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Preface

Coordinated charging is an effective charging plan for electric vehicles (EVs) to
improve the overall system energy utilization and avoid overload in an electric
power grid. Besides, the stored energy and controllable loads in EVs can be
discharged to the grid to help smooth the voltage and frequency fluctuations,
which, for example, may be introduced by distributed generators (DGs). Either to
avoid overloading or to regulate the power grid, most existing charging/discharging
plans emphasize on temporal charging/discharging coordination for parked vehicles.
However, for vehicles on the move, spatial coordination can also bring huge benefits
to the grid. With spatial coordination, the range anxiety problem for individual EVs
should be carefully handled to solve the tension between the stored energy level and
the travel cost to reach the charging station. Otherwise, some EVs may be assigned
to the charging stations beyond reach due to the limited battery levels.

By exploiting both spatial and temporal coordinations, we introduce an online
charging/discharging strategy considering range anxieties for mobile EVs. Specif-
ically, to collect the real-time information required by the proposed strategy, a
heterogeneous wireless infrastructure is proposed by combining wide-coverage
cellular networks with economic high-rate vehicular ad hoc networks (VANETs).
This monograph begins with introducing the impacts of EVs on the smart grid in
Chap. 1. Then, the EV charging/discharging issues and challenges are identified
in Chap. 2. In Chap. 3, a mobility-aware coordinated EV charging strategy is
proposed for VANET-enhanced smart grid, which not only improves the overall
energy utilization with overload avoidance, but also addresses the range anxieties
of individual EVs by reducing the average travel cost. Due to the equipped
bidirectional chargers on EVs, vehicle-to-vehicle (V2V) charging can be enabled
where energy can be directly transferred from EVs with surplus energy to other
EVs with energy demand at an aggregator. In this way, the heavy power EV charging
demands can be offloaded from the power grid for overload avoidance. In Chap. 4,
a semi-distributed online V2V (dis)charging strategy at a swapping station based
on price control is proposed to relieve the charging overload problem in the power
system during peak-demand hours. In the V2V (dis)charging strategy, EVs with
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sufficient energy can help to charge the demanding EVs for balancing the supply
and demand at the aggregators in the smart grid. Conclusions and future directions
are provided in Chap. 5.

Waterloo, ON, Canada Miao Wang
July 2015 Ran Zhang
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Chapter 1
Introduction

The awareness, that significant global warming is being caused by vehicle
emissions, is encouraging the transport sector to adopt plug-in electric vehicles
(PEVs). As reported in [1, 2], PEVs, as a promising component of sustainable and
eco-friendly transportation systems, have received considerable attention recently.
The introduction of PEVs into the transport sector can reduce the consumption of
conventional energy sources (e.g., gasoline) and the environmental pollution (e.g.,
greenhouse gas emissions). As reported from industry [1], battery powered EVs,
which completely leverage rechargeable batteries and thus produce no emissions,
can reduce the overall emissions from the transport sector by 70 %. As such, EVs
are being accounted for higher market share in the transport sector. According to
the report of Electric Power Research Institute (EPRI) [2], by the year 2020, 2030,
and 2050, the EV penetration level can reach 35 %, 51 %, and 62 %, respectively.

1.1 Introduction to the Smart Grid

The rapidly increasing demand of energy from all over the world imposes huge
burden upon existing energy resources and power grid, resulting in an exponential
increase in environmental pollution and global warming. To reduce the over-
all environmental pollution, renewable energy resources as an important supply
alternative have become increasingly attractive by generating energy from solar,
photovoltaic, wind, and so on. Using such non-conventional and renewable energy
sources, distributed generations (DGs) are imposed into power grid, which can be
connected locally at the distribution system level. Due to the increased penetration
of DGs, to improve the efficiency, reliability, and sustainability in the production
and distribution of electricity in a power grid, a smart grid has been investigated
by exploiting communication technologies to gather and respond to the information
of the behaviours of the suppliers and consumers. Meanwhile, with the increased

© Springer International Publishing 2016
M. Wang et al., Mobile Electric Vehicles, Wireless Networks,
DOI 10.1007/978-3-319-25130-1_1
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2 1 Introduction

Fig. 1.1 Architecture of power grid

penetration of renewable energy sources in DGs, the power quality, reliability and
security standards, power electronic interfaces and controls need to be studied in
the smart grid. Specifically, due to the instability of the renewable energy supply,
fluctuations on frequency and voltage at buses are introduced into the smart grid.

In the existing power grid, the main components are shown in Fig. 1.1. Gen-
erations are the resources to generate the energy for the whole systems. Through
transmission, substation, and distribution parts, energy can be delivered to the
customer ends. The existing electricity power grid is unidirectional based on one-
way communication system. Due to the one-way communication system in the
existing power grid, the utilities or generations do not take corrective actions based
on the information received from the meters. Thus, there are many challenging
issues in the existing power grid, including generation diversification, demand
response, and the problem of carbon footprint, and so on.

To tackle the above problems, the next-generation electricity grid is introduced,
also known as the “smart grid” or “intelligent grid”, which integrates smart meters,
distributed control and a two-way communication system to the meters as well as
the ability to correct the customers’ parameters. In smart grid, all the technologies,
concepts, topologies, and approaches of generation, transmission, and distribution
can be included, and furthermore the pervasive control and monitoring can be
provided. To enable the control and monitoring on the grid operations, the smart
grid is emerging as a convergence of information technology and communication
technology with power system engineering.

Specifically, for the generation part in smart grid, cleaner and more efficient
bulk generation technologies will be considered. Through the transmission, high
quality sources of renewable energy can be accessed; wide area disturbances can
be minimized; and the congestion can also be addressed in future smart grid.
Accommodating new end user technologies and increased consumer participation
will be included in the distribution part, for example, PEVs, DGs, smart loads, and
microgrids. And for the end users, more efficient and smarter load management
or distributed generation can be integrated, e.g., the PEVs as a very important
component for both energy storage and controllable loads in smart grid.
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PEVs with energy storage and controllable loads can be used to help the grid
to compensate the fluctuating electricity generation at DGs via renewable sources.
The stored energy in some PEVs can be discharged for the load demand and/or to
charge other PEVs, leading to less requirements in terms of extra storage devices.
Specifically, via the bi-directional charger, PEVs are capable of not only drawing
energy from the power grid with the plug-in function (i.e., charging via grid-to-
vehicle (G2V)), but also delivering the energy back to the grid (i.e., discharging
through vehicle-to-grid (V2G)). Via V2G, discharged energy from the PEVs can
help to regulate the frequency and voltage of the grid. Furthermore, through
interaction among PEVs, an aggregator can perform a coordinated control for
a group of PEVs for charging and discharging purposes, that is, energy can be
transferred among PEVs in swapping stations [3], i.e., vehicle-to-vehicle (V2V)
charging/discharging.

1.2 An Overview of EVs and Smart Charging in Smart Grid

PEVs have become a promising component of sustainable and eco-friendly trans-
portation systems, and have received increasing attention recently. Motivated by
the significant commercial and environmental potentials, prominent industrial
corporations have launched products of many kinds of PEVs. For example, Tesla
Motors produce a pioneer retail EV, e.g., TESLA Model S, which only costs $30
per 100 km while a common premium sedan costs $173 per 100 km [4]. In total,
there are mainly three kinds of electric vehicles as follows,

• Battery electric vehicle: completely depend on the rechargeable battery.
• Hybrid electric vehicle: combine internal combustion engine with an electric

motor and battery. The battery is charged by utilizing energy from regenerative
breaking.

• Plug-in hybrid electric vehicle: use gas and an external power outlet to charge the
battery. Plug-in hybrid electric vehicles run on battery for the first few miles and
then switch over to hybrid mode as a hybrid electric vehicle.

However, the widespread adoption of PEVs brings new challenges to the grid
operation for electric vehicle charging. The National Electric Code (NEC) has
classified the charging level of PEVs into three types:

• Level-1: Standard 120 V. The charging duration is from 6 to 15 h. The maximum
power falls between 1.44 and 1.92 kW.

• Level-2: 208–240 V. The charging duration is 2–5 h, and the maximum charging
power is 7.2 kW.

• Level-3: 440/480 V. This allows very fast charging, and the charging duration can
be 15–30 min.

High PEV penetration levels will lead to overload charging problems for the smart
grid. For example, electric taxi charging, which is very likely to coincide with
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the peak demand time of the power system, can lead to an overload of power
consumption in a distribution feeder, resulting in power system instabilities in
voltages and thus reduction in the energy utilization [5]. The situation is even severe
for fast PEV charging as it requires much higher power than the regular charging.

Many works have been done on the impacts of PEV charing and discharging
on the power system. Usually, EV charging coincides with the overall system peak
hours, leading to an overload problem in power grid [6, 7]. By using a smart charging
device, the overload problem can be prevented in smart grid [8]. In addition, PEVs
can significantly increase the uncertainties in the demand side and reduce the life
time of bues/feeders and the transformer [9]. An uncoordinated PEV charging is
shown in [10] in terms of system peak load, losses and voltage drops in power grid.
The above challenges, e.g., avoiding the overload, (and potential benefits, e.g., reg-
ulating the frequency) can be better addressed (and exploited) through coordinated
charging/discharging strategies. By applying coordinated charging strategies, the
peak load, losses and the impacts of uncoordinated charging process can be reduced
in [11]. The optimal and maximum penetration of PEVs in the transportation sector
of Ontario is considered based on the proposed model in [12]. Moreover, the vehicle
emissions between the conventional and hybrid electric vehicles are compared in
[13]. However, so far, most of the existing works have focused on the temporal
coordination. Most of the works distribute the charging/discharging decisions in
the power system over different time periods. Temporal coordination is performed
for a group of PEVs that are assumed to be ready for charging/discharging within
a specific area (e.g., parking lots or residence areas). In practice, PEVs may need
fast charging when moving on the road (e.g., electric taxis). In addition, mobile
PEVs can contribute to a V2G or V2V transaction if a high revenue is expected.
Thus, better results can be achieved by combining the temporal information with
the spatial coordination for mobile PEV charging/discharging.

In the spatial coordination of mobile PEVs, the charging/swapping station
that is assigned for the PEV may be too far to reach given the PEV’s current
location and battery energy level (i.e., range anxiety which presents the tension
between the PEV travel cost1 and battery energy level), making the PEV battery
depleted on the way, lowering the discharging revenues or increasing the charging
costs. Therefore, drivers prefer charging/swapping stations at locations with less
travel cost, more discharging revenue or less charging costs while considering
range anxieties. However, such preference may conflict with the system technical
constraints. Therefore, new online charging/discharging strategies are desired to
consider both drivers’ preferences and system constraints.

1In this monograph, the PEV energy consumed on the road to reach a charging/swapping station is
referred to as the travel cost.
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1.3 An Introduction of VANETs

Vehicular ad hoc networks (VANETs) have recently emerged as a prominent tech-
nology which provides revolutionary broadband services to vehicles. By deploying
wireless access points such as road side units (RSUs) along highways/sidewalks
and equipping vehicles with on-board communication facilities (e.g., on-board
units (OBUs)), two communication types are supported for the mobile vehicles,
i.e., vehicle-to-RSU (V2R) communications and vehicle-to-vehicle (V2V) commu-
nications, alternatively known as vehicle-to-infrastructure (V2I) communications
and inter-vehicle communications, respectively. Within this framework, abundant
applications are supported such as road safety applications (e.g., accident warning,
traffic alerts), traffic monitoring/management, and infotainment delivery (e.g., video
streaming, online gaming) [14, 15].

For the dedicated use of automotive applications via VANETs, the program,
Vehicle-Infrastructure Integration (VII) [16], also known as IntelliDrive by the U.S.
Federal Communications Commission (FCC), has allocated an exclusive 75 MHz
spectrum in the 5.9 GHz band. This spectrum became known as Direct Short-Range
Communications (DSRC)2 [14]. The DSRC signals can reach a range of 1 km under
the permitted power levels at data rates from 6 to 27 Mbps. The community also
specifies the corresponding developing DSRC standards, including the technical
details on the PHY and MAC layers and the communication architecture, which
envisaged ad hoc communications among OBUs in vehicles and RSUs. In VANETs,
the RSUs function as data repositories or repeaters. Specifically, with VANETs,
safety applications can be obtained based on DSRC to warn drivers about potentially
confliction situations based on the information received from neighboring vehicles
or the RSUs directly.

Attributed to the huge potentials of VANETs in safety applications, on February
3rd, 2014, the U.S. Department of Transportation’s (DOT) National Highway Traffic
Safety Administration (NHTSA) announced that it would undertake to enable
V2V communications to let vehicles talk with each other and ultimately avoid
crashes altogether by exchanging basic safety data [17]. Moreover, motivated by
the tremendous commercial potentials, pioneering industrial companies have also
launched multiple projects to promote vehicular communications. For instance,
“Toyota Friend” established a private mobile social network for the Toyota car
owners [18].

The vehicular environment introduces unique opportunities and challenges as
well as requirements. For example, new challenges can be imposed by high vehicle
velocity and highly dynamic channel conditions for transmission. However, partic-
ularly for the highly mobile environments, an entirely new paradigm for vehicle

2DSRC protocol supports both RSU-to-vehicle/vehicle-to-RSU (R2V/V2R) and vehicle-to-vehicle
(V2V) communication.
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safety applications can be established, and even other non-safety applications can
significantly improve the road and vehicle efficiency.

Applications of VANETs: In general, VANETs applications can be categorized
into two major groups: (1) safety related applications that increase vehicle safety
on the roads; (2) non-safety related applications that provide value-added services,
e.g., vehicle navigation or path planning via vehicular networks.

At the most basic level, the objective of inter-vehicular safety application is
to alert the potential danger on the move, by sharing current vehicular positions,
velocities, and accelerations. This can soon become realistic as most of the retail
vehicles nowdays are equipped with sensors to measure velocities and accelerations
and with transceivers to support the V2R and V2V communications.

The other kind of application is non-safety related application, e.g., comfortable-
driving applications. In this type of application, information is collected and shared
in a cooperative way within a large area, e.g., in a highway network or an urban road
network. One typical application is the VANET-based sensing data-sharing systems,
which can provide distributed sensing data about the traffic conditions of an entire
city. The information can then be utilized to regulate the vehicle traffic and cut down
the individual vehicle travel time in the whole network.

Characteristics of VANETs: VANET is a special case for mobile ad hoc networks
(MANETs), where the vehicles with high mobility equipped with OBU communi-
cation devices can communicate with other vehicles or the deployed infrastructure
(e.g., RSUs) as shown in Fig. 1.2. Compared to the general MANETs, VANETs
have unique characteristics.

1. Rapid change in topology: Since vehicles are highly mobile, the topology of
VANETs presents frequent and rapid changes, and the trajectories of vehicles
usually follow the geometric topology of freeways or the street patterns in the
real world.

2. No power constraint: Since the batteries in the vehicles are self-chargable,
vehicular communications in VANETs are not limited by the conventional power
constraints like those for the hand-held devices in MANETs.

Fig. 1.2 Architecture of VANETs
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3. Large scale: A VANET consist of a large number of vehicles, with the scale of
the number of vehicles approximately 107 in reality [19].

4. Variable network density: The number of vehicles in one area is both temporally
and spatially diverse, e.g., roads in the rush hours around downtown are more
congested than other places or the other times of a day.

5. High predictable mobility: The vehicle velocities in urban areas usually ranges
from 0 to 60 km/h, while the average velocity can reach up to 100 km/h on a
highway. Thus, the vehicle mobility is regulated by the road patterns.

Challenges of VANETs: Most of the VANET applications, such as the Internet-
based VANET applications (i.e., emailing, vehicular video conference, and traffic
monitoring, etc.), lean upon the connections to RSUs for communicating with
the remote servers. Such connections rely on multi-hop V2V relaying and V2R
communications. While having a bright future ahead, enabling efficient vehicular
communications faces fundamental challenges.

The first key challenge is network connectivity, which is challenged by the high
mobility of vehicles. In general, most Internet-based VANET applications (e.g.,
vehicular video conferencing and traffic monitoring) rely on connections to remote
Internet servers through RSUs. To extend the limited communication range of V2R
communications, inter-vehicle relaying is typically exploited based on V2V com-
munications. For example, consider an uplink scenario of VANETs,3 vehicles help
each other to relay data towards RSUs, which can then wiredly forward the received
data to the remote server [20]. However, due to the high mobility of vehicles and
the resultant dynamic topologies, the transient and intermittent connections among
vehicles may lead to highly unreliable transmission performance for inter-vehicle
transmissions.

