binary data with a bit rate of 48.6 kbits/s. The data is converted from serial
to parallel (2 bits). A phase state coder maps pairs of bits to phase shift and
the following differential encoder shifts the symbol phase. Next the I and Q
channels are filtered. The FIR filter used is implemented with 64 taps.

The constellation diagram in Figure 10-13 depicts how the differential
encoded binary signal is mapped to the carrier phase.

0001

11 10

I

Q

Figure 10-13. Constellation diagram

Eye-diagram generator

The eye-diagram is a widely used plot format to evaluate the quality of
digital modulated signals. The signals are plotted over a period of an integer
multiple of the symbol duration. This functionality is realized in the

236 Chapter 10

waveform viewers of system level simulators as postprocessing. To provide
such functionality in the Cadence Analog Artist waveform viewer an
appropriate generator is delivered. The input to the eye-diagram generator is
the I or Q component of a complex baseband signal. The eye-diagram
generator provides two outputs labeled “y-axis” and “x-axis”. The eye-
diagram is generated by plotting the y-axis output against the x-axis output
in the Analog Artist waveform viewer. An example of an eye-diagram is
shown in Figure 10-14. To generate eye-diagrams the transient simulation
must be used.

Figure 10-14. Eye-diagram

10.4 Modeling and Simulation of a WLAN Receiver

This design example is based on a complex system level architecture for
a wireless high-speed data transmission conforming to the WLAN standard
IEEE 802.11a. It has been simplified to concentrate on the main parameters
and to keep the example practical. Figure 10-15 shows the WLAN receiver
corresponding to a double conversion receiver architecture.

This example is the same as that used in Chapter 9. The input signal and
block specification are described there. While it is treated there extensively
at system level, we focus here on circuit level simulations.

The task of the WLAN receiver is to receive a broadband signal at radio
frequency from the antenna and to transform the signal (for example in
frequency, power and phase) for digital baseband processing. The incoming
signal is assumed to be an OFDM (Orthogonal Frequency Division
Multiplex) signal. It is first amplified by an LNA and then downconverted to
baseband at two mixer stages working at the same local oscillator (LO)
frequency.

MODELING OF ANALOG BLOCKS IN VERILOG-A 237

Figure 10-15. Block diagram of the WLAN receiver

Between the mixer stages the signal is split into I and Q signals using a
90° phase shifter for oscillator frequency. After that the required channel is
filtered by a bandpass filter and amplified by a baseband amplifier.

10.4.1 WLAN receiver modeling using Cadence libraries

Figure 10-16 shows the realized WLAN receiver model, which basically
consists of RF components located in the rfLib library [Cad03a]. The models
used like LNA, mixer, filter or oscillator are already introduced in Section
10.3. Further elements of the receiver are sources and sinks using psin and
gnd elements provided by the analogLib library.

In order to simplify the receiver model and its simulation, the specified
PLL is not realized. Instead an oscillator producing a fixed frequency of
2.6 GHz and phase noise is used to drive the first mixer and the phase
shifter. The phase shifter splits the oscillator signal and feeds both mixers of
the second stage with a phase difference of 90°.

Figure 10-16. WLAN receiver modeled using Cadence ADE

The specified bandpass filter and baseband amplifier (AGC) are replaced
by a lowpass filter and an LNA with fixed gain. The capacitors (analogLib)

238 Chapter 10

in front of all the mixer blocks are useful to filter out DC offsets and flicker
noise (1/f) because of their highpass behavior. The value of each capacitor is
chosen as 3 pF, which results in a 3 dB corner frequency of 1 GHz. In the
following section the most important parameters of all components are
given. Regarding all applied models, it has to be mentioned that unspecified
block parameters (for example LNA: return loss, isolation) are set to
reasonable values. They also influence the simulation results. The
specification of all block parameters can be found in the Section 9.2.

LNA and BB Amp

Table 10-3 and Table 10-4 show the parameters for the LNA elements
used for the passband LNA and the baseband amplifiers. The gain of the
passband LNA is set to 20 dB (specification 5-20 dB), input impedance,
noise figure and IIP3 are set according to the specification.

Table 10-3. LNA parameters
Parameter Value
Noise Figure (dB) 2.5
Input referred IP3 (dBm) -5
Gain (dB) 20
Reverse isolation (dB) 100
Reference impedance of port 1 () 50
Reference impedance of port 2 () 50
Input return loss (dB) -100
Output return loss (dB) -100

Other parameters defined in the specification (for example 1dB CP) are
not part of the LNA model. The gains of the baseband amplifiers are set to
54 dB (specification 12-62 dB) which results in a receiver output power of
4 dBm. The input impedance and noise figure are also set according to the
specification.

Table 10-4. BB amp parameters
Parameter Value
Noise Figure (dB) 5
Input referred IP3 (dBm) -10
Gain (dB) 54
Reverse isolation (dB) 100
Reference impedance of port 1 () 50
Reference impedance of port 2 () 50
Input return loss (dB) -100
Output return loss (dB) -100

MODELING OF ANALOG BLOCKS IN VERILOG-A 239

Mixer

Table 10-5 shows the parameters of the mixer blocks. Input impedance,
gain, noise figure, IIP2 and IIP3 are set according to the specification. All
mixers work at the same LO frequency of 2.6 GHz. Unspecified parameters
of the model are the LO power and isolation values which are not itemized
in the table. The declaration of LO power is used to exclude the impact of
LO power on the gain of the mixer. The isolation values determine the
strength of signal transmission from one port to another one. For example
the transmission of phase noise from the oscillator to the first mixer output
can be influenced with LO to OUT isolation.

Table 10-5. Mixer parameters
Parameter Value
Gain (dB) 5
Input impedance () 50
Output impedance () 25 (50 in the second mixer stage)
Input impedance for LO () 100
Input referred IP2 (dBm) 20
Input referred IP3 (dBm) 5
SSB Noise Figure (dB) 10

Lowpass filter

For the specified signal characteristics an appropriate bandpass filter
model is difficult to realize. Therefore a 5th order Chebyshev lowpass filter
is used. The properties of the lowpass filter are shown in Table 10-6. The
input impedance and the corner frequency are set according to the
specification.

Table 10-6. Lowpass filter parameters
Parameter Value
Filter order 5
Input impedance () 50
Output impedance () 50
Corner frequency (Hz) 9M
Insertion loss (dB) 0

Oscillator

The parameters of the oscillator determine output frequency (2.6 GHz)
and signal power (-30 dBm) as well as several noise properties. The noise
parameters (for example phase noise) are used for small-signal noise
analysis. They can be seen in Table 10-7. Phase noise is a drawback of

240 Chapter 10

oscillators and PLLs which must not be neglected. Phase noise modeling and
simulation within transmission systems is an important task.

Table 10-7. Oscillator parameters
Parameter Value
Output frequency (Hz) 2.6G
Output power (dBm) -30
Output impedance () 50
Noise floor (dBc/Hz) -150
Frequency point f1 (Hz) 2M
Phase noise at f1 (dBc/Hz) -103
Corner frequency (Hz) 0

Phase shifter

Table 10-8 shows the properties of the phase shifter which combines a
shifter and a signal splitter. The operation frequency is set to 2.6 GHz.

Table 10-8. Phase shifter parameters
Parameter Value
Operating frequency (Hz) 2.6G
Internal resistance () 100

10.4.2 Simulation of the WLAN receiver

Frequency conversion

The depiction of the frequency conversion inside the WLAN receiver can
be realized using SpectreRF [Cad03a] with a Periodic Steady State (PSS)
analysis. This large-signal analysis uses harmonics of a determined beat
frequency (also known as PSS fundamental frequency) to calculate the
output signal. In the PSS setup the beat frequency can be calculated
automatically according to the available sources and their frequencies. For a
better visualization of the results a beat frequency of 50 MHz is chosen.
Figure 10-17 shows the results of the PSS simulation calculating 180
harmonics. The RF signal lies at 5.2 GHz with a power amplitude of -
76.5 dBm. The LO signal frequency is 2.6 GHz with a chosen amplitude of -
30 dBm. As already mentioned the impact of the LO power on the receiver
gain is neglected. The third part of the figure shows the signal at the first
mixer output, where the RF signal is mixed down to 2.6 GHz and amplified
by 24 dB. Another mixing product lies at 7.8 GHz but remains unconsidered.
The inphase output with an amplitude of about 4 dBm is shown last. This
DC signal is not filtered because only a lowpass filter is used in the receiver
model.

MODELING OF ANALOG BLOCKS IN VERILOG-A 241

Figure 10-17. Frequency conversion of the receiver

Conversion gain

The conversion gain can be simulated using PSS and a subsequent
Periodic Transfer Function (PXF) analysis. PXF is a small-signal analysis
which analyzes the frequency conversion over the whole receiver. The signal
contribution of all the inputs to one output is calculated. The beat frequency
for PSS and PXF analysis is set to 2.6 GHz according to RF = DC and LO =
2.6 GHz input signals. In the PXF settings the frequency sweep range is set
from 1 Hz to 300 MHz. The number of sidebands is set to three to generate
four curves at multiples of 2.6 GHz. As output voltage the net I_out (inphase
output) is chosen. Figure 10-18 first shows the contributions of all sidebands
to I_out and then the contribution of only the input signal (sidebands -2 and
2). The conversion gain of the receiver, from input to the inphase output, can

242 Chapter 10

be read off as approximately 80 dB. The defined 3dB corner frequency of
the lowpass filter (9 MHz) is situated at 5.209 MHz.