The second challenge rises from the large scale of the vehicular network. As
the quality of applications closely depends on the number of vehicles competing
for transmissions and the availability of RSUs, the investigation on how nodal
throughput scales with the vehicle population and RSU deployment patterns in
VANETs (i.e., asymptotic network throughput capacity [21]) is essential in adopting
appropriate network mechanisms (e.g., MAC protocols or relay selection schemes)
as well as guiding network planning in practical (e.g., RSU deployment).

Mobility in VANETs: Almost since the advent of the prominent symbol of the
twentieth century, i.e., the automobile, scientists and engineers have been making
efforts to understand and model vehicular mobility patterns. The study has been
made even more critical with the wide popularity of the personal automobile and
the outbreak of the first traffic congestions. In the middle twentieth century, a new
research field known as traffic theory comes into being aiming to understand the
linkage among the traffic speed, flow, and density for efficiently dimensioning

3In VANETs, many basic applications are supported in uplink scenario, such as data uploading,
email transmission, road traffic reporting, and environment monitoring.
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the transport infrastructures and helping tackle the traffic problems. With the
miniaturization of processors and the development of mobile energy sources,
mobility rapidly attracts ever-increasing attention. Mobility is indeed is the source of
most issues in VANETs, and the corresponding modeling and understanding forms
the traffic theory: to improve the dimensioning of data transport infrastructures and
to solve data traffic problems. With the advent of VANET, the study on vehicular
mobility is motivated for networking research.

In order to produce realistic mobility patterns, five categories are distinguished
in the existing literature as a function of the scopes and characteristics:

1. Random models: Vehicular mobility is considered random and the mobility
parameters, such as speed, heading directions, and destinations are sampled from
random processes. A very limited interaction between vehicles exists in this
category.

2. Flow models: Following the description in flow theory, single and multi-lane
mobility models based on flow theory are considered from a microscopic,
mesoscopic, or macroscopic point of view.

3. Traffic models: Trip and path models are depicted in this category, where either
each car has an individual trip or path, or a flow of cars are assigned with trips or
paths. In addition, the impact of time on the traffic models is also considered.

4. Behavioral models: Such models are not based on the pre-defined rules but rather
dynamically adaptive to a particular situation by mimicking human behaviors,
such as social behaviors, dynamic learning, etc.

5. Trace-based models: Mobility traces are utilized in such models in order to
extract motion patterns to either create or calibrate mobility models. The survey
of human behaviors is also another source of mobility information.

1.4 Architecture of VANET-Enhanced Smart Grid

To deliver the real-time information required by the PEV online charging/
discharging strategy in an efficient and reliable manner, a heterogeneous wireless
network is first proposed and described. Then, the heterogeneous wireless network-
enhanced smart grid architecture is shown with the objective to support the spatially
and temporally coordinated charging/discharging strategy for PEVs.

1.4.1 The Heterogeneous Wireless Network

In the literature, most of the existing works exploit cellular networks (e.g.,
GSM, UMTS, LTE, etc.) to deliver the information required by the PEV
charging/discharging strategy [22]. Cellular networks have great advantages for
wireless transmission since the base stations (BSs) have large coverage range.



1.4 Architecture of VANET-Enhanced Smart Grid 9

However, cellular networks also have inevitable drawbacks which significantly
limit their efficacy in collecting the real-time vehicle information. As cellular
systems are not dedicated for vehicular communications, the data delivery services
can be costly. In addition, the high volume of vehicular data may cause congestions
to other cellular services, especially when the vehicle density is high.

VANETs have recently emerged as a promising technology which can provide
revolutionary wireless broadband communications for vehicles. By deploying along
highways/sidewalks the wireless gateways (e.g., RSUs) and equipping vehicles
with on-board communication facilities (e.g., OBUs), two communication types
can be achieved for vehicles on the move, i.e., vehicle-to-RSU (V2R) communica-
tions and vehicle-to-vehicle (V2V) communications.4 As VANETs are exclusively
designed for information exchange among highly mobile vehicles and RSUs in a
multi-hop fashion, the required real-time information can be delivered efficiently
via short-range V2V and V2R communications. Consequently, the large-volume
vehicle information collection and dissemination can be much cheaper than the
cellular networks. However, due to high vehicle mobility and the short-range
transmission nature, VANETs suffer from intermittent connections among vehicles
and RSUs, leading to considerable transmission delay for real-time information
delivery. The transmission delay may further affect the effectiveness of the PEV
charging/discharging decisions, since the moving PEVs will keep moving and thus
consuming energy while waiting for the charging/discharging decisions. Therefore,
the resultant additional travel cost incurred by the transmission delay of VANETs
need to be deliberately considered.

As the cellular systems and the VANETs both have pros and cons, it is beneficial
if we integrate both networks to form a heterogeneous wireless network. With
such a heterogeneous network, more efficient approaches for information delivery
can be designed and realized with a low-cost and low-delay communication
network solution. In the following chapters, the incorporation of the heterogeneous
wireless network to deliver real-time messages is discussed for the online charg-
ing/discharging strategy design.

1.4.2 Heterogeneous Wireless Network-Enhanced Smart
Grid Architecture

The proposed heterogeneous wireless network-enhanced smart grid architecture
is shown in Fig. 1.3, consisting of a power distribution system with distributed
generators (DGs), charging stations, swapping stations, PEVs, communication
access points (i.e., RSUs) along the roads, and the BSs of cellular networks.

4Note that, in this monograph, the term V2V is used in two different contexts, one for VANET
communications among vehicles and the other for energy transfer among PEVs.

www.allitebooks.com

http://www.allitebooks.org


10 1 Introduction

Wired
connected

: Wired connected
: V2R/R2V communication
: V2V communication

: a charging station

Cellular
Base station

: Wireless communication
via a cellular network

: a swapping station

Distributed grid

Substation

: Power line

Fig. 1.3 Heterogeneous wireless network-enhanced smart grid

The power distribution system encompasses a substation and a set of DGs
providing energy to the whole network through power feeders (i.e., buses). Charging
stations located at different buses provide fast-charging services for all PEVs (i.e.,
charging via G2V). PEVs can also deliver electricity back to the grid through
charging stations, i.e., discharging via V2G. Besides, PEVs can exchange energy
at swapping stations without involving the power grid, i.e., charging/discharging
via V2V.

The time horizon is partitioned into periods with the duration of � . In the
beginning of each period, electricity price is determined based on the collected PEV
charging information and the load capacities. Similarly, based on historical readings
on the remote terminal unit (RTU), the maximal power that can be exchanged at
swapping stations in the following period (i.e., the load-capacity of the swapping
station) can also be predicted. In the following context, denote Bus j as Bj and the
load-capacity for the charging/swapping station at Bj as Cj.

A set of RSUs, denoted as R, is deployed along the roads to gather the PEV
charging/discharging information (i.e., individual charging/discharging decisions of
PEVs) through V2R transmissions. Cellular BSs are also deployed in the network
to support wireless communications between BSs and portable transceivers in
PEVs. The RSUs and BSs are all connected through wirelines to the charging
stations and able to relay the collected PEV decisions to the charging stations for
updating the prices. The price is updated to balance the load capacities with the load
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demands. Afterwards, when the RSUs (BSs) obtain the updated prices from the
charging/swapping stations, they relay the updated price information to the PEVs
through R2V and V2V transmissions or the cellular network.

Denote the set of mobile PEVs as V. PEVs may need to be charged or be willing
to discharge when moving on the roads. Each PEV is equipped with both cellular
and VANET interfaces. According to certain metrics, the real-time PEV information
can be either exchanged via multi-hop V2V relaying and V2R transmission or
delivered to a cellular BS through the installed portable transceivers. Based on
the received control messages, e.g., the price control message, the charging or
discharging decisions are made by individual vehicles while considering their range
anxieties. The charging or discharging decisions encompass a charging/discharging
load of PEV v at bus Bj in period k (denoted as Pv;j;k) and a charging/discharging
indicator indicating whether PEV v will go to the charging/swapping station at bus
Bj in period k for charging/discharging (denoted as xv;j;k). The variable xv;j;k is set to
1 when PEV v will be charged/discharged at Bj in period k, otherwise it is set to 0.
Note that if PEV v decides to be charged, the charging load Pv;j;k > 0; reversely,
when PEV v decides to be discharged, the charging load Pv;j;k is negative. After
the PEVs have made the charging/discharging decisions, the decisions are in turn
delivered back to the charging/swapping stations via the heterogeneous wireless
network.

1.5 Aim of This Monograph

To this end, in this monograph, we focus on leveraging the real-time vehicle infor-
mation to design an efficient and efficient online PEV charging/discharging strategy
with both spatial and temporal coordinations. Specifically, three underlying essential
problems will be investigated: (1) What kind of information is required to support
the spatially and temporally coordinated online charging/discharging strategy? (2)
How to efficiently and reliably obtain the real-time information for the PEV online
charging/discharging strategy? and (3) Based on the collected real-time information,
how to design the mobility-aware coordinated PEV charging/discharging strategy
to improve the overall power utilization and reduce the PEV charging/discharging
cost?

To answer these three questions, in this monograph, we study a smart grid
involved PEV fast charging system with enhanced communication capabilities,
i.e., a VANET-enhanced smart grid. It exploits VANETs or VANETs-involved
heterogeneous networks to collect vehicle mobility information and dispatch the
charging/discharging decisions in a real-time manner. Then, we propose a mobility-
aware coordinated fast charging strategy for EVs, which not only improves the
overall energy utilization while avoiding power system overloading, but also
addresses the range anxiety problems of individual EVs by reducing the average
PEV travel cost. In addition, to make EV charging more efficient in a smart grid, a
vehicle-to-vehicle energy swapping strategy is further proposed to offload the heavy
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EV charging load from the smart grid to the swapping station, aiming to (i) relieve
the EV charging burden for the power grid by stimulating EVs with surplus energy
to participate in EV charging, and (ii) to maximize the revenues for discharging EVs
and minimize the cost for charging EVs.
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Chapter 2
Charging/Discharging for EVs

Several studies have demonstrated that the power system can be significantly
impacted by the high penetration levels of PEV charging. Other the other hand,
coordinated discharging contains tremendous benefits to the grid. In order to
efficiently implement such design principles, many challenging issues exist which
include PEV mobility modeling, transmission network selection, tradeoff balancing
between the power system technical limitations and drivers’ preferences, and the
business revenue modeling for V2G and V2V transactions.

2.1 Classifications of Charging/Discharging Strategies

The research works on charging/discharging strategy design for PEVs in the smart
grid can be categorized from different perspectives as follows:

• Centralized and decentralized strategies (e.g., [1]): In centralized strategies,
the charging/discharging strategy is performed by a centralized controller. The
globally optimal solutions can be achieved, but with high signaling overhead for
information collection and high computation requirements. In the decentralized
strategy, the decisions are made locally by the PEVs with an iteration-based
approach. Iterative information exchange is required, but with reduced compu-
tation complexity. In this monograph, with the help of VANETs in real-time
information deliver and computationally powerful remote traffic server, we
propose centralized charing/discharging strategy to obtain globally optimal
performance, as detailed in Chap. 3.

• Pure PEV coordination (e.g., [1]) and price control-based strategy (e.g., [2]):
In pure PEV coordination, drivers are assumed to unconditionally follow the
charging decisions. However, for mobile PEVs, such decisions may cause a
conflict between the system technical limitations and the drivers’ preferences.
On the contrary, price control based strategy can effectively address such a
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problem. The charging/discharging decisions are made based on the electricity
prices, which are jointly determined by the charging stations based on the
potential demands/supplies from PEVs’ charging/discharging decisions. In this
monograph, we propose a strategy based on price control in Chap. 4, by which a
driver is stimulated to follow the coordinated decision due to a lower electricity
price for charging or higher revenue for discharging.

• Myopic (e.g., [3]) and predictive (e.g., [4]) charging/discharging strategies: The
myopic charging/discharging strategies are based only on the current information
in the grid, while in a predictive strategy, the future power demands in the grid are
also considered when making the charging/discharging decisions. Since predic-
tive charging/discharging strategies consider the effects of both current and future
PEV charging/discharging loads on the power grid, the charging/discharging
decisions through short-term prediction of power loads are more reliable in
reality. Therefore, in this monograph, a predictive charging/discharging strategy
is proposed in Chap. 3.

2.2 Electric Vehicle Charging Strategy Design

Up to now, many studies have shown that the power system can be significantly
affected by the high penetration levels of EV charging [5, 6]. To prevent the power
system from being overloaded during the peak time, load management strategies are
needed to distribute the EV charging load over both time and space [7]. In [1, 8], to
avoid power system overloading and improve the load factor of the whole system,
the peak load is shifted to off-peak periods. In [9, 10], it is demonstrated through
comparison that the global EV charging strategies which coordinate the charging
duration and rates of multiple EVs based on the global load information outperform
the local strategy in terms of energy utilization. In [11, 12], the spatial diversity
of EV charging is incorporated, modeled and evaluated to further help regulate
the charging profile. However, most of the existing EV charging strategies assume
EVs to be stationary when they need charging. Few works take into account the
vehicle mobility, which is non-neglectable since it is the most important feature of a
vehicle, especially for fast-charging applications. Due to the vehicle mobility, range
anxiety, i.e., the tension between the travel cost and the EV battery level, is key
to the feasibility of the charging decisions. Therefore, new efficient EV charging
strategies are desired to leverage the real-time vehicle mobility information to solve
the range anxiety problem.

To obtain the real-time vehicular information, most existing works rely on cel-
lular or Wi-Fi systems [13–15]. However, these systems have inevitable drawbacks
which limit their practicability in collecting the vehicle information. First, for dense
vehicular networks, the inaccuracy of the location measurement in both systems [16]
may significantly degrade the charging performance. Second, as cellular systems are
not exclusive systems for vehicular communications, the collection services can be
highly costly, and the high volume of vehicular data transmission may probably
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cause congestion for other cellular services especially in a high-density vehicular
scenario; besides, the short coverage for the Wi-Fi systems may cause large latency
in information delivery, and delivery ratio may be dramatically reduced due to the
high mobility of vehicles.

Thanks to VANETs, the real-time message can be delivered much faster, cheaper
and more efficiently than the above systems, especially for dense and highly
mobile vehicular environment [17]. Exclusively designed for information exchange
among highly mobile vehicles and RSUs, the supported short-range V2V and
V2R communication effectively expands the transmission range of vehicles in a
multi-hop manner with higher data rates. As information can be shared among
the RSUs wiredly and be relayed through V2V transmissions, higher throughput
and delivery ratio as well as lower delay can be realized for the large volume of
vehicle information exchange [18, 19]. All these facts make it possible to perform
centralized coordinated charging strategy for a group of vehicles. Thus, VANETs are
exploited in a smart grid to support the real-time information collection. The range
anxiety which captures the tension between the travel cost and the current vehicle
battery level can be introduced as additional constraints to ensure the viability of the
charging decisions.

Therefore, with real-time vehicle information collection and decision dissemi-
nation via VANETs, our objective in this monograph is to design mobility-aware
coordinated EV charging/discharging strategies, with considering the range anxi-
eties, energy utilization improvement, and travel cost reduction.

2.3 Challenging Issues for Charging/Discharging
Strategy Design

2.3.1 Mobility Modeling of PEVs

The mobility model of PEVs has a direct impact on the travel cost to a charg-
ing/swapping station and further affects the coordinated PEV charging/discharging
decision making. Consider that PEVs are running on the roads in a suburban area
following a certain mobility model, e.g., Wiedemann 74 [20]. The mobility of each
PEV can be characterized by random variables .S; �/. The notation S denotes the
vehicle velocity, which takes n possible values. When n D 2, S has two states: a
lower velocity SL and a higher velocity SH. The transition between the two states is
modeled into a two-state continuous Markov chain with state transition rates, �LH or
�HL, respectively. The model can be exploited to depict the human driving behaviors
in reality, i.e., a driver usually drives at a velocity for a period and then changes
to another velocity according to his/her will, the road conditions, or the headway
distance between the vehicle and the vehicle in front. With the n-state continuous
Markov chain of the Wiedemann 74 model, the headway distance between two



18 2 Charging/Discharging for EVs

neighboring PEVs in one lane, inter-contact time among PEVs, and vehicle-density,
etc., can be derived, which serve as intermediate results for calculating the travel
cost and the energy consumed due to the transmission delay.

With the mobility model and the calculated travel cost and transmission delay,
the range anxiety can be specified.

2.3.2 Network Selection for Real-Time Information Delivery

In VANETs, the high PEV mobility and the short-range transmission nature result
in intermittent V2V and V2R connections, which further bring about a transmission
delay and thus incur an additional travel distance (cost) while PEV v is waiting for
the charging decisions from VANETs. On the other hand, leveraging the cellular
network for information delivery may incur additional monetary cost. Thus the
network selection mechanism need to be developed to balance the tradeoff between
the travel cost due to transmission delay in VANETs and the monetary cost mainly
due to the cellular networks.

Denote the travel distance for PEV v in period k while waiting for a decision
from VANETs as dv;k. Based on the mobility model of PEVs described above, the
travel distance, dv;k, can be calculated as dv;k D  .S; �; �;R;L; �/, where  .�/ is
a function that measures the impact of transmission delay in VANETs on the travel
distance dv;k. The transmission delay in VANETs decreases with

1. the vehicle velocity S and the inverse of the parameter 1
�

, since increasing S and
1
�

will reduce the average number of hops in a multi-hop transmission link, thus
leading to a reduced transmission delay,

2. the vehicle density (i.e., �), since increasing the vehicle density will create more
chances for a successful transmission, thus potentially reducing the average
transmission delay for a multi-hop communication link,

3. higher possibility for V2R transmissions in the network (i.e., larger trans-
mission range R or more deployed RSUs to decrease the average inter-RSU
distance L), and

4. a more efficient transmission mechanism � , e.g., choosing the farthest vehicle
within its transmission range as the relay to reduce the potential number
of transmission hops, or designing a more efficient MAC protocol to avoid
transmission collisions among multiple transmission pairs.

The travel cost due to the transmission delay in VANETs is defined as a linear non-
decreasing function PC.dv;k/ to measure the travel cost Pv;kcost in terms of energy for
PEV v to wait for the decision in period k.

By balancing the VANET travel cost Pv;kcost with the cellular network monetary
cost, the dynamic and adaptive network selection can make the information delivery
more efficient and economic.
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2.3.3 Balancing the Tradeoff Between the Power System
Technical Limitations and Drivers’ Preferences

In reality, drivers usually have their own preferences when choosing a charg-
ing/swapping station, e.g., for the shortest path length or the most familiar station.
But there are times when the preferred charging/swapping station may not be able
to support any more power loads. In such a situation, in order to avoid the power
overload of the system, another charging/swapping station has to be assigned to
PEV v for charging/discharging, which is referred to as spatial coordination.

In addition, based on the travel distance dv;k, the travel cost for PEV v in
period k in terms of energy, denoted as PC.dv;k/, should not exceed the discharging
revenue, or the electricity price should be cheaper to motivate the drivers to go to
the designated charging/swapping station. The travel cost can be also formulated
based on other driver preferences (for a subset of stations along the customer route).
For instance, given the driver’s route, he/she will prefer to choose a charging station
along that route. In such a situation, the selected charging station should be chosen
from a subset of charging station candidates deployed only along that route. This
subset of the charging station candidates can be incorporated into the optimization
problem as an additional constraint.

Since drivers prefer to follow their preferences for charging/discharging, tradeoff
exists between the optimal utilization of the power system and the drivers’ personal
preferences. This tradeoff unveils the challenging issues of (1) how to define the
preferences of individual drivers, and (2) how to balance the tradeoff between the
system technical limitations and drivers’ individual preferences.
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Chapter 3
Mobility-Aware Coordinated EV Charging
in VANET-Enhanced Smart Grid

Coordinated charging can enable efficient charging for electric vehicles (EVs) to
enhance the overall energy utilization while avoiding the overload of an electric
power system. However, it is challenging to design an efficient coordinated charging
strategy to guide the mobile EVs to fast-charging stations to achieve globally
optimal energy utilization. In this chapter, we study a specific smart grid with
enhanced communication capabilities, which is termed as a VANET-enhanced smart
grid. Vehicular ad-hoc networks (VANETs) are leveraged therein to support real-
time communications among highly mobile EVs and between EVs and road-side
units (RSUs) for real-time vehicle mobility information collection and charging
decisions dispatching. We then propose a mobility-aware coordinated charging
strategy for EVs. The proposed strategy can not only improve the overall energy
utilization while protecting the power system from overload, but also address the
range anxieties of individual EVs via deliberately controlling the average travel cost.
Specifically, we consider the travel cost incurred by mobility for an EV in two-fold:
(1) the travel distance from the current EV location to the fast-charging station, and
(2) the transmission delay for an EV to receive a charging decision through the
VANETs.

3.1 Introduction

As a promising enabler for sustainable and eco-friendly transportation systems,
electric vehicles (EVs) have attracted ever-increasing attention worldwide [1, 2].
Powered by electricity instead of gasoline, EVs provide great potential to save
the customers thousands of dollars over the vehicle lifetime. For instance, the
TESLA Model S, a pioneering retail EV produced by TESLA Motors, costs $30
per 100 kms, compared to $173 per 100 kms by a regular premium sedan [3].
Besides, the penetration of EVs into the transport sector reduces the consumption
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of conventional energy sources (e.g., gasoline) and thus lowers the environmental
pollution (e.g., carbon footprints). As reported from industry [4], battery EVs,
which completely leverage rechargeable batteries and thus produce no emissions,
can reduce the overall emissions from the transport sector by 70 %. As such, EVs
are being accounted for higher market share in the transport sector. According to the
report of Electric Power Research Institute (EPRI) [5], by the year 2020, 2030, and
2050, the EV penetration level can reach 35 %, 51 %, and 62 %, respectively.

However, the wide popularity of EVs in the transportation system may lead
to charging problems for mobile EVs fully depending on rechargeable batteries.
Specifically, it is very likely that the EV charging coincides concentratively with the
peak demand time of the power system, thus incurring overload on a distribution
feeder. As a result, system instability and decrease in overall energy utilization [6, 7]
will be caused, especially for fast EV charging as much higher power than the
regular charging is required. To mitigate the impact of fast EV charging on the
power system, some works exploit energy storage systems, however, at an additional
cost of deploying the energy storage devices [8]. Thus, to prevent the power system
from overloading during the peak time and boost the energy utilization without
additional deployment cost, load management strategies are proposed to coordinate
the distribution of EV charging load both temporally and spatially. Meanwhile,
for fast EV charging, the designated charging stations must be within the reach of
mobile EVs given the current EV locations and battery levels, in order to account
for the tension between the current battery levels and the travel cost to the charging
stations, which is called range anxiety in this chapter.

Abundant literature [9–20] has been proposed on the strategy design for coordi-
nated EV charging. Most of the existing works resolve problems only in the power
system plane. That is, the group of EVs considered for coordinated charging are
assumed to be ready for charging within an area (e.g., parking lots or residential
areas). Few works have taken the vehicle-specific features, i.e., vehicle mobility,
into the charging strategy in a fast-charging context. Actually, since EVs may need
to be charged when running on the roads, the energy consumption on the way to the
charging station, referred to as the travel cost in this chapter, should be deliberated.
Otherwise, one EV may fail to reach the assigned charging station by the existing
strategies given the EV’s current location and battery level. Because of the range
anxiety, drivers prefer to charge at locations with less travel cost. Therefore, new
charging strategies are indispensable to account for the range anxieties and vehicle
mobility to effectively reduce the EV travel cost. In order to track the vehicle
mobility, the EV information (e.g., locations and battery levels) should be collected
in a real-time manner to help charging decision making.

To this end, in this chapter, we focus on leveraging the real-time EV mobility
information to help design an efficient and effective coordinated EV charging
strategy, aiming at improving the overall energy utilization, reducing the average
EV travel cost, and avoiding the overload of the power system. To properly design
the strategy, it is essential to carefully consider: (1) how to efficiently and reliably
achieve the real-time information of mobile vehicles required by the EV charging
strategy; and (2) based on the collected information, how to perform mobility-aware
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coordinated EV charging to improve energy utilization and reduce EV travel cost
while preventing power system from overload.

Exploiting the vehicular ad-hoc networks (VANETs), the first problem can
be resolved in a promising way. Exclusively designed for multi-hop information
exchange among highly mobile vehicles and road-side units (RSUs), the short-
range vehicle-to-vehicle (V2V) and vehicle-to-RSU (V2R) communications [21–
23] supported by VANETs can enable efficient delivery of the required real-time
information, making large-volume vehicle information collection cheaper and faster
compared to other networks (e.g., cellular networks and Wi-Fis) [24]. Besides,
RSUs can significantly improve the timeliness of data collection and dissemination,
making it possible to perform coordinated charging strategies for a group of mobile
vehicles [25]. Therefore, in this chapter, VANETs are incorporated into a smart
grid to collect the real-time information of mobile EVs and dispatch the charging
decisions. Moreover, as the energy is still consumed in moving EVs waiting for the
charging decisions, the transmission delay for information exchange in VANETs
will cause additional travel cost. Thus, we also conduct analysis on the transmission
delay given the vehicle densities and the RSU deployment.

To tackle the second problem, the range anxieties are considered based on vehicle
mobility. Specifically, a mobility-aware coordinated EV charging strategy is pro-
posed to make charging decisions based on the historic remote terminal unit (RTU)
readings of the power grid and the collected real-time vehicle information. Based
on the collected information, the following issues are addressed in a coordinated
fashion: (1) Given the current battery level, should a vehicle be charged in the next
period; (2) which charging station should be assigned to this vehicle considering the
range anxiety with its current location; and (3) how much energy should be charged
to this vehicle to improve the overall energy utilization and guarantee the stability of
the power system. The optimal charging problem is formulated into a time-coupled
mixed-integer linear programming (MILP) problem, which is time-complicated to
solve. However, by discovering the linear relationship among EV charging loads of
feeders, the MILP problem is time-decoupled into a set of sub-MILPs via Lagrange
duality [26]. Each sub-MILP can be further solved by the branch-and-cut-based
outer approximation algorithm [27].

In summary, to handle the range anxieties of EVs, we integrate VANETs into
smart grid to collect real-time vehicle information for vehicle mobility tracking
(e.g., locations and battery levels). We then propose a predictive mobility-aware
coordinated EV charging strategy to improve the power utilization, and reduce
average EV travel cost, and prevent overload of the power system for the next
charging period. The main contributions of the chapter are fourfold.

• First, the architecture of the VANET-enhanced smart grid is proposed, where
VANETs enable efficient communications among mobile EVs and RSUs to
collect useful information and disseminate the EV charging decisions in a
real-time manner; particularly, the collected information is processed and the
predictive coordinated EV charging strategy is performed in a traffic server;
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• Second, considering the range anxieties of EVs, a mobility-aware coordinated
EV charging strategy is designed to enhance the overall energy utilization of
the power system and reduce the average EV travel cost while avoiding the
overload of the power system. Particularly, the linear relationship among the EV
charging loads of the charging stations is unveiled, which is essential for the load
distribution; in addition, the travel cost is defined and formulated to show how
EV mobility impacts the charging decision making;

• Third, the globally optimal charging problem is formulated as a time-coupled
MILP problem which can be decoupled into a set of sub-MILPs exploiting
Lagrange duality. Each sub-MILP can be further solved by the branch-and-cut-
based outer approximation algorithm; and

• Finally, extensive simulations are conducted to validate the efficacy and effi-
ciency of the proposed EV charging strategy. VISSIM [28] is utilized to extract
the simulation traces, upon which a highly realistic suburban scenario is built.
Particularly, the transmission delay caused by VANETs is fully evaluated in
the studied context. Simulation results demonstrate that the proposed strategy
significantly outperforms the traditional autonomous charging strategy (without
VANETs) in terms of the energy utilization and the average EV travel cost.

The remainder of this chapter is organized as follows. Section 3.2 elaborates
the system model. Sections 3.3 and 3.4 present the formulation and solution of the
mobility-aware coordinated EV charging problem, respectively. The performance
of the proposed strategy is demonstrated in Sect. 3.5 via simulations. The related
works are introduced in Sect. 3.6. Section 3.7 concludes this chapter.

3.2 System Model

With the objective of providing a coordinated mobility-aware EV charging strategy
based on the real-time vehicle information, a VANET-enhanced smart grid architec-
ture is first introduced to efficiently conduct the coordinated EV charging strategy.
The power system model is then depicted together with the flow formulas. At last,
the mobility model, charging model and transmission model of EVs are presented.

3.2.1 VANET-Enhanced Smart Grid

Figure 3.1 gives the components of the proposed VANET-enhanced smart grid
architecture. The architecture consists of a power distribution system, charging
stations (e.g., at parking lots), a traffic server, RSUs along the road sides and EVs.
Energy to the whole network is supplied by the power distribution system via power
feeders (i.e., buses). The charging stations provide fast-charging for all the EVs.
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Fig. 3.1 The VANET-enhanced smart grid architecture

Based on historic RTU readings of each bus in the distribution system, the voltage
at each charging station in the next period can be predicted [29]. The maximal
power that can be provided by each charging station (i.e., the load-capacity of
each charging station) can then be calculated. In the following text, denote as Pj

total
the load-capacity of Busj. The historic readings are conveyed to the traffic server
wiredly. The traffic server is in charge of performing the predictive charging strategy
to make globally optimal charging decisions for the EVs that need to be charged,
based on the real-time EV information from VANETs and the historic RTU readings.
The strategy is conducted period by period. The charging decisions include the
charging load/rate of EV v at Busj in period k (denoted as Pchv;j;k) and the charging
indicator of vehicle v specifying whether EV v should be charged at station j in
period k (denoted as xv;j;k). The indicator xv;j;k is set to 1 if EV v is scheduled for
charging at Busj in period k, and 0 otherwise.

For the VANETs, a set of EVs are moving around in the network region following
map-based paths. Denote the set of EVs as V. EVs may need charging while
moving on the roads. The real-time EV information can be exchanged among
the on-board units (OBUs) equipped with vehicles, via multi-hop V2V relaying,
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under the dedicated-short-range-communication (DSRC) protocol [30],1 with the
transmission range R. Besides, the Global Position System (GPS) devices, which
offer the shortest-path navigation services, are also installed in EVs and wiredly
connected with the OBU. In addition, a set of RSUs are uniformly deployed
along roads with the capability of collecting the EV information (e.g., locations
and battery levels) via V2R transmissions, based on DSRC protocol, with the
transmission range R. Denoted the set of RSUs as R. Through wireline connection
to the traffic server, RSUs can relay the collected EV information to the traffic server
for making the globally optimal EV charging decisions. When the RSUs obtain the
EV charging decisions from the traffic server, they will relay the decisions back to
the EVs through R2V and V2V transmissions.

To summarize, the VANET-enhanced smart grid system operates as follows.

• Information collection and reporting to the traffic server: The required informa-
tion is two-fold: the historic RTU readings of each bus in the power system and
the real-time EV information. The former is conveyed to the traffic server through
wireline, based on which the charging load constraint of each charging station
can be estimated; the latter is gathered via multi-hop V2V relaying and V2R
transmissions;

• Decision making of the predictive coordinated EV charging: The traffic server
fuses all the gathered information and makes the optimal EV charging decisions
to enhance the power utilization of the grid and decrease the average EV travel
cost while preventing the power system from overloading;

• Decision dissemination: Upon receiving its own charging decision from either
the neighboring vehicles or the RSU, the OBU of an EV will deliver the decision
to the GPS device. The GPS device will navigate the EV to the assigned charging
station.

3.2.2 Power System Model

To implement predictive charging strategy for EVs in the VANET-enhanced smart
grid, the power flow on the feeders need to be considered. In this subsection, a power
system model is described where the relation between bus voltages and power loads
is given to help derive the relation among EV charging loads on feeders.