Figure 10-18. Conversion gain

Noise figure

The noise figure of the receiver model can be simulated using a PSS and
a small-signal PNoise analysis. Figure 10-19 shows the overall noise figure
at I_out with a measured value of 7.2 dB. The PSS settings are the same as
the conversion gain measurement using PSS/PXF analysis. In the PNoise
settings the frequency sweeps from -100 MHz to 100 MHz, which is a
reasonable area at the baseband output. The number of maximum sidebands
is set to 10 to ensure that enough sidebands contribute noise to the output.
The positive output node is set to I_out and the source is set to the RF input
port. The reference sideband is k = 2 according to |fin| = |fout + k · fpss|,
where fin = 5.1 GHz … 5.3 GHz, fout = -100 MHz … 100 MHz and fpss =
2.6 GHz.

MODELING OF ANALOG BLOCKS IN VERILOG-A 243

Figure 10-19. Noise figure

Phase noise

An important contribution to the noise of a system is the phase noise
which can be seen in Figure 10-20. An oscillator does not produce a signal
that runs exactly at one frequency. Small variations in the zero-crossings of
the signal (called jitter in the time domain) result in phase noise. A further
but marginal noise contribution of oscillators is the amplitude noise, which
indicates small variations in the signal amplitude.

Figure 10-20. Phase noise

244 Chapter 10

1dB Compression Point (input referred)

The input referred 1dB Compression Point (1dB CP) is the value of the
input power where the gain of the component is 1dB below the ideal
1dB/1dB projection. This point characterizes the region of input power
where the output power is compressed.

The measurement is performed by a swept PSS, which means a PSS
analysis sweeping a variable or a parameter, in this case the input power
over a defined range. The input power range used for simulation of the
WLAN receiver spreads from -80 dBm up to -10 dBm. After simulation the
CP is calculated applying the postprocessing function Compression Point in
the PSS results form. Figure 10-21 shows the 1dB CP measured at the
inphase output.

Figure 10-21. 1dB Compression Point

Nonlinearity and IP2

The 2nd order Intercept Point (IP2) is a measurement often used to
characterize the nonlinearity of mixers. It is comparable to the IP3, the main
difference can be seen in the frequencies which are applied to construct the
intercept point. The used 3rd order frequencies of the IP3 are adjacent to the
1st order frequencies whereas the 2nd order frequencies of the IP2 lie
outside of the band. Figure 10-22 clarifies the context at the first LNA. A
closer description of the IP3 can be found in Section 11.2.

IP2 is the value of input power where the extrapolated 2nd order
sideband crosses the extrapolated output signal of the fundamental (1st
order) frequency. Two signals f1 and f2 are used to cause intermodulation
distortion and to create intermodulation products. For an IP2 measurement
one of the 2nd order intermodulation products f1 - f2 or f1 + f2 is necessary.

MODELING OF ANALOG BLOCKS IN VERILOG-A 245

IP2 measurement can be performed using a combined swept PSS/PAC
(Periodic AC) or only a swept PSS analysis.

Figure 10-22. Distortion due to nonlinearity

For an exemplary measurement of IP2 a single mixer model (rfLib) is
used. The model and the corresponding signal sources and sinks are depicted
in Figure 10-23.

Figure 10-23. Mixer test-bench

246 Chapter 10

Figure 10-24 shows the simulation results of the IP2 measurement. The
input power is swept over a defined range between -60 dBm and 40 dBm.
The extrapolated 2nd order harmonic crosses the extrapolated 1st order
harmonic at an input power level of 19.9 dBm according to the specified
parameter of 20 dBm. This intersection point is called input referred IP2.

The used input frequencies are f1 = 5.2 GHz flo = 2 GHz. For the
measurement the corresponding frequency pair f1 - flo and 2 · (f1 - flo) is
chosen.

Figure 10-24. IP2 of the mixer

Chapter 11

CHARACTERIZATION FOR BOTTOM-UP
VERIFICATION

11. CHARACTERIZATION FOR BOTTOM-UP

VERIFICATION

11.1 Concept of Characterization

Characterization can be considered as the manual or automated
determination of characteristics and parameters of a component. A
component which is characterized is referred to as a Design Under Test
(DUT). In the case of characterization by simulation it is referred to as a
DUT model. Within a design flow a component may be a subsystem (for
example mixer or LNA) of the communication system. Characterization can
be done from:

Measurement of manufactured components
Simulation of component models (for example circuit level descriptions)

Figure 11-1. DUT within a testbench

248 Chapter 11

For a characterization the DUT has to be inserted in a testbench (Figure
11-1). The testbench provides the stimuli (analog or digital signal sources) to
the input ports and the measurements of the DUT output signals. For a
complete characterization of a DUT a set of measurements with different
stimuli may be necessary. Additional postprocessing is performed to
compute the parameters of the DUT from the measured data.

Characterization based on simulation is described in the following
sections. Examples show the development of testbenches and control scripts
which allow the automation of simulation and postprocessing.

11.2 RF Characteristics and Parameters

Characteristics and parameters are extracted to document components
and to parameterize behavioral models. Additionally, characteristics can be
used for the generation of behavioral models which is explained shortly in
Section 11.3. One main difference between parameters (for example 1dB
CP) and characteristics (for example AM/AM conversion) is the fact that
parameters are often parts of mathematical relationships whereas
characteristics may represent a mathematical relationship. Depending on its
step size a characteristic provides higher accuracy during representation of
circuit properties. Characteristics can be stored in tables and may be
multidimensional. Examples of important characteristics are depicted below.

The AM/AM conversion represents the dependency of the output signal
power on the input signal power. The gain can be read off in the linear area
of the curve. In the area of saturation the output power is compressed and the
gain therefore decreases. The AM/AM conversion curve is the base for the
measurement of the 1dB CP (Figure 11-2). For the extraction of this curve a
periodic steady state (PSS) analysis can be used, where the input power is
swept.

Figure 11-2. AM/AM conversion

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 249

In the saturation area of RF components the phase of the input signal is
often shifted. Therefore another characteristic arises, the AM/PM conversion
(Figure 11-3). The output signal phase depends on the input signal power. In
addition to the already mentioned conversion types there also exist PM/AM
and PM/PM conversions. They only play a secondary role, PM/PM
conversion for example can be encountered at mixers or IQ-modulators.

Figure 11-3. AM/PM conversion

The aforementioned aspect of multidimensional characteristics lead to
characteristics which depend on more than one input value. Apart from the
dependency on the input signal power, an AM/AM conversion may for
example depend on the input frequency or other signal parameters. Figure
11-4 shows AM/AM conversion curves which depend on the input
frequency.

Figure 11-4. AM/AM conversion depending on frequency

In comparison to characteristics, parameters can be chosen with respect
to the following points:

250 Chapter 11

Parameters that are needed to document the characteristics of a
component
Parameters that must be calibrated or optimized in a behavioral model

The parameters which are needed for documentation may differ from
parameters of the behavioral model.

The most important parameters to document for RF components may be
categorized in the following way:

Impedances at the component ports
Frequency response, S-parameters
Gain or attenuation
Nonlinearity (intercept points, compression points)
Noise

Some parameters are described below.
S-parameters can be used to represent impedances and frequency

response in the small-signal region. The port impedances are important
parameters to ensure correct matching to the component environment. They
may depend on the signal frequency.

The frequency response is significant for filters. Parameters include for
example corner frequencies for lowpass and highpass filters, and center
frequency and bandwidth for bandpass and bandstop filters. Other
components like amplifiers or mixers may also have a frequency response
because of the limited transit frequency of their active devices.

Each component of an RF system influences the power level. Active
components often amplify the signal (gain), while passive components
(filter, power splitter) come with an attenuation.

The measurement of parameters of the nonlinearity is important for the
characterization of active components. Due to saturation effects the gain of
amplifiers and mixers will decrease with increasing input level. This effect is
represented by the parameter Compression Point (CP). Other nonlinearities
produce harmonic distortions. Their strength can be depicted by Intercept
Points (IP). The determination of compression points and intercept points is
explained in more detaile in the following section.

Figure 11-5 shows a plot of the 1dB compression point (1dB CP). The
output power of a mixer is plotted versus its input power level. The plot was
generated from a PSS simulation with an input power sweep. A straight line
is drawn 1dB below the linear area of the mixer (in the example the linear

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 251

gain is -3.4 dB). The 1dB CP is the point where the output power crosses
this line. Its value can be read off from the x-axis (input power = input
referred) or from the y-axis (output power = output referred).