Consider a smart grid with the system model shown in Fig. 3.1. The power system
can be abstracted as a one-line diagram with multiple buses. For better illustration,
an example of a 12-bus system is presented in Fig. 3.2a, b is the abstracted equivalent
power system model of Fig. 3.2a. Denote the set of buses in the system as N, which
is 12 in this example. Define the generation buses as the buses injecting power into

1DSRC protocol supports both RSU-to-vehicle/vehicle-to-RSU (R2V/V2R) and vehicle-to-vehicle
(V2V) communication.
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a

b

Fig. 3.2 The power system model. (a) Illustrated power system model. (b) Equivalent power
system model

Fig. 3.3 The power flow
illustration

the system, i.e., Bus1 in Fig. 3.2a, and define the others which only have load as the
load buses, e.g., Bus3, Bus6, etc. The power system is supplied via the substation at
the generation bus. EV charging stations are located together with load buses, e.g.,
Bus3, Bus6, Bus9 and Bus12, respectively. Each charging station is connected to the
grid via a standard single-phase Alternating-Current (AC) connection. Due to the
thermal limit of service cable or current rating of fuse, an EV charging station at
Busj is constrained by the associated load capacity Pj

total [9]. Although there is the
concept of vehicle-to-grid for a local system [10], we do not consider bi-directional
flow of electricity or the directional flow from an EV battery in this chapter.

The voltages of two neighboring buses in period k, e.g., Vi;k and Vj;k in Fig. 3.3,
can be approximated as [29]

Vi;k � Vj;k D Pij;k�rijCQij;k�xij

Vj;k
(3.1)

where Pij;k and Qij;k are the active and reactive power flow from Busi to Busj in
period k, respectively, and rij C jxij is the impedance of the feeder line i-j. In per
unit, (3.1) can be approximated as

Vi;k � Vj;k D Pij;k � rij C Qij;k � xij: (3.2)

Note that all the voltages of buses should stay within a certain range which is the
main operation constraint of the distribution system [29]. For instance, the voltage
magnitude at Busj in period k is bounded by an upper and lower limit Vmin

j;k and
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Vmax
j;k , respectively, i.e., Vmin

j;k � Vj;k � Vmax
j;k . It has been proved by [29] that the

minimum voltage point can only occur at the end of the power line, since the only
generation bus is located at the beginning of the distribution system.2 Then the
minimum voltage VN;k can be derived as

VN;k D V1;k �
N�1P

iD1
ŒPi.iC1/;k � ri.iC1/ C Qi.iC1/;k � xi.iC1/�: (3.3)

3.2.3 EV Mobility and Charging Model

According to [31], two random variables .V;D/ can be used to characterize the
mobility of each EV. The random variable V represents the vehicle velocity which
has two possible values (i.e., a lower velocity vL and a higher velocity vH). The
velocity transition is modeled as a two-state continuous-time Markov process with
state transition rate 1

D . Under this model, a vehicle initially chooses vL (or vH) and
changes to vH (or vL) after an exponentially distributed time interval with mean D.
The model can well describe the realistic human driving behaviors, that is, a driver
tends to drive at a constant velocity for a period and then change to another velocity
according to his/her will or road conditions. In addition, it is shown that when the
vehicle density is low or medium (e.g., no larger than 30 vehicle/km/lane), vehicles
can be considered to move independently [32], and that the headway distance3

follows the exponential distribution with rate � [33].
When a mobile EV v (2 V) is charged at Busj in period k, the charging load

(denoted as Pchv;j;k) should be within a certain range to protect the EV battery and
power system stability, i.e.,

0 � Pchv;j;k � Pchmax
v;j;k (3.4)

where Pchmax
v;j;k is the pre-fixed charging load upper bound of Pchv;j;k [34]. If EV v is

not scheduled to be charged in period k, i.e., xv;j;k D 0, Pchv;j;k should be 0, i.e.,

Pchv;j;k
Pchmax

v;j;k
� xv;j;k (3.5)

2Note that if the distributed generation is adopted in the distribution system, the overloading
problem should also be considered.
3In this chapter, the headway distance is defined as the distance between two neighboring vehicles
in the same lane.
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Meanwhile, xv;j;k should satisfy

P

j2H
xv;j;k � 1 and xv;j;k 2 X D Œ0; 1� \ Z

P

k

P

j2H
xv;j;k � Xmax

(3.6)

where Xmax is the maximum total charging times for an EV within all the considered
periods, since frequent charging is not desirable and may cause battery damages
[35]. During a charging period, the charged energy of each EV should be limited
by its battery capacity Cmax

battery, and the battery should not be depleted on the way to
guarantee that the EV can be charged successfully, i.e.,

0 � Pinit
v;k C .

P

j2H
a � Pchv;j;k � Pv;kcost � Pk

cons � .1 � P

j2H
xv;j;k// � Cmax

battery (3.7)

where Pinit
v;k is the initial energy stored in EV v in the beginning of period k, which

can be obtained through VANETs, and Pv;kcost is the travel cost for EV v to charge
in period k. Notation Pk

cons denotes the average non-charging energy cost of each
EV while moving on the road if the EV is not scheduled to charge in period k.
The duration of each period is a hours. For example, if each period has a 30-min
duration, a D 0:5. Then, for an EV charging station at Busj, the total EV charging
load Pchj;k in period k is given as

Pchj;k D P

v2V
Pchv;j;k: (3.8)

3.2.4 Transmission Model in VANETs

To enable V2V and V2R transmissions in VANETs, we use the draft standard
IEEE 802.11p [36] (DSRC), a standard designed particularly for short-range and
intermittent vehicular communications among vehicles and RSUs. For analytical
simplicity, ideal medium access control (MAC) protocol is considered. With the
ideal MAC, the interference among V2V transmissions can be avoided; and as
long as one vehicle moves into the coverage range of an RSU, the RSU is able
to schedule time portions for V2R transmission between the vehicle and the RSU
without collisions. In addition, we consider that a V2V or V2R link has a constant
transmission rate, and the contact duration between each V2V or V2R transmission
pair is long enough to complete one packet delivery. This could be achieved by
properly setting the packet size [37–39]. Moreover, as the high mobility may
make the vehicle communications to be intermittent, the waiting time to grab a
transmission opportunity dominates the transmission delay over the queueing delay
and the random backoff time introduced by the channel contention. Thus, in this
chapter, we only consider the dominant delay part, i.e., the former one.
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3.3 Problem Formulation

In this section, we first derive the charging load constraints for the buses connected
with the EV charging stations, where the relation among the load capacities of the
buses connected with the EV charging stations are unveiled. Then, considering
the EV mobility, we formulate the EV’s travel cost to represent the EV range
anxieties. Particularly, the travel cost incurred by the transmission delay in VANETs
is involved. Finally, we formulate the mobility-aware coordinated EV charging
problem into an optimization problem, with the objective to maximize the overall
charging-energy-minus-travel-cost while avoiding the power system overload. The
objective jointly considers improving the total charging energy and reducing the
charging travel cost. In other words, the total energy utilization and the travel cost
for EV charging should be carefully balanced.

3.3.1 Charging Load Constraints

The charging station at Busj has a load-capacity constraint Pj
total, i.e., the total EV

charging load at Busj in period k should be no more than Pj
total. Thus we have

Pchj;k � Pj
total: (3.9)

In addition, the voltage of one bus will decrease with the increased load [29]. If a
voltage drops below a threshold at a bus, the reactive power cannot be properly and
efficiently injected. To keep the voltage within a certain range, it is necessary to keep
the load below a desired level. Therefore, tradeoff should exist between voltages and
loads. In the following, we show the essential relation among the EV charging load
capacities of buses in Theorem 3.1. The corresponding proof is given based on the
power flow analysis in the power system.

Theorem 3.1 (Linear relation among EV charging loads of buses). Given the
total supplied power from the feeder and the non-EV charging load, the total power
supply for all EV charging stations can be obtained. The power supplied for one
individual charging station has a linear relation with that of the other charging
stations.

Proof. For each bus, the voltage should be no less than the minimal required
voltage, e.g., 0:9 per unit voltage [9]. According to (3.3), the lowest voltage is VN;k

of BusN . Then we have,

VN;k D V1;k �
N�1P

iD1
ŒPi.iC1/;k � ri.iC1/ C Qi.iC1/;k � xi.iC1/� � Vmin (3.10)
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where Vmin is the minimal required voltage. Re-arranging Eq. (3.10), we can get

N�1P

iD1
ŒPi.iC1/;k � ri.iC1/ C Qi.iC1/;k � xi.iC1/� � V1;k � Vmin: (3.11)

Let w denote the sorted index of the bus with no EV charging load and W the set
of these buses w 2 W.� N/. Denote the sorted index of the bus with EV charging
load with j and the set of these buses as H, j 2 H.� N/. Then, (3.11) can be
expressed by

P

w2W
.Pw.wC1/;k � rw.wC1/ C Qw.wC1/;k � xw.wC1//C P

j2H
j � .Pj;k � rj C Qj;k � xj/ � V1;k � Vmin

(3.12)

where Pj;k and Qj;k are the active and reactive power load on Busj in period k,

respectively, and rj D 1
j

j�1P

hD1
rh.hC1/ and xj D 1

j

j�1P

hD1
xh.hC1/ denotes the average

impedance of the feeder line between Bus1 and Busj. Since the loads on the buses
with no EV charging are known through the forecast, we have

P

j2H
j.Pj;k � rj C Qj;k � xj/ � V1;k � Vmin � P

w2W
.Pw.wC1/;k � rw.wC1/ C Qw.wC1/;k � xw.wC1//:

(3.13)

As each charging station is connected to the grid through a single-phase AC
connection and EV charging only draws active power, we have Pj;k D Pchj;k and
Qj;k D 0. Thus, we can re-write (3.13) as

P

j2H
jPchj;k � rj � � (3.14)

where � is a constant representing the right hand side (RHS) of inequality (3.13).
The inequality (3.14) indicates that the locations and the total number of the
charging stations play important roles in the total available power supply to EV
charging stations. Given the total power supply to EV charging stations, i.e., � , the
total load of the EV charging station at Busj in period k, Pchj;k, presents a linear
relation with the others. ut

3.3.2 Travel Cost for EV Charging

According to Sect. 3.2.3, the travel cost for EV v to be charged in period k, Pv;kcost,
have two parts. The first part is the travel cost due to the travel distance from
the EV v’s current location to a charging station in period k, denoted as pv;k. As
mobile EVs may have different locations and battery levels at different periods.
Due to the range anxiety, drivers tend to go to the closer charging stations with
less travel distance. Thus the travel distance will affect the travel cost significantly.
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The second part is the travel cost due to the transmission delay for EV v to receive a
charging decision through VANETs, denoted as cv;k. The vehicle mobility can cause
intermittent transmission delay in VANETs. The resultant intermittent V2V and
R2V connections can incur a transmission delay and thus involve an additional travel
distance until EV v receives the charging decision from the RSUs or neighboring
vehicles. Thus the transmission delay should also be considered when evaluating
the travel cost.

1. Travel cost due to the EV travel distance to a charging station: If EV v is
scheduled to be charged in the next period k, then

P

j2H
xv;j;k D 1. The shortest path

algorithm [40] is exploited to calculate the traveling path for EV v to the charging
station j in period k by the installed GPS. Denote the path length as S.xv;j;k/. Thus,
the travel distance of EV v in period k for charging can be expressed as

pv;k D P

j2H
S.xv;j;k/�xv;j;k : (3.15)

Given pv;k, define the travel cost in terms of energy of EV v in period k as
PC.pv;k/. The notation PC.�/ is a linear non-decreasing function that measures
the impacts of travel distance on the travel cost [10].

2. Travel cost due to the transmission delay in VANETs: The second part of the
travel cost is introduced by the transmission delay of an EV to send (or receive)
the charging request (or decision) to (or from) the neighboring vehicle or nearest
RSU.

We first derive the transmission delay of the last hop of the entire transmission
path (i.e., the last V2R hop). The last-hop transmission delay mainly comes from
the inter-contact time between a vehicle and an RSU. We model the last hop
transmission into an “on-off” model [31]. Specifically, the vehicle either connects
directly to an RSU during the “on” state or is the first vehicle approaching the RSU
in front of which there is no other vehicles within the transmission range of the
RSU in the “off” state. As the transmission delay for a packet in the “on” state is
far smaller than that in the “off” state, the “off” period dominates the transmission
delay. Both “on” and “off” periods are random variables and denoted as Ton and
Toff , respectively. Accordingly, denote the travel distances within the periods as Uon

and Uoff , respectively, satisfying Ton D Uon
V and Toff D Uoff

V . The notation V is the
average velocity of a vehicle based on the mobility model adopted in Sect. 3.2.3.
Inspired by [31], the event that a vehicle moves a distance of at least u during Ton

before being scheduled to transmit with RSU should satisfy two conditions: (1) no
other vehicles are within the distance u from the considered vehicle, and (2) at least
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another vehicle is within the distance 2R � u so that the considered vehicle has to
move at least u distance to avoid the collision. Here, R is the transmission range of
an RSU or a vehicle. Then, the probability that Uon > u is calculated as

Pr.Uon > u/ D .e���u/
b��1

Œ1�.e���.2R�u//
b��1

�

1�.e���2R/
b� (3.16)

where b and � denote the total length of roads and the vehicle density on the roads,
respectively. As aforementioned in Sect. 3.2.3, the vehicle headway distance follows
an exponential distribution, thus, the probability that a headway distance is larger
than u is e���u. Thus the average Uon can be calculated as

E.Uon/ D R 2R
0 Pr.Uon > u/du: (3.17)

Similarly, the occurrence of the event that a vehicle moves a distance of at least u
during the “off” period should satisfy that (1) no vehicles are within a 2RCu distance
from the end of the coverage range of the nearest RSU ahead of the vehicle, and (2)
there is at least one another vehicle within the distance L � .u C 2R/. Here, L is the
distance between the adjacent RSUs. Then, the average travel distance during the
“off” period can be calculated similarly as

Pr.Uoff > u/ D .e���.2RCu//
b��1

Œ1�.e���.L�.2RCu///
b��1

�

.e���2R/
b�
Œ1�.e���.L�2R//

b�
�

(3.18)

E.Uoff / D R L�2R
0

Pr.Uoff > u/du: (3.19)

As for the previous hops of the entire message transmission path, they are
V2V communication links which can be characterized using the vehicle mobility
model. The evolution process of the relative velocity between two adjacent vehicles
can be modelled by a continuous time Markov chain (CTMC) with a state space
H D fh0; h1; h2g. Here, h0 denotes a negative relative velocity when the vehicle
ahead moves with vL while the vehicle behind moves with vH; h1 models a zero
relative velocity when both vehicles move with the same speed; and h2 denotes a
positive relative velocity. If the period that each vehicle keeps the same velocity is
exponentially distributed with the average value D, the transition rate between any
two states of the CTMC is 2=D. Thus, according to [31], the average number of
hops M within the entire message transmission path can be estimated as

M D 6.L�EŒUon ��EŒUoff �/

D.vLCvH /
: (3.20)

Based on Eq. (3.20), the transmission delay of the whole transmission path can
be given as

 D .M � 1/EŒTV2V �C EŒToff � (3.21)
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where EŒTV2V � is the average transmission delay for a V2V hop satisfying that
EŒTV2V � D 1

1�e�R , since the headway distance follows an exponential distribution.
If we consider the request sending and decision receiving as similar processes, the
total transmission delay for a vehicle from sending the charging request to receiving
the charging decision should be 2 . It can be seen that this transmission delay is
dependent on the network parameters such as vehicle mobility parameters (i.e., vL,
vH , � and D), the vehicle density (i.e., � ), and the RSU deployment in the network
(i.e., the transmission range R and the average inter-RSU distance L).

Therefore, the average travel distance, cv;k, when EV v is moving and waiting for
the charging decision in period k, can be obtained as

cv;k D EŒOv� � P

j2H
xv;j;k (3.22)

where Ov D V � 2 .vL; vH ;D; �; �;R;L/ denotes the travel distance for EV v due to
the transmission delay of VANETs. Similarly, the corresponding travel cost in terms
of energy is defined as a linear non-decreasing function PC.cv;k/ to measure the
energy cost consumed by EV v when waiting for the charging decision in period k.

With the defined PC.pv;k/ and PC.cv;k/, the initial stored energy, Pinit
v;k , should

be no less than the summation of PC.pv;k/ and PC.cv;k/ in order to guarantee the
vehicle to reach the destination charging station, i.e.,

Pv;kcost D PC.pv;k/C PC.cv;k/ � Pinit
v;k : (3.23)

Note that Pinit
v;k can be collected in a real-time way by RSUs via VANETs.

3.3.3 Mobility-Aware EV Charging Optimization Problem

Have derived both the linear relationship among the load capacities of the charging
stations and the travel cost for EVs, the charging strategy aims at maximiz-
ing the overall charged-energy-minus-travel-cost while avoiding power system
overload [26]. The objective function indicates that improving the total charged
energy and reducing the travel cost for EV charging will be jointly considered and
deliberately balanced. Specifically, Upon receiving (1) the historic readings from the
RTUs installed at the buses and (2) the vehicle information via VANETs, the traffic
server conducts the charging strategy to determine Pchv;j;k and xv;j;k, following the
optimization problem below.
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max
P

k

P

v2V

P

j2H
a � Pchv;j;k � P

k

P

v2V
.PC.pv;k/C PC.cv;k//

s:t:
0 � Pchv;j;k � Pchmax

v;j;k;8v 2 V;8j 2 H; and 8k

Pchj;k D P
v2V Pchv;j;k � Pj

total;8k;8j 2 H
P

j2H
jPchj;k � rj � �; 8k

0 � Pinit
v;k C .

P

j2H
a � Pchv;j;k � PC.pv;k/� PC.cv;k/ � Pk

cons � .1 � P

j2H
xv;j;k//

� Cmax
battery;8v 2 V;8k

Pchv;j;k
Pchmax

v;j;k
� xv;j;k;8v 2 V;8j 2 H; and 8k

P

j2H
xv;j;k � 1 and xv;j;k 2 X D Œ0; 1�\ Z;8v 2 V;8j 2 H; and 8k

PC.pv;k/C PC.cv;k/ � Pinit
v;k ;8v 2 V;8k

P

k

P

j2H
xv;j;k � Xmax;8v 2 V

(3.24)
With constraints given in (3.4), (3.7), (3.9), (3.14) and (3.23).

3.4 The Coordinated Mobility-Aware EV Charging Strategy

In this section, the solution of the optimization problem (3.24) is derived to obtain
charging decisions. The original problem (3.24) is a time-coupled mixed-integer
linear programming (MILP) problem, which is very complicated to solve. However,
having noticed that there is only one time-coupled constraint, i.e., the last constraint
of (3.24), the original time-coupled problem can be first time-decoupled into a set
of sub-MILPs exploiting Lagrange duality [26]. The optimal solutions from all the
sub-MILPs can be combined into an 	-optimal solution to the original problem
[41]. That is, leveraging Lagrange duality, only solving each decoupled sub-MILP
problem in each period can result in an 	-optimal solution for the whole time
horizon. As for each sub-MILP, the optimal solution can be achieved by the branch-
and-cut-based outer approximation (BCBOA) algorithm [27]. We also provide the
proof for the optimality of BCBOA.

3.4.1 Optimization Decoupling Leveraging Lagrange Duality

By applying the Lagrange duality, the original optimization problem (3.24) is
decoupled into a set of sub-problems w.r.t period k. The basic principle is to
integrate the time-coupled constraints of (3.24) into the objective function by adding
a weighted sum of the time-coupled constraints to the objective function. In this
way, the original problem can be time-decoupled into a set of sub-problems w.r.t
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period k, each only having decision variables and parameters of the same period.
The essential philosophy underlying the feasibility of Lagrange duality for time-
decoupling is that (i) the objective function is linear, and (ii) all the constrains are
also linear [41]. We define the Lagrangian function L.:/ for the problem (3.24) as

L.Pchv;j;k; xv;j;k/ D
X

k

f
X

v2V

X

j2H

a � Pchv;j;k �
X

v2V
.PC.pv;k/C PC.cv;k//g

�
X

v2V

vŒ

X

k

X

j2H

xv;j;k � Xmax� (3.25)

where 
v represents the Lagrange multipliers corresponding to the vth inequality
constraint

P

k

P

j2H
xv;j;k � Xmax: (3.26)

The vector f
vg is called the dual variable set or Lagrange multiplier vector.
Rearranging Eq. (3.25), we can have

L.Pchv;j;k; xv;j;k/ D P

k
f.P

v2V

P

j2H
a � Pchv;j;k /� P

v2V
.PC.pv;k/C PC.cv;k//

� P

v2V

vŒ

P

j2H
xv;j;k �g C P

v2V

vXmax:

(3.27)

The problem can then be decoupled into a set of isolated sub-problems w.r.t to
each period k with the method of dual decomposition [26]. Denote with Dk.
v/ the
maximum value of Lagrangian L.:/ over Pchv;j;k and xv;j;k in period k, i.e.,

Dk.
v/ D max
Pchv;j;k;xv;j;k

f.P
v2V

P

j2H
a � Pchv;j;k/� P

v2V

.PC.pv;k/C PC.cv;k//� P

v2V


vŒ
P

j2H
xv;j;k�g:

(3.28)

Then, define Lagrangian dual function D.
v/ as the maximum of Lagrangian L.:/
over Pchv;j;k and xv;j;k, and we have

D.
v/ D P

k
Dk.
v/C P

v2V

vXmax: (3.29)

By minimizing the Lagrangian dual function over the dual variables, 
v , the 	-
optimal solution of (3.24) can be achieved.

min

v

D.
v/

s:t:
v � 0:
(3.30)
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As proven in [41], given 
v , if the solution Pchv;j;k and xv;j;k is optimal for
problem (3.28) and satisfies the time-coupled constraint in (3.26), the solution is
the 	-optimal to the original problem, with 	 D � P

v2V

vŒ

P

k

P

j2H
xv;j;k � Xmax�.

3.4.2 Solving the Sub-MILP Problem Based on BCBOA
Algorithm

According to (3.28), the sub-optimization problem, P, is given as

P

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

max
Pchv;j;k ;xv;j;k

f.P
v2V

P

j2H
a � Pchv;j;k /� P

v2V

.PC.pv;k/C PC.cv;k//� P

v2V


v Œ
P

j2H
xv;j;k�g

s:t:

fj;1.x;Pch/ D Pchj;k D P
v2V

Pchv;j;k � Pj
total � 0;8j 2 H

f2.x;Pch/ D P

j2H
Pchj;k � jrj �� � 0

fv;3.x;Pch/ D Pinit
v;k C .

P

j2H
a � Pchv;j;k � PC.pv;k/� PC.cv;k/� Pk

cons.1� P

j
xv;j;k//� Cmax

battery � 0;

8v 2 V

fv;4.x;Pch/ D �ŒPinit
v;k C .

P

j2H
a � Pchv;j;k � PC.pv;k/� PC.cv;k/� Pk

cons.1� P

j
xv;j;k//� � 0;8v 2 V

fv;j;5.x;Pch/ D Pchv;j;k
Pchmax

v;j;k
� xv;j;k � 0;8v 2 V;8j 2 H

fv;6.x;Pch/ D P

j2H
xv;j;k � 1 � 0;8v 2 V

fv;7.x;Pch/ D PC.pv;k/C PC.cv;k/� Pinit
v;k � 0;8v 2 V

0 � Pchv;j;k � Pchmax
v;j;k; xv;j;k 2 f0; 1g; 8v 2 V;8j 2 H (3.31)

where x and Pch are the set of all xv;j;k and Pchv;j;k, respectively.
The sub-optimization problem (3.31) is an MILP, which can be solved by the

BCBOA Algorithm [27]. The BCBOA algorithm is an iterative procedure which
solves the original MILP by solving an alternating sequence of relaxed MILPs and
linear programs (LPs). The relaxed MILP is achieved by replacing the original
constraints with linear functions by means of polyhedral outer approximations
(OAs). The OA is to provide polyhedral representation of the feasible space of
P. The polyhedral representation renders linearly in the continuous variable, and
enables complexity reduction for the original problem. Given any set of possible
solutions T D f.x1;Pch1/; : : : ; .xt;Pcht/; : : :g, the MILP is given as follows,

POA.T/

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

max$
s:t:

rG.x;Pch/Tj.xt;Pcht/

�
x � xt

Pch � Pcht

�

C G.xt;Pcht/ � $

rF.x;Pch/Tj.xt ;Pcht/

�
x � xt

Pch � Pcht

�

C F.xt;Pcht/ � 0

8.xt;Pcht/ 2 T; x 2 X \ Zn; 0 � Pchv;j;k � Pchmax
v;j;k;$ 2 R

(3.32)
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where

G.x;Pch/ D f.P
v2V

P

j2H
a � Pchv;j;k /� P

v2V
.PC.pv;k/C PC.cv;k//� P

v2V

vŒ

P

j2H
xv;j;k�g;

F D ffj;1; f2; fv;3; fv;4; fv;j;5; fv;6; fv;7g; 8v 2 V; 8j 2 H;

$ is an auxiliary variable, and rG.�/T denotes the transpose of the gradient of G.
The LP can be achieved from the original problem P fixing x to Nx, where Nx is

the optimal solution of x in MILP (3.32). To summarize, the OA approximation
exploits the gradients of both the objective and constraints at different points to
build an MILP relaxation of the problem P. Note that as all the functions in problem
P are linear, the relaxed MILP will be the same to the original problem in the first
iteration, due to which the algorithm will terminate within two iterations at most.
In the following, a proposed theorem shows that if (1) the solution set, T, includes
suitable points, and (2) KKT conditions are satisfied at these points, the problems
POA.T/ and P are equivalent.

Theorem 3.2. Consider that P has a finite set of optimal solutions. For 8Nx 2 X\Zn,
if the problem

PNx

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

max G.x;Pch/

s:t:

fj;1 D P
v2V

Pchv;j;k � Pj
total � 0; 8j 2 H

f2 D P

j2H
.Pchj;k � jrj/ D P

j2H
.

P

v2V

Pchv;j;k � jrj/�� � 0

fv;3 D Pinit
v;k C .

P

j2H
a � Pchv;j;k � PC.pv;k/� PC.cv;k/� Pk

cons.1� P

j
xv;j;k//� Cmax

battery � 0;8v 2 V

fv;4 D �ŒPinit
v;k C .

P

j2H
a � Pchv;j;k � PC.pv;k/� PC.cv;k/� Pk

cons.1� P

j
xv;j;k//� � 0;8v 2 V

fv;j;5 D Pchv;j;k
Pchmax

v;j;k
� xv;j;k � 0; 8j 2 H; 8v 2 V

0 � Pchv;j;k � Pchmax
v;j;k

(3.33)

is feasible, the optimal solution of PNx, denoted as Pch, is optimal for P. Otherwise,
if PNx is not feasible, the optimal solution to the following problem, also denoted as
Pch, is optimal to the problem P.

PF
Nx

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

min
jHjC1C2jVjCjHjjVjP

jjD1

ujj

s:t: fj;1 � ujj � 0; jj D f1; � � � ; jHjg; j 2 H

f2 � ujHjC1 � 0

fv;3 � ujj � 0; jj D fjHj C 2; � � � ; jHj C 1C jVjg; v 2 V

fv;4 � ujj � 0; jj D fjHj C 2C jVj; � � � ; jHj C 1C 2jVjg; v 2 V

fv;j;5 � ujj � 0; jj D fjHj C 2C 2jVj; � � � ; jHj C 1C 2jVj C jVjjHjg; v 2 V; j 2 H

0 � Pchv;j;k � Pchmax
v;j;k

(3.34)

where each ujj is one-to-one matched with each linear constraint (i.e., fj;1,f2,fv;3,fv;4,
and fv;j;5), and there are totally jHj C 1 C 2jVj C jHjjVj constraints except the
boundary constraints 0 � Pchv;j;k � Pchmax

v;j;k. Define NT as the set of all such solutions
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(Nx;Pch). If the KKT conditions are satisfied at every point of NT, P and POA( NT) have
the same optimal value.

Proof. Similar to [42], Denote the set of feasible x 2 X \ Zn in the problem PNx as
XF and the complement of XF in X \ Zn as XI . Here, XF ¤ ;.

When Nx 2 XI , the problem PNx is infeasible and thus NT should contain the point
(Nx, Pch) with an optimal solution of PFNx . Therefore, POA( NT) contains the constraint

rF.x;Pch/Tj.x;Pch/

�
x � Nx

Pch � Pch

�

C F.x;Pch/ � 0

where F D ffj;1; f2; fv;3; fv;4; fv;j;5; fv;6; fv;7g; 8v 2 V; 8j 2 H:
(3.35)

Moreover, as Pch is an optimal solution of PF
Nx and the KKT conditions are

satisfied, there exists � 2 R2�ŒjHjC1C2jVjCjHjjVjj�
C such that the first jHj C 1C 2jVj C

jVj � jHj elements in � has one-to-one mapping with each constraint in F and

jHjC1C2jVjCjHjjVjP

jjD1
�jjrPchŒfjj.x;Pch/� D 0; 8fjj 2

F D ffj;1; f2; fv;3; fv;4; fv;j;5g; 8v 2 V; 8j 2 H:

(3.36)

1 � �jj � �jHjC1C2jVjCjVj�jHjCjj D 0; jj D 1; : : : ; jHj C 1C 2jVj C jVj � jHj
(3.37)

�jjŒfjj.x;Pch/ � Nujj� D 0; jj D 1; : : : ; jHj C 1C 2jVj C jVjjHj (3.38)

�jHjC1C2jVjCjVjjHjCjjujj D 0; jj D 1; : : : ; jHj C 1C 2jVj C jVjjHj: (3.39)

According to (3.35), it can be further derived that

rPchŒfjj.x;Pch/�T
�
Pch � Pch

� C fjj.x;Pch/ � 0; jj D 1; � � �; jHj C 1C 2jVj C jHjjVj;8fjj 2 F:

(3.40)

Add jHj C 1C 2jVj C jHjjVj inequalities in (3.40) with the nonnegative multipliers
�1,. . . ,�jHjC1C2jVjCjHj�jVj . After rearranging, it can be obtained that

jHjC1C2jVjCjHjjVjP

jD1

�jjrPchŒfjj.x;Pch/�T .Pch � Pch/ � � jHjC1C2jVjCjHjjVjP

jD1

�jjfjj.x;Pch/; 8fjj 2 F:

(3.41)

According to (3.36), the left hand side (LHS) of (3.41) equals to zero. While accord-

ing to (3.38), the RHS of (3.41) equals to �
jHjC1C2jVjCjHjjVjP

jjD1
�jj Nujj. From (3.39),

�jjCjHjC1C2jVjCjVjjHj D 0 if ujj > 0; 8jj 2 f1; : : : ; jHj C 1C 2jVj C jVjjHjg. Then,
combining (3.37), we have �jj D 1 for 8jj 2 f1; : : : ; jHj C 1 C 2jVj C jVjjHjg
satisfying ujj > 0. This implies that the RHS of (3.41), i.e., �

jHjC1C2jVjCjVjjHjP

jjD1
Nujj,
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is strictly negative otherwise PNx would be feasible. Therefore, the inequality (3.41)
has no solution, which indicates that the maximum value of POA. NT/ is to be found
as the maximum value over all x 2 XF.