Figure 11-5. 1dB compression point

A two-tone input signal is used for the determination of the 3rd order
intercept point (IP3) of the mixer. For the example (Figure 11-6) the input
frequencies f1 = 900 MHz, f2 = 920 MHz, and flo = 1 GHz are chosen with
a power sweep from -30 to 20 dBm. The 1st order output power (flo - f1 =
100 MHz) and the 3rd order output power (flo - (2 · f2 - f1) = 60 MHz) are
plotted versus the input power. Straight lines are drawn through the linear
area of the curves. The intercept point of the lines marks the IP3. For the
computation of the IP2 (2nd order intercept point) a 2nd order spectral line is
used instead of the 3rd order line.

Figure 11-6. 3rd order intercept point (IP3)

252 Chapter 11

11.3 Application of Characterization

Three main applications of characterization are introduced in this section:

Model refinement
Model generation
Component/model documentation (basis for design reuse)

Circuit level implementations of system components are developed
during the design process. They should be verified within their system
environment. However, the simulation of large system parts requires
efficient models. Therefore behavioral models of the components are used.
Characterization provides the data necessary to configure behavioral models
as accurately as possible.

Figure 11-7. Model refinement

It is assumed that the behavioral models can be configured by a set of
model parameters. The refinement of the behavioral parameters can be done
in the following way (shown in Figure 11-7):

1. Run a characterization of the circuit level description to determine the
parameter values of the behavioral model.

2. The behavioral model is inserted into a testbench and configured with the
computed parameters.

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 253

3. A second characterization of the behavioral model verifies if the model
accurately represents the characteristics of the circuit.

4. If the model accuracy is not good enough, the model or its parameters
can be improved and again verified with the characterization.

The use of a characterization environment simplifies the configuration
and verification of the behavioral model.

The generation of behavioral models based on the characterization of
circuit level models is an efficient solution to support the bottom-up
verification. The aim is to obtain a behavioral model which as close as
possible represents the circuit level model. According to the simulation
settings (for example step size, sweep range) the extracted characteristics,
and consequently the generated model, can provide a high level of accuracy.
The designer does not require knowledge about special modeling techniques,
like complex baseband modeling. Figure 11-8 shows possible steps of the
model generation.

Figure 11-8. Model generation

1. A characterization of the circuit level model is performed. Several signal
parameters can be swept to achieve multidimensional characteristics.

2. The characteristics can be stored in tables.
3. Each circuit type (for example LNA) requires a model template, which is

implemented in the environment of the model generator.
4. The behavioral model consists of the model template and the inserted

characteristics.

254 Chapter 11

5. At last the circuit level model and the generated behavioral model can be
compared for validation purposes (for example regarding accuracy).

Model reuse has a great importance to increase the design efficiency. A
good model documentation is the base of reuse (Figure 11-9). The designer
A has developed a circuit or a model. It is characterized to determine the
information that is needed for documentation. The documentation is inserted
into an intranet or internet database from which it can be found by another
designer B using selection and search functionality.

Figure 11-9. Model documentation

The usage of a characterization environment provides some advantages
compared to manual documentation:

Reduced time of the documentation
Using standardized testbenches and simulation algorithms for parameter
determination
The format of documentation can be standardized to simplify the import
into the database

11.4 Example Characterization of an LNA

An LNA model (lnaSimple) at circuit level is characterized to determine
the parameters for a behavioral model. The schematic of the LNA is shown
in Figure 11-10.

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 255

Figure 11-10. LNA schematic

The schematic of the LNA is packed into a symbol and inserted into a
testbench (Figure 11-11). It consists of two port models psin and a vdc
source. The left side port generates the input signal. The right side port is
used to terminate the LNA and to measure the output signal.

Figure 11-11. LNA testbench

The behavioral model LNA_PB, which is the target model supports the
following parameters to be characterized:

256 Chapter 11

Available power gain
Input and output resistance
Input referred IP3
Noise figure

The simulator SpectreRF provides the analyses and postprocessing
functions for the determination of the required parameters. A PSS analysis is
used to compute power gain and IP3. The resulting plots are depicted below.

Figure 11-12. Power gain

A power gain of 14.9 dB is measured in the linear area of the LNA
(Figure 11-12). The gain decreases with increasing input level. The 1dB
compression point is reached at -10.5 dBm input power.

Figure 11-13. IP3

The IP3 plot (Figure 11-13) is generated using the IPN Curves plot
function. The LNA is designed for a frequency of 900 MHz. For the

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 257

extraction a two-tone signal with the frequencies 880 MHz and 900 MHz is
used.

The noise figure is computed by means of a PSS/PNoise analysis. The
sweep parameter can be either input frequency or input power. Figure 11-14
shows the noise figure versus the input frequency. At the operating
frequency of 900 MHz a noise figure of 4.1 dB is measured.

Figure 11-14. Noise figure

The S-parameter analysis is used for the simulation of the input and
output impedances. Figure 11-15 depicts Z-parameters plotted against the
input frequency. Z11 represents the input impedance and Z22 the output
impedance. The impedances are complex values. An input impedance of
40.5 and an output impedance of 33.7 are computed at the frequency of
900 MHz.

Figure 11-15. S-Parameter

The behavioral model LNA_PB can now be configured with the
determined parameters. They are depicted in Table 11-1.

258 Chapter 11

Table 11-1. LNA parameters
Parameter Value
Gain 14,9 dB
IP3 2 dBm
Noise figure 4,1 dB
Z11 40,5
Z22 33,7

The characterization may now be repeated to verify LNA_PB.
Differences may appear because behavioral models cannot represent all
effects of a circuit level model. An example is the plot of the port
impedances depicted in Figure 11-16. The impedance values are now
independent from the input frequency in contrast to the circuit level model.

Figure 11-16. S-Parameter

11.5 Characterization Environment

An exemplary characterization is described in Section 11.4. It is
recognizable that manual characterization is time-consuming.
Characterization can be simplified through an environment which automates
all steps of the characterization, like simulation settings and postprocessing.
It consists of two main components:

Testbenches represent the test circuit which provides stimuli and the
measurement environment for the characterization of the DUT model.
More than one testbench may be needed to characterize all required
parameters of the model.
Simulation control scripts are used to set up the analyses and to provide
additional computation of parameters in a postprocessing step.

The combination of predefined testbenches and simulation control scripts
simplifies the execution of a characterization. This is demonstrated in the

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 259

following by using the Cadence Design Framework II (DFII). Figure 11-17
demonstrates the usage of the Cadence tools in a characterization
environment.

Figure 11-17. Characterization in the DFII

First, the DUT model is inserted into the testbench schematic. The
schematic contains the test environment (sources and measurement blocks).
The port model, psin for example, can be used to realize a signal source for
various analyses as well as for output termination and power measurement.
Predefined testbenches can be stored in libraries.

The schematic is ready for the simulation with the analog simulators after
insertion of the DUT model. Then it is necessary to set up the analyses and
to adjust the simulation environment settings. These configurations are also
part of the characterization environment. Cadence provides two facilities to
store such analysis setups. The first one is to store the analysis and plot
settings of the Cadence Analog Design Environment (ADE) in states. The
second facility insists on the application of OCEAN and SKILL scripts which
can be used for batch mode simulation. The next section provides a short
overview of the use of OCEAN scripts followed by an example.

Using OCEAN scripts for characterization

In addition to the interactive simulation with ADE it is possible to run
analyses, visualization and postprocessing in a batch mode. Therefore the
script languages SKILL and OCEAN are used.

260 Chapter 11

SKILL is a script language with various functions which allow to
configure and control the complete DFII.
OCEAN [Cad03b] is a subset of SKILL with functions that are needed to
control the simulation environment with the appropriate postprocessing.
Both OCEAN and SKILL functions can be used in OCEAN scripts.

simulation setup
commands

simulation run
commands

data access
commands

OCEAN commands

 specify
- analysis to be run
- internals to save
- simulator options
- design variables

 starts the simulator

 plot the results
 perform calculations
 print results

purpose

Figure 11-18. Subdivision of OCEAN commands

An easy way to develop an OCEAN script starts with an interactive
simulation in the ADE. The menu command Session->Save Script creates an
OCEAN script that contains the actual simulation settings. It can be
modified and extended, for example, by several postprocessing
functionalities.

The OCEAN script can be loaded in an OCEAN shell or the Cadence
Command Interpreter Window (CIW) to run the analyses and the
postprocessing. The advantages are:

Different analyses can run subsequently
Postprocessing and computation of parameters and characteristics is
automated
Results can be stored in ASCII files or plots

Testbench and OCEAN scripts provide an automated characterization.

Example OCEAN script of an AC analysis

A simple OCEAN script is represented in the following. It starts an AC
analysis of the test circuit lowpass. The frequency response is displayed
graphically, the insertion loss and the corner frequency of the lowpass are
computed.

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 261

The simulator, the netlist file, and the output directory are specified in the
first section of the script.

;Simulation environment for Spectre
simulator('spectre)
design("./simulation/lowpass/spectre/schematic/netlist/netlist")
resultsDir("./simulation/lowpass/spectre/schematic")

The AC analysis is set to the frequency range from 500 MHz to 1.5 GHz
(logarithmically 100 points per decade). Operating voltage, bias current, and
temperature are specified and the simulation is started.

; AC ANALYSIS
analysis('ac ?start "500M" ?stop "1.5G" ?dec "100")
desVar("UB" 2.8)
desVar("Ibias" 1.0m)
temp(25.0)
run()

The output directory is automatically opened after the analysis has
finished. The results of the AC analysis are selected. A labeled plot window
is opened and the output voltage is logarithmically plotted.

; Plot the resuls
acwave = selectResult("ac")
winAC=newWindow()
plot(db20(v("/OUT")))
label = addWindowLabel(list(0.50 0.95) "Frequenzgang")

Finally the corner frequency and insertion loss are determined from the
frequency characteristic. In addition the type of filter (in the example low for
lowpass) must be specified. "3.0" indicates that the 3dB corner frequency
must be determined. The maximum of the difference between output and
input signal is computed for the determination of the insertion loss. Insertion
loss and corner frequency are finally printed in the OCEAN shell.

;bandwidth and insertion loss calculation
b=bandwidth(v("/OUT") 3.0 "low")
il=ymax(db20(v("/OUT")) - dB20(v("/IN")))

;print the results to the shell
printf("corner frequency: %5.3f insertion loss: %5.3f dB\n" b il)

To meet today’s requirements of a characterization environment special
tools have been developed. They contribute especially to the bottom-up
verification and provide solutions according to automated characterization,
model generation and optimization. Cadence Virtuoso Specification-driven
Environment (VSdE) has to be mentioned in this aspect.

262 Chapter 11

11.6 Characterization Using the OCEAN Script
Language

Objective

Designing an environment for the characterization of an LNA. The
following parameters shall be determined in the frequency range of
approximately 900 MHz:

Gain
IP3
Noise figure

The characterization environment shall consist of a testbench schematic
and an OCEAN script. It shall be tested with characterization of the
behavioral model LNA_PB from rfLib. The behavioral model is predefined
with gain = 20 dB, IP3 = -10 dBm, noise figure = 2 dB and impedances each
of 50 .

Proposed solution

The following three sections describe how to design a characterization
environment based on the OCEAN script language.

11.6.1 Creation of the testbench schematic

As already described, a characterization environment basically consists
of a testbench which embeds the DUT, a source which provides the stimuli,
a sink, and several analysis and postprocessing settings.

The testbench of the characterization environment must ensure that all
analyses, for example small- and large-signal, can be used in one
characterization flow without changing the testbench manually in between.
Small-signal analyses in SpectreRF like PNoise require that the source
operates as a DC source. Since the signal types of a source cannot be
controlled by design variables a switch must be used. A switch connects the
DUT with different ports. It has to be mentioned that the original switch
sp2tswitch (analogLib) must be modified before using in your own
testbench. A Verilog-A module which switches between the different
sources could also be used as an alternative.

Besides the signal types both sources provide the design variables prf
(power amplitude in dBm), frf1 (first signal frequency) and frf2 (second
signal frequency, only in sine source). The switch is controlled by a fourth

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 263

design variable called switch_pos. For the sink a DC port is used. Figure 11-
19 shows the complete testbench with the inserted DUT and its parameters.

Figure 11-19. Testbench schematic

11.6.2 Analysis settings and simulation

The analysis types to use for the extraction of the specified parameters
can now be considered. The following combinations are proposed.

Gain PSS analysis
IP3 Two-tone PSS analysis with sweeping input power
Noise figure PSS/PNoise analysis

The design variables for the gain measurement are prf = -40 dBm, frf1 =
900 MHz, and frf2 = 0. The variable switch_pos is set to 1 to ensure that the
sinusoidal source is used for this measurement. The PSS analysis settings
include a beat frequency of 900 MHz. An output harmonic of 1 is sufficient
to calculate the gain at this frequency.

Now the first simulation run can be started. After simulation the gain is
plotted using the function power gain in the PSS results form. Figure 11-20
depicts a value of approximately 20 dB. In the ADE the analysis settings can
be saved in a first OCEAN script which is shown below.

simulator('spectre)
design("./simulation/LNA_PB_lab/spectre/schematic/netlist/netlist")
resultsDir("./simulation/LNA_PB_lab/spectre/schematic")
analysis('pss ?fund "900M" ?harms "1" ?errpreset "moderate")
desVar("frf2" 0)
desVar("frf1" 900M)
desVar("prf" -40)
desVar("switch_pos" 1)
save('i "/PORT0/PLUS" "/PORT1/PLUS" "/PORT2/PLUS")

264 Chapter 11

temp(27)
run()

Figure 11-20. Power gain

For the noise figure measurement the PSS/PNoise analysis is applied.
The design variable switch_pos is set to 2 to connect the DUT with the DC
source. All other design variables are left unchanged. The PSS beat
frequency is set to 900 MHz. The number of output harmonics is 1. In the
PNoise settings the frequency sweep is set from 700 MHz to 1200 MHz.
This range is a reasonable area to consider the impact of noise. The
maximum count of sidebands is set to 10 and the reference sideband is 0,
because no frequency conversion occurs between input and output. Output
net6 has been chosen and the input port is PORT1.

The noise measurement can be executed next. In the PNoise results form
the noise figure can be directly plotted. It is calculated with approximately
2.08 dB (Figure 11-21) and complies with the specified model parameter.
The settings can be saved in an OCEAN script.

simulator('spectre)
design("./simulation/LNA_PB_lab/spectre/schematic/netlist/netlist")
resultsDir("./simulation/LNA_PB_lab/spectre/schematic")
analysis('pss ?fund "900M" ?harms "1" ?errpreset "moderate")
analysis('pnoise ?start "700M" ?stop "1.2G" ?maxsideband "10" ?p
"/net6" ?n "" ?oprobe "" ?iprobe "/PORT1" ?refsideband "0")
desVar("frf2" 0)
desVar("frf1" 900M)
desVar("prf" -40)
desVar("switch_pos" 2)
save('i "/PORT0/PLUS" "/PORT1/PLUS" "/PORT2/PLUS")
temp(27)
run()

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 265

Figure 11-21. Noise figure

The IP3 measurement requires a second sinusoidal tone. Therefore the
sinusoidal source is switched to the DUT (switch_pos = 1) and the design
variable frf2 is set to 910 MHz, which is closely adjacent to frf1 = 900 MHz.
In the PSS settings the beat frequency is now automatically calculated to 10
MHz. To reach the output values of approximately 900 MHz the number of
harmonics is set to 100. Therefore the largest output frequency can be 100 ·
10 MHz = 1 GHz. In the sweep section of the analysis settings form the
input power prf is swept from -50 dBm to 0 dBm. A small step size increases
the accuracy and may be set to 1.

The settings for a swept PSS are complete and the simulation can now be
started. For an IP3 measurement the PSS/PAC (PAC - Periodic AC)
approach could also be used. In the results form the function IPN curves is
used to plot the IP3. The input power is set to variable sweep and the
extrapolation point can be set to -45 dBm, which lies in the lower third of
the sweep range. The most important part to construct the IP3 is the choice
of the correct frequencies. In this case, for example, a 1st order frequency of
fout1 = frf2 = 910 MHz and a 3rd order frequency of fout2 = 2 · frf1 – frf2 =
890 MHz are chosen. The value of the input referred IP3 is -10 dBm
according to the specified LNA parameter (Figure 11-22). As described for
the first two parameters the associated OCEAN script can be generated in
the ADE.

simulator('spectre)
design("./simulation/LNA_PB_lab/spectre/schematic/netlist/netlist")
resultsDir("./simulation/LNA_PB_lab/spectre/schematic")
analysis('pss ?fund "10M" ?harms "100" ?errpreset "moderate"
?param "prf" ?start "-50" ?stop "0" ?step "1")
desVar("frf2" 910M)
desVar("frf1" 900M)
desVar("prf" -40)
desVar("switch_pos" 1)
save('i "/PORT0/PLUS" "/PORT1/PLUS" "/PORT2/PLUS")
temp(27)
run()

266 Chapter 11

Figure 11-22. IP3

As can be seen, all parameters which were defined in the LNA model are
correctly extracted. Therefore the testbench and the analysis settings are
suitable for a simple characterization environment.

11.6.3 Combination and extension of the OCEAN scripts

The three generated OCEAN scripts follow the same scheme. The design
environment settings (for example simulator, design, results directory) are
located at the top. The analyses are then defined as well as the design
variables. Several nodes are saved and the temperature is set. The command
run() starts the simulation.

The scripts do not contain commands for plot and postprocessing
capabilities, therefore it is necessary to manually extend them. Furthermore
the scripts must be merged to realize the extraction of parameters within one
characterization run.