In addition, let Pch be an optimal solution to PNx. (G.Nx;Pch/, Nx, Pch) is a feasible
solution of POA

Nx . NT/. Thus, G.Nx;Pch/ is a lower bound on the optimal value $ of
POA

Nx . NT/. In the following, the value G.Nx;Pch/ is proved to be also an upper bound,
i.e., $ � G.Nx;Pch/. When Pch is an optimal solution of PNx and satisfies the KKT
conditions. There exists � 2 R

jHjC1C2jVjCjVjjHj
C such that

�rPchG.Nx;Pch/C
jHjC1C2jVjCjVjjHjP

jjD1
�jjrPchŒfjj.x;Pch/� D 0; 8fjj 2 F (3.42)

�jjfjj.x;Pch/ D 0; jj D 1; : : : ; jHj C 1C 2jVj C jVjjHj: (3.43)

With outer-approximation programming, any solution of POA
Nx . NT/ should satisfy

�rPchG.Nx;Pch/T
�
Pch�Pch

� �G.Nx;Pch/ � �$
rPchŒfjj.x;Pch/�T .Pch�Pch/Cfjj.x;Pch/ � 0; jj D 1; � � � ; jHj C 1C 2jVjCjVjjHj

(3.44)

Multiply the second inequality set in (3.44) by the Lagrange multipliers
(i.e.,�jj � 0) and subsequently add to the first inequality in (3.44). Then, re-arrange
the LHS and we can obtain

f�rPchG.Nx;Pch/C
jHjC1C2jVjCjVjjHjP

jD1
�jjrPchfjj.x;Pch/gT � �

Pch � Pch
�

C
jHjC1C2jVjCjVjjHjP

jD1
�jjfjj.x;Pch/� G.Nx;Pch/ D �G.Nx;Pch/ � �$:

(3.45)

From (3.42) and (3.43), the LHS of (3.45) is equivalent to �G.x;Pch/. Therefore,
we have G.x;Pch/ � $ ; that is, for 8Nx 2 XF, the problem POA

Nx . NT/ and PNx have the
same optimal objective value. ut

As given above, the optimality of BCBOA is proved. To summarize, the
formulated optimal charging problem can be solved by first time-decoupling the
original problem into a set of sub-MILPs through Lagrange duality, and each sub-
MILP can be solved with the branch-and-cut-based outer approximation (BCBOA)
algorithm. The charging decisions in terms of Pchv;j;k and xv;j;k can be dispatched to
the involved EV via VANETs.

www.allitebooks.com
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3.5 Performance Evaluation

We study a realistic suburban scenario shown in Fig. 3.4 – a region around the
campus of University of Waterloo (Waterloo, ON, Canada). RSUs are uniformly
deployed along roads. For the smart grid parameters, we use the parameters of the
12-bus distribution system (only load buses) provided in [29], with enlarging the
load to MW level. Two charging stations are deployed as marked in Fig. 3.4a and
connected to Bus2 and Bus11, respectively. Table 3.1 shows the load data at each bus
at 21:00. We set the input voltage to 1:0 pu, and the minimum allowable voltage to
0:9 pu. The impedance of any line section is set to 0:005C j0:0046. Table 3.2 shows
the normalized non-EV-charging power load over that at 21:00 for all the buses,
according to the trend given in [43]. Vehicles move on the roads in the considered
region following the mobility model in Sect. 3.2.3. To emulate the vehicle traffic,
we employ a highly realistic microscopic vehicle traffic simulator, VISSIM [28], to
generate vehicle trace files for recording the vehicle mobility information. Based
on the trace files, the average transmission delay incurred by VANETs for an EV

Fig. 3.4 The simulation scenario of University of Waterloo region in VISSIM. (a) A snap shot
of the simulation region with signing the simulated roads in blue. (b) The 3D vehicle traffic
illustrations of two intersections highlighted in red on the upside
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Table 3.1 An example of active and reactive power value at each bus of the system

Hour Bus number 2 3 4 5 6 7 8 9 10 11 12

21:00 P(MW) TBD 4.0 5.5 – 6.0 5.5 4.5 – 3.5 TBD 3.0

Q(MVar) – 3.0 5.5 – 1.5 5.5 4.5 – 3.0 – 1.5

Table 3.2 Normalized power over the power at 21:00 for all the buses without EV charging load
during a day

Hour 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00

Normalized 0.5 0.5 0.5 0.5 0.7 0.9 1.3 1.5 2.1 2.3 2.5 2.5

power

Hour 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

Normalized 2.5 2.3 2.1 1.8 1.5 1.4 1.3 1.2 1.0 0.7 0.7 0.7

power

to receive a charging decision is first evaluated. Then, combining with the power
system data, the performance of the proposed mobility-aware EV charging strategy
is investigated, leveraging a customized simulator built in Matlab. The proposed
strategy is compared to an existing coordinated charging strategy that doe not
consider the EV mobility or the travel cost [9]. The investigated performance metrics
include the total EV charging energy (TECE), the average EV travel cost (AETC),
and the percentage of EVs that succeed or fail in charging.

3.5.1 Simulation Setup

To simulate a VANET in VISSIM, in the initial stage of the simulation, vehicles are
pushed into the region with area of 6000 � 2800m as shown in Fig. 3.4a. Vehicles
enter the region from the pre-set entries (nine entries at the ends of the main roads),
following a Poisson arrival process with rate � (e.g., � = 2500 vehicle/hour/entry).
After a certain warm-up duration t� (e.g., 240 s), the vehicle push-in stops and
vehicle density will reach 30 vehicles/km/lane. The vehicle information (e.g.,
locations, velocities, etc.) is recorded at the end of each simulation step (e.g., 0:2 s)
in the vehicle trace files. Besides, RSUs (e.g., 25 RSUs) are uniformly deployed
along the roads in the considered region. The transmission range of both RSUs and
vehicles is R (e.g., 150 m). The simulation lasts for 3000 s.

As for the car following model, we adopt the Wiedemann 74 model [44] for
modeling the traffic. In this model, the vehicle acceleration is a function of the
vehicle velocity, the driving behaviors of the driver, the features of the vehicle as
well as the difference in distance and velocity between the subject vehicle and the
vehicle in front [44]. At an intersection, the traffic is controlled by either the traffic
lights or a stop sign, which is consistent with the reality, as illustrated in Fig. 3.4b.
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All the vehicles follow the two-state random velocity model described in Sect. 3.2.3
with parameters V D fvL; vHg and D (e.g., vL D 30 km/h, vH D 60 km/h, D D 60 s).

For the EV charging setup, the EV battery capacity is set to 85KWh according to
the TESLA Model S [3]. The charging period is 30 min, during which a maximum of
30KWh energy can be charged. If an EV will not be charged in a period, the energy
consumption for maintaining mobility in that period follows a uniform distribution
over the interval [0,10] KWh. In addition, the maximal charging times for one EV
(i.e., Xmax) is set to be 3. For better illustration purpose, an existing centralized
charging strategy proposed in [9] is compared which aims to only maximize the
total amount of EV charging energy.

3.5.2 Simulation Results of VANETs

We first examine the validity of the mobility model proposed in Sect. 3.2.3 and
the analytical results of (3.18) derived based on the mobility model, as shown in
Fig. 3.5. Based on the trace files obtained from VISSIM, the probability density
function (PDF) of vehicle headway distance is shown in Fig. 3.5a when � D
2500 vehicles/hour/entry. It can be seen that the PDF of the headway distance
matches well with an exponential distribution, which verifies the hypothesis in
Sect. 3.2.3 that the headway distance will be exponentially distributed at low or
medium vehicle density. In addition, the average headway distance can be calculated
from the approximated exponential distribution in Fig. 3.5a, which is about 30m.
This average value is very close to that calculated from the pre-set vehicle density
in simulation setup, i.e., 30 vehicles/km/lane. Furthermore, Fig. 3.5b validates the
analytical PDF of the distance between the last hop vehicle to the nearest RSU for
one packet delivery. With 25 RSUs deployed in the network, the theoretical PDF
is calculated based on Eq. (3.18). The simulation results are extracted from the real
trace files of VISSIM. It can be observed from Fig. 3.5b that the analytical PDF
matches well with the simulated PDF, thus validating the efficacy of the analytical
results in Eq. (3.18). Calculating from the simulation results, the average distance
from the last hop vehicle to its neatest RSU is around 200m.

Figure 3.5c presents the PDF of the headway distance when the vehicle density
� decreases to 1800 vehicles/hour/entry. The PDF curve approximately follows an
exponential distribution as well. The average distance is increased to 46m. In
addition, Fig. 3.5d illustrates the PDF of the last-hop V2R distance, from which the
average V2R distance of the last hop is calculated to be about 215m. This average
V2R distance is also very close to the analytical results in Eq. (3.18).

We then show the single-hop connection probability between a vehicle and its
nearest RSU and the end-to-end multi-hop transmission delay in VANETs, as shown
in Figs. 3.6 and 3.7, respectively. The simulation is conducted with different RSU
deployments (i.e., 25 or 8 RSUs in the network) and different vehicle densities (i.e.,
� D 2500 or 1800 vehicles/hour/entry). From Fig. 3.6, it can be seen that when both
the number of RSUs and � are fixed, the single-hop connection probability increases



44 3 Mobility-Aware Coordinated EV Charging in VANET-Enhanced Smart Grid

a

b

Fig. 3.5 (continued)
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c

d

Fig. 3.5 The PDFs of both two adjacent vehicle distance (V2V distance) and the last hop V2R
distance. (a) The PDF of V2V distance when � D 2500. (b) The PDF of the last hop V2R distance
when � D 2500. (c) The PDF of V2V distance when � D 1800. (d) The PDF of the last hop V2R
distance when � D 1800
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Fig. 3.6 The average connection probability between a vehicle and an RSU

Fig. 3.7 The average transmission delay for a V2R uplink
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as the RSU transmission range increases. In addition, when the RSU transmission
range is fixed, the single-hop connection probability increases with more RSUs or
larger � but to different extents; that is, the change in the number of RSUs impacts
more on the connection probability than that in �. This is due to the following
reasons. On one hand, as explained in the transmission model in Sect. 3.2.4, the
transmission collisions could be avoided once vehicles are within the RSU coverage.
Thus, the increase of � can only affect the connection probability via reducing the
average Uoff , as indicated in Eq. (3.18). On the other hand, the average headway
distances when � D 2500 and � D 1800 are around 30 and 50, respectively,
which are quite small compared to the RSU transmission range R. Thus, the two
headway distances can be considered to be in the same scaling order. Consequently,
the average Uoff will not change a lot with the two simulated � values, so the gaps
between the connection probabilities are very small when the RSU deployment is
fixed. Contrarily, when � is fixed, different numbers of RSUs can lead to bigger
difference in terms of the average Uoff , resulting in a much larger gap.

From Fig. 3.7, it can be found that the average end-to-end transmission delay
decreases with larger RSU transmission range, more deployed RSUs or larger �.
A more interesting observation is that different from the single-hop connection
probabilities, the end-to-end transmission delay does not increment a lot even
when the number of RSUs largely decreases, e.g., from 25 to 8. For instance, the
transmission delay is around 190 s when there are 25 RSUs and � D 2500, and is
around 240 s when there are 8 RSUs and � D 1800. The small difference compared
with the big gap of connection probability is attributed to the benefits brought
by multi-hop V2V relaying. When there are much less deployed RSUs, although
the single-hop connection probability (i.e., direct connection opportunity) from a
vehicle to an RSU is significantly reduced, the multi-hop V2V transmission can still
efficiently convey the information to an RSU at the cost of a small delay increase. In
this way, the multi-hop V2V relaying increases the equivalent transmission range of
a vehicle. In addition, with the considered parameter values, the average end-to-end
transmission delay is around 200 s. This indicates that although the transmission
delay of VANETs is larger than the cellular systems (e.g., LTE systems), it is still
acceptable for the applications of vehicle information gathering compared with the
decision making period (i.e., 30 min). More essentially, VANETs can significantly
cut down the service expenses and boost the transmission rates, which matter more
to large-volume vehicle data transmissions.

3.5.3 Simulation Results of the Proposed Charging Strategy

In this subsection, the performance of the proposed charging strategy is investigated.
One thing to notice is that although the strategy is performed every 30 min, the
simulation results are collected every 1 h. The TECE performance under a weekday
total-available-charging-energy (TACE) profile [43] is first presented in Fig. 3.8.
The profile figures are given in Table 3.2. The total number of EVs is fixed. Since
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Fig. 3.8 Daily TECE comparison when the total number of EVs is fixed to 1200

our main focus is to study the performance of the charging strategies when the
overload is likely to occur, only the case when the TACE is not sufficient to charge
all the requesting EVs in each period is considered. From Fig. 3.8, tt can be seen
that the proposed strategy can achieve larger TECE than the compared strategy
in all the hours. The reason is as follows. In the compared strategy, no real-time
vehicle information is considered, thus, the charging decisions are made without
considering the EV mobility, range anxiety and the travel cost. Consequently, some
EVs are likely to be scheduled to a charging station which is beyond reach based on
their current locations and battery levels, because their batteries will be depleted on
the way. Contrarily, our proposed strategy accounts for the travel cost derived from
the real-time vehicle information from VANETs and only dispatches the EVs to the
charging stations within their reach, thus leading to a larger TECE. In addition, the
TECE gain ranges between 15% and 30% for different hours, and is larger when
TACE is smaller. This is because when the TACE is smaller, there are more EVs
that cannot be charged in the current period. Since the EVs are moving on the roads,
they will continue to consume energy even if they are not charged. In consequence,
there is less stored battery energy in the beginning of the next period, leading to
a larger depletion probability if an EV is scheduled to a farther station under the
compared strategy. Unlike the compared strategy, our strategy can effectively avoid
the EV depletion, thus having a larger gain with smaller TACE.

We then examine the AETC performance under different TACE values in
Fig. 3.9. It can be observed that the AETC under the proposed strategy is consid-
erably smaller than that under the compared strategy, and the gain is larger when the
TACE is larger. This is because the proposed strategy pays attention to reducing the
AETC, thus tending to assign closer charging stations to EVs. With larger TACE,
each charging station can charge more EVs at a time. Consequently, more EVs can
be scheduled to the closer charging stations under the proposed strategy, resulting
in a larger gain than the compared strategy.
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Fig. 3.9 AETC comparison with increasing TACE when the total number of EVs is 1200

Furthermore, the number of EVs that succeed or fail in charging under different
strategies is compared in Fig. 3.10. It can be found that the proposed strategy has less
involved EVs, which is the number of successfully charged EVs plus the number of
EVs that fail to be charged, but more successfully charged EVs. This phenomenon
further supports the explanation for Fig. 3.8. Since the proposed strategy tend to
assign the EVs to the closer stations, the EV charging load is less balanced than the
compared strategy. Thus, there are less involved EVs under the proposed strategy.
However, the compared strategy may cause battery depletion for some involved EVs
on their way, the EVs that actually succeed in charging are less than the proposed
strategy. Therefore, it is crucial to take EV mobility and range anxiety into the
charging strategy design for EV fast-charging context.

Last, the comparison of the AETC performance as well as the number of
successfully charged EVs is shown in Fig. 3.11. It can be seen that with fixed
TACE and increased total number of EVs, the AETC under the proposed strategy
decreases, and there are more successfully charged EVs; while both metrics remain
almost unchanged under the compared strategy. This is because the proposed
strategy considers to reduce the AETC. When there are totally more EVs, more EVs
that are closer to the charging stations get the charging opportunity. As a result, the
AETC decreases correspondingly. When the AETC decreases, the scheduled EVs
reach the charging stations with higher average battery levels, leading to a smaller
average EV charging energy. Thus more EVs can be accommodated by the charging
stations given that the TACE is fixed. But the compared strategy does not consider
the AETC, the increase in the total number of EVs has little impact on the EV
selection, thus resulting in almost unchanged performance.
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Fig. 3.10 Comparison of the number of involved EVs and successfully charged EVs, with
1200 EVs

Fig. 3.11 Comparison of AETC and the number of successfully charged EVs, with fixed TACE
(5400 KWh)



3.6 Related Work 51

3.6 Related Work

Many studies [13, 14] have shown that high EV penetration levels can significantly
affect the stability of the power system. To prevent the power system from
overloading during the peak time, it is crucial to conduct load management strategies
to distribute the EV charging load over both time and space [15]. In [9, 16], to evite
power system overloading, some peak load is shaved and shifted to off-peak periods
to improve the energy utilization for the entire grid. In [17, 18], it is shown that
based on the global load information, the EV charging strategies that coordinate the
charging duration and power rates of a group of EVs can have better performance
than the local strategy. In [19, 20], the spatial diversity of EV charging is investigated
to further help regulate the charging profile. Most of the existing EV charging
strategies assume EVs to be stationary when they need to be charged. Few works
take into account the vehicle mobility, which is the most distinct feature of a vehicle.
The vehicle mobility can not be overlooked especially in fast-charging context. Due
to vehicle mobility, the range anxiety, i.e., the tension between the travel cost and
the EV battery level, is key to the feasibility of the charging decisions. Therefore,
it is desirable to design new efficient EV charging strategies that incorporate the
real-time vehicle information into solving the range anxiety problem.