The choice of the following OCEAN commands [Cad03b] can be used to
extend the scripts:

selectResults # selects the results from a particular analysis
plot # plots waveform
value # returns the Y value of a waveform

 for a given X value
ip3Plot # plots the IP3 curves
ipn # performs a nth-order intercept measurement
harmonic # returns the waveform for a given harmonic index

The first OCEAN script is extended by a section which plots the power
gain. First the PSS frequency domain (pss_fd) is selected as the result. Then
a window is opened to plot the power gain from the PSS data. A complex
command for the calculation is necessary. The result is stored in the variable

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 267

powergain and plotted using the plot command. Before the definition of the
second analysis the current settings must be deleted.

; plots power gain
selectResults('pss_fd)
newWindow()
powergain = db10((let(((vn (v("/net6") - 0.0))) spectralPower((vn /
resultParam("PORT2:r")) vn)) / harmonic(spectralPower(-
i("/PORT0/PLUS") (v("/net08") - 0.0)) '1)))
plot(powergain ?expr '("Power Gain"))

; deletes analysis settings of first simulation run
delete('analysis)

In the second OCEAN script the commands to plot the noise figure are
added. For this purpose the appropriate result (pnoise) must be selected. NF
is a predefined variable which contains the plot data for the noise figure. As
seen in the first script extension the analysis settings must be deleted.

; plot noise figure
selectResults('pnoise)
newWindow()
noisefigure = getData("NF")
plot(noisefigure ?expr '("Noise Figure"))

; deletes analysis settings of second simulation run
delete('analysis)

The last OCEAN script for IP3 measurement must be extended by
special intercept point plot functions. After selecting the results (pss_fd) a
special function (ip3Plot) plots the curves which are necessary for IP3. It
requires information about the net to examine, the sideband indices (89, 91)
and the extrapolation point (-45). Furthermore, two variables are used to
store the data for the 1st order frequency (refWave) and the 3rd order
frequency (spurWave). The function ipn uses the variables to perform an IP3
measurement.

; plots IP3 curves and prints output for IP3 value
selectResults('pss_fd)
newWindow()
ip3Plot(v("/net6") 89 91 -45)
spurWave=dB20(harmonic(v("/net6") 89))
refWave=dB20(harmonic(v("/net6") 91))
ip3_loc=ipn(spurWave refWave 3 1 -45 -45)

The complete OCEAN script for the characterization of the LNA_PB is
shown below. This simple environment can also be used to characterize
other amplifiers. To obtain a good overview a few comments have been
added.

268 Chapter 11

Complete OCEAN script
; environment settings
simulator('spectre)
design("./simulation/LNA_PB_lab/spectre/schematic/netlist/netlist")
resultsDir("./simulation/LNA_PB_lab/spectre/schematic")

; analysis settings and design variables for gain measurement
analysis('pss ?fund "900M" ?harms "1" ?errpreset "moderate")
desVar("frf2" 0)
desVar("frf1" 900M)
desVar("prf" -40)
desVar("switch_pos" 1)
save('i "/PORT0/PLUS" "/PORT1/PLUS" "/PORT2/PLUS")
temp(27)

; simulation start
run()

; plot power gain
selectResults('pss_fd)
newWindow()
powergain = db10((let(((vn (v("/net6") - 0.0))) spectralPower((vn /
resultParam("PORT2:r")) vn)) / harmonic(spectralPower(-
i("/PORT0/PLUS") (v("/net08") - 0.0)) '1)))
plot(powergain ?expr '("Power Gain"))

; deletes analysis settings of first simulation run
delete('analysis)

; analysis settings and design variables for noise measurement
analysis('pss ?fund "900M" ?harms "1" ?errpreset "moderate")
analysis('pnoise ?start "700M" ?stop "1.2G" ?maxsideband "10" ?p
"/net6" ?n "" ?oprobe "" ?iprobe "/PORT1" ?refsideband "0")
desVar("frf2" 0)
desVar("frf1" 900M)
desVar("prf" -40)
desVar("switch_pos" 2)

; simulation start
run()

; plot noise figure
selectResults('pnoise)
newWindow()
noisefigure = getData("NF")
plot(noisefigure ?expr '("Noise Figure"))

; deletes analysis settings of second simulation run
delete('analysis)

; analysis settings and design variables for IIP3 measurement
analysis('pss ?fund "10M" ?harms "100" ?errpreset "moderate"
?param "prf" ?start "-50" ?stop "0" ?step "1")
desVar("frf2" 910M)
desVar("frf1" 900M)
desVar("prf" -40)
desVar("switch_pos" 1)

CHARACTERIZATION FOR BOTTOM-UP VERIFICATION 269

; simulation start
run()

; plots IP3 curves and prints output for IP3 value
selectResults('pss_fd)
newWindow()
ip3Plot(v("/net6") 89 91 -45)
spurWave=dB20(harmonic(v("/net6") 89))
refWave=dB20(harmonic(v("/net6") 91))
ip3_loc=ipn(spurWave refWave 3 1 -45 -45)

Chapter 12

ADVANCED METHODS FOR OVERALL
SYSTEM SPECIFICATION AND VALIDATION

12. ADVANCED METHODS FOR OVERALL
SYSTEM SPECIFICATION AND VALIDATION

12.1 Gap between System Level and Block Level
 Simulation

Current electronic systems consist of analog and digital parts in most
cases. Typical analog subsystems are sensors and actuators in the automation
area and analog front-ends to transmission channels in the
telecommunication area. The analog functionality is connected to digital
units like signal processors and controllers. The system performance
depends on the accuracy of the analog components, the performance of the
digital algorithms, and on the proper specification of the mixed-signal
interface. The system performance can be validated and improved by overall
system simulation. The simulation environment must be efficient for
complex DSP algorithms and accurate for analog subsystems. Specialized
simulation technologies are discussed in this section by means of a wireless
communication system simulation.

Digital transmission technology is used for all current date transmission
standards. DSP algorithms realized in hardware and software perform source
coding, forward error correction, modulation, synchronization, and other
algorithms. The complexity of DSP functionality has grown with new
standards for the 3rd generation wireless systems and beyond.

At the interface to the transmission channel analog and mixed-signal
components (like A/D converter, mixer and amplifier) are used to adapt the
modulated data to the physical transmission channel. The quality of this RF
front-end has a great impact on the performance of the communication
system. Nonlinearity of analog components may cause transmission errors
while interferers are present.

272 References

System level simulators like ADS Ptolemy, CoCentric System Studio,
MATLAB, and SPW are used in system specification. Compiled C-coded
models are often used together with event or data stream driven scheduling
algorithms. These models provide high simulation performance for the
analysis of complex DSP algorithms. On the other hand these simulators
have no special algorithms to simulate analog and mixed-signal components.

Simplified models of the analog part within the system level simulator
may be sufficient for the first estimation of how the analog components
influence the system performance. However, for an accurate simulation of
the analog part it may be necessary to combine analog and system level
simulation. Different solutions can be used to closing the gap between
system-level and analog modeling:

File coupling of simulators (Section 12.2)
Direct cosimulation of system level and analog simulators (Section 12.3)
Generated black box models (Section 12.4)

12.2 File Coupling of Simulators

File coupling is the simplest way to exchange data between analog and
digital design domains. It can be used if no feedback between the domains
exists. File input and output is available in most simulators. The data file
format can be different for time discrete system simulators and continuous
time analog simulators. In this case file converters must be used. This
solution can be used, for example, to provide realistic test patterns to the RF
designer. In this case the system level is used to generate digital modulated
signals. The RF designer uses these signals to evaluate the performance of
the RF subsystem. In some cases the output of the RF design is again stored
in a file for further postprocessing with system level models. This solution is
more applicable to support RF design than for overall system validation.

METHODS FOR SYSTEM SPECIFICATION AND VALIDATION 273

DSP Subsystem
Transmitter ChannelRF Subsystem

Transmitter
DSP Subsystem

Receiver

System Level Simulator

Inter
face

Inter
face

Inter
face

Analog
Simulator

Inter
face

System Level Simulator

Figure 12-1. File coupling of simulators

12.3 Direct Cosimulation of System Level and Analog
 Simulators

In contrast to file coupling, in this solution different simulators are
running simultaneously in direct cosimulation. This allows feedback loops
between subsystems modeled in different simulators. The communication
between the tools is usually realized by sockets or shared memory. For
shared memory coupling both tools are executed on the same host. Socket
connection allows the communication between tools on the same or different
host in a computer network.

The implementation of a simulator coupling requires some experience in
simulation and software programming. The coupling is sometimes provided
by the simulator vendors. Otherwise it can be implemented by the user if
both simulators have an interface for C-coded models. A C-coded interface
model can then be used to exchange the data with the corresponding
interface model in the other simulator. The principle of direct cosimulation is
shown in Figure 12-2.

The system level simulation is a time domain analysis. It corresponds to
the transient analysis of analog simulators. By coupling both simulation
algorithms the time points for data exchange must be synchronized. System
simulators use a discrete time scale, while analog simulators use a time
continuous signal representation.