To collect the real-time vehicle information, most existing works count on
cellular or Wi-Fi systems [45–47]. However, the practicability in collecting the
vehicle information is limited by inevitable drawbacks of these systems. First,
for dense vehicle scenarios, the locational inaccuracy of both systems [48] may
considerably degrade the charging performance. Second, as cellular systems are not
used exclusively for vehicular communications, the vehicular services can be highly
costly, and other cellular services may be congested by the high volume of vehicular
data transmission especially under high the vehicle density; the coverage of the
Wi-Fi systems is quite limited which may cause large latency for information
delivery, and the delivery ratio may be dramatically reduced due to the high
vehicle mobility. With VANETs, the transmission of the real-time messages can
be much faster, cheaper and more efficient than the above systems, especially in
a dense and highly mobile vehicular environment [37]. Dedicated to information
exchange among highly mobile vehicles and the RSUs, short-range V2V and
V2R communications are supported to effectively extend the transmission range
of vehicles in a multi-hop manner and with higher data rates. The wired inter-
RSU information sharing and various V2V relaying mechanisms can provide higher
throughput and delivery ratio as well as lower latency for the large-volume vehicle
information exchange [38, 39]. All these features make it possible to perform
coordinated charging strategy for a group of vehicles. In this chapter, VANETs are
integrated into a smart grid to enable the real-time information exchange among
mobile vehicles and RSUs, and evaluate the end-to-end transmission delay incurred
by VANETs. Then, the range anxiety is introduced as a viability indicator for the
EV charging decisions.
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Leveraging the real-time vehicle information collection and decision dissemina-
tion through VANETs, we aim at designing a mobility-aware coordinated predictive
charging strategy for mobile EVs. The strategy enhances the energy utilization of
the whole power system and reduces the average EV travel cost while preventing
the power system from overloading. Our preliminary work [1] has investigated
this subject, but does not consider the spatial diversity of charging stations and
the additional transmission cost brought by the transmission delay in VANETs.
Extending that work, this chapter incorporates charging location diversity and
transmission delay into the optimization framework, and fully evaluates the impacts
of these factors in a highly realistic suburban scenario built in VISSIM.

3.7 Conclusions

In this chapter, we have considered the EV mobility into the EV charging manage-
ment and proposed a mobility-aware coordinated EV charging strategy to enhance
the energy utilization and reduce the EV travel cost while avoiding the overload
in power system. Specifically, a VANET-enhanced smart grid has been proposed
with the capabilities to collect real-time vehicle information through VANETs. A
predictive mobility-aware coordinated EV charging strategy has been put forward
aiming to maximize the overall charging-energy-minus-travel-cost with overload
avoidance. Extensive simulations have been conducted to evaluate the impacts of
the transmission performance in VANETs on the EV charging performance and
demonstrate that the proposed EV charging strategy can achieve considerably higher
total charged energy, lower average EV travel cost and more successfully charged
EVs than the existing strategy that does not consider the EV mobility and travel
cost. In our future work, we intend to study the incentive mechanisms to stimulate
the EVs to follow the charging decisions in order to achieve global optimality.
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Chapter 4
Coordinated V2V Fast Charging for Mobile
GEVs Based on Price Control

Vehicle-to-vehicle (V2V) charging strategies offer charging plans for gridable
electric vehicles (GEVs), targeting at offloading the GEV charging loads from the
electric power systems. However, designing an effective and efficient online V2V
charging strategy with optimal energy utilization remains an open issue. In this
chapter, a price control based semi-distributed online V2V charging strategy is
put forward for an energy swapping station. Specifically, through electricity price
control, GEVs are stimulated to participate in V2V energy transactions by offering
high revenues for the discharging GEVs and low cost for the charging GEVs. The
Oligopoly game theory and Lagrange duality optimization techniques are leveraged
to solve the formulated optimal V2V charging problems. Simulation are conducted
to demonstrate the performance of the proposed V2V charging strategy.

4.1 Introduction

Electric vehicles (EVs) have attracted ever-increasing interest worldwide as an
important diagram for sustainable and eco-friendly transportation systems. Partly
(or fully) refueled with electricity, EVs provide great potentials to save huge
costs for drivers during the vehicle lifetime. For example, a TESLA Model S,
which is a pioneering retail battery EV produced by TESLA Motors, costs $3;492
for 100;000 miles, while a conventional gasoline-powered premium sedan costs
$17;727 for the same distance [1]. Besides, the EVs solely powered by electricity
generate no emissions (e.g., greenhouse gas emissions), thus reducing pollution to
the environment. However, overload problems due to EV charging may be caused
by the high penetration of EVs, which is even prominent when fast EV charging is
considered as much higher power is required than the that in regular charging.

In most of the common EV charging strategies, EVs draw energy from the power
grid via charging stations, referred to as grid-to-vehicle (G2V). However, when the
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EV charging demand is high, overload situation may become a threat for the power
grid, leading to power supply failure. Thus, it is indispensable to design an efficient
and economical EV charging framework to relieve the overload problem. Thanks
to the installed bi-directional chargers in EVs, the EVs not only draw the energy
from the power grid with G2V plug-in functionalities but also inject energy back
to the grid, referred to as discharging via vehicle-to-grid (V2G). We also refer
to the EVs with bi-directional chargers as gridable EVs (GEVs) [2]. Thus, the
bi-directional interaction between PEVs and the grid enables the vehicle-to-vehicle
(V2V) charging, where energy can be directly transferred from one group of GEVs
to another group of GEVs at an aggregator (e.g., energy swapping stations) [2]. In
this way, the heavy EV charging load can be offloaded from the power grid for the
purpose of overload avoidance. With V2V, the efficiency for GEV charging can be
significantly improved, i.e., the requirements of infrastructure can be simplified and
the power loss can be lowered.

To the best of our knowledge, there has been little emphasis put to investigate
the charging/discharging coordination strategies in a context of V2V charging. The
primary distinct feature of a V2V strategy from the conventional charging strategies
is that, in addition to coordinating charging for a set of charging GEVs, another set
of GEVs need to be stimulated to discharge the energy such that the demand can
be matched with the supply. In this chapter, a semi-distributed price control based
GEV charging strategy is proposed at a swapping station connected to the power
grid in a V2V scenario. In specific, under the electricity price control strategy, GEVs
are stimulated to participate in a V2V energy transaction where high revenue and
low cost are anticipated for discharging GEVs and charging GEVs, respectively.
Moreover, the proposed strategy targets the mobile GEVs (e.g., electric taxis), and
thus has to consider the range anxiety in the problem formulation. The range anxiety
refers to the tension between the GEV travel cost1 and the energy levels of the
batteries equipped with the GEVs. We model the discharging procedure into a
single-period Oligopoly game with one product [3], i.e., the GEVs with surplus
energy will compete to decide the electricity price and the amount of individual
discharging power in the stage of price decision making, aiming to maximize
their own revenues. Based on this determined price, the demanding GEV charging
problem is formulated into a convex optimization problem with the objective to
minimize the overall charging costs.

4.2 System Model

The proposed V2V strategy is able to perform online coordination for GEV charging
and discharging. Thus, real-time information exchange is needed among vehicles
and between vehicles and the swapping station. The realtime information includes

1In this chapter, the GEV energy consumed on the road to reach a swapping station is referred to
as the travel cost.
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price control related signalings and (dis)charging decisions. The heterogeneous
wireless network infrastructure proposed in [4] is adopted, where the cellular
networks and vehicular ad-hoc networks (VANETs) are combined to collect and
disseminate information in a real-time manner.

Large coverage can be provided by the cellular networks via a set of base stations
(BSs), however, the service cost can be high and congestion may be caused for other
cellular services [5]. On the contrary, VANETs enable short-range communications
between vehicles and road side units (RSUs) (i.e., V2R communications) and
among vehicles (i.e., V2V communications2), which is realized via deploying
much cheaper RSUs along the road side and installing on-board communication
facilities (e.g., on-board units (OBUs)) in the vehicles. But due to the short single-
hop coverage, VANETs suffer from intermittent connections among vehicles and
RSUs. Therefore, by combining both networks, the resultant heterogeneous wireless
network can make full use of the advantages of both networks while remedying their
limitations.

In this section, a heterogeneous wireless network-enhanced V2V charing archi-
tecture is first introduced. Then, the GEV mobility and charging/discharging models
are presented. At last, the price control model for the V2V charging strategy is
discussed.

4.2.1 Heterogeneous Wireless Network-Enhanced
V2V Charging

As shown in Fig. 4.1, the proposed heterogeneous wireless network-enhanced V2V
charing architecture is composed of a swapping station, the GEVs, RSUs along the
road side, and a BS of the cellular network.

The swapping station is an aggregator for V2V fast charging/discharging among
GEVs. No energy is stored in the swapping station, which is only responsible
for determining electricity prices for charging/discharging via supply-demand
matching. The time horizon is slotted into periods, each with duration � . In
the beginning of every period, based on the collected GEV charging/discharging
profiles, electricity price is determined at the swapping station for the following
period.

RSUs are distributed along the roads with the capability of collecting the
GEV (dis)charging information (i.e., charging and discharging profiles of GEVs)
through V2V relaying and V2R transmissions. In addition, the cellular network
also supports the wireless connections between the BS and portable transceivers
in GEVs. Moreover, RSUs and BSs have wireline connections with the swapping
station, thus being able to forward the collected charging/discharging profiles to the

2Note that, in this chapter, the term V2V is used in two different contexts, one for VANET
communications among vehicles and the other for energy transfer among EVs.
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Fig. 4.1 V2V charing architecture

swapping station for price decision. Once any RSU/BS obtains the price control
decisions from the swapping station, it can relay the price to GEVs via short-
range high-speed R2V and V2V communications or long-range low speed cellular
communications.

Denote the set of mobile GEVs as V. GEVs may decide to (dis)charge when
moving on the roads, e.g., electric taxis. All GEVs are considered with the
same battery capacity, denoted as C. Each GEV is equipped with both network
interfaces for cellular network and VANETs. Both profile information collection
and price dissemination can be accomplished either through multi-hop V2V and
V2R transmissions or directly via the BS communications. Based on the received
price control information, the discharging decisions are made through competition
among GEVs; the charging decisions are made aiming to minimize the overall costs.
The range anxiety of each GEV is considered in both decision procedures. The
charging/discharging decision of GEV v is the charging/discharging load/rate at the
swapping station in period k, which can be denoted as Pv;k. After that, the GEV
(dis)charging decisions are sent back to swapping stations via the heterogeneous
wireless network.

The set of candidate GEVs with surplus energy thus able to discharge is denoted
as S 2 V, and the set of candidate GEVs with charging demands is denoted as
D 2 V. For GEV d (d 2 D) with charging demand, the charging load is denoted
as Pd;k; similarly, for GEV s (s 2 S) with surplus energy, the discharging load is
denoted as Ps;k.
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4.2.2 GEV Mobility Model

The adopted mobility model for each GEV depicts vehicle mobility by two variables
.V; J/ [6], where V is a random variable representing the vehicle velocity and has
two possible values (i.e., a lower velocity vL and a higher velocity vH). The notation
J is the average time for a vehicle staying in either velocity state.

4.2.3 GEV (Dis)Charging Models

4.2.3.1 GEV Charging Models

If a mobile GEV is charged in one period, the charging load of GEV d (2 D) in
period k, i.e., Pd;k, should be within a certain range constrained by the GEV charger
output power, that is,

0 � Pd;k � Pmax
d;k (4.1)

where Pmax
d;k is the pre-set discharging load upper bound for Pd;k [7]. Then, the sum

load of GEVs that need charging in period k, denoted as Pk
D, can be given as

Pk
D D P

d2D
Pd;k (4.2)

4.2.3.2 GEV Discharging Models

For discharging GEVs, the discharging power Ps;k is upper-bounded by the pre-set
value Pmax

s;k due to the charger power constraint [8],

0 � Ps;k � Pmax
s;k (4.3)

Then, the total discharged energy from GEVs in period k at the swapping station,
which is denoted as Pk

S, is

Pk
S D P

s2S
Ps;k (4.4)

4.2.4 Electricity Price Model

Figure 4.2 illustrates the functionality framework for the price control based semi-
distributed V2V charging strategy. Based on the collected information on GEV
charging demand and discharging capabilities (i.e., approximated maximum power
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Fig. 4.2 An illustration of semi-distributed V2V (dis)charging strategy based on price control

demand PD and power supply PS), the swapping station determines the electricity
price u. There are two cases when deciding the price as follows.

• High demand case: If PD > PS, the electricity price is determined by the supply
side, i.e., u D a � bPk

S, where a and b are positive coefficients of the linear price
function [9]. In this case, some GEVs that need charging may not be charged,
i.e., Pd;k D 0 for some GEVs, in order to match the demand with the supply at
the swapping station. This case will be explained in details in the next section.

• Surplus supply case: If PS � PD, the electricity price is determined by the
demand side, i.e., u D a � bPk

D. In this case, some GEVs with surplus energy
may not contribute to the V2V transaction (due to low revenue and excessive
potential energy supply), i.e., Ps;k D 0 for some GEVs, again, in order to satisfy
the supply and demand matching at the swapping station, which will be explained
in the next section.

After electricity price is fixed, a price control message is disseminated to GEVs
via the heterogeneous wireless communication network. Based on the price, GEVs
will make their charging/discharging decisions to either minimize the charging cost
or maximize the discharging revenue, with considering their range anxieties. Note
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that in the first stage, price is derived at the swapping station in a centralized
manner; while the charging/discharging decisions are made at individual GEVs in a
distributed way. Thus, our strategy is a semi-distributed one.

4.3 Problem Formulation

In this section, we first present the power balance constraint at the swapping station
and the charging/discharging load constraints for GEVs. Then, the travel costs of
GEVs are defined and formulated.

4.3.1 Balance Constraint at the Swapping Station

In order to realize charging/discharging control for GEVs, the power balance
constraint at the swapping station need to be first discussed. In a V2V transaction,
the power balance equation is the basic power constraint among GEV chargers. The
physical meaning of the power balance equation is that at the swapping station,
the total charged power should be equal to the total discharged power. I.e., for the
discharging GEVs (i.e., s 2 S) and charging GEVs (i.e., d 2 D) in period k, we have

X

s2S
�sPs;k D

X

d2D
�dPd;k: (4.5)

where �s 2 .0; 1� (�d 2 .0; 1�) is the discharging (charging) efficiency of the charger
for all the GEV suppliers (demanders) [2].

4.3.2 GEV Charging Constraints

During a charging period, the charged energy of each GEV is limited by its battery-
capacity (denoted as C), and the battery should not be depleted on the way to the
swapping station, i.e.,

0 � Einit
d;k C .a � �dPd;k � Pd;k

cost/ � C; 8d 2 D (4.6)

where Einit
d;k denotes the initial battery level of GEV d in period k, and Pd;k

cost denotes
the travel cost of GEV d for charging in period k (to be detailed in Sect. 4.3.4). The
duration of each period is a hours. For example, if the charging duration for each
period is 15 min, a D 0:25. The charging duration is considered to be the same for
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all the GEVs. Denote the charging cost for GEV d as cd;k. With charging load Pd;k

in period k, cd;k can be expressed as

cd;k D uk � .a � �dPd;k C Pd;k
cost/ (4.7)

where uk denotes the energy price, as determined by the swapping station.

4.3.3 GEV Discharging Constraints

The discharged energy of each discharging GEV is also limited by its battery
capacity C, and the battery should not be depleted on the way for discharging. After
the discharging, GEV s need to keep a minimum amount of energy Cs in its battery
to ensure its capability to complete its own journey after period k. Thus, we have

Cs � Einit
s;k C .�a�sPs;k � Ps;k

cost/ � C; 8s 2 S (4.8)

where Einit
s;k denotes the initial battery level in GEV s in period k. Notation Ps;k

cost

denotes the travel cost for discharging in period k for GEV s (to be detailed in
Sect. 4.3.4). The discharging cost for GEV s in period k is denoted as cs;k. With the
discharged power Ps;k, there are three components for cs;k, which are travel cost,
energy discharging cost, and battery wear cost, respectively, i.e.,

cs;k D us � .a � �sPs;k C Ps;k
cost/C Ws (4.9)

where us is the price at which GEV s purchased its stored energy. The notation
Ws D e1.a�sPs;k/

2 C e2.a�sPs;k/ C e3 represents the quadratic battery wear cost
function for GEV s [8], where e1, e2, and e3 are non-negative coefficients. Thus, the
revenue Rs;k of GEV s can be calculated as

Rs;k D uk � a�sPs;k � cs;k: (4.10)

4.3.4 Travel Cost for (Dis)Charging GEV

The travel cost Pv;kcost for GEV v to be charged/discharged in period k is composed of
two parts. First, as GEVs are moving, they may have different locations at different
periods, one part of the travel cost is related to the travel distance from the GEV’s
current location to the swapping station. Second, the travel cost is also related to
the transmission delay of the heterogeneous wireless network since GEV v is still
moving while waiting for the required price information from the swapping station.
According to the mobility model described in Sect. 3.2.3, the transmission delay is
in a much finer time scale (say seconds) than the traveling time to the swapping
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station [6]. Therefore, only the first part is considered in the following as the total
travel cost, i.e., Pv;kcost is only related to the travel distance to the swapping station.