274 References

DSP Subsystem
Transmitter ChannelRF Subsystem

Transmitter
DSP Subsystem

Receiver

System Level Simulator

Inter
face

Analog
Simulator

Inter
face

Inter
face

Inter
face

Socket or
Shared
Memory

Figure 12-2. Principle of cosimulation

The main advantage of direct cosimulation is that optimized simulation
tools for each system part and design level can be used. It provides the
optimum accuracy level for each system part as well as debugging and
visualization capabilities from both tools well suited to the design tasks.
Additionally, models from both design domains can be reused in the full
system simulation. In summary the direct cosimulation provides an overall
system analysis with high accuracy.

Unfortunately there are some disadvantages of cosimulation. The main
disadvantage is the low simulation performance as a consequence of process
communication overheads and very detailed simulation of the analog parts.
The development of a cosimulation interface requires some experience in
simulation technology. The user needs at least some basic knowledge about
each of the tools. Since both simulators are executed simultaneously the
costs for software licensing is increased.
Time synchronization in cosimulation

As shown in Figure 12-3 system level simulators use a different signal
representation than analog simulators. Continuous time signal representation
is used in analog simulation. The width of the simulation steps varies during
the simulation, depending on the gradient of the signals. The signal values
are represented by a pair consisting of time and value.

METHODS FOR SYSTEM SPECIFICATION AND VALIDATION 275

Figure 12-3. Continuous and discrete time signals

The system level simulator uses equidistant samples for signal
representation. Therefore the timing information does not need to be stored
with the signal values. The signal is characterized by the sequence of values
and the sampling rate or sampling frequency parameter.

At the border between analog and system level domains a signal
conversion must be done. This is usually realized within interface blocks.
They may be generated automatically depending on the implementation of
the simulator coupling.

Figure 12-4 shows the conversion from the time continuous analog
domain to the time discrete signal representation. Since the discrete signal
requires values at defined equidistant points, the continuous wave is re-
sampled. Interpolation can be used if the sampling point is located between
two computed signal values. In some cases the analog simulator can be
controlled to compute additional signal points at the desired sampling times.

The opposite conversion from the time discrete domain to the continuous
domain is shown in Figure 12-5. The timing information must be added into
the interface blocks. The interfaces may count the samples and produce the
timing value. The analog simulator updates the values from the time discrete
domain only at the sampling points. Problems with convergence and
performance of the analog simulation arise if the gradient between two

276 References

subsequent signal values is high. This problem can be reduced by decreasing
the time between successive sampling points. However this will also slow
down the simulation speed in the discrete domain. Another way is the use of
functions, which reduce the gradient of the signals. Such functions are often
available in mixed-signal simulators. For example Verilog-AMS provides
the operators transition and slew.

Figure 12-4. Conversion from continuous to time discrete signals

Figure 12-5. Conversion from time discrete signals to continuous signals

Cosimulation example (SPW and AMS Designer)

The usage of cosimulation is illustrated by means of the commercial
cosimulation solution for the system level simulator SPW (Coware) and the
mixed-signal simulator AMS Designer (Cadence). The digital baseband
processing of a wireless LAN system is modeled and analyzed in SPW. A
detailed analog behavioral model of the RF subsystem is included by
cosimulation with AMS designer. The modeling flow is outlined below.

METHODS FOR SYSTEM SPECIFICATION AND VALIDATION 277

The RF subsystem is modeled in the Cadence Design Framework DFII.
Analog behavioral models written in Verilog-A are used to describe the
building blocks of the RF front-end. It contains an amplifier, filters, and a
mixer. Transistor level models can also be used. Behavioral models are
selected for performance reasons. The resulting model can be analyzed with
the RF simulator SpectreRF as well as with the AMS Designer, which
performs a transient simulation of the subsystem in the cosimulation. With
the enabled AMS option, a Verilog-AMS netlist of the subsystem is
generated after each “Check and Save” command.

Figure 12-6. Schematic of the RF subsystem within DFII

Cosimulation Interface

Figure 12-7. Generated interface model in the SPW schematic (detail)

The Verilog-AMS netlist is compiled. Based on this, an SPW symbol can
be created in an SPW library. It is supported by the SPW block wizard. The
symbol can be easily placed in the SPW schematic of the WLAN testbench
as depicted in Figure 12-7.

The cosimulation is started from the SPW simulation manager. SPW-
AMS simulator is chosen as the simulation engine. The AMS Designer can
be executed in the background (batch mode) or interactively (GUI) with full
debugging and visualization features for the RF subsystem.

Some extensions to the existing models may be necessary to achieve the
desired simulation results. The RF subsystem model can add delay and phase
shift to the signal path. If the digital baseband model of the receiver does not
contain synchronization and phase recovery algorithms, the evaluation of

278 References

BER (bit error rate), PER (packet error rate) and constellation diagrams can
fail. The user should pay attention to the following points:

Signal level adaptation: In system level simulation the signal power is
often normalized. Signal power adapters are inserted to provide
appropriate signal levels for the analog blocks.

Scheduling of simulation: Defined sampling rates are used in digital
baseband processing, while the analog part is simulated with continuous
time. Correct scheduling of the simulators must be ensured. Resampling
is necessary in some cases.

Signal delay adjustment: The system level model often uses a hard
synchronization of DSP algorithms to the signal flow. For example it is
assumed that the first received bit is also the first bit of a signal frame. If
the analog subsystem introduces additional delay in the signal path the
algorithms have to be synchronized by a proper delay setup.

The output of the demonstration systems is a BER statistic written into an
ASCII file. The BER data is only available when the simulation has
successfully finished. Probes must be added to observe some waveforms
during the simulation. This can be done in the schematic entry or in the
simulation manager. If it is necessary to add probes within hierarchical
models of the wlan_lib library it is proposed to specify the probes from the
simulation manager to avoid changes in the SPW libraries. Another
advantage of this method is that the probes can be enabled or disabled in the
"Simulation Manager" window.

The signal calculator Sigcalc can be started during a running simulation.
It may take some time before Sigcalc has received enough data, then the
selected signals are displayed. The correctness of delay correction and input
and output scale parameters can be checked from the RF_in and RF_out
waveforms. The scat function can be used with default parameters to see the
scatter plot of the quadrature amplitude modulation (QAM) signal. The
channel model was set to “AWGN” instead of “Fading” in the top level
schematic of the IEEE demo. Otherwise the effects from fading will hide the
effects from the nonlinearity of the RF subsystem. Two different
configurations of the cosimulation are shown in Table 12-1.

METHODS FOR SYSTEM SPECIFICATION AND VALIDATION 279

Figure 12-8. Scatter diagrams from IEEE 802.11a demo (left configuration: low input level,
right configuration: high input level)

Table 12-1. Simulation of different system configurations
Configuration Low Input Level High Input Level
Input scale 0.1 0.2
Output scale 0.008 0.004
Compression Point 10.0 10.0
Result (100 OFDM blocks) RF out is compressed

partially, scatter diagram with
few deviations, BER is 0

RF out is compressed
partially, worse scatter
diagram, BER is still 0

The result plots in Figure 12-8 depict the scatter diagrams. A significant
signal deviation can be at high input levels. While the scatter plot is strongly
disturbed the digital error correction algorithms can still achieve a bit error
rate (BER) of zero. Only further increasing of the input scale causes bit
errors. A BER of 5.6 10-4 was measured in the simulation for an input scale
of 0.3.

This example demonstrates how the impact of a nonlinear RF subsystem
could be considered in system simulation. The BER measurement shows the
impact of the RF subsystem on the system performance.

12.4 Generated Black Box Models

The cosimulation method allows very accurate analog and RF subsystem
modeling up to transistor level accuracy. However in some cases the
simulation performance is not sufficient for extensive system analyses like
BER evaluation. Black box behavioral models can be used to accelerate the
simulation. The principle of table based models is depicted in Figure 12-9.

280 References

DSP
Subsystem
Transmitter

Channel
RF Subsystem

Transmitter
(Black Box)

RF Subsystem
Receiver

(Black Box)

DSP
Subsystem
Receiver

System Level Simulator

Simulation,
Extraction of
transfer functions

Model
Datasets

stimuli probe

Analog
SimulatorRF Subsystem (analog)

Figure 12-9. Principle of black box modeling

Generated black box models are suited for bottom-up verification, since
these models are extracted from detailed models at block or transistor level.
They represent a component or a subsystem without information about its
structure. This can be realized by using data sets with measured
characteristics.

In a design flow for communication systems this modeling technique is
helpful to bring the behavior of analog system parts into the system level
simulation of the full system. Analog or RF simulators are used to extract the
transfer functions of the RF front-end. They provide high simulation
accuracy. Non-ideal effects between components (for example impedance
mismatch) are considered. RF simulation technology as outlined in Section
3.2 is used to analyze and characterize the RF subsystem. The extraction of
the model dataset can be automated.

Corresponding models in the system simulator represent the behavior of
the analog front-end based on the generated data files. A great benefit of this
technology is the automated generation of complex baseband behavioral
models (Section 4.3) for RF front-ends from passband behavioral or
transistor level models, which provide high simulation performance.