With GPS, the traveling path for GEV v to the swapping station in period k can
be calculated based on the shortest path algorithm [10]. Denote the path length as
lv;k. Define the travel cost for GEV v in period k in terms of energy as PC.lv;k/,
where PC.�/ is a linear non-decreasing function to map the travel distance (or path
length) to the travel cost in terms of energy [4], i.e.,

Pv;kcost D PC.lv;k/; 8v 2 V: (4.11)

4.4 The Coordinated V2V (Dis)Charging Strategy

In this section, the V2V (dis)charging coordination problem is first formulated.
Exploiting the Oligopoly game theory and Lagrange duality optimization tech-
niques, the optimal decentralized solutions are derived.

4.4.1 V2V Charging Optimization Problems

Considering both the GEV discharging capabilities, charging demands and the
electricity price, the V2V charging problem can be modeled as an Oligopoly game
or a convex optimization problem in high demand case and supply surplus case,
respectively:

• High Demand Case: When PS < PD, the problem can be solved in two steps.
The first step is decision making in which the electricity price is determined by
the supply side, (i.e., Pk

S or Eq. (4.4)). All the GEVs with surplus energy compete
for discharging energy to maximize the individual discharging revenues, thus
forming an Oligopoly game with the following objective.

max
uk

Rs;k; 8s 2 S: (4.12)

The problem constraints include (4.3), (4.8), (4.9), and (4.10). Based on the
optimal price u�

k , the individual discharged energy by GEV s is derived as

P�
s;k D a

b � u�

k
b .

The second step is charging decision making in which the GEVs with charging
demands aim to minimize their charging cost based on the determined price u�

k
from (4.12).

min
Pd;k

P

d2D
cd;k: (4.13)

The optimization constraints include (4.1), (4.2), (4.5), (4.6), and (4.7).
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• Surplus Supply Case: When PS � PD, the electricity price is determined by
the demand side, (i.e., Pk

D or Eq. (4.2)). The problem is solved in two steps. In
the price decision making step, all the demanding GEVs compete for charging
forming an Oligopoly game, with the objective to minimize charging costs, i.e.,

min
uk

cd;k; 8d 2 D: (4.14)

The constraints include (4.1), (4.6), (4.7). Based on the optimal price u�
k , the

energy to be charged by GEV d is P�
d;k D a

b � u�

k
b .

In the discharging decision making step, based on the determined price, the
discharging GEVs aim at maximizing revenues, i.e.,

max
Ps;k

P

s2S
Rs;k: (4.15)

The constraints include (4.3), (4.4), (4.5), (4.8), (4.9), and (4.10).

4.4.2 The Solutions of the Proposed Problems

In this section, the solutions to problems ((4.12), (4.13), (4.14), and (4.15)) are
derived to obtain the optimal decisions for coordinated V2V charging strategy in
the above two cases, respectively.

High Demand Case: In this case, the V2V charging problem can be solved in
two steps.

4.4.2.1 Price Decision Making

The curve is given by Pk
S D F.uk/ D a

b � uk
b (since uk D a � bPk

S) where Pk
S is

calculated by (4.4). Define U as the price satisfying F.U/ D 0. The function F.:/ is
twice continuously differentiable, strictly decreasing, and concave over the interval
[0, U].

To solve (4.12), two supplying GEVs i and j are taken as the simplest example to
help understand the solving procedure [3]. GEVs i and j can choose supply functions
simultaneously. For either GEV, given the discharged power by the other GEV, it
first maximizes its own revenue. For instance, given Fj.uk/ as the discharged power
of GEV j at price uk, the discharged power of GEV i, Fi.uk/, can be expressed as
F.uk/ � Fj.uk/ because the total discharged power is a function of price uk, i.e.,
F.uk/. Then, GEV i will determine the optimal price to maximize its own revenue
on its demand curve by solving max

uk
ukŒF.uk/� Fj.uk/�� C.F.uk/� Fj.uk//, where
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the discharging cost for GEV i, i.e., C.F.uk/ � Fj.uk//, is given by ci;k as defined
in (4.9). If the first order of the revenue is equal to zero at price uk, i.e.,

dfukŒF.uk/� Fj.uk/� � C.F.uk/� Fj.uk//g
duk

juk D 0: (4.16)

and Fj00.uk/ � 0 also holds at price uk, uk is a locally optimal price in maximizing
the revenue for GEV i. Similarly, for GEV j, if the first order of the revenue equals to
zero, and the second order Fi00.uk/ � 0, uk is a locally optimal price in maximizing
the revenue of GEV j. If we extend Fi.:/ and Fj.:/ linearly over [0, U), the globally
optimal price uk

� can be found in maximizing the revenues for both GEVs. This
global optimal solution is unique due to the strict monotonicity of the demand
function [3]. Similarly, the solving approach can be applied to the case with more
than 2 GEVs.

4.4.2.2 Charging Decision Making

Having achieved the charging price u�
k , the problem (4.13) is then solved to mini-

mize the overall charging cost. The problem (4.13) has a convex objective function
and linear constraints. Leveraging the Lagrange duality [11], a decentralized optimal
solution can be achieved to (13). The basic principle is to integrate the constraints
of problem (4.13) into the objective function by adding a weighted sum of all the
constraint functions. Defined the Lagrangian function L.:/ for problem (4.13) as

L.Pd;kI�; ; 
; &; �/ D
P

d2D
cd;k � P

d2D
�dPd;k C P

d2D
d.Pd;k � Pmax

d;k /C 
.
P

s2S
�sPs;k � P

d2D
�dPd;k/

� P

d2D
&d.Einit

d;k C .a � �dPd;k � Pd;k
cost//C P

d2D
�d.Einit

d;k C .a � �dPd;k/ � Cmax
battery/

(4.17)
where �d, d, 
, &d, and �d are the Lagrange multipliers corresponding to con-
straints (4.1), (4.5), and (4.6), respectively. First minimize Lagrangian L.:/ over
Pd;k. Define D.�d; d; 
; &d; �d/ as the minimum value of L.:/ over Pd;k. Then, by
maximizing the Lagrangian dual function D.�d; d; 
; &d; �d/ over the Lagrange
multipliers, the optimal solutions of (4.13) can be achieved, as shown below.

max
�d ;d
;&d ;�d

D.�d; d
; &d; �d/

s:t: �d; d
; &d; �d > 0:
(4.18)

Surplus Supply Case: In this case, the solutions of (4.14) and (4.15) are obtained
with a similar approach as (4.12) and (4.13) in the high demand case, respectively.

In the price decision making step, the electricity price is obtained through
competition among the demanding GEVs to minimize the individual charging cost.
Thus, we model the price decision problem into a single-step Oligopoly game
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problem with all linear constraints for (4.14). By solving this Oligopoly problem
(with a similar approach as that to (4.12)), the optimal price can be achieved.
Then, in the discharging decision making step, given the optimal price, (4.15) is to
maximize the total discharging revenues for the supplying GEVs. The maximization
problem is a convex optimization problem with all linear constraints, which can be
easily solved in a distributed manner exploiting Lagrange duality. The mathematical
details are left for readers due to the similar procedure.

4.5 Performance Evaluations

In this section, the performance of the proposed V2V charging strategy is evaluated
based on a customized simulator built in Matlab. The investigated performance
metrics include: (1) discharged power and revenues of the supplying GEVs; and (2)
charged power and charging costs of the demanding GEVs at the swapping station.

4.5.1 Simulation Setup

The GEV battery capacity is set to 60 KWh following the TESLA Model S [1]. The
charging/discharging duration is set to 15 min for all the GEVs. The initial battery
level for a GEV follows a uniform distribution over Œ10; 60�KWh. A highly realistic
simulator, VISSIM [12], is employed to simulate a vehicular network with an area
of 6000m � 2800m. When the simulation starts, vehicles are pushed into the region
from pre-set entries (e.g., 9 entries at the road ends), following a Poisson arrival
process with a rate � (e.g., � = 2500 vehicles/hour/entry). After a certain warm-up
duration t� (e.g., 240 s), the vehicle pushing-in stops. The mobility information (e.g.,
locations, velocities, etc.) of vehicles can be recorded at the end of every simulation
step (e.g., 0:2 s) into the trace files. Besides, the RSUs (e.g., with the number of 25)
are deployed uniformly along the roads with a pre-defined transmission range (e.g.,
150 m). The simulation is run over 3000 s.

4.5.2 Simulation Results of VANETs

First, the V2V charging strategy for the high demand case is examined, i.e., when
the number of discharging GEVs is less than the number of demanding GEVs (e.g.,
8 demanding GEVs in the setting). The results are shown in Fig. 4.3 where both
the discharging performance of supplying GEVs and the charging performance of
demanding GEVs are presented. In high demand case, the price is decided by supply
side following an Oligopoly game among the supplying GEVs. It can be observed
that both the total charged and discharged power increase when the number of
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Fig. 4.3 (Dis)Charging performances for high demand case

supplying GEVs increases. Besides, the individual discharging revenues decrease
when the discharged power increases due to the decreased price. In addition, the
total discharged power is equal to the total charged power. Moreover, for the
demanding GEVs, when the discharged power increases, the total charging cost first
increases and then decreases. This can be explained as follows. When the amount of
the discharged power is very small, e.g., only 2 supplying GEVs, the total available
discharged power is low, resulting in a high energy price. If the discharged power
increases by a little bit (e.g., from 2 to 3 supplying GEVs), the charging cost will
increase first due to the increased productivity between the increased total energy
and the slightly dropped price. However, with more power supply (e.g., 5 supplying
GEVs), the energy price is significantly decreased and becomes dominant over the
increase of total charged power, leading to reduces costs.

Then, the charging/discharging performance for the supply surplus case is given
in Fig. 4.4, where 8 discharging GEVs is used in the setting. It can be seen that
the total charged power is still equal to the total discharged power at the swapping
station. Besides, the charging cost decreases when the total charged power increases,
due to the reduces energy price. In addition, the discharging revenues decrease when
the total charged power is increased due to the reduced electricity price.

4.6 Related Works

There have been abundant works studying the coordinated EV charging strategies
from the aspect of G2V. For instance, in [7] and [13], the proposed strategies
coordinate the charging duration and rates for a group of EVs to maximize the
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Fig. 4.4 (Dis)Charging performances for supply surplus case

total energy utilization of the power system. However, the high penetration levels
of GEV impose high charging demands on the power grid, which can significantly
affect the power system by causing voltage and frequency fluctuations [14]. Besides,
the deployment of the fast-charging stations is costly [2]. To this end, more efficient
and economic charging approaches need to be investigated.

With bi-directional chargers equipped with GEVs, GEVs can in turn supply
energy to the grid, i.e., V2G. In this way, the voltage and frequency fluctuations
in the power grid can be effectively regulated. For example, in [15] and [16],
GEVs act as smart mobile storage devices to enable fast and accurate response to
frequency and spinning reserves in maintaining the voltage and frequency stability.
More importantly, energy can be transferred among GEVs at swapping stations
without through the power grid, i.e., V2V charging [2]. V2V transaction provides
a promising charging concept, by offloading high GEV charging demands from the
power system to GEVs with surplus energy. Besides, swapping stations are much
cheaper than the charging stations, yet with little transmission and power loss.
Therefore, V2V energy transactions can significantly improve the GEV charging
efficiency.

4.7 Conclusions

In this chapter, a semi-distributed V2V charging strategy has been developed for
GEVs at the swapping station. A heterogeneous wireless network that integrates
both VANETs and cellular networks has been proposed for delivering real-time
information required by the V2V strategy. The proposed V2V charging strategy
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aims to maximize the discharging revenues and minimize the charging costs,
through Oligopoly game theory and Lagrange duality optimization techniques.
Simulations results have demonstrated the performance of the proposed V2V
charging strategy. In our future work, we intend to collect large-scale realistic
vehicle traffic traces, to further verify the benefits of the proposed strategy in various
and practical scenarios.
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Chapter 5
Conclusions and Future Directions

5.1 Concluding Remarks

In this monograph, the EV mobility has been incorporated into the EV fast
charging/discharging coordination framework, which is the most distinct feature
of the vehicles. VANET-enhanced coordinated EV charging strategy has been
developed to improve the overall energy utilization subject to the charging load
capacity at charging stations and cut down the EV travel cost while preventing
the power system from overloading. Specifically, a VANET-enhanced smart grid
architecture with real-time vehicle information collection capabilities has been
introduced to deliver the required messages among the vehicles and RSUs. Then,
two EV charging strategies, i.e., the predictive mobility-aware coordinated EV
charging strategy and V2V energy swapping strategy, have been proposed with the
objective to maximize the overall charging-energy-minus-travel-cost with avoiding
the power overloading problem. Extensive simulations have been performed to
evaluate the travel cost introduced by the transmission delay of VANETs. The results
have further demonstrated that the proposed EV fast-charging strategy surpass the
existing strategy that does not consider the EV mobility and travel cost in the
performance metrics such as the total EV charging power, the average EV travel
cost and the success ratio for the involved charging EVs.

5.2 Future Research Directions

For the potential future research directions, there still exist many challenging issues
standing in the way to efficiently performing the charging applications for EVs. The
issues to our most interest include how to select the optimal transmission network
under different situations, how to balance the tradeoff between the system technical
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limitations and drivers’ preferences, and how to improve the business revenue model
to better stimulate the EVs to achieve the win-win situation for both EVs, charging
stations and the grid operators.

5.2.1 Network Selection for Real-Time Information Delivery

In VANETs, the V2V and V2R connections can be intermittent due to the vehicle
mobility, which results in non-neglectable transmission delay and further additional
travel cost. The cellular network can provide wide coverage for the vehicles, but
the services for large-volume vehicle information delivery will considerably bring
about additional monetary cost. Therefore, by combining both cellular networks
and VANETs to form a heterogeneous wireless network with multiple radio access
technologies, more efficient mechanisms for information delivery can be designed
while reducing the communication costs, e.g., low deployment and operation costs.
In such a heterogeneous wireless network, the network selection mechanism is
desirable to strike the balance between the travel cost incurred the transmission
delay in VANETs and the monetary service cost mainly brought by the cellular
networks. Thus, in our future work, an intelligent and adaptive network selection
mechanism is indispensable to decide the best access network for the vehicles in
different conditions. The aim is to balance the travel cost from the transmission
delay of VANETs and the monetary cost associated with the cellular transmissions,
in order to achieve a more efficient and economic information collection and
dissemination for the EV charging decision making.

5.2.2 Balancing the Tradeoff Between the System Technical
Limitations and Preferences of the Drivers

Bearing the personal behaviors and the range anxiety due to the vehicle mobility,
drivers usually have their own preferences when choosing a destination (e.g., a
charging/swapping station). But sometimes the drivers’ preferences may conflict
with the situation that the preferred charging/swapping station may not be able to
support any more power loads. In this situation, in order to avoid the overload of the
smart grid, another charging/swapping station will be designated for EV v to charge
or discharge, which is referred to as spatial coordination.

Since drivers tend to follow their individual preferences, a tradeoff exists between
the optimal power utilization of the system (e.g., power system) and the individual
satisfactions. This tradeoff raises the challenging issues of (1) how to define and
model the preferences of individual drivers, taking into the typical human behaviors,
and (2) how to balance the system limitations (e.g., overload avoidance) with
drivers’ preferences.
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5.2.3 Business Revenue Model for EVs and Extended
Large-Scale Simulations

The spatial and temporal coordination for fast EV charging raises additional
challenges. The economic model built for EV interaction/negociation with the
system need to benefit both the EVs and the system operators. Specifically, the
economic model should define stimulation model to provide incentives for the
drivers to use the designed applications or follow the received charging/discharging
decisions.

In addition, we intend to employ large-scale realistic vehicle traffic traces to
conduct more extensive simulations and validations in real-world scenarios, based
on which we hope to find implications of how different factors can impact the
network design and operations.
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