The end-to-end transmission system can be tested with signal distortions
that originate from the RF subsystem. Now it is possible to adjust and
optimize the DSP part in a number of simulations. Since the analog part is a
black box model, no optimization of the RF subsystem is feasible in the
system level simulator. New model data sets must be extracted if the analog
part was changed.

Good model accuracy and improved simulation performance are the main
advantages of these models. An extracted model can be used many times.

METHODS FOR SYSTEM SPECIFICATION AND VALIDATION 281

The analog simulator is only used for model extraction. This reduces
licensing costs. The IP of the underlying circuit is protected due to the black
box architecture. So the model can be provided to third-party system
designers.

Characterization and generation of the model data sets can be very time
consuming. This is disadvantageous because the model must be extracted
after each change of the RF subsystem. Since the RF subsystem is modeled
as black box no optimization of the RF part is feasible in system level
simulation. It restricts the application of this modeling technology to bottom-
up system verification.

Black box models can represent single building blocks of the RF front-
end like mixer, filter and amplifier (for example low pass equivalent models
[JBS00]) as well as complete RF subsystems [MoC98].

The J&K model approach

J-models are designed for modeling complete transmitter front-ends. K-
models represent receiver front-ends. This means that the transmitter
subsystem has a complex baseband signal input and a passband (carrier
frequency) output. The receiver subsystem has a passband (carrier
frequency) signal input and a complex baseband signal output. The model
extraction is based on SpectreRF simulations. The generated models can be
used within the system level simulator SPW.

If J&K models should be extracted for separate parts of the RF
subsystem it is necessary to add ideal mixers to ensure that the type of input
or output signal is correct. After extraction (on the SPW side) the models
have complex baseband input and output ports.

The J-model can be used to evaluate adjacent channel power ratio
(ACPR) and error vector magnitude (EVM) of transmitters at system level
comprising intermodulation, spectral regrowth and harmonic distortion. The
K-model provides end-to-end bit error rate (BER) evaluation for receivers.
To evaluate the impairment of a blocker it is necessary to model the blocker
in SpectreRF for it to be present during model extraction.
K-model example

The direct conversion receiver model which was designed for the
cosimulation was also used for the K-model extraction. Some modifications
are necessary to use the model for K-model extraction. An ideal mixer was
added in front of the receiver to convert the input passband signal
immediately down to the complex baseband representation. This is because
the receiver front-end is described completely with complex baseband
behavioral models. Input and output jig were added. These are specialized

282 References

port models, which are used to determine input and output ports of the RF
front-end. The resulting schematic is shown in the upper part of Figure
12-10.

The analog design environment ADE is started from the schematic
window. Some simulation parameters (for example simulation sweep
ranges) must be specified in the ADE window. Then an OCEAN script is
generated, which contains all analysis commands for the model extraction.

The script is executed in a shell. It starts a set of simulations and manages
the generation of the K-model dataset. SpectreRF is used as the simulation
engine. Periodic steady state analyses are used to extract the transfer
function of the receiver.

The model extraction can take some minutes or up to several hours
depending on the complexity of the receiver model. During this time the
SPW schematic can be modified. The nonlinear K-model template is placed
from the SpectreRF-SPW-Link library into the schematic (bottom of Figure
12-10). It is configured by specifying the directory that contains the
extracted data. The full system model is now ready for simulation.

Figure 12-10. Schematic for K-model extraction (DFII) and instantiated K-model (SPW)

METHODS FOR SYSTEM SPECIFICATION AND VALIDATION 283

The K-model was used within a QAM16 transmission testbench. The
simulation result (Figure 12-11) shows the effects of compression and
AM/PM conversion of the QAM symbols.

Figure 12-11. Scatter plot from QAM 16 testbench with K-model

References

[Acc04] Verilog-AMS Language Reference Manual, Version 2.2, Accellera, 2004.
[APT03] Ashenden, P.J.; Peterson, G.D.; Teegarden, D.A.: The Designer’s Guide to

VHDL-AMS. Morgan Kaufmann Publishers, 2003.
[Ash02] Ashenden, P.J.: The Designer’s Guide to VHDL. Morgan Kaufmann Publishers,

2nd edition, 2002.
[BCP74] Boyle, G.R.; Cohn, B.M.; Pederson, D.O.; Solomon, J.E.: Macromodeling of

integrated circuit operational amplifiers. IEEE J. Solid-State Circuits SC-9
(1974) 6, 353 - 363

[Bes03] Best, R.: Phase-locked loops: design, simulation, and applications. 5th edition,
McGraw-Hill, 2003

[BLM04] Barry, J.R.; Lee, E.A.; Messerschmidt, D.G.: Digital Communication. 3rd edition,
Kluwer Academic Publishers, 2004.

[Bra67] Branin Jr., F.H.: Transient Analysis of Lossless Transmission Lines. Proc. of the
IEEE 55(1967), 2012-2013.

[Cad03a] SpectreRF User Guide, Product Version 5.0, Cadence Design Systems, 2003.
[Cad03b] OCEAN Reference, Product Version 5.0, Cadence Design Systems, 2003.
[Cad03c] Cadence Verilog-A Language Reference, Product Version 5.0, Cadence Design

Systems, 2003.
[CaS91] Casinovi, G.; Sangiovanni-Vincentelli, A.: A Macromodeling Algorithm for

Analog Circuits. IEEE Trans. on CAD 1991, vol.10. no.2, pp. 150-160.
[ChB99] Christen, E.; Bakalar, K.: VHDL-AMS – A Hardware Description Language for

Analog and Mixed-Signal Applications. IEEE Trans. on Circuits and Systems-II
46 (1999) 10, pp. 1263-1272.

[ChD87] Chua, L.O.; Desoer, C.A.: Linear and Nonlinear Circuits. McGraw-Hill, 1987.
[CoC92] Connelly, J.A.; Choi, P.: Macromodeling with SPICE. Prentice Hall, New Jersey,

1992
[DeK69] Desoer, C.A.; Kuh, E.S.: Basic Circuit Theory. McGraw-Hill, 1969.
[JBS00] Jeruchim, M.C.; Balaban, P.; Shanmugan, K.S.: Simulation of Communication

Systems, Second Edition, Kluwer Academic Publishers, 2000.
[Kam92] Kammeyer, K.D.: Nachrichtenübertragung. Stuttgart: B.G. Teubner, 1992.

285

286 References

[Kun02] Kundert, K.S.: Accurate and Rapid Measurement of IP2 and IP3. Version 1b,
www.designers-guide.org, 2002

[Kun95] Kundert, K.S.: The Designer’s Guide to Spice and Spectre. Hardcover 1st edition,
May 1995.

[Lee01] Lee, D.C.: Modeling Timing Jitter in Oscillators, White Paper, Mentor Graphics
Corporation, June 2001

[LiZ97] Litovski, V.; Zwolinski, M.: VLSI Circuit Simulation and Optimization. London:
Chapman & Hall, 1997.

[LuB00] Ludwig, R.; Bretchko, P.: RF Circuit Design – Theory and Applications. Upper
Saddle River: Prentice-Hall Inc., 2000.

[MGC04] ADVance MS User’s Manual. Mentor Graphics Corporation, 2004.
[MoC98] Moult, L.; Chen, J.E.: The K-model: RF IC Modeling for Communications System

Simulation, IEE Colloquium on Analog Signal Processing, October 28, 1998.
[Nav93] Navabi, Z.: VHDL – Analysis and Modeling of Digital Systems. New York:

McGraw-Hill, 1993.
[PeM91] Pederson, D.O.; Mayaram, K.: Analog Integrated Circuits for Communication –

Principles, Simulation and Design. Kluwer Academic Publishers, 1991.
[QNP93] Quarles, T.; Newton, A.R.; Pederson, D.O.; Sangiovanni-Vincentelli, A.: SPICE3

Version 3f3 User’s Manual. Berkeley: University of California – Department of
Electrical Engineering and Computer Science, 1993.

[Sch90] Schrüfer, E.: Signalverarbeitung. München, Wien: Carl Hanser Verlag, 1990.
[Std03] IEEE P1076.1.1/D1 Draft Standard for Standard VHDL Analog and Mixed-

Signal Extensions – Packages for Multiple Energy Domain Support. December
2003.

[Std99] IEEE Std. 1076.1-1999: IEEE Standard VHDL Analog and Mixed-Signal
Extensions. Approved 18 March 1999.

[TiS02] Tietze, U.; Schenk, C.: Halbleiter-Schaltungstechnik. Heidelberg: Springer-
Verlag, 2002.

[Van00] G. Vandersteen et al.: A methodology for efficient high-level dataflow simulation
of mixed-signal front-ends of digital telecom transceivers, Design Automation
Conference (DAC) 2000

[Vla94] Vladimirescu, A.: The SPICE Book. J. Wiley & Sons, 1993.
[VlS94] Vlach, J.; Singhal, K.: Computer Methods for Circuit Analysis and Design. Van

Nostrant Reinhold Co., 2nd edition, 1994.

Index

AC analysis 118
Additive white Gaussian noise (AWGN)

170, 207
ADS 17

Ptolemy 272
ADVance MS 17, 57, 60
AMS Designer 17
Analog Design Environment (ADE) 219
Analysis 118

AC 118, 224
DC 118
envelope 20
harmonic balance (HB) 18
RF 18, 223
transient 115

Automatic gain controlled amplifier
(AGC) 205

Balun 232
Baseband

baseband signal 233
complex baseband 27, 233
digital baseband 236
equivalent baseband 233

Bottom-up verification 11, 261
Branch quantity declaration 77

Cadence
AMS Designer 17, 276

Analog Artist 236
Analog Design Environment 219, 259
Design Framework II 259
J&K models 281
rfLib 220, 231, 234
Virtuoso Specification-driven

Environment 261
Channel

adjacent channel 206
non-adjacent channel 206

Characterization 247, 254, 258, 262, 267
characterization environment 14, 258

CoCentric System Studio 17, 31, 272
Code Division Multiple Access (CDMA)

234
Compression 283

1dB Compression Point (1dB CP)
183, 226, 244, 250

Concurrent statement 61, 63, 87, 107
instantiation 55, 106
process 63

Conservative system 66, 70, 220
Constitutive relation 67
Context clause 58
Conversion

AM/AM conversion 248
AM/PM conversion 249, 283
conversion gain 230, 241
direct conversion 145
double conversion 205, 236
frequency conversion 240

287

288 Index

DC analysis 118
Delay mechanism

inertial 62
transport 62

Delta cycle 114, 116
Design entity 52, 66
Design level 7
Design library 56
Design under Test (DUT) 247
Design unit 52, 56, 58
Differential algebraic equation (DAE) 69,

107, 220
Direct conversion 145
Direct instantiation 55
Double conversion 205

Elaboration phase 59, 115
Event-driven simulation 61
Extraction 248
Eye-diagram 234, 235

Feedback shift register 136
Filter

Butterworth 158, 232
Chebyshev 232, 239
highpass 158
lowpass 159, 161, 239

Fitting
polynomial 212

Free quantity declaration 82
Frequency

3dB corner frequency 230, 238, 242
beat frequency 240
cut-off frequency 159, 162
free running frequency 150, 154
fundamental frequency 240
tunable 150

Frequency conversion 240
Frequency response 138, 229, 250

Gaussian Minimum Shift Keying
(GMSK) 235

Generator polynomial 136
Gilbert cell 142
Group Special Mobile (GSM) 235

Hysteresis 110

Impedance 257
Inphase component 233
Input stage

ideal 194
real 195
termination 196

Intercept Point (IP) 250
2nd order (IP2) 244
3rd order (IP3) 138, 225, 251, 256,

265, 267
Input referred IP2 (IIP2) 246
Input referred IP3 (IIP3) 183

Intermodulation 244
IQ-modulator 234

Jitter 243

Kirchhoff's laws 67, 68, 105, 220

Large-signal analysis 240
Library clause 58
Local oscillator 205
Low-noise amplifier (LNA) 137, 205,

222, 232, 238
circuit level model 211
system level model 33

Macromodel
general structure 192
mixed-signal 193

Macromodeling 191
MATLAB 17, 212, 272
Mixed-signal simulation cycle 114
Mixer 142, 206, 226, 232, 239
Model

Black-box model 279
documentation 250, 252, 254
extraction 280, 281
generation 252, 253, 261, 280
refinement 211, 252
reuse 254

Network analysis problem 67, 69
Noise

additive white Gaussian noise
(AWGN) 170, 207

amplitude noise 243

Index 289

flicker noise 238
noise figure (NF) 225, 242, 257, 264,

267
phase noise 237, 243
signal-to-noise ratio (SNR) 170, 171,

225
small-signal noise 118, 121, 239
white noise 229

Noise quantity source declaration 123
Nonconservative system 70, 105, 220
Nonlinear characteristic 138, 141, 183,

229, 244

OCEAN 259, 263, 266, 268
Operational amplifier

ideal 200
macromodel 201

Optimization 261
Orthogonal Frequency Division

Multiplex (OFDM) 205, 236
Oscillator 232, 239

analog voltage controlled (VCO) 150,
177, 184

digital voltage controlled 153
local oscillator 205
quadrature oscillator 233

Output stage
current limitation 199
ideal 197
real 197
voltage limitation 198

Passband 157
Periodic AC (PAC) 224
Periodic Noise (PNoise) 225, 242, 264
Periodic Steady State (PSS) 18, 230, 240,

263
PSS/PAC 225, 245, 265
PSS/PNoise 257, 263
PSS/PXF 230
Swept PSS 244, 245

Periodic Transfer Function (PXF) 241
Phase shifter 233, 240
Phase-locked loop (PLL) 209

block diagram 184
digital PLL (DPLL) 149
linear PLL (LPLL) 183
linearized 186

Postprocessing 258, 266

Power amplifier (PA) 232
Power gain 138, 256, 266
Pseudorandom binary source (PRBS) 135

Quadrature component 233
Quadrature Phase Shift Keying (QPSK)

235
/4-DQPSK 235

Saturation 248
Sequential statement 64, 85
Sideband 241, 242, 264
Signal representation

continuous time 274
discrete time 275

Simulation
block level 10
circuit level 11, 236
system level 10, 25, 271

Simulator
analog 24
circuit level 17, 118
criteria for selection 21
Internet resources 23
mixed-signal 16, 23, 107, 114
RF 17, 24
system level 15, 23, 26, 31

Simulator coupling 272
by file 272
direct cosimulation 273
time synchronization 274

Simultaneous statement 71, 78, 87, 107
simple simultaneous statement 80
simultaneous case statement 84
simultaneous if statement 83
simultaneous procedural statement 85

SKILL 259
Small-signal analysis 118, 241
Source

AM 131, 180
FM 131
independent 128
modulated 130
pseudorandom binary 135, 167, 210
single-tone 128
sinusoidal 128
square wave 154
two-tone 129, 146
wobble 133

290 Index

S-parameters 250, 257
Spectral source quantity declaration 120
Spectre 17, 219

SpectreHDL 219
SpectreRF 219, 256, 282

SPW 31, 32, 33, 272, 276
Stopband 157, 158
System

conservative system 66, 70
nonconservative system 70, 105

Test-bench 59
Top-down design 9, 231
Transition band 158
Transmission line 95

Use clause 58

V-diagram 12
Verilog-A 219
Verilog-AMS 16, 219, 277
VHDL 1076.1 40
VHDL 1076-1993 39, 52
VHDL-AMS 16, 39

DISCIPLINES 57
DOMAIN 57, 116
ELECTRICAL 72, 73
ELECTRICAL_REF 72, 73
FREQUENCY_DOMAIN 57, 118,

123
IEEE 57
named association 55
NOW 57, 115
positional association 55
QUIESCENT_DOMAIN 57, 115, 118
rules for naming identifiers 53
STD 56, 58
structural description 55, 74, 105
TIME 60, 116
TIME_DOMAIN 57, 115, 118
type 57
WORK 56, 58

VHDL-AMS attributes 88, 103
VHDL-AMS attributes on quantities 89

'ABOVE 116, 175
'DELAYED 117
'DOT 89, 117
'INTEG 90, 117
'LTF 97

'SLEW 91
'ZOH 99
'ZTF 101

VHDL-AMS attributes on signals
'RAMP 111
'SLEW 113

VHDL-AMS models
A/D converter 110, 167
a-law companding 85
capacitor 90
charge pump 148
D/A converter 167
delay block 94
divider 65
frequency measurement 176
independent source 130
integrator 90
low-noise amplifier 140
lowpass filter 43, 49, 98, 102, 103,

160
mixer 144
modulated source 132
operational amplifier 201
peak detector 92, 174
phase detector 43, 47
PID controller 106
PLL 41, 189
pole-zero filter 49
power meter 180
pseudorandom binary source 137
RC chain 74
resistor 80, 123
simple channel 171
sinusoidal voltage source 81
switch 164
test-bench for AC analysis 120
transmitter 210
voltage controlled oscillator 43, 48,

152, 155
voltage controlled voltage source 83
WLAN receiver 208
wobble generator 134

VHDL-AMS reserved words
architecture 54
break 108, 113, 175
configuration 55
entity 53
in 105
library 58
nature 72

Index 291

others 84
out 105
package 56
port 53, 73
quantity 53, 70, 71, 82, 105, 120, 123
signal 53, 60
terminal 53, 70, 73, 74

use 58
wait 63

Wireless local area network (WLAN) 25,
204, 236

	aaa.pdf
	Face_&_Contents.pdf
	Chapter_1.pdf
	Chapter_2.pdf
	Chapter_3.pdf
	Chapter_4.pdf
	Chapter_5.pdf
	Chapter_6.pdf
	Chapter_7.pdf
	Chapter_8.pdf
	Chapter_9.pdf
	Chapter_10.pdf
	Chapter_11.pdf
	Chapter_12.pdf
	References.pdf